
Chapter 3
Databases and Simulation

Leif Sörnmo, Andrius Petrėnas and Vaidotas Marozas

3.1 Public ECG Databases

The availability of public databases is essential as it enables researchers to establish
whether a novel method performs better than the existing ones. Many of the public
ECG databases relevant to engineering-oriented research on atrial fibrillation (AF)
are available for download at PhysioNet (www.physionet.org), a free web resource
with a huge collection of physiological signals and software [1]. The Physionet
databases have played, and continue to play, a crucial role in the development of AF
detectors and the evaluation of their performance (Chap. 4), whereas they hardly play
any role in the development of methods for f wave extraction (Chap. 5) and f wave
characterization (Chap.6).

The PhysioNet databases include beat-based annotations such as occurrence time
and type of beat, but often also arrhythmia-based annotations such as type and
onset/end of arrhythmia. Annotations on beat occurrence time may be automated
and provided by a well-performing QRS detector, whereas arrhythmia-based anno-
tations are usually provided by one or several experts, implying a considerable work
effort to annotate a database consisting of long-term continuous ECG recordings.
Unfortunately, information on the annotation process is usually scarce, and details
are almost invariablymissingon the number of annotators involved, the level of exper-
tise among the annotators, and how consensus was reached in cases of disagreement.
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Considering that some ECG databases have evolved into virtually becoming stan-
dards, information on the annotation process should, preferably, be transparent to the
user.

In the following, the most popular public databases employed in engineering-
oriented research are briefly described.

The MIT–BIH Atrial Fibrillation Database (AFDB) consists of 25 10-h, two-lead
ambulatory ECG recordings of patients with AF, mostly paroxysmal [2]. The signals
were acquired using an analog device with a bandwidth of approximately 0.1–40Hz,
sampled at a rate of 250Hz, and quantized with 12-bit resolution over a range of
±10mV. Two of the 25 recordings contain only the RR interval series, but no ECG
signal, and can therefore only be used in RR-based analysis. Information on lead
placement is missing.

The database was manually annotated with respect to type of beat, type and
onset/endof arrhythmia, resulting in a total of 297AFepisodeswith durations ranging
from as few as 3 beats to tens of thousands of beats.

The distributions of AF episode duration and RR intervals provide interesting
information on the properties ofAFDB. Figure3.1a presents the histogramof episode
duration, with an exponential-like decay, except that 29 episodes have durations
exceeding 2000 beats. Together, these 29 episodes account for as much as 82% of
the total time the patients are in AF; when computed in individual patients, this
percentage is commonly referred to as “AF burden.” The fact that a small number of
episodes can dominate the total time a patient is in AF highlights an important
limitation of the commonly used detection performance measures, to be further
discussed in Sect. 4.5.

Figure3.1b presents the histogram of all RR intervals in AFDB, with most
RR intervals ranging from 0.3 to 1.5 s. Asmany as 25% of all RR intervals are shorter
than 0.5 s, thus imposing an important constraint on methods exploring f waves in
the TQ interval; this constraint applies especially to methods for f wave extraction,
see Chap.5. For an RR interval of 500ms and a QT interval with a typical length of
350ms, the TQ interval is only 150ms, which for a dominant atrial frequency (DAF)
of 5Hz implies that less than one f wave is contained in the TQ interval.
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Fig. 3.1 Histograms of a AF episode duration and b RR intervals in AF, determined from the
MIT–BIH AF Database
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The Long-Term AF Database (LTAFDB) consists of 84 two-lead ambulatory ECG
recordings obtained in patients with paroxysmal or persistent AF, lasting from 24
to 25h [3]. The signals were sampled at a rate of 128Hz and quantized with 12-bit
resolution over a range of ±10mV. Information on bandwidth and lead placement is
missing.

The beat-based annotations were automated, whereas the arrhythmia-based anno-
tations resulted from manual review of the output of a commercial system for ECG
analysis. More than 7000 AF episodes are contained in LTAFDB, and therefore it is
the public database with the largest number of episodes.

The temporal occurrence pattern of AF episodes is presented in Fig. 3.2 for four
different patients; the onset and end of an episode are given by manual annotations.
These four examples illustrate that the temporal occurrence pattern can differ dra-
matically between patients.

The AF Termination Database (AFTDB) is a subset of LTAFDB composed of 80
1-min excerpts from patients with spontaneously terminating or persistent AF [4].
The database was compiled for the purpose of predicting spontaneous termination
of AF. The 80 records are divided into a training set with 30 records and two test sets
with 30 and 20 records, respectively.

The Short Single-Lead AF Database (SSAFDB) consists of 12,186 single-lead
ECG recordings obtained from a smartphone-based device, lasting from 9 to 60s [5].
The signals were sampled at a rate of 300Hz, quantized with 16-bit resolution over
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Fig. 3.2 Examples of temporal occurrence patterns of episodes in paroxysmal AF, obtained from
four patients monitored over a 24-h period, being part of the Long-Term AF Database. a A few
long episodes which together extend virtually the entire monitoring period, b numerous, often
short episodes which together extend virtually the entire monitoring period, c many short episodes
aggregated in a 5-h period, and d a short episode followed by a much longer 3-h episode
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a range of ±5mV, with a bandwidth from 0.5 to 40Hz. Although the lead is not
specified, the vast majority is lead I since it is the simplest to record with the device.

The database is divided into a training set with 8,528 recordings and a test set
with 3,658 recordings. Each recording is manually annotated using the following
four categories: 1. Normal sinus rhythm, 2. AF, 3. other rhythm, and 4. too noisy to
classify, with 5076, 758, 2415, and 279 recordings in each of the categories of the
training set. A category applies to the entire ECG recording, even if an arrhythmia
is only partially present. No beat-based annotations are provided.

Since the smartphone-based device is used for home-based screening, and thus
operated by the patient, the quality of the recording is generally much lower than,
for example, in long-term continuous recordings. In addition, f wave amplitude is
generally lower in lead I than in lead V1, which is the preferred lead for f wave
analysis. Signal quality can be quantified using an index which determines the suit-
ability of analyzing f waves in 5-s signal segments [6], see also Sect. 6.5 for a brief
description. The signal quality index is normalized to the interval [0, 1], where 1
represents the highest quality; a suitable cut-off value for acceptable signal quality
is 0.25. Figure3.3a presents the histogram of the signal quality index, computed in
nonoverlapping, 5-s segments of all recordings of SSAFDB annotated as AF. Using
0.25 as the cut-off value, 83% of all recordings in SSAFDB have a signal quality
which is too low for f wave analysis.

The original purpose of compiling SSAFDB was to evaluate the performance of
classifiers designed to handle short ECG segments, whereas long-term ambulatory
ECG databases such as AFDB and LTAFDB have primarily been used to evaluate
performance in terms of how accurately AF episodes can be detected. Thus, different
types of algorithms are evaluated on SSAFDB and AFDB/LTAFDB.

The MIT–BIH Arrhythmia Database (MITDB) contains 48 half-hour excerpts of
two-channel ambulatory ECG recordings, obtained from 47 subjects [7]. The signals
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Fig. 3.3 Signal quality assessed on all AF recordings in a the Short Single-Lead AF Database and
b the Lund AF Database (lead V1), using an index (S) which determines the suitability of analyzing
f waves [6]. The results are presented as relative histograms
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were sampled at a rate of 360Hz and quantized with 11-bit resolution over a range
of ±10 mV. Information on bandwidth and lead placement is missing.

Since only eight recordings contain AF, with a total of 105 episodes, the main
value of this database is to investigate detection performance in the presence of
non-AF arrhythmias such as atrial flutter, bigeminy, and trigeminy.

The MIT–BIH Normal Sinus Rhythm Database (NSRDB) includes 18 long-term
ECG recordings of subjects without significant arrhythmias. Hence, only the speci-
ficity of an AF detector can be investigated with this database, for example, in the
presence of respiratory sinus arrhythmia.

3.2 Non-public ECG Databases

Although public databases have eliminated much of the time-consuming work
involved with data collection, the need to collect databases which are well-matched
to a particular research problem nevertheless remains. This will ensure that meth-
ods development and performance evaluation are carried out on relevant data. For
example, the development of methods for f wave characterization calls for databases
obtained with ECG leads which are more relevant than those of the above-mentioned
public databases. In fact, the collection of matched databases promotes diversity in
research in a way which public databases historically have not done. Although most
matched databases are non-public at the outset, either proprietary or available at a
cost, it can be hoped that they sooner or later become public to benefit a larger group
of researchers.

Considering that many public databases were collected using old recording tech-
nology, whereMITDB is one of the oldest, dating to 1982, another important motiva-
tion for collecting databases is to benefit frommodern recording technology, offering
higher sampling rate, larger bandwidth, lower noise level, more leads, and longer
acquisition period.

The Lund AF Database exemplifies the numerous non-public databases collected
over the years, with the purpose of developing and evaluating methods for f wave
characterization [8]. The database contains 211 12-lead extended ECG recordings
obtained at rest from patients with AF, mostly persistent (in some studies, a 1-min
segment was extracted from each patient in this database to ensure AF presence
throughout the segment). The signals were sampled at a rate of 1000Hz, quantized
with 16-bit resolution over a range of±10 mV, with a bandwidth from 0.1 to 300Hz.
No annotations are provided.

Figure3.4a presents the RR interval histogram of the Lund AF Database, resem-
bling the RR interval histogram of AFDB shown in Fig. 3.1b. Since the histogram in
Fig. 3.4a is obtained from signals recorded at rest, it would likely have been shifted
leftwards towards shorter intervals had the database been recorded during physical
activity, with implications on the length of the TQ interval and related analysis.
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Fig. 3.4 Histograms of a RR intervals and b f wave amplitude in lead V1, determined from 1-min
segments of the Lund AF Database

The histogram of f wave amplitude in lead V1 is presented in Fig. 3.4b. Here,
amplitude is defined as the root mean square (RMS) value of the samples contained
in the TQ interval, beginning 350ms after a QRS complex and ending 50ms before
the preceding QRS complex; no amplitude measurement was made in TQ intervals
shorter than 250ms. Section 6.2 provides an overview of different approaches to
measuring f wave amplitude.

Figure3.3b quantifies that the signal quality in lead V1 of the Lund AF database
is superior to that of SSAFDB. This result is, of course, expected since the former
database was recorded during rest, under the supervision of a technician who made
sure that the electrodes were properly attached. Using a cut-off value of 0.25, 11%
of all recordings have signal quality which is too poor for f wave analysis, to be
contrasted with the above-mentioned 83% of SSAFDB.

3.3 Simulation of Atrial Fibrillation

Although databases with ECG signals are central to methodological development
and evaluation, model-based simulation offers certain advantages such as the pos-
sibility to investigate conditions which are difficult to deal with experimentally and
the possibility to control the properties of the simulated signal by a set of param-
eters. As a result, the agreement between simulated and estimated signals can be
quantitatively assessed and expressed in terms of suitable performance measures. If
desired, these measures can be computed for simulated signals with different signal-
to-noise ratios (SNRs). The simulation advantages were first exploited in the context
of f wave extraction, since none of the public ECG databases lend themselves well
to performance evaluation, and later in the context of detection of brief AF episodes,
since annotated ECG database with such episodes are largely missing.

http://dx.doi.org/10.1007/978-3-319-68515-1_6
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Three f wave simulation models with widely different complexity are briefly
described below. Since none of these models produce a signal with ventricular activ-
ity, the simulated f wave signal is usually added to ECG signals obtained from sub-
jects in normal sinus rhythm, provided that the P waves have been first cancelled. In
doing so, the inherent variation in QRS morphology, e.g., due to respiration, is trans-
ferred from the recorded to the simulated ECG signal—a transfer which is important
in f wave extraction since morphologic variation can have substantial influence on
performance. The RR intervals of normal sinus rhythm are also transferred to the
simulated ECG signal—a transfer whichmay be acceptable when the simulated ECG
signal is investigated for f wave extraction, but clearly unacceptable for AF detection.

The f wave sawtooth model is widely used in algorithmic development, first intro-
duced in [9] and later employed in, e.g., [10–14]. This signal model is defined by a
sum of K amplitude- and frequency-modulated sinusoids with harmonically related
frequencies,

d(n) =
K∑

k=1

ak(n) sin

(
kω0n + Δ f

f f
sin(ω f n)

)
, n = 0, . . . , N − 1, (3.1)

where ω0 = 2π f0 is the fundamental frequency, i.e., the model counterpart to the
DAF. The fundamental frequency ω0 is modulated by ω f = 2π f f with a maximum
deviation of Δ f . The time-varying amplitude ak(n) is defined so that d(n) exhibits
a sawtooth characteristic,

ak(n) = 2

kπ
(a + Δa sin(ωan)) , (3.2)

where a is the sawtooth amplitude, Δa is the maximum modulation amplitude, and
ωa = 2π fa is the modulation frequency of the amplitude. The model in (3.1) offers
certain flexibility since both f wave amplitude and frequency are modulated.

An important limitation of the sawtooth model was brought to light when the
problem of f wave extraction was addressed using an artificial neural network [15]:
the network could learn the predictable changes in amplitude and frequency of the
simulated f wave signal, leading to exaggerated performance figures.

The f wave replication model produces a signal based on the observed samples of
the TQ intervals [16]; no mathematical modeling is involved. Interpolation between
two successive TQ intervals fills in the intermediate QT interval with f wave samples,
using the approach originally described in [9]. The f waves of the first TQ interval
are replicated in the QT interval and subjected to linear weighting, and the f waves in
the second, subsequent TQ interval are replicated in the sameway, but time-reversed.
The interpolated samples of the interveningQT interval result from summation of the
two replicated and weighted signals. Other techniques for TQ-based interpolation
are described in Sect. 5.3.

While the f wave replication model can produce realistic signals, neither the rep-
etition rate nor the amplitude of f waves can be controlled. Another major limitation

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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is that the length of the TQ intervals decreases as the heart rate increases, implying
that the risk of producing unrealistic f wave signals becomes increasingly higher at
higher heart rates.

A much more sophisticated approach to simulating f wave signals is based on
a biophysical model of the atria [17], see also [18, 19]. The model is based on
anatomical information derived from magnetic resonance imaging, accounting for
the entries and exits of the vessels, the locations of the valves connecting the atria
to the ventricles, as well as several other aspects. The electrical activity of the atria
is modeled in terms of membrane kinetics, where the presence of heterogeneities in
action potential duration creates the substrate for sustained AF. Volume conduction
theory is employed to describe the propagation of currents from the electrical sources
of the atria through the passive body tissues to the body surface, influencing the
amplitude and morphology of the simulated multi-lead f wave signals.

Since none of the three above-mentioned simulationmodels account for switching
between non-AF rhythms and AF, they cannot be used when addressing the problem
of detecting AF. To fill this void, a model of paroxysmal AF has been proposed [20],
including not only rhythm switching but also the possibility to chose whether the
simulated signal should be composed of synthetic or real components, described in
Sects. 3.4 and 3.5, respectively.

3.4 Simulation of Paroxysmal AF Using Synthetic
Components

The simulation of multi-lead ECGs in paroxysmal AF is based on phenomenolog-
ical, mathematical modeling of ventricular rhythm, ventricular morphology, atrial
morphology, and rhythm switching, whereas the noise added to the simulated signal
derives from a public database, see Fig. 3.5. Thus, the resulting signal is composed of
synthetic components whose properties are controlled by a set of parameters defin-
ing, e.g., episode duration, variability of the RR interval series in sinus rhythm and
AF, f and P wave morphology, QRST complex morphology, and percentage of atrial
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Fig. 3.5 Simulation of ECG signals using synthetic components. The same model of QRST com-
plexes is employed in sinus rhythm (SR) and AF
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premature beats (APBs). For each new realization of the simulated signal, the model
parameters are generated randomly from uniform distributions in predefined ranges
so that realistic ECG signals with unique intersubject morphologies can be produced.

The simulation model assumes a vectorcardiogram (VCG) lead system initially,
consisting of the orthogonal leads X, Y, and Z. Once suitably processed, these leads
are transformed to the standard 12-lead ECG system. A detailed description of the
simulation model is found in [20], together with a list of the default model parameter
values.

3.4.1 Atrial Fibrillation

Ventricular rhythm. A statistical model of the atrioventricular (AV) node with dual
pathways is used to generate RR intervals in AF [21]. In this model, the ventricles are
assumed to be activated by atrial impulses arriving to theAVnode according to a Pois-
son process with mean arrival rate λa , which is closely related to the DAF. The joint
probability density function (PDF) of the consecutive RR intervals x0, x1, ..., xN−1

is given by

px (x0, x1, ..., xN−1) =
N−1∏

n=0

(εpx,s(xn) + (1 − ε)px, f (xn)), (3.3)

where ε is the probability of an atrial impulse conducted through the slow pathway,
whose refractory period is defined by a deterministic part τs and a stochastic part
τs,p. Hence, the probability of an atrial impulse to take the fast pathway, whose
refractory period is defined by τ f and τ f,p, is (1 − ε). For an atrial impulse taking
the slow pathway, the interval x between two successive ventricular activations, i.e.,
the RR interval, is described by the following PDF [21]:

px,s(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 < x < τs,

λa(x − τs)

τs,p
exp

[
−λa(x − τs)

2

2τs,p

]
, τs ≤ x < τs + τs,p,

λa exp

[
−λaτs,p

2
− λa(x − τs − τs,p)

]
, x ≥ τs + τs,p.

(3.4)

The PDF of the fast pathway is described by px, f (x), being identical to (3.4) except
that τs is replaced with τ f and τs,p with τ f,p. Chapter 7 provides a comprehensive
overview of AV node models for simulation of RR intervals in AF, including the
statistical AV node model in [21].

f waves. The f wave sawtooth model in (3.1) is supplemented with a stochastic
component so that more complex, less predictable f waves can be produced [15].

http://dx.doi.org/10.1007/978-3-319-68515-1_7
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Using, for convenience, a continuous-time framework, the f wave model signal fl(t)
of the l-th vectorcardiographic lead is composed of two components,

fl(t) = dl(t) + sl(t), l ∈ {X,Y,Z}, (3.5)

where dl(t) is defined similarly to (3.1),

dl(t) =
K∑

k=1

al,k(t) sin

(
kΩl,0t + ΔF

Fk
sin(2πFkt)

)
, (3.6)

but with the difference that lead dependence is introduced, i.e., Ωl,0 = 2πFl,0 and

al,k(n) = 2

kπ

(
al + Δal sin(Ωa,ln)

)
, k = 1, . . . , K . (3.7)

In paroxysmal AF, the DAF (corresponding to Fl,0) is typically contained in the
interval 3–7Hz [3], while, in persistent and permanent AF, it is typically higher and
contained in the interval 5–12Hz. Moreover, it is well-known that the DAF depends
on anatomical location [22], which in the model is accounted for by setting FX,0 to
a value 5% larger than FY,0, and FZ,0 to a value 5% smaller than FY,0. The mean
arrival rate λa of atrial impulses arriving to the AV node is taken as the average of
the frequencies FX,0, FY,0, and FZ,0.

The stochastic f wave component sl(t) results from multi-bandpass filtering of
white noise, with two passbands symmetrically related to Fl,0 by [0.65Fl,0, 0.95Fl,0]
and [1.05Fl,0, 1.35Fl,0]. The variance of the input white noise σ 2

l,s is taken as a
fraction of the sawtooth amplitude al in (3.7).

The first minutes after AF onset and the last minute before AF termination are
associated with more organized f waves and a lower DAF [23–25], which in the
model is accounted for by using bandpass filters with narrower passbands for the
first three minutes and the last minute of the episode. A set of bandpass filters is used
with gradually wider passbands, starting at [0.8Fl,0, 0.95Fl,0] and [1.2Fl,0, 1.35Fl,0]
and ending at [0.65Fl,0, 0.95Fl,0] and [1.05Fl,0, 1.35Fl,0], respectively. To account
for the lower DAF, Fl,0 is multiplied with a factor which increases linearly from 0.8
to 1 during the first three minutes of an AF episode. Conversely, Fl,0 is multiplied
with a factor which decreases linearly from 1 to 0.8 during the last minute of an AF
episode. Figure3.6 illustrates simulated f waves at the onset, the midpoint, and the
end of an AF episode.

A further generalization of the sawtooth model, to make the f wave signal even
less regular, is to employ an adaptive non-harmonic model in which amplitude and
frequency modulation is described by a random walk whose steps are sampled from
a zero-mean Gaussian distribution [26].
QRST complexes. The three-dimensional, single-dipole ECG model proposed
in [27] is used for simulating QRST complexes, building on the dynamical model
based on three coupled, ordinary differential equations [28]. The three orthogonal
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Fig. 3.6 Simulated f waves at the onset, the midpoint, and the end of an AF episode, produced by
the sawtooth-based model in (3.5)

leads are obtained by projecting the dipole vector onto the recorded leads. The dipole
vector, defined by qX(t), qY(t), and qZ(t), is modeled as a summation of P different
Gaussian functions,

ql(t) =
P∑

p=1

αl,p exp

[
− (t − μl,p)

2

2σ 2
l,p

]
, l ∈ {X,Y,Z}, (3.8)

where each Gaussian is appropriately scaled in amplitude and time with αl,p and
σl,p, respectively, and shifted in time with μl,p. To allow for a wide variety of QRST
morphologies, αl,p, σl,p, andμl,p are assigned uniform distributions [20]. In contrast
to the models in [27, 28], where the aimwas to simulate a signal with recurrent heart-
beats, the aim of the paroxysmal AF simulation model is to produce a single QRST
complex, and, therefore, the VCG loop defined by the orthogonal leads qX(t), qY(t),
and qZ(t) is traversed only once. Amplitude variation is introduced by letting αl,p

vary according to a sinusoidal function whose frequency is randomly chosen in the
interval [0.05, 0.15] Hz to mimic Mayer waves.

The resulting three-lead QRST complex qX(t), qY(t), and qZ(t) is placed at the
occurrence time produced by the AV node model, accompanied by resampling of
the T wave to ensure that the duration fits into the current RR interval. Since the
QT interval is usually shorter in AF than in sinus rhythm, it is set to a fixed value
(360ms) based on observations reported in [29, 30].

3.4.2 Sinus Rhythm

Ventricular rhythm. The RR intervals in sinus rhythm are simulated according to
the technique described in [28], where parasympathetic stimulation (respiratory sinus
arrhythmia) and baroreflex regulation are modeled by a bimodal power spectrum of
the RR interval series, defined by two Gaussian functions
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SRR(Ω) = P1√
2πσ 2

RR,1

exp

[
− (Ω − Ω1)

2

2σ 2
RR,1

]
+ P2√

2πσ 2
RR,2

exp

[
− (Ω − Ω2)

2

2σ 2
RR,2

]
,

(3.9)

whereΩ1 andΩ2 (Ω1 < Ω2) are the mean frequencies with related “variance” σ 2
RR,1

and σ 2
RR,2 and spectral power P1 and P2, respectively. The low- to high-frequency

power ratio is determined by P1/P2. The higher frequency Ω2 is usually related to
the respiratory rate.

The resulting RR interval series is obtained by computing the inverse Fourier
transform of the spectrum SRR(Ω). The desired heart rate and heart rate variability
are set by scaling theRR interval series and adding anoffset value.Very low frequency
oscillations are modeled by a zero-mean component added to the output of the model
in [28]. This component is produced by a third-order autoregressivemodel, identified
from a lowpass filtered (cut-off frequency 0.001Hz) RR interval series taken from
NSRDB [20].

P waves. A linear combination of Hermite functions is used to model P waves in the
orthogonal leads,

pl(t) =
3∑

i=1

wl,iφi (t), l ∈ {X,Y,Z}, (3.10)

where wl,i are lead-dependent weights. The first three Hermite functions are defined
by

φ1(t) = 1√
σP,1

√
π

· exp
[
− t2

2σ 2
P,1

]
, (3.11)

φ2(t) = −
√
2√

σP,2
√

π

t

σP,2
· exp

[
− t2

2σ 2
P,2

]
, (3.12)

φ3(t) = 1√
2σP,3

√
π

(
2t2

σ 2
P,3

− 1

)
· exp

[
− t2

2σ 2
P,3

]
, (3.13)

with mono-, bi-, and triphasic morphology, respectively. The width of φi (t) is deter-
mined by σP,i , which is treated as a lead-independent parameter. The Hermite func-
tions were originally proposed in [31] for modeling of QRS complex morphology,
and later explored for different purposes in ECG analysis, see, e.g., [32–35].

Depending on polarity and morphology, P waves may be classified into three
different types [36], of which P waves of Type 2 are the ones which are considered
for simulation, characterized by positive, monophasic morphology in leads X and Y,
and biphasicmorphology in leadZwith a transition fromnegative to positive polarity.
This type of P wave is predominant in patients with paroxysmal AF [36, 37]. Since
Pwaves aremonophasic in leadsX andY, larger values are assigned towX,1 andwY,1,
whereas a larger value is assigned to wZ,2 to emphasize the biphasic morphology in
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lead Z. To account for the fact that P wave morphology varies over time, wl,i and
σP,i vary according to a sinusoidal function whose frequency is randomly chosen in
the interval [0.05, 0.15] Hz.
QRST complexes. The technique used for simulating QRST complexes in AF is
also used in sinus rhythm. Resampling of the T wave is based on the well-known
Bazett’s formula, setting the corrected QT interval to 420ms [38]. Immediately after
AF termination, T wave duration increases linearly over the next seven beats to
produce a smooth QT interval transition from AF to sinus rhythm. The choice of a
seven-beat transition is ad hoc, since the QT interval transition in AF has not been
much investigated in the literature.

3.4.3 Atrial Premature Beats

Since APBs are frequent in AF patients [39–42], it is important to account for their
presence in the simulation model. Using a simple two-state Markov chain, a certain
percentage of APBs is introduced, chosen from the following four types of unifocal
APBs [43]:

1. APBs with reset of the sinus node. The sum of the length of the preceding and
the subsequent RR intervals is less than twice the normal RR interval, simulated
by 20% shortening of the preceding RR interval and by leaving the subsequent
RR interval unchanged.

2. Interpolated APBs occur in between two adjacent sinus beats, simulated by split-
ting an RR interval into two intervals with 60/40 proportions.

3. APBs with delayed reset of the sinus node, simulated by 20% shortening of the
preceding RR interval and 20% prolongation of the subsequent RR interval.

4. APBs with full compensatory pause, simulated by 20% shortening of the preced-
ing RR interval, and subtracting the shortened RR interval from twice the normal
RR interval to obtain the subsequent RR interval.

The likelihood of generating consecutive APBs, i.e., couplets, triplets, and short
runs, is increased by setting the percentage ofAPBs to a large value. To account for the
fact that P waves associated with APBs often deviate in amplitude and morphology
from normal P waves in sinus rhythm, a new set of parameter values is generated
and used to simulate P waves preceding APBs. The QRST complexes are generated
in the same way as is done in sinus rhythm. Figure3.7 illustrates simulated ECGs
with different types of APBs.

3.4.4 Respiration

To account for the fact that respiration influencesQRSTmorphology through changes
in the electrical axis of the heart, the simulated VCG signal is transformed by a
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Fig. 3.7 Simulated ECGs containing a atrial premature beats (APBs) with reset of the sinus node
(type 1), b interpolated APBs (type 2), c APBs with delayed reset of the sinus node (type 3), and
d APBs with full compensatory pause (type 4)

rotation matrix Q(t), composed of three successive rotations around each of the
axes [44],

Q(t) = QX(t)QY(t)QZ(t). (3.14)

The three rotation matrices are defined by the time-varying angles ϕX(t), ϕY(t),
and ϕZ(t),

QX(t) =
⎡

⎣
1 0 0
0 cosϕX(t) sin ϕX(t)
0 − sin ϕX(t) cosϕX(t)

⎤

⎦ , (3.15)

QY(t) =
⎡

⎣
cosϕY(t) 0 sin ϕY(t)

0 1 0
− sin ϕY(t) 0 cosϕY(t)

⎤

⎦ , (3.16)

QZ(t) =
⎡

⎣
cosϕZ(t) sin ϕZ (t) 0

− sin ϕZ(t) cosϕZ(t) 0
0 0 1

⎤

⎦ . (3.17)

It is assumed that angular variation is proportional to the amount of air in the lungs
during a respiratory cycle, a property modeled as the product of two sigmoidal
functions reflecting inspiration and expiration,

ψ(t) = 1

1 + e−γint

1

1 + eγex(t−δ)
, (3.18)
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where γin and γex define the duration of inspiration and expiration, respectively, and δ

defines the delay between inspiration and expiration. In lead X, the angular variation
across successive respiratory cycles is defined by

ϕX(t) =
∞∑

i=0

ξXψ(t − iTr ), (3.19)

whereTr is the duration of a respiratory cycle (inversely related to thefixed respiratory
frequency, i.e., Tr = 2π/Ωr ), and ξX is the maximum angular variation. The angular
variation in leads Y and Z is determined in a similar way, defined by ξY and ξZ,
respectively. The choice of realistic model parameter values is discussed in [45],
as well as an extension of the model in (3.19) so that a time-varying respiratory
frequency can be accounted for.

In sinus rhythm, the respiratory frequency Ω2 in (3.9), influencing the ventricular
rhythm through the autonomic system, should, preferably, be set to Ωr . In AF, the
autonomic influence of respiration on ventricular rhythm is not modeled since the
cardiorespiratory interaction is negligible [46].

3.4.5 Additive Noise

Three types of noise frequently encountered in ambulatory recordings—baseline
wander, muscle noise, and electrode motion artifacts—can be added to the simu-
lated ECG. These types of noise are extracted from the MIT–BIH Noise Stress Test
Database, composed of a number of 30-min recordings which predominantly contain
baseline wander, electromyographic noise, and electrode motion artifacts [47]. The
two leads of the recordings in this database are labeled leads X and Y, whereas the
noise in lead Z is constructed by computing the square root of the sum of squares of
leads X and Y (an offset value is added before squaring, and the mean is subtracted
after taking the square root).

3.4.6 Transformation from VCG to 12-Lead ECG

Different transformation matrices are applied to f waves, P waves, and QRST com-
plexes when computing the standard 12-lead ECG from the VCG. The f wave trans-
formation is based on the inverse of the Pwave optimized transformationmatrix [48],
multiplied with a diagonal scaling matrix determining the tendency of f wave ampli-
tude in the 12-lead ECG [20]. The diagonal matrix accounts for the fact that f wave
amplitude is typically largest in V1 and then gradually decreases as the leads move
away from the atria. The decrease in amplitude can be explained by a much more
scattered electrical vector in AF than in sinus rhythm, combined with increased dis-
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tance to the electrode site. The resulting simulated 12-lead ECGwith f waves, but not
QRST complexes, is illustrated in Fig. 3.8a, and a real 12-lead ECG, whose f waves
resemble the simulated ones, is illustrated in Fig. 3.8b.

The inverse of the P wave optimized transformation matrix in [48] is used to
reconstruct P waves in the 12-lead ECG, see Fig. 3.9.

The Dower matrix [49, 50] is used to compute the QRST complexes, as well as
the noise, in the 12-lead ECG. However, the transformation of the QRST complexes
and the noise is done separately so that the noise can be scaled in each lead to the
desired RMS value before being added to the 12-lead signal composed of both atrial
and ventricular activity.
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Fig. 3.8 a Simulated f waves produced by the model in (3.5), and b f waves extracted from a real
ECG using an echo state network [15]
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Fig. 3.9 Ten superimposed realizations of P waves in the standard 12-lead ECG, modeled as a
linear combination of the first three Hermite functions using randomly generated weights
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3.4.7 Switching Between Atrial Fibrillation and Sinus
Rhythm

The switching between sinus rhythm and AF is modeled by a two-state continuous-
time Markov chain, where the time d spent in a state, also referred to as episode
duration, is determined by the exponential PDF

p(d) =
⎧
⎨

⎩

βde−βdd , d ≥ 0,

0, d < 0.
(3.20)

The parameter βd defines the rate of episodes. The median duration of an AF episode
is given by

d̄AF = ln 2

βAF
, (3.21)

where βAF denotes the rate of AF episodes, cf. (3.4). The median duration of an
episode with sinus rhythm is assumed to be given by

d̄SR = B

(1 − B)
· d̄AF, (3.22)

where B (0 < B < 1) determines the total time AF is present, and thus B can be
viewed as a descriptor of mean AF burden. The sole parameter controlling episode
duration is d̄AF, and no minimum episode duration is specified.

A more advanced, non-Markovian switching model has been proposed which
account for aspects of AF progression related to genetic disposition, age-, and AF
history-related remodeling [51]. The model can simulate individual AF episodes as
well as the natural progression of AF in patients over a period of decades.

The possibility to generate episodes with varying duration is valuable when simu-
lating arrhythmia progression. Evidence shows that brief episodes progress to longer
episodes [52, 53], implying that it is of interest to evaluate detection performance as
a function of episode duration. Moreover, brief but rare episodes have been observed
in patients after cryptogenic stroke and transient ischemic attack [54–57]. Such sig-
nals can be simulated with the model described in this section, using, for example, a
median episode duration of 30 beats and a low AF burden of 0.001.

3.5 Simulation of Paroxysmal AF Using Real Components

Alternatively, the simulator can produce signals based on real ECG components,
randomly selected from the three databases which are used to characterize ven-
tricular rhythm, atrial activity (f or P waves), and QRST complexes, see Fig. 3.10.
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Fig. 3.10 Simulation of ECG signals using real components, taken from the Long-Term AF
Database (LTAFDB), the MIT–BIH Normal Sinus Rhythm Database (NSRDB), and the PTB Diag-
nostic ECG Database (PTBDB)

These components, together with the above-described noise types, are added to pro-
duce the standard 12-lead ECG.

Ventricular rhythm. The Long Term Atrial Fibrillation Database was used for cre-
ating a set of AF rhythms. A total of 69 different RR interval series were extracted
from the 84 long-term ECG recordings; the 15 remaining recordings were excluded
due to their relatively short duration with AF (<5000 beats). Similarly, the entire
NSRDB, consisting of 18 long-term ECG recordings, was used to create a set of
sinus rhythms. Switching between paroxysmal AF and sinus rhythm is modeled in
the same way as for synthetic components, cf. Sect. 3.4.7.

For each simulated signal, the RR interval series of the prevailing rhythm is
randomly selected from the proper rhythm set, and repeated by concatenation until
the desired length is attained. While heart rate is often higher in AF than in sinus
rhythm, this may not be the case when concatenating randomly selected RR intervals
in sinus rhythm and AF. Therefore, whenever the mean RR interval is shorter in
sinus rhythm than in AF, the mean RR interval in sinus rhythm is adjusted to become
identical to the mean RR interval in AF.

It should be noted that when simulating ECGs using real components, the atrial
and ventricular rates are unrelated since the f waves and the RR interval series are
extracted from different databases.

f and P waves. A set of 20 segmentswith real,multi-lead fwaves is extracted from the
Lund AF database with 12-lead ECGs, acquired from patients with persistent AF [8].
An echo state network was applied for f wave extraction [15], see also Sect. 5.5.3.
LeadV6 was used as reference leadwhen extracting f waves in the remaining 11 ECG
leads, whereas lead V5 was used when extracting f waves in lead V6, see Fig. 3.8b.

In sinus rhythm, the original, real P wave, along with the subsequent QRST com-
plex, is retained, while, in AF, only the QRST complex is retained and a continuous
f wave signal added.

QRST complexes. A set of 100 15-lead ECGs (12 standard leads plus Frank
leads) with sinus rhythm, selected from the Physikalisch–Technische Bundesanstalt
Database, serves as the basis for modeling QRST complexes. Following baseline

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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removal and QRST delineation [58], the original T wave is resampled to have a
fixed width and then adjusted to the prevailing heart rate according to the procedure
described in Sect. 3.4.1. Since the ECGs of this database last for only about two
minutes, the QRST complexes are repeated by concatenation until the desired dura-
tion is achieved. The TQ interval is interpolated using cubic spline interpolation. All
other steps required to generate QRST complexes are similar to those described in
Sect. 3.4.1.

Simulated signals composed of either synthetic or real ECG components are
illustrated in Fig. 3.11.

3.6 Relevance of Simulated Signals

The question whether a simulation model produces realistic signals is not easily
answered since the term “realistic” is difficult to quantify. Historically, this question
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Fig. 3.11 Simulated 12-lead ECGs containing a brief AF episode, composed of a synthetic com-
ponents and b real components. Using synthetic components, the 12-lead ECG is obtained from the
simulated signals in leads X, Y, and Z, following linear transformations. Using real components,
the original 12-lead ECG is taken from the Lund AF database, followed by removal of P waves and
addition of extracted f waves
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has not received much, if any, attention in papers describing simulation models of
the ECG, see, e.g., [28, 31, 59, 60], although the models have turned out to be most
valuable in the development of signal processing algorithms—an observation which
applies particularly to the simulationmodel in [28]. To provide a quantitative answer,
the idea to let expert cardiologists assess blindly the realism of simulated ECG signals
was first materialized in [20], involving not only the simulated ECG signals produced
by the model in Sect. 3.4, but also real ECG signals [20]. The results showed that
the simulated signals were, for the most part, realistic, but they also showed that
the approach to modeling of the QT interval in AF needed improvement. To make
the outcome of expert assessment more powerful, it would have been desirable with
more than two cardiologists so that more far-reaching conclusions could have been
drawn.

In the context of AF detection, an indirect approach to evaluating signal realism
is to analyze simulated signals using some suitable detector, and then compare the
obtained results with those obtained using the same detector on an existing database
containing real ECGs [20]. Neither this approach has been considered in the past,
although it may provide valuable insight into whether the simulated signals are too
“doctored” to be used for the development of AF detectors.

The degree of sophistication of a simulation model is another way to judge model
relevance, hinted at in [17] where the f wave replication model was labeled as
“primitive” and the above-mentioned model of normal sinus rhythm [28] as “sim-
ple,” whereas the biophysical model proposed by the authors themselves was labeled
as “more sophisticated” in producing ECG signals. Considering that the biophysical
model accounts for detailed electroanatomical information, whereas the other two
models do not, such labeling seems reasonable. But does a higher degree of sophis-
tication imply that the model is better suited for the development of signal pro-
cessing algorithms and performance evaluation? The fact that biophysical models
have hardly been considered at all for such purposes provides an answer to this
question, with implementational and computational complexity, difficulty to control
basic signal characteristics such as f wave amplitude and repetition rate, and the lack
of rhythm switching models as probable reasons. From an algorithmic viewpoint, it
is not obvious why biophysical models necessarily produce ECG signals which are
more relevant than those of phenomenological models, such as the ones described
in Sects. 3.4 and 3.5.
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