
Chapter 2
Introduction to Hardware Trojans

Jason Vosatka

2.1 Overview of Hardware Trojans

Hardware Trojans are malicious modifications to the intended functionality of a
hardware circuit [9, 17, 36, 37]. These modifications (i.e., tamperings) are undesired
and unknown to the hardware designer and can have devastating effects on the
electronic system. Trojans have three key characteristics: malicious intention,
evasion of detection, and rarity of activation [6]. The intent of a Trojan is always
the same: perform an unintended action to compromise the confidentiality, integrity,
or authentication of the underlying hardware.

This compromise may be in the form of a shortened operational lifetime of the
hardware (e.g., 5 years instead of 20 years) or complete failure of the system upon
the Trojan’s activation. It may allow an attacker to gain unauthorized access into the
hardware (i.e., remote access through a backdoor) or lead to leakage of information
(e.g., cryptographic keys for secure data communication). Hardware Trojans may
manifest from software Trojans inside of pirated software tool suites during the
synthesis portion of the design flow or be inserted as a result of collusion between
multiple parties at different stages of the hardware’s life cycle [45]. Trojans can
also be designed with the sole intention to damage or destroy the brand reputation
of a company, which may result in bankruptcy of the company and a competitive
advantage for the adversary.

J. Vosatka (�)
Florida Institute for Cybersecurity Research (FICS Research), Department of Electrical
and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
e-mail: jvosatka@ufl.edu

© Springer International Publishing AG 2018
S. Bhunia, M.M. Tehranipoor (eds.), The Hardware Trojan War,
https://doi.org/10.1007/978-3-319-68511-3_2

15

mailto:jvosatka@ufl.edu
{https://doi.org/10.1007/978-3-319-68511-3}_2


16 J. Vosatka

Fig. 2.1 Block diagram showing (a) original circuit, (b) simplified hardware Trojan, and (c)
hardware Trojan inserted into the circuit, which inverts O to O’ upon activation

Figure 2.1a shows a simplified block diagram of an original circuit, Fig. 2.1b
shows the hardware Trojan with trigger and payload, and Fig. 2.1c shows the Trojan
inserted into the circuit. When the Trojan activates in this example, its payload
delivers a malfunction in the form of inverting the output of the circuit (i.e., changing
the O to O’).

Historically, hardware has been considered the root of trust, and the software
or firmware that runs on top of the hardware has been untrusted until proven
otherwise [6, 37]. However, much research has been performed over the last
decade, and security researchers are aware of numerous Trojan models, attacks,
countermeasures, as well as the threats to security and trust of the underlying
hardware. Every entity (e.g., person, design house, foundry, supply chain) that
is involved with the design, fabrication, testing, packaging, and delivery of an
integrated circuit (IC) could be considered a potential adversary as they have the
opportunity to tamper with the IC at multiple points in the design cycle. Therefore,
the need exists to design “for security” in addition to specified functionality of the
hardware.

A hardware Trojan is not a design or manufacturing fault. A fault (e.g., SA0,
SA1, path delay) is an unintentional error or failure during these processes, and its
location for activation is usually known by the designer. A Trojan, in any form, is an
intentional insertion by an adversary, and its location for activation is unknown to



2 Introduction to Hardware Trojans 17

the designer. Although the intentions of a hardware Trojan are similar to its nefarious
counterpart, the software Trojan, the hardware Trojan cannot be removed once the
IC is fabricated, whereas the software Trojan can be eradicated post-deployment [6].

Trojans are activated by a specific mechanism, called a trigger, and deliver a
specific function, called a payload. They can be small or large in size with respect
to the rest of the circuit, ranging from just a few transistors to thousands of gates in
a multimillion transistor SoC design [6]. Trojans exist in many forms and are most
commonly triggered by a sequential or combinational digital circuitry (or a hybrid
combination of both), but can also be triggered by analog stimuli. The payload
can be digital or analog with each being specifically crafted to deliver malicious
consequences upon activation.

Trojans are often undetectable to conventional pre-silicon and post-silicon
manufacturing testing processes such as informal and formal verification [47]. This
is due to test coverage for the hardware solely focusing on the specific functionality
of the circuit, as well as exhaustive testing of all possible functions being both
expensive and time-consuming. Trojans are intended to be stealthy and are inserted
into rare internal nodes of the circuit, which reduces the likelihood of activation
during normal testing. These nodes are often outside the scope (i.e., outliers or
corner cases) of the circuits’ intended functionality and are not activated during
conventional test and verification methods. Unconventional methods do exist for
detection, but these often require access to a verified and authentic (i.e., golden)
IC or model for comparisons, and these methods may be performed as destructive
(e.g., physical reverse engineering) or nondestructive (e.g., side-channel) testing
methodologies [6, 37].

2.2 Trends, Tradeoffs, and Threats of Trojans

2.2.1 Semiconductor Design Flow

Over the last decade, there has been a shift in the global manufacturing model
and design flow of companies that produce semiconductor ICs such as application-
specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), and
system-on-chips (SoCs). These new trends are driven by various economic factors
including monetary costs, time-to-market demands, and the increased complexity
of semiconductors. Historically, hardware design companies performed the entire
design flow as a trusted entity from “cradle-to-grave” including defining speci-
fications, generating schematics and netlists, fabrication, testing, packaging, and
delivery to the supply chain marketplace. This design flow was commonly referred
to as a “vertical model.” However, companies have been adopting a “horizontal
model” in which they outsource certain steps of the design flow to untrusted entities
and offshore foundries. Today, the majority of hardware design companies have
fully adopted the horizontal model and now are rapidly moving toward a “fabless



18 J. Vosatka

model” in which they outsource all hardware fabrication. Many system integrators
outsource both the hardware design and fabrication in order to maximize service to
their customers and profits for their company.

The reliance on untrusted foundries reduces monetary costs for design companies
as it eliminates the need to build and maintain a multibillion dollar fabrication
facility. Using offshore foundries also allows design companies to have access to
state-of-the-art fabrication technologies and reduce the risk of fabrication errors. By
incorporating third-party intellectual property (3PIP) from untrusted entities into
the hardware design, companies are able to decrease the time-to-market delivery
and maximize the profit window of their product. These business decisions allow
design companies to leverage the economies of scale created by the untrusted
entities [39, 45].

However, these tradeoffs decrease the level of security and trust of the hardware,
thus violating the traditional hardware root of trust philosophy. Relying on untrusted
entities reduces control of the hardware design, thereby increasing the likelihood
of a vulnerability being introduced during the design life cycle and supply chain
distribution [45, 47]. These vulnerabilities exist in various forms including IP piracy,
counterfeiting, cloning, overproduction, and hardware Trojans [6, 30, 37, 39, 40].

The modern horizontal model for semiconductor IC design and fabrication flow
is shown in Fig. 2.2. Typically, a trusted entity (e.g., design house) is responsible for
the specification, register-transfer level (RTL) design, netlist generation, and layout.
An untrusted entity (e.g., foundry) is responsible for wafer fabrication, assembly,
and testing. However, this generality is not always the case as demonstrated by the
seven attack models described in Sect. 2.4.5.

2.2.2 Adversaries and Attacks

2.2.2.1 Adversarial Threats

Any entity that is involved with the design, fabrication, testing, packaging, or supply
chain of an IC has the potential to be an adversary. Adversaries may be people,
design houses, foundries, or even electronic design automation (EDA) or computer-
aided design (CAD) software tools. What is common with all adversaries is the
opportunity to tamper with the design (e.g., insert a Trojan) anytime the design
is outside of the control of the rightful owner. These opportunities occur at the
many stages of the IC’s life cycle as shown in Figs. 2.2 and 2.3. The motivation of
each adversary varies as does their design of the Trojan. Adversaries are motivated
by many factors including monetary gains, increased market space in the supply
chain, personal or political vendettas, tarnishing a competitor’s reputation, or even
the sole purpose of disrupting critical infrastructure through operational failures
or leakage of sensitive information. Adversarial actions result in specially crafted
malicious modifications to the original circuit, which are designed to achieve a
specific nefarious goal.



2 Introduction to Hardware Trojans 19

F
ig

.2
.2

Se
m

ic
on

du
ct

or
IC

de
si

gn
an

d
fa

br
ic

at
io

n
flo

w
[4

5]



20 J. Vosatka

Fig. 2.3 Vulnerable stages in
the integrated circuit (IC) life
cycle [6]

2.2.2.2 Attack Surfaces

The goal of a hardware Trojan is as unique as its adversary. Trojans may be inserted
into ICs including control circuitry, memory modules, sensors, and input/output
drivers. They may also be inserted into embedded system processors allowing for
software backdoors or inserted into cryptographic engines in SoCs to weaken,
bypass, or disable the security features of the system [6]. Three examples of
adversarial attacks that may occur during the design process are an untrusted third-
party intellectual property (3PIP) vendor introducing a Trojan into the IP core of
an SoC, an untrusted designer inserting a Trojan into unused cells of an IC, or
even a trusted designer inadvertently inserting a hardware Trojan through the use
of untrusted third-party EDA software tools.

Another example of attack surface is when an adversary at an untrusted foundry
inserts a Trojan into the lithography mask during the fabrication process of the
semiconductor wafer. This Trojan-infected wafer is then assembled into an IC
and returned to the design company. Unless the design company has specific
Trojan detection or prevention mechanisms for testing, such as a golden IC or
golden model, the infected IC will enter the supply chain for integration into an
unknowingly compromised electronic system. A golden IC or golden model is
considered to be trustworthy as it has been verified to be fabricated exactly per
the design specifications (i.e., nothing more, nothing less) and to be Trojan-free.

Furthermore, an adversary at a untrusted foundry or an untrusted design house
could reverse engineer the entire IC design for the purpose of cloning (i.e., creating
illegal copies) the IC. The adversary could insert a Trojan into the cloned IC and
release the infected IC directly into the supply chain, thus bypassing any Trojan
detection mechanism of the legitimate design owner. In this situation, there is no



2 Introduction to Hardware Trojans 21

golden model for verification, so integrators have to rely on other approaches such as
self-referencing and side-channel analysis methods for Trojan detection [12, 23, 25].

Figure 2.3 shows examples of Trojan attacks during several vulnerable stages of
the IC life cycle.

2.3 Comparisons and Misconceptions with Trojan Attacks

2.3.1 Trojans Compared with Bugs or Defects

Trojans should not be considered design bugs or manufacturing defects as this
generalization is simply not accurate. Recall that a hardware Trojan is an intentional
and malicious modification of a circuit that is designed to alter the circuit’s behavior
in order to accomplish a specific objective. A design bug is an unintentional problem
(i.e., error) that is unknowingly introduced into the circuit during its design and
development phases. A manufacturing defect is an unintentional physical phe-
nomenon (e.g., imperfection) that occurs during the circuit’s fabrication, assembly,
and testing phases. Both design bugs and manufacturing defects can cause flaws,
failures, or faults in the final assembled IC or electronic system.

Although design bugs and manufacturing defects lead to incorrect results or
unexpected behaviors, these outcomes are detectable during conventional test and
validation methods. That is, bugs and defects are discoverable with functional or
structural testing as well as pre-silicon or post-silicon verifications. Similar to Trojan
taxonomies and attack models (discussed in Sect. 2.4), companies also use models to
detect bugs and defects. These models are typically bounded by the specification of
the design and will support testing and verification only within the intended design
of the circuit. For example, stuck-at-one (SA1), stuck-at-zero (SA0), opens, shorts,
and path delay faults are all detectable based upon specification models, and their
specific activation locations are usually identifiable within the circuit.

Trojans are similar to bugs and defect in that they all can lead to unwanted func-
tionality. However, Trojans deliver an unwanted functionality that is not bounded
by the specification of the design. As a result, Trojans are often undetectable with
standard testing and validation practices. Since conventional models typically do not
check for any functionality outside of the defined specification, adversaries often
attempt to hide Trojans in internal circuit nodes that are difficult to reach, control,
and observe during testing [38]. Trojans can also be designed to activate after a rare
and arbitrary set of complex conditions have occurred [6, 37]. Further details of
Trojan detection strategies are explained in Sect. 2.5.

Figure 2.4 illustrates the comparisons between hardware Trojans, design bugs,
and manufacturing defects.



22 J. Vosatka

Fig. 2.4 Hardware Trojans
compared with bugs and
defects

2.3.2 Hardware Trojans Compared with Software Trojans

Trojans, whether software or hardware, share the same three key characteristics:
malicious intention, evasion of detection, and rarity of activation. They also
share a similar abstraction of two main components: a trigger and a payload. A
software Trojan is commonly known as a computer program that contains specially
crafted malicious code (i.e., payload) designed to cause harm to a targeted system
once triggered. The malicious objective of software Trojans can include privilege
escalation on the targeted system, leakage of sensitive user information including
credentials and passwords, as well as data corruption, unauthorized encryption, and
denial-of-service (DoS) attacks. Software Trojans are designed to remain stealthy,
require specific events to occur for activation, and require special programs to
detect and remove them. Most software Trojan detection programs include run-time
monitoring, a concept that has been extended to hardware security (Sect. 2.5.1.2) [6].

Although the malicious intention of a hardware Trojan is similar to its nefarious
counterpart, there are notable differences between these two Trojans. For example,
software Trojans are hidden inside software code and are activated during program



2 Introduction to Hardware Trojans 23

Fig. 2.5 Hardware Trojans compared with software Trojans

execution, whereas hardware Trojans are hidden inside physical hardware and are
activated after specific conditions occur during operation. Also, legitimate users of
computer systems can unintentionally spread a software Trojan from user-to-user
through routine activities, or adversaries can intentionally spread them to targeted
or untargeted victims. This distribution can be accomplished in many ways such as
through peer-to-peer file sharing or running infected programs from the Internet.
Hardware Trojans, on the other hand, are typically spread from adversary-to-user
since an IC is not easily replicated by the end-user. Another key difference is that
hardware Trojans cannot be removed once the IC is fabricated, whereas the software
Trojan can be removed post-deployment by way of local or remote updates to the
program code [6].

Figure 2.5 provides a summary of comparisons between software and hardware
Trojans.

2.3.3 Hardware Trojan Cause and Effect Misconceptions

The pressure on design companies to further reduce costs, decrease the time to
market for product deliverables, and increase company profits has underpinned the
semiconductor industry’s shift toward horizontal and fabless business models. As a
result, companies are relying more often on the acquisition and reuse of hardware
third-party intellectual property (3PIP) as well as electronic design automation
(EDA) and computer-aided design (CAD) software tools. This reliance is prevalent
in the SoC industry where design specifications change many times during the
design and manufacturing flow, and the hardware semiconductor companies must
remain flexible to quickly respond to the market’s demands. Unfortunately, these
companies sometimes acquire 3PIP and design tools from untrusted entities (e.g.,



24 J. Vosatka

gray- or black-market vendors) without fully understanding the implications of their
actions and the potential security risks to their SoC designs and to their customers.

Hardware Trojan attacks in hardware 3PIP are a serious security and trust risk
that is difficult to mitigate. Companies and vendors that provide the trusted 3PIP
(e.g., IP crypto cores) rarely make the golden model of their IP available to any
outside entity. This results in a potential attack surface for adversaries: an untrusted
entity (e.g., vendor, design house) can legally obtain a single version of the trusted
3PIP and insert a hardware Trojan into it, thus making it untrusted 3PIP. This
infected 3PIP can be distributed to many naive SoC companies through various
channels such as illegal file sharing services or other untrusted vendors. Since these
SoC companies do not have the golden model that is required for conventional
test and verification methods, they will have the virtually impossible challenge of
verifying that the acquired 3PIP is secure and trustworthy [38, 47].

While it is true the SoC company can perform simulation of the 3PIP, this will
only verify the functionality based on the design specifications; it will not guarantee
the 3PIP is Trojan-free. The SoC company will not be able to compare their design,
which is based on untrusted 3PIP, with the legitimate and trusted 3PIP. However,
the work of [28] devised a technique to use the same hardware 3PIP acquired from
several sources to reduce the risk and effects of a potential hardware Trojan. Also,
the work of [47] developed a multiple-step methodology to identify and remove
Trojans in 3PIP digital cores. Overall, the risk of using untrusted 3PIP still remains
high as does its potential for delivering infected SoC products to customers and the
supply chain.

Likewise, untrusted EDA tools present a similar risk of malicious modifications
being inserted into the hardware design. Similarly to hardware 3PIP owners, EDA
tool companies rarely make their golden model available to other companies.
Untrusted EDA tools may be obtained through various methods such as illegal
downloads, license key cracks, and untrusted vendors. It is a common practice for
hardware design companies to use several tools from the same EDA tool suite, such
as design automation, testing, and verification tools. Therefore, an adversary has
several attack surfaces in which to maliciously modify the software tools to facilitate
hardware Trojan insertion into a company’s design.

Since hardware Trojans can be inserted into designs via the untrusted software
EDA tools (e.g., through the hardware synthesis engine), detecting Trojans becomes
more difficult as the design progresses. This results in the possibility of a hardware
Trojan being inserted into a design early in the design flow via the untrusted EDA
tool, which is later ignored or not detected by a different, albeit trusted, tool from the
same vendor. The work of [26] uses the security paradigm of a completely specified
design and low latency observability in order to design trustable hardware using
untrusted software tools. However, again similar to untrusted 3PIP, using untrusted
software EDA tools still runs the risk of delivering infected hardware products to
customers and the supply chain [6].

Another popular misconception is that multiple untrusted entities result in
improved security and trust. However, this allows for malicious collusion between
multiple untrusted entities, also known as a multilevel attack, and results in a form



2 Introduction to Hardware Trojans 25

Fig. 2.6 Cause and effect
misconceptions related to
hardware Trojans

of risk that is difficult to defend against. Collusion can occur throughout different
untrusted stages of the hardware design flow and life cycle [6]. For example, the
work of [1] demonstrates a hardware Trojan inserted by an untrusted entity that is
activated with a specific fault condition known only to the other colluding party.
As another example, the work of [19] demonstrates a hardware Trojan designed to
leak sensitive information through an analog side-channel. This Trojan is activated
by another untrusted entity who also obtains and analyzes the leaked information.
Collusion can also occur between multiple teams inside the same vendor. For
example, the work of [27] illustrates this point and provides a codesign approach for
preventing collusion between multiple rogue insiders at the design house. Although
anti-collusion techniques do exist, the work of [1] demonstrates that multilevel
collusion between untrusted entities results in a significantly stronger adversarial
threat than what results from only a single adversary.

Figure 2.6 provides a summary of the cause and effect misconceptions discussed
in this section.

2.4 Offensive Strategies

2.4.1 Taxonomy of Trojan Types

In order to properly model hardware Trojans for offensive and defensive postures,
one must first understand the different types of Trojans. The categories of these
types, referred to as taxonomies, represent the framework for classifying hardware
Trojans based on their individual characteristics and also provide the foundation
for building metrics to evaluate Trojan detection mechanisms. The first published
hardware Trojan taxonomy was proposed in 2008 by [43] and consisted of six
attributes including three principle categories based upon physical, activation, and



26 J. Vosatka

Fig. 2.7 Five comprehensive hardware Trojan taxonomy categories [17]

action characteristics. As hardware Trojans became more complex, this elemental
taxonomy was improved to comprise of nine attributes for the same three principle
categories [36]. The most comprehensive taxonomy to date is the work of [17]
that comprises of five categories (insertion phase, abstraction level, activation
mechanism, effects, and location), with each category containing multiple attributes.
This taxonomy is predicated on two key criteria: (1) coverage (it should classify
any-and-all Trojans) and (2) resolution (it should separate significantly different
capabilities of Trojans). This comprehensive taxonomy is shown in Fig. 2.7.

The insertion phase describes the stages of the design and fabrication life cycle
where the hardware is vulnerable to malicious modification. This phase ranges
from defining the hardware characteristics (i.e., design specifications) to physical
IC placement (i.e., assembly) on a printed circuit board (PCB).

The abstraction level describes the various development stages of the hardware
IP prior to fabrication. This level spans from the physical dimensions and locations
of the internal components in the circuit (i.e., physical level) to the final definitions
of the interconnects and communication protocols used in the IC (i.e., system level).

The activation mechanism describes the means by which the Trojan is triggered.
This includes always-on Trojans such as those continually leaking information
through EM radiation, as well as Trojans requiring specific triggers for activation
such as internal sequential counters or external triggers from input data streams.

The effects category describes the unwanted result from the Trojan’s delivered
payload. This ranges from introducing small errors that are difficult to detect (i.e.,
change the functionality) to full consumption or failure of hardware resources, thus
preventing system availability (i.e., denial of service).

The location category describes where inside the hardware a Trojan can phys-
ically be inserted. This category spans from a single Trojan targeting a single
component (e.g., system clock) to perform fault-injection attacks to multiple
distributed Trojans targeting multiple complex components (e.g., processors) to alter
the order of instruction execution.

This comprehensive Trojan taxonomy has been validated against a total of 56
hardware Trojans for the coverage and resolution criteria described in this section,



2 Introduction to Hardware Trojans 27

and it correctly captured all of the Trojans into the proper categories [17]. However,
as with many aspects of security and trust, continuous advances are required to be
made in order to stay ahead of the adversary. The website https://www.trust-hub.org
maintains a collection of hardware Trojan benchmarks that have been developed and
updated by researchers in the hardware security and trust community [32, 34, 41].

From 2007 through the present day, there has been much research focused on
hardware Trojan modeling, circuit generation, and benchmarks [32, 34, 36, 41, 45].
However, within just the last few years, the number of Trojan design publications
has started to trend downward, possibly indicating that Trojan designs have
saturated. On the other hand, the number of research publications focused on
countermeasures, such as detection and prevention, has greatly increased. These
trend changes may be due to the fact that there exist a virtually unlimited number
of different Trojan designs, and the critical research needs to be focused on the
defensive postures with prevention mechanisms possibly outweighing detection
mechanisms [45].

2.4.2 Taxonomy of Trojan Triggers and Payloads

The fundamental taxonomy of triggers and payloads, which are the two main
components for hardware Trojans, is shown in Fig. 2.8. The trigger continually
monitors specific signals in the circuit and activates when an expected event
occurs, which is typically derived from the original circuit. The payload is activated
by the trigger and delivers the malicious behavior to the circuit. Trojans may
remain undetected and inactivated for many years while waiting for the specific
circumstance to occur before they trigger and deliver their nefarious payload to the
circuit.

Trojan triggers occur in two types: digital or analog. Digital is the most
commonly researched Trojan as it consists of combinational and sequential circuits.

Fig. 2.8 Taxonomy of hardware Trojan triggers and payloads [6]

https://www.trust-hub.org


28 J. Vosatka

Fig. 2.9 Generic models of combinational and sequential Trojans

Combinational Trojans are stateless, meaning they contain no state elements (e.g.,
flip-flops, latches), and they rely on a specific condition occurring at a specific set of
rare nodes within the circuit. Sequential Trojans are stateful, meaning they rely on
a specific sequence of states to be traversed before activation (e.g., counters, finite
state machines). Sequential Trojans are more difficult to detect since they require
a number of arbitrary conditions to be met before activation, which can become
computationally infeasible to detect with conventional testing methods. Analog
triggers, on the other hand, rely on various natural phenomena (e.g., temperature,
RF radiation, gate capacitance) for activation. A hybrid Trojan is a combination of
a digital and an analog Trojan. Two generic Trojan models can be seen in Fig. 2.9.

Recall that Trojans should be virtually undetectable and rarely activated. There-
fore, an adversary would choose nodes that are unlikely to activate during conven-
tional testing methods. Upon activation, the Trojan’s payload will be delivered to
the circuit. The payload can be categorized as digital (e.g., affecting logic values,
opening backdoors) or analog (e.g., affecting performance, EM emissions) or others
(e.g., acceleration of IC aging, leaking information). The payload is the critical part
of the Trojan as it is ultimately what modifies the original behavior of the circuit.
Examples of fundamental hardware Trojans with triggers and payloads are shown
in Sect. 2.4.3.

2.4.3 Fundamental Trojan Examples

Figure 2.10 shows a combinational Trojan with a NOR gate as a trigger and an
XOR gate as the payload. This Trojan is activated only when the specific condition
of A D 0 and B D 0 occurs at the NOR gate’s trigger nodes, resulting in the payload
delivering an inverted output Cmodified.

Figure 2.11 shows a synchronous sequential Trojan (a.k.a. Trojan “time bomb”)
with a simple counter for activation. The trigger consists of a k � bit counter and an



2 Introduction to Hardware Trojans 29

Fig. 2.10 Combinational
Trojan circuit [9]

Fig. 2.11 Sequential Trojan
circuit [9]

Fig. 2.12 Hybrid Trojan
circuit [9]

Fig. 2.13 Analog Trojan
circuit [9]

AND gate, and the payload consists of an XOR gate. This Trojan is triggered after
a predefined 2k � 1 counts, resulting in an inverted output ER*. An asynchronous
version of this Trojan can be created by substituting the clock (CLK) with another
logic implementation.

Figure 2.12 shows a hybrid Trojan consisting of both synchronous (k1-bit)
and asynchronous (k2-bit) counters. Both of these counters must reach their
predetermined values for activation, resulting in an inverted output ER*.

Figure 2.13 shows an analog Trojan in which a capacitor is charged if the AND
gate output (driven by q1 and q2) has been set to 1 for a calculated period of time,
resulting in an inverted output ER*. If the AND gate output is not set high for the
correct duration of time, the capacitor will discharge to ground and the Trojan will
not activate.

The previous examples have shown hardware Trojans with digital or analog
triggers delivering a digital payload. Recall that digital payloads are designed to



30 J. Vosatka

Fig. 2.14 Trojan with analog
payload to Vdd [9]

Fig. 2.15 Trojan with analog
payload to GND [9]

affect targeted logic values at specific internal nodes, whereas analog payloads affect
characteristics such as performance. Figures 2.14 and 2.15 offer examples of analog
payloads.

Figure 2.14 shows an analog payload in which a fault is created, via the resistor
to Vdd, when the output of the AND gate is logic zero.

Figure 2.15 shows an analog payload in which path delay is affected, via the
capacitor to GND, when the output of the AND gate is logic one.

2.4.4 Innovative and New Trojan Attacks: Designs
and Examples

Hardware Trojans have evolved to become more potent threats against secure and
trustworthy hardware. Trojan attacks now include more advanced functions such
as temperature-driven activation, radio, power, and optical side-channel leakage of
information, accelerated aging of ICs, as well as denial-of-service (DoS) attacks
against device availability [15, 18, 43]. This section explores several examples of
innovative and recent designs of hardware Trojan attacks.

2.4.4.1 Side-Channel Trojan

Malicious off-chip leakage enabled by side-channels (MOLES) [19] demonstrates a
hardware Trojan that is inserted by an untrusted foundry. MOLES leaks sensitive
information outside of the IC through an analog side-channel, which is later
acquired and analyzed by another untrusted entity. MOLES was designed to
compromise hardware security modules (HSMs), which are the tamper-resistant
cryptographic engines for embedded systems and general-purpose computers. It
was implemented in an Advanced Encryption Standard (AES) IP core to leak



2 Introduction to Hardware Trojans 31

Fig. 2.16 MOLES circuit
embedded inside a hardware
security module [19]

multi-bit cryptographic keys. All of the bits were leaked with a signal-to-noise ratio
(SNR) below the noise power level of the infected IC in order to remain hidden
while the Trojan is activated. Also, MOLES was designed to be very small in size
(i.e., fewer than 50 gates) in order to evade detection from automatic test pattern
generation (ATPG) testing and layout inspection processes. Figure 2.16 shows the
block diagram of MOLES.

2.4.4.2 Semiconductor Trojan

Stealthy dopant-level hardware Trojans are described in the work of [4] in which
the dopant polarity was altered in the existing transistors of the infected IC. This
type of Trojan is inserted by an untrusted foundry after placement and routing
occurs during the layout level. Since there is no additional circuitry required for
this Trojan, the appearance and functionality of the IC are not changed. Therefore,
the malicious modification is virtually undetectable to optical inspection techniques
and can defeat golden IC model verification methods. This Trojan was inserted into
a case study model of a cryptographically secure processor in order to reduce the
entropy of the random number generator (RNG) used to produce the cryptographic
keys. The authors claim their Trojan will allow the compromised processor to still
pass the built-in self-test (BIST) as well as the National Institute of Standards and
Technology (NIST) test suite that is commonly used to rate the quality of random
number generation. Figure 2.17a shows an unmodified inverter gate, and Fig. 2.17b
shows a dopant Trojan inserted into the inverter gate resulting in a constant output
of VDD. A close inspection of this figure reveals the contact, metal, and polysilicon
areas are indeed identical in both cases. The only change is to the polarities of the
N and P dopants.



32 J. Vosatka

Fig. 2.17 Layout of (a) Trojan-free inverter gate and (b) inverter gate with Trojan to output
constant VDD [4]

2.4.4.3 Analog Trojan

Analog malicious hardware, called “A2”, demonstrates how an untrusted foundry
can insert an analog hardware Trojan into empty cells of a circuit [16]. A2 is a
capacitor-based Trojan that slowly diverts charge from internal connections that
rarely toggle their digital values. Once A2’s capacitors reach a specified charge
state, the Trojan triggers and delivers a payload that overrides a flip-flop’s current
state, thus forcing it to a predetermined value. Although A2 is a hardware Trojan, its
objective is to enable a remotely controlled software privilege escalation attack by
forcing a targeted bit in a security register to a specific value. A2 was implemented
into an open-source CPU processor just prior to the CPU being fabricated, and
the Trojan attacks were successful. Essentially, A2 implements an analog counter
as a trigger, meaning that it does not require numerous additional gates as does
a conventional digital counter-based trigger. A2 can be as small as one gate and
is more stealthy than its digital counterpart; thus it is more elusive to functional
verification, simulation, and side-channel Trojan detection methods. Figure 2.18
shows the behavior of the A2 Trojan, which takes multiple rising-edge triggers to
charge the capacitor to the threshold voltage value required for activation.



2 Introduction to Hardware Trojans 33

Fig. 2.18 “A2” analog Trojan circuit behavior. Notice capacitor requires multiple triggers prior to
activation [16]

2.4.4.4 Digital Trojan

Hardware Trojans can also exist in digital finite state machines (FSMs) as demon-
strated in [13]. Vulnerabilities exist in high-level incomplete design specifications,
which can be exploited by adversaries during the design flow, as well as in post-
fabrication through inadvertent trapdoors found in the defined FSM. When the
number of protected states is not a power of 2 (as in n2 states), there will be unused
states in the FSM that will be treated as “don’t-care” conditions. The adversary
inserts the logic Trojan into the don’t-care conditions inside a sequential FSM (i.e.,
where the next state or output is not specified), which allows an attacker access to
protected states in the FSM once the Trojan is triggered. If a don’t-care condition is
not Trojanized, logic design tools may use it for optimization. However, at the circuit
level, don’t-care conditions will be assigned a deterministic next-state value by the
EDA/CAD tools which may have been coerced by the Trojan. Since the Trojan is
inserted early in the flow, it may pass undiscovered by Trojan detection mechanisms
used later in the flow. Figure 2.19a shows a four-state transition graph, which was
originally a three-state FSM with state “11” as a don’t-care. The solid blue edge
lines represent the defined state transitions, and the dashed orange lines represent
the don’t-cares in the FSM. The dashed orange edge lines will be implemented by
the circuit (Fig. 2.19b) with their assignments allowing an attacker potential access
to protected states in the FSM.

2.4.4.5 Other Notable Trojans

2.4.4.5a: Insertion of hardware Trojans into the silicon of a fabricated wireless
cryptographic IC was accomplished in the work of [20]. These Trojans were inserted



34 J. Vosatka

Fig. 2.19 Vulnerable four-state FSM (originally three states shown in blue) showing (a) dashed
orange edge lines and state “11” representing don’t-care conditions as a result of the digital
logic implementation (b) where the don’t-cares may allow an attacker access to protected FSM
states [13]

into the AES core and the ultra-wideband (UWB) transmitter of the application-
specific integrated circuit (ASIC) chipset. This attack resulted in encryption key
leakage that was concealed within the amplitude and frequency design margins
allowed due to fabrication process variations.

2.4.4.5b: A software-exploitable hardware Trojan was implemented inside an
embedded processor as demonstrated by [44]. This hardware Trojan was modeled
by a sequential FSM and was triggered with a specific combination of firmware
instructions and data processing sequences. The attack resulted in leakage of the
program IP, the encryption key, and also caused the system to malfunction.

2.4.4.5c: Reliability Trojans, which are malicious alterations of manufacturing
conditions during semiconductor fabrication, are introduced in [35]. These Trojans
exploit the wearing-out mechanisms for CMOS transistors, such as negative bias
temperature instability (NBTI) and hot carrier injection (HCI). The attack objectives
include reduced reliability, accelerated aging, and premature failure of ICs such as
SRAM cache memory, all of which are triggered only with time and usage of the IC.

2.4.4.5d: Small, optimized, and performance-based Trojans have been designed
to evade detection in the works of [7, 42]. These low-impact Trojans rely on
modifications such as resizing of logic gates, interconnect tampering, and insertion
of resistive bridging faults at single failure points in a circuit. They are designed
to be inserted without impacting path delays, power consumption, or area overhead
of the circuit. Their attack objectives include privilege escalation, erratic behavior,
incorrect outputs, and hardware failure.

2.4.4.5e: Field programmable gate arrays (FPGAs) and systems on chip (SoC) are
also vulnerable to hardware Trojan attacks. The work of [33] developed a com-



2 Introduction to Hardware Trojans 35

prehensive taxonomy of Trojan attacks in FPGAs. The work of [11] demonstrates
an automated security analysis framework designed to detect hardware exploits
including Trojan attacks in SoCs. Also, the work of [34] demonstrates an extensive
database of hardware Trojan attacks which can be used to be insert Trojans into
FPGAs and SoCs for research of defensive security and trust techniques.

2.4.5 Trojan Attack Models

The proper modeling of hardware Trojans is essential to accurately categorizing the
adversarial threats and analyzing the effects of Trojan attacks. Prior to developing
an attack or countermeasure method, the adversary or defender must consider the
appropriate Trojan model. Recall that adversaries can insert Trojans into hardware
during many phases of the design flow, which leads to the need for multiple attack
models. Accurate Trojan attack models must be based on the entire semiconductor
supply chain. For SoCs, this can be divided into three phases: IP core development,
SoC development, and fabrication. These three phases result in three types of entities
that can potentially attack the hardware design: 3PIP vendors, SoC developers, and
fabrication foundries. This adversarial threat modeling concept can be extended
to other ICs, and existing research has been performed to categorize different
models of Trojans attacks [17, 29, 36]. The work of [45] provides us with seven
comprehensive attack models for SoCs, shown in Fig. 2.20.

A summary of the seven comprehensive Trojan attack models follows:
Model A: Untrusted 3PIP Vendor—Most SoC designers have to acquire some

forms of third-party IP (3PIP) cores to complete their designs. This is driven by
demands for reduced costs, faster time to market, and decreases in physical IC size
coupled with increased functional complexity. Adversaries at the untrusted vendor
can insert hardware Trojans into the 3PIP without the SoC designer’s knowledge.

Fig. 2.20 Seven comprehensive hardware Trojan attack models [45]



36 J. Vosatka

Model B: Untrusted Foundry—Most design houses are partially or fully fabless,
meaning they outsource the fabrication of their ICs to offshore and untrusted
entities. The outsourcing decisions are a tradeoff between the need for the latest
fabrication technologies at the lowest costs and the security of their designs.
Adversaries at these untrusted foundries have access to all layers of the design
and are able to insert Trojans into any of the lithography masks, as well as reverse
engineer the design for counterfeiting purposes.

Model C: Untrusted SoC Developer—Highly trained SoC designers and special-
ized design tools are required to produce complex hardware designs. Adversaries in
this model are insider threats, and they may use untrusted (i.e., pirated) CAD and
EDA software tools.

Model D: Untrusted COTS Components—Many commercial off-the-shelf
(COTS) components are used in designs. COTS items are less expensive than
a custom product, and they typically do not require custom development for
integration into a system. These items are developed in a completely untrusted
manner resulting in multiple vulnerable stages in the design flow.

Model E: Untrusted Design House—Designs in this model are fabricated in a
trusted foundry, but the design house and 3PIP vendors are not trusted to produce
Trojan-free designs. Outside of the trusted foundry, the entire supply chain is
untrusted.

Model F: Untrusted Outsourcer—This is a combination of Model A and Model
B, and it applies to almost all fabless IC design houses. These designers use 3PIP
vendors and untrusted foundries resulting in the inability to guarantee a Trojan-free
hardware design.

Model G: Untrusted Systems Integrator—This model includes untrusted system
integrators catering to a variety of customers who wish to have a supplier capable of
both design and fabrication. This developer can pull from a variety of resources
to meet customer demands; however vulnerabilities may be introduced into the
completed hardware design.

The work of [45] also included a comprehensive analysis of 161 published
papers on countermeasures against these types of Trojan attack models. The results
show a remarkable 89% of the countermeasure papers covered Model F (untrusted
outsourcer), and almost 60% of the published papers covered Model B (untrusted
foundry). Model A (untrusted 3PIP vendor) was covered in almost 30%, and Model
C (untrusted SoC developer) was covered in 13% of these papers. It is worth noting
that Models D, E, and G accounted for virtually 0% of the papers as these three
models can be absorbed by other attack models.

It is widely known that Trojan attacks typically occur in untrusted entities.
Consequently, countermeasures should be performed only by trusted entities. These
seven attack models show that foundries, vendors, and designers all play the role of
either untrusted or trusted entities, but they cannot be both roles at the same time.



2 Introduction to Hardware Trojans 37

2.5 Defensive Strategies

2.5.1 Taxonomy of Trojan Countermeasures

It is very difficult to detect hardware Trojans using conventional test and validation
processes, as introduced in Sect. 2.3.1 and analyzed in Sect. 2.5.5. Whether per-
forming pre-silicon or post-silicon verification or executing structural, functional,
or random test patterns, these conventional approaches perform poorly for detecting
hardware Trojans. These processes are designed to detect defects in manufacturing
workmanship and typically only test for expected operating conditions within the
circuit. Trojans, by nature, are hidden among rare internal nodes that are not nor-
mally activated during device testing. An adversary can choose from an extremely
large selection of Trojans to insert into the circuit, whereas performing deterministic
and exhaustive defensive testing for all conditions is computationally infeasible.
Additionally, parametric parameters such as path delay, internal noise, and power
consumption are different for each IC based upon manufacturing tolerances, thus
making detection inherently more challenging [3, 6, 9, 36, 43, 45, 48]. Therefore,
the need exists for both detection and prevention mechanisms to defend against
hardware Trojans.

Hardware security and trust researchers have developed three broad categories of
countermeasures for hardware Trojans and have proposed the taxonomy shown in
Fig. 2.21. The three main categories of countermeasures are Trojan detection, design
for trust, and split manufacturing for trust [45]. The single letters in the blocks of
this taxonomy cross-reference the listed countermeasure in this taxonomy with its
particular attack models that were discussed in Sect. 2.4.5.

2.5.1.1 Trojan Detection

The goal of Trojan detection is to verify hardware designs without requiring
supplemental circuitry [45]. Additional circuitry would lead to an increase in
manufacturing cost, circuit size and performance, and power overhead. Trojan
detection is performed during pre-silicon and post-silicon design stages. Pre-silicon
verification helps SoC designers to validate 3PIP in the final design stages prior
to fabrication. This includes performing functional validation, structural and code
analysis, and formal verification. Although these techniques are good for identifying
unintentional design errors and manufacturing faults, they offer no guarantees
against hardware Trojans. Post-silicon verification provides more guarantees against
Trojans, but at a different cost, which can be further categorized into destructive and
nondestructive methods [9, 45].

Destructive methods (e.g., depackaging of ICs, physical reverse engineering)
offer the highest assurance against Trojans as the fabricated IC can be visually
verified against a golden IC or golden model. It is a complicated process involving



38 J. Vosatka

layer-by-layer de-metallization using a chemical mechanical polishing (CMP)
technique followed by image reconstruction and analysis using a scanning electron
microscope (SEM). This method allows for the identification of individual gates,
transistors, and routing elements contained within the IC. This process is performed
on a one-by-one basis taking several weeks to conduct, and the IC is destroyed
during this process. Additionally, an adversary can insert a Trojan into only a small
number of ICs instead of the entire lot, thus making destructive detection methods
impractical from a scalability perspective. However, destructively testing a limited
number of ICs is still beneficial as the information gained from the samples may
be used to form golden models for verification with other Trojan detection methods
(e.g., side-channel analysis) [6, 9, 45].

Nondestructive methods include functional testing and side-channel analysis to
identify possible hardware Trojans. Functional testing, also known as logic testing,
is a method of inputting specific logic patterns into the IC with the goal of triggering
any existing Trojans. This form of testing is not equivalent to conventional testing
as those test vectors aim to identify bugs and defects. Trojans are typically hidden
in low-controllable and low-observable nodes, thus making them difficult to reach
with conventional testing methods. Side-channel analysis is a method of acquiring
and analyzing characteristics that are unique to each IC. The goal is to identify
additional circuitry containing Trojans through observing changes in the physical
parameters of each IC. This method includes performing analysis on consumed
and leaked power, gate timing, path delay, circuit temperature, and electromagnetic
radiation. Side-channel analysis may use ring oscillators, shadow registers, and
delay elements to detect fluctuations indicative of hardware Trojans. Nondestructive
methods can be performed numerous times and on as many ICs as desired. Although
functional testing and side-channel analysis typically require a golden IC or model,
together they form a complementary approach toward nondestructive hardware
Trojan detection [6, 9, 36, 43, 45].

Functional validation is a form of pre-silicon Trojan detection with the main
idea being similar to functional testing (i.e., logic testing). Functional validation is
performed using modeling and simulation, which requires no physical connections
to the device under test (DUT). Functional testing, on the other hand, requires
physical connection to the DUT and is usually performed on a specialized test stand.
The test stand is required to apply all of the generated test input vectors (based on
the design specifications) and to collect the output of the device. Functional testing
methodologies can be applied to functional verification, but not vice versa [45, 47].

Formal verification is a pre-silicon or pre-synthesis design verification technique,
which is typically performed to confirm that a circuit has been indeed designed in the
precise manner as defined by the design requirements. In the context of security and
trust, formal verification is a mathematical approach toward exhaustively validating
the entire security and trust specification of an IC. It includes using a specified
set of security policies and proof-checking methods. Formal verification for Trojan
detection is based on three verification methods: property checking, equivalence
checking, and model checking. Respectively, these methods allow for verification
of requirements in hardware test bench properties, checking equivalence between



2 Introduction to Hardware Trojans 39

RTL, netlist, and GDSII files, as well as checking the models used for system-
level languages (e.g., Verilog and VHDL) against the defined security specifications
[45, 47].

Code and circuit coverage is another pre-silicon Trojan detection technique.
Analysis of hardware description language (HDL) may be performed structurally or
behaviorally to identify rare and redundant internal nodes within the HDL code and
the circuit. The coverage typically includes RTL line execution, FSM reachability
coverage, and coverage of gate-level netlists combined with functional assertions
indicating success or failure. This analysis aims to locate and identify the nodes
with the highest probability indicative of a location for Trojan insertion. Quantitative
metrics and manual post-processing of the results may be used to identify unusually
rare nodes or gates with low observability, low reachability, and low probability, all
of which are ideal targets for adversaries to insert hardware Trojans [45].

2.5.1.2 Design for Trust (DfT)

An alternative to the Trojan detection methods described above is to design for
trust (DfT). DfT is a method that integrates security and trust throughout the
entire design and manufacturing flow. It includes facilitating detection, preventing
Trojan insertion, and trustworthy computing on untrusted components as shown in
Fig. 2.21.

The first approach to DfT is to facilitate detection by incorporating functional
testing, side-channel analysis (both previously described), and run-time monitoring.

Fig. 2.21 Taxonomy of Trojan countermeasures [45]



40 J. Vosatka

Run-time monitoring can increase the trustworthiness of hardware by continually
monitoring all critical computations for abnormalities, thus reducing the effect of
Trojan attacks. Run-time monitoring can detect malicious behavior and automat-
ically disable or bypass the malicious logic allowing the IC to restore reliable
operation. It uses existing on-chip and supplemental off-chip (e.g., online) resources
to continually monitor characteristics of the IC including behavior, operating
conditions, transient power, and temperature [6, 9, 24, 36, 45].

Preventing Trojan insertion is another approach to DfT and includes obfuscation,
camouflaging, and functional filler cells. Obfuscation is a method of hiding circuit
functionality by inserting additional logic-locking circuitry into the design in order
to conceal the correct functionality and the intended hardware design. The obfus-
cated circuit regains full functionality when the correct logic key is applied to the
inputs. Obfuscation is effective for Trojan prevention in combinational, sequential,
and reconfigurable logic. Camouflaging is a method of creating indistinguishable
layouts of gates by using additional dummy contacts and fake interconnects between
layers of the different gates in the circuit. Camouflaging prevents the attacker’s
ability to reverse engineer the circuit’s netlist, thus preventing Trojan insertion.
Functional filler cells are a method of inserting functioning gates into empty spaces
in the hardware design. Typically, EDA/CAD tools fill empty spaces with non-
functioning standard cells, thus allowing an attacker to replace these unused cells
with a Trojan. Functional filler cells make use of all empty locations by inserting
functional gates to form specified combinational logic, which can be tested during
the design flow. A failure in the functionality of the filler cells can be indicative of
an inserted Trojan [6, 45].

Another method for DfT is by performing trustworthy computing on untrusted
components. This method is inherently resilient to Trojan attacks, which separates
it from other prevention methods such as run-time monitoring and obfuscation.
This method mitigates the effects of activated Trojans as the trusted computing
software, which is running on the untrusted hardware, can be distributed over
multiple independent mechanisms and processes. These risk reduction methods
include distributed software scheduling over multiple multicore processors, using
the identical untrusted 3PIP from different untrusted vendors, and comparing
multiple 3PIP sources with similar untrusted designs [45].

An important point for hardware designers to consider is the balance between
hardware Trojan detection and prevention methods with the actual need for
increased security and trust of the hardware design. For Trojan detection, as the
size of a circuit increases, so does the number of additional gates and internal
nodes. These additional gates may unintentionally introduce low-controllable and
low-observable nodes, which makes Trojan detection even more challenging. In
addition, intentional modifications of gates for Trojan prevention may negatively
impact the performance of the circuit. These impacts occur in many forms including
path delays, power consumption, and area overhead of the circuit. As with design
specifications, this inevitable tradeoff must be considered throughout the entire
design flow and manufacturing process.



2 Introduction to Hardware Trojans 41

2.5.1.3 Split Manufacturing for Trust

Recently, split manufacturing has been offered to protect against hardware Trojans.
This manufacturing process divides the hardware design into front-end-of-line
(FEOL) and back-end-of-line (BEOL) sections that are fabricated by different
foundries. Typically, an untrusted foundry will fabricate only the FEOL portion of
the design and then ship their wafer sections to a trusted foundry who fabricates the
BEOL section and integrates both sections. The process is conducted in this fashion
as FEOL fabrication is of higher cost (i.e., monies, machinery, time) than BEOL
fabrication. Split manufacturing prevents the untrusted foundry from having access
to all layers of the IC, since having this information would allow an adversary to
easily insert Trojans.

Common techniques of split manufacturing include 2D integration (described
above), 2.5D integration, and 3D integration as shown in Fig. 2.21. In 2.5D
integration, the design is divided into two sections (FEOL and BEOL), which
are both fabricated by the untrusted foundry. A middle section, called a silicon
interposer as it contains the interchip connections, is fabricated at a trusted foundry.
The interposer, FEOL, and BEOL sections undergo final assembly in the trusted
facility. In 3D integration, both the FEOL and BEOL sections are fabricated by
different foundries. The 3D assembly consists of vertically stacking the sections and
inserting vertical interconnects called through-silicon vias (TSVs). Naturally with
any Trojan countermeasure technique, there are tradeoffs with split manufacturing
including higher manufacturing costs, increased area due to the interconnections,
increased timing and power overheads, and higher temperatures in the middle tiers
of the IC [6, 45, 46].

2.5.2 Detection of Trojans: Examples

2.5.2.1 Statistical Detection

Multiple excitation of rare occurrence (MERO) is a statistical form of Trojan
detection [10]. MERO aims to maximize the probability of triggering Trojans during
logic testing, while minimizing the number of test vectors required as compared
with a weighted random pattern testing approach. It works by first detecting low-
probability events at internal nodes and then creating a set of optimized test vectors
that triggers each internal nodes to their rare logic value multiple times (e.g., N
> 1000). It applies these vectors during testing in an effort to trigger any Trojans in
the circuit. Recall that conventional testing does not scale to detect Trojans due to
the exponential number of possible Trojan instances. Figure 2.22a shows the rare
event (abc D 011) required to trigger a combinational Trojan, and Fig. 2.22b shows
the rare occurrence (ab D 10) required to trigger a sequential Trojan. These two
conditions will be identified by MERO and toggled many times in order to trigger
and detect any Trojans in the circuits.



42 J. Vosatka

Fig. 2.22 Statistical logic
testing of MERO for (a)
combinational Trojan and (b)
sequential Trojan [10]

2.5.2.2 Rare Event Removal

A methodology for identifying and removing rare nodes to increase Trojan detection
is demonstrated in [31]. It is widely known that adversaries target low-controllable
and low-observable nodes in which to insert Trojans, thus leading to challenges
with Trojan detection methods. This technique analyzes the hardware design to
identify nets with a transition probability less than a specific threshold value,
which makes them ideal candidates for Trojans. The transition probability threshold
value is modeled using a geometric distribution (GD) and estimates the number of
clock cycles required for a node to transition. One or more dummy scan flip-flops
(dSFF) are then inserted into the identified nodes to increase their probability of
transitioning, all without the flip-flops affecting the timing or functionality of the
design. The increased transitioning rate will result in a decrease of hard-to-activate
nodes in the circuit (i.e., removal of the rare events). Removing these rare events is
what allows for facilitating Trojan detection in the hardware, even if the gate-level
netlist is not trusted. Small Trojans may be fully activated resulting in detection
(via logic testing) through malfunctions and faulty circuit outputs. Large Trojans
may be partially activated resulting in detection (via side-channel analysis) through
measurable changes in signals such as transient power and path delay.

Figure 2.23a shows an original Trojan cone (i.e., logic gates connected to the
input of a Trojan gate) consisting of all AND gates with the probability of generating
a “1” (1=256 D 0:0039) at the Trojan gate (Tgi) being much less than generating
a “0” (255=256 D 0:9961). Figure 2.23b shows a single dummy scan flip-flop OR
gate inserted into the top net of the circuit. This single gate dramatically reduces
the number of clock cycles required to transition the Trojan gate (Tgi), thereby
increasing the transition probability of a “1” to be much greater than its original
value (“1,” 17=512 D 0:0332; “0,” 495=512 D 0:9668). This increase in transition
rate leads to an increased probability of Trojan detection.



2 Introduction to Hardware Trojans 43

Fig. 2.23 Transition probability of the (a) original Trojan cone and (b) inclusion of a single
dummy scan flip-flop [31]

2.5.3 Prevention of Trojans: Examples

2.5.3.1 Obfuscation

Key-based design obfuscation deters adversaries from inserting Trojans by trans-
forming the circuit into another circuit that is functionally equivalent, but with
the added benefits of security features to prevent hardware Trojans [8]. It allows
a circuit to operate in two different modes (i.e., obfuscated mode and normal mode)
and requires a sequential logic key to unlock correct circuit functionality. In the
obfuscated mode (i.e., protected mode), the correct functionality and structural
design of the circuit is obscured, resulting in incorrect behaviors being produced by
the obfuscated circuit. In the normal mode, the correct behavior and functionality of
the circuit is restored, although the design itself is still obscured from an adversary.

Transitioning from obfuscated mode to normal mode requires the correct logic
key to be applied at the inputs during initial start-up of the circuit; otherwise
the circuit will remain in its protected mode. This technique makes inserting



44 J. Vosatka

Fig. 2.24 Key-based obfuscation scheme for Trojan prevention and detection [8]

Trojans difficult for adversaries as the rare internal nodes are obfuscated (recall
that adversaries insert Trojans into rare circuit nodes to prevent detection). If
a Trojan is inserted, it is highly likely that it will be inserted into an isolated
region, thus negating any effect of a triggered Trojan. This approach results in an
increased prevention against hard-to-detect Trojans from being inserted into rare
nodes, increased Trojan detection, as well as protection against IP piracy (i.e., IP
theft via reverse engineering). It can prevent Trojans from being inserted by an
adversary at an untrusted foundry or by untrusted EDA/CAD tools in IC design
flows, albeit at a cost of higher overhead and the inability to prevent random Trojan
insertions.

Figure 2.24 shows a state transition graph (STG) of a circuit. Upon power-up, the
circuit starts in the obfuscated mode (i.e., state SO

0 ). Only the correct sequential logic
key (i.e., K1 ! K2 ! K3) will transition the circuit into the normal mode (i.e., state
SN
0 ). Any incorrect key will result in the circuit transitioning into the isolation state

space, where it will be trapped along with any invalid Trojans.

2.5.3.2 Hardware 3PIP

A design framework for a formal, yet computationally feasible, acquisition of
trustworthy hardware 3PIP is demonstrated in the work of [21, 37]. This framework
is called proof-carrying hardware intellectual property (PCHIP), and it is based on
the concept of proof-carrying code (PCC). PCHIP focuses on the security and trust
of the IP in the form of hardware description language (HDL) for FPGAs. Unlike
many other approaches, it does not require a golden IC or model, nor does it require



2 Introduction to Hardware Trojans 45

Fig. 2.25 Hardware
intellectual property (IP)
acquisition and delivery
framework protocol [21]

a trusted 3PIP vendor. The IP consumer establishes a set of upfront security and
trust properties with the IP vendor, which become integrated as a component in
the entire design flow. These properties are temporal logic, meaning they are rule-
based symbolic expressions instead of exact hardware functionality. The IP vendor
creates a formal proof of these properties that is delivered with the 3PIP to the
IP consumer. The IP consumer then validates the 3PIP against the agreed-upon
security specifications. If the 3PIP fails verification, it means a security protocol has
likely been violated, thus resulting in the prevention of malicious Trojans from being
inserted into the IP consumer’s FPGA design. Since an inadequate set of security
specifications may have unknown vulnerabilities, this framework does not ensure
complete coverage and should be used only in conjunction with other detection
and prevention methods. Figure 2.25 shows the interaction cycle between the IP
consumer and the IP Vendor.

2.5.4 Other Notable Trojan Detection and Prevention Methods

Similarly to the evolution of hardware Trojan designs attacks, Trojan detection and
prevention mechanisms have also evolved in much the same manner. This section
will introduce other notable and new Trojan detection and prevention techniques.

2.5.4.1 Voltage Inversion

A voltage inversion technique to ascertain malicious insertions (VITAMIN) in
ICs was proposed by [2]. This technique utilizes an inverted voltage scheme to
complement the voltage level of CMOS gates (e.g., changing an AND gate into a



46 J. Vosatka

NAND gate). It aims to detect the presence of hardware Trojans through enhancing
the differences in the power profiles between a golden IC and a test IC, resulting
in higher triggering frequencies for the rare nodes in the circuit. This approach was
combined with a sustained vector technique to further strengthen its effectiveness.

2.5.4.2 Temperature Tracking

A run-time method for detecting hardware Trojans was introduced in [14]. The goal
of this framework is to detect a deviation in the normal correlation between the
thermal and power profiles within an IC. Abnormalities in this profile may indicate
a Trojan activation. This approach consists of design-time, test-time, and run-time
monitoring phases. It is low overhead as it exploits the existing internal thermal
sensors on many FPGAs, SoCs, and other ICs. This approach enables online Trojan
detection during the entire lifetime of the IC.

2.5.4.3 Split Fabrication

A secure split manufacturing methodology using vertical slit field effect transistors
(VeSFET) inside of ICs is proposed by [46]. This approach uses the VeSFET’s two-
sided accessibility and 3D integration capability to hide transistors in a camouflaged
3D case. It allows two independent untrusted foundries to securely fabricate 2D and
3D ICs. If one foundry adds or moves transistors, the resulting crowbar current
effect is detected by the other foundry. This design methodology prevents hardware
Trojan insertion, reverse engineering, and IP piracy, as well as provides methods for
Trojan detection capabilities.

2.5.4.4 FPGA Trust

Hardware Trojan attack prevention and detection methods for FPGAs are demon-
strated in the works of [22]. This security and trust validation method, called adapted
triple modular redundancy (ATMR), enables protection against Trojans that are
inserted during device production at the foundry. It is adaptive since Trojans can
be independent of the final design. ATMR is a combined approach consisting of
logic testing and side-channel analysis, and it is designed to protect FPGAs from
Trojans of various sizes, locations, and functionalities. This work also developed a
Trojan attacks taxonomy and Trojan models that specifically target FPGAs. The
taxonomy covers Trojans that alter the programmed state and I/O blocks of the
FPGA, including Trojans inserted by the foundry that cause logical malfunctions
and physical damage.



2 Introduction to Hardware Trojans 47

2.5.5 Comparisons of Various Trojan Defensive Methodologies

Detection and prevention of hardware Trojans attempt to solve the problem from
two unique viewpoints. Many detection methods have been researched and the
consensus is that detecting a small, quiet Trojan is very challenging, and the majority
of the methods for detection are based on the use of a golden IC or golden model
[6, 45]. Although the authors of [45] state that prevention may be better than
detection, it is worth considering that a balance of the two methods is perhaps the
best approach toward Trojan-free hardware.

Automatic test pattern generation (ATPG) is a method of circuit testing that
is used to distinguish between the correct behavior of the design and the faulty
behavior caused by defects. The goal of ATPG is 100% test coverage, and it is based
upon the specification of the circuit. Structural testing may detect some Trojans
since the number of nodes to test grows linearly with the number of inputs to the
circuit. However, functional testing is much more complex as the number of nodes
to test grows exponentially with the number of inputs to the circuit, thus making
it almost impossible to detect all possible Trojans. Formal verification methods
are algorithmic-based approaches that validate properties of the intended design.
Several proposed methods for Trojan detection, including formal verification,
identification and removal of suspicious signals, and equivalence checking, are
detailed in [38, 43, 47].

Functional and structural testing, in the forms of logic testing, aim to activate
unknown Trojans during the validation process and to propagate their effects to
an observable output node [6]. Logic testing is a straightforward approach that
works well for detecting ultrasmall Trojans. It is also robust in the presence of
environmental noise and manufacturing variations. However, it is not scalable and
quickly fails as the circuit or Trojan increases in size or complexity. The reason for
the lack of scalability is difficulty in generating a complete set of test vectors due
to the exponential increase in input combinations required to test all internal nodes
and generate all outputs. Essentially, logic testing has difficulties exciting rare, low-
controllable, and low-observable nodes. Also, logic testing cannot trigger externally
activated Trojans, and it requires a golden IC or model for Trojan detection [6, 45].

Side-channel power analysis is a detection method predicated on the expected,
albeit unknown magnitude, increase or decrease in the power overhead due to the
inclusion of a Trojan. Common methods include static current analysis and transient
current analysis. Static current analysis is a method of detection that relies on the
inactivated Trojan causing noticeable change in current draw from the power supply
due to the addition or modification of gates. Transient current analysis, on the
other hand, allows for the detection of switching activity inside an activated Trojan
[5, 6, 9, 45].

Side-channel analysis scales very well to detect large Trojans in both small and
large circuits. It is effective for Trojans that do not cause observable malfunctions
(e.g., data leakage), and it is easy to generate test vectors for Trojan detection.



48 J. Vosatka

However, this form of testing performs poorly in the presence of environmental
noise and manufacturing variations and does not work well for detecting ultrasmall
Trojans. This limitation is due to the Trojan’s effects being masked by the noise in
the IC. Side-channel detection is a noninvasive and passive form of Trojan detection,
and its effectiveness depends on the signal-to-noise ratio (SNR) and the Trojan-to-
circuit ratio (TCR). The SNR is important as the effect of the Trojan can be masked
by system or environmental noise. The TCR is important as it is the measurement
of Trojan size to circuit size. Detecting small Trojans in large circuits is a growing
challenge as IC feature sizes are continually becoming smaller and the number of
transistors continues to increase in hardware designs. As with logic testing, side-
channel analysis also typically requires a golden IC or model for Trojan detection
[6, 45].

Although logic testing and side-channel analysis can be performed numerous
times and on as many ICs as desired, they too suffer from drawbacks including
Trojans in rare nodes remaining inactivated, activated Trojans being masked by
the presence of noise, or variations in the IC tolerances during the manufacturing
process. Therefore, performing a combination of logic testing and side-channel
analysis can provide the best coverage for detecting hardware Trojans. Figure 2.26
shows the comparison between these two noninvasive hardware Trojan detection
methods.

Fig. 2.26 Comparison of noninvasive hardware Trojan detection methods



2 Introduction to Hardware Trojans 49

2.6 Conclusion

Hardware Trojans are a valid threat to hardware security and trust of integrated
circuits. These malicious modifications pose a safety and security risk to any
electronic system as the underlying hardware is no longer considered the root of all
trust. Trojans may remain undetected and inactivated for many years while waiting
for a specific circumstance to trigger so they may deliver their nefarious payload.
We have seen a plethora of Trojan attack designs and recognize the need for a solid
defense posture. In order to combat the threat of Trojans, accurate models for attacks
and countermeasures must be ensured. Only with these models will detection and
prevention techniques be realized. Current work in this domain relies on tradeoffs
between security and performance, and no defensive technique provides a 100%
guarantee. Future work in this domain will help answer the question if golden-free
models are a viable approach for hardware Trojan defense mechanisms.

References

1. S. Ali, D. Mukhopadhyay, R.S. Chakraborty, S. Bhunia, Multi-level attack: an emerging threat
model for cryptographic hardware, in Proceeding of the Design, Automation & Test in Europe
(DATE) Conference Exhibition (2011), pp. 1–4

2. M. Banga, M. Hsiao, VITAMIN: voltage inversion technique to ascertain malicious insertions
in ICs, in Proceeding of the IEEE International Workshop on Hardware-Oriented Security and
Trust (2009), pp. 104–107

3. C. Bao, D. Forte, A. Srivastava, On reverse engineering-based hardware Trojan detection. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 35(1), 49–57 (2016)

4. G.T. Becker, F. Regazzoni, C. Paar, W.P. Burleson, Stealthy dopant-level hardware Trojans:
extended version. J. Cryptogr. Eng. 4(1), 1–13 (2014)

5. S. Bhunia, M. Abramovici, D. Agrawal, P. Bradley, M.S. Hsiao, J. Plusquellic, M. Tehranipoor,
Protection against hardware Trojan attacks: towards a comprehensive solution. IEEE Design
Test 30(3), 6–17 (2013)

6. S. Bhunia, M.S. Hsiao, M. Banga, S. Narasimhan, Hardware Trojan attacks: threat analysis and
countermeasures. Proc. IEEE 102(8), 1229–1247 (2014)

7. B. Cha, S.K. Gupta, A resizing method to minimize effects of hardware Trojans, in 2014 IEEE
23rd Asian Test Symposium (2014), pp. 192–199

8. R.S. Chakraborty, S. Bhunia, Security against hardware Trojan attacks using key-based design
obfuscation. J. Electron. Test. (JETTA) Theory Appl. 27(6), 767–785 (2011)

9. R.S. Chakraborty, S. Narasimhan, S. Bhunia, Hardware Trojan: threats and emerging solutions,
in IEEE International High Level Design Validation and Test Workshop (2009), pp. 166–171

10. R.S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, S. Bhunia, MERO: a statistical approach
for hardware Trojan detection, in Proceeding of the Cryptographic Hardware and Embedded
Systems (CHES) (2009), pp. 396–410

11. G.K. Contreras, A. Nahiyan, S. Bhunia, D. Forte, M. Tehranipoor, Security vulnerability
analysis of design-for-test exploits for asset protection in SoCs, in 2017 22nd Asia and South
Pacific Design Automation Conference (ASP-DAC) (2017), pp. 617–622



50 J. Vosatka

12. D. Du, S. Narasimhan, R.S. Chakraborty, S. Bhunia, Self-referencing: a scalable side-channel
approach for hardware Trojan detection, in Proceeding of the Cryptographic Hardware and
Embedded Systems (CHES) (2010), pp. 173–187

13. C. Dunbar, G. Qu, Designing trusted embedded systems from finite state machines. ACM
Trans. Embed. Comput. Syst. 13(5s), Article 153 (2014)

14. D. Forte, C. Bao, A. Srivastava, Temperature tracking: an innovative run-time approach for
hardware Trojan detection, in Proceedings of the 2013 IEEE/ACM International Conference
on Computer-Aided Design, ICCAD (2013), pp. 532–539

15. Y. Jin, N. Kupp, CSAW 2008 team report (Yale University). CSAW embedded system
challenge (2008). [Online], Available: http://isis.poly.edu/vikram/yale.pdf

16. Y. Kaiyuan, M. Hicks, Q. Dong, T. Austin, D. Sylvester, A2: analog malicious hardware, in
2016 IEEE Symposium on Security and Privacy (SP) (2016)

17. R. Karri, J. Rajendran, K. Rosenfeld, M. Tehranipoor, Trustworthy hardware: identifying and
classifying hardware Trojans. IEEE Comput. 43(10), 39–46 (2010)

18. S.T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, Y. Zhou, Designing and implementing mali-
cious hardware, in Proceeding of the 1st USENIX Workshop Large-Scale Exploits Emergent
Threats (LEET) (2008)

19. L. Lin, W. Burleson, C. Paar, MOLES: malicious off-chip leakage enabled by side-channels,
in Proceedings International Conference on Computer-Aided Design (ICCAD) (2009),
pp. 117–122

20. Y. Liu, Y. Jin, A. Nosratinia, Y. Makris, Silicon demonstration of hardware Trojan design and
detection in wireless cryptographic ICs. IEEE Trans. Very Large Scale Integr. VLSI Syst. 25(4),
1506–1519 (2017)

21. E. Love, Y. Jin, Y. Makris, Proof-carrying hardware intellectual property: a pathway to trusted
module acquisition. IEEE Trans. Inf. Forensics Secur. 7(1), 25–40 (2012)

22. S. Mal-Sarkar, R. Karam, S. Narasimhan, A. Ghosh, A. Krishna, S. Bhunia, Design and
validation for FPGA trust under hardware Trojan attacks. IEEE Trans. Multi-Scale Comput.
Syst. 2(3), 186–198 (2016)

23. S. Narasimhan, X. Wang, D. Du, R.S. Chakraborty, S. Bhunia, TeSR: a robust temporal self-
referencing approach for hardware Trojan detection, in Proceeding of the IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST) (2011), pp. 71–74

24. S. Narasimhan, W. Yueh, X. Wang, S. Mukhopadhyay, S. Bhunia, Improving IC security
against Trojan attacks through integration of security monitors. IEEE Des. Test Comput. 29(5),
37–46 (2012)

25. S. Narasimhan, D. Du, R.S. Chakraborty, S. Paul, F.G. Wolff, C.A. Papachristou, K. Roy, S.
Bhunia, Hardware Trojan detection by multiple-parameter side-channel analysis. IEEE Trans.
Comput. 62(11), 2183–2195 (2013)

26. M. Potkonjak, Synthesis of trustable ICs using untrusted CAD tools, in Proceeding of the
Design Automation Conference (2010), pp. 633–634

27. J. Rajendran, A.K. Kanuparthi, M. Zahran, S.K. Addepalli, G. Ormazabal, R. Karri, Securing
processors against insider attacks: a circuit-microarchitecture co-design approach. IEEE Des.
Test 30(2), 35–44 (2013)

28. T. Reece, D.B. Limbrick, W.H. Robinson, Design comparison to identify malicious hardware
in external intellectual property, in Proceeding of the IEEE 10th International Conference
on Trust, Security and Privacy in Computing and Communications, Changsha (2011),
pp. 639–646

29. M. Rostami, F. Koushanfar, J. Rajendran, R. Karri, Hardware security: threat models and met-
rics, in Proceedings of the International Conference on Computer-Aided Design (ICCAD’13)
(IEEE Press, Piscataway, 2013), pp. 819–823

30. J. Roy, F. Koushanfar, I. Markov, EPIC: ending piracy of integrated circuits. IEEE Comput.
43(10), 30–38 (2010)

31. H. Salmani, M. Tehranipoor, J. Plusquellic, A novel technique for improving hardware Trojan
detection and reducing Trojan activation time. IEEE Trans. Very Large Scale Integr. VLSI Syst.
20(1), 112–125 (2012)

http://isis.poly.edu/vikram/yale.pdf


2 Introduction to Hardware Trojans 51

32. H. Salmani, M. Tehranipoor, R. Karri, On design vulnerability analysis and trust benchmark
development, in IEEE International Conference on Computer Design (ICCD) (2013)

33. M. Sanchita, A. Krishna, A. Ghosh, S. Bhunia, Hardware Trojan attacks in FPGA devices:
threat analysis and effective counter measures, in Proceedings of the 24th Edition of the Great
Lakes Symposium on VLSI (2014), pp. 287–292

34. B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, M. Tehranipoor, Benchmarking of hardware
Trojans and maliciously affected circuits. J. Hardw. Syst. Secur. (HaSS) 1(1), 85–102 (2017)

35. Y. Shiyanovskii, F. Wolff, A. Rajendran, C. Papachristou, D. Weyer, W. Clay, Process reliability
based Trojans through NBTI and HCI effects, in Proceeding of the NASA/ESA Conference on
Adaptive Hardware and Systems (2010), pp. 215–222

36. M. Tehranipoor, F. Koushanfar, A survey of hardware Trojan taxonomy and detections. IEEE
Des. Test Comput. 27(1), 10–25 (2010)

37. M. Tehranipoor, C. Wang, Introduction to Hardware Security and Trust (Springer, New York,
2012)

38. M. Tehranipoor, H. Salmani, X. Zhang, Integrated Circuit Authentication (Springer, Cham,
2014)

39. M. Tehranipoor, U. Guin, D. Forte, Counterfeit Integrated Circuits: Detection and Avoidance
(Springer, Cham, 2015)

40. R. Torrance, D. James, The state-of-the-art in semiconductor reverse engineering, in
IEEE/ACM Design Automation Conference (2011), pp. 333–338

41. TrustHub. https://www.trust-hub.org/index.php
42. N.G. Tsoutsos, M. Maniatakos, Fabrication attacks: zero-overhead malicious modifications

enabling modern microprocessor privilege escalation. IEEE Trans. Emerg. Top. Comput. 2(1),
81–93 (2014)

43. X. Wang, M. Tehranipoor, J. Plusquellic, Detecting malicious inclusions in secure hardware:
challenges and solutions, in IEEE International Workshop on Hardware-Oriented Security and
Trust (HOST) (2008)

44. X. Wang, S. Narasimhan, A. Krishna, T. Mal-Sarkar, S. Bhunia, Software exploitable hardware
Trojan attacks in embedded processor, in Proceedings of the IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) (2012), pp. 55–58

45. K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, M. Tehranipoor, Hardware Trojans: lessons
learned after one decade of research. ACM Trans. Des. Autom. Electron. Syst. 22(1), 6:1–6:23
(2016)

46. P.L. Yang, M. Marek-Sadowska, Making split-fabrication more secure, in 2016 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Austin (2016), pp. 1–8

47. X. Zhang, M. Tehranipoor, Case study: detecting hardware Trojans in third-party digital IP
cores. IEEE Int. Symp. Hardw.-Oriented Secur. Trust 22(1), 67–70 (2011)

48. Y. Zheng, S. Yang, S. Bhunia, SeMIA: self-similarity-based IC integrity analysis. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 35(1), 37–48 (2016)

https://www.trust-hub.org/index.php

	2 Introduction to Hardware Trojans
	2.1 Overview of Hardware Trojans
	2.2 Trends, Tradeoffs, and Threats of Trojans
	2.2.1 Semiconductor Design Flow
	2.2.2 Adversaries and Attacks
	2.2.2.1 Adversarial Threats
	2.2.2.2 Attack Surfaces


	2.3 Comparisons and Misconceptions with Trojan Attacks
	2.3.1 Trojans Compared with Bugs or Defects
	2.3.2 Hardware Trojans Compared with Software Trojans
	2.3.3 Hardware Trojan Cause and Effect Misconceptions

	2.4 Offensive Strategies
	2.4.1 Taxonomy of Trojan Types
	2.4.2 Taxonomy of Trojan Triggers and Payloads
	2.4.3 Fundamental Trojan Examples
	2.4.4 Innovative and New Trojan Attacks: Designsand Examples
	2.4.4.1 Side-Channel Trojan
	2.4.4.2 Semiconductor Trojan
	2.4.4.3 Analog Trojan
	2.4.4.4 Digital Trojan
	2.4.4.5 Other Notable Trojans

	2.4.5 Trojan Attack Models

	2.5 Defensive Strategies
	2.5.1 Taxonomy of Trojan Countermeasures
	2.5.1.1 Trojan Detection
	2.5.1.2 Design for Trust (DfT)
	2.5.1.3 Split Manufacturing for Trust

	2.5.2 Detection of Trojans: Examples
	2.5.2.1 Statistical Detection
	2.5.2.2 Rare Event Removal

	2.5.3 Prevention of Trojans: Examples
	2.5.3.1 Obfuscation
	2.5.3.2 Hardware 3PIP

	2.5.4 Other Notable Trojan Detection and Prevention Methods
	2.5.4.1 Voltage Inversion
	2.5.4.2 Temperature Tracking
	2.5.4.3 Split Fabrication
	2.5.4.4 FPGA Trust

	2.5.5 Comparisons of Various Trojan Defensive Methodologies

	2.6 Conclusion
	References


