
Chapter 6
Characterization of f Waves

Leif Sörnmo, Raúl Alcaraz, Pablo Laguna and José Joaquín Rieta

6.1 Introduction

The diagnosis of atrial fibrillation (AF) is based on the finding of an irregular ven-
tricular rhythm, further strengthened when f waves are discernible. Since no infor-
mation beyond the presence of f waves is considered when making the diagnosis,
f wave characterization has yet to find its way into clinical practice. At the same
time, f wave characterization is receiving considerable attention in the scientific
community, driven by the need for noninvasive information on electropathological
alterations in the atria, which may facilitate patient-tailored treatment of AF.

Invasive measurements, acquired during electrophysiological examination or
open thorax surgery, can be used to characterize the atrial activity. While invasive
measurements obviously provide a much more local characterization of the atrial
activity than the surface ECG, the acquisition of invasive signals must take place
inside the hospital, the required equipment is expensive, and the procedure is associ-
ated with increased risk of patient complication. Moreover, the acquisition duration
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is limited by the procedural duration, which may last for a few minutes only, while
the surface ECG may be acquired over weeks or even months.

There are several aims of f wave characterization, many of them related to the
prediction of treatment outcome [1–3]. For example, a low f wave amplitude predicts
AF recurrence in patients with persistent AF undergoing catheter ablation [4], and,
conversely, a large amplitude predicts termination of persistent AF during catheter
ablation [5]. For patients with persistent AF undergoing cardioversion, a low atrial
fibrillatory rate (AFR) predicts successful outcome [6], and, conversely, a fast rate
predicts AF recurrence [7]. Monitoring of the effect of antiarrhythmic drug therapy
is another application where f wave characterization provides valuable information,
particularly in the developmental phase of the drug when the complications of inva-
sive electrophysiological testing to some extent can be avoided [8]. For example,
different f wave characteristics, including the AFR, have been studied in patients
receiving either a drug under development or placebo, with the aim of determining
what characterize patients converting to normal sinus rhythm, as well as patients not
converting [9]. In all these applications, ECG-derived informationmay be considered
for optimizing AF management and supporting therapeutic decisions at substantial
cost savings.

Yet another, more general aim of f wave characterization is to investigate the
structural changes and the electrophysiological remodeling that take place in the atria
as AF progresses from self-terminating paroxysms to a more sustained or permanent
state [10]. The outcome of such investigations may turn out to be instrumental in
preventing the progression of AF.

From an engineering perspective, the problems of detecting AF and extracting
f waves, treated in Chaps. 4 and 5, respectively, are considerably more clear-cut than
the problem of characterizing f waves. The main reason is that methods for detection
and extraction lend themselves to performance evaluation which can be expressed
in technical terms, e.g., evaluation based on annotated or simulated ECG signals,
whereasmethods for fwave characterization, at least so far, rest on phenomenological
observations which may link a certain f wave characteristic to the clinical issue at
hand, be it related to prediction or evaluation of treatment outcome. As a result,
research on f wave characterization implies more groping in the dark than does
research on AF detection and f wave extraction. On the other hand, more room
is available for investigating different techniques for signal characterization, with
implications on clinical management.

The characterization of f waves has for many years revolved around f wave
amplitude and AFR—the two fundamental signal characteristics which are rela-
tively straightforward to determine [11]. However, as signal processing techniques
have grown more sophisticated and diversified, research on f wave characterization
has become increasingly more multifaceted. Different techniques have been inves-
tigated for analyzing nonstationary f wave signals with respect to spatiotemporal
organization and nonlinear dynamics [2, 12, 13], as well as for analyzing the spatial
distribution of different f wave characteristics on the body surface [14].

The majority of parameters proposed for f wave characterization are well-known
in the realm of signal processing. Indeed, few parameters have been developed
with reference to a statistical signal model accounting for certain specific electro-
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physiological phenomena. The lack of tailored, model-based parameters is most
likely due to the difficulty to associate a particular f wave characteristic to a certain
local electrophysiological property of the atria. This lack may be remedied using
computational modeling and simulation to obtain a better understanding of the gen-
esis of f waves [15–17].

Given the extensive work on f wave extraction, one would expect most studies on
f wave characterization to be based on the extracted f wave signal—an expectation
which remains to be fulfilled. With easy-to-implement methods such as average beat
subtraction (ABS), the presence of QRS-related residuals will, to various extents,
worsen the reliability of f wave characterization. For example, measurements of
f wave amplitude are likely to be more vulnerable to such residuals than measure-
ments onAFR. To evade this problem, several authors have confined characterization
to f waves contained in TQ intervals [18–21]. However, as already pointed out in
Chap.5, the availability of fewer samples implies less accurate results, and, therefore,
it is hoped that well-performing extraction methods will find their way into studies
on f wave characterization.

This chapter reviews different approaches to f wave characterization, together
forming a smorgasbord of “dishes” rather than a coherent body of methods. First,
the two fundamental characteristics f wave amplitude and AFR are considered in
Sects. 6.2 and 6.3, respectively, followed by a description of linear and nonlinear
techniques for characterizing f wave morphology and regularity (Sect. 6.4). Tech-
niques for quantifying f wave signal quality in individual leads are described in
Sect. 6.5, needed to ensure that f wave characterization is performed on signals with
sufficient quality. The analysis of spatial ECG information, manifested as a vector-
cardiographic loop or a body surface potential map, is reviewed in Sect. 6.6. The
chapter concludes with a brief overview of popular clinical applications where the
herein described approaches to f wave characterization are explored.

6.2 f Wave Amplitude

In clinical studies, f wave amplitude has been manually analyzed after quantization
into either fine or coarse, defined as less than or greater than 50 µV [22–26]. As
caliper measurements of f wave amplitude now belong to history, such quantization
has once and for all been shelved in favor of continuous-valuedmeasurements. Based
on the extracted f wave signal x(n),1 but with the QRS intervals excluded to avoid the
influence of QRS-related residuals, a straightforward definition of f wave amplitude
is the average of the four largest peak-to-peak amplitudes of individual f waves in a
10-s recording [27, 28]. Given that the f wave amplitude often varies over time, it may
be necessary to average all peak-to-peak amplitudes contained in the recording to
produce a representativemeasurement. Determination of the peak-to-peak amplitude

1For notational convenience, the extracted f wave signal is denoted x(n) in this chapter, replacing
the notation d̂(n) used in Chap.5.
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requires that a search interval is first delineated so that the extrema of the f wave can
be located. The length of the search interval depends on the AFR, and thus the AFR
needs to be estimated.

The f wave amplitude does not necessarily have to rely on the amplitude of local
extrema, but can just as well be computed as a root mean square (RMS) amplitude of
the extracted f wave signal, or, as in [29], without the square root to instead measure
signal power. Another approach would be to employ classical envelope detection
based on the Hilbert transform [30], where the f wave amplitude can be determined
as an average of the envelope in the time interval of interest.

Envelope detection based on local extrema has also been proposed for the mea-
surement of f wave amplitude [31], see also [32]. Once x(n) has been centered, i.e.,
its mean mx has been removed, the lower envelope el(n) is obtained by connect-
ing successive local minima of x(n) using polynomial interpolation, and the upper
envelope eu(n) by connecting successive local maxima of x(n); a piecewise cubic
Hermite interpolating polynomial was used in [31].2 The sample-to-sample differ-
ence between eu(n) and el(n) is taken as a measure of the local amplitude, which,
when averaged over the entire N -sample signal,

Af = 1

N

N−1∑

n=0

|eu(n) − el(n)|, (6.1)

is a measure of global f wave amplitude. The different signals involved with the
computation of Af are illustrated in Fig. 6.1.

The methods in [27, 31] require that the extrema of the f wave signal are deter-
mined before the amplitude can be measured. The method in [27] produces measure-
ments which are more intuitive since the samples between peaks are not taken into
account. However, as the noise level increases, peak-to-peak measurements become
increasingly more unreliable than those obtained from the envelope [31]. To reduce
the influence of baselinewander andmuscular noise, the original ECG signal is band-
pass filtered before the amplitude is measured, using a passband of either 1–50 Hz
[27] or 0.5–30 Hz [31].

None of the two methods in [27, 31] have been applied to f waves extracted
in the QRS interval. In fact, the envelope-based method analyzes an f wave signal
resulting from the concatenation of consecutive TQ intervals, thus making f wave
extraction superfluous [31]. Since concatenation sometimes leads to jumps at the
interval boundaries, peaks located near the boundaries are excluded from polynomial
interpolation. Moreover, some TQ intervals are so short that only a partial f wave is
available for amplitude measurement.

The repeatability of f wave amplitude was investigated on a data set of 20 clin-
ically stable patients with AF, using the average of the four largest peak-to-peak
amplitudes [27]. For each patient, 10 ECGs of 10-s length were recorded at regular

2It may be noted that this procedure is closely related to the “sifting” procedure, which is part of
empirical mode decomposition [33], where the lower and upper envelopes of the local extrema are
used to compute the intrinsic mode functions.
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Fig. 6.1 Envelope-based measurement of f wave amplitude using polynomial interpolation: the
f wave signal after 0.5–30 Hz bandpass filtering (solid line), the lower and upper envelopes el(n)

and eu(n) (dotted lines) obtained by connecting successive local minima and maxima (marked by
“+” and “o,” respectively), and the difference eu(n) − el (n) (dashed–dotted line) used to compute
the amplitude in (6.1). (Reprinted from [31] with permission)

intervals over the course of 24 h. The results showed that the interpatient differences
were substantial, with fwave amplitudes ranging from60 to 350µV (mean±standard
deviation equal to 131±54 µV). On the other hand, the intrapatient differences were
significantly smaller during the 24 h, ranging from 4 to 53µVwhen determined over
the 10 intrapatient ECGs, with an average standard deviation of 21 µV.

Assuming that f waves can be approximated by a sinusoid, the peak-to-peak
amplitude can be compared to the RMS amplitude, since the former amplitude is
approximately 2.8 times the latter amplitude. Using this approximation, a qualitative
comparison can be made between the results reported in [27] and the histogram of
fwaveRMSamplitude displayed in Fig. 3.4b. The results are in fairly good agreement
with each other, since, following multiplication of 2.8, the f wave amplitudes in
Fig. 3.4b range from 35 to 340 µV (117±48 µV), to be compared with 60 to 350 µV
(131±54 µV).

6.3 Atrial Fibrillatory Rate and Beyond

Atrial fibrillatory rate, being the other fundamental f wave characteristic, has received
considerable clinical attention during the last two decades [3]. A spectral approach is
commonly used to estimate the AFR, since estimation based on the occurrence times
of the f waves is compounded by the difficulty to define a consistent fiducial point.
Another reason is that the signal-to-noise ratio (SNR) may be poor. In contrast, when
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invasively recorded signals are subject to analysis, the AFR is often determined from
the occurrence times of the local activations, with complex wavefront morphologies
and low SNR as the factors which have the most influence on the accuracy of AFR
estimation. Considerable research effort has been spent on developing techniques
for estimation of local activation times [34–40] as an alternative to using spectral
analysis [41–43].

Spectral analysis of the extracted f wave signal plays an important role not only
in AFR estimation, but also in the characterization of f wave morphology. When
changes in the spectral content of the f wave signal are of interest to investigate,
whether spontaneous or due to intervention, time–frequency analysis is better suited
for quantifying such changes.

In the engineering oriented literature, the term dominant atrial frequency (DAF)
is usually substituted for AFR, where “dominant” refers to the largest spectral peak.
In the clinical literature, the term dominant atrial cycle length (DACL) is sometimes
substituted for AFR. Atrial fibrillatory rate, DAF, and DACL convey the same infor-
mation, though they are expressed in units of fibrillations per minute (fpm), Hertz,
and milliseconds, respectively. Since the DAF estimate is used to determine both
AFR and DACL, DAF is the preferred terminology in the following.

6.3.1 Dominant Atrial Frequency

The position of the largest peak in the power spectrum of the extracted f wave sig-
nal defines the DAF, denoted ω0. Nonparametric spectral estimation is typically
employed, which, in most cases, is synonymous to Welch’s method, where the sig-
nal is divided into shorter, overlapping segments, followed by windowing of each
segment [44].3 The power spectrum is obtained by averaging the power spectra
(periodograms) of the segments. Each segment is padded with zeros so that the posi-
tion of the spectral peak can be determined more accurately; however, zero padding
does not improve spectral resolution in the sense that two closely spaced spectral
peaks are better resolved when the original signal is padded with zeros. A signal
length of a few seconds is needed to produce an acceptable variance of the power
spectrum. If better spectral resolution is needed, longer segments need to be ana-
lyzed. For example, a 10-s segment yields, at best, a frequency resolution of 0.1Hz
depending on the window chosen.

Figure6.2 displays the power spectra computed from extracted f wave signals in
leads V1, V2, and V3. The largest spectral peak occurs at approximately the same
position in all three leads, where the f waves of V1 have the largest amplitude. In
this example, the position of the next largest peak in V1 and V2 is not harmonically
related to the position of the largest peak; the next largest peak is likely the expression
of a time-varying DAF, discussed below.

3Since the amplitude spectrum is analyzed in some studies, obtained as the square root of the power
spectrum, caution should be exercised when comparing amplitude-related results.
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Fig. 6.2 Power spectra of extracted f wave signals in leads V1, V2, and V3. The dominant peak is
marked with “*”

Since f waves aremostly characterized by frequencies up to 25Hz, a sampling rate
much lower than that required for f wave extraction can be used. Thus, the original
ECG sampling rate can be decimated to 50Hz without loss of clinical informa-
tion. Although sampling rate decimation is not a critical operation when performing
nonparametric spectral analysis, it is critical when performing parametric spectral
analysis based on autoregressive modeling due to the risk of producing spectra with
spurious peaks for too high a sampling rate [45].

Instead of performing spectral analysis of the extracted f wave signal, the analy-
sis may be confined to the samples of successive TQ intervals [46]. In such cases,
a technique must be employed which can handle unevenly sampled signals. Using
iterative singular spectrum analysis (SSA), cf. Sect. 5.7, an atrial subspace is first
determined from several, consecutive TQ intervals, after which the f wave signal of
the QRST intervals is estimated by projecting the QRST samples on the atrial sub-
space. The resulting signal, composed of interpolated samples in the QRST intervals
and observed samples in the TQ intervals, is then subject to spectral analysis using,
for example, Welch’s method.

Using simulated f wave signals, all with 1-min duration and a 7-Hz DAF, iterative
SSA was used to estimate the DAF [46]. The results showed that the estimation
error rarely exceeded 1.0Hz at heart rates up to 130–140 beats per minute (bpm)
and relatively low SNRs. Recalling general results on the variance of frequency
estimators [47, Chap. 3], the spectral estimation error is lower at higher frequencies,
but higher at lower frequencies. Thus, not surprisingly, the best performing scenario
for the iterative SSA is one with a slower heart rate, i.e., the TQ intervals are longer,
and a higher DAF. The SSA-based technique was developed for estimating the DAF,
whereas information on other harmonics, needed to compute some of the spectral
parameters described below, is not captured.

Lomb’s periodogram is another technique for estimating the power spectrum of
an unevenly sampled signal [30, 48]. This periodogram is determined by minimiz-
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ing the squared error between the observed samples and a sinusoidal model signal
composed of different frequencies. The accuracy of DAF estimates obtained from
Lomb’s periodogram is similar to that of estimates obtained from iterative SSA,
although the latter method tended to produce lower errors at lower heart rates [46].

As a rule, spectral analysis of multi-lead ECGs is performed on a lead-by-lead
basis, resulting in a set of parameters characterizing the spatial distribution of spec-
tral information. Another, less common approach is provided by the spectral enve-
lope method [49] which combines spectral information of the different leads into
a single power spectrum, where periodic components are emphasized and noise is
suppressed [50, 51].

6.3.2 Spectral Parameters

The parameter spectral organization (SO) describes the harmonic structure of the
f wave signal [52, 53]. A more organized signal, manifested by a harmonic spectrum
with a dominant spectral peak, is hypothesized to reflect fewer wavelets circulating
within the atria. Conversely, a less organized signal, manifested by “more frequency
components added to the atrial signal,” is hypothesized to reflect more wavelets.
Spectral organization is defined by

PSO =

K∑

k=1

∫ Δω

−Δω

Sx (ω̂k−1 + ω)dω

∫ ωmax

ωmin

Sx (ω)dω

, (6.2)

where Sx (ω) is the power spectrum of x(n), and ω0, . . . , ωK−1 denote the positions
of the K harmonics, i.e., the k-th harmonic is associated with ωk−1. Four harmonics
were analyzed in [52, 53], whereas two harmonics were analyzed in [51, 54]. The
integration limits Δω and ωmin were set to 0.5Hz and 2.5 Hz, respectively, and ωmax

was set to ((K + 1)ω̂0 − Δω). Since the actual positions of the second and higher
harmonics often differ slightly from the expected positions at kω̂0, k = 2, . . . , K ,
ω̂k is determined by a grid search restricted to an interval centered around kω̂0.
A time-varying version of PSO has been proposed in [54], involving an adaptive
algorithm for tracking of the harmonics, see Sect. 6.4.1.

Another approach to characterizing the harmonic structure is based on the spectral
line model, where the decay of the amplitude of the harmonics constitutes the crucial
parameter [55]. The model is defined by the magnitude a0 of the dominant spectral
peak at ω0, the exponential decay γ , referred to as the harmonic decay (HD), and
the harmonic frequencies ω0, . . . , ωK−1,

SHD(ω) = a0e−γ kδ(ω − ωk), k = 0, . . . , K − 1, (6.3)
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where a0 and γ are unknown parameters, whereas ω0, . . . , ωK−1 may be determined
as described above. By taking the logarithm of SHD(ω), the estimation of a0 and γ is
transformed into a problem of fitting a line to ln Sx (ω). Using the least squares (LS)
method, joint minimization of the cost function

J (ln a0, γ ) =
K−1∑

k=0

(
ln Sx (ω̂k) − (ln a0 − γ k)

)2
(6.4)

with respect to a0 and γ yields the following two estimators:

â0 = exp

[
2(2K − 1)

K (K + 1)

K−1∑

k=0

ln Sx (ω̂k) − 6

K (K + 1)

K−1∑

k=0

k ln Sx (ω̂k)

]
, (6.5)

γ̂ = − 6

K (K + 1)

K−1∑

k=0

ln Sx (ω̂k) + 12

K (K 2 − 1)

K−1∑

k=0

k ln Sx (ω̂k), (6.6)

where exponentiation is used to transform back to the original model parameters
in (6.3). A wide range of f wave morphologies can be represented by the spectral
line model, spanning from sawtooth-like waves, observed at an early stage of AF,
to sinusoidal-like waves, observed in permanent AF, illustrated in Fig. 6.3. Since a
slower AFR is usually associated with sawtooth-like waves, i.e., characterized by
several harmonics, and a faster AFR with more sinusoidal-like waves, i.e., charac-
terized by the fundamental frequency, it is plausible to assume that ω0 and γ are
positively correlated as AF progresses [55].

The logarithm of the spectral power ratio (SPR), defined by the harmonics posi-
tioned at ω̂0 and ω̂1, is yet another parameter for harmonic characterization [56],

PSPR = ln

(
Sx (ω̂0)

Sx (ω̂1)

)
. (6.7)

Fig. 6.3 Simulated f waves
with different morphologies,
obtained by varying the
parameters f0 and γ of the
spectral line model in (6.3),
assuming that ωk = k2π f0

f0   2.5 Hz,  γ = 0.3 

f0   3.6 Hz,  γ = 0.7 

f0  5.0 Hz,  γ = 0.6 

f0  6.1 Hz,  γ = 1.0 

f0  6.3 Hz,  γ = 1.2 

f0  6.6 Hz,  γ = 1.4 

f0  6.6 Hz,  γ = 1.7 

f0  8.5 Hz,  γ = 1.8 
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A large value of PSPR reflects a spectrum with less pronounced harmonic structure,
and vice versa.

The spectral parameters PSO, γ , and PSPR require that at least two harmonics are
present. Using spectral entropy (SE), less emphasis is put on the harmonic structure
of Sx (ω) and more on the complexity of the f wave signal [50, 51]. The spectral
entropy of a narrowband signal is lower than that of a broadband signal. Since the
entropy definition involves a probability mass function with unit area, the spectrum
needs to be converted into such a function by normalizing each frequency component
Sx (ωl) with the sum of all L components,

Sx (ωl) = Sx (ωl)

L∑

i=1

Sx (ωi )

, l = 1, . . . , L , (6.8)

where ω1 and ωL denote the lower and upper frequency limits, respectively, and
ω2, . . . , ωL−1 are equidistantly spaced frequencies between ω1 and ωL ; thus, ωl

does not denote a harmonic frequency in (6.8). The SE is defined by [57]

ISE = −
L∑

l=1

Sx (ωl) log2 Sx (ωl). (6.9)

The spectral width of the largest peak is yet another parameter which has been
investigated in a few studies [56, 58, 59]. However, this measurement is influenced
by the spectral leakage effect, manifested by the power of a sinusoid leaking into
adjacent frequencies within a bandwidth of approximately 4π/N , where N is the
length of x(n) [44]. Moreover, the temporal variation often observed in DAF has
profound influence on the spectral width. Together, these two factors explain why
the spectral width has had very limited significance in clinical studies.

6.3.3 Time–Frequency Analysis

Power spectral analysis reflects the average signal behavior of the analyzed interval,
and the position of the largest spectral peak represents the main carrier of clinically
significant information. In case of bi- or multimodal spectral peaks, the presence of
joint frequencies is not necessarily reflected, but just as well that the DAF varies
within the analyzed interval. Using time–frequency analysis in patients with perma-
nent AF [60], the variation in the DAF was found to be as large as 2.5Hz during just
a few seconds, suggesting that temporal variation in the DAF is a characteristic of
the underlying, complex electrical activation patterns in the atria. Another reason to
pursue time–frequency analysis is the wish to characterize changes in the DAF due
to intervention, e.g., drug administration and tilt table testing.
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A plethora of techniques have been developed for time–frequency analysis, of
which the simplest, and the most common, is the short-term Fourier transform
(STFT), being a linear, nonparametric method. The STFT results frommodifying the
one-dimensional discrete-time Fourier transform to include a sliding time window
w(n)which extracts a segment from x(n) for analysis, resulting in a two-dimensional
function X (n, ω) defined by

X (n, ω) =
∞∑

l=−∞
x(l)w(l − n)e− jωl . (6.10)

The length of w(n) determines the resolution in time and frequency: a short window
yields good time resolution but poor frequency resolution, and vice versa. By analogy
with the computation of the periodogram, the spectrogram is obtained by computing
the squared magnitude of the STFT,

Sx (n, ω) = |X (n, ω)|2. (6.11)

In certain clinical applications, it may be desirable to track changes in the DAF as
small as 0.1Hz, thus calling for a segment length of at least 10 s.On the other hand, the
DAF may change so rapidly over time that a time resolution of 10s is insufficient.
These conflicting demands have proven difficult to achieve with the STFT, and,
therefore, depending on the AF application at hand [59–61], other techniques for
time–frequency analysis with better resolution in both time and frequency have been
investigated.

The Wigner–Ville distribution (WVD) is a well-known quadratic, nonparametric
transform offering better resolution than the STFT [30, 62, 63]. Unfortunately, the
quadratic structure also means the introduction of cross-terms in the time–frequency
domain, arising between different signal components as well as between signal and
noise components.Although the influence of cross-terms can be reduced by including
a kernel function, the practical use of theWVD is still limited when multicomponent
signals are encountered. Since the tracking of changes in the DAF is an important
aspect of time–frequency analysis, the cross Wigner–Ville distribution (XWVD) is
an attractive choice as it integrates the estimation of a varying frequency with the
computation of the WVD [64]. The XWVD is initiated by the frequency series
ω̂0,0(n), determined from the STFT, where the two indices denote harmonic number
and iteration number. The XWVD is computed between x(n) and a sinusoid defined
by ω̂0,0(n), from which an improved ω̂0,1(n) can be estimated using peak detection
of the XWVD. Based on ω̂0,1(n), a new XWVD is computed, and so on, until the
frequency series no longer changes from iteration to iteration.

Using the XWVD, spontaneous temporal variation can be uncovered in the DAF,
illustrated in Fig. 6.4where theXWVDof a 1-min extracted fwave signal is analyzed,
obtained from a patient with permanent AF. The presence of such variation most
likely explains why the dominant peak of the power spectrum is broad or bimodal
as is the case in Fig. 6.2 [60].
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Fig. 6.4 The cross Wigner–Ville distribution of a 1-min f wave signal obtained from a patient with
permanent AF, using a 2.5-s Hanning window. The distribution is displayed for leads a V1, b V2,
and c V3. The DAF is centered around 6Hz in all three leads, with considerable variation ranging
from about 5–7 Hz

The spectral profile method [55] was developed to address the limitation that
the DAF is the focus of the XWVD, while other harmonics are ignored. The spec-
tral profile results from averaging of frequency-aligned spectra of successive signal
segments. By using a logarithmic frequency scale, rather than the conventional lin-
ear scale, spectra with different harmonic frequencies can be properly aligned and
averaged. The resulting spectral profile exhibits a more distinct harmonic pattern
than the spectra of separate segments, and, therefore, lends itself better to f wave
characterization. In this method, the time–frequency distribution is similar to that
produced by the STFT, except that a nonuniform, discrete-time Fourier transform is
employed. The spectrum of each segment is aligned to the spectral profile by finding
the frequency shift that minimizes the weighted LS error, after which the spectral
profile is updated with the aligned spectrum.

In this method, each spectrum qp of the time–frequency distribution is obtained
by computing the nonuniform, discrete-time Fourier transform of xp,

qp = FWxp, (6.12)

where the column vector xp contains the N samples of the p-th signal segment; the
computation is eithermade in overlapping or nonoverlapping segments. The resulting



6 Characterization of f Waves 233

column vector qp contains L different frequencies, the N × N diagonal matrix W
defines the window function w(n) applied to xp, and the L × N transform matrix F
is defined by L nonuniformly sampled frequencies,

F = [
e− j0ωωω e− j1ωωω e− j2ωωω · · · e− j (N−1)ωωω

]
, (6.13)

where ωωω = [
ν0 · · · νL−1

]T
is a column vector with logarithmically spaced frequen-

cies νl , defined by

νl = νlowπ
ηl
L , l = 0, . . . , L − 1. (6.14)

The two parameters νlow and η determine together the frequency interval relevant
for f wave characterization, and L determines the sampling rate of the logarithmic
frequency scale. Using νlow = 0.31 and η = 2, together with a 50-Hz sampling rate
of the extracted f wave signal, the nonuniform Fourier transform is computed for
frequencies ranging from 2.5Hz to about 25 Hz [55].

Thanks to the logarithmic frequency sampling in (6.14), two spectra with different
harmonic structures can be aligned. For example, a spectrumwith harmonic frequen-
cies at 5 and 10Hz can be aligned to another spectrum with harmonic frequencies at
6 and 12 Hz, since the number of samples between the two harmonics is the same for
logarithmically sampled spectra. Using linear frequency sampling, these two spectra
cannot be aligned since the number of samples between the harmonics differ.

The magnitude of the spectrum, i.e., |qp|, is assumed to be described by a
frequency-shifted (θp) and amplitude-scaled (ap) version of the L × 1 spectral pro-
file vectorφφφ p, given by ap Jθp φφφ p. The shift matrix Jθp , defined in (5.25), takes care of
the frequency shifting neededwhen updatingφφφ p with new information. Theweighted
LS error criterion

J (θp, ap) = (|qp| − ap Jθp φφφ p)
T D (|qp| − ap Jθp φφφ p) (6.15)

is employed to estimate the unknown parameters θp and ap. The primary purpose of
the diagonal weight matrix D is to correct for the oversampling at lower frequencies
due to the logarithmic sampling. However, the weight matrixD alsomakes it possible
to emphasize frequencieswhichmaybe of special interest.Minimization of J (θp, ap)

with respect to θp and ap yields the following estimators:

θ̂p = argmax
θp

(
|qT

p |D 1
2 JθpD

1
2φφφ p

)
, (6.16)

âp = |qT
p |D 1

2 Jθ̂p
D

1
2φφφ p. (6.17)

Design considerations on D, as well as details on the minimization of J (θp, ap), are
described in [55].

Since the spectral profile φφφ p is not known a priori, it can be estimated using
exponential averaging of |qp| once shifted to the position of the first harmonic in the

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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spectral profile,

φ̂φφ p+1 = (1 − αp)φ̂φφ p + αp

J−θ̂p
|q̆p|

‖J−θ̂p
|q̆p|‖ , p ≥ 0, (6.18)

where αp is set to a positive value (0 < αp < 1), unless xp contains an ectopic beat,
large QRS-related residuals, or judged to be unreliable for some other reason, when
αp is set to zero. The spectral profileφ̂φφ0 is initialized by setting one frequency equal to
one at a positionwhere theDAF is likely to occur,whereas all other frequencies are set
to a value close to zero. The notation q̆p signifies that qp has been pre- and appended
with a sufficient number of samples to allow for frequency shifting; these additional
samples are also set to a value close to zero. Normalization by ‖J−θ̂p

|q̆p|‖ in (6.18)
is necessary to ensure that the spectral profile allows for meaningful estimation of ap

in (6.17).
In the spectral profile, the first harmonic has a fixed position throughout the

analysis of xp, and, therefore, the spectral profile needs to be properly shifted before
it can be interpreted as a spectrum. In particular, the first harmonic of the p-th
segment, denoted ω̂0,p, is obtained as

ω̂0,p = ω̂0,0 − θ̂p. (6.19)

It should be noted that âp is a measure of f wave amplitude, thus providing yet
another definition to those earlier described in Sect. 6.2. The amplitude estimate âp

may also be used as a normalization factor when evaluating themodel error J (θ̂p, âp)

in successive signal segments [55].
Figure6.5 shows that the harmonics of the spectral profile are considerably less

smeared than are those of the amplitude spectrum obtained byWelch’s method. This
property can be ascribed to the frequency shifting which is part of the update of the
spectral profile in (6.18).

The STFT, the XWVD, and the spectral profile method provide various degrees of
insight into the time-varying nature of the DAF, as well as the harmonic composition
of the f wave signal. Although time–frequency analysis provides more information
than power spectral analysis, its impact on clinical studies has been rather limited.
One reason may be the lack of an hypothesis connecting a certain property of the
time–frequency distribution to an electrophysiological mechanism. Another reason
may be that parameters are largely lacking for characterizing properties which are
intrinsic to the time–frequency distribution, one of the few exceptions being the
parameter tailored to investigatewhether controlled respiration,mediated through the
autonomic nervous system, influences the DAF in patients with permanent AF [65].
In that study, the frequency components in the interval 0.15–0.40 Hz of the power
spectrum of the DAF series were quantified, since these components are known to
reflect modulation of vagal tone, primarily through respiration, and therefore related
to parasympathetic activation [66].
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Fig. 6.5 Time–frequency analysis using the spectral profile method applied to a 60-s extracted
f wave signal which either a contains a large second harmonic or b lacks a second harmonic.
The time–frequency distribution, the DAF series, and the spectral profile (solid line) are displayed
from left to right. The spectral profile obtained at the end of the 60-s interval is the one which
is displayed. For comparison, the conventional amplitude spectrum (dotted line) is shown in the
rightmost diagrams. In both a and b, the variation in the DAF is considerable

6.3.4 Frequency Tracking

When the time-varying characteristics of the harmonic components represent the
main focus of investigation, time–frequency analysis may be replaced by single
frequency tracking or harmonic frequency tracking, depending on whether one or
more harmonic frequencies are of interest to analyze. Of the numerous techniques
developed for single frequency tracking, the adaptive line enhancer is probably the
most well-known [67, 68], composed of a time-varying bandpass filter H(z; n) to
enhance the harmonic component of the input signal x(n), and an adaptive algorithm
to estimate the instantaneous frequencyω0(n) of the output signal y(n). The resulting
estimate ω̂0(n) is used to update the center frequency of the bandpass filter. Single
frequency tracking can be extended to harmonic frequency tracking by assigning
a time-varying bandpass filter and an adaptive algorithm to each of the harmonic
components, resulting in a tracker with filter bank structure.

In the context of f wave characterization, single frequency tracking is part of a
method developed for the purpose of selecting suitable patient candidates for restora-
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tion of sinus rhythm using catheter ablation [54]. The single frequency frequency
tracker, belonging to the class of adaptive line enhancers, assumes that the input
signal is modeled by [54, 69]

x(n) = A0e jω0n + v(n), (6.20)

where A0 and ω0 denote amplitude and fundamental frequency, respectively; the
noise v(n) is assumed to be white. Although the quantities in (6.20) are complex-
valued, the model is still relevant to a real-valued signal since its complex-valued
analytic representation can be used, defined by the observed, real-valued signal and
its Hilbert transform, see Sect. 6.4.1.

A time-varying, first-order bandpass filter with complex-valued coefficients
enhances the sinusoidal component in x(n), defined by

H(z; n) = 1 − β

1 − βe jω(n)z−1
, (6.21)

where ω(n) is the time-varying center frequency, and β (0 � β < 1) defines the
bandwidth. The filter H(z; n) has unit gain and zero phase delay at ω(n), ensuring
that the harmonic component is undistorted.

The center frequency ω(n) is estimated by an adaptive algorithm which, at each
time instant n, tries to minimize the mean square error (MSE)

J (n) = E
[|y(n) − e jω(n+1)y(n − 1))|2] , (6.22)

where y(n) denotes the output of H(z; n). When y(n) = e jω0n , J (n) is minimized
for ω(n) = ω0, thus motivating the definition of J (n) in (6.22). The MSE estimator
of ω0(n) is determined by differentiating J (n) with respect to ω(n) and setting the
result equal to zero, yielding

ω̂0(n + 1) = arg(E
[
y(n)y∗(n − 1)

]
). (6.23)

Similar to the derivation of the well-known least mean square (LMS) algorithm [68],
the expected value may be replaced by its instantaneous estimate at time n,

ω̂0(n + 1) ≈ arg(y(n)y∗(n − 1)). (6.24)

Since this estimator is sensitive to noise, exponential averaging is performed so that
a smoothed estimate Q(n) of the expected value in (6.23) is produced, while, at the
same time, making sure that slow changes in ω(n) can be tracked. Hence, together
with (6.21), the single frequency tracker is defined by the following two equations:

Q(n) = Q(n − 1) + α(y(n)y∗(n − 1) − Q(n − 1)), (6.25)

ω̂0(n + 1) = arg(Q(n)), (6.26)
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where ω̂0(n) is an estimate of theDAF andα (0 < α < 1) is aweight factor determin-
ing the speed of tracking. The estimate ω̂0(n) is inserted in H(z; n) so that the next
filtered sample can be computed, and so on. Single frequency tracking is illustrated
in Fig. 6.6 for an extracted, bandpass filtered f wave signal, where the changes in the
DAF are relatively small, oscillating at around 7 Hz, except for a marked increase to
9 Hz after 21 s due to an artifact; after a few seconds, however, ω̂0(n) returns to the
earlier estimate.

The interest in harmonic analysis, which spurred the development of the spectral
profile method, was also part of the motivation to extend the single frequency tracker
to the handling of several harmonic frequencies. The starting point is the signalmodel
with K harmonics [69],

x(n) =
K∑

k=1

Ake jkω0n + v(n). (6.27)

This model implies that the tracker should have a filter bank structure, consisting of
K bandpass filters Hk(z; n), where each filter has its center frequency at an integer
multiple of ω(n),

Hk(z; n) = 1 − β

1 − βe jkω(n)z−1
, k = 1, . . . , K , (6.28)
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Fig. 6.6 a Extracted, bandpass filtered (4–12 Hz) f wave signal x(n), and b related dominant atrial
frequency (DAF), estimated using single frequency tracking (α = 0.05, β = 0.95)
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see Fig. 6.7. The adaptive algorithm used in single frequency tracking is also
employed in harmonic frequency tracking, except that an estimate of the fundamental
frequency is computed for each of the K harmonic components yk(n),

Qk(n) = Qk(n − 1) + α(yk(n)y∗
k (n − 1) − Qk(n − 1)), (6.29)

ω̂0,k(n + 1) = arg(Qk(n))

k
. (6.30)

A global estimate ofω0(n + 1) is obtained as a linear combination of the different
estimates ω̂0,k(n),

ω̂0(n + 1) =
K∑

k=1

wk(n)ω̂0,k(n + 1). (6.31)

The choice of the weights wk(n) is based on the same principle as that of weighted
averaging, namely that wk(n) are inversely proportional to the noise variance,
cf. (5.12). Since the noise variance is not defined for the harmonic model in (6.27),
the minimum MSE error Jk,min(n) has been proposed as a surrogate measure of the
noise variance [69]. Thus, before ω̂0(n + 1) can be computed, wk(n) is computed
using the following equations:

Adaptive
algorithm

y1(n)

x(n)

ω̂0(n)

y2(n)

yK(n)

H1(z;n)

H2(z;n)

HK(z;n)

Fig. 6.7 Block diagram of the harmonic frequency tracker, composed of a filter bank with K
bandpass filters Hk(z; n) with harmonically coupled center frequencies and an adaptive algorithm
for updating the center frequencies of the filters

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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Ĵk,min(n) = Ĵk,min(n − 1)

+ α(|yk(n) − e jkω̂0(n)yk(n − 1))|2 − Ĵk,min(n − 1)), (6.32)

Êk(n) = Êk(n − 1) + α(|yk(n)|2 − Êk(n − 1)), (6.33)

σ̂ 2
ω,k(n) = Ĵk,min(n)

Êk(n)
, (6.34)

wk(n) =
1

σ̂ 2
ω,k(n)

K∑

i=1

1

σ̂ 2
ω,i (n)

, (6.35)

where Êk(n) is a smoothed estimate of the energy of yk(n) which is used to nor-
malize Ĵk,min(n) so that wk(n) reflects the local SNR. It should be noted that the
second and higher harmonics are defined as integers of the fundamental frequency,
although these frequencies are actually estimated by arg(Qk(n)) in (6.30). In con-
trast to time–frequency analysis, the harmonic frequency tracker produces harmonic
signal components as a by-product, useful for various purposes such as the analysis
of phase differences, which is the topic of the Sect. 6.4.

A precursor to single and harmonic frequency tracking is the DAF-controlled
bandpass filter, designed to produce the first harmonic component, sometimes
referred to as the main atrial wave [70, 71]. The DAF-controlled approach to band-
pass filteringwas introduced to reduce the effect of noise, being of critical importance
to the computation of the sample entropy [70], but also as part of a method for char-
acterizing f wave morphology [71]. While single and harmonic frequency tracking
update the center frequency of the bandpass filter(s) on a sample-by-sample basis, the
center frequency of the DAF-controlled filter is updated on a segment-by-segment
basis, estimated in each segment from the power spectrum of the f wave signal.

6.4 f Wave Morphology and Regularity

Certain information on f wave morphology is provided by power spectral analysis
and time–frequency analysis, for example, conveyed by the harmonic decay γ which
reflectswhether fwaves have a sinusoid- or a sawtooth-lookingmorphology, cf. (6.3).
However, the phase information is discarded in both these types of analysis, and, con-
sequently, much of the morphologic information is discarded. By decomposing the
extracted f wave signal into its harmonic components and comparing the respective
phases, information on morphology can be retrieved (Sect. 6.4.1). Since phase anal-
ysis requires a relatively high SNR and relatively well-organized f waves, there is
a need for robust approaches to morphologic characterization. One such approach
considers the few largest eigenvalues of the correlation matrix of the f wave signal
as a measure of regularity (Sect. 6.4.2). Another approach considers pairwise sim-
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ilarity of individual f waves, using a robust similarity measure (Sect. 6.4.3). These
approaches have in common that they produce a parameter which characterizes the
morphology of several, consecutive fwaves, rather than themorphology of individual
f waves. Hence, “f wave regularity” may be a more appropriate notion than “f wave
morphology.” Nonlinear techniques have also been considered for characterizing
f wave regularity, including different measures of entropy (Sect. 6.4.4).

6.4.1 Phase Analysis

The classical approach to phase analysis of a lowpass signal x(n) is based on its
analytic representation, defined by

xA(n) = x(n) + j x̃(n), n = 0, . . . , N − 1, (6.36)

where x̃(n) denotes the Hilbert transform of x(n). This transform shifts the phase of
the positive frequency components by −90◦ and the negative ones by 90◦ [72, 73].
Since the analytic signal xA(n) is complex-valued, it can alternatively be represented
by its magnitude and phase,

xA(n) = a(n)e jψ(n), (6.37)

where

a(n) =
√

x2(n) + x̃2(n), (6.38)

ψ(n) = arctan

(
x̃(n)

x(n)

)
. (6.39)

Here, the functionψ(n) defines the notion “phase” in a broad sense, without referring
to sinusoidal phase. To interpret ψ(n) as sinusoidal phase, the polar representation
in (6.37) of a narrowband signal y(n), obtained by bandpass filtering of x(n) with
center frequency ω0, is considered:

yA(n) = y(n) + j ỹ(n) = a(n)e jψ(n)

= a(n)e jφ(n)e jω0n. (6.40)

It is easily shown that the real-valued part of y(n), i.e., the part with practical interest,
can be expressed as

y(n) = a(n) cos(ω0n + φ(n)). (6.41)

Before computing the sinusoidal phase φ(n), x(n) needs to be bandpass filtered
to ensure that it is not a multi-component or broadband signal [74]. Even with the
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inclusion of bandpass filtering, φ(n) is still an instantaneous measurement which is
vulnerable to noise.

Another approach to phase analysis is based on statistical modeling of the har-
monic signal components [71].As afirst step, the observed signal x(n) is decomposed
into K different harmonic components yk(n), k = 1, . . . , K , using a filter bank of
linear, time-invariant bandpass filters. The center frequency of the filter H1(z), pro-
ducing y1(n), is determined by the position of the largest spectral peak of Sx (ω),
i.e., ω̂0. Since the second and higher harmonic frequencies often differ slightly from
their expected positions at kω̂0 due to changes in f wave morphology, the center fre-
quencies of H2(z), H3(z), . . . are determined by searching for the respective peaks
in intervals centered around kω̂0, cf. the computation of PSO in (6.2). Figure6.8
illustrates a harmonic power spectrum and the passbands of the bandpass filter bank
determined from the spectrum.

In a second step, the bandpass filtered signals yk(n) are subject to analysis in
nonoverlapping segments with L samples,

yk,p(n) = yk(n − pL), n = 0, . . . , L − 1, (6.42)

where p is the segment number. In [71], the lengths N and L were set to 10 and 0.5 s,
respectively, where the latter setting implies that the analysis of f wavemorphology is
performed almost on a wave-to-wave basis (though the boundaries between f waves
are not taken into consideration). In each segment, yk,p(n) is modeled by a sinusoid
in Gaussian, white noise vk,p(n),
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Fig. 6.8 Harmonic power spectrum and related passbands of the bandpass filters (dotted lines)
for producing three harmonic components. The passbands are centered around the spectral peaks
(marked with circles) and are increasingly wider at higher harmonic frequencies
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yk,p(n) = ak,p sin(ωk,pn + φk,p) + vk,p(n), (6.43)

where ak,p, ωk,p, and φk,p are unknown parameters. The maximum likelihood (ML)
estimators of these three parameters are given by [47]

ω̂k,p = argmax
ω

∣∣∣∣∣
1

L

L−1∑

n=0

yk,p(n)e− jωn

∣∣∣∣∣

2

, (6.44)

âk,p = 2

L

∣∣∣∣∣

L−1∑

n=0

yk,p(n)e− jω̂k,pn

∣∣∣∣∣ , (6.45)

φ̂k,p = arctan

⎛

⎜⎜⎜⎜⎜⎝

L−1∑

n=0

yk,p(n) cos(ω̂k,pn)

L−1∑

n=0

yk,p(n) sin(ω̂k,pn)

⎞

⎟⎟⎟⎟⎟⎠
. (6.46)

Thus, ω̂k,p is determined by the position of the largest peak of the periodogram
of yk,p(n), required before estimation of ak,p and φk,p. The accuracy of sinusoidal
modeling can be quantified by the MSE εp between x p(n) and its reconstructed,
noise-free counterpart x̂ p(n),

εp = 1

L

L−1∑

n=0

(x p(n) − x̂ p(n))2, (6.47)

where

x̂ p(n) =
K∑

k=1

âk,p sin(kω̂0,pn + φ̂k,p). (6.48)

Alternatively, x̂ p(n) may be obtained by replacing kω̂0,p in (6.48) with ω̂k,p as sug-
gested by the model in (6.43).

In a third step, the phase parameters characterizing f wave morphology are com-
puted, defined by the differences between φ̂2,p and φ̂1,p, φ̂3,p and φ̂1,p, and so on.
A straightforward comparison of two phase estimates is, however, not meaningful
since the estimates relate to different frequencies, i.e., ω̂k,p and ω̂1,p, and therefore
not comparable. To solve this problem, φ̂k,p is converted to the same scale as φ̂1,p by
division with k. Moreover, since the k-th harmonic completes about k periods when
the first harmonic completes one period, the k-th harmonic is periodic by 2π in its
own scale, and approximately periodic by 2π/k in the scale of φ̂1,p. Therefore, the
phase difference θ̂k,p is computed using the following expression:

θ̂k,p = φ̂k,p

k
− φ̂1,p ± l · 2π

k
, k = 2, . . . , K , (6.49)
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where φ̂1,p is adjusted with an integer multiple l of 2π/k to become unique within
the interval [−π/k, π/k].

Characterization of f wave morphology using phase information is illustrated in
Fig. 6.9, where f waves are positioned according to θ̂2,p. The phase difference θ̂3,p

usually plays a much more subordinate role, since â3,p is usually much smaller than
â2,p, and thus θ̂3,p has much less influence on f wave morphology. It is noted that a
change of θ̂2,p by π

4 results in reversed wave polarity. Moreover, Fig. 6.9 shows that
f waves positioned at about −π

8 have a steeper upslope than downslope, whereas
f waves positioned at the opposite position, i.e., about 3π

8 , have a downslope steeper
than the upslope.

Clustering of f wave segments is an application where the phase differences θk,p

have been explored, with the aim of determining a representative, reconstructed
f wave signal better suited for morphologic characterization than the observed f wave
signal itself, see Fig. 6.10 [71].

Considering that the spectral characteristics of the f waves can change over time,
there is a risk that the harmonic frequencies wander outside the passbands of the
time-invariant bandpass filters H1(z), H2(z), . . . , HK (z)—a risk that increases with
increasing length of the signal segment used for designing the filter bank. When
such a situation arises, the harmonic components yk,p(n) become less reliable, with
repercussions on the reliability of θ̂k,p. This problem can be addressed by adaptively
tracking the harmonic frequencies, using, for example, the algorithm described in
Sect. 6.3.4 [54]. With such tracking, the filter passbands are updated on a sample-to-
sample basis, implying that the phase differences can be estimated on a sample-to-

Fig. 6.9 Morphologic
f wave characterization
based on the phase
difference θ̂2,p , defined
in (6.49) and confined to the
interval [− π

2 , π
2 ). The

diagram is a variant of the
well-known phasor diagram
whose range is here adjusted
to suit θ̂2,p . The f waves are
generated using the sawtooth
model in (3.1)

http://dx.doi.org/10.1007/978-3-319-68515-1_3


244 L. Sörnmo et al.

Fig. 6.10 a Extracted 10-s f wave signals obtained from six different patients with persistent
AF, and b reconstructed f waves judged to be representative of the corresponding signals in (a).
Nonoverlapping 0.5-s segments of x(n) are clustered based on θ1,p and θ2,p , after which the f waves
belonging to the largest cluster are reconstructed; for details, see [71]

sample basis from the harmonic components yk(n). Thus, the segment-based estimate
θ̂k,p is replaced by θ̂k(n).

Once yk(n) is available, the instantaneous phase φk(n) is computed by

φ̂k(n) = arctan

(
ỹk(n)

yk(n)

)
, k = 1, . . . , K , (6.50)

followed by computation of the instantaneous phase difference θ̂k(n). Since φ̂k(n)

is vulnerable to noise, lowpass filtering of the phase difference θ̂k(n) has been sug-
gested [54]. The filtering was accompanied by the hypothesis that a change in f wave
morphology is reflected by a change in the slope of a straight line which, in a sliding
window, is fitted to θ̂2(n); higher-order phase differences were not analyzed. Mor-
phologic regularity was quantified by the variance of the resulting slopes: a variance
close to zero indicated a strong coupling between the first and the second harmonics,
and vice versa.

6.4.2 PCA-Based Characterization of Regularity

Since phase analysis is only suitable for f wave signals with a relatively high SNR,
PCA-based approaches have been investigated which, to some extent, trade mor-
phologic detail for robustness. In particular, the mapping of estimated parameters to
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wave morphology offered by phase analysis, cf. the signal model in (6.43), is traded
for a more robust, data-driven characterization of f wave regularity where the link to
a signal model is lost.

The starting point of PCA is the data matrix X, formed by dividing the extracted
f wave signal into M nonoverlapping segments containing N samples each,

X = [
x1 x2 · · · xM

]
, (6.51)

where each column xp has been centered. The signal segments, forming the columns
inX, have not been aligned relative to any fiducial point. Thus, the definition ofX in
(6.51) differs from the one in (5.100), where the columns have been aligned relative
to the occurrence times of the QRS complexes. Time alignment was also involved in
the study which first pursued PCA-based characterization of AF signals [75]; in that
study, the occurrence times of the atrial activations in the intracardiac electrogram
were used for alignment.

The principal components are associated with the variances given by the
eigenvalues λ1, . . . , λN of the N × N sample correlation matrix R̂x = 1

M XXT ,
cf. Sect. (5.6.1). When f wave morphology is regular across the analyzed signal
segments, only a few eigenvectors are required to represent the f waves. A measure
of how well the K most significant eigenvectors represent, on average, the M signals
in X is provided by the normalized, cumulative sum of the K largest eigenvalues
[30, 75–77]:

RK =

K∑

i=1

λi

N∑

i=1

λi

, 0 < RK ≤ 1, (6.52)

where λi are sorted in decreasing order λ1 > λ2 > · · · > λN and K � N .4 Inter-
estingly, R5 has been used to quantify the overall quality of ECG signals in various
types of arrhythmia [79], though not on extracted f wave signals.

Figure6.11 illustrates R3 for two different signals: one with regular f wave mor-
phology, and another with more irregular morphology and higher noise level. The
difference in signal characteristic is well-reflected by R3. Since the f wave signals
xp are not aligned, the ensemble X is heterogenous, leading to much lower values of
R3 than what is often reported in studies on ECG analysis.

A minor variation on RK as a measure of regularity is to determine the number
of eigenvalues K needed to make RK exceed a certain preset level, and then use
that particular value of K as a measure of regularity [80]. Obviously, a smaller K
indicates a more regular signal since fewer eigenvectors are, on average, required to
reconstruct the analyzed signal.

4When the data matrixX is composed of overlapping segments, defined by a sliding window shifted
with one sample at a time, RK is known as the fractional spectral radius and used to quantify the
stochastic complexity of a signal [57], see also [78].

http://dx.doi.org/10.1007/978-3-319-68515-1_5
http://dx.doi.org/10.1007/978-3-319-68515-1_5
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Fig. 6.11 a Regular and b
irregular f wave signals
characterized by R3 = 0.40
and 0.25, respectively [77]

10 2 3 4

Time (s)

(b)
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As a complement to RK which characterizes the overall regularity of all signal
segments in X, the reconstruction error associated with xp, using the K most signif-
icant eigenvectors, may serve as a measure of regularity in individual segments. The
reconstruction error of the p-th segment is defined by

εp,K = 1

N
(xp − ŝp,K )T (xp − ŝp,K ), (6.53)

where the reconstructed signal ŝp,K results from projecting xp on the K most signif-
icant eigenvectors of R̂x ,

ŝp,K = ΦΦΦKΦΦΦT
Kxp, (6.54)

with
ΦΦΦK = [

ϕϕϕ1 ϕϕϕ2 · · · ϕϕϕK
]
. (6.55)

It is noted that the expected value of εp,K is related to RK through the following
expression [30]:

E
[
εp,K

] = 1

N

N∑

i=K+1

λi = 1

N
(1 − RK )

N∑

i=1

λi . (6.56)

Early on in the history of automated ECG analysis, εp,K was used to exclude noisy
QRS complexes and artifacts from classifying QRS complexes in single-lead ECGs.
However, a set of Gaussian functions were then used instead of the eigenvectors
in (6.55) [81]. More recently, related to f wave characterization, the definition in
(6.53) has been generalized so that it applies to multi-lead ECGs, with the aim
of characterizing stationarity of atrial wavefront patterns during AF [80, 82], see
Sect. 6.6.
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6.4.3 Similarity-Based Characterization of Regularity

Morphologic similarity is a crucial feature when clustering QRS complexes
[83–85], which may be quantified by the correlation between two QRS complexes
once they have been properly aligned in time, cf. (5.159). The correlation-based
approach requires that QRS detection and QRS delineation have been performed.
This approach can be applied to f waves as well, but then requiring that detection
and delineation of individual f waves have been performed [86]. Compared to QRS
detection and QRS delineation, the conditions under which the corresponding f wave
algorithms should operate are much more challenging since f waves wax and wane
and sometimes completely disappear. Moreover, since there is no clinical consensus
on what defines f wave onset and end, delineation performance cannot be evaluated
on annotated databases. For the algorithms proposed in [86], the occurrence time
and onset of each f wave are determined using mathematical morphology operators
[87–89]. It should be noted that only f wave onset needs to be determined since
f wave end is identical to the onset of the subsequent f wave.

The main idea behind the correlation-based approach is to first assess morpho-
logic similarity for all pairwise combinations of the M different f waves xi (n), i =
1, . . . , M, contained in the analyzed segment. The resulting correlation coefficients
are then merged into one single parameter describing morphologic regularity. Since
Pearson’s correlation coefficient suffers from the disadvantages of being invariant
to changes in amplitude and vulnerable to impulsive noise, the signed correlation
coefficient (SCC) has been proposed, avoiding these disadvantages by coarse quan-
tization of the observed signal xi (n) into three parts (“trichotomization”) [90]:

xt,i (n) =
⎧
⎨

⎩

1, xi (n) ∈ Sp,

0, xi (n) ∈ Sz,

−1, xi (n) ∈ Sn.

(6.57)

The signal space is spanned by the positive subspace Sp, the zero subspace Sz , and
the negative subspace Sn , which are mutually disjunct. Each subspace is defined
by a set of signal-dependent thresholds which can be fixed or variable over time.
Before trichotomization, xi (n) is normalized by its maximum amplitude or some
other suitable signal feature.

The products computed in Pearson’s correlation coefficient are replaced by signed
products of the two trichotomized signals xt,i (n) and xt, j (n), denoted ⊗ and defined
by

xt,i (n) ⊗ xt, j (n) =
⎧
⎨

⎩

1, xt,i (n) = xt, j (n),

−1, xt,i (n) = −xt, j (n) and xt,i (n) �= 0,
0, otherwise,

(6.58)

where i, j = 1, . . . , M . Hence, the SCC is given by

http://dx.doi.org/10.1007/978-3-319-68515-1_5


248 L. Sörnmo et al.

PSCC,i, j =

N−1∑

n=0

xt,i (n) ⊗ xt, j (n)

√√√√
N−1∑

n=0

xt,i (n) ⊗ xt,i (n)

√√√√
N−1∑

n=0

xt, j (n) ⊗ xt, j (n)

= 1

N

N−1∑

n=0

xt,i (n) ⊗ xt, j (n). (6.59)

Similar to Pearson’s correlation coefficient, the signed correlation coefficient is lim-
ited to −1 ≤ PSCC,i, j ≤ 1, where 1 and −1 correspond to identical morphology but
with equal or opposite polarity, respectively. Due to trichotomization, the product
of the square root terms in the denominator of (6.59) equals N . Since the length of
xt,i (n) typically varies from f wave to f wave, the shortest signal of xt,i (n) and xt, j (n)

determines N ; the length is determined after alignment.
In a simplified version of the SCC, the trichotomization in (6.57) is omitted,

i.e., xt,i (n) ≡ xi (n), and the signed product is redefined so that dichotomization is
performed on the difference between xt,i (n) and xt, j (n) [86],

xt,i (n) ⊗ xt, j (n) =
{
1, |xt,i (n) − xt, j (n)| ≤ η,

−1, |xt,i (n) − xt, j (n)| > η.
(6.60)

The threshold η can be taken as a percentage of the combined peak-to-peak ampli-
tudes of xt,i (n) and xt, j (n).

Based on PSCC,i, j , i, j = 1, . . . , M , whether determined using dicho- or tri-
chotomization, morphologic regularity can be quantified by the following func-
tion [86]:

κ(r) = 2

M(M − 1)

M∑

i=1

M∑

j=i+1

exp

[
− (PSCC,i, j − 1)2

r2

]
, (6.61)

where 0 ≤ κ(r) ≤ 1. The function κ(r) reaches its maximum when all f waves have
identicalmorphology, i.e., PSCC,i, j = 1 for all combinations of i and j . The parameter
r (r > 0) can be viewed as a threshold determining whether pairs of f waves are
similar, i.e., fewer pairs are similar when r is set to a value close to zero. While
exponents other than two in (6.61) have been investigated, this choice has been found
to yield good overall performance [86, 91]. Thus, the three parameters M, η, and r
need to be set in the correlation-based approach to characterizing f wave regularity.

Figure6.12 illustrates the use of κ(r) for an extracted f wave signal exhibiting sub-
stantial variation in both amplitude and morphology. It is noted that κ(r) approaches
zero in intervals with waning f waves, but is close to one in intervals with waxing
f waves.
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Fig. 6.12 a Extracted fwave signal and b related regularity function κ(r = 1) computed in a sliding
window, using M = 5 and η = 0.15

6.4.4 Entropy-Based Characterization of Regularity

Entropy measures provide information on nonlinear characteristics of a signal which
is complementary to the information provided by linear transformationmethods such
as spectral analysis and PCA. The signal characteristic quantified by entropy is usu-
ally referred to as complexity, with regularity, predictability, repeatability, and self-
similarity as alternative descriptions. For f wave signals, entropy may also be viewed
as a measure of “AF organization” [92]—a term originating from electrogram-based
analysis where the aim is to quantify the organization of local activity as well as the
spatial organization (coordination) between different regions of the atria [93]. How-
ever, a widely accepted definition of “AF organization” is unfortunately missing.

A large number of entropy measures have been proposed, most of them resulting
fromdifferent approaches to estimation [94, 95]. Shannon entropy IShEn [96], approx-
imate entropy IApEn [97], sample entropy ISampEn [98], spectral entropy ISE [99],
wavelet entropy [100], conditional entropy [101], and fuzzy entropy [91] have all
been investigated in the realm of AF, either to characterize RR interval irregularity in
AF detection and AFmanagement (Chaps. 4 and 7, respectively) or f wave regularity,
i.e., the topic of this section.

In an early study, ISampEn was used to predict the termination of AF episodes
in ambulatory ECG recordings [78]. The results showed that ISampEn could not
distinguish terminating from nonterminating AF, probably due to the often poor sig-
nal quality which precluded reliable computation of ISampEn. In a later study, it was
shown that both ISampEn and IApEn are sensitive to the presence of spike artifacts [102],
i.e., QRS-related residuals, which would lead to improper characterization of f wave
regularity. Thus, the accuracy of ISampEn depends on the prevailing signal quality.

http://dx.doi.org/10.1007/978-3-319-68515-1_4
http://dx.doi.org/10.1007/978-3-319-68515-1_7
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A means to reduce the influence of noise is to bandpass filter the extracted f wave
signal, implemented either by reconstructing the signal from the wavelet coefficients
of the scale containing the DAF [103, 104], or using the output of a bandpass filter
whose center frequency is defined by the DAF [70], i.e., the approach employed in
phase analysis, cf. Sect. 6.4.1. Interestingly, when computing ISampEn from a DAF-
controlled bandpass filtered signal with a 3-Hz bandwidth [70], termination of parox-
ysmal AF could be predicted in the database previously analyzed in [78] without
success. This result demonstrates that AF termination is associated with a change in
f wave regularity which becomes increasingly more regular just before termination.
It also demonstrates that entropy-based prediction calls for bandpass filtering of the
f wave signal.

The idea to use a DAF-controlled bandpass filter was later expanded into a
DAF-controlled filter bank, composed of harmonically-related bandpass filters,
cf. Sect. 6.4.1, thus making it possible to compute ISampEn for each harmonic compo-
nent [105]. Since ISampEn does not in itself convey any information on the strength of
a harmonic component, a measure of strength is needed to judge the significance of
the harmonics. In [105], strength was quantified by the relative energy of the second
and the third harmonic components.

Before computation of ISampEn, three parameters need to be set: the length m of
the two subsequences to be compared, the similarity tolerance r , and the number of
samples N , cf. the definition in (4.12). With respect to m and r , an early recommen-
dation was to use m = 1 or 2 together with 0.1 ≤ r/σx ≤ 0.2, where σx denotes the
standard deviation of the analyzed signal [106–108]. This recommendation, which
was based on biomedical signals with relatively slow dynamics, was later found to
be less appropriate for signals with fast dynamics [109], thus motivating an inves-
tigation of how to choose optimal values of m and r in applications where f wave
characterization is required. Using ISampEn to predict termination of paroxysmal AF
and outcome of electrical cardioversion in persistent AF, the choice of m and r was
found to have significant influence on prediction performance [110]. In particular,
when optimizing the performance of a predictor or classifier, the results suggested
that a wider range of values of m and r should be considered than suggested by the
early recommendation.

The sampling rate of the f wave signal influences the computation of ISampEn, since
the probability that two subsequences are identical, i.e., the maximum norm in (4.11)
is below r , becomes increasingly higher as the sampling rate becomes increasingly
faster, i.e., the sample-to-sample changes become increasingly smaller. To mitigate
the problem that oversampling can produce misleading values of ISampEn, a lag of L
samples may be introduced between successive samples in the two subsequences for
comparison, where L is related to the degree of oversampling [111]. When counting
the number of similar subsequences in (4.12), only those which are L samples apart
are considered. The lag may be determined from the properties of the autocorrelation
function of the analyzed signal, e.g., its first zero-crossing [111]. Using simulated
signals, the lag-based definition of ISampEn was found to produce consistent results
at different sampling rates, while the original definition did not.

http://dx.doi.org/10.1007/978-3-319-68515-1_4
http://dx.doi.org/10.1007/978-3-319-68515-1_4
http://dx.doi.org/10.1007/978-3-319-68515-1_4
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A straightforward approach to choosing the sampling rate is to rely on knowledge
from spectral analysis of the f wave signal, suggesting that frequencies up to about
25Hz are relevant and thus a sampling rate of at least 50Hz should be used. However,
higher frequencies may still be relevant to the computation of ISampEn, therefore
motivating the use of a sampling rate higher than 50 Hz. Yet another approach is
to choose the sampling rate which offers the best performance, for example, when
the aim is to predict AF termination or to predict the outcome of electrical cardio-
version [110]; for these two prediction problems, the best-performing sampling rate
was found to be as high as 250 Hz.

The number of samples N should be chosen large enough so that the dynamics
of several f waves is captured, where at least one second of the f wave signal is
used to compute ISampEn [110]. While the choice of N is related to the sampling
rate, there seems to be general consensus that N should not be less than 200–250
samples, irrespective of sampling rate, to provide reasonably accurate estimates of
ISampEn [110, 112, 113].

6.5 Signal Quality Control

Several indices have been proposed for assessing the overall quality of ECG signals,
e.g., the relative power of baseline variation, signal kurtosis, and the ratio of the
number of beats detected by two different QRS detectors where one detector is
tuned to be more sensitive to noise than the other [79, 114]. Unfortunately, these
indices do not provide information onwhether f wave characterization can be reliably
performed. Therefore, a few methods have been developed for assessment of the
signal quality, operating either in the time domain (Sect. 6.5.1) or the frequency
domain (Sect. 6.5.2). Segments are discarded if the signal quality index (SQI) fulfills
certain criteria. A completely different approach to dealing with poor signal quality
is to postprocess the series of DAF estimates resulting from time–frequency analysis
of the f wave signal [115].

6.5.1 Time Domain Analysis

Model-based assessment of signal quality explores basic information of the f wave
signal, such as the variational patterns of amplitude and repetition rate. The harmonic
model in (6.27), but with phase also included, is useful for such assessment [116].
Building on the observation that the variation in the DAF is restricted in short signal
segments, a model signal can be reconstructed accounting for local variation in
frequency and amplitude. The SQI is defined by the error between the observed
signal and the reconstructed model signal.

The f-waves are modeled by a complex signal defined by the sum of K harmon-
ically related, complex exponentials with fundamental frequency ω0, corrupted by
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additive, white, complex Gaussian noise v(n),

x(n) =
K∑

k=1

Ake j (kω0n+φk ) + v(n), n = 0, . . . , N − 1, (6.62)

where Ak and φk denote the amplitude and phase, respectively, of the k-th harmonic.
The parameters A1, φ1, . . . , AK , φK , contained in the 2K × 1 vector

θθθ = [
A1 φ1 · · · AK φK

]T
, (6.63)

and ω0 are assumed to be deterministic, but unknown. In matrix format, the model
in (6.62) is given by

x = Z(ω0)a(θθθ) + v, (6.64)

where a(θθθ) is a K × 1 vector,

a(θθθ) = [
A1e jφ1 · · · AK e jφK

]T
. (6.65)

and Z(ω0) is an N × K Vandermonde matrix containing the frequency information,

Z(ω0) =

⎡

⎢⎢⎢⎣

1 1 · · · 1
e jω01 e j2ω01 · · · e j Kω01

...
...

. . .
...

e jω0(N−1) e j2ω0(N−1) · · · e j Kω0(N−1)

⎤

⎥⎥⎥⎦ . (6.66)

Unfortunately, joint ML estimation of a(θθθ) and ω0, defined by [116],

[ω̂0, θ̂θθ ] = argmin
ω0,θθθ

‖x − Z(ω0)a(θθθ)‖2, (6.67)

does not result in closed-form expressions of the estimators ω̂0 and θ̂θθ . Therefore, a
suboptimal, two-step approach is considered in which a(θθθ) is first determined by LS
estimation, followed by insertion of the resulting â(θθθ) into the ML estimator of ω0.
For a given ω0, the LS estimator is given by [117], see also (5.53):

â(θθθ) = (Z(ω0)
HZ(ω0))

−1Z(ω0)
Hx. (6.68)

Inserting â(θθθ) in (6.67), the ML estimator of ω0 is defined by

ω̂0 = arg min
ω0,min≤ω0≤ω0,max

‖x − Z(ω0)(Z(ω0)
HZ(ω0))

−1Z(ω0)
Hx‖2, (6.69)

where minimization is performed using a grid search over the frequency interval
[ω0,min, ω0,max] in which the DAF is likely to be found. The estimate ω̂0 represents

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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a global frequency estimate as it is based on the segment with N samples, having a
length of several seconds.

Variation in the DAF is allowed by dividing x into P overlapping subsegments xp,
p = 1, . . . , P . Each subsegment contains L samples, with L chosen so that the
subsegment contains at least one f-wave. For each subsegment, a local frequency
estimate ω̂0,p is determined, using

ω̂0,p = arg min
|ω0,p−ω̂0|≤Δω0

‖xp − ZL(ω0,p)(ZL(ω0,p)
HZL(ω0,p))

−1ZL(ω0,p)
Hxp‖2,

(6.70)

where ZL(ω0,p) consists of the first L rows of Z(ω0,p) and Δω0 is the maximum
deviation from ω̂0 in any of the P subsegments. This implies that ω̂0,p accounts for
short-time variation as long as it does not deviate more than Δω0 from ω̂0.

Reconstruction in terms of the signal part in (6.62) has the disadvantage of yield-
ing a fixed amplitude and a fixed phase within the analyzed N -sample segment,
thus motivating the use of a basis vector approach which can produce a signal with
time-varying amplitude. The local DAF estimates ω̂0,p are used to create constant-
amplitudebasis vectorsbk , k = 1, . . . , K , describing thephasevariationof the signal.
The vector âp(θθθ p), containing local amplitude and phase information, is obtained
using the LS estimator in (6.68), but with ZL(ω̂0,p) replacing Z(ω0) and xp replac-
ing x. The vector yk,p is then computed from φk,p, i.e., the phase of the k-th element
of âp(θθθ p), and ω̂0,p,

yk,p =
⎡

⎢⎣
kω̂0,p0 + φk,p

...

kω̂0,p(L − 1) + φk,p

⎤

⎥⎦ , p = 1, . . . , P. (6.71)

Since the related phase vectors yk,p are overlapping, the overlapping parts are aver-
aged to produce a global N × 1 phase vector yk which then is used to construct the
constant-amplitude basis vector bk ,

bk = cos(yk), (6.72)

capturing the phase variation in x.
The time-varying amplitude of the reconstructed signal is described by the N × 1

vectors αααk ,

αααk = [
αk(0) αk(1) · · · αk(N − 1)

]T
, (6.73)

whose maximum sample-to-sample variation in αk(n) is limited by Δαk ,

|αk(n) − αk(n − 1)| ≤ Δαk . (6.74)
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The tolerance Δαk should be chosen so that the variation in f-wave amplitude is
captured, but not the variation due to noise. The model signal ŝ is obtained by sum-
ming the elementwise product of the basis vectors and the amplitude estimates of
the harmonic components,

ŝ(n) =
K∑

k=1

α̂k(n)bk(n), (6.75)

where bk(n) denotes the n-th element of bk . The amplitude estimator α̂ααk is obtained
by minimizing the following expression:

α̂ααk = argmin
αααk

N−1∑

n=0

‖αk(n)bk(n) − Re [x(n)] ‖2, (6.76)

which, along with the N − 1 constraints in (6.74), defines a convex optimization
problem which is solved numerically; the notion “Re” denotes the real part.

The SQI is defined by the normalized RMS of the model error ê = x − ŝ,

S = 1 − σê

σx
, (6.77)

where σê and σx denote the RMS of ê and x, respectively. For any reasonable estimate
of ŝ, S is restricted to the interval [0, 1], where 0 indicates poor signal quality and 1
indicates perfect modeling of x. A fixed threshold ηS can be used to indicate whether
the f-waves in the analyzed segment have sufficient quality for characterization, see
Fig. 6.13.

6.5.2 Frequency Domain Analysis

A disadvantage with the spectral profile method is its lack of control of what goes
into the update of the spectral profile: the spectrum of a segment with large QRS-
related residuals is just as influential as is the spectrum of a segment with noise-free
f waves. Although the spectral profile can have a slow adaptation rate which limits
the sensitivity to occasional noisy segments, several consecutive noisy segments will
cause the spectral profile to lose its structure and, accordingly, the DAF estimates
can no longer be trusted. Once the spectral profile has lost its structure, the recovery
time may become unacceptably long, even if subsequent segments are associated
with a harmonic structure. This limitation can be remedied by adopting a spectral
modeling approach inwhich the spectrum of each segment is checked before entering
the update of the spectral profile [118]. A harmonic spectrum is modeled as a sum
of Gaussian functions (cf. (5.68)),

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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Fig. 6.13 Illustration of signal quality assessment. a ECG signal obtained from a patient with
AF, b extracted f wave signal containing a noisy episode, c signal quality index S (solid line) and
threshold ηS defining acceptable signal quality (dashed line), and d extracted f wave signal where
the low-quality segment has been removed based on the information in c. The segment lengths N
and L were set to 5 and 0.5 s, respectively

Sx (ω,θθθ p) =
K∑

k=1

Ak,p exp

[
− (ω − kω0,p − Δk,p)

2

2σ 2
k,p

]
, (6.78)

where K is the number of Gaussians, Ak,p is the spectral magnitude, σk,p is the width,
and Δk,p is the frequency jitter associated with the second and higher frequencies
kω0,p, k = 2, . . . , K ; thus, Δ1,p = 0. The model parameter vector θθθ p, containing

θθθ p = [
A1,p · · · AK ,p σ1,p · · · σK ,p Δ2,p · · · ΔK ,p ω0,p

]T
, (6.79)

is estimated by minimizing the following weighted LS error criterion with respect
to θθθ p:

J (θθθ p) = (|qp| − s(θθθ p))
TDEp(|qp| − s(θθθ p)), (6.80)

where qp is the nonuniform, windowed Fourier transform of the analyzed signal
segment, defined in (6.12). The vector s(θθθ p) is obtained by sampling the Gaussian
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model in (6.78) at the logarithmic frequencies νl defined in (6.14), yielding

s(θθθ p) = [
Sx (ν0, θθθ p) · · · Sx (νL−1, θθθ p)

]T
. (6.81)

The matrices D and Ep are both diagonal, but handle different aspects of spectral
weighting. Identical to the spectral profile method, D corrects for the oversampling
at lower frequencies due to the logarithmic sampling. The matrix Ep, on the other
hand, is designed so that the frequency intervals in |qp| with harmonic components
are weighted with one, whereas the remaining intervals are weighted with a value
close to zero; thus, this matrix is segment-dependent, while D is not. Details on
the design of the matrices D and Ep, as well as the multidimensional optimization
procedure associated with J (θθθ p), can be found in [118].

A set of parameters characterizing the harmonic pattern is introduced to decide
whether qp should be excluded from the spectral profile update, i.e., whether or not
αp in (6.18) should be set to zero. The following three parameters, of which the first
two relate to the model in (6.78), are used to exclude spectra which do not exhibit a
harmonic structure [118]:

1. Theminimized error J (θ̂θθ p), quantifying the similarity between qp and themodel
spectrum s(θ̂θθ p).

2. The width σ̂1,p, characterizing the spectral peak of the first harmonic.
3. The ratio of themaximummagnitude between the first and the second harmonics

and the magnitude of the first harmonic, picking up the occurrence of spurious
peaks between the first and the second harmonic.

For poor-quality signals, Fig. 6.14a, b present the spectral profile when computed
without and with application of the exclusion criteria. It is obvious that the domi-
nant peak becomes much more distinct when noisy segments are excluded from the
update of the spectral profile. For good-quality signals, the spectral profile remains
essentially unchanged after application of the exclusion criteria, see Fig. 6.14c, d.

6.6 Spatial Characterization

Most parameters proposed for f wave characterization are defined with reference to
single-lead analysis, and extended to multi-lead ECG analysis by simply comput-
ing the parameters on a lead-by-lead basis. This approach has the disadvantage of
ignoring intrinsic spatial information resulting from joint analysis of available leads.
The vectorcardiographic f wave loops, defined by the orthogonal leads X, Y, and
Z, provide basic spatial information (Sect. 6.6.1), whereas body surface potential
mapping (BSPM) can provide much more comprehensive spatial information on AF
activation patterns (Sect. 6.6.2). For example, the regions which are responsible for
AF maintenance may be localized from such maps, with potential implications on
AF treatment since regional information may contribute to improve the planning of
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Fig. 6.14 Spectral profiles a before (dashed line) and b after application of exclusion criteria (solid
line), obtained from extracted f wave signals containing large-amplitude QRS residuals. Spectral
profiles c before and d after application of exclusion criteria, obtained from f wave signals with
good quality

an ablation procedure [119]. From an engineering viewpoint, spatial characterization
of body surface maps is still in its infancy, leaving much room for the development
of robust, tailored signal processing algorithms. So far, most types of spatial analysis
are extended versions of single-lead analysis, e.g., estimation of the DAF and phase
analysis.

Body surface potential mapping is also the starting point for reconstruction of the
potentials on the epicardial surface of the heart—a technique known asECG imaging
(ECGI). From the time sequence of epicardial potentials, electrograms can be con-
structed at different locations on the epicardium. Since ECG imaging involves several
advanced aspects which are far outside the scope of this book, such as techniques
for solving the inverse problem and imaging techniques to obtain subject-specific
information on the geometries of the heart and the torso surfaces (based on computer
tomography or magnetic resonance imaging), the interested reader is referred to the
literature in this area [20, 120–124].
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6.6.1 Vectorcardiogram Loop Analysis

The precursor to vectorcardiogram (VCG) loop analysis of f waves was a study
which investigated the characteristics of loops in atrial flutter [125]. Since the reentry
circuit of isthmus-dependent atrial flutter is known to contribute significantly to the
VCG, it was hypothesized that flutter loops would be mostly contained in a two-
dimensional plane whose orientation is approximately parallel to the reentry circuit.
To corroborate this hypothesis, the planarity of each flutter loop was determined, as
well as the orientation of the plane, described by the azimuth and elevation angles
relative to the frontal plane. By analyzing the VCG synthesized from the 12-lead
ECG,5 recorded in patients before undergoing catheter ablation of atrial flutter, it
was shown that flutter loops were mainly planar and had orientations concentrated to
a narrow region of azimuth and elevation angles, likely corresponding anatomically
with the expected flutter circuit. Atrial flutter waves in intervals without ventricular
activitywere analyzed on awave-by-wave basis, i.e., each flutterwavewas delineated
manually.

This study laid the foundation for a number of studies investigating f wave
loops [128–130], see also [131]. In contrast to flutter waves, f waves are less orga-
nized, and, therefore, spatial f wave analysis is more difficult to pursue. Spatial
analysis can either be based on individual f waves in TQ intervals [128, 129] or
an extracted signal containing multiple f waves. The latter case is preferable when
low-amplitude f waves and noise, in combination with short TQ intervals, are to be
analyzed [130]. Moreover, in the latter case, there is no need to delineate individual
f waves, but a segment of the extracted signal can be analyzed. The data matrix is
formed by the three orthogonal leads X, Y, and Z,

X = [
xX xY xZ

]T
. (6.82)

where each column vector, i.e., lead, contains N samples. Segment lengths of 1-s
and 60-s were analyzed in [130].

The orientation of the plane-of-best-fit is defined as the two-dimensional pro-
jection of the loop producing the minimum MSE with respect to the original loop.
The plane is determined from eigenanalysis of the sample correlation matrix of
the data in X, resulting in the three eigenvectors ϕϕϕ1,ϕϕϕ2, and ϕϕϕ3 associated with the
eigenvalues λ1 ≥ λ2 ≥ λ3. The eigenvectorϕϕϕ1 defines the principal axis, i.e., the axis
with the largest correlation among the data, ϕϕϕ2 spans the plane-of-best-fit together
with the principal axis, and ϕϕϕ3 = [

ϕ3,X, ϕ3,Y, ϕ3,Z
]T

is the perpendicular axis which
defines the azimuth and elevation angles of the plane-of-best-fit:

5The orthogonal leads X, Y, and Z can be synthesized from the 12-lead ECG using, for example,
the inverse Dower matrix [126, 127], see also page 64.
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φAZ = arctan

(
ϕ3,Z

ϕ3,X

)
, (6.83)

φEL =
∣∣∣∣∣∣
arctan

⎛

⎝ ϕ3,Y√
ϕ2
3,X + ϕ2

3,Z

⎞

⎠

∣∣∣∣∣∣
, (6.84)

where −90◦ < φAZ < 90◦ and 0 < φEL < 90◦. Loop planarity is defined as [132]

ψPL = λ3

λ1 + λ2 + λ3
, (6.85)

which is close to zero when when the loop is essentially planar. Thus, the charac-
terization of a segment containing several f waves embraces the three parameters
φAZ, φEL, and ψPL [130].

Although the results from VCG loop analysis have had few implications on AF
treatment, they have still provided certain qualitative information. Notably, vary-
ing degrees of organization have been observed, where the more organized cases
have their plane-of-best-fit near the sagittal plane [128]. Moreover, a relatively weak
coupling between loop morphology and the DAF was observed, suggesting that
both these parameters may have a place in AF classification [130]. Analysis of the
pseudo-VCG, defined by the leads V5, aVF, and V1, suggests that changes in loop
morphology may be used to predict conversion from AF to atrial tachycardia, infor-
mation which in turn may be used to establish when the therapy is on an effective
path [133].

6.6.2 Body Surface Potential Mapping

Noninvasive, spatiotemporal analysis of electrical activation patterns may be per-
formed on a body surface map constructed from a large number of leads which
are placed on the anterior and posterior thorax. In the context of AF, such analysis
was first considered in [134], with the overall aim of establishing whether single
wavefronts as well as multiple simultaneous wavefronts, previously observed in
intracardiac maps [135–137], could also be observed in body surface maps. Of the
56 leads, recorded during four minutes, 40 were arranged in matrix format on the
anterior thorax and 16 on the posterior thorax. The traditional approaches to car-
diac mapping of invasive data, i.e., isopotential mapping and isochronal mapping,
were adopted for visualizing and analyzing cardiac activation [134]. The isopoten-
tial map displays the voltage for different electrode positions on the body surface
at a given time instant, with contour lines connecting points of equal voltage. The
isochronal map displays contour lines which connect points of equal activation time,
often accompanied by one or several arrows to indicate the major propagation path.
While it is straightforward to construct a isopotential map from the samples of the
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multi-lead f wave signal, the isochronal map requires that the activation time is
determined for each electrode position. Each isochronal contour line is identified
from the isopotential map as the line for which the voltage is equal to zero; to have
a single representation of each activation wavefront, instead of having both forward
and backward movement of the wavefront (i.e., atrial de- and repolarization), only
points with a positive slope should be used for identification of the contour line.
To improve spatial resolution, interpolation can be applied to the isopotential map,
which in turn implies improved resolution of the isochronal map.

The information conveyed by noninvasive isochronal maps has been assessed
qualitatively by classifying maps into the following three types [134], originally
developed for electrogram-based analysis [138]: Type I (single wavefront), Type II
(single wavefront with wave breakages and splitting), or Type III (multiple simulta-
neouswavefronts or none at all). On a data set consisting of 14 patientswith persistent
AF, all three types were represented, leading the authors to conclude that isochronal
mapping has the potential to characterize activation patterns in AF. However, no
comparison was made to invasively recorded activation maps. Figure6.15 illustrates
isopotential and isochronal maps, in both cases determined from a subinterval of an
f wave.

Accurate identification of isochronal contour lines calls for high-quality signals,
which in BSPM analysis implies the use of bandpass filtering to reduce the influence
of baseline wander (particularly critical when finding the time for zero voltage) and
myoelectrical noise. So far, TQ-based f wave analysis has been performed instead
of f wave extraction to avoid the risk of analyzing QRS-related residuals [14, 80,
119, 134, 139]. Even when these precautions are taken, f wave amplitude may be
so low that accurate determination of the activation times is not possible, especially
for leads positioned far away from the atria. Since an isochronal map displays only
one activation, variation in f wave amplitude and morphology may call for multiple
maps, rendering the interpretation more complex [140].

Noninvasive isofrequency mapping in AF means the construction of a map dis-
playing the spatial distribution of theDAF (“DAFmap”), where theDAF is estimated
in each lead using any of the techniques described in Sect. 6.3.1. Since the DAF map
does not require the determination of activation times, its computation is much more
straightforward. An important application of the DAF map is the identification of
high-frequency sources which play an important role in themaintenance of AF [119].
Knowledge on the location of such sources are expected to improve the planning and
outcome of ablation—an expectation supported by results obtained from invasive
DAF maps showing that ablation guided by the identification of high-frequency
sources increases the likelihood for long-term maintenance of sinus rhythm [141].
A comparison of the locations of the highest frequency source in the surface and
invasive DAF maps, where the latter map served as the reference, demonstrated sta-
tistically significant correlation [119]. The agreement between these two types of
DAF map is illustrated in Fig. 6.16, where the highest frequency source has similar
location in both types of map.

Phase mapping is a tool particularly well-suited for characterizing temporal
changes in spatial activation patterns in cardiac fibrillation, notably rotor activ-
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Fig. 6.15 a Isopotential maps obtained at three time instants of an f wave, using a 56-lead system
for body surface potential mapping. Each isopotential map is composed of two submaps: one based
on the anterior leads and another, smaller based on the posterior leads. The solid, black line in each
map connects the points with zero voltage. b Isochronal map of the f wave in (a), where contour
lines are drawn every 2ms. Note that the three zero-voltage lines in (a) are also part of the isochronal
map, indicated by the numbers 1, 2, and 3. (Reprinted from [134] with permission)

ity [142]. The term “rotor” refers to an activation wavefront circulating in an
organized fashion around a center of rotation (“phase singularity point”). The engine
in phase mapping is the Hilbert-based instantaneous phase computation, defined in
(6.39), performed at regular time intervals in all the available leads to produce a time
sequence of phase maps (“phase movie”). From this movie, the presence of a phase
singularity point is identified as the site where the curved activation wavefront and
wavetail of the rotor meet each other, i.e., a point where the phase of the rotating
waves progresses through a complete cycle from −π to π [142, 143], see also [144,
145].

Identification of phase singularities is important since they pinpoint where the
tissue is capable of supporting rotors which drive AF. Hence, such points repre-



262 L. Sörnmo et al.

Fig. 6.16 a Electrograms recorded at different atrial sites and related power spectra, with the
dominant atrial frequency (DAF) indicated, and b surface ECG leads and related power spectra.
c Invasive DAF map obtained by electroanatomical mapping. The arrow points to the right atrial
(RA) region with highest DAF. d Noninvasive DAF map with superimposed locations of the elec-
trodes used in (b). The following acronyms are used: coronary sinus (CS), left atrial (LA), left
inferior pulmonary vein (LIPV), left superior pulmonary vein (LSPV), right superior pulmonary
vein (RSPV), surface left (SL), surface posterior (SP), surface right (SR), and superior vena cava
(SVC). (Reprinted from [119] with permission)

sent potential targets for ablation. The significance of rotor-guided ablation has been
studied in patients with persistent AF, mostly with promising results [146–148],
although poor efficacy has also been reported [149]. In these studies, the instanta-
neous phase map was computed from intracardiac electrograms.

As noted in Sect. 6.4.1, stable, one-dimensional phase analysis requires that the
f wave signal is bandpass filtered before phase computation—an operation which is
equally needed in phase mapping. It has been demonstrated that bandpass filtering,
with center frequency defined by the highestDAFof all availableECG leads, provides
more accurate identification of phase singularity points than when bandpass filtering
is omitted [14], see also [150]. By performing bandpass filtering, rotors were found
to be more long-lasting, thereby facilitating the study of rotor characteristics such as
trajectory, stability, and life span, and promoting atrial sites as potential targets for
ablation.

The isopotential, isochronal, isofrequency, and phase maps have in common that
they provide a basis for identification of featureswith electrophysiological interpreta-
tion. An overall approach to noninvasive BSPM analysis, disregarding map-specific
features, is based on PCA of the temporal sequence of isopotential maps, proposed
for quantifying spatial complexity of atrial wavefronts [80], see also [51]. In this
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approach, spatial complexity is linked to dimensionality reduction: a map which can
be approximated by a few eigenvectors is considered less complex (more organized)
than a map which requires several eigenvectors. The starting point for analysis is the
L × N data matrix

X = [
x(0) x(1) · · · x(N − 1)

]
(6.86)

whose columns x(n) contain L leads at time n,

x(n) =

⎡

⎢⎢⎢⎣

x1(n)

x2(n)
...

xL(n)

⎤

⎥⎥⎥⎦ , n = 0, . . . , N − 1, (6.87)

where N is the number of samples subject to analysis. Each column x(n) contains
a spatial map, and thus X contains the entire temporal sequence of maps. Each row
of X, i.e., xl(0), . . . , xl(N − 1), contains the samples of successive, concatenated
TQ intervals of the l-th lead.6 The onset and end of each TQ interval is determined
either by the intervals related to the occurrence times of the surrounding QRS com-
plexes [80], or delineation of T wave end and QRS onset [139]. As already noted on
page 155, the presence of f waves makes delineation challenging, especially when
using a delineation algorithm not designed for, nor evaluated on, ECG signals in
AF [139, 153].

The normalized cumulative sum RK of the K largest eigenvalues λi , defined
in (6.52), obtained from the sample correlation matrix of X, cf. (5.106), provides
a statistical measure of how well X is approximated by X̃, obtained as a truncated
series expansion of separable matrices resulting from SVD of X,

X̃ =
K∑

k=1

σkukvT
k , (6.88)

where σk are the ordered singular values and uk and vk are the associated left and
right singular vectors, respectively. Thus, for a fixed K ,X is considered less complex
when RK is close to one, and vice versa; K was set to 3 in [80, 139]. Alternatively,
K can be set to that value which makes RK exceed 0.95 [80], and thus K0.95 replaces
RK as the main information carrier; a larger K0.95 implies higher spatial complexity.
To smooth out the influence of temporal variation, R3 and K0.95 were computed in
six consecutive 10-s segments and averaged.

6Principal component analysis of 180-lead isopotentialmaps, recorded in sinus rhythm,was pursued
already in 1964, but then motivated by the completely different question “What is the minimum
number of leads which can contain all of the electrocardiographic information available on the
body surface?” [151], see also [152]. In those studies, the data matrix was defined by one single
isopotential map, while X in (6.86) contains N maps. Thus, the former approach is purely spatial,
while the approach in [80] may be labelled “spatiotemporal”.

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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It should be emphasized that the approximation in (6.88) is identical to the one
earlier encountered in (6.54). This is realized by forming a data matrix with the
reconstructed signals ŝp,K , i.e., X̃ = [

ŝ1,K · · · ŝP,K
]
, so that (6.54) can be expressed

as X̃ = ΦΦΦKΦΦΦT
KX. SinceΦΦΦ = U and X = U���VT , cf. page 184, then

X̃ = UKUT
KX = UK���KVT

K =
K∑

k=1

σkukvT
k . (6.89)

For overall characterization of spatial complexity, the number of leads is not as
critical as it is for the maps which offer an electrophysiological interpretation. Using
PCA, this aspectwas investigated by computing a complexitymeasure closely related
to RK for a 64-leadmap, aswell as for 32- and10-leadmaps,where the latter twomaps
were subsets of the 64-leadmap. In particular, the 10-leadmapwas chosen such that it
closely approximated the standard 12-lead ECG [139]. The results demonstrated that
similar information can be derived from all three maps, suggesting that the standard
12-lead ECG is actually useful for determining spatial complexity.

6.7 f Wave Characterization in Clinical Applications

This section provides a brief overview of popular clinical applications, where f wave
characteristics are explored with the goal of monitoring, detecting, or predicting
changes in the atrial activity, either due to procedural intervention or spontaneous in
origin. These applications, having emerged during the last decade, call for advances in
methodological development as well as for further clinical studies to better establish
the significance of f wave characteristics.

Whether monitoring, detection, or prediction is of interest, a single-parameter
approach is usually pursuedfirst, involvingmeasurements from the leadwith themost
prominent f waves. The natural extension of this approach is to consider multi-lead
measurements of a single parameter. In decision-oriented applications, for example,
the prediction of catheter ablation outcome, a multi-parameter approach is likely to
achieve better performance than a single-parameter approach. However, the more
parameters involved in the decision-making, the larger needs the data set to be to
adequately characterize performance.

6.7.1 Monitoring of Drug Response

The use of antiarrhythmic drugs is one of several approaches to long-term AF man-
agement which aims at restoring and maintaining sinus rhythm, an approach known
as “rhythm-control therapy,” cf. Sect. 1.8.3. Since antiarrhythmic drugs are moder-
ately effective andmay have serious side effects including life-threatening ventricular

http://dx.doi.org/10.1007/978-3-319-68515-1_1
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arrhythmias, it is important to develop ECG-based tests for quantifying the feasibility
and dosage of a selected drug bymonitoring various f wave characteristics. Such tests
may also prove useful for drug development as they avoid the complexity of invasive
electrophysiological testing, and offer a valuable complement to pharmacokinetic
studies.

Dominant atrial frequency has been extensively studied for a great number of
antiarrhythmic drugs designed to increase refractoriness and/or delay conduction of
the atrial myocardium [154]. Most studies report on a substantial decrease in the
DAF in patients responding to the drug [155–160]. This is a desirable result since a
lower DAF usually means a more favorable outcome of rhythm-control therapy as
it may lead to conversion to sinus rhythm. A decrease in the DAF is illustrated in
Fig. 6.17 for an antiarrhythmic drug administered at several occasions during a time
span of almost three days; the largest decrease in the DAF took place during the first
day.

For a drug under development, administered to patients with persistent AF, the
short-term dynamics of the DAFwas studied using the spectral profile method [161].
The results showed that the “baseline” DAF, i.e., the DAF determined just before the
time of the first drug administration, was not predictive of conversion to sinus rhythm.
On the other hand, the decrease in the DAF was significantly more rapid in patients
converting to sinus rhythm than in those not converting. A similar rapid decrease was
observed in the harmonic decay and the standard deviation of theDAF, computed in 1-
min intervals, suggesting that drug treatment increases AF organization, as reflected
by more pronounced harmonics, and stabilizes the DAF.

So far, entropy and other nonlinear measures have not been considered for non-
invasive monitoring and evaluation of drug response.
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Fig. 6.17 Response of the dominant atrial frequency (DAF) to an antiarrhythmic drug (flecainide).
The drug was administered at the onset of the recording and repeated after 16, 27, 42, 52, and 66h
(indicated by dashed lines)
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6.7.2 Prediction of Catheter Ablation Outcome

Outcome prediction performed before catheter ablation can prevent unnecessary
procedural risk in patients with low chance of successful AF termination [162].
Conversely, outcome prediction can be useful for selecting patients who require
more aggressive ablation techniques than what is offered by catheter ablation. The
significance of preoperative outcome prediction applies particularly to patients with
persistent AF, since catheter ablation in patients with paroxysmal AF is associated
with better success rate. The time span of prediction may differ from study to study:
short-term prediction concerns successful AF termination in direct connection with
catheter ablation, i.e., intraprocedural outcome [31, 163], while long-term prediction
concerns maintenance of sinus rhythm a few months or longer following catheter
ablation [19, 56, 164, 165]. Short-term prediction usually represents a simpler task
than long-term prediction and is therefore associated with better performance—an
observation which should be kept in mind when comparing the results of different
studies on outcome prediction.

The significance of f wave amplitude in prediction of catheter ablation outcome
has been investigated in patients with persistent AF [19, 31, 56, 163]. Clinical studies
have shown that patients with lower f wave amplitude are less likely to benefit from
catheter ablation [4, 5].7 The lower amplitude may be related to a more disorganized
(complex) form of AF, characterized by several activation wavefronts propagating in
different directions which lead to wavefront collisions and a lower f wave amplitude.

Outcome prediction can be restricted to analyzing only the lead with the most
prominent f waves, typically lead V1, [56], or all available leads so that lead-
dependent measurements can be produced [19, 31, 163]. In [19, 56], both addressing
long-term prediction and applying traditional amplitude measures, i.e., peak-to-peak
amplitude and spectral power |Ŝx (ω̂0)|2, to the preoperative ECG, no statistically
significant difference was found in f wave amplitude between terminating and non-
terminating AF. Thus, these two studies, using automated amplitude measurements,
do not support the results of the above-mentioned clinical studies [4, 5]which showed
that a lower f wave amplitude is predictive of AF recurrence.

Alternatively, amplitude measurements can be derived from a PCA-based rank-
one approximation of the data matrix containing the preoperative 12-lead ECG [31],
cf. (6.88) with K = 1. The main reason for performing PCA-based dimensional-
ity reduction is to retain the main f wave characteristics, while at the same time
making amplitude measurements less sensitive to noise due to, for example, loosely
attached electrodes. The envelope-based definition of f wave amplitude, illustrated
in Fig. 6.1, is applied to the rank-one approximated data matrix. Using this approach
in short-term prediction, f wave amplitude was found to differ significantly between
terminating and nonterminating AF.

7It is somewhat remarkable that outcome prediction was based on manual f wave amplitude mea-
surements in recent studies [4, 5], although algorithms for amplitude measurements have been
available for many years.
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Invasive studies have shown that a low DAF is predictive of long-term catheter
ablation outcome in patients with persistent AF [166–168]. Similar results have been
reported in noninvasive studies, where the DAF also differed significantly between
terminating and nonterminating AF, either in lead V1 [164] or in leads I, aVR, and
V5 [163]; however, no such difference was reported in [56]. Out of several spectral
parameters, including the DAF, the position of the second harmonic, the harmonic
decay, the spectral concentration, and the spectral power, it was only the harmonic
decay that differed significantly between the two groups [56]. The results suggested
that patients with more organized AF, reflected by more harmonics, are less likely to
relapse to AF following catheter ablation.

Sample entropy could not predict AF termination, irrespective of whether DAF-
controlled bandpass filtering was performed [163] or not [31]. Neither could spectral
entropy predict AF termination [163].

While the results reported from single-parameter prediction may not be particu-
larly striking, it has been noted that the performance of ECG-derived parameters to
predict AF termination and long-term success of catheter ablation in patients with
persistent AF is at least as good as that achieved by clinical parameters [163].

6.7.3 Prediction of Cardioversion Outcome

Electrical cardioversion is a well-established, noninvasive procedure with which AF
is converted to sinus rhythm by delivering a high energy electrical shock, usually by
placing two electrodes on the chest [169], cf. page 14. The shock is synchronized
with the QRS complex to avoid delivery during ventricular repolarization, i.e., the
T wave, which can induce ventricular fibrillation. Electrical cardioversion is usually
accompanied by administration of an antiarrhythmic drug to increase the likelihood
of conversion.

Unfortunately, asmany as 35%of patientswith persistentAFwho undergo cardio-
version relapse to AF, most of them within two weeks [170]. Consequently, in the
same way as prediction of catheter ablation outcome can provide better selection of
patients who will maintain sinus rhythm after ablation, prediction of cardioversion
outcome can provide better selection of patients. From an engineering perspective,
however, there is little difference between the problemsof predicting catheter ablation
and cardioversion outcome.

Early studies on ECG-based predictors in patients with persistent AF suggest that
a lower DAFmay be used as a long-term predictor ofmaintenance of sinus rhythm [7,
171]. Subsequent studies demonstrated the significance of a lower DAF for mainte-
nance, especially when prediction was performed in AF of short duration [172] or
when prediction was based on the DAF computed after an unsuccessful shock [173].
However, one study found the harmonic decay, being faster in patients relapsing to
AF than in patients maintaining sinus rhythm, to be a more powerful predictor than
the DAF, although the DAF was also a statistically significant predictor [174]. In
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all these studies, the spectral parameters were determined from the extracted f wave
signal.

Rather than focusing on the dominant spectral peak, some studies have proposed
predictive parameters for quantifying the spectral content of certain scales of the
wavelet transform. Using the original ECG, rather than an extracted f wave signal or
TQ intervals, the wavelet entropy was proposed as a predictor, computed from the
scales containing 20–30 Hz components [175]. Using instead the extracted f wave
signal, the sample entropy [103] and the central tendency [176], i.e., a measure
describing the degree of signal variability, were computed from the scale containing
theDAFand used as independent predictors. The results of these three studies showed
that wavelet-based parameters may be used to predict maintenance of sinus rhythm
following cardioversion.

6.7.4 Prediction of Spontaneous AF Termination

The question whether it is possible to predict spontaneous termination of an AF
episode was highlighted to the engineering community in the PhysioNet/Computing
in Cardiology Challenge in 2004 [177, 178]. As a result, several subsequent papers
addressed this question using the AF Termination Database (AFTDB) which was
made available for this challenge. Prediction of spontaneous termination relates to
the hypothesis that subtle changes in f wave characteristics precede AF termination.
With successful prediction, the parameters employed to characterize the fwave signal
may help to explain why AF is terminating in certain individuals, but not in others.
Such information may not only lead to more effective therapy, but also to avoidance
of ineffective therapeutic intervention and reduced patient risk.

Early experimental studies, analyzing intracardiac electrograms, showed that pro-
longation of the DACL is a significant determinant of spontaneously terminating AF
episodes in many patients [179, 180]. This result has been shown to carry over to
the analysis of the surface ECG, where spontaneous termination is also preceded by
a decrease in the DAF [59, 78, 178, 181]. The time course of the decrease before
termination differs from study to study, where periods of about 5 to 10 minutes have
been reported. In one study, a decrease in the DAFwas only observed in patients who
converted to sinus rhythm during morning hours, but not in those who converted in
the afternoon or evening—results suggesting that electrophysiological mechanisms
of termination may be different depending on the time of day [181]. For studies using
the AFTDB, the decrease occurred immediately before spontaneous termination [78,
178].

Using parameters derived from the spectral profile, spontaneous termination in
AFTDB was best predicted by a low DAF, a slow harmonic decay, and a stable DAF,
while fwave amplitude, defined by (6.17), sample entropy, and spectral entropy could
not discriminate between terminating and nonterminating AF [78]. Using parame-
ters derived from the STFT, the DAF was, together with the average heart rate, the



6 Characterization of f Waves 269

best-performing predictors [59], while f wave amplitude, defined by |Ŝx (ω̂0)|2, and
spectral width did not contribute to better prediction.

Introducing DAF-controlled bandpass filtering of the extracted f wave signal, a
decrease in sample entropy was observed before termination [70]. Interestingly, the
prediction performance achieved using sample entropy was identical to that achieved
using the DAF [78], thus emphasizing the importance of prefiltering to reduce the
sensitivity of sample entropy to noise. Similar prediction performance was achieved
when the sample entropy was computed from a filtered f wave signal, obtained
by reconstructing the signal from the wavelet coefficients of the scale containing
the DAF [103, 104]. Wavelet decomposition was later considered for prediction of
spontaneous AF termination [182], but then accompanied by computation of the
wavelet entropy, defined by the Shannon entropy of the relative energies of the
different scales, cf. page 207. However, other nonlinear parameters than entropy have
been found to offer better prediction performance on AFTDB; for details, see [92].

6.7.5 Detection and Characterization of Circadian Variation

It is well-known that heart rate and blood pressure increase during daytime and
decrease during night-time in healthy subjects. However, many other bodily func-
tions also exhibit circadian variation. Information on circadian rhythms can help to
establish proper timing of drug administration so that the effect of a drug can be
maximized (chronotherapy) [183, 184]. The attenuation or absence of circadian
variation may be indicative of certain risk conditions.

Circadian variation is driven by various external factors, e.g., sleep–wake routine,
meal consumption, emotional state, and intrinsic activity of the autonomic nervous
system. The latter type of activity is well-studied in the literature, with results demon-
strating that sympathetic tone dominates during daytime activity, while vagal tone
dominates during night-time sleep.

Detection and characterization of circadian variation usually involve a sinusoidal
model which is fitted to the observed data using LS techniques [184, 185]. In this
approach, the offset, commonly referred to as the “midline estimating statistic of
rhythm” (MESOR), the amplitude, and the phase of the sinusoid, whose period is
24 h, constitute the model parameters. Detection can be based on a comparison of
the MSE associated with two different models, namely 1. the MSE between the
observed data and the non-circadian model defined by the MESOR only, and 2. the
MSE between the observed data and the sinusoidal model. Themost relevant of these
two models is determined using a statistical test, for example, a paired bootstrap
hypothesis test [77].

With respect to f wave characteristics and circadianity, the DAF was the first
parameter to be investigated, determined every sixth hour from 24-h ambulatory
recordings in patients with persistent AF [186]. A significant decrease in the DAF
was observed at night, and an increase during the morning hours, reaching its maxi-
mum during the afternoon hours. To a large extent, these results were reproduced in
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subsequent studies on patients with persistent or permanent AF, although circadian
variation was not detected in all patients [187, 188]. It has been pointed out that
the short-term variation often observed in the DAF, uncovered by time–frequency
analysis, may exceed the circadian variation, with implications on the accuracy of
detecting circadian variation [188].

These studies share the limitation of a short recording duration, ranging from
15 to 24 h [186–188]. Hence, less than one sinusoidal period was available for
parameter estimation, implying a large variance of the resulting estimates. To address
this limitation, the DAF was studied on 7-day recordings in patients with persistent
AF [77]. The results showed that the circadian variation detected in a 7-day recording
was not always detected in all seven 24-h periods of the same recording, thus casting
doubt on the validity of the conclusions made in [186–188]. In addition to the DAF,
the eigenvalue-based parameter R3, defined in (6.52), and the sample entropy were
also studied. These parameters exhibited circadian variation although not always in
the same patient.
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