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Preface

The International Conference on Queueing Theory and Network Applications aims to
promote the knowledge and the development of high-quality research on queueing
theory and its applications in networks and other related fields. It brings together
researchers, scientists, and practitioners from the world and offers an open forum to
share the latest important research accomplishments and challenging problems in the
area of queueing theory and network applications.

This volume contains papers selected and presented at the 12th International Con-
ference on Queueing Theory and Network Applications (QTNA 2017) held during
August 21–23, 2017, in Qinhuangdao, China. The conference is organized by Yanshan
University, China, and by the following sponsors: Academy of Mathematics and
Systems Science, Chinese Academy of Sciences, National Natural Science Foundation
of China, and Springer.

QTNA 2017 was a continuation of the series of successful QTNA conferences:
QTNA 2006 (Seoul, Korea), QTNA 2007 (Kobe, Japan), QTNA 2008 (Taipei,
Taiwan), QTNA 2009 (Singapore), QTNA 2010 (Beijing, China), QTNA 2011 (Seoul,
Korea), QTNA 2012 (Kyoto, Japan), QTNA 2013 (Taichung, Taiwan), QTNA 2014
(Bellingham, USA), QTNA 2015 (Hanoi, Vietnam), and QTNA 2016 (Wellington,
New Zealand).

We received 65 submissions from Belgium, China, Hong Kong, Japan, The
Netherlands, Singapore, South Korea, Taiwan, USA, and UK. All papers were peer
reviewed and evaluated on the quality, originality, soundness, and significance of their
contributions by the members of the Technical Program Committee of QTNA 2017 and
19 papers were accepted as full papers appearing in this LNCS proceedings published
by Springer.

In addition, 37 short papers were accepted to be presented at QTNA 2017. The
papers presented disseminate the latest results covering up-to-date research fields such
as performance modeling and analysis of telecommunication systems, retrial and
vacation queueing models, optimization of queueing systems, modeling of social
systems, and other application areas.

It is also our privilege to have had Profs. David D. Yao, Guy Latouche, Mu-Fa
Chen, and Zhisheng Niu to give us keynote talks, and Profs. Minghua Chen, Longbo
Huang, and Pengfei Guo to deliver invited talks at QTNA 2017.

The proceedings show that the potential of queueing theory is to be exploited, and
this is a significant opportunity and a challenge for all of researchers, PhD and graduate
students in queueing theory and its applications to share recent achievements and
discoveries and create new friendships for future collaborative works.

We would like to thank the authors of papers for contributing their excellent
technical contributions and new theoretical results to this book. Special thanks go to the
co-chairs and members of the Technical Program Committee of QTNA 2017 for their
contribution to keeping the high quality of the selected papers. We would also like to



express our gratitude to the co-chairs and members of the local Organizing Committee
for their hard work throughout the process from planning to holding the conference.
Finally, we cordially thank Springer for support in publishing this volume.

August 2017 Wuyi Yue
Quan-Lin Li
Shunfu Jin

Zhanyou Ma
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Equilibrium Analysis of the M/M/1 Queues
with Setup Times Under N-Policy

Yaqian Hao, Jinting Wang(B), Mingyu Yang, and Ruoyu Wang

Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China
{14271053,jtwang,14271068,14274078}@bjtu.edu.cn

Abstract. Chen et al. (2015) studied the equilibrium threshold balking
strategies for the fully observable and fully unobservable single-server
queues with threshold policy and setup times. The server shuts down
whenever the system becomes empty, and is only resumed when the
number of customers reaches to a given threshold. Customers decide
whether to join or to balk the system based on their observations of
the queue length and status of the server at arrival instants. This paper
aims to study the partially observable case and the unobservable case.
The stationary probability distribution, the mean queue length and the
social welfare are derived. The equilibrium strategies for the customers
and the system performance under these strategies are analyzed.

Keywords: M/M/1 queue · Setup times · N-policy · Balking
Queue length

1 Introduction

During the last decades, the game-theoretic analysis of queueing systems with
strategic customers has been paid considerable attention since the pioneer work
by Naor (1969). In general, to reflect customers’ desire for service and their
unwillingness to wait, some reward-cost structures are imposed on the system.
Arriving customers can make decisions to decide whether to join or not, based
on different levels of information of the system at their arrival, to maximize
their utility. These customers take into account that the other customers have
the same objective to maximize their benefit, so the situation can be regarded
as a game among them. In these studies, the characterization and computation
of individual and social optimal strategies is the fundamental problem.

Studies on customers decentralized behavior as well as socially optimal con-
trol of customers’ arrivals was pioneered by Naor (1969) with a single-server
system in an observable framework, i.e., upon arrival, a customer is informed
about the length of queue before his decision is made to join. Edelson and
Hildebrand (1975) considered the unobservable case. There is more related work

This work is supported by the National Natural Science Foundation of China (Grant
Nos. 71571014 and 71390334).

c© Springer International Publishing AG 2017
W. Yue et al. (Eds.): QTNA 2017, LNCS 10591, pp. 3–17, 2017.
https://doi.org/10.1007/978-3-319-68520-5_1



4 Y. Hao et al.

by Hassin and Haviv (2003) in their survey book. Burnetas and Economou (2007)
assumed N = 1 and an exponential setup time when the server starts a new busy
period. They considered the strategic behavior of customers under different lev-
els of information. In particular, if only the queue length is known and the set-up
time is of considerable length, the “Follow-The-Crowd” behavior of customers is
observed.

The pioneering work on queues with N -policy can go back to Yadin and Naor
(1963) for an M/M/1 queue with multiple vacations. The server is immediately
turned on whenever N (N ≥ 1) or more customers are present in the system and
is switched off once there are no customers in the system. When the server shuts
down, the server can not operate until N customers are present in the system.
Guo and Hassin (2011) first considered customers’ strategic behavior and social
optimization in a single Markovian queue with N -policy, in which the server is
activated only if there are N customers in the system and turned off once there
are no customers in the system. They concluded that a customer can induce
positive externalities in the fully observable and the fully unobservable cases.
Some recent papers that deal with the strategic behavior of customers in various
queueing systems can be found in Economou and Kanta (2008a, b), Economou
et al. (2011), Hassin (2007), Sun et al. (2010), Wang et al. (2017), Wang and
Zhang (2011), Zhang et al. (2015), among others.

Evidently, frequent setups increase the operating cost, and it is crucial for
the server to decide when to start service in practice. In principle, an appro-
priate value N can be determined by avoiding excessively frequent setups and
the associated cost. For instance, to reduce the operating cost, in a Make-To-
Order (MTO) system, the firm will set up the machines when the quantity of
orders reaches a threshold. Another example is energy-saving issues arising from
wireless sensor networks (WSNs), the N -policy is actually used in switching the
sensor’s on-off states for prolonging the lifetime of the WSN system. Further-
more, the threshold-type control policy could be applied on optimizing elevator
configuration, increasing the defense effectiveness of a missile defense system,
and improving the connectivity of communications network.

The main objective of our work is to investigate the customers’ equilibrium
balking strategies for both the partial observable single-server queues with N -
policy and setup times which make our model more practical and valuable. In
the present paper, we assume that customers are aware of the service policy,
specifically the threshold N , and react to it in a strategic way. We also consider
the social optimization problems. The model under consideration can be viewed
as an M/M/1 queue in a Markovian environment. Also, customer equilibrium
strategies are studied in each case, along with the system’s performance and the
social welfare. Our model has potential in many practical applications.

2 Model Description

We consider a single server Markovian queue with infinite waiting room under
the FCFS discipline, where customers arrive according to a Poisson process with
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rate λ. We are interested in customers’ strategic behavior when they can decide
whether to join or balk the system based on available information upon their
arrival. The server works with service rate μ and it shuts down once there is
no customer upon completion of a service. After the server shuts down, the
server can not work until N customers are presented in the queue and then
a setup process begins, and we assume that the setup time is exponentially
distributed with rate θ. We suppose that arrival times, service times, setup times
are mutually independent. More specifically, every customer gets a reward of R
units for completing service, however there exists a waiting cost of C per time
unit when waiting in the queue or in service. Customers are risk neutral and they
want to maximize their expected net benefit. We assume that R > C

μ , which
enables that a customer joins in the queue when he finds the system empty,
because the profit for service definitely surpasses the expected cost. Finally, the
decisions are irrevocable, which means that retrials of balking customers and
reneging of entering customers are not allowed.

The state of the system can be represented by a pair (N (t) , I (t)) at time t,
where N(t) denotes the number of customers in the system, and I(t) stands for
the state of the server. More specifically, the state (0, n), 0 ≤ n ≤ N − 1, implies
that the system is down with n customers in the system; The state (1, n), n ≥ N ,
means the system is in a setup process with n customers in the system; And the
state (2, n), n ≥ 1, implies that server is busy with n customers in the system. It
is easy to see that the process {N(t), I(t), t ≥ 0} is a two-dimensional continuous
time Markov chain with state space S = {(n, i)|n = 0, 1, 2, . . . ; i = 0, 1, 2} and
non-zero transition rates are given by:

q(1,2)(0,0) = μ; (1)
q(N−1,0)(N,1) = λ; (2)
q(n,i)(n+1,i) = λ, n = 1, 2, ... . . . , i = 0, 1, 2; (3)
q(n+1,2)(n,2) = μ, n = 1, 2, ...; (4)

q(n,1)(n,2) = θ, n = N,N + 1..... (5)

In the next sections we will investigate the stationary probability distribution in
the queueing system. In this paper, as mentioned above, we focus on two different
levels of information that are available to customers before their decisions are
made. We follow the notations in Burnetas and Economou (2007), i.e.

(1) Almost observable case: Customers are informed only about the queue
length N(t);

(2) Almost unobservable case: Customers are informed only about the server
state I(t).

For convenience, throughout this paper we denote Sao by the social benefit per
time unit in almost observable case, and Sau by the social benefit per time unit
in almost unobservable case.
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3 Almost Observable Case

In this section we proceed to the almost observable case where the arriving
customers observe the number of the present customers in the system upon
their arrival, but not the state of the server. The transition diagram is depicted
in Fig. 1.

Fig. 1. Transition rate diagram for the ne equilibrium threshold strategy in the almost
observable model

To this end, it is necessary to obtain the stationary distribution of the system
when the customers follow a given pure threshold strategy. In general, the strat-
egy of never joining is always an equilibrium when N > 1, since if all customers
adopt this strategy, the server is never active. We concentrate on the existence
of other equilibrium strategies in which the server could be reactivated.

A threshold strategy with a threshold ne is a strategy where customers join
if and only if they find at most ne customer in the system upon arrival. Thus
the maximum number of customers in the system at any time is ne + 1. We
analyze the mean queue length and social welfare under this maximum number
of customers. Firstly, we need to consider the condition for a server to be active in
queues with setup time and N -policy which is different from the work of Guo and
Hassin (2011). As mentioned, the server can only be active when the number
of customers in the system reaches N . We know that, the longest expected
waiting time for an arriving customer who arrives at state 0 is when there are
n (0 < n < N) customers in the queue, thus the longest expected waiting time
W can be reached when there are 0 or N − 1 customers in the queue, thus W is
shown as follows:

W =

{
N−1

λ + 1
μ + 1

θ n = 0,
1
θ + N

μ n = N − 1.

By assumptions, an incoming customer always joins if his net benefit U is non-
negative. The sufficient condition for a server to be active is given as follows.

R − CW = max

{
R − C(

N − 1
λ

+
1
μ

+
1
θ
), R − C(

1
θ

+
N

μ
)
}

> 0.

Now we assume that the stability condition is satisfied. Obviously, a customer
who arrives at state (n, 0) has a higher expected waiting time than one who
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arrives at state (n, 2). Thus, all arriving customers join the queue if there are no
more than N > 1 customers in the system. The equilibrium strategy is therefore
characterized by a threshold value ne > N .

Lemma 1. In the almost observable M/M/1 queue with N policy and setup
time where the customers enter the system according to a threshold strategy:
While arriving at time t, observe N(t); enter if N(t) ≤ ne and balk otherwise.
The stationary distribution (pao(n, i):(n, i) ∈ {(0, 0)} ∪ {1, . . . , N − 1} × {0, 2} ∪
{N, . . . , ne + 1} × {1, 2}) is given as follows:

p(n, 0) = p(0, 0), n = 1, ..., N − 1, (6)
p(N, 1) = σp(0, 0), (7)
p(n, 1) = σn−N+1p(0, 0), n = N + 1, ..., ne, (8)

p(ne + 1, 1) = (1− σ)σne−Np(0, 0), (9)
p(1, 2) = ρp(0, 0), (10)

p(2, 2) =
ρ

1− ρ
(1− ρ2)p(0, 0), (11)

p(n, 2) =
ρ

1− ρ
(1− ρn)p(0, 0), n = 1, ..., N − 1, (12)

p(n, 2) =

(
(1− σ)ρn−N+2 + (1− ρ)ρσn−N+1

(1− σ)(σ − ρ)
− ρn+1

1− ρ

)
p(0, 0), n = N, ..., ne,(13)

where

p(0, 0) = ((N − 1) +
σ2 − σne−N+4

(1 − σ)(σ − ρ)
+

ρne+3 − Nρ2 + (N − 1)ρ
(1 − ρ)2

+
(σ − 1)(ρ2 − ρne−N+4)

(1 − ρ)2(σ − ρ)
)−1, (14)

and ρ = λ
μ , σ = λ

λ+θ .

Proof. The corresponding stationary distribution is obtained as the unique pos-
itive normalized solution of the following system of balance equations:

λp(0, 0) = μp(1, 2), (15)
λp(n, 0) = λp(n − 1, 0) n = 1, 2, ..., N − 1, (16)

(λ + θ)p(N, 1) = λp(N − 1, 0), (17)
(λ + θ)p(n, 1) = λp(n − 1, 1), n = N + 1, ..., ne, (18)
θp(1, ne + 1) = λp(ne, 1), (19)

(λ + μ)p(1, 2) = μp(2, 2), (20)
(λ + μ)p(n, 2) = μp(n + 1, 2) + λp(n − 1, 2), n = 2, 3..., N − 1, (21)
(λ + μ)p(n, 2) = μp(n + 1, 2) + λp(n − 1, 2) n = N + 1, ..., ne. (22)

By iterating (16), we can get

p(n, 0) = p(0, 0).
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By (17) and iterating (18) we can get

p(1, n) = σn−N+1p(0, 0) n = N + 1, ..., ne.

By (19) we can get p(ne + 1, 1) as follows

p(1, ne + 1) = (1 − σ)σne−Np(0, 0).

On the other hand, by (21), we can get

μp(n + 1, 2) − (λ + μ)p(n, 2) + λp(n − 1, 2) = 0, n = 2, 3..., N − 1. (23)

In the following, we use a rather standard method to solve this type of equation
by solving a linear difference equation with constant coefficients as

μx2 − (λ + μ)x + λ = 0. (24)

It is readily seen that the above equation has two roots 1 and ρ and the common
root of the homogeneous transformation Eq. (21) is{

xhom
n = A1n + Bρn, ρ �= 1;

xhom
n = A1n + Bn1n, ρ = 1.

(25)

Since we assume ρ �= 1, thus the solution of Eq. (21) is

xn = A + Bρn n = 1, 2, 3, ..., N − 1. (26)

Now, we need to know the values of A and B for the purpose of getting the
expression of xn(n = 1, 2, ..., N − 1).

Letting n = 1 and n = 2, we can get{
A + Bρ = p(1, 2),
A + Bρ2 = p(2, 2). (27)

We get p(1, 1) and p(2, 1) from (15) and (20):{
p(1, 2) = ρp(0, 0),
p(2, 2) = ρ

1−ρ (1 − ρ2)p(0, 0). (28)

Solving the Eq. (29), we can get A and B as follows{
A = 1−ρ

ρ p(0, 0);
B = (−1)1−ρ

ρ p(0, 0).
(29)

Next, we consider p(n, 2)(n = N,N +1, ..., ne +1). Similarly the general solution
of Eq. (24) is xgen

n = xhom
n + xspec

n , where xspec
n is a special root of the Eq. (22).

We want to find a special root of Eq. (24) to replace xspec
n , and find the

special root is like Dσn (when σ �= 1 and σ �= ρ), or like Dnσn(when σ = 1
or σ = ρ), or like Dn2σn(when σ = 1 = ρ). According to the discussion on the
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root solution given by Burnetas and Economou (2007), we need only consider
the common situation. That is, find the special root is like Dσn for the regular
case σ �= 1 and σ �= ρ. Therefore, by simple computation, the solution of the
Eq. (22) is given by:

xgen
n = A1n + Bρn + Dσn, n = 1, 2, 3, . . . , ne − 1. (30)

Letting xn = Dσn and take (24) into account, we can get the value of D as
follows.

D =
−θσ2−N

(μσ2 − (λ + μ)σ + λ)
p(0, 0) =

ρσ1−N

(σ − ρ)
p(0, 0).

Now, we need to know the values of A and B for the purpose of getting the
expression of xgen

n . Letting n = N and n = N + 1, using (33), we can get{
A + BρN + DσN = p(N, 2);
A + BρN+1 + DσN+1 = p(N + 1, 2). (31)

So we can get the expression of p(N, 2), p(N + 1, 2) by taking (8) and (12)
into (22):

{
p(N, 2) = ρ

1−ρ (1 − ρN )p(0, 0);
p(N + 1, 2) = ( ρ

1−ρ (1 − ρN+1) − ρ(1 − σ))p(0, 0). (32)

Solving the Eq. (32), we can get A and B:{
A = 0;
B = σ−1−ρN−1(σ−ρ)

(1−ρ)(σ−ρ) ρ2−Np(0, 0).
(33)

With the help of known values of A, B, D, we can obtain (13). Consequently,
we can get the expression of p(ne + 1, 2) by taking (13) into (22):

p(ne + 1, 2) = ρp(ne, 2) +
1 − σ

σ
p(ne + 1, 1). (34)

Based on the above results, we can conclude that all probabilities involved can
be expressed via p(0, 0). Finally, we can get the expression of p(0, 0) by normal-
ization equation:

N−1∑
n=0

p(n, 0) +
ne+1∑
n=N

p(n, 1) +
ne+1∑
n=1

p(n, 2) = 1, (35)

which reaches the result (14). This completes the proof of this lemma. ��
Next, we will proceed to study the profit net of the almost observable case.

In this case, the arriving customers can only observe the number of customers.
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T (n, i)(i = 0, 1, 2) represents the sojourn time of an arriving customer when he
finds n customers in front of him and the state of the sever I = i(i = 0, 1, 2):

T (n, 2) =
n + 1

μ
,

T (n, 1) =
1
θ

+
n + 1

μ
,

T (n, 0) =
1
θ

+
n + 1

μ
+

N − (n + 1)
λ

. (36)

So for an arriving customer if he finds n(n > N − 1) customers in front of him
and decides to enter the system, the profit for this customer is given by

R − C(T (n, 1)Pr(I(t) = 1|N(t) = n) + T (n, 2)Pr(I(t) = 2|N(t) = n)), (37)

where Pr(I(t) = 1|N(t) = n) is the conditional probability that the server is on
setup when the system have n customers waiting, and Pr(I(t) = 2|N(t) = n) is
the conditional probability that the server is working when the system have n
customers waiting.

To find the equilibrium strategies of threshold type, we should compute
Pr (I− = i|N− = n) (i = 1, 2) as follow.

Pr(I(t) = i |N(t) = n ) =
λpao (n, i)

λpau (n, 1) + λpau (n, 0) I {n ≥ N} ,

n = N,N + 1 . . . , ne + 1, (38)

where

I {n ≥ N} =
{

0, n < N ;
1, n ≥ N.

Taking Eqs. (8), (13) and (36) into Eq. (38), we can get the profit of the customer
as follows.

U = R − C

{
(
1

θ
+

n + 1

μ
) Pr(I− = 1|N− = n) +

n + 1

μ
Pr(I− = 2|N− = n)

}
. (39)

Theorem 1. In the almost observable M/M/1 queue with N policy and setup
time where the customers enter the system according to a threshold strategy
‘While arriving at time t, observe N(t); enter if N(t) ≤ ne and balk other-
wise’, we conclude that there exists unique equilibrium strategy of threshold n∗

e

if μ > λ + θ.

Proof. Take the expression of U into consideration and we can get:

U = R − C

(
n + 1

μ
+ (

σn−N+1(1 − ρ)(σ − ρ)
(1 − ρ)σn−N+1 + (σ − 1)ρn−N+2 − (σ − ρ)ρn+1

)
1
θ

)
.

(40)
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More specifically, taking transformation of the formula

n + 1
μ

+
(

σn−N+1(1 − ρ)(σ − ρ)
(1 − ρ)σn−N+1 + (σ − 1)ρn−N+2 − (σ − ρ)ρn+1

)
1
θ

=
n + 1

μ
+

1
1 + ρ

σ−ρ + ( σ−1
(1−ρ)(σ−ρ)( ρ

σ )N−1 − ρ
1−ρσN−1)( ρ

σ )n
,

which is strictly increasing when ρ < σ, equally μ > λ + θ, therefore
U(n) is strictly decreasing. So, there exists a unique threshold, denoted by
n∗

e =max{n|U(n) ≥ 0}. ��
Lemma 2. In the observable M/M/1 queue with N policy and setup time where
the arriving customers know the number of customers in the system, the social
welfare per time unit SWao is given below:

SWao = Rλ(1 − pao(ne, 1) − pao(ne, 2)) − CLao,

Proof. The mean sojourn time of customer is E[Wao] and the mean queue length
is Lao.

E[Wao] = Laoλ(1 − pao(ne, 1) − pao(ne, 2)),

where pao(ne, i)(i = 1, 2) is the steady state probability that the queue is at its
maximum size, and λ(1 − pao(ne, 1) − pao(ne, 2)) is the efficient arrival rate of
customer.

The mean queue length is shown below:

Lao =

N−1∑
n=0

n(p(n, 0) + p(n, 2)) +

ne+1∑
n=N

n(p(n, 1) + p(n, 2))

=
1

1− ρ

[
N(N − 1)

2
+

ρ2 − NρN+1 + (N − 1)ρN+1

(1− ρ)2

]
p(0, 0)

+
Nρ2 + (1− N)ρ3 − (ne + 1)ρne−N+1 + neρ

ne−N+4

(σ − ρ)(1− ρ)2
p(0, 0)

+
σ(1− ρ) + ρ(σ − ρ)

(1− σ)3(σ − ρ)
(Nσ + (1− N)σ2 − (ne + 1)σne−N + neσ

ne−N+3)p(0, 0)

− NρN+1 + (1− N)ρN+2 − (ne + 1)ρne+2 + neρ
ne+3

(1− ρ)3
p(0, 0)

+ (ne + 1)(1− σ)σne−Np(0, 0) +
ne + 1

μ

[
ρne−N+1(1− σ)(ρ(λ + μ)− λ)

(1− σ)(σ − ρ)

−ρn
e (ρ(λ + μ)− λ)

1− ρ

]
p(0, 0).

��

4 Almost Unobservable Case

We now turn our interest to the unobservable cases where the customers have
no information on the queue length when they make their decision to join or
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balk. Two cases, almost unobservable case and fully unobservable case, will be
studied separately regarding whether the customers can observe the state of the
server or not at their arrival instants. We will prove that there exist equilibrium
mixed strategies.

We begin with the almost unobservable case in which the customers are
informed about the state of the server before their decision is made to join upon
arrival. Now the optimal decision of a customer has to take into account the
strategies of the other customers.

Fig. 2. Transition rate diagram for the (q(0), q(1), q(2)) mixed strategy in the almost
unobservable model

Since all customers are assumed indistinguishable, we can consider the situ-
ation as a symmetric game among them. In the present model, there are only
two pure strategies, to join or to balk. And a mixed strategy is specified by the
joining probability of an arriving customer that finds the server is on working
vacation or not. Our goal is to identify the Nash equilibrium mixed balking
strategies. Suppose that all customers follow a mixed strategy (q(0), q(1), q(2)),
where q(i) is the probability of joining when the server is in state i. Then, the
system behaves as the original, but with arrival rate λi = λq(i) for states where
the server is in state i instead of λ. The transition diagram is shown in Fig. 2.

Lemma 1. In the almost unobservable queue with N policy and setup time in
which all customers adopt a mixed balking strategy (q(0), q(1), q(2)), where q(i) is
the probability of joining when the server is in state i, the stationary distribution
is given as follows

p(n, 0) = p(0, 0), n = 1, ..., N − 1, (41)

p(N, 1) =
λ0

λ1 + θ
p(0, 0), (42)

p(n, 1) =
(

λ0

λ1 + θ

)
σn−Np(0, 0), n = N + 1, ..., (43)

p(1, 2) =
λ0

μ
p(0, 0), (44)
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p(n, 2) =
λ0

μ

1− ρn

(1− ρ)
p(0, 0), n = 2, 3, ..., N − 1, (45)

p(n, 2) =
λ0

μ

ρn(σ − ρ) + (1− σ)ρn−N+1 − (1− ρ)σn−N+1

(ρ − 1)(σ − ρ)
, n = N, N + 1, ..., (46)

where

p(0, 0) =
(

N +
λ0

λ1 + θ

1
1 − σ

+
λ0

μ

N(1 − σ) + σ

(1 − ρ)(1 − σ)

)−1

, (47)

and ρ = λ2
μ , σ = λ1

λ1+θ .

Proof. The corresponding stationary distribution is obtained as solution of the
following system of balance equations:

λ0p(0, n) = μp(n − 1, 0), n = 1, 2, ...N − 1, (48)
(λ1 + θ)p(1, N) = λ1p(N − 1, 1), n = N + 1..., (49)
(λ1 + θ)p(1, n) = λ1p(n − 1, 1), n = N + 1..., (50)

μp(2, 1) = λ0p(0, 0), (51)
(λ2 + μ)p(2, 1) = μp(2, 2), (52)
(λ2 + μ)p(2, n) = μp(n + 1, 2) + λ2p(n − 1, 2), n = 2, ..., N − 1, (53)
(λ2 + μ)p(2, n) = μp(2, n + 1) + λ2p(n − 1, 2) + θp(n, 1), n = N, N + 1, .... (54)

By iterating (49) we can obtain

p(n, 1) = (
λ0

λ1 + θ
)σn−Np(0, 0), n = N + 1, ....

From (53) and (54) it follows that p(n, 2) is a solution of the nonhomogeneous
linear difference equation with constant coefficients, i.e.,

μxn+1 − (λ2 + μ) xn + λ2xn−1 = −θ(
λ0

λ1 + θ
)σn−Np(0, 0).

By using the same approach as used in the proof of Lemma 1, we can get (44).
Solving equations with respect to p(n, 0) and substituting in

N−1∑
n=0

p(0, n) +
∞∑

n=N

p(1, n) +
∞∑

n=1

p(2, n) = 1, (55)

and we can obtain p(0, 0). ��
Next, we consider an arriving customer who finds the server is at state i(i =

0, 1, 2) and we will give the expected sojourn time of a customer that decides to
enter given that the others follow the same mixed strategy (q(0), q(1), q(2)).
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Case 1. When the server is at state 0, the expected sojourn time is

Tau (0) =
E [N |0] + 1

μ
+

1
θ

+
N − (E [N |0] + 1)

λ0
. (56)

Case 2. When the server is at state 1, the expected sojourn time is

Tau (1) =
E [N |1] + 1

μ
+

1
θ
. (57)

Case 3. When the server is at state 2, the expected sojourn time is

Tau (2) =
E [N |2] + 1

μ
. (58)

To get the Tau(i), (i = 0, 1, 2), we first give the probability that the server in
idle, setup, busy steady state as follows

P (i = 0) =
N−1∑
n=0

p(n, 0) = Np(0, 0),

P (i = 1) =
∞∑

n=N

p(n, 1) = (
λ0

λ1 + θ
)(

1
1 − σ

)p(0, 0), (59)

P (i = 2) =
∞∑

n=1

p(n, 2) =
N−1∑
n=1

p(n, 2) +
∞∑

n=N

p(n, 2),

=
λ0

μ

N(1 − σ) + σ

N(1 − ρ)(1 − σ) + ρ2(1 − σ) + σ(1 − ρ)
.

Using Eq. (59) we can get:

P (n|0) =
p(n, 0)

P (i = 0)
=

1
N

, n = 1, 2, ..., N − 1;

P (n|1) =
p(n, 1)

P (i = 1)
= (1 − σ)σn−N , n = N,N + 1, ...;

P (n|2) =
p(n, 2)

P (i = 2)
(60)

=

⎧⎪⎨
⎪⎩

(1−ρ)(1−ρn)(1−σ)
N(1−ρ)(1−σ)+ρ2(1−σ)+σ(1−ρ) , n = 1, 2..., N − 1;

(1−σ)(ρ−1)(ρn(σ−ρ)+(1−σ)n−N+1)+(ρ−1)σn−N+1
(σ−ρ)(N(1−ρ)(1−σ)+ρ2(1−σ)+σ(1−ρ)) , n = N,N + 1, ....

With the help of Eqs. (59) and (60), we can compute E [N |i] and get that

E [N |0] =
N−1∑
n=0

nP (n|0) =
N − 1

2
, (61)
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E [N |1] =
∞∑

n=N

nP (n|1) = N +
σ

1 − σ
, (62)

E [N |2] =
N−1∑
n=1

nP (n|2) +
∞∑

n=N

nP (n|2)

=
1

N + (1 − N)σ

(N(N − 1)(1 − ρ)(1 − σ)
2

+
(1 − σ)((1 − N)ρN+2 + (2N − 1)ρN+1 − (N + 1)ρN + (2 − ρ)(1 − ρ)ρ2)

(1 − ρ)2

− (1 − σ)2(Nρ + (1 − N)ρ2)
(1 − ρ)2(σ − ρ)

+
(1 − ρ)(Nρ + (1 − N)σ2)

σ − ρ

)
. (63)

Taking Eqs. (61), (62), and (63) into Eqs. (56), (57) and (58), we can derive the
Tau(0) and Tau(1) and Tau(2) as follows:

Tau (0) =
1
θ

+
N − 1
2λ0

+
N + 1

2μ
,

Tau (1) =
1
θ

+
1
μ

(N +
σ

1 − σ
) =

1
θ

+
N + 1

μ
+

λ1

μθ
,

Tau (2) =
E [N |2] + 1

μ
.

Based on the reward-cost structure, the expected benefit for an arriving customer
who is informed the server is at state i is given as follows.

Sau (0) = R − C(
1
θ

+
N − 1
2λ0

+
N + 1

2μ
),

Sau (1) = R − C(
1
θ

+
N + 1

μ
+

λ1

μθ
),

Sau (2) = R − C(
E [N |2] + 1

μ
).

According to the above assumptions, an incoming customer always joins when
the state of sever I is 0 as long as his net benefit U is non-negative. The sufficient
condition for the system stability is

1
θ

+
N − 1
2λ0

+
N + 1

2μ
<

R

C
, (64)

which means Sau (0) > 0. We now assume that the stability condition is satisfied.
Obviously, a customer who arrives at state (n, 0) suffers a higher expected waiting
time than who arrives at state (N , 1). Thus, all arriving customers join the queue
if there are less than N customers in the system and we can know qe(0) = 1.

Next we consider qe(1). To this end, we tag an arriving customer when the
server is at state 1. His expected benefit is given as follows:

Sau (1) = R − C(
1
θ

+
N + 1

μ
+

λ1

μθ
) = 0.
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By solving the above equation, we can get qe(1) = μθ
λ (R

C − 1
θ − N+1

μ ). We have
the following lemma.

Lemma 2. In the almost observable M/M/1 queue with N policy and setup time
where the arriving customers know the number of customers in the system, the
social welfare per time unit SWau is given below:

SWao = Rλ(1 − pao(ne, 1) − pao(ne, 2)) − CLao,

Proof. The mean sojourn time of customer is E[Wau] and the mean queue length
is Lau.

E[Wau] = Lauλ.

The mean queue length is shown below:

Lau =
N−1∑
n=0

n(p(n, 0) + p(n, 2)) +
∞∑

n=N

n(p(n, 1) + p(n, 2))

=
N(N − 1)

2
μ − λ2 + λ0

μ − λ2
p(0, 0) +

λ0

μ

(N − 1)ρN+1 − NρN + ρ

(1 − ρ)3
p(0, 0)

+
λ0(N + (1 − N)σ)
(λ1 + θ)(1 − σ)2

p(0, 0) +
λ0

μ

(
(N − 1)ρN+1 − NρN

(1 − ρ)3

+
(1 − σ)(N − 1)ρ2 − Nρ

(σ − ρ)(1 − ρ)3
+

Nσ + (1 − N)σ2

(σ − ρ)(1 − σ)2

)
p(0, 0).

This completes the proof. ��

5 Conclusions

In this paper we analyzed the strategic behavior of the customers and social
optimization in a single server queueing system with N -policy and setup time.
Arriving customers decide whether to join or to balk the system. Specifically,
two different cases with respect to the levels of information provided to arriving
customers have been investigated extensively. The customers’ strategies have
been analyzed and the expressions of the social welfare function of customers
for two cases were derived. For future research, analyzing a model in which the
setup time is generally distributed is worthy of further investigation.
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their valuable comments and constructive suggestions that help to improve the presen-
tation of this paper.
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Abstract. We study an M/M/m preemptive last-come, first-served
queue with impatient customers without priority classes. We focus on the
probability of service completion and abandonment as well as the waiting
and service times of a unique customer who has the mean service and
patience times that are different from those of all other customers in the
steady state. The problem is formulated as the first passage times in a
combination of two one-dimensional birth-and-death processes each with
two absorbing states. We provide explicit expressions in terms of Laplace-
Stieltjes transform of the distribution function for the time to service
completion or abandonment, which is decomposed into the waiting and
service times of the unique customer. A numerical example is presented
in order to demonstrate the computation of theoretical formulas.

Keywords: M/M/m preemptive LCFS queue · Impatient customers
First passage time

1 Introduction

We are concerned with an M/M/m queueing system with impatient customers
without exogenous priority classes. Customers arrive according to a Poisson
process at rate λ. The service time of each customer is exponentially distributed
with mean 1/μ. There are m servers and a waiting room of infinite capacity. At
any time, each customer present in the system is either being served or stay-
ing in the waiting room. Each customer in the waiting room leaves the system
(abandons the waiting process) with probability θΔt within a short time interval
(t, t + Δt). That is to say, the patience time for each customer is exponentially
distributed with mean 1/θ. Customers never leave the system while being served
before the service is completed.

It is assumed that the service to each customer is started immediately upon
arrival. If all servers are busy, the arriving customer preempts the ongoing ser-
vice to the customer who arrived first among those who are being served. The
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customer whose service is preempted is placed at the head of the queue in the
waiting room. When one of the servers becomes available, a customer at the
head of the queue, if any, is called in for service to be resumed. This discipline is
equivalent to the one called “preemptive last-in, first-out (LIFO)” for an M/G/1
queue by Wolff [4, p. 456].

In our previous work [2,3], we studied the time interval from arrival to either
service completion or abandonment, whichever occurs first, of an arbitrary cus-
tomer in steady state. The problem was formulated as a combination of two
one-dimensional birth-and-death processes, each with two absorbing states, for
the behavior of a tagged customer. We provided explicit expressions in terms of
Laplace-Stieltjes transform (LST) of the distribution function (DF) for the first
passage time to service completion or abandonment, which is decomposed into
the waiting time and the received service time.

In the present paper, we turn our attention to the waiting and service time
of a unique customer who has the mean service time 1/μ0 and mean patience
time 1/θ0 that may be different from 1/μ and 1/θ, respectively, of other cus-
tomers. It is assumed that such a customer arrives during the steady state of an
M/M/m queueing system with otherwise uniformly impatient customers. We are
interested in the waiting and service time of the unique customer. The analysis
technique is similar to the one in [3]. Through a numerical example, we com-
pare the probability of service completion and abandonment as well as the mean
waiting and service time of the unique customer to those of other customers. For
a more patient customer, we find that (i) the probability of service completion
is higher, (ii) the mean time spent in the system is longer whether he abandons
waiting or he gets served, and (iii) the received service time is not much different
from that of other customers.

2 First Passage Time to Service Preemption
or Completion from State k, 0 ≤ k ≤ m − 1

We focus on a unique customer in state k, signifying that there are k other
customers who compete with him for service at any given time in the steady state,
where k = 0, 1, 2, . . .. They are the customers who arrived after the unique one
and have been staying in the system until that time. According to the preemptive
LCFS discipline, an arriving unique customer always joins the system at state
k = 0.

We first consider a birth-and-death process of state transitions for the unique
customer in state k, 0 ≤ k ≤ m − 1, in which he is being served. The service to
this customer, with probability one, is eventually either preempted by another
customer who arrives after him or completed without preemption.

2.1 Behavior of a Unique Customer Until Service Preemption
or Completion

The state transition diagram for the discrete-time, one-dimensional birth-and-
death process modeling the behavior of a unique customer in service is shown in
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Fig. 1. This process has m transient states {0, 1, 2, . . . ,m−1} and two absorbing
states denoted by “Pr” (state m) and “Sr”, representing service preemption and
service completion, respectively. The state transition probabilities and the LST
of the DF for the time spent by the unique customer in state k are given by

αk =
kμ

λ + kμ + μ0
; βk =

μ0

λ + kμ + μ0
; B∗

k(s) =
λ + kμ + μ0

s + λ + kμ + μ0
.

. . .

. . .

m−1

1−αm−1

−βm−1

Pr

k+1

αk+1

1−αk−βk

k

αk

1−αk−1

−βk−1

k−1 1

α1

1−β0

0

βm−1 βk+1 βk βk−1 β1 β0

. . .

. . .

Sr

Fig. 1. State transitions for a unique customer until service preemption
or completion.

2.2 LST of the DF for the Time to Service Preemption
or Completion

By H∗
k(s,Pr), we denote the joint probability of service preemption and the

LST of the DF for the first passage time from state k to state m (“Pr”) without
reaching state “Sr”. Moreover, we denote by H∗

k(s,Sr) the joint probability of
service completion and the LST of the DF for the first passage time from state
k to state “Sr” without reaching state “Pr”.

Applying the first step analysis for the discrete-time Markov chain, we have
the following finite sets of equations for {H∗

k (s,Pr); 0 ≤ k ≤ m − 1} and
{H∗

k(s,Sr); 0 ≤ k ≤ m − 1}:

(s + λ + μ0)H∗
0 (s,Pr)=λH∗

1 (s,Pr),
(s + λ + kμ + μ0)H∗

k (s,Pr)=kμH∗
k−1(s,Pr) + λH∗

k+1(s,Pr)
1 ≤ k ≤ m − 2,

[s + λ + (m − 1)μ + μ0]H∗
m−1(s,Pr)=(m − 1)μH∗

m−2(s,Pr) + λ.

(s + λ + μ0)H∗
0 (s,Sr)=μ0 + λH∗

1 (s,Sr),
(s + λ + kμ + μ0)H∗

k(s,Sr)=kμH∗
k−1(s,Sr) + μ0 + λH∗

k+1(s,Sr)
1 ≤ k ≤ m − 2,

[s + λ + (m − 1)μ + μ0]H∗
m−1(s,Sr)=(m − 1)μH∗

m−2(s,Sr) + μ0.
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In addition, we let H∗
m(s,Pr) ≡ 1 and H∗

m(s,Sr) ≡ 0. The solution can be
obtained in terms of functions {h∗

k(s); 0 ≤ k ≤ m} in the form

H∗
k(s,Pr) =

h∗
k(s)

h∗
m(s)

; H∗
k(s,Sr) =

μ0

s + μ0

[
1 − h∗

k(s)
h∗

m(s)

]
0 ≤ k ≤ m.

2.3 Solution for {h∗
k(s); 0 ≤ k ≤ m}

A finite set of equations for {h∗
k(s); 0 ≤ k ≤ m} is given by

h∗
0(s) = 1; s + λ + μ0 = λh∗

1(s),
(s + λ + kμ + μ0)h∗

k(s) = kμh∗
k−1(s) + λh∗

k+1(s) 1 ≤ k ≤ m − 1,

which can be written as the following set of recurrence relations:

h∗
k(s) =

s + λ + (k − 1)μ + μ0

λ
h∗

k−1(s) − (k − 1)μ
λ

h∗
k−2(s) 2 ≤ k ≤ m.

The solution is given by Cramer’s formula as the determinant of the k × k
tridiagonal matrix

h∗
k(s) = (−1)k

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−
s + λ
+μ0

λ 1 0 0 0 · · · 0

μ
λ −

s + λ
+μ+μ0

λ 1 0 0 · · · 0

0 2μ
λ −

s + λ
+2μ+μ0

λ 1 0 · · · 0

0 0 3μ
λ −

s + λ
+3μ+μ0

λ 1 · · · 0
...

...
...

...
. . . . . .

...

0 0 0 0 · · · −
s + λ
+(k−2)μ+μ0

λ 1

0 0 0 0 · · · (k−1)μ
λ −

s + λ
+(k−1)μ+μ0

λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for 1 ≤ k ≤ m. Note that h∗

k(s) is a kth-degree polynomial in s, the coefficient
of sk being (1/λ)k. Thus, we obtain the probability of service preemption and
completion

pk{Pr} := H∗
k(0,Pr) =

h∗
k(0)

h∗
m(0)

; pk{Sr} := H∗
k(0,Sr) = 1 − h∗

k(0)
h∗

m(0)
0 ≤ k ≤ m.

In particular, we have p0{Pr} = 1/h∗
m(0) and pm{Pr} = 1.
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3 First Passage Time to Service Resumption
or Abandonment from State k, k ≥ m

We next consider another birth-and-death process of state transitions for a
unique customer in state k, k ≥ m, in which he is staying in the waiting room.
With probability one, this customer, eventually, either is called in to resume his
service or abandons waiting.

3.1 Behavior of a Unique Customer Until Service Resumption
or Abandonment

The state transition diagram for the discrete-time, one-dimensional birth-and-
death process modeling the behavior of a unique customer in the waiting room
is shown in Fig. 2. The process has an infinite number of transient states
{m,m + 1, . . .} and two absorbing states denoted by “Rs” (state m − 1) and
“Ab”, representing service resumption and abandonment, respectively. The state
transition probabilities and the LST of the DF for the time spent by the unique
customer in state k are given by

α′
k =

mμ + (k − m)θ
λ + mμ + (k − m)θ + θ0

; β′
k =

θ0
λ + mμ + (k − m)θ + θ0

,

B′∗
k(s) =

λ + mμ + (k − m)θ + θ0
s + λ + mμ + (k − m)θ + θ0

.

. . . k+1

αk+1

1−αk

−βk

k

αk

1−αk−1

−βk−1

k−1 . . . m+1

αm+1

1−αm

−βm

m

αm

Rs

βk+1 βk βk−1 βm+1 βm

Ab . . .

Fig. 2. State transitions for a unique customer until service resumption or
abandonment.

3.2 LST of the DF for the Time to Service Resumption
or Abandonment

By W ∗
k (s,Rs), we denote the joint probability of service resumption and the LST

of the DF for the first passage time from state k to state m − 1 (“Rs”) without
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reaching state “Ab”. Moreover, we denote by W ∗
k (s,Ab) the joint probability of

abandonment and the LST of the DF for the first passage time from state k to
state “Ab” without reaching state “Rs”.

Infinite sets of equations for {W ∗
k (s,Rs); k ≥ m} and {W ∗

k (s,Ab); k ≥ m}
are given by

(s + λ + mμ + θ0)W ∗
m(s,Rs) = mμ + λW ∗

m+1(s,Rs),
[s + λ + mμ + (k − m)θ + θ0]W ∗

k (s,Rs)
= [mμ + (k − m)θ]W ∗

k−1(s,Rs) + λW ∗
k+1(s,Rs) k ≥ m + 1.

(s + λ + mμ + θ0)W ∗
m(s,Ab) = mμ + θ0 + λW ∗

m+1(s,Ab),
[s + λ + mμ + (k − m)θ + θ0]W ∗

k (s,Ab)
= [mμ + (k − m)θ]W ∗

k−1(s,Ab) + θ0 + λW ∗
k+1(s,Ab) k ≥ m + 1.

The solution can be obtained in terms of functions {G∗
k(s); k ≥ m} in the form

W ∗
k (s,Rs) = G∗

k(s + θ0); W ∗
k (s,Ab) =

θ0
s + θ0

[1 − G∗
k(s + θ0)] k ≥ m.

Thus the probability of service preemption and abandonment is given by

pk{Rs} := W ∗
k (0,Rs) = G∗

k(θ0); pk{Ab} := W ∗
k (0,Ab) = 1 − G∗

k(θ0)
k ≥ m.

3.3 Busy Period

A busy period started with k (≥ m) customers in an M/M/m queue is the time
interval, denoted by Gk, from the instant at which there are k customers in the
system (all servers are busy and k−m customers are waiting) to the first instant
at which any one of the servers becomes available. Let us denote by fWk

(t,Rs)
and fWk

(t,Ab) the density functions of the time until service resumption and
the time until abandonment, respectively, for a customer in state k, k ≥ m. They
are related with the density function fGk

(t) for Gk and the probability P{Gk > t}
as follows:

fWk
(t,Rs) = e−θ0tfGk

(t); fWk
(t,Ab) = θ0e

−θ0tP{Gk > t}.

The function G∗
k(s) introduced in Sect. 3.2 is the LST of the DF for Gk, k ≥ m.

The set of equations for {G∗
k(s), k ≥ m} is given by

(s + λ + mμ)G∗
m(s) = λG∗

m+1(s) + mμ,

[s + λ + mμ + (k − m)θ]G∗
k(s) = [mμ + (k − m)θ]G∗

k−1(s) + λG∗
k+1(s)

k ≥ m + 1.

Iravani and Balcıog̃lu [1] provides the LST of the DF for the duration of the
busy period in an M/M/m queue with an exponentially distributed service time
with mean 1/(mμ) as follows:
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G∗
k(s)

=

mμ

s + mμ
+

∞∑
i=1

(−1)iψi,k−m(λ/θ)

⎡
⎣i−1∏

j=0

(
1 − mμ

s + mμ + jθ

)⎤
⎦ mμ

s + mμ + iθ

1 +
∞∑

i=1

(λ/θ)i

i!

i−1∏
j=0

(
1 − mμ

s + mμ + jθ

)

k ≥ m,

where we have defined

ψi,k(x) :=
i∑

j=max{0,i−k}

(−x)j

j!

(
k

i − j

)
i ≥ 1, k ≥ 0.

In particular, since ψi,0(x) = (−x)i/i!, we have

G∗
m(s) =

mμ

s + mμ
+

∞∑
i=1

(λ/θ)i

i!

⎡
⎣i−1∏

j=0

(
1 − mμ

s + mμ + jθ

)⎤
⎦ mμ

s + mμ + iθ

1 +
∞∑

i=1

(λ/θ)i

i!

i−1∏
j=0

(
1 − mμ

s + mμ + jθ

) .

4 Joint Distribution of the Waiting and Service Time

We are now in a position to consider the distribution of the time until departure
(either by abandonment or service completion) for a unique customer in a com-
bination of two birth-and-death processes whose state transitions are shown in
Figs. 1 and 2. We note that state “Pr” in Fig. 1 is identical to state m in Fig. 2,
whereas state “Rs” in Fig. 2 is identical to state m − 1 in Fig. 1.

The time until departure consists of the waiting time (the time that the
customer spends staying in the waiting room) and the service time (the time
during which the customer is being served). These are not independent. There-
fore, we will derive the joint LST of the DF for the waiting and service time
for a unique customer who abandons waiting, denoted by T ∗

k (s, s′,Ab), and for
a unique customer who gets served until completion, denoted by T ∗

k (s, s′,Sr).
Then, we obtain the probability of abandonment and service completion, the
marginal LST of the DF for the waiting time, the service time, and the total
time spent in the system as follows:

Pk{Ab} := T ∗
k (0, 0,Ab) ; Pk{Sr} := T ∗

k (0, 0,Sr),
W∗

k (s,Ab) := T ∗
k (s, 0,Ab) ; H∗

k(s,Ab) := T ∗
k (0, s,Ab),

W∗
k (s,Sr) := T ∗

k (s, 0,Sr) ; H∗
k(s,Sr) := T ∗

k (0, s,Sr),
T ∗

k (s,Ab) := T ∗
k (s, s,Ab) ; T ∗

k (s,Sr) := T ∗
k (s, s,Sr).
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4.1 Waiting and Service Time Until Abandonment

We first consider the waiting and service time until abandonment for a unique
customer who abandons waiting.

(1) For the unique customer being served in state k, 0 ≤ k ≤ m − 1, the first
passage to abandonment (“Ab”) consists of the following passages:

(i) the initial passage from state k to state “Pr” in Fig. 1,
(ii) several repetitions of the transition from state m to state “Rs” in Fig. 2,

followed by the transition from state m − 1 back to state “Pr” in Fig. 1,
and

(iii) the final passage from state m to state “Ab” in Fig. 2.
Owing to the Markovian property of state transitions, the times to take
these passages in succession are independent of each other. Therefore, we
get

T ∗
k (s, s′,Ab) = H∗

k(s′,Pr)W ∗
m(s,Ab)

+ H∗
k(s′,Pr)[W ∗

m(s,Rs)H∗
m−1(s

′,Pr)]W ∗
m(s,Ab)

+ H∗
k(s′,Pr)[W ∗

m(s,Rs)H∗
m−1(s

′,Pr)]2W ∗
m(s,Ab) + · · ·

= H∗
k(s′,Pr)W ∗

m(s,Ab)
∞∑

n=0

[W ∗
m(s,Rs)H∗

m−1(s
′,Pr)]n

=
H∗

k(s′,Pr)W ∗
m(s,Ab)

1 − W ∗
m(s,Rs)H∗

m−1(s′,Pr)

=
θ0

s + θ0
· h∗

k(s′)[1 − G∗
m(s + θ0)]

h∗
m(s′) − h∗

m−1(s′)G∗
m(s + θ0)

.

This joint distribution leads to the marginal distributions

W∗
k (s,Ab) =

pk{Pr}W ∗
m(s,Ab)

1 − pm−1{Pr}W ∗
m(s,Rs)

=
θ0

s + θ0
· h∗

k(0)[1 − G∗
m(s + θ0)]

h∗
m(0) − h∗

m−1(0)G∗
m(s + θ0)

,

H∗
k(s,Ab) =

pm{Ab}H∗
k(s,Pr)

1 − pm{Rs}H∗
m−1(s,Pr)

=
h∗

k(s)[1 − G∗
m(θ0)]

h∗
m(s) − h∗

m−1(s)G∗
m(θ0)

,

T ∗
k (s,Ab) =

H∗
k(s,Pr)W ∗

m(s,Ab)
1 − W ∗

m(s,Rs)H∗
m−1(s,Pr)

=
θ0

s + θ0
· h∗

k(s)[1 − G∗
m(s + θ0)]

h∗
m(s) − h∗

m−1(s)G∗
m(s + θ0)

.

Then we get the probability of abandonment

Pk{Ab} =
pk{Pr}pm{Ab}

1 − pm{Rs}pm−1{Pr} =
h∗

k(0)[1 − G∗
m(θ0)]

h∗
m(0) − h∗

m−1(0)G∗
m(θ0)

,
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and the mean waiting and service time until abandonment

E[Wk,Ab] =
1
θ0

Pk{Ab} +
h∗

k(0)[h∗
m(0) − h∗

m−1(0)]G′
m(θ0)

[h∗
m(0) − h∗

m−1(0)G∗
m(θ0)]2

,

E[Hk,Ab] = [1 − G∗
m(θ0)]

{
h∗

k(0)[h′
m(0) − h′

m−1(0)G∗
m(θ0)]

[h∗
m(0) − h∗

m−1(0)G∗
m(θ0)]2

− h′
k(0)

h∗
m(0) − h∗

m−1(0)G∗
m(θ0)

}
,

E[WkHk,Ab] =
1
θ0

E[Hk,Ab]

+G′
m(θ0)

{
2h∗

k(0)[h∗
m(0) − h∗

m−1(0)][h′
m(0) − h′

m−1(0)G∗
m(θ0)]

[h∗
m(0) − h∗

m−1(0)G∗
m(θ0)]3

− h∗
k(0)[h′

m(0) − h′
m−1(0)] + h′

k(0)[h∗
m(0) − h∗

m−1(0)]
[h∗

m(0) − h∗
m−1(0)G∗

m(θ0)]2

}
,

where h′
k(0) := [dh∗

k(s)/ds]s=0, 0 ≤ k ≤ m, and G′
m(θ0) :=

[dG∗
m(s)/ds]s=θ0 .

(2) For the unique customer waiting in state k, k ≥ m, the first passage to
abandonment (“Ab”) is either

(a) a direct passage from state k to state “Ab” in Fig. 2, or
(b) a sequence of the following passages:

(i) the initial passage from state k to state “Rs” in Fig. 2,
(ii) several repetitions of the transition from state m − 1 to state “Pr” in

Fig. 1, followed by the transition from state m to state “Rs” in Fig. 2,
and

(iii) the passage from state m − 1 to state “Pr” in Fig. 1, followed by the
final passage from state m to state “Ab” in Fig. 2.

Therefore, from the Markovian property of state transitions, we get

T ∗
k (s, s′,Ab) = W ∗

k (s,Ab) + W ∗
k (s,Rs)H∗

m−1(s
′,Pr)W ∗

m(s,Ab)
+ W ∗

k (s,Rs)[H∗
m−1(s

′,Pr)W ∗
m(s,Rs)]H∗

m−1(s
′,Pr)W ∗

m(s,Ab)
+ W ∗

k (s,Rs)[H∗
m−1(s

′,Pr)W ∗
m(s,Rs)]2H∗

m−1(s
′,Pr)W ∗

m(s,Ab)
+ · · ·
= W ∗

k (s,Ab) + W ∗
k (s,Rs)H∗

m−1(s
′,Pr)W ∗

m(s,Ab)

×
∞∑

n=0

[W ∗
m(s,Rs)H∗

m−1(s
′,Pr)]n

= W ∗
k (s,Ab) +

W ∗
k (s,Rs)H∗

m−1(s
′,Pr)W ∗

m(s,Ab)
1 − W ∗

m(s,Rs)H∗
m−1(s′,Pr)

=
θ0

s + θ0

{
1 − [h∗

m(s′) − h∗
m−1(s

′)]G∗
k(s + θ0)

h∗
m(s′) − h∗

m−1(s′)G∗
m(s + θ0)

}
.
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This joint distribution leads to the marginal distributions

W∗
k (s,Ab) = W ∗

k (s,Ab) +
pm−1{Pr}W ∗

k (s,Rs)W ∗
m(s,Ab)

1 − pm−1{Pr}W ∗
m(s,Rs)

=
θ0

s + θ0

{
1 − [h∗

m(0) − h∗
m−1(0)]G∗

k(s + θ0)
h∗

m(0) − h∗
m−1(0)G∗

m(s + θ0)

}
,

H∗
k(s,Ab) = pk{Ab} +

pk{Rs}pm{Ab}H∗
m−1(s,Pr)

1 − pm{Rs}H∗
m−1(s,Pr)

= 1 − [h∗
m(s) − h∗

m−1(s)]G
∗
k(θ0)

h∗
m(s) − h∗

m−1(s)G∗
m(θ0)

,

T ∗
k (s,Ab) = W ∗

k (s,Ab) +
W ∗

k (s,Rs)H∗
m−1(s,Pr)W ∗

m(s,Ab)
1 − W ∗

m(s,Rs)H∗
m−1(s,Pr)

=
θ0

s + θ0

{
1 − [h∗

m(s) − h∗
m−1(s)]G

∗
k(s + θ0)

h∗
m(s) − h∗

m−1(s)G∗
m(s + θ0)

}
.

Then we get the probability of abandonment

Pk{Ab} = pk{Ab} +
p∗

k{Rs}pm−1{Pr}pm{Ab}
1 − p∗

m−1{Pr}pm{Rs}

= 1 − [h∗
m(0) − h∗

m−1(0)]G∗
k(θ0)

h∗
m(0) − h∗

m−1(0)G∗
m(θ0)

and the mean waiting and service time until abandonment

E[Wk,Ab] =
1
θ0

Pk{Ab} + [h∗
m(0) − h∗

m−1(0)]

×
{

G′
k(θ0)

h∗
m(0) − h∗

m−1(0)G∗
m(θ0)

+
G∗

k(θ0)h∗
m−1(0)G′

m(θ0)
[h∗

m(0) − h∗
m−1(0)G∗

m(θ0)]2

}
,

E[Hk,Ab] =
G∗

k(θ0)[h′
m(0)h∗

m−1(0) − h∗
m(0)h′

m−1(0)][1 − G∗
m(θ0)]

[h∗
m(0) − h∗

m−1(0)G∗
m(θ0)]2

,

E[WkHk,Ab] =
1
θ0

E[Hk,Ab] + [h′
m(0)h∗

m−1(0) − h′
m−1(0)h∗

m(0)]

×
{

G∗
k(θ0)G′

m(θ0)[h∗
m(0) − 2h∗

m−1(0) + h∗
m−1(0)G∗

m(θ0)]
[h∗

m(0) − h∗
m−1(0)G∗

m(θ0)]3

− G′
k(θ0)[1 − G∗

m(θ0)]
[h∗

m(0) − h∗
m−1(0)G∗

m(θ0)]2

}
,

where G′
k(θ0) := [dG∗

k(s)/ds]s=θ0 , k ≥ m.

4.2 Waiting and Service Time Until Service Completion

We next consider the waiting and service time until service completion for a
unique customer who gets served.
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(1) For the unique customer being served in state k, 0 ≤ k ≤ m − 1, we have

T ∗
k (s, s′,Sr) = H∗

k(s′,Sr) +
H∗

k(s′,Pr)W ∗
m(s,Rs)H∗

m−1(s
′,Sr)

1 − W ∗
m(s,Rs)H∗

m−1(s′,Pr)

=
μ0

s′ + μ0

{
1 − h∗

k(s′)[1 − G∗
m(s + θ0)]

h∗
m(s′) − h∗

m−1(s′)G∗
m(s + θ0)

}
.

This joint distribution leads to the marginal distributions

W∗
k (s,Sr) = pk{Sr} +

pk{Pr}pm−1{Sr}W ∗
m(s,Rs)

1 − pm−1{Pr}W ∗
m(s,Rs)

= 1 − h∗
k(0)[1 − G∗

m(s + θ0)]
h∗

m(0) − h∗
m−1(0)G∗

m(s + θ0)
,

H∗
k(s,Sr) = H∗

k(s,Sr) +
pm{Rs}H∗

k(s,Pr)H∗
m−1(s,Sr)

1 − pm{Rs}H∗
m−1(s,Pr)

=
μ0

s + μ0

{
1 − h∗

k(s)[1 − G∗
m(θ0)]

h∗
m(s) − h∗

m−1(s)G∗
m(θ0)

}
,

T ∗
k (s,Sr) = H∗

k(s,Sr) +
H∗

k(s,Pr)W ∗
m(s,Rs)H∗

m−1(s,Sr)
1 − W ∗

m(s,Rs)H∗
m−1(s,Pr)

=
μ0

s + μ0

{
1 − h∗

k(s)[1 − G∗
m(s + θ0)]

h∗
m(s) − h∗

m−1(s)G∗
m(s + θ0)

}
.

Then we get the probability of service completion

Pk{Sr} = pk{Sr} +
pk{Pr}pm−1{Sr}pm{Rs}
1 − pm−1{Pr}pm{Rs}

= 1 − h∗
k(0)[1 − G∗

m(θ0)]
h∗

m(0) − h∗
m−1(0)G∗

m(θ0)
= 1 − Pk{Ab}

and the mean waiting and service time until service completion

E[Wk,Sr] =
h∗

k(0)[h∗
m−1(0) − h∗

m(0)]G′
m(θ0)

[h∗
m(0) − h∗

m−1(0)G∗
m(θ0)]2

,

E[Hk,Sr] =
1
μ0

Pk{Sr} − [1 − G∗
m(θ0)]

×
{

h∗
k(0)[h′

m(0) − h′
m−1(0)G∗

m(θ0)]
[h∗

m(0) − h∗
m−1(0)G∗

m(θ0)]2
− h′

k(0)
h∗

m(0) − h∗
m−1(0)G∗

m(θ0)

}
,

E[WkHk,Sr] =
1
μ0

E[Wk,Sr] − G′
m(θ0)

×
{

2h∗
k(0)[h∗

m(0) − h∗
m−1(0)][h′

m(0) − h′
m−1(0)G∗

m(θ0)]
[h∗

m(0) − h∗
m−1(0)G∗

m(θ0)]3

− h∗
k(0)[h′

m(0) − h′
m−1(0)] + h′

k(0)[h∗
m(0) − h∗

m−1(0)]
[h∗

m(0) − h∗
m−1(0)G∗

m(θ0)]2

}
.
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(2) For the unique customer waiting in state k, k ≥ m, we have

T ∗
k (s, s′,Sr) =

W ∗
k (s,Rs)H∗

m−1(s
′,Sr)

1 − W ∗
m(s,Rs)H∗

m−1(s′,Pr)

=
μ0

s′ + μ0
· [h∗

m(s′) − h∗
m−1(s

′)]G∗
k(s + θ0)

h∗
m(s′) − h∗

m−1(s′)G∗
m(s + θ0)

.

This joint distribution leads to the marginal distributions

W∗
k (s,Sr) =

pm−1{Sr}W ∗
k (s,Rs)

1 − pm−1{Pr}W ∗
m(s,Rs)

=
[h∗

m(0) − h∗
m−1(0)]G∗

k(s + θ0)
h∗

m(0) − h∗
m−1(0)G∗

m(s + θ0)
,

H∗
k(s,Sr) =

pk{Rs}H∗
m−1(s,Sr)

1 − pm{Rs}H∗
m−1(s,Pr)

=
μ0

s + μ0
· [h∗

m(s) − h∗
m−1(s)]G

∗
k(θ0)

h∗
m(s) − h∗

m−1(s)G∗
m(θ0)

,

T ∗
k (s,Sr) =

W ∗
k (s,Rs)H∗

m−1(s,Sr)
1 − W ∗

m(s,Rs)H∗
m−1(s,Pr)

=
μ0

s + μ0
· [h∗

m(s) − h∗
m−1(s)]G

∗
k(s + θ0)

h∗
m(s) − h∗

m−1(s)G∗
m(s + θ0)

.

Then we get the probability of service completion

Pk{Sr} =
pm−1{Sr}pk{Rs}

1 − pm−1{Pr}pm{Rs} =
[h∗

m(0) − h∗
m−1(0)]G∗

k(θ0)
h∗

m(0) − h∗
m−1(0)G∗

m(θ0)
= 1−Pk{Ab},

and the mean waiting and service time until service completion

E[Wk,Sr] = [h∗
m−1(0) − h∗

m(0)]

×
{

G′
k(θ0)

h∗
m(0) − h∗

m−1(0)G∗
m(θ0)

+
h∗

m−1(0)G∗
k(θ0)G′

m(θ0)
[h∗

m(0) − h∗
m−1(0)G∗

m(θ0)]2

}
,

E[Hk,Sr] =
1
μ0

Pk{Sr}

− G∗
k(θ0)[h′

m(0)h∗
m−1(0) − h′

m−1(0)h∗
m(0)][1 − G∗

m(θ0)]
[h∗

m(0) − h∗
m−1(0)G∗

m(θ0)]2
,

E[WkHk,Sr] =
1
μ0

E[Wk,Sr] − [h′
m(0)h∗

m−1(0) − h′
m−1(0)h∗

m(0)]

×
{

G∗
k(θ0)G′

m(θ0)[h∗
m(0) − 2h∗

m−1(0) + h∗
m−1(0)G∗

m(θ0)]
[h∗

m(0) − h∗
m−1(0)G∗

m(θ0)]3

− G′
k(θ0)[1 − G∗

m(θ0)]
[h∗

m(0) − h∗
m−1(0)G∗

m(θ0)]2

}
.

4.3 Waiting and Service Time Until Departure

We finally consider the waiting and service time until departure (either aban-
donment or service completion) for a unique customer in state k (k ≥ 0). Let

T ∗
k (s, s′) := T ∗

k (s, s′,Ab) + T ∗
k (s, s′,Sr) k ≥ 0
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be the unconditional joint LST of the DF for the waiting and service time for
the unique customer in state k. Then, we obtain the marginal LSTs of the DF
for the waiting time, the service time, and the total time spent in the system as
follows:

W∗
k (s) := T ∗

k (s, 0); H∗
k(s) := T ∗

k (0, s); T ∗
k (s) := T ∗

k (s, s) k ≥ 0.

(1) For the unique customer being served in state k, 0 ≤ k ≤ m − 1, we have

T ∗
k (s, s′) =

μ0

s′ + μ0
+

(
θ0

s + θ0
− μ0

s′ + μ0

)
h∗

k(s′)[1 − G∗
m(s + θ0)]

h∗
m(s′) − h∗

m−1(s′)G∗
m(s + θ0)

.

This joint distribution leads to the marginal distributions

W∗
k (s) = W∗

k (s,Ab) + W∗
k (s,Sr)

= 1 − s

s + θ0
· h∗

k(0)[1 − G∗
m(s + θ0)]

h∗
m(0) − h∗

m−1(0)G∗
m(s + θ0)

,

H∗
k(s) = H∗

k(s,Ab) + H∗
k(s,Sr)

=
μ0

s + μ0
+

s

s + μ0
· h∗

k(s)[1 − G∗
m(θ0)]

h∗
m(s) − h∗

m−1(s)G∗
m(θ0)

,

T ∗
k (s) = T ∗

k (s,Ab) + T ∗
k (s,Sr)

=
μ0

s + μ0
+

(
θ0

s + θ0
− μ0

s + μ0

)
h∗

k(s)[1 − G∗
m(s + θ0)]

h∗
m(s) − h∗

m−1(s)G∗
m(s + θ0)

.

The mean waiting time, service time, and total time until departure are
given by

E[Wk] =
h∗

k(0)[1 − G∗
m(θ0)]

θ0[h∗
m(0) − h∗

m−1(0)G∗
m(θ0)]

,

E[Hk] =
1
μ0

{
1 − h∗

k(0)[1 − G∗
m(θ0)]

h∗
m(0) − h∗

m−1(0)G∗
m(θ0)

}
,

E[Tk] = E[Wk] + E[Hk] =
1
μ0

+
(

1
θ0

− 1
μ0

)
h∗

k(0)[1 − G∗
m(θ0)]

h∗
m(0) − h∗

m−1(0)G∗
m(θ0)

.

We also have

E[WkHk] = E[WkHk,Ab] + E[WkHk,Sr] =
1
θ0

E[Hk,Ab] +
1
μ0

E[Wk,Sr]

= −h∗
k(0)[h∗

m(0) − h∗
m−1(0)]G′

m(θ0)
μ[h∗

m(0) − h∗
m−1(s)G∗

m(θ0)]2
− 1 − G∗

m(θ0)
θ

×
{

h′
k(0)

h∗
m(0) − h∗

m−1(s)G∗
m(θ0)

− h∗
k(0)[h′

m(0) − h′
m−1(0)G∗

m(θ0)]
[h∗

m(0) − h∗
m−1(s)G∗

m(θ0)]2

}
.

(2) For the unique customer waiting in state k, k ≥ m, we have

T ∗
k (s, s′) =

θ0
s + θ0

+
(

μ0

s′ + μ0
− θ0

s + θ0

)
[h∗

m(s′) − h∗
m−1(s

′)]G∗
k(s + θ0)

h∗
m(s′) − h∗

m−1(s′)G∗
m(s + θ0)

.
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This joint distribution leads to the marginal distributions

W∗
k (s) =

θ0
s + θ0

+
s

s + θ0
· [h∗

m(0) − h∗
m−1(0)]G∗

k(s + θ0)
h∗

m(0) − h∗
m−1(0)G∗

m(s + θ0)
,

H∗
k(s) = 1 − s

s + μ0
· [h∗

m(s) − h∗
m−1(s)]G

∗
k(θ0)

h∗
m(s) − h∗

m−1(s)G∗
m(θ0)

,

T ∗
k (s) =

θ0
s + θ0

+
(

μ0

s + μ0
− θ0

s + θ0

)
[h∗

m(s) − h∗
m−1(s)]G

∗
k(s + θ0)

h∗
m(s) − h∗

m−1(s)G∗
m(s + θ0)

.

The mean waiting time, service time, and total time until departure are
given by

E[Wk] =
1
θ0

{
1 − h∗

m(0) − h∗
m−1(0)]G∗

k(θ0)
h∗

m(0) − h∗
m−1(0)G∗

m(θ0)

}
,

E[Hk] =
[h∗

m(0) − h∗
m−1(0)]G∗

k(θ0)
μ0[h∗

m(0) − h∗
m−1(0)G∗

m(θ0)]
,

E[Tk] = E[Wk] + E[Hk] =
1
θ0

+
(

1
μ0

− 1
θ0

)
h∗

m(0) − h∗
m−1(0)]G∗

k(θ0)
h∗

m(0) − h∗
m−1(0)G∗

m(θ0)
.

We also have

E[WkHk] = E[WkHk,Ab] + E[WkHk,Sr] =
1
θ0

E[Hk,Ab] +
1
μ0

E[Wk,Sr]

= − [h∗
m(0) − h∗

m−1(0)]G′
k(θ0)

μ[h∗
m(0) − h∗

m−1(0)G∗
m(θ0)]

− G∗
k(θ0)[h∗

m(0) − h∗
m−1(0)]h∗

m−1(0)G′
m(θ0)

μ[h∗
m(0) − h∗

m−1(0)G∗
m(θ0)]2

+
G∗

k(θ0)[h′
m(0)h∗

m−1(0) − h∗
m(0)h′

m−1(0)][1 − G∗
m(θ0)]

θ[h∗
m(0) − h∗

m−1(0)G∗
m(θ0)]2

.

(3) Recursive relations among moments of distribution for the waiting and ser-
vice time.
From the explicit expressions for T ∗

k (s, s′,Ab), T ∗
k (s, s′,Sr), and T ∗

k (s, s′)
given above, it can be shown that the unconditional and conditional joint
LST of the DF for the waiting and service time until departure for a unique
customer in state k satisfies the following relation in both cases 0 ≤ k ≤ m−1
and k ≥ m:

T ∗
k (s, s′) = 1 − s

θ0
T ∗

k (s, s′,Ab) − s′

μ0
T ∗

k (s, s′,Sr) k ≥ 0.

This yields the recursive relations among unconditional and conditional
moments

E[W�
kH�′

k ] =
�

θ0
E[W�−1

k H�′
k ,Ab] +

�′

μ0
E[W�

kH�′−1
k ,Sr] �, �′ = 2, 3, . . . .
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In particular, we have

E[Wk] =
1
θ0

Pk{Ab}; E[Hk] =
1
μ0

Pk{Sr},

E[WkHk] =
1
θ0

E[Hk,Ab] +
1
μ0

E[Wk,Sr],

E[W�
k] =

�

θ0
E[W�−1

k ,Ab]; E[H�
k] =

�

μ0
E[H�−1

k ,Sr] � = 2, 3, . . . .

Furthermore, it follows from the relation

T ∗
k (s) = 1 − s

θ0
T ∗

k (s,Ab) − s

μ0
T ∗

k (s,Sr) k ≥ 0

(or from Tk = Wk + Hk) that

E[Tk] =
1
θ0

Pk{Ab} +
1
μ0

Pk{Sr},

E[T �
k ] =

�

θ0
E[T �−1

k ,Ab] +
�

μ0
E[T �−1

k ,Sr] � = 2, 3, . . . .

5 Numerical Example

Numerical values are shown in Table 1, where we assume m = 5, μ = 1, θ = 2,
and λ = 10 for a more patient customer (θ0 = 1) and for a less patient customer
(θ0 = 4) with μ0 = μ. The performance of an arriving unique customer can be
found in the row of k = 0 in these tables.

From the numerical results for a more patient customer, we observe the
following:

– The probability of service completion is higher.
– The time spent in the system is longer whether he abandons waiting or he

gets served.
– The received service time is not much different from other customers.

This observation agrees with our feeling that we had better be more patient than
other customers for secure service completion, though it takes us more time.

It remains us to investigate closely the trade-off between the probability of
service completion and the time spent by a unique customer who gets served
depending on the degree of his patience.
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Table 1. Numerical example for a unique customer.

(a) More patient customer (θ0 = 1 < θ = 2, μ0 = μ)

k Pk{Ab} Pk{Sr} E[Wk,Ab] E[Hk,Ab] E[Tk,Ab] E[Wk, Sr] E[Hk, Sr] E[Tk, Sr]

0 0.49026 0.50974 0.45098 0.31260 0.76358 0.03928 0.19714 0.23642

1 0.53929 0.46071 0.49608 0.29483 0.79091 0.04320 0.16588 0.20909

2 0.59812 0.40188 0.55020 0.26861 0.81881 0.04792 0.13327 0.18119

3 0.66969 0.33031 0.61604 0.23042 0.84646 0.05365 0.09989 0.15354

4 0.75814 0.24186 0.69740 0.17503 0.87243 0.06074 0.06683 0.12757

5 0.86933 0.13067 0.79968 0.09496 0.89425 0.06964 0.03611 0.10575

6 0.91186 0.08814 0.84386 0.06379 0.90765 0.06800 0.02436 0.09235

7 0.93281 0.06719 0.86798 0.04862 0.91661 0.06483 0.01857 0.08339

8 0.94495 0.05505 0.88321 0.03984 0.92305 0.06174 0.01521 0.07965

9 0.95280 0.04720 0.89379 0.03415 0.92795 0.05901 0.01304 0.07205

10 0.95829 0.04171 0.90164 0.03018 0.93183 0.05665 0.01153 0.06817

15 0.97174 0.02826 0.92322 0.02045 0.94367 0.04852 0.00781 0.05633

20 0.97741 0.02259 0.93375 0.01635 0.95010 0.04366 0.00624 0.04990

30 0.98284 0.01716 0.94505 0.01242 0.95747 0.03779 0.00474 0.04253

(b) Equally patient customer (θ0 = 2 = θ, μ0 = μ)

k Pk{Ab} Pk{Sr} E[Wk,Ab] E[Hk,Ab] E[Tk,Ab] E[Wk, Sr] E[Hk, Sr] E[Tk, Sr]

0 0.51270 0.48730 0.24299 0.30992 0.55291 0.01336 0.17738 0.19074

1 0.56396 0.43604 0.26729 0.28965 0.55693 0.01470 0.14639 0.16108

2 0.62549 0.37451 0.29645 0.26019 0.55663 0.01630 0.11432 0.13062

3 0.70034 0.29966 0.33192 0.21777 0.54969 0.01825 0.08189 0.10014

4 0.79283 0.20717 0.37576 0.15678 0.53254 0.02066 0.05039 0.07105

5 0.90911 0.09089 0.43087 0.06878 0.49965 0.02369 0.02211 0.04579

6 0.94907 0.05093 0.45368 0.03854 0.49222 0.02085 0.01239 0.03324

7 0.96686 0.03314 0.46548 0.02508 0.49056 0.01795 0.00806 0.02601

8 0.97624 0.02376 0.47252 0.01798 0.49050 0.01560 0.00578 0.02138

9 0.98181 0.01819 0.47713 0.01377 0.49090 0.01378 0.00442 0.01820

10 0.98541 0.01459 0.48038 0.01104 0.49142 0.01233 0.00355 0.01588

15 0.99293 0.00707 0.48827 0.00535 0.49362 0.00819 0.00172 0.00991

20 0.99541 0.00459 0.49146 0.00347 0.49493 0.00624 0.00112 0.00736

30 0.99732 0.00268 0.49432 0.00203 0.49635 0.00434 0.00065 0.00499

(c) Less patient customer (θ0 = 4 > θ = 2, μ0 = μ)

k Pk{Ab} Pk{Sr} E[Wk,Ab] E[Hk,Ab] E[Tk,Ab] E[Wk, Sr] E[Hk, Sr] E[Tk, Sr]

0 0.52855 0.47145 0.12723 0.30714 0.43437 0.00490 0.16431 0.16921

1 0.58141 0.41859 0.13996 0.28500 0.42495 0.00540 0.13359 0.13899

2 0.64483 0.35517 0.15522 0.25314 0.40837 0.00598 0.10202 0.10801

3 0.72200 0.27800 0.17380 0.20760 0.38140 0.00670 0.07040 0.07710

4 0.81735 0.18265 0.19675 0.14250 0.33925 0.00758 0.04015 0.04773

5 0.93723 0.06277 0.22561 0.04897 0.27458 0.00870 0.01380 0.02249

6 0.97206 0.02794 0.23656 0.02180 0.25836 0.00646 0.00614 0.01260

7 0.98526 0.01474 0.24164 0.01150 0.25314 0.00467 0.00324 0.00791

8 0.99125 0.00875 0.24435 0.00682 0.25117 0.00347 0.00192 0.00539

9 0.99425 0.00565 0.24594 0.00441 0.25035 0.00265 0.00124 0.0389

10 0.99610 0.00390 0.24694 0.00304 0.24998 0.00209 0.00086 0.00294

15 0.99893 0.00107 0.24888 0.00084 0.24972 0.00085 0.00024 0.00108

20 0.99952 0.00048 0.24942 0.00037 0.24979 0.00046 0.00010 0.00057

30 0.99983 0.00017 0.24975 0.00013 0.24989 0.00020 0.00004 0.00024

(Continued)
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Table 1. (Continued)

(d) More patient customer (θ0 = 1 < θ = 2, μ0 = μ)

k E[Wk] E[Hk] E[Tk] E[WkHk,Ab] E[WkHk, Sr] E[WkHk] E[T 2
k ]

0 0.49026 0.50974 1.00000 0.31598 0.03590 0.35187 2.0000

1 0.53929 0.46071 1.00000 0.30248 0.03556 0.22804 2.0000

2 0.59812 0.40188 1.00000 0.28117 0.03476 0.31563 2.0000

3 0.66969 0.33031 1.00000 0.25078 0.03328 0.28407 2.0000

4 0.75814 0.24186 1.00000 0.20496 0.03081 0.23577 2.0000

5 0.86933 0.13067 1.00000 0.13739 0.02682 0.16421 2.0000

6 0.91186 0.08814 1.00000 0.10788 0.02390 0.13178 2.0000

7 0.93281 0.06719 1.00000 0.09164 0.02181 0.11345 2.0000

8 0.94495 0.05505 1.00000 0.08132 0.02025 0.10157 2.0000

9 0.95280 0.04720 1.00000 0.07412 0.01904 0.09317 2.0000

10 0.95829 0.04171 1.00000 0.06876 0.01807 0.08673 2.0000

15 0.97174 0.02826 1.00000 0.05393 0.01505 0.06897 2.0000

20 0.97741 0.02259 1.00000 0.04663 0.01336 0.06001 2.0000

30 0.98284 0.01716 1.00000 0.03877 0.01144 0.05021 2.0000

(e) Equally patient customer (θ0 = 2 = θ, μ0 = μ)

k E[Wk] E[Hk] E[Tk] E[WkHk,Ab] E[WkHk, Sr] E[WkHk] E[T 2
k ]

0 0.25635 0.48730 0.74365 0.15700 0.01132 0.16832 0.93439

1 0.28198 0.43604 0.71802 0.14840 0.01112 0.15952 0.87910

2 0.31274 0.37451 0.68726 0.13565 0.01074 0.14639 0.81788

3 0.35017 0.29966 0.64983 0.11702 0.01011 0.12713 0.74997

4 0.39642 0.20717 0.60358 0.08994 0.00911 0.09905 0.67463

5 0.45456 0.09089 0.54544 0.05053 0.00755 0.05808 0.59124

6 0.47454 0.05093 0.52546 0.03405 0.00608 0.04012 0.55870

7 0.48343 0.03314 0.51567 0.02547 0.00502 0.03049 0.54257

8 0.48812 0.02376 0.51188 0.02033 0.00426 0.02459 0.53326

9 0.49090 0.01819 0.50910 0.01695 0.00371 0.02066 0.52729

10 0.49270 0.01459 0.50730 0.01456 0.00329 0.01785 0.52317

15 0.49647 0.00707 0.50353 0.00874 0.00213 0.01087 0.51345

20 0.49771 0.00459 0.50229 0.00637 0.00161 0.00798 0.50965

30 0.49866 0.00268 0.50134 0.00424 0.00111 0.00535 0.50633

(f) Less patient customer (θ0 = 4 > θ = 2, μ0 = μ)

k E[Wk] E[Hk] E[Tk] E[WkHk,Ab] E[WkHk, Sr] E[WkHk] E[T 2
k ]

0 0.13214 0.47145 0.60359 0.07776 0.00393 0.08169 0.55561

1 0.14535 0.41859 0.56394 0.07281 0.00383 0.07664 0.49046

2 0.16121 0.35517 0.51637 0.06560 0.00366 0.06927 0.42020

3 0.18050 0.27800 0.45850 0.05520 0.00340 0.05860 0.34489

4 0.20434 0.18265 0.38698 0.04022 0.00299 0.04321 0.26509

5 0.23431 0.06277 0.29708 0.01857 0.00237 0.02094 0.18228

6 0.24301 0.02794 0.27096 0.01028 0.00162 0.01190 0.15437

7 0.24632 0.01474 0.26105 0.00641 0.00113 0.00755 0.14240

8 0.24781 0.00875 0.25656 0.00435 0.00083 0.00517 0.13636

9 0.24859 0.00465 0.25424 0.00313 0.00062 0.00375 0.13296

10 0.24903 0.00390 0.25292 0.00236 0.00049 0.02850 0.13088

15 0.24973 0.00107 0.25080 0.00086 0.00019 0.00106 0.12703

20 0.24988 0.00048 0.25036 0.00045 0.00011 0.00056 0.12603

30 0.24996 0.00017 0.25013 0.00019 0.00005 0.00024 0.12543
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Abstract. Introducing the N-policy and half exhaustive d-type working
vacation into a multi-server M/M/c queue. If d or more than d servers
are idle, we let d idled servers start a multiple synchronous working
vacation, the servers on working vacation keep on serving new customers
in a low rate, and the rest c-d servers work as usual. When a vacation
is finished, once the customers in the system is greater or equal to N,
terminating the vacation of these d servers, otherwise starting another
working vacation. When a service is completed in a vacation period, what
kind of service has been accepted by the customer who has left, depends
on the customers in the system whether is more than c-d, if the number
of customer is more than c-d, a customer who has left maybe served by
normal rate or low rate service, if the number of customer isn’t more
than c-d, a customer who has left served by normal rate service. Using a
quasi-birth and death process and matrix geometric method, we obtain
the stationary distributions. Finally, the result is applied to hierarchical
cellular system, and we make the numerical analysis.

Keywords: Half exhaustive · Partial working vacation · N-policy
Hierarchical cellular system

1 Introduction

In the queueing system, vacation models are more flexible, and it is undoubtedly
a hot topic in recent years. For instance, Zhang and Tian [1] analyzed queueing
systems with synchronous vacation of partial servers. A multi-server retrial queue
with vacations was studied by Yang [2]. Ammar [3] gave the transient solution
of an M/M/1 vacation queue with a waiting server and impatient customers.
Takhedmit and Abbas [4] analyzed a parametric uncertainty analysis method
for queues with vacations. Ke et al. [5] researched an optimal (d, c) vacation
policy, and obtained the stationary distribution of the number of customers
in the system numerically. Xu and Tian [6,7] proposed M/M/c and M/M/c-e
multiple vacation service system assembled model, and added N-policy, studied

The project was supported by the national natural science foundation item
(11201408), China.
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M/M/c queue with (e, d, N)-policy. Zhu and Xu [8] studied the N-policy and
negative customer’s partial working vacation queue. On the basis of previous
researches on various strategies for vacation queueing, Wang et al. [9] proposed
a hybrid vacation strategy, there are two vacation strategies in a queue model,
studied the M/M/1 queue with successive two kinds of vacation, the steady state
distribution and the conditional stochastic decomposition results are obtained.

The queueing model proposed in this paper is different from exhaustive ser-
vice on the form of starting a vacation, and the vacation strategy is working
vacation, the servers on working vacation still serve new customers in a low
rate, and we introduce the N-policy into the model to avoid switching too fre-
quently. The correlation model is established and the stationary distribution is
obtained. The result we got can be applied to many queueing systems, In the
section of numerical analysis, the result is applied to hierarchical cellular mobile
communication system. Allocating channel resource reasonably, and making a
numerical analysis for the relationship between system performance indicators
and parameters.

The structure of this paper is organized as follows. A d-type working vacation
with N-policy is presented in Sect. 2, and the process of quasi-birth and death
is given. The necessary conditions for later calculation and proof are given in
Sect. 3. The process of calculating and proving about the stationary distribution
is given in Sect. 4. In Sect. 5, the application of the model in hierarchical cellu-
lar system is given and the numerical analysis is made. Finally, The work and
achievements of this paper are summarized in Sect. 6.

2 System Model

In an M/M/c queueing system with c servers, introducing the N-policy and d-
type working vacation into the model: once there are d (0 < d < c) servers
become idle, let the d idled servers start an any length of synchronized working
vacation, The vacation time V is assumed to be exponentially distributed with
mean of 1/θ. The servers under working vacation get into a low speed service
status, and continue to serve new customers at the service rate μv. At the end
of a vacation, if the number of customers in the system is greater or equal to
N, the servers on vacation back to normal work, on the contrary, continue to
another working vacation.

It is known that the coming process and service process are assumed to be
exponential distribution, the arrival rate is λ, the normal service rate is μb.
All processes are independent of each other, the service order is first come first
service.

Let L(t) denote the number of customers in the system at time t, defined
that

J(t) =
{

0, d servers on vacation at time t,
1, no servers on vacation at time t.

Then {L(t), J(t)} is a quasi-birth and death process, the state space is

Ω = {(k, 0) , 0 ≤ k ≤ c − d} ∪ {(k, 1) , k > c − d, j = 0, 1} .
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The infinitesimal generator can be written as

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 C0

B1 A1 C1

B2 A2 C2

. . . . . . . . .
Bc Ac Cc

. . . . . . . . .
BN−1 AN−1 CN−1

B A C
B A C

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

Ak =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− (λ + kμb) , 0 ≤ k ≤ c − d,(− [λ + (c − d) μb + (k − c + d) μv] 0
0 − (λ + kμb)

)
, c − d < k ≤ c,(− [λ + (c − d) μb + dμv] 0

0 − (λ + cμb)

)
, c < k ≤ N − 1.

Bk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

kμb , 1 ≤ k ≤ c − d,(
(c − d) μb + μv

(c − d + 1) μb

)
, k = c − d + 1,(

(c − d) μb + (k − c + d) μv 0
0 kμb

)
, c − d + 1 < k ≤ c,(

(c − d) μb + dμv 0
0 cμb

)
, c < k ≤ N − 1.

Ck =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ , 0 ≤ k < c − d,(
λ 0

)
, k = c − d,(

λ 0
0 λ

)
, c − d < k ≤ N − 1.

C =
(

λ 0
0 λ

)
.

A =
(−[λ + θ + (c − d)μb + dμv] θ

0 −(λ + cμb)

)
, B =

(
(c − d)μb + dμv 0

0 cμb

)
.

3 Analysis

This paper introduce the d-type working vacation with N-policy into M/M/c
queue, When the number of customers in the system is not more than c-d during
a vacation, a customer who has left was served by normal rate service, when
the customers in the system is more than c-d, a customer who has left may be
served by normal rate or low rate service. What’s more, For avoiding the frequent
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switching between working and vacation, introducing N-policy. When a vacation
is finished, if the customers in the system is greater or equal to N, terminating
the vacation of these d servers, otherwise, starting another working vacation.

In order to analyze the quasi-birth and death process above, the minimum
non-negative solution R of the matrix equation R2B + RA + C = 0 is called the
rate matrix. In order to express R, we introduce the following conclusions:

Lemma 1. The quadratic equation [(c − d)μb + dμv]z2 − [λ + θ + (c − d)μb +
dμv]z + λ = 0 has two different real roots r < r∗, and 0 < r < 1, r∗ > 1. r
satisfies the relationship

λ + θ + [(c − d)μb + dμv](1 − r) =
θ

1 − r
+ [(c − d)μb + dμv] =

λ

r
(1)

where r = λ+θ+(c−d)μb+dμv−
√

[λ+θ+(c−d)μb+dμv]
2−4λ[(c−d)μb+dμv ]

2[(c−d)μb+dμv ]

Theorem 1. When ρ = λ
cμb

< 1, The matrix equation R2B + RA + C = 0 has
the smallest non-negative solution

R =
(

r θ r
cμb(1−r)

0 ρ

)
(2)

Proof. Due to the A, B, C are upper triangular matrix which are given above,
The minimum non-negative solution R satisfies the matrix quadratic equation
R2B + RA + C = 0 must also be an upper triangular matrix, let

R =
(

r11 r12
0 r22

)
.

Substituting R into the matrix quadratic equation, we can get a set of equations:
⎧⎨
⎩

[(c − d)μb + dμv]r112 − [λ + θ + (c − d)μb + dμv]r11 + λ = 0,
cμbr22

2 − (λ + cμb)r22 + λ = 0,
cμbr12(r11 + r12) + θr11 − (λ + cμb)r12 = 0.

By Lemma 1, let r11 = r, r22 = ρ. Substituting r and ρ into the last equation,
we obtain r12 = θ r

cμb(1−r) .

4 Performance Measures

If ρ < 1, (L, J) represents the steady-state limit of process {L(t), J(t)}, let

πkj = P{L(t) = k, J(t) = j} = lim
t→∞ P{L(t) = k, J(t) = j}, (k, j) ∈ Ω.

πk = πk0, 0 ≤ k ≤ c − d;πk = (πk0, πk1), k > c − d,

X = (π0, π1, · · · , πc, πc+1, · · · , πN ).
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In order to show the distribution of (L, J), we introduce three sets of recursive
sequences Φk, ϕk and γk⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φ0 = 1,

Φ1 = 1
r ,

Φk = 1
r

{[
(c−d)μb+dμv

λ

]k−1

+ θ r
λ(1−r)

k−2∑
j=0

[
(c−d)μb+dμv

λ

]j
}

, 2 ≤ k ≤ N − c + 1

(3)⎧⎪⎨
⎪⎩

ϕ0 = 1 , k = 0,

ϕk = 1 +
k∑

j=1

j∏

i=1
[(c−d)μb+(d−c+j+i)μv ]

λj , 1 ≤ k < c − 1

(4)⎧⎨
⎩

γ0 = 1,

γk =
(

λ
μb

)k
(c−d+1)!

(k+c−d+1)! + (c − d + 1)
k−1∑
j=0

(
λ
μb

)k−1−j
(j+c−d+1)!
(k+c−d+1)! , 1 ≤ k ≤ d

(5)

Theorem 2. When ρ < 1, the steady state probability distribution of (L, J) is

πj0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K 1
j!

(
λ
μb

)j

, 0 ≤ j ≤ c − d,

Kσβ (ϕc−1−jΦN−c+1 − (c−d)μb+dμv

λ ϕc−2−jΦN−c),
c − d + 1 ≤ j ≤ c − 2,

Kσβ ΦN−j , c − 1 ≤ j ≤ N

πj1 =

⎧⎨
⎩

Kσβ θ
(c−d+1)μb(1−r)γj−c+d−1, c − d + 1 ≤ j ≤ c,

Kσβ

[(
λ

cμb

)j−c

γd−1
θ

(c−d+1)μb(1−r) +
j−c−1∑

v=0

(
λ

cμb

)v
]

, c + 1 ≤ j ≤ N

where

σ =
(

ϕd−1ΦN−c+1 − (c − d)μb + dμv

λ
ϕd−2ΦN−c

)−1

,

β =
1

(c − d)!

(
λ

μb

)c−d

= K−1πc−d,0.

Proof. By the matrix geometric method, X satisfies the equation XB[R] = 0,
where

B[R] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 C0

B1 A1 C1

. . . . . . . . .
Bc Ac Cc

. . . . . . . . .
BN−1 AN−1 CN−1

B RB + A

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Expanding the equation above we obtain the equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λπ00 + μbπ10 = 0,
λπk−1,0 − (λ + kμb)πk0 + (k + 1)μbπk+1,0 = 0 , 1 ≤ k < c − d,
λπc−d−1,0 − [λ + (c − d)μb]πc−d,0 + [(c − d)μb + μv]πc−d+1,0

+(c − d + 1)μbπc−d+1,1 = 0 , k = c − d,
−[λ + (c − d + 1)μb]πc−d+1,1 + (c − d + 2)μbπc−d+2,1 = 0 , k = c − d + 1,
λπk−1,0 − [λ + (c − d)μb + (k + d − c)μv]πk0

+[(c − d)μb + (k + d − c + 1)μv]πk+1,0 = 0 , c − d + 1 ≤ k < c,
λπk−1,1 − (λ + kμb)πk1 + (k + 1)μbπk+1,1 = 0 , c − d + 1 < k < c,
λπk−1,0 − [λ + (c − d)μb + dμv]πk0

+[(c − d)μb + dμv]πk+1,0 = 0 , c ≤ k < N,
λπk−1,1 − (λ + cμb)πk1 + cμbπk+1,1 = 0 , c ≤ k < N,
λπN−1,0 − λ

r πN0 = 0 , k = N,
λπN−1,1 + θ

1−rπN0 − cμbπN1 = 0 , k = N

(6)
For solving Eq. (6), the formulas (6) are denoted by (6-1) to (6-10), respec-

tively. From Eqs. (6-1) and (6-2), let π00 = K, we obtain

πj0 = K
1
j!

(
λ

μb

)j

, 0 ≤ j ≤ c − d.

If k = c − d,

πc−d,0 = K
1

(c − d)!

(
λ

μb

)c−d

(7)

We can get πN−1,0 = 1
r πN0 from (6-9), substituting it into (6-7) and notice

Eqs. (1) and (3) we can obtain that

πj0 = ΦN−jπN0, c − 1 ≤ j ≤ N

In addition, from (6-5)

−λπc−1,0+[(c−d)μb+dμv]πc0+λπj0−[(c−d)μb+(d−c+j+1)μv]πj+1,0 = 0 (8)

Making the iteration of (8) and notice (4), we recursively have

πj0 =
(

ϕc−1−jΦN−c+1 − (c − d)μb + dμv

λ
ϕc−2−jΦN−c

)
πN0, c − d ≤ j ≤ c − 2

When j = c − d,

πc−d,0 =
(

ϕd−1ΦN−c+1 − (c − d)μb + dμv

λ
ϕd−2ΦN−c

)
πN0

Substituting the formula above into (7), there are

πN0 =K

(
ϕd−1ΦN−c+1 − (c − d)μb + dμv

λ
ϕd−2ΦN−c

)−1 1
(c − d)!

(
λ

μb

)c−d

=Kσβ
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Thus, the former equations in the Theorem 4.1 have been proved, and the
following is the proof of the latter equations in Theorem 4.1.

By (6-4), there are

(c − d + 2)μbπc−d+2,1 − λπc−d+1,1 = (c − d + 1)μbπc−d+1,1 (9)

Substituting it into (6-6), obtaining

kμbπk1 − λπk−1,1 = (c − d + 1)μbπc−d+1,1, c − d + 2 ≤ k ≤ c (10)

Particularly,
cμbπc1 − λπc−1,1 = (c − d + 1)μbπc−d+1,1 (11)

(6-10) shows

cμbπN1 − λπN−1,1 =
θ

1 − r
πN0.

and from (6-8)

cμbπk1 − λπk−1,1 = cμbπk+1,1 − λπk1, c ≤ k ≤ N − 1.

From the two equations above recursively, we obtain

cμbπk1 − λπk−1,1 =
θ

1 − r
πN0 , c ≤ k ≤ N (12)

Particularly,

cμbπc1 − λπc−1,1 =
θ

1 − r
πN0.

Substituting the equation above into (11), we have

πc−d+1,1 =
θ

(c − d + 1)μb(1 − r)
πN0 = Kσβ

θ

(c − d + 1)μb(1 − r)
.

(10) shows,

πk1 =
λ

kμb
πk−1,1 +

c − d + 1
k

πc−d+1,1 , c − d + 2 ≤ k ≤ c.

Based on (5), recursively, we have

πk1 = γk−c+d−1πc−d+1,1 = Kσβ
θ

(c − d + 1)μb(1 − r)
γk−c+d−1, c − d + 1 ≤ k ≤ c

If k = c, there is

πc1 = γd−1πc−d+1,1 = Kσβ
θ

(c − d + 1)μb(1 − r)
γd−1 (13)

From (12)

πk1 =
λ

cμb
πk−1,1 +

θ

cμb(1 − r)
πN0, c ≤ k ≤ N (14)
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Based on (13) and (14), recursively, we have

πk1 =
(

λ
cμb

)k−c

πc1 +
k−c−1∑

v=0

(
λ

cμb

)v

πN0

=
(

λ
cμb

)k−c

γd−1πc−d+1,1 +
k−c−1∑

v=0

(
λ

cμb

)v

πN0

= Kσβ

[(
λ

cμb

)k−c

γd−1
θ

(c−d+1)μb(1−r) +
k−c−1∑

v=0

(
λ

cμb

)v
]

, c ≤ k ≤ N

Theorem 3. If ρ < 1, and 0 ≤ j ≤ N , the steady state distribution of (L, J) is
given by Theorem 4.1, when j > N , we have⎧⎨

⎩
πj0 = Kσβrj−N , j > N

πj1 = πN1ρ
j−N + θ r

cμb(1−r)πN0

j−N−1∑
v=0

rvρj−N−1−v, j > N
(15)

where

K =

{
1 +

c−d∑
j=1

1
j!

(
λ
μb

)j

+σ β
c−2∑

j=c−d+1

(
ϕc−1−jΦN−c+1 − (c−d)μb+dμv

λ ϕc−2−jΦN−c

)

+σ β
N∑

j=c−1

ΦN−j + σ β θ
(c−d+1)μb(1−r)

c∑
j=c−d+1

γj−c+d−1

+ σ β
N∑

j=c+1

[(
λ

cμb

)j−c

γd−1
θ

(c−d+1)μb(1−r) +
j−c−1∑

v=0

(
λ

cμb

)v
]

+ σ β ρ
1−ρ

[(
λ

cμb

)N−c

γd−1
θ

(c−d+1)μb(1−r) +
N−c−1∑

v=0

(
λ

cμb

)v
]

+ σ β r
1−r + σ β Φ0

θ r
cμb(1−r)

∞∑
j=N+1

j−N−1∑
v=0

rvρj−N−1−v

}−1

Proof. According to the matrix geometric solution method, when k ≥ N , we
have

πk = (πk0, πk1) = (πN0, πN1)Rk−N (16)

From (2), we obtain

R =

⎛
⎝ rk θ r

cμb(1−r)

k−1∑
v=0

rvρk−1−v

0 ρk

⎞
⎠ , k ≥ 1.

Substituting it into (16), we have (15), K can be obtained by the equilibrium
condition ∞∑

k=0

πk0 +
∞∑

k=c−d+1

πk1 = 1.

The distribution of the number of customers L in the steady state is

P {L = k} = πk0, 0 ≤ k ≤ c − d; P{L = k} = πk0 + πk1, k > c − d.
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Remark 1. Specially, If N = 1, d = 0, c = 1, the model can simply boil down to
an M/M/1 queue with working vacation, and the Theorem 4.1 is equivalent to
the result of article [10]. If N = 1, d = 1, c = 1, the model can simply boil down
to an M/M/1 queue, just as the analysis in article [11].

5 Numerical Results

Zhang [12] studied the performance analysis of a queue with congestion-based
staffing policy, maintaining the average queue length within a certain range is
the primary objective, where the number of servers is adjusted according to the
queue length during a planning period. On the basic of article [12], the model in
this paper can be applied to allocating resources too, such as hierarchical cellular
mobile communication system.

Considering a system with c channels, we suppose any calling occupies only
one channel, and the arrival of calling is assumed to be exponentially distributed
with arrival rate λ, if there are d channels become idle, we can make the d idled
channels become adjacent higher or lower cellular level’s overflow pool, providing
channels both for the two cellular layers’ incoming callings. The service time of
the d channels for overflowing is assumed to be exponentially distributed with
mean 1/θ. When a overflowing is completed, if the number of calling in the
original cellular layer is not less than N, the d channels return to normal work,
otherwise, start another time of overflowing. Where d and N can be seen as a
threshold of overflowing, allowing the adjacent cellular layer to overflow while d
channels of the original cellular layer are idle, when the calling in the original
cellular layer reaches or exceeds N at the end of a overflowing, the overflowing is
terminated. It avoid too frequent switching, allocate resources reasonable, and
reduce the call blocking rate.

The transmission time of normal channels is assumed to be exponentially dis-
tributed with transmission rate μb. The transmission time of overflowing chan-
nels is assumed to be exponentially distributed with transmission rate μv. The
arrival and transmission time are independent each other, the transmission order
is FCFS.

The distribution of the number of calling L is

P {L = k} =
{

πk0 , 0 ≤ k ≤ c − d,
πk0 + πk1 , k ≥ c − d + 1.

There are many indicators affect the performance of the system, according to the
steady state distribution we have got in Theorems 4.2 and 4.3, we select blocking
rate and using rate for numerical analysis. When the calling in the cellular layer
is more than c, the calling is blocked, so the probability of call blocking is

Pb = P {L > c} =
∞∑

k=c+1

(πk0 + πk1) (17)

Substituting πk0 πk1 that we have obtained from theorems above into (17)
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Pb = Kσβ

[
N∑

j=c+1

ΦN−k + r
1−r + γd−1

θ
(c−d+1)μb(1−r)

N∑
j=c+1

ρj−c

+
N∑

j=c+1

j−c−1∑
v=0

ρv

]
+ ρ

1−ρπN1 + θ r
cμb(1−r)πN0

∞∑
j=N+1

j−N−1∑
v=0

rvρj−N−1−v

(18)
Based on the steady state distribution, the average utilization rate of the channel
U is

U =

c∑
j=1

jπj0 +
∞∑

j=c+1

cπj0 +
c∑

j=c−d+1

jπj1 +
∞∑

j=c+1

cπj1

c
(19)

Making numerical analysis on the indicators of (18) and (19) with matlab,
setting the total number of channels c = 24; θ = 0.01; μb = 0.05; μv = 0.04.
Let N = 40; d are equal to 3, 4, 5, 7 respectively, when the arrival rate λ varies
between 0.5 and 0.7. Figure 1 shows the curve of Pb changes with λ, and Fig. 2
shows the curve of U changes with λ. As it can be seen from Figs. 1 and 2, in
the range of λ. Both Pb and U increased with the increasing of λ, all of Pb and
U increased with the increasing of d. It is convenient for us to select the optimal
Pb and U values based on the changing of λ.

For obvious observation, we take the arrival rate from 0.68 to 0.69. Take d
= 10, N is equal to 39, 40, 41, 42 respectively. Figure 3 shows the curve of Pb

changes with λ, Fig. 4 shows the curve of U changes with λ. As it can be seen
from Figs. 3 and 4, both Pb and U increased with the increasing of λ, under the
same conditions, the larger the value of N is, the larger the Pb and U are.
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Fig. 1. Pb change with λ when N is constant.
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Fig. 2. U change with λ when N is constant.
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Fig. 3. Pb change with λ when d is constant.

In a hierarchical cellular mobile communication system, the smaller the block-
ing rate is, the better the system perform, and the higher average utilization of
the channels is, the better the system perform. In order to maximize the sys-
tem revenue, the maximum U can be selected at the maximum blocking rate
that customers can tolerate. Here, N is larger than the integer value of c, effec-
tively reducing the frequently switching between working and vacation. We can
also set N to any integer value less than or equal to c, then get the stationary
distribution, set the parameters to get the result of Pb and U .
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Fig. 4. U change with λ when d is constant.

6 Conclusions

In this paper, the N-policy and d-type working vacation queue model is proposed,
the model is established and analysed, and the steady state distribution of queue
length is got. Applying the result to the hierarchical cellular mobile communi-
cation system. Through the numerical analysis, the relationship between system
performance and parameters is obtained, which provides a theoretical basis for
the analysis of hierarchical cellular mobile communication system.
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Abstract. By analyzing energy-efficient management of data centers,
this paper proposes and develops a class of interesting Group-Server
Queues, and establishes two representative group-server queues through
loss networks and impatient customers, respectively. Furthermore, such
two group-server queues are given model descriptions and necessary
interpretation. Also, simple mathematical discussion is provided, and
simulations are made to study the expected queue lengths, the expected
sojourn times and the expected virtual service times. In addition, this
paper also shows that this class of group-server queues are often encoun-
tered in many other practical areas including communication networks,
manufacturing systems, transportation networks, financial networks and
healthcare systems. Note that the group-server queues are always used to
design effectively dynamic control mechanisms through regrouping and
recombining such many servers in a large-scale service system by means
of, for example, bilateral threshold control, and customers transfer to the
buffer or server groups. This leads to the large-scale service system that
is divided into several adaptive and self-organizing subsystems through
scheduling of batch customers and regrouping of service resources, which
make the middle layer of this service system more effectively managed
and strengthened under a dynamic, real-time and even reward optimal
framework. Based on this, performance of such a large-scale service sys-
tem may be improved greatly in terms of introducing and analyzing such
group-server queues. Therefore, not only analysis of group-server queues
is regarded as a new interesting research direction, but there also exist
many theoretical challenges, basic difficulties and open problems in the
area of queueing networks.

Keywords: Group-server queue · Data center
Energy-efficient management · Loss network · Impatient customer

1 Introduction

In this paper, we propose and develop a class of interesting Group-Server Queues
by analyzing energy-efficient management of data centers, and establish two
c© Springer International Publishing AG 2017
W. Yue et al. (Eds.): QTNA 2017, LNCS 10591, pp. 49–72, 2017.
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representative group-server queues by means of loss networks and impatient
customers, respectively. Also, we show that this class of group-server queues
are often encountered in many other practical areas including communication
networks, manufacturing systems, transportation networks, financial networks
and healthcare systems. Therefore, not only analysis of group-server queues is
regarded as a new interesting research direction, but there also exist many the-
oretical challenges, basic difficulties and open problems in the area of queueing
networks.

Data centers are main infrastructure platforms for various kinds of large-scale
practical information systems, and always offer economies of scale for network,
power, cooling, administration, security and surge capacity. So far it has been an
interesting research direction to reduce the server farm energy requirements and
to optimize the power efficiency which may be viewed as a ratio of performance
improvement to power consumption reduction. For energy-efficient management
of data centers, some authors have dealt with several key interesting issues, for
example, data center network architecture by Al-Fares et al. [1], Guo et al. [20]
and Pries et al. [35]; green networks and cloud by Kliazovich et al. [25], Mazzucco
et al. [32], Gruber and Keller [18], Goiri et al. [13,14] with solar energy, Li et
al. [27] with wind energy, Wu et al. [41] and Zhang et al. [43]; networks of data
centers by Greenberg et al. [16,17], Gunaratne et al. [19], Shang et al. [38],
Kliazovich et al. [26] and Wang et al. [39]; resiliency of data centers by Heller
et al. [23] and Baldoni et al. [3]; revenues, cost and performance by Elnozahy et
al. [8], Chen et al. [6], Benson et al. [4], Dyachuk and Mazzucco [7], Mazzucco
et al. [31] and Aroca et al. [2]; analyzing key factors by Greenawalt [15] for hard
disks, Chase et al. [5] for hosting centers (i.e., the previous one of data center),
Guo et al. [21] for base station sleeping control, Guo et al. [22] for edge cloud
systems, Horvath and Skadron [24] for multi-tier web server clusters, Lim et al.
[30] for multi-tier data centers, Rivoire et al. [34] for a full-system power model,
Sharma et al. [37] for QoS, Wierman et al. [40] for processor sharing, and Xu
and Li [42] for part execution.

In analyzing energy-efficient management of data centers, queueing theory
and Markov processes are two effective mathematical tools both from perfor-
mance evaluation and from optimal control. Up till now, few papers have applied
queueing theory, together with Markov processes, to performance analysis of data
centers with energy-efficient management. Chen et al. [6] proposed a queueing
model to control energy consumption of service provisioning systems subject
to Service Level Agreements (SLAs). Nedevschi et al. [33] demonstrated that
introducing a sleep state to power management in a data center can save much
of the present energy expenditure, and even simple schemes for sleeping also
offer substantial energy savings. Shang et al. [38] used network devices to rout-
ing service design, and made the idle network devices to shut down or to put
into a sleep state. Gandhi et al. [9] modeled a server farms with setup cost
by means of an M/M/k queueing system, where each server can be in one of
the following states: work, on, idle, off, or sleep, employed the popular met-
ric of Energy-Response time Product (ERP) to capture the energy-performance
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tradeoff, and gave the first theoretical result on the optimality of server farm
management policies. From a similar analysis to [9], Gandhi et al. [10] used
an M/M/k queueing system but each server has only three states: on, setup
and off, and obtained the distributions of the response time and of the power
consumption. Further, Gandhi and Harchol-Balter [11], Gandhi et al. [12] ana-
lyzed effectiveness of dynamic power management in data centers in terms of
an M/M/k model, and found that the dynamic power management policies are
very effective when the setup time is small, the job size is large or the size of the
data center is increasing; in contrast, the dynamic power management policies
are ineffective for small data centers. Schwartz et al. [36] and Gunaratne et al.
[19] provided the energy efficient-mechanism with dual thresholds. Schwartz et
al. [36] presented a queueing model to evaluate the trade-off between the wait-
ing time and the energy consumption, and also developed a queueing model
with thresholds to turn-on reserve servers when needed. Gunaratne et al. [19]
developed a single-server queue with state-dependent service rates and with dual
thresholds for service rate transitions.

Contributions of this paper: The main contributions of this paper are three-
fold. The first one is to propose and develop a class of interesting Group-Server
Queues, and establishes two representative group-server queues by means of loss
networks and impatient customers, respectively, under a practical background
for analyzing energy-efficient management of data centers. The second contri-
bution is to set up a general framework for group-server queues, and to give a
detailed discussion for basic issues, for instance, optimally structural division
of server groups, transfer policies among server groups and/or buffers, dynamic
control mechanism design, revenue management and cost control. The third con-
tribution is to provide a simple mathematical analysis for a two-group-server loss
queue, and also to design simulation experiments to evaluate the expected queue
lengths, the expected sojourn times and the expected virtual service times for
a three-group-server loss queue and a three-group-server queue with an infinite
buffer. Note that this class of group-server queues are often encountered in many
other practical areas including communication networks, manufacturing systems,
transportation networks, financial networks and healthcare systems. Therefore,
the methodology and results given in this paper provide highlights on a new
class of queueing networks called group-server queues, and are applicable to the
study of large-scale service networks in practice.

Organization of this paper: The structure of this paper is organized as fol-
lows. In Sect. 2, we propose and develop a class of new interesting queueing mod-
els: Group-Server Queues, and establish a basic framework of the group-server
queues, such as, model structure, operations mechanism, necessary notation and
key factors. In Sect. 3, we describe a group-server loss queue from analyzing
energy-efficient management of data centers, where the loss mechanism makes a
finite state space so that the group-server loss queue must be stable. In Sect. 4,
we describe a group-server queue with impatient customers and with an infinite
buffer, where some key factors of this system are discussed in detail. In Sect. 5,
we provide a simple mathematical analysis for the two-group-server loss queue,
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and several open problems are listed. In Sect. 6, we design simulation experi-
ments for performance evaluation of the three-group-server loss queues and of
the three-group-server queues with an infinite buffer, and specifically, we ana-
lyze their expected queue lengths, the expected sojourn times and the expected
virtual service times. Finally, some concluding remarks are given in Sect. 7.

2 A Basic Framework of Group-Server Queues

In this section, we propose a class of new interesting queueing models: Group-
Server Queues, and establish a basic framework for the group-server queues, for
instance, model structure, operations mechanism, necessary notation and key
factors.

We propose such group-server queues by analyzing energy-efficient manage-
ment of data centers. As analyzed in the next two sections, two representative
group-server queues are established according to the need of energy saving. To
realize energy saving in data center networks, a sleep (or off) state introduced to
some servers is a class of key techniques. Using States on, sleep, off and others, a
large-scale service system with more servers is divided into several subsystems,
each of which contains some servers having certain common attributes. For exam-
ple, a data center has a set of all different attributes: E = {work, on, sleep, off},
where ‘work’ denotes that a server is ‘on’ and is also serving a customer; ‘on’
denotes that a server is idle and ready to serve; ‘sleep’ denotes that a server is
at the dormancy stage with lower power consumption; and ‘off’ denotes that a
server is shut down, where a setup time may be needed if the server change its
state from off to on (or sleep).

Now, we provide a concrete example how to establish the different groups
of servers. Let the set of all the servers in the data center be Ω =
{Server 1, Server 2, Server 3, . . . , Server N}. Then the service system of the
data center can be divided into three subsystems whose server groups are
given by

Ω1 = {Server 1, Server 2, . . . , Server n} , each server is either at work or on;

Ω2 = {Server n + 1, Server n + 2, . . . , Server n + m} ,

each server is either at work, on, or sleep;

Ω3 = {Server n + m + 1, Server n + m + 2, . . . , Server N} ,

each server is either at work, on, sleep or off.

It is seen that the attributes of servers in Ω2 are more than that in Ω1, that
is, sleep. While the sleep attribute makes Ω2 practically different from Ω1. See
Fig. 1 in the next section for an intuitive understanding. At the same time, to
further understand the attribute role played by the energy efficient-mechanism
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of data centers, readers may refer to the next two sections for establishing and
analyzing two representative group-server queues.

In general, this class of group-server queues are often encountered in many
other practical areas, for example, communication networks for green and energy
saving, manufacturing systems for priority use of high-price devices, transporta-
tion networks with different crowded areas, and healthcare systems having dif-
ferent grade hospitals. Therefore, analyzing the group-server queues is an inter-
esting research direction both in the queueing area and in many practical fields
such as computer, communication, manufacturing, service, market, finance and
so on. To our best knowledge, no previous work has looked at and summarized
the group-server queues from a theoretical or practical framework yet.

Based on the above analysis, we provide a basic framework for the group-
server queues, and discuss model structure, operations mechanism, necessary
notation and key factors as follows:

Server Groups: We assume that a large-scale service system contains many
servers whose set is given by

Ω = {Server 1, Server 2, Server 3, . . . , Server N} ,

and they also have some different attributes whose set is given by

E = {A1, A2, A3, . . . , Ar} ,

where Ai is an attribute for 1 ≤ i ≤ s. From practical need and physical behavior
of a large-scale service system, the attribute set E is divided into some different
subsets as follows:

E = E1 ∪ E2 ∪ · · · ∪ Es, s ≤ r.

Note that Ei and Ej may have common elements for 1 ≤ i < j ≤ s. Applying
the subsets Ei for 1 ≤ i ≤ s to system behavior, the server set Ω is divided into
some different groups or subsets as follows:

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωs,

where the server group Ωi well corresponds to the attribute subset Ei for 1 ≤
i ≤ r. Note that the server groups Ωi for 1 ≤ i ≤ s are disjoint. In this case, the
large-scale service system is divided into s subsystems, each of which contains the
servers in the group Ωi having certain common attributes in one of the subsets
Ei for 1 ≤ i ≤ s.

In practice, the attributes Ai for 1 ≤ i ≤ r have a wide range of meanings,
for instance, states, properties, behaviors, control and mechanism. From such a
setting, it is clear that the server grouping of a large-scale service system should
not be unique.

Arrival processes: In the group-server queue, we assume that customer arrivals
at this system are a renewal process with stationary arrival rate λ. For the
customer arrivals, we shall encounter two issues: (a) Routing allocation mech-
anism, for example, joining the shortest queue length, and joining the shortest
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sojourn time. (b) Arrival rate control, for example, arrival rates depending on
system states, arrival rates depending on prices, arrival rates depending on
sojourn times, and arrival rates depending on threshold control.

Service processes: In the ith server group, the service times of customers are
i.i.d. with general distribution function Fi (x) of stationary service rate μi for
1 ≤ i ≤ N . For the customer service processes, we shall encounter two issues: (a)
service disciplines, for example, FCFS, LCFS, processor sharing, and matching
service. (b) Service rate control, for example, service rates depending on system
states, service rates depending on prices, service rates depending on sojourn
times, and service rates depending on threshold control.

Customers transfer among server groups: The customers in heavy-load
server groups are encouraged to transfer into light-load server groups; the cus-
tomers in low-speed-service server groups are encouraged to transfer into high-
speed-service server groups; the customers in high-cost-service server groups are
encouraged to transfer into low-cost-service server groups; and so forth. Under
customer transferring, the residual service times of non-exponential distributions
always make model analysis more difficult and challenging.

Stability is a difficult issue: Since the group-server queue is always a large-
scale complicated stochastic system, its stability and associated conditions are
always very difficult to study. To easily deal with system stability, it is a simple
method to introduce loss networks or impatient customers to the group-server
queues, where the former is to use the finite state space, while the latter is
to apply stability of the renewal processes. Therefore, this paper uses the loss
networks and the impatient customers to set up some examples, which show how
to simply guarantee stability of some group-server queues.

3 Group-Server Loss Queues

In this section, we describe a group-server loss queue from analyzing energy-
efficient management of data centers. Note that the ‘Loss Mechanism’ is to set
up a finite state space, whose purpose is to guarantee stability of the group-server
loss queue.

In the energy-efficient management study of data center networks, it was an
effective way to introduce two states: sleep and off for some servers. Based on
this, we can make some different states: work, on, sleep, off and others, and the
servers of the data center are grouped as Ω = Ω0 ∪ Ω1 ∪ · · · ∪ ΩN . Concretely,
a simple group-server loss queue is constructed under two states: work-on, and
sleep. Here, work and on are assumed to have the same power consumption, hence
work and on are regarded as a state: work-on. See Fig. 1, for understanding the
N +1 server groups and even for intuitively understanding the group-server loss
queue.

Now, we use the data center to describe a group-server loss queue, and set up
energy efficient-mechanism, system parameters and model notation as follows:
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Fig. 1. Physical structure of the group-server loss queue

(1) Server groups: We assume that the data center contains N + 1 dif-
ferent server groups, each of which is a subsystem of the data center. For
j ∈ {0, 1, 2, . . . , N}, the jth server group contains mj same servers. Thus the
data center contains

∑N
j=0 mj servers in total. Note that the N + 1 different

server groups can be divided into two basic categories: (a) Server group 0 is
special, because its each server has only one state: work-on. Hence server group
0 with m0 same servers is viewed as the base-line group in the data center. (b)
Each server of the other N server groups has two states: work-on and sleep.

(2) Arrival processes: The arrivals of customers at the data center from
outside are a renewal process with stationary arrival rate λ. An arriving customer
preferentially enters one idle server of the leftmost server group with idle servers.
We assume that each server and the data center all have no waiting room, while
each server receives and serves only one customer at a time. Hence any new
arrival is lost once all the servers contain their one customer, that is, the system
is full when it has at most

∑N
j=0 mj customers.

(3) Service processes: In the jth server group, the service times of cus-
tomers are i.i.d. with general distribution function Fj (x) of stationary service
rate μj for 0 ≤ j ≤ N .

(4) Bilateral threshold control: Except server group 0, each server in the
other N server groups have two states: work-on and sleep. To switch between
work-on and sleep, it is necessary for the jth server group to introduce a positive
integer pair (Lj ,Kj) with 0 ≤ Lj ≤ Kj ≤ mj , which leads to a class of bilat-
eral threshold control applied to energy-efficient management of the data center
networks.
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To realize energy saving effectively, using the two states: work-on and sleep,
a bilateral threshold control is introduced as follow: Once there are more than
Kj customers in the jth server group, then each server of the jth server group
immediately enters State work-on. On the contrary, when there are less than
Lj customers in the jth server group, then each server of the jth server group
immediately enters State sleep. Thus for the data center, we have the coupled
threshold control parameters as follows:

{(Lj ,Kj) : 0 ≤ Lj ≤ Kj ≤ mj , 1 ≤ j ≤ N} .

(5) Customers concentratively transfer among the server groups:
In order to make the sleep servers to enter State work-on as soon as possible, it
is necessary to concentratively transfer those customers in the sleep servers of
the rightmost server group with sleep servers into the idle servers (on or sleep)
of the leftmost server group. Using such a way, this maximizes the number of
customers in the leftmost server group with sleep servers such that the number
of servers with a customer fast goes to over the integer Kj , which leads to that
the sleep servers is started up and enters State work-on. In this case, the most
sleep servers in the data center are setup at State work-on so that more and
more customers are served as soon as possible.

(6) Energy consumption: We assume that the power consumption rates
for the 1 + N server groups are given by PW0 , PW1 , . . . , PWN

for State work-
on; and PS0 = 0, PS1 , PS2 , . . . , PSN

for State sleep. To realize energy saving, let
0 < PSj

< PWj
for j = 1, 2, . . . , N .

We assume that all the random variables in the system defined above are
independent of each other.

A basic issue: Establishing some cost (or reward) functions is to evaluate a
suitable trade-off between the sojourn time and the energy consumption. To con-
centratively reduce the sojourn time and to save energy, some effective methods
are proposed and developed, such as, (a) the bilateral threshold control, (b) the
customers at sleep servers concentratively transfer among the server groups, and
(c) the residual service times are wasted or re-used. We need to analyze their
performance and trade-off due to some mutual contradiction between reducing
the sojourn time and saving the energy.

4 Group-Server Queues with Impatient Customers

In this section, we consider a group-server queue with impatient customers,
which is refined and abstracted from energy-efficient management of data center
networks, where the impatient customers are introduced to guarantee stability
of this group-server queue with an infinite buffer.

In the data center, we still introduce two states: work-on and sleep for some
servers. Based on the two different states, the servers of the data center are
grouped as Ω = Ω0 ∪ Ω1 ∪ Ω2 ∪ · · · ∪ ΩN . See Fig. 2 both for the N + 1 server
groups and for the group-server queue with impatient customers and with an
infinite buffer.
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Fig. 2. Physical structure of the group-server queue with impatient customers

Now, we describe a group-server queue with impatient customers and with an
infinite buffer, and also explain energy efficient mechanism, system parameters
and model notation as follows:

(1) Server groups: We assume that the data center contains N + 1 dif-
ferent server groups, each of which is a subsystem of the data center. For a
j ∈ {0, 1, 2, . . . , N}, the jth server group contains mj same servers. Thus the
data center contains at most

∑N
j=0 mj servers. Note that the N + 1 different

server groups can be divided into two basic categories: (a) Server group 0 is
special, because its each server has only one state: work-on, hence server group
0 with m0 same servers is viewed as the base-line group in the data center. (b)
Each server of the other N server groups has two states: work-on and sleep.

(2) Arrival processes: The arrivals of customers at the data center from
outside are a renewal process with stationary arrival rate λ. Each arrival cus-
tomer must first enter the infinite buffer, then he is assigned to the N +1 server
groups according to the following allocation rules:

(2-A1) Each server in server group 0 is always at State work-on. If server group
0 have some idle servers, then the arriving customer can immediately enter
one idle server in server group 0 and then receive his service.

(2-A2) Each server in server group 1 is at State sleep. If server group 0 does
not exist any idle server, then the new arrival customers have to queue and
wait in the buffer. Once the number of customers waiting in the buffer is
not less than K1, then each server in server group 1 is started up to State
work-on from State sleep, and all the customers in the buffer but at most m1

customers enter server group 1 and then receive their service.
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(2-A3) Each server in server group 2 is at State sleep. If server groups 0 and 1
do not exist any idle server, then the new arrival customers have to queue
and wait in the buffer. Once the number of customers waiting in the buffer
is not less than K2, then each server in server group 2 is started up to State
work-on from State sleep, and all the customers in the buffer but at most m2

customers enter server group 2 and then receive their service.
(2-A4) Let 2 ≤ l ≤ N − 1. Each server in server group l + 1 is at State sleep. If

server groups 0, 1, 2, . . . , l do not have any idle server, then the new arriving
customers have to queue and wait in the buffer. Once the number of customers
waiting in the buffer is not less than Kl+1, then each server in server group
l +1 is started up to State work-on from State sleep, all the customers in the
buffer but at most ml+1 customers enter server group l + 1 and then receive
their service.

(2-B) If the N + 1 server groups do not exist any idle server, then the new
arriving customers have to queue and wait in the buffer.

(2-C) In the N + 1 server groups, if there exists one idle server whose state is
work-on, then an arriving customer in the buffer will immediately enter this
server and then receive his service.

(3) Service processes: In the jth server group, the service times of cus-
tomers are i.i.d. with general distribution function Fj (x) of stationary service
rate μj for 0 ≤ j ≤ N .

(4) Customer impatient processes: Each customer in this system has an
exponential patient time of impatient rate θ.

(5) Bilateral threshold control: Except server group 0, each server in the
other N server groups have two states: work-on and sleep. To switch between
work-on and sleep, it is necessary for the jth server group to introduce a positive
integer pair (Lj ,Kj) with 0 ≤ Lj ≤ Kj ≤ mj , which leads to a bilateral threshold
control by means of energy-efficient management of the data center networks.
By using the two states: work-on and sleep, a Bilateral Threshold Control is
introduced as follow:

(5-1) From sleep to work-on: We assume that each server in server group j
is at State sleep, and an idle server does not exist in server groups 0, 1, 2, . . . ,
j − 1, for 1 ≤ j ≤ N . If there are not less than Kj customers in the buffer,
then each server in server group j is started up to State work-on from State
sleep, all the customers in the buffer but at most mj customers enter server
group j and then receive their service.

(5-2) From work-on to sleep: We assume that each server in server group
j is at State work-on. If there are less than Lj customers being served in
server group j, then each server of server group j immediately enters State
sleep from State work-on, and those customers being served at server group
j are transferred to the head of the buffer. For such transferred customers,
we assume that those service times obtained by the transferred customers,
will become zero, and their service get start again (note that another useful
case is that the received service times can be cumulative, once arriving at the
total service time, the service is completed) immediately. Also, to allocate the
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customers in the buffer to some server groups, each customer transferred in
the head of the buffer is the same as the new arriving customers. Thus we
have the coupled threshold control parameters

{(Lj ,Kj) : 0 ≤ Lj ≤ Kj ≤ mj , 1 ≤ j ≤ N} .

(6) Customers transfer to the buffer: In order to save energy as much as
possible, if there are less than Lj customers being served in server group j, then
it is necessary to transfer those customers in the server group j at State work-on
into the head of the buffer, and each server of server group j immediately enters
State sleep from State work-on.

(7) Energy consumption: We assume that the power consumption rates
for the 1 + N server groups are given by PW0 , PW1 , . . . , PWN

for State work-on;
and PS0 = 0, PS1 , PS2 , . . . , PSN

for State sleep. For energy saving, let 0 < PSj
<

PWj
for j = 1, 2, . . . , N .

We assume that all the random variables in the system defined above are
independent of each other.

A basic issue: Constructing some cost (or reward) functions is to evaluate a
suitable trade-off between the sojourn time and the energy consumption. Note
that some effective methods are proposed and developed, such as, (a) the bilat-
eral threshold control, (b) customers in sleep servers transfer to the buffer, and
(c) residual service times are wasted or re-used. We need to analyze their per-
formance and the suitable trade-off due to some mutual contradiction between
reducing the sojourn time and saving the energy.

Further discussion for stability: For the group-server queue with an infinite
buffer drawn in Fig. 2, it is easy to give a sufficient condition of system stability:
ρ = λ/m0μ0 < 1, by means of a path coupling or comparison of a Markov
process.

It is seen from Fig. 2 that server groups 1, 2, . . . , N provide many service
resources or ability in processing the customers, and this buffer also plays a key
role in concentratively transferring the customers in sleep servers to improve
service ability of the whole system. Therefore, it may be an interesting open
problem to set up the necessary conditions under which the system stability
is, how to be influenced by the key factors or parameters, as follows: (a) the
bilateral threshold control, (b) customers in sleep servers transfer to the buffer,
and (c) many residual service times are wasted or re-used.

5 Mathematical Analysis and Open Problems

In this section, we provide some simple mathematical analysis for a two-group-
server loss queue with server group 0 and server group 1, a whole detailed inves-
tigation of which was given in Li et al. [29]. From such mathematical analysis, it
is seen that analyzing more general group-server queues is interesting, challeng-
ing and difficult, and thus several open problems are listed for the future study
of group-server queues.
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5.1 Some Mathematical Analysis

A special model: N = 1. We consider a special two-group-server loss queue
with server group 0 and server group 1. See model descriptions for a more general
case given in Sect. 3 in more details.

For convenience of readers, it is still necessary to simply re-list some assump-
tions and descriptions for this special case as follows: (a) Server group 0 contains
n servers, each of which has only one state: work-on; while server group 1 con-
tains m servers, each of which has two different states: work-on and sleep. (b)
No waiting room is available both at each server and in the group-server queue.
Once there are n+m customers in this systems (i.e., one server is serving a cus-
tomer), any new customer arrival will be lost due to no waiting room. (c) The
arrivals of customers at this two-group-server queue are a Poisson process with
arrival rate λ. (d) The service times provided by server group 0 and by server
group 1 are i.i.d. with two exponential distributions of service rate μ0 and μ1,
respectively. (e) Unilateral threshold control: L1 = 0 and K1 > 0. In this case,
if server group 0 are full with n serving customers, and if there are not less that
K1 customers waiting at server group 1 with m sleep servers, then each server
of server group 1 immediately enters State work-on, and then provides service
for its customer. (f) Because of L1 = 0, once all the customers in server group 1
have completed their service, the m servers of server group 1 immediately switch
to State sleep from State work-on; if there are some idle (on) servers in server
group 0, and if there are customers waiting in server group 1 in which each server
is at State sleep, then the customers waiting at the sleep servers of server group
1 can transfer to those idle (on) servers of server group 0. (g) For each server
in the two server groups, the power consumption rates are listed as: PW0 and
PW1 for State work-on, and PS1 for State sleep (PS0 = 0 because each server
in server group 0 does not have State sleep). To save energy, we assume that
0 < PS1 < PW1 .

A QBD process: For this two-group-server loss queue, the states of the cor-
responding Markov process are defined as the tuples: (l0, i; l1, j) as shown in
Fig. 3, where l0 = W , l1 ∈ {W,S}, W and S denote States work-on and sleep,
respectively. Let i be the number of servers serving a customer in server group
0, and j the number of servers serving a customer in server group 1. It is seen
from Fig. 3 that for (W, i; l1, j), we can set up four different sets as follows:

(1) In Block 1, i ∈ {0, 1, . . . , n − 1, n} ; l1 = S, j = 0;
(2) in Block 2, i ∈ {n} ; l1 = S, j ∈ {1, 2, . . . ,K − 1} ;
(3) in Block 3, i ∈ {0, 1, . . . , n − 1, n} ; l1 = W, j ∈ {1, 2, . . . ,K − 1} ;
(4) in Block 4, i ∈ {0, 1, . . . , n − 1, n} ; l1 = W, j ∈ {K,K + 1, . . . ,m} .

We denote by N0 (t) and N1 (t) the numbers of servers serving a customer in
server group 0 and server group 1, respectively; and S0 (t) and S1 (t) the states
of servers in server groups 0 and 1, where S0 (t) = W and S1 (t) ∈ {W,S}. Let
X (t) = (S0 (t) , N0 (t) ;S1 (t) , N1 (t)) with S0 (t) = W . Then {X (t) , t ≥ 0} is
a QBD process with finitely many levels. From Fig. 3, it is seen that the QBD
process {X (t) , t ≥ 0} has a state space Ω = Ω0 ∪ Ω1 ∪ Ω2 ∪ · · · ∪ Ωm, where
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Ω0 = {(W, 0;S, 0) , (W, 1;S, 0) , . . . , (W,n − 1;S, 0) , (W,n;S, 0)} ,

Ω1 = {(W,n;S, 1)} ∪ {(W,n;W, 1) , (W,n − 1;W, 1) , . . . , (W, 0;W, 1)} ,

Ω2 = {(W,n;S, 2)} ∪ {(W,n;W, 2) , (W,n − 1;W, 2) , . . . , (W, 0;W, 2)} ,

...
...

ΩK−1 = {(W,n;S,K − 1)} ∪ {(W,n;W,K − 1) , (W,n − 1;W,K − 1) , . . . ,

(W, 0;W,K − 1)} ;
ΩK = {(W,n;W,K) , (W,n − 1;W,K) , . . . , (W, 1;W,K) , (W, 0;W,K)} ;

ΩK+1 = {(W,n;W,K + 1) , (W,n − 1;W,K + 1) , . . . , (W, 0;W,K + 1)} ;
...

...
Ωm = {(W,n;W,m) , (W,n − 1;W,m) , . . . , (W, 1;W,m) , (W, 0;W,m)} .

Let the subset Ωj be Level j. Then each element in Level j or the subset Ωj

is a phase. It is clear that the QBD process {X (t) , t ≥ 0} has the infinitesimal
generator as follows:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q0,0 Q0,1

Q1,0 Q1,1 Q1,2

Q2,1 Q2,2 Q2,3

. . . . . . . . .
Qm−1,m−2 Qm−1,m−1 Qm−1,m

Qm,m−1 Qm,m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

A Markov reward process: Using the power consumption rates, we define
f(x) as an instantaneous reward of the QBD process {X (t) , t ≥ 0} at the state
X (t) = x. It is clear that for x = (W, i; l1, j) with i ∈ {0, 1, ..., n − 1, n},

f (W, i; l1, j) =
{

nPW0 + mPS1 , l1 = S, j ∈ {0, 1, ...,K − 1},
nPW0 + mPW1 , l1 = W, j ∈ {1, 2, ...,m}.

(1)

For simplification of description, we write

fW,i;l1,j = f (W, i; l1, j) .

It is seen from Fig. 3 and the state space Ω = Ω0 ∪Ω1 ∪ · · · ∪ Ωm that for Level
0,

fS,0 = (fW,0;S,0, fW,1;S,0, . . . , fW,n;S,0) ;

for Level j with 1 ≤ j ≤ K − 1,

fSW,j = (fW,n;S,j ; fW,0;W,j , fW,1;W,j , . . . , fW,n;W,j) ;

and for Level j with K ≤ j ≤ m,

fW,j = (fW,0;W,j , fW,1;W,j , . . . , fW,n;W,j) .
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We write

fj =

⎧
⎨

⎩

fS,0, j = 0,
fSW,j , 1 ≤ j ≤ K − 1,
fW,j , K ≤ j ≤ m,

and
f = (f0, f1, . . . , fK−1, fK , . . . , fm)T . (2)

Now, for the two-group-server loss queue, we analyze some interesting per-
formance measures: (a) The expected instantaneous power consumption rate
E [f (X (t))]; and (b) the cumulative power consumption Φ (t) during the time
interval [0, t). At the same time, the probability distribution and the first passage
time involved in the energy saving are also computed in detail.

The expected instantaneous power consumption rate: We note that
f(X (t)) is the instantaneous power consumption rate of the two-group-server
queue at time t ≥ 0. If the QBD process Q is stable, then

lim
t→+∞E [f (X (t))] =

∑

(W,i;l1,j)∈Ω

πW,i;l1,jfW,i;l1,j = πf,

where π is the stationary probability vector of the QBD process Q, and it can
be obtained through solving the system of linear equations πQ = 0 and πe = 1
by means of the RG-factorizations given in Li [28], where e is a column vector
of ones.

The Cumulative Power Consumption Φ (t) During the Time Interval
[0, t)

Based on the instantaneous power consumption rate f (X (t)), we define the
cumulative power consumption during the time interval [0, t) as

Φ (t) =
∫ t

0

f (X (u)) du.

(i) Computing the probability distribution: Now, we compute the prob-
ability distribution of the cumulative power consumption Φ (t) by means of a
partial differential equation whose solution can explicitly be given in terms of
the Laplace and Laplace-Stieltjes transforms. Let

Θ (t, x) = P {Φ (t) ≤ x}
and

HW,i;l1,j (t, x) = P {Φ (t) ≤ x, X (t) = (W, i; l1, j)} .

We write that for Level 0,

HS,0 (t, x) = (HW,0;S,0 (t, x) ,HW,1;S,0 (t, x) , . . . , HW,n;S,0 (t, x)) ;

for Level j with 1 ≤ j ≤ K − 1,

HSW,j (t, x) = (HW,n;S,j (t, x) ; HW,0;W,j (t, x) , HW,1;W,j (t, x) , . . . , HW,n;W,j (t, x)) ;
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and for Level j with K ≤ j ≤ m,

HW,j (t, x) = (HW,0;W,j (t, x) ,HW,1;W,j (t, x) , . . . , HW,n;W,j (t, x)) .

Based on this, we write

Hj (t, x) =

⎧
⎨

⎩

HS,0 (t, x) , j = 0,
HSW,j (t, x) , 1 ≤ j ≤ K − 1,
HW,j (t, x) , K ≤ j ≤ m,

and

H (t, x) = (H0 (t, x) ,H1 (t, x) , . . . , HK−1 (t, x) ,HK (t, x) , . . . , Hm (t, x)) .

It is clear that
Θ (t, x) = H (t, x) e.

For a column vector a = (a1, a2, . . . , ar) of size r, we write

Δ (a) = diag (a1, a2, . . . , ar) .

Obviously for the column vector f , we have

Δ = diag (Δ (f0) ,Δ (f1) , . . . ,Δ (fK−1) ,Δ (fK) , . . . ,Δ (fm)) .

For the Markov reward process {Φ (t) , t ≥ 0}, it follows from Sect. 10.2 of
Chap. 10 in Li [28] that the vector function H (t, x) is the solution to the Kol-
mogorov’s forward equation

∂H (t, x)
∂t

+
∂H (t, x)

∂x
Δ = H (t, x) Q,

with the boundary condition

H (t, 0) = π (0) δ (t) ,

and the initial condition
H (0, x) = π (0) δ (x) ,

δ (x) =
{

1, x = 0,
0, x > 0.

(ii) Computing the first passage time: Let Γ (x) be the first passage
time of the cumulative power consumption Φ (t) arriving at a key power value x
as follows:

Γ (x) = min {t : Φ (t) = x} .

We write
C (t, x) = P {Γ (x) ≤ t} .

It is clear that the event {Γ (x) ≤ t} is equivalent to the event {Φ (t) > x}. Hence
we get

C (t, x) = 1 − P {Φ (t) ≤ x} = 1 − Θ (t, x) ,
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Hence, we have
P {Γ (x) ≤ t} = 1 − P {Φ (t) ≤ x} ,

Let
M (r, k) =

∂r

∂sr
[
(Q − sI) Δ−1

]k |s=0 , r, k ≥ 0.

Then

M (0, 0) = I,
M (r, 0) = 0, r ≥ 1,

M (0, k) =
(
QΔ−1

)k
, k ≥ 1,

M (1, 1) = −Δ−1,
M (r, k) = QΔ−1M (r, k − 1) − rΔ−1M (r − 1, k − 1) , r, k ≥ 1.

Therefore, we can provide expression for the rth moment E [Γ (x)r] as follows:

E [Γ (x)r] = (−1)r+1
π (0)

∞∑

k=0

xk

k!
M (r, k) e, r ≥ 1,

where π (0) is any initial probability vector of the QBD process Q.

5.2 Open Problems

From the above analysis, it is seen that discussing more general group-server
queues is interesting, challenging and difficult. Thus it may be valuable to list
several open problems for the future study of group-server queues as follows:

– Setting up some suitable cost (or reward) functions, and provide and prove
existence and structure of bilateral threshold control by means of Markov
decision processes.

– Establishing fluid and diffusion approximations for more general group-server
queues, and focus on how to deal with the residual service times of those
concentratively transferred customers to the buffer or to the left-side server
groups. In fact, the residual service times cause some substantial difficulties
in model analysis.

– Constructing martingale problems or stochastic differential equations for
more general group-server queues.

– Developing stochastic optimization and control, Markov decision processes
and stochastic game theory in the study of group-server queues.

6 Simulation Experiments

In this section, we design some simulation experiments for performance evalua-
tion of two different group-server queues: the group-server loss queues, and the
group-server queues with infinite buffer. Specifically, we analyze the expected
queue lengths, the expected sojourn times and the expected virtual service times
for the two group-server queues.
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In these following simulations, we use some common parameters for the two
different group-server queues: the group-server loss queues and the group-server
queues with infinite buffer, where there are three server groups in each queueing
system. To that end, we take that N = 2, m0 = 4, m1 = 4, m2 = 3, μ0 = 5,
μ1 = 4, μ2 = 3, K1 = K2 = 3 and L1 = L2 = 2.

(1) The group-server loss queues. Figure 4 indicates how the expected
customer number in the whole system depends on the arrival rate λ ∈ (15, 45).
It is seen from Fig. 4 that the expected customer number in the whole system
strictly increase as λ increases.
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Fig. 4. The expected customer number in the whole system vs. λ

Figure 5 shows how the expected customer number in each of three server
groups depends on the arrival rate λ ∈ (15, 45). It is seen from Fig. 5 that the
expected customer number in each of three server groups strictly increases as λ
increases.

Note that each of the two group-server queues contains three different server
groups with service rates: μ0, μ1, μ2, it is easy to see that the service times of the
three server groups are different from each other. In this case, for such a group-
server queue, we need to introduce a virtual service time as follows: The virtual
service time is defined as the average service time of any customer in the group-
server queues. Thus the virtual service time describes the comprehensive service
ability of a whole system through integrating the server groups with different
service abilities.

Figure 6 demonstrates how the expected virtual service time and the expected
sojourn time depend on the arrival rate λ ∈ (15, 43), respectively. It is seen from
Fig. 6 that both of them strictly increase as λ increases.

(2) The group-server queues with infinite buffer. Figure 7 indicates
how the expected customer numbers in the whole system and in the buffer
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Fig. 5. The expected customer number in each of three server groups vs. λ
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Fig. 6. The expected virtual service time and the expected sojourn time vs. λ
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Fig. 7. The expected customer numbers in system and buffer vs. λ
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Fig. 8. The expected customer number in each of three server groups vs. λ

depend on the arrival rate λ ∈ (15, 40), respectively. It is seen from Fig. 7 that
both of them strictly increase as λ increases.

Figure 8 shows how the expected customer number in each of three server
groups depends on the arrival rate λ ∈ (15, 45). It is seen from Fig. 8 that the
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expected customer number in each of three server groups strictly increases as λ
increases.

Figure 9 demonstrates how the expected virtual service time and the expected
sojourn time depend on the arrival rate λ ∈ (15, 40), respectively. It is seen from
Fig. 9 that the expected virtual service time increases slowly as λ increases, while
the expected sojourn time increases rapidly as λ increases.
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Fig. 9. The expected virtual service time and the expected sojourn time vs. λ

Here, we use some simulation experiments to give valuable observation and
understanding with respect to system performance, and this is a valuable help
for design, operations and optimization of energy-efficient management of data
centers. Therefore, such a numerical analysis will also be useful and necessary
in the energy-efficient management study of data center networks in practice.

7 Concluding Remarks

In this paper, we propose and develop a class of interesting Group-Server Queues
by means of analyzing energy-efficient management of data centers, and estab-
lishes two representative group-server queues through loss networks and impa-
tient customers, respectively. Some simple mathematical discussion is provided
in the study of two-group-server loss queues, and simulations are made to study
the expected queue lengths, the expected sojourn times and the expected virtual
service times in the three-group-server queues with infinite buffer. Furthermore,
we show that this class of group-server queues are often encountered in many
other practical areas including communication networks, manufacturing systems,
transportation networks, financial networks and healthcare systems. Therefore,
not only analysis of group-server queues is regarded as a new interesting research
direction, but there also exists many theoretic challenge and basic difficulties in
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the area of queueing networks. We hope the methodology and results given in
this paper can be applicable to analyzing more general large-scale data center
networks and service systems. Along these lines, we will continue our works in
following directions in the future research:

– Establishing fluid and diffusion approximations for the group-server loss
queues, and also for the group-server queues with impatient customers and
with infinite buffers;

– making power consumption rate and power price regulation in data center
networks through the Brownian approximation methods;

– setting up and proving existence and structure of (discrete or continue) bilat-
eral threshold control in energy-efficient management of data centers in terms
of Markov decision processes; and

– developing stochastic optimization and control, Markov decision processes
and stochastic game theory in analyzing energy-efficient management of data
center networks.
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Natural Science Foundation of Hebei province under grant No. G2017203277.
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Abstract. Bitcoin is a virtual currency based on a transaction-ledger
database called blockchain. The blockchain is maintained and updated
by mining process in which a number of nodes called miners compete
for finding answers of very difficult puzzle-like problem. Transactions
issued by users are grouped into a block, and the block is added to
the blockchain when an algorithmic puzzle specialized for the block is
solved. A recent study reveals that newly arriving transactions are not
included in the block being under mining. In this paper, we model the
mining process with a queueing system with batch service, analyzing
the transaction-confirmation time. We consider an M/GB/1 with batch
service, in which a newly arriving transaction cannot enter the service
facility even when the number of transactions in the service facility does
not reach the maximum batch size, i.e., the block-size limit. In this model,
the sojourn time of a transaction corresponds to its confirmation time.
We consider the joint distribution of the number of transactions in system
and the elapsed service time, deriving the mean transaction-confirmation
time. In numerical examples, we show how the block-size limit affects the
transaction-confirmation time.

Keywords: Bitcoin · Blockchain · Transaction-confirmation time

1 Introduction

Bitcoin is an autonomous decentralized virtual currency that does not have a
central server or administrator, and it succeeds to prevent fraud such as multiple
payment and impersonation by encryption and peer-to-peer network technologies
[1]. Bitcoin can provide immediate and secure service of international money
transfer, and it is expected to be used for micropayment such as small amount
remittance and billing of a piece of Internet content, due to its low fee [2]. Bitcoin
demand grows rapidly in recent years, and the average number of transactions
per day in 2016 is 226,000, which is about twice as much as the previous year’s
125,000.

Bitcoin virtual-currency system is based on two data types: transaction and
block. A transaction includes information indicating a specific amount of money
c© Springer International Publishing AG 2017
W. Yue et al. (Eds.): QTNA 2017, LNCS 10591, pp. 75–88, 2017.
https://doi.org/10.1007/978-3-319-68520-5_5
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transferred from sender to recipient. On the other hand, a block consists of
several transactions, and a newly generated block is confirmed by solving a
puzzle-like problem. This confirmation process is called mining, and a number of
nodes called miners compete for finding its answer. The difficulty of the puzzle-
like problem is automatically adjusted so that mining finishes in 10 minutes
on average [3]. A miner succeeds in mining, the miner receives reward called
coinbase (currently 12.5 BTC in 2017) and transactions’ remittance fees in the
block. Note that miners keep mining work in order to get “coinbase” even when
there are no transactions to be included into a block.

One of technical issues in Bitcoin is low transaction-processing speed due to
the maximum block size [4]. In Bitcoin, newly arriving transactions are included
in a block and confirmed by mining. Since the block size is limited to 1 MB and
the time for mining is 10 min in average, the number of transactions processed per
second is very small. In addition, Bitcoin system has transaction-priority mecha-
nism, in which each transaction is prioritized according to its remittance amount,
the elapsed time from previous approval, and the transaction-data size. A trans-
action is included in a block according to its priority value and the fee paid by user
in advance [3]. Transactions with low remittance and/or low fee are likely not to
be included in a block when the transaction arrival rate is high. It is reported in [5]
that the recent block size is approaching the maximum block size, and therefore
reducing the transaction size by separating part from transaction [6] have been
proposed, however no agreement has been achieved for Bitcoin community.

In order to consider the scalability issue for Bitcoin, it is important to quanti-
tatively characterize the transaction-confirmation process. Since transactions are
processed in block basis, the transaction-confirmation process can be modeled
as a single-server queueing system with batch service. In terms of the analysis
for the single-server queue with batch service, the authors in [8] consider an
M/GB/1 queue and analyze the joint distribution of the number of customers
in queue and the elapsed service time.

In [7], the authors consider an M/GB/1 queue with priority mechanism,
deriving the mean transaction-confirmation time for each transaction-priority
class. In numerical experiments, they find quantitative difference between analy-
sis and measured data. This results from the assumption based on default Bitcoin
client mechanism, in which a newly arriving transaction is included in the block
under mining if the number of transactions in the block is smaller than the block-
size limit. They also find that the block-generation time follows an exponential
distribution, conjecturing that a newly arriving transaction is not included in
the block under mining.

In this paper, we consider a modified M/GB/1 queueing model in which
newly arriving transactions wait in queue even when the number of transactions
is smaller than the maximum batch size. Because mining is done even if there
is no transaction in system, we also assume that the system is always busy
when there is no transaction in system. We analyze the joint distribution of
the number of transactions in system and the elapsed service time, deriving the
mean transaction-confirmation time. In numerical examples, we quantitatively
evaluate the effects of the block size on the transaction-confirmation time.
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The rest of this paper is organized as follows. We describe our queueing
model in Sect. 2. The analysis of the queueing model is presented in Sect. 3 and
some numerical examples are shown in Sect. 4. Finally, we conclude the paper in
Sect. 5.

2 Queueing Model

Transactions arrive at the system according to a Poisson process with rate λ.
The transactions are grouped into a block, and the block is confirmed when
one of miners finds the answer of the puzzle-like problem. We define the block-
generation time as the time interval between consecutive block-confirmation time
points. Note that the block-generation time can be regarded as the service time
for our queueing model. Let Si (i = 1, 2, . . .) denote the ith block-generation
time. We assume {Si}’s are independent and identically distributed (i.i.d) and
follow a distribution function G(x). Let g(x) denote the probability density func-
tion of G(x). The mean block-generation time E[S] is given by

E[S] =
∫ ∞

0

x dG(x) =
∫ ∞

0

xg(x) dx.

Transactions arriving to the system are served in a batch manner, and the max-
imum batch size is b. When a transaction arrives at the system, the transaction
enters the queue. The transaction cannot enter the server at its arrival point
even when the batch size under service is smaller than b or when the number of
transactions in system is zero. In other words, the arriving transaction is served
in the next block-generation time or later. This service is regarded as the gated
service with multiple vacations [9], in which vacation periods are i.i.d and follow
the same distribution of the service time.

3 Analysis

Let Ns(t) denote the number of transactions in the server at time t, Nq(t) the
number of transactions in the queue at time t, and X(t) the elapsed service time
at t. We define Pm,n(x, t)(m = 0, 1 . . . , b, n = 0, 1, . . . , x, t ≥ 0) as

Pm,n(x, t) dx = Pr {Ns(t) = m,Nq(t) = n, x < X(t) ≤ x + dx} .

Let ξ(x) denote the hazard rate of the service time S, which is given by

ξ(x) =
g(x)

1 − G(x)
.

When λE[S] < b holds, the system is stable and limiting probabilities exist. Let-
ting Pm,n(x) = limt→∞ Pm,n(x, t), and x(t) denote the differentiation of elapsed
service time, we obtain

d

dx
Pm,n(x) = −{λ + ξ(x)}Pm,n(x) + λPm,n−1(x), 0 ≤ m ≤ b, n ≥ 1, (1)

d

dx
Pm,0(x) = −{λ + ξ(x)}Pm,0(x), 0 ≤ m ≤ b. (2)
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We have the following boundary conditions at x = 0

Pb,n(0) =
b∑

m=0

∫ ∞

0

Pm,n+b(x)ξ(x)dx, n ≥ 0,

Pm,n(0) = 0, m = 0, 1, . . . , b − 1, n ≥ 1,

Pk,0(0) =
b∑

m=0

∫ ∞

0

Pm,k(x)ξ(x)dx, k = 0, 1, . . . , b.

The normalizing condition is given by

∞∑
n=0

b∑
m=0

∫ ∞

0

Pm,n(x)dx = 1.

We define the following probability generating functions (pgf’s)

P (z1, z2;x) =
∞∑

n=0

b∑
m=0

Pm,n(x)zm
1 zn

2 , (3)

P (z1, z2) =
∫ ∞

0

P (z1, z2;x) dx. (4)

From (1) and (2), we obtain

∞∑
n=0

b∑
m=0

d

dx
Pm,n(x) zm

1 zn
2 =

∞∑
n=0

b∑
m=0

−{λ + ξ(x)}Pm,n(x) zm
1 zn

2

+ λz2

∞∑
n=0

b∑
m=0

Pm,n(x) zm
1 zn

2 .

From the above equation and (3), we obtain

d

dx
P (z1, z2;x) = −{λ + ξ(x)}P (z1, z2;x) + λz2P (z1, z2;x)

= −{λ(1 − z2) + ξ(x)}P (z1, z2;x).

From this differential equation, P (z1, z2;x) is given by

P (z1, z2;x) = P (z1, z2; 0)e−λ(1−z2)x{1 − G(x)}. (5)

Multiplying (5) by ξ(x), and integrating the equation, we obtain
∫ ∞

0

P (z1, z2;x)ξ(x) dx =
∫ ∞

0

P (z1, z2; 0)e−λ(1−z2)x{1 − G(x)} dG(x)
1 − G(x)

= P (z1, z2; 0)
∫ ∞

0

e−λ(1−z2)xdG(x)

= P (z1, z2; 0)G∗(λ − λz2), (6)
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where G∗(s) is the Laplace-Stieljes transform (LST) of G(x) and given by

G∗(s) =
∫ ∞

0

e−sdG(x).

From (3) and (6), we obtain

P (z1, z2; 0)G∗(λ − λz2) =
∫ ∞

0

∞∑
n=0

b∑
m=0

Pm,n(x)ξ(x) dx zm
1 zn

2 . (7)

Substituting x = 0 into (3) yields

P (z1, z2; 0) =
∞∑

n=0

b∑
m=0

Pm,n(0) zm
1 zn

2

=
∞∑

n=0

b∑
m=0

∫ ∞

0

Pm,n+b(x)ξ(x) dx zb
1z

n
2

+
b−1∑
n=0

b∑
m=0

∫ ∞

0

Pm,n(x)ξ(x) dx zn
1 . (8)

Using (7) and (8), we obtain

P (z1, z2; 0) =

(
z1
z2

)b
{

P (1, z2; 0)G∗(λ − λz2) −
b−1∑
n=0

b∑
m=0

∫ ∞

0

Pm,n(x)ξ(x) dx zn
2

}

+

b−1∑
n=0

b∑
m=0

∫ ∞

0

Pm,n(x)ξ(x) dx zn
1 . (9)

Substituting z1 = 1 into (9), we obtain

P (1, z2; 0) =
(

1
z2

)b
{

P (1, z2; 0)G∗(λ − λz2) −
b−1∑
n=0

b∑
m=0

∫ ∞

0

Pm,n(x)ξ(x) dx zn
2

}

+
b−1∑
n=0

b∑
m=0

∫ ∞

0

Pm,n(x)ξ(x) dx.

Multiplying the above equation by zb
2 yields

{
zb
2 − G∗(λ − λz2)

}
P (1, z2; 0) =

b−1∑
n=0

(zb
2 − zn

2 )
b∑

m=0

∫ ∞

0

Pm,n(x)ξ(x) dx.

From the above equation, we obtain

P (1, z2; 0) =
∑b−1

n=0(z
b
2 − zn

2 )αn

zb
2 − G∗(λ − λz2)

, (10)
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where αn is given by

αn =
b∑

m=0

∫ ∞

0

Pm,n(x)ξ(x) dx.

Applying Rouche’s theorem [9] to (10), we can show that the equation

zb
2 − G∗(λ − λz2) = 0, (11)

has b roots inside |z2| = 1 + ε for a small real number ε > 0. One of them is
z2 = 1. Let z∗

2,k(k = 1, 2, ..., b − 1) denote the root of (11). From (10), we have
the following b − 1 equations

b−1∑
n=0

{(
z∗
2,k

)b − (
z∗
2,k

)n
}

αn = 0, k = 1, 2, ..., b − 1. (12)

From (9) and (10), we have

P (z1, z2; 0) =
(

z1
z2

)b
{∑b−1

n=0

(
zb
2 − zn

2

)
αn

zb
2 − G∗(λ − λz2)

G∗(λ − λz2) −
b−1∑
n=0

αnzn
2

}

+
b−1∑
n=0

αnzn
1 . (13)

From (4) and (5), we obtain

P (z1, z2) = P (z1, z2; 0)
∫ ∞

0

e−λ(1−z2)x{1 − G(x)} dx

= P (z1, z2; 0)
1 − G∗(λ − λz2)

λ(1 − z2)
. (14)

Multiplying (14) by λ(1 − z2) and partially differentiating it by z2, we have

∂P (z1, z2)
∂z2

λ(1 − z2) − P (z1, z2)λ =
∂P (z1, z2; 0)

∂z2
{1 − G∗(λ − λz2)}

− P (z1, z2; 0)
∂G∗(λ − λz2)

∂z2
.

Substituting z1 = z2 = 1 into the above equation, and noting that P (1, 1) = 1,
we have

P (1, 1) = P (1, 1; 0)E[S] = 1.
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Multiplying (14) by zb
2(z

b
2−G∗(λ−λz2)) in order to calculate P (1, 1; 0), we have

P (z1, z2; 0) zb
2

{
zb
2 − G∗(λ − λz2)

}
= zb

1

b−1∑
n=0

(
zb
2 − zn

2

)
αnG∗(λ − λz2)

− zb
1

{
zb
2 − G∗(λ − λz2)

} b−1∑
n=0

αnzn
2

+ zb
2

{
zb
2 − G∗(λ − λz2)

} (
b−1∑
n=1

αnzn
1 + α0z1

)
.

Partially differentiating the above equation by z2 and substituting z1 = z2 = 1,
we obtain under the stability condition of b > λE[S]

P (1, 1; 0) =
∑b−1

n=0 (b − n) αn

b − λE[S]
.

Hence, the normalizing condition is given by

∑b−1
n=0 (b − n) αn

b − λE[S]
E[S] = 1. (15)

From (12) and (15), αn’s are uniquely determined. From (13) and (14), we have

P (z1, z2) =
{(z1

z2

)b
∑b−1

n=0(z
b
2 − zn

2 )αn

zb
2 − G∗(λ − λz2)

G∗(λ − λz2) −
(z1

z2

)b b−1∑
n=0

αnzn
2

+
b−1∑
n=0

αnzn
1

}1 − G∗(λ − λz2)
λ(1 − z2)

. (16)

Partially differentiating (16) by z1 and substituting z1 = z2 = 1, we obtain the
mean number of transactions in the server as

(
∂P (z1, z2)

∂z1

)
z1=1,z2=1

=

{∑b−1
n=0(b − n)αn

b − λE[S]
E[S]

}
λE[S]

= λE[S].

Similarly partially differentiating (16) by z2, and substituting z1 = z2 = 1, we
obtain the mean number of transactions in the queue as
(

∂

∂z2
P (z1, z2)

)
z1=1,z2=1

=
1

2(b − λE[S])

(
λ2E[S2] − 2b(b − λE[S]) − b(b − 1)

+

b−1∑
n=0

{
λE[S2](b − n) + E[S]{b(b − 1) − n(n − 1)} + 2bE[S](b − n)

}
αn

)
.
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Hence, the mean number of transactions in the system E[N ] is given by

E[N ] =
1

2(b − λE[S])

(
λ2E[S2] − b(b − 1) − 2(b − λE[S])2

+
b−1∑
n=0

{
λE[S2](b − n) + E[S]{b(b − 1) − n(n − 1)} + 2bE[S](b − n)

}
αn

)
.

Let T denote the transaction-confirmation time, the time interval from the arrival
time point of a transaction to its departure one. From Little’s theorem, the
transaction-confirmation time is given by

E[T ] =
E[N ]

λ

=
1

2λ(b − λE[S])

(
λ2E[S2] − b(b − 1) − 2(b − λE[S])2

+
b−1∑
n=0

{
λE[S2](b − n) + E[S]{b(b − 1) − n(n − 1)} + 2bE[S](b − n)

}
αn

)
.

(17)

4 Numerical Examples

4.1 Distribution of Block-Generation Time

It is reported in [7] that the distribution of the block-generation time G(x) is
the exponential one given by

G(x) = 1 − e−μx, where μ = 0.0018378995.

Then, E[S] and E[S2] are given by

E[S] =
1
μ

= 544.0993884, E[S2] =
2
μ2

= 592088.2889,

The Laplace-Stieltjes transform (LST) of G(x) is given by

G∗(s) =
μ

s + μ
.

With these settings, we calculate the mean transaction-confirmation time E[T ].

4.2 Comparison of Analysis and Simulation

In order to confirm the validity of the results of analysis, we conduct the
Monte-Carlo simulation of the same model as the analysis. Figure 1 shows the
comparison of analysis and simulation model for the transaction-confirmation
time. In this figure, the horizontal axis represents the transaction arrival rate λ
and the vertical one is the mean transaction-confirmation time E[T ]. The block
size is fixed at b = 1000 in the numerical simulation. It is shown from Fig. 1
that the analytical result is the same as simulation, confirming the validity of
analysis.
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Fig. 1. Comparison of analysis and simulation model.

4.3 Comparison of Analysis and Measurement

In this subsection, we compare the analysis and measurement. In [7], the authors
analyze two-year transaction data obtained from blockchain.info [5], reporting
statistics such as the block-generation time, number of transactions in a block,
and transaction-confirmation time. From the analysis of [7], the mean transaction
size is 571.34 bytes, and hence the maximum block size b is set to 1750. Table 1
shows mean transaction-confirmation times of analysis and measurement. The
analytical result is calculated with the mean transaction-arrival rate equal to
0.97091, which is obtained from measured data.

Table 1. Comparison of analysis and measurement.

Arrival rate Measurement[s] Analysis[s]

0.9709120529 1127.238651 1112.035745

Table 1 shows the results of measurement and analysis. We observe in this
table that the analytical result is almost the same as the measurement value
with relative error of 1.35%.

4.4 Comparison of Analysis and Trace-Driven Simulation

We conduct trace-driven simulation experiments for further validating our ana-
lytical model. We obtained two-year data of transaction-arrival time and block-
generation time from [5], whose measurement period is from October 2013 to
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September 2015. We perform simulation experiments driven by this data, inves-
tigating how the block size affects the transaction-confirmation time. Figure 2
shows the results of analysis and simulation. Here, we use two-year trace data
for simulation, while the mean transaction-confirmation time of (17) is calcu-
lated with the mean arrival rate of two-year data. In Fig. 2, we observe a large
discrepancy between analysis and simulation when the block size is small, while
both results agree well with the increase in the block size.
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Fig. 2. Transaction-confirmation time vs. block size. The data measurement period is
from October 2013 to September 2015, λ = 0.9709120, and μ = 0.0018378995. The
coefficient of variation of transaction inter-arrival time is 10.1789300.

Figures 3 and 4 represent the transaction-confirmation time against the block
size. In Fig. 3, we use the trace data measured from October 2013 to September
2014, while the simulation result of Fig. 4 is based on the trace data measured
from October 2014 to September 2015. Figure 3 shows a good agreement of
analysis and simulation, however, we observe in Fig. 4 a discrepancy similar to
Fig. 2.

In order to clarify the reason of these discrepancies, we investigate how
the transaction arrival process evolves over time. Figure 5 shows the mean
transaction-arrival rate per day. In this figure, we observe little variation during
the first 12 months, while the mean transaction-arrival rate significantly varies
for the last three months in the measured period.

Table 2 shows coefficients of variation for the three measurement periods:
October 2013 to September 2014 (1st period), October 2014 to September 2015
(2nd period), and October 2013 to September 2015 (overall period). In this
table, the coefficient of variation of the 2nd period is larger than that of 1st
period. This large coefficient of variation of the 2nd period results in a large
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Fig. 3. Transaction-confirmation time vs. block size. The data measurement period is
from October 2013 to September 2014, λ = 0.7336929, and μ = 0.0019748858. The
coefficient of variation of transaction inter-arrival time is 3.72401599.
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Fig. 4. Transaction-confirmation time vs. block size. The data measurement period is
from October 2014 to September 2015, λ = 1.2081311, and μ = 0.0017009449. The
coefficient of variation of transaction inter-arrival time is 15.3250509.

coefficient of variation of the overall period, causing the discrepancy between
analysis and simulation. When the block size is large, there is enough space to
include transactions in the next block, and hence burst transaction arrivals are
likely to be served in the next block. This causes little difference between analysis
and simulation. On the other hand, when the block size is small, the system is
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Fig. 5. The mean transaction-arrival rate.

likely to be congested due to the bursty nature of the transaction-arrival process.
This results in a larger transaction-confirmation time for simulation than that
for analysis.

Table 2. Coefficients of variation.

Period 2013/10–2014/09 2014/10–2015/09 2013/10–2015/09

Value 3.72401599 15.3250509 10.1789300

4.5 Impact of the Block Size on the Transaction-Confirmation Time

In this section, we investigate the effect of the block size on the transaction-
confirmation time.

Figure 6 shows the analytical results with block size b = 1000, 2000, 4000, and
8000. We observe that the transaction-confirmation time grows with the increase
in the arrival rate. From [7], the maximum number of transactions included in
the current maximum block size 1MB is approximately given by b = 1750. This
value is close to b = 2000, diverging around λ = 3.6.

We also observe that enlarging the block size results in a small transaction-
confirmation time. However, the transaction-confirmation time for b = 8000
rapidly increases when λ is greater than 13 transaction per second. This implies
that enlarging the block size does not solve the scalability issue fundamentaly.
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Fig. 6. The effects of the block size on the transaction-confirmation time.

5 Conclusion and Future Work

In this paper, we analyzed the transaction-confirmation time for Bitcoin using
a single-server queue model with batch service M/GB/1. In this queuing model,
newly arriving transactions are temporarily stored in the queue first even when
the number of transactions in the server is smaller than the batch size. We ana-
lyzed the mean transaction-confirmation time, and validated it by comparing
simulation, and evaluated effects of the block size and transaction-arrival rate on
the transaction-confirmation time. We found that the transaction-confirmation
time can be decreased by changing the maximum block size. However, its
improvement is not effective enough to increase the number of transactions
processed per unit time.

In Bitcoin system, priority mechanism is implemented, in which the priority
value of a transaction is determined according to transaction attributes such as
remittance amount, data size, coin age and fee. It is important to analyze the
transaction-confirmation time for the model in which the priority mechanism
is taken into consideration. Other topic recently focused on in Bitcoin commu-
nity is lightening network, which provides a channel dedicated to micropayment
transactions [11]. The lightening network is expected to mitigate the overloaded
block-generation process, however, it is not clear how the lightening network
decreases the transaction-confirmation time. Developing analytical models for
the above issues is also our future work.
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Abstract. The growth of users and data throughput of mobile network requires
regulation on the data service provider. Thus, the portable device is designed to
be accessed to the core network and mirror data for further analysis about the
quality of service. Since the portable device is easy to be exposed to shocks while
delivered to the work place; and it is cost-dependent for preventive or corrective
repair action, in this paper, we conduct a reliability evaluation for the portable
Ethernet data acquisition device which is subject to two types of random shocks
(extreme shock vs. consecutive-k minor shock). We define a two-tuple Markov
chain to record the occurrence of the two competing failure models and we derive
the equation for evaluating the reliability of the device. Furthermore, in order to
help the crew to determine whether or not to check the disks after a long time
delivery, we, according to the age-based replacement policy, derive the equation
for optimizing the disk inspection window by making trade-off between the costs
of preventive repair and corrective repair. Finally, we explain the proposed
reliability evaluation method with a numerical example.

Keywords: Reliability � Extreme shock � Consecutive-k shock
Redundant array of independent disk (RAID)
Finite markov chain imbedding approach (FMCIA)

1 Introduction

The boom of mobile internet and related data services expand the capacity of the
network rapidly. As the service provider evolves to 4G mobile network, the data
throughput of the core network capacity increases dramatically. For example, the
mobile subscriber has exceeded the number of fixed-line subscriptions in the European
Union (EU) 27 countries since 2000 [1]. The data regulation is obligatory for billing
and metering to ensure the customers is equity served [2]. Hence, a portable data
acquisition device is designed for accessing the core network of the service provider
and mirroring data, as described in Fig. 1, to evaluate the quality of the service, such as
whether the customer is overcharged or whether the usage of data is correctly counted.
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As is depicted in Fig. 2, the device is accessed to the core network through an SFP+
optical module. The data transmitted in the Ethernet is in the form of packet. A packet
is read into RAM through the FPGA. Then, the packet is buffered waiting for the FPAG
to create a header for it and read out to the disk array [3]. The disk array of this device
is composed of n disks. In order to achieve maximal acquisition speed, the disk array is
applied with RAID-0. The packet is assigned by the RAID controller and store into
disks. The header contains the traceable records of the packet, such as the identity
information, packet type and sequence number [4], so that we can finally obtain
sequential packets and complete data.

However, because RAID-0 level series several disks [5], no redundancy is involved
in the disk array, which means the failure of any single disk can lead the data stored in
the disk array unavailable. For a portable device, it is very common to be exposed to
shocks during the delivery, e.g., the vibration when it is carried to the workplace, the
occasional drop of the device to the ground, or the accidental strike to the device caused
by crews. These shocks are stochastic and may cause damage to the disk tracks, once
the magnitude of a shock exceeds a certain level. Thus, before the device is setting-up
to mirror data, the crew has an opportunity to decide whether a disk inspection is
conducted or not. It is very straightforward that checking the disk array can ensure the
device to perform data acquisition completely, but it is a cost-dependent action. If the
device is transported to the work place in a relative long duration, the probability that

Ethernet

data
mirroring data acquisition 

device

data stream data stream

Fig. 1. Schematic diagram of Ethernet data mirroring.

Fig. 2. Packet-flow schematic diagram of the data acquisition device.
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the disks may be damaged becomes higher. If this probability is high enough, it would
be better to conduct a preventive repair of the disk so that the crew can obtain com-
pleted data.

The reliability of the disk array not only depends on the magnitude of the shocks,
but also it is related to the arrival of the shocks, i.e. the frequency of the shocks.
Actually, for the portable device, those shocks parameters are in accordance with how
the device is transported, e.g., delivered by airplane, consigned by train, or carried by
person. We can obtain the probability distribution functions of the shock magnitude
and shock arrival, by recording and analyzing the history data of shocks, for different
transportation method, which provide the input for modeling the reliability of the
device.

In this paper, we mainly consider two types of shocks which may cause failure to
the device, the extreme shock and consecutive-k minor shocks. The former represents
the shock whose magnitude exceeds a critical threshold; the latter refers to the situation
when the device experiences multiple shocks with less magnitude. The occurrence of
any one of shocks will lead the disk array unreliable. For the portable device, one can
regard the extreme shock as the drop to the ground or a severe strike caused by crews;
and one can regard the consecutive-k minor shocks as vibration during delivery. Thus,
we establish a two-tuple Markov chain to record the two competing failure models and
to obtain the reliability equation. Then, we employ age-based repair policy to determine
the most economical disk inspection window, by considering the trade-off between the
costs of preventive repair and corrective repair. The inspection window provides a
reference to the crew to determine whether to check the disk array after delivery or not.

The following of this paper is organized as follows. We conduct the mathematical
modeling for evaluating the portable Ethernet data acquisition device reliability in
Sect. 2. Then, we obtain the equation for optimizing disk inspection window s, which
is helpful for determining whether or not to check the disk array before acquiring data,
in Sect. 3. The proposed method is illustrated with a numerical example in Sect. 4 to
demonstrate the applicability of our method. Finally, the conclusion is addressed in
Sect. 5.

2 Reliability Modeling for Competing Failure of Random
Shocks

The reliability is defined as the probability that the device can survive from the shocks
by the time t. In order to present the reliability modeling for the portable device, we
regard both of the occurrence and the magnitude of a shock as random variables, based
on the following two primary assumptions:

• The shock occurs according to a homogeneous Poisson process

We assume that the shock arrival follows a homogeneous Poisson process NsðtÞ
with rate of ks. Therefore the probability distribution of the number of shock by time t
is obtained by Eq. (1), where the symbol ! is the factorial operator.
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PfNsðtÞ ¼ lg ¼ ðkstÞle�kst

l!
; ðl ¼ 0; 1; . . .Þ: ð1Þ

• The magnitude of a shock on a disk is independent and identically distributed

The magnitude of the ith; ði ¼ 0; 1; . . .Þ shock on the jth; ðj ¼ 1; 2; . . .; nÞ disk in
the RAID-0 disk array, denoted as M j

i , is independent of each other and is subject to an
identical cumulative distribution function FMðxÞ ¼ PfM j

i � xg.
Then, we can obtain the probability of that an extreme shock (which cause the

device out of use immediately) occurs. The extreme shock is referred as the shock
whose magnitude on the jth disk exceeds the critical level of threshold De [6], as
depicted in Fig. 3. Let pe represent the probability that the ith shock is an extreme
shock. Therefore, we have

pe ¼ 1� Pf max
1� j� n

½M j
i � �Deg;

which can be calculated by Eq. (2), as we assume M j
i is independent of each other.

pe ¼ 1� Pf
\n
j¼1

M j
i �Deg ¼ 1�

\n
j¼1

PfM j
i �Deg

¼ 1� ½FMðDeÞ�n:
ð2Þ

The extreme shock is easy to be identified, but the minor shocks, whose magnitude
is greater than a level of Dm ðDm\DeÞ, are not easy to be observed, as they do not
generate the failure immediately. However, owing to the damage of the disk caused by
the shocks is addictive, we cannot ignore them when perform the reliability analysis.
Therefore, researchers employ consecutive-k model to evaluate the reliability associ-
ated with minor shocks [6–8].
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Fig. 3. Schematic diagram of extreme shock.
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In this paper, in terms of consecutive-k, the portable data acquisition device is
considered as unreliable when it experiences consecutive-k minor shocks. As is
illustrated in Fig. 4, for an arbitrary shock i, it can be regarded as a minor shock when
there is at least one of the magnitude of the ith shock to the jth disk is greater than the
threshold Dm. Let pm represent the ith shock is a minor shock. We have

pm ¼ P
[n

j¼1
M j

i [Dm
� �j max

1� j� n
M j

i

� ��De

� �
;

which can be calculated by Eq. (3), where
n

j

 !
¼ n!

j! n� jð Þ!.

pm ¼
P
Sn

j¼1 Dm\M j
i �De

� �n o
Pf max

1� j� n
M j

i

� ��Deg

¼

Pn
j¼1

n

j

� �
½FMðDeÞ � FMðDmÞ� j½FMðDmÞ�n�j

½FMðDeÞ�n :

ð3Þ

We employ the finite Markov chain imbedding approach (FMCIA) to calculate the
probability that the disk array survives from the shock by time t, given the number of
shock fNsðtÞ ¼ lg. The FMCIA was proposed to study the distribution of runs in a
sequence of independent or non-independent Bernoulli trials [9]. Then, it is widely
applied by researchers to evaluate the system reliability with non-identical components,
as the traditional combination method is too complicated to be applied, when the
complex failure criterion is defined [10–15].

We define a two-tuple Markov chain CeðtÞ;CmðtÞð Þf g to represent the count of the
extreme shocks and the total count of the consecutive minor shocks that the device
experiences within fNsðtÞ ¼ lg shocks at time t. CeðtÞ 2 f0; 1g is the count of the
extreme shocks, where CeðtÞ ¼ 1 means there are at least one extreme shock within the
l shocks at time t. CmðtÞ 2 f0; 1; . . .; kg is the total count of the consecutive minor
shock, where CmðtÞ ¼ j ðj ¼ 0; 1; . . .; k � 1Þ means the device experiences

Fig. 4. Schematic diagram of consecutive-k minor shock.
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consecutive-j minor shocks and CmðtÞ ¼ k means the device suffers from at least
consecutive-k minor shocks, within l shocks at time t. Therefore, the state space of the
two-tuple Markov chain is presented as

SðtÞ ¼ ð0; 0Þ; ð0; 1Þ; . . .; ð0; k � 1Þ; ð0; kÞ; ð1; �Þf g:

The set of the reliable state for the device is ð0; 0Þ; ð0; 1Þ; . . .; ð0; k � 1Þf g and the
set of unreliable state is ð0; kÞ; ð1; �Þf g, where ð1; �Þ is an absorbing state. The state
transition probability of the Markov chain can be obtained by

pð0;uÞ!ðw;vÞ ¼
pe; w ¼ 1;
ð1� peÞpm; w ¼ 0 & u ¼ v� 1� k � 1;
ð1� peÞð1� pmÞ; w ¼ 0 & v ¼ 0 & u� k � 1;
1� pe; w ¼ 0 & u ¼ v ¼ k:

8>><
>>:

Thus, according to the state transition probability diagram described by Fig. 5, the
transition probability matrix when the ith shock is imbedded into the Markov chain is
presented as

KiðtÞ¼

ð1� peÞð1� pmÞ ð1� peÞpm pe
ð1� peÞð1� pmÞ ð1� peÞpm pe

..

. . .
. ..

.

ð1� peÞð1� pmÞ ð1� peÞpm pe
ð1� peÞ pe

1

2
66666664

3
77777775
jkþ 2j�jkþ 2j

:

In terms of FMCIA, the probability that the device survives from the shocks, given
the numbers of shocks at time t, fNsðtÞ ¼ lg, is calculated by Eq. (4), where the initial
state probability vector is p0 ¼ ð1; 0; . . .; 0Þ1�jkþ 2j; U ¼ ð1; . . .; 1; 0; 0Þ1�jkþ 2j is to

Fig. 5. State transition probability diagram of Markov chain CeðtÞ;CmðtÞð Þf g.
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sum up the probability values that the device is in working states; and T is the matrix
transpose operator.

PsurvjNsðtÞ¼lðtÞ ¼ p0
Yl
i¼0

KiðtÞUT : ð4Þ

Therefore, the reliability of the device RðtÞ, can be presented as

RðtÞ ¼
X1
l¼0

PsurvjNsðtÞ¼lðtÞ � PfNsðtÞ ¼ lg

¼
X1
l¼0

p0
Yl
i¼0

KiðtÞUT � ðkstÞle�kst

l!

" #
:

Since the term PfNsðtÞ ¼ lg decreases to zero as l grows to infinity, given the stop
condition ls ¼ min ljPfNsðtÞ ¼ lg\e; l ¼ 0; 1; . . .f g, we can obtain the approximation
of the reliability function with Eq. (5). The illustration of the equation is presented in
Sect. 4.

RðtÞ �
Xls
l¼0

p0
Yl
i¼0

KiðtÞUT � ðkstÞle�kst

l!

" #
: ð5Þ

3 Optimizing Disk Array Inspection Window s

For system that can record its operation condition, researchers applied the
condition-based replacement policy to determine the replacement interval [16]. But, the
portable device does not equip with the condition monitoring function. Owing to the
reliability that the disk array survives from the shocks is a non-increase function, the
longer the duration of the delivery phase is, the more opportunity there is bad track on
disks. Whether the crew is going to conduct the disk inspection is related to the length
of time that the device is delivered. Therefore, we apply age-based repair policy to
obtained the optimal inspection window s�.

As is described in Fig. 6, for the disk array, the age-based repair policy assumes the
inspection window to be s. If the disk array is failed prior to the inspection window, the
corrective repair is performed; otherwise, if the disk array survives by the inspection
window, the preventive repair is conducted. The optimal inspection window can be
determined by minimizing the long run expected repair cost rate which is the ratio of
the expected cost in one inspection window to the expected length of one inspection
window [17].

Let cc be the cost of corrective repair; cp be the cost of the preventive repair. Define
E½CðsÞ� to be the expected cost in one inspection window s; E½s� to be the expected
length of one inspection window; and ZðsÞ to be the expected repair cost rate.
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If the disk array fails prior to s, the expected cost is cc½1� RðsÞ�; if the system
survives by s, the expected cost is calculated by cpRðsÞ. Therefore, the total expected
cost in one inspection window is obtained by

E½CðsÞ� ¼ cc½1� RðsÞ� þ cpRðsÞ:

The expected length of time that the system fails prior to s is calculated byR s
0 tf ðtÞdt, where f ðtÞ ¼ �d

dtRðtÞ. The expected length of time that the system survives
by s is calculated by s

R1
s f ðtÞdt. Thus, the total expected length of one inspection

window is obtained by

E½s� ¼
Zs
0

tf ðtÞdtþ sRðsÞ:

Thereafter, the long run expected repair cost rate is obtained by Eq. (6). The
expected repair cost rate ZðsÞ, is a function of the inspection window s. Therefore, we
can obtain the optimal inspection window s�, by minimizing the expected repair cost
rate.

ZðsÞ ¼ E½CðsÞ�
E½s� : ð6Þ

4 Numerical Examples

In this section, we applied the proposed reliability evaluation method with some
numerical examples. We set the threshold of extreme shock is De ¼ 1:55 and the
threshold of minor shock is Dm ¼ 1:20. We assume that there are n ¼ 8 disks in the
RAID-0 disk array and we regard the device is unreliable when experiencing con-
secutive k ¼ 10 minor shocks. The arrival rate and the magnitude of shocks depend on
the way that the device is delivered, such as by personal carrying, by vehicle or by
flight. The parameters of the shock arrival rate ks and the distribution of the shock
magnitude FMðxÞ is listed in Table 1. Accordingly, the probability values, that an
arbitrary shock belongs to extreme shock or minor shock, are also listed in Table 1
based on Eqs. (2) and (3).

disk array survive
disk array failed

t

preventive
repair

corrective
repair

preventive
repair

preventive
repair

corrective
repair

τ τ τ

Fig. 6. Age-based repair policy.
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According to the state transition probability matrix for applying FMCIA, we can
employ Eq. (5) to calculate the reliability function RðtÞ, i.e. the probability that the
device survives from the random shocks by time t. The results for different scenarios
are presented in Fig. 7.

As explained before, the optimal inspection window is provided to the crew for
helping making decision whether the disk array is check or not. We assume the pre-
ventive repair cost is cp ¼ 100 and the corrective repair cost is cc ¼ 1000. By
employing Eq. (6), we obtain the optimal inspection window, s�, for different scenarios
which are listed in Table 2.

Table 1. The parameter of shocks for different scenarios.

Scenario ks FMðxÞ pe pm
1 0:015 = s Nð1; 0:22Þ 0.0236 0.7429

2 0:005 = s Nð1:1; 0:22Þ 0.0937 0.9423

3 0:003 = s Nð1:2; 0:22Þ 0.2790 0.9946
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λs = 15x10-3, FM(x) ~ N(1,0.22)

λs = 5x10-3, FM(x) ~ N(1.1,0.22)

λs = 3x10-3, FM(x) ~ N(1.2,0.22)

Fig. 7. Reliability plots for scenario 1–3.

Table 2. The optimal inspection window for scenario 1–3.

Scenario cp cc s�ðsecÞ Zðs�Þ
1 100 1000 7561 0.5270
2 100 1000 1213 0.5488
3 100 1000 2552 0.8559
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As is presented in Fig. 8, the long run expected repair cost rate various according
to t. If the duration of the delivery phase, transported with scenario 1, is shorter than
7561 (s), the crew can start to acquire data directly. Otherwise, we suggest them to
inspect the disks before starting data acquisition. The optimal disk inspection window
for scenario 2 and 3 is 1213 (s) and 2552 (s), respectively; and the explanations for the
optimal disk inspection window are similar to that of scenario 1, so we omit them here.

5 Conclusions

This paper conducts a reliability evaluation about a portable Ethernet data acquisition
device subject to random shocks which may cause damage to the RAID-0 disk array.
By considering two competing failure models (extreme shock vs. consecutive-k minor
shock), we define a two-tuple Markov chain and employ FMCIA to derive the relia-
bility equation. Involving the costs of preventive repair and corrective repair, we apply
the age-based replacement policy to obtain the optimal disk inspection window s�,
which is an index that helps the crew to decide whether to check the disks after the
device is delivered to the work place. Finally, the proposed methods are illustrated and
demonstrated by numerical examples.

The limitation of this paper is that we assume the shock occurs according to a
homogeneous Poisson process, which is idealism in practice. In some situation, the
homogeneous Poisson process assumption makes sense, such as the device is delivered
by vehicle. While, if the device is transferred by flight, that assumption may be

0 2000 4000 6000 8000 10000
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0.6
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0.8

0.9
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t (s)
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τ* = 7561τ* = 1213

τ* = 2552

λs = 15x10-3, FM(x) ~ N(1,0.22)

λs = 5x10-3, FM(x) ~ N(1.1,0.22)

λs = 3x10-3, FM(x) ~ N(1.2,0.22)

Fig. 8. Long run expected cost rate plots for scenario 1–3.
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violated, because the device will experience extra fatal shocks when take-off and
landing. In this case, one possible solution is that we can divide the transfer into three
phases: take-off, cruise and landing; and regard each phase as a different Poisson
process. The device is considered as reliable only if it can survive from all three phase.
Then, we can apply the proposed methods, in this paper, to evaluate the reliability of
the portable device.
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Abstract. The wireless fading channel can be modeled as an M/MMSP/1
queue in which packets service rate varies with time. The existing analysis only
provides a closed-form result for 2-state case. In this paper, we focus on a 3-state
Markov channel and one of which has service rate 0. We use hybrid embedded
Markov chain to describe queueing process of the packets and transform this
queueing problem into a linear system. We provide a closed-form formula for
mean waiting time of 3-state M/MMSP/1 queue and show that the state tran-
sition rate significantly influences the mean waiting time. Our method is inno-
vative and can be easily generalize to any finite-state Markov channel.

Keywords: Markov channel � Hybrid embedded Markov chain
Start service probability � Mean waiting time

1 Introduction

Nowadays, with the rapid development of wireless technology, the range of commu-
nication area has been extended beyond the confines of wired technology. The wireless
communication offers great flexibility and convenience to mobile users. However, due
to multipath effect of communication environment, the channel fading will happen, and
thus quality of wireless channel is not stable but varying with time [1]. This charac-
teristic affects the channel transmission delay, which is vital in designing
delay-sensitive applications such as video conferencing, voice over Internet protocol
(VoIP) and utility computing. Thus, a detailed analysis is needed to characterize the
channel transmission delay under the influence of fading.

In existing literatures, a wireless communication fading channel is commonly
modeled as a Markov channel. The study of Markov channel emerges from the early
work of Gilbert [2] and Elliott [3], in which they study a two-state Markov channel
known as the Gilbert-Elliott channel. The quality of the channel is either totally noisy
or noiseless. However, the two-state model is not adequate to describe the features of
wireless fading channel when the quality of fading channel varies dramatically.

As the fading channel is described as a Markov chain, the service of the fading
channel is called Markov modulated service process (MMSP). There have already been
some studies on the analysis of queuing models with Markov modulated service
processes. In earlier times, via generating function, Eisen and Tainiter [4], Yechiali and
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Naor [5] considered a queue where the arrival process as well as the service process is
affected by a two-state Markov chain. Later the generalized n-state case was analyzed
by Yechiali [6]. However, the method of generating functions has failed to give an
explicit solution in general case. To cope with this issue, Mahabhashyam and Gautam
introduced the concept of start service probability in [7]. Huang and Lee adopted this
concept in [8] and derived the generalized P-K formula for two-state Markov channels.
However, their method is difficult to generalize to the case with more than 2 states.

In this paper, we’ll focus on the three-state Markov model, which consists of a good
state, a bad state and a failure state, that may happen when the system crashes. With
clear physical interpretations, the hybrid embedded Markov chain is used to analyze the
system. The analytical expressions of start service probability and mean queue length
are given, which are helpful in figuring out which parameter will affect the transmission
delay of a three-state Markov channel. At last, we’ll generalize our method to any
finite-state Markov channel and provide a systematical way to acquire the mean service
time and mean waiting time. The main contribution of this paper is the method we
adopted to transform the M/MMSP/1 queueing problem into a set of linear dynamical
system.

The rest of the paper is organized as follows: The three-state Markov channel
model is introduced in Sect. 2. In Sect. 3, we define the embedded Markov chain and
the embedded points and discuss the relationship between the embedded points. We
also provide the closed-form formula for start service probability in Sect. 3. In Sect. 4,
we set up equations of conditional expected delay and derive the P-K formula for our
M/MMSP/1 queueing model. In Sect. 5, we generalize our method to any finite-state
Markov channel and finally a conclusion is provided in Sect. 6.

2 M/MMSP/1 Model of Three-State Markov Channel

2.1 Three-State Markov Channel Model

The communication environment of Markov channel is changing with time due to
multi-path effect. In accordance with the received SNR, the Markov channel can be
divided into three states: a crash state 0, a bad state 1 and a good state 2. In this paper, a
three-state Markov chain is used to govern the transition of channel state, which is
completely independent of the actions of packets. The transition of the three-state
Markov chain is represented in Fig. 1.

0 1

f0

f1,0

2

f1,2

f2

Fig. 1. Transition of three-state Markov chain.
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By definition, the infinitesimal generator Q of the three-state Markov chain is given
by:

Q ¼
�f0 f0 0
f1;0 �f1 f1;2
0 f2 �f2

0
@

1
A: ð1Þ

The parameter f1 ¼ f1;0 þ f1;2 corresponds to the transition rate out of the state 1.
Let pj denote the steady-state probability that the channel is in state j, we have

pQ ¼ 0: ð2Þ

where p ¼ ðp0; p1; p2Þ is defined as steady-state probability vector. Together with the
following relationship that the sum of all steady-state probabilities equals to 1:

X2

j¼0
pj ¼ 1; ð3Þ

the steady-state probability pj can be obtained and given as follows:

p0 ¼ f1;0f2
f0f2 þ f2f1;0 þ f0f1;2

; ð4Þ

p1 ¼ f0f2
f0f2 þ f2f1;0 þ f0f1;2

; ð5Þ

p1 ¼ f0f2
f0f2 þ f2f1;0 þ f0f1;2

: ð6Þ

Suppose the service rate of the channel is lj in state jðj ¼ 0; 1; 2Þ. As state 0 means
that the channel crashes, the service rate l0 is zero. And naturally, the service rate l1 in
bad state is smaller than the service rate l2 in good state.

2.2 M/MMSP/1 Queuing Model

In the last subsection, we focus on the property of Markov channels which is inde-
pendent of packets. Taking the packet arrival process into consideration, the wireless
fading channel can be modeled as an M/MMSP/1 queueing system.

Implied by the notations of queuing theories, the M/MMSP/1 queue consists of a
Poisson arrival process at rate k, a service process that is Markov modulated, a single
server queue with infinite buffer. We assume that the service of packets follows the first
in first out (FIFO) policy. The evolution process of system is shown in Fig. 2.
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For the M/MMSP/1 model, the state of the system is determined by channel state and
the number of packets in the buffer. At time t define X(t) as the total number of packets in
the buffer and Y(t) as the channel state. Thus, the stochastic process X tð Þ; Y tð Þð Þ; t� 0f g
is a two-dimensional continuous time Markov chain with state space
f n; jð Þ; n ¼ 0; 1; 2; . . .; j ¼ 0; 1; 2g. The state transition diagram is depicted as follows:

When the system is stable, the joint steady-state probability that n packets are in the
buffer and the channel is in state j is

pn;j ¼ limt!1 P X tð Þ ¼ n; Y tð Þ ¼ j; n ¼ 0; 1; 2; . . .; j ¼ 0; 1; 2f g: ð7Þ

We obtain the following relationship directly from the definition of pj and pn;j:

pj ¼ limt!1 P Y tð Þ ¼ jf g ¼
X1

n¼0
pn;j: ð8Þ

The marginal steady-state probability that there are n packets in the buffer is given
by:

pn ¼ limt!1 P X tð Þ ¼ nf g ¼
X2

j¼0
pn;j: ð9Þ

Fig. 2. Evolution process of system.

Fig. 3. State transition diagram for two-dimensional Markov chain.
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From the above steady-state probabilities, conditioning on the channel state, the
partial generating functions are defined below:

Gj zð Þ ¼
X1

n¼0
pn;jz

n; zj j � 1; j ¼ 0; 1; 2; ð10Þ

and the overall generating function is given by:

G zð Þ ¼
X1

n¼0
pnzn ¼

X2

j¼0
Gj zð Þ: ð11Þ

From the state transition diagram depicted in Fig. 3, we can obtain the balance
equations for the continuous time Markov chain as follows:

(1) When n ¼ 0,

kþ f0ð Þp0;0 ¼ f1;0p0;1; ð12Þ

kþ f1ð Þp0;1 ¼ l1p1;1 þ f0p0;0 þ f2p0;2; ð13Þ

kþ f2ð Þp0;2 ¼ l2p1;2 þ f1;2p0;1: ð14Þ

(2) When n� 1;

kþ f0ð Þpn;0 ¼ kpn�1;0 þ f1;0pn;1; ð15Þ

kþ f1 þ l1ð Þpn;1 ¼ kpn�1;1 þ l1pnþ 1;1 þ f0pn;0 þ f2pn;2; ð16Þ

kþ f2 þ l2ð Þpn;2 ¼ kpn�1;2 þ l2pnþ 1;2 þ f1;2pn;1: ð17Þ

From Eqs. (12)–(17), the following equations on Gj zð Þ can be acquired:

k 1� zð Þþ f0ð ÞG0 zð Þ � f1;0G1 zð Þ ¼ 0; ð18Þ

kz 1� zð Þþ f1zþ l1 z� 1ð Þð ÞG1 zð Þ � zf0G0 zð Þ � zf2G2 zð Þ ¼ l1p0;1 z� 1ð Þ; ð19Þ

kz 1� zð Þþ f2zþ l2 z� 1ð Þð ÞG2 zð Þ � zf1;2G1 zð Þ ¼ l2p0;2 z� 1ð Þ: ð20Þ

The Rouche’s Theorem can be used to calculate p0;1 and p0;2, and Gj zð Þ can be
derived by solving the set of linear equations.

The typical way to derive the average queue length is to take the first order
derivative of the generating function G zð Þ with respect to z and substitute z ¼ 1. Then
by Little’s Law, the mean delay can be obtained. The deficiency of this method is that it
provides little insight about the physical service process of the packets. Thus, little
information can be obtained from the numerical results. In this paper, we derive the
well-organized results with full physical insight by using the method of hybrid
embedded Markov chain.

From the balance equations of the dashed line in Fig. 3, we have
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k
X2

j¼0
pn�1;j ¼ kpn�1 ¼

X2

j¼1
ljpn;j: ð21Þ

Summing (21) over all n, we have

k ¼
X2

j¼1
lj pj � p0;j
� �

: ð22Þ

Define the capacity of the channel l̂ ¼P2
j¼1 pjlj, which is the maximum rate of

the system to serve the packets in theory. The sufficient condition for the system to be
stable is that the arrival rate k is less than the channel capacity, otherwise the system
will be unstable and the queue length will approach infinite.

3 Hybrid Embedded Markov Chain

In this section, the hybrid embedded Markov chain is introduced, which offers us an
alternative way to analyze the M/MMSP/1 queue. The system behavior is modeled by
selecting a set of embedded points, and we set up equations to describe the transitions
between these embedded points.

3.1 Selection of Embedded Points

In queuing theory, the epochs when packets end (or start) their services are usually
selected as the embedded points. However, due to channel transitions, the services
between packets in M/MMSP/1 queue are dependent, thus memory exists between end
service epochs. Hence, a new set of embedded points will be added to cope with the
memory of channel states.

As the dependency of services is caused by channel state transitions during the
service of packets, the epochs when channel state transits are needed in our study.
Since the time interval between the epochs when service starts or state transits is
exponentially distributed, a hybrid embedded Markov chain can be constructed to
model the M/MMSP/1 queue. The embedded points can be categorized into two types:
service-start points and state-transition points. In respect to channel state j j ¼ 0; 1; 2ð Þ,
we are interested in the following embedded points:

(1) Uj: Epoch when channel state transits to state j,
(2) Sj: Epoch when service starts with channel state j.

When the system is busy, as Fig. 4(a) shows, the channel is in state j immediately
after an embedded point. The next event may be a state transition to other states with
time interval T1, which is exponentially with parameter fj or a service start with time
interval T2, which is exponentially with parameter lj. Thus, the time until the occur-
rence of the next event is T ¼ minfT1; T2g, which is exponentially with parameter
lj þ fj.
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According to the properties of exponentially distributed random variable, the
probability that the time interval T1 is less than the interval T2 is fj=ðlj þ fjÞ. Thus, we
obtain the following properties:

(1) The probability that the next embedded point is a state transition point, after which
the channel state is iði 6¼ jÞ, is fj;i= lj þ fj

� �
;

(2) The probability that the next embedded point is a state transition point isP
i6¼j

fj;i= lj þ fj
� � ¼ fj= lj þ fj

� �
;

(3) The probability that the next embedded point is a service start point is lj= lj þ fj
� �

;
(4) The holding time, which is defined as the time elapsed from the current embedded

point to the next embedded point, follows an exponential distribution with
parameter lj þ fj.

Similarly, as Fig. 4(b) shows, when the system is idle, the epoch when a new
packet arrives in channel state j is a service start point Sj. Using similar arguments, we
obtain the following properties:

(1) The probability that the next embedded point is a state transition point, after which
the channel state is iði 6¼ jÞ, is fj;i=ðkþ fjÞ;

(2) The probability that the next embedded point is a state transition point isP
i6¼j fj;i=ðkþ fjÞ ¼ fj=ðkþ fjÞ;

(3) The probability that the next embedded point is a service start point is k=ðkþ fjÞ;
(4) The holding time, which is defined as the time elapsed from the current embedded

point to the next embedded point, follows an exponential distribution with
parameter kþ fj.

3.2 Start Service Probability

The start service probability, denoted as p̂j, is defined as the probability that a packet
starts its service in channel state j. The difference between p̂j and pj is that the former is
averaged over all packets start service epochs while the latter is averaged over all time.
In some limiting cases, the value of p̂j will approach to pj.

Fig. 4. Relationship between embedded points.
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Suppose upon arrival, a packet sees n packets in the buffer, including the one in
service. Label these packets consecutively as Fig. 5 shows. The head-of-line
(HOL) packet is labeled as 0 and the newly-arrival packet is labeled as n. The new
packet has to queue in the buffer and can’t be served until the previous n packets get
served. If the buffer is empty, the new packet is labeled as 0 and gets service imme-
diately without waiting.

From the epoch when the new packet arrives to the epoch when it becomes the
HOL packet, there exist n service starts and quite a few channel state transitions, which
are those embedded points defined above. For the process, we need to define two
classes of conditional probabilities:

(1) p̂n;j mð Þ ¼ P{the mth packet starts service in state j | an arrival sees n packets in the
system},

(2) ûn;j mð Þ ¼ P{during the service of the mth packet, the channel transits into state j |
an arrival sees n packets in the system}.

The conditional start service probability p̂n;j mð Þ ¼ means the mth packet starts
service in channel state j, which stands for an embedded point Sj. By definition, the
channel state will remain unchanged before and after the service start point, thus the
last embedded point will lie in the service of ðm� 1Þth packet with channel state j. The
probability that the last embedded point transits to Sj is lj=ðlj þ fjÞ. Due to the reason
that the service rate of state 0 is zero, a packet can’t finish its service in state 0, which
implies that p̂n;0 mð Þ equals to zero for packets numbered from 1 to n. Therefore, for
1�m� n,

p̂n;0 mð Þ ¼ 0; ð23Þ

p̂n;1ðmÞ ¼ l1
l1 þ f1

ðp̂n;1 m� 1ð Þþ ûn;1ðm� 1ÞÞ; ð24Þ

p̂n;2ðmÞ ¼ l2
l2 þ f2

ðp̂n;2 m� 1ð Þþ ûn;2ðm� 1ÞÞ: ð25Þ

On the other hand, the conditional probability ûn;j mð Þ means the channel state
transits to j during the service of mth packet, which stands for an embedded point Uj.
By definition, the channel state will change before and after the state transition point,
thus the last embedded point will lie in the service of mth packet with channel state

1 20 ... m-1 nn-1m ...
t

in service arrival

Fig. 5. New packet arrives seeing n packets in the buffer.
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iði 6¼ jÞ. The probability that the last embedded point transits to Sj is fi;j=ðli þ fiÞ.
Therefore, for 0�m� n,

ûn;0 mð Þ ¼ f1;0
l1 þ f1

p̂n;1 mð Þþ ûn;1 mð Þ� �
; ð26Þ

ûn;1 mð Þ ¼ f0
l0 þ f0

p̂n;0 mð Þþ ûn;0 mð Þ� �þ f2
l2 þ f2

p̂n;2 mð Þþ ûn;2 mð Þ� �
; ð27Þ

ûn;2 mð Þ ¼ f1;2
l1 þ f1

p̂n;1 mð Þþ ûn;1 mð Þ� �
: ð28Þ

By solving Eqs. (23)–(28) the following relationship between p̂n;j mð Þ and
p̂n;j m� 1ð Þ can be established as follows:

p̂n;0 mð Þ
p̂n;1 mð Þ
p̂n;2 mð Þ

0
@

1
A ¼ Q̂

p̂n;0 m� 1ð Þ
p̂n;1 m� 1ð Þ
p̂n;2 m� 1ð Þ

0
@

1
A ¼ Q̂m

p̂n;0 0ð Þ
p̂n;1 0ð Þ
p̂n;2 0ð Þ

0
@

1
A; ð29Þ

where

Q̂ ¼
0 0 0

b 1þ f2
l2

� �
b 1þ f2

l2

� �
b f2

l2

b f1;2
l1

b f1;2
l1

b 1þ f1;2
l1

� �
0
B@

1
CA: ð30Þ

and 0, 1 and b ¼ l1l2=ðl1l2 þ l1f2 þ l2f1;2Þ are three eigenvalues of matrix Q̂.
Solving Eq. (29), for all 1�m� n,

p̂n;0 mð Þ ¼ 0; ð31Þ

p̂n;1 mð Þ ¼ g1 þ g2b
mp̂n;0 0ð Þþ g2b

mp̂n;1 0ð Þ � g1b
mp̂n;2 0ð Þ; ð32Þ

p̂n;2 mð Þ ¼ g2 � g2b
mp̂n;0 0ð Þ � g2b

mp̂n;1 0ð Þþ g1b
mp̂n;2 0ð Þ; ð33Þ

where g1 ¼ f2l1=ðf2l1 þ f1;2l2Þ and g2 ¼ f1;2l2=ðf2l1 þ f1;2l2Þ.
As far as m ¼ 0, by definition, probability p̂n;j 0ð Þ is the conditional start service

probability of the HOL packet. Due to the memoryless property of Markov chain, the
start service state of the HOL packet can be regarded as the channel state when the new
packet arrives. Using the property of PASTA [10], upon arrival, the probability that a
packet sees n packets in the buffer is pn and the probability that a packet sees n packets
while the channel state is j is just pn;j. Consequently, for j = 0, 1, 2, the initial con-
ditional probability is given by:

p̂n;j 0ð Þ ¼ pn;j=pn: ð34Þ
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As probability p̂n;j nð Þ is the conditional start service probability of the
newly-arrived packet, conditioning on the number of packets in the buffer upon arrival,
the start service probabilities can be derived from the conditional service probabilities

p̂j ¼
X1

n¼0
pnp̂n;j nð Þ: ð35Þ

Thus, combining Eqs. (31)–(35), the analytical expressions of the start service
probabilities is given in the following theorem.

Theorem 1: For three-state Markov channel, the start service probability of a packet in
an M/MMSP/1 queue is given as follows:

p̂0 ¼ p0;0; ð36Þ

p̂1 ¼ g1 þ g2G0 bð Þþ g2G1 bð Þ � g1G2 bð Þ � p0;0; ð37Þ

p̂2 ¼ g2 � g2G0 bð Þ � g2G1 bð Þþ g1G2ðbÞ: ð38Þ

The service time of each packet is associated with the start service state. The
concept of conditional service time Tj is brought up in [7], which is the time needed to
serve a packet when the service begins with channel state j. From theorem 1 of [7], we
have the following equations:

E T0½ � ¼ 1
f0

þE½T1�; ð39Þ

E T1½ � ¼ l1
l1 þ f1

1
l1 þ f1

þ f1;0
l1 þ f1

1
l1 þ f1

þE T0½ �
� �

þ f1;2
l1 þ f1

1
l1 þ f1

þE T2½ �
� �

;

ð40Þ

E T2½ � ¼ l2
l2 þ f2

1
l2 þ f2

þ f2
l2 þ f2

1
l2 þ f2

þE½T1�
� �

: ð41Þ

From Eqs. (39)–(41), the conditional service time E Tj
� 	

j ¼ 0; 1; 2ð Þ can be easily
solved. Hence, conditioning on the start service state, the average service time of the
three-state Markov model is

E T½ � ¼
X2

j¼0
p̂jE Tj
� 	

: ð42Þ

Two limiting cases are of interest: the offered load is relatively low or the offered
load is rather high. In the case when the offered load is low, suppose that the arrival rate
of packets k approaches to zero, there are nearly no packets in the buffer and a new
packet gets service as soon as it arrives. The channel state of start service is just the
channel state when it arrives. Hence, the start service probability p̂j equals to pj,
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limk!0 E T½ � ¼
X2

j¼0
pjE½Tj�: ð43Þ

When the offered load is rather high, the arrival rate k approaches to the channel
capacity l̂. In this case, a large number of packets are backlogged in the buffer. The
probability that there are no packets in the buffer approaches to zero. Thus, by defi-
nition, the start service probability p̂0 is zero. When a new packet arrives, the number
of packets in the buffer n is very large. Thus, the factor bn 0\b\1ð Þ in expression
p̂n;j nð Þ approach to zero and the value of p̂j is gj,

limk!l̂ E T½ � ¼ g1E T1½ � þ g2E T2½ � ¼ 1=l̂; ð44Þ

and the service rate of the M/MMSP/1 queue reaches its maximum service rate in
theory.

4 P-K Formula of Waiting Time

In literature, based on the concept of the residual service time, the waiting time can be
calculated as the sum of the service time of previous packets and residual service time
of the HOL packet [9, 10]. However, in generalizing to any finite-state Markov
channel, this method becomes very complicated due to its tedious algebraic calcula-
tions. In this paper, similar to the process of obtaining start service probability, we’ll
provide an alternative approach to calculate the mean waiting time using the idea of
embedded Markov chain.

Similar to the process described in Fig. 5, a new packet sees n packets in the buffer
upon arrival. Label these packets from 0 to n. As time goes by, the packets finish
services and depart the buffer consecutively. The new packet moves forward in the
buffer and finally becomes the HOL packet. The position of the new packet changes
from n to n–1 and eventually 0. The waiting time of this packet is the time elapsed from
the epoch when it arrives in the system to the epoch when it becomes the HOL packet.

Distinct to the classical queuing system, in M/MMSP/1 queue, the waiting time of
the newly arrived packet correlates not only to the number of existing packets in the
buffer, but also to the channel state when it arrives. Therefore, we need to define two
classes of conditional waiting time that are associated with the position of the packet in
the buffer.

(1) Wn;j kð Þ: A packet sees n packets in the buffer upon arrival, the conditional
expected delay from the epoch when the newly arrived packet becomes the
kth 0� k� nð Þ packet in the buffer while the channel is in state j to the epoch when
it becomes an HOL packet.

(2) Vn;j kð Þ: A packet sees n packets in the buffer upon arrival, the conditional
expected delay from the epoch when the channel transits to state j while the newly
arrived packet is the kth 0� k� nð Þ packet in the buffer to the epoch when it
becomes an HOL packet.
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By definition, Wn;j nð Þ is the waiting time of the newly arrived packet with channel
state j, and the initial condition Wn;j 0ð Þ equals zero (Fig. 6).

The conditional expected delayWn;j kð Þ means the newly arrived packet turns the kth

packet in the buffer while in channel state j, which stands for an embedded point Sj.
The probability that next embedded point is Sj is lj=ðlj þ fjÞ, which means the HOL
packet has finished its service and the position of the new packet moves one step to
k � 1 with conditional delay Wn;j k � 1ð Þ.

On the other hand, the probability that next embedded point is Ui is fj;i=ðlj þ fjÞ,
which means the channel state transits to i with the position of the new packet
unchanged. The conditional delay for the next embedded point is Vn;i kþ 1ð Þ. Together
with the property that the time interval between two successive embedded points is
exponentially distributed with parameter lj þ fj, for 1� k� n,

Wn;0 kð Þ ¼ Vn;1 kð Þþ 1
f0
; ð45Þ

Wn;1 kð Þ ¼ f1;0
l1 þ f1

Vn;0 kð Þþ 1
l1 þ f1

� �
þ f1;2

l1 þ f1
Vn;2 kð Þþ 1

l1 þ f1

� �

þ l1
l1 þ f1

Wn;1 k � 1ð Þþ 1
l1 þ f1

� �
;

ð46Þ

Wn;2 kð Þ ¼ f2
l2 þ f2

Vn;1 kþ 1ð Þþ 1
l1 þ f1

� �
þ l2

l2 þ f2
Wn;2 k � 1ð Þþ 1

l2 þ f2

� �
: ð47Þ

We can use the same logic to derive Vn;j kð Þ, however, it is easier to use memoryless
property of the Markov chain to find that:

Vn;j kð Þ ¼ Wn;j kð Þ; ð48Þ

and this result is consistent with directly derived result.

1 20 nn-13 ...
t

New ArrivalIn Service

t

t

In service

1 k...2 30

(a) A new packet arrives

(b) The newly-arrival packet becomes the kth in the buffer

Fig. 6. Conditional waiting time Wn;jðkÞ.
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From Eqs. (45)–(48) the following relationship can be established:

Wn;0 kð Þ
Wn;1 kð Þ
Wn;2 kð Þ

0
@

1
A ¼ Q̂T

Wn;0 k � 1ð Þ
Wn;1 k � 1ð Þ
Wn;2 k � 1ð Þ

0
@

1
Aþ

E½T0�
E½T1�
E½T2�

0
@

1
A; ð49Þ

and we can obtain Wn;j kð Þ as follows:

Wn;0 kð Þ ¼ 1
f0

þ 1
l̂
kþ 1� bk

1� b
E T1½ � � 1

l̂

� �
; ð50Þ

Wn;1 kð Þ ¼ 1
l̂
kþ 1� bk

1� b
E T1½ � � 1

l̂

� �
; ð51Þ

Wn;2 kð Þ ¼ 1
l̂
kþ 1� bk

1� b
E T2½ � � 1

l̂

� �
: ð52Þ

Consequently, by conditioning on the number of packets in the buffer and channel
state upon arrival, the mean waiting time can be derived:

W ¼
X2

j¼0

X1
n¼0

Wn;j nð Þpn;j: ð53Þ

Thus, combining with (34), (50)–(53), the analytical expression of P-K formula for
the mean waiting time of M/MMSP/1 queue is offered in the following theorem.

Theorem 2: For three-state Markov channel, the P-K formula of mean waiting time
for a packet in an M/MMSP/1 queue is given as follows:

W ¼
1
l̂ kE T½ � þ 1

f0
p0 � p0;0
� �� 1

f0
1

1�b p0 � G0 bð Þð Þþ 1
1�b

P2
j¼0 E Tj

� 	� 1
l̂

� �
pj � Gj bð Þ� �

1� k
l̂

: ð54Þ

Replacing the Gj bð Þ in Theorem 2 by the start service probabilities, Theorem 2 can
be rewritten in another form as follows:

W ¼
1
l̂ kE T½ � þ 1

1�b

P2
j¼0 E Tj

� 	
pj � p̂j
� �� b

1�b
1
f0

p0 � p̂0ð Þ
1� k

l̂

; ð55Þ

which shows the connection between P-K formula and start service probabilities.
From Eq. (55), we see that the parameter b, which indicates the speed of state

transition, has a significant influence on mean waiting time.
When b approaches to 0, p̂j approaches to pj, thus Eq. (55) can be simplified as:

limb!0 W ¼
1
l̂ kE T½ �
1� k

l̂

: ð56Þ
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Equation (56) is consistent with the expression of the waiting time of an M/M/1
queue with service rate l̂. As b approaches to 0 means transition rates approach to
infinity, the channel state transits between all states infinite times and the dependency
between the states is eliminated. The service rate may be regarded as uniform and be
the average of service rates in each state in time.

On the other hand, when b approaches to 1, Eq. (55) becomes much larger than
Eq. (56). In this scenario, since state transition rates are small, the wireless channel may
keep in one state for a long time. If the channel stays in failure state or bad state with
service rate smaller than packet arrival rate, the queue length may grow to infinity. And
this portion of time greatly influence the mean waiting time.

The mean waiting times with different transition rates are shown in Fig. 7, the curve
of M/M/1 queue in black line is the lower bound of the waiting time. We can see that
the mean waiting time will go up with the decreasing of transition rate.

5 A Generalization to Finite-State Markov Channel

The deficiency of the work in [8] is that they can’t generalize the method of calculating
mean waiting time to any finite-state Markov channel, even to the three-state Markov
channel due to tedious algebraic calculations. To show the generality of the method of
hybrid Markov chain, in this section, we’ll generalize our method to any finite-state
Markov channel.

Suppose the channel is governed by an underlying Markov chain with N states
from state 0 to state N � 1. The channel state can transit between each other freely.
The infinitesimal generator Q for this homogenous continuous time Markov chain is
given by:
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Fig. 7. The mean waiting time when changing all transition rate.
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Q ¼

�f0 f0;1 f0;2 . . . f0;N�1

f1;0 �f1 f1;2 . . . f1;N�1

f2;0 f2;1 �f2 . . . f2;N�1

..

. ..
. ..

. . .
. ..

.

fN�1;0 fN�1;1 fN�1;2 . . . �fN�1

0
BBBBB@

1
CCCCCA: ð57Þ

The service rate in state j is defined as lj 0� j�N � 1ð Þ and thus the diagonal

matrix D ¼ diag l0; l1; . . .; lN�1ð Þ. The capacity of the channel is l̂ ¼PN�1
j¼0 pjlj.

Use the same definition of p̂n;j mð Þ and ûn;j mð Þ and follow the procedure of
establishing the state equations of conditional start service probabilities in three-state
Markov channel. Define p̂n mð Þ ¼ ðp̂n;0ðmÞ; p̂n;1ðmÞ; . . .; p̂n;N�1ðmÞÞT . We immediately
obtain the following theorem.

Theorem 3: For finite-state Markov model, the state equations of conditional start
service probabilities are given as follows:

p̂n;jðmÞ ¼
lj

lj þ fj
p̂n;j m� 1ð Þþ ûn;jðm� 1Þ� �

; ð58Þ

ûn;j mð Þ ¼
X

i6¼j

fi;j
li þ fi

p̂n;i mð Þþ ûn;i mð Þ� �
; ð59Þ

for j ¼ 0; 1; . . .;N � 1; and 1�m� n: From Eqs. (53) and (54), we can derive the
following differential equation for p̂n mð Þ:

p̂n mð Þ ¼ Q̂p̂n m� 1ð Þ; ð60Þ

where Q̂ ¼ D� Qð Þ�1D
� �T

.

By solving Eq. (60), the conditional start service probability p̂n;j nð Þ is obtained and
the start service probability can be derived from Eq. (35).

Similarly, the derivation of P-K formula of finite-state Markov channel can be
obtained as follows. Define Wn kð Þ ¼ ðWn;0ðkÞ;Wn;1ðkÞ; . . .;Wn;N�1ðkÞÞT , and Theo-
rem 4 gives equations of conditional expected delay.

Theorem 4: For j ¼ 0; 1; . . .;N � 1 and 1� k� n, the state equations of conditional
waiting time for finite-state Markov model are:

Wn;j kð Þ ¼ lj
lj þ fj

1
lj þ fj

þWn;j k � 1ð Þ
 !

þ
X

i6¼j

fj;i
lj þ fj

1
lj þ fj

þVn;i kð Þ
 !

; ð61Þ

Vn;j kð Þ ¼ lj
lj þ fj

1
lj þ fj

þWn;j k � 1ð Þ
 !

þ
X

i6¼j

fj;i
lj þ fj

1
lj þ fj

þVn;i kð Þ
 !

: ð62Þ
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From Eqs. (61) and (62), we can derive the following differential equation for
Wn mð Þ:

Wn kð Þ ¼ Q̂TWn k � 1ð Þþ D� Qð Þ�11: ð63Þ

Note that Wn 1ð Þ ¼ D� Qð Þ�11. By the definition of Wn;j kð Þ, Wn;j 1ð Þ just equal the
conditional service time with state j. Thus,

D� Qð Þ�11 ¼ E T0½ �;E T1½ �; . . .;E TN�1½ �ð ÞT : ð64Þ

By solving Eq. (63), the conditional expected delay Wn;j nð Þ can be acquired. The
P-K formula can be obtained from Eq. (53) in a similar manner, by summing over the
state j from 0 to N � 1.

6 Conclusions

In this paper, we model the wireless channel as a three-state Markov channel and
discuss the delay of M/MMSP/1 queue. Different from other related works, we use
hybrid embedded Markov chain to describe the queueing process. From the result, we
find that the mean waiting time is significantly influenced by the parameter b which
represents the state transition rate of the system. When b ! 0, the state transits much
faster than packet service, and the queue performs like an M/M/1 queueing system. On
the other hand, when b ! 1, the state transits slower than packet service, and mean
waiting time will get larger. From the derivation of three-state case, we generalize our
method to any finite-state M/MMSP/1 queueing system.
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Abstract. As a favorite urban public transport mode, the bike sharing
system is a large-scale and complicated system, and there exists a key
requirement that a user and a bike should be matched sufficiently in
time. Such matched behavior makes analysis of the bike sharing systems
more difficult and challenging. To design a better bike sharing system,
it is a key to analyze and compute the probabilities of the problematic
(i.e., full or empty) stations. In fact, such a computation is established
for some fairly complex stochastic systems. To do this, this paper consid-
ers a more general large-scale bike sharing system from two important
views: (a) Bikes move in an irreducible path graph, which is related
to geographical structure of the bike sharing system; and (b) Markov-
ian arrival processes (MAPs) are applied to describe the non-Poisson
and burst behavior of bike-user (abbreviated as user) arrivals, while the
burstiness demonstrates that the user arrivals are time-inhomogeneous
and space-heterogeneous in practice. For such a complicated bike sharing
system, this paper establishes a multiclass closed queueing network by
means of some virtual ideas, for example, bikes are abstracted as virtual
customers; stations and roads are regarded as virtual nodes. Thus user
arrivals are related to service times at station nodes; and users riding
bikes on roads are viewed as service times at road nodes. Further, to
deal with this multiclass closed queueing network, we provide a detailed
observation practically on physical behavior of the bike sharing system
in order to establish the routing matrix, which gives a nonlinear solution
to compute the relative arrival rates in terms of the product-form solu-
tion to the steady-state probabilities of joint queue lengths at the virtual
nodes. Based on this, we can compute the steady-state probability of
problematic stations, and also deal with other interesting performance
measures of the bike sharing system. We hope that the methodology and
results of this paper can be applicable in the study of more general bike
sharing systems through multiclass closed queueing networks.

Keywords: Bike sharing system · Closed queueing network
Product-form solution · Irreducible path graph · Problematic station
Markovian arrival process
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1 Introduction

In this paper, we propose a more general bike sharing system with Markovian
arrival processes and under an irreducible path graph. Note that the bike shar-
ing system always has some practically important factors, for example, time-
inhomogeneity, geographical heterogeneity, and arrival burstiness. To analyze
such a bike sharing system, we establish a multiclass closed queueing network
by means of virtual customers, virtual nodes and virtual service times. Further,
when studying this multiclass closed queueing network, we set up a routing
matrix which gives a nonlinear solution to compute the relative arrival rates,
and provide the product-form solution to the steady-state probabilities of joint
queue lengths at the virtual nodes. Based on this, we can compute the steady-
state probability of problematic stations, and also deal with other interesting
performance measures of the bike sharing system.

During the last decades bike sharing systems have emerged as a public trans-
port mode devoted to short trip in more than 600 major cities around the world.
Bike sharing systems are regarded as a promising way to jointly reduce, such as,
traffic and parking congestion, traffic noise, air pollution and greenhouse effect.
Several excellent overviews and useful remarks were given by DeMaio [6], Meddin
and DeMaio [23], Shu et al. [35], Labadi et al. [16] and Fishman et al. [7].

Few papers applied queueing theory and Markov processes to the study of
bike sharing systems. On this research line, it is a key to compute the probability
of problematic stations. However, so far there still exist some basic difficulties
and challenges for computing the probability of problematic stations because
computation of the steady-state probability, in the bike sharing system, needs
to apply the theory of complicated or high-dimensional Markov processes. For
this, readers may refer to recent literatures which are classified and listed as
follows. (a) Simple queues: Leurent [17] used the M/M/1/C queue to study
a vehicle-sharing system, and also analyzed performance measures of this sys-
tem. Schuijbroek et al. [32] evaluated the service level by means of the transient
distribution of the M/M/1/C queue, and the service level was used to estab-
lish some optimal models to discuss vehicle routing. Raviv et al. [29] and Raviv
and Kolka [28] employed the transient distribution of the time-inhomogeneous
M(t)/M(t)/1/C queue to compute the expected number of bike shortages at
each station. (b) Closed queueing networks: Adelman [1] applied a closed
queueing network to propose an internal pricing mechanism for managing a fleet
of service units, and also used a nonlinear flow model to discuss the price-based
policy for establishing the vehicle redistribution. George and Xia [11] used the
closed queueing networks to study the vehicle rental systems, and determined
the optimal number of parking spaces for each rental location. Li et al. [20]
proposed a unified framework for analyzing the closed queueing networks in
the study of bike sharing systems. (c) Mean-field method. Fricker et al. [8]
considered a space-inhomogeneous bike-sharing system with multiple clusters,
and expressed the minimal proportion of problematic stations. Fricker and Gast
[9] provided a detailed analysis for a space-homogeneous bike-sharing system
in terms of the M/M/1/K queue as well as some simple mean-field models,
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and crucially, they derived the closed-form solution to find the minimal propor-
tion of problematic stations. Fricker and Tibi [10] studied the central limit and
local limit theorems for the independent (non-identically distributed) random
variables, which provide support on analysis of a generalized Jackson network
with product-form solution. Further, they used the limit theorems to give an
outline of stationary asymptotic analysis for the locally space-homogeneous bike-
sharing systems. Li et al. [21] provided a complete picture on how to jointly use
the mean-field theory, the time-inhomogeneous queues and the nonlinear birth-
death processes to analyze performance measures of the bike-sharing systems. Li
and Fan [19] discussed the bike sharing system under an Markovian environment
by means of the mean-field computation, the time-inhomogeneous queues and
the nonlinear Markov processes. (d) Markov decision processes. To discuss
the bike-sharing systems, Waserhole and Jost [36,37,39] and Waserhole et al.
[38] used the simplified closed queuing networks to establish the Markov decision
models, and computed the optimal policy by means of the fluid approximation
which overcame the state space explosion of multi-dimensional Markov decision
processes.

There has been much key research on closed queueing networks. Readers
may refer to, such as, three excellent books by Kelly [13,14] and Serfozo [34];
multiclass customers by Baskett et al. [2], multiple closed chains by Reiser and
Kobayashi [30], computational algorithms by Bruell and Balbo [4], mean-value
computation by Reiser [31], sojourn time by Kelly and Pollett [15], survey for
blocks by Onvural [26], and batch service by Henderson et al. [12].

Markovian arrival process (MAP) is a useful mathematical model for describ-
ing bursty traffic in, for example, communication networks, manufacturing
systems, transportation networks and so forth. Readers may refer to recent pub-
lications for more details, among which are Ramaswami [27], Chap. 5 in Neuts
[24], Lucantoni [22], Neuts [25], Chakravarthy [5] and Li [18].

Contributions of this paper: The main contributions of this paper are
twofold: The first contribution is to propose a more general bike sharing system
with Markovian arrival processes and under an irreducible path graph. Note that
Markovian arrival processes, as well as the irreducible path graph indicate that
burst arrival behavior and geographical structure of the bike sharing system are
more general and practical. Specifically, the burstiness is to well express that the
user arrivals are time-inhomogeneous and space-heterogeneous in practice. For
such a bike sharing system, this paper establishes a multiclass closed queueing
network by means of virtual customers, virtual nodes and virtual service times.
The second contribution is to deal with such a multiclass closed queueing network
with virtual customers, virtual nodes and virtual service times, and to establish
a routing matrix which gives a nonlinear solution to compute the relative arrival
rates in terms of the product-form solution to the steady-state probabilities of
joint queue lengths at the virtual nodes. By using the product-form solution,
this paper computes the steady-state probability of problematic stations, and
also deals with other interesting performance measures of the bike sharing sys-
tem. Therefore, the methodology and results of this paper can be applicable in
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the study of more general bike sharing systems by means of multiclass closed
queueing networks.

Organization of this paper: The remainder of this paper is organized as fol-
lows. In Sect. 2, we describe a large-scale bike sharing system with Markovian
arrival processes and under an irreducible path graph. In Sect. 3, we abstract the
bike sharing system as a multiclass closed queueing network with virtual cus-
tomers, virtual nodes and virtual service times. Further, we establish the routing
matrix, and compute the relative arrival rate in each node, where three exam-
ples are given to express and compute the routing matrix and the relative arrival
rate. In Sect. 4, we give a product-form solution to the steady-state probabilities
of joint queue lengths at the virtual nodes, and provide a nonlinear solution to
determine the N undetermined constants which are related to the probability
of problematic stations. Moreover, we compute the steady-state probability of
problematic stations, and also analyze other performance measures of the bike
sharing system. Finally, some concluding remarks are given in Sect. 5.

2 Model Description

In this section, we describe a more general large-scale bike sharing system, where
arrivals of bike users are non-Poisson and are characterized as Markovian arrival
processes (MAPs), and users riding bikes travel in an irreducible path graph
which is constituted by N different stations and some different directed roads.

In a large-scale bike sharing system, a user arrives at a station, rents a bike,
and uses it for a while; then he returns the bike to another station, and imme-
diately leaves this system. Based on this, we describe a more general large-scale
space-heterogeneous bike sharing system, and introduce operational mechanism,
system parameters and basic notation as follows:

(1) Stations: We assume that there are N different stations in the bike sharing
system. The N stations may be different due to their geographical location and
surrounding environment. We assume that every station has C bikes and K
parking positions at the initial time t = 0, where 1 ≤ C < K < ∞, and
NC ≥ K. Note that such a condition NC ≥ K is to make at least a full station.

(2) Roads: Let Road i → j be a road relating Station i to Station j. Note that
Road i → j and Road j → i may be different. To express all the roads beginning
from Station i for 1 ≤ i ≤ N , we write

R (i) = {Road i → j : j �= i, 1 ≤ j ≤ N} .

Similarly, to express all roads be over at Station j for 1 ≤ j ≤ N , we write

R (j) = {Road i → j : i �= j, 1 ≤ i ≤ N} .

It is easy to see that there are at most N − 1 different directed roads in the set
R (i) or R (j). We denote by |R (i)| the number of elements or roads in the set
R (i). Thus |R (i)| ≤ N − 1 for 1 ≤ i ≤ N and

∑N
i=1 |R (i)| ≤ N (N − 1).
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To express all the stations in the near downlink of Station i, we write

Θi = {Station j : Road i → j ∈ R (i)} .

Similarly, the set of all stations in the near uplink of Station i is written as

Δi =
{
Station j : Road j → i ∈ R (i)

}
.

(3) An irreducible path graph: To express the bike moving paths, it is easy
to observe that the bikes dynamically move either among the stations or among
the roads. To record the bike dynamic positions, it is better to introduce two
classes of virtual nodes: (a) station nodes; and (b) road nodes. The set of all the
virtual nodes of the bike sharing system is given by

Θ = {Station i : 1 ≤ i ≤ N} ∪
{

N∪
i=1

R (i)
}

.

In this bike sharing system, it is easy to calculate that there are N +∪N
i=1 |R (i)|

virtual nodes.
If Station i has a near downstream Road i → j, then we call that Node i

(i.e. Station i) can be accessible to Node i → j (i.e. Road i → j), denoted as
Node i =⇒ Node i → j; otherwise Node i can not be accessible to Node i → j.
If Station j has a near upstream Road i → j, then we call that Node i → j can
be accessible to Node j, denoted as Node i → j =⇒ Node j; otherwise Node
i → j can not be accessible to Node j.

If there exist some virtual nodes n1, n2, . . . , nr in the set Θ such that

Node n1 =⇒ Node n2 =⇒ · · · =⇒ Node nr,

then we call that there is an accessible path formed by the virtual nodes n1, n2,
. . . , nr.

If for any two virtual nodes ma and mb in the set Θ, there always exist some
virtual nodes n1, n2, . . . , nr in the set Θ such that

Node ma =⇒ Node n1 =⇒ Node n2 =⇒ · · · =⇒ Node nr =⇒ Node mb,

then we call that the path graph of the bike sharing system is irreducible.
In this paper, we assume that the bike sharing system exists an irreducible

path graph. In this case, we call that the bike sharing system is path irreducible.
Note that this irreducibility is guaranteed through setting up an appropriate
road construction with R (i) for 1 ≤ i ≤ N . In general, such a road construction
is not unique in order to guarantee the irreducible path graph.

(4) Markovian arrival processes: Arrivals of outside bike users at Station i
are a Markovian arrival process (MAP) of irreducible matrix descriptor (Ci,Di)
of size m, denoted as MAP(Ci,Di), where

Ci =

⎛

⎜
⎜
⎜
⎜
⎝

c
(i)
1,1 c

(i)
1,2 · · · c

(i)
1,m

c
(i)
2,1 c

(i)
2,2 · · · c

(i)
2,m

...
...

. . .
...

c
(i)
m,1 c

(i)
m,2 · · · c

(i)
m,m

⎞

⎟
⎟
⎟
⎟
⎠
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and

Di =

⎛

⎜
⎜
⎜
⎜
⎝

d
(i)
1,1 d

(i)
1,2 · · · d

(i)
1,m

d
(i)
2,1 d

(i)
2,2 · · · d

(i)
2,m

...
...

. . .
...

d
(i)
m,1 d

(i)
m,2 · · · d

(i)
m,m

⎞

⎟
⎟
⎟
⎟
⎠

.

Let c
(i)
k,l ≥ 0 with l �= k, d

(i)
r,s ≥ 0, c

(i)
k,k = −

(
m∑

l �=k

c
(i)
k,l +

m∑

r=1
d
(i)
k,r

)

, and hence

(Ci + Di) e = 0. We assume that Markov chain Ci+Di is irreducible, finite-state
and aperiodic, hence it is positive-recurrent due to the finite state space. Further,
in the Markov chain Ci+Di there exists the unique stationary probability vector
θ̃(i) =

(
θ
(i)
1 , θ

(i)
2 , · · · , θ

(i)
m

)
for 1 ≤ i ≤ N , that is, the vector θ̃(i) is the unique

solution to the system of linear equations θ̃(i) (Ci + Di) = 0 and θ̃(i)e = 1. In this
case, the stationary average arrival rate of the MAP(Ci + Di) is λi = θ̃(i)D(i)e.
Specifically, we write that

−→
λ i =

(
λ
(1)
i , λ

(2)
i , · · · , λ

(m)
i

)
= θ̃(i)Di for 1 ≤ i ≤ N .

(5) The first riding-bike time: An outside bike user arrives at the ith station
to rent a bike. If there is no bike in the ith station (i.e., the ith station is empty),
then the user immediately leaves this bike sharing system. If there is at least
one available bike at the ith station, then the user rents a bike and goes to Road
i → j for j �= i with probability pi,j for

∑
j∈Θi

pi,j = 1, and his riding-bike time
on Road i → j is an exponential random variable with riding-bike rate μi,j > 0.

(6) The bike return times: Notice that for any user, his first bike return
process may be different from those retrial processes with successively returning
the bike to one station for at least twice due to his pasted arrivals at the full
stations. In this situation, his road selection as well as his riding-bike time in
the first process may be different from those in any retrial return process.

The first return – When the user completes his short trip on Road i → j, he
needs to return his bike to the jth station. If there is at least one available
parking position (i.e., a vacant docker), then the user directly returns the bike
to the jth station, and immediately leaves this bike sharing systems.

The second return – If no parking position is available at the jth station, then
the user has to ride the bike to the l1th station with probability αj,l1 for l1 �= j
and

∑
l1∈Θj

αj,l1 = 1; and his future riding-bike time on Road j → l1 is also an
exponential random variable with riding-bike rate ξj,l1 > 0. If there is at least
one available parking position, then the user directly returns his bike to the l1th
station, and immediately leaves this bike sharing system.

The (k + 1)st return for k ≥ 2 – We assume that this bike has not been returned
at any station yet through k consecutive returns. In this case, the user has
to try his (k + 1)st lucky return. Notice that the user goes to the lkth sta-
tion from the lk−1th full station with probability αlk−1,lk for lk �= lk−1 and
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∑
lk∈Θlk−1

αlk−1,lk = 1; and his riding-bike time on Road lk−1 → lk is an expo-
nential random variable with riding-bike rate ξlk−1,lk > 0. If there is at least
one available parking position, then the user directly returns his bike to the lkth
station, and immediately leaves this bike sharing system; otherwise he has to con-
tinuously ride his bike in order to try to return the bike to another station again.

We further assume that the returning-bike process is persistent in the sense
that the user must find a station with an empty position to return his bike
because the bike is a public property.

It is seen from the above description that the parameters: pi,j and μi,j , for
j �= i and 1 ≤ i, j ≤ N , of the first return, may be different from the parameters:
αi,j and ξi,j , for j �= i and 1 ≤ i, j ≤ N , of the kth return for k ≥ 2. This is due to
a simple observation that the user possibly deal with more things (for example,
tourism, shopping, visiting friends and so on) in the first return process, but he
becomes only one return task for returning his bike to one station during the k
successive return processes for k ≥ 2.

(7) The departure discipline: The user departure process has two different
cases: (a) An outside user directly leaves the bike sharing system if he arrives
at an empty station; and (b) if one user rents and uses a bike, and he finally
returns the bike to a station, then the user completes his trip, and immediately
leaves the bike sharing system.

We assume that all the above random variables are independent of each
other. For such a bike sharing system, Fig. 1 provides some intuitive physical
interpretation for the bike sharing system.

Fig. 1. The physical structure of the bike sharing system
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3 A Closed Queueing Network

In this section, we describe the bike sharing system as a closed queueing network
according to the fact that the number of bikes in this system is fixed. To study
such a closed queueing network, we need to determine the service rates, the
routing matrix and the relative arrival rates in all the virtual nodes.

For the bike sharing system, we need to abstract it as a closed queueing
network as follows:

(1) Virtual nodes: Although the stations and the roads have different physical
attributes, such as, different functions, different geographical topologies and so
forth, it is seen that here the stations and the roads are all regarded as the same
abstracted nodes in a closed queueing network.

(2) Virtual customers: The bikes either at the stations or on the roads are
viewed as virtual customers as follows:

A closed queueing network under virtual idea: The virtual customers are
abstracted by the bikes from either the stations or the roads. In this case, the
service processes are taken either from user arrivals at the station nodes or from
users riding bikes on the road nodes. Since the total number of bikes in the bike
sharing system is fixed as the positive integer NC, thus the bike sharing sys-
tem can be regarded as a closed queueing network with such virtual customers,
virtual nodes and virtual service times.

Two classes of virtual customers: From Assumptions (2), (5) and (6) in Sect. 2,
it is seen that there are two different classes of virtual customers in the road
nodes, where the first class of virtual customers are the bikes ridden on the
roads for the first time; while the second class of virtual customers are the bikes
which are successively ridden on the roads at least twice due to his arrivals at
full stations.

We abstract the virtual nodes both from the stations and from the roads,
and also find the virtual customers corresponding to the NC bikes. This sets up
a multiclass closed queueing network. To compute the steady-state probabilities
of joint queue lengths in the bike sharing system, it is seen from Chap. 7 in Bolch
et al. [3] that we need to determine the service rate and the relative arrival rate
for each virtual node in the multiclass closed queueing network.

(a) The service rates at nodes
We discuss the service processes of the closed queueing network from two

different cases: One for the station nodes, and the other for the road nodes.
Figure 2 shows how the two classes of service times are given from the multiclass
closed queueing network.

Case one: A road node in the set ∪N
i=1R (i)

The first class of virtual customers: We denote the number of virtual customers
of the first class on Road i → l by m

(1)
i,l . The return process of bikes of the first

class from Road i → l to Station l for the first time is Poisson with service rate

a
(1)
i,l = m

(1)
i,l μi,l.
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Fig. 2. The queueing processes in the multiclass closed queueing network

The second class of virtual customers: We denote the number of virtual cus-
tomers of the second class on Road i → l by m

(2)
i,l . The retrial return process

of customers of the second class from Road i → l to Station l is Poisson with
service rate

a
(2)
i,l = m

(2)
i,l ξi,l.

Case two: The N station nodes
Let ni be the number of bikes packed in Station i. The departure process

of bikes from the ith station is due to those customers who rent the bikes at
the ith station and then immediately enter one road in R (i). Thus if the ith
station is not empty, then the service process (i.e. renting bikes) is a MAP with
a stationary service rate of phase v

a
(v)
i = λ

(v)
i 1{1≤ni≤K}

N∑

l �=i

pi,l = λ
(v)
i 1{1≤ni≤K}, 1 ≤ v ≤ m, (1)

where
∑N

l �=i pi,l = 1, and
−→
λ i =

(
λ
(1)
i , λ

(2)
i , . . . , λ

(m)
i

)
is given by the MAP

(Ci,Di) through
−→
λ i = θ̃(i)Di for 1 ≤ i ≤ N .

(b) The relative arrival rates
For the multiclass closed queueing network, to determine the steady-state

probability distribution of joint queue lengths at any virtual node, it is necessary
to firstly give the relative arrival rates at the virtual nodes. To this end, we must
establish the routing matrix in the first step.

Based on Chap. 7 in Bolch et al. [3], we denote by ei and e
(r)
Ri→j

the rela-
tive arrival rates of the ith station, and of Road i → l with bikes of class r,
respectively. We write −→e = {−→e i : 1 ≤ i ≤ N} ,

where −→e i =
{
ei, e

(r)
Ri→j

, j ∈ Θi, r = 1, 2
}

.

Note that this bike sharing system is large-scale, thus the routing matrix of
the closed queueing network corresponding to the bike sharing system will be
very complicated. To understand how to set up such a routing matrix, in what
follows we first give three simple examples for the purpose of writing the routing
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Fig. 3. The physical structure (a) and the bike routing graph (b) for a two-station bike
sharing system

matrix, using the physical structure and the routing graph of the bike sharing
system. See Figs. 3, 4 and 5 for more details.

Let Qi (t) be the number of bikes parked at Station i at time t ≥ 0. From
the exponential and MAP assumptions, it is seen that an irreducible finite state
Markov chain is used to express and analyze the bike sharing system, while
the Markov chain is aperiodic and positive recurrent. In this case, there exists
stationary probability vector in the Marokov chain, and thus we give the limit

πi,K = lim
t→+∞P {Qi (t) = K} .

Example One: We consider a simple bike sharing system with two stations,
and the physical structure of the stations and roads is depicted in (a) of Fig. 3.
Note that there exist two classes of virtual customers in the road nodes, and the
bike routing graph of the bike sharing system is depicted in (b) of Fig. 3. Since
there are only two stations in this bike sharing system, we have pi,j = αi,j = 1.
Based on this, we obtain the routing matrix of order 6 as follow:

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1 − π2,K π2,K

1 − π2,K π2,K

1
1 − π1,K π1,K

1 − π1,K π1,K

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where all those elements that are not expressed are viewed as zeros, and πi,K is
a undetermined constant, and it is also the stationary probability of the ith full
station for i = 1, 2.
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Fig. 4. The physical structure (a) and the bike routing graph (b) of a three-station
bike sharing system

To determine the relative arrival rate at each virtual node, using the system
of linear equations −→e P = −→e and e1 = 1, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 =
(
e
(1)
R2→1

+ e
(2)
R2→1

)
(1 − π1,K) ,

e
(1)
R1→2

= e1,

e
(2)
R1→2

=
(
e
(1)
R2→1

+ e
(2)
R2→1

)
π1,K ,

e2 =
(
e
(1)
R1→2

+ e
(2)
R1→2

)
(1 − π2,K) ,

e
(1)
R2→1

= e2,

e
(2)
R2→1

=
(
e
(1)
R1→2

+ e
(2)
R1→2

)
π2,K .

Using e1 = 1, we get ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e1 = e
(1)
R1→2

= 1,

e
(2)
R1→2

= π1,K
1−π1,K

,

e2 = e
(1)
R2→1

= 1−π2,K
1−π1,K

,

e
(2)
R2→1

= π2,K
1−π1,K

,

(2)

where the two undetermined positive constants π1,K and π2,K will be given in
the next section, and they determine the relative arrival rates at the six virtual
nodes.

Example Two: We consider a bike sharing system with three stations, and the
physical structure of the stations and roads can be seen in (a) of Fig. 4. There
exist two classes of virtual customers in the road nodes, and the bike routing
graph of the bike sharing system is depicted in (b) of Fig. 4. It is seen from (a)
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of Fig. 4 that p1,2 = p2,3 = p3,1 = α1,2 = α2,3 = α3,1 = 1. Based on this, the
routing matrix of order 9 is given by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1 − π2,K π2,K

1 − π2,K π2,K

1
1 − π3,K π3,K

1 − π3,K π3,K

1
1 − π1,K π1,K

1 − π1,K π1,K

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

To determine the relative arrival rate at each virtual node, using the system
of linear equations −→e P = −→e and e1 = 1, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 =
(
e
(1)
R3→1

+ e
(2)
R3→1

)
(1 − π1,K) ,

e
(1)
R1→2

= e1,

e
(2)
R1→2

=
(
e
(1)
R3→1

+ e
(2)
R3→1

)
π1,K ,

e2 =
(
e
(1)
R1→2

+ e
(2)
R1→2

)
(1 − π2,K) ,

e
(1)
R2→3

= e2,

e
(2)
R2→3

=
(
e
(1)
R1→2

+ e
(2)
R1→2

)
π2,K ,

e3 =
(
e
(1)
R2→3

+ e
(2)
R2→3

)
(1 − π3,K) ,

e
(1)
R3→1

= e3,

e
(2)
R3→1

=
(
e
(1)
R2→3

+ e
(2)
R2→3

)
π3,K .

Using e1 = 1, we get ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 = e
(1)
R1→2

= 1,

e
(2)
R1→2

= π1,K
1−π1,K

e2 = e
(1)
R2→3

= 1−π2,K
1−π1,K

,

e
(2)
R2→3

= π2,K
1−π1,K

,

e3 = e
(1)
R3→1

= 1−π3,K
1−π1,K

,

e
(2)
R3→1

= π3,K
1−π1,K

,

(3)
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Fig. 5. The physical structure (a) and the bike routing graph (b) of a three-station
bike sharing system

where the three undetermined positive constants π1,K , π2,K and π3,K will be
given in the next section, and they determine the relative arrival rates for the
nine virtual nodes.

Example Three: We consider a bike sharing system with three stations, and
the physical structure of the stations and roads can be seen in (a) of Fig. 5. There
exist two classes of virtual customers in the road nodes, and the bike routing
graph of the bike sharing system is depicted in (b) of Fig. 5. Based on this, we
obtain the routing matrix of order 11 as follow:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1 − π2,K α2,1π2,K α2,3π2,K

1 − π2,K α2,1π2,K α2,3π2,K

p2,1 p2,3

1 − π1,K π1,K

1 − π1,K π1,K

1 − π3,K π3,K

1 − π3,K π3,K

1
1 − π2,K α2,1π2,K α2,3π2,K

1 − π2,K α2,1π2,K α2,3π2,K

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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To determine the relative arrival rate at each virtual node, using the system of
linear equations −→e P = −→e and e1 = 1, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 =
(
e
(1)
R2→1

+ e
(2)
R2→1

)
(1 − π1,K) ,

e
(1)
R1→2

= e1,

e
(2)
R1→2

=
(
e
(1)
R2→1

+ e
(2)
R2→1

)
π1,K

e2 =
(
e
(1)
R1→2

+ e
(2)
R1→2

+ e
(1)
R3→2

+ e
(2)
R3→2

)
(1 − π2,K) ,

e
(1)
R2→1

= p2,1e2,

e
(2)
R2→1

=
(
e
(1)
R1→2

+ e
(2)
R1→2

+ e
(1)
R3→2

+ e
(2)
R3→2

)
α2,1π2,K ,

e
(1)
R2→3

= p2,3e2,

e
(2)
R2→3

=
(
e
(1)
R1→2

+ e
(2)
R1→2

+ e
(1)
R3→2

+ e
(2)
R3→2

)
α2,3π2,K ,

e3 =
(
e
(1)
R2→3

+ e
(2)
R2→3

)
(1 − π3,K) ,

e
(1)
R3→2

= e3,

e
(2)
R3→2

=
(
e
(1)
R2→3

+ e
(2)
R2→3

)
π3,K .

(4)

By using e1 = 1, we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 = e
(1)
R1→2

= 1,

e
(2)
R1→2

= π1,K
1−π1,K

e2 = 1−π2,K
(1−π1,K)[(α2,1−p2,1)π2,K+p2,1]

,

e
(1)
R2→1

= p2,1(1−π2,K)
(1−π1,K)[(α2,1−p2,1)π2,K+p2,1]

,

e
(2)
R2→1

= α2,1π2,K
(1−π1,K)[(α2,1−p2,1)π2,K+p2,1]

,

e
(1)
R2→3

= p2,3(1−π2,K)
(1−π1,K)[(α2,1−p2,1)π2,K+p2,1]

,

e
(2)
R2→3

= α2,3π2,K
(1−π1,K)[(α2,1−p2,1)π2,K+p2,1]

,

e3 = e
(1)
R3→1

= (1−π3,K)[(α2,3−p2,3)π2,K+p2,3]
(1−π1,K)[(α2,1−p2,1)π2,K+p2,1]

,

e
(2)
R3→1

= π3,K [(α2,3−p2,3)π2,K+p2,3]
(1−π1,K)[(α2,1−p2,1)π2,K+p2,1]

.

The routing matrices for more general case
Observing the three examples, it may be easy and convenient to write a

routing matrix for a more general bike sharing system. Note that Example Three
provides more intuitive understanding on how to write those elements of the
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routing matrix, thus for a more general bike sharing system we establish the
routing matrix P =

(
p
˜i,˜j

)
as follow:

p̃i,˜j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pi,j , if ĩ = Station i, j̃ = Road i → j

1 − πj,K , if ĩ = Road i → j, j̃ = Station j
∑

l∈Θi&l∈Δj

αl,jπl,K , if nl = K, ĩ = Road i → l, j̃ = Road l → j

0. otherwise

Theorem 1. The routing matrix P of finite size is irreducible and stochastic,
and there exists the unique positive solution to the following system of linear
equations {−→e = −→e P,

e1 = 1,

where e1 = 1 is the first element of the row vector −→e , and −→e is a row vector of
the relative arrival rates of this bike sharing system.

Proof: The outline of this proof is described as follows. It is clear that the
size of the routing matrix P is finite. At the same time, it is well-known that
(a) the routing structure of the multiclass closed queueing network indicates
that the routing matrix P is stochastic; and (b) the accessibility of each station
node or road node in the bike sharing system shows that the routing matrix P is
irreducible. Thus the routing matrix P is not only irreducible but also stochastic.
For the routing matrix P, applying Theorem 1.1 (a) and (b) of Chap. 1 in Seneta
[33], the left eigenvector −→e of the irreducible stochastic matrix P of finite sizes
corresponding to the maximal eigenvalue 1 is strictly positive, that is, −→e > 0;
and −→e is unique with e1 = 1. This completes this proof. �

(c) A joint queue-length process
Let Q

(v)
i (t) be the number of bikes parked in Station i with phase v of the

MAP at time t ≥ 0, for 1 ≤ i ≤ N , 1 ≤ v ≤ m; and R
(r)
k,l (t) the number of bikes

of class r ridden on Road k → l at time t ≥ 0, for r = 1, 2 and for l �= k with
1 ≤ k, l ≤ N . We write

X (t) = (L1 (t) ,L2 (t) , . . . ,LN−1 (t) ,LN (t)) ,

where for 1 ≤ i ≤ N

Li (t) =
(
Q

(1)
i (t) , Q

(2)
i (t) , . . . , Q

(m)
i (t) ;R(1)

i,j (t) , R
(2)
i,j (t) , j ∈ Θi

)
.

Obviously, {X (t) : t ≥ 0} is a Markov process due to the exponential and MAP
assumptions of this bike sharing system. It is easy to see that the state space of
Markov process {X (t) : t ≥ 0} is given by
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Ω =
{−→n : 0 ≤ n

(v)
i ≤ K, 1 ≤ i ≤ N, 1 ≤ v ≤ m,

0 ≤ m
(r)
k,l ≤ NC, r = 1, 2, l �= k, 1 ≤ k, l ≤ N, (5)

N∑

i=1

m∑

v=1

n
(v)
i (t) +

N∑

k=1

∑

l∈Θk

∑

r=1,2

m
(r)
k,l = NC

}

,

where −→n = (n1,n2, . . . ,nN ) ,

for 1 ≤ i ≤ N

ni =
(
n
(1)
i , n

(2)
i , · · · , n

(m)
i ;m(1)

i,j ,m
(2)
i,j , j ∈ Θi

)
.

It is easy to check that the Markov process {X (t) : t ≥ 0} on a finite state
space is irreducible, aperiodic and positive recurrent. Therefore, there exists the
stationary probability vector

π = (π (−→n ) : −→n ∈ Ω)

such that
π (−→n ) = lim

t→+∞P {X (t) = −→n } .

4 A Product-Form Solution and Performance Analysis

In this section, we first provide a product-form solution to the steady-state prob-
abilities of joint queue lengths in the multiclass closed queueing network. Then
we provide a nonlinear solution to determine the N undetermined constants:
π1,K , π2,K , . . . , πN,K . Also, an example is used to indicate our computational
steps. Finally, we analyze performance measures of the bike sharing system by
means of the steady-state probabilities of joint queue lengths.

Note that {X (t) : t ≥ 0} is an irreducible, aperiodic, positive recurrent and
continuous-time Markov process with finite states, thus we have

π (−→n ) = lim
t→+∞

P
{

Q
(v)
i (t) = n

(v)
i , 1 ≤ i ≤ N, 1 ≤ v ≤ m; R

(1)
k,l (t) = m

(1)
k,l , R

(2)
k,l (t)

= m
(2)
k,l , 1 ≤ k, l ≤ N with l �= k,

N∑
i=1

m∑
v=1

n
(v)
i +

N∑
k=1

∑
l∈Θk

∑
r=1,2

m
(r)
k,l = NC

⎫
⎬
⎭ .

Note that if
∑N

i=1

∑m
v=1 n

(v)
i +

∑N
k=1

∑
l∈Θk

∑
r=1,2 m

(r)
k,l �= NC, it is easy to see

that π (−→n ) = 0. In practice, it is a key in the study of bike sharing systems to
provide expression for the steady-state probability π (−→n ), −→n ∈ Ω.
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4.1 A Product-Form Solution

For the bike sharing system, we establish a multiclass closed queueing network
with N+

∑N
i=1 |R (i)| virtual nodes and with NC virtual customers. As t → +∞,

the multiclass closed queueing network is decomposed into N +
∑N

i=1 |R (i)|
isolated and equivalent queueing systems as follows:

(i) The ith station node: An equivalent queue is Mi/MAPi/1/K, where
Mi denotes a Poisson process with relative arrival rate ei, and MAPi is
MAP(Ci,Di) as a service process.

(ii) The Road i → l node: The two classes of customers correspond to their
two queueing processes as follow:

(a) The first queue process on the Road i → l node is M(1)
i→j/

∑m
(1)
i,j

k=1 M(k)
i→j;1/1,

where M(1)
i→j denotes a Poisson process with relative arrival rate e

(1)
Ri→j

, and
∑m

(1)
i,j

k=1 M(k)
i→j;1 is the random sum of m

(1)
i,j i.i.d. exponential random variables,

each of which is exponential with service rate μi,j .

(b) The second queue process on the Road i → l node is M(2)
i→j/

∑m
(2)
i,j

k=1 M(k)
i→j;2/1,

in which M(2)
i→j is a Poisson process with relative arrival rate e

(2)
Ri→j

, and
∑m

(2)
i,j

k=1 M(k)
i→j;2 is the random sum of m

(2)
i,j i.i.d. exponential random variables,

each of which is exponential with service rate ξi,j .

Using the above three classes of isolated queues, the following theorem pro-
vides a product-form solution to the steady-state probability π (−→n ) of joint queue
lengths at the virtual nodes for −→n ∈ Ω; while its proof is easy by means of Chap. 7
in Bolch et al. [3] and is omitted here.

Theorem 2. For the two-class closed queueing network corresponding to the
bike sharing system, if the undetermined constants π1,K , π2,K , . . . , πN,K are
given, then the steady-state joint probability π (−→n ) is given by

π (−→n ) =
1

G (NC)

N∏

i=1

H (ni) H (mi) , (6)

where −→n ∈ Ω,

H (ni) =

(
n
(1)
i + n

(2)
i + · · · + n

(m)
i

)
!

n
(1)
i !n(2)

i ! · · · n(m)
i !

m∏

v=1

(
ei

λ
(v)
i

)n
(v)
i

,

H (mi) =
∏

j∈Θi

(
m

(1)
i,j + m

(2)
i,j

)
!

m
(1)
i,j !m(2)

i,j !

⎛

⎝
e
(1)
Ri→j

m
(1)
i,j μi,j

⎞

⎠

m
(1)
i,j
⎛

⎝
e
(2)
Ri→j

m
(2)
i,j ξi,j

⎞

⎠

m
(2)
i,j

,
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and G (NC) is a normalization constant, given by

G (NC) =
∑

−→n ∈Ω

N∏

i=1

H (ni) H (mi) .

By means of the product-form solution given in Theorem 2, the following the-
orem further establishes a system of nonlinear equations, whose solution deter-
mines the N undetermined constants π1,K , π2,K , . . . , πN,K . Note that πi,K is also
the steady-state probability of the ith full station for 1 ≤ i ≤ N . While its proof
is easy by means of the law of total probability and is omitted here.

Theorem 3. The undetermined constants π1,K , π2,K ,. . ., πN,K can be uniquely
determined by the following system of nonlinear equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1,K =
∑

−→n ∈Ω
&n1=K,

π (−→n ) ,

π2,K =
∑

−→n ∈Ω
&n2=K,

π (−→n ) ,

...
πN,K =

∑

−→n ∈Ω
&nN=K,

π (−→n ) ,

where π (−→n ) is given by the product-form solution stated in Theorem 2.

To indicate how to compute the undetermined constants π1,K , π2,K , . . . , πN,K ,
in what follows we give a concrete example.

Example Four: In Example One, we use the product-form solution to determine
π1,K and π2,K . By using (2) and (6), we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π1,K =
∑

−→n ∈Ω
&n1=K,

π (−→n ) ,

π2,K =
∑

−→n ∈Ω
&n2=K,

π (−→n ) .
(7)

We take that C = 2,K = 3,m = 2. Thus (7) is simplified as
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π1,K = 1
G(NC)

(
1

λ
(1)
1

+ 1

λ
(2)
1

)3 [
π1,K

ξ1,2(1−π1,K)
+ 1

μ1,2
+

1−π2,K
1−π1,K

(
1

λ
(1)
2

+ 1

λ
(2)
2

+ 1
μ1,2

)]
,

π2,K = 1
G(NC)

(
1

λ
(1)
1

+ 1

λ
(2)
1

)3
(1−π2,K)3

(1−π1,K)3

(
1

λ
(1)
1

+ 1

λ
(2)
1

+
π2,K

ξ2,1(1−π1,K)

+ 1
μ1,2

+
1−π2,K

μ2,1(1−π1,K)

)
,

(8)
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where the normalization constant G(NC) is given by

G(NC)

=
1

256 (μ1,2)
4 +

(
1

λ
(1)
1

+
1

λ
(2)
1

)3 [
π1,K

ξ1,2 (1 − π1,K)
+

1
μ1,2

+
1 − π2,K

1 − π1,K

(
1

λ
(1)
2

+
1

λ
(2)
2

+
1

μ2,1

)]

+

(
1

λ
(1)
1

+
1

λ
(2)
1

)2
⎡

⎣ 1
4 (μ1,2)

2 +
(1 − π2,K)2

(1 − π1,K)2

(
1

λ
(1)
2

+
1

λ
(2)
2

+
1

2μ2,1

)2

+
1 − π2,K

μ1,2 (1 − π1,K)

(
1

λ
(1)
2

+
1

λ
(2)
2

+
1

μ2,1

)]

(9)

+

(
1

λ
(1)
1

+
1

λ
(2)
1

){
1

27 (μ1,2)
3 +

1 − π2,K

4 (μ1,2)
2 (1 − π1,K)

(
1

λ
(1)
2

+
1

λ
(2)
2

+
1

μ1,2

)

+
(1 − π2,K)2

μ1,2 (1 − π1,K)2

(
1

λ
(1)
2

+
1

λ
(2)
2

+
1

2μ1,2

)2

+
(1 − π2,K)3

(1 − π1,K)3

⎡

⎣

(
1

λ
(1)
1

+
1

λ
(2)
1

)3

+
1

27 (μ2,1)
3 +

1
4 (μ2,1)

2

(
1

λ
(1)
2

+
1

λ
(2)
2

)

+
1

μ2,1

(
1

λ
(1)
2

+
1

λ
(2)
2

)2
⎤

⎦

⎫
⎬

⎭
+

(1 − π2,K)2

4 (μ1,2)
2 (1 − π1,K)2

(
1

λ
(1)
2

+
1

λ
(2)
2

+
1

2μ2,1

)2

+
1 − π2,K

3μ1,2 (1 − π1,K)

(
1

λ
(1)
2

+
1

λ
(2)
2

+
1

μ2,1

)

+
(1 − π2,K)3

μ1,2 (1 − π1,K)3

⎡

⎣

(
1

λ
(1)
1

+
1

λ
(2)
1

)3

+
1

27 (μ2,1)
3 +

1
4 (μ2,1)

2

(
1

λ
(1)
2

+
1

λ
(2)
2

)

+
1

μ2,1

(
1

λ
(1)
2

+
1

λ
(2)
2

)2
⎤

⎦+
(1 − π2,K)4

256 (μ2,1)
4 (1 − π1,K)4

+

(
λ
(1)
2 + λ

(2)
2

)
(1 − π2,K)4

27λ
(1)
2 λ

(2)
2 (μ2,1)

3 (1 − π1,K)4
+

(
λ
(1)
2 + λ

(2)
2

)2
(1 − π2,K)4

4
(
λ
(1)
2 λ

(2)
2 μ2,1

)2
(1 − π1,K)4

+

(
λ
(1)
2 + λ

(2)
2

)3
(1 − π2,K)3 [ξ2,1 (1 − π2,K) + π2,Kμ2,1]

ξ2,1μ2,1

(
λ
(1)
2 λ

(2)
2

)3
(1 − π1,K)4

.
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By using (8) and (9), we can compute the two undetermined constants: π1,K

and π2,K .
To this end, let λ

(2)
1 = 7, λ

(1)
2 = 5, λ

(2)
2 =5, μ1,2=2, μ2,1=3, ξ1,2 = 4, ξ2,1 = 5.

When λ
(1)
1 = 5, 6, 7, 8, 9, we obtain the values of π1,K and π2,K which are listed

in Table 1.
From Table 1, it is seen that as λ

(1)
1 increases, π1,K decreases but π2,K

increases. This result is the same as the actual intuitive situation. When λ
(1)
1

increases, more bikes are rented from Station 1, so π1,K decreases; while when
more bikes are rented from Station 1 and are ridden on Road 1 → 2, more bikes
will be returned to Station 2, so π2,K increases.

Table 1. Numerical results of π1,K and π2,K

λ
(1)
1 λ

(2)
1 λ

(1)
2 λ

(2)
2 μ1,2 μ2,1 ξ1,2 ξ2,1 π1,K π1,K

5 7 5 5 2 3 4 5 0.10434 0.14143

6 7 5 5 2 3 4 5 0.08609 0.14502

7 7 5 5 2 3 4 5 0.07609 0.14815

8 7 5 5 2 3 4 5 0.06424 0.14961

9 7 5 5 2 3 4 5 0.05734 0.15116

Remark 1. For a large-scale bike sharing system, it is always more difficult
and challenging to determine the normalization constant G(NC). Thus it is
necessary in the future study to develop some effective algorithms for numerically
computing G(NC).

4.2 Performance Analysis

Now, we consider two key performance measures of the bike sharing system in
terms of the steady-state probability π (−→n ) of joint queue lengths at the virtual
nodes for −→n ∈ Ω.

(1) The steady-state probability of problematic stations
In the study of bike sharing systems, it is a key to compute the steady-state

probability of problematic stations. For this bike sharing system, the steady-state
probability of problematic stations is given by


 =
N∑

i=1

P {ni = 0 or ni = K} =
N∑

i=1

[P {ni = 0} + P {ni = K}]

=
N∑

i=1

⎡

⎢
⎢
⎣

∑

−→n ∈Ω
&ni=0

π (−→n ) +
∑

−→n ∈Ω
&ni=K

π (−→n )

⎤

⎥
⎥
⎦ .
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(2) The mean of the steady-state queue length
The steady-state mean of the number of bikes parked at the ith station is

given by
Qi =

∑

−→n ∈Ω
&1≤ni≤K

niπ (−→n ) , 1 ≤ i ≤ N,

and the steady-state mean of the number of bikes ridden on the Road k → l for
1 ≤ k ≤ N and l ∈ Θk is given by

QRk→l
=

∑

r=1,2

∑

−→n ∈Ω

&1≤m
(r)
k,l≤NC

m
(r)
k,lπ (−→n ) .

Remark 2. In the practical bike sharing systems, arrivals of bike users often
have some special important behavior and characteristics, such as, time-
inhomogeneity, space-heterogeneity, and arrival burstiness. To express such
behavior and characteristics, this paper uses the MAPs to express non-Poisson
(and non-renewal) arrivals of bike users. It is seen that such a MAP-based study
is a key to generalize and extend the arrivals of bike users to a more general
arrival process in practice, for example, a renewal process, a periodic MAP,
a periodic time-inhomogeneous arrival process and so on. In fact, the methodol-
ogy of this paper may be applied to deal with more general arrivals of bike users.
Thus it is very interesting for our future study to analyze the space-heterogeneous
or time-inhomogeneous arrivals of bike users in the bike sharing systems.

5 Concluding Remarks

In this paper, we first propose a more general bike sharing system with Markov-
ian arrival processes and under an irreducible path graph. Then we establish
a multiclass closed queueing network by means of some virtual ideas, includ-
ing, virtual customers, virtual nodes and virtual service times. Furthermore, we
set up the routing matrix, which gives a nonlinear solution to computing the
relative arrival rates. Based on this, we give the product-form solution to the
steady-state probabilities of joint queue lengths at the virtual nodes. Finally, we
compute the steady-state probability of problematic stations, and also deal with
other interesting performance measures of the bike sharing system. Along these
lines, there are a number of interesting directions for potential future research,
for example:

– Analyzing bike sharing systems with phase type (PH) riding-bike times on
the roads;

– discussing repositioning bikes by trucks in bike sharing systems with infor-
mation technologies;

– developing effective algorithms for establishing the routing matrix, and for
computing the relative arrival rates;
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– developing effective algorithms for computing the product-form steady-state
probabilities of joint queue lengths at the virtual nodes, and further for cal-
culating the steady-state probability of problematic stations; and

– applying periodic MAPs, periodic PH distributions, or periodic Markov
processes to study time-inhomogeneous bike sharing systems. This is a very
interesting but challenging topic in the future study of bike sharing system.
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Abstract. Due to the rapid growth of energy costs and increasingly
strict environmental standards, energy consumption has become a sig-
nificant expenditure for the operating and maintaining of a cloud data
center. To improve the energy efficiency of cloud data centers, in this
paper, we propose an energy-efficient strategy with a speed switch and a
multiple-sleep mode. According to current traffic loads, a proportion of
Virtual Machines (VMs) operate at a low speed or a high speed, while the
remaining VMs either sleep or operate at a high speed. In our strategy,
we develop a continuous-time queueing model with an adaptive service
rate and a partial synchronous vacation. We construct a two-dimensional
Markov chain based on the total number of requests in the system and
the state of all the VMs. By using the method of a matrix geometric
solution, we mathematically estimate the energy saving level of the sys-
tem. Numerical experiments with analysis and simulation show that our
proposed energy-efficient strategy can effectively reduce the energy con-
sumption on the premise of guaranteeing the Quality of Service of CDCs.

Keywords: Cloud data center · Energy efficiency · Speed switch
Multiple-sleep · Matrix geometric solution

1 Introduction

The rapid development of information technology and the explosive growth in
global data has generated enormous demand for cloud computing. Consequently,
Cloud Data Centers (CDCs) are growing exponentially, both in number and in
size, to provide universal service. International Data Corporation (IDC) predicts
that the total number of CDCs deployed worldwide will peak at 8.6 million in
2017 [1]. Currently, high energy consumption and serious environmental pollu-
tion are significant factors restricting the development of CDCs.

The energy consumption of a VM is approximately in line with the CPU
utilization, so the most direct method of conserving energy is to operate all the
c© Springer International Publishing AG 2017
W. Yue et al. (Eds.): QTNA 2017, LNCS 10591, pp. 143–154, 2017.
https://doi.org/10.1007/978-3-319-68520-5_9
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VMs at lower voltage and frequency. One of the common techniques for opti-
mizing energy consumption in CDCs is dynamic power management (DPM).
DPM refers to dynamic CPU energy consumption and CPU processing speed
adjustment according to current traffic load. In [2], Li proved that if the applica-
tion environment and average energy consumption are given, there is an optimal
speed scheme that minimizes the average response time of requests. In [3], Wang
et al. presented a workload predictor based on online Bayes classifier and an
novel DPM technique based on adaptive reinforcement learning algorithm to
reduce the energy consumption in stochastic dynamic systems. In [4], Chen et
al. proposed a Dynamic Voltage and Frequency Scaling (DVFS) scheme based
on DPM technique, by which the best fitting voltage and frequency for a multi-
core embedded system is dynamically predicted. All the methods based on DPM
technique mentioned above can improve energy efficiency from the perspective of
reducing the energy consumption of each VM in CDCs. However, all the VMs in
the CDCs remain open all the time, even though there are no requests in CDCs.
Even when operating at low-speed and in low-voltage mode, the accumulated
energy consumption by thousands of VMs in CDCs can not be ignored.

In respect to the low utilization of VMs in CDCs, pushing part of VMs to
enter a sleep state or a power-off state during lower workload hours can also save
energy. In [5], Chou et al. proposed a DynSleep scheme. DynSleep dynamically
postpones the processing of some requests, creating longer idle periods, which
allows the use of deep sleep mode that save more energy. In [6], Dabbagh et
al. proposed an integrated energy-aware resource provisioning framework for
CDCs. This framework first predicts the number of cloud users that will arrive
at CDCs in the near future, then estimates the number of VMs that are needed
to serve cloud users. In [7], Liao et al. proposed an energy-efficient strategy,
which dynamically switches two backup groups of servers on and off according
to different thresholds. Using the methods above, energy can be conserved by
decreasing the number of VMs running in the system. However, few methods
can accurately estimate the behavior of requests. Their arrival and departure
are stochastic. Pushing VMs to enter a sleep state or a power-off state based on
only the predicted behavior of requests is very risky, and might lead to significant
sacrifice of the Quality of Service (QoS).

In this paper, by applying DPM technique and introducing a sleep mode,
we propose an energy-efficient strategy with a speed switch and a multiple-
sleep mode. Accordingly, we establish a continuous-time queueing model with
an adaptive service rate and a partial synchronous vacation to investigate the
behavior of cloud users and all the VMs in CDCs with the proposed energy-
efficient strategy. From the perspective of the total number of cloud users in
the CDC and the state of all the VMs, we construct a two-dimensional Markov
chain to analyze the queueing model. Finally, we mathematically and numerically
evaluate the energy saving level of the system.

The rest of this paper is organized as follows. In Sect. 2, we propose a strategy
for improving the energy efficiency in cloud data centers (CDCs), and develop a
continuous-time queueing model accordingly. Section 3 derives the system model
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in steady state with the proposed strategy. In Sect. 4, we investigate the perfor-
mance measures in terms of energy saving level. Moreover, numerical results are
provided to show the influence of parameters on the proposed strategy in Sect. 5.
Finally, conclusions are summarized in Sect. 6.

2 Energy-Efficient Strategy and System Model

2.1 Energy-Efficient Strategy

In conventional CDCs, all the VMs remain open regardless of traffic load. This
results in a large amount of energy to be wasted, which is referred to as idle
energy consumption. Furthermore, inappropriate VM scheduling also generates
additional energy consumption, referred to as luxury energy consumption. In
order to improve the energy efficiency of CDCs, we propose an energy-efficient
strategy with a speed switch and a multiple-sleep mode to reduce both the idle
energy consumption and the luxury energy consumption.

In the proposed energy-efficient strategy, all the VMs in the CDC are divided
into two modules, namely, the base-line module and the reserve module. The
VMs in the base-line module are always active, and its processing speed can be
switched between a low speed and a high speed in accordance with the traffic
load. The VMs in the reserve module can be awakened from multiple sleeps.

Based on the stochastic behavior of cloud users, as well as the operational
characteristics of sleep timers, the CDC will be converted among the following
three cases:

Case I: The VMs in the base-line module operate at a low speed while the VMs
in the reserve module are asleep. The level of energy-conservation in the CDC
is the most significant in this case.

Case II: The VMs in the base-line module operate at a high speed while the
VMs in the reserve module are asleep. The level of energy-conservation in
the CDC is relatively obvious in this case.

Case III: The VMs in the base-line module operate at a high speed while the
VMs in the reserve module are awake and operate at a high speed. The QoS
of the CDC is the most ideal in this case.

To avoid frequently switching the processing speed of VMs in the base-line
module, we use a dual-threshold, marked as θ1 (θ1 = 0, 1, 2, . . .) and θ2 (θ2 =
0, 1, 2, . . .), to jointly control the VMs processing speed in the base-line module,
in which we set 0 < θ2 < θ1. When the number of cloud users in the CDC exceeds
the threshold θ1, all the VMs in the base-line module will operate at a high speed.
When the number of cloud users in the CDC is less than the threshold θ2, all
the VMs in the base-line module will operate at a low speed. To guarantee the
QoS in the CDC even when the traffic load is heavy, we use another threshold,
called the activation threshold θ3, to wake up the VMs in the reserve module. If
the number of cloud users waiting in the CDC buffer exceeds the threshold θ3,
all the VMs in the reserve module will be awakened and operate at a high speed
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after the sleep timer expires. Otherwise, the sleep timer will be restarted with a
random duration, and all the VMs in the reserve module will go to sleep again.

For convenience of presentation, we denote the number of VMs in the base-
line module as n, and the number of VMs in the reserve module as m. To avoid
the appearance that all the VMs in the reserve module are awake while the VMs
in the base-line module operate at a low speed, we set (n − θ2) ≥ m. To ensure
all the cloud users in the CDC buffer can be served once the VMs in the reserve
module are awakened, we set 0 < θ3 < m.

In Case I, each cloud user is served immediately on arrival at the CDC by a
VM available in the base-line module at a low speed. However, with the arrival
of the cloud users, more VMs in the base-line module will be occupied. Here,
we call the VMs being occupied by cloud users as busy VMs. When the number
of busy VMs in the base-line module exceeds the threshold θ1, all the VMs in
the base-line module will be switched to a high speed, i.e., the CDC will be
converted to the Case II state. The cloud users that have not received service
will be served continuously by the same VM, but at a high speed. In this CDC
case, there are no cloud users waiting in the CDC buffer. Therefore, when the
sleep timer expires, this sleep timer will be restarted with a random duration,
and all the VMs in the reserve module will go to sleep again.

In Case II, if there are idle VMs in the base-line module, the following
cloud users will be served immediately in the base-line module at a high speed.
Otherwise, the cloud users have to wait in the CDC buffer. On the one hand, as
cloud users arrive, more cloud users will wait in the CDC buffer. When the sleep
timer expires, if the number of cloud users waiting in the CDC buffer exceeds
the activation threshold θ3, all the VMs in the reserve module will be awakened
and directly operate at a high speed, i.e., the CDC will be converted to the Case
III state. Then all the cloud users in the CDC buffer will be served immediately
in the reserve module at a high speed. Otherwise, the CDC will remain in the
Case II state. On the other hand, as cloud users that have received service
depart, fewer VMs in the base-line module will be busy. When the number of
busy VMs in the base-line module decreases below the threshold θ2, all the VMs
in the base-line module will be switched to a low speed, i.e., the CDC will be
converted to the Case I state. The cloud users that have not received service
will be served continuously by the same VM, but at a low speed.

In Case III, if there are idle VMs in either the base-line module or the
reserve module, the following cloud users will be served immediately at a high
speed. Otherwise, the cloud users will have to wait in the CDC buffer. However,
as cloud users that have received service depart, fewer VMs in both the base-line
module and the reserve module will be busy. When the number of idle VMs in
the base-line module is equal to the number of busy VMs in the reserve module,
the cloud users that have not received service in the reserve module will be
migrated to the idle VMs in the base-line module, and continuously served at a
high speed. Then the sleep timer will be restarted with a random duration, and
all the VMs in the reserve module will go to sleep again, i.e., the CDC will be
converted to the Case II state.
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2.2 System Model

A continuous-time queueing model with an adaptive service rate and a partial
synchronous vacation is established to capture the related performance measures
of the CDC using the proposed energy-efficient strategy. In this queueing model,
the requests from cloud users are regarded as customers, each VM is regarded
as an independent server that can only serve one request at a time. A sleep is
abstracted as a vacation [8]. The system buffer is supposed to be infinite.

We assume that the arrival intervals of requests follow an exponential dis-
tribution with parameter λ (0 < λ < 1). We assume that the service time of a
request when the system is in the Case I state follows an exponential distrib-
ution with parameter μl (0 < μl < 1). The service time of a request when the
system is in either the Case II state or the Case III state follows an exponential
distribution with parameter μh (μl < μh < 1). Furthermore, we assume that the
energy consumption level of each VM during the sleep state is Jv (Jv > 0), the
energy consumption level of each idle VM is Jo (Jo > Jv), the energy consump-
tion level of each busy VM operating at the low speed and the high speed are
Jl and Jh (Jh > Jl), respectively. In addition, we assume that the time length
of a sleep timer follows an exponential distribution with parameter ψ (ψ > 0).
Here, we refer to the parameter ψ as the sleep parameter.

Let random variable N(t) = i, i ∈ {0, 1, 2, . . .} be the total number of
requests in the system at instant t, which is called the system level. Let ran-
dom variable C(t) = j, j ∈ {1, 2, 3} be the system case at instant t. j = 1, 2, 3
represents the system is in the states of Case I, Case II and Case III, respec-
tively. {N(t), C(t), t ≥ 0} constitutes a two-dimensional continuous-time Markov
chain (CTMC). The state-space Ω of the CTMC is given as follows:

Ω = {(i, j) | i ∈ {0, 1, 2, . . .}, j ∈ {1, 2, 3}}. (1)

For the two-dimensional CTMC, we define πi,j as the steady-state probability
when the system level is i and the system case is j. πi,j is given as follows:

πi,j = lim
t→∞ P{N(t) = i, C(t) = j}, i ∈ {0, 1, 2, . . .}, j ∈ {1, 2, 3}. (2)

We define πi as the steady-state probability vector when the system level is
i. πi can be given by

πi =

{
(πi1, πi2), i ∈ {0, 1, 2, . . . , n}
(πi2, πi3), i ∈ {n + 1, n + 2, n + 3, . . .}.

(3)

The steady-state probability distribution Π of the CTMC is composed of
πi (i ≥ 0). Π is given by

Π = (π0,π1,π2, . . .). (4)
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3 Model Analysis

3.1 Transition Rate Matrix

According to the proposed energy-efficient strategy, the system case is related
to the system level. The state transition with the transition rate of the system
model is illustrated in Fig. 1.

Fig. 1. The state transition of the system model.
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Let Qu,v be the one step state transition rate sub-matrix for the system level
changing from u (u = 0, 1, 2, . . .) to v (v = 0, 1, 2, . . .). For clarity, Qu,u−1, Qu,u

and Qu,u+1 are abbreviated as Bu, Au and Cu, respectively. Then, Q is given
as follows:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 C 0

B1 A1 C 1

. . . . . . . . .
Bn−1 An−1 Cn−1

Bn An Cn

Bn+1 An+1 Cn+1

Bn+2 An+2 Cn+2

. . . . . . . . .
Bn+m An+m Cn+m

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

The block-tridiagonal structure of Q shows that the state transitions
occur only between adjacent system levels. Hence, the two-dimensional CTMC
{N(t), C(t), t ≥ 0} can be seen as a type of Quasi Birth-and-Death (QBD)
process.

3.2 Steady-State Probability Distribution

For the CTMC {N(t), C(t), t ≥ 0} with the one step state transition rate matrix
Q , the necessary and sufficient conditions for positive recurrence are that the
matrix quadratic equation:

R2Bn+m + RAn+m + Cn+m = 0 (6)

has a minimal non-negative solution R and that the spectral radius SP (R) < 1.

We assume the rate matrix R =
(

r11 r12
0 r22

)
, then substitute R, Bn+m,

An+m, and Cn+m into Eq. (6), we have(
nμhr211 (n + m)μh(r11 + r22)r12

0 (n + m)μhr222

)

+
(−(λ + nμh + ψ)r11 r11ψ − (λ + (n + m)μh)r12

0 −(λ + (n + m)μh)r22

)
+

(
λ 0
0 λ

)
=

(
0 0
0 0

)
. (7)

By solving Eq. (7), we can get r11 and r22 as follows:⎧⎪⎪⎨
⎪⎪⎩

r11 =
(λ + nμh + ψ) − √

(λ + nμh + ψ)2 − 4nλμh

2nμh

r22 =
λ

(n + m)μh
,

(8)
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and r12 can be given by

r12 =
r11φ

λ + (n + m)(1 − r11 − r22)μh
. (9)

The rate matrix R has been given in closed-form. Note that SP (R) =
max{r11, r22}, and r11 can be proved mathematically less than 1. Therefore,
the necessary and sufficient condition for positive recurrence of the CTMC
{N(t), C(t), t ≥ 0} is equivalent to r22 < 1, that is, λ < (n + m)μh.

With the rate matrix R obtained, we construct a square matrix B[R] as
follows:

B[R] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 C 0

B1 A1 C 1

. . .
. . .

. . .

Bn−1 An−1 Cn−1

Bn An Cn

Bn+1 An+1 Cn+1

Bn+2 An+2 Cn+2

. . .
. . .

. . .

Bn+m−1 An+m−1 Cn+m−1

Bn+m R ×Bn+m + An+m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10)
By using the geometric-matrix method [9], we can give an equation set as

follows: ⎧⎪⎨
⎪⎩

(π0,π1, . . . ,πn+m)B[R] = (0, 0, . . . , 0︸ ︷︷ ︸
2(n+m+1)

)

(π0,π1, . . . ,πn+m−1)e + πn+m(I − R)−1e1 = 1
(11)

where e is a 2(n + m) × 1 vector with ones, and e1 is a 2 × 1 vector with ones.
We further construct an augmented matrix as follows:

(π0,π1, . . . ,πn+m)
(
B [R] e

(I − R)−1e1

)
= (0, 0, . . . , 0︸ ︷︷ ︸

2(n+m+1)

, 1). (12)

Applying the Gauss-Seidel method [10] to solve Eq. (12), we can obtain π0,
π1, . . . , πn+m. From the structure of the transition rate matrix Q , we know
πi (i = n + m + 1, n + m + 2, n + m + 3, . . .) satisfies the matrix geometric
solution form as follows:

πi = πn+mRi−(n+m), i ≥ (n + m). (13)

Substituting πn+m obtained in Eq. (12) into Eq. (13), we can obtain πi (i =
n+m+1, n+m+2, n+m+3, . . .). Then the steady-state probability distribution
Π = (π0,π1,π2, . . .) of the system can be given mathematically.
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4 Performance Measures

We define the energy saving level as the difference between the energy consump-
tion level of the CDC with the proposed energy-efficient strategy and that of the
conventional CDC.

The energy consumption level C of the CDC with the proposed energy-
efficient strategy is given as follows:

C = C1 + C2 + C3 (14)

where C1, C2 and C3 are the average energy consumption level when the system
is in the states of Case I, Case II and Case III, respectively.

C1 =
θ1∑

i=0

πi,1(iJl + (n − i)Jo + mJv),

C2 =
n∑

i=θ2

πi,2(iJh + (n − i)Jo + mJv) +
∞∑

i=n+1

πi,2(nJh + mJv),

C3 =
n+m∑

i=n+1

πi,3(iJh + (n + m − i)Jo) +
∞∑

i=n++m+1

πi,3((n + m)Jh). (15)

The energy consumption level C ′ in the conventional CDC is given as follows:

C ′ = (n + m)Jh

(
λ

(n + m)μh

)
+ (n + m)Jo

(
1 − λ

(n + m)μh

)

=
λJh

μh
+ Jo

(
n + m − λ

μh

)
. (16)

Combining Eqs. (14) and (16), the energy saving level S of the CDC with the
proposed energy-efficient strategy is given as follows:

S = C ′ − C. (17)

5 Numerical Experiments

In order to evaluate the energy saving level of the CDC with the proposed
energy-efficient strategy, we provide numerical experiments with analysis and
simulation. The analysis results are obtained based on Eq. (11) using Matlab
2011a. The simulation results are obtained by averaging over 10 independent
runs using MyEclipse 2014. In the numerical experiments, the parameters are
set in Table 1.

To elucidate the better energy saving effect of the proposed energy-efficient
strategy, a comparison between the proposed energy-efficient strategy and the
conventional DPM strategy is given. In conventional DPM strategy, all the VMs
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Table 1. Numerical parameters.

Parameters Value

Total number (n + m) of VMs in the system 50

Service rate μl when VM operates at the low speed 0.01 ms−1

Service rate μh when VM operates at the high speed 0.02 ms−1

Dual-threshold θ1, θ2 20, 10

Activation threshold θ3 15

Energy consumption level Jv of a sleeping VM 0.2 mJ

Energy consumption level Jo of an idle VM 0.4 mJ

Energy consumption level Jl of a busy VM operating at the low speed 0.45 mJ

Energy consumption level Jh of a busy VM operating at the high speed 0.5 mJ

are open all the time, but their processing speed can be switched between a low
speed and a high speed according to current traffic load of system.

By setting the number of VMs in the reserve module m = 20 as an example,
we examine the influence of the arrival rate λ of requests on the energy saving
level S of the system for different sleep parameters φ in Fig. 2(a). By setting the
sleep parameter φ = 0.05 as an example, we examine the influence of the arrival
rate λ of requests on the energy saving level S of the system for different numbers
m of VMs in the reserve module in Fig. 2(b). In Fig. 2(a) and (b), the solid line
represents the analysis results with the proposed energy-efficient strategy, the
dotted line represents the analysis results with the conventional DPM strategy.

Fig. 2. Energy saving level S of the system.

In Fig. 2, we observe that for the same sleep parameter φ and the same
number m of VMs in the reserve module, the energy saving level S of the system
will initially decrease gradually then decrease sharply as the arrival rate λ of
requests increases. When λ is smaller (such as λ < 0.5 for φ = 0.05 and m = 20),
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as λ increases, it becomes more possible that the number of requests in the
system will exceed the threshold θ1. That is, all the VMs in the base-line module
will be switched to the high speed from the low speed. Note that the energy
consumption of a VM operating at the high speed is greater than that operating
at the low speed. Thus, in this situation, the energy consumption will increase,
and the energy saving level will decrease gradually as the arrival rate of requests
increases. When λ is larger (such as λ > 0.5 for φ = 0.05 and m = 20), all the
VMs in the base-line module will be busy, and the upcoming requests will have
to wait in the system buffer. As λ increases, the number of requests waiting in
the system buffer is more likely to exceed the activation threshold θ3, so the VMs
in the reserve module will be awakened after the sleep timer expires. Note that
the energy consumption of a VM operating at the high speed is greater than that
when asleep. Obviously, the energy saving due to sleep mode is greater than that
due to switching from the high speed to the low speed. Thus, in this situation, the
energy saving level will decrease sharply as the arrival rate of requests increases.

From Fig. 2(a), we notice that for the same arrival rate λ of requests, the
energy saving level S of the system will decrease as the sleep parameter φ
increases. The larger the value of φ is, the more likely the VMs in the reserve
module will be awake. Thus, the energy consumption of the system will increase,
and the energy saving level will decrease.

From Fig. 2(b), we notice that for a smaller arrival rate λ of requests (such
as λ < 0.5 for φ = 0.05), the energy saving level S of the system will increase
as the number m of VMs in the reserve module increases. When λ is smaller, no
matter how small the value of n is, all the VMs in the reserve module will be
more likely to go to sleep again after the sleep timer expires. Thus, as the value
of m increases, the energy saving level of the system will increase.

On the other hand, for a larger arrival rate λ of requests (such as λ > 0.55 for
φ = 0.05), the energy saving level S of the system will decrease as the number
m of VMs in the reserve module increases. When λ is larger, as the value of
n decreases, the number of requests waiting in the system buffer will increase,
and the probability that all the VMs in the reserve module awakened will be
greater. Thus, as the value of m increases, the energy saving level of the system
will decrease.

From the numerical experiments shown in Fig. 2, we see that the analy-
sis results match well with the simulation results. What’s more, the contrast
experiments show that the energy saving effect of the proposed energy-efficient
strategy performs better than that of the conventional DPM strategy.

6 Conclusions

In this paper, we proposed a novel energy-efficient strategy with a speed switch
and a multiple-sleep mode. By applying DPM technology and introducing a sleep
mode, our energy-efficient strategy can improve energy efficiency significantly
by reducing both the luxury energy consumption and the idle energy consump-
tion. We established a continuous-time queueing model with an adaptive service
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rate and a partial synchronous vacation, and constructed a two-dimensional
continuous-time Markov chain to analyze the queueing model. By using the
method of a matrix geometric solution, we derived the expression of the system
performance measure in terms of the energy saving level of the system. Numeri-
cal experiments show that on the premise of guaranteeing the QoS of CDCs, the
energy saving effect of CDCs when using our proposed energy-efficient strategy
is remarkable when compared with conventional CDCs.

As a future research, we will investigate the delay performance and optimize
the proposed strategy with an intelligent optimization algorithm.
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Abstract. In this paper we analyze the performance of a broadcast
packet in a VANET with the slotted ALOHA protocol where locations of
vehicles are modeled by a one-dimensional stochastic geometry. We con-
sider the packet delivery probability under a broadcast delay constraint.
Since the successful transmission of a broadcast packet is significantly
affected by interferences at receivers which are spatially correlated, it is
important to capture the spatial correlations properly in order to obtain
an accurate expression of the packet delivery probability. However, the
exact analysis of the spatial correlations in interference is not mathe-
matically tractable. In this paper we provide an accurate approximation
of the spatial correlations in interference and derive the packet delivery
probability with the help of the approximation. Numerical and simula-
tion results are provided to validate our analysis and to investigate the
performance of a VANET.

Keywords: Performance evaluation · Broadcast · VANET
Packet delivery probability

1 Introduction

With a growing interest in the intelligent transportation system (ITS), vehicular
ad hoc networks (VANETs) have been developed and many relevant industries
have been rapidly growing. To support wireless communications in a vehicu-
lar environment, dedicated short range communication (DSRC) is projected and
several standards such as the IEEE 802.11p and the IEEE 1609 family are devel-
oped [1,2]. In a VANET, a broadcast packet is widely used for various purposes.
For instance, an application in a VANET aiming at the safety by reducing acci-
dents on roads, uses broadcast packets in order to inform the current status of
a vehicle to neighbor vehicles [3]. Since there are no acknowledgement messages
in the broadcast mode, it is hard to know whether or not a packet is successfully
transmitted to a node. So a broadcast packet requires more stringent constraints
on its performance than a unicast packet with acknowledgement, and it is impor-
tant to accurately analyze the performance of a broadcast packet.
c© Springer International Publishing AG 2017
W. Yue et al. (Eds.): QTNA 2017, LNCS 10591, pp. 155–167, 2017.
https://doi.org/10.1007/978-3-319-68520-5_10
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In this paper, we analyze the performance of a broadcast packet in a one-
dimensional VANET with the slotted ALOHA protocol. The motivation of a
one-dimensional network comes from its application to vehicular networks where
vehicles are mostly located in a linear form. Moreover, the slotted ALOHA pro-
tocol is a good approximation of the CSMA protocol, e.g., a recent simulation
study in [4] shows that the behavior of CSMA appears similar to that of the
slotted ALOHA as the network density becomes high. So the analysis of dense
VANETs with the slotted Aloha is performed to approximate the CSMA-based
MAC protocol in [5], ad hoc networks with the slotted ALOHA protocol are
widely considered and analyzed, e.g., [6–8].

We consider the packet delivery probability (PDP) as a performance metric of
a broadcast packet. The PDP is important for safety-related applications such as
the stopped vehicle hazard warning, in which a broadcast packet is requested to
be delivered to all neighbor vehicles. Since the locations of vehicles significantly
affect the PDP, we use stochastic geometry theory to model the locations of
vehicles in the network. In addition, bearing in mind a safety or control related
broadcast packet, we consider a broadcast delay constraint in the computation
of the performance metrics [9].

The PDP of a broadcast packet is significantly affected by channel fading
and interference to nodes (i.e. vehicles). Considering the path loss in the sig-
nal power, interference from a transmitter to a receiver is determined by the
distance between them and the locations of the other transmitters. So there
exist spatial correlations in interference at receivers and accordingly successful
receptions of a broadcast packet are spatially correlated. While the stochastic
properties of interference have been studied with the help of stochastic geometry
theory [10,11], the exact analysis of the spatial correlations in interference is not
mathematically tractable. As a result, it is hard to obtain the joint probabil-
ity of successful receptions of a broadcast packet at all receivers of interest. To
overcome the difficulty, we propose an approximation method to get the PDP
as follows. Since the signal power is exponentially decreasing in distance, the
main interferer is the nearest transmitter. So it is plausible to assume that suc-
cessful receptions at receivers are independent when the location of the nearest
transmitter is given. By using our approximation assumption, we derive an ana-
lytical expression of the PDP which is easy to compute numerically. We show its
accuracy through numerical and simulation results. The details are explained in
Sects. 3 and 5.

The performance of a VANET such as the PDP has been extensively stud-
ied. In [3,12], Campolo et al. analyze the PDP of a broadcast packet that is
broadcasted on the control channel interval defined in the IEEE 1609 standard.
In [13], Hassan et al. study the impact of retransmissions on the PDP in the
IEEE 802.11p standard. Hassanabadi and Valaee in [14] propose a rebroadcast-
ing protocol using network coding in order to improve the PDP of a broadcast
packet on the control channel interval. In these works, the transmission range
and the impact of locations of nodes are not considered. They assume that all
receivers cannot receive a broadcast packet from a transmitter if there exists any
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other transmitter, although they are able to receive due to finite transmission
power. With a consideration of interference, Ma et al. in [15] investigate the
PDP by using a one-dimensional Poisson point process. They also consider a
carrier sensing range so as to investigate the impact of hidden terminals. How-
ever, they assume a static transmission range of a broadcast packet while the
transmission ranges of a broadcast packet in practice are different from node to
node due to independent channel fading and path loss. Such random character-
istic of transmission ranges is considered in [16] where Liu and Andrews analyze
the PDP in a sensor network by using a clustered PPP. They also consider the
impact of interference from other transmitters in their analysis. However, the
spatial correlations in interference are not considered and they assume that the
successes of transmissions are independent from node to node. Note that the spa-
tial correlations significantly affect the PDP, but the consideration of the spatial
correlations makes the analysis of the PDP almost intractable. So we propose
an approximation method in this paper to obtain the PDP while capturing the
spatial correlations.

Our main contributions are summarized as follows.

– We propose an approximation method to obtain the PDP of a broadcast
packet with a consideration of the spatial correlations in interference and a
broadcast delay constraint.

– We derive an analytical expression of the PDP which is easy to compute
numerically. It is greatly helpful in solving an optimization problem on the
optimal access probability.

– Through numerical and simulation results, we show that the PDP is signifi-
cantly affected by the spatial correlations in interference.

The remainder of this paper is organized as follows. In Sect. 2, we describe our
system model. In Sects. 3 and 4, we derive an analytical expression of the PDP
by considering the spatial correlations in interference and a broadcast delay con-
straint. In Sect. 5, we investigate the performance of a VANET through numerical
and simulation results. Finally, we summarize our conclusions in Sect. 6.

2 System Modeling

We consider a one-dimensional vehicular ad hoc network (VANET). The time
axis is slotted and each slot duration is equal to a packet transmission time.

For modeling and analysis, we tag an arbitrary node in the network and call
it the tagged node. The tagged node is assumed to be located at the origin by
translating the axis. The locations of untagged nodes are modeled by the one
dimensional Poisson point process (PPP) Φ = {Xi} with intensity λ. So the
distance between two nodes follows the exponential distribution with mean 1/λ.
Experimental measurements show that the inter-arrival time at an arbitrary
observation point is exponentially distributed in a free flow network [17,18],
which provides a good reason for the use of the PPP in our modeling.
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Each node adopts the p-persistent slotted ALOHA. At each slot each node
independently tries to broadcast its packet with an access probability p. No
acknowledgement message is used in the broadcast mode. A node broadcasts a
packet only once and removes the packet regardless of the broadcasting result.
In many vehicular applications a packet has an expiry time depending on appli-
cations [2,9]. So we assume that the expiry time of a packet is fixed to Texp

slots. After Texp slots from the generation of a packet, the packet is expired and
dropped if it is still waiting for transmission.

We call a node who broadcasts a packet an active node and denote the set
of all active nodes by Φa := {Xi ∈ Φ : ai = 1} where ai indicates the channel
access of node Xi. ai has the value 1 with probability p and has the value 0
with probability 1 − p. In addition, we let Φ+

ia := {Yi ∈ Φ : Yi ≥ 0, ai = 0}
be the set of all inactive nodes in the positive direction. Inactive nodes try to
receive broadcast packets from active nodes. The reason why we consider only
the positive direction is explained as follows. In most vehicular applications,
information generated by a node is useful for the following nodes. So it is more
meaningful to investigate how a packet is broadcasted in the positive direction.
In fact, the broadcasting in the negative direction can be analyzed in the same
way as given for the positive direction. We therefore do not provide the analysis
for the negative direction in this paper.

An inactive node can successfully decode the packet from the tagged node,
called the tagged packet, only when the SINR exceeds a given threshold θ. The
channel is modeled by a block Rayleigh fading channel, that is, the channel
state remains invariant during a slot and changes slot-by-slot. Since the channel
has the Rayleigh fading, the fading from node i and node j is exponentially
distributed with mean 1/μ. Note that the fading is independent of the node
indices i and j. Then the interference to an inactive node located at u is given by

IΦa
(u) =

∑

Xi∈Φa

Fi

|Xi − u|α (1)

and the received SINR of the inactive node at u is given by

SINR(u, Φa) =
F/uα

W + IΦa
(u)

, (2)

where α is the pass loss exponent, W denotes the noise power at the inactive
node, and F , Fi are the fading at the inactive node from the tagged node and
node Xi ∈ Φa, respectively. When the channel is assume to be the additive white
Gaussian noise (AWGN) channel, W becomes an exponential random variable
with mean 1/σ [19].

It is worth mentioning that SINR(u, Φa) > θ does not always guarantee that
SINR(u′, Φa) > θ for 0 < u′ < u due to the independence in fading, while the
previous works, e.g., [13,15,20] assume that all nodes at u′(< u) successfully
receive a packet if SINR(u, Φa) > θ. So the transmission range of a packet is
not only a random variable, but also differs from node to node even for the
same packet, which should be considered in the analysis. Hence, we define the
transmission range of a receiver by a random variable R such that [R > u] =
[SINR(u, Φa) > θ].



Performance Analysis of Broadcast Packets in Vehicular Ad Hoc Networks 159

3 Analysis of the Packet Delivery Probability

In this section, we analyze the PDP of a broadcast packet. The concept of per-
formance may differ from application to application since each application has
its own objectives. So a performance metric should be adapted to the objectives
of each application. In addition, since an expired packet is dropped, the expiry
time of a packet has to be considered in defining a performance metric. Bearing
these observations in mind, we carefully define the packet delivery probability
for a broadcast packet as follows.

The packet delivery probability (PDP) is defined by the probability that the
tagged packet is broadcasted and no node within the range Lrd fails to receive
the tagged packet. Obviously, the PDP is a function of the access probability of
the ALOHA protocol and we denote the PDP for a given access probability p
by PD(p).

The PDP is important for safety-related applications such as the stopped
vehicle hazard warning, in which a broadcast packet of the tagged node is
requested to be delivered to all neighbor nodes of the tagged node with high
probability. To explain it more precisely, we consider the following scenario. Sup-
pose that there exists a node who fails to receive a safety packet, e.g., a packet
with the stopped vehicle hazard warning, from the tagged node. The node has
no information about the status of the tagged node in this case and accordingly
the node is likely to crash the tagged node or its neighbor. Hence, such a packet
is strongly requested to be delivered to all neighbor nodes.

In order to define neighbor nodes of the tagged node, we need a neighbor
range based on the reaction distance. For instance, the pre-crash sensing appli-
cation recommends to have at least 50 m as the reaction distance [9]. In our
analysis, we use Lrd as the reaction distance and consider all nodes in [0, Lrd] in
the analysis of PD(p).

We now derive PD(p). Let T denote the broadcast delay defined by the time
until the tagged packet is broadcasted from its generation. Since the tagged node
independently decides whether to be active with probability p at each slot, T
is a geometric random variable with mean 1/p.1 Since the expiry time of the
packet is given by Texp slots, it is required that T ≤ Texp. Otherwise the tagged
packet is dropped due to its expiration. Then the probability Ptx(p) that the
tagged packet is broadcasted is given by

Ptx(p) = 1 − (1 − p)Texp .

1 In this paper, we consider a scenario as follows. The arrival rate of a broadcast
packet is low and each node has a queue of capacity 1. So a generated packet in
the queue can be served just after its generation and hence the broadcast delay T
follows a geometric distribution as explained. However, it can be extended to the
case of having a general queue and a general arrival process of broadcast packets.
For instance, when the arrival process follows the Bernoulli process, the broadcast
delay T can be analyzed by using the Geom/G/1 queueing model, and the following
analysis is not changed to obtain the performance metrics. For simplicity in our
analysis, we thus consider a simple version as explained before.
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Let D denote the event that all untagged nodes in [0, Lrd] receives the tagged
packet. Note that an inactive node located at u successfully receives the tagged
packet when R > u, whereas any active nodes cannot receive the tagged packet
because we assume that a node cannot transmit and receive a packet simultane-
ously. Let X+

1 denote the location of the first active node in the positive direction
in Φa. Then the event D is given by

D = [X+
1 > Lrd, Ri > Zi, Zi ∈ N0],

where N0 is the set of all inacitve nodes in [0, Lrd] and Ri is the transmission
range with respect to the node Zi.

From the definition of the PDP where the delay constraint Texp is also con-
sidered, we have

PD(p) = P{T ≤ Texp, D}
= P{T ≤ Texp}P{D |T ≤ Texp}
= Ptx(p)P 0

D(p), (3)

where P 0
D(p) = P{D |T ≤ Texp}. Since T is independent of the transmission

range Ri and the locations of nodes Φ, we have P 0
D(p) = P{D}. It then follows

that

P 0
D(p) = E[P{D |X+

1 }]

= E[1[X+
1 >Lrd]

P{Ri > Zi, Zi ∈ N0 |X+
1 }]

=
∫ ∞

Lrd

P{Ri > Zi, Zi ∈ N0 |X+
1 = x1}λpe−λpx1 dx1 (4)

where we use the fact that X+
1 is an exponential random variable with parame-

ter λp.
To derive the joint probability P{Ri > Zi, Zi ∈ N0 |X+

1 = x1}, first recall
that [Ri > Zi] = [SINR(Zi, Φa) > θ]. Due to the interference term IΦa

(Zi) in
SINR(Zi, Φa), the transmission ranges Ri are not independent and the joint dis-
tribution is very complicated to evaluate directly. We therefore need to approxi-
mate the joint distribution. Note that Ri are independent when Φa is given and
the main interferer is the nearest active node located at X+

1 . So, it is plausible to
assume that Ri are independent when X+

1 is given. When N0 := |N0| = n (≥ 0),
the locations Zi are independent and uniformly distributed over [0, Lrd] by the
property of a PPP. Then,

P{Ri > Zi, Zi ∈ N0 |N0 = n, X+
1 = x1}

≈ (
P{R > U |X+

1 = x1}
)n

=

(
1

Lrd

∫ Lrd

0

P{R > u |X+
1 = x1} du

)n

=: (psuc,x1)
n, (5)
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where U is the uniform random variable on [0, Lrd] and R is a random variable
having the same distribution as Ri. Here, we can evaluate P{R > u |X+

1 = x1}
by using the following proposition.

Proposition 1. Let X+
1 be the location of the nearest active node in the positive

direction in Φa. The distribution of the transmission range R conditioned on
X+

1 = x1 is given by

P{R > u |X+
1 = x1} = E[e−μθuαW ]

|x1 − u|α
|x1 − u|α + θuα

e−2λpuθ1/απ/α sin(π/α)

× exp
(

λp

∫ x1

0

θuα

θuα + |t − u|α dt

)
. (6)

In particular, when the channel has the AWGN with mean 1/σ,

P{R > u |X+
1 = x1} =

σ

σ + μθuα

|x1 − u|α
|x1 − u|α + θuα

e−2λpuθ1/απ/α sin(π/α)

× exp
(

λp

∫ x1

0

θuα

θuα + |t − u|α dt

)
.

Proof. We omit the proof due to space limitation.

By using (5), we have, for x1 > Lrd

P{Ri > Zi, Zi ∈ N0 |X+
1 = x1}

= E[P{Ri > Zi, Zi ∈ N0 |N0,X
+
1 = x1} |X+

1 = x1]

= E[(psuc,x1)
N0 |X+

1 = x1].

Since N0 = Φ+
ia ∩ [0, Lrd], N0 (= |N0|) follows the Poisson distribution with

parameter λ(1 − p)Lrd regardless of the value of x1. So

E[zN0 |X+
1 = x1] = exp (−λ(1 − p)Lrd(1 − z))

and it follows that

P{Ri > Zi, Zi ∈ N0 |X+
1 = x1}

= exp (−λ(1 − p)Lrd(1 − psuc,x1))

= exp

(
−λ(1 − p)

∫ Lrd

0

P{R ≤ u |X+
1 = x1} du

)
.

Substituting this into (4), we obtain

P 0
D(p) = λp

∫ ∞

Lrd

e−λpx1−λ(1−p)
∫ Lrd
0 P{R≤u | X+

1 =x1}du dx1.
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Therefore, the PDP is given by

PD(p) = Ptx(p) × P 0
D(p)

= (1 − (1 − p)Texp) × λp

∫ ∞

Lrd

e−λpx1−λ(1−p)
∫ Lrd
0 P{R≤u | X+

1 =x1}du dx1.

(7)

The numerical evaluation of PD(p) is not easy if we directly use (7) because
the expression in (7) contains an integral in the exponent and the integrand
P{R ≤ u |X+

1 = x1} of the integral also has another integral. So for an easy
numerical evaluation we provide in Sect. 4 an approximated expression of the
integrand P{R ≤ u |X+

1 = x1} (equivalently, P{R > u |X+
1 = x1}) based on a

polynomial. Using our approximation, we can easily compute the value of PD(p)
that is necessary for our optimization problem given below.

In the design of the p-persistent ALOHA, it is important to determine the
optimal access probability p∗

D for a reliable broadcasting. From our analysis, the
optimal access probability p∗

D is given by

p∗
D = argmax

0≤p≤1
PD(p). (8)

We call P ∗
D := PD(p∗

D) the optimal PDP.

4 Approximation of the Distribution of R

We know from the previous section that the performance metrics are closely
related to the distribution of R. However, evaluating the value of PD(p) is not
an easy task as explained before. To explain it more precisely, recall that from
(7) PD(p) contains the integral

∫ ∞

Lrd

e−λpx1−λ(1−p)
∫ Lrd
0 P{R≤u | X+

1 =x1}du dx1.

The integrand contains an integral at the exponent whose integrand is a func-
tion of x1. In addition, we know from Proposition 1 that the integrand P{R >
u |X+

1 = x1} also contains the exponent having the integral of the function of x1
∫ x1

0

θuα

θuα + |t − u|α dt.

Due to the integral exponent, the numerical evaluation is very complicated
and slow. It then follows that solving the optimization problem (8) becomes
extremely hard from the numerical evaluation viewpoint.

We therefore need to approximate the exponent of the conditional distribu-
tion P{R > u |X+

1 = x1}. By the same argument used in the proof of Proposi-
tion 1, the integral is changed into

∫ x1

0

θuα

θuα + |t − u|α dt =

⎧
⎪⎪⎨

⎪⎪⎩

uθ
1
α

(∫ θ− 1
α

0
1

1+sα ds +
∫ ζ

0
1

1+sα ds

)
, if 0≤u < x1,

uθ
1
α

(∫ θ− 1
α

0
1

1+sα ds − ∫ ζ

0
1

1+sα ds

)
, if u ≥ x1,
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where ζ = |x1−u|/uθ1/α. Note that two terms have the same form of integral. So
it is enough to approximate each integral, and the following proposition provides
a polynomial approximation with its error bound.

Proposition 2. Suppose that α > 1. For any m ∈ N,
∣∣∣∣∣

∫ β

0

1
1 + sα

ds − Ĩm(β)

∣∣∣∣∣ ≤
{

βm̄α+1

m̄α+1 , ifβ < 1,
1

m̄2α2−1 − β−m̄α+1

m̄α−1 , ifβ ≥ 1.

Here m̄ = 2�m/2� and

Ĩm(β) :=

{∑m
k=0

(−1)k

kα+1 βkα+1, ifβ < 1,

1 − 2
∑m

k=1
(−1)k

k2α2−1 +
∑m

k=1
(−1)k

kα−1 β−kα+1, ifβ ≥ 1.

Proof. We omit the proof due to space limitation.

By Proposition 2, the conditional distribution of R is approximated as follows.

P{R > u |X+
1 = x1}

≈ E[e−μθuαW ]
|x1 − u|α

|x1 − u|α + θuα
e

−λpuθ1/α
{

C0−Ĩm

(
θ− 1

α | x1
u −1|)}, (9)

where C0 = 2π/α sin(π/α) − Ĩm(θ− 1
α ).

The experimental measurements show that the range of the value of α in a
VANET is not less than 1.5 [21–23]. So the assumption α > 1 always holds in
practice. In addition, the error function provided in Proposition 2 goes to 0 as
m → ∞. However, we find that choosing m = 1 is enough to approximate in
practical scenarios, which will be shown through numerical results in Sect. 5.

5 Numerical Results

This section validates our mathematical model and investigates the performance
of a broadcast packet. To this end, we provide both numerical and simulation
results using Matlab. Throughout this section, the system parameter values are
fixed as follows unless otherwise mentioned. We use the path loss exponent α =
1.77 adopted from the measurement data [22]. The success threshold θ is set
to 5 dB. The AWGN channel is considered in our examples. Since the constant
multiplication of the noise W and the fading F does not affect the value of the
SINR, the average of W is assumed to be normalized by 1/σ = 1 and the average
of F is assumed to be 1/μ = 107.

We first validate the approximation of the tail probability of the transmission
range R based on Proposition 2. The intensity λ is chosen to be 0.05 (nodes/m)
and the location X+

1 of the nearest active node is fixed by X+
1 = 200m.

Figure 1 plots the approximated values by (9) with the access probabilities
p = 0.1, 0.4, 0.7. When we evaluate the approximated values, we use m = 1
in Proposition 2 which is the simplest approximation. For a comparison purpose,
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Fig. 1. Validation of our approximation

the exact values by (6) are also plotted. As we expect the approximated values
are well matched with the exact values. From now on, we use (9) instead of (6)
for numerical evaluation.

In the following examples, we investigate the PDP via numerical and sim-
ulation results. To this end, we use the traffic intensities λ = 0.05 (nodes/m)
and λ = 0.1 (nodes/m), the expiration time Texp = 10 slots, and the minimum
requirement of transmission range Lrd = 50m. For a comparison purpose, we
also provide analytical results when Ri are assumed to be independent as in
the existing works, e.g., [16,24]. In the following figures, numerical results of
our analysis are denoted by ana, while numerical results with the independence
assumption are denoted by indep.

The PDP PD(p) is plotted in Fig. 2 as the access probability p varies from
0.01 to 0.95. As seen in the figure, our analytic results are relatively well matched
with simulation results, which validates our approximation on the joint success
probability used in Sect. 3. However, when Ri are assumed to be independent,
the resulting PDP are significantly underestimated in both cases. The reason is
explained as follows. The main contributor of interference at a receiver is the
nearest active node. Since the neighbor nodes of the tagged node have the com-
mon nearest active node located at X+

1 , interferences at the neighbor nodes are
strongly correlated. In addition, since the signal power is exponentially decreas-
ing in distance, the other active nodes contribute less significantly to interference
in the SINR at a receiver than the nearest active node. So the PDP are not sig-
nificantly affected by the correlations induced by the other active nodes except
the nearest active node. From the above reasons, the PDP is well estimated by
our approximation that considers only the nearest active node.

We now investigate the performances of a broadcast packet with the optimal
access probabilities which are obtained by solving (8). For a comparison purpose,
two different values of the fading power 1/μ are considered. 1/μ � 1/σ implies
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that the transmission power is so large that the noise can be negligible, while
otherwise the noise should not be negligible. Since we consider the normalized
noise, we change the values of μ to represent each case. In our examples, we
use 1/μ = 107 for the negligible noise case and 1/μ = 103 for the non-negligible
noise case.

In Fig. 3, the optimal PDP P ∗
D is plotted with the corresponding optimal

access probability p∗
D as the intensity varies from 0.01 to 0.2. We see that the

PDP is significantly degraded as λ increases. A large value of λ implies that
there are many nodes within the range Lrd. In order to make all neighbor nodes
inactive, the optimal access probability p∗

D should be small enough as we see in
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the figure. However, the use of a small value of p increases the broadcast delay
T , which makes more packets discarded before broadcasting. As a result, the
PDP goes to 0 as λ increases.

6 Conclusions

In this paper, we analyzed the performance of a broadcast packet in a one-
dimensional VANET with the slotted ALOHA protocol. We considered the
packet delivery probability as our performance metric with a delay constraint.
We proposed an approximation method to obtain the packet delivery probability
of a broadcast packet with a consideration of the spatial correlations in inter-
ference. We then derived an analytical expression of the packet delivery proba-
bility which is easy to compute numerically. Through numerical and simulation
results, we showed that the packet delivery probability is significantly affected
by the spatial correlations in interference. Based on our mathematical model,
we obtained the optimal access probability of the slotted ALOHA protocol that
optimizes the packet delivery probability.
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Abstract. In this paper, in order to reduce possible packet loss of the
primary users (PUs) in cognitive radio networks, we assume there is a
buffer with a finite capacity for the PU packets. If a PU packet arrives
during the transmission period of another PU packet, this newly arriving
PU packet can initially access the PU buffer. In order to evaluate the
influence of the buffer setting of the PU packets on the secondary users
(SUs), we construct and analyze a discrete-time Markov chain model.
Accordingly, we determine the expressions of some important perfor-
mance measures of the PU packets and the SU packets, including the
average queue length, the blocking rate, the throughput of PU pack-
ets and the average queue length, the interrupted rate, and the average
delay of SU packets, respectively. Finally, we show numerical results to
evaluate how the buffer setting of the PU packets influences the system
performance of the PU packets and the SU packets.

Keywords: Cognitive radio networks · Finite buffer setting
Markov chain · Performance evaluation

1 Introduction

The demand for wireless spectrum resources is increasing rapidly. Cognitive radio
networks, which are proposed as one of the mobile communication systems of
the future, have been attracting more and more attention in both academic and
industrial fields of research [1,2].

Spectrum resources in cognitive radio networks are shared by two types of
users, namely, primary users (PUs) and secondary users (SUs). The SUs can
make opportunistic use of the spectrum when the spectrum is not used by
PUs [3,4].

Considering the absolute right of the PUs, the transmission of SUs can not
be guaranteed. During the transmission of SUs, PUs can arrive at any instant
c© Springer International Publishing AG 2017
W. Yue et al. (Eds.): QTNA 2017, LNCS 10591, pp. 168–179, 2017.
https://doi.org/10.1007/978-3-319-68520-5_11
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and interrupt the transmission of the SUs. Therefore, from the perspective of
SUs, it is necessary to adjust their behaviors based on the history of spectrum
utilization of PUs [5–7].

In recent years, as stated in [8], some researchers have dealt with the influence
of PUs actions on the system performance of cognitive radio networks.

In [9], Jin et al. introduced an energy saving strategy to cognitive radio
networks. Via the Matrix-Geometric Solution method, they derived the aver-
age latency of SU packets and the system energy saving ratio. With numerical
results, they illustrated how the arrival rate of PU packets influenced the system
performance of SU packets.

In [10], Li and Han considered socially optimal queuing control for the SU
packets in cognitive radio networks. They assumed the emergence of PUs was a
server interruption. Based on an assumption of Markovian service interruptions,
the authors analyzed the individually and socially optimal threshold strategies
for the SUs.

As mentioned above, we find that most of the available literature relating
to cognitive radio networks does not consider the buffer setting for the PUs.
However, in order to reduce the possible packet loss of PUs, it is necessary to set
a buffer for the PU packets, especially for the networks that have a large number
of newly arriving PU packets. In [11], Asheralieva and Miyanaga proposed a
spectrum allocation algorithm to assign the spectrum resources based on the
buffer sizes of the PUs and SUs. With numerical results, they showed that the
buffer setting for the PUs had an important impact on both the PUs and SUs.

On the other hand, in most of the available literature relating to cogni-
tive radio networks, in order to avoid possible computational complexity, some
continues-time Markov models were built to analyze the system performance.
However, considering the digital nature of model communication networks, the
discrete-time models are more suitable for the system analysis of cognitive radio
networks. Therefore, in this paper, overcoming the computational complexity,
we build and analyze a discreet-time Markov chain model.

In this paper, we analyze a spectrum resource allocation strategy in cognitive
radio networks with a slotted time structure. In order to reduce the possible
packet loss of the PUs, we assume that there is a buffer with a finite capacity set
for PUs. Different from the model analysis in [11], considering the change in the
number of PU packets and SU packets in the system, we construct and analyze
a two-dimensional discrete-time Markov chain model. Moreover, we derive the
expressions of some important performance measures of the PU packets and
the SU packets. Using numerical results, we compare the system performance
between a finite buffer setting and a zero buffer setting for the PUs.

The remainder of this paper is organized as follows. A Markov chain model
considering finite buffer setting for PUs is demonstrated in Sect. 2. The model
analysis is carried out in Sect. 3. In Sect. 4, the expressions for some important
performance measures are derived. In Sect. 5, numerical results are provided to
compare the system performance between a finite buffer setting and a zero buffer
setting for the PUs. Finally, conclusions are drawn in Sect. 6.
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2 System Model

In this paper, we focus on the spectrum allocation strategy in a cognitive radio
network with a slotted time structure. We focus on a single channel in the spec-
trum. This single channel is authorized to one PU. The packets generated from
this PU can access the system and can be transmitted on the channel always. SU
packets generated from SUs can access the system and be transmitted oppor-
tunistically.

We assume the packet arrivals occur during the beginning instant of a slot,
and the packet departures occur during the ending instant of a slot.

In order to reduce the possible packet loss, we set buffers for the PU packets
and the SU packets, respectively. In practice, the buffers can accommodate the
packets that can not access the channel directly. In this paper, we assume that
the PU buffer is allocated for the newly arriving PU packets, and the SU buffer
is allocated for both of the newly arriving SU packets and the interrupted SU
packets. The capacity of the PU buffer is finite and denoted as K (K > 0).
Considering the lower priority of SU packets in cognitive radio networks, there
may be a large number of SU packets waiting in the system. Therefore, we
assume the capacity of the SU buffer is infinite.

In order to demonstrate the system actions of PU packets and SU packets
more intuitively, we depict Fig. 1 as follows.

Fig. 1. System actions of PU packets and SU packets.
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As shown in Fig. 1, in order to avoid complexity, we assume the PU packets
and the SU packets will access the system with one queue respectively.

When a PU packet is being transmitted on the channel, we assume no other
packet (a PU packet or an SU packet) can access the channel until the trans-
mission of this PU packet is complete.

A PU packet that cannot access the channel enters the PU buffer. A newly
arriving PU packet can wait in the PU buffer to be transmitted. However, a
newly arriving PU packet has to leave the system when the PU buffer is full.

Considering the higher priority of PU packets, a PU packet can interrupt an
SU packet’s transmission. The SU buffer is prepared for both of the newly arriv-
ing SU packets and the interrupted SU packets. We assume that an interrupted
SU packets can return to the SU buffer and wait for the next transmission.

The intervals for the PU packets and the SU packets’ arrivals are supposed
to follow geometric distributions with arrival rates λ1 and λ2, where λ̄1 = 1 −
λ1 (λ̄2 = 1 − λ2).

The transmission times for the PU packets and the SU packets are supposed
to follow geometric distributions with transmission rates μ1 and μ2, where μ̄1 =
1 − μ1 (μ̄2 = 1 − μ2).

We introduce two notations to denote different packet numbers at the instant
t = n+ as follows:

Sn � the number of SU packets in the system,
Pn � the number of PU packets in the system.

Based on the behaviors of the two kinds of packets in the system, we can
build a discrete-time Markov chain {Sn, Pn}. The state space Ω for {Sn, Pn}
can be given as follows:

Ω = {(i, j) : 0 ≤ i < ∞, 0 ≤ j ≤ K + 1}. (1)

3 Model Analysis

In this section, based on the Markov chain model built in Sect. 2, we derive the
system steady-state distribution.

In order to analyze the system model, we firstly define the system level as
the number of SU packets in the system, and further define the system stage as
the number of PU packets in the system.

From the transitions of the system level and stage, we show the state transi-
tion probability matrix Q of {Sn, Pn} as follows:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C 0 B0

D C B
D C B

. . . . . . . . .
D C B

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)
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As shown in Eq. (2), the state transition probability matrix Q presents as a
block structure. Each non-zero block in Q is defined as follows:

(1) C 0 is a (K + 2) × (K + 2) block matrix when the number of SU packets in
the system is fixed at 0.

C 0 =

⎛
⎜⎜⎜⎜⎜⎝

λ̄1λ̄2 λ1λ̄2

λ̄1λ̄2μ1 λ̄2(λ̄1μ̄1 + λ1μ1) λ1λ̄2μ̄1

. . . . . . . . .
λ̄1λ̄2μ1 λ̄2(λ̄1μ̄1 + λ1μ1) λ1λ̄2μ̄1

λ̄1λ̄2μ1 λ̄2(μ̄1 + λ1μ1)

⎞
⎟⎟⎟⎟⎟⎠

. (3)

(2) B0 is a (K + 2) × (K + 2) block matrix when the number of SU packets in
the system changes from 0 to 1.

B0 =

⎛
⎜⎜⎜⎜⎜⎝

λ̄1λ2 λ1λ2

λ̄1λ2μ1 λ2(λ̄1μ̄1 + λ1μ1) λ1λ2μ̄1

. . . . . . . . .
λ̄1λ2μ1 λ2(λ̄1μ̄1 + λ1μ1) λ1λ2μ̄1

λ̄1λ2μ1 λ2(μ̄1 + λ1μ1)

⎞
⎟⎟⎟⎟⎟⎠

. (4)

(3) D is a (K + 2) × (K + 2) block matrix when the number of SU packets in
the system is reduced by one.

D =

⎛
⎜⎜⎜⎝

λ̄1λ̄2μ2 λ1λ̄2μ2 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

⎞
⎟⎟⎟⎠ . (5)

(4) C is a (K + 2) × (K + 2) block matrix when the number of SU packets in
the system is fixed.

C =

⎛
⎜⎜⎜⎜⎜⎝

λ̄1(λ̄2μ̄2 + λ2μ2) λ1(λ̄2μ̄2 + λ2μ2)
λ̄1λ̄2μ1 λ̄2(λ̄1μ̄1 + λ1μ1) λ1λ̄2μ̄1

. . . . . . . . .
λ̄1λ̄2μ1 λ̄2(λ̄1μ̄1 + λ1μ1) λ1λ̄2μ̄1

λ̄1λ̄2μ1 λ̄2(μ̄1 + λ1μ1)

⎞
⎟⎟⎟⎟⎟⎠

.

(6)
(5) B is a (K + 2) × (K + 2) block matrix when the number of SU packets in

the system is increased by one.

B =

⎛
⎜⎜⎜⎜⎜⎝

λ̄1λ2μ̄2 λ1λ2μ̄2

λ̄1λ2μ1 λ2(λ̄1μ̄1 + λ1μ1) λ1λ2μ̄1

. . . . . . . . .
λ̄1λ2μ1 λ2(λ̄1μ̄1 + λ1μ1) λ1λ2μ̄1

λ̄1λ2μ1 λ2(μ̄1 + λ1μ1)

⎞
⎟⎟⎟⎟⎟⎠

. (7)
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From each non-zero block in the transition probability matrix Q , we conclude
that the two-dimensional Markov chain {Sn, Pn} follows a Quasi Birth and Death
(QBD) process [12].

By referencing [13], we note that the stability condition for the system model
is the average arrival rate being less than the average service rate. Moreover, by
referencing the analysis results presented in [14], the stability condition of the
system model can be calculated as follows:

λ2 − μ2

[
1 +

λ1

λ̄1μ1

1 − αK+1

1 − α

]−1

< 0 (8)

where α = λ1μ̄1(λ̄1μ1)−1.
Let πi,j be the steady-state distribution of the two-dimensional Markov chain,

where πi,j = limn→∞ P{Sn = i, Pn = j}. By using the Matrix-Geometric Solu-
tion method and the recursive algorithm shown in [9], we can obtain the system
steady-state distribution πi,j .

4 Performance Measures

In this section, considering the finite buffer setting for the PU packets, with
the steady-state distribution πi,j obtained in Sect. 3, we give some performance
measures for the PU packets and the SU packets, respectively.

4.1 Performance Measures of PU Packets

The average queue length EPU of the PU packets is the average number of PU
packets in the system when in the steady state. The number of PU packets in
the system is closely related to the buffer capacity K of the PU packets. So the
average queue length EPU of the PU packets can be given as follows:

EPU =
∞∑
i=0

K+1∑
j=0

jπi,j . (9)

The blocking rate βPU of the PU packets is the number of PU packets that are
blocked per slot due to the overflow of the PU buffer. Considering the capacity
K of the PU buffer, the blocking rate βPU of the PU packets is given as follows:

βPU = μ̄1λ1

∞∑
i=0

πi,K+1. (10)

The throughput θPU of the PU packets is defined as the probability that
one PU packet can be transmitted completely. Considering the priority of the
PU packets in cognitive radio networks, a PU packet can be transmitted com-
pletely so long as it can access the system without being blocked. Therefore, the
throughput θPU of the PU packets can be given as follows:

θPU =
λ1 − βPU

λ1
. (11)
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4.2 Performance Measures of SU Packets

The average queue length ESU of the SU packets is the number of SU packets
per slot in the steady state. The average queue length ESU of the SU packets
can be given as follows:

ESU =
∞∑
i=0

K+1∑
j=0

iπi,j . (12)

The interrupted rate γSU of the SU packets is the number of interrupted SU
packets in the system per slot. The interrupted rate γSU of the SU packets can
be given as follows:

γSU =
∞∑
i=1

πi,0μ̄2λ1. (13)

The average delay δSU of the SU packets is the average time period for an
SU packet sojourning in the system. By using Little’s law [15], δSU can be given
as follows:

δSU =
ESU

λ2
(14)

where ESU is the average queue length of the SU packets defined in Eq. (12).

5 Numerical Results

We present the numerical results in this section to show how the capacity of the
PU buffer influences the system performance. In the following numerical results,
K = 0 indicates the case where the buffer setting for the PU packets is set at
zero, and as an example, K = 2 indicates the case where there is a finite buffer
setting for the PU packets.

Figure 2 demonstrates the average queue length EPU of the PU packets versus
the arrive rate λ1 of the PU packets.

From Fig. 2, we observe that as the PU packet arrival rate λ1 increases or
the PU packet transmission rate μ1 deceases, the average queue length EPU

of the PU packets will increase. We know that as the PU packet arrival rate
increases or the PU packet transmission rate deceases, more PU packets will
wait in the system to be transmitted. As a result, the average queue length of
the PU packets will increase.

Besides this, from Fig. 2, we see that compared with the zero buffer setting
case (K = 0), the average queue length EPU is higher for K = 2. It is obvious
that a greater PU buffer can accommodate more PU packets, and the average
queue length of the PU packets will be correspondingly higher.

We examine the change trend for the throughput θPU for the PU packets in
Fig. 3.

In Fig. 3, we conclude that as the arrival rate λ1 of the PU packets increases,
the throughput θPU of the PU packets decreases. The reason is that the higher
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Fig. 2. Average queue length EPU of PU packets.

Fig. 3. Throughput θPU of PU packets.

the PU packet arrival rate is, the higher the possibility for the PU packets being
blocked, then the possibility for the PU packets being transmitted completely
will decrease. As a result, a lower throughput of the PU packets can be realized.
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From Fig. 3, we also find that the throughput θPU for the PU packets will
increase as the PU packet transmission rate μ1 increases. The reason is that
as the PU packet transmission rate increases, those PU packets that are in the
system will be transmitted quicker, and this will increase the throughput of PU
packets.

Moreover, from Fig. 3, we note that compared with the zero buffer setting
case (K = 0), the throughput θPU for the PU packets can be improved when
the capacity K of the PU buffer increases to 2. This is because more PU packets
can access the system to be transmitted when the buffer setting is higher.

In order to evaluate the influence of the finite buffer setting of PU packets
on the system performance of the SU packets, we depict Figs. 4 and 5 to show
the change trends for the average queue length ESU and the average delay δSU

of the SU packets. In Figs. 4 and 5, as an example, the arrival rate λ1 of the PU
packets is set as λ1 = 0.1, and the transmission rate μ2 of the SU packets is set
as μ2 = 0.8.

Fig. 4. Average queue length ESU of SU packets.

From Figs. 4 and 5, we find that a higher SU packet arrival rate λ2 can
increase both the average queue length ESU and the average delay δSU of the
SU packets. We know that as the SU packet arrival rate increases, considering
the infinite buffer setting for SU packets, more SU packets can access and wait
in the SU buffer. Obviously, this will increase the average queue length and the
average delay of the SU packets.
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Fig. 5. Average delay δSU of SU packets.

On the other hand, from Figs. 4 and 5, we find that the average queue length
ESU and the average delay δSU of the SU packets will decrease as the PU packet
transmission rate μ1 increases. The reason is that as the PU packet transmission
rate increases, the transmissions of the PU packets will be quicker and the possi-
bility for the SU packets to be transmitted will be higher, and this will decrease
the average queue length and the average delay of the SU packets.

From Figs. 4 and 5, we can also note that compared with the zero buffer
setting case (K = 0), the average queue length ESU and the average delay δSU

of the SU packets will increase when the capacity K of the PU buffer increases
to 2. This is because the greater the PU buffer capacity is, and the more the PU
packets there are in the system, then the possibility for the SU packets being
transmitted will be lower, and so larger numbers of SU packets have to sojourn
in the SU buffer. As a result, both the average queue length and the average
delay of the SU packets will be increased.

From Figs. 2, 3, 4 to 5, we find that compared with the zero buffer setting,
the throughput of the PU packets can be improved by setting a finite PU buffer
capacity. However, the average queue length of the PU packets and the SU pack-
ets, and the average delay of the SU packets will increase. Therefore, in practice,
cognitive radio networks should set different PU buffer capacities according to
different network environments.

6 Conclusions

In order to reduce possible packet loss of the primary users (PUs) in cognitive
radio networks, this paper assumed there was a buffer with a finite capacity for
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PU packets. Into the system we introduced a PU buffer with a finite capacity and
an SU buffer with an infinite capacity. Considering the different buffer settings,
we constructed a two-dimensional Markov chain model. With the steady-state
analysis for the Markov chain model, we derived the formulas for different per-
formance measures of the PU packets and the SU packets. We also demonstrated
numerical results to show that the finite buffer setting for the PU packets could
intensely increase the throughput of the PU packets.

The research in this paper provided a mathematical theoretical basis for
the buffer setting for PU packets in cognitive radio networks. We analyzed the
system model by using the Matrix-Geometric Solution method. In future works,
we will try to derive some closed-form solutions for the performance measures,
such as the average waiting time of the packets.
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Abstract. We study an optimal inventory scrapping and allocation
problem for a retailer who uses sequential online auctions with reserve
price. It is assumed that the buyers arrive according to a Poisson process
or constant case with uniform bid distributions and multi-unit Vickrey
auction mechanism is employed in each auction. We build a Markov deci-
sion process model for the retailer’s lot-size decision in these auctions
with reserve price. It is shown that the single-auction expected revenue
function satisfies a second order condition, leading to the retailer’s opti-
mal lot-size policy. That is, the optimal inventory-scraping policy is a
threshold policy and the optimal lot-size policy is a monotone staircase
with unit jumps policy when we introduce the reserve price in sequential
online auction systems. We also show these results for the case where the
reserve price is a decision variable.

Keywords: Auctions/bidding · Reserve price · Lot size
Markov decision processes

1 Introduction

With the rise of electronic commerce, sequential online auctions of identical items
are increasingly used as a viable mechanism for pricing goods in retail businesses.
These auctions are conducted either on the seller’s own website such as Dell and
Sam’s Club, or through auction giant eBay.com and other similar firms such as
Ubid. On the other hand, large retailers also use sequential online auctions as an
inventory clearing tool which combines scrapping excess inventories and lot-size
decisions, such as Overstock. In this paper, we study the optimal inventory-
scraping and lot-size decisions for an online retailer who scraps, allocates, and
sells homogeneous goods through sequential online auctions with reserve price.

Lot-sizes are one of the key decision variables in revenue management and
sequential online auctions, which mean the number of units to be allocated in
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each period. Lot-sizes in revenue management represent seat inventory control.
The research on seat inventory control, pioneered by [1], has received a good
deal of attention. We refer interested readers to [2] for a comprehensive review.
Recently, Kim [3] examines the impact of customer buying behavior on the opti-
mal airline seat inventory allocation decisions and develops an efficient heuristic
algorithm to reduce computation time. Wen et al. [4] examine dynamic capacity
management with uncertain demand and dynamic price. By using Markov deci-
sion processes, they show the optimality of a so-called save-up-to level policy.
That is, it is optimal to allocate as much as the save-up-to level to future periods
if possible in each period.

In sequential online auctions, a small lot size in each auction may result in
bidder competition thus increasing the clearing-price. But the number of units
may remain too high and the future holding costs will increase, which may also
decrease the total revenue. A large lot size in each auction may cause some
negative effects and fail due to the insufficient demand and the lower price of
units auctioned off. So there is a problem for the retailer to allocate the optimal
amount of units to each auction so as to maximize the total revenue. There
is a wide variety of work on sequential online auctions with lot-size decisions.
Segev et al. [5] first analyze sequential online auctions. They focus on how many
units to optimally offer in each auction, formulating the optimization problem
as a dynamic programming and showing a solution using existing data taken
from Onsale. Vulcano et al. [6] consider sequential online auctions for selling a
fixed quantity of a product. They prove that dynamic variants of the first-price
and second-price auction mechanisms maximize the seller’s expected revenue,
conditioned on that the number of units auctioned off is determined at the end
of the auction after all buyers’ bids are submitted. Du et al. [7] consider a similar
problem. They assume that the seller determines the number of units allocated to
each auction at the beginning of the auction, but the number of units auctioned
off in each auction is determined by arriving buyers’ bids and the reserve price.
Chou and Parlar [8] study an optimal quota allocation for a revenue-maximizing
auction holder facing a random number of bidders. Tripathi, et al. [9] study the
optimal lot size policies for sequential online auctions under the restrictions: a
fixed number of participating bidders in each auction, uniform bid distribution,
and the use of multi-unit Dutch auction mechanism. Assuming that the lot size
does not change over time, they derive a simple close-form lot-size expression
that resembles the well-known Economic Order Quantity (EOQ) formula in
inventory management.

There are two papers that have studied inventory-scrapping and lot-size deci-
sions in sequential online auctions. Pinker et al. [10] assume a fixed number of
participating bidders with uniform bid distributions in each auction and employ
multi-unit Vickrey auction mechanism. By using a deterministic dynamic pro-
gramming, they show that it is optimal to scrap inventory only one time before
beginning the sequential online auctions, and derive a closed-form lot-sizing pol-
icy. Furthermore, Chen et al. [11] build a stochastic dynamic programming model
for the seller’s inventory-scrapping and lot-size decisions in sequential online
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auctions. The model incorporates a random number of participating bidders in
each auction, allows for any bid distribution, and is not restricted to any spe-
cific price-determination mechanism. When the single-auction expected revenue
function satisfies a second order condition, they show that the optimal inventory-
scraping policy is a scrap-down-to level policy and the optimal lot-sizing policy
is a monotone staircase with unit jumps policy.

In general, the retailer sets a reserve price on the units to ensure his profit
and prohibit collusion from buyers. The reserve price set by the retailer may
be either private, or public (i.e., announced on the website). Rosenkranz and
Schmitz [12] provide theoretical explanations for when reserve prices should be
public or secret. Choi et al. [13] present evidence from 260,000 online auctions
of second-hand cars to identify the impact of public reserve prices on auction
outcomes. Meanwhile, there is a lot of literature that has studied the sequential
online auctions with the reserve prices. Caillauda and Mezzetti [14] study the
equilibrium reserve prices in sequential ascending auctions. Vulcano et al. [6]
present a sequential online auction model for selling a fixed quantity of a product.
Each unit has a hidden reserve price that depends on the inventory on hand.
The model in [6] does not consider inventory costs or scrapping but is further
generalized to include inventory holding and ordering with no fixed setup costs
in [15] and with fixed setup costs in [16]. Recently, Ghate [17] studies the optimal
minimum bids (i.e., the optimal public reserve price) and inventory scrapping
in sequential, single-unit, Vickey auctions with demand learning. In contrast to
our paper, there is no lot-size decisions in [17] due to a single-unit auction in
each period.

The basic setting in our paper is similar to [11] in that we consider a seller who
conducts a sequence of online auctions of retail goods. However, we incorporate
the seller’s reserve price in each auction in contrast to their work. Chen et al. [11]
point out “Unfortunately, simultaneous dynamic optimization of multiple design
variables such as scrapped inventory, lot-size, and minimum bid, and especially a
structural analysis of the corresponding optimal policies, will be difficult. It may
be viable under more restrictive assumptions and should provide an interesting
avenue for future research” (page 264). In this paper, we try on it. For the
Poisson arrival process or constant arrival case with uniform bid distributions,
we show that a threshold inventory-scrapping policy, and a monotone staircase
with unit jumps lot-sizing policy are optimal. We also show these results for the
case where the reserve price is a decision variable.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
the basic model with its notations and build a Markov decision process model for
the retailer’s lot-size decisions in sequential online auctions with reserve price.
In Sect. 3, we discuss the multi-unit Vickery auction mechanism and give the
single-auction expected revenue function. In Sect. 4, we show that the single-
auction expected revenue function satisfies a second order condition and obtain
the retailer’s optimal inventory-scraping and lot-size policy. Finally, Sect. 5 is
concluding section.
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2 The Basic Model

Suppose that a retailer has some initial identical items on hand. He conducts
non-overlapping sequential online auctions, i.e., auctions one after another on
the website. We call each auction a period auction. The duration of each period
auction, t0, is pre-determined. Each period auction is a multi-unit auction with
reserve price v. As in [11], at the beginning of each period, the retailer determines
how many units to scrap from his stocks on hand and how many units to offer
for a period auction. Therefore, at the beginning of auction t with inventory
level i on hand, the retailer must make two decisions: (1) scrapping y units for
a value s ≥ 0 per unit; (2) determining lot size x from the remaining units i − y
for auction t.

In online auctions, bidders generally arrive stochastically, one after another.
So their arrivals form a stochastic point process. For simplicity, it is often
assumed to be a Poisson process, which is checked statistically and is true in
many cases (see [18,19] for instance). Bidders arrive according to a Poisson
process with rate λ, and each bidder is risk-neutral. Moreover, each bidder wishes
to purchase at most one unit and she has a valuation on each unit. This valuation
is private and symmetric, that is, each bidder knows her own valuation deter-
ministically, yet only knows other bidders’ valuations as random variables which
are drawn independently from the same distribution function F (.). We call this
type of valuation independent and private valuation, IPV for short. Analytical
literature in auctions uses uniform bid distributions (see [11,20] for instance), we
follow this trend that it is assumed that F (.) is the uniform distribution function
on an interval [v, v].

For multi-unit auctions, the main two mechanisms are discriminatory auc-
tions (i.e., first-price auctions) and Vickery auctions (i.e., second-price auctions).
It is assumed that each period auction has an exogenous reserve price v, which is
announced at the beginning of the auction. So, each arriving buyer whose valua-
tion is greater than v will submit a bid. For details, in a multi-unit auction with
lot size x, each of the x highest bidders will win a unit if her bid is greater than
the reserve price; other buyers will lose. Hence, all buyers will wait until the end
of the auction. The winners are determined and get units after knowing all bids.
The price a winner pays is her own bid for the unit in discriminatory auctions,
while it is the maximum of the reserve price v and the (x + 1)-th bid in Vickery
auctions. Here, we let the (x + 1)-th bid be zero if there is no (x + 1)-th bid.
The retailer’s revenue from such an auction is the sum of all winners’ payments.
Weber [21] shows that the retailer will get the same expected revenue under these
two auction mechanisms. This is the well-known Revenue Equivalence Theorem
in the multi-unit auctions, which is also supported by some empirical research
(see [22] for instance). It is apparent that this result is still true in our setting
where bidders arrive sequentially and stochastically.

Furthermore, we assume that buyers across auctions are independent, which
excludes repeat bidders. This assumption is reasonable if unsuccessful bidders
are impatient and simply leave to buy elsewhere and if bidders do not “wait
around” to bid in future auctions (see [11,15,16] for instance). On the other
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hand, Krishna [23] points out that relaxing this assumption would make the
analysis more complicated for sequential auctions. Pinker et al. [10] and Goes
et al. [24] include repeat bidders for sequential auctions, but behavior of repeat
bidders in later auctions is not yet well-understood.

The total expected profit of the retailer from the sequential auctions is the
(discounted) sum of the expected profit gained from each period auction. The
retailer’s objective is to maximize his total expected profit.

The decision epoch is defined as the beginning of each period auction. The
notations are given as follows.

t: index for horizons;
i: state variable denoting inventory level at the beginning of a period auction;
y: decision variable denoting the number of units to be scrapped;
x: decision variable denoting the lot size offered to the period auction, 0 ≤ x ≤

i − y;
h: unit holding cost per period auction; we assume that units are assigned to the

winners at the end of the auction, and so the total holding cost is h(i − y)
for a period auction with state i and scrapping units y;

s: the value per unit for scrapped inventory;
v: the reserve price set by the retailer for all period auctions;

α ∈ (0, 1]: one period discounted factor;
qm: probability of exactly m bidders arriving in one period auction whose bids

are larger than or equal to the reserve price v;
π(x): expected revenue gained by the retailer in one period auction with the

reserve price v as a function of the lot size x. The problem how to compute
π(x) will be studied in Sect. 3 under the multi-unit Vickery auctions.

Note that both the probability qm and revenue function π(x) depend on the
number of arriving buyers, the distribution function F (.), and the reserve price
v set by the retailer. We will see this point in the next section.

As in [11], for the auction lot size x, let

∂Π(x)
Δ=

Δπ(x)
∞∑

m=x+1
qm

,

where the numerator Δπ(x) = π(x + 1) − π(x) is the first difference of π(x),
which represents the marginal single-auction expected revenue; the denomina-

tor
∞∑

m=x+1
qm represents the probability that the auction is successful due to a

sufficient number of bidders participating. Furthermore, let

∂2Π(x) = ∂Π(x + 1) − ∂Π(x).

We introduce the following condition in [11] on the single-auction revenue
function.
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Condition A. Let x̂ be the smallest maximizer of φ(.). Suppose

∂2Π(x) ≤ 0, for x ∈ {0, 1, · · · , x̂ − 2}.

Condition A implies π(.) is concave and unimodal by Lemmas 2.2 and
2.4 in [11].

Let ξx = min{x,m}, where x is lot size and m is the number of bidders arriv-
ing in one period auction whose bids are larger than or equal to the reserve price
v. Thus, when m > x, ξx = x represents that the period auction is successful;
when m ≤ x, ξx = m represents that the period auction fails. Let Vt(i) denote
the profit-to-go function at the beginning of auction t with the inventory level
i on hand. Therefore, by Markov decision processes (see [25] for instance), Vt(i)
satisfies the following optimality equation:

Vt(i) = max
0≤y≤i
0≤x≤i−y

[sy − h(i − y) + π(x)

+ αE[Vt+1(i − y − ξx)]], i ≥ 1, 1 ≤ t ≤ T, (1)

with the boundary condition VT+1(i) = 0 for i ≥ 0 and Vt(0) = 0 for all 1 ≤
t ≤ T . Though the above optimality equation is the same as the optimality
Eq. (3) in [11], it should be noted that both the probability qm and single-auction
revenue function π(x) depend on the reserve price v in this paper. The concrete
expressions of qm and π(x) will be studied in Sect. 3.

Furthermore, following [11], we rewrite the optimality Eq. (1) as:

Vt(i) = max
0≤y≤i

[sy + Wt(i − y)] , i ≥ 1, 1 ≤ t ≤ T, (2)

where,

Wt(j) = max
0≤x≤j

[−hj + π(x) + αE[Vt+1(j − ξx)]] , j ≥ 1, 1 ≤ t ≤ T. (3)

Note that Wt(0) = 0 for all 1 ≤ t ≤ T .

3 Multi-unit Vickery Auctions

In this section, we study bidding behavior and the retailer’s revenue function
under a multi-unit Vickery auction with lot-size x and reserve price v.

For online auctions on eBay, Ockenfels and Roth [26] study late and multiple
bidding in second-price auctions and point out that bidders often submit bids
very close to or just at the end of auctions. Further, Peters and Severinov [27]
reach the conclusion of a truth revealing bidding behavior for a stylized eBay
auction setting with multiple simultaneous auctions. Dang et al. [20] obtain
the dominant strategy for buyers is to report their true valuations under IPV
for second-price online auctions. Thus, we adopt multi-unit Vickery auctions to
determine a winning price for each auction (see also [28] for instance).
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Suppose that bidders arrive according to a Poisson process with arrival rate
λ during the auction with length of t0; and each bidder is risk-neutral. Moreover,
each bidder wishes to purchase at most one unit and she has a valuation on each
unit. Bidders’ valuations are IPV with the uniform distribution function F (·)
on an interval [v, v]. It is noted the bidders will bid her true valuation of the
product when the auction mechanism is the multi-unit Vickery auction. At the
end of the auction, each of the x highest bidders will win a unit if her bid is
greater than the reserve price. The price a winner pays is the maximum of the
reserve price and the (x + 1)-th bid under multi-unit Vickery auctions. Here, we
let the (x + 1)-th bid be zero if there is no (x + 1)-th bid.

Under the Vickery auction mechanism, it is assumed the the retailer sets
a reserve price v. When the retailer announces his reserve price v, the bidders
whose intended bids are less than the reserve price v will obviously not bid and
leave. The bidders who believe that the value of the unit is more than v will
be willing to place a bid. We call bidders who arrive and bid “active bidders”.
Then, by Proposition 4.1 in [7], the active bidders arrive according to a Poisson
distribution function with rate λt0F̄ (v), where F̄ (v) = 1 − F (v). Furthermore,
let vi be the valuation of i-th active bidder. It is easy to see that vi ∈ [v, v], and
its distribution function is

Fv(z)
Δ= (F (z) − F (v))/F̄ (v) =

z − v

v − v

for v ≤ z ≤ v. Let fv(·) be its probability density function.
For any period auction, if we let N denote the number of the arriving active

bidders, then the probability of the event “there are exactly m active bidders
whose valuations are over the reserve price v” is obviously given by

qm = Prob{N = m} =
1
m!

(λt0F̄ (v))me−λt0F̄ (v), m ≥ 0. (4)

Suppose that m active bidders participate in the period auction and lot-size
x is offered with x < m. The bids of m bidders are their own valuations
under the multi-unit Vickery auction and so drawn from the probability density
fv(·), and denoted by v1, v2, · · · , vm, respectively. The reverse order statistics of
v1, v2, · · · , vm are denoted by respectively v(1) ≥ v(2) ≥ · · · ≥ v(m).

Next, we introduce Euler integration to obtain the expected pay-off (price)
under the multi-unit Vickery auction. Let Γ (κ) =

∫ ∞
0

e−zzκ−1dz be the gamma
function for any κ ≥ 0. Let B(κ, γ) =

∫ 1

0
zκ−1(1 − z)γ−1dz be the beta function

evaluated at (κ, γ). It is easy to see that B(κ, γ) = Γ (κ)Γ (γ)
Γ (κ+γ) . It is well known

(see [29]) that the density function of l-th reverse order statistics v(l) is

dl|m(z) =
1

B(l,m − l + 1)
Fv(z)m−l[1 − Fv(z)]l−1fv(z), z ≥ 0, l = 1, 2, · · · ,m,

where 1
B(l,m−l+1) = m!

(l−1)!(m−l)! .

According to multi-unit Vickery auction principle [21], the active bidders
with the private valuations v(1) ≥ v(2) ≥ · · · ≥ v(x) win x units, and all of them
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pay a uniform price that equals to the (x + 1)-th highest bid v(x+1). Therefore,
the expected pay-off (price) is

E(v(x+1)) =
∫ v

v

zdx+1|m(z)dz

=
∫ v

v

z
1

B(x + 1,m − x)
Fv(z)m−x−1[1 − Fv(z)]xfv(z)dz

=
1

B(x + 1,m − x)

∫ v

v

zFv(z)m−x−1[1 − Fv(z)]xfv(z)dz.

By taking a variable transformation u = Fv(z) = z−v
v−v , we obtain

E(v(x+1)) =
1

B(x + 1,m − x)

∫ 1

0

[u(v − v) + v]um−x−1(1 − u)xdu

=
v − v

B(x + 1,m − x)
B(m − x + 1, x + 1)

+ v
1

B(x + 1,m − x)
B(m − x, x + 1)

= (v − v)
Γ (m − x + 1)Γ (x + 1)

Γ (m + 2)
Γ (m + 1)

Γ (x + 1)Γ (m − x)
+ v

= v + (v − v)
m − x

m + 1

= v − (v − v)
x + 1
m + 1

.

Hence, the revenue gained by the retailer from the multi-unit Vickery auction
with the lot-size x and reserve price v (not including the holding cost) is

π(x) =
x∑

m=0

mvqm + x

∞∑

m=x+1

qm

[

v − (v − v)
x + 1
m + 1

]

. (5)

4 Structural Analysis of Optimal Policies

Chen et al. [11] study an optimal lot-size problem for a retailer who sells a
fixed number of units through sequential online auctions. For each period auc-
tion without reserve price, they show that Condition A is true under multi-unit
Vickery auctions, multi-unit Dutch auctions and Yankee auctions for the Poisson
or constant arrival process with uniform bid distributions (Proposition 3.12 in
their paper). It should be noted that after checking the proof of results in [11], all
their results are true under Condition A, irrespective of the concrete expression
of π(x). Thus, we will show that Condition A is true under certain conditions in
the following.

Theorem 1. For the Poisson arrival process with uniform bid distributions,
Condition A holds under the multi-unit Vickery auction with reserve price v.
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Proof. Under multi-unit Vickery auctions for the Poisson arrival process with
uniform bid distributions, the expected revenue gained by the retailer in one
period auction with lot-size x and reserve price v is as follows by (5):

π(x) =
x∑

m=0

mvqm + x
∞∑

m=x+1

qm
(
v − (v − v

) x + 1

m + 1

)
.

Thus,

Δπ(x) = π(x + 1) − π(x)

= v
( x+1∑

m=0

mqm −
x∑

m=0

mqm
)

+
(
x + 1

) ∞∑

m=x+2

qm
(
v − (v − v

) x + 2

m + 1

)

−x

∞∑

m=x+1

qm
(
v − (v − v

) x + 1

m + 1

)

= v(x + 1)qx+1 + (x + 1)v
∞∑

m=x+2

qm − xv
∞∑

m=x+1

qm

+x(x + 1)(v − v)
∞∑

m=x+1

qm
m + 1

− (x + 1)(x + 2)(v − v)
∞∑

m=x+2

qm
m + 1

.

Let Q(x) = 1 −
∞∑

m=x+1
qm, then

∞∑

m=x+2
qm = 1 − Q(x + 1). Note that qm =

m+1
λt0F̄ (v)

qm+1 by (4), then

Δπ(x) = v(x + 1)qx+1 + (x + 1)v
(
1 − Q

(
x + 1

))− xv
(
1 − Q

(
x
))

+
x
(
x + 1

)(
v − v

)(
1 − Q

(
x + 1

))

λt0F̄ (v

−
(
x + 1

)(
x + 2

)(
v − v

)(
1 − Q

(
x + 2

))

λt0F̄ (v)

= v(x + 1)qx+1 + (x + 1)v
(
1 − Q

(
x
)− qx+1

)
− xv

(
1 − Q

(
x
))

+
(x + 1)(v − v)

λt0F̄ (v)

(
x
(
1 − Q

(
x
)− qx+1

)

−(x + 2
)(

1 − Q
(
x
)− qx+1 − qx+2

))

= v(x + 1)qx+1 + v
(
1 − Q

(
x
))− 2(x + 1)(v − v)

λt0F̄ (v)

(
1 − Q

(
x
))

+
(x + 1)(v − v)

λt0F̄ (v)

((
x + 2

)
qx+1 +

(
x + 2

)
qx+2 − xqx+1

)
− (x + 1)vqx+1

= v(x + 1)qx+1 + v
(
1 − Q

(
x
))− 2(x + 1)(v − v)

λt0F̄ (v)

(
1 − Q

(
x
))

+
(x + 1)qx+1

λt0F̄ (v)
[2v − 2v − vλt0F̄ (v)].
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Hence,

∂Π(x) =
Δπ(x)
∞∑

m=x+1
qm

=
Δπ(x)

1 − Q(x)

= v − 2(x + 1)(v − v)
λt0F̄ (v)

+
v(x + 1)qx+1

1 − Q(x)

+

(
x + 1

)(
2v − 2v − vλt0F̄ (v)

)

(
1 − Q(x)

)
λt0F̄ (v)

qx+1

= v − 2(x + 1)(v − v)
λt0F̄ (v)

+
λt0F̄ (v)vqx

1 − Q(x)
+

(
2v − 2v − vλt0F̄ (v)

)

(
1 − Q(x)

) qx.

Therefore,

∂2Π(x) = ∂Π(x + 1) − ∂Π(x)

=
2(x + 1)(v − v)

λt0F̄ (v)
− 2(x + 2)(v − v)

λt0F̄ (v)
+

vλt0F̄ (v)qx+1

1 − Q(x + 1)
− vλt0F̄ (v)qx

1 − Q(x)

+
(
2v − 2v − vλt0F̄ (v)

)( qx+1

1 − Q
(
x + 1

) − qx

1 − Q
(
x
)
)

=
2(v − v)
λt0F̄ (v)

+ 2
(
v − v

)( qx+1

1 − Q
(
x + 1

) − qx

1 − Q
(
x
)
)
. (6)

To prove that ∂2Π(x) ≤ 0, we define

h(x) =
qx

1 − Q(x)
.

Its first difference is Δh(x) = qx+1
1−Q(x+1) − qx

1−Q(x) . Thus, it is equivalent to show
by (6)

Δh(x) ≤ 1
λt0F̄ (v)

,

that is,
LHS = λt0F̄ (v)

( qx+1

1 − Q
(
x + 1

) − qx

1 − Q
(
x
)
)

≤ 1.

Then, replacing λ of (A.12) in Appendix A in [11] with λt0F̄ (v) and implement-
ing the same analysis, we have LHS ≤ 1. Therefore,

∂2Π(x) = ∂Π(x + 1) − ∂Π(x) ≤ 0.

��
Theorem 1 show that Condition A holds. Thus, we have the following impor-

tant results by Theorem 2.1 in [11].
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Theorem 2. (1) A threshold inventory-scrapping policy is optimal. That is, for
any inventory i ≥ 1, let 0 ≤ i∗t = min{i | s ≥ Wt(i + 1) − Wt(i)}, then we scrap
all units above the time-dependent threshold i∗t , and not to scrap any inventory
below the threshold i∗t .

(2) A monotone staircase with unit jumps lot-sizing policy is optimal. That is,
if x is the smallest optimal lot size in post-scraping inventory j, either x or x+1
is the smallest optimal lot size in post-scraping inventory j+1. Furthermore, the
smallest optimal lot size jumps from x to x+1 at j +1 ≤ k∗ = min{k | Δπ(x) >
α(Vt+1(k − x) − Vt+1(k − x − 1))}.

Under the multi-unit Vickery auction with reserve price v, for the Poisson
arrival process with uniform bid distributions, we show that both Theorems 1
and 2 are adapted from [11], that is, the reserve price does not play a role in
optimal lot-sizing in sequential online auction systems.

In the following, we assume that reserve price v is also an endogenous decision
variable for each period auction. For example, in the auctions on eBay, retailers
specify reserve prices for their auctions. Then, besides the inventory-scrpping
quantity and the amount allocated for the period auction, the retailer has to
determine the reserve price. In this case, we write the probability qm as qm(v)
and the revenue function π(x) as π(x, v) for allocating lot-size x in one period,
respectively. Hence, the optimality equation for the sequential online auctions is
as follows:

Vt(i) = max
v

Vt(i, v), (7)

Vt(i, v) = max
0≤y≤i
0≤x≤i−y

[sy − h(i − y) + π(x, v) + αE[Vt+1(i − y − ξx)]],

i ≥ 1, 1 ≤ t ≤ T, (8)

with the boundary condition VT+1(i) = 0 for i ≥ 0 and Vt(0) = 0 for all 1 ≤ t ≤
T . Clearly, V1(i) is the maximum total discounted expected profit and V1(i, v)
is the maximum total discounted expected profit under the current reserve price
v, when there are T horizons remaining and the current state is i.

Note that the proof of Theorem 1 does not concern the reserve price, Theorem 1
holds when the reserve price v is an endogenous decision variable for each period
auction. Therefore, Theorem 2 also holds with the optimal threshold and lot size
depend on the reserve price v.

When buyers arrive according to a general stochastic process with uniform
bid distributions, we give the following Remark 1.

Remark 1. We assume that the number N of arriving bidders in one period
auction is a random variable with a probability mass function g(n). We first
compute qm, the probability of the event “there are exactly m bidders whose
valuations are over reserve price v in one period auction”. It is easy to see that

qm =
∞∑

n=m

g(n)Cm
n F̄ (v)mF (v)n−m, m = 0, 1, . . . . (9)
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Specially, for the constant arrival case, i.e., the number N of arriving bidders in
one period auction is a fixed integer, we have

qm = Cm
N F̄ (v)mF (v)N−m, m = 0, 1, . . . , N. (10)

According to Sect. 3, the single-auction revenue gained by the retailer with lot-
size x and reserve price v (not including the holding cost) is the same as (5) in
form, that is,

π(x) =
x∑

m=0

mvqm + x

∞∑

m=x+1

qm

[

v − (v − v)
x + 1
m + 1

]

,

where qm is defined by (9). The first difference of π(x) is

Δπ(x) = π(x + 1) − π(x)

= v
( x+1∑

m=0

mqm −
x∑

m=0

mqm

)
+

(
x + 1

) ∞∑

m=x+2

qm

(
v − (

v − v
) x + 2
m + 1

)

−x

∞∑

m=x+1

qm

(
v − (

v − v
) x + 1
m + 1

)

= (x + 1)vqx+1 +
(
x + 1

) ∞∑

m=x+2

qm

(
v − (

v − v
) x + 2
m + 1

)

−x

∞∑

m=x+2

qm

(
v − (

v − v
) x + 1
m + 1

)
− xqx+1(v − (v − v)

x + 1
x + 2

)

= (x + 1)vqx+1 +
∞∑

m=x+2

qm(v − (v − v)
2(x + 1)
m + 1

)

−xqx+1(v − (v − v)
x + 1
x + 2

).

Then,

∂Π(x) =
Δπ(x)
∞∑

m=x+1

qm

=
1

∞∑
m=x+1

qm

[(x + 1)vqx+1 − (v − v)

∞∑

m=x+1

qm
2(x + 1)

m + 1
− vqx+1

+ v

∞∑

m=x+1

qm + (v − v)qx+1
2(x + 1)

x + 2
− xqx+1v + qx+1(v − v)

x2 + x

x + 2
]
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= v +
1

∞∑
m=x+1

qm

[(x + 1)vqx+1 − (

∞∑

m=x+1

qm
2(v − v)(x + 1)

m + 1
+ qx+1v(x + 1))]

= v −

∞∑
m=x+1

qm
2(v−v)(x+1)

m+1

∞∑
m=x+1

qm

.

Furthermore,

∂2Π(x) = ∂Π(x + 1) − ∂Π(x)

=
Δπ(x + 1)

∞∑

m=x+2
qm

− Δπ(x)
∞∑

m=x+1
qm

=

∞∑

m=x+1
qm

2(x+1)(v−v)
m+1

∞∑

m=x+1
qm

−

∞∑

m=x+2
qm

2(x+2)(v−v)
m+1

∞∑

m=x+2
qm

=
2(x + 1)(v − v)

∞∑

m=x+1

qm
m+1

∞∑

m=x+2
qm

∞∑

m=x+1
qm

∞∑

m=x+2
qm

−
2(x + 2)(v − v)

∞∑

m=x+2

qm
m+1

∞∑

m=x+1
qm

∞∑

m=x+1
qm

∞∑

m=x+2
qm

=
[qx+1(

∞∑

m=x+1
qm − (x + 1)

∞∑

m=x+1

qm
m+1 ) −

∞∑

m=x+1

qm
m+1

∞∑

m=x+1
qm]

∞∑

m=x+1
qm

∞∑

m=x+2
qm

∗2(v − v). (11)

For a general stochastic arrival process with uniform bid distributions, we can
not show that ∂2Π(x) ≤ 0 due to the complexity of (11) above and qm in (9).
Specially for the constant arrival case with uniform bid distributions, numerical
computations show that ∂2Π(x) ≤ 0. Let

Z(x, v) = qx+1(
N∑

m=x+1

qm − (x + 1)
N∑

m=x+1

qm

m + 1
)

−
N∑

m=x+1

qm

m + 1

N∑

m=x+1

qm, (12)

where qm = Cm
N F̄ (v)mF (v)N−m(m = 0, 1, . . . , N), F (v) = v−v

v−v , F̄ (v) = v−v
v−v .

Note that Z(x, v) is the main part of the numerator in (11) for the constant case
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Fig. 1. The image of Z(x, v)

with uniform bid distributions. It is assumed that there are N = 20 bidders in
each period auction. The bids are distributed uniformly on the interval [10, 100],

and so v = 10, v = 100. For given x = 1, 2, · · · , N − 1 (note that
N∑

m=x+1
qm =

N∑

m=N+1

qm in (12) is meaningless as x = N), the reserve price v discretely fetches

on the interval [10, 100], we compute Z(x, v) and obtain Fig. 1. In Fig. 1, the
horizontal axis represents the reserve price v; the vertical axis represents the
value of Z(x, v). There are 19 curves in Fig. 1 due to x = 1, 2, · · · , 19. It is easy
to see that Z(x, v) ≤ 0, thus ∂2Π(x) = 2(v−v)Z(x,v)

N∑

m=x+1
qm

N∑

m=x+2
qm

≤ 0. So, Theorem 1

holds for the constant arrival case with uniform bid distributions.

Finally, we give the following Remark 2 on the infinite horizon case.

Remark 2. It is easy to extend all the results in this paper to the infinite
horizon case with stationary models, where all parameters are stationary inde-
pendently of the period index. Then, the optimal inventory-scrapping, lot-size
and reserve price decisions for the retailer are all stationary, i.e., irrespective
of the period index t. In this case, the retailer will become more convenient to
manage his inventory. The details are omitted here.

5 Conclusions

In this paper, we study an optimal inventory-scrapping and lot-size decision
problem for a retailer who uses sequential online auctions with reserve price. We
build a Markov decision process model for the retailer’s problem. It is assumed
that the buyers arrive according to a Poisson process or constant case with uni-
form bid distributions and multi-unit Vickrey auction mechanism is employed in
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each period auction. We show that the single-auction expected revenue function
satisfies a second order condition, leading to the retailer’s optimal inventory-
scraping and lot-size policy. That is, the optimal inventory-scraping policy is a
threshold policy and the optimal lot-size policy is a monotone staircase with unit
jumps policy when we introduce the reserve price in sequential online auction
systems. We also show these results for the case where the reserve price is a
decision variable.

Further research may include developing computational approaches to deter-
mine the optimal inventory-scrapping level, lot size and reserve price in each
auction for the model studied here, and quantify the influence of the parame-
ters, e.g., unit holding cost, unit value for scrapped inventory on the optimal
policy and expected profit. On the other hand, in sequential online auctions,
bidders have the opportunity of participating in many auctions to learn and
choose the bidding strategy that best fits their preferences. Thus, an extension
of our model may include incorporating information acquired in early auctions
into lot-size decisions in later auctions through Bayesian updates (see [10,24,30]
for instance).
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Abstract. A one-server discrete-time queueing model is studied with
two arrival streams. Both arrival streams are in batches and we distin-
guish between a stream of low-priority customers, who are put in a queue
which is served on a first-come-first-served basis, and a stream of (pri-
mary) high-priority customers, who are served uninterruptedly when the
batch of high-priority customers finds the server idle upon arrival. High-
priority customers are treated as retrial customers, but once in the orbit
they lose their high-priority status. The Late Arrival Setup is chosen with
Delayed Access. The high-priority retrial customers can be interpreted
as inbound calls, and the low-priority customers as outbound calls in a
call-center. The joint steady-state distribution of the queue length of the
low-priority customers and the orbit size of secondary retrial customers
is studied using probability generating functions. Several performance
measures will be calculated, such as the mean queue length of the low-
priority customers and the orbit size of the secondary retrial customers.

Keywords: Inbound and outbound calls · Discrete-time retrial queue
Priority customers · Generating functions

1 Introduction

In call-centers inbound calls have priority over outbound calls. Outbound calls
will be handled only when after the end of a call no inbound calls are coming
in, i.e. when a server would stay idle if he would not start answering outbound
calls. Inbound calls do not wait in a queue and when upon arrival they find a
busy tone they will try to call again some random time later. Outbound calls,
for instance in the form of e-mails sent to the call-center with a request to be
called back, will be handled by the center in the order of their arrival, when time
is available due to the absence of incoming calls.

To model this priority-scheme for inbound calls over requests for being called
back by the center we study a mixed retrial/delay model in discrete time with

This paper is based on the second author’s Bachelor thesis [4].
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one server. More specifically, we consider a one-server queueing model in dis-
crete time with two types of customers. Time is divided in slots, and all events
[arrivals, start of a service and departures] are considered to occur at the slot
boundaries only. The high-priority customers [primary inbound calls] arrive in
batches following a general probability distribution. When upon arrival of a batch
of high-priority customers the server is idle, the complete batch is accepted for
an uninterrupted (batch-)service. When upon arrival of a batch of high-priority
customers the server is busy, the complete batch will be sent into orbit, and
the individual customers lose their high-priority-status. They will approach the
server individually [so-called secondary arrivals] some random time later, inde-
pendently from the other customers in the orbit.

The low-priority customers [outbound calls] also arrive in batches, possibly
following a different probability distribution, and they are put in a queue which
is served in the order of arrival [within a batch in random order]. The low-priority
customers are served individually and a low-priority customer is selected for ser-
vice only when the server is idle and no batch of primary high-priority customers
arrives in the idle slot. In case neither primary high-priority customers arrive nor
low-priority customers are present in the queue, then a possible secondary arrival
is selected for [an individual] service. The non-selected secondary customers are
resent into the orbit. When neither low-priority customers are present in the
queue at the end of the idle slot, nor any primary or secondary retrial customers
will have arrived in the idle slot, the server stays idle also the following slot.

Notice that the modeling assumption is made that in the time slot following
a (batch-)service completion the server always stays idle, even when the queue
of low-priority customers is not empty, to enable the start of the service of an
incoming batch of high-priority primary customers.

The service times of the high-priority [inbound calls] and the low-priority
[outbound calls] customers are all independent and follow [possibly] a different
general distribution. To resolve the conflict of simultaneous arrivals and depar-
tures we have chosen for the late arrival setup with delayed access, i.e. arrivals
have precedence over departures and a service of newly arrived customers can
only start at the time slot following the slot of the arrival at the earliest. For
an overview of discrete-time retrial queues with the late arrival setup we refer
to Nobel [7] and for the most complete monograph on retrial queues we refer to
Artalejo and Gómez-Corral [1].

So, in this paper we will extend the classical discrete-time one-server retrial
model of Nobel and Moreno [9] by adding a second type of customers [the out-
bound calls] who upon arrival are put in a queue. These low-priority customers
will be served one by one on a first-come-first-served basis. The retrial primary
customers [inbound calls] are given non-preemptive priority over the queued
customers [the outbound calls]. Rejected inbound calls lose their priority, but
they continue to act as retrial customers, and their service time remains unal-
tered. In Sharkawy [10] the high-priority retrial customers maintained their high-
priority status in the orbit, but it turned out to be impossible to derive a closed-
form expression for the probability generating function of the joint steady-state
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distribution of the queue size and the orbit size. For this technical reason in this
paper we made the modeling assumption that high-priority customers lose their
priority status once sent into the orbit.

In previous papers (Nobel and Moreno [8] and Nobel [6]) the priority has been
mainly modeled the other way around: non-preemptive priority of the queued
customers over the retrial customers. This is a natural hierarchy in mobile tele-
phony for modeling handover calls [high priority] versus new calls [low priority]
competing for the same target channel, see Nobel [6]. As pointed out before,
giving priority to the retrial customers over the queued customers leads to an
intractable model (see again Sharkawy [10]), and only to guarantee tractabil-
ity we made the admittedly somewhat awkward assumption that high-priority
retrial customers lose their priority once they have been sent into the orbit. In
Artalejo et al. [2] a [somewhat simplified] continuous-time counterpart of our
model with single arrivals is discussed, in which the retrial customers do not
lose their high-priority status once they are sent into the orbit, but the authors
only consider exponential service times, introduce a finite buffer size for the
low-priority customers and, most importantly, they give preemptive priority to
the retrial customers. These three characteristics of their model enable an algo-
rithmic analysis. We think that in a call center outbound calls should not be
interrupted by incoming inbound calls, and for that reason we have chosen for
non-preemptive priority for the inbound calls, but to get an analytic solution
we have to pay a price! Of course, it is also possible to give a practical applica-
tion in which our modeling assumption that the high-priority retrial customers
lose their priority status is more natural than in the call-center environment.
Take for instance a small military field hospital with one operation unit where
regularly scheduled patients [outbound calls!] and incoming emergency patients
[inbound calls!] have to be operated. When an ambulance with a group of emer-
gency patients arriving from the battlefield finds the operation unit busy they
will be sent away (maybe after some necessary minimal treatment), and subse-
quently they will compete individually with the regular patients, i.e. they lose
their high-priority [emergency] status. Although we had in mind a call-center
application when we started this paper, the above hospital example illustrates
that our technical assumption is quite realistic in another environment!

A discrete-time model with the easier priority setup, i.e. the queued cus-
tomers have priority over the retrial customers, has been studied in Choi and
Kim [3], but also they discuss only single arrivals and all customers follow the
same service-time distribution. Further, they have chosen the early arrival setup.
A continuous-time retrial model with priority for the queued customers has been
studied by Falin et al. [5], but also in that paper only single arrivals have been
considered. The model discussed in this paper can be seen both as an exten-
sion and as the discrete-time counterpart of that model, but above all as a first
attempt to reverse the priority of retrial customers versus queued customers. As
already indicated above, this reversed priority-scheme is mainly motivated by
the priority of inbound calls over outbound calls in a call-center.
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In the sections below we will study the joint steady-state distribution of the
length of the queue of low-priority customers [outbound calls] and the size of the
orbit with high-priority customers [inbound calls who lost their priority]. Not
surprisingly, the mathematical analysis of our mixed retrial/delay model differs
greatly from the analysis of the models discussed in the papers Choi and Kim [3]
and Nobel and Moreno [8]. The analysis is also more involved than the analysis
presented in Nobel [6].

As usual, we will derive the generating function of the joint steady-state
distribution of the number of low-priority customers in the queue, the number
of high-priority customers in the orbit and the residual service time of the (batch
of) customer(s) in service. Notice that we do not keep track of the type of the
ongoing service in the analysis. This generating function will be used to calculate
several performance measures, e.g. the mean queue length and the mean orbit
size. In Sect. 2 we describe the model in detail. In Sects. 3 and 4 we discuss the
steady-state distributions and the first moment of the orbit size and the queue
length. In Sect. 5 we will present some numerical results.

2 Description of the Model

For a detailed description of the discrete-time setup with late arrivals and delayed
access [LAS/DA] we refer to Nobel and Moreno [9]. Recall that due to this
LAS/DA setup in this classical retrial model the time slot after a departure the
server always stays idle for at least one slot, because arrivals have precedence
over departures. For the mixed retrial/delay model to be discussed in this paper
we make the technical assumption that the slot following the completion of a
(batch-)service the server always stays idle, also in case low-priority customers
are waiting in the queue. Imposing this idle slot guarantees the priority of the
(primary) retrial customers over the queued customers, by triggering the start
of the batch-service of any incoming batch of high-priority customers in this
idle slot at the start of the next slot, and so automatically blocking the possible
start of the service of a (queued) low-priority customer, or a secondary arrival
from the orbit. Only in case no primary batch of high-priority customers arrives
during the idle slot, the service of the longest waiting low-priority customer will
start his individual service the next slot. If no low-priority customers are present
in the queue or no batch of low-priority customers will have arrived during the
idle slot, then possibly a secondary arrival will start his individual service, and
in case there are no secondary arrivals, the server stays idle also the next slot.

We will now give the precise description of the discrete-time mixed
retrial/delay queueing model with one server and priorities for the primary
retrial customers. In each time slot primary high-priority customers [inbound
calls] arrive in batches. The batch sizes are mutually independent and follow a

general probability distribution
{

a
(H)
k

}∞

k=0
with probability generating function

(p.g.f.)

AH(z) =
∞∑

k=0

a
(H)
k zk.
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In every time slot also low-priority customers [outbound calls] arrive in batches.

These batch sizes follow a general probability distribution
{

a
(L)
i

}∞

i=0
with p.g.f.

AL(y) =
∞∑

i=0

a
(L)
i yi.

These batch sizes are again mutually independent and they are also independent
of the batch sizes of the high-priority customers. Each individual high-priority
customer requires a service time, measured as a number of time slots, which
follows the discrete probability distribution

{
b
(H)
j

}∞

j=1
with p.g.f.

BH(w) =
∞∑

j=1

b
(H)
j wj .

Similarly, every low-priority customer requires a generally distributed service
time with distribution

{
b
(L)
j

}∞

j=1
and p.g.f.

BL(w) =
∞∑

j=1

b
(L)
j wj .

All service times are mutually independent and they are also independent of the
batch sizes of the arriving customers. A service time requires at least one time
slot, so b

(H)
0 = b

(L)
0 = 0. As said before, the low-priority customers are placed

in a queue, and are served individually on a first-come-first-served basis. Also
primary high-priority customers are served individually, but uninterruptedly as
a batch-service, i.e. after every individual service completion, the next customer
of the batch starts his service immediately in the next slot. Only at the service
completion of the last customer of the batch the server stays idle the next slot,
even if low-priority customers are present in the queue, to enable the start of a
batch-service in case a new batch of high-priority customers arrives in this idle
slot. Rejected high-priority customers behave as the customers in the classical
retrial queue, with the only difference that all incoming customers [inbound calls]
from the orbit have lost their high-priority status. They even have lower-priority
than the queued customers [outbound calls]. In each time slot retrial customers
in the orbit [inbound calls who have lost their high-priority] try to reenter the
system individually and independently with the so-called retrial probability r
[0 < r ≤ 1].

We are interested in the joint steady-state distribution of the number of low-
priority customers in the queue, the number of high-priority customers [strictly
speaking a misnomer, because customers once in the orbit have lost their high-
priority status] in orbit, and the residual service time of the (batch of) cus-
tomer(s) currently in service. To analyze the mixed retrial/delay queueing model,
we define a discrete-time Markov chain (DTMC) by observing the system at the
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epochs k−, that is at the start of the time slots k just after, possibly, a service
of a (low- or high-priority) customer has started, but before the arrivals during
time slot k have occurred. We define the following random variables,

Rk = the residual service time of the ongoing (batch-)service at time k−,

Lk = the number of low-priority customers present in the queue at time k−,

Qk = the number of high-priority customers in orbit at time k − .

We define Rk = 0 when at epoch k− the server is idle. Notice that the type
of the residual service time is not part of the state description. Introduce the
offered load

� := A′
L(1)B′

L(1) + A′
H(1)B′

H(1).

Then, the stochastic process {(Rk, Lk, Qk) : k = 0, 1, 2, . . .} is an irreducible ape-
riodic DTMC which is positive recurrent under the stability condition

a
(H)
0 [1 − �] − A′

L(1) − �A′
H(1) > 0.

This complicated stability condition is due to the modeling assumption that
a batch of primary high-priority customers is served uninterruptedly, imposing
only one forced idle slot after the completion of the last customer of the batch,
whereas all the other customers [low-priority and secondary customers arriving
from the orbit] force the server to stay idle after each [individual] service. So the
total used capacity, i.e. the fraction of time that the server is busy or waiting for
a possible arrival of a batch of high-priority customers, say σ, should be smaller
than 1, i.e.

σ := � + A′
L(1) + �A′

H(1) +
(
1 − a

(H)
0

)
(1 − �) < 1.

A formal proof of this stability condition can be given using Foster’s criterion
[see Nobel and Moreno [9] for the details].

3 The Joint Distribution of Queue Length and Orbit Size

In this section we will derive the joint probability generating function [p.g.f.] of
the steady-state distribution of the DTMC {(Rk, Lk, Qk) : k = 0, 1, 2, . . .}. Under
the stability condition we can define the following limiting joint distribution of
this DTMC

π(j,m, n) = lim
k→∞

IP(Rk = j;Lk = m;Qk = n), j,m, n = 0, 1, 2, . . . ,

with its associated three-dimensional generating function

Π(w, y, z) =
∞∑

j=0

∞∑
m=0

∞∑
n=0

π(j,m, n)wjymzn.
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In the following it is convenient to introduce also the partial generating functions,

Πjm(z) =
∞∑

n=0

π(j,m, n)zn and

Πj(y, z) =
∞∑

m=0

∞∑
n=0

π(j,m, n)ymzn =
∞∑

m=0

Πjm(z)ym.

To find the p.g.f. Π(w, y, z) we write down the system of balance equations,

π(0,m, n) = I{m=0}a
(L)
0 a

(H)
0 (1 − r)nπ(0, 0, n)

+
m∑

i=0

a
(L)
i

n∑
k=0

a
(H)
k π(1,m − i, n − k),

m, n = 0, 1, . . . , (1)

π(j,m, n) =
m∑

i=0

a
(L)
i

n∑
k=0

a
(H)
k π(j + 1,m − i, n − k)

+ a
(H)
0

m+1∑
i=0

a
(L)
i π(0,m + 1 − i, n)b(L)

j

+
m∑

i=0

a
(L)
i

j∑
k=1

a
(H)
k π(0,m − i, n)b(H)(∗k)

j

+ I{m=0}a
(L)
0 a

(H)
0

(
1 − (1 − r)n+1

)
π(0, 0, n + 1)b(H)

j ,

j = 1, 2, . . . ; m,n = 0, 1, 2, . . . . (2)

Notice how our technical assumption that after the completion of a [batch-]
service the server stays idle for at least one time slot plays its role in these
balance equations.

From Eq. (1) we get by multiplying both sides with zn and summing over
n = 0, 1, . . ., and subsequently multiplying both sides of the result by ym and
summing over m = 0, 1, . . .,

Π0(y, z) = a
(L)
0 a

(H)
0 Π00((1 − r)z) + AL(y)AH(z)Π1(y, z). (3)

From Eq. (2) we get, acting similarly,

Πj(y, z) = AL(y)AH(z)Πj+1(y, z)

+
a
(H)
0 b

(L)
j

y

[
AL(y)Π0(y, z) − a

(L)
0 Π00(z)

]

+AL(y)
j∑

k=1

a
(H)
k b

(H)(∗k)
j Π0(y, z)

+
a
(L)
0 a

(H)
0 b

(H)
j

z
[Π00(z) − Π00((1 − r)z)] . (4)
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Next, multiplying Eq. (4) by wj and summing over j = 1, 2, . . . gives after some
simple algebra, using Eq. (3) to get rid of Π1(y, z),

yz(w − AL(y)AH(z))Π(w, y, z)

= AL(y)z
[
a
(H)
0 w(BL(w) − y) + y(wAH(BH(w)) − AH(z))

]
Π0(y, z)

+ a
(L)
0 a

(H)
0 w [yBH(w) − zBL(w)] Π00(z)

+ a
(L)
0 a

(H)
0 wy [z − BH(w)] Π00((1 − r)z). (5)

So, the problem is to find the unknown partial generating functions Π0(y, z) and
Π00(z). Firstly, take w = AL(y)AH(z) in (5) to make the left-hand side zero.
This gives

AL(y)z
[

a
(H)
0 ω(y, z)[BL(ω(y, z)) − y]

+y[ω(y, z)AH(BH(ω(y, z))) − AH(z)]

]
Π0(y, z)

= a
(L)
0 a

(H)
0 ω(y, z) [zBL(ω(y, z)) − yBH(ω(y, z))] Π00(z)+

−a
(L)
0 a

(H)
0 ω(y, z)y [z − BH(ω(y, z))] Π00((1 − r)z). (6)

where ω(y, z) := AL(y)AH(z). Now consider the coefficient of Π0(y, z). Let

ψ(y, z) := a
(H)
0 ω(y, z)[BL(ω(y, z)) − y]

+y[ω(y, z)AH(BH(ω(y, z))) − AH(z)]

Then we have
∀z∃!y : ψ(y, z) = 0.

For real z ∈ (0, 1) this follows immediately

ψ(0, z) = a
(H)
0 a

(L)
0 AH(z)BL

(
a
(L)
0 AH(z)

)
> 0.

ψ(1, z) = AH(z)
[
a
(H)
0 BL(AH(z)) + AH(BH(AH(z))) −

(
1 + a

(H)
0

)]
≤ 0

with equality only for z = 1. Notice that ψ(1, 1) = 0.
Let y∗(z) be the unique solution, i.e. ψ(y∗(z), z) = 0 and introduce

φ(z) := ω(y∗(z), z) = AL(y∗(z))AH(z).

Notice that from ψ(y∗(z), z) = 0 we get

y∗(z) =
a
(H)
0 φ(z)BL(φ(z))

a
(H)
0 φ(z) + AH(z) − φ(z)AH(BH(φ(z)))

. (7)
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It is easy to see that y∗(1) = 1 and so also φ(1) = 1. Now from (6) and using
(7) we find the recursion

Π00(z) =
y∗(z)[BH(φ(z)) − z]

y∗(z)BH(φ(z)) − zBL(φ(z))
Π00((1 − r)z)

=

a
(H)
0 φ(z)BL(φ(z))

a
(H)
0 φ(z)+AH(z)−φ(z)AH(BH(φ(z)))

[BH(φ(z)) − z]

a
(H)
0 φ(z)BL(φ(z))

a
(H)
0 φ(z)+AH(z)−φ(z)AH(BH(φ(z)))

BH(φ(z)) − zBL(φ(z))
Π00((1−r)z).

Some algebra leads to a simple recursion,

Π00(z)=
a
(H)
0 φ(z)[z−BH(φ(z))]

a
(H)
0 φ(z)[z − BH(φ(z))] + z[AH(z) − φ(z)AH(BH(φ(z)))]

Π00((1−r)z).

Now introduce the so-called retrial function for the primary batch-service
model

Rb(z) =
a
(H)
0 φ(z)[z − BH(φ(z))]

a
(H)
0 φ(z)[z − BH(φ(z))] + z[AH(z) − φ(z)AH(BH(φ(z)))]

.

Notice that Rb(0) = 1 and after using L’Hôpital we find that

Rb(1) =
a
(H)
0 [1− B′

H(1)φ′(1)]

a
(H)
0 [1− B′

H(1)φ′(1)] +A′
H(1)− φ′(1)[A′

H(1)B′
H(1) + 1]

=
a
(H)
0 [1−A′

L(1)B′
L(1)−A′

H(1)B′
H(1)]−A′

L(1)

a
(H)
0 [1−A′

L(1)B′
L(1)−A′

H(1)B′
H(1)]−A′

L(1)− [A′
L(1)B′

L(1) +A′
H(1)B′

H(1)]A′
H(1)

.

In the denominator we recognize the stability condition!
Now we get by iteration

Π00(z) =
n−1∏
k=0

Rb

(
(1 − r)kz

)
Π00 ((1 − r)nz) .

Next, sending n to infinity we find

Π00(z) =
∞∏

k=0

Rb

(
(1 − r)kz

)
Π00(0). (8)

The problem is to calculate Π00(0), the steady-state probability that the system
is empty!

From (6) we find

Π0(y, z) =
a
(L)
0 a

(H)
0 ω(y, z)

{
[zBL(ω(y, z)) − yBH(ω(y, z))] Π00(z)
−y [z − BH(ω(y, z))] Π00((1 − r)z)

}

AL(y)z
[

a
(H)
0 ω(y, z)[BL(ω(y, z)) − y]

+y[ω(y, z)AH(BH(ω(y, z))) − AH(z)]

] .
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and using the recursion Π00(z) = Rb(z)Π00((1 − r)z) we get

Π0(y, z) =
a
(L)
0 a

(H)
0 AH(z)

{
[zBL(ω(y, z)) − yBH(ω(y, z))] Rb(z)

−y [z − BH(ω(y, z))]

}

z

[
a
(H)
0 ω(y, z)[BL(ω(y, z)) − y]

+y[ω(y, z)AH(BH(ω(y, z))) − AH(z)]

]

×Π00((1 − r)z). (9)

We know that Π0(1, 1) = 1 − A′
L(1)B′

L(1) − A′
H(1)B′

H(1). So we can find
Π00(1 − r), again using L’Hôpital, from (9),

1 − A′
L(1)B′

L(1) − A′
H(1)B′

H(1) = Π0(1, 1) = lim
y→1

Π0(y, 1)

= lim
y→1

a
(L)
0 a

(H)
0

{
[BL(AL(y)) − yBH(AL(y))] Rb(1)+

−y [1 − BH(AL(y))]

}

a
(H)
0 AL(y)[BL(AL(y)) − y]

+y[AL(y)AH(BH(AL(y))) − 1]

× Π00(1 − r)

=
a
(L)
0 a

(H)
0 {Rb(1)[B′

L(1)A′
L(1) − 1 − B′

H(1)A′
L(1)] + B′

H(1)A′
L(1)}

a
(H)
0 [B′

L(1)A′
L(1) − 1] + A′

L(1) + A′
H(1)B′

H(1)A′
L(1)

Π00(1 − r)

=
a
(L)
0 a

(H)
0 [1−A′

L(1)B′
L(1)−A′

H(1)B′
H(1)]

a
(H)
0 [1−A′

L(1)B′
L(1)−A′

H(1)B′
H(1)]−A′

L(1)− [A′
L(1)B′

L(1) +A′
H(1)B′

H(1)]A′
H(1)

Π00(1− r).

So, using the offered load � = A′
L(1)B′

L(1) + A′
H(1)B′

H(1) we find

Π00(1 − r) =
a
(H)
0 (1 − �) − A′

L(1) − �A′
H(1)

a
(L)
0 a

(H)
0

and this leads to

Π00(z) =
∞∏

k=0

Rb

(
(1 − r)kz

)
Π00(0)

=
a
(H)
0 (1 − �) − A′

L(1) − �A′
H(1)

a
(L)
0 a

(H)
0

Rb(1)
∞∏

k=0

Rb

(
(1 − r)kz

)
Rb ((1 − r)k)

=
a
(H)
0 [1 − �] − A′

L(1)

a
(L)
0 a

(H)
0

∞∏
k=0

Rb

(
(1 − r)kz

)
Rb ((1 − r)k)

.



The Priority of Inbound Calls over Outbound Calls 209

Now we can move to the next step in our search for a ‘closed form formula’ for
Π(w, y, z). Recall from (9) and the definition of Rb(z)

Π0(y, z) =
a
(L)
0 a

(H)
0 AH(z)

{
[zBL(ω(y, z)) − yBH(ω(y, z))] Rb(z)

−y [z − BH(ω(y, z))]

}

z

[
a
(H)
0 ω(y, z)[BL(ω(y, z)) − y]

+y[ω(y, z)AH(BH(ω(y, z))) − AH(z)]

]

×Π00((1 − r)z) (10)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(L)
0 a

(H)
0 AH(z)

⎧⎪⎨
⎪⎩

a
(H)
0 φ(z) [zBL(ω(y, z))− yBH(ω(y, z))] [z − BH(φ(z))]+

−y [z − BH(ω(y, z))]

×{a(H)
0 φ(z)[z − BH(φ(z))] + z[AH(z)− φ(z)AH(BH(φ(z)))]}

⎫⎪⎬
⎪⎭

z

[
a
(H)
0 ω(y, z)[BL(ω(y, z))− y]

+y[ω(y, z)AH(BH(ω(y, z)))−AH(z)]

]

×{a(H)
0 φ(z)[z − BH(φ(z))] + z[AH(z)− φ(z)AH(BH(φ(z)))]}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×a
(H)
0 [1− �]−A′

L(1)− �A′
H(1)

a
(L)
0 a

(H)
0

∞∏
k=1

Rb

(
(1− r)kz

)

Rb

(
(1− r)k

) .

Finally, we can find the full p.g.f. Π(w, y, z)! Recall (5) and use the result (10)
for Π0(y, z) and Π00((1 − r)z),

Π(w, y, z)

=

AL(y)z
[
a
(H)
0 w(BL(w) − y) + y(wAH(BH(w)) − AH(z))

]
Π0(y, z)

+a
(L)
0 a

(H)
0 w [yBH(w) − zBL(w)] Π00(z)

+a
(L)
0 a

(H)
0 wy [z − BH(w)] Π00((1 − r)z)

yz(w − AL(y)AH(z))
.

Substitution of our previous results gives

Π(w, y, z) =
(
a
(H)
0 [1 − �] − A′

L(1) − �A′
H(1)

) ∞∏
k=1

Rb

(
(1 − r)kz

)
Rb ((1 − r)k)

×

AL(y)z
[
a
(H)
0 w(BL(w) − y) + y(wAH(BH(w)) − AH(z))

]

×

⎡
⎢⎢⎢⎣

AH(z)

⎧
⎨

⎩

[zBL(ω(y, z)) − yBH(ω(y, z))] Rb(z)
−y [z − BH(ω(y, z))]

⎫
⎬

⎭

z

⎡

⎣ a
(H)
0 ω(y, z)[BL(ω(y, z)) − y]

+y[ω(y, z)AH(BH(ω(y, z))) − AH(z)]

⎤

⎦

⎤
⎥⎥⎥⎦

+w [yBH(w) − zBL(w)] Rb(z)
+wy [z − BH(w)]
yz(w − ω(y, z))

. (11)
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4 The Queue Size and the Orbit Size

From expression (11) we find the marginal p.g.f.’s L(y) := Π(1, y, 1) and Q(z) :=
Π(1, 1, z) of the limiting distribution of the queue length and the orbit size,
respectively. After some simplifications we find

L(y) =
(
a
(H)
0 [1 − �] −A′

L(1) − �A′
H(1)

)( 1 − y

1 −AL(y)

)

×a
(H)
0 AL(y)(Rb(1) − 1)[1 − BH(AL(y))] + Rb(1)[1 −AL(y)AH(BH(AL(y)))]

a
(H)
0 AL(y)[BL(AL(y)) − y] + y[AL(y)AH(BH(AL(y))) − 1]

Q(z) =
(
a
(H)
0 [1 − �] − A′

L(1) − �A′
H(1)

) ∞∏
k=1

Rb

(
(1 − r)kz

)
Rb ((1 − r)k)

×
⎡
⎣Rb(z)[zBL(AH(z)) − BH(AH(z))] + BH(AH(z)) − z

z
{

a
(H)
0 [BL(AH(z)) − 1] + AH(BH(AH(z))) − 1

}

+
(1 − z) (Rb(z) − 1)

z (1 − AH(z))

]
.

To find the mean queue length L = L′(1) we write

L(y) = (1 − σ) × F (y) × N(z)
D(z)

where σ is again the total used capacity

σ = � + A′
L(1) + �A′

H(1) +
(
1 − a

(H)
0

)
(1 − �)

and

F (y) =
1 − y

1 −AL(y)

N(y) = a
(H)
0 AL(y)(Rb(1) − 1)[1 − BH(AL(y))] + Rb(1)[1 −AL(y)AH(BH(AL(y)))]

D(y) = a
(H)
0 AL(y)[BL(AL(y)) − y] + y[AL(y)AH(BH(AL(y))) − 1].

Differentiating L(y) gives

L′(y) = (1 − σ)
(

F (y) · N ′(y)D(y) − N(y)D′(y)
[D(y)]2

+ F ′(y) · N(y)
D(y)

)
.

So we want to calculate

L′(1) = (1 − σ) lim
y→1

(
F (y) · N ′(y)D(y) − N(y)D′(y)

[D(y)]2
+ F ′(y) · N(y)

D(y)

)
.
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After tedious calculations using L’Hôpital we find for the mean queue length

L = L′(1) =
1 − σ

A′
L(1)

· N ′′(1)
2D′(1)

− D′′(1)
2D′(1)

− A′′
L(1)

2A′
L(1)

where

N ′′(1) = a
(H)
0 (1 −Rb(1))

(
2A′

L(1)2B′
H(1) + A′

L(1)2B′′
H(1) + A′′

L(1)B′
H(1)

)
+

−Rb(1)
(
2A′

L(1)2B′
H(1)A′

H(1) + A′
L(1)2B′′

H(1)A′
H(1) + A′′

L(1)B′
H(1)A′

H(1)

+ A′′
L(1) + A′

L(1)2A′′
H(1)B′

H(1)2
)

D′(1) = a
(H)
0

(B′
L(1)A′

L(1) − 1
)

+ A′
L(1) + A′

H(1)B′
H(1)A′

L(1)

D′′(1) = 2a
(H)
0 A′

L(1)
(A′

L(1)B′
L(1) − 1

)
+ a

(H)
0 A′′

L(1)B′
L(1) + a

(H)
0 A′

L(1)2B′′
L(1)

+2A′
L(1)2A′

H(1)B′
H(1) + A′

L(1)2B′′
H(1)A′

H(1) + A′′
L(1)A′

H(1)B′
H(1) + A′′

L(1)

+A′
L(1)2A′′

H(1)B′
H(1)2 + 2A′

L(1) + 2A′
L(1)A′

H(1)B′
H(1).

To calculate Q = Q′(1) first rewrite Q(z) as

Q(z) = (1 − σ)
∞∏

k=1

Rb((1 − r)kz)
Rb((1 − r)k)

(
N1(z)
D1(z)

+
N2(z)
D2(z)

)

with

N1(z) = [zBL(AH(z)) − BH(AH(z))] Rb(z) + BH(AH(z)) − z

D1(z) = z
[
a
(H)
0 (BL(AH(z)) − 1) + AH(BH(AH(z))) − 1

]

N2(z) = (1 − z) [Rb(z) − 1]
D2(z) = z [1 − AH(z)] .

Differentiating Q(z) gives

Q′(z)

1 − σ
=

∞∏
k=1

Rb((1 − r)kz)

Rb((1 − r)k)

(
N ′

1(z)D1(z) − N1(z)D′
1(z)

D1(z)2
+

N ′
2(z)D2(z) − N1(z)D′

2(z)

D2(z)2

)

+
∞∑

k=1

(1 − r)kR′
b((1 − r)kz)

Rb((1 − r)k)

∏
i�=k

Rb((1 − r)iz)

Rb((1 − r)i)

(
N1(z)

D1(z)
+

N2(z)

D2(z)

)

and we need to calculate

Q′(1)
1 − σ

= lim
z→1

(
N ′

1(z)D1(z) − N1(z)D′
1(z)

D1(z)2
+

N ′
2(z)D2(z) − N1(z)D′

2(z)
D2(z)2

)

+
∞∑

k=1

(1 − r)kR′
b((1 − r)k)

Rb((1 − r)k)
lim
z→1

(
N1(z)
D1(z)

+
N2(z)
D2(z)

)
.
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Again after tedious calculations we find

Q′(1) =
(1 − σ)N ′′

1 (1)
2D′

1(1)
− (1 − �)D′′

1 (1)
2D′

1(1)
+

(1 − σ)N ′′
2 (1)

2D′
2(1)

− �D′′
2 (1)

2D′
2(1)

+
∞∑

k=1

(1 − r)kR′
b((1 − r)k)

Rb((1 − r)k)
(12)

with

N ′′
1 (1) = Rb(1)

(B′
L(1)A′′

H(1) + A′
H(1)2B′′

L(1) + 2B′
L(1)A′

H(1)+

−B′
H(1)A′′

H(1) −A′
H(1)2B′′

H(1)
)

+R′
b(1)
(B′

L(1)A′
H(1) − B′

H(1)A′
H(1) + 1

)
+ B′

H(1)A′′
H(1) + B′′

H(1)A′
H(1)2

D′
1(1) = a

(H)
0 B′

L(1)A′
H(1) + A′

H(1)2B′
H(1)

D′′
1 (1) = 2a

(H)
0 B′

L(1)A′
H(1) + 2A′

H(1)2B′
H(1) + a

(H)
0 B′

L(1)A′′
H(1) + a

(H)
0 B′′

L(1)A′
H(1)2

+A′
H(1)B′

H(1)A′′
H(1) + A′

H(1)3B′′
H(1) + A′

H(1)2B′
H(1)2A′′

H(1)

and

N ′′
2 (1) = −2R′

b(1)
D′

2(1) = −A′
H(1), D′′

2 (1) = −A′′
H(1) − 2A′

H(1).

Of course, we also have to calculate the derivative R′
b(1). Recall that

Rb(z) =
a
(H)
0 φ(z)[z − BH(φ(z))]

a
(H)
0 φ(z)[z − BH(φ(z))] + z[AH(z) − φ(z)AH(BH(φ(z)))]

=
y∗(z)[BH(φ(z)) − z]

y∗(z)BH(φ(z)) − zBL(φ(z))

where
φ(z) = ω(y∗(z), z), ω(y, z) = AL(y)AH(z)

and y = y∗(z) is the unique solution of the equation

a
(H)
0 ω(y, z)[BL(ω(y, z)) − y] + y[ω(y, z)AH(BH(ω(y, z))) − AH(z)] = 0.

Now, introduce

N(z) = y∗(z)[BH(φ(z)) − z]
D(z) = y∗(z)BH(φ(z)) − zBL(φ(z)).

Then differentiation gives

R′
b(z) =

D(z)N ′(z) − N(z)D′(z)
D(z)2

R′
b(1) = lim

z→1
Rb(z) =

N ′′(1) − Rb(1)D′′(1)
2D′(1)
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where we have

N ′′(1) = 2y∗′(1) (1 − B′
H(1)φ′(1)) − B′

H(1)φ′′(1) − B′′
H(1)φ′(1)2

D′(1) = 1 + B′
L(1)φ′(1) − B′

H(1)φ′(1) − y∗′(1)

D′′(1) = φ′′(1) (B′
L(1) − B′

H(1)) φ′(1)2 (B′′
L(1) − B′′

H(1))

+ 2B′
L(1)φ′(1) − 2B′

H(1)y∗′(1)φ′(1) − y∗′′(1),

and we recall that

Rb(1) =
a
(H)
0 [1 − B′

H(1)φ′(1)]

a
(H)
0 [1 − B′

H(1)φ′(1)] + A′
H(1) − φ′(1)[A′

H(1)B′
H(1) + 1]

.

The expressions for y∗′(1) and φ′(1) are given by

y∗′(1) =
A′

H(1)
[
a
(H)
0 B′

L(1) + A′
H(1)B′

H(1)
]

a
(H)
0 [1 − A′

L(1)B′
L(1)] − A′

L(1) [1 + A′
H(1)B′

H(1)]

φ′(1) =
A′

H(1)
[
a
(H)
0 − A′

L(1)
]

a
(H)
0 [1 − A′

L(1)B′
L(1)] − A′

L(1) [1 + A′
H(1)B′

H(1)]

and after many further calculations we find

y∗′′(1) =

(
a
(H)
0 B′

L(1) + A′
H(1)B′

H(1) + 1
)

× (
2A′

L(1)A′
H(1)y∗′(1) + A′′

H(1) + A′′
L(1)y∗′(1)2

)

+φ′(1)2
(
2a

(H)
0 B′

L(1) + a
(H)
0 B′′

L(1) + A′
H(1)B′′

H(1)
+ A′′

H(1)B′
H(1)2 + 2A′

H(1)B′
H(1)

)
+

−A′′
H(1) − 2y∗′(1)

(
A′

H(1) + φ′(1)
(
a
(H)
0 − A′

H(1)B′
H(1) − 1

))

a
(H)
0 − a

(H)
0 A′

L(1)B′
L(1) − A′

L(1)A′
H(1)B′

H(1) − A′
L(1)

φ′′(1) = A′′
H(1) + 2A′

L(1)A′
H(1)y∗′(1) + A′′

L(1)y∗′(1)2 + A′
L(1)y∗′′(1).

Plugging in all these results in (12) gives a closed form expression for Q = Q′(1).

5 Numerical Results

The starting position for our numerical results is

– All distributions geometric [batch size shifted to 0]

B′
H(1) = B′

L(1) = 2, A′
H(1) = 0.21, A′

L(1) = 0.09,

– So a
(H)
0 = 0.826,

– The offered load of L-customers is �L := A′
L(1)B′

L(1) = 0.18,
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Fig. 1. The mean size of the orbit Q̄ as a function of A
′
L (1), with r = 0.5 and ρL = 0.18

constant.

– The offered loa4d of H-customers is �H := A′
H(1)B′

H(1) = 0.42,
– The total offered load is � = �L + �H = 0.60,
– The total used capacity is

σ = � + A′
L(1) + �A′

H(1) +
(
1 − a

(H)
0

)
(1 − �) = 0.885.

Firstly, we take the offered load of L-customers �L := A′
L(1)B′

L(1) constant and
A′

L(1) increasing. The numerical results are presented in Fig. 1.
Next, we keep the total offered load � = 0.6 constant, �H := A′

H(1)B′
H(1)

increasing. The results are presented in Fig. 2.
Finally, we keep the total offered load � = 0.65 constant, and again �H

increasing. The results are presented in Fig. 3.
From the Figs. 1, 2 and 3 we can draw the following conclusions.

– Keeping both the offered load of inbound calls �H = A′
H(1)B′

H(1) and the
offered load of outbound calls �L = A′

L(1)B′
L(1) constant we have seen that

• Increasing the arrival intensity A′
H(1) of inbound calls [and simultane-

ously decreasing the mean service time B′
H(1)] decreases the mean queue

length L of outbound calls and increases the mean orbit size Q of inbound
calls.

• Increasing the arrival intensity A′
L(1) of outbound calls [and simultane-

ously decreasing the mean service time B′
L(1)] increases the mean queue

length L of outbound calls and first decreases and then increases the mean
orbit size Q of inbound calls.

Keeping the total offered load � = �H +�L constant we have seen that increasing
the offered load �H of inbound calls [and simultaneously decreasing the offered
load �L of outbound calls]

– decreases the mean queue length L of outbound calls and increases the mean
orbit size Q of inbound calls.
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Fig. 2. The mean length of the queue L̄ and mean size of the orbit Q̄ as a function of
ρH , with � = 0.6 constant.

Fig. 3. The mean length of the queue L̄ and mean size of the orbit Q̄ as a function of
ρH , with offered load � = 0.65 constant.

– increases the mean orbit size Q of inbound calls for a moderate total offered
load, say � = 0.6,

– first increases and then decreases the mean orbit size Q of inbound calls for
a high total offered load, say � = 0.65.

For more numerical results we refer to Dekker [4].
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Abstract. Bike sharing systems have rapidly developed around the
world, and they are served as a promising strategy to improve urban
traffic congestion and to decrease polluting gas emissions. So far perfor-
mance analysis of bike sharing systems always exists many difficulties
and challenges under some more general factors. In this paper, a more
general large-scale bike sharing system is discussed by means of heavy
traffic approximation of multiclass closed queueing networks with non-
exponential factors. Based on this, the fluid scaled equations and the
diffusion scaled equations are established by means of the numbers of
bikes both at the stations and on the roads, respectively. Furthermore,
the scaling processes for the numbers of bikes both at the stations and
on the roads are proved to converge in distribution to a semimartingale
reflecting Brownian motion (SRBM) in a N2-dimensional box, and also
the fluid and diffusion limit theorems are obtained. Furthermore, perfor-
mance analysis of the bike sharing system is provided. Thus the results
and methodology of this paper provide new highlight in the study of
more general large-scale bike sharing systems.

Keywords: Bike sharing systems · Fluid limit · Diffusion limit
Semimartingale reflecting Brownian motion

1 Introduction

Bike sharing systems have become an important way of urban transportation due
to its accessibility and affordability, and they are widely deployed in more than
600 major cities around the world. Bike sharing systems are regarded as promis-
ing solutions to reduce congestion of traffic and parking, automobile exhaust
pollution, transportation noise, and so on. For some survey and development
of bike sharing systems, readers may refer to, DeMaio [10], Shaheen et al. [33],
Shu et al. [35], Labadi et al. [23], and Meddin and DeMaio [28].

Two major operational issues of bike sharing systems are to care for (i) the
non-empty: sufficient bikes parked at each station in order to be able to rent a
bike at any time; and (ii) the non-full: suitable bike parking capacity designed
for each station in order to be able to return a bike in real time. Thus the empty
c© Springer International Publishing AG 2017
W. Yue et al. (Eds.): QTNA 2017, LNCS 10591, pp. 217–245, 2017.
https://doi.org/10.1007/978-3-319-68520-5_14
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or full stations are called problematic stations. Up till now, efficient measures are
developed in the study of problematic stations, including time-nonhomogeneous
demand forecasting, average bike inventory level, real-time bike repositioning,
and probability analysis of problematic stations.

So far queueing models and Markov processes have been applied to character-
izing some key steady-state performance of the bike sharing systems. Important
prior works on the bike sharing models include the M/M/1/C queue by Leurent
[22] and Schuijbroek et al. [34]; the time-inhomogeneous M(t)/M(t)/1/C model
by Raviv et al. [31] and Raviv and Kolka [30]; the queueing networks by Kochel
et al. [20], Savin et al. [32], Adelman [1], George and Xia [14,15] and Li et al.
[26]; the fluid models combining with Markov decision processes by Waserhole
and Jost [36,37]; the mean-field theory by Fricker et al. [11], Fricker and Gast
[12] and Fricker and Tibi [13]; the time-inhomogeneous M(t)/M(t)/1/K and
MAP(t)/MAP(t)/1/K + 2L + 1 queues combining with mean-field theory by
Li et al. [24] and Li and Fan [25].

An important and realistic feature of bike sharing systems is the time-varying
arrivals of bike users and their random travel times. In general, analysis of
bike sharing systems with non-Poisson user arrivals and general travel times
are always very difficult and challenging because more complicated multiclass
closed queueing networks are established to deal with bike sharing systems. See
Li et al. [26] for more interpretations. For this, fluid and diffusion approxima-
tions may be an effective and better method in the study of more general bike
sharing systems. This motivates us in this paper to develop fluid and diffusion
limits for more general large-scale bike sharing systems.

Fluid and diffusion approximations are usually applied to analysis of more
general large-scale complicated queueing networks, which possibly originate in
some practical systems including communication networks, manufacturing sys-
tems, transportation networks and so forth. See excellent monographs by, for
example, Harrison [16], Chen and Yao [4], Whitt [38]. For the bike sharing sys-
tem, further useful information is introduced as follows. (a) For heavy traf-
fic approximation of closed queueing networks, readers may refer to, such as,
Harrison et al. [19] for a closed queueing network with homogeneous customer
population and infinite buffer. Chen and Mandelbaum [3] for a closed Jackson
network, Harrison and Williams [18] for a multiclass closed network with two
single-server stations and a fixed customer population. Kumar [21] for a two-
server closed networks in heavy traffic. (b) For heavy traffic approximation of
queueing networks with finite buffers, important examples include, Dai and Dai
[6] obtained the SRBM of queue-length process relying on a uniform oscilla-
tion result for solutions to a family of Skorohod problems. Dai [8] modeled the
queueing networks with finite buffers under a communication blocking scheme,
showed that the properly normalized queue length process converges weakly to a
reflected Brownian motion in a rectangular box, and presented a general imple-
mentation via finite element method to compute the stationary distribution of
SRBM. Furthermore, Dai [9] analyzed a multiclass queueing networks with finite
buffers and a feedforward routing structure under a blocking scheme, and showed
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a pseudo-heavy-traffic limit theorem which stated that the limit process of queue
length is a reflecting Brownian motion. (c) There are some available results on
heavy traffic approximation of multiclass queueing networks, readers may refer
to, for instance, Harrison and Nguyen [17], Dai [5], Bramson [2], Meyn [29] and
Majewski [27].

Contributions of this Paper: The main contributions of this paper are three-
fold. The first contribution is to propose a more general large-scale bike sharing
system having renewal arrival processes of bike users and general travel times,
and to establish a multiclass closed queueing network from the practical factors
of the bike-sharing system where bikes are abstracted as virtual customers, while
both stations and roads are regarded as virtual nodes or servers. Note that the
virtual customers (i.e. bikes) at stations are of single class; while the virtual
customers (i.e. bikes) on roads are of two different classes due to two classes
of different bike travel or return times. The second contribution is to set up
the queue-length processes of the multiclass closed queueing network through
observing both some bikes parked at stations and the other bikes ridded on
roads. Such analysis gives the fluid scaled equations and the diffusion scaled
equations by means of the numbers of bikes both at the stations and on the
roads. The third contribution is to prove that the scaling processes, correspond-
ing to the numbers of bikes both at the stations (having one class of virtual
customers) and on the roads (having two classes of virtual customers), converge
in distribution to a semimartingale reflecting Brownian motion, and the fluid
and diffusion limit theorems are obtained in some simple versions. Based on
this, performance analysis of the bike sharing system is also given. Therefore,
the results and methodology given in this paper provide new highlight on the
study of more general large-scale bike sharing systems.

Organization of this Paper: The structure of this paper is organized as fol-
lows. In Sect. 2, we describe a more general large-scale bike sharing system with
N different stations and with N(N − 1) different roads, while this system has
renewal arrival processes of bike users and general travel times on the roads. In
Sect. 3, we establish a multiclass closed queueing network from practical factors
of the bike-sharing system where bikes are abstracted as virtual customers, while
both stations and roads are regarded as virtual nodes or servers. In Sect. 4, we
set up the queue-length processes of the multiclass closed queueing network by
means of the numbers of bikes both at the stations and on the roads, and estab-
lish the fluid scaled equations and the diffusion scaled equations. In Sects. 5 and
6, we prove that the scaling processes of the bike sharing system converge in
distribution to a semimartingale reflecting Brownian motion under heavy traffic
conditions, and obtain the fluid limit theorem and the diffusion limit theorem,
respectively. In Sect. 7, we give performance analysis of the bike sharing system
by means of the fluid and diffusion limits. Finally, some concluding remarks are
described in Sect. 8.

Useful Notation: We now introduce the notation used in the paper. For pos-
itive integer n, the n-dimensional Euclidean space is denoted by Rn and the
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n-dimensional positive orthant is denoted by Rn
+ = {x ∈ Rn : xi ≥ 0}. We

definite DRn [0, T ] as the path space of all functions f : [0, T ] → Rn which are
right continuous and have left limits. Define δj,k = 1 if j = k, else, δj,k = 0.
For a set K, let |K| denote its cardinality. u.o.c. means that the convergence is
uniformly on compact set. A triple (Ω,F , {Ft}) is called a filtered space if Ω is
a set, F is a σ-field of subsets of Ω, and {Ft, t ≥ 0} is an increasing family of
sub-σ-fields of F , i.e., a filtration. If, in addition, P is a probability measure on
(Ω,F), then (Ω,F , {Ft}, P ) is called a filtered probability space. Let Px denote
the unique family of probability measures on (Ω,F), and Ex be the expectation
operator under Px.

2 Model Description

In this section, we describe a more general large-scale bike sharing system with
N different stations and with N(N −1) different roads, which has renewal arrival
processes of bike users and general travel times.

In the large-scale bike sharing system, a customer arrives at a nonempty
station, rents a bike, and uses it for a while, then he returns the bike to a
destination station and immediately leaves this system. If a customer arrives at
a empty station, then he immediately leaves this system.

Now, we describe the bike sharing system including operations mechanism,
system parameters and mathematical notation as follows:

(1) Stations and roads: We assume that the bike sharing system contains
N different stations and at most N(N − 1) different roads, where a pair of
directed roads may be designed from any station to another station. Also, we
assume that at the initial time t = 0, each station has Ci bikes and Ki parking
positions, where 1 ≤ Ci ≤ Ki < ∞ for i = 1, . . . , N and

∑N
i=1 Ci > Kj for

j = 1, . . . , N . Note that these conditions make that some bikes can result in at
least a full station.

(2) Arrival processes: The arrivals of outside bike users (or customers) at
each station is a general renewal process. For station j, let uj = {uj(n), n ≥ 1}
be an i.i.d. random sequence of exogenous interarrival times, where uj(n) ≥ 0 is
the interarrival time between the (n − 1)st customer and the nth customer. We
assume that uj(n) has the mean 1/λj and the coefficient of variation ca,j .

(3) The bike return times:
(3.1) The first return: Once an outside customer successfully rents a bike

from station i, then he rides on a road directed to station j with probability
pi→j for

∑N
j �=i pi→j = 1, and his riding-bike time v

(1)
i→j on the road i → j is a

general distribution with the mean 1/μ
(1)
i→j and the coefficient of variation c

(1)
s,i→j .

If there is at least one available parking position at station j, then the customer
directly returns his bike to station j, and immediately leaves this system. Let
ri = {ri

j(n), n ≥ 1} be a sequence of routing selections for i, j = 1, . . . , N with
i �= j, where ri

j(n) = 1 means that the nth customer rents a bike from station i
and rides on a road directed to station j (i.e., the customer rides on road i → j),
hence Pr{ri

j(n) = 1} = pi→j .
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(3.2) The second return: From (3.1), if no parking position is available
at station j, then the customer has to ride the bike to another station l1 with
probability αj→l1 for

∑N
l1 �=j αj→l1 = 1, and his riding-bike time v

(2)
j→l1

on road

j → l1 is also a general distribution with the mean 1/μ
(2)
j→l1

and the coefficient

of variation c
(2)
s,j→l1

. If there is at least one available parking position at station
l1, then the customer directly returns his bike and immediately leaves this bike
sharing system.

(3.3) The (k+1)st return for k ≥ 2: From (3.2) and more, we assume that
this bike has not been returned at any station yet through k consecutive returns.
In this case, the customer has to try his (k + 1)st lucky return, he will ride
bike from the lk−1th full station to the lkth station with probability αlk−1→lk

for
∑N

lk �=lk−1
αlk−1→lk = 1, and his riding-bike time v

(2)
lk−1→lk

on road lk−1 →
lk is also a general distribution with the mean 1/μ

(2)
lk−1→lk

and the coefficient

of variation c
(2)
s,lk−1→lk

. If there is at least one available parking station, then
the customer directly returns his bike and immediately leaves this bike sharing
system; otherwise he has to continuously try another station again. In the next
section, those bikes ridden under their first return are called the first class of
virtual customers; while those bikes ridden under the k (k ≥ 2) returns are called
the second class of virtual customers. Let r̄j = {r̄j

i (n), n ≥ 1} be a sequence
of routing selections for i, j = 1, . . . , N with i �= j, where r̄j

i (n) = 1 means
that the nth customer who can not return the bike to the full station j will
deflect into road j → i, thus Pr{r̄j

i (n) = 1} = αj→i. Similarly, let rj→i,(d) =
{rj→i,(d)(n), n ≥ 1} be a sequence of routing selections for i, j = 1, . . . , N with
i �= j, d = 1, 2, where rj→i,(d)(n) = 1 means the nth customer of class d who
completes his short trip on road j → i will return the bike to station i, hence
Pr{rj→i,(d)(n) = 1} = pj→i,i = 1.

(4) Two classes of riding-bike times: In (3), there are two classes of
riding-bike times, who have two general distributions, that is, there are two
classes of virtual customers riding on each road. Let v

(d)
j→i = {v

(d)
j→i(n), n ≥ 1}

be a random sequence of riding-bike times of class d for i, j = 1, . . . , N with
i �= j, d = 1, 2, where v

(d)
j→i(n) is the riding-bike time for the nth customer of

class d riding on the road j → i. We assume that v
(d)
j→i has the mean 1/μ

(d)
j→i and

the coefficient of variation c
(d)
s,j→i. To care for the expected riding-bike times, we

set that μ
(d)
j→i = 1/mj→i for d = 1 and μ

(d)
j→i = 1/ξj→i for d = 2.

(5) The departure disciplines: The customer departure has two differ-
ent cases: (a) an outside customer directly leaves the bike sharing system if he
arrives at an empty station; (b) if one customer rents and uses a bike, and he
finally returns the bike to a station, then the customer completes his trip and
immediately leaves the bike sharing system.

For such a bike sharing system, Fig. 1 outlines its physical structure and
associated operations.



222 Q.-L. Li et al.

Stat
ion

 1

Stat
ion

5

Station i
Station j

Station N

Station 4

Station 3
Station 2

Road i j

Road j i

Fig. 1. The physical structure of the bike sharing system.

3 The Closed Queueing Network

In this section, we establish a multiclass closed queueing network from the bike-
sharing system where bikes are abstracted as virtual customers, and both stations
and roads are regarded as virtual nodes or servers. Specifically, the stations
contain only one class of virtual customers; while the roads can contain two
classes of virtual customers.

In the bike sharing system, there are N stations and N(N − 1) roads, and
each bike can not leave this system, hence, the total number of bikes in this
system is fixed as

∑N
i=1 Ci. Base on this, such a system can be regarded as a

closed queueing network with multiclass customers due to two types of different
travel or return times.

Let Si and Ri→j denote station i and road i → j, respectively. Let SN
denote the set of nodes abstracted by the stations, and RN the set of nodes
abstracted by the roads. Clearly SN = {Si, i = 1, . . . , N} and RN = {Ri→j :
i, j = 1, . . . , N with i �= j}. Let nj and n

(d)
i→j denote the numbers of bikes parking

in the jth station node and of bikes of class d riding on the road i → j node,
respectively.

(1) Virtual nodes: Although the stations and the roads have different
physical attributes, they are all regarded as abstract nodes in the closed queueing
network.

(2) Virtual customers: The virtual customers are abstracted by the bikes,
which are either parked in the stations or ridden on the roads. It is seen that
only one class of virtual customers are packed in the station nodes; while two
classes of different virtual customers are ridden on the road nodes due to their
different return times.
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(3) The routing matrix P : To express the routing matrix, we first define
a mapping σ(·) as follow,

{
σ(Si) = i for i = 1, . . . , N,
σ(Ri→j) = i〈j〉 for i, j = 1, . . . , N, with i �= j.

It is necessary to understand the mapping σ(·). For example, N = 2, σ(S1) = 1,
σ(S2) = 2, σ(R1→2) = 1〈2〉, σ(R2→1) = 2〈1〉, thus the routing matrix is written
as

P =

1 2 1〈2〉 2〈1〉
1
2

1〈2〉
2〈1〉

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦ .

In this case, the component pĩ,j̃ of the routing matrix P denotes the probability
that a customer leaves node ĩ to node j̃, where

pĩ,j̃ =

⎧
⎪⎪⎨

⎪⎪⎩

1 if ĩ = σ(Ri→j), j̃ = σ(Sj),
pi→j if ĩ = σ(Si), j̃ = σ(Ri→j),
αj→k if ĩ = σ(Ri→j), j̃ = σ(Rj→k),
0 otherwise.

(4) The service processes in the station nodes: For j ∈ SN, the service
process Sj = {Sj(t), t ≥ 0} of station node j, associated with the interarrival
time sequence uj = {uj(n), n ≥ 1} of the outside customers who arrive at station
j, is given by

Sj(t) = sup{n : Uj(n) ≤ t},

where Uj(n) =
∑n

l=1 uj(l), n ≥ 1 and Uj(0) = 0. Let bj = λj1{1≤nj≤Kj}.
(5) The service processes in the road nodes: For i, j = 1, . . . , N with

i �= j and d = 1, 2, the service process S
(d)
j→i = {S

(d)
j→i(t), t ≥ 0} of road node

j → i, associated with the riding-bike time sequence v
(d)
j→i = {v

(d)
j→i(n), n ≥ 1} of

the customers of class d ridden on road j → i, is given by

S
(d)
j→i(t) = sup{n : V

(d)
j→i(n) ≤ t},

where V
(d)
j→i(n) =

∑n
l=1 v

(d)
j→i(l), n ≥ 1 and V

(d)
j→i(0) = 0. We write

b
(d)
j→i = n

(d)
j→iμ

(d)
j→i =

{
n
(1)
j→i

1
mj→i

d = 1,

n
(2)
j→i

1
ξj→i

d = 2.

(6) The routing processes in the station nodes:
Case one: For j ∈ SN, the routing process Rj = {Rj

i , i �= j, i = 1, . . . , N}
and Rj

i = {Rj
i (n), n ≥ 1}, associated with the routing selecting sequence ri =

{ri
j(n), n ≥ 1} of station j, is given by

Rj(n) =
n∑

l=1

rj(l) or Rj
i (n) =

n∑

l=1

rj
i (l), n ≥ 1,

and the ith component of Rj(n) is Rj
i (n) associated with probability pj→i.
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Case two: For j ∈ SN, the routing process R̄j = {R̄j
i , i �= j, i = 1, . . . , N}

and R̄j
i = {R̄j

i (n), n ≥ 1}, associated with the routing deflecting sequence r̄j =
{r̄j

i (n), n ≥ 1} of station j, is given by

R̄j(n) =
n∑

l=1

r̄j(l) or R̄j
i (n) =

n∑

l=1

r̄j
i (l), n ≥ 1,

and the ith component of R̄j(n) is R̄j
i (n) associated with probability αj→i.

(7) The routing processes in the road nodes: For i, j = 1, . . . , N with
i �= j and d = 1, 2, the routing process Rj→i,(d) = {Rj→i,(d)(n), n ≥ 1}, asso-
ciated with the routing transferring sequence rj→i,(d) = {rj→i,(d)(n), n ≥ 1} of
road j → i, is given by

Rj→i,(d)(n) =
n∑

l=1

rj→i,(d)(l), n ≥ 1,

and the Rj→i,(d)(n) is associated with probability pj→i,i = 1.
(8) Service disciplines: The first come first served (FCFS) discipline is

assumed for all station nodes. A new processor sharing (PS) is used for all the
road nodes, where each customer of either class one or class two is served by a
general service time distribution, as described in (4) and (5).

4 The Joint Queueing Process

In this section, we set up the queue-length processes of the multiclass closed
queueing network by means of the numbers of bikes both at the stations and
on the roads, and establish the fluid scaled equations and the diffusion scaled
equations.

(1) Q(t) = {(Qj(t), Q
(d)
j→i(t)), i �= j, i, j = 1, . . . , N ; d = 1, 2; t ≥ 0}, where

Qj(t) and Q
(d)
j→i(t) are the number of virtual customers at station node j and the

numbers of virtual customers of class d at the road j → i at time t, respectively.
Specifically, Qj(0) and Q

(d)
j→i(0) are the number of virtual customers at station

node j and the number of virtual customers of class d on the road node j → i
at time t = 0, respectively.

(2) Y K(t) = {(Y K
j (t)), j = 1, . . . , N ; t ≥ 0}, where Y K

j (t) is the cumula-
tive number of virtual customers deflecting from station node j whose parking
positions are full in the time interval [0, t].

(3) Y 0(t) = {(Y 0
j (t), Y 0,(d)

j→i (t)), i �= j, i, j = 1, . . . , N ; d = 1, 2; t ≥ 0}, where

Y 0
j (t) and Y

0,(d)
j→i (t) are the cumulative amount of time that station node j and

the road node j → i are idle (no available bike, i.e., empty) in the time interval
[0, t], respectively.
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Y 0
j (t) =

∫ t

0

1{Qj(s) = 0}ds = t − Bj(t),

Y
0,(d)
j→i (t) =

∫ t

0

1{Q
(d)
j→i(s) = 0}ds = t − B

(d)
j→i(t).

(4) B(t) = {(Bj(t), B
(d)
j→i(t)), i �= j, i, j = 1, . . . , N ; d = 1, 2; t ≥ 0}, where

Bj(t) and B
(d)
j→i(t) are the cumulative amount of time that the station node j and

the road node j → i are busy (available bike, non-empty) in the time interval
[0, t], respectively.

Bj(t) =
∫ t

0

1{0 < Qj(s) ≤ Kj}ds,

B
(d)
j→i(t) =

∫ t

0

1{Q
(d)
j→i(s) > 0}ds.

(5) BF (t) = {(BF
j (t)), j = 1, . . . , N ; t ≥ 0}, where BF

j (t) is the cumulative
amount of time that station node j is full (no available parking position) in the
time interval [0, t],

BF
j (t) =

∫ t

0

1{Qj(s) = Kj}ds.

(6) Sj(Bj(t)) denotes the number of virtual customers that have completed
service at station node j during the time interval [0, t]; S

(d)
j→i(B

(d)
j→i(t)) denotes

the number of virtual customers of class d that have completed service at road
node j → i during the time interval [0, t].

(7) Rj
i (Sj(Bj(t))) denotes the number of virtual customers that enter station

node i (i.e., riding on road j → i) from station node j during the time interval
[0, t]; R̄j

i (Y
K
j (t)) denotes the number of virtual customers that enter station node

i from station j whose parking positions are full during the time interval [0, t];
and Rj→i,(d)(S(d)

j→i(B
(d)
j→i(t))) denotes the number of virtual customers of class d

that enter station node i from road node j → i during the time interval [0, t].
Now, we have the following flow balance relations for the station nodes and

the road nodes. For station node j = 1, . . . , N ,

Qj(t) = Qj(0) +
2∑

d=1

N∑

i�=j

[
Ri→j,(d)(S(d)

i→j(B
(d)
i→j(t))) − Ri→j,(d)(S(d)

i→j(B
F
j (t)))

]

− Sj(Bj(t)). (1)

Note that Y K
j (t) =

∑2
d=1

∑N
i�=j Ri→j,(d)(S(d)

i→j(B
F
j (t))), we have

Qj(t) = Qj(0) +
2∑

d=1

N∑

i�=j

Ri→j,(d)(S(d)
i→j(B

(d)
i→j(t))) − Sj(Bj(t)) − Y K

j (t). (2)

For road node j → i for i, j = 1, . . . , N with i �= j and d = 1, 2, we have

Q
(1)
j→i(t) = Q

(1)
j→i(0) + Rj

i (Sj(Bj(t))) − S
(1)
j→i(B

(1)
j→i(t)), (3)

Q
(2)
j→i(t) = Q

(2)
j→i(0) + R̄j

i (Y
K
j (t)) − S

(2)
j→i(B

(2)
j→i(t)). (4)
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Because the total number of bikes in this bike sharing system is fixed as∑N
i=1 Ci, we get that for t ≥ 0

N∑

i=1

Qi(t) +
2∑

d=1

N∑

i�=j

Q
(d)
i→j(t) =

N∑

i=1

Ci. (5)

We now elaborate to apply a centering operation to the queue-length represen-
tations of the station nodes and of the road nodes, and rewrite (2), (3) and (4)
as follows:

Q(t) = X(t) + R0Y 0(t) + RKY K(t), (6)

where X(t) = (X1(t),X2(t), . . . , XN (t)), and Xj(t) is given by

Xj(t) = Qj(0) +
2∑

d=1

N∑

i�=j

[
Ri→j,(d)(S(d)

i→j(B
(d)
i→j(t))) − S

(d)
i→j(B

(d)
i→j(t))

]

+
2∑

d=1

N∑

i�=j

[
S
(d)
i→j(B

(d)
i→j(t)) − b

(d)
i→jB

(d)
i→j(t)

]
− [Sj(Bj(t)) − bjBj(t)]

− Y K
j (t) + θjt, (7)

note that Ri→j,(d)(S(d)
i→j(B

(d)
i→j(t))) = S

(d)
i→j(B

(d)
i→j(t)),Xj(t) is simplified as

Xj(t) = Qj(0) +
2∑

d=1

N∑

i�=j

[
S
(d)
i→j(B

(d)
i→j(t)) − b

(d)
i→jB

(d)
i→j(t)

]

− [Sj(Bj(t)) − bjBj(t)] − Y K
j (t) + θjt, (8)

θj =
2∑

d=1

N∑

i�=j

b
(d)
i→j − bj , (9)

(
R0Y 0(t)

)
ĩ,j̃

=

⎧
⎨

⎩

bjY
0
j (t), if ĩ = σ(Si), and j̃ = ĩ,

−∑2
d=1 b

(d)
i→jY

0,(d)
i→j (t), if ĩ = σ(Si), and j̃ = σ(Ri→j),

0, otherwise,
(10)

(RKY K(t))̃i,j̃ =
{−Y K

j (t), if ĩ = σ(Si), and ĩ = j̃,
0, otherwise.

(11)

For road node j → i (i, j = 1, . . . , N with i �= j and d = 1, 2),X(d)
j→i(t) is given

by,

X
(1)
j→i(t) = Q

(1)
j→i(0) +

[
Rj

i (Sj(Bj(t))) − pj→iSj(Bj(t))
]

+ [pj→i(Sj(Bj(t)) − bjBj(t))]

−
[
S
(1)
j→i(B

(1)
j→i(t)) − b

(1)
j→iB

(1)
j→i(t)

]
+ θ

(1)
j→it, (12)
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θ
(1)
j→i = pj→ibj − b

(1)
j→i, (13)

(
R0Y 0(t)

)
ĩ,j̃

=

⎧
⎨

⎩

b
(1)
j→iY

0,(1)
j→i (t), if ĩ = σ(Rj→i) and j̃ = ĩ,

−pj→ibjY
0
j (t), if ĩ = σ(Rj→i) and j̃ = σ(Sj),

0, otherwise,
(14)

(RKY K(t))̃i,j̃ = 0. (15)

X
(2)
j→i(t) = Q

(2)
j→i(0) +

[
R̄j

i (Y
K
j (t)) − αj→iY

K
j (t)

]

−
[
S
(2)
j→i(B

(2)
j→i(t)) − b

(2)
j→iB

(2)
j→i(t)

]
+ θ

(2)
j→it, (16)

θ
(2)
j→i = −b

(2)
j→i, (17)

(
R0Y 0(t)

)
ĩ,j̃

=
{

b
(2)
j→iY

0,(2)
j→i (t), if ĩ = σ(Rj→i) and j̃ = ĩ,

0, otherwise,
(18)

(RKY K(t))̃i,j̃ =
{

αj→iY
K
j (t), if ĩ = σ(Rj→i) and j̃ = σ(Sj),

0, otherwise,
(19)

For i, j = 1, . . . , N with i �= j, and d = 1, 2, Qj(t), Q
(d)
j→i(t), Y

0
j (t),

Y K
j (t), Y 0,(d)

j→i (t) have some important properties as follows:

0 ≤ Qj(t) ≤ Kj ; 0 ≤ Q
(d)
j→i(t) ≤

N∑

i=1

Ci; t ≥ 0, (20)

Y 0
j (0) = 0, Y 0

j (t) is continuous and nondecreasing, (21)

Y K
j (0) = 0, Y K

j (t) is continuous and nondecreasing, (22)

Y
0,(d)
j→i (0) = 0, Y

0,(d)
j→i (t) is continuous and nondecreasing, (23)

Y 0
j (t) increases at times t only when Qj(t) = 0, (24)

Y K
j (t) increases at times t only when Qj(t) = Kj , (25)

Y
0,(d)
j→i (t) increases at times tonly when Q

(d)
j→i(t) = 0. (26)

In the remainder of this section, we provide a lemma to prove that the matrix
R = (R0, RK) is an S - matrix, which plays a key role in discussing existence and
uniqueness of the SRBM through the box polyhedron for the closed queueing
network. Note that R0 and RK are defined in (14) and (15) for d = 1, and in
(18) and (19) for d = 2. Also, the ith column of R is denoted as the vector vi.
To analyze the matrix R, readers may refer to Theorem 1.3 in Dai and Williams
[7] for more details.

The following definition comes from Dai and Williams [7], here we restate it
for convenience of readers.
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Definition 1. A square matrix A is called an S - matrix if there is a vector
x ≥ 0 such that Ax > 0. The matrix A is completely - S if and only if each
principal submatrix of A is an S - matrix.

Notice that the capacity of station nodes is finite and the total number of
bikes in this bike sharing system is a fixed constant. Without loss of generality,
we assume that the capacity of each road node is also finite, and the maximal
capacity of each road is

∑N
i=1 Ci due to the fact that the total number of bikes

in this bike sharing system is
∑N

i=1 Ci. Therefore, the state space S of this close
queueing network is a N2-dimensional box space with 2N2 boundary faces Fi,
given by

S ≡ {x = (x1, . . . , xN2)
′ ∈ RN2

+ : 0 ≤ xi ≤
N∑

i=1

Ci}. (27)

We write

Fi ≡ {x ∈ S : xi = 0}, Fi+N2 ≡ {x ∈ S : xi = Ki} for i ∈ SN, (28)

Fj ≡ {x ∈ S : xj = 0}, Fj+N2 ≡ {x ∈ S : xj =
N∑

i=1

Ci} for j ∈ RN. (29)

Let J ≡ {1, 2, . . . , 2N2} be the index set of the faces, and for each ∅ �= K ⊂ J ,
define FK = ∩i∈KFi. We indicate that the set K ⊂ J is maximal if K �= ∅, FK �= ∅,
and FK �= FK̃ for any K ⊂ K̃ such that K �= K̃. Thus, we can obtain that the
maximal set K is precisely the set of indexes of N2 distinct faces meeting at any
vertex of S. Let N be a 2N2 × N2 matrix whose ith row is given by the unit
normal of face Fi, which directs to the interior of S. We obtain,

N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0
0 1 · · · 0
· · · · · ·
0 0 · · · 1

− − − − − − − − −
−1 0 · · · 0
0 −1 · · · 0
· · · · · ·
0 0 · · · −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The state space S has 2N2
vertexes due to its box space and each vertex

given by (∩i∈αFi) ∩ (∩i∈βFi+N2) for a unique index set α ⊂ {1, . . . , N2} with
β = {1, . . . , N2}\α. Before we provide a lemma to prove the (NR)K (exactly |K|
distinct faces contain FK) is a special S-matrix, we give a geometric interpreta-
tion for a |K| × |K| S-matrix (NR)K. At the each vertex of the box, we should
make sure that there is a positive linear combination xivi + xjvj+N2 , xi > 0 for
i ∈ α and xj > 0 for j ∈ β such that xivi + xjvj+N2 directs to the interior of
the state space S.

Now, we provide a lemma to indicate the matrix (NR)K is an S-matrix.
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Lemma 1. The matrix (NR)K is an S-matrix for each maximal K ⊂ J .

Proof: It is easy to check that

NR =
(

R0 RK

−R0 − RK

)

.

Because the state space of the closed queueing network is a N2-dimensional box
space, it has 2N2 faces. Now, let us make a classify of those vertexes in this box
space as follows:

Type-1: the vertexes are given by (∩i∈AS
Fi) ∩ (∩j∈AR

Fj);
Type-2: the vertexes are given by (∩i∈AS

Fi) ∩ (∩k∈BR
Fk);

Type-3: the vertexes are given by (∩l∈BS
Fl) ∩ (∩j∈AR

Fj);
Type-4: the vertexes are given by (∩l∈BS

Fl) ∩ (∩k∈BR
Fk);

Type-5: the vertexes are given by (∩i∈AS
Fi) ∩ (∩j∈AR

Fj) ∩ (∩k∈BR\AR
Fk);

Type-6: the vertexes are given by (∩l∈BS
Fl) ∩ (∩j∈AR

Fj) ∩ (∩k∈BR\AR
Fk);

Type-7: the vertexes are given by (∩j∈AR
Fj) ∩ (∩i∈AS

Fi) ∩ (∩l∈BS\AS
Fl);

Type-8: the vertexes are given by (∩k∈BR
Fk) ∩ (∩i∈AS

Fi) ∩ (∩l∈BS\AS
Fl);

Type-9: the vertexes are given by (∩i∈AS
Fi) ∩ (∩l∈BS\AS

Fl) ∩ (∩j∈AR
Fj) ∩

(∩k∈BR\AR
Fk);

where AS and AR denote the set of index of face Fi = {xi = 0} for i ∈ SN and
Fj = {xj = 0} for j ∈ RN, respectively; BS and BR denote the set of index
of face Fl = {xl = Kl} for l ∈ SN and Fk = {xk =

∑N
i=1 Ci + 1} for k ∈ RN,

respectively. According to the model description in Sect. 2, it is seen that the
following two cases can not be established:

Case 1: All the station nodes are saturated when 1 ≤ Ci < Ki < ∞, namely,
the reflection direction vector vi on face Fi(i ∈ BS) can not simultaneously exist
in the box state space S due to

∑N
i=1 Ki >

∑N
i=1 Ci. Therefore, at the vertexes

of type-3, there must be a positive linear combination xivi + xjvj > 0 to direct
to the interior of state space S, where xi ≥ 0 for i ∈ AR and xj ≥ 0 for j ∈ BS .

Case 2: Any road node is full, namely, the faces Fi(i ∈ BR) does not have
the reflection direction vector vi in the box state space S. In other word, the
reflection direction vector vi on face Fi (i ∈ BR) is zero vector. Therefore, at
the vertexes of type-2, type-4, type-5, type-6, type-8 and type-9, there must be
a positive linear combination who directs to the interior of state space S.

Now, we should only prove that at these vertexes of type-1, type-7 and
type-3, where Ci = Ki, there also is a positive linear combination who directs
to the interior of the state space S.

At the vertexes of type-1, we only should prove that the matrix R0 in the
matrix NR is an S-matrix for d = 1, 2. It is clear that the matrix R0 is an
S-matrix due to the fact that all the diagonal elements of R0 are positive.

At the vertexes of type-7 and of type-3, for Ci = Ki and d = 1, 2, we can
rewrite the (NR)K as the following form:

M = (NR)K =
(

M1 M2

M1 M4

)

=
(

M1 0
0 M4

)

+
(

0 M2

M3 0

)

.
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where M1 is a submatrix of R0, which contains ith row (column) and ith col-
umn (row) of R0 simultaneously with i ∈ α ⊂ {1, . . . , N2}. Because the R0

is a complete S-matrix, M1 is an S-matrix. M4 is also a submatrix of −RK ,
which also contains i + N2th row (column) and i + N2th column (row) of −RK

simultaneously with i ∈ β = {1, . . . , N2}\α. At the same time, M4 is a diagonal
matrix whose diagonal element is unit one, hence M4 is also an S-matrix. M2 is
a submatrix of RK and M3 is a submatrix of −R0. Because M2 and M3 do not
contain any diagonal elements of RK and −R0,M2 and M3 are both nonnegative
matrices. Therefore, there must be a positive linear combination who directs to
the interior of the state space S at the vertexes of type-7 and type-3, for Ci = Ki

and d = 1, 2. This completes the proof. �

5 Fluid Limits

In this section, we provide a fluid limit theorem for the queueing processes of
the closed queueing network corresponding to the bike sharing system.

It follows from the functional strong law of large numbers (FSLLN) that as
t → ∞

(
1
t
Sj(t),

1
t
S
(d)
j→i(t)) → (bj , b

(d)
j→i), d = 1, 2, (30)

and as n → ∞

(
1
n

Rj
i (n),

1
n

R̄j
i (n),

1
n

Ri→j,(d)(n)) → (pj→i, αj→i, 1), d = 1, 2. (31)

We consider a sequence of closed queueing networks, indexed by n = 1, 2, . . .,
as described in Sect. 3. Let (Ωn,Fn, Pn) be the probability space on which the
nth closed queueing network is defined for the bike sharing system. All the
processes and parameters associated with the nth network are appended with a
superscript n.

For the nth network, the renewal service processes of the station nodes
and of the road nodes are expressed by Sn

j = {Sn
j (t), t ≥ 0} and S

(d),n
j→i =

{S
(d),n
j→i (t), t ≥ 0}, respectively. Let bn

j and b
(d),n
j→i be the long run average service

rates of Sn
i (t) and S

(d),n
j→i (t), respectively. The vectors of the N station capaci-

ties and of their initial bike numbers are denoted as Kn = (Kn
1 , . . . , Kn

N )
′

and
Cn = (Cn

1 , . . . , Cn
N )

′
, respectively, where 1 ≤ Cn

i ≤ Kn
N < ∞. For simplic-

ity of description, we write Rj,n as Rj , R̄j,n as R̄j and Rj→i,(d),n as Rj→i,(d)

for all n ≥ 1, i.e., the routing processes of the station nodes and of the road
nodes are compressed the number n. We append a superscript n to the perfor-
mance indexes such as Y 0,n

j (t), Y 0,(d),n
j→i (t), Bn

j (t) and Bn
j→i(t), and the interesting

processes Qn = ((Qn
j (t), Q(d),n

j→i (t))
′
and Y K,n

j (t).

The Heavy Traffic Conditions: We assume that as n → ∞

(bn
j , b

(d),n
j→i ,

√
nθn

j ,
√

nθ
(d),n
j→i ,

1√
n

Cn
i ,

1√
n

Kn
i ) → (bj , b

(d)
j→i, θj , θ

(d)
j→i, Ci,Ki), (32)
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where θn
j =

∑2
d=1

∑N
j �=i b

(d),n
j→i − bn

j ; θ
(1),n
j→i = pj→ib

n
j − b

(1),n
j→i and θ

(2),n
j→i = −b

(2),n
j→i .

At the same time, we assume that for i, j = 1, . . . , N with i �= j, d = 1, 2, all
these limits are finite.

For the initial queue lengths Qn
j (0) and Q

(d),n
j→i (0), we assume that as n → ∞

Q̄n
j (0) ≡ 1

n
Qn

j (0) → 0 and Q̄
(d),n
j→i (0) ≡ 1

n
Q

(d),n
j→i (0) → 0. (33)

It follows from the functional strong law of large numbers that for d = 1, 2, as
n → ∞

(S̄n
j (t), S̄(d),n

j→i (t), R̄j,n
i (t), ¯̄Rj,n

i (t), R̄j→i,(d),n(t))

→ (bjt, b
(d)
j→it, pj→it, αj→it, t), u.o.c., (34)

where

S̄n
j (t) =

1
n

Sn
j (nt),S̄(d),n

j→i (t) =
1
n

S
(d),n
j (nt), R̄j,n

i (t) =
1
n

Rj
i (�nt�),

¯̄Rj,n
i (t) =

1
n

R̄j
i (�nt�), R̄j→i,(d),n(t) =

1
n

Rj→i,(d)(�nt�),
and �x� is the maximal integer part of the real number x.

We give a notation: for any process Wn = {Wn(t), t ≥ 0}, we define its
centered processes Ŵn = {Ŵn(t), t ≥ 0} by

Ŵn(nt) = Wn(nt) − wnnt,

where wn is the mean of the process Wn.
For the station nodes and road nodes, we write some centered processes as

Ŝn
j (nt) = Sn

j (nt) − bn
j nt, Ŝ

(d),n
j→i (t) = S

(d),n
j→i (nt) − b

(d),n
j→i nt, (35)

R̂j,n
i (t) = Rj,n

i (�nt�) − pj→i �nt�), ˆ̄Rj,n
i (t) = R̄j,n

i (�nt�) − αj→i �nt�). (36)

For convenience of readers, we restate a lemma for the oscillation result of
a sequence of (Sn, Rn)-regulation problems in convex polyhedrons, which is a
summary restatement of Lemma 4.3 of Dai and Williams [7] and the Theorem
3.1 of Dai [8], whose proof is omitted here and can easily be referred to Dai and
Williams [7] and Dai [8] for more details.

This lemma prevails due to the fact that the state space of the box polyhedron
of this bike sharing system belongs to a simple convex polyhedrons as analyzed
in the last of Sect. 4. For a function f defined from [t1, t2] ⊂ [0,∞] into Rk for
some k ≥ 1, let

Osc(f, [t1, t2]) = sup
t1≤s≤t≤t2

|f(t) − f(s)| .

Lemma 2. For any T > 0, given a sequence of {xn}∞
n=1 ∈ DRN2 [0, T ] with

the initial values xn(0) ∈ Sn. Let (zn, yn) be an (Sn, Rn)-regulation of xn over
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[0, T ], where (zn, yn) ∈ DRN2 [0, T ] × DR2N2
+

[0, T ]. Assuming that all Sn have
the same shape, i.e., the only difference is the corresponding boundary size Kn

i .
Assuming that {Kn

i } belongs to some bounded set, and the jump sizes of yn are
bounded by Γn for each n. Then if (NR)K is an S - matrix and Rn → R as
n → ∞, we have

Osc(zn, [t1, t2]) ≤ C max{Osc(xn, [t1, t2]), Γn},

Osc(yn, [t1, t2]) ≤ C max{Osc(xn, [t1, t2]), Γn},

where C depends only on (N , R, |K|) for all K ⊂ Ξ, where Ξ denotes the collec-
tion of subsets of J ≡ {1, 2, . . . , 2N2} consisting of all maximal sets in J together
with the empty set.

Theorem 1 (Fluid Limit Theorem). Under Assumptions (32) to (34), as n →
∞, we have
(
B̄n

j (t), B̄(d),n
j→i (t), Ȳ 0,n

j (t), Ȳ 0,(d),n
j→i (t)

)
→

(
τ̄j(t), τ̄

(d)
j→i(t), Ȳ

0
j (t), Ȳ 0,(d)

j→i (t)
)

u.o.c,

where τ̄j(t) ≡ et, τ̄
(d)
j→i(t) ≡ et, Ȳj(t) ≡ 0 and Ȳ

(d)
j→i(t) ≡ 0; Ȳ 0,n

j (t) =
1
nY 0,n

j (nt), Ȳ 0,(d),n
j→i (t) = 1

nY
0,(d),n
j→i (nt), B̄n

j (t) = 1
nBn

j (nt) and B̄
(d),n
j→i (t) =

1
nB

(d),n
j→i (nt) for i, j = 1, . . . , N with i �= j, d = 1, 2.

Proof: Recall the queue length process: Q(t) = X(t) + R0Y 0(t) + RKY K(t),
where X(t) is given by (8), (12) and (16) in Sect. 4. It follows from (2) to (4)
that the scaling queueing processes for the station nodes and the road nodes are
given by

Q̄n(t) = Q̄n(0) + X̄n(t) + R0,nȲ 0,n(t) + RK,nȲ K,n(t),

where Q̄n(t) = 1
nQn(nt), Q̄n(t) = {(Q̄n

j (t), Q̄(d),n
j→i (t)), i �= j, i, j = 1, . . . , N ; d =

1, 2; t ≥ 0}; X̄n(t) = 1
nXn(nt), X̄n(t) = {(X̄n

j (t), X̄
(d),n
j→i (t)), i �=

j, i, j = 1, . . . , N ; d = 1, 2; t ≥ 0}; Ȳ 0,n(t) = 1
nY 0,n(nt), Ȳ 0,n(t) =

{(Ȳ 0,n
j (t), Ȳ 0,(d),n

j→i (t)), i �= j, i, j = 1, . . . , N ; d = 1, 2; t ≥ 0}; Ȳ K,n(t) =
1
nY K,n(nt), Ȳ K,n(t) = {(Ȳ K,n

j (t)), j = 1, . . . , N}. For each n, Q̄n(t), Ȳ n(t) and
Ȳ K,n(t) satisfy the properties (20) to (26) with the state space Sn, given by

Sn ≡
{

x = (x1, . . . , xN2)
′ ∈ RN2

+ : xi ≤ K̄n
i =

Kn
i

n
for i ∈ SN;

and xi ≤
∑N

i=1 Cn
i

n
+ 1 for i ∈ RN

}

.

For station node j = 1, . . . , N , by using (2), (8), (35) and (36), we have

X̄n
j (t) ≡ 1

n
Qn

j (0) +
1
n

2∑

d=1

N∑

i�=j

Ŝ
(d),n
i→j (nB̄

(d),n
i→j (t)) − 1

n
Ŝn

j (nB̄n
j (t)) +

1
n

θn
j nt. (37)
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For road node j → i (i, j = 1, . . . , N with i �= j), by using (12), (16), (35) and
(36), we have,

X̄
(1),n
j→i (t) ≡ 1

n
Q

(1),n
j→i (0) +

1
n

R̂j,n
i (nS̄n

j (B̄n
j (t)))

+
1
n

pj→iŜ
n
j (nB̄n

j (t)) − 1
n

Ŝ
(1),n
j→i (nB̄

(1),n
j→i (t)) +

1
n

θ
(1),n
j→i nt, (38)

X̄
(2),n
j→i (t) ≡ 1

n
Q

(2),n
j→i (0) +

1
n

ˆ̄Rj,n
i (nȲ K,n

j (t)) − 1
n

Ŝ
(2),n
j→i (nB̄

(2),n
j→i (t))

+
1
n

θ
(2),n
j→i nt. (39)

Note that B̄
(1),n
j→i (t) ≤ t, B̄n

j (t) ≤ t, Ȳ K,n
j (t) ≤ ∑N

i=1 Cn
i − Kn

j , by using (32) to

(34) and the Skorohod Representation Theorem, as n → ∞, we have

X̄n(t) = (X̄n
j (t), X̄(d),n

j→i (t)) → 0, u.o.c.

Since the state space Sn of this bike sharing system are the boxes of the same
shape in the N2-dimensional space, (NR)K is an S-matrix and Rn → R as
n → ∞. Then by Lemma 2 we have

Osc(Ȳ 0,n, [s, t] ⊆ [0, T ]) ≤ C Osc(X̄n, [s, t] ⊆ [0, T ]),

for any T ≥ 0, where C depends only on R and N for n large enough.

0 ≤ lim
n→∞ inf Osc(Ȳ 0,n, [s, t] ⊆ [0, T ])

≤ lim
n→∞ supOsc(Ȳ 0,n, [s, t] ⊆ [0, T ])

≤ C lim
n→∞ Osc(X̄n, [s, t] ⊆ [0, T ])

= 0, a.s.

where Ȳ n(t) = (Ȳ 0,n
j (t)

′
, Ȳ

(d),0,n
j→i (t)

′
)

′
. Notice that Y n(0) = 0 for all n, we have

lim
n→∞ Ȳ n(t) = 0, u.o.c. (40)

Since B̄n
j (t) = t − Ȳ 0,n

j (t) and B̄
(d),n
j→i (t) = t − Ȳ

(d),0,n
j→i (t), we obtain the con-

vergence of B̄n
j (t) and B̄

(d),n
j→i (t) for i, j = 1, . . . , N with i �= j, d = 1, 2. This

competes the proof. �

6 Diffusion Limits

In this section, we set up the diffusion scaled processes of the queueing processes,
and give their weak convergence results for the multiclass closed queueing net-
work corresponding to the bike sharing system.
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We introduce the diffusion scaling process for the process Ŵn = {Ŵn(nt),
t ≥ 0}, given by

W̃n(t) ≡ 1√
n

Ŵn(nt) =
1√
n

(Wn(nt) − wnnt).

For the station nodes and the road nodes, we write

S̃n
j (t) =

√
n

(
Sn

j (nt)
n

− bn
j t

)

, S̃
(d),n
j→i (t) =

√
n

(
S
(d),n
j→i (nt)

n
− b

(d),n
j→i t

)

, (41)

R̃j,n
i (t) =

√
n

(
Rj,n

i (nt)
n

− pj→it

)

, ˜̄Rj,n
i (t) =

√
n

(
R̄j,n

i (nt)
n

− αj→it

)

, (42)

R̃j→i,(d),n(t) =
√

n

(
Rj→i,(d),n(nt)

n
− t

)

. (43)

For the initial queueing processes Qn
j (0) and Q

n,(d)
j→i (0) for i, j = 1, . . . , N

with i �= j, d = 1, 2, we assume that as n → ∞

Q̃n
j (0) ≡ 1√

n
Qn

j (0) ⇒ Q̃(0), (44)

Q̃
(d),n
j→i (0) ≡ 1√

n
Q

(d),n
j→i (0) ⇒ Q̃

(d)
j→i(0). (45)

It follows from the Skorohod Representation Theorem and the Donsker’s
Theorem that

(S̃n
j (t), S̃(d),n

j→i (t), R̃j,n
i (t), ˜̄Rj,n

i (t), R̃j→i,(d),n(t))

⇒ (S̃j(t), S̃
(d)
j→i(t), R̃

j
i (t),

˜̄Rj
i (t), R̃

j→i,(d)(t)), (46)

where ⇒ denotes weak convergence, and S̃j(t), S̃
(d)
j→i(t), R̃

j
i (t),

˜̄Rj
i (t) and

R̃j→i,(d)(t) are all the Brownian motions with drift zero and covariance matrices
ΓS , ΓR,S,l, Γ R̄,S,l and ΓR,S,j→i, which are given by

(1) The covariance matrix of S̃(t) = (S̃j(t), S̃
(d)
j→i(t)) for i, j = 1, . . . , N with

i �= j, d = 1, 2, is given by

ΓS =

((
ΓS,S

)
N×N

0
0

(
ΓS,R,(d)

)
(N2−N)×(N2−N)

)

N2×N2

,

where
(
ΓS,S

)
ĩ,j̃

=
{

bic
2
a,iδĩ,j̃ , σ(Si) = ĩ,
0, otherwise,

(
ΓS,R,(d)

)

ĩ,j̃
=

{
b
(d)
i→j(c

(d)
s,i→j)

2δı̃,j̃ , σ(Ri→j) = ĩ,
0, otherwise.
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(2) The covariance matrix of R̃(t) = (R̃l(t)) for l = 1, . . . , N , is given by

ΓR,S,l =
(

0 0
0
(
ΓR,S,l

)
(N−1)×(N−1)

)

N2×N2

,

where

(
ΓR,S,l

)
ĩ,j̃

=
{

pl→k1(δĩ,j̃ − pl→k2), σ(Rl→k1) = ĩ, σ(Rl→k2) = j̃,
0, otherwise.

(3) The covariance matrix of ˜̄R(t) = ( ˜̄Rl(t)) for l = 1, . . . , N , is given by

Γ R̄,S,l =

(
0 0
0
(
Γ R̄,S,l

)

(N−1)×(N−1)

)

N2×N2

,

where
(
Γ R̄,S,l

)

ĩ,j̃
=

{
αl→k1(δĩ,j̃ − αl→k2), σ(Rl→k1) = ĩ, σ(Rl→k2) = j̃,
0, otherwise.

(4) The covariance matrix of R̃(t) = (R̃j→i,(d)(t)) for i, j = 1, . . . , N with
i �= j, d = 1, 2, is given by

ΓR,S,j→i =
((

ΓR,R,j→i
)
N×N

0
0 0

)

N2×N2

,

where

(
ΓR,R,j→i

)
l̃,k̃

=
{

pj→i,l(δl̃,k̃ − pj→i,k) = 0, σ(Sl) = l̃, σ(Sk) = k̃,
0, otherwise.

Now, we prove adaptedness properties of the diffusion scaling processes
(Q̃n(t), X̃n(t), Ỹ n(t)), where Q̃n(t) = 1√

n
Qn(nt), Q̃n(t) = (Q̃n

j (t), Q̃(d),n
j→i (t));

X̃n(t) = 1√
n
Xn(nt), X̃n(t) = (X̃n

j (t), X̃(d),n
j→i (t)); Ỹ 0,n(t) = 1√

n
Y 0,n(nt),

Ỹ 0,n(t) = (Ỹ 0,n
j (t)

′
, Ỹ

0,(d),n
j→i (t)

′
), Ỹ K,n

j (t) = 1√
n
Y K,n

j (nt).
Define

ςn
t = σ{Q̃n(0), S̃n(s), Ỹ 0,n(s), Ỹ K,n(t), s ≤ t}, (47)

where Q̃n(0), S̃(d),n(s), R̃(d),n(s) and ˜̄Rn(s) are defined in (41) to (45). Define
Tn

k = (T j,n
k , T

j→i,(d),n
k ), where T j,n

k and T
j→i,(d),n
k denote the partial sum of the

service time sequence at station node j and road node j → i, respectively, for
the nth network, that is,

T j,n
k =

k∑

l=1

un
j (l), T

j→i,(d),n
k =

k∑

l=1

v
(d),n
j→i (l),
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with the initial condition Tn
0 ≡ 0. Notice that Tn

k = (T j,n
k , T

j→i,(d),n
k ) is a ςn

t −
stopping time, and, 0 = Tn

0 < Tn
1 < Tn

2 < · · · < Tn
k → ∞ a.s. as k → ∞ for

each n and i, j = 1, . . . , N with i �= j, d = 1, 2. Let ς
T

(n)−
k

denote the strict past
at time Tn

k . Then

ς
T

(n)−
k

= σ(At ∩ {t < Tn
k }, At ∈ ςn

t , t ≥ 0).

Because Tn
k is a ςn

t -stopping time, un
j (k +1) and v

(d),n
j→i (k +1) are independent of

the history of the network before the time at which the kth customer is served at
station node j and road node j → i. Therefore, Tn

k is ς
T

(n)−
k

-measurable, un
j (k+1)

is independent of ς
T

(j,n)−
k

, and v
(d),n
j→i (k + 1) is independent of ς

T
(j→i,(d),n)−
k

.

Theorem 2. Under Assumption (32), we have that
(
Q̃n(t), X̃n(t), Ỹ 0,n(t), Ỹ K,n(t)

)
⇒

(
Q̃(t), X̃(t), Ỹ 0(t), Ỹ K(t)

)
, as n → ∞,

or, in component form,
(
Q̃n

j (t), Q̃(d),n
j→i (t), X̃n

j (t), X̃(d),n
j→i (t), Ỹ 0,n

j (t), Ỹ 0,(d),n
j→i (t), Ỹ K,n

j (t)
)

⇒
(
Q̃j(t), Q̃

(d)
j→i(t), X̃j(t), X̃

(d)
j→i(t), Ỹ

0
j (t), Ỹ 0,(d)

j→i (t), Ỹ K
j (t)

)
,

as n → ∞,

where X̃(t) is a Brownian motion with covariance matrix Γ . Moreover, X̃(t)−θt
is a martingale with respect to the filtration Ft = σ(Q̃(s), Ỹ 0(s), Ỹ K(s), s ≤ t).

Proof: First, we define

τn
+(t) = min{Tn

k : Tn
k > t} and τn

−(t) = max{Tn
k : Tn

k ≤ t}. (48)

For the station node j ∈ SN, when τ j,n
+ (nt) approximates nt from its right side,

we have

lim
n→∞ E

[∣
∣
∣
∣

1√
n

(Sn
j (τ j,n

+ (nt)) − bn
j τ j,n

+ (nt)) − S̃n
j (t)

∣
∣
∣
∣

]

= lim
n→∞ E

[∣
∣
∣
∣

1√
n

(1 − bn
j (τ jn

+ (nt)) − nt)
∣
∣
∣
∣

]

≤ 1√
n

lim
n→∞ bn

j E
[
τ j,n
+ (nt) − τ j,n

− (nt)
]

= lim
n→∞

1√
n

bn
j E

[
un

j (1)
]

= 0. (49)

Similarly, when τ j,n
− (nt) approximates nt from its left side, we have

lim
n→∞ E[| 1√

n
(Sn

j (τ j,n
− (nt)) − bn

j τ j,n
− (nt)) − S̃n

j (t)|] = 0. (50)
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Moreover, we obtain

E[S̃n
j (T j,n

k+1) − S̃n
j (T j,n

k )|ςn

T
j,n)
k

] =
1√
n

{1 − bn
j E[un

j (k + 1)|ςn

T
j,n)
k

]} = 0, (51)

where the filtration {ςn
t } is defined in (47). Notice that for any {ςn

t }-stopping
time T and any random variable X with E [|X|] < ∞,

E [E [X |ςn
t ] |ςn

t ] I{T>t} = E [X |ςn
t ] I{T>t} = E

[
XI{T>t} |ςn

t

]
. (52)

Also, for each j ∈ SN and all s, t ≥ 0,

E
[
S̃n

j (t + s) − S̃n
j (t) |ςn

t

]

= E

[

S̃n
j (t + s) − 1√

n

(
Sn

j (τ j,n
− (n(t + s))) − bn

j τ j,n
− (n(t + s))

)
|ςn

t

]

+ E

[
1√
n

(
Sn

j (τ j,n
+ (nt)) − bn

j τ j,n
+ (nt)

)
− S̃n

j (t) |ςn
t

]

−
∑

k

E
[
E

[
S̃n

j (T j,n
k+1) − S̃n

j (T j,n
k )

∣
∣
∣ςn

T j,n
k

]
I{nt<T j,n

k ≤n(t+s)} |ςn
t

]
.

Hence, it follows from (49) to (52) that

lim
n→∞ E

[∣
∣
∣E

[
S̃n

j (t + s) − S̃n
j (t) |ςn

t

]∣
∣
∣
]

= 0. (53)

For road node j → i (i, j = 1, . . . , N with i �= j). When we approximate nt
from both sides, a similar analysis to the proof of (53) for station node j. For
all s, t ≥ 0, we have

lim
n→∞ E

[∣
∣
∣E

[
S̃
(d),n
j→i (t + s) − S̃

(d),n
j→i (t) |ςn

t

]∣
∣
∣
]

= 0. (54)

Next, we can set up the scaling queueing processes by mean of (2) to (4) for
the station nodes and of the road nodes through the scaling processes (41) to
(45), given by:

Q̃n(t) = Q̃n(0) + X̃n(t) + R0,nỸ 0,n(t) + RK,nỸ K,n(t), (55)

and for each n, (Q̃n(t), Ỹ 0,n(t), Ỹ K,n(t)) has the properties (20) to (26) with the
state space Sn as follow:

Sn ≡
{

x = (x1, . . . , xN2)
′ ∈ RN2

+ : xi ≤ K̃n
i =

Kn
i√
n

for i ∈ SN,

and xi ≤
∑N

i=1 Cn
i√

n
+ 1 for i ∈ RN

}

.

For station node j = 1, . . . , N , by using (3), (12), (41) to (45) and X̃n
j (t) =

1√
n
Xn

j (nt) =
√

nX̄n
j (t), we have
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X̃n
j (t) = Q̃n

j (0)+
1√
n

2∑

d=1

N∑

i�=j

Ŝ
(d),n
i→j (nB̄

(d),n
i→j (t))− 1√

n
Ŝn

j (nB̄n
j (t))+

√
nθn

j t. (56)

For road node j → i (i, j = 1, . . . , N with i �= j), by using (12), (16), (41) to
(45) and X̃

(d),n
j→i (t) = 1√

n
X

(d),n
j→i (nt) =

√
nX̄

(d),n
j→i (t), we have,

X̃
(1),n
j→i (t) = Q̃

(1),n
j→i (0) +

1√
n

R̂j,n
i (nS̄n

j (B̄j(t)))

+
1√
n

pj→iŜ
n
j (nB̄n

j (t)) − 1√
n

Ŝ
(1),n
j→i (nB̄

(1),n
j→i (t)) +

1√
n

θ
(1),n
j→i nt (57)

and

X̃
(2),n
j→i (t) = Q̃

(2),n
j→i (0) +

1√
n

ˆ̄Rj,n
i (nȲ K,n

j (t)) − 1√
n

Ŝ
(2),n
j→i (nB̄

(2),n
j→i (t))

+
1√
n

θ
(2),n
j→i nt. (58)

From Assumption (32), using the Continuous Mapping Theorem and Theorem1
(Fluid Limit), we obtain that for station node j,

X̃n
j (t) ⇒ X̃j(t) = Q̃j(0) +

2∑

d=1

N∑

i�=j

S̃
(d)
i→j(t) − S̃j(t) + θjt, (59)

where X̃j(t) is an Brownian motion with the initial queue length Q̃j(0) and the
drift θj . For road station j → i,

X̃
(1),n
j→i (t) ⇒ X̃

(1)
j→i(t) = Q̃

(1)
j→i(0) + R̃j

i (bjt) + pj→iS̃j(t) − S̃
(1)
j→i(t) + θ

(1)
j→it, (60)

where X̃
(1)
j→i(t) is an Brownian motion with the initial queue length Q̃

(1)
j→i(0) and

the drift θ
(1)
j→i. Similarly we have

X̃
(2),n
j→i (t) ⇒ X̃

(2)
j→i(t) = Q̃

(2)
j→i(0) + ˜̄Rj,n

i (Ȳ K,n
j (t)) − S̃

(2)
j→i(t) + θ

(2)
j→it, (61)

where X̃
(2)
j→i(t) is an Brownian motion with the initial queue length Q̃

(2)
j→i(0)

and the drift θ
(2)
j→i. The covariance matrix Γ = (Γk̃,l̃)N2×N2 of X̃(t) =

(X̃j(t), X̃
(d)
j→i(t)) is given by

Γk̃,l̃ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑2
d=1

∑N
i�=k b

(d)
i→k(c(d)s,i→k)2δk̃,l̃

+blc
2
a,lδk̃,l̃,

if σ(Sk) = k̃, σ(Sl) = l̃;

pk→lbkc2a,k, if σ(Sk) = k̃, σ(Rk→l) = l̃, d = 1;
bipi→k(δk̃,l̃ − pi→l)
+ pk→lbkc2a,k + b

(d)
k→l(c

(d)
s,k→l)

2,
if σ(Rk→l) = k̃, l̃ = k̃, d = 1;

bkαi→k(δk̃,l̃ − αi→l)
+ b

(d)
k→l(c

(d)
s,k→l)

2,
if σ(Rk→l) = k̃, l̃ = k̃, d = 2;

0, otherwise.

(62)
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Now, let h(t) be an arbitrary real, bounded and continuous function. For an
arbitrary positive integer m, let ti ≤ t ≤ t + s, i ≤ m. Define

H̃n(t) =
(
Q̃n(t), Ỹ 0,n(t), Ỹ K,n(t)

)
, H̃(t) =

(
Q̃(t), Ỹ 0(t), Ỹ K(t)

)
,

Gn(t, s) =
(
Gn

j (t, s), G(d),n
j→i (t, s)

)
,

Gn
j (t, s) = X̃n

j (t + s) − X̃n
j (t), G

(d),n
j→i (t, s) = X̃

(d),n
j→i (t + s) − X̃

(d),n
j→i (t).

Notice that

S̃n
j (t) =

1√
n

(

sup

{

k :
k∑

l=1

un
j (l) ≤ bn

j nt

}

− bn
j nt

)

,

S̃
(d),n
j→i (t) =

1√
n

(

sup

{

k :
k∑

l=1

v
(d),n
j→i (l) ≤ b

(d),n
j→i nt

}

− b
(d),n
j→i nt

)

,

by using the Assumption (32), there exist some nonnegative constants C1 and
C2 such that bn

j ≤ C1 and b
(d),n
j→i ≤ C2. From the convergences of (53) and (54),

we have
∣
∣
∣E

[
h
(
H̃(ti), i ≤ m

)(
X̃(t + s) − X̃(t) − θs

)]∣
∣
∣

=
∣
∣
∣ lim
n→∞ E

[
h
(
H̃n(ti), i ≤ m

)
Gn(t, s)

]∣
∣
∣

= lim
n→∞

∣
∣
∣E

[
h
(
H̃n(ti), i ≤ m

)
E [Gn(t, s) |ςn

t ]
]∣
∣
∣

≤ M lim
n→∞ E [|E [Gn(t, s) |ςn

t ]|]
= 0,

where M is some positive constant. The arbitrariness of h(t), ti, t and t + s
implies that

E
[
X̃(t + s) − X̃(t) − θs |Fu, u ≤ t

]
= 0.

This shows that X̃(t) − θt is an {Ft}-martingale. This completes the proof. �

Remark 1. Note that Dai [8] discussed the queueing networks with finite
buffers, this paper is related well to fluid and diffusion limits in Dai [8] in order
to deal with a two-class closed queueing network.

Now, we give the diffusion limit for the bike sharing system. In Sect. 5, we
set up a sequence of closed queueing networks corresponding to the bike sharing
systems, and prove the limit theorems of the fluid scaled equations of the busy
period processes and the idle period processes through the functional strong
law of large numbers and the oscillation property of an (Sn, Rn)-regulation.
This is summarized as the Fluid Limit Theorem 1. Furthermore, based on the
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Fluid Limit Theorem, we prove the weak limit of the diffusion scaled processes
of some performance measures and obtain a key martingale. Also see Theorem2.

The following theorem provides a diffusion limit, and its proof is easy by
means of some similar analysis to Theorems 3.2 and 3.3 in Dai [8] or Theorem
3.1 in Dai and Dai [6].

Theorem 3 (Diffusion Limit Theorem). Under Assumption (32), we have
(

1√
n

Qn(nt),
1√
n

Y 0,n(nt),
1√
n

Y K,n(nt)
)

⇒
(
Q̃(t), Ỹ 0(t), Ỹ K(t)

)
,

where Q̃(t) =
(
Q̃j(t), Q̃

(d)
j→i(t)

)
, Ỹ 0(t) =

(
Ỹ 0

j (t), Ỹ 0,(d)
j→i (t)

)
; Q̃(t) together with

Ỹ 0(t) and Ỹ K(t) are an (S, θ, Γ,R)-semimartingale reflecting Brownian motion
with Q̃(t) = Q̃(0) + X̃(t) + R0Ỹ 0(t) + RK Ỹ K(t). The state space S is given by
(27) to (29). For station node j, X̃j(t) is given by (59), R0 and RK are given by
(10), (11). For road node j → i, when d = 1, X̃

(1)
j→i(t) is given by (60), R0 and

RK are given by (14) and (15); when d = 2, X̃
(2),n
j→i (t) is given by (61), R0 and

RK are given by (18) and (19), and the covariance matrix Γ = (Γk̃,l̃)N2×N2 of

X̃(t) = (X̃j(t), X̃
(d)
j→i(t)) is given by (62).

7 Performance Analysis

In this section, we first set up a basic adjoint relationship for the steady-state
probabilities of N station nodes and of N(N − 1) road nodes in the multiclass
closed queueing network. Then we analyze some key performance measures of
the bike sharing system.

From Theorem 3, it is seen that the scaling queueing processes, for the num-
bers of bikes at the stations and on the roads, converge in distribution to a semi-
martingale reflecting Brownian motion Q̃(t) =

(
Q̃ĩ(t), Q̃

(d)

j̃
(t)

)
for ĩ = σ(Si)

(i = 1, . . . , N) and j̃ = σ(Rj→i) (i, j = 1, . . . , N with i �= j, d = 1, 2), where the

state space S, the drift vector θ =
(
θĩ, θ

(d)

j̃

)
for ĩ = σ(Si), j̃ = σ(Rj→l), the

covariance matrix

Γ =

(
(Γĩ,k̃) (Γ (d)

ĩ,j̃
)

(Γ (d)

l̃,k̃
) (Γ (d)

l̃,j̃
)

)

N2×N2

for ĩ = σ(Si), k̃ = σ(Sk), j̃ = σ(Rj→h), l̃ = σ(Rl→g) and the reflecting matrix

R =
((

R0
ĩ

)
,
(
R

K,(d)

j̃

))
for ĩ = σ(Si), j̃ = σ(Rj→l), as seen in those previous

sections. Hence, it is natural to approximate the steady-state distribution of
the queue-length process by means of the steady-state distribution of the semi-
martingale reflecting Brownian motion.

From Lemma 1 and Theorem 1.3 in Dai and Williams [7], it is seen that
there exists a unique stationary distribution π =

(
πĩ, π

(d)

j̃

)
on (S,BS) for the
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SRBM Q̃(t) =
(
Q̃ĩ(t), Q̃

(d)

j̃
(t)

)
. Furthermore, π =

(
πĩ, π

(d)

j̃

)
is equivalent to the

Lebesgue measure on the state space S, thus for every bounded Borel function
f on S and for t ≥ 0, we have

Eπ

[
f
(
Q̃(t)

)]
≡

∫

S

(
Ex

[
f
(
Q̃(t)

)])
π(dx) =

∫

S

f(x)π(dx).

Then for each ĩ = 1, . . . , N (i.e., ĩ = σ(Si), i = 1, . . . , N) and j̃ = 1, . . . , N(N −1)
(i.e., j̃ = σ(Rj→i), i, j = 1, . . . , N with i �= j), let δ =

(
δĩ, δ

(d)

j̃

)
denote (N2 −1)-

dimensional Lebesgue measure (surface measure) vector on face (F,BF ). Thus,
there is a finite Borel measure vector βF =

(
βF

ĩ
, β

F,(d)

j̃

)
on face F = (Fĩ, Fj̃)

such that βF ≈ δ and

Eπ

{∫ t

0

1A

(
Q̃(s)

)
dỸ (s)

}

= tβF (A), t ≥ 0, A ∈ BF ,

where Ỹ (t) =
(
Ỹ 0(t), Ỹ K(t)

)
. Notice that the SRBM Q̃(t) = (Q̃ĩ(t), Q̃

(d)

j̃
(t)) is

a strong Markov process with continuous sample paths. Furthermore, let p(x) =(
pĩ(xĩ), p

(d)

j̃

(
x
(d)

j̃

))
, pF (x) =

(
pF

ĩ
(δĩ) , p

F,(d)

j̃

(
δ
(d)

j̃

))
, and define dπ = pdx, i.e.,

dπĩ = pĩdxĩ for ĩ = σ(Si) (i = 1, . . . , N) and dπ
(d)

j̃
= p

(d)

j̃
dx

(d)

j̃
for j̃ = σ(Rj→i)

(i, j = 1, . . . , N with i �= j, d = 1, 2). Further, we define dβF = pF dδ, i.e., dβF
ĩ

=

pF
ĩ

dδĩ for ĩ = σ(Si) (i = 1, . . . , N) and dβ
F,(d)

j̃
= p

F,(d)

j̃
dδ

(d)

j̃
for j̃ = σ(Rj→i)

(i, j = 1, . . . , N with i �= j, d = 1, 2). Let ∇f(x) be the gradient of f , and C2
b (S)

the space of twice differentiable functions whose first and second order partial
derivative are continuous and bounded on the state space S. Base on this, it
follows from the Ito’s formula that the probability measures p(x) and pF (x)
have a basic adjoint relationship as follows: for ∀f ∈ C2

b (S),

∫

S

(Lf(x)p(x)) dx +
N∑

ĩ=1

∫

F �
ĩ

(Dĩf(δĩ)p
F
ĩ

(δĩ))dδĩ +
N∑

ĩ=1

∫

F �
ĩ

(Dĩf(δĩ)p
F
ĩ

(δĩ))dδĩ

+
2∑

d=1

N2−N∑

j̃=1

∫

F �
j̃

(Dj̃f(δ(d)
j̃

)pF,(d)

j̃
(δ(d)

j̃
))dδ

(d)

j̃

+
2∑

d=1

N2−N∑

j̃=1

∫

F �
j̃

(Dj̃f(δ(d)
j̃

)pF,(d)

j̃
(δ(d)

j̃
))dδ

(d)

j̃
= 0, (63)

where

Lf =
N∑

ĩ=1

Lf(xĩ) +
2∑

d=1

N2−N∑

j̃

Lf(x(d)

j̃
),
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for i, k, j = 1, . . . , N with i �= j, d = 1, 2, and k̃ = σ(Sk), j̃ = σ(Rj→i), ĩ =
σ(Si) ∈ {1, 2, . . . , N},

Lf(xĩ) =
1
2

N∑

k̃=1

Γĩ,k̃

∂2f(xĩ)
∂xĩ∂xk̃

+
1
2

2∑

d=1

N2−N∑

j̃=1

Γ
(d)

ĩ,j̃

∂2f(xĩ)

∂xĩ∂x
(d)

j̃

+ θĩ

∂f(xĩ)
∂xĩ

,

Dĩf(δĩ) ≡ v′
ĩ
∇f(δĩ) =

N∑

k̃=1

vk̃,̃i

∂

∂δk̃

f(δĩ) +
2∑

d=1

N2−N∑

j̃=1

vj̃,̃i

∂

∂δ
(d)

j̃

f(δĩ),

for l, k, i, j, h = 1, . . . , N with j �= i, l �= k and d = 1, 2, and l̃ = σ(Rl→k), h̃ =
σ(Sh), j̃ = σ(Rj→i) ∈ {1, 2, . . . , N2 − N},

Lf(x(d)

j̃
) =

1
2

N∑

h̃=1

Γ
(d)

j̃,h̃

∂2f(x(d)

j̃
)

∂x
(d)

j̃
∂xh̃

+
N2−N∑

l̃=1

Γ
(d)

j̃,l̃

∂2f(x(d)

j̃
)

∂x
(d)

j̃
∂x

(d)

l̃

+ θ
(d)

j̃

∂f(x(d)

j̃
)

∂x
(d)

j̃

,

Dj̃f(δ(d)
j̃

) ≡ v′
j̃
∇f(δ(d)

j̃
) =

N(N−1)∑

l̃=1

vl̃,j̃

∂

∂δ
(d)

l̃

f(δ(d)
j̃

) +
N∑

h̃=1

vh̃,j̃

∂

∂δh̃

f(δ(d)
j̃

),

F�
ĩ

and F�
ĩ

denote the “bottom face” and the “top face” in this box state space
S corresponding to empty station i and full station i, respectively. As a similar
expression, it is clear that F�

j̃
and F�

j̃
are related to road j → i; vk̃ is the k̃th

column of the reflection matrix R =
((

R0
ĩ

)
,
(
R

K,(d)

j̃

))
.

Now, we consider some key performance measures of the bike sharing system
in terms of the steady-state probability density function p on (S,BS) and an
nonnegative integrable Borel function pF on (F,BF ). Here, it is easy to see that
for ĩ = 1, . . . , N and j̃ = 1, . . . , N(N − 1), the “bottom face” F�

ĩ
(F�

j̃
) and the

“top face” F�
ĩ

(F�
j̃

) are precisely parallel in this box state space S.

(1) The steady-state probability that station i is empty is given by
∫

S

pF
ĩ

1{xĩ∈F �
ĩ

}dxĩ, for ĩ = σ(Si).

(2) The steady-state probability that station i is full is given by
∫

S

pF
ĩ

1{xĩ∈F �
ĩ

}dxĩ, for ĩ = σ(Si).

(3) The steady-state probability that road j → i is empty for bikes of class
d is given by

∫

S

p
F,(d)

j̃
1{x

(d)
j̃

∈F �
j̃

}dx
(d)

j̃
, for j̃ = σ(Rj→i), d = 1, 2.
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(4) The steady-state probability that road j → i is full for bikes of class d is
given by ∫

S

p
F,(d)

j̃
1{x

(d)
j̃

∈F �
j̃

}dx
(d)

j̃
, for j̃ = σ(Rj→i), d = 1, 2.

(5) The steady-state means of the number of bikes parked at the station i
and the number of bikes of class d ridden on road j → i are respectively given
by

Qĩ =
∫

S

xĩpĩ(xĩ)dxĩ, for ĩ = σ(Si),

Q(d)

j̃
=

∫

S

x
(d)

j̃
p
(d)

j̃

(
x
(d)

j̃

)
dx

(d)

j̃
, for j̃ = σ(Rj→i), d = 1, 2.

(6) The steady-state mean of the number of bikes of class d deflecting from
the full station i is given by

E(d)

ĩ
=

∫

F �
ĩ

x
(d)

ĩ
p

F,(d)

ĩ

(
x
(d)

ĩ

)
dx

(d)

ĩ
, for ĩ = σ(Si), d = 1, 2.

8 Concluding Remarks

In this paper, we describe a more general large-scale bike sharing system having
renewal arrival processes and general travel times, and develop fluid and diffusion
approximation of a multiclass closed queuing network which is established from
the bike sharing system where bikes are regarded as virtual customers, and
stations and roads are viewed as virtual nodes or servers. From the multiclass
closed queuing network, we show that the scaling queue-length processes, which
are set up by means of the number of bikes both at stations and on roads,
converge in distribution to a semimartingale reflecting Brownian motion. Also,
we obtain the Fluid Limit Theorem and the Diffusion Limit Theorem. Based
on this, we provide performance analysis of the bike sharing system. Therefore,
the results of this paper give new highlight in the study of more general large-
scale bike sharing systems. The methodology developed here can be applicable to
deal with more general bike sharing systems by means of the fluid and diffusion
approximation. Along such a line, there are some interesting directions in our
future research, for example,

• analyzing bike repositioning policies through several fleets of trucks under
information technologies;

• making price regulation of bike sharing systems through Brownian approxi-
mation of multiclass closed queuing network;

• developing heavy traffic approximation for time-varying or periodic bike shar-
ing systems; and

• developing heavy traffic approximation for new ride sharing (bike or car)
systems with scheduling, matching and control.
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Abstract. The rapid and accurate response in post-disaster is of vital impor-
tance of emergency management. This article mainly focuses on the optimizing
assignment process and aims to allocate rescue resources to diverse disaster
points in an attacked area. The proposed model contains the allocation of rescue
teams and equipment, and a corresponding transportation strategy was provided
when the rescue team and equipment are assigned. A multi-objective opti-
mization problem was established on the basis of cost and time consideration.
Moreover, an improved epsilon-constraint algorithm was developed to find
Pareto fronts of the multi-objective optimization problem. Some numerical
examples are analyzed and the computational results confirm the feasibility of
the assignment method.

Keywords: Assignment method � DAEM � Multi-objective � ɛ-constraint

1 Introduction

A disaster is the result of a vast ecological breakdown in the relations between man and
his environment [1], so that timely response and effective disposal in order to restore
the original situation after a disaster occurred are crucial aspects in emergency man-
agement., there are not only casualties, but also the destruction of infrastructures in an
area of post-disaster, frequent natural disaster sets unprecedented challenges for
emergency decision maker especially in the process of distributing rescue resources
which always expose the shortcomings when reevaluating the rescue activities in
post-disaster. Thus, taking the earthquake as a background, providing optimization
strategy for distribution problem in restore infrastructures has the profound realistic
significance. This article will mainly focus on the response phase of which optimizing
the distribution problem from aid center includes the warehouse of engineering
equipment and the location of rescue teams which assigned to restore the infrastruc-
tures in disaster points. Aiming at designing a distribution approach which on the
premise of Demand-Ability-Equipment Matching (DAEM), and the concept of DAEM
will be described in detail as follow.
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The limited district in an affected area in post-disaster is described as disaster point.
Because the types and the degrees of damages within each disaster point is not the
same, the demand of each point to rescue and restore infrastructure is different. Since
the Wenchuan earthquake happened in 2008, Chinese government had been pay more
attention to emergency response ability. Standardization Administration of the People’s
Republic of China (SAC) tries to establish a series of comprehensive national standard
for the process of post-earthquake rescue. One of these standards is Classification of
Earthquake Damage to Lifeline Engineering (CEDLE), it defines all kinds of damage to
lifeline engineering in post-earthquake [5], definitions are showed as Table 1.

For a long time, rescue teams are the key of response phase in the disaster man-
agement. The rescue technology owned by rescue teams determines whether the
objective of rescue will be achieved. These standards attend to categorize the different
kind of damage in disaster points and designate related rescue skill for each classifi-
cation. As any kind of damage has a corresponding rescue skill owned by rescue teams
to restore, it form a mechanism for matching rescue skill between demand of disaster
points and ability of rescue team. When a natural or an anthropogenic disaster occurs in
a region, there are some incipient disaster points appearing. Decision makers estimate
what rescue skills do each disaster point needs by damage characteristics, and assign
rescue teams to disaster points. For example, a disruptive earthquake damages the
electric power system and the transportation system in a disaster point, this disaster
point needs those two corresponding rescue skills to carry out rescue, And a team or
teams will go to the disaster point to complete the rescue mission. In addition, it is
understandably that large engineering equipments are used by rescue teams in rescue
activities. For example, excavators are widely used in transportation system rescue,
especially in a road destroyed. Hence, as previous research [2], all elements of the
objective function including the commodities are represented in an equivalent common
unit of number of persons not served. So, in this paper, D-A-E Matching is a direct and
universal approach of decision-making which not only matches rescue teams based on
disaster point demand, but also ensure the assigned rescue teams to have the ability to
complete the mission of disaster points in response phase. Considering the condition of

Table 1. Related infrastructure of different classification of earthquake damage to lifeline
engineering

Classification Related infrastructure

Traffic system Road; Bridge; Tunnel; Railway line
Water supply Treatment pool; Treatment plant; Supply pumping station:

Distribution network
Oil system Refinery; Oil pumping station; Oil depot; Oil pipeline
Gas system Gas station; Gas storage; Gas pipeline
Electric system Generating station; Transformer substation; Transmission line
Communication
system

Center control room; Telecommunication line

Water conservancy Earth and rockfill dam
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constrained resources and the demand of disaster point, D-A Mating proves that dis-
patching the closet rescue team to the accident point is not always the best strategy.

Moreover, CEDLE divides post-earthquake damage into different levels, the feature
of each level are shown in Table 2. As with in-person training, levels of rescue skill can
be uneven in all rescue teams, and problems can be sloved from the same or a lower
level. It indicates that the best match inters to when a team be assigned to a disaster
point, all the abilities of this rescue team are used. For example, the rescue teams which
have the abilities of fourth-level power system rescue skill and third-level transportation
system rescue skill save a disaster point with only second-level power system damage
is a waste of rescue resources. So, D-A Matching further means to assign teams of a
disaster point by a fit conjunction with less redundancy should be concerned.

However, only chasing after the little redundancy in the process of assignment can
not make the assignment scheme get a high performance in practice in terms of
response and rescue. Other constraints based on practical issues need to be considered.

The remainder of the paper is organized as follows. A literature review is given in
the next section. In Sect. 3 the proposed multi-objective mathematical formulation is
described. In Sect. 4, an improved exact solution method is proposed. Numerical
examples are illustrated in Sect. 5, and the concluding remarks are given in the final
section.

2 Literature Review

In recent years, the response phase has been the main focus of emergency management
researching in previous studies. Meanwhile, the study of rescue resource distribution
problem has become one of the most popular topics within the response phase. Tofighi
et al. [3] developed a novel two-stage scenario-based possibilistic-stochastic pro-
gramming approach to formulate the problem under a mixture of probabilistic and
possibilistic uncertainties for solve the problem of two-echelon humanitarian logistics
network design involving multiple central warehouses and local distribution centers.
Torabi et al. [4] accounted for epistemic uncertainty of critical data and proposed a
bi-objective model for the supplier selection and order allocation problem to build the
resilient supply base under operational and disruption risks. Wallace et al. [5] has
developed a formulation of mixed-integer programming to minimize the cost terms
from traditional network flow models; Campbell et al. [6] developed some

Table 2. Feature of each level

Level Feature

I Basically intact
II Slight damage
III Moderate damage
IV Serious damage
V Destroy
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methodologies of traveling salesman problem (TSP) and the vehicle routing problem
(VRP) for disaster relief. Minimized the maximum arrival time and the average arrival
time to bounded the worst-case performance of optimal TSP solutions. And presented
solution approaches for these two variants of the TSP and VRP, which are based on
well-known insertion and local search techniques. Nurre et al. [7] considered the
integrated network design and scheduling (INDS) problems applicate in infrastructure
restoration after an extreme event and building humanitarian logistics networks. And
they proposed a novel heuristic dispatching rule algorithm to solve the NP-hard
problem of INDS. Boland et al. [8] studied the problem of scheduling maintenance on
arcs of a capacitated network. They maximized the total flow from a source node to a
sink node over a set of time periods and proposed an additional constraint which limits
the number of maintenance jobs per time period.

In addition, for D-A-E matching, Altay [9] pointed out the mechanism of dis-
tributing rescue resource according to demand in each disaster point, and they built a
simple inter programming model to allocate resources. However, no solution was
proposed to this model and the notion of nationwide resource inventory listing is too
ambiguous.

3 Model Formulation for Rescue Resource Assignment
Problem

Assumptions:
The proposed mathematical model is based on the following assumptions

(1) All rescue units can cover all demand in disaster points.
(2) The known capacity of the road is no longer changing in post-disaster.
(3) The transportation of rescue team on road and helicopter, equipments on road

transport.

Parameters:
V : set of disaster points, V ¼ f1; . . .; ng
S: set of rescue teams, S ¼ f1; . . .;mg
W : set of equipment warehouse, W = f 1,. . .;wg
E: set of equipment sorts, E = f 1,. . .; eg
T: set of time interval. T = f 1,. . .; tg
R: set of transport type to send rescue teams
R0: set of transport type to send equipment without helicopter
Pkði; jÞ: transporting from support point i to disaster point j on k transport type
P0
kði; jÞ: transporting from support point i to disaster point j on k transport type without

helicopter
ais: quantity of equipment s owned by warehouse i
bjs: quantity of equipment s demanded by disaster point j
ck: cost of transportation on k transport type
c0k: cost of transportation on k transport type without helicopter
tikj: time of needed traveling from support point i to disaster point j on k transport type
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t0ikj: time of needed traveling from support point i to disaster point j on k transport type
without helicopter

ckd : cost of the skill of type d in level k

s: maximum tolerable waiting time

csdki ¼ 1 if rescue team i can support skill of type d of level k
0 otherwise

�

cvdkj ¼ 1 if attacked point j needs skill of d type of level k
0 otherwise

�

Decision variables:
As mentioned before, we have three decisions in the proposed model. One of these

decisions is determining the time of start transporting from each warehouse and is
determined by hijði 2 w; j 2 nÞ. This decision variable can decide the departure time to
conform to the constraint which limits the number of servicing disaster points per unit
time. And the others are determining the distributing status of rescue units.

hteamij : the moment of start traveling for rescue team i to disaster points j

hequij : the moment of start traveling for equipment from warehouse i to disaster points j

Qs
ij: quantity of equipment s delivered to disaster point j from equipment warehouse i

xikj ¼ 1 if rescue team i visit to disaster point j on its kth type
0 otherwise

�

Auxiliary variables:
The auxiliary variable is decide by Qs

ikj.

yikj ¼ 1 if equipments delivered to disaster point j from warehouse i on its kth type
0 otherwise

�

3.1 Multi-objective Integer Programming Model

A new mathematical model to solve DAEM problem is proposed based on the
assignment problems and transportation problems. Assignment problem is applied to
determine which rescue teams and equipment warehouses to complete the mission in
each disaster point, and the transportation problem is applied to make decision for type
of transport.
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f1 ¼ min ½ max
i;k;j2S

ðtikj þ hteamij Þxikj� ð1Þ

f2 ¼ min ½ max
i;k;j2W

ðt0ikj þ hequij Þyikj� ð2Þ

f3 ¼ min
Xn
j¼1

½
Xm
i¼1

ð
Xa
k¼1

Xl

d¼1

ckdcs
dk
i xikj þ

Xr

k¼1

ckxikjÞþ
Xw
i¼1

ð
Xe

s¼1

csQ
s
ikj þ

Xr0
k¼1

c0kyikjÞ� ð3Þ

X
j

Qs
ij � ais 8i 2 W ; 8s 2 E; 8k 2 R0 ð4Þ

bjs �
X
i

Qs
ij 8j 2 V ; 8s 2 E; 8k 2 R0 ð5Þ

Qs
ij �

X
k

yikjais 8i; j; s; 8k 2 R0 ð6Þ

X
i

X
j

Qs
ij �

X
k

yikj 8s 2 E ð7Þ

X
k

yikj � 1 8i 2 W ; 8j 2 V ð8Þ

X
i

Xv

k¼u

X
k

xikjcs
dk
i � cvduj � 0 8w; u; d 2 Z þ ; 8j 2 V ð9Þ

X
k

X
j

xikj � 1 8i 2 S ð10Þ

�s� xikjðtikj þ hteamij Þ � xfjjðtflj þ hteamfj Þ� s 8j 2 V ð11Þ

�s� xikjðtikj þ hteamij Þ � yhvjðthvj þ hequhj Þ� s 8j 2 V ð12Þ

xikj 2 0; 1f g 8i; j; 8k 2 R ð13Þ

yikj 2 0; 1f g 8i; j; 8k 2 R0 ð14Þ

l 2 f1; . . .; rg ð15Þ

v 2 f1; . . .; r � 1g ð16Þ

h 2 f1; . . .;wg ð17Þ

f 2 f1; . . .; ng ð18Þ
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The three objectives are given by Eqs. (1)–(3). The objective function (1) mini-
mizes the time of latest arrival rescue teams. Objective function (2) minimizes the time
of latest arrival equipment. The third objective function minimizes the sum of all cost
including in the using cost and transporting cost for both rescue teams and equipments.
Constraint (4) ensures that the total quantity of equipment s delivered for each disaster
point does not exceed the quantity of equipment s available in this warehouse.
Constraint (5) ensure that the total quantity of given equipment s in disaster point j
delivered from each warehouse must exceed the quantity of demand. Constraints (6 and
7) shows that relationship between decision variable Qs

ij and auxiliary variable yij.
Constraint (8) ensures that there is only one type of transporting equipments which
sending from a warehouse to a disaster point. Constraint (9) ensures that the teams
assigned from its location can match the demand in disaster point j. Constraint (10)
ensures that any rescue team can only be assigned once. Constraints (11 and 12) setting
the maximum tolerance value to control the waiting time.

3.2 Model Linearization

The proposed mathematical model is nonlinear because of Constraints (11) and (12).
New variables are proposed as Xteam

ij and Xequ
ij instead of multiplication of variables

hteamij and xikj, h
equ
hj and yij respectively, in order to xikjh

team
ij ¼ Xteam

ij ; 8i; j and yijh
equ
ij ¼

Xequ
ij ; 8i; j. Thus, in the mathematical model, Constraints (11) and (12) will be replaced

by Constraints (19) and (20), and the additional Constraints (21–24) should be added to
the proposed model, and the parameter M is a large enough value to constraint the
relationships with two binary variables xikj and yikj.

�s� xikjtikj þXteam
ij � xfljtflj þXteam

fj � s; 8j 2 V ð19Þ

�s� xikjtikj þXteam
ij � yhvjthvj þXequ

hj � s; 8j 2 V ð20Þ

Xteam
ij �Mxikj 8k 2 R ð21Þ

Xteam
ij � 0 ð22Þ

Xequ
ij �Myikj 8k 2 R0 ð23Þ

Xequ
ij � 0 ð24Þ

4 Exact Solution Method for Demand-Ability-Equipment
Matching

4.1 Achieving a Lower Bound of Objective Function

The ɛ-constraint method finds all the Pareto points of multi-objective integer linear
programming problems starting from the one corner Pareto point and finding an
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adjacent one each iteration [10]. Functions f1 and f2 exist their certain range of values,
lower bounds of these two object functions must to be find in order to start with a
corner Pareto slice in a highly discriminating way.

4.2 The ɛ-Constraint Method

The ɛ-constraint method has a good performance for solving non-convex optimization
problems, not only restricted to biobjective problem but can also efficiently adapted to
multi-objective integer linear programming problems [11]. In this study, the solution
method is developed as an exact solution approach based ɛ-constraint, and the proof of
using this method can generate the exact Pareto front is shown in [12].

The Demand-Ability-Equipment matching is a three-objective combinatorial opti-
mization problem for which we proposed the mathematical model. The three objectives
f1, f2, f3 which defined by Eqs. (1)–(3), consist in minimizing the traveling time and the
totally cost respectively. We choose f3 as objective function to optimize, and the
constrained problem Pðe1; e2Þ is defined by

Pðe1; e2Þ Min f3ðXÞ s:t:

f1ðXÞ� e1
f2ðXÞ� e2
X ¼ ðx; y; h;QÞ 2 D

8><
>:

where X ¼ ðx; y; h;QÞ denotes the set of variables defined in the proposed mathe-
matical model; and D is the feasible region defined by Eqs. (4)–(24); e1 and e2 are the
two parameters in iteration to yield the Pareto front.

5 Computational Result

In this section, a simple case is presented to test the application of this distribution
model. The Ludian earthquake occurred on August 3, 2014, with its epicenter located
in Ludian Country. This disaster caused a large number of infrastracture damaged in
Zhaotong, Yunnan Province. According to the HD image of Ludian earthquake area
published by National Administrtion of Surveying and Geoinformation (NASG) [13],
36 disaster-affected sites, which located in or near epicenter were identified. Only
except Shuifu Country and Weixin Country, disaster-affected sites throughout the city
in Zhaotong. Figure 1 displays the location and number of these 36 disaster-affected
sites.

To restore lifeline engineering in each disaster-affected site, the lighting equipment
is an essential equipment to support constructing. Analyzing the record of using
lighting equipment from Yunnan Power Grid Corporation, a subsidiary of China
Southern Power Grid, can get parts of information about disaster sites. Combining with
the report on direct economic losses of Ludian 6.5 earthquake which described the
situation of damage by 8�3 earthquake published by Yunnan Seismological Bureau
(YSB), we can easily come to know the classification of damage and their corre-
sponding level for each affected site. Details is shown by Table 12 in Appendix A.
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Taking each administrative district as an disaster point, the demand of restoring in each
disaster point an be listed by Table 3.

In addition, the quantity of equipment is generated by estimating the situation of
each disaster point. Table 4 shows the demand in each disaster point.

After the earthquake, Zhaotong municipal government and Yunnan provincial
government should be in charge of emergency rescue. Surveying the data from
available rescue resources in Zhaotong and Kunming, the supporting ability of each
rescue team and the quantity of equipment in each warehouse can be obtained and
shown as Tables 5 and 6.

Fig. 1. Disaster-affected sites in Zhaotong, Yunnan.

Table 3. Demand of restoring in each disaster point

Disaster
point

Traffic
system

Water
supply

Oil
system

Gas
system

Electirc
system

Communication
system

Water
conservancy

Urban
district

II – I – III – II

Ludian IV I – I IV III V
Qiaojia III – – – I II –

Yanjin II I – – – – I
Daguan I II – – – – –

Yongshan II – – – – – III
Suijiang – – – – I – –

Yiliang II – – – – – –

Weixin I – – – – – –
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Table 4. Large engineering equipment demand in each disaster point

Disaster
point

Emergency lighting
vehicle

Excavator Diesel
generator

Crane Water
pump

Urban
district

3 5 2 0 2

Ludian 13 17 7 7 4
Qiaojia 4 4 3 4 2
Yanjin 2 2 2 0 0
Daguan 3 3 2 0 0
Yongshan 1 2 4 3 0
Suijiang 3 3 1 4 0
Yiliang 0 2 0 0 0
Weixin 3 5 2 0 0

Table 5. Ability of each rescue team can support.

No. Team affiliation Location
district title

TS WS OS GS ES CS WC

1 Yunnan power grid Zhenxiong power
supply company

Zhenxiong – – – – III II –

2 Yunnan power grid substation in
Zhaotong

Zhaotong
urban
district

– – – – IV III –

3 Zhaotong fire brigade Zhaotong
urban
district

– – II IV – – II

4 Zhaotong Highway Bureau Zhaotong
urban
district

III – – – – – –

5 Zhaotong municipal engineering
company

Zhaotong
urban
district

II II – – – II –

6 Zhaotong branch of China petroleum &
amp; chemical corporation

Zhaotong
urban
district

– – IV – – – –

7 Zhaotong water conservancy machinery
construction team

Zhaotong
urban
district

– V – – – – III

8 Yunnan armed police detachment of
Zhaotong

Zhaotong
urban
district

IV – – – – IV II

9 Yunnan power grid Yongshan power
supply company

Yongshan – – – – I I –

(continued)
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Table 5. (continued)

No. Team affiliation Location
district title

TS WS OS GS ES CS WC

10 Yunnan power grid Yiliang power
supply company

Yiliang – – – – II I –

11 Yiliang fire brigade Yiliang – – II II – – I
12 Yiliang road administration team Yiliang I – – – – – –

13 Kunming fire brigade Xishan
District

– III V – – III

14 Kunming Highway Bureau maintenance
team

Xishan
District

IV – – – – – –

15 Kunming municipal engineering group
construction team

Xishan
District

IV IV – – – III –

16 Sinopec engineering construction team Wuhua
District

– – V – – – –

17 Yunnan armed police corps 1 Wuhua
District

V III – – – V III

18 Yunnan armed police corps 2 Wuhua
District

V III – – – IV III

19 Yunnan armed police corps 3 Wuhua
District

V III – – – V III

20 Yunnan power grid Weixin power
supply company

Weixin – – – – III II –

21 Weixin road administration team Weixin II – – – – – –

22 Yunnan power grid Qiaojia power
supply company

Qiaojia – – – – I I –

23 Qiaojia road administration team Qiaojia I – – – – – –

24 Yunnan power grid Ludian power
supply company

Ludian – – – – III III –

25 Ludian highway administration Ludian III III – III- – III
26 Ludian Zhongcheng gas company Ludian – – – II – – –

27 Yunnan Provincial Highway Bureau
maintenance team

Guandu
District

V – – – – – –

28 The second water conservancy and
hydropower construction co., ltd.

Guandu
District

– III – – – – V

29 Kunming power supply Bureau of
Yunnan power grid of China Southern
power grid

Guandu
District

– – – – V V –

30 The first water conservancy and
hydropower construction co., ltd.

Chenggong – V – – – – V

TS: Traffic system, WS: Water supply, OS: Oil system, GS: Gas system, ES: Electirc system,
CS: Communication system, WC: Water conservancy
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The parameters related to the cost are presented in Tables 7, 8 and 9. The location
of rescue teams and equipment warehouses comprises Zhaotong urban district, Ludian,
Qiaojia, Yongshan, Suijiang, Zhenxiong, Yiliang, Weixin in Zhaotong and Xishan
District, Wuhua District, Guandu District, Chenggong, Songming in Kunming.
Table 10 shows the time matrix between any pair of points is determined by a geog-
raphy information system (GIS). The data of time spent on road transportation and
highway transportation are export from GIS, and the data of time spent on helicopter
transportation is estimated by the distance between any pair of points with the
250 km/h ordinary speed for helicopter.

Table 6. The quantity of each equipment in each warehouse

No. Location
district title

Emergency
lighting vehicle

Excavator Diesel
generator

Crane Water
pump

1 Zhaotong
Urban district

20 – 20 – –

2 Songming 20 – 20 – –

3 Chenggong 4 30 – 10 2
4 Zhaotong

Urban district
0 10 10 0 0

5 Wuhua
Distirct

10 5 3 10 1

6 Zhaotong
Urban district

5 10 1 10 2

7 Guandu
District

– – – – 10

Table 7. Cost spent on using equipment (T$).

Emergency lighting vehicle Excavator Diesel generator Crane Water pump

10 30 100 40 30

Table 8. Cost of restoring lifeline engineering in each level (T$).

I II III IV V

Traffic system 16 32 48 144 216
Water supply 8 16 24 72 108
Oil system 24 48 72 216 324
Gas system 10 20 30 90 136
Electric system 16 32 48 144 216
Communication system 24 50 74 224 336
Water conservancy 40 80 120 360 540
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Table 10. Time spent on road/highway/helicopter transportation (h).

Urban
district

Ludian Qiaojia Yanjin Daguan Yongshan Suijiang Yiliang Weixin

Urban district 1/1/1 2/2/2 7/4/2 4/2/2 3/2/2 7/4/2 7/4/2 3/2/2 6/3/2
Ludian 2/2/2 1/1/1 7/4/2 5/3/2 3/2/2 7/4/2 7/4/2 4/2/2 6/3/2
Qiaojia 7/3/2 7/4/2 1/1/1 10/5/2 9/5/2 12/6/2 13/7/3 8/4/2 11/6/3
Yongshan 7/4/2 7/2/2 12/6/2 7/4/2 6/3/2 1/1/1 9/5/2 6/3/2 9/5/2
Zhenxiong 9/5/2 7/4/2 12/6/3 6/3/2 5/3/2 9/5/2 8/4/2 7/4/2 3/2/2
Yiliang 3/2/2 4/2/2 8/4/2 4/2/2 3/2/2 6/3/2 8/4/2 1/1/1 6/3/2
Weixin 6/3/2 6/3/2 11/6/3 5/3/2 5/3/2 9/5/2 8/4/2 6/3/2 1/1/1
Xishan
District

6/3/3 6/2/3 9/5/3 8/4/3 7/4/3 10/5/3 11/6/4 9/5/3 11/6/3

Wuhua
District

6/3/3 6/3/3 9/5/3 8/4/3 7/4/3 10/5/3 11/6/4 9/5/3 11/6/3

Guandu
District

6/3/3 6/3/3 9/5/3 8/4/3 7/4/3 10/5/3 11/6/4 9/5/3 11/6/3

Chenggong 6/3/3 6/3/3 9/5/3 8/4/3 7/4/3 10/5/3 11/6/4 8/4/3 11/6/4
Songming 3/2/2 3/2/2 4/2/2 5/3/2 4/2/2 8/4/4 8/4/4 5/3/2 8/4/4

Table 11. Detailed Pareto fronts statistics of the ɛ-constraint method

e1 e2 Cost of rescue teams (T$) Cost of equipment (T$) min f3 (T$)

3 3 6662 5090 11752
3 4 6662 4850 11512
4 3 5200 5090 10290
4 4 5200 4850 10050
4 5 5200 4810 10010
5 4 5096 4850 9946
5 5 5096 4810 9906
5 6 5096 4770 9866
6 5 4902 4810 9712
6 6 4902 4770 9672
7 6 4782 4770 9552
7 8 4782 4760 9542
8 8 4774 4760 9534
9 8 4702 4760 9462
11 10 4662 4760 9422

Table 9. Cost of each transportation type (T$).

Road Highway Helicopter

10 50 500
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At the beginning of the computation, a tight lower bound have be find, fmin
1 ¼ 2 and

fmin
2 ¼ 3. Therefore, this example is implemented in MATLAB R2015a and run on a
2.93 GHz workstation with 2 GB of RAM. Gurobi 7.0.2 is the solver used. The result
for exact Pareto fronts are given in Table 11, and the parameter s have been set to 1.

When the maximum time of objective f1 amplify 3 to 4, the total cost of objective f3
drops a lot. From the results we can see that, only rescue team 25 (Kunming municipal
engineering group construction team) and rescue team 9 (Yunnan power grid Yong-
shan power supply company) go to disaster points by helicopter since the time of latest
arrival rescue teams is limited. It fits the actual character which helicopter only can be
used in costly short and long distance transportation. The rescue team 25 is assigned in
any determined time, because it has various skills with outstanding level and located
within an appropriate distance between these disaster points.

6 Conclusion

An efficient auxiliary decision-making method, DAEM method to solve the trans-
portation and assignment problem in the post-disaster in introduced in this paper. With
this method, an improved strategy with novel decision-making basis is developed. The
method includes two components, a 0–1 metric for assigning rescue teams and an
integrated metric for assigning equipment, building a reasonable optimization of rescue
process based on the abundant available rescue resources in a given disaster area.

In post-disaster allocation process, the dominating characteristics about
suddenly-occurring demand in very large amounts and the short lead times for a wide
variety of supplies [14]. It means that the information in the first time after a disaster
happened may be ambiguous, being different from accurate simple case. Thus, how to
identify the demand in disaster points accurately is of vital importance in the next
research, a quantitative estimation method which is the premise to determine the
condition of disaster point must be explored. It can provide great practical significance
for this research.
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tion of China under Grant Nos. 91324012, 91024031.
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A Appendix

Table 12. The classification and hierarchy in each disaster-affected site.

No. District title Damaged infrastructure Classification Level

1 Suijiang Center control room Electirc system I
2 Yongshan Road Traffic system I
3 Yanjin Road Traffic system I
4 Yanjin Road Traffic system II
5 Yanjin Distribution network Water supply I
6 Yongshan Earth and rockfill dam. Water conservancy I
7 Yanjin Earth and rockfill dam. Water conservancy I
8 Yongshan Bridge Traffic system II
9 Daguan Distribution network Water supply II
10 Yongshan Earth and rockfill dam. Water conservancy I
11 Daguan Tunnel Traffic system I
12 Yiliang Road Traffic system I
13 Daguan Railway line Traffic system II
14 Yiliang Road Traffic system I
15 Yongshan Earth and rockfill dam. Water conservancy III
16 Weixin Road Traffic system I
17 Urban district Transformer substation Electirc system III
18 Yiliang Railway line Traffic system II
19 Urban district Earth and rockfill dam. Water conservancy II
20 Urban district Oil depot Oil system I
21 Urban district Transmission line. Electirc system II
22 Ludian Transformer substation Communication system III
23 Urban district Bridge Traffic system II
24 Yiliang Bridge Traffic system I
25 Ludian Road Traffic system II
26 Urban district Highway Traffic system II
27 Ludian Highway Traffic system IV
28 Ludian Gas pipeline. Gas system I
29 Ludian Distribution network Water supply I
30 Ludian Transmission line. Electirc system IV
31 Ludian Transmission line Electirc system II
32 Qiaojia Transmission line Electirc system I
33 Ludian Earth and rockfill dam. Water conservancy V
34 Qiaojia Tunnel Traffic system III
35 Qiaojia Center control room Communication system II
36 Qiaojia Road Traffic system II
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a Reservation-Based Scheduling Mechanism

Michiel De Muynck(B), Herwig Bruneel, and Sabine Wittevrongel

Department TELIN, Ghent University,
Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

{MichielR.DeMuynck,Herwig.Bruneel,Sabine.Wittevrongel}@UGent.be

Abstract. We study the tail probabilities of the customer delay for a
buffer operating under a reservation-based scheduling discipline known
as R-scheduling. Previous numerical work on this model has led to a
hypothesized meta-model, which was tested using simulations but not
proven analytically. In this paper, we prove the correctness of this meta-
model analytically, and extend it to more general arrival processes. The
results are also compared to simulations for several example scenarios.

Keywords: Delay differentiation · Traffic classes · Reservation places
Delay quantile spacing

1 Introduction

There are many different kinds of queueing phenomena where multiple classes of
customers with different quality of service (QoS) requirements must be handled
by one server: packets with widely varying priorities may be transmitted over the
same channel, one web server may be used to process various kinds of requests,
one clerk may have to perform multiple administrative jobs for various people,
etc. In all of these cases, the order in which the customers receive service plays
an important role in the delays experienced by these customers. As such, the
effects of this ordering have received much attention in the literature, and many
scheduling mechanisms have been proposed (see e.g. [1] for a survey). Examples
include scheduling mechanisms where the next customer to be served is chosen
probabilistically [2] or using a (weighted) round-robin process [3], scheduling
mechanisms where high-priority customers may only overtake low-priority cus-
tomers that arrive in the same batch [4] or within a certain window [5], scheduling
mechanisms where low-priority customers can become high-priority customers
under certain conditions [6,7], etc.

However, in general, no scheduling mechanism can be said to be strictly
better than any other scheduling mechanism, as choosing to serve customer A
before customer B typically increases the delay experienced by customer B, and
vice versa. As an example, choosing to service all customers in first-in first-out
(FIFO) order is fair for all customers, but may lead to unacceptable delays for

c© Springer International Publishing AG 2017
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delay-sensitive customers, whereas giving absolute priority (AP) to these delay-
sensitive customers may lead to extremely high delays for the low-priority packets
(see e.g. [8,9]), a phenomenon sometimes referred to as “packet starvation”. In
between these two extremes of FIFO and AP lies an entire spectrum of scheduling
mechanisms, each with different trade-offs.

Somewhere on that spectrum lies the reservation-based scheduling mech-
anism proposed by Wittevrongel et al. in [10] referred to as “R-scheduling”,
which is the object of study in this paper. In that scheduling mechanism, each
traffic class is given a fixed number of “reservation places” in the queue, that
can be thought of as “holes” in the queue that can later be filled in by arriving
customers of that traffic class. The reservation places need not necessarily be
actual holes in the queue. For example, in a queueing system where customers
take tickets with a ticket number on it and wait until the number on their ticket
is shown, a reservation place may also be a ticket number that is “skipped” and
not given out until a later time when a delay-sensitive customer arrives.

The behavior of the R-scheduling mechanism depends on the number of reser-
vation places of each traffic class as well as the traffic intensity of each traffic
class. If a high-priority traffic class has many reservation places in the queue
and the queue is short due to a period of low traffic intensity, then R-scheduling
behaves very similarly to AP, since new arrivals of the high-priority traffic class
will almost always find a reservation place waiting at the front of the queue that
they can fill in. However, if there is a period of high intensity traffic that causes
the queue to become very long, then this will no longer be the case, since the
reservation places will not be able to make it all the way to the front of the
queue before being filled in. This may however be beneficial, as AP would in this
case lead to very long delays of the low-priority packets due to packet starvation,
while under R-scheduling, a low-priority packet can not be overtaken by more
high-priority packets than there are reservation places in front of it in the queue,
effectively preventing packet starvation.

As mentioned earlier, which scheduling mechanism is best suited for a given
situation depends on the QoS requirements of the specific classes of customers.
One commonly used metric in specifications of QoS requirements is the proba-
bility that the delay of a customer of a given class exceeds a certain large value.
These so-called “tail probabilities” are especially useful in real-time applications
where, for instance, a packet arriving unacceptably late is as bad as if it were
lost entirely [11].

In [10], the tail probabilities of the delay of the R-scheduling mechanism
were studied using extensive simulations. Under the assumptions that the arrival
process is a discrete-time independent Poisson arrival process and the classes of
consecutive customers form an independent and identically distributed (i.i.d.)
sequence, a heuristic formula for these tail probabilities was proposed that closely
matched the simulation results. In this paper, we prove analytically that this for-
mula is indeed (almost) correct, and we derive the exact values for the constants
used in that formula, by first studying a generalization of the model that relaxes
the requirements of Poisson arrivals and independent customer classes. The proof
of the heuristic formula from [10] then follows as a special case of the general model.
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In other related work on R-scheduling, analytical techniques using
probability-generating functions (pgfs) have been used to obtain expressions for
the pgf of the customer delay for each traffic class (see e.g. [12,13] for the most-
recently published results). These are very thorough and complete results, as the
pgf of a distribution fully describes that distribution (all probabilities, moments,
and of course also the tail probabilities). However, due to the difficulty of the
analysis, several simplifying assumptions typically need to be made on the model
to keep the analysis feasible. In both [12,13], the model was restricted to 2 traf-
fic classes, with only a single reservation place in the queue for the high-priority
traffic class. This reduces the applicability of these results in practice, as the
possible delay differentiation with only one reservation place is limited.

In Sect. 2, we describe the queueing model in detail, as well as the mathemat-
ical notation used in this paper. We study the tail probabilities of the delay of
this model analytically in Sect. 3. The special case of uncorrelated traffic classes
is studied in Sect. 4. In Sect. 5, we briefly describe possible computationally effi-
cient implementations of R-scheduling. Finally, in Sect. 6, we explore several
numerical examples to demonstrate the behavior of the queueing model.

2 Queueing Model

In this section, we will describe the operation of the queueing model studied in
this paper, and the mathematical notation used to study it. While this queueing
model is applicable to many kinds of queueing phenomena, we will consider the
specific queueing phenomenon where packets of various classes are transmitted
across a single channel.

We consider a queueing model with m classes of packets. These packets are
all stored in a single queue, but in addition to these packets, the queue also
holds several “reservation places”. Each traffic class i (i = 1, ...,m) has ni such
reservation places in the queue. The total number of reservation places is denoted
as n = n1 + ... + nm. These reservation places behave exactly like packets in the
sense that they take up a space in the queue and move forwards in lockstep with
the packets in the queue. Reservation places, however, are never transmitted
from the queue.

Packets arriving at the queue are placed in the queue one by one in the order
in which they arrived according to the following mechanism: When a packet of
class i enters the queue, if ni = 0, then the packet enters the queue at the back,
behind all other packets and all reservation places. If ni > 0, then the packet
takes the place of the frontmost reservation place of class i, i.e., the one closest to
the head of the queue. That reservation place is destroyed and a new reservation
place for class i is immediately created and placed at the back of the queue,
behind all packets and all other reservation places. In this way, the number of
reservation places for class i always remains constant, equal to ni.

We assume that the output channel allows only one packet to be transmitted
at the same time, and that the transmission of each packet takes the same
amount of time, exactly one unit of time. If, at any time, there is at least one
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packet in the queue but no packet in transmission, the frontmost packet in the
queue immediately begins its transmission. Any reservation places that were in
front of that packet remain in place.

The arrival process in this queueing model is relatively general. In fact, we
make no assumptions about the arrival process other than that if two packets
arrive at the same instant, they arrive in a certain order so that one can still be
said to arrive “before” the other. The arrivals may occur in batches at regular
intervals (“slot boundaries”), as in discrete-time queueing models, or they may
occur irregularly, as in continuous-time models.

To allow for correlations between the classes of subsequent arriving pack-
ets, we assume that there is a background Markov chain with a finite number
nMC of states and transition matrix RMC. This Markov chain is assumed to be
irreducible and aperiodic, and we denote its equilibrium distribution by the prob-
ability vector π, so that π = πRMC. Whenever a packet P arrives, this Markov
chain performs one transition, and then the traffic class TP of the arriving packet
is determined by the following probabilities:

P (TP = i|SP−1 = j, SP = k) � pi,j,k, 1 ≤ i ≤ m, 0 ≤ j, k < nMC, (1)

where SP−1 and SP denote the state of the background Markov chain right
before and right after the packet arrived respectively. Given SP−1 and SP , the
traffic class of P is assumed to be independent from the time of P ’s arrival, the
arrival times or the classes of all other packets, the state of the system at the
moment of P ’s arrival, and all other past events. Note that in particular, when
multiple packets arrive at the same time, there may be no reordering based on
the classes of the packets, i.e., there may be no “slot-bound priority” [4].

We denote the delay experienced by an arbitrary packet of class i in steady
state as Di. This delay is defined as the time between the arrival instant and
the end of the transmission of that packet. We denote the delay that the
packet would have experienced if the scheduling mechanism were FIFO, i.e., if
n1 = ... = nm = 0, as DFIFO, and assume that the probability that DFIFO ≥ x
decays exponentially as x → ∞. That is, we assume that there are two constants
cFIFO and sFIFO such that P (DFIFO ≥ x)s−x

FIFO approaches cFIFO as x → ∞ (con-
sidering only integer x in case of a discrete-time arrival process). Methods to
obtain these constants for a wide variety of models are available in the queueing
literature.

Another quantity of interest in this paper is the α-quantile dα
i of the delay

Di perceived by packets of class i in steady state. This α-quantile dα
i is the value

of x for which P (Di ≥ x) = α, with appropriate interpolation between values of
P (Di ≥ x) in case of a discrete-time arrival process.

3 Analysis

In this section, we analyze the queueing model described in the previous section
in order to obtain an expression for the tail probabilities of the delay of an
arbitrary packet of class i in steady state. We begin the analysis by studying the
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positions of the reservation places in the queue. Defining NR as the number of
packets and/or reservation places in the queue behind a given reservation place
R of class i, we look at all the events that can cause NR to change. Whenever a
reservation place R is created, it is placed at the back of the queue, so at that
moment NR is 0. Afterwards, NR changes only when these events occur:

1. When a new packet belonging to a class j �= i arrives,
(a) if nj = 0, then the new packet is placed at the back of the queue,
(b) otherwise, the new packet takes the place of a different reservation place

than R and a new reservation place of class j is created at the back of
the queue.

In both cases, NR increases by 1.
2. When a new packet belonging to class i arrives,

(a) if R is the frontmost reservation place of class i, it is destroyed,
(b) otherwise, the arriving packet replaces the frontmost reservation place of

class i, and a new reservation place is created at the back of the queue,
increasing NR by 1.

3. When a packet begins its transmission,
(a) if that packet was in front of R in the queue, NR remains unchanged,
(b) otherwise, NR decreases by 1.

Determining the distribution of NR at the moment that R is destroyed is difficult
in general and essentially requires solving the entire queueing system. However,
note that if R is filled in by a packet P that has a delay Di > n + 1, event 3 (b)
above cannot occur for R, since event 3 (b) can only occur if there are only other
reservation places in front of R in the queue. Since the goal of this analysis is to
find an expression for the tail probabilities P (Di ≥ x) for large x, we will from
now restrict our analysis to reservation places R for which the event 3 (b) never
occurs.

If we denote the value of NR at the moment R is destroyed as VR, we find that
VR is simply equal to the number of packets that arrived between the creation
and destruction of R, not including the packets whose arrival caused the creation
or destruction of R. Alternatively, VR is the number of transitions experienced
by the background Markov chain during that same time. But the destruction
of R happens precisely at the nith transition of that Markov chain since the
creation of R that produced a packet of class i. If we can rewrite this description
of VR as the number of transitions of a certain terminating Markov chain with
1 terminating state until that terminating state is reached, then we know that
VR is a discrete phase-type distribution (by definition, see e.g. [14]). We can do
this by choosing the states of this terminating Markov chain to correspond to
the combination of the state of the background Markov chain and the number of
class-i arrivals since the creation of R. The terminating state corresponds to all
situations where ni or more class-i packets have arrived since the creation of R.

However, we have to be slightly careful. In the definition of a discrete phase-
type distribution, the first transition to the absorbing state is included, whereas
the nith arrival of class i does not contribute to VR. We therefore find that VR+1
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follows the discrete phase-type distribution PHd(α(i),T(i)), where α(i) will be
determined later and T(i) is the ni × ni block matrix

T(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T(i)
0 T(i)

1 0 . . . 0 0
0 T(i)

0 T(i)
1 . . . 0 0

0 0 T(i)
0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . T(i)
0 T(i)

1

0 0 0 . . . 0 T(i)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Here, T(i)
0 and T(i)

1 are the nMC × nMC matrices defined as

[T(i)
0 ]j,k = [R]j,k(1 − pi,j,k), 0 ≤ j, k < nMC,

[T(i)
1 ]j,k = [R]j,kpi,j,k, 0 ≤ j, k < nMC.

In the above phase-type distribution, phase j (0 ≤ j < nMC) in block-phase
k (0 ≤ k < ni) corresponds to the background Markov chain being in state j
while there have already been k arrivals of traffic class i since reservation place
R was created. The number of packet arrivals until the nith packet of class i
arrives (including that last packet, which should not be counted when calculating
VR) is precisely the number of transitions until the absorbing state in the above
phase-type distribution is reached, i.e.,

VR + 1 ∼ PHd(α(i),T(i)). (3)

The probability vector α(i) describes the state of the system immediately
after the reservation place R is created. Trivially, there are no class-i arrivals at
that time since the creation of R yet, so α(i) is a 1 × ni block row-vector

α(i) =
[
α

(i)
0 0, . . . , 0

]
, (4)

where α
(i)
0 is the 1 × nMC probability vector that describes the distribution of

the state SR of the background Markov chain at the moment R is created. Since
we know that R was created as a result of a packet of class i arriving at the
queue, and since R is an arbitrarily chosen reservation place in steady state, we
find after some applications of Bayes’ theorem that

[α(i)
0 ]j � P (SR = j) =

nMC∑
l=0

[π]l[R]l,jpi,l,j

nMC∑
k=0

nMC∑
l=0

[π]l[R]l,kpi,l,k

. (5)

We can now use the distribution of VR to calculate the tail probabilities
P (Di ≥ x) for large x. Consider an arbitrary packet P of class i with delay
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Di ≥ x. As mentioned previously, if x > n + 1 then event 3 (b) can cannot
have occurred for the reservation place R that packet P filled. Secondly, since
we are only interested in large x, we may also make the simplifying assumption
that all reservation places that existed at the moment P arrived are destroyed
before P begins its transmission, i.e., in at most x − 1 units of time. Since the
total number of reservation places n is finite and fixed, the probability of this
assumption being true approaches 1 as x goes to infinity.

With this assumption, finding the delay Di given DFIFO is easy. We will
consider the cases where ni = 0 and ni > 0 separately. If ni = 0, then the
delay Di is simply equal to DFIFO + n, since packet P enters the queue at the
back, behind all n reservation places, which will be filled before P begins its
transmission. We therefore have for large x that

P (Di ≥ x) = P (DFIFO + n ≥ x) ≈ cFIFOsx−n
FIFO, (6)

in view of the assumed exponential delay of DFIFO.
If ni > 0, then at the moment when packet P fills in reservation place R,

but before R is recreated, the total (remaining) transmission time of all packets
and reservation places (counting them as 1 unit of time each) in the queue is
DFIFO + n − 1, of which VR units of time are behind P in the queue, so we have
that Di = DFIFO + n − 1 − VR. From this, P (Di ≥ x) for large x easily follows
as

P (Di ≥ x) = P (DFIFO + n − 1 − VR ≥ x) (7)

=
∞∑

k=1

P (DFIFO ≥ x + k − n)P (VR + 1 = k)

≈
∞∑

k=1

cFIFOsx+k−n
FIFO α(i)(T(i))k−1(I − T(i))1

= cFIFOsx+1−n
FIFO α(i)(I − sFIFOT(i))−1(I − T(i))1, (8)

where 1 denotes a column vector of the appropriate dimension whose elements
are all equal to 1 and I denotes the identity matrix.

It can be verified that the inverse of I − sFIFOT(i) is given by

(I − sFIFOT(i))−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Γ ΛΓ Λ2Γ Λ3Γ . . . Λni−1Γ
Γ ΛΓ Λ2Γ . . . Λni−2Γ

Γ ΛΓ . . . Λni−3Γ
. . . . . .

...
Γ ΛΓ

Γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where

Γ � (I − sFIFOT
(i)
0 )−1,

Λ � (I − sFIFOT
(i)
0 )−1sFIFOT

(i)
1 .
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Indeed, it is easily seen that multiplying the above result for (I − sFIFOT(i))−1

by I − sFIFOT(i) results in the identity matrix.
Since (I − T(i))1 is given by

(I − T(i))1 =

⎡
⎢⎢⎢⎣

0
0
...

T(i)
1 1

⎤
⎥⎥⎥⎦ , (10)

we find that

(I − sFIFOT(i))−1(I − T(i))1 =
1

sFIFO

⎡
⎢⎢⎢⎣

Λni1
Λni−11

...
Λ1

⎤
⎥⎥⎥⎦ , (11)

so that (8) reduces to the very simple expression

P (Di ≥ x) ≈ cFIFOsx−n
FIFOα

(i)
0 Λni1. (12)

It can be verified that (12) simplifies to (6) when ni = 0, so that (12) is valid
for all ni ≥ 0.

4 Special Case: Uncorrelated Traffic Classes

It is interesting to study the special case where there is no correlation between
the classes of the arriving packets, since this occurs in many queueing phenomena
and since this special case is also studied in [10]. In this special case, nMC = 1,
and we define

pi � pi,0,0. (13)

Then (12) becomes

P (Di ≥ x) ≈ cFIFOsx+ni−n
FIFO

(
pi

1 − sFIFO(1 − pi)

)ni

. (14)

As a verification of the correctness of (14), we note that it may also be derived
directly from (7). Indeed, when the classes of arriving packets are independent
from each other, we find that between the creation and destruction of the arbi-
trarily chosen reservation place R, the number of arrivals of classes other than
i is negative binomially distributed with parameters ni and 1 − pi. The number
of class-i arrivals in that same period is equal to ni − 1, so in total we find that
Vk − (ni − 1) is negative binomially distributed as

P (VR − (ni − 1) = k) =
(

k + ni − 1
k

)
pni

i (1 − pi)k, k ≥ 0. (15)

Substituting (15) into (7) results in (14), as expected.
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We can use (14) to find the delay quantile dα
i . To do this, we solve the

equation log P (Di ≥ x) = log α for x and obtain

dα
i =

log α

log sFIFO
− log cFIFO

log sFIFO
+ (n − ni) +

log
(

1−sFIFO(1−pi)
pi

)

log sFIFO
ni. (16)

The above expression for dα
i is linear in the ni’s, with coefficients that are very

simple to calculate. This is very useful in practice if the arrival process (and, as
a consequence, cFIFO and sFIFO) and the various relative loads pi are fixed, and
the goal is to achieve certain given asymptotic delay probabilities for each class.
In that case, the R-scheduling mechanism may be used, and finding the optimal
ni’s to achieve the required tail probabilities is easy, as the effects of adding or
removing a reservation place from a traffic class on the tail probabilities of the
delay are evident.

We can compare (16) with the meta-model found experimentally in [10].
Specifically, in [10], the following form for dα

i was hypothesized (note that
log sFIFO was denoted as rFIFO in [10]):

dα
i =

log α

log sFIFO
+ C1 + C2 · (n − ni) + C3(sFIFO, pi) · ni. (17)

We see that (16) is almost of the form (17). The only difference is that C1 is not
a constant but instead depends on cFIFO and sFIFO, which in turn depend on
the total load and the arrival process. In [10], the arrival process was restricted
to discrete-time independent arrival processes where the number of arrivals per
time slot follows a Poisson distribution with mean λ. For this case, cFIFO and
sFIFO can be calculated as

cFIFO = − (1 − λ)zd

λ(1 − λzd)
, sFIFO =

1
zd

, (18)

where zd is the smallest real-valued zero for z > 1 of z − eλ(z−1). In Fig. 1 we
show the exact value of C1 for this arrival process as a function of λ. Note that
even though C1 grows unbounded as λ → 0, C1 varies relatively little for realistic
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Fig. 1. C1 versus λ for an independent discrete-time Poisson arrival process
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values of λ and can almost be considered a constant. In [10], the value of this
“constant” was reported as approximately 1.1, which roughly agrees with Fig. 1.

The value of the constant C2 was also estimated from simulations in [10] and
found to be approximately 1.0. Equation (16) confirms that C2 is in fact exactly
equal to 1. The value of C3(sFIFO, pi) for a discrete-time Poisson arrival process
was reported in [10, table I] for several values of the total load and the relative
load pi (see also Table 1). We find that these values agree very closely with those
given by (16) (see Table 2).

Table 1. Values of C3(sFIFO, pi) for a discrete-time Poisson arrival process, as reported
in [10, table I]

Total load sFIFO pi

10% 20% 30% 40% 50% 60%

95% 0.903277 −6.1 −3.2 −2.0 −1.3 −0.9 −0.7

90% 0.812902 −4.7 −2.7 −1.7 −1.2 −0.8 −0.6

85% 0.728560 −3.8 −2.3 −1.5 −1.1 −0.8 −0.6

Table 2. Values of C3(sFIFO, pi) for a discrete-time Poisson arrival process, as given
by (16)

Total load sFIFO pi

10% 20% 30% 40% 50% 60%

95% 0.903277 −6.16 −3.22 −2.00 −1.33 −0.91 −0.61

90% 0.812902 −4.77 −2.70 −-1.75 −1.19 −0.83 −0.56

85% 0.728560 −3.90 −2.32 −1.55 −1.08 −0.76 −0.53

5 A Note About Implementation

In the previous sections, we analyzed queueing characteristics of the studied
scheduling mechanism. However, another important quality of a scheduling
mechanism is the availability of a computationally efficient implementation. It
therefore deserves to be noted that two efficient implementations are available for
the studied scheduling mechanism, which we will briefly describe in this section.

The two fundamental operations that an implementation of this scheduling
mechanism must provide are enqueueing a packet of class i and dequeueing the
next packet that is to be transmitted. The computational complexity of these
operations for a naive implementation may be linear in N , i.e., O(N), where N
denotes the number of packets in the queue at the time of the operation. This
may be prohibitively expensive if the load is high and the average queue length
is large.
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Fortunately, a more efficient implementation is possible, as follows. When a
reservation place R is created, we denote the number of reservation places that
have already been created up to that point as the index of R. When a packet
takes the place of R, its index is the same as the index of R. When a packet of
class i for which ni = 0 enters, we assume that it creates a temporary reservation
place and then instantly takes its place, effectively increasing the index of the
next reservation places that will be created by 1. This way, no two reservation
places or packets ever have the same index. Note that the “index” of a packet is
actually the same as the “ticket number” of a customer in the example given in
Sect. 1.

By storing the indices of the reservation places of traffic class i in a separate
queue (for instance a linked list) for each i, and storing the indices of all the
packets in the queue in one balanced search tree, the enqueueing and dequeueing
operations can both be implemented with computational complexity O(log N).
By storing the reservation places the same way but instead storing the indices of
the packets of each class in a separate queue for each traffic class, the enqueueing
and dequeueing operations can be implemented with respective complexities
O(1) and O(m). Which of these implementations is more efficient depends on
the magnitude of m and the average length N .

6 Numerical Examples

In this section, we study several numerical examples to demonstrate the behavior
of the queueing model and the correctness of the analysis.

In the first numerical example, we examine the impact of correlation in the
arrival process on the packet delay under the R-scheduling mechanism. In Figs. 2
and 3, we show the cumulative distribution function of the packet delay for each
traffic class, as estimated by our model and by a Monte-Carlo simulation of 109

time slots. There are m = 3 traffic classes, (independent) probabilities p1 = 0.3,
p2 = 0.3 and p3 = 0.4 of a customer belonging to each class. The three classes
respectively have n1 = 0, n2 = 5, and n3 = 15 reservation places. In Fig. 2,
the arrival process is a discrete-time Poisson process (as considered in [10]) with
λ = 8 ln(9/8) ≈ 0.94. Why this specific value of λ was chosen will be explained
later. From (18), we find that sFIFO = 8/9 and cFIFO ≈ 1.148.

In Fig. 3, the arrival process is a discrete-time batch Markovian arrival process
(D-BMAP), which is suitable to model a large class of correlated processes and
variable bit rate sources (see e.g. [15,16]). In a D-BMAP, the arrival process is
governed by a Markov chain with nDBMAP states. Each time slot, this Markov
chain performs one transition, and generates a number of arrivals that depends
on the states that the Markov chain transitioned from and to. The probability
that this Markov chain transitions to state j and generates k arrivals, given that
it was in state i during the previous slot, is denoted as [Dk]i,j . A D-BMAP
arrival process is therefore determined by the sequence of nDBMAP × nDBMAP

matrices D0, D1, D2, etc.
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We choose the parameter matrices of the D-BMAP arrival process in this
example to be

D0 =
[
0.9 0
0 0

]
, D1 =

[
0 0.1

0.2 0

]
, D2 =

[
0 0
0 0.8

]
, (19)

and Dk = 0 for k > 2. This arrival process generates either 0, 1 or 2 arrivals
each slot, while never increasing or decreasing the number of arrivals by more
than 1 per time slot. Using the methods described in [16] we find sFIFO = 8/9
and cFIFO = 9/8. Note that the value of sFIFO is the same in Figs. 2 and 3. The
value of λ in Fig. 2 was chosen specifically so that this would be the case, as it
allows for a cleaner comparison between the two different arrival processes.

From Figs. 2 and 3, we notice that the time correlation in the arrival process
has no impact on the delay quantile spacing, as predicted since the tail proba-
bilities of the delay only depend on the arrival process through cFIFO and sFIFO
(see (18)). However, the correlation in the arrival process in Fig. 3 does cause the
cumulative distribution function of the delay to approach its asymptote more
slowly. In Fig. 2, the model accurately predicts dα

i for α < 10−2, while in Fig. 3,
the model only accurately predicts dα

i for α < 10−3.

0 10 20 30 40 50 60 70 80 90 100
10−5

10−4

10−3

10−2

10−1

100

n
1 =

0, p
1 =

0.3

n
2 =

5, p
2 =

0.3

n
3 =

15, p
3 =

0.4

x

P
(D

i
≥

x
)

Simulations

Model

Fig. 2. Tail probabilities of the packet delay for independent customer classes and a
discrete-time Poisson arrival process

In our second numerical example, shown in Fig. 4, we study the impact of
correlation between the classes of arriving customers. As the arrival process we
choose a discrete-time Poisson process with λ = 0.95. There are 3 customer
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Fig. 3. Tail probabilities of the packet delay for independent customer classes and a
D-BMAP arrival process
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Fig. 4. Tail probabilities of the packet delay for correlated customer classes and a
discrete-time Poisson arrival process
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classes, each with 10 reservation places. The transition matrix RMC of the back-
ground Markov chain is

RMC =

⎡
⎣

0.5 0.5 0
0.5 0.4 0.1
0 0.1 0.9

⎤
⎦ . (20)

The packet arriving when this background Markov chain transitions from state
i to state j is in this example simply of class j + 1. In this way, all three traffic
classes have the same probability of arriving in an arbitrary slot in steady state.

From Fig. 4, we see that in this example, correlation between the classes of
consecutive customers makes the cumulative distribution function of the delay of
each traffic class approach its asymptote even slower than it did in the previous
numerical example, where there was correlation between the numbers of packets
arriving in each slot (Fig. 3).

Of the three traffic classes, class 3 has the longest delays. This can be
attributed to the fact that arrivals of class 3 mostly occur in bursts that are
spread out, since transitioning to and from a state that generates class-3 arrivals
occurs with very low probability. These bursts quickly consume the 10 reserva-
tion places, while during a long period with no class-3 arrivals, the reservation
places may reach the front of the queue and be unable to advance further. This
happens for all traffic classes, but happens more frequently for class 3. Traf-
fic classes 1 and 2 have relatively similar delays, but the delays of class 1 are
slightly shorter. This can be explained by the fact that transitioning between
states that generate class-1 and class-2 arrivals happens frequently, but in order
to transition to the state that generates packets of class 3, the Markov chain
must always pass through the state that generates class-2 arrivals, decreasing
the “burstiness” of class-2 arrivals.

In all the above numerical examples, after a packet of class i arrives, the
number of other packets of class i that arrive in a row until a packet of a different
class arrives is always geometrically distributed. In the next example, shown in
Figs. 5 and 6, there are m = 2 traffic classes. The number of consecutive class-1
arrivals (after the first) is again geometrically distributed, but packets of class
2 always arrive in “trains” of exactly 10 packets, with no class-1 arrivals in
between. This is done by choosing the background Markov process to have 11
states, 1 which generates class-1 packets and 10 which generate a packet of class
2 and then transition to the next such state. The arrival process in this example
is again a discrete-time Poisson process with λ = 0.95. In Fig. 5, both traffic
classes have ni = 9 reservation spaces, whereas in Fig. 6, both have ni = 10
reservation spaces.

It may seem beneficial for class-2 packets if the length of each train matches
the number of available reservation places for that class (i.e., 10), as then each
packet in a class-2 train will use exactly one reservation place, and the reservation
places of class 2 stay clumped together. On the contrary, for 9 reservation places,
the 10th arriving packet of a class-2 train will always have to use a newly created
reservation place near the back of the queue. However, from Figs. 5 and 6 we see
that the number of reservation places has almost no impact on the delays of both
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Fig. 5. Tail probabilities of the packet delay for a system with 2 classes, where the
arrivals of both classes are trains of geometric length and fixed length 10 respectively.
Each traffic class has 9 reservation slots.
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Fig. 6. Tail probabilities of the packet delay for a system with 2 classes, where the
arrivals of both classes are trains of geometric length and fixed length 10 respectively.
Each traffic class has 10 reservation slots.

classes, which have an almost identical distribution. This is caused by the fact
that this grouping has little effect on the delay of an average packet, because if
9 packets are served quickly while the last packet has a longer delay, that has
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little impact on the delay of the average packet. However, if we consider the
average delay of entire class-2 trains, i.e., the time between the arrival of the
first packet and the departure of the last packet of a series of 10 consecutive
class-2 arrivals, as shown in Fig. 7, then we do see that the fact that the queue
with only 9 reservation places per class has a significantly higher train delay
than that with 10. This is because if 9 packets are served quickly while the last
packet has a large delay, the whole train has a large delay. Figure 7 only contains
the results of numerical simulations of 109 time slots, as the analytical study of
train delays is outside the scope of this paper.
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Fig. 7. Simulations of the class-2 train delay for a system with 2 classes, where arrivals
of class 2 occur in trains of length 10

7 Conclusion

We have studied a multi-class queueing model with a reservation-based schedul-
ing mechanism, and have obtained simple analytical formulas for the tail proba-
bilities and quantiles of the delay that strongly agree with both simulations and
earlier numerical results for a special case of the model. These formulas show the
clear relationships between the system’s parameters and its performance, and as
such, are very useful in practice for determining the optimal system parameters
to achieve given asymptotic delay probabilities for each desired traffic class.
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Abstract. In this paper, we consider a two-queue Markovian polling
system attended by a single server. For this model, multiple-class cus-
tomers with priorities are concerned in each queue. We first present the
exact LST (Laplace-Stieltjes transformation) expressions and means of
the waiting times of each type customers by utilizing the concept of delay-
cycle. Furthermore, we prove that prioritizing customers with smaller
mean service times could shorten the mean response time, especially in
the heavy traffic regime. With the LSTs of waiting times, we also con-
centrate on the derivation of the exact asymptotics of the scaled delay
in the heavy-traffic scenario. It is illustrated that the priority policy gen-
erates a mixture distribution of the limiting scaled delay in comparison
with the non-priority policy. Lastly, simulations are used for validation
of the limiting results and the impact of priority policy.

Keywords: Polling system · Markovian routing · Priority
Waiting time · Simevents

1 Introduction

Polling models occur naturally in the modelling of applications where dif-
ferent types of customers compete for access to common resource, such as
computer-communication systems and manufacturing systems. Traditionally,
simple scheduling policies such as FCFS (within a queue) and cyclic order policy
(between queues), which shares the service capacity equally among all jobs in the
system, have been applied most frequently and thus dominate the literature on
polling systems. However, recently, policies that give priority to jobs with small
service demands have been used in a variety of application domains, e.g. web
servers and ATM systems in [11]. In [15], it has illustrated that a large class of
priority policies (such as LCFS, m-class priority) in exhaustive polling systems
could reduce the mean response time.

c© Springer International Publishing AG 2017
W. Yue et al. (Eds.): QTNA 2017, LNCS 10591, pp. 282–296, 2017.
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Markovian Polling System 283

Within a polling system, the system operator mainly has three ways to intro-
duce priority policies: (i) routing mechanism (such as random routing with more
frequencies to serve certain queues), (ii) service discipline (such as exhaustive
policy), and (iii) service order within each queue (such as multiple-class prior-
ities). The present paper concerns a two-queue polling system with Markovian
routing policy and introduces multiple-class priorities in each queue, that com-
bines the priority policies in (i) and (iii).

Polling systems with random server routing were introduced in [10] and
there have been a growing number of applications that can be modelled by
polling systems with random routing policy, particularly in computer commu-
nications, geostationary satellite communication and manufacturing. In these
models the queue to be visited next always depend on the random environments
or access demand, such as CSMA-CA (Carrier-Sense Multiple-Access Collision-
Avoidance) algorithms and slotted ALOHA. More applications can refer to [4,6]
and references therein.

Boxma et al. presented a pseudo-conservation law for mean waiting times in
[1] and the performance equations concerning more general Markovian polling
systems were given in [6,14], while no exact expressions were obtained. Recently,
Dorsman et al. studied a two-queue polling system specially in [5]. The exact
expressions of the PGFs (Probability Generating Functions) of the joint queue
length distributions at polling epochs were derived and a DSA (Descendant Set
Approach) interpretation was presented. The heavy-traffic behavior were also
extended to the Markovian polling systems.

In the polling model considered in the present paper, a single server visits
2 queues according to a discrete time Markov chain and each queue contains
multiple-class customers with priorities. We are primarily motivated by the desire
to exploit the impact of the multi-class priority policy on the waiting times within
each queue, including the mean waiting times and the limiting scaled delay in
the heavy traffic.

The remainder paper is organized as follows. We first give a detailed descrip-
tion of the model with multiple-class priority policies in Sect. 2. In Sect. 3, we
are dedicated to the derivation of the LST of the waiting times and the impact
of priority policy on the mean waiting times. To proceed, we discuss the limiting
scaled delay in the heavy traffic in Sect. 4. In Sect. 5, simulations with Simevents
toolbox of Matlab are undertaken to test the validity of limiting behaviors of
the scaled delays and the impact of the priority policy. We finally propose some
topics for further research in Sect. 6.

2 Model Description

We consider a single server Markovian polling system consisting of two queues
(Q1 and Q2) (cf. Fig. 1). Each queue contains multiple priority classes customers
(Ki classes in Qi). It is assumed that customers of class k in Qi, denoted by
type-ik customers, receive a higher non-preemptive priority over class k+1 (k =
1, 2, . . . ,Ki −1). Type-ik customers arrive independently according to a Poisson
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process with rate λik and have a generally distributed service requirement Bik.
Set ρik = λikEBik. The buffer capacity of each queue is infinite and customers
within each class are served in FCFS discipline. It is assumed that each queue
is served exhaustively. Let ρi =

∑Ki

k=1 ρik. We assume the stability condition
ρ = ρ1 + ρ2 < 1 is satisfied (see [7]).

Fig. 1. The schematic diagram of the model

Once the server completes service at Qi, it begins a switch-over time Sii for
another poll at Qi with probability pi < 1 and begins a switch-over time Sij

(j �= i) for a poll at Qj with probability 1−pi (i = 1, 2). Apparently, the routing
mechanism is determined by a discrete time Markov chain M = {dn, n ≥ 0}
with state space I = {1, 2}, where dn = i means the nth polled queue after t = 0
is Qi. Define

πi = lim
n→∞

Pr{dn = i}, i ∈ I,

rij = Pr{dn = i|dn+1 = j}, i, j ∈ I, n = 0, 1, . . .

Then

π1 =
1 − p2

2 − p1 − p2
, π2 =

1 − p1
2 − p1 − p2

,

r11 = p1, r12 = 1 − p2,

r21 = 1 − p1, r22 = p2.

With the notations, the average duration of an arbitrary switch-over time is
given by σ =

∑2
i=1

∑2
j=1 rijπjESij .

Throughout the paper, we shall employ the notations:
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– For a random variable X, X̃(·) denotes its PGF or LST.
– θi and Wi,M/G/1 denote a busy period and the waiting time of an arbitrary

customer in an M/G/1 queue with arrival rate λi and general service time Bi.
– For a random variable X (denoting a period), Xres denotes its residual life

time.
– Γ(α,μ) denotes a random variable of Gamma distributed with shape parameter

α and rate parameter μ.
– U denotes a random variable of standard uniformly distributed in [0, 1].

3 LSTs and Means of Waiting Time

Since the priority policy within Qi only influences the system performance
locally, leaving the amount of time spent outside Qi unaffected, such as the
intervisit times. Hence, we mainly concern on the waiting time of an arbitrary
type-ik customer, denoted by Wik (k = 1, 2, . . . ,Ki).

3.1 LSTs of Waiting Time

As for a type-ik customer, the polling system is an M/G/1 queue with a multiple
vacation Ii under the non-preemptive priority regime. Hence, the framework of
the delay-cycle (see [9]) in conjunction with the Fuhrmann-Cooper decomposi-
tion Theorem [8] are applied here.

For type-ik customers, we denote all the customers with higher priorities by
“type-iH customer” collectively. Then type-iH customers arrive according to a
Poisson process with intensity λiH =

∑k−1
j=1 λij and have service requirement

BiH with LST B̃iH(s) =
∑k−1

j=1
λij

λiH
B̃ij(s). Similarly, denote customers with

lower priorities by “type-iL customers” collectively, with arriving intensity λiL =∑Ki

j=k+1 λij and service requirement BiL of LST B̃iL(s) =
∑Ki

j=k+1
λij

λiL
B̃ij(s).

Meanwhile, let ρiH = λiHEBiH =
∑k−1

j=1 ρij , ρiL = λiLEBiL =
∑Ki

j=k+1 ρij .
The time intervals between two consecutive services of type-ik customers

(denoted by Bik,H) consists of the service time of a type-ik customer and the
service times of all his type-iH descendants. Then

B̃ik,H(s) = B̃ik(s + λiH(1 − θ̃iH(s))) and EBik,H =
EBik

1 − ρiH
. (1)

For an arbitrary type-ik customer, define TX,iHk-cycle and TX,iH -cycle as
follows.

1. A TX,iHk-cycle is a cycle that starts with a certain initial delay X that no
type-iH or type-ik customer is waiting in line, continued with type-iH or
type-ik customers served only and terminates at the moment that no type-
iH or type-ik customer is present in the system. Hence, the mean length of
a TX,iHk-cycle equals EX

1−ρiH−ρik
.
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2. A TX,iH -cycle is a cycle that starts with a delay X that no type-iH customer is
waiting in line, continued with type-iH customers served only and terminates
at the moment that no type-iH customer is present in the system. Hence, the
mean length of a TX,iH -cycle equals EX

1−ρiH
.

From the above definitions, for a tagged type-ik customer arriving within a
TX,iHk-cycle, he will view the cycle as a standard M/G/1 queue with multiple
server vacation TX,iH -cycle, in which the arrival rate equals λik and service time
equals Bik,H .

Denote the intervisit time of Qi by Ii. It is noted that the arrival of a type-ik
customer always takes place within a TIi,ik-cycle or a TBiL,ik-cycle. The mean
length of a TBiL,ik-cycle equals EBiL

1−ρiH−ρik
. Hence, the fraction of the time that

the system is in a TBiL,ik-cycle equals λiL · EBiL

1−ρiH−ρik
= ρiL

1−ρiH−ρik
.

This key observation enables us to give the waiting time of a type-ik cus-
tomer by utilizing the Fuhrmann-Cooper decomposition Theorem within each
TX,iHk-cycle:

Theorem 1. For an arbitrary type-ik customer, the LST of the waiting time
equals

W̃ik(s)=
(1−ρik,H)s

s−λik(1 − B̃ik,H(s))

[
(1−ρiL,Hk)

1 − T̃Ii,iH(s)
sETIi,iH

+ρiL,Hk
1−T̃BiL,iH(s)

sETBiL,iH

]
,

(2)
where Bik,H is defined in (1) and ρik,H , ρiL,Hk equal

ρik,H =
ρik

1 − ρiH
and ρiL,Hk =

ρiL

1 − ρiH − ρik
.

Besides,

T̃Ii,iH(s) = Ĩi(s + λiH(1 − θiH(s))) and E(TIi,iH) =
EIi

1 − ρiH
,

T̃BiL,iH(s) = B̃iL(s + λiH(1 − θiH(s))) and E(TBiL,iH) =
EBiL

1 − ρiH
,

where Ĩ1(s) = F̃1(1 − s
λ1

, 1) and Ĩ2(s) = F̃2(1, 1 − s
λ2

). The expressions of
F̃1(z1, z2) and F̃2(z1, z2) refer to equations (11) and (12) in [5].

3.2 Mean of Waiting Time

Following the above methodology or taking the derivatives directly leads to the
means of the waiting time. Here we give a more simple derivation by utilizing
Little’s formula.

In the non-priority case, when an arbitrary customer arrives at Qi, the server
may be serving a customer at Qi or be working within an intervisit time Ii.
For brevity, denote the residual service time and the residual intervisit time
collectively by residual delay Wi,0. The waiting time Wi,FCFS of the tagged
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customer equals the residual delay Wi,0 plus the service time of customers before
him in the queue, the mean of which equals ρiEWi,FCFS by Little’s formula.
Hence,

EWi,FCFS = EWi,0 + ρiEWi,FCFS .

Similarly, for an arbitrary type-iH customer in the priority case, we have

EWiH = EWi,0 + ρiHEWiH .

Combining the above two equations leads to

EWiH =
1 − ρi

1 − ρiH
EWi,FCFS .

For an arbitrary type-iL customer, the waiting time consists of the residual delay
and the workload of customers waiting before as well as all their type-iH and
type-ik descendants. Therefore,

EWiL =
EWi,0 + ρiEWi,FCFS

1 − ρiH − ρik
=

1
1 − ρiH − ρik

EWi,FCFS .

For an arbitrary type-ik customer, the waiting time equals the residual delay,
plus the workload of type-iH and type-ik customers waiting before and all their
type-iH descendants. Therefore,

EWik =
EWi,0 + ρiEWi,FCFS − ρiLEWiL

1 − ρiH

=
(1 − ρi)

(1 −
∑

l≤k ρil)(1 −
∑

l<k ρil)
EWi,FCFS . (3)

3.3 Impact of Priority Policy on Mean Waiting Times

In this subsection, we consider the impact of the priority policy on the mean
waiting time of an arbitrary customer (to distinguish with the non-priority
case, denoted by Wi,priority, i = 1, 2). For ease of presentation, we need more
notations:

1. Xi: the type of the tagged arriving customer at Qi. Then

Pr{Xi = ik} =
λik

λi
.

2. Δij,(preempt ik), (j < k ≤ Ki): the decrement of the waiting time of a type-ij
customer induced by preempting type-ik customers, i.e.

Δij,(preempt ik) = −ρikEWik = − (1 − ρi)ρik

(1 −
∑

l≤k ρil)(1 −
∑

l<k ρil)
EWi,FCFS ≤ 0.
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3. Δik,(preempted by ij), (j < k ≤ Ki): the increment of the waiting time of a type-
ik customer induced by being preempted by type-ij customers (including all
the type-ij descendants belonging to customers waiting before). Hence,

Δik,(preempted by ij) = (EWi,FCFS −
∑

l>k

ρilEWil)
ρij

1 −
∑

l<k ρil

=
(1 − ρi)ρij

(1 −
∑

l≤k ρil)(1 −
∑

l<k ρil)
EWi,FCFS ≥ 0.

4. Δnet,(ij,ik): the net preempting time between type-ij customers and type-ik
customers defined by

Δnet,(ij,ik) = Δij,(preempt ik)I{Xi=ij} + Δik,(preempted by ij)I{Xi=ik}

=
λijλik

λi

(1 − ρi)
(1 −

∑
l≤k ρil)(1 −

∑
l<k ρil)

[
1

μij
− 1

μik

]

EWi,FCFS .

For an arbitrary customer arriving at Qi in priority case, we have

EWi,priority − EWi,FCFS =
∑

j<k≤Ki

Δnet,(ij,ik),

from which it follows that, if μij ≥ μik for all j < k ≤ Ki, then EWi,priority ≤
EWi,FCFS . Therefore, prioritizing small service times is an effective scheduling
policy not only to satisfy different types of QoS (Quality of service) standard but
also to reduce the mean delay, which is also in line with the conclusion in [15].

Remark 1. From the derivation of the mean waiting times and the methodology
of the net preempting time, it is easy to see that this conclusion also applies for
each M/G/1 queue with generalized vacations given that the vacation begins
once the system gets empty.

4 Heavy Traffic Asymptotics

Observing the exact LSTs of the waiting time given in Theorem 1, It is too
intractable to analyze the impact of priority policy on the distributions of waiting
times since the existence of some infinite number of products. In this section, we
turn to study the limiting distributions of the scaled delay Wik = (1−ρ)Wik, i =
1, 2; k = 1, 2, . . . ,Ki, when ρ → 1. The results are rather intriguing and provide
new fundamental insight in the impact of the priority policies. Throughout the
remainder paper, we introduce a notation x̂ such that x̂ = x

ρ . For example,
ρ̂1 = ρ1

ρ .
We introduce three Lemmas first. Lemma 1 is used to prove a Gamma dis-

tributed limiting random variable. Lemma 2 (see [13] Theorem 1) is devoted to
the expressions of the kth derivative [f(g)](k)(x) of a general composite function
f(g(x)). Lemma 3 follows by applying Lemmas 1 and 2 to the DSA expression
of G1 in [5].
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Lemma 1 (Method of Moments [12]). Let {Yn} be a sequence of random
variables with finite moments, satisfying

lim
n→∞

EY k
n = EΓ k

(α,μ), k = 1, 2, . . .

Then Yn
d→ Γ(α,μ).

Lemma 2. For k = 1, 2, . . . , the kth derivative of composite function f(g(x)) is
given by

[f(g)](k) (x) =
∑

m(k)∈Sk

ck

(
m(k)

)
f (lk) (g(x))

k∏

i=1

(
g(i)(x)

)mi

, lk =
k∑

j=1

mj ,

where

Sk :=

⎧
⎨

⎩
m(k) = (m1, . . . ,mk) : mjare non-negative integers with

k∑

j=1

jmj = k

⎫
⎬

⎭
,

and ck

(
m(k)

)
can be calculated in the following recursive way: c1(1) = 1 and for

k = 2, 3, . . .

ck

(
m(k)

)
= ck−1(m1 − 1,m2, . . . ,mk−1)I{m1>0} +

k−1∑

j=1

(mj + 1)

× ck−1(m1, . . . ,mj−1,mj + 1,mj+1−1,mj+2, . . . ,mk−1)I{mj+1>0}.

Lemma 3. For i = 1, 2, as ρ → 1, we have

lim
ρ→1

Ĩi

(
(1 − ρ)s

)
= pi + (1 − pi)

(
νi

νi + s

)α

,

where α and νi are defined as follows:

α =
2ρ̂1ρ̂2EStot

λ̂1EB2
1 + λ̂2EB2

2

, νi =
2ρ̂i

λ̂1EB2
1 + λ̂2EB2

2

, i = 1, 2.

Equivalently,

lim
ρ→1

Pr{(1 − ρ)Ii ≤ t} = pi + (1 − pi)Pr{Γ(α,νi) ≤ t}.

Proof. According to [5], denote by G̃1(z) = S̃21(λ1(1 − z))
∏∞

j=0 a2(f
(j)
2 (z)).

Then
Ĩ1(s) = r11S̃11(s) + r21G̃1(1 − s

λ1
),

Hence, for i = 1, the limiting distribution for (1 − ρ)I1 follows since

lim
ρ→1

Ĩ1
(
(1 − ρ)s

)
= lim

ρ→1

(

r11S̃11((1 − ρ)s) + r21G̃1

(

1 − (1 − ρ)s
λ1

))

= r11 + r21

(
ν1

ν1 + s

)α

= p1 + (1 − p1)
(

ν1
ν1 + s

)α

,

where the second equation follows from Lemma 4.4 in [5].
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Proposition 1. For i = 1, 2, as ρ → 1, we have

lim
ρ→1

T̃Ii,iH

(
(1 − ρ)s

)
= pi + (1 − pi)

(
(1 − ρ̂iH)νi

(1 − ρ̂iH)νi + s

)α

.

Equivalently,

lim
ρ→1

Pr{(1 − ρ)TIi,iH ≤ t} = pi + (1 − pi)Pr{Γ(α,(1−ρ̂iH)νi) ≤ t}.

Proof. To prove the limiting distribution of (1 − ρ)TIi,iH , we first construct a
composite function f(g(s)). Set

f(g(s)) = T̃Ii,iH

(
(1 − ρ)s

)
= Ĩi

(
(1 − ρ)s + λiH

(
1 − θ̃iH

(
(1 − ρ)s

)))
,

where f(s) = Ĩi(s) and g(s) = (1 − ρ)s + λiH

(
1 − θ̃iH

(
(1 − ρ)s

))
. It is easy to

obtain

f (k)(0) = (−1)k
EIk

i , k = 1, 2, . . . ,

g(1)(0) = 1 − ρ + λiH(1 − ρ)EθiH =
1 − ρ

1 − ρiH
,

g(k)(0) = (−1)(k+1)λiH(1 − ρ)k
Eθk

iH , k = 2, 3, . . . .

Then

E
(
(1 − ρ)Ii,H

)k
= (−1)k [f(g)](k) (0)

=
∑

m(k)∈Sk

(−1)k+lk+
∑k

j=2(j+1)mj ck
(
m(k)

)
EI

lk
i

(
1 − ρ

1−ρiH

)m1 k∏

j=2

(
λiH(1−ρ)jEθj

iH

)mj

=
∑

m(k)∈Sk

(−1)k+lk(1−ρ)k−lkck
(
m(k)

)
E

(
(1 − ρ)Ii

)lk
(

1

1−ρiH

)m1 k∏

j=2

(
λiHEθj

iH

)mj

.

Setting ρ → 1 in the above equation yields

lim
ρ→1

E
(
(1 − ρ)TIi,iH

)k

= lim
ρ→1

∑

m(k)∈Sk
lk=k

ck

(
m(k)

)
E

(
(1 − ρ)Ii

)lk
(

1
1 − ρiH

)m1 k∏

j=2

(
λiHEθj

iH

)mj

= lim
ρ→1

E

( (1 − ρ)Ii

1 − ρiH

)k

= (1 − pi)

∏k−1
j=0 (α + j)

[νi(1 − ρ̂iH)]k
,

where the second equation follows since lk = k holds iff m(k) = (k, 0, . . . , 0). By
Lemma 1, (1 − ρ)TIi,iH obeys a mixture distribution of a Gamma distribution
with a point distribution.
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Now we present the main theorem concerning the limiting distributions of
the scaled delay.

Theorem 2. For i = 1, 2, k = 1, 2, . . . ,Ki, the LSTs of the limiting scaled
delays are given by

lim
ρ→1

W̃ik(s) = (1 − ρ̂iL,Hk)
1 − ρ̂iH

s(1 − ρ̂i)EStot

[

1 −
(

(1 − ρ̂iH)νi

(1 − ρ̂iH)νi + s

)α]

+ ρ̂iL,Hk,

(4)

where

ρ̂iL,Hk =
ρ̂iL

1 − ρ̂iH − ρ̂ik
,

α =
2ρ̂1ρ̂2EStot

λ̂1EB2
1 + λ̂2EB2

2

,

νi =
2ρ̂i

λ̂1EB2
1 + λ̂2EB2

2

, i = 1, 2,

EStot =
p1

1 − p1
ES11 + ES12 + ES21 +

p2
1 − p2

ES22 =
2 − p1 − p2

(1 − p1)(1 − p2)
σ.

Equivalently,

lim
ρ→1

Pr(Wik ≤ t) = (1 − ρ̂iL,Hk)Pr(UΓ(α+1,(1−ρ̂iH)νi) ≤ t) + ρ̂iL,Hk,

where U and Γ(α+1,(1−ρ̂iH)) are mutually independent.

Proof. Taking the limit of (2) yields

lim
ρ→1

W̃ik(s) = lim
ρ→1

W̃ik((1 − ρ)s)

= lim
ρ→1

(1 − ρik,H)(1 − ρ)s

(1 − ρ)s − λik

(
1 − B̃ik,H

(
(1 − ρ)s

))

[

(1 − ρiL,Hk)
1 − T̃Ii,iH

(
(1 − ρ)s

)

σ
πi

(1 − ρi)s

+ ρiL,Hk

1 − T̃BiL,iH

(
(1 − ρ)s

)

(1 − ρ)sEBiL,H

]

= (1 − ρ̂iL,Hk)
1 − limρ→1 T̃Ii,iH

(
(1 − ρ)s

)

σ
πi

(1 − ρ̂i)s
+ ρ̂iL,Hk

= (1 − ρ̂iL,Hk)
(1 − pi)πi

σ(1 − ρ̂i)s

[

1 −
(

νi

νi + s

)α]

+ ρ̂iL,Hk,

where the last equation follows from Proposition 1. Substituting (1−pi)πi

σ = 1
EStot

into the above equation immediately yields (4).
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Corollary 1. For non-priority model, the LSTs of the limiting scaled delays are
given by

lim
ρ→1

W̃i,FCFS(s) =
1

s(1 − ρ̂i)EStot

[

1 −
(

νi

νi + s

)α]

.

Equivalently,
lim
ρ→1

Pr(Wi,FCFS ≤ t) = Pr(UΓ(α+1,νi) ≤ t),

where U and Γ(α+1,νi) are mutually independent (i = 1, 2).

Remark 2 (HTAP (Heavy Traffic Averaging Principle)). By utilizing the
averaging principle in [2,3], we give an intuitive interpretation of the heavy
traffic behavior. For simplicity, we denote TIi,iH = (1 − ρ)TIi,iH and set
T ∗

Ii,iH
as the length-biased random variable of TIi,iH with p.d.f fT ∗

Ii,iH
(x) =

xfTIi,iH
(x)/ETIi,iH . By Proposition 1, we have

T ∗
Ii,iH →d Γ(α+1,(1−ρ̂iH)νi), as ρ → 1, i = 1, 2.

According to the averaging principle, the total scaled workloads keep constant
during a cycle, whereas the workloads of an individual queue change much faster
and can be modeled as a fluid system. Therefore, we regard the system in heavy
traffic as a fluid model under exhaustive service policy.

From Subsect. 3.1, an arbitrary type-ik customer arrives during a TBiL,iHk-
cycle with probability of 1 − ρ̂iL,Hk and during a TIi,iHk-cycle with probabil-
ity of ρ̂iL,Hk in the heavy traffic. Since the scaled length of the delay TBiL,iH

approaches zero, the tagged type-ik customer within a TBiL,iHk-cycle would get
service immediately. If he arrives within a TIi,iHk-cycle, we consider the following
two cases: when the tagged type-ik customer arrives,

1. If the server is within the initial delay TIi,iH and UT ∗
Ii,iH

time units have
passed, then there will be [(1−U)+ ρ̂ik,HU ]T ∗

Ii,iH
works served ahead, which

has a uniformly distribution on [ρ̂ik,HT ∗
Ii,iH

, T ∗
Ii,iH

].
2. Otherwise, if U

ρ̂ik,H

1−ρ̂ik,H
T ∗

Ii,iH
time units within the visit time (the period of

the standard M/G/1 queue within an TIi,iHk-cycle) have elapsed when it
arrives, then the delay will equal [U ρ̂ik,H

1−ρ̂ik,H
+1]T ∗

Ii,iH
ρ̂ik,H −U

ρ̂ik,H

1−ρ̂ik,H
T ∗

Ii,iH
=

ρ̂ik,HT ∗
Ii,iH

(the work that arrived ahead minus that which has already been
served), which is a uniform distribution on [0, ρ̂ik,HT ∗

Ii,iH
].

To sum up, the waiting time of the tagged type-ik customer can be expressed
by

lim
ρ→1

Pr(Wik ≤ t) = (1 − ρ̂iL,Hk)Pr(UT ∗
Ii,iH ≤ t) + ρ̂iL,Hk,

which is equivalent to (4).

Remark 3 (Comparison with non-priority case). Compared to the non-
priority case, Theorem 2 illustrates that, under the heavy traffic scaling, for an
arbitrary type-ik customer,
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– By preempting the service of type-iL customers within TBiL,iHk-cycle, the
scaled delay has a point distribution of ρ̂iL,Hk = ρ̂iL

1−ρ̂iH−ρ̂ik
at 0.

– Being preempted by type-iH customers, The scaled delay is delayed with rate
parameter of 1 − ρ̂iH times.

– The impact of priority policy on the mean waiting time within Qi remains
unchanged, i.e. giving priority to customers with smaller service times could
reduce the mean response time.

5 Numerical Examples

In this section we give a few examples to illustrate the impact of priority poli-
cies. For simplicity, we consider a polling system with three-type customers at
Q1 described in Table 1 with exponentially distributed service time and expo-
nentially distributed switch-over times. Note that the first three parameters in
the rows of Ratio of arriving rate and Service rate in Table 1 are parameters
belonging to the three-type customers at Q1. We set type-11 customers of the
highest priority, closely followed by type-12 customers and then type-13 cus-
tomers. Hereafter, we mainly focus on the waiting times in the following three
cases:

– FCFS: FCFS service policy within Q1;
– Priority: μ11 > μ12 > μ13: μ11 = 2, μ12 = 1, μ13 = 0.5;
– Priority: μ11 < μ12 < μ13: μ11 = 0.5, μ12 = 1, μ13 = 2.

Table 1. Parameter values of the investigated polling system

Parameter Parameter values

Ratio of arriving rate 2 : 1 : 2 : 5

Service rate 2, 1, 0.5, 2

Mean service time EB = 0.85

Probability of transitions p1 = 0.4, p2 = 0.3

Switch-over times ES11 = 3, ES12 = 2, ES21 = 2.5, ES22 = 1.5

Average switch-over time σ = 2.3077

To test the validity of the limiting distributions of the scaled delay in the
heavy traffic and the interpolation approximations, we utilize the SimEvents
toolbox of Matlab to undertake the simulations. SimEvents provides a discrete-
event simulation engine and component library for Simulink. We can model
event-driven communication between components to analyze and optimize end-
to-end latencies, throughput and other performance characteristics. Libraries of
predefined blocks, such as queues, servers, and switches, enable us to accurately
represent queueing system and customize routing, processing delays, prioritiza-
tion, and other operations.
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Fig. 2. The CDFs of scaled delay of type-12 customers in heavy traffic
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Fig. 3. Relative difference of the mean waiting times under different priority policy

Regarding the heavy traffic behavior, we take ρ = 0.8, 0.9, 0.99 to describe the
procedure of ρ → 1 while the ratio of the arriving rate is fixed. In this example,
we consider the Priority case of μ11 > μ12 > μ13 and take type-12 customers for
example. The empirical CDF (Cumulative Distribution Function) of the waiting
times are plotted in Fig. 2. The asymptotic distribution of the scaled delay is also
plotted. Each simulation runs for time of at least 107 units and during which
at least 107 customers are served. The first 105 customers served are discarded
due to the warm-up phase. From Fig. 2, it readily shows that the approximation
performs very well when ρ is close to 1.
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In Fig. 3, we plot the relative difference of mean waiting times between the
priority cases and non-priority case, which is calculated by W1,priority−W1,FCFS

W1,FCFS
×

100% in priority cases of μ11 > μ12 > μ13 and μ11 < μ12 < μ13 respectively.
Depicted in Fig. 3, the mean waiting time in priority case of μ11 > μ12 > μ13

decreases by 25% in comparison with FCFS when ρ is up to 1, while in priority
case of μ11 < μ12 < μ13, it increases by up to 45% in comparison with FCFS.
It illustrates that, the performance will get much better for higher load ρ if the
smaller jobs are prioritized, otherwise, it will get much worse.

6 Conclusions

In this paper, we have introduced the priority policy into a 2-queue Markovian
polling system and presented the LSTs and means of waiting times of each type
customers and their limiting behaviors under the heavy traffic scaling. All the
works allow us to present the impact of priority policy on the waiting times. It
has illustrated that prioritizing jobs with smaller mean service time could reduce
the mean response time. In particular, the impact could be dramatic in heavy
traffic regime. This conclusion can be well applied in the traffic on campus. For
example, it could disperse the congestion much faster by giving priorities to
students with bicycles over students on foot during the rush hours.

Although we have made some achievements of the Markovian priority polling
system, it leaves many extension works. Here we discuss some topics for further
research.

1. Other priority policy. We have depicted that the impact of priority policy
could be dramatic, which refutes the assertion that the priority policy within
a queue only has a minor effect on overall performance. Hence, it is essential
to exploit other priority policies in polling systems to improve the system
performance without purchasing additional resources.

2. Other service disciplines. Although the explicit performance expressions
might be hard to obtain in polling systems with gated or other branching-
type service discipline, we could focus on the interpolation approximations
by utilizing the heavy traffic limit and light traffic limit. Then the question
remains to exploit the light traffic limits. The exhaustiveness (see [16]) of a
branching-type service discipline may be helpful.
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Central Universities (WUT:2017IVA069). The authors also gratefully acknowledge the
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Abstract. This paper analyzes the customers’ equilibrium strategy and
optimal social benefit in a Markovian queueing system, in which the
arrival rate, service rate of customers, as well as the reward and hold-
ing cost are all fuzzy numbers. Based on Zadeh’s extension principle,
we investigate the membership functions of the optimal and equilibrium
strategies in both observable and unobservable cases. Furthermore, by
applying the α-cut approach, the family of crisp strategy is described by
formulating a pair of parametric nonlinear programs, through which the
membership functions of the strategy can be derived. Finally, numerical
examples are solved successfully to illustrate the validity of the proposed
approach and to show the relationship of these strategies and social ben-
efits. Our main contribution is showing that the value of equilibrium and
optimal strategies have no deterministic relationship, which are different
from the results in the corresponding crisp queues. Moreover, the suc-
cessful extension of queue game to fuzzy environments can provide more
precise information to the system managers.

Keywords: Fuzzy queue · Equilibrium strategies · Social benefit
Membership functions · Parametric nonlinear programming

1 Introduction

Queueing literature is recently devoting an increasing attention to the economic
analysis of queueing systems. During the last decades, there is an emerging
tendency to study queueing systems from an economic viewpoint. Admittedly,
customers’ decentralized behavior and socially optimal control of arrivals have
gained an ascending attention. Such an economic analysis of queueing systems
was pioneered by Naor [20]. Hassin and Haviv [12] and Stidham [25] summa-
rized the main approaches and several results about various models with exten-
sive bibliographical references [1,9,13,18,22,24]. Most of them are forced on the
ideas in three directions. One such direction is the consideration of fluid queues
and non-Markovian models [7,9,15]. The second direction is the study of two-
dimensional Markovian models and the third direction concerns the effect of the
level of information on the customer behavior [10,11,26].
c© Springer International Publishing AG 2017
W. Yue et al. (Eds.): QTNA 2017, LNCS 10591, pp. 297–311, 2017.
https://doi.org/10.1007/978-3-319-68520-5_18
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In the existing literature of queueing game, the inter-arrival times and service
times of customers are required to follow certain probability distributions, that
is the system parameters are all assumed to be crisp numbers. However, in many
real-world applications, the statistical information may be obtained subjectively.
Actually, the arrival pattern, service pattern are better described by linguistic
terms such as ‘the mean arrival rate is approximately 5’, ‘the mean service rate
is approximately 10’, rather than by probability distributions. In other words,
these system parameters are more possibilistic as well as probabilistic. In order
to face the fuzzy environment factor, fuzzy queues are potentially useful and are
much more realistic than the commonly used crisp queues [17]. Recently, in fuzzy
logic literature, fuzzy queues are largely studied (see Wang et al. [27], Munoz
and Ruspini [19], Jolai et al. [14], Chen [5] etc.). A comprehensive discussion
on fuzzy queueing systems can be found in the survey papers of Buckley et
al. [2,3]. In real life situations, the decision maker faces the major difficulty
to forecast demand, which is due to lack of knowledge or inherent vagueness,
which imply respectively randomness and fuzziness. As we all know, for the
management of the queueing systems it is more important to consider the fuzzy
environment, which can provide more precise and comprehensive information
about the decision policy for the system manager. When the equilibrium analysis
of customer behaviors in the usual crisp queues can be extended to fuzzy queues,
these queueing models will have wider applications. To the best of our knowledge,
no previous study has considered the customers’ equilibrium strategy and social
optimization in fuzzy queues.

In this paper, based on the results of corresponding crisp queue, we ana-
lyze the membership functions of the equilibrium strategy and optimal social
benefit in fuzzy queues through the Zadeh’s extension principle and α-cuts [21].
The benefit and significance of such fuzzy strategies lie in the fact that it com-
pletely maintains the fuzziness of the input information. As the value of α varies,
the family of crisp strategy and social benefit are then described and solved by
parametric nonlinear programming (NLP). Based on Zadeh’s extension princi-
ple and NLP, we construct an approach to solve the membership functions of
the equilibrium strategy and optimal social benefit. Moreover, we present some
numerical examples to demonstrate how the proposed approach can be applied
to this model and make a comprehensive analysis of the numerical results.

The goal of this work is to analyze the optimal and equilibrium balking
strategies in a fuzzy queue under both observable and unobservable cases. The
novelties of this study include three main aspects. First, our paper is the first
to apply the fuzzy set theory to study the equilibrium strategy of customers
and optimal social benefits in the fuzzy queueing system. The important feature
of the present work is to consider both fuzziness and randomness in a queue
for the customers strategy. Second, a parametric nonlinear programming (NLP)
analysis method is proposed in this paper to derive the membership functions
of the optimal and equilibrium strategies and social benefits. This study fills a
gap in the rich literatures on the analysis of the strategic behavior of customers
in queues. Finally, the study of the model with fuzzy parameters may provide
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more precise information to managers and improve decision-making. So that
we should take advantage of fuzzy queuing systems to study the customers’
behaviors and optimal social benefit decisions. Our finding reveals that different
from the strategy in corresponding crisp queueing system, the optimal strategies
are not always larger than the equilibrium strategies (threshold and arrival rate)
in the present fuzzy queues.

The rest of the paper is structured as follows. In Sect. 2, we briefly describe
the fuzzy queue and give the summary of known results in the corresponding crisp
queues. A mathematical programming approach is developed for deriving the
membership functions of the equilibrium optimal strategies and social benefits
for the observable and unobservable cases in Sect. 3. Section 4 outlines a solution
procedure to numerically construct the membership function of the optimal and
equilibrium balking strategies in the system and some numerical examples are
provided. This paper ends with Sect. 5 where conclusions and future scope are
given.

2 Model Description

We consider a single-server FCFS queueing system model where customers arrive
according to a Poisson process with rate Λ. The service times of all customers
are independent and exponentially distributed with parameter μ. Upon arrival,
customers are allowed to decide whether to join or balk. Every customer receives
a reward of R units after service. This reward R may represent his satisfaction
or the added value of the customer obtains from being served. On the other
hand, there also exists a waiting cost of C per unit time when the customers
remain in the system. We assume that customers are risk-neutral, and choose to
join the queue if and only if the expected cost of waiting is less than or equal
to R. Customers are risk neutral and they want to maximize their expected net
payoffs. The relative traffic intensity for the system is denoted by ρ = Λ

μ .
We represent the state of the system at time t by N(t), which denotes the

number of customers in the system (including the one being served) at time t. It
is clear that the process {N(t), t ≥ 0} is a continuous time Markov chain with the
state space E = {0, 1, 2, . . .}. In this paper, we consider two cases depending on
the levels of system information available to customers at their arrival instants,
before the decision is made: observable case (customers observe the queue length
N(t)) and unobservable case (customers do not observe the queue length N(t)).

In the case of observable system, it can be shown that customers who wish
to maximize their individual welfare will follow a pure threshold strategy [8].
This means that there exists an integer ne such that newly-arrived customers
will join the queue if and only if the number of other customers already present
in the system is smaller than ne. For the social optimization, one aims to find
the integer n∗ which maximizes the overall social welfare Sob(n) = 1−ρn

1−ρn+1 −
1
νs

[ 1
1−ρ − (n+1)ρ(n+1)

1−ρ(n+1) ]. Furthermore, we denote νs = Rμ
C , and ν satisfies νs =

ν(1−ρ)−ρ(1−ρν)
(1−ρ)2 .
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In the case of unobservable system, every customer has the same information
upon entering the system. It is therefore reasonable to assume that all customers
adopt the same randomized strategy for deciding whether to join or balk. Specif-
ically, the common strategy of customers can be represented by a value p ∈ [0, 1]
such that a customer will choose to join the queue with probability p. It follows
that the rate at which customers join the queue is λ = pΛ, and this represents
a stationary Poisson process of its own. For the social optimization, one aims to
control the effective arrival rate λ∗ which maximizes the overall social welfare
Sun(λ) = Rλ − Cλ

μ−λ , λ ∈ [0, Λ]. The following table give the known results of
the relationship of the strategies in M/M/1 queues [23].

In the queueing model, we assume that customer arrival rate Λ, service rate
μ, reward R and holding cost C are fuzzy numbers which are approximately
known. Then, we represent these fuzzy numbers as follows:

Λ̃ = {(x, ηΛ̃(x))|x ∈ X}, μ̃ = {(y, ημ̃(y))|y ∈ Y }.

R̃ = {(r, ηR̃(r))|r ∈ G}, C̃ = {(c, ηC̃(c))|c ∈ H}.

where X,Y,G,H are the crisp universal sets of x, y, r, c respectively, and ηΛ̃(x),
ημ̃(y), ηR̃(r) and ηC̃(c) are the corresponding membership functions. Because
the arrival rate Λ̃, service rate μ̃, reward R̃ and holding cost C̃ are fuzzy, the
steady-state probabilities and the performance measures for this system in the
steady state must also be fuzzy.

Any convex normalized fuzzy subset Ã on R (where R is the set of real
numbers) with membership function ηÃ is called a fuzzy number (Dubois [6]).
The fuzzy number Ã is said to be a trapezoidal fuzzy number if it is determined
by the crisp numbers [a1, a2, a3, a4], where a1 < a2 < a3 < a4, with membership
function of the form

ηÃ(a) =

⎧
⎨

⎩

(a − a1)/(a2 − a1) a1 ≤ a ≤ a2,
1 a2 ≤ a ≤ a3,

(a4 − a)/(a4 − a3) a3 ≤ a ≤ a4.

Let Ã = [a1, a2, a3, a4] and B̃ = [b1, b2, b3, b4] be two trapezoidal fuzzy numbers.
Some fuzzy arithmetic operations under the functional principle (Chen [4]) for
trapezoidal fuzzy numbers are given below:

(1) Non-negative fuzzy number Ã ≥ 0, i.e. a1, a2, a3, a4 ≥ 0.
(2) Subtraction �B̃ = (−b4,−b3,−b2,−b1), Ã � B̃ = (a1 − b4, a2 − b3, a3 −

b2, a4 − b1).
(3) Division (If a1, b1, a2, b2, a3, b3, a4 and b4 are all positive real numbers)

�B̃ = B̃−1 = (
1
b4

,
1
b3

,
1
b2

,
1
b1

), Ã � B̃ = (
a1

b4
,
a2

b3
,
a3

b2
,
a4

b1
)

In this paper, we just consider the models with trapezoidal fuzzy parameters,
which allow us derive the analysis results and numerical examples. From now on
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we assume that R̃− C̃
μ̃ ≥ 0, otherwise no customers will ever enter. Furthermore,

we assume that ρ̃ = Λ̃
μ̃ and 1 − ρ̃ > 0 for the unobservable case.

For the fuzzy queueing systems, we are interested in the optimal and equi-
librium strategies which include the equilibrium and optimal thresholds for the
observable case, optimal and equilibrium arrival rates for the unobservable case.
Because the system parameters Λ̃, μ̃, R̃ and C̃ are fuzzy, the equilibrium thresh-
olds, arrival rates and social benefits must also be fuzzy. They are denoted by ñe,
ñ∗, λ̃e, λ̃∗, S̃ob, ˜Sun respectively. For the optimal social strategies, the objective
functions are designed to determine the optimal threshold and arrival rate that
maximize the fuzzy expected social benefits in both observable and unobservable
cases as follows:

S̃ob(n) =
1 − ρ̃n

1 − ρ̃n+1
− C̃

R̃μ̃
[

1
1 − ρ̃

− (n + 1)ρ̃(n+1)

1 − ρ̃(n+1)
],

S̃un(λ) = R̃λ − C̃λ

μ̃ − λ
.

Note that the maximal expected social benefit per unit time is a fuzzy number,
not a crisp number. Consequently, the optimum cannot be obtained directly;
instead, we wish to derive its membership function. We denote Ω = {�ν� | ry

c =
ν(1−x/y)−(x/y)(1−(x/y)ν)

(1−x/y)2 }. By Zadeh’s extension principle (Zimmermann [28]),

the membership functions of the objective values ñe, ñ∗, λ̃e, λ̃∗, S̃ob, S̃un are
defined as

ηñe
(z) = sup

x∈X,y∈Y,r∈G,c∈H
min{ηΛ̃(x), ημ̃(y), ηR̃(r), ηC̃(c) | z = ne(x, y, r, c)},

(1)

ηñ∗(z) = sup
x∈X,y∈Y,r∈G,c∈H

min{ηΛ̃(x), ημ̃(y), ηR̃(r), ηC̃(c) | z = n∗(x, y, r, c)},

(2)

ηλ̃e
(z) = sup

x∈X,y∈Y,r∈G,c∈H
min{ηΛ̃(x), ημ̃(y), ηR̃(r), ηC̃(c) | z = λe(x, y, r, c)},

(3)

ηλ̃∗(z) = sup
x∈X,y∈Y,r∈G,c∈H

min{ηΛ̃(x), ημ̃(y), ηR̃(r), ηC̃(c) | z = λ∗(x, y, r, c)},

(4)

ηS̃ob
(z) = sup

x∈X,y∈Y,r∈G,c∈H
min{ηΛ̃(x), ημ̃(y), ηR̃(r), ηC̃(c) | z = max

n≥0
Sob(n)},

(5)

ηS̃un
(z) = sup

x∈X,y∈Y,r∈G,c∈H
min{ηΛ̃(x), ημ̃(y), ηR̃(r), ηC̃(c) | z = max

0≤λ≤Λ
Sun(λ)},

(6)

In this paper, the system characteristics of interest are the optimal and equilib-
rium strategies in M/M/1 queueing system for both observable and unobserv-
able cases. From Table 1, we have the results as follows:
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Table 1. Summary of known results about optimal and equilibrium strategy in M/M/1
queues

Cases Optimal strategy Relationship Social
welfare

Selfish optimal Social optimal

Observable ne = �νs� n∗ = �ν� ne ≤ n∗ Sob(n∗)

Unobservable λe = min{μ − C
R

, Λ} λ∗ = min{μ(1 −
√

C
Rμ

), Λ} λe ≤ λ∗ Sun(λ∗)

ne(x, y, r, c) = �ry

c
�,

n∗(x, y, r, c) = �ν�, ν ∈ Ω,

λe(x, y, r, c) = min{y − c

r
, x},

λ∗(x, y, r, c) = min{y(1 −
√

c

ry
), x},

Sob(n) =
1 − (x/y)n

1 − (x/y)n+1
− c

ry
[

1
1 − x/y

− (n + 1)(x/y)(n+1)

1 − (x/y)(n+1)
],

Sun(λ) = rλ − cλ

y − λ
, 0 ≤ λ ≤ x.

The membership functions above are not in the usual forms for practical use
making it very difficult to imagine their shapes. In this paper we approach the
problem using a mathematical programming technique. These parametric non-
linear programs are developed to find the α-cuts of equilibrium and optimal
strategies based on the Zadeh’s extension principle.

3 The Parametric Nonlinear Programming Approach

In most cases, the values of the membership functions of the optimal strategies
cannot be solved analytically. Consequently, a closed-form membership function
for these strategies and social benefits cannot be obtained. However, the numer-
ical solutions for ηñe

(z), ηñ∗(z), ηλ̃e
(z), ηλ̃∗(z), ηS̃ob

(z), ηS̃un
(z) at different pos-

sibility levels can be collected to approximate the shapes of the membership
functions. That is, the set of crisp intervals reveals the shape of the fuzzy opti-
mal strategies. The α-cuts of the fuzzy parameters Λ̃, μ̃, R and C are defined as
follows.

Λ(α) = {x ∈ X | ηΛ̃(x) ≥ α}, μ(α) = {y ∈ Y | ημ̃(y) ≥ α},

R(α) = {r ∈ G | ηR̃(r) ≥ α}, C(α) = {c ∈ H | ηC̃(c) ≥ α}.

Notably, Λ(α), μ(α), R(α) and C(α) are crisp sets rather than fuzzy sets. Using
α-cuts, Λ̃, μ̃, R̃ and C̃ can be represented by different levels of confidence intervals
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(Klir and Yuan [16]). Because Λ̃, μ̃, R̃ and C̃ are assumed to be fuzzy numbers,
their cuts, as defined above, are crisp intervals that can be expressed in the
following alternate forms:

Λ(α) = [min
x

{x ∈ X | ηΛ̃(x) ≥ α}, max
x

{x ∈ X | ηΛ̃(x) ≥ α}] = [XL
α ,XU

α ],

μ(α) = [min
y

{y ∈ Y | ημ̃(y) ≥ α}, max
y

{y ∈ Y | ημ̃(y) ≥ α}] = [Y L
α , Y U

α ],

R(α) = [min
r

{r ∈ G | ηR̃(r) ≥ α}, max
r

{r ∈ G | ηR̃(r) ≥ α}] = [GL
α, GU

α ],

C(α) = [min
c

{c ∈ H | ηC̃(c) ≥ α}, max
c

{c ∈ H | ηC̃(c) ≥ α}] = [HL
α ,HU

α ].

We denote f = ne, λe, n∗, λ∗, Sob, Sun. Clearly, the membership functions defined
in (1)–(6) are also parameterized by α. Thus, using Zadeh’s extension principle,
we can use the α-cuts of f̃ to construct these membership functions. The first
step is to determine the lower bound fL(α) and the upper bound fU (α) on
the α-cut of f̃ . According to (1)–(6), ηf̃ (z) is the minimum of several other
membership functions ηΛ̃(x), ημ̃(y), ηR̃(r) and ηC̃(c). To ensure that the obtained
interval for the membership value is indeed the α-cut of f̃ , at least one of x, y, r, c
must lie on the boundary of its α-cut to satisfy ηf̃ (z) = α. In other words, to
satisfy ηf̃ (z) = α, it is required that ηΛ̃(x) ≥ α, ημ̃(y) ≥ α, ηR̃(r) ≥ α and
ηC̃(c) ≥ α, and at least one of these four inequalities should be active such that
z = ne, λe, n∗, λ∗, S∗

ob, S
∗
un. This outcome can be accomplished via parametric

programming. Because fL(α) and fU (α) are the minimum and maximum of f ,
these terms can be expressed as follows.
(i) For the membership function ηñe

(z) of fuzzy number ñe, we have

nL
e (α) = min{�ry

c
� | Y L

α ≤ y ≤ Y U
α , GL

α ≤ r ≤ GU
α ,HL

α ≤ c ≤ HU
α }

nU
e (α) = max{�ry

c
� | Y L

α ≤ y ≤ Y U
α , GL

α ≤ r ≤ GU
α ,HL

α ≤ c ≤ HU
α }.

which can be reformulated as follows:

nL
e (α) = �GL

αY L
α

HU
α

�, nU
e (α) = �GU

α Y U
α

HL
α

�, (7)

(ii) For the membership function ηñ∗(z) of fuzzy number ñ∗, we have

nL
∗ (α) = min{�ν� | ν ∈ Ω, XL

α ≤ x ≤ XU
α , Y L

α ≤ y ≤ Y U
α , GL

α ≤ r ≤ GU
α , HL

α ≤ c ≤ HU
α }

nU
∗ (α) = max{�ν� | ν ∈ Ω, XL

α ≤ x ≤ XU
α , Y L

α ≤ y ≤ Y U
α , GL

α ≤ r ≤ GU
α , HL

α ≤ c ≤ HU
α }.

which can be reformulated as follows:

nL
∗ (α) = min{�ν� | ν ∈ Ω}, nU

∗ (α) = max{�ν� | ν ∈ Ω},

s.t. XL
α ≤ x ≤ XU

α , Y L
α ≤ y ≤ Y U

α , GL
α ≤ r ≤ GU

α ,HL
α ≤ c ≤ HU

α . (8)

(iii) For the membership function ηλ̃e
(z) of fuzzy number λ̃e, we have

λL
e (α) = min{min{y − c

r
, x} | XL

α ≤ x ≤ XU
α , Y L

α ≤ y ≤ Y U
α , GL

α ≤ r ≤ GU
α , HL

α ≤ c ≤ HU
α },

λU
e (α) = max{min{y − c

r
, x} | XL

α ≤ x ≤ XU
α , Y L

α ≤ y ≤ Y U
α , GL

α ≤ r ≤ GU
α , HL

α ≤ c ≤ HU
α },
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which can be reformulated as follows:

λL
e (α) = min{Y L

α − HU
α

GL
α

,XL
α }, λU

e (α) = min{Y U
α − HL

α

GU
α

,XU
α }. (9)

(iv) For the membership function ηλ̃∗(z) of fuzzy number λ̃∗, we have

λL
∗ (α) = min{min{y(1 −

√
c

ry
), x} | XL

α ≤ x ≤ XU
α , Y L

α ≤ y ≤ Y U
α , GL

α ≤ r

≤ GU
α ,HL

α ≤ c ≤ HU
α },

λU
∗ (α) = max{min{y(1 −

√
c

ry
), x} | XL

α ≤ x ≤ XU
α , Y L

α ≤ y ≤ Y U
α , GL

α

≤ r ≤ GU
α ,HL

α ≤ c ≤ HU
α },

which can be reformulated as follows:

λL
∗ (α) = min{Y L

α (1 −
√

HU
α

GL
αY L

α

),XL
α }, λU

∗ (α) = min{Y U
α (1 −

√
HL

α

GU
α Y U

α

),XU
α }.

(10)
(v) For the membership function ηS̃ob

of fuzzy number S̃ob, we have

SL
ob(α)=min{S∗

ob(n) |XL
α ≤x≤XU

α , Y L
α ≤y≤Y U

α , GL
α ≤r≤GU

α ,HL
α ≤ c ≤ HU

α },

SU
ob(α)=max{S∗

ob(n) | XL
α ≤ x ≤ XU

α , Y L
α ≤y≤Y U

α , GL
α ≤r≤GU

α ,HL
α ≤c≤HU

α },

which can be reformulated as follows:

SL
ob(α) = min

n∈Ω
{Sob(n, x, y) | r = GL

α, c = HU
α },

SU
ob(α) = max

n≥0
{Sob(n, x, y) | r = GU

α , c = HL
α }, (11)

s.t. XL
α ≤ x ≤ XU

α , Y L
α ≤ y ≤ Y U

α .

(vi) For the membership function η ˜Sun
of fuzzy number ˜Sun, we have

SL
un(α)=min{S∗

un(λ) |XL
α ≤x ≤ XU

α , Y L
α ≤ y≤Y U

α , GL
α ≤r≤GU

α ,HL
α ≤c ≤ HU

α },

SU
un(α)=max{S∗

un(λ) |XL
α ≤x ≤ XU

α , Y L
α ≤ y≤Y U

α , GL
α ≤r≤GU

α ,HL
α ≤c≤HU

α },

which can be reformulated as follows:

SL
un(α) = min{Sun(x, y) | λ = min{y(1 −

√
c

ry
), x}, y = Y U

α , r = GU
α , c = HL

α },

SU
un(α) = max

0≤λ≤x
{Sun(λ, x, y) | y = Y L

α , r = GL
α, c = HU

α }, (12)

s.t. XL
α ≤ x ≤ XU

α .
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where S∗
ob = max

n≥0
{Sob(n)} and S∗

un = max
0≤λ≤Λ

{Sun(λ)}. This can be accomplished

by the parametric NLP techniques. If both fL(α) and fU (α) of f̃ are invertible
with respect to α, then a left shape function L(z) and a right shape function R(z)
can be obtained. In most cases, the values of zi cannot be solved analytically.
Consequently, a closed-form membership function for f̃ cannot be obtained.
However, the numerical solutions for zi at different possibility level α can be
collected to approximate the shapes of L(z) and R(z). In the following section,
we present an efficient solution algorithm to compute the membership values of
f at different possibility level α.

4 Solution Algorithm and Numerical Examples

Let the arrival rate and service rate be trapezoidal fuzzy number represented
by [x1, x2, x3, x4], [y1, y2, y3, y4], [r1, r2, r3, r4] and [c1, c2, c3, c4] per unit time,
respectively, where x4 > x3 > x2 > x1, y4 > y3 > y2 > y1, r4 > r3 > r2 > r1
and c4 > c3 > c2 > c1. The system manager wants to evaluate the optimal
and equilibrium strategies in both unobservable and observable cases. Using the
proposed approach stated in Sect. 3, it is easy to obtain the α-cut sets of Λ̃, μ̃,
R̃ and C̃:

[XL
α ,XU

α ] = [(x2 − x1)α + x1, x4 − (x4 − x3)α],

[Y L
α , Y U

α ] = [(y2 − y1)α + y1, y4 − (y4 − y3)α],

[GL
α, GU

α ] = [(r2 − r1)α + r1, r4 − (r4 − r3)α],

[HL
α ,HU

α ] = [(c2 − c1)α + c1, c4 − (c4 − c3)α].

Thus, following (7)–(12), a set of parametric nonlinear programs for deriving
the membership function of fuzzy numbers ñe, ñ∗, λ̃e, λ̃∗, S̃ob, S̃un for M/M/1
system are given as follows.
For the equilibrium threshold strategy, we have

nL
e (α) = � [(r2 − r1)α + r1][(y2 − y1)α + y1]

c4 − (c4 − c3)α
�,

nU
e (α) = � [r4 − (r4 − r3)α][y4 − (y4 − y3)α]

(c2 − c1)α + c1
�.

For the optimal threshold strategy of the social welfare, we have

nL
∗ (α) = min{�ν� | ν ∈ Ω}, nU

∗ (α) = max{�ν� | ν ∈ Ω},

s.t. (x2 − x1)α + x1 ≤ x ≤ x4 − (x4 − x3)α, (y2 − y1)α+y1 ≤ y ≤ y4−(y4−y3)α,

(r2 − r1)α + r1 ≤ r ≤ r4 − (r4 − r3)α, (c2 − c1)α + c1 ≤ c ≤ c4 − (c4 − c3)α.

For the equilibrium arrival rate strategy, we have

λL
e (α) = min{(y2 − y1)α + y1 − c4 − (c4 − c3)α

(r2 − r1)α + r1
, (x2 − x1)α + x1},

λU
e (α) = min{y4 − (y4 − y3)α − (c2 − c1)α + c1

r4 − (r4 − r3)α
, x4 − (x4 − x3)α}.
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For the optimal arrival rate strategy of the social welfare, we have

λL
∗ (α) = min{[(y2 − y1)α + y1](1 −

√
c4 − (c4 − c3)α

[(r2 − r1)α + r1][(y2 − y1)α + y1]
),

(x2 − x1)α + x1},

λU
∗ (α) = min{[y4 − (y4 − y3)α](1 −

√
(c2 − c1)α + c1

[r4 − (r4 − r3)α][y4 − (y4 − y3)α]
),

x4 − (x4 − x3)α}.

For the optimal social warfare in observable case, we have

SL
ob(α) = min

n∈Ω
{Sob(n, x, y) | r = (r2 − r1)α + r1, c = c4 − (c4 − c3)α},

SU
ob(α) = max

n≥0
{Sob(n, x, y) | r = r4 − (r4 − r3)α, c = (c2 − c1)α + c1},

s.t. (x2 − x1)α + x1 ≤x≤x4 − (x4 − x3)α, (y2 − y1)α + y1 ≤y ≤ y4 − (y4 − y3)α.

For the optimal social warfare in unobservable case, we have

SL
un(α) = min

0≤λ≤x
{Sun(λ, x) | y = (y2 − y1)α + y1,

r = (r2 − r1)α + r1, c = c4 − (c4 − c3)α},

SU
un(α) = max

0≤λ≤x
{Sun(λ, x) | y = y4 − (y4 − y3)α, r = r4 − (r4 − r3)α,

c = (c2 − c1)α + c1},

s.t. (x2 − x1)α + x1 ≤ x ≤ x4 − (x4 − x3)α.

The proposed approach is based on Zadeh’s extension principle and paramet-
ric nonlinear programming. Therefore, we can summarize the solution procedure
into the following algorithm:

Step 1: Input the arrival rate, service rate, reward and holding cost,
which are trapezoidal fuzzy number represented by [x1, x2, x3, x4], [y1, y2, y3, y4],
[r1, r2, r3, r4] and [c1, c2, c3, c4].

Step 2: Output the numbers XL
α ,XU

α , Y L
α , Y U

α , GL
α, GU

α and HL
α ,HU

α .
Step 3: According to (i)–(vi), calculate the crisp interval [fL

α , fU
α ] where f =

ne, n∗, λe, λ∗, Sob, Sun of α-cut level by the parametric nonlinear programming
method.

Next, to illustrate the validity and suitability of the proposed model, sev-
eral numerical experiments are considered and their results are included in this
section. Due to the complexity of four fuzzy variables, it is impossible to deter-
mine the analytical solution of the crisp interval [SL

e (α), SU
e (α)] in terms of α.

Consequently, it is very difficult to obtain a closed-form membership function of
f . Instead, a software Maltab version 6.0 for windows is used to solve the math-
ematical programs and then the shape of f can be found. Here we enumerate
101 values of α: 0, 0.01, 0.02, . . . , 1.00. The figures depict the rough shape from
these values. In the following examples, we assume that the arrival rate, service
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rate, reward and holding cost rate are trapezoidal fuzzy numbers represented by
[1, 2, 3, 4], [5, 6, 7, 8], [10, 15, 20, 25], [2, 4, 6, 8] per unit time, respectively. As is
shown in the figures, we can make the following observations.

Fig. 1. The approximate membership function of optimal and equilibrium threshold n.

In the numerical experiments, we focus on exploring the membership func-
tions of the equilibrium and optimal strategies in the observable and unobserv-
able cases. Figures 1, 2, 3 show the MATLAB output results of the analysis for
each input parameter of our problem in fuzzy queueing system. As can be seen
in these figures, the membership functions of the strategies and social benefits
are approximately trapezoidal, which are result from the assumption that the
four fuzzy parameters in this model are trapezoidal fuzzy numbers.

In Fig. 1, we describe the characteristics of the membership function of the
optimal and equilibrium thresholds for observable case. The range of the equi-
librium and optimal thresholds are ne ∈ [3, 87] and n∗ ∈ [6, 100] respectively,
which indicates that the equilibrium and optimal thresholds in the fuzzy queue-
ing system belong to a large interval rather than by crisp values, so that more
information is provided to the system designers. Moreover, another thing worth
noting is the relationship of the derived membership functions. For example, for
α = 0.6, it is easy to see that nα

e ∈ [3, 87] and nα
∗ ∈ [6, 100] so that nα

e

⋂
nα

∗ 	= ∅.
Therefore, in fuzzy queueing system, there is no exact relationship between the
values of ne and n∗, which is totally different from the results (see Table 1)
in the corresponding crisp queueing system. Figure 2 illustrates the equilibrium
and optimal customer arrival rate in unobservable case. Taking the same analysis
method for Fig. 1, as illustrated in Fig. 2, λe ∈ [1.0, 4.0] and λ∗ ∈ [1.0, 7.2], it is to
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Fig. 2. The approximate membership function of optimal and equilibrium arrival
rate λ.

Fig. 3. The approximate membership function of optimal social benefit S.

easy to see λe

⋂
λ∗ 	= ∅. Therefore, similar results can be obtained that no explic-

itly relationship between optimal arrival rate λ∗ and equilibrium arrival rate λe

exists, which is also different from the corresponding crisp queueing system. The
above information will be very useful for designing a queueing system.
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Figure 3 is concerned with the fuzzy expected social welfare between observ-
able case and unobservable case. Based on the equilibrium analysis, we examine
the impact of information for the system. Such as, for α = 1, we have Sob > Sun,
which means that the social benefit in unobservable case is small. So more infor-
mation can significantly promote the system performance. However, when change
the value of ηS̃ in the range of [0, 1], the result may not be valid. The value of Sob

is in the range [47.06, 92.00] in observable case, while in unobservable case the
value of Sun will never exceed 98.00 or fall below 24.71. The two curves intersect
in two points in the interval of [60, 100], the values of Sun and Sob are difficult
to compare in Fig. 3, but it is obviously that the range of Sun is lager than that
of Sob. From this point of view, we can find that the impact of expected social
benefit with fuzzy factors in unobservable case is greater. Therefore, to avoid
the loss of the system, system designers should take more fuzzy factors into con-
sideration. The above results will certainly be useful and significant for system
managers. In addition, we find a consequence of the fact that there is no definite
relationship between Sob and Sun. As the performance measures are expressed by
membership functions rather than by crisp values, more information provided to
the system designers and decision makers may be helpful to improve the existing
systems. Since the fuzzy performance measures of fuzzy queues derived from the
proposed approach maintain the fuzziness of input information; therefore the
derived results can be used to represent the real time systems as fuzzy system
more accurately.

5 Conclusions

In this paper, we analyzed the Nash equilibrium behavior of customers in
Markovian queueing systems with fuzzy parameters. For the observable and
unobservable cases, we investigated the membership functions of the customer’s
equilibrium balking strategy and optimal social benefits. We presented an effi-
cient algorithm to construct the membership functions of the strategies and social
benefits. Numerical solutions for different α values were calculated to approx-
imate the membership functions by NLP. Moreover, some numerical examples
are provided, which allow us to find some interesting results differing from the
crisp queueing system. In contrast to existing studies, the results derived from
the proposed solution procedure conserve the fuzziness of the input information.

From the above results there arise some interesting extensions of the model
which we may study in the near future. One possible change is to consider the
systems where the customer arrival time and service time distributions are gen-
eral distributions. It is not worthy that instead of considering fuzzy triangular
numbers we can also considered different types of fuzzy numbers such as trape-
zoidal, exponential, bell-shaped fuzzy etc. Furthermore, the method of our paper
also can be promoted to some different queueing systems. Another way to gen-
eralize the model is to study some models with different strategies which can be
used in more practical applications, such as the queueing systems with impatient
customers, multiple priority customers and vacation policy. In addition, further
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extensions would be researched about the equilibrium strategy and dynamic pric-
ing problem in the queueing system with fuzzy parameters or fuzzy states.
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Abstract. The eigenpair here means the twins of eigenvalue and corre-
sponding eigenvector. The talk introduces the three steps of our study
on computing the maximal eigenpair. In the first two steps, we construct
efficient initials for a known but dangerous algorithm, first for tridiago-
nal matrices and then for the irreducible matrices, having nonnegative
off-diagonal elements. In the third step, we present two global algorithms
which are still efficient and work well for a quite large class of matrices,
even complex for instance.

Keywords: Maximal eigenpair · Efficient initial · Tridiagonal matrix
Global algorithm

1 Introduction

This paper is a continuation of [4]. For the reader’s convenience, we review
shortly the first part of [4], especially the story of the proportion of 1000 and 2
of iterations for two different algorithms.

The most famous result on the maximal eigenpair should be the Perron-
Frobenius theorem. For nonnegative (pointwise) and irreducible A, if Trace (A)
> 0, then the theorem says there exists uniquely a maximal eigenvalue ρ(A) > 0
with positive left-eigenvector u and positive right-eigenvector g:

uA = λu, Ag = λg, λ = ρ(A).

These eigenvectors are also unique up to a constant. Before going to the main
body of the paper, let us make two remarks.

(1) We need to study the right-eigenvector g only. Otherwise, use the trans-
pose A∗ instead of A.

(2) The matrix A is required to be irreducible with nonnegative off-diagonal
elements, its diagonal elements can be arbitrary. Otherwise, use a shift A + mI
for large m:

(A + mI)g = λg ⇐⇒ Ag = (λ − m)g, (1)

their eigenvector remains the same but the maximal eigenvalues are shifted to
each other.

c© Springer International Publishing AG 2017
W. Yue et al. (Eds.): QTNA 2017, LNCS 10591, pp. 312–329, 2017.
https://doi.org/10.1007/978-3-319-68520-5_19
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Consider the following matrix.

Q =

⎛
⎜⎜⎜⎜⎜⎝

−12 12 0 0 · · ·
12 −12 − 22 22 0 · · ·
0 22 −22 − 32 32 · · ·
...

...
. . . . . . . . .

0 0 0 N2 − N2 − (N + 1)2

⎞
⎟⎟⎟⎟⎟⎠

. (2)

The main character of the matrix is the sequence {k2}. The sum of each row
equals zero except the last row. Actually, this matrix is truncated from the corre-
sponding infinite one, in which case we have known that the maximal eigenvalue
is −1/4 (refer to ([2]; Example 3.6)).

Example 1. Let N = 7. Then the maximal eigenvalue is −0.525268 with eigen-
vector:

g ≈ (55.878, 26.5271, 15.7059, 9.97983, 6.43129, 4.0251, 2.2954, 1)∗,

where the vector v∗ = the transpose of v.

We now want to practice the standard algorithms in matrix eigenvalue com-
putation. The first method in computing the maximal eigenpair is the Power
Iteration, introduced in 1929. Starting from a vector v0 having a nonzero com-
ponent in the direction of g, normalized with respect to a norm ‖ · ‖. At the kth
step, iterate vk by the formula

vk =
Avk−1

‖Avk−1‖ , zk = ‖Avk‖, k � 1. (3)

Then we have the convergence: vk → g (first pointwise and then uniformly) and
zk → ρ(Q) as k → ∞. If we rewrite vk as

vk =
Akv0

‖Akv0‖ ,

one sees where the name “power” comes from. For our example, to use the Power
Iteration, we adopt the �1-norm and choose v0 = ṽ0/‖ṽ0‖, where

ṽ0 = (1, 0.587624, 0.426178, 0.329975, 0.260701, 0.204394, 0.153593, 0.101142)∗.

This initial comes from a formula to be given in the next section. In Fig. 1 below,
the upper curve is g, the lower one is modified from ṽ0, renormalized so that
its last component becomes one. Clearly, these two functions are quite different,
one may worry about the effectiveness of the choice of v0. Anyhow, having the
experience of computing its eigensystem, I expect to finish the computation in
a few of seconds. Unexpectly, I got a difficult time to compute the maximal
eigenpair for this simple example. Altogether, I computed it for 180 times, not
in one day, using 1000 iterations. The printed pdf-file of the outputs has 64
pages. Figure 2 give us the outputs.
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The figure of g and v0

Fig. 1. g and v0

200 400 600 800 1000

1.0

1.5

2.0 The figure of − zk
for k = 0, 1, . . . , 1000.

Fig. 2. −zk for k = 0, 1, . . . , 1000

The figure shows that the convergence of zk goes quickly at the beginning of
the iterations. This means that our initial v0 is good enough. Then the conver-
gence goes very slow which means that the Power Iteration Algorithm converges
very slowly.

Let us have a look at the convergence of the power iteration. Suppose that
the eigenvalues are all different for simplicity. Denote by (λj , gj) the eigenpairs
with maximal one (λ0, g0). Write v0 =

∑N
j=0 cjgj for some constants (cj). Then

c0 �= 0 by assumption and
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Akv0 =
N∑

j=0

cjλ
k
j gj = c0λ

k
0

[
g0 +

N∑
j=1

cj

c0

(
λj

λ0

)k

gj

]
.

Since |λj/λ0| < 1 for each j � 1 and ‖g0‖ = 1, we have

Akv0
‖Akv0‖ =

c0
|c0|g0 + O

(∣∣∣∣
λ1

λ0

∣∣∣∣
k)

as k → ∞,

where |λ1| := max{|λj | : j > 0}. Since |λ1/λ0| can be very closed to 1, this
explains the reason why the convergence of the method can be very slow.

Before moving further, let us mention that the power method can be also
used to compute the minimal eigenvalue λmin(A), simply replace A by A−1.
That is the Inverse Iteration introduced in 1944:

vk =
A−1vk−1

‖A−1vk−1‖ ⇐⇒ vk =
A−kv0

‖A−kv0‖ . (4)

It is interesting to note that the equivalent assertion on the right-hand side is
exactly the input-output method in economy.

To come back to compute the maximal ρ(A) rather than λmin(A), we add a
shift z to A: replacing A by A− zI. Actually, it is even better to replace the last
one by zI −A since we will often use z > ρ(A) rather than z < ρ(A), the details
will be explained at the beginning of Sect. 4 below. When z is close enough to
ρ(A), the leading eigenvalue of (zI − A)−1 becomes (z − ρ(A))−1. Furthermore,
we can even use a variant shift zk−1I to accelerate the convergence speed. Thus,
we have arrived at the second algorithm in computing the maximal eigenpair,
the Rayleigh Quotient Iteration (RQI), a variant of the Inverse Iteration. From
now on, unless otherwise stated, we often use the �2-norm. Starting from an
approximating pair (z0, v0) of the maximal one (ρ(A), g) with v∗

0v0 = 1, use the
following iteration.

vk =
(zk−1I − A)−1vk−1

‖(zk−1I − A)−1vk−1‖ , zk = v∗
kAvk, k � 1. (5)

If (z0, v0) is close enough to (ρ(A), g), then

vk → g and zk → ρ(A) as k → ∞.

Since for each k � 1, v∗
kvk = 1, we have zk = v∗

kAvk/(v∗
kvk). That is where the

name “Rayleigh Quotient” comes from. Unless otherwise stated, z0 is setting to
be v∗

0Av0.
Having the hard time spent in the first algorithm, I wondered how many

iterations are required using this algorithm. Of course, I can no longer bear 1000
iterations. To be honest, I hope to finish the computation within 100 iterations.
What happens now?

Example 2. For the same matrix Q and ṽ0 as in Example 1.1, by RQI, we need
two iterations only:

z1 ≈ −0.528215, z2 ≈ −0.525268.
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The result came to me, not enough to say surprisingly, I was shocked indeed.
This shows not only the power of the second method but also the effectiveness of
my initial v0. From the examples above, we have seen the story of the proportion
of 1000 and 2.

For simplicity, from now on, we often write λj := λj(−Q). In particular
λ0 = −ρ(Q) > 0. Instead of our previous v0, we adopt the uniform distribution:

v0 = (1, 1, 1, 1, 1, 1, 1, 1)∗
/
√

8.

This is somehow fair since we usually have no knowledge about g in advance.

Example 3. Let Q be the same as above. Use the uniform distribution v0 and
set z0 = v∗

0(−Q)v0. Then

(z1, z2, z3, z4z4z4) ≈ (4.78557, 5.67061, 5.91766, 5.918675.918675.91867).
(λ0, λ1,λ2λ2λ2) ≈ (0.525268, 2.00758, 5.918675.918675.91867).

The computation becomes stable at the 4th iteration. Unfortunately, it is not
what we want λ0 but λ2. In other words, the algorithm converges to a pitfall.
Very often, there are n−1 pitfalls for a matrix having n eigenvalues. This shows
once again our initial ṽ0 is efficient and the RQI is quite dangerous.

Hopefully, everyone here has heard the name Google’s PageRank. In other
words, the Google’s search is based on the maximal left-eigenvector. On this
topic, the book [8] was published 11 years ago. In this book, the Power Iteration
is included but not the RQI. It should be clear that for PageRank, we need to
consider not only large system, but also fast algorithm.

It may the correct position to mention a part of the motivations for the
present study.

– Google’s search–PageRank.
– Input–output method in economy. In this and the previous cases, the com-

putation of the maximal eigenvector is required.
– Stability speed of stochastic systems. Here, for the stationary distribution of

a Markov chain, we need to compute the eigenvector; and for the stability
rate, we need to study the maximal (or the fist nontrivial) eigenvalue.

– Principal component analysis for BigData. One choice is to study the so-called
five-diagonal matrices. The second approach is using the maximal eigenvec-
tor to analysis the role played by the components, somehow similar to the
PageRank.

– For image recognition, one often uses Poisson or Toeplitz matrices, which are
more or less the same as the Quasi-birth-death matrices studied in queueing
theory. The discrete difference equations of elliptic partial differential equa-
tions are included in this class: the block-tridiagonal matrices.

– The effectiveness of random algorithm, say Markov Chain Monte Carlo for
instance, is described by the convergence speed. This is also related to the
algorithms for machine learning.
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– As in the last item, a mathematical tool to describe the phase transitions
is the first nontrivial eigenvalue (the next eigenpair in general). This is the
original place where the author was attracted to the topic.

Since the wide range of the applications of the topic, there is a large number of
publications. The author is unable to present a carefully chosen list of references
here, what instead are two random selected references: [8,11].

Up to now, we have discussed only a small size 8 × 8 (N = 7) matrix. How
about large N? In computational mathematics, one often expects the number
of iterations grows in a polynomial way Nα for α greater or equal to 1. In our
efficient case, since 2 = 81/3, we expect to have 100001/3 ≈ 22 iterations for
N + 1 = 104. The next table subverts completely my imagination.

Here z0 is defined by

z0 = 7/(8δ1) + v∗
0(−Q)v0/8,

where v0 and δ1 are computed by our general formulas to be defined in the next
section. We compute the matrices of order 8, 100, . . . , 104 by using MatLab in
a notebook, in no more than 30 s, the iterations finish at the second step. This
means that the outputs starting from z2 are the same and coincide with λ0. See
the first row for instance, which becomes stable at the first step indeed. We do
not believe such a result for some days, so we checked it in different ways. First,
since λ0 = 1/4 when N = ∞, the answers of λ0 given in the fourth column
are reasonable. More essentially, by using the output v2, we can deduce upper
and lower bounds of λ0 (using ([2]; Theorem 2.4 (3))), and then the ratio upper/
lower is presented in the last column. In each case, the algorithm is significant
up to 6 digits. For the large scale matrices here and in Sect. 4, the computations
are completed by Yue-Shuang Li.

2 Efficient Initials: Tridiagonal Case

It is the position to write down the formulas of v0 and δ1. Then our initial z0
used in Table 1 is a little modification of δ−1

1 : a convex combination of δ−1
1 and

v∗
0(−Q)v0.

Table 1. Comparison of RQI for different N .

N + 1 z0 z1 z2 = λ0 Upper/lower

8 0.523309 0.525268 0.525268 1 + 10−11

100 0.387333 0.376393 0.376383 1 + 10−8

500 0.349147 0.338342 0.338329 1 + 10−7

1000 0.338027 0.327254 0.32724 1 + 10−7

5000 0.319895 0.30855 0.308529 1 + 10−7

7500 0.316529 0.304942 0.304918 1 + 10−7

104 0.31437 0.302586 0.302561 1 + 10−7



318 M.-F. Chen

Let us consider the tridiagonal matrix (cf. ([3]; Sect. 3) and ([6]; Subsect. 4.4)).
Fix N � 1, denote by E = {0, 1, . . . , N} the set of indices. By a shift if
necessary, we may reduce A to Q with negative diagonals: Qc = A − mI,
m := maxi∈E

∑
j∈E aij ,

Qc =

⎛
⎜⎜⎜⎜⎜⎝

−b0 − c0 b0 0 0 · · ·
a1 −a1 − b1 − c1 b1 0 · · ·
0 a2 −a2 − b2 − c2 b2 · · ·
...

...
. . . . . . . . .

0 0 0 aN −aN − cN

⎞
⎟⎟⎟⎟⎟⎠

.

Thus, we have three sequences {ai > 0}, {bi > 0}, and {ci � 0}. Our main
assumption here is that the first two sequences are positive and ci �≡ 0. In order
to define our initials, we need three new sequences, {hk}, {μk}, and {ϕk}.

First, we define the sequence {hk}:

h0 = 1, hn = hn−1rn−1, 1 � n � N ; (6)

here we need another sequence {rk}:

r0 = 1 +
c0
b0

, rn = 1 +
an + cn

bn
− an

bnrn−1
, 1 � n < N.

Here and in what follows, our iterations are often of one-step. Note that if ck = 0
for every k < N , then we do not need the sequence {hk}, simply set hk ≡ 1. An
easier way to remember this (hi) is as follows. It is nearly harmonic of Qc except
at the last point N :

Qc \the last row h = 0, (7)

where B\the last row means the matrix modified from B by removing its last low.
We now use H-transform, it is designed to remove the sequence (ci):

Q̃ = Diag (hi)−1Qc Diag (hi).

Then

Q̃ =

⎛
⎜⎜⎜⎜⎜⎝

−b0 b0 0 0 · · ·
a1 −a1 − b1 b1 0 · · ·
0 a2 −a2 − b2 b2 · · ·
...

...
. . . . . . . . .

0 0 0 aN −aN − cN

⎞
⎟⎟⎟⎟⎟⎠

for some modified {ai > 0}, {bi > 0}, and cN > 0. Of course, Qc and Q̃ have
the same spectrum. In particular, under the H-transform,

(λmin(−Qc), g) → (
λmin

( − Q̃
)

= λmin(−Qc), Diag (hi)−1g
)
.
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From now on, for simplicity, we denote by Q the matrix replacing cN by bN in
Q̃.

Next, we define the second sequence {μk}:

μ0 = 1, μn = μn−1
bn−1

an
, 1 � n � N. (8)

And then define the third one {ϕk} as follows.

ϕn =
N∑

k=n

1
μkbk

, 0 � n � N. (9)

We are now ready to define v0 and δ1 (or z0) using the sequences (μi) and
(ϕi).

ṽ0(i) =
√

ϕi, i � N ; v0 = ṽ0/‖ṽ0‖; ‖ · ‖ := ‖ · ‖L2(μ) (10)

δ1 = max
0�n�N

[√
ϕn

n∑
k=0

μk
√

ϕk +
1√
ϕn

∑
n+1�j�N

μjϕ
3/2
j

]
=: z−1

0 (11)

with a convention
∑

∅ = 0.
Finally, having constructed the initials (v0, z0), the RQI goes as follows. Solve

wk:

(−Q − zk−1I)wk = vk−1, k � 1; (12)

and define
vk = wk/‖wk‖, zk = (vk, −Qvk)L2(μ).

Then
vk → g and zk → λ0 as k → ∞.

Before moving further, let us mention that there is an explicit representation
of the solution (wi) to Eq. (12). Assume that we are given v := vk−1 and z :=
zk−1. Set

Msj = μj

s∑
k=j

1
μkbk

, 0 � j � s � N. (13)

Define two independent sequences {A(s)} and {B(s)}, recurrently:
{

A(s) = −∑
0�j�s−1 Ms−1,j

(
v(j) + zA(j)

)
,

B(s) = 1 − z
∑

0�j�s−1 Ms−1,jB(j), 0 � s � N.
(14)

Set

x =

∑N
j=0 μj

(
v(j) + zA(j)

) − μNbNA(N)

μNbNB(N) − z
∑N

j=0 μjB(j)
. (15)

Then the required solution wk := {w(s) : s ∈ E} can be expressed as w(s) =
A(s) + xB(s) (s ∈ E).
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To finish the algorithm, we return to the estimates of
(
λmin(−Qc), g(Qc)

)
(g(Qc) = g(−Qc)) or further (ρ(A), g(A)) if necessary, where g(A), for instance,
denotes the maximal eigenvector of A. Suppose that the iterations are stopped
at k = k0 and set (z̄, v̄) =

(
zk0

, vk0

)
for simplicity. Then, we have

(
λmin

( − Qc
)
, Diag (hi)−1g(Qc)

)
=

(
λmin

( − Q̃
)
, g

(
Q̃

)) ≈ (z̄, v̄),

and so (
λmin(−Qc), g(Qc)

) ≈ (
z̄, Diag (hi) v̄

)
. (16)

Because λmin(−Qc) = m − ρ(A), we obtain

(ρ(A), g(A)) ≈ (
m − z̄, Diag (hi) v̄

)
. (17)

Now, the question is the possibility from the tridiagonal case to the general
one.

3 Efficient Initials: The General Case (([3]; Subsect. 4.2)
and ([6]; Subsect. 4.5))

When we first look at the question just mentioned, it seems quite a long dis-
tance to go from the special tridiagonal case to the general one. However, in the
eigenvalue computation theory, there is the so-called Lanczos tridiagonalization
procedure to handle the job, as discussed in ([3]; Appendix of Sect. 3). Neverthe-
less, what we adopted in ([3]; Sect. 4) is a completely different approach. Here is
our main idea. Note that the initials v0 and δ1 constructed in the last section are
explicitly expressed by the new sequences. In other words, we have used three
new sequences {hk}, {μk}, and {ϕk} instead of the original three {ai}, {bi},
and {ci} to describe our initials. Very fortunately, the former three sequences
do have clearly the probabilistic meaning, which then leads us a way to go to
the general setup. Shortly, we construct these sequences by solving three linear
equations (usually, we do not have explicit solution in such a general setup).
Then use them to construct the initials and further apply the RQI-algorithm.

Let A = (aij : i, j ∈ E) be the same as given at the beginning of the paper.
Set Ai =

∑
j∈E aij and define

Qc = A −
(

max
i∈E

Ai

)
I.

We can now state the probabilistic/analytic meaning of the required three
sequences (hi), (μi), and (ϕi).

– (hi) is the harmonic function of Qc except at the right endpoint N , as men-
tioned in the last section.

– (μi) is the invariant measure (stationary distribution) of the matrix Qc remov-
ing the sequence (ci).

– (ϕi) is the tail related to the transiency series, refer to ([3]; Lemma 24 and
its proof).
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We now begin with our construction. Let h = (h0, h1, . . . , hN )∗ (with h0 = 1)
solve the equation

Qc \the last row h = 0

and define
Q̃ = Diag(hi)−1Qc Diag(hi).

Then for which we have

c0 = . . . = cN−1 = 0, cN =: qN,N+1 > 0.

This is very much similar to the tridiagonal case.
Next, let Q = Q̃. Let ϕ = (ϕ0, ϕ1, . . . , ϕN )∗ (with ϕ0 = 1) solve the equation

ϕ\the first row = P \the first row ϕ,

where
P = Diag

(
(−qii)−1

)
Q + I.

Thirdly, assume that μ := (μ0, μ1, . . . , μN ) with μ0 = 1 solves the equation

Q∗ \the last row μ∗ = 0.

Having these sequences at hand, we can define the initials

ṽ0(i) =
√

ϕi, i � N ; v0 = ṽ0/‖ṽ0‖μ; z0 = (v0,−Qv0)μ.

Then, go to the RQI as usual. For k � 1, let wk solve the equation

(−Q − zk−1I)wk = vk−1

and set
vk = wk/‖wk‖μ, zk = (vk,−Qvk)μ.

Then (zk, vk) → (λ0, g) as k → ∞.
We remark that there is an alternative choice (more safe) of z0:

z−1
0 =

1
1 − ϕ1

max
0�n�N

[√
ϕn

n∑
k=0

μk
√

ϕk +
1√
ϕn

∑
n+1�j�N

μjϕ
3/2
j

]

which is almost a copy of the one used in the last section.
The procedure for returning to the estimates of

(
λmin(−Qc), g(Qc)

)
or further

(ρ(A), g(A)) is very much the same as in the last section.
To conclude this section, we introduce two examples to illustrate the effi-

ciency of the extended initials for tridiagonally dominant matrices. The next
two examples were computed by Xu Zhu, a master student in Shanghai.
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Example 4 (Block-tridiagonal matrix). Consider the matrix

Q =

⎛
⎜⎜⎜⎜⎜⎝

A0 B0 0 0 · · ·
C1 A1 B1 0 · · ·
0 C2 A2 B2 · · ·
...

...
. . . . . . . . .

0 0 0 CN AN

⎞
⎟⎟⎟⎟⎟⎠

,

where Ak, Bk, Ck are 40 × 40-matrices, B′s and C ′s are identity matrices, and
A′s are tridiagonal matrices. For this model, two iterations are enough to arrive
at the required results (Table 2).

Table 2. Outputs for Poisson matrix.

N + 1 z0 z1 z2 = λ0

1600 7.985026 7.988219 7.988263

3600 7.993232 7.994676 7.994696

6400 7.996161 7.988256 7.987972

Example 5 (Toeplitz matrix). Consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

1 2 3 · · · n − 1 n
2 1 2 · · · n − 2 n − 1
...

...
...

. . .
...

...
n − 1 n − 2 n − 3 · · · 1 2

n n − 1 n − 2 · · · 2 1

⎞
⎟⎟⎟⎟⎟⎠

.

For this model, three iterations are enough to arrive at the required results
(Table 3).

Table 3. Outputs for Toeplitz matrix.

N + 1 z0 × 106 z1 × 106 z2 × 106 z3 = λ0

1600 0.156992 0.451326 0.390252 0.389890

3600 0.157398 2.30731 1.97816 1.97591

6400 0.157450 7.32791 6.25506 6.24718

As mentioned before, the extended algorithm should be powerful for the tridi-
agonally dominant matrices. How about more general case? Two questions are
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often asked to me by specialists in computational mathematics: do you allow
more negative off-diagonal elements? How about complex matrices? My answer
is: they are too far away from me, since those matrices can not be a generator of
a Markov chain, I do not have a tool to handle them. Alternatively, I have stud-
ied some more general matrices than the tridiagonal ones: the block-tridiagonal
matrices, the lower triangular plus upper-diagonal, the upper triangular plus
lower-diagonal, and so on. Certainly, we can do a lot case by case, but this seems
still a long way to achieve a global algorithm. So we do need a different idea.

4 Global Algorithms

Several months ago, AlphaGo came to my attention. From which I learnt the
subject of machine learning. After some days, I suddenly thought, since we are
doing the computational mathematics, why can not let the computer help us to
find a high efficiency initial value? Why can not we leave this hard task to the
computer? If so, then we can start from a relatively simple and common initial
value, let the computer help us to gradually improve it.

The first step is easy, simply choose the uniform distribution as our initial
v0:

v0 = (1, 1, · · · , 1)∗/
√

N + 1.

As mentioned before, this initial vector is fair and universal. One may feel strange
at the first look at “global” in the title of this section. However, with this uni-
versal v0, the power iteration is already a global algorithm. Unfortunately, the
convergence of this method is too slow, and hence is often not practical. To
quicken the speed, we should add a shift which now has a very heavy duty for our
algorithm. The main trouble is that the usual Rayleigh quotient v∗

0Av0/(v∗
0v0)

can not be used as z0, otherwise, it will often lead to a pitfall, as illustrated by
Example 1.3. The main reason is that our v0 is too rough and so z0 deduced
from it is also too rough. Now, how to choose z0 and further zn?

Clearly, for avoiding the pitfalls, we have to choose z0 from the outside of the
spectrum of A (denoted by Sp(A)), and as close to ρ(A) as possible to quicken
the convergence speed. For nonnegative A, Sp(A) is located in a circle with
radius ρ(A) in the complex plane. Thus, the safe region should be on the outside
of Sp(A). Since ρ(A) is located at the boundary on the right-hand side of the
circle, the effective area should be on the real axis on the right-hand side of, but
a little away from, ρ(A).

For the matrix Q used in this paper, since ρ(Q) < 0, its spectrum Sp(Q) is
located on the left-hand side of the origin. Then, one can simply choose z0 = 0
as an initial. See Fig. 3.

Having these idea in mind, we can now state two of our global algorithms.
Each of them uses the same initials:

v0 = uniform distribution, z0 = max
0�i�N

Av0
v0

(i),

where for two vectors f and g, (f/g)(i) = fi/gi.
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O
ρ(A)

Safe region

Sp(A)

Complex plane

Safe region

Sp(Q)

Oρ(Q)

Complex plane

Fig. 3. Safe region in complex plane.

Algorithm 1 (Specific Rayleigh quotient iteration). At step k � 1, for given
v := vk−1 and z := zk−1, let w solve the equation

(zI − A)w = v.

Set vk = w/‖w‖ and let zk = v∗
kAvk.

This algorithm goes back to [3], Subsect. 4.1 with Choice I.

Algorithm 2 (Shifted inverse iteration). Everything is the same as in Algo-
rithm1, except redefine zk as follows:

zk = max
0�i�N

Avk

vk
(i)

for k � 1 (or equivalently, k � 0).

The comparison of these algorithms are the following: with unknown small
probability, Algorithm1 is less safe than Algorithm 2, but the former one has a
faster convergence speed than the latter one with possibility 1/5 for instance.

With the worrying on the safety and convergence speed in mind, we examine
two examples which are non-symmetric.

The first example below is a lower triangular plus the upper-diagonal. It is
far away from the tridiagonal one, we want to see what can be happened.

Example 6 ([6]; Example 7). Let

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 · · · · · · 0 0
a1 −a1 − 2 2 0 · · · · · · 0 0
a2 0 −a2 − 3 3 · · · · · · 0 0
...

...
...

... · · · · · · N − 1 0
aN−1 0 0 0 · · · −aN−1 − N N
aN 0 0 0 · · · · · · 0 −aN − N − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

For this matrix, we have computed several cases:

ak = 1/(k + 1), ak ≡ 1, ak = k, ak = k2.

Among them, the first one is the hardest and is hence presented below.
For different N , the outputs of our algorithm are given in Table 4.
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Table 4. The outputs for different N by our algorithm.

N + 1 z1 z2 z3 z4 z5 z6

8 0.276727 0.427307 0.451902 0.452339

16 0.222132 0.367827 0.399959 0.400910

32 0.187826 0.329646 0.370364 0.372308 0.372311

50 0.171657 0.311197 0.357814 0.360776 0.360784

100 0.152106 0.287996 0.343847 0.349166 0.349197

500 0.121403 0.247450 0.321751 0.336811 0.337186

1000 0.111879 0.233257 0.313274 0.334155 0.335009 0.335010

5000 0.0947429 0.205212 0.293025 0.328961 0.332609 0.332635

104 0.0888963 0.194859 0.284064 0.326285 0.332113 0.332188

The next example is upper triangular plus lower-diagonal. It is motivated
from the classical branching process. Denote by (pk : k � 0) a given probability
measure with p1 = 0. Let

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 p2 p3 p4 · · · · · · pN−1

∑
k�N pk

2p0 −2 2p2 2p3 · · · · · · 2pN−2 2
∑

k�N−1 pk

0 3p0 −3 3p2 · · · 3pN−3 3
∑

k�N−2 pk

...
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . −N + 1 (N − 1)

∑
k�2 pk

0 0 0 0 · · · · · · Np0 −Np0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

The matrix is defined on E := {1, 2, . . . , N}. Set M1 =
∑

k∈E kpk. When N = ∞,
it is subcritical iff M1 < 1, to which the maximal eigenvalue should be positive.
Otherwise, the convergence rate should be zero.

Now, we fix

p0 = α/2, p1 = 0, p2 = (2 − α)/22, . . . pn = (2 − α)/2n, · · · , α ∈ (0, 2).

Then M1 = 3(2 − α)/2 and hence we are in the subcritical case iff α ∈ (4/3, 2).

Example 7 ([6]; Example 9). Set α = 7/4. We want to know how fast the local
(N < ∞) maximal eigenvalue becomes stable (i.e., close enough to the converge
rate at N = ∞). Up to N = 104, the steps of the iterations we need are no more
than 6. To quicken the convergence, we adopt an improved algorithm. Then the
outputs of the approximation of the minimal eigenvalue of −Q for different N
are given in Table 5.

The computation in each case costs no more than one minute. Besides, start-
ing from N = 50, the final outputs are all the same: 0.625, which then can be
regarded as a very good approximation of λmin(−Q) at infinity N = ∞.

It is the position to compare our global algorithm with that given in the
last section. At the first look, here in the two examples above, we need about
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Table 5. The outputs in the subcritical case.

N + 1 z1 z2 z3 z4

8 0.637800 0.638153

16 0.621430 0.625490 0.625539

50 0.609976 0.624052 0.624997 0.625000

100 0.606948 0.623377 0.624991 0.625000

500 0.604409 0.622116 0.624962 0.625000

1000 0.604082 0.621688 0.624944 0.625000

5000 0.603817 0.620838 0.62489 0.625000

104 0.603784 0.620511 0.624861 0.625000

6 iterations, double of the ones given in the last section. Note that for the
initials of the algorithm in the last section, we need solve three additional linear
equations, which are more or less the same as three additional iterations. Hence
the efficiency of these two algorithms are very close to each other. Actually, the
computation time used for the algorithm in the last section is much more than
the new one here.

It is quite surprising that our new algorithms work for a much general class
of matrices, out of the scope of [3]. Here we consider the maximal eigenpair only.

The example below allows partially negative off-diagonal elements.

Example 8 (([9]; Example (7)), ([6]; Example 12)). Let

A =

⎛
⎝

−1 8 −1
8 8 8

−1 8 8

⎞
⎠ .

Then the eigenvalues of A are as follows.

17.5124, −7.4675, 4.95513.

The corresponding maximal eigenvector is

(0.486078, 1.24981, 1)∗

which is positive.
Here are the outputs of our algorithms. Both algorithms are started at z0 = 24

(Table 6).

Furthermore, we can even consider some complex matrices.

Example 9 (([10]; Example 2.1), ([6]; Example 15)). Let

A =

⎛
⎝

0.75 − 1.125 i 0.5882 − 0.1471 i 1.0735 + 1.4191 i
−0.5 − i 2.1765 + 0.7059 i 2.1471 − 0.4118 i

2.75 − 0.125 i 0.5882 − 0.1471 i −0.9265 + 0.4191 i

⎞
⎠ ,
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Table 6. The outputs for a matrix with more negative elements.

n zn: Algorithm 1 zn: Algorithm 2

1 17.3772 18.5316

2 17.5124 17.5416

3 17.5124

where the coefficients are all accurate, to four decimal digits. Then A has eigen-
values

3, −2 − i, 1 + i

with maximal eigenvector

(0.408237, 0.816507, 0.408237)∗.

The outputs (yn) (but not (zn))of ([6]; Algorithm 14), a variant of Algorithm2,
are as follows (Table 7).

Table 7. The outputs for a complex matrix.

y1 y2 y3

3.03949 − 0.0451599 i 3.00471 − 0.0015769 i 3

We mention that a simple sufficient condition for the use of our algorithms
is the following:

Re (An) > 0 for large enough n, up to a shift mI. (19)

Then we have the Perron–Frobenius property: there exists the maximal eigen-
value ρ(A) > 0 having simple left- and right-eigenvectors.

Hopefully, the reader would now be accept the use of “global” here for our
new algorithms. They are very much efficient indeed. One may ask about the
convergence speed of the algorithms. Even though we do not have a universal
estimate for each model in such a general setup, it is known however that the
shifted inverse algorithm is a fast cubic one, and hence should be fast enough
in practice. This explains the reason why our algorithms are fast enough in
the general setup. Certainly, in the tridiagonal dominate case, one can use the
algorithms presented in the previous sections. Especially, in the tridiagonal situ-
ation, we have analytically basic estimates which guarantee the efficiency of the
algorithms. See [4] for a long way to reach the present level.

When talking about the eigenvalues, the first reaction for many people (at
least for me, 30 years ago) is that well, we have known a great deal about the
subject. However, it is not the trues. One may ask himself that for eigenvalues,
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how large matrix have you computed by hand? As far as I know, 2 × 2 only in
analytic computation by hand. It is not so easy to compute them for a 3 × 3
matrix, except using computer. Even I have worked on the topic for about 30
years, I have not been brave enough to compute the maximal eigenvector, we use
its mimic only to estimate the maximal eigenvalue (or more generally the first
nontrivial eigenvalue). The first paper I wrote on the numerical computation is
[3]. It is known that the most algorithms in computational mathematics are local,
the Newton algorithm (which is a quadratic algorithm) for instance. Hence, our
global algorithms are somehow unusual.

About three years ago, I heard a lecture that dealt with a circuit board
optimization problem. The author uses the Newton method. I said it was too
dangerous and could fall into the trap. The speaker answered me that yes, it is
dangerous, but no one in the world can solve this problem. Can we try annealing
algorithm? I asked. He replied that it was too slow. We all know that in the global
optimization, a big problem (not yet cracked) is how to escape from the local
traps. The story we are talking about today seems to have opened a small hole
for algorithms and optimization problems, and perhaps you will be here to create
a new field.
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