
Chapter 7
Modeling and Analysis of Ventricular
Response in Atrial Fibrillation

Valentina D. A. Corino, Frida Sandberg, Luca T. Mainardi
and Leif Sörnmo

7.1 Introduction

The ventricular response in atrial fibrillation (AF) is highly irregular, mainly due to
the atrial impulses arriving irregularly at the atrioventricular (AV) node. As a result,
the RR intervals differ dramatically in length. Despite the irregularity, the ventricular
response is not completely random, but exhibits weak correlation [1] and certain
short- or long-term predictability [2]. Another characteristic is that the ventricular
rate is often higher in AF than in normal sinus rhythm, a characteristic explored in
AF detection, see Chap.4. The RR interval series observed in normal sinus rhythm
and AF differ with respect to both variability and irregularity, two aspects which are
illustrated in Fig. 7.1.

The ventricular response plays a significant role in the management of patients
with AF [3]. In fact, the control of ventricular rate effectively reduces the risk of com-
plication and improves the quality of life. Therefore, the study of factors influencing
ventricular rate and its dynamics is of great importance as it may lead to strengthened
decision-making in AF management.

To characterize normal sinus rhythm, a wide range of parameters have been inves-
tigated, often categorized into dispersion parameters to characterize RR variability,
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Fig. 7.1 24-h RR interval series in a normal sinus rhythm and bAF. The 24-h plots (top row) show
that the dispersion is much larger in AF than in normal sinus rhythm. The zoomed-in segments
(bottom row) demonstrate that the RR interval series in AF not only has larger dispersion, but it is
also much more irregular

spectral parameters to characterize autonomic influence on the sinus node, and dif-
ferent types of entropy to characterize RR irregularity. To characterize AF, spectral
parameters have received very limited interest since the RR interval spectrum is
essentially flat, and lacks peaks which may carry physiological information [4]. On
the other hand, dispersion parameters and entropy measures have conveyed clini-
cally valuable information: for example, lower variability and/or irregularity of the
RR interval series have been associated with poor outcome in patients with AF [5, 6].
Given the growing clinical interest to understand the characteristics of the RR inter-
vals, an overview of results reported in clinical studies is provided in Sect. 7.2.

The analysis of ventricular response can be augmented with information on
f waves so that the coupling between the atria and the ventricles, through the AV
node, can be investigated. The AV node plays a particularly important role in AF
by acting as a “filter” which blocks certain atrial impulses, with repercussions on
ventricular activation. By developing methods for analyzing AV nodal properties,
patient-specific information may be obtained which describes the effect of a certain
antiarrhythmic drug. The properties can be studied by means of mathematical mod-
eling, considered either for simulation of various scenarios or estimation of model
parameters. In the latter case, the observed signal is acquired either invasively or
from the surface ECG. Signal processing techniques are usually required to separate
the atrial from the ventricular activity before parameter estimation can be performed,
see Chap.5.

Section7.3 provides a brief overview of methods for heuristic assessment of the
AV node. Section7.4 describes a method for analyzing the relationship between

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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atrial input and ventricular response during AF. Sections7.5 and 7.6 review several
AV node models for simulation and parameter estimation, respectively. The chapter
concludes with a comparison of AV node models in Sect. 7.7.

7.2 RR Interval Analysis

Classical dispersion parameters such as the coefficient of variation and the root mean
square of successive differences (RMSSD), defined in (4.2) and (4.3), respectively,
have been found useful for characterizing the variability of RR intervals inAF [2, 7].1

However, variability parameters provide an incomplete characterization of RR inter-
vals, since they cannot characterize irregularity, i.e., the degree of unpredictability.
Therefore, variability parameters have been complemented with different entropy
measures to characterize irregularity, including approximate entropy IApEn, sample
entropy ISampEn, and Shannon entropy IShEn (see Sect. 4.2.1 for definitions), as well
as conditional entropy [8]. Figure7.2 illustrates the difference between variability
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Fig. 7.2 Illustration of the difference between variability, quantified by the standard deviation,
and irregularity, quantified by the sample entropy. Each row shows a time series with identical
irregularity (given by the numbers to the left of the diagrams), but increasing variability from left
to right, whereas each column shows series with identical variability (given by the numbers on
above the diagrams), but increasing irregularity from top to bottom. The units of the horizontal and
vertical axes are arbitrary

1The reason for not using the term “ventricular response” in this section is that it implies, at least
in this book, that an atrial input is also part of the analysis.

http://dx.doi.org/10.1007/978-3-319-68515-1_4
http://dx.doi.org/10.1007/978-3-319-68515-1_4
http://dx.doi.org/10.1007/978-3-319-68515-1_4
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and irregularity for different time series with identical variability but different irreg-
ularity, and vice versa.

Two early studies analyzed the RR interval series in patients with AF, demonstrat-
ing that reduced variability is associated with worse outcome [5, 6]. Using the 24-h
ambulatory ECG, reduced RR interval irregularity was found to have independent
prognostic value for cardiac mortality during long-term follow-up in patients with
permanent AF [9].

The association between RR intervals and long-term clinical outcome has been
evaluated in a population of ambulatory patients with mild-to-moderate heart fail-
ure and AF at baseline. Patients with symptomatic heart failure were enrolled in
a multicenter study on sudden death [10]. Both IApEn and IShEn were found to be
significantly lower in nonsurvivors than in survivors for all subgroups of death (total
mortality, sudden death, and heart failure death). Patients with a lower IApEn had
significantly lower survival: Kaplan–Meier analysis [11] showed that a lower IApEn
was associated with a nearly fourfold higher total mortality (40% vs. 12%) and more
than six times higher mortality due to progression of heart failure (19% vs. 3%) and
sudden death (18 vs. 3%). The criterion IApEn < 1.68, where 1.68 is the lower tertile
of the data set, was found to be a significant predictor of all types of mortality after
adjustment for significant clinical covariates [12], leading up to the main finding that
lower irregularity is associated with worse outcome in AF patients.

Results in the literature suggest that irregularity parameters may be used as risk
indicators. Thus, it is of interest to investigate towhat extent irregularity is affected by
commonly used rate-control drugs. The effect of the selective A1-receptor agonist
tecadenoson, alone as well as in combination with the beta blocker esmolol, was
assessed in a small group of AF patients [13]. Tecadenoson was found to reduce
heart rate and increase variability, but did not have any effect on irregularity. Beta
blockade with intravenous esmolol further increased variability and decreased heart
rate. In another study [14], no significant differences in RR irregularity, as quantified
by IApEn, were observed in patients with AF and congestive heart failure when treated
with beta blockers, digoxin, or amiodarone. The effect of rate-control drugs on RR
variability/irregularity was investigated in 60 patients with permanent AF, involving
the drugs diltiazem, verapamil (both calcium channel blockers), metoprolol, and
carvedilol (beta blocker) [15]. Variability was assessed by well-known parameters
such as the standard deviation and the RMSSD, whereas irregularity was assessed
by IApEn, IShEn, and a measure based on conditional entropy [16]. A significantly
lower heart rate was obtained for all investigated drugs, reaching its lowest rate
for the calcium channel blockers. Moreover, all drugs were found to increase RR
variability significantly relative to the baseline recording, whereas only the beta
blockers increased RR irregularity significantly.

Using the data set in [15], circadian variation was investigated by means of five
ambulatory recordings per patient, obtained at baseline as well as during the four dif-
ferent drug regimens [17]. Variability and irregularity parameters were computed in
nonoverlapping, 20-min segments. Circadianity was assessed using cosinor analysis
of the resulting series, characterized by the 24-h mean and the excursion over the
mean described by the amplitude of the cosine fitted to the data [18]. Heart rate and
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variability parameters, including the standard deviation and the RMSSD, exhibited
significant circadian variation in most patients, whereas circadian variation in IApEn
and ISampEn wasdetected inonly a fewpatients.Whencircadianvariationwasdetected
in IApEn at baseline, the patients had more severe symptoms. All drugs decreased the
rhythm-adjusted mean of the heart rate and increased the rhythm-adjusted mean of
variability parameters (the rhythm-adjusted mean is also referred to as “midline esti-
mating statistic of rhythm”,MESOR [19]). Only carvedilol andmetoprolol decreased
the normalized amplitude over the 24h of the irregularity parameters and heart rate.
The results suggested that circadian variation can be observed in most patients using
variability parameters, but only in a few patients using irregularity parameters.

The above-mentioned clinical studies are limited by small patient groups. There-
fore, further studies are needed to better assess whether variability and irregularity
parameters are predictive of patient status.

7.3 Heuristic Assessment of the Atrioventricular Node

Rate-control drugs act on atrial and/or AV nodal properties to lower the ventricular
rate. During drug development, electrophysiological effects of antiarrhythmic drugs
are usually assessed invasively in sinus rhythm. Since an atrial pacing protocol cannot
be applied in patients with AF, the electrophysiological drug effects on the AV node
are still not completely understood. When optimizing drug therapy, noninvasive
assessment ofAVnodal electrophysiologymay help to select optimal therapy.During
the early clinical phases of drug development, noninvasive characterization of the
AV node may facilitate data collection from large patient cohorts and favor patient-
tailored therapy. Estimation of the AV nodal refractory period using the surface
ECG has been attempted in several studies, employing different heuristic approaches
[20–24].

Heuristic assessment of AV nodal electrophysiology has relied on simple
approaches to characterizing the RR intervals. Noninvasive estimation of the func-
tional refractory period of the AV node during AF has been attempted by simply
selecting the shortest RR interval or the 5-th percentile of the RR interval series [20,
23, 25]. In dogs, it was demonstrated that the shortest RR interval correlated sta-
tistically with the functional refractory period, determined using a pacing protocol.
Therefore, the shortest RR interval was used as a surrogate measurement of the
functional refractory period [20].

Using the Poincaré plot, where each RR interval is plotted against the preceding
RR interval, an estimate of the functional refractory period can be obtained as well.
The value of the lower envelope, determined as a regression line, at 1 s (“1 s intercept”)
and the degree of scatter above the lower envelope have been proposed as surrogate
measurements of AV nodal refractoriness and concealed AV conduction, i.e., the
effect of blocked impulses on the conduction of subsequent impulses, respectively.
The circadian variation of the 1-s intercept of the lower envelope was investigated
in 120 patients who underwent 24-h ambulatory monitoring at baseline [24]. During
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an observation period of 33 ± 16 months, there were 25 deaths, including 13 cardiac
and 8 stroke deaths. All patients showed significant circadian rhythms in the lower
envelope, however, patients dying subsequently from cardiac causes, but not from
fatal stroke, had less pronounced circadian rhythm, with amplitudes which were
less than 55% of those in surviving patients. It was suggested that blunted circadian
rhythm of AV conduction represents an independent risk of cardiac death in patients
with permanent AF.

The presence of clusters in the histogram-based Poincaré plot, based on the
RR intervals derived from the 24-h ambulatory ECG, has been suggested as a marker
of higher AF organization to predict the outcome of electrical cardioversion [26].
A cluster was considered to be present when a peak in the histogram plot could be
identified visually. Later, the histogram-based Poincaré plot served as the basis for
the Poincaré surface profile, i.e., a univariate histogram defined by those RR inter-
vals which are preceded by RR intervals of approximately the same length [27],
cf. Sect. 4.2.2. The Poincaré surface profile was proposed as a tool for characterizing
AV nodal memory effect and detecting preferential AV nodal conduction. However,
neither the Poincaré plot nor the histogram-based Poincaré plot analysis have raised
much interest in the research community. This may be due to a number of reasons,
including that the plot is strongly dependent on bin size, the bins must be sufficiently
well-populated with points to produce meaningful results, and manual interaction is
often needed to determine the lower envelope [24].

7.4 Synchrogram Analysis

Synchrogramanalysis has been introduced for exploratory analysis of the relationship
between atrial input and ventricular response during AF, providing valuable insights
into AV nodal function [28]. Themethod is purely phenomenological, and no attempt
ismade to account forAVnodal electrophysiological properties such as refractoriness
and conduction delay. The analysis is applied to atrial activations, determined from
the electrogram, and ventricular activations, determined from the ECG, to analyze
AV coupling. The analysis is performed by observing the phase of the ventricular
activations at time instants triggered by the atrial activations. The instantaneous
ventricular phase is assumed to be a monotonically increasing, piecewise linear
function, defined by

φv(t) = 2π
t − tv,n−1

tv,n − tv,n−1
+ 2πn, tv,n−1 ≤ t < tv,n, n = 0, . . . , N − 1, (7.1)

where tv,n is the time of n-th ventricular activation and N is the total number of
ventricular activations. To be consistent with the indexing of RR intervals adopted
in Chap.4, the first RR interval, defined by x0 = tv,0 − tv,−1, requires that the time
of the first ventricular activation is indexed by −1.

The instantaneous ventricular phase is normalized to the interval [0, q], and sam-
pled at the time of atrial activations ta,k for the purpose of detecting whether p : q
coupling is present,

http://dx.doi.org/10.1007/978-3-319-68515-1_4
http://dx.doi.org/10.1007/978-3-319-68515-1_4
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Ψq(ta,k) = 1

2π

(
φv(ta,k) mod (2πq)

)
, q = 1, 2, 3, (7.2)

where p is the number of atrial activations and q is the number of ventricular activa-
tions. Epochs of synchronization are automatically detected by alternately dividing
the values of Ψq(ta,k) into different subgroups. The normalized phases are classified
as p : q coupling whenever the absolute difference between Ψq(ta,k+p) and Ψq(ta,k)

within a subgroup is below a predefined tolerance threshold. The synchrogram anal-
ysis is illustrated in Fig. 7.3.

The synchrogram was investigated in both atrial flutter and AF. As expected, the
percentage of coupled beats and the duration of coupled epochs were significantly
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Fig. 7.3 AV synchrogram analysis of AF [28]. Atrial-to-atrial (AA) and RR interval series, nor-
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ventricular to atrial activations q/p of the synchronized epochs (top to bottom). Note that p : q is
displayed inside the bottom diagram, whereas the ratio q/p is the unit of the vertical axis. (Modified
from [28] with permission.)
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higher in atrial flutter than in AF [28]. Moreover, the synchrogramwas used to assess
the dynamics of AV coupling as a function of atrial fibrillatory rate (AFR) in a small
group of patients during spontaneous acceleration of the AFR at the onset of an AF
episode; in this particular assessment, the AFR was estimated from the electrogram.
The results demonstrated that the occurrence and the duration of coupled epochs
decreased as the AFR increased, and that the average AV conduction ratio, i.e., the
ratio of ventricular to atrial activations, was significantly smaller at higherAFRs [29].

Synchrogram analysis has also been considered for investigating the effects of
atrial activity and AV nodal conduction on the ventricular response in patients with
paroxysmal AF [30]. The results showed that ventricular rate and RR variability are
significantly correlated with the average AV conduction ratio and the variability of
the atrial input. On the other hand, the AFR is not correlated with ventricular rate
nor with RR variability.

7.5 Mathematical Modeling of the Atrioventricular Node

Refractoriness and concealed conduction of the AV node are important AV nodal
properties which contribute to forming the ventricular response. Due to refractori-
ness, many atrial impulses are blocked when arriving to the AV node. Concealed
conduction of a single atrial impulse, occurring when the impulse only partially pen-
etrates into the AV node without reaching the ventricles, influences the conduction
of subsequent atrial impulses. Moreover, the existence of two dominant pathways
through the AV node, each with its own electrophysiological properties, is well-
documented and plays an important role in AF.

The properties of AV nodal function can be studied by mathematical modeling
which may be categorized into:

• Models primarily developed for simulation to provide better understanding of AV
nodal properties, sometimes involving intracardiac information on atrial activity
where the arrival times of the atrial impulses are known (this section).

• Models primarily developed for statistical estimation of AV node parameters, rely-
ing entirely on information derived from the surface ECG. The arrival times of
atrial impulses are modeled as a random process (Sect. 7.6).

7.5.1 Modeling of Conduction Delay in Non-AF Rhythms

Conduction delay is an important AV nodal property, and has therefore received
considerable attention in mathematical model building. With reference to AV nodal
conduction in Wenckebach periodicity, i.e., a non-AF rhythm, the conduction delay
dk related to the k-th atrial impulse depends on the AV nodal recovery time (RT)
ΔtRT,k . The conduction delay is modeled by [21]
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dk = dmin + αmax exp

[
−ΔtRT,k

γc

]
, (7.3)

where dmin is the minimal conduction delay, αmax is the maximal prolongation of the
conduction delay, and γc is the time constant of the exponential conduction curve.
The recovery timeΔtRT,k is given by the time elapsing from the preceding ventricular
activation tv,n to the current AV nodal activation time ta,k ,

ΔtRT,k = ta,k − tv,n, ta,k > tv,n, (7.4)

where ventricular activations are indexed by n.
The basic model of conduction delay in (7.3) can be expanded to include rate-

dependent shortening of the conduction delay, referred to as facilitation (fac), and
rate-dependent prolongation of the recovery time, referred to as fatigue (fat) [21],
see also [31]. In the expanded model, the conduction delay dk in (7.3) is denoted d ′

k ,
αmax is replaced by αk to model facilitation, and the term sk is introduced to model
fatigue,

d ′
k = dmin + sk + αk exp

[
−ΔtRT,k

γc

]
. (7.5)

Facilitation is incorporated into the model by assuming that the maximal prolonga-
tion αmax depends on the interval Δta,k−1 between two successive atrial impulses
immediately preceding ta,k , commonly referred to as the AA interval,

αk = αmax − κ exp

[
−Δta,k−1

γfac

]
, (7.6)

where
Δta,k = ta,k − ta,k−1, (7.7)

and αmax, γfac, and κ are model constants. Fatigue is incorporated by assuming that
each AV nodal activation causes a slowing of the conduction delay of all subsequent
impulses, modeled by

sk = sk−1 exp

[
−Δta,k−1

γfat

]
+ η exp

[
−ΔtRT,k

γfat

]
, (7.8)

where η and γfat are model constants.
The conduction delay model, defined by (7.3)–(7.8), was fitted to experimen-

tal data obtained from seven autonomically blocked dogs during pacing [21].
The results showed that the model can accurately predict dynamic changes in
Wenckebach periodicity. Although themodel does not account for concealed conduc-
tion, it has nonetheless served as a starting point forAVnodemodeling inAF [32–35].
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7.5.2 Modeling of Conduction Delay in AF

An AV node model accounting for conduction delay, defined by (7.3), and refrac-
toriness in AF was proposed in [33, 34], however, fatigue and facilitation were not
modeled. In that model, the AV node becomes refractory after an atrial impulse has
been conducted through the AV node to the ventricles. Impulses arriving to the AV
node during the refractory period are blocked (concealed), and each blocked impulse
causes the refractory period to be prolonged, first with a fixed length [33], but later
with a Gaussian random variable [34].

The proposed model, with fixed prolongation of the refractory period, was tested
on one, single intracardiac recording from a patient with AF, exhibiting an agreement
between the estimated and the observed RR series which is not particularly satisfac-
tory, see Fig. 7.4. Using instead the model with random prolongation [34], a better
fit was obtained. The significance of these two conduction delay models remain to
be established on a larger set of data.

More recently, a dual-pathway AV node model has been proposed in which the
conduction delay, similar to the model in [21], is assumed to be affected by the
stimulation history [36]. The conduction delay is described by the model in (7.3),
except that αmax and γc are assumed to be functionally dependent on the preceding
conduction delay dk−1,
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Fig. 7.4 a Atrial-to-atrial (AA) and b ventricular-to-ventricular (VV) intervals obtained from an
intracardiac recording. Ventricular-to-ventricular intervals were obtained using the AV node model
in [33]. The vertical lines in both panels are the times of the atrial impulses, where vertical, solid
lines indicate conducted impulses, and vertical, dashed lines indicate blocked impulses. (Reprinted
from [33] with permission)
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αmax,k = a1d
2
k−1 + a2dk−1 + a3, (7.9)

and

γc,k = b1 +
(
dk−1

b2

)b3

, (7.10)

respectively. The model constants a1, a2, a3, b1, b2, and b3 are assumed to differ
between the two pathways. Concealed conduction is modeled by a virtual conduction
delay d̃k which depends on the AA interval Δta,k [36],

d̃k = c1 − c2 exp

[
−Δta,k

c3

]
, (7.11)

implying that ΔtRT,k in (7.3) is replaced by (Δta,k − d̃k−1),

dk = dmin + αmax,k exp

[

− (Δta,k − d̃k−1)

γc,k

]

. (7.12)

Themodel constants c1, c2, and c3 are assumed to differ between the two pathways. It
should be noted that the effect of replacingΔtRT,k by (Δta,k − d̃k−1) is similar to that
of prolongation of the refractory period due to concealed conduction, see Sect. 7.5.4.

The model parameters were estimated by fitting αmax,k and γc,k to data obtained
using a pacing protocol. The fitted model could predict the conducting pathway with
specificity and sensitivity exceeding 85% when AF-like random stimulation was
applied to a rabbit preparation. His’ electrogram alternans was used to determine the
pathway of each conducted impulse in the experimental data [37].

7.5.3 Modeling of Refractory Period in AF

In a simplemodel accounting for the refractoryperiod, the atrial impulses are assumed
to arrive randomly in time at the AV node according to a Gaussian distribution [38].
Each atrial impulse results in ventricular activation, unless the AV node is refrac-
tory which causes the atrial impulses to be blocked and the refractory period to be
prolonged. For each blocked atrial impulse, the refractory period τk , following the
k-th atrial impulse arriving at the AV node after ventricular activation, is prolonged
according to the following equation:

τk+1 = τk + uk(0.9 − τk), k ≥ 0. (7.13)

The time-dependent prolongation uk of the refractory period is described by the
logistic function
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uk = 1

1 + e−a(zk−b)
, (7.14)

where
zk = 1 − ta,k

τk
, τk > ta,k, (7.15)

and a and b are positive-valued model constants. The index k is reset to 0 and τ0 is
reset to 0.3 s when a ventricular activation occurs [38]. The parameters a and b define
the shape of the RR interval histogram, but lack a physiological interpretation. For
the model in (7.13)–(7.15), an atrial impulse arriving close in time to a conducted
atrial impulse prolongs the refractory period more than an atrial impulse arriving at
the end of the refractory period. The blocked atrial impulses prolong the refractory
period τk towards its upper limit of 0.9 s.

7.5.4 Modeling of Refractory Period and Conduction Delay
in AF

A much more sophisticated AV node model for the simulation of ventricular activa-
tion during AF was proposed in [35, 39], see also [40, 41], where conduction delay,
prolongation of the refractory period due to concealed conduction, and ventricular
pacing (VP) are also taken into account. The AV node is activated due to the com-
bined effect of spontaneous depolarization and AF bombardment. However, the AV
node can also be activated by a VP-induced, retrograde wave. The activation initi-
ates a refractory period during which the AV node is nonresponsive to atrial impulses
as well as to a VP-induced retrograde wave. When the refractory period ends, the
transmembrane potential returns to its resting potential and initiates a spontaneous,
linear increase in the transmembrane potential. Each time an AF impulse arrives
at the AV node when not being in a refractory state, its transmembrane potential is
increased by a discrete amount, see Fig. 7.5. If instead a VP-induced retrograde wave
penetrates the AV node in a nonrefractory state, the transmembrane potential reaches
its threshold immediately.

In this model, the conduction delay dk is modeled by (7.3), and the refractory
period τk is modeled by

τk = τmin + β

(
1 − exp

[
−ΔtRT,k

γr

])
, (7.16)

where τmin is the shortest refractory period, β is the maximal prolongation of the
refractory period, and γr is the time constant of the exponential refractory curve.
Moreover, the model accounts for prolongation of the refractory period due to con-
cealed conduction. The prolonged refractory period is a product of two factors: one
depending on the arrival time of the atrial impulse and another depending on the
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strength of the atrial impulse,

τ ′
k = τk + τmin

(
ta,k

τk

)ρ1
(
min

(
1,

ΔV

Vt − Vr

))ρ2

, (7.17)

where τ ′
k is the prolonged refractory period andΔV is the strength of an atrial impulse.

The voltages Vt and Vr are defined in Fig. 7.5. The two positive-valued exponents ρ1

and ρ2 are model constants.
Figure7.6 shows two simulated RR series generated using different model param-

eter settings [35, 39]. The simulation is based on the assumption that atrial impulses
arrive to the AV node according to a Poisson process with mean arrival rate λa .

The authors stated that the simulationmodelmayprovide a quantitative framework
to investigating drug effects by fitting their model to experimental data. However,
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no results have so far been published which investigate such effects. The problem of
fitting the model to observed data is likely to be challenging since the model involves
a large number of parameters.

7.5.5 Modeling of Spatial Dynamics

A radically different approach to modeling is to treat the AV node as a con-
nected graph [42], consisting of a series of interacting nodes, rather than having
a lumped structure as the above-described AV node models. An advantage of the
graph approach is that it accounts for spatial propagation of atrial impulses in the
AV node, implying that phenomena such as concealed conduction and retrograde
conduction are intrinsic to the model structure.

The nodes in the graph model propagate impulses, corresponding to action poten-
tials, along the graph edges, see Fig. 7.7. Each node corresponds to a localized part
of the AV node with its own conduction delay and refractory period, both quanti-
ties depending on the stimulation history of the node. When an impulse arrives at a
node, the conduction delay and the refractory period are updated according to (7.3)
and (7.16), respectively. Each node has its own dynamics and is characterized by its
own recovery time ΔtRT, thus differing from the above-described models where the
recovery time applies to the whole AV node.

The proposed model consists of 21 nodes, where 10 nodes characterize the fast
pathway and 11 the slow pathway. The parameters modeling conduction delay, i.e.,
dmin, αmax, and γc in (7.3), and refractory period, i.e., τmin, β, and γr in (7.16), are
identical for all nodes of the slow pathway; the same applies to all nodes of the
fast pathway. Hence, the model is defined by 12 parameters. To simulate conduction
through the model, it is assumed that the first nodes on the atrial side of the slow
and the fast pathways are simultaneously activated. A ventricular activation occurs

Slow pathway

Fast pathway

Fig. 7.7 Schematic presentation of the spatial AV node model proposed in [42]. The graph nodes
propagate impulses along the edges. Each node is characterized by its own refractory period and
conduction delay, both depending on the stimulation history of the node. The full model comprises
21 nodes
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when the atrial impulse reaches the rightmost end of the graph, corresponding to the
bundle of His.

Simulations were performed using AA intervals determined from electrograms
recorded from patients with AF, as well as from simulated AA intervals determined
by a Poisson process with mean arrival rate λa . A genetic algorithm was used to fit
the model by minimizing the difference between simulated RR series and observed
RR interval series, obtained from a number of ECG recordings. In the simulations
using electrogram-derived series of atrial activations, the differencewas quantified by
themean square error of the times of ventricular activations. If simulatedAA intervals
were used and only the ECG was available, the difference was quantified based on
the RR interval histogram. The model could accurately replicate the RR intervals
determined from the ECG.

Themodel fittingwas repeated 1000 times for different initial conditions, resulting
in 1000 estimates of each parameter for each recording [42]. No unique solution was
obtained since several different parameter sets resulted in a similarmodel fit, however,
the ranges of the estimated model parameters were limited. For ECG data, 90% of
the estimated values of τmin and β were within ±20% of the median value of the
estimates, whereas this did not apply to dmin and αmax.

7.6 Statistical Modeling of the Atrioventricular Node
and Parameter Estimation

In the very first paper dealing with statistical modeling, the AV node was treated as
a lumped structure whose behavior represents the temporal and spatial summation
of the cellular electrical activity [43]. In that model, briefly described in Sect. 7.6.1,
the atrial impulses are assumed to arrive randomly in time at the AV node, modeled
by a Poisson process with mean rate λa [44]. The conduction time is not explicitly
modeled.

Many years later, an improved statistical model was proposedwhich also accounts
for dual AV nodal conduction [45, 46], see Sect. 7.6.2. Since the model parameters
can be estimated from the surface ECG, without use of any intracardiac information,
noninvasive electrophysiological characterization of the AV node is made possi-
ble. In a subsequent study, the model was further improved to incorporate pathway
switching, accompanied by more robust parameter estimation [47], see Sect. 7.6.3.

7.6.1 A First Statistical Model of the AV Node

In this statistical model, the AV node is always in one of two states. In the first state,
the AV node is absolutely refractory to stimulation by atrial impulses. At the onset
of the second state, the transmembrane potential is at its resting value, and increases
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spontaneously at a constant rate as well as by a discrete amount ΔV when an atrial
impulse arrives. When the transmembrane potential reaches its threshold value Vt

as a result of any combination of spontaneous and stepwise depolarization, the AV
node fires and a new refractory period is initiated, see Fig. 7.8.

The refractory period is assumed to be rate-dependent, implying that a longer
RR interval is followed by a longer refractory period, and vice versa. The relation
between refractory period and RR interval is modeled by an exponential function,

τn = τ∞
(
1 − exp

[
− xn

τ∞

])
, (7.18)

(a)

Time

Atrial
impulse

Atrial
impulse

Atrial
impulse

(b)

ΔV
ΔV

Vt

Vr

V m

Ventricular
activation

Ventricular
activation

Ventricular 
activations

Atrial 
impulses

AV node

Single pathway

Fig. 7.8 a Schematic representation of the AV node model in [43], and b related modeling of the
transmembrane potential Vm of the AV node. The resting value Vr can increase spontaneously in a
linear fashion (defined by the slope v) as well as by a discrete amount ΔV when an atrial impulse
arrives. When Vm exceeds the threshold Vt , an action potential is fired and the AV node becomes
refractory for a certain period (indicated by the grey area). Thismodel differs from the one in Fig. 7.5
as it does not account for the delay d associated with ventricular activation
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where τn is the refractory period following the n-th ventricular activation, τ∞ is the
maximal refractory period, and xn is the RR interval preceding the n-th ventricular
activation,

xn = tv,n − tv,n−1. (7.19)

The conduction delay is not explicitly modeled.
The model is defined by the following four parameters:

• the mean arrival rate λa of atrial impulses,
• the relative amplitude ΔV of atrial impulses,
• the rate v of spontaneous AV depolarization, measured in units of ΔV , and
• the maximal refractory period τ∞.

Although this model is statistical in nature, no well-established statistical estima-
tion procedure, such as the maximum likelihood (ML) technique, was considered
in [43]. Instead, the model parameters were determined using an ad hoc optimization
procedure which yielded unphysiological parameter estimates.

7.6.2 Statistical Modeling of Dual AV Nodal Pathways

The improved AV node model accounts for concealed conduction, relative refrac-
toriness, and dual AV nodal pathways [45], see Fig. 7.9. In this model, each atrial
impulse is assumed to result in ventricular activation, unless the impulse is blocked
by a refractory AV node. The probability of an atrial impulse passing through the AV
node depends on the time elapsed since the preceding ventricular activation tv,n−1.
The refractory period is defined by the sum of a deterministic period τ and a ran-
dom period, uniformly distributed in the interval [0, τp]. The random period models
prolongation due to concealed conduction and/or relative refractoriness. All atrial
impulses arriving at the AV node before the end of the deterministic period τ are
blocked, whereas impulses with arrival time in the interval [τ, τ + τp] have linearly
increasing likelihood of passing through the AV node. No impulses are blocked if
they arrive after τ + τp.

The model accounts for a fast pathway with a longer refractory period, defined
by τ f and τ f,p, and a slow pathway with a shorter refractory period, defined by τs
and τs,p (depending on pathway, the indices “s” and “f” are added to τ and τp).
In mathematical terms, the refractoriness of the slow pathway is defined by the
function βs(t),

βs(t) =

⎧
⎪⎨

⎪⎩

0, 0 < t < τs,
t − τs
τs,p

, τs ≤ t < τs + τs,p,

1, t ≥ τs + τs,p,

(7.20)

where, for convenience, t is used instead of ΔtRT,k . The function β f (t) characterizes
refractoriness of the fast pathway and is identical to βs(t) except that τ f and τ f,p
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Fig. 7.9 a Schematic representation of the AV node model in [45], and b related modeling of the
transmembrane potential Vm of the AV node. When an atrial impulse arrives at the AV node, the
resting value Vr increases by a discrete amount ΔV which always makes Vm exceed the threshold
Vt , an action potential to be fired, and the AV node refractory for a certain period of time (indicated
by the grey area)

are substituted for τs and τs,p, respectively. The deterministic part of the refractory
periods τs and τ f are assumed to depend linearly on the preceding RR interval xn−1,
implying that a longer RR interval is followed by a longer refractory period, and vice
versa. Moreover, it is assumed that the AV conduction time is incorporated into βs(t)
and β f (t) so that a ventricular activation occurs immediately after a non-blocked
atrial impulse.

Since non-blocked atrial impulses are assumed to occur according to an inhomo-
geneous Poisson process characterized by the intensity function λaβs(t), the PDF of
an RR interval x , related to the slow pathway, is given by [45]

px,s(x) = λaβs(x) exp

[
−

∫ x

0
λaβs(τ )dτ

]
, (7.21)

which, after insertion of (7.20), becomes



300 V. D. A. Corino et al.

px,s(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 < x < τs,

λa(x − τs)

τs,p
exp

[
−λa(x − τs)

2

2τs,p

]
, τs ≤ x < τs + τs,p,

λa exp

[
−λaτs,p

2
− λa(x − τs − τs,p)

]
, x ≥ τs + τs,p.

(7.22)

The PDF px, f (x), related to the fast pathway, is obtained by substituting τ f and τ f,p

for τs and τs,p in (7.22), respectively.
Conduction through the slow and fast pathways are assumed to occur with proba-

bilities ε and 1 − ε, respectively. Assuming that ventricular activations occur accord-
ing to a Poisson process, the intervals between successive ventricular activations are
statistically independent, and the joint probability of the RR intervals x0, . . . , xN−1

is given by

px (x0, x1, . . . , xN−1) =
N−1∏

n=0

px (xn)

=
N−1∏

n=0

(εpx,s(xn) + (1 − ε)px, f (xn)). (7.23)

The mean arrival rate λa is estimated from the f wave signal extracted from the
ECG, but corrected to account for atrial refractoriness, using [46]

λ̂a = λAF

1 − δλAF
, (7.24)

where λAF is taken as the AFR, estimated from the ECG, and δ is the minimal
time interval between successive impulses arriving to the AV node. The five model
parameters θθθ = [

ε τs τs,p τ f τ f,p
]
are estimated from the observed RR interval

series using the ML technique, defined by

θ̂θθ = argmax
θθθ

log px (x0, x1, . . . , xN−1|θθθ; λ̂a). (7.25)

Since no closed-form solution can be found for the estimator θ̂θθ , combined with the
fact that the gradient is discontinuous, the multi-swarm particle swarm optimization
is used to optimize the log-likelihood function [48, 49]. It should be noted that since
τs and τ f depend on the preceding RR interval, the original RR interval series is
subject to decorrelation before ML estimation is performed, to better comply with
the assumption of statistical independence in (7.23) [45].

The parameters of the single pathwaymodel, i.e.,
[
τ τp

]T
, are also estimated. The

Bayes information criterion is then used to determine which of the single- and the
dual-pathway model is most likely the observed [46].
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The block diagram in Fig. 7.10 shows the main signal processing steps required
to estimate the model parameters from the ECG. Figure7.11 illustrates, in histogram
form, the RR intervals produced by three different parameter settings of the AV node
model.

The AV node model was fitted to clinical data acquired during treatment with
different drugs for the purpose of investigating drug-induced changes in AV nodal
properties [50–52]. The hypothesis was that the estimates of AV nodal refractory
periods would reflect the main changes in AV nodal properties previously reported
in studies performed in sinus rhythm and based on invasive data. The effects of
tecadenoson and esmolol were investigated in a small cohort of patients [50]. The
parameters τs and τ f , accounting for both effective refractory period and conduction
interval, were prolonged for both tecadenoson and esmolol [50]. The increase in τs
and τ f , observed for both pathways, suggested either prolonged effective refractory

Preprocessing

Estimation
of

f wave 
extraction

Decorrelation
of RR intervals Maximum

likelihood
estimation 

of
model

parameters

ECG

λa

Fig. 7.10 The main signal processing steps required for estimating the AV node model parameters
from the ECG
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Fig. 7.11 RR interval histogram (area defined by grey bars) and fitted model PDF (solid line)
for three different parameter settings. The histograms derive from model data with increasing
probability ε of an atrial impulse passing through the slow pathway, set to either 0, 0.25, or 0.5 (left
to right); the other model parameters were held constant. (Reprinted from [45] with permission)
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period2 or prolonged AV conduction, or both. In addition, tecadenoson was shown
to affect heart rate but not AFR, suggesting that a decrease in heart rate may be
attributed to that tecadenoson affects the AV node. These results are in agreement
with previous studies demonstrating that tecadenoson prolongs the effective refrac-
tory period of the AV node and slows down its conduction [53], whereas esmolol
prolongs refractoriness and conduction time in both pathways during AV nodal reen-
trant tachycardia [54].

Changes in AV nodal properties were investigated during administration of beta
blockers (carvedilol and metoprolol) and calcium channel blockers (diltiazem and
verapamil) in a controlled setting [52]. For patients with permanent AF, this study
compared the effects of four once-daily drug regimens (metoprolol, diltiazem, ver-
apamil and carvedilol) on heart rate and arrhythmia-related symptoms. While the
results of this study are not directly comparable to previous studies, the changes in
estimated AV nodal properties are in agreement with previous electrophysiological
findings [55–58].

The results suggest that the noninvasively obtained parameter estimates reflect the
expected changes in AV nodal properties for the investigated drugs. Therefore, the
method shouldbe suitable for assessing thedrug effect onAVnodal electrophysiology
during AF, especially for antiarrhythmic compounds aimed at rate-control during AF
and tested in clinical trials during initial clinical phases of drug development.

Another application of the AV node model is to analyze data acquired during rest
and head-up tilt (75◦) from patients with persistent AF. A shortening of the refractory
periods τs and τ f was observed for both pathways during adrenergic activation [59]—
results which are in agreement with earlier reported results [60]. The effect of tilting
on the refractory period of the AV node has not been assessed previously, but invasive
studies have evaluated the effect of vagal tone onAVnode refractory periods by either
stimulating the vagal nerve directly [60] or by assessing the effect of vagolytic drugs.

7.6.3 Statistical Modeling of Pathway Switching

A limitation of the statistical model in [45] is the assumption that atrial impulses
arriving between two ventricular activations attempt conduction through the same
pathway, i.e., pathway switching is not allowed. Therefore, another model suitable
for ECG-based estimation of the model parameters was proposed in [47]. Similar to
the model in [45], atrial impulses are assumed to arrive at the AV node according to
a Poisson process with mean arrival rate λa . Each impulse attempts to pass through
either the slow or the fast pathway, being blocked according to the time-dependent
functions βs(t) and β f (t) depending on which pathway is chosen. The choice of
pathway is independent of the pathway taken by the preceding atrial impulse. Con-
duction through the slow pathway is attempted with probability ε, and consequently
conduction through the fast pathway is attempted with probability 1 − ε.

2The effective refractory period is defined as the longest nonconducting AA interval.
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Since an atrial impulse is assumed to arrive at the AV node according to a Poisson
process, the PDF of the arrival time of the first atrial impulse following a ventricular
activation is given by [61]

p1(t) =
⎧
⎨

⎩

λae−λa t , t ≥ 0,

0, t < 0.
(7.26)

The first impulse attempts conduction through the slow pathway with probability ε,
where conduction is characterized by βs(t), defined in (7.20). Hence, the PDF of the
arrival time of the first impulse conducted through the slow pathway is given by

p1,cs(t) = εβs(t)p1(t). (7.27)

The PDF of the arrival time of the first impulse conducted through the fast pathway
p1,cf(t) is obtained by replacing βs(t)with β f (t) and εwith 1 − ε. The notations “cs”
and “cf” refers to conduction through the slow and the fast pathway, respectively.

The PDF of the arrival time of the second atrial impulse depends on the arrival
time of preceding blocked atrial impulses as well as the time interval between the
second and the first atrial impulses, i.e., the AA interval. Since AA intervals are
statistically independent in the Poisson model, the PDF of the arrival time of the
second atrial impulse following a ventricular activation is given by

p2(t) =
∫ ∞

0
p1(t − ρ)(p1,bs(ρ) + p1,bf(ρ))dρ, (7.28)

where p1,bs(t) and p1,bf(t) denotes the PDF of the arrival time of the first impulse
blocked in the slow and the fast pathway, respectively. To account for pathway switch-
ing, the second atrial impulse attempts to pass through the slow pathway with proba-
bility ε irrespectively of the pathway in which the first impulse was blocked. Hence,
p2,cs(t) and p2,cf(t) are computed analogously to p1,cs(t) and p1,cf(t).

A general expression for recursive computation of the PDF of the arrival times is
given by

pi,cs(t) = εβs(t)pi (t), (7.29)

pi,cf(t) = (1 − ε)β f (t)pi (t), (7.30)

pi,bs(t) = ε(1 − βs(t))pi (t), (7.31)

pi,bf(t) = (1 − ε)(1 − β f (t))pi (t), (7.32)

pi+1(t) =
∫ ∞

0
p1(t − ρ)(pi,bs(ρ) + pi,bf(ρ))dρ, (7.33)

where pi+1(t) denotes the PDF of the arrival time of the (i + 1):st atrial impulse
following a ventricular activation, pi,cs(t) and pi,cf(t) denote the PDFs of the arrival
time of the i-th atrial impulse conducted through the slow pathway and the fast
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pathway, respectively, and pi,bs(t) and pi,bf(t) denote the corresponding PDFs of
blocked atrial impulses.

A conducted atrial impulse is assumed to immediately cause a ventricular activa-
tion. Hence, the PDF of the time intervals between ventricular activations, i.e., xn , is
obtained by summing the PDFs of all conducted atrial impulses,

pc(xn; J ) =
J∑

i=1

(pi,cs(xn) + pi,cf(xn)), (7.34)

where J denotes the maximal number of blocked atrial impulses between successive
ventricular activations. This number is chosen so thatmore than 90%of the conducted
atrial impulses are accounted for [47].

When applying the model in [47] to ECG signals, the probability ε of choosing
the slow pathway was simply set to 0.5, whereas the remaining model parameters
θθθ = [

τs τ f τs,p τ f,p
]
were estimated using the ML technique,

θ̂θθ = argmax
θθθ

(
N−1∑

n=0

log pc(xn|θθθ; λ̂a)

)

, (7.35)

where the mean arrival rate λa was estimated as described in Sect. 7.6.2.
The ratio of atrial impulses conducted through the slow pathway, defined by

α =

J∑

i=1

∫ ∞

0
pi,cs(t)dt

∫ ∞

0
pc, (t; I )dt

, (7.36)

can be used to quantify the reliability of the parameter estimates in θ̂θθ . A small α

indicates that few impulses are conducted through the slow pathway, and, therefore,
τ̂s and τ̂s,p are less reliable. Conversely, a large α indicates that few impulses are
conducted through the fast pathway, and, therefore, τ̂ f and τ̂ f,p are less reliable.

The AV node model has been fitted to each nonoverlapping, 30-min segment of
24-h ECG recordings from 60 patients in permanent AF [47]. Based on results from
simulated data, a threshold was applied to α in order to judge whether the estimated
model parameters were reliable. Figure7.12 illustrates how the four parameters char-
acterizing the refractory periods change over a 24h period, using the models in [45,
47]. It is obvious fromFig. 7.12 that the estimates based on theAVnodemodel in [47]
is associated with less variation in τ̂s,p and τ̂ f,p than is the model in [45]. It should be
noted that the model in [47] leads to an unequally sampled series of parameter esti-
mates, since several estimates are omitted because the reliability, determined by α,
is judged to be too low.
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Fig. 7.12 Model parameter estimates obtained from a 24-h ECG recording of a patient with per-
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7.7 Comparison of AV Models

The AV node models described in this chapter were developed for different pur-
poses, one purpose being to simulate ventricular activation series resembling those
observed during AF and to characterize AV nodal function from intracardiac record-
ings (Sect. 7.5), another purpose being to characterize AV nodal function from the
surface ECG (Sect. 7.6). These purposes are reflected in the structure and complexity
of the differentmodels.While the earlymodels embrace two to six parameters [33, 34,
38, 43], the more recent ones, primarily used for simulation and electrogram-based
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characterization are considerably more complex, embracing 12 to 16 parameters [35,
36, 42]. The statistical models for ECG-based characterization consist of four to five
model parameters which make them better suited for estimation [45, 47].

The AV node models differ in their respective approach to handling the following
properties:

• Atrial activation times
• Refractory period
• Conduction delay
• Ventricular activation
• Concealed conduction
• Dual pathways

The atrial activation times are usuallymodeled by a homogenous Poisson process,
implying that the AA intervals are exponentially distributed [35, 42, 43, 45, 47].
A Gaussian distribution of the AA intervals has also been proposed [38], although
the atrial activation times can no longer be treated as a Poisson process. In the very
first statistical model, the mean arrival rate λa of the Poisson process assumed an
unphysiological value [43]—a problem which was later solved by relating λa to the
AFR, estimated from the f waves in the ECG [42, 45, 47]. For models where the
AV node is characterized using intracardiac information, the atrial activation times
are determined by the peaks of the atrial electrogram [33, 34, 36]. Positioning of
the electrodes relative to the AV node entrance is particularly important during AF
because of the disorganized atrial activity.

From experimental data obtained using a pacing protocol, the effective refractory
period is known to be dependent on the paced atrial rate [62]. This rate dependence
can be modeled in different ways. For example, the refractory period can depend
on the preceding RR interval according to an exponential curve defined by the max-
imal refractory period τ∞, cf. (7.18) [43]. Another approach is to assume that the
refractory period is linearly dependent on the preceding RR interval, calling for
decorrelation of the observed RR interval series before parameter estimation can be
performed [45, 47]. Yet another approach is to assume that the refractory period is
recovery-dependent, i.e., dependent on the time elapsed since the end of the preced-
ing refractory period according to an exponential curvemodeled by three parameters:
the minimal refractory period τmin, the maximal prolongation β, and the time con-
stant γr of the exponential refractory curve, cf. (7.16) [35, 42]. In some models, the
rate dependence of the refractory period is not explicitly modeled [33, 34, 36, 38].

The conduction delay is an important property of the AV node during normal
sinus rhythm, known to be dependent on the paced atrial rate [62]. The AV nodal
conduction delay may be incorporated in the refractory period so that its dynamics
is not explicitly modeled [43, 45, 47]. Alternatively, the conduction delay can be
made dependent on the recovery time, where recovery dependence is modeled by an
exponential curve defined by three model parameters: the minimal conduction delay
dmin, the maximal prolongation αmax, and the time constant γc of the exponential
conduction curve, cf. (7.3) [33–35, 42]. A similar approach was considered in [36],
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although the maximal prolongation and the time constant of the conduction curve
were assumed to depend on the preceding conduction delay.

In most models, ventricular activation is directly linked to the arrival of one atrial
impulse. Each atrial impulse is assumed to result in a ventricular activation, unless
it is blocked due to AV nodal refractoriness. However, more than one atrial impulse
may be needed to cause a ventricular activation [35, 43]. The AV node may also fire
spontaneously.

Concealed conduction is incorporated in the models in different ways. For each
blocked impulse, the refractory period can be incremented by a fixed [33] or random
time [34]. The refractory period prolongation can depend on the timing of the blocked
impulse [38], or on both the timing and the strength of the blocked impulse [35].
Blocked impulses can alter the conduction time of the following impulse, so that a
longer AA interval results in a longer conduction delay [36]. Concealed conduction
can also be disregarded, assuming a refractory period which is not influenced by
blocked impulses [43]. The refractory period prolongation caused by each blocked
impulse is not always explicitly modeled, but concealed conduction is modeled by a
random, uniformly distributed prolongation of the refractory period [45, 47]. Con-
cealed conduction can also be an intrinsic feature of the chosen model structure [42].

The earlier models [33–35, 38, 43] did not account for dual pathways of the AV
node, while the more recent models account for separate conduction time [36, 42]
and refractory period [42, 45, 47] of the two pathways.

The model in [43] was fitted to observed RR series using an ad hoc procedure. For
somemodels, no attempts have beenmade at all to fit themodels to observed data [35,
38]. The models proposed for characterization of AV nodal function based on intrac-
ardiac recordings were fitted using a grid search to find the minimum error between
observed and simulated RR intervals, given the observed AA intervals as input [33,
34, 42]. The model parameters in [36] were assessed by fitting data obtained using

Table 7.1 Comparison of atrioventricular node models with respect to structure and atrial impulse
assumptions. The models are listed in chronological order

Model proposed by Model
parameters

Parameter
estimation

Atrial
impulses

Impulses
required

Cohen et al. [43] 4 No Poisson ≥0

Jorgensen et al. [33] 6 Ad hoc Invasive data 1

Rashidi and Khodarahmi [38] 2 No Gaussian 1

Mangin et al. [34] 6 Ad hoc Invasive data 1

Lian et al. [35] 16 No Poisson ≥0

Climent et al. [36] 18 Ad hoc Invasive data 1

Corino et al. [45] 6 ML Poisson 1

Henriksson et al. [47] 5 ML Poisson 1

Wallman and Sandberg [42] 12 Ad hoc Poisson 1
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Table 7.2 Comparison of atrioventricular nodemodels with respect to various electrophysiological
properties. The functional dependence of the refractory period is indicated,where xn is the preceding
RR interval, and ΔtRT,k is the AV nodal recovery time, cf. (7.4)

Model proposed by Conduction
delay

Refractory
period

Concealed
conduction

Dual
pathways

Cohen et al. [43] No xn No No

Jorgensen et al. [33] Yes Fixed Fixed
increment

No

Rashidi and Khodarahmi [38] No Fixed Timing No

Mangin et al. [34] Yes Fixed Random
increment

No

Lian et al. [35] yes ΔtRT,k Timing and
strength

No

Climent et al. [36] Yes No Timing Yes

Corino et al. [45] No xn Random Yes

Henriksson et al. [47] No xn Random Yes

Wallman and Sandberg [42] Yes ΔtRT,k Intrinsic Yes

a dedicated pacing protocol. For ECG-based characterization of AV nodal function
during AF, the mean arrival rate of atrial impulses is estimated from an extracted
f wave signal [42, 45, 47]; the remaining model parameters are estimated from an
RR interval series using ML estimation [45, 47].

Tables7.1 and 7.2 provides a comparison of AV node models described in this
chapter and their respective properties.
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