
Chapter 4
Detection of Atrial Fibrillation

Leif Sörnmo, Andrius Petrėnas and Vaidotas Marozas

4.1 Introduction

The detection of episodes of atrial fibrillation (AF) has been dealt with for more
than three decades in research, and yet the challenge remains to develop a detector
fully capable of handling all the problems associated with the analysis of continuous
long-term ECG recordings as well as of recordings acquired by handheld devices for
AF screening. Unacceptably high false alarm rates have been reported, mostly due
to the presence of ectopic beats and noisy signal segments, but also due to non-AF
arrhythmias manifested by rhythms patterns resembling those of AF, see, e.g., [1].
For the human reader, the following three properties are essential when detecting
AF episodes:

1. the presence of a highly irregular rhythm,
2. the absence of P waves, and
3. the presence of f waves.

These properties are, to various extents, explored when developing algorithms for
AF detection.
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Translating “highly irregular rhythm” into a detection parameter is challenging,
since not much is known a priori about the features which are best suited for char-
acterizing irregularity in AF. An abundance of detection parameters have been pro-
posed in the literature, many of them reviewed in this chapter, and each parameter is
designed to capture some specific feature of rhythm irregularity. An early study on
the characterization of irregularity in AF, without also addressing the AF detection
problem, posed the fundamental question whether the series of RR intervals in AF
is random or deterministic [2]. The results in that study showed that the RR inter-
vals are not entirely unpredictable, as evidenced by the nonzero correlation between
the observed and the predicted RR intervals at different correlation lags. However,
these findings did not apply to all patients of the analyzed data set, and, therefore,
parameters related to prediction/correlation are unlikely to be good candidates for AF
detection. In another study, spectral analysis demonstrated that the RR interval series
during AF has a white noise-like spectrum when analyzed on a minute-by-minute
scale [3].

Heart rate may be considered in AF detection as it tends to be higher in AF
episodes than in sinus rhythm. Although it is obvious that heart rate alone cannot be
used for detection, the power of a detection parameter describing rhythm irregularity
may still be boosted by integrating information on heart rate into the definition of
a parameter. Heart rate is usually characterized by the mean of the RR intervals
contained in a detection window.

The detection of AF is compounded by the fact that certain arrhythmias are mani-
fested byRR interval patterns closely resembling those observed inAF. This problem
is particularly pronounced when all detection parameters describe rhythm charac-
teristics. Hence, it is highly desirable that the detector can recognize the character-
istics of confounding non-AF rhythm patterns so that the number of false alarms is
minimized. Runs of ventricular premature beats (VPBs), frequent atrial premature
beats (APBs), and atrial flutter, as well as bigeminy and trigeminy, are all important
sources to false alarms; representative RR interval series for some of these confound-
ing rhythms are displayed in Fig. 4.1. Another source of false alarms is inaccurate
QRS detection, e.g., caused by muscle noise, motion artifacts, or large-amplitude
T waves. Moreover, the risk of detecting non-AF rhythm patterns becomes increas-
ingly higher as the detection window becomes increasingly shorter, which is required
to detect short AF episodes.

When information on P waves and/or f waves is considered in AF detection, it
should be paired with information on signal quality, indicating to what degree wave
measurements can be trusted. Otherwise, garbage measurements may completely
disrupt detection performance. Given that many clinical studies explore information
derived from continuous long-term ECG recordings, often characterized by a sub-
stantial variation in noise level, information on signal quality should be an integral
part of the decision-making process.

An AF episode of at least 30 s duration is considered clinically significant—a def-
inition which was published in the ACC/AHA/ESC 2006 guidelines for management
of AF patients [4], and in widespread use among clinicians. The motivation behind
30s as minimum duration was not clearly stated, although the guidelines pointed
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Fig. 4.1 Illustration of RR interval patternswhichmay confound detection of AF episodes. aMulti-
ple ventricular premature beats, including bigeminy and trigeminy, b atrial flutter surrounded byAF,
c second degree atrioventricular block, d episode of ventricular flutter (VFL), e sinus bradycardia,
and f episode of a composite arrhythmia including AF, atrial flutter, atrial bigeminy, supraventric-
ular tachycardia, atrioventricular junctional rhythm, and atrial premature beats. All examples are
taken from the MIT–BIH Arrhythmia Database

out that AF episodes briefer than 30s may be relevant in “certain clinical situa-
tions involving symptomatic patients, pre-excitation or in assessing the effectiveness
of therapeutic interventions.” Interestingly, the more recent guidelines published in
2014 [5] did not mention anything about minimum episode duration, whereas the
2016 guidelines [6] brought back the 30s minimum duration previously published
in 2006.

In recent years, the significance of AF episodes briefer than 30s has received
increasing attention in clinical research, especially concerning issues related to the
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future risk of stroke and its prevention.1 It has been suggested that such brief episodes
are directly coupled to the formation of atrial thrombus, and, therefore, may be
viewed as biomarkers of prolonged episodes occurring outside of the monitoring
period [12–14].Whenmonitoring is performed during amonth-long period, a patient
with numerous brief episodes can very well have a higher AF burden than a patient
with a few episodes which all exceed 30s, meaning a higher thromboembolic risk
for the patient with brief episodes [15], see also [16] and page 43. The concept “AF
burden” is defined as the proportion of the total recording time a patient is in AF. The
minimum duration of an episode which still convey clinically significant information
remains to be established.

Long-term AF monitoring requires automated event detection for efficient and
practical handling. Thus, the properties of the detector play a central role as they
impose a lower limit on how brief an episode can be and still be detected. Most
detectors described in the literature have a design that precludes the detection of
episodes briefer than 30s due to the principle adopted for detection. For exam-
ple, AF detection based on RR interval histogram analysis requires a large number
of RR intervals to ensure that the histogram is reasonably reliable. Indeed, some
ECG-based detectors are blind to episodes briefer than two minutes, whereas, in
implantable devices, a minimum episode duration of as much as six minutes has
been used [17, 18]. Clinical studies reporting results on the presence of episodes
briefer than 30s have relied on commercial detectors, implementing proprietary
algorithms whose detection performance have not been published [12, 13, 19, 20].
Therefore, manual review of possible AF events briefer than 30s has been required to
carry through the study [12]. Consequently, it is of substantial interest to design and
evaluate AF detectors which facilitate the investigation of the clinical significance
of brief episodes.

The duration of an AF episode is highly variable, extending from less than 30s
up to seven days; episodes extending beyond seven days are designated as persistent
AF [4]. Similar to the problemof detectingQRS complexes,where a least informative
approach is often recommendedwith respect to assumptions on signal properties [21],
an AF detector should not involve firm assumptions on episode duration, nor on the
minimum distance between two subsequent AF episodes. By merging two detected
episodes, even if separated by just a few seconds, clinically relevant information
could be excluded.

With the advent of handheld and smartphone-based devices for AF screening
comes new possibilities to identify previously undetectedAF [22–29], cf. Sects. 2.3.5
and 2.3.6, but also new challenges related to the signal quality of such patient-
operated devices which, in general, is poorer than the quality associated with the
clinical modalities, see Fig. 4.2 for an illustration of poor signal quality. Since hand-
held and smartphone-based devices are designed to record a single lead, not necessar-
ily reflecting atrial activity, rhythm-based detection is the typical mode of operation,
with information on f and P wave morphology as a bonus.

1Paroxysmal AF manifested by episodes briefer than 30s is sometimes referred to as occult parox-
ysmal AF, especially when asymptomatic or undetected by conventional methods [7–11].

http://dx.doi.org/10.1007/978-3-319-68515-1_2
http://dx.doi.org/10.1007/978-3-319-68515-1_2
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Fig. 4.2 Five examples of poor-quality ECGs recorded using a smartphone-based device. The sig-
nals are part of the database made available for the PhysioNet/Computing in Cardiology Challenge
2017 [30]

In this chapter, themain design principles used inAFdetection are reviewed, either
exploring rhythm information only, i.e., the RR interval series, (Sect. 4.2) or infor-
mation on both rhythm and atrial wave morphology (Sect. 4.3). Aspects on detector
implementation are briefly considered in Sect. 4.4, and different performance mea-
sures used in AF detection are described in Sect. 4.5. Although several reflections on
performance are interspersed throughout the chapter, Sect. 4.6 has detection perfor-
mance as its main theme, with a discussion on aspects which need to be considered
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when evaluating performance. The chapter ends with a discussion on different types
of ECG-derived information which may be explored to improve detection perfor-
mance (Sect. 4.7).

4.2 Rhythm-Based AF Detection

Since reliable information on the absence/presence of P and f waves is difficult
to extract at low signal-to-noise ratios (SNRs), the vast majority of AF detectors
rely entirely on parameters quantifying RR interval irregularity, e.g., the degree of
randomness, variability, and complexity. Another important explanation to the dom-
inance of rhythm-based detectors is that their implementation in hardware requires
far less energy than do detectors which also involve morphologic information. The
RR interval series constitutes the sole input data to most detectors implemented in
an implantable device, since morphologic information is difficult to extract from
invasive recordings.

Over the years, detector design has been based on ad hoc principles, involving
one or a few parameters which are fed to a simple classifier, while neither model-
based statistical detection nor physiological considerations have played a significant
role in the design. Nonetheless, it is obvious from the results listed in Table4.1 that
ad hoc principles have helped to push the limits of detection performance as both
sensitivity and specificity have improved; for a definition of these two performance
measures, see Sect. 4.5.2 Still, further improvement of detector performance is war-
ranted so that, for example, the problem of false alarms due to frequent ectopic beats,
together masquerading as an AF episode, non-AF arrhythmias, or noisy signals can
be adequately addressed.

Apart from using the RR interval series x(0), . . . , x(N − 1) itself as detector
input, the first difference,

Δx(n) = x(n) − x(n − 1), n = 1, . . . , N − 1, (4.1)

sometimes also serves as input, where N is the number of RR intervals and n is the
interval index (and thus not ECG sample index). Unless the ECG recording is very
short, i.e., on the order of 10–20s, the input data is usually processed using a sliding
time window approach in which the detection parameters are repeatedly computed
as the window slides forward in time. Sliding by one RR interval at a time offers the
best time resolution of episode onset and end; however, it may be necessary to take
larger “slides” to reduce the amount of computations, for example, 50 intervals at a
time [36].

The main principles explored for rhythm-based AF detection are described in
the following. To simplify the description, detection parameters are assumed to be

2Several other detectors have been proposed besides those listed in Table4.1. However, for various
reasons, their respective performance was not evaluated on AFDB.
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Table 4.1 Performance of rhythm-based AF detectors expressed in terms of sensitivity (Se)
and specificity (Sp), using the MIT–BIH Atrial Fibrillation Database (AFDB) for evaluation,
see Sect. 3.1. The subset AFDB1 is identical to AFDB, except that records 4936 and 5091 are
excluded for reasons of incorrect annotations. The detectors are ordered with respect to their year
of publication

Method by Year Database Se (%) Sp (%)

Tateno and Glass [31] 2001 AFDB 94.4 97.2

Dash et al. [32] 2009 AFDB1 94.4 95.1

Lian et al. [33] 2011 AFDB 95.8 96.4

Lake and Moorman [34] 2011 AFDB 91 94

Huang et al. [35] 2011 AFDB 96.1 98.1

Shouldice et al. [36] 2012 AFDB 92 96

Lee et al. [37] 2013 AFDB1 98.2 97.7

Zhou et al. [38] 2014 AFDB 96.9 98.3

Asgari et al. [39] 2015 AFDB 97.0 97.1

Petrėnas et al. [40] 2015 AFDB 97.1 98.3

Zhou et al. [41] 2015 AFDB 97.4 98.4

computed in a fixed window, however, it is straightforward to replace it with a sliding
window. The interested reader may want to follow up with some other rhythm-based
detectors proposed over years [42–47].

4.2.1 Irregularity Parameters

Table4.2 presents a list of parameters considered in the design of AF detectors,
grouped into five categories, namely statistical dispersion, entropy, parameters based
on symbolic dynamics, parameters based on the Poincaré plot, and parameters based
on the time-varying coherence function. Of these categories, statistical parameters
reflecting dispersion, e.g., the root mean square of successive differences, the mean
of absolute successive differences, and the coefficient of variation, are the most com-
monly used. Some detectors base their decisions on just one parameter, combined
with simple thresholding, whereas other detectors rely on a combination of parame-
ters as input to the classifier. Certain parameters are intimately related to a statistical
test, for example, the number of turning points, and, therefore, the test is described
togetherwith the parameter, instead of in Sect. 4.2.6where different types of classifier
are described.

Statistical Dispersion Parameters

The coefficient of variation (CV) of x(n) has been used in AF detection [31, 48],
defined by

http://dx.doi.org/10.1007/978-3-319-68515-1_3
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Table 4.2 List of parameters used in rhythm-based AF detection, grouped into five different cat-
egories: statistical dispersion, entropy, symbolic dynamics, Poincaré plot-based, and time-varying
coherence function

Detection parameter Publication

Coefficient of variation [31, 48]

Root mean square of successive differences [32, 37]

Normalized mean of absolute successive differences [48]

Number of turning points [32]

Histogram-based parameters [31, 35]

Shannon entropy [32, 37, 38]

Sample entropy [34, 49]

Simplified sample entropy [40]

Symbolic dynamics [38, 41]

Poincaré plot of x(n) versus x(n − 1) + bin count [50]

Poincaré plot of Δx(n) versus Δx(n − 1) + bin count [51]

Poincaré plot of x(n) versus Δx(n − 1) + bin count [33]

Time-varying coherence function [37]

PCV = σx

mx
, (4.2)

where mx and σx denote the mean and the standard deviation of x(n), respectively.
The parameter PCV describes dispersion but also reflects changes in heart rate since
RR interval shortening, often occurring in an AF episode, is related to a smaller mx .
UsingΔx(n) instead of x(n) in (4.2), the resulting meanmΔx becomes close to zero,
and, therefore, to avoid division with zero, as well as to maintain the dependence on
changes in heart rate, it is substituted bymx . The performanceof two single-parameter
detectors, both based on PCV but computed either from x(n) or Δx(n), were studied
in [31]; the two detectors were found to have about the same performance.

The root mean square of successive differences (RMSSD) is defined by

PRMSSD =
√
√
√
√

1

N − 1

N−1
∑

n=1

Δx2(n). (4.3)

Since this parameter does not reflect changes in heart rate, a heart rate dependent
detection threshold can be introduced to implicitly handle such changes [32].Accord-
ingly, PRMSSD can alternatively be interpreted as a heart rate normalized parameter
applied to a fixed threshold test. Thus, the test involving a heart rate normalized
PRMSSD is identical to PCV, with the mean and standard deviation of Δx(n) inserted
in (4.2).

Yet another dispersion parameter is the normalized mean of absolute successive
differences (NMASD) [48], defined by
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PNMASD =

1

N − 1

N−1
∑

n=1

|Δx(n)|

mx
. (4.4)

The motivation for using PNMASD instead of PCV, when based on Δx(n), is unclear
as the former parameter represents an approximation of the latter. Therefore, it is
not surprising that the detection performance of PNMASD was found to be almost the
same as that of PCV [48].

Thus, it may be concluded that the three dispersion parameters in (4.2)–(4.4)
convey similar information. As shown below, yet another detection parameter con-
veys information on RR interval dispersion, though developed in the context of the
Poincaré plot.

Number of Turning Points

The turning point test is a nonparametric, statistical test to determine whether the
samples of a time series can be modeled by independent and identically distributed
random variables. In a completely random series, any three successive samples are
equally likely to occur in any of the six possible orders. In four of the orders, a turning
point exists if the middle sample is a local maximum or a local minimum. Thus, the
probability of a turning point in a three-sample series is 2/3.

For a series with N samples, the number of turning points NTP can be counted
and compared to the expected number of turning pointsmTP of a completely random
series. If NTP is too many standard deviations σTP away from mTP, the series cannot
be considered as completely random. Making use of the result that the mean and the
standard deviation of NTP are given by [52]

mTP = 2(N − 2)

3
, (4.5)

σTP =
√

16N − 29

90
, (4.6)

respectively, and that NTP obeys an asymptotically normal distribution for a suffi-
ciently large N , a two-sided statistical test can be used.When the number of observed
turning points falls outside the 95% confidence limits, defined by mTP ± 1.96σTP,
the hypothesis stating that the series is completely random can be rejected.

InAFdetection, the number of observed turning points, togetherwith other param-
eters, is employed for characterizing RR interval irregularity in AF [32]. Rather than
using a statistical test with 95% confidence limits, the limits are determined to opti-
mize detection performance with respect to sensitivity and specificity. When the
number of turning points falls outside the optimized limits, the RR interval series is
likely to exhibit periodicity, for example, due to respiratory-modulated sinus rhythm.
Since it has been shown that RR intervals in AF may exhibit certain correlation [2],
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the turning point test loses some of its power in detecting random RR interval series.
Moreover, the turning point information is likely to cause false alarms in the presence
of ectopic beats and rapid changes in rhythm, and, therefore, it is less suitable for
AF detection.

Histogram-Based Parameters

Since RR interval histograms determined in sinus rhythm or AF exhibit considerable
differences in shape, their shapes have been explored for AF detection. However, to
make the histogram approach work, the bins must be sufficiently well-populated so
that a histogram can be produced which is representative of the prevailing rhythm.
This requirement implies that a large number of RR intervals has to be used for his-
togram construction—100 beats appears to be a minimum number [31, 35]—which,
on the other hand, implies lower accuracy of the estimated onset and end times of
an AF episode. If fewer and wider bins are used to allow a shorter window, the his-
togram becomes increasingly inadequate for discrimination between different types
of cardiac rhythms. Therefore, an inherent limitation of histogram-based detection
is the need of a long window, which thus precludes the detection of brief episodes.

A straightforward approach to histogram-based detection is to define a set of
heuristic features which characterize the histogram, e.g., the height and the number
of nonempty bins. Since a histogram in AF is usually much broader in shape than a
histogram in sinus rhythm,AF is characterized by a lower height and fewer nonempty
bins. If a change in heart rate occurs within the detection window, a histogram in
sinus rhythm will broaden and become increasingly similar to the shape of an AF
histogram. To some extent, however, this transitional problem can be avoided using
theΔRR interval histogram, since differencing not only removes slow trends present
in the RR interval series, but it also makes the histogram span over a smaller range
of values.

A more sophisticated approach to histogram-based detection is to compare the
RR interval histogram of the detection window with a set of template histograms,
stratified according to the mean RR interval length [31].3 Each template histogram is
constructed from all the RR intervals contained in (nonoverlapping) windows with
a mean RR interval length falling inside an interval with predefined limits, ranging,
for example, from 350–399 to 1100–1149 ms in steps of 50ms [31].Windows whose
mean length falls outside any of the predefined intervals are discarded from further
analysis. The template histograms are constructed prior to detection, preferably from
a huge AF database to ensure that the histograms are sufficiently representative of
the underlying probability density function (PDF); the same procedure applies to
ΔRR intervals.

3The relationship between histogram shape and mean heart rate has previously been investigated in
noninvasive studies on atrioventricular node physiology in AF, leading to the concept of heart rate
stratified histograms [53, 54].
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In AF detection, the observed RR interval histogram is computed in a sliding
detection window and compared to each of the template histograms [31]. For this
comparison, the nonparametric Kolmogorov–Smirnov test can be used since it mea-
sures the probability of the observed RR intervals being drawn from the same pop-
ulation as the fixed data set, i.e., the RR intervals used for constructing the template
histograms [55]. This test involves a statistic defined by the largest distance between
the cumulative histogram of the observed data set and the cumulative template his-
togram, assessing whether the two cumulative histograms are different, see Fig. 4.3.
The Kolmogorov–Smirnov test is suitable to use when two cumulative probability
distributions differ in a global fashion near the center, but less suitable when the
two distributions differ with respect to the number of peaks. For example, the largest
distance between a bimodal and a unimodal cumulative probability distribution, both
determined in AF, may not be large enough to show that the two data sets come from
different populations. In such cases, theAnderson–Darling test is a better choice since
it makes use of a weighted sum of the squared deviations between the two cumulative
probability distributions, rather than just the largest distance at one single point [55].

Poor performance was reported when the RR series was used as input to the
Kolmogorov–Smirnov test, with sensitivity and specificity of 66.3% and 99.0%,
respectively [31]. Using instead ΔRR intervals as input, the sensitivity improved
dramatically to 94.4%, whereas the decrease in specificity to 97.2% was relatively
modest. While the authors did not provide any specific explanation to this improve-
ment, it may be that the use of ΔRR intervals leads to better performance since the
related histogram is more unimodal than that of the RR intervals, and therefore better
suited for use with the Kolmogorov–Smirnov test.
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Fig. 4.3 The Kolmogorov–Smirnov test requires that the largest distance between two cumulative
histograms is determined. In this example, both histograms belong to RR intervals in AF. The largest
distance is marked with an arrow



84 L. Sörnmo et al.

The multi-template histogram approach offers the advantage of providing a much
more detailed characterization of the shape of the RR interval distribution than does
the single template histogram inwhich all RR intervals aremerged.On the other hand,
it is well-known that the shape of RR interval histograms exhibits considerable intra-
as well as inter-patient variability, and unimodal as well as bimodal shapes are often
observed in AF [56–58]. Consequently, an AF detector relying on a set of template
histograms is likely to perform less satisfactory when these types of variability are
pronounced.

Another approach to histogram-based AF detection is to compare twoΔRR inter-
val histograms determined from the first and the last part of the detection win-
dow [35], thus replacing the above-mentioned comparison to template histograms.
The sum of the squared difference between the corresponding bin counts of the two
histograms is used as a detection parameter: this difference remains small as long
as the same rhythm persists, but increases when a transition from sinus rhythm to
AF occurs, or vice versa. Since the information carried by the squared difference
turned out to be insufficient for achieving satisfactory detection performance, the
number of nonempty bins, the height of the histogram, and the standard deviation of
the ΔRR intervals were also used as detection parameters to improve discrimination
between sinus rhythm and AF.

Shannon Entropy

The Shannon entropy quantifies the uncertainty (unpredictability) of the information
content of a “message” such as the RR interval series [59]. In statistical terms, the
entropy increases as the PDF becomes increasingly uniform, and decreases when
the PDF becomes increasingly concentrated around a certain value. In other words,
large entropy indicates low predictability of the information content, and vice versa.
The Shannon entropy (ShEn) is defined by

IShEn = −
B

∑

i=1

p(xi ) log2(p(xi )), (4.7)

where the message is synonymous to the outcome of a random variable x assum-
ing B different values, i.e., (x1, . . . , xB); the probability of each value is given by
p(xi ). Since IShEn ranges from 0 to log2(B), the right hand side of (4.7) is some-
times normalized with log2(B) to facilitate interpretation. In practice, the probability
p(xi ) is estimated from the message itself, usually by computing the histogram. The
probability of the i-th bin is estimated by

p̂(xi ) = N (i)

N
, (4.8)

where N (i) denotes the count of the i-th bin.
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TheShannon entropy IShEn has been considered inAFdetection since it is typically
much larger in AF than in sinus rhythm [32]. The computation of IShEn is based on a
modified RR interval series in which the longest and the shortest RR intervals are first
removed to reduce the influence of outlier values. The histogram is constructed from
the remaining RR intervals, with the bins equally spaced over an interval defined by
the shortest and longest RR intervals of the modified series. The authors concluded
that at least 16 bins should be used to obtain IShEn with reasonable accuracy.

It has been found that IShEn is associated with a degradation in performance at
higher heart rates, i.e., from about 90 beats per minute (bpm) and higher [49]. This
finding can be explained by noting that the probability distribution p̂(xi ) becomes
increasingly narrower as the heart rate increases, illustrated by the following example
where the variation in heart rate, set to 5bpm, is identical at different heart rates. For
a heart rate of 60bpm, the RR intervals corresponding to 55 and 65bpm have the
lengths 1090 and 923ms, respectively, and thus the difference in length is 167ms. On
the other hand, for a heart rate of 120bpm, the RR intervals corresponding to 115 and
125bpm have the lengths 521 and 480ms, respectively, i.e., the difference in length
has shrunk to 41ms. Since IShEn is computed from the RR intervals, and not from the
instantaneous heart rate, it is obvious that the power of IShEn to discriminate AF from
sinus rhythm becomes increasingly worse as the heart rate becomes increasingly
higher.

Rather than computing IShEn directly from theRR interval series, theΔRR interval
series can be mapped to a symbolic series, defined by an alphabet, containing only
10 symbols, which is used for computation of IShEn [38]. The mapping function
quantizes the changes present in the RR interval series by relating the changes to
a “reference RR series” resulting from lowpass filtering of the RR interval series.
The quantization grid is dynamic in the sense that it is defined by the properties of
another, even more lowpass filtered version of the RR interval series; linear, time-
invariant lowpass filters are employed, where the lowpass filters are obtained by ad
hoc design. The results suggested that the use of symbolic dynamics provides a path
to better performance, probably explained by the quantization operation which helps
to improve the separation between normal beats and beats in AF when described
by IShEn.

In a subsequent study, bearing considerable resemblance to the one in [38], the
authors delved further into the use of symbolic series and Shannon entropy [41].
The main difference between the two detectors is that the instantaneous heart rate is
employed, rather than the RR interval series, for generating a symbol series, using a
quantization grid with fixed steps. While the authors do not provide any explanation
to why the instantaneous heart rate leads to slightly better detection performance,
this result seems plausible since the above-mentioned limitation, i.e., when IShEn is
computed from the RR interval series at different heart rates [49], is then sidestepped.
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Sample Entropy

While the Shannon entropy is based on the probability of a certain RR interval
length to occur, the sample entropy (SampEn) reflects self-similarity of a signal, and
therefore used as a measure of signal complexity [60, 61]. The sample entropy is
defined as the negative natural logarithm of the conditional probability of a signal
repeating itself for m samples within the tolerance r will also repeat itself for m + 1
samples, where self-matches are excluded [60],

ISampEn = − ln

(
B(m + 1, r)

B(m, r)

)

, (4.9)

where B(m, r) is the probability of pairs of sequences which match form samples. A
small value of ISampEn indicates that the signal repeats itself and therefore is regular,
whereas a large value indicates a complex (irregular) signal. In terms of AF detection,
this means that a transition from sinus rhythm to AF is manifested by a considerably
increase in ISampEn, and vice versa.

To estimate the probability B(m, r), the RR interval series x(0), . . . , x(N − 1) is
first divided into m-length subsequences, described by the vectors

x(i) =
⎡

⎢
⎣

x(i)
...

x(i + m − 1)

⎤

⎥
⎦ , i = 0, . . . , N − m − 1. (4.10)

Similarity between two subsequences, beginning at i and j , respectively, is measured
by the maximum norm, defined by

‖x(i) − x( j)‖∞ = max
k=0,...,m−1

|x(i + k) − x( j + k)|, i, j = 0, . . . , N − m − 1.

(4.11)

Two subsequences are considered similar when ‖x(i) − x( j)‖∞ is within a fixed
tolerance r . Accordingly, the average number of similar subsequences is given by

B̂i (m, r) = 1

N − m − 1

N−m−1
∑

j=0, j �=i

H(r − ‖x(i) − x( j)‖∞), (4.12)

where self-matches are excluded. The maximum number of similar subsequences is
equal to N − m − 1. The Heaviside step function H(z) is defined by

H(z) =
{

1, z ≥ 0,
0, z < 0.

(4.13)

The probability of two m-length subsequences being similar is estimated by



4 Detection of Atrial Fibrillation 87

B̂(m, r) = 1

N − m

N−m−1
∑

i=0

B̂i (m, r)

= 1

(N − m)(N − m − 1)

N−m−1
∑

i=0

N−m−1
∑

j=0, j �=i

H(r − ‖x(i) − x( j)‖∞). (4.14)

Since an estimate of B(m + 1, r) is required before ISampEn can be computed, (4.11)–
(4.14) are also evaluated for m + 1.

When computing ISampEn in a short window, required for detection of brief AF
episodes, the likelihood that none of the few subsequences match is high, especially
for a small r . Accordingly, the denominator B̂(m, r) in (4.9) may become zero,
leading to that ISampEn is undefined. In order to address this problem, the probabilities
in (4.9) can be converted to probability densities by division of the volume of the
matching regions [62],

− ln

(
B(m + 1, r)

(2r)m+1

)

+ ln

(
B(m, r)

(2r)m

)

= − ln

(
B(m + 1, r)

B(m, r)

)

+ ln(2r). (4.15)

This conversion, serving as a normalization, allows direct comparison of sample
entropies computed for different values of r . As a result, the standard approach to
selecting r , i.e., an r taken as a fraction of the standard deviation of the input data [60],
may be replaced by an approach in which r is data-dependent. The operating value
of r is then determined by incrementing r until B(m, r) becomes nonzero; in AF
analysis 30ms has been used as initial value of r , after which r is incremented in
steps of 5 ms.

Based on statistical analysis of different RR interval series in AF, it has been
observed that the mean RR interval length m̄x provides predictive information on
AF independently of ISampEn [34]. In AF detection, this observation can be accounted
for by simply subtracting the logarithm of m̄x from the expression on the right hand
side of (4.15), leading to a new entropy measure, labeled the coefficient of sample
entropy (CSampEn) and defined by [34]

ICSampEn = ISampEn + ln(2r) − ln(m̄x ). (4.16)

The inclusion of m̄x implies that ICSampEn, as desired, increases in AF when the heart
rate is usually higher, whereas it decreases in sinus rhythm when the heart rate is
usually lower.

Before ICSampEn can be computed, the subsequence length m needs to be deter-
mined. Use of the shortest possible subsequence, i.e., m = 1, may be motivated by
the observation that the autocorrelation function of RR intervals in AF is essentially
zero for nonzero lags [3]. Another, more straightforward motivation is that better
detection performance is obtained for m = 1 than for a larger m [34]; for additional
aspects on the choice of m and r , see Sect. 6.4.4.

http://dx.doi.org/10.1007/978-3-319-68515-1_6
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It should be pointed out that ISampEn was preceded chronologically by the approx-
imate entropy IApEn [63], defined in the same way as ISampEn except that self-matches
are included in (4.12). However, it has been shown that IApEn is biased, heavily
dependent on the number of samples N , and lacks relative consistency [60], and
therefore less used than ISampEn.

A variation on ISampEn is the fuzzy entropy where the Heaviside function H(z) in
(4.13) is replaced by a function which fuzzifies the samples and thereby avoids that
similarity of subsequences is treated as either/or [64]. The use of fuzzy entropy has
found its way into the analysis of heart rate variability [65] and f wave characteriza-
tion [66], whereas it remains to be shown whether it can provide better performance
in AF detection.

Probability of Pairs of Matching RR Interval Subsequences

A simpler approach to entropy-based AF detection is to only consider the probability
B(m, r), forming part of the definition of ISampEn in (4.9) [40, 67]. This approach is
advantageous from an implementation viewpoint since B(m + 1, r) is not needed,
and neither the ratio of probabilities nor the natural logarithm have to be computed.
Another advantage is that the problem of an undefined ISampEn is circumvented. In
this approach, the maximum norm in (4.12) is replaced with the Euclidean norm
between two m-length subsequences. The following expression is used in place of
B̂(m, r) [67],

Ĉ(m, r) = 2

(N − m)(N − m − 1)

N−m−1
∑

i=0

N−m
∑

j=i+1

H(r − ‖x(i) − x( j)‖), (4.17)

where the Euclidean norm is denoted ‖ · ‖ and the normalization factor is given by
the maximum value of the double sum. The estimator Ĉ(m, r) differs from B̂(m, r)
with respect to the difference between x(i) and x( j) which is only counted once
in Ĉ(m, r); self-matches are avoided in both estimators.4

An AF detector based on B(m = 1, r) has been proposed in [40], offering the
additional implementation advantages that neither the maximization in (4.11) nor the
Euclidean distance in (4.17) need to be performed. The probability of two RR inter-
vals differing less than r is estimated by

B̂(m = 1, r) = 2

(N − 1)(N − 2)

N−2
∑

i=0

N−1
∑

j=i+1

H(r − |x(i) − x( j)|). (4.18)

Before application of a detection threshold, the probability B̂(m = 1, r) is divided by
an estimate of the mean length of the RR intervals contained in the detection window

4It should be noted that Ĉ(m, r) constitutes an essential part of the correlation dimension, a measure
introduced to describe the dimensionality of the space occupied by a set of random samples [68].
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to emphasize that AF is usually accompanied by a higher heart rate [40]. Thus, the
resulting detection parameter, denoted the simplified sample entropy (SSampEn), is
defined by

ISSampEn = B̂(m = 1, r)

m̄x
, (4.19)

where m̄x is obtained from exponential averaging of the RR intervals, excluding
the RR intervals related to ectopic beats which previously have been flagged by a
simple algorithm, see Sect. 4.2.5. The ratio in (4.19) bears considerable resemblance
to the coefficient of variation in (4.2), since the numerator is a dispersion measure
(though thresholded and therefore not changing in the same continuous way as does
the standard deviation in (4.2)) and the denominator is given by the mean of the
RR intervals.

Another possible approach to accounting for information on heart rate in (4.18)
is to replace the fixed tolerance r with a tolerance defined as a function of the heart
rate in the detection window, i.e., r → r(m̄x). If a fixed r is still preferred, it can, as
already mentioned, be taken as a fraction of the standard deviation determined from
a huge data set [60].

4.2.2 Poincaré-Based Parameters

The scatter plot of successive pairs of RR intervals (x(n), x(n + 1)), known as the
Poincaré plot, is a simple technique for characterizing different types of cardiac
rhythms. This type of plot was introduced for analyzing nonlinear aspects of heart
rate variability, constructed from a series of RR intervals spanning over a long time
period, i.e., up to several days [69–72]. The Poincaré plot has also served as the
guiding design principle when developing AF detectors, but then a much shorter
time period determined by the detection window is subject to analysis, i.e., typically
ranging from 60 to 120s. Since the Poincaré plot constructed from the RR intervals
in AF is much more scattered than the plot constructed from normal sinus rhythm
and atrial or ventricular ectopic rhythms, illustrated in Fig. 4.4, the challenge to be
addressed is one of translating the scattering observed in AF to a set of detection
parameters. The following two approaches have been pursued:

1. parameters reflecting the density of points in different regions of the Poincaré
plot [33, 51, 73], and

2. parameters providing a geometrical characterization of the points in the Poincaré
plot [50].

In addition to relying on (x(n), x(n + 1)) as the basis for producing a Poincaré plot,
these two approaches can alternatively rely on (Δx(n),Δx(n + 1)) or (x(n),Δx(n))

which also convey information on beat-to-beat irregularity in the RR interval series.5

5Yet another approach proposed for characterizing the Poincaré plot is the complex correlation
measure, quantifying the point-to-point (temporal) variation of the RR series [74], see also [75].
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Fig. 4.4 Poincaré plots definedby (x(n), x(n + 1)) and (Δx(n),Δx(n + 1)) (left and right column,
respectively), resulting from a normal sinus rhythm, b sinus rhythm with ectopic beats, and c AF.
All plots are based on 128 RR intervals

The first AF detector to explore the point density of a Poincaré plot was defined
by (Δx(n),Δx(n + 1)) [51, 76]. Hence, the proposed analysis is not confined to just
the first quadrant, as is the case for (x(n), x(n + 1)), but covers all four quadrants
sinceΔx(n) can assume both positive and negative values. The quadrants are divided
into a square grid, where the cells are treated as bins of a two-dimensional histogram;
the bin size is a design parameter which should be set to a small value, e.g., 25ms.

However, this measure has not received any attention in AF detection, probably because it is better
suited for discriminating between ectopic rhythms and normal sinus rhythm than between AF and
normal sinus rhythm.



4 Detection of Atrial Fibrillation 91

Moreover, the Poincaré plot is divided into different regions defined so that their
respective populations of points correlate with different rhythms, as manifested by
the pattern of the three successive RR intervals required for computing Δx(n) and
Δx(n + 1), see Fig. 4.5. First, the total number of bins populated by at least one point
(“nonzero bins”) is computed for all regions, excluding a circular region enclosing
origo which is populated by points related to normal sinus rhythm. Then, the total
number of bins is corrected by not only subtracting the number of points in region 0,
but also a number reflecting the presence of APBs; APBs tend to cluster in certain
regions since they are often accompanied by a compensatory pause. AnAF episode is
detected whenever the corrected total number of bins exceeds a predefined threshold,
provided that the number of points reflecting the presence of atrial tachycardia falls
below another predefined threshold. The presence of atrial tachycardia is determined
by a heuristic combination of the number of points found in different regions relevant
to this particular arrhythmia, see Fig. 4.5; for a detailed description of the algorithm,
see [51, 76].

Using the Poincaré plot defined by (x(n),Δx(n)), a much simpler approach to AF
detection has been proposed in [33], particularly well-suited for use in implantable
loop recorders. This approachwas later applied toAF detection in polysomnographic
recordings [73]. In the plot, thefirst and the fourth quadrants are analyzed sinceΔx(n)

can assume both positive and negative values. Again, the two quadrants are divided
into a square gridwith cells treated as bins.All binswith at least one point are counted,
and an AF episode is detected whenever the total count exceeds a predefined, fixed
threshold. Obviously, manymore bins will be nonzero for an irregular rhythm such as
AF than for normal sinus rhythm. In contrast to [51], this approach does not require
that the Poincaré plot is divided into different regions, thereby simplifying detector
implementation. The count of nonzero bins defines the detection parameter PNZPP.
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Fig. 4.5 Definition of regions in a Poincaré plot defined by (Δx(n),Δx(n + 1)) [51]. Normal sinus
rhythm usually populates the circular, origo-centered region 0, whereas AF populates all regions
except region 0. Atrial tachycardia usually populates regions 6, 7, 9, and 11, whereas atrial and
ventricular premature beats usually populate regions 1–4
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As already pointed out, histogram-based detectors suffer from the disadvantage of
requiring a large number of RR intervals to achieve adequate performance, especially
when a two-dimensional histogram is analyzed. Therefore, it is not surprising that
a 2min detection window is recommended to ensure that the different regions of
the Poincaré plot (which may be viewed as a counterpart to histogram bins) are
reasonably well-populated [51]. When neither histogram shape nor population size
are of importance, a much shorter detection windowmay be employed, e.g., 64 beats,
without having to trade much in performance [33]. The introduction of regions offer,
on the other hand, ameans to detect other rhythms thanAF, e.g., atrial flutter orAPBs.
It should be pointed out that the relative advantage of using a Poincaré plot defined
either by (x(n),Δx(n)) or (Δx(n),Δx(n + 1)), rather than by (x(n), x(n + 1)),
remains to be established.

The second approach to Poincaré-based AF detection involves parameters provid-
ing a geometrical characterization of how the points (x(n), x(n + 1)) populate the
plot [50]; see also [77] where some of the original ideas appeared. As will be obvi-
ous from the following, detection parameters involving distances in the Poincaré plot
are related to the statistical dispersion measures described earlier. Accordingly, the
main merit of the Poincaré plot seems to be its use as a conceptual tool for designing
parameters, while the plot itself does not providemuch novel information. In contrast
to the Poincaré-based detector proposed in [51], the geometrical parameters do not
treat any particular region of the Poincaré plot as more likely to be populated when
AF is present, but simply quantifies certain type of dispersion of the RR interval
series.

In normal sinus rhythm, the points of the Poincaré plot are typically dispersed
around the line of identity, i.e., x(n) = x(n + 1), forming a cluster whose shape
resembles an ellipse. One of the axes of the ellipse, usually the major axis, has the
same orientation as the line of identity, whereas the other axis is perpendicular. The
dispersion of points along these two axes is quantified by first performing a 45◦
rotation of (x(n), x(n + 1)), defined by

[

y(n + 1)
y(n)

]

=
[

sin π
4 cos π

4
cos π

4 − sin π
4

] [

x(n + 1)
x(n)

]

, n = 0, . . . , N − 2, (4.20)

where y(n) lies on the axis perpendicular to the line of identity. Then, the standard
deviations σy,0 and σy,1 of y(n) and y(n + 1), respectively, describe the shape of the
cluster. The standard deviations are defined by

σy, j =
√
√
√
√

1

N − 1

N−2
∑

n=0

(y(n + j) − m̄ y)2, j = 0, 1, (4.21)

where m̄ y denotes the mean value of y(n). In a broader sense, σy,0 may be interpreted
as a parameter characterizing the short-term variability of the RR intervals, whereas
σy,1 characterizes long-term variability [71, 78].
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On the other hand, the point distribution in AF differs significantly from that in
normal sinus rhythm, implying that the assumption of a cluster with elliptic shape
looses its meaning. Still, σy,0 has been employed as a detection parameter to quan-
tify short-term variability [50], see also [79], but not σy,1 since it reflects a much
coarser time scale than does σy,0. The transformation in (4.20) implies that succes-
sive RR intervals should be differenced,

y(n) = 1√
2
(x(n + 1) − x(n)) = Δx(n)√

2
, (4.22)

and, therefore, the mean value of y(n) is close to zero. Hence, the standard deviation
σy,0 is well-approximated by

σy,0 ≈
√
√
√
√

1

2(N − 1)

N−1
∑

n=1

Δx2(n), (4.23)

which describes the dispersion of points around the diagonal line in the Poincaré
plot. It is evident that σy,0, apart from different normalization factors, is identical to
PRMSSD in (4.3) and employed in [32] but then without any reference to the Poincaré
plot. When distance measures are used for characterizing the plot (x(n), x(n + 1)),
the differenced RR interval series Δx(n) is a quantity appearing naturally.

The idea of fitting an ellipse to the Poincaré plot stems from the analysis of long-
term ECG data. When adapting this idea to AF detection, the resulting plot must
be based on much fewer RR intervals (i.e., only those inside the detection window),
leading to that the shape of the Poincaré plot becomes dot-like rather than ellipse-like,
see Fig. 4.4. Still, the ellipse-inspired analysis of RR intervals has been considered
for AF detection.

Another geometrical detection parameter inspired by the Poincaré plot is based
on the Euclidean distance between two successive points (x(n), x(n + 1)) and
(x(n + 1), x(n + 2)), describing the local rate of change in theRR interval series [50].
This parameter, denoted σc, is defined as the mean of all Euclidean distances con-
tained in the detection window,

σc = 1

N − 2

N−2
∑

n=1

√

Δx2(n) + Δx2(n + 1)), (4.24)

= 1

N − 2

N−2
∑

n=1

√
√
√
√

1
∑

k=0

Δx2(n + k), (4.25)

which, similar to σy,0, represents a measure of RR interval dispersion. Before use
in AF detection, both σy,0 and σc have been “normalized” by the mean RR interval
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length m̄x ,6 exemplified by

σ ′
y,0 = σy,0

m̄x
. (4.26)

Thus, similar to the coefficient of sample entropy in (4.16) and the simplified and
heart rate modified sample entropy in (4.19), the parameters σ ′

y,0 and σ ′
c are designed

so that an increase in heart rate contributes to improved detection performance.

4.2.3 Time-Varying Coherence Function

A linear systems approach to AF detection is provided by exploring the difference in
spectral coherence of the RR intervals in two adjacent windows: the spectral coher-
ence remains high as long as normal sinus rhythm is present in bothwindows,whereas
it changes rather abruptly at the time when an AF episode either begins or ends. This
approach was proposed in [37], benefitting from previously presented results on
how to estimate the time-varying coherence function (TVCF) from the time-varying
transfer functions obtained from the samples of two adjacent windows [80].

Assuming that the data in the two windows are viewed as the input and output
signals of a linear system, denoted x(n) and y(n), respectively, the time-varying
coherence function is defined by

Cxy(ω, n) = |Sxy(ω, n)|2
Sx (ω, n)Sy(ω, n)

, (4.27)

where Sxy(ω, n) is the time-varying cross-spectrum between x(n) and y(n), and
Sx (ω, n) and Sy(ω, n) are the time-varying spectra of x(n) and y(n), respectively.
Conversely, when y(n) is viewed as the input signal and x(n) as the output signal,
the time-varying coherence function is defined by

Cyx (ω, n) = |Syx (ω, n)|2
Sx (ω, n)Sy(ω, n)

. (4.28)

Accounting for the fact that the time-varying coherence function can be computed
both forwards and backwards, an overall TVCF can be defined by

C2(ω, n) = Cxy(ω, n)Cyx (ω, n). (4.29)

Introducing the two time-varying transfer functions characterizing the linear system
when either x(n) or y(n) is the input signal,

6In [50], the computation of m̄x includes all RR intervals in the window except the first and last
RR intervals, i.e., x(0) and x(N − 1); however, the interpretation of m̄x is similar to that otherwise
used in this chapter.
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Hx→y(ω, n) = Sxy(ω, n)
Sx (ω, n)

, (4.30)

Hy→x (ω, n) = Syx (ω, n)

Sy(ω, n)
, (4.31)

the overall TVCF can be expressed as [80]

C2(ω, n) = |Hx→y(ω, n)Hy→x (ω, n)|2. (4.32)

The two filters Hx→y(ω, n) and Hy→x (ω, n) can be determined using a model-based
approach inwhich the samples of the twowindows are assumed to be characterized by
an autoregressive moving average (ARMA)model. This approach is preferred over a
spectrogram-based approach due to its better frequency resolution, provided that the
ARMA model is adequate for the analyzed data. Both the model parameters and the
model order are determined using an optimization technique developed especially
for the identification of time-varying linear systems [81]. Results have demonstrated
that the model order estimate depends on the length of the detection window: longer
windows require higher model orders.

Figure4.6 illustrates one of the essential properties of C2(ω, n), namely that the
variation across the frequency axis is almost nonexistent in normal sinus rhythm,
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Fig. 4.6 Time-varying coherence function C2(ω, n) computed from of an RR interval series con-
taining a transition from normal sinus rhythm (NSR) to AF (ω = 2π f ). Both detection windows
contain 128 beats, and slide with 128 beats at a time. (Reprinted from [37] with permission)
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whereas the variation increases at the onset of the AF episode—an increase which
becomes more pronounced at higher frequencies. Based on this observation, the
variance ofC2(ω, n) is computed across the frequency axis for each beat n, and used
as detection parameter.

4.2.4 Parameter Time Series Exemplified

For an 80-min ambulatory ECG recording with two AF episodes and several runs
of ectopic beats, the time series of different detection parameters are displayed in
Fig. 4.7. The series are computed using a 128-beat sliding detection window, except
for ISSampEn which is computed using an 8-beat window [40]; the window slides one
beat at a time.

A number of observations can be made from Fig. 4.7, first and foremost that nor-
mal sinus rhythm and AF episodes are easily distinguished in all series. Another
observation is that the impact of the runs of ectopic beats, for example, those occur-
ring before the second AF episode, differ quite considerably between the series:
while the impact is small for ISSampEn, it is quite substantial for PCV and PNMASD

since the ectopic beats are manifested by parameter values which actually exceed
those belonging to the AF episodes. Thus, to reduce the number of false alarms,
techniques for handling the influence of ectopic beats need to be implemented, see
Sect. 4.2.5. Yet another observation to be made from Fig. 4.7 is that IShEn has more
pronounced “background” fluctuations in normal sinus rhythm than the other detec-
tion parameters.

4.2.5 Ectopic Beat Handling

An important aspect to address in rhythm-based AF detection is the presence of
ectopic beats, often abundant in numbers. The inclusion of a processing block exclud-
ing or flagging RR intervals related to VPBs and APBs can, as already pointed out,
considerably improve the specificity of a detector. At the same time, ectopic beat han-
dling must not alter the RR intervals which form an AF episode so that the sensitivity
is lowered.

In many detectors, no explicit strategy is implemented for handling ectopic beats,
but the parameters characterizing rhythm irregularity are fed directly to the classifier,
see, e.g., [34, 36, 46–48]. When theΔRR interval histogram constitutes the basis for
detection, rhythms with frequent VPBs are sometimes falsely detected as AF when
the Kolmogorov–Smirnov test is involved [31]. The source of the problem is the
compensatory pause which accompanies most types of VPB, leading to a negative
ΔRR interval immediately followed by a positive. Consequently, the histogram bears
resemblance to a histogram determined in AF. It has been noted that the cumula-
tive RR interval histogram determined from rhythms with frequent VPBs exhibits a
“prominent shoulder” at around 400–600ms, while the AF histogram usually does
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Fig. 4.7 An RR interval series x(n) (top diagram) and related series of different detection param-
eters: coefficient of variation PCV, normalized mean of absolute successive differences PNMASD,
Shannon entropy IShEn (16 bins, [0.2, 1.7] s, step 0.1 s), coefficient of sample entropy ICSampEn
(m = 1, r = 0.03s), simplified sample entropy ISSampEn (r = 0.03s), and number of nonzero bins
in the Poincaré plot PNZPP (bin size 25ms)

not [31]. Preliminary results showed that the number of VPB-related false alarms
can be reduced by introducing a test on the height and width of a potential shoulder;
however, no details have been provided on how to implement a test for identifying a
prominent shoulder.

When the Poincaré plot is the starting point for computing a detection parameter,
the bin population pattern may be considered for singling out ectopic beats. For
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example, bigeminy is manifested by clustered points populating just a few bins
[33, 51], whereas AF is manifested by points which are much more scattered. When
the Poincaré plot is defined by (x(n), x(n + 1)), changes in heart rate within the
detection window smears the clustered points related to ectopic beats, which in turn
increases the number of false alarms; this problem is likely to be less pronounced
when the plot is defined by (Δx(n),Δx(n + 1)).

One of the first rhythm-based detectors to involve handling of ectopic beat was
described in [32], see also [37], embracing three different ratio series defined by
successive RR intervals. In order to eliminate a VPB, preceded by a short RR interval
x(n) and followed by a compensatory pause x(n + 1), the following three conditions
need to be fulfilled for x(n) and x(n + 1) to be excluded from the RR interval series:

x(n)

x(n − 1)
< γ1, (4.33)

x(n + 1)

x(n)
> γ99, (4.34)

x(n + 1)

x(n + 2)
> γ25. (4.35)

The thresholds γ1, γ25, and γ99 denote the 1st, 25th, and 99th percentiles, respec-
tively, of the RR interval ratio histogram of the current detection window. Obviously,
these percentiles are increasingly difficult to determine with sufficient reliability as
the window becomes shorter. The application of the conditions in (4.33)–(4.35) is
illustrated in Fig. 4.8a and b for anRR interval series containing bigeminy and ectopic
beats, and then followed by an AF episode. The ectopic beats are eliminated in the
thinned output series, whereas the episode of bigeminy is characterized by much
flattened RR intervals and reduced irregularity of AF.

Median filtering may be used to eliminate occasional ectopic beats from the
RR interval series, while preserving the sharp changes that typically characterize
the onset and end of an AF episode. Such filters have been implemented with lengths
ranging from 3 [40] to 17 [38], where longer median filters offer better elimination
of ectopic beats, but increases the risk of missed brief AF episodes. Therefore, bear-
ing in mind the growing interest in detection of brief episodes, short median filters
are to be preferred. Figure4.8c and d illustrate how the RR interval series is altered
when using 3- and 17-point median filters, respectively. The ectopic beats are elim-
inated in the filtered output, but the episode of bigeminy is largely unaltered and the
irregularity of AF is much reduced, especially for the 17-point filter.

In addition to eliminating ectopic beats with median filtering, a set of ad hoc tests,
similar to those in (4.33)–(4.35), have been suggested which are also based on the
series of ratios of successive RR intervals [35]. The sequence of RR interval ratios
is determined for common non-AF arrhythmias, e.g., bi- and trigeminy, and used to
build a database with template patterns. The sequence of ratios inside the detection
window is correlated to all the template patterns, and the presence of AF is ruled
out whenever a sufficient number of correlation matches are found. In this approach,
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Fig. 4.8 a An RR interval series x(n) containing ectopic beats and bigeminy, followed by an AF
episode with onset at about interval #500. b The output y(n) when applying the three conditions
in (4.33)–(4.35) to x(n). c The output y(n) from 3-point median filtering and d 17-point median
filtering. e The function b(n) in (4.36), whose only purpose is to flag when bigeminy is present, is
computed for M = 8; this function does not replace x(n). It should be noted that the output samples
in (b) are thinned in time compared to x(n), whereas no thinning is introduced in (c)–(e)

ectopic beat handling is part of the classifier, since no processedRR interval sequence
results. Several thresholds need to be set before the tests can be applied—settings
whose influence on performance remain to be established.

A simple flag function has been proposed to indicate whether the observed rhythm
is likely to be in AF, defined by [40]
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, n = M, . . . , N − 1, (4.36)

where n is the end time of the sliding detection window, M is an even-valued integer,
and xm(n) is the output of a three-point median filter. For regular rhythms as well as
for bigeminy, the ratio in (4.36) is approximately equal to 1 since xm(n) and x(n)

resemble each other; thus, b(n) is approximately equal to 0. On the other hand, in
AF, the variability in xm(n) is lower than that in x(n) due to the median filtering, and,
as a consequence, b(n) increases to indicate AF presence. The squaring operation in
(4.36) is introduced to improve the differentiation of AF from non-AF rhythms. In
contrast to the criteria in (4.33)–(4.35), resulting in the exclusion of RR intervals, the
purpose of b(n) is to serve as a weighting function suitable for use in signal fusion.
Figure4.8e illustrates the behavior of b(n) in the presence of an episode of bigeminy,
being flagged by values close to zero.

Given that rhythm-based AF detection is the predominant mode of operation in
mHealth monitoring devices and implantable loop recorders, further development of
techniques for better handling ectopic beats is warranted.

4.2.6 Classification

Themost common approach to designing a classifier is to simply apply one or several
threshold tests to the parameters (“features”) selected for AF detection. Information
on RR interval irregularity is often condensed into one single feature, see, e.g., [31,
33, 34, 38, 40], but as many as nine features, with nine accompanying threshold
tests, have also been considered [35]. The threshold values can be determined by
optimizing a suitable performancemeasure, e.g., the area under the receiver operating
characteristic (ROC) (Sect. 4.5),with respect to the features of interest using a training
data set. The optimized thresholds are then used to evaluate performance on a test data
set. Alternatively, the determination of a threshold may be based on some underlying
statistical assumptions associated with the feature [31].

When the classifier involves many features, the question arises whether a feature
conveys unique information or correlates with the other features. If correlated, which
is often the case, the features can be decorrelated using principal component analysis
(PCA) so that only the most relevant features are retained, i.e., the dimensionality of
the feature vector is reduced. It is well-known that low-dimensional feature vectors
generalize better to data not presented during training, thereby leading tomore robust
detection performance [82]. Another obvious advantage is that fewer features imply
less computations. Although feature selection has been considered in AF detection,
then involving an improved version of the sequential forward floating selection algo-
rithm [46], this approach has yet to find its way into AF detection on a broader
scale.
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A simple approach to understanding the relevance of individual features in multi-
feature threshold testing is to establish their relative contribution to detection perfor-
mance, for example, by determining the performance with and without a test involv-
ing a certain feature. Such an insight may help to render the detector structure more
effective, of particular importance when the detector is aimed at implementation in
a low power device. In rhythm-based AF detection, no study has yet reported on the
significance of individual tests, whereas one study has presented results on rhythm
andmorphology based detection, demonstrating that rhythm irregularity plays amore
significant role in detection [83].

Another, even simpler, approach to understanding the relevance of a feature is to
determine the histograms of the feature for RR intervals observed in either AF or
non-AF rhythms, using some suitable database [38, 40, 41, 49]. Then, the extent by
which these two histograms overlap serves as a preliminary indication of the feature’s
discriminatory power. The histograms of different parameters, previously described
in this chapter, are presented in Fig. 4.9. Using AFDB, the parameters are computed
from the RR intervals contained in a sliding 128-beat window, except ISSampEn which
is computed in a sliding 8-beat window. Visual inspection of Fig. 4.9 shows that
the least histogram overlap is exhibited by ISSampEn, and therefore this parameter is
particularly well-suited for AF detection. Interestingly, the simple-structured feature
PNZPP, defined by the number of nonzero bins in the Poincaré plot, is also associated
with a small overlap. On the other hand, IShEn is associated with the largest overlap,
thus questioning its suitability for use in AF detection. When the Shannon entropy
is computed from a symbolic sequence, determined either from the RR intervals or
the instantaneous heart rate, the histogram overlap has been found to decrease, see
[38, 41].

In addition to using a traditional classifier definedby a set of threshold tests, pattern
classification techniques have been investigated for AF detection, including support
vector machines (SVMs) [39, 50, 84] and linear discriminant analysis (LDA) [36];
the former technique has the advantage of offering better flexibility as the decision
boundaries can be nonlinear [85]. In these studies, the dimension of the feature vector
ranges from 2 to as large as 24. It should be noted that LDA-based classification
requires many more computations for training than does simple threshold testing, as
the sample mean vector and the covariance matrix for both non-AF and AF data are
needed to compute the discriminant function. For SVM, only two design parameters
need to be set, both related to the degree with which misclassifications should be
penalized [50, 84].

From Table4.1, it is evident that detection based on a single threshold test offers
performance superior to detection based on a classifier incorporating multi-threshold
tests or an SVM. For example, the single-test detector in [40] performs better than
does the detector using an SVM [39]. At a first glance, this result may stand out as
unexpected as an SVM offers so much more freedom with respect to the location
of the decision boundaries, and therefore an SVM should perform better. A possible
explanation to this result may be that the SVM does not generalize well from training
to testing when a small or nonrepresentative training set has been used. Amore likely
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Fig. 4.9 Histograms for six different detection parameters, determined either in AF (thick line)
or non-AF (thin line). a Coefficient of variation PCV, b normalized mean of absolute successive
differences PNMASD, cShannon entropy IShEn,d coefficient of sample entropy ICSampEn, e simplified
sample entropy ISSampEn, and f number of nonzero bins in the Poincaré plot PNZPP. The values
used to compute the parameter time series displayed in Fig. 4.7 were also used in this figure

explanation, though unrelated to the SVM, is that less powerful features were used,
leading to inadequate handling of non-AF rhythms.

Detectors involving machine learning techniques have yet to demonstrate per-
formance exceeding that of classical threshold-based AF detection. However, this
relation may very well change in the future since databases for training are contin-
uously growing—a change which implies time-consuming and meticulous work by
expert cardiologists to ensure that the databases are adequately annotated.

None of the above-mentioned approaches to classification offer built-in immunity
to non-AF rhythms such as bi- and trigeminy, frequentAPBs andVPBs, supraventric-
ular tachycardia, and atrioventricular junctional rhythms, and, therefore, ectopic beat
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handling prior to classification will have significant repercussions on performance.
This aspect is illustrated by considering the performance of the detector in [40] when
implemented with and without such handling. In that detector, the fusion of ISSampEn,
computed using a sliding 8-beat window, and b(n), indicating the likelihood of AF
presence, results in a parameter which is subjected to simple thresholding. Using
the MIT–BIH Normal Sinus Rhythm Database (NSRDB), containing several occur-
rences of bigeminy, cf. Sect. 3.1, the incorporation of b(n) in the detector leads to
a dramatic improvement in performance since the specificity increases from 93.2
to 98.6%, whereas the sensitivity remains essentially the same (this is a previously
unpublished result).

4.3 Rhythm and Morphology Based AF Detection

AlthoughAF is accompanied by changes in both rhythm and atrial wavemorphology,
rhythm-based detection continues to be the preferred mode of operation since the
RR intervals can be determinedmuchmore reliably in noisy signals than information
on atrial activity [38, 86]. Since rhythm-based detectors tend to produce false alarms
in sinus rhythms with ectopic beats, complete atrioventricular block, as well as in
patients with prescribed ventricular rate-controlling medication, it is natural to also
analyze whether P waves are absent and/or f waves are present so that the false
alarm rate can be reduced. Thus, information on atrial wave morphology needs to be
included in the decision process, illustrated by the block diagram of an AF detector
in Fig. 4.10a. While the performance of rhythm-based AF detectors is not critically
dependent on the lead selected for signal processing, lead selection is crucial when
morphologic information is involved since f waves have much lower amplitude in
leads positioned farther away from the atria; such lead-dependence is less pronounced
for P wave amplitude.

Only a handful of AF detectors have been designed in which information on
both rhythm and atrial wave morphology are subject to analysis. The performance
reported in the literature must be regarded as rather disappointing since, indeed,
none of the detectors achieve performance superior to that of a well-performing
rhythm-based detector, see Table4.3. This result may be explained by the use of
detector structures not accounting for the fact that the noise level usually changes
over time. As a consequence, measurements characterizing atrial activity are not
always reliable, but may actually contribute to worsen the performance rather than
to improve it [87]. Hence, an important guiding design principle is to account for the
prevailing noise level in the detector structure, implying that information on atrial
activity becomes less influential when decisions are made at higher noise levels, and
vice versa. Ultimately, when the noise level exceeds a certain threshold, the detector
structure should simplify to one based on only the RR interval series, cf. Sect. 4.2.
Pursuing the design of a detector accounting for noise calls for the development of
a noise level estimator. The noise-dependent mode of operation of an AF detector is
described by the block diagram in Fig. 4.10b.

http://dx.doi.org/10.1007/978-3-319-68515-1_3
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Fig. 4.10 General structure ofAFdetectors described in the literature. aBlock diagramof a detector
exploring atrial morphology independently of the prevailing noise level. b Block diagram of a
detector whose classifier is designed to increasingly discard information on atrial wave morphology
as the noise level increases

This section provides an overview of the building blocks required for processing
information on atrialwavemorphology, aswell as for estimating the noise level. Some
detectors explore information on either P waves or f waves, while others explore both
types of waves.

4.3.1 P Wave Detection Information

The problem of P wave detection/delineation has been thoroughly treated in the liter-
ature, with emphasis on automated interpretation of diagnostic ECGs where highly
accurate measurements of P wave amplitude and duration are of critical impor-
tance [91–93]. The prediction of patients prone to AF based on P wave morphology
represents another, more immediate application where accurate measurements are
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Table 4.3 The performance of five detectors based on both rhythm and morphology, together
with the performance figures of rhythm-based detection already presented in Table4.1. The subset
AFDB1 is defined in Table4.1, AFDB2 is identical to AFDB, except that records 00735 and 03665
are excluded since they do not include ECG signals, only RR interval information, AFDB3 contains
only 20 of the 25 records since five records do not have sufficient sinus rhythm data for training, and
AFDB4 excludes a huge number of unspecified non-AF segments to balance the sizes of AF and
non-AF records. The difficulties associated with comparing detection performance are considered
in Sect. 4.6, applying especially to the best-performing detector

Method by Year Database Se (%) Sp (%)

Dash et al. [32] 2009 AFDB1 94.4 95.1

Lian et al. [33] 2011 AFDB 95.8 96.4

Lake and Moorman [34] 2011 AFDB 91 94

Huang et al. [35] 2011 AFDB 96.1 98.1

Shouldice et al. [36] 2012 AFDB 92 96

Lee et al. [37] 2013 AFDB1 98.2 97.7

Zhou et al. [38] 2014 AFDB 96.9 98.3

Asgari et al. [39] 2015 AFDB 97.0 97.1

Petrėnas et al. [40] 2015 AFDB 97.1 98.3

Zhou et al. [41] 2015 AFDB 97.4 98.4

Babaeizadeh et al. [87] 2009 AFDB2 93 98

Carvalho et al. [83] 2012 AFDB2 93.8 96.1

Ladavich and Ghoraani [88] 2015 AFDB3 98.1 91.7

Ródenas et al. [89] 2015 AFDB2 96.5 94.2

Xia et al. [90] 2018 AFDB4 98.3 98.2

essential [94–96]. In AF detection, however, the demands on accuracy are more
relaxed since the absence of P waves can be established without first having to esti-
mate P wave onset and end.

A straightforward approach to determining whether P waves are absent is to use a
measure reflecting morphologic similarity between the samples in two consecutive
“PR intervals”, with the correlation coefficient and the mean square difference as
examples of such a measure [87]. In sinus rhythm, P wave morphology is usually
stable from one beat to the next, and, therefore, such a measure would indicate
a high degree of similarity. In AF, on the other hand, P waves are replaced with
f waves which are unsynchronized with the QRS complexes, and, consequently,
the degree of similarity between two PR intervals is much lower. Once pairwise
comparison has been performed for all beats in the detection window, the average of
the resulting similarity measurements can be compared to a threshold to determine
whether P waves are absent.

In a related approach, the samples of the PR interval are correlated to the samples
of a fixedPwave template [83]. The template is determined by averaging all annotated
P waves of a huge annotated database [97, 98]; further considerations on template-
based Pwave detection can be found in [99]. By analyzing the sequence of correlation
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coefficients determined from all beats in the detection window, a P wave is detected
whenever the correlation coefficient exceeds afixed threshold. Pwaves are considered
absent when the P wave occurrence ratio, defined as the number of detected P waves
to the total number of beats in the window, falls below another fixed threshold.

Rather than quantifying P wave absence directly in the ECG signal, as is usually
the case, it can be quantified in a signal resulting from PQRST cancellation of the
ECG, thus composed of PQRST-related residuals in normal sinus rhythm and f waves
in AF [100]. In this approach, the term “P wave absence” has a different meaning
since the input signal no longer contains P waves; however, the term is still useful
since an “imaginary” PR interval can be analyzed. It has been shown that PQRST
cancellation can be accomplished by means of an echo state network which offers
the advantage of handling substantial variation in normal beat morphology as well
as the presence of ectopic beats [101]; for a description of the echo state network,
see Sect. 5.5.3. In the canceled signal, all possible pairwise combinations of the
PR intervals are considered in the detection window, not just the pairs defined by
consecutive PR intervals as in [87]. The squared error is computed for pairs of
PR intervals, and then averaged over all possible combinations to produce a measure
of P wave absence. The PR interval has a fixed location relative to the fiducial point
of the QRS complex, with its onset and end preceding the fiducial point by 250 and
50ms, respectively.

A radically different approach to AF detection is to completely leave out all
rhythm information and only explore whether P waves are absent [88, 89].7 The
main motivation for pursuing this approach is that rhythm information may not be
discriminative enough to reliably detect AF in patients on rate-controlled medication
or with pacemaker, where rhythm irregularity is reduced. It is obvious from Table4.3
that these two detectors have performance inferior to the best-performing rhythm-
based detectors.

As many as nine features have been employed for describing different P wave
properties: six features describing P wave amplitude in contiguous 20ms intervals,
and three features describing variance, skewness, and kurtosis of the samples in the
PR interval, located, as above, at a fixed distance from the QRS fiducial point [88].
In contrast to the three above-mentioned approaches, which all produce a simple
scalar parameter for determining Pwave absence, this approach is considerably more
complicated as a training phase is required for each patient before AF detection can
take place. This phase involves a Gaussian mixture model whose model parameters
have to be determined from a half hour long ECG segment containing sinus rhythm;
each P wave is represented by the nine-dimensional feature vector. In the testing
phase, the Mahalanobi distance between the features of the candidate P wave and
the features of the patient-specific P wave model is computed, indicating P wave
absence when the distance is sufficiently large.8

7Strictly speaking, this type of detector does not explore both rhythm and morphology. However,
since information on P wave absence is still required, the detector is described in this section.
8The idea of studying the deviation from “normality”, i.e., whether a P wave is absent, is closely
related to the concept of novelty detection [102, 103].

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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The entropy of different scales, wavelet entropy, constitutes a set of features
explored in AF detection [89]. In order to compute the wavelet entropy, the samples
in the TQ interval are first subject to wavelet decomposition [21], resulting in the
wavelet coefficients wi,k , where i and k denote scale and time, respectively. Then,
the relative energy Ei is computed for each scale,

Ei =

Ki−1
∑

k=0

w2
i,k

J
∑

l=1

Kl−1
∑

k=0

w2
l,k

, i = 1, . . . , J, (4.37)

where J denotes the number of scales, and Kl denotes the length of wl,k at scale l.
The wavelet entropy is obtained as the Shannon entropy of Ei , cf. (4.7), except that
the probabilities p(xi ) are replaced by the relative energies Ei , which, by definition,
sum to 1. Statistical analysis of AFDB showed that TQ intervals with P waves were
associated with significantly lower wavelet entropies than TQ intervals with f waves.
This finding is due to that the relative energy is much more concentrated to one scale
for P waves than for f waves.

The variability of the length of the PR interval may serve as an indirect measure of
P wave absence [87]. Obviously, this length can only be determined when a P wave is
present, requiring that the onset of the P wave and the onset of the QRS complex have
first been determined. While PR interval variability is undefined in AF, a surrogate
measure may be used in which the onset of an f wave is treated as the onset of a
Pwave, leading to a PR interval variability which is much larger in AF than in normal
sinus rhythm. Considering the imprecise definition of PR interval variability in AF,
it is doubtful whether this measure is sufficiently powerful for AF detection.

The above-mentioned techniques for determining P wave absence vary quite sub-
stantially in complexity, ranging from simple similarity measures to advanced, sta-
tistical modeling of P waves. When a similarity measure is computed between the
samples of two PR intervals, e.g., the correlation coefficient or the mean square dif-
ference, no particular polarity or morphology of the P wave is favored. This is an
important advantage when the objective is to quantify a rather unspecific concept
such as “P wave absence.” On the other hand, a template-based similarity measure
can be expected to perform less well in rhythms with varying P wave morphology,
but also for morphologies which are approximately orthogonal (in mathematical
terms) to the template, i.e., the correlation coefficient is approximately zero although
a P wave is present. Statistical modeling of P wave properties offers more degrees
of freedom than the template-based approach, however, such modeling also requires
training in each patient on lengthy data which have to be recorded in sinus rhythm;
such data is not always is available.

It is obvious that information on P wave absence becomes increasingly unreliable
as the noise level increases, eventually reaching a “breakdown” level that differs from
one technique to another depending on the robustness of the design. For example,
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a template-based approach is likely more robust to noise than an approach where
P wave onset needs to be determined. In addition, information on P wave absence is
more reliablewhen extracted frommore than one lead: by analyzing two leads instead
of one, the specificity of a P wave based AF detector has been shown to increase
from 91.7 to 94.6%, while the sensitivity remained essentially the same [88].

4.3.2 f Wave Detection Information

The sparse use of f wave information inAF detection is due to the difficulty to reliably
characterize low amplitude f waves in the presence of noise, as well as to reliably
determine f wave characteristics from the TQ interval. Not only is it challenging to
determine the endpoint of the Twave inAF, but the TQ interval becomes increasingly
shorter as the heart rate increases. Eventually, the TQ interval may have shrunk to
such an extent that the f waves are completely concealed by ventricular activity,
thus precluding further analysis. This problem can, however, be addressed by means
of f wave extraction—a signal processing operation which is thoroughly reviewed
in Chap.5. While f wave extraction facilitates AF detection, it also increases the
complexity of the detector structure so that it may no longer be feasible to implement
in a battery-powered device.

Basal time domain information on f wave presence can be obtained by counting
the number of f waves in the TQ interval, with f waves considered present whenever
the count exceeds one, otherwise absent [104]. The width of a signal fluctuation
must exceed a certain threshold to be counted as an f wave; in [104], f wave width is
defined as the time elapsed between two level crossings. In order to avoid that noise
fluctuations are counted, the amplitude of a fluctuation must exceed an adaptive
threshold related to both the amplitude of the TQ interval and the peak amplitude of
the Twave. Another means to combat false counts of f waves is to first bandpass filter
the observed signal so that baseline wander and noise of muscular origin are reduced.
However, even with such filtering, it is well-known that f wave analysis relying on
level crossing patterns remains vulnerable to noise since the spectral content of
filtered muscle noise overlaps with that of f waves [21]. The consequences of a
vanishing TQ interval at higher heart rates, i.e., a count of zero f waves, was not
addressed in [104].

Spectral characterization is another approach to determining f wave presence,
assuming that f wave extraction is first performed so that all samples in the detection
window are suitable for spectral analysis, not just samples in the TQ interval [83,
100]. Since the spectral peak corresponding to the f wave repetition rate (dominant
AF frequency, DAF) is typically the largest, parameters describing signal bandwidth
have been proposed as a measure of f wave presence. Figure4.11a illustrates the
spectrum of an extracted f wave signal. In this example, the DAF, located at 6 Hz,
is the main spectral feature, but important information may also be conveyed by

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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the second and third harmonics, see Sect. 6.3.2. In general, two or more harmonics
are more likely to be present in patients with paroxysmal AF than in patients with
permanent AF.

The normalized spectral concentration is defined by [100], see also [105, 106],

FSC =
∫

Ωa

P ′
d̂
(ω) dω, (4.38)

where P ′
d̂
(ω) denotes the normalized power spectrum of the extracted f wave signal

d̂(n), defined by

P ′
d̂
(ω) = 1

σ 2
d̂

Pd̂(ω), (4.39)

and σ 2
d̂
the variance of d̂(n). The integration interval Ωa is centered around the

dominant spectral peak located within the interval [ωa,0, ωa,1], usually chosen to
be [4, 12] Hz. When f waves are present, the spectral concentration is closer to 1,
whereas it is closer to 0when sinus rhythm is present. The power spectrum Pd̂ (ω)may
be estimated using a nonparametric technique, e.g., Welch’s method, or a parametric
technique, e.g., Burg’s method [107].

Spectral entropy is another parameter used for determining f wave presence [83],
defined by

FSE = −
∫

Ωa

P ′
d̂
(ω) ln(P ′

d̂
(ω)) dω. (4.40)
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Fig. 4.11 The power spectrum of a an extracted f wave signal, and b a QRST-cancelled signal
observed in sinus rhythm. The two largest spectral peaks are indicated with vertical lines
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As the bandwidth of P ′
d̂
(ω) becomes increasingly narrower in Ωa , and thus more

likely to reflect AF, the spectral entropy becomes increasingly smaller.
Unlike FSE, the Kullberg–Leibler divergence, also known as relative spectral

entropy, accounts for the similarity between P ′
d̂
(ω) and a template power spectrum

P ′
t (ω) [83], defined by

FKL =
∫

Ωa

P ′
d̂
(ω) ln

(

P ′
d̂
(ω)

P ′
t (ω)

)

dω. (4.41)

Ideally, the template power spectrum P ′
t (ω) should be determined so that it is rep-

resentative of f waves for all patients, e.g., by computing a gross power spectrum
from a huge database with high quality f waves. However, not only varies the DAF
substantially from patient to patient, but so does f wave morphology. As a result,
the practical utility of a template power spectrum is limited, and the information on
f wave presence conveyed by FKL can hardly be viewed as representative. In [83],
P ′
t (ω) was determined from AFDB and used, in combination with FSE, to decide

whether f waves are present. The dominant peak of P ′
t (ω) was found to be located

at about 2 Hz, which is far below the expected range of the DAF.
Though not developed specifically for determining f wave presence in AF detec-

tion, a set of simple threshold tests have been proposed for judging whether the
structure of Pd̂(ω) relates to AF [108]. The tests involve the following ad hoc spec-
tral parameters:

• The SNR, where “signal” is defined as the mean of the magnitudes of the first
and second harmonics, and “noise” as the magnitude halfway between the two
harmonics.

• The deviation of the second largest peak in Pd̂(ω) from the expected position of the
second harmonic, aiming at excluding signal segments with a “ringing” spectrum,
e.g., due to P waves occurring at slow rates.

• The ratio between the magnitudes of the second largest and the largest peak in
Pd̂(ω), detecting when the second harmonic is too large.

• The squared error between the spectrumof the slidingwindowand an exponentially
averaged spectrum based on past signal segments not containing muscle noise or
residuals due to poor f wave extraction.

The spectrum in Fig. 4.11a fulfills the above four tests to be considered an AF spec-
trum, whereas the spectrum in Fig. 4.11b does not; the test outcome is correct in both
cases.

The additional value of including information on atrial wave morphology in AF
detection is illustrated in Fig. 4.12, where ECGs with either several APBs or respi-
ratory sinus arrhythmia are analyzed. Using the fuzzy logic detector in [100] which
processes information on P wave absence and f wave presence, none of the two
non-AF rhythms are detected as AF, whereas both are falsely detected as AF when
the coefficient of sample entropy ICSampEn of the RR intervals is used as detection
parameter [34]. The decision functions of the two detectors are displayed in Fig. 4.12.
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Fig. 4.12 Non-AF arrhythmias causing false alarms in rhythm-based detection, but not in rhythm
and morphology based detection: a Frequent atrial premature beats (marked with “∗”), and b respi-
ratory sinus arrhythmia. Atrial fibrillation is detected (thicker line) whenever the decision function,
denoted OR for rhythm-based detection [34] and O for rhythm and morphology based detec-
tion [100], exceeds the detection threshold

4.3.3 Noise Level Estimation

Although an AF detector must operate at highly varying noise levels, remarkably
little attention has been paid to the problem of how to adjusting detector operation
relative to such variation. Rather, the observed ECG signal is processed in the same
way, irrespective of the prevailing noise level [83, 87, 88]. One explanation to this
structural omission may be related to the challenge of how to integrate noise infor-
mation into the classifier so that information on atrial wave morphology becomes
increasingly discarded as the noise level increases, see Fig. 4.10. Another, more fun-
damental explanation may be related to the development of the noise level estimator
itself, which should be designed so that the estimate actually reflects the noise level,
but not the cardiac activity.
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One of the very few AF detectors operating in a noise-dependent mode was
proposed in [100]. In that detector, the extracted f wave signal d̂(n), produced by an
echo state network, serves as the starting point for estimating the noise level. The
estimator is defined by the root mean square value Rd̂ of d̂(n), weighted by a ratio
of spectral entropies:

N̂WRMS = Rd̂ ·

∫

Ωn

Pd̂(ω) log2 Pd̂(ω) dω

∫

Ωa

Pd̂(ω) log2 Pd̂(ω) dω

. (4.42)

The numerator is computed in a spectral band dominated by noise, defined by
Ωn ∈ [ωn,0, ωn,1], and the denominator in a spectral band dominated by f waves,
cf. (4.38). The definitions of spectral entropy in (4.40) and (4.42) differ with respect
to the logarithm—a difference with little importance from a practical viewpoint.
The estimator N̂WRMS produces smaller values when Pd̂(ω) reflects the presence
of f waves, but larger values when muscle noise and motion artifacts are present.
Figure4.13 illustrates the estimation of noise level, demonstrating that the estimate
tracks the changes in noise level during the last 15 s, while it remains uninfluenced
by the f waves of the first AF episode.

0 5 10 15 20 25 30

Time (s)

AF AF
(a)

(b)

(c)

Myoelectric noise

* *

Fig. 4.13 Noise level estimation based on (4.42). a The first 15 s of the signal are noise-free, then
followed by a 10s burst of myoelectric noise. The second AF episode is preceded by two atrial
premature beats (marked with “∗”). b f wave signal extracted using an echo state network. c The
noise level estimate N̂ , defined in (4.42), is delayed due to that it is computed in a sliding 5-beat
window
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The wavelet entropy of the samples in the TQ interval can, in addition to quan-
tifying P wave absence (Sect. 4.3.1), be used as a noise level estimator. While the
energy of P waves is mostly confined to one scale, the noise energy is more evenly
distributed across the different scales, implying that noise is associated with higher
wavelet entropy than P waves. It should be emphasized that the wavelet entropy
measures signal organization, and, therefore, contrary to the estimator in (4.42), not
proportional to noise level.

If the purpose of the noise level estimator is instead to provide information on
whether the RR interval sequence can be reliably analyzed for AF detection, other
approaches to noise level estimation may be considered [109–115]. For example,
the noise level can be associated with the differences in output from two different
QRS detectors, where one is tuned to be more sensitive to noise than the other; large
differences in QRS detection then represents an indirect measure of a high noise
level [111]. Thus, this type of signal quality index does not have to be integrated
into the classifier of the AF detector, but can be treated as independent information
indicating whether the samples in the detection window should processed [114].
Given that signal quality assessment is essential for f wave characterization, it is
further considered in Sect. 6.5.

4.3.4 Ectopic Beat Handling

Detectors which process information on both rhythm and morphology offer indirect
handling of ectopic beats, either through the analysis of P wave absence [87, 88] or
the analysis of P wave absence in combination with f wave presence [100]. None of
these detectors implement any of the techniques for ectopic beat handling previously
described in Sect. 4.2.5 for rhythm-based AF detection. When detection is confined
to analysis of P wave absence, the number of false detections due to frequent APBs
can be considerably reduced since an APB is preceded by a P wave, on condition
that the detector can cope with P wave morphologies that differ from the dominant
morphology in normal sinus rhythm [100]. A complication arises, however, when
APB prematurity is so pronounced that the P wave is hidden in the preceding Twave,
thereby increasing the risk of falsely detecting frequent APBs as AF. In addition,
frequent VPBs increase the risk of false detections since VPBs are not preceded by
a P wave. Despite these complications, detectors using information on both P wave
absence and f wave presence are likely to perform better in ectopic rhythms than
would a rhythm-based detector.

If AF detection is implemented in a system for automated ECG analysis, whether
for resting or continuous long-term recordings, classification of beat morphology is a
built-in functionalitywhichmaybe utilized for excluding segmentswithVPBs before
AF detection is performed. Such exclusion can also be based on beat classification

http://dx.doi.org/10.1007/978-3-319-68515-1_6
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performed jointly with AF detection [83]. Alternatively, the output of the built-in
beat morphology classifier can be used to augment the feature vector created for AF
detection.9

4.3.5 Classification

The considerations concerning classification in rhythm-based AF detection earlier
discussed in Sect. 4.2.6 are equally valid for detection based on both rhythm and atrial
wave morphology. With morphologic information included in the feature vector, the
noise level should also be included so that the reliability of the parameters describing
P wave absence and f wave presence can be assessed by the classifier. However,
such an approach has not yet permeated the design of detectors, but classifiers are
rather trained on data with considerable variation in noise level, with the objective
to produce a fixed classifier suitable for use on data with both low and high noise
levels.

Oneof the veryfirst rhythmandmorphologybaseddetectorswas described in [87],
where the decisions were based on a feature vector composed of one rhythm parame-
ter (the transition probability matrix of a stationary first-order Markov process [42])
and two Pwave related parameters (Pwave similarity and PR interval variability), see
Sect. 4.3.1. A regression decision tree technique was considered for classification,
implemented as a series of simple threshold tests, without involving any assumptions
on the statistical distribution of the features.

In order to classify more accurately the nine P wave amplitude features described
in Sect. 4.3.1, a multivariate mixture model was introduced in [88]. In this model,
the features are characterized by a PDF defined as a sum of Gaussians, where each
Gaussian is defined by its mean vector and covariancematrix. Themodel parameters,
as well as the number of Gaussians in the sum, are determined by the expectation–
maximization algorithm, requiring that a patient-specific training phase is first per-
formed [85]. Once the statistical model has been identified, the likelihood of P wave
absence is evaluated for each beat in the detection window. Based on the combined
likelihood for all beats in the window, a decision is taken whether an AF episode is
present.

The first detector architecture to offer joint processing of features describing
rhythm irregularity, P wave absence, as well as f wave presence, was proposed in [83,
121]. A feedforward artificial neural network (ANN) was used as classifier, trained
on a subset of records from AFDB.

A comparison of the performance figures listed in Table4.3 is unfortunately not
straightforward since both sensitivity and specificity differ from detector to detector.
Nonetheless, the performance figures clearly indicate that detectors based on both

9While classification of beat morphology is not reviewed here, it deserves to be mentioned that this
classification problem has received, and continues to receive, considerable attention in the literature,
see, e.g., [116–120].
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rhythm and morphology do not offer performance superior to that of rhythm-based
detectors. In fact, the much earlier presented rhythm-based detector in [31] offers
better performance than does the detector in [83], where account is made of both
P wave and f wave information. This, rather disappointing result may be explained
by the use of decision boundaries not adjusted in relation to the prevailing noise level.
Interestingly, the authors of [83, 87–89] all point out noise as an important source to
performance degradation of their respective detectors, although none of the detectors
were designed to account for noise.

In fact, few of the above-mentioned detectors have a structure which lends itself
to the handling of noise information. For example, it is unclear how an ANN-based
classifier trained on signals with low noise levels generalizes to signals with higher
levels. This observation is likely to apply also to classifiers based on a regression
decision tree or a Gaussian mixture model.10

The first AF detector to account for information on noise level was proposed
in [100], having a structure which agrees with that displayed in Fig. 4.10b. The
information fed to the classifier consists of four different parameters, describing
rhythm irregularity, P wave absence, f wave presence, and noise level as defined by
(4.42). The classification is based on a Mamdani-type fuzzy logic in which the four
input parameter values aremapped by amembership function to indicate the degree of
belonging to a certain fuzzy set. For the parameters describing rhythm irregularity,
P wave absence, f wave presence, the fuzzy sets relate to sinus rhythm and AF,
whereas the fuzzy set relates to low level and high level for the noise parameter.
The fuzzified parameter values are then combined using a set of fuzzy if–then rules,
producing an output between 0 and 1 reflecting the likelihood that the detection
window contains AF. With simplicity as the guiding star, the fuzzy rules are defined
such that more weight is assigned to rhythm irregularity, and less weight to P wave
absence and f wave presence, when the noise level is high, and vice versa when the
noise level is low [100]. An AF episode is detected whenever the output exceeds
a fixed threshold, which, for the example presented in Fig. 4.14 as well as for the
overall detector evaluation, was simply set to 0.5.

An important advantage with the fuzzy logic classifier is that no training phase is
required. On the other hand, the membership functions and fuzzy rules are defined
by a large number of parameters which need to be set to reflect basic knowledge on
AF. It should be noted that detector in [100] has not been subject to performance
evaluation on AFDB since the method for f wave extraction requires a reference lead
with negligible atrial waves which is not available in all recordings of that database.

Another approach to noise-dependent classification is to simply exclude beats
whose noise level exceeds a certain fixed threshold [89]. The noise threshold is
chosen so that the agreement with manual annotation of noisy beats is optimized.
In noisy ECG segments, detector operation is suspended as information on P wave

10Neither is noise level taken into account in classification of beat morphology, even though it
is well-known that certain beats are difficult to cluster due to excessive noise. This problem was
indirectly addressed in [120], where an elegant technique based on switching Kalman filters was
proposed for detecting “strange” beat morphologies falling outside the well-established clusters.
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Fig. 4.14 Rhythm and morphology based AF detection using a fuzzy logic classifier. The example
in Fig. 4.13 is here extended to also include trends on rhythm irregularity (R), f wave presence (F),
and P wave absence (P)

absence cannot be determined. This property stands in contrast to the detector in [100]
which continues to operate at higher noise levels, but then “resorting” to information
on rhythm irregularity.

It should be noted that the most recent rhythm and morphology based detector
listed in Table4.3 offers slightly better performance than do any of the other detec-
tors. This detector is based on a deep convolution neural network whose input is
either the short-term Fourier transform (STFT) or the stationary wavelet transform
of consecutive 5 s segments of the ECG signal, i.e., the input signal contains both
atrial and ventricular activity [90]. Thus, the design of the detector is not driven by
physiology—none of the three properties mentioned in the beginning of this chapter
are taken into consideration—but emphasis is given to general ECG properties as
well as nonphysiological aspects such as whether color or greyscale should be used
to represent the STFT. While this approach to AF detection has potential, the perfor-
mance figures must be called into question for reasons related to the use of a subset
of AFDB in combination with tenfold cross-validation, further discussed in Sect. 4.6.
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4.4 Implementation Aspects

When AF detection is to be implemented in a battery-powered, portable device,
aspects such as computationally efficient algorithms and minimized memory usage
are essential to ensure so that the device can operate continuously over an extended
period of time. These requirements become even more crucial when AF detection is
to be implemented in an implantable device, for example, a loop recorder. However,
details on detector implementation are sparse in the literature, and those which have
been published apply to rhythm-based detection where the input data, i.e., the RR
series, has a very low rate, thus requiring few computations. On the other hand, for
detectors exploring both rhythm and morphology, the input data rate is dramatically
higher since the analysis of atrial wave morphology requires that the original ECG
samples are available.

Thus, the amount of computations differs vastly between AF detectors, ranging
from the simple rhythm-based detector using bin counts of the RR-based Poincaré
plot to make decisions [33] to the detector using an echo state network for f wave
extraction and fuzzy logic for decision-making [100]. The former detector can be
implemented without multiplications, whereas the latter detector requires a huge
amount of floating point multiplications as well as much memory to implement the
different processing steps. Detailed information on the required amount of compu-
tations and memory is lacking for most detectors, with the exception of the rhythm-
based detector exploring the combination of symbolic dynamics and the Shannon
entropy as detection principle [41]. The computational complexity is analyzed by
determining the number of arithmetic operations, shifts, and conditional expressions
required per RR interval. Another, much more sweeping approach is to determine
the time required by the central processing unit (CPU) and the amount of memory
consumed during AF detection [122]. However, figures on CPU time and memory
consumption are heavily system-dependent, and, therefore, it is difficult to make a
fair comparison to the figures reported in other studies.

Hardware implementation of an invasive AF detector not only must consider
requirements on computational complexity, but also energy dissipation when oper-
ating in idle and active mode. Idle energy is dominated by the leakage drawn by the
memory retaining data, and active energy is minimized by reducing computational
complexity. For a rhythm-based AF detector, with its low input data rate, minimiza-
tion of computational complexity may, in fact, turn out to be less of a concern than
minimization of required memory.

The rhythm-based detector in [32], using the number of turning points NTP, the
root mean square of successive differences PRMSSD, and the Shannon entropy IShEn
as parameters for characterizing the RR interval series, has been implemented in
hardware, resulting in a fabricated application-specific integrated circuit (ASIC)
optimized for ultra-low voltage operation [123]. The main reason for choosing the
detector in [32] for implementation was that no storage of data was required for
online training. It was demonstrated that the three parameters can be efficiently
implemented thanks to that resource sharing of arithmetic units reduces the require-
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ments of memory capacity, and that time multiplexing efficiently implements the
arithmetic operations required to evaluate the conditions in (4.33)–(4.35) to remove
VPBs. A potential AF episode is detected when all three threshold tests are fulfilled,
each test involving one parameter. Rather than computing all three parameters first,
only the parameter with the lowest cost from an energy consumption perspective is
computed and tested. If the test is not fulfilled, the computation of the other param-
eters is unnecessary, and so on; NTP was found to be the parameter with the lowest
cost. The results suggested that the energy required to operate the detector for several
years is well within what is provided by the battery of an implantable device [123].

4.5 Performance Measures

The predominant approach to quantifying detection performance is to compare the
labels of the detected beats to those of the annotated beats contained in the database—
the labels being either AF or non-AF. Such a comparison results in the following
four counts,

NTP = #beats in AF correctly detected as AF (true positive),

NTN = #beats in non-AF correctly detected as non-AF (true negative),

NFP = #beats in non-AF falsely detected as AF (false positive),

NFN = #beats in AF falsely detected as non-AF (false negative),

which are required for computing the two most commonly used performance mea-
sures,

Sensitivity = NTP

NTP + NFN
, (4.43)

Specificity = NTN

NFP + NTN
. (4.44)

Performance is often studied by displaying sensitivity versus (1−specificity) for
different values of a detection threshold, resulting in the ROC [34, 37]. From this
curve, the threshold value achieving the desired trade-off between sensitivity and
specificity can be chosen. The ROC is sometimes condensed into an overall, scalar
measure defined as the area under the curve (AUC), where an area of 1 represents
perfect performance and an area of 0.5 random performance. The AUC is considered
a robust performance measure because all possible detection thresholds are involved.
In AF detection, certain parameter values have been determined by maximizing the
AUC [39, 41, 51, 88].

In addition, the following measures have been employed to describe detection
performance:
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Positive predictive value = NTP

NTP + NFP
, (4.45)

Detection accuracy = NTP + NTN

NTP + NFN + NFP + NTN
. (4.46)

It should be noted that detection accuracy should only be used when the two classes
AF and non-AF have approximately the same size. Otherwise, Matthews correlation
coefficient may be a better choice to evaluate the performance of binary classifiers
such as the ones used in AF detection [124, 125].

Sensitivity and specificity based on the counts from a beat-to-beat comparison
obviously convey important information on detection performance; however, these
twomeasures also suffer from the disadvantage of not reflecting the episodic nature of
paroxysmal AF. This is illustrated by the following scenario where an ECG recording
is assumed to contain two AF episodes, one hour-long and another just 10-beat-
long. The detector correctly identifies the long episode, but misses the brief one—a
likely scenario given that the window length of most AF detectors precludes the
detection of a 10-beat episode. The change in sensitivity due to a missed, brief
episode is negligible, and illustrates that performance measures based on a beat-
to-beat comparison tend to gloss over when brief episodes are missed. Accordingly,
valuable clinical information may be lost. A similar glossing takes place in situations
when numerous brief episodes are falsely detected, although the corresponding ROC
still indicates almost perfect performance; this drawback is illustrated by the example
in Fig. 4.15.

A kindred solution would be to replace the beat-to-beat comparison with an
episode-to-episode comparison. Such a replacement will, however, raise a number
of questions which need to be resolved: What is the meaning of “true negative” in
episode-based detection? To what extent must the detected episode overlap with the
annotated episode to be treated as a correct detection? Should a minimum duration
be imposed on a detected episode to avoid that single beats, falsely labeled as AF
beats, are counted as AF episodes?

Inspired by the work in [126] on performancemeasures appropriate for evaluating
the detection of transient ischemia in long-termECG recordings, these questions have
been discussed in the context of AF detection [36]. Since an episode of non-AF beats
has little meaning, the number of true negatives NTN is undefined, and, therefore,
only sensitivity and positive predictive value can be computed, requiring that the
following, redefined counts are determined:

NTP = #AF episodes correctly detected as AF episodes (true positive),

NFP = #non-AF episodes falsely detected as AF episodes (false positive),

NFN = #AF episodes falsely detected as non-AF episodes (false negative).

An episode is judged as correctly detected if it overlaps the annotated episode with at
least 50%, otherwise the episode is labeled non-AF [33].While theminimumduration
of a detected episode not necessarily has to be stated, it is indirectly determined by
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Fig. 4.15 a An RR interval series x(n) and b AF episode annotation. c Output from a detector
based on the coefficient of sample entropy (computed in a 12-beat window), and d related ROC.
The detector correctly identifies the single AF episode, but also produces numerous false detections
due to the presence of ectopic beats. Still, the corresponding ROC indicates that almost perfect
detection performance is achieved

the choice of window length. For a 100-beat window, the beat-based sensitivity of
0.92, reported in [36] and listed in Table4.1, dropped to 0.71 when episode-based
sensitivity was considered instead. This drop in sensitivity illustrates that the use of
a 100-beat window precludes the detection of brief episodes.

Episode-based performance measures have not yet gained a foothold in the litera-
ture on AF detection, although such measures provide information which is comple-
mentary to beat-based measures. The popularity of beat-based measures may be due
to their ease of computation, but also to themany ECG applications where beat-based
performance measures have become well-established. However, neither beat-based



4 Detection of Atrial Fibrillation 121

nor episode-based measures provide information on the detectability of episodes
with varying lengths.

Thedelaybetween the annotatedonset of the episode and theonset producedby the
detector represents another type of performancemeasurewhich has received attention
in the literature [32, 35, 39, 89]. From an algorithmic viewpoint, the time delay
introduced by the detector needs to be established tomake a comparisonwith episode
onset/end annotations meaningful. From a clinical viewpoint, however, a short time
delay is of subordinate importance to the above-mentioned performance measures,
since very few ECG applications call for immediate action after the initiation of an
episode.

4.6 Detection Performance

4.6.1 ECG Databases

Detection performance is commonly evaluated on one or several publicly available,
annotated databases of long-term ECG recordings, where AFDB holds the position
as the most popular database. While the availability of public databases certainly
facilitates the comparison of performance, conclusions drawn from the performance
figures presented in Table4.3, or the tables presented in e.g., [86, 89, 127], should
be made with caution for a number of reasons. Since both specificity and sensitivity
differ from one detector to another, performance is not easily compared. Better,
though not perfect, is to first compute the ROC for each detector, and then determine
the sensitivity at a fixed specificity, or vice versa, which leads to a more relevant
comparison.

Another complicating factor is that detection performance is not always estab-
lished from the analysis of the entire AFDB, but from a subset of varying size.
In some studies, records 4936 and 5091 were omitted, since the annotations were
deemed to be incorrect (AFDB1) [32, 37].While rhythm-based detectors can analyze
all 25 records of the AFDB, only 23 records can be analyzed by detectors based on
rhythm and morphology since two records lack the original ECG signals (AFDB2).
Yet another complicating factor is that certain detectors require a minimum length of
normal sinus rhythm to fulfill detector training, in one case leading to the exclusion
of as many as 5 out of the 25 records (AFDB3) [88]. Moreover, in detector train-
ing, it is highly desirable to analyze data sets containing AF and non-AF segments
which are balanced in size. A straightforward approach to handling the fact that
AFDB contains about 80% more non-AF segments than AF segments is therefore
to discard the excess amount of non-AF segments (AFDB4) [90]; unfortunately, the
non-AF data set cannot be reproduced in other studies since the segments were ran-
domly excluded. However, such a drastic exclusion of data precludes anymeaningful
comparison of detection performance—a fact which should be kept in mind when
assessing the results in Table4.3.
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From a comparative perspective, the picture becomes even more complicated
when performance is evaluated on tiny subsets of RR interval series [67] or beats
[127], excerpted from the records in AFDB. Such data excerption not only tends to
exaggerate performance figures due to inclusion of better-than-average data quality,
but the reproduction of results is not possible due to the lack of detail on what data
were actually excerpted.

Other public databases have been analyzed to provide a more complete descrip-
tion of detection performance, notably NSRDB, MIT–BIH Arrhythmia Database
(MITDB), andLong-TermAFDatabase (LTAFDB) [98], see Sect. 3.1. SinceNSRDB
contains no significant arrhythmias, it can only provide information on specificity,
e.g., [32, 33, 35, 37, 41, 51]. The MITDB contains several types of arrhythmia,
includingAF and atrial flutter, andmay be used to evaluate both specificity and sensi-
tivity [32, 33, 37, 41]; however, as pointed out in Sect. 3.1,MITDBcontains relatively
few AF episodes, and, consequently, performance figures describing episode detec-
tion are not representative. The LTAFDB, containing many more and much longer
ECG recordings than AFDB, is well-suited for performance evaluation, though not
very often used [41].

Some studies involve proprietary ECG databases, acquired to strengthen the
results obtained on public databases [37], or used for classifier training [100].Another
reason for acquiring a database is that public databases do not always account for
the signal characteristics pertinent to the application of interest.

4.6.2 Training and Evaluation

Widely different approaches have been considered for classifier training and per-
formance evaluation—an observation illustrated by the way different data sets are
handled by the detectors listed in Table4.3. In some studies, either a proprietary
database or LTAFDB were used for training, accompanied by a performance eval-
uation on AFDB [38, 40, 41, 87]. Such an approach is preferred since it avoids
that the same patients are used for both training and evaluation. In other studies, no
information is provided on the data set used for training [33, 37], whereas AFDB or
some other databases is used for evaluation.

With respect to training, AFDB has been used to determine optimal detection
thresholds [32, 34], or to select an optimal set of features for classification [36],
accompanied by performance evaluation on other databases. Although the results
from evaluation are the important ones in these studies, the positively biased results
obtained from training on AFDB were also reported. Later on, these results have
been included in comparisons of detector performance [38, 88, 89, 128], although
the figures are not fully representative. This observation applies even more to the
results reported in [35], where AFDB was used for both detector development and
evaluation.

In an effort to reduce positive bias, AFDB can be partitioned into different sub-
sets, one for training and another for performance evaluation. The subsets have

http://dx.doi.org/10.1007/978-3-319-68515-1_3
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been formed either by random selection of non-AF/AF segments, division into dis-
joint subsets of equal size for use in stratified twofold cross-validation [39], or ten-
fold cross-validation [90]. A small subset of AFDB was used in [83] for training,
whereas the entire AFDB was used for evaluation. One of the subsets was used for
training in [39] and the other for evaluation, followed by reverse use of the two
subsets; the results from the two evaluations were then averaged to yield the overall
performance. It is highly questionable whether the performance figures of cross-
validation on AFDB can be compared to those obtained for a detector which have
been trained on a separate database, especially when considering that AFDB only
contains 25 patients [129].

The above-mentioned approaches to training and evaluation are population-based,
however, patient-based training may be pursued as well [88]. For each patient in
AFDB, detector training was based on the initial part of the ECG record, whereas
evaluation was based on the remaining part. However, before training, all beats
with “irregularities” were excluded from the training data set using manual review,
introducing positive bias in the results. In addition, the practical use of the detector is
limited since good-quality signals are not always available for training, nor is manual
review prior to AF analysis feasible in clinical routine.

Based on the above considerations, it is evident that a comparison of detection per-
formance is seriously challenged by the presence of positive bias. Independent data
sets for training and evaluation should ideally be analyzed, however, not uncom-
monly, the same patient is part of both data sets. Therefore, as already pointed
out, caution should be exercised when comparing detection performance, e.g., with
respect to sensitivity and specificity as in Table 4.3.

It deserves to be noted that AF detectors using adaptive filtering for f wave extrac-
tion, such as the one in [100], cannot be trained and evaluated on AFDB since none
of the two leads is appropriate for use as a reference lead, i.e., none of the leads con-
tains negligible atrial activity. This problem may be addressed using a proprietary
multi-lead database for training, and simulated multi-lead signals for performance
evaluation [100].

4.6.3 Simulated ECG Signals

Performance evaluation is typically based on real ECG signals annotatedwith respect
to the onset and end of AF episodes, whereas simulated ECG signals are rarely used.
This stands in contrast to the evaluation of f wave extraction performance, where
simulated signals are frequently used—the main reason being that manual annota-
tions are irrelevant in f wave extraction. Nonetheless, simulated ECG signals have
a place in AF detection since certain properties of clinical or technical significance,
e.g., atrial ectopy, episode duration, and noise level, can be easily controlled in such
signals, whereas public databases may not allow adequate investigation of these
properties.
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Detection accuracy has been investigated on simulated signals with different noise
levels, both with andwithout the presence of APBs [100]. The results put spotlight on
the importance of proper handling of APBs, and show that detection based on both
rhythm and morphology provides much higher accuracy than does rhythm-based
detection in the presence of APBs, especially at lower noise levels where P wave
absence and f wave presence can be reliably estimated. A similar relationship exists
betweendetection accuracy and episode duration, i.e., detection basedonboth rhythm
and morphology provides much higher accuracy in finding brief episodes of varying
duration than does rhythm-based detection (5, 10, 20, and 30-beat duration were
investigated).

SimulatedECGsignals can also serve as ameans to establish theSNRbelowwhich
AF detector operation no longer is recommended. In one of the few studies to address
this issue, simulated muscle noise was added to real ECGs, contained in LTAFDB, at
different SNRs [114]. The noisy ECG signals were then used to evaluate the influence
of noise on QRS detection, as well as on rhythm-based AF detection. The results
suggested an essentially linear reduction in AF detection accuracy with respect to
SNR when expressed in terms of decibels. The evaluation of performance in noise
is even more important for AF detectors analyzing both rhythm and morphology.

4.6.4 Brief AF Episodes

Despite the clinical interest in occult PAF and related risk of future stroke, little atten-
tion has been paid to the detection of brief AF episodes. Although AFDB contains
a few brief episodes, it is completely dominated by long episodes, cf. Fig. 3.1b, so
that missed brief episodes have little influence on beat-based performance measures.
Interestingly, some studies report the number of missed brief episodes: 30 out of
the 254 episodes in AFDB1 were missed by the detector in [32], all missed episodes
having a duration less than 75 beats. In another study [35], 32 out of the 299 episodes
in AFDB were missed, the main reason again being missed brief episodes (durations
from 4 to 62 beats).

Indirect evaluation of performance with respect to brief episodes can be accom-
plished by analyzing the influence of different lengths of the detection window
on performance. The window length imposes a minimum duration on AF episode
detectability. While the exact relationship between window length and episode dura-
tion depends on the detection principle used, an episode with a duration of about
half the window length or shorter will, in general, be missed, illustrated in Fig. 4.16.
The choice of window length is a trade-off: a shorter window facilitates the detec-
tion of brief AF episodes, whereas a longer window implies more reliable parameter
estimates (assuming that the window contains the same rhythm), but also a larger
amount of computations.

Over the years, the trend has been to design detectors with increasingly shorter
windows, primarily motivated by the wish to reduce the time to decision [32, 89]
and the amount of computations [84]. The recommended window length in rhythm-
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the second AF episode is indicated. (Reprinted from [32] with permission)

based detection has decreased from 180s in 1992 [130] to just 8 beats in 2015 [40],
whereas, for rhythm and morphology based detectors, even shorter window lengths
has been considered, i.e., 5 beats [100].

The degradation in performance when using a short window is well-illustrated by
the detector based on the time-varying coherence function [37], briefly described in
Sect. 4.2.3. Using a 128-beat window, sensitivity of 98.2% and specificity of 97.7%
were obtained onAFDB1, seeTable4.1.Using instead a 32-beatwindow, the sensitiv-
ity and specificity dropped to 96.7% and 96.1%, respectively. Despite the degradation
in performance, the authors concluded that a shorter window is still of interest, since
it will likely provide a more accurate description of AF burden. For the simple-
structured detector exploring the distribution of the Poincaré point population [33],
the use of a 128-beat window resulted in a sensitivity of 95.9% and a specificity of
95.4%, dropping to 94.4% and 92.6%, respectively, for a 32-beat window.

Alternatively, direct evaluation of performance can be accomplished by means
of simulated ECG signals in paroxysmal AF, where episode duration is controlled
by a set of model parameters [40]. The direct approach to evaluation is illustrated
in Fig. 4.17, where detection accuracy is presented as a function of median episode
duration, denoted TE, for two different AF detectors. The simulated signals are pro-
duced by the model described in Sect. 3.3, and constructed from either synthetic
or real components. Figure4.17 underlines not only the expected result that shorter
episodes imply decreased detection accuracy, but it also demonstrates that a detector

http://dx.doi.org/10.1007/978-3-319-68515-1_3
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Fig. 4.17 Detection accuracy as a function of median episode duration TE when the ECG signals
are generated using a synthetic and b real components. The noise level is set to 20µV RMS. The
rhythm-based detector is described in [40], and the detector based on both rhythm and morphology
in [100]

based on rhythm and morphology performs better than a detector based on rhythm-
only; the difference in performance increases as TE becomes increasingly shorter.
Comparing Fig. 4.17a and b, it is obvious that detection accuracy is essentially inde-
pendent of whether synthetic or real components are used to produce the simulated
ECG. However, as TE becomes increasingly shorter, the difference in performance
between the detector based on rhythm and morphology and the detector based on
rhythm-only becomes increasingly larger for real components than for synthetic com-
ponents. This drop in performance is likely explained by the pathological rhythms
present in the database from which the RR interval series were extracted.

4.7 Additional Detector Information

Certain ECG signal properties have been explored for the purpose of predicting either
the onset or the end of an AF episode. Similar to heart rate, the properties are not
of immediate importance to detector design, but may be integrated in the detector,
for example, using a threshold whose level is adjusted in relation to the proneness
with which a transition occurs from sinus rhythm to AF, or vice versa. Whether such
integration improves detection performance remains to be demonstrated.Considering
that more than 90% of all AF episodes are triggered by APBs [131–135], successful
prediction of AF onset can be accomplished with a simple test on whether the rate
of APBs, not followed by a regular RR interval, increases. This test is combined
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with other tests on runs of atrial bigeminy/trigeminy and the duration of short runs
of paroxysmal atrial tachycardia [136].

Another approach to predicting the onset of paroxysmal AF is to analyze changes
in heart rate variability (HRV) which may precede an AF episode. Indeed, in many
patients, AF onset is immediately preceded by a significant reduction of the ratio
between the low and the high frequency HRV components [137–139], a pattern
which is not detectable after spontaneous recovery of sinus rhythm [140]. Alterna-
tively, changes in HRV may be characterized by entropy, with results suggesting
that AF onset is preceded by reduced complexity of the RR intervals [141], see also
[142]. In yet another approach, AF onset could be predicted by combining spectral,
bispectral, and nonlinear features, using a machine learning technique for classifica-
tion of the preceding HRV pattern [143]. For the above-mentioned studies on APB-
and HRV-based prediction, a 30-min segment immediately preceding AF onset is
usually considered for evaluating prediction performance.

Different P wave properties have been explored for predicting AF. For example,
changes in P wave morphology due to abnormal interatrial conduction are observed
in patients bound to develop AF [144, 145], prolongation of the maximum P wave
duration may predict recurrent AF [146–148], as well as shortening of the minimum
P wave duration [147, 149]. Moreover, changes in the dynamics of P wave morphol-
ogy may predict AF onset [96, 148]. However, changes in P wave properties occur
over a much longer time frame than changes associated with APB- and HRV-based
prediction: the former type of changes occurs over weeks to months, whereas the
latter over minutes. Hence, information on P wave related changes are less useful in
AF detection.

The prediction of AF termination takes its starting point in the analysis of f wave
properties, and typically requires that the ventricular activity has been cancelled
before prediction can take place. Among the properties explored, the DAF has been
found to exhibit gradual slowing just before termination of paroxysmal or persistent
AF [150, 151]. Results from studying the wavelet entropy of f waves, employed as a
measure reflecting unpredictability in time as well as frequency, suggest that f waves
are characterized by decreasing entropy as the termination is approaching [152].

Information on physical activity will most likely play a role in AF detection
in the quest to reduce the number of falsely detected episodes, especially since
accelerometers are nowadays standard implementation in ECG devices. Although
it remains to be demonstrated that AF detectors analyzing both bioelectrical and
physical information offer better performance, a preliminary study shows that the
number of falsely classified arrhythmias due to noise and artifacts can be considerably
reduced when accelerometer information is taken into account [153]. The potential
of accelerometer information in AF detection is further supported by results showing
that AF episodes can be detected from accelerometers attached to the chest [154], or
from an electromechanical vibration sensor attached to a bed mattress [155], without
involving the analysis of the ECG.
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