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5.1  Introduction

The theoretical spatial resolution of current-generation PET scanners can rarely be 
achieved in practice because of subject motion. Motion negatively impacts virtually 
all types of PET studies and can be broadly classified into rigid-body motion in 
which the whole organ of interest moves as a whole (e.g., brain) and nonrigid-body 
motion (e.g., cardiac, respiratory, bulk) in which deformations of the internal organs 
occur. The former is relevant in neurological studies, while the latter negatively 
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degrades the quality of whole-body studies in oncology and cardiology. In addition 
to the “image blurring” effect that makes the characterization of small features of 
interest (e.g., cortical gray matter regions in neurology, primary or metastatic lesions 
in oncology, myocardial perfusion defects in cardiology) even more difficult, motion 
leads to bias in quantification and artifacts due to mismatches between the emission 
and attenuation data.

Recently, integrated PET/MRI scanners capable of simultaneous data acquisition 
have been introduced [1, 2] and used in numerous proof-of-principle studies in vari-
ous patient populations, as discussed in the other chapters. Most of the methods 
previously proposed for motion control (i.e., gating or binning the acquisition into 
shorter frames that are minimally affected by motion) for both MR and PET are also 
available in these integrated devices. Although these techniques are not specifically 
reviewed in this chapter, we note that gating of the emission data is a required step 
for virtually all the MR-based motion correction approaches discussed. However, 
the obvious disadvantage of gating is that the signal-to-noise ratio (SNR) in the 
images obtained from short frames is significantly reduced as a large proportion of 
the recorded events are discarded. PET data-driven motion estimation has also been 
a highly researched topic with several promising methods having been developed 
over the last decades [3]. Although they could be used in integrated PET/MR scan-
ners as we previously described [4], these approaches will not be covered in this 
chapter, and instead we will focus on the methods that have been specifically sug-
gested in the context of PET/MRI. This novel technology allows the use of motion 
estimates derived from one modality to perform motion compensation of the data 
acquired with the other technique. The obvious example and the most widely 
explored direction to date is the use of MR-derived motion estimates for PET motion 
correction. However, a cross-modality validation of the motion estimates could be 
performed in an integrated device, and it is not unconceivable that PET-based esti-
mates could eventually also be used to minimize the effects of motion on the MR 
images in certain scenarios.

Displacement (mm)
Cranio-caudal Anterior-posterior Lateral

Lung lesions 10 9 8
Heart 3.8–23.5 −1.3 to 11.5 −1.8 to 6.1
Liver
  Normal inspiration 10 to 26 10 10
  Deep inspiration 75
Spleen 20 10 5
Pancreas tumor 13–42 3–13
Kidney 2.5–20.5 0.6–8 0.4–5.9
Prostate 0.5–10.6 0.3–10

There are several types of motion that negatively impact research and clinical 
PET/MRI studies [4]. Head motion is random and often occurs very rapidly but can 
be characterized by simple rigid-body rotations and translations. Respiratory motion 
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on the other hand can be assumed to be periodic, but it leads to nonrigid displace-
ments of the internal organs in the thorax and abdomen. Furthermore, the amplitude 
of the motion depends on the type of respiration, with larger displacements being 
observed after a deep inspiration often used before breath-hold techniques. Even the 
path along which the various organs travel during inspiration is different than the 
one followed in expiration, a phenomenon termed hysteresis. The magnitudes of the 
respiratory-induced displacements for several internal organs (e.g., lung tumor [5], 
heart [6], liver [7–10], spleen [11], pancreas tumor [12, 13], kidney [14], prostate 
[15]) are summarized in the adjacent table (see [4] for a more detailed discussion). 
The motion of the heart throughout the cardiac cycle can also be assumed to be 
periodic but is very complex, involving longitudinal and radial contractions, as well 
as rotations of the apex and base in opposing directions [16]. Finally, bulk motion 
often occurs when patients adjust their position in the scanner. This “nonphysiologi-
cal” motion is nonperiodic and leads to unpredictable displacements and deforma-
tions of the internal organs.

All these types of motion can be characterized using MR although the challenges 
and solutions are different in each case. For example, for head motion estimation, 
high temporal resolution methods are required to characterize the motion through-
out the whole acquisition as no periodicity can be assumed, but the displacement of 
the head instead of each of the individual voxels is needed as the brain moves as a 
whole. On the other hand, periodic respiratory or cardiac motion can be modeled, 
but the motion vector fields that describe the displacements of all the voxels in the 
volume of interest have to be derived.

In the next sections, we will discuss several of the MR-based motion estimation 
and PET data correction strategies that have recently been proposed in the context 
of PET/MRI. It was not our intention to provide an exhaustive review of the litera-
ture and instead decided to focus on those methods that have the highest clinical 
potential, meaning they could be used routinely without minimal modification of 
the clinical protocols. First, the MR-based techniques for head, respiratory, cardiac, 
and bulk motion characterization will be introduced. Next, the algorithms for per-
forming the actual PET data motion correction using these estimates will be briefly 
covered. Finally, the various methods proposed for the qualitative and quantitative 
assessment of the impact of motion correction on the PET data will be discussed.

5.2  MR-Based Motion Characterization

5.2.1  Head Motion

Numerous methods for estimating head motion from the MR have been developed 
but only a handful of them have been used in the context of PET/MR imaging. Head 
motion estimates can be derived from structural images acquired repeatedly (and 
ideally frequently) or from embedded navigators. The first human study that dem-
onstrated that MR-based motion estimates can be used for PET motion correction 
was performed using the BrainPET prototype (Fig.  5.1) [17]. The echo planar 
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imaging (EPI)-based estimates were obtained every time a complete volume was 
acquired (i.e., every 2–3 s). This concept is similar to the prospective acquisition 
correction (PACE) techniques [18] frequently used in functional MRI studies, 
except that the individual EPI volumes are coregistered offline using more accurate 
algorithms. Additionally, estimates were also obtained during high-resolution ana-
tomic imaging using cloverleaf navigators [19]. Briefly, a k-space map was acquired 
at the beginning of the scan in 12 s. A short-duration (i.e., 20 ms) navigator inserted 
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Fig. 5.1 MR-based motion correction in a healthy volunteer: (a) EPI-derived motion estimates 
obtained over a 15 min acquisition; (b) FDG PET images reconstructed before (left) and after 
motion correction (middle) and the corresponding MR images (right). Note the substantial 
improvement in PET image quality after motion correction. Figures originally published in The 
Journal of Nuclear Medicine [17]
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every repetition time of a 3D-encoded fast low-angle shot (FLASH) sequence was 
used to estimate the transformation between the current head position relative to the 
initial map. These motion estimates were used for both prospective MR and retro-
spective PET data motion correction.

EPI-derived motion estimates were also used for PET motion correction by some 
of the other BrainPET early adopters [20–22]. Subsequently, the use of short 3D 
EPI volumetric navigators (vNavs) embedded in 3D multiecho magnetization- 
prepared rapid gradient-echo (MPRAGE), 3D T2-weighted sampling perfection 
with application optimized contrast using different flip angle evolution (SPACE), 
and 3D T2SPACE fluid-attenuated inversion recovery (FLAIR) sequences (rou-
tinely used to acquire high-resolution morphological brain data) was demonstrated 
to reduce the motion sensitivity of these sequences without degrading their perfor-
mance [23]. The motion estimates derived from vNavs can be used for PET motion 
correction in the case of simultaneous PET/MR data acquisition.

Siemens introduced a head motion estimation and correction algorithm, called 
BrainCOMPASS, for the Biograph mMR scanner. It uses a PACE-based navigator 
[18] to obtain the head motion estimates simultaneously with the PET data acquisi-
tion in list-mode format. If the motion amplitude exceeds a certain threshold, the 
movement time and the corresponding translations and rotations are saved and later 
written into the DICOM header of the list-mode data.

A different approach for tracking the head motion involved wireless MR active 
markers [24] and dedicated MR sequences [25]. The wireless maker consists of a 
small NMR microsample bulb filled with doped water placed inside a matching size 
solenoid wireless MR coil. Using three such markers attached to the head of the 
subject is sufficient for characterizing the motion of the whole volume. A dedicated 
MR sequence is required to obtain the locations of the wireless markers by measur-
ing their X, Y, and Z projections using separate gradient readouts along each of the 
directions.

5.2.2  Respiratory Motion

Respiratory motion characterization is a twofold problem. On one hand, a respira-
tory signal is required to bin the data into gates corresponding to the different phases 
of the respiratory cycle. On the other hand, a motion model [26] that characterizes 
the motion of the internal organs between these respiratory phases has to be gener-
ated. In the model generation phase, both the respiratory signal and the MR data 
required for calculating the model are acquired in the same time. Subsequently, only 
the respiratory signal is used to inform the application of the model, while other MR 
sequences are run.

The respiratory surrogate signal can be obtained using an external device such as 
a pressure sensor mounted in a chest belt that monitors the changes related to the 
displacement of the thoracic cage. Alternatively, navigator pulses derived directly 
from the MRI data could track the cranio-caudal motion of the right hemidiaphragm 
[27]. A more advanced method that can be used in the case of motion-insensitive 
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k-space sampling (e.g., radial or spiral trajectories) consists of deriving a self-gating 
signal from the k-space [28]. For example, in the case of a stack-of-stars trajectory 
in which radial sampling is performed in the kxy plane at golden-angle increments 
and Cartesian sampling is performed in the kz direction, the self-gating signal can be 
obtained from the central k-space partition. Additionally, the golden-angle acquisi-
tion allows the retrospective binning of the MR data into any desired number of 
gates. Good correlation between the respiratory signals generated from MR (and 
PET) data and those obtained from external devices has been reported [29].

To derive a respiratory model, a series of 2D images repeatedly acquired over 
several respiratory cycles can be used to generate the 3D volumes corresponding to 
the different respiratory phases [30–32]. Alternatively, these volumes can be 
obtained from the data collected with 3D radial stack-of-stars spoiled gradient-echo 
sequences and binned based on respiratory signal derived either from the k-space 
[28] or using a slice-projection navigator [33].

Once these 4D data (i.e., 3D volumes at multiple time points during the respira-
tory cycle) are available, various nonrigid registration algorithms (e.g., dense dis-
placement sampling [34], demons [35], vector spline regularization [36], etc.) can 
be used to compute the motion vector fields between each of the respiratory gates 
and the reference gate.

Other MR motion estimation techniques such as tagged MRI, phase contrast 
MRI, and pulsed field gradient methods [37] have been proposed for estimating 
respiratory motion in the abdomen and thorax in early proof-of-principle PET/MRI 
studies. In fact, tagged MRI was first suggested in this context for tracking the respi-
ratory motion in the abdomen, and proof-of-principle studies were performed in 
phantoms and animals [38, 39]. CSPAMM was used for tagging, while the motion 
fields were estimated using regularized HARP [38]. These methods will not be fur-
ther discussed here because they have limited clinical potential, as they require long 
acquisition times and involve nondiagnostic MR sequences.

5.2.3  Cardiac Motion

Characterizing cardiac motion also requires a signal to divide the cardiac cycle into 
short frames (e.g., 50–100 ms). Although numerous techniques have been proposed 
for deriving a surrogate signal in MRI [40], the electrocardiogram (ECG)-based 
gating is the most widely used approach, being applied either prospectively or ret-
rospectively. The latter method, in which data acquired continuously are time- 
stamped so that they can be retrospectively binned [41], is the one most relevant for 
motion estimation. Similar to the detection of the respiratory signal, cardiac self- 
gating can be used to obtain a cardiac signal directly from the k-space data [42, 43].

Once a cardiac signal is available and the data can be binned in different gates, a 
motion model to describe the transformations between the different cardiac phases 
needs to be generated.

MRI tagging is a technique that has been widely used in cardiac MRI, in which 
a virtual pattern (e.g., grid) is superimposed on the tissue of interest using a 
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selective radio-frequency pulse [44], through the spatial modulation of the magne-
tization (SPAMM) [45] or a train of RF pulses as in the delay alternating with nuta-
tion for tailored excitation (DANTE) sequence [46]. Contrast is thus introduced 
between the tagged and untagged voxels. The deformation of the tagging pattern is 
dependent on the motion of the underlying tissue, and various methods (e.g., active 
contour detection, optical flow, or template matching approaches) can be used to 
extract motion vector fields from these data. The feasibility of performing cardiac 
tagging on an integrated PET/MR scanner was first demonstrated using a cardiac 
beating phantom [47]. A SPAMM sequence was used for tagging the myocardium 
and nonrigid B-spline registration algorithm [48] for estimating the motion fields in 
all three directions from the tagged MRI volumes.

As already mentioned, one big disadvantage of the standard tagged MRI approach 
is that it requires long acquisition times. To address this limitation, accelerated 
tagged MRI using either parallel imaging (GRAPPA algorithm with up to four times 
acceleration) or compressed sensing (kt-FOCUSS algorithm) techniques has been 
suggested [49]. Furthermore, tagging is not useful for tracking the motion of struc-
tures on which the tags cannot be superimposed or fade very rapidly. This is the case 
when imaging the coronary arteries, which is of interest in patients with suspected 
coronary atherosclerotic disease. Obtaining the motion vector fields from the fat 
tissue that surrounds the whole heart has been suggested as an alternative [50].

A different framework for simultaneous respiratory motion-corrected cardiac 
MR angiography and PET imaging was recently developed [51]. The cardiac MR 
angiography data are acquired during free breathing but with ECG-triggering using 
a 3D T1-weighted spoiled gradient-echo sequence with a golden-step Cartesian spi-
ral profile sampling trajectory. One spiral interleaf is acquired every cardiac cycle. 
The data acquired using a 2D image navigator repeated every cycle is used to esti-
mate the translational motion in the foot-head and right-left direction. The respira-
tory signal obtained from the foot-head motion is used to bin the data into different 
respiratory phases, and the corresponding MR images are reconstructed using an 
iterative SENSE approach [52]. Finally, respiratory motion fields are obtained by 
nonrigidly registering the MR bins and applied to both the MR and PET data.

5.2.4  Dual Respiratory and Cardiac Motion

Although the initial efforts in the PET/MRI field have focused on developing meth-
ods for compensating for respiratory and cardiac motion separately, both sources 
have to be addressed in the same time for in vivo cardiac studies. Dual gating can be 
performed using external devices to generate the bins required to capture the heart 
in the various phases along the respiratory and cardiac cycles. Simulation studies 
been performed to demonstrate the feasibility of dual motion estimation [50, 53].

An elegant approach recently proposed and assessed in vivo uses a 3D golden- 
radial phase encoding scheme [54]. The data are acquired over 5 min during free 
breathing and without ECG-triggering to cover several respiratory and cardiac 
cycles. The respiratory and cardiac signals are obtained from the k-space data using 
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the self-gating approach previously described and from an external ECG, respec-
tively. The data are split into 8 respiratory and 12 cardiac motion states. Each 
acquired k-space spoke is assigned to a certain respiratory and cardiac motion state. 
The data are first reordered based on the respiratory motion states; the volumes cor-
responding to each respiratory state are reconstructed and registered to determine 
the respiration-induced heart motion. Next, respiratory motion is compensated for 
in the k-space, and the data are reordered based on the cardiac motion states. Finally, 
the motion-free volumes reconstructed from these data are nonrigidly coregistered 
to obtain the motion vector fields characterizing the motion of the heart during the 
cardiac cycle. This approach is summarized in Fig. 5.2.

In a different approach, respiratory and motion estimation is performed in two 
stages [53]. First, the respiratory-gated PET images are used to estimate the respira-
tory motion vector fields using a B-spline nonrigid registration algorithm and mean 
square difference as the cost function. These fields are then used to respiratory- motion 
correct the respiratory gates corresponding to each of the cardiac gates and generate 
respiratory motion-suppressed images in the reference phase. The cardiac- gated MR 
data are used to estimate the gate-to-gate cardiac motion vector fields that are finally 
used to cardiac-motion correct each of the respiratory motion-corrected cardiac gates.

3D motion corrupted image

4D respiratory resorted data

4D cardiac resorted data with respiratory motion correction

Motion compensated PET reconstructionMotion compensated MR reconstruction
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Fig. 5.2 Respiratory and cardiac motion estimation and correction algorithm: (a) the MR data are 
labeled according to the respiratory (yellow-red) and cardiac (blue-cyan) motion states; (b) the 4D 
data are first sorted based on the respiratory labels and used to generate the 3D images correspond-
ing to the N respiratory phases from which the respiratory motion fields (RM) are obtained; (c) in 
the next step, respiratory motion correction is performed, the k-space data are resorted based on the 
cardiac signal, and the M cardiac states obtained are used to calculate the cardiac motion fields 
(CM); (d) finally, dual motion compensation of the MR and PET data is performed. Figures origi-
nally published in The Journal of Nuclear Medicine [54]
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5.2.5  Bulk Motion

MRI can also be used for detecting nonperiodic bulk motion such as that caused by 
the repositioning of the subject on the scanner table. In the only approach proposed 
to date, a 3D high-resolution radial phase encoding scheme was used to reconstruct 
MR images with three different temporal resolutions from the same data. The high 
temporal resolution images are used to detect the times when bulk motion occurs. 
Second, the “static” images between the detected time points are generated and used 
to estimate nonrigid-body motion vector fields between the different states. Finally, 
motion-compensated PET (and MR) images are reconstructed using the motion 
vector fields [55].

5.3  PET Data Motion Compensation Algorithms

5.3.1  Before Image Reconstruction

This class of methods was mainly used for rigid-body motion correction of the 
brain [17, 20–22]. In the motion compensation approach proposed in [17], the list-
mode emission data acquired simultaneously with the MR data are first divided 
into frames of progressively longer duration according to the desired dynamic pro-
tocol. Each of these frames is subsequently divided into subframes based on the 
available MR-based motion estimates. The prompt and random events correspond-
ing to each of the subframes are obtained in the line-of-response space by histo-
gramming the list-mode data. Next, a reference position is selected (e.g., first 
subframe), and rigid- body transformation matrices for all the subsequent sub-
frames are derived from the MR data. For each event detected in a particular line-
of-response, the motion is accounted for by applying the transformer to the 
corresponding line and identifying the line-of-response in which the event should 
have been detected in the absence of motion using nearest neighbor interpolation. 
Alternatively, this can be viewed as “moving” the coordinates of all the crystals 
based on the transformer or that an event detected in a pair of crystals is assigned 
to a different pair of crystals based on the transformation matrix derived from the 
three rotations and three translations that define the rigid-body motion. Motion-
compensated prompt and random event sinograms for each subframe are generated 
from these data. The emission data from all the subframes are added to obtain the 
motion-compensated prompt and random coincidence sinogram for each frame. 
The attenuation (and scatter) of the MR radio- frequency coil is accounted for sepa-
rately since it is stationary with respect to the scanner. The motion-compensated 
sensitivity data are used to generate the normalization sinogram. Head attenuation 
and scatter correction sinogram are estimated only in the reference position. The 
motion-corrected PET volumes are reconstructed from these motion-compensated 
sinograms using the standard reconstruction algorithm.

A generic reconstruction library called PRESTO (PET reconstruction software 
toolkit) was proposed to transfer the data into a generic project space previous to 

5 PET/MRI: Motion Correction



86

image reconstruction [22]. This approach avoids the degradation of motion- 
compensated projection data by the axial and transaxial compression that are typi-
cally performed for sinogram-based reconstruction. In an effort to reduce the 
computation time, a patient-specific algorithm to generate subframes only when the 
measured head displacement between two consecutive time points exceeds a certain 
threshold was subsequently suggested [21].

Although pre-reconstruction motion compensation algorithms are particularly 
useful for brain applications, it is worth noting that a similar approach could be used 
to perform respiratory motion compensation for cardiac studies as previously sug-
gested [56] under the assumption that the heart moves rigidly with respiration.

5.3.2  During Image Reconstruction

The approach most often used for incorporating the MR-derived motion estimates 
is called motion-compensated image reconstruction (MCIR). Similar to the pre- 
reconstruction techniques, MCIR has the advantage that all the recorded events con-
tribute to the final image, which leads to significantly improved counting statistics 
compared to the standard gating techniques in which the majority of the events are 
discarded. Furthermore, the Poisson nature of the data is maintained as opposed to 
the post-reconstruction techniques described in the next section.

To perform MCIR for whole-body applications, the PET data are first binned into 
to the desired number of respiratory or cardiac phases as described above. One of 
the gates is set as the reference position, and all the motion vector fields that trans-
form the other gates into the reference position are obtained. The PET system matrix 
(that represents the probability of detecting in a specific line-of-response an event 
originating from a particular voxel) is modified to account for the nonrigid change 
in the activity distribution by applying a motion-warping operator [57]. Gate- 
specific attenuation maps are also generated from the MR-based attenuation map by 
applying the inverse transformations.

Several of the standard image reconstruction algorithms have been extended to 
incorporate motion vector fields into the system matrix in the context of PET/MRI 
such as the one-pass list-mode expectation maximization [31], maximum a poste-
riori (MAP) [33], maximum likelihood expectation maximization (MLEM) [38], 
and ordered-subsets expectation maximization (OSEM) [32, 58, 59]. An example of 
using MCIR for lung motion correction is shown in Fig. 5.3 [33].

Although most popular for whole-body applications, MCIR was also applied to 
head motion correction using vNav-derived motion estimates [60]. To optimize the 
computing resources, the list-mode data was adaptively binned into 4D sinograms 
based on the extent of motion. The mean voxel displacement in the imaging volume 
was calculated after each vNav acquisition and a new sinogram was generated 
whenever a threshold was exceeded. In order to account for motion, the authors 
used a 4D image reconstruction algorithm and a data augmentation method based 
on the alternating direction method of multipliers [61] that enabled to inclusion of a 
sparsity constraint to improve image quality.
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5.3.3 After Image Reconstruction

Head motion correction post image reconstruction is used in the BrainCOMPASS 
approach proposed by Siemens. At the end of the acquisition, the PET data are 
binned into the motion states defined by the patient’s movement exceeding the 
thresholds. The overall motion is limited to 20 mm (translation) and 8° (rotation). 
Up to 100 motion frames can be reconstructed. The original attenuation map is 
transformed to the position of each of the motion frames so that the attenuation cor-
rection is correctly performed. After all PET motion frames are reconstructed, the 
PET image volumes are transformed back to the position of a reference PET frame 
and summed together.

When using this approach for whole-body applications, the PET images corre-
sponding to each of the gates are first reconstructed using the standard algorithms, 
and the MR-derived motion vector fields are applied to warp these images into the 
reference gate.

In one of the first proof-of-principle human studies that used an after image 
reconstruction approach, the PET gates were first reconstructed using the OSEM 
algorithm. The Dixon-based attenuation map acquired at end-expiration was warped 
using the MR-derived motion vector fields to obtain gate-specific attenuation maps. 
To generate the final image, the gated PET images were coregistered using the 
motion vector fields, scaled based on the total number of counts in each gate and 
summed on a voxel-by-voxel basis [30]. A similar approach was used in [28] except 
that the images corresponding to the individual gates were combined using weights 
proportional to the intra-bin amplitude range of the self-gating signal.

More recently, a post-reconstruction approach was used for free-breathing 
respiratory motion-corrected simultaneous cardiac MR angiography and PET 
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Fig. 5.3 Respiratory motion correction for lung imaging: (a) coronal MR image in the reference 
position and (b) overlaid deformation fields; (c) one-gated, (d) ungated, and (e) motion-corrected 
PET images; (f) magnified views of a blood vessel located near the diaphragm demonstrating sig-
nificantly reduced blurring after motion correction. Figures originally published in Medical 
Physics [33]
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imaging [51]. The authors reconstructed each respiratory bin using the OSEM 
algorithm and gate-specific attenuation maps.

5.4  Performance Evaluation of MR-Based PET Motion 
Correction

5.4.1  Methods

There is currently no technique to serve as the gold standard for validating MR-based 
motion estimation approaches and no accepted metric for quantifying the impact of 
motion correction on the PET data. Several of the qualitative and quantitative 
approaches that have been proposed for this purpose in the proof-of-principle PET/
MRI studies are summarized in this section.

5.4.1.1  Head Motion
Substantial improvement in the FDG image quality was observed after MR-assisted 
motion correction in the first proof-of-principle study performed in a healthy volun-
teer [17]. A better delineation of brain structures and an apparent increase in gray 
matter uptake were observed after motion correction. Although the authors mainly 
focused on the static images generated from the data, images from 3 min subframes 
were also reconstructed and used to generate time activity curves for several gray 
matter structures. The shapes of these time activity curves were more similar to each 
other and consistent with the expected FDG kinetics only after motion correction.

Similar improvement in image quality and reduction of artifacts were observed 
in the brain phantom and patient studies subsequently performed on another 
BrainPET prototype [20, 21].

5.4.1.2  Respiratory Motion
Fayad et al. [31] compared the images obtained using the MCIR method to those 
produced using a post-reconstruction approach and the uncorrected ones. Data from 
11 patients with metastatic lesions were included in the analysis. The qualitative 
analysis of the profiles drawn across the lesions showed good correlation between 
the motion-corrected images and differences compared to the uncorrected ones. The 
following figures of merit were selected for the quantitative analysis: differences in 
SNR (the signal and background noise were defined as the mean and standard devi-
ation measured from ten 3 cm diameter regions of interest (ROIs) positioned across 
the liver), improvement in lesion-to-background contrast (mean lesion signal mea-
sured on the slice with the maximum count density and the background as the mean 
activity in a 3 cm diameter ROI placed in the background organ for each lesion), and 
full width at half maximum (FWHM) changes in lesion position and size. The 
improvements reported for the MCIR and post-reconstruction techniques were 28% 
and 24.2% mean SNR increases, 60.4% and 47.9% lesion size reduction, 70.1% and 
57.2% lesion contrast increase, and 60.9% and 46.7% lesion position change, 
respectively.
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Manber et al. [59] first validated the PET-derived respiratory signal against that 
obtained from the MR pencil-beam navigator on nine subjects who were imaged 
with either 18F-FDG or 68Ga-DOTATATE. The motion-corrected and uncorrected 
images were compared in four additional patients who underwent clinical PET/MRI 
scans. Increased sharpness for several of the lesions was observed by qualitatively 
examining the line profiles. The changes in standardized uptake values (SUVs) from 
a ROI defined in an area with high tracer uptake were chosen as the figure of merit 
for quantitative analysis. Mean increases in peak and maximum SUV of 23.1% and 
34.5%, respectively, were observed in a patient with four pancreatic lesions.

Dutta et al. [33] performed simulation studies using the 4D XCAT phantom with 
12 added spherical pulmonary lesions of 10 and 14 mm diameters. Three additional 
patients underwent PET/MRI scans to validate their motion correction framework. 
Bias and variance for the simulated lesions were evaluated for regularization param-
eters tuning. Additionally, the contrast-to-noise ratio (CNR, defined as the ratio of 
the sum of the means over the square root of the sum of the squared standard devia-
tions (SDs) of the intensities in the ROI and background muscle tissue) was com-
puted for high-intensity lung lesions. The authors also computed the mutual 
information between the features of interest in the PET images before and after 
motion correction and the corresponding features in the MR image. The bias was 
comparable for the one gate and motion-corrected images, while the standard devia-
tion was higher for the former. The CNR was substantially improved for the latter.

Rank et al. [58] also performed simulations in addition to evaluating their algo-
rithm in six patients with bronchial carcinoma. ROIs for every lesion were defined 
using a region-growing algorithm starting from the voxels with the maximum inten-
sity. The SUVmean, SUVmax, contrast (defined as the difference in the means in the 
lesion and background over the mean in the background), and SNR (defined as the 
difference in the means in the lesion and background over the standard deviation in 
the background) were calculated in these ROIs. Additionally, the lesion FWHM was 
calculated for the simulated data. Increases in SUVmean, SUVmax, and contrast and a 
decrease of FWHM/lesion volume were reported for the motion compensation strat-
egies. The SNR of the motion-corrected images was larger than that for the uncor-
rected case.

Manber et al. [32] evaluated the joint motion model generation method using 
data from 45 patients. The quantitative figures of merit were mutual information and 
sum of squared differences, Euclidean distance between deformation fields, and 
performance index that reflects percentage improvement. The motion compensation 
methodology was tested in five additional oncology patients who underwent PET- 
MRI studies. The PET image reconstruction improvements and artifact reduction 
were assessed visually, and increased sharpness was noted. The SUVmax and SUVpeak 
in avid lesion significantly increased after motion correction.

Munoz et al. [51] evaluated the motion-compensated cardiac MR angiography 
approach in ten subjects. Coronary vessel sharpness and length were used as met-
rics of MR image quality. The improvements reported were 37.9% and 49.1% for 
sharpness and 48.0% and 36.7% for length in the left and right coronary arteries, 
respectively. The PET motion correction strategy was evaluated in five oncology 
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patients. The PET images were analyzed by drawing profiles across the ventricle 
and by comparing the mean and coefficient of variation of the SUV in a myocar-
dium ROI.  The authors reported that the sharpness of the myocardium was 
improved after motion correction, while the noise was reduced compared to the 
gated images. Representative images from this study are shown in Fig. 5.4. The 
mean increased for three of the patients but remained almost constant for the other 
two after motion correction.

5.4.1.3  Cardiac Motion
In an effort to remove the influence of respiratory motion on cardiac studies, phan-
tom and simulation studies were initially performed to study the effect of cardiac 
motion on the detection of cardiac lesions. For example, a beating nonrigid cardiac 

Fig. 5.4 Motion-corrected cardiac images. Coronal PET slices and profiles across the myocar-
dium for five patients showing non-motion-corrected (NMC), gated, and motion-corrected (MC) 
images. MC improves myocardium sharpness compared to NMC and reduces noise compared to 
the gated reconstruction. Figures originally published in Magnetic Resonance in Medicine [51]
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phantom filled with hot 18F gel that also included cold gel inserts of different sizes 
to mimic transmural and non-transmural myocardial defects was used by Petibon 
et al. [47]. The defect/myocardium contrast recovery and image background statisti-
cal noise levels were compared between the different reconstructions. The authors 
also used a channelized Hotelling observer to perform a defect detectability study. 
Reduced spillover from the myocardium to background and defects was reported, 
leading to improved defect/myocardium contrast recovery (i.e., up to 206%). The 
improvement in lesion detectability ranged from 62% to 235% being dependent on 
the defect location (e.g., defects located in the lateral wall underwent the largest 
motion and demonstrated the largest improvement after motion compensation). 
These results were further improved after the incorporation of the scanner point 
spread function in the reconstruction [47].

The same group recently reported the results of a follow-up study in which they 
assessed the impact of motion and partial volume effects corrections on PET myo-
cardial perfusion imaging in healthy pigs that underwent simultaneous dynamic 
18F-Flurpiridaz PET/MRI examinations. As respiratory-induced heart motion is 
minimal in this particular model, respiratory motion was not performed. Segment- 
and voxel-wise myocardial blood flow maps were obtained from the dynamic data 
using a two-tissue compartment model. The 17 American Heart Association (AHA) 
segments were analyzed. Myocardium-to-blood concentration ratios and wall thick-
ness along profiles in the inferior-superior direction at various positions were esti-
mated. When compared to the uncorrected data, the mean myocardium-to-blood 
ratio was increased by 20.3% and 13.6% for the motion-corrected and gated data, 
respectively. The mean apparent myocardial wall thickness was significantly lower 
after motion correction and gating. Similarly, the myocardial blood flow values 
were higher in these cases, although the variability was also increased for the gated 
images. As in the phantom study above, location-dependent differences in mean 
myocardial blood flow values were reported between the methods [62].

5.4.1.4  Dual Cardiac and Respiratory Motion
Simulation studies have shown that dual motion correction could improve the detec-
tion of atherosclerotic plaques [50] and myocardial perfusion defects [53]. Plaque- 
and defect-to-background contrast were used as the contrast metrics, and receiver 
operating characteristic analyses using channelized Hotelling observers were per-
formed to study the effect of motion correction on the plaque/defect detectability.

Kolbitsch et al. [54] assessed the improvement in image quality and diagnostic 
accuracy using five dogs (myocardial infarction model) and one human subject. A 
qualitative assessment of myocardial uptake was performed using the AHA 
17- segment bull’s-eye plot. Quantitatively, the FWHM and CNR (defined as the 
difference between peak myocardial signal and mean blood pool signal over the SD 
of the latter) of the tracer uptake in the myocardium were estimated at locations that 
exhibited high cardiac motion in all the animals. When comparing the motion- 
corrected and uncorrected images of the canine myocardium, the FWHM and CNR 
improvement was 13% ± 5% and 90% ± 57%, respectively. Similar values (i.e., 
18% and 103%, respectively) were reported for the human subject. Additionally, the 
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sharpness of the right coronary artery was measured from the MR images. An 
85% ± 72% increase was reported after motion correction.

5.5  Beyond Proof-of-Principle Studies

Not surprisingly, most of the early research efforts in this field were aimed at dem-
onstrating the feasibility of performing motion correction for various applications 
and assessing its potential impact on PET data qualitative and quantitative analyses. 
The focus has been slowly shifting to implementing practical methods that could be 
used for routine research studies and the hope is that such techniques will eventually 
be clinically useful. The first requirement for this to happen is to develop techniques 
in which the data needed for motion characterization are acquired efficiently or in 
the background of the sequences used for clinical purposes. While some of the early 
methods required long acquisition time that prevented the acquisition of clinical 
MR sequences [38, 39], the more recent ones allow the generation of the motion 
model from the data acquired in only 1  min [58, 59], or clinically relevant MR 
images can be obtained from the same data [51, 54]. Second, the quantitative accu-
racy of the PET data should be preserved, which seems to be the case as the consen-
sus in the field is that quantification is actually improved after motion correction. 
Third, the data processing and image reconstruction time should be comparable to 
that of the current algorithms when using similar hardware, which is still challeng-
ing because the computational requirements for motion estimation/correction are 
extremely high. Fourth, studies with larger number of patients and in different clini-
cal scenarios need to be performed to validate the various motion estimation/correc-
tion techniques. Fifth, additional MR sequences that allow the simultaneous 
acquisition of the information needed for characterizing the motion and that required 
for clinical purposes have to be implemented and validated. Finally, the major 
equipment manufacturers need to make these advanced algorithms available on 
their scanners and streamline them so that even non-experts can use them. 
Encouragingly, the head motion correction algorithm BrainCOMPASS is already 
commercially available on the Siemens Biograph mMR scanner, and recently, an 
extension of this technique, called BodyCOMPASS, has been introduced to enable 
motion-free imaging in other body regions such as the abdomen (similar to [28]).

For the BrainPET prototype, we have developed a package for automatic data 
processing and image reconstruction, called Masamune [63], that, among other 
capabilities, allows non-expert users to estimate the head motion from the MR data 
and generate MR-based motion-corrected dynamic frames. This allows head motion 
correction to be routinely used for research studies performed at the Martinos 
Center. Most recently, we performed MR-based head motion correction for study-
ing the interaction between dopamine signaling and neural networks changes during 
working memory [64] and investigating the involvement of the dopaminergic sys-
tem in the mechanisms of maternal bonding [65]. In a different study focusing on 
Alzheimer’ disease patients, preliminary results showed the variability in the PET 
estimation of the cerebral metabolic rate of glucose is reduced after motion 
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correction [66], suggesting that PET data optimization may enable more careful 
assessment of subtle changes in brain metabolism and allow for reduced sample 
sizes in future research studies and clinical trials.

In conclusion, the feasibility of performing MR-based PET motion correction for 
brain and whole-body applications has been demonstrated. Several “practical” 
MR-based methods to estimate the motion that could be used routinely in research 
and clinical studies have already been proposed. Virtually all the proof-of-principle 
studies performed to date have shown that the quality of the PET (and in many cases 
of the MR) images substantially improves after motion correction, suggesting that 
MR-based motion correction could be a game changer in the PET/MR field much the 
same way CT-based attenuation correction has proven in the PET/CT field [67, 68].
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