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Part I
Hardware Trojan Preliminaries



Chapter 1
Introduction

Swarup Bhunia, Atul Prasad Deb Nath, and Mark M. Tehranipoor

Security of a computer system has been traditionally related to the security of the
software or the information being processed. The underlying hardware used for
information processing has been considered as the proverbial “root of trust” or trust
anchors. Malicious hardware modifications – e.g., hardware Trojan attacks, which
brought to light just a decade ago – are potent attacks on electronic hardware that
violates the fundamental assumption of the hardware root of trust. These attacks, in
the form of malicious modifications of electronic hardware at different stages of its
life cycle, pose major security concerns in the electronics industry. An adversary
can mount such an attack with an objective to cause in-field operational failure
potentially leading to catastrophic consequences or to leak secret information from
a chip – e.g., the key in a cryptographic chip, to an unauthorized party. The global
economic trend that encourages increased reliance on untrusted entities in the
hardware design and fabrication process is rapidly enhancing the vulnerability to
such attacks. This book ventures an all-inclusive approach to illustrate the threats
originating from hardware Trojan attacks, present different Trojan attack models
with elaborate description on the types and scenarios, and describe existing trust
metrics and various forms of protection approaches, defenses, and future research
directions. The research progress on hardware Trojan is remarkable in academia and
industrial arena. The research activities in this area have grown significantly over the
decade with new vulnerabilities and solutions frequently reported by researchers
across the globe.

Hardware Trojan attacks have emerged as a major security concern for electronic
hardware at all levels of abstractions – hardware intellectual property (IP) blocks,
integrated circuits (ICs), printed circuit boards (PCBs), and systems. These attacks
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4 S. Bhunia et al.

relate to malicious modifications of a hardware during design or fabrication in an
untrusted design house or foundry, which involve untrusted people, design tools, or
components. Such modifications can give rise to an undesired functional behavior
of a hardware, or degrade performance, or degrade performance, or provide covert
channels or back doors through which sensitive information can be leaked – thus
leading to violation of the hardware root of trust. An adversary is expected to
make a Trojan stealthy in nature that evades detection through the conventional
post-manufacturing test but manifests during long hours of field operation. There
is growing interest in this topic in both academia and industry with a significant
increase in research activities across the globe on all topics related to hardware
Trojan attacks. This book, for the first time, provides comprehensive coverage on
hardware Trojan attacks, highlighting the evolution of the threat, the challenges,
and diverse array of defense approaches. It tries to debunk the myths associated with
hardware Trojan attacks and presents practical attack space in the scope of current
business models and practices. It covers the threat of hardware Trojan attacks;
presents attack models, types, and scenarios; discusses trust metrics; describes
different forms of protection approaches, both proactive and reactive; and, finally,
describes emerging attack modes, defenses, and future research pathways.

1.1 Why a New Book

Current industrial practices such as increased reliance on third-party hardware IP
and automation tools in the design flow as well as outsourcing of design/fabrication
steps to external parties due to economic reasons are rapidly increasing the
vulnerability to Trojan attacks. With growing interest in this topic in industry and
academia alike, there is a critical need for a book on this important topic. Proposing
a new book in this area will impact the field in the following ways:

1. There is no comprehensive resource to provide researchers, students, and
practitioners with fundamentals of hardware Trojan attacks – spanning attack
models/instances and all sorts of protection approaches. This will be the first and
only book in the market on this exciting topic of emerging significance in the
broad area of hardware security.

2. The book will include a description on trust benchmarks and trust metrics, which
will provide valuable resources for researchers in this area.

3. A trained cybersecurity workforce for private and government sectors is needed
to fully understand the risks of hardware Trojan attacks and evaluate, implement,
and improve upon protection methods against these attacks. This book is
written in a manner that makes its content accessible to both beginners (e.g.,
undergraduate students) and advanced researchers and practitioners in order to
fill this need.
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4. The coverage on Trojan vulnerabilities at different hardware (IC and PCB) design
and fabrication steps will make manufacturers and government policy makers
aware of how different steps involve Trojan threat and how appropriate protection
method can be implemented.

5. This book contains information on topics that are underexplored in the current
hardware security literature including hardware Trojan threats for emerging
nanoscale devices.

1.2 Benefits to the Readers

The book is expected to provide the following benefits to its readers:

1. Readers will get the most comprehensive coverage on hardware Trojan attacks
based on decade-long research on this significant topic.

2. Readers will become familiar with all types of Trojan attacks – including Trojan
taxonomy, attack surfaces, threat models, and realistic attack instances.

3. Readers will understand Trojan vulnerabilities at levels of hardware abstraction –
from IP to system and all types of hardware (e.g., digital, mixed-signal) and
corresponding defense approaches.

4. Readers will gain insight on emerging threats associated with future nanoscale
technology nodes, globally distributed supply chain, and complexity of modern
hardware as well as challenges/opportunities developing effective countermea-
sures.

5. Readers will gain knowledge on procedure for hardware trust evaluation, trust
benchmarks, and trust metrics.

1.3 About the Topic

Over the past decade, different possible forms of Trojan attacks have been reported,
and the adversarial model and attack surface have evolved [1–6]. A Trojan attack,
in its simplest form, can be mounted by adding a circuit block that will trigger
anomalous functional or parametric behavior of a design. Figure 1.1 shows a
simplified block diagram of a hardware Trojan, which causes malfunction (by
flipping signal S) when triggered – i.e., when the activation condition realized by
a trigger logic is true [1]. These circuit blocks can implement a Boolean function
that would create a trigger condition when specific internal nodes reach a suitable
state (e.g., memory write control asserted and two most significant bits of data set
to logic value “10”). The trigger condition can be digital or analog (e.g., state of a
node capacitance or operating temperature). There can also be Trojans which are
always on [6] – i.e., where the trigger condition does not depend on the circuit or
environmental state. The other part of a Trojan is the malicious effect or payload that
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Fig. 1.1 General structure of
a hardware Trojan in a design
[1]
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determines how the design deviates from its desired behavior. The payload can alter
the internal circuit state at specific nodes leading to disruptive functional behavior
when the trigger condition is satisfied. It may also cause an undesired change in
parametric behavior (e.g., creating a current spike).

Hardware Trojan attack model assumes untrusted design or fabrication process,
which means they involve either untrusted design components (e.g., IPs or design
tools) or rogue designer or entities (e.g., fabrication facilities). Malicious alteration
of a design can be caused by one or combination of these elements. Figure 1.2 shows
the life cycle of an IC from design conception process, which leads to the creation
of the design specification, to deployment. The stages, in general, have different
vulnerabilities with respect to Trojan attacks, and the level of vulnerabilities
depends on a company’s business model and design practices. For example, fabless
companies that rely on untrusted foundry would have vulnerabilities coming from
the untrusted foundry. Similarly, a company which relies on third-party IP would
be vulnerable to IP-level Trojans. The stages marked in red – chip fabrication
and printed circuit board (PCB) fabrication and system integration – are typically
untrusted since these stages involve third-party fabrication facilities which need to
have access to the entire design of chip or PCB. An adversary in these facilities
may alter the design in many ways to incorporate a Trojan. Other stages marked in
yellow can either be trusted or untrusted depending on business models and practices
followed by individual companies.

Current economic trend plays a major role in enhancing the vulnerability to
Trojan attacks [1, 3]. IC design and manufacturing practices increasingly rely on
untrusted parties and entities in the IC life cycle. Economic reasons dictate that
most of the modern ICs are manufactured in offshore fabrication facilities. More-
over, modern IC design often involves IP cores supplied by third-party vendors,
outsourced designs, and test services as well as electronic design automation (EDA)
software tools supplied by different vendors. Such a business model has, to a
large extent, relinquished the control that IC design houses had over the design
and manufacture of ICs making them vulnerable to malicious inclusions. Figure
1.3 illustrates the attack surface and different forms of Trojan attacks that can be
mounted in key stages of a system-on-chip (SoC) life cycle. It also shows how
existing research in this field tries to mitigate the threat of Trojan attacks at these
stages. Depending on the stage and form of Trojans, various testing or design
solutions have been proposed in open literature. The figure gives a snapshot of
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Fig. 1.3 Hardware Trojan attacks by different parties at different stages of SoC life cycle

various design/test techniques for protecting against Trojan attacks. Latter chapters
elaborate on both these attacks and protection approaches.

Ideally, any undesired modification made to an IC should be detectable by
pre-silicon verification/simulation and post-silicon testing. However, pre-silicon
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Fig. 1.4 Major distinctions
between traditional functional
verification and hardware
trust verification

verification or simulation requires a completely specified golden model of the entire
IC. This might not be always available, especially for IP-based designs where IPs
can come from third-party vendors or for chips which are acquired from an untrusted
supply chain by a system integrator. Besides, a large multi-module design is usually
not amenable to exhaustive functional verification for detecting malicious design
modification [1]. Figure 1.4 shows the distinctions between traditional functional
verification and hardware trust verification. Traditional post-manufacturing testing
is not suitable for detecting hardware Trojans. This is due to the stealthy nature of
hardware Trojans and the vast spectrum of possible Trojan instances an adversary
can exploit. Unlike a bug or fault, a Trojan is deliberately inserted into a design,
and it causes unwanted functionality outside the specification. While traditional
functional verification is bounded by the specification – i.e., it verifies that if a
design meets its intended functional behavior, but does not check the unbounded
space of what the design does outside this specification. The Chaps. 3, 4, 5, and 6,
which illustrate Trojan attacks, give a number of examples on how a Trojan causes
additional functional or parametric behavior beyond its desired specification.

Post fabrication, the design can be verified either through destructive de-
packaging and reverse engineering of the IC or by comparing its functionality or
circuit characteristics with a golden version of the IC [4–5]. However, state-of-the-
art approaches do not allow destructive verification of ICs to be either cost-effective
or scalable. Moreover, it is possible for the adversary to insert Trojans in only some
ICs on a wafer, not the entire population, which limits the usefulness of a destructive
approach.

1.4 The Content of the Book

This book is an attempt to bridge across the research and practice in hardware Trojan
and is conceived as an authoritative reference for researchers interested in all aspects
of Trojan attacks. The book includes 16 chapters focusing on diverse aspects of

http://dx.doi.org/10.1007/978-981-10-2957-8_3
http://dx.doi.org/10.1007/978-981-10-2957-8_4
http://dx.doi.org/10.1007/978-981-10-2957-8_5
http://dx.doi.org/10.1007/978-981-10-2957-8_6
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hardware Trojan attacks and protection approaches. The book is divided into six
parts. Next, we introduce briefly the content of each of the chapters.

Part I of the book focuses on hardware Trojan preliminaries including the
history and evolution, definitions, taxonomies, and industrial perspectives on current
security trend.

Chapter 2 on “Introduction to Hardware Trojans” by Jason Vosatka provides
a comprehensive overview of hardware Trojans. The study elaborately describes
the definitions of hardware Trojans and how they vary from bugs, defects, or
software Trojans. A detailed depiction of the comparison and misconceptions
with Trojans are delineated in this chapter. It illustrates the trends, trade-offs,
and threats posed by malicious hardware Trojans. A comprehensive taxonomy
is presented to provide insights about offensive strategies of Trojan attacks. The
primary categories in the taxonomy include classifications based on insertion phase,
abstraction level, activation mechanism, effects, and location. A classification of
different Trojan attack models is provided based on 3PIP vendors, SoC developers,
and chip foundries. The defensive strategies against Trojan attacks are elaborated
by providing a taxonomy of Trojan countermeasures. The primary countermeasure
techniques for Trojan detection like design-for-trust (DFT) and split manufacturing
are also discussed in this study.

Part II (Chaps. 3, 4, 5, and 6) of the book contains threat analysis of hardware
Trojans and discusses preventive and assistive approaches to make Trojan insertion
difficult and the detection process more efficient.

Chapter 3 on “Hardware Trojan Attacks in SoC and NoC” by Rajesh JS, et al.
discusses the emerging hardware Trojan attacks and countermeasures employed in
SoC security, with a special focus on Trojans in the network on chip (NoC). The
work highlights the challenges and vulnerabilities associated with the current prac-
tices of SoC security assurance. Security assurance of system-on-chips has become
a burning issue with the rapid growth of digital footprints by internet of things)
in the context of untrusted SoC operation in mobile, embedded systems, and high-
performance computing. The study provides an overview of the most conspicuous
threat model along with some promising system level solutions proposed for SoC
security assurance. It classifies the attacks on NoC into several categories including
information leakage attacks, attacks causing network interface malfunctions, denial
of service attacks, and fault injection-based denial of service attacks. The work also
includes a study on the less explored territory of untrusted malicious NoC 3PIPs
with sample attack models and solutions.

Chapter 4 on “Hardware IP Trust” by Mainak Banga and Michael S. Hsiao
provides a high-level overview of the security and trust issues related to third-
party IPs (3PIPs), potential vulnerabilities due to hardware Trojans, and possible
countermeasures to prevent Trojan attacks. A taxonomy of hardware Trojans based
on physical, action, and activation characteristics is illustrated in the work. The
major categories of the taxonomy include classification by types, sizes, distribution,
activation method, function, and specification of the Trojans. The chapter classifies
the mitigation techniques broadly into two categories, i.e., preventive and detection
techniques which encompass approaches like design-for-trust and obfuscation-

http://dx.doi.org/10.1007/978-981-10-2957-8_2
http://dx.doi.org/10.1007/978-981-10-2957-8_3
http://dx.doi.org/10.1007/978-981-10-2957-8_4
http://dx.doi.org/10.1007/978-981-10-2957-8_5
http://dx.doi.org/10.1007/978-981-10-2957-8_6
http://dx.doi.org/10.1007/978-981-10-2957-8_3
http://dx.doi.org/10.1007/978-981-10-2957-8_4
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based methods, as well as delay and power-based detection methods. For IP-level
Trojan detection, the work describes suspect signal-guided sequential equivalence
checking and introduces proof-carrying code as a case study of prevention tech-
nique.

Chapter 5 on “Hardware Trojans in Analog, Mixed-Signal and RF ICs” by
Angelos Antonopoulos et al. explores the threats arising from hardware Trojans in
analog, mixed-signal, and RF ICs. Compared to the research progress made over the
last decade in detecting and preventing hardware Trojan attacks in digital integrated
circuits, their analog/mixed-signal (AMS) and radio-frequency (RF) counterparts
are still largely unexplored in terms of threat modeling and vulnerability analysis.
The security of AMS and RF IC, however, is crucial to most contemporary
computing systems given the widespread use of analog functionality, i.e., physical
interfaces, sensors, actuators, wireless communications, etc. The chapter provides
an in-depth description of the attack models and defense mechanisms for hardware
Trojans in wireless cryptographic ICs, RF transmissions below the noise floor, and
AMS ICs. Apart from Trojan attacks, the work sheds light on issues related to IC/IP
piracy and counterfeiting, vulnerability analysis, and associated countermeasures
like IP watermarking, counterfeit protection strategies, and split manufacturing.

Part III (Chaps. 6, 7, 8, and 9) of the book illustrates functional testing-based
approaches for Trojan detection including statistical and directed testing, formal
verification, and golden-free trust verification methods.

Chapter 6 on “Hardware Trojans and Piracy of PCBs” by Anirudh Iyengar
and Swaroop Ghosh focuses the security issues of printed circuit boards (PCBs)
rising from Trojans and piracy due to the soaring complexity of modern printed
circuit boards and high reliance on third-party entities. The chapter studies the
possible attack models in scenarios where PCBs are assumed both trusted and
untrusted and further analyzes the attacks based on the motives of the adversary,
i.e., either causing malfunction or leaking secret information. While illustrating
attack instances, the issues of trusted and untrusted design houses are taken into
consideration. Preventive countermeasures like hardening via secure interfaces and
several other methods to design secure PCBs are discussed in the chapter. Novel
PUF structures like star-coil PUF and arbiter-coil PUF are discussed in the work to
address PCB authentication challenges. Additionally, analysis of various sources of
variations in PCBs and qualitative study of the quality metrics to evaluate the PCB
PUFs are presented in the work.

Chapter 7 on “Logic Testing for Hardware Trojan Detection” by Vidya Govindan
and Rajat Subhra Chakraborty discusses the challenges of conventional post-
manufacturing testing, test generation algorithms, and test coverage metrics and
introduces a test pattern generation technique termed multiple excitation of rare
occurrence (MERO). MERO is an effective logic testing algorithm for relatively
small (e.g., less than ten two-input NAND gate equivalent) hardware Trojan
detection. The probability of inserted Trojans getting triggered and detected by
logic testing can be maximized by employing MERO while attaining a significant
reduction in the number of vectors compared to weighted random pattern-based
test generation. The work further discusses an extension of MERO by exploiting

http://dx.doi.org/10.1007/978-981-10-2957-8_5
http://dx.doi.org/10.1007/978-981-10-2957-8_6
http://dx.doi.org/10.1007/978-981-10-2957-8_7
http://dx.doi.org/10.1007/978-981-10-2957-8_8
http://dx.doi.org/10.1007/978-981-10-2957-8_9
http://dx.doi.org/10.1007/978-981-10-2957-8_6
http://dx.doi.org/10.1007/978-981-10-2957-8_7
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the combined strength of genetic algorithm and Boolean satisfiability and proposes
an automatic test pattern generation (ATPG) scheme for the detection of Trojans
dependent on rare input triggering conditions.

Chapter 8 on “Formal Approaches to Hardware Trust Verification” by Farimah
Farahmandi et al. elaborates hardware trust verification by formal methods. Due
to the stealthy nature of hardware Trojans, simulation-based validations are not
effective for the detection of rarely triggered malicious circuitry like Trojans. This
chapter discusses the advantages of formal validation approaches in proving the
correct functionality of a design to detect surreptitious hardware Trojans. Though
scalability issues can limit the capability of formal approaches to validate digital
circuitry in many cases, there are several formal techniques like satisfiability solvers,
model checkers, theorem provers, and symbolic algebras that are efficiently scalable
to validate larger designs. The chapter provides an in-depth overview of various
formal approaches for verification of hardware security and trust. With soaring
importance and complexity of designing trustworthy SoC architectures, the formal
approaches are expected to gain further research attention in the future.

Chapter 9 on “Golden-free Trojan Detection” by Azadeh Davoodi discusses
the challenges associated with golden-dependent Trojan detection methods and
introduces golden-free IC authentication process. The fundamental limitations of
golden-dependent Trojan detection include the rare possibility of finding a golden
IC and identifying its standard features. Golden-free IC authentication process,
however, is a viable approach to Trojan detection that can eliminate the golden IC
from the authentication loop. The chapter provides a general overview of existing
techniques for golden-free Trojan detection and describes one technique in detail,
as a case study for self-authentication of a chip based on assistance from cus-
tom design-dependent on-chip sensors. For the sensor-assisted self-authentication
framework, the work depicts three scenarios, i.e., when the sensor is inserted in
the design paths, inserted in the sensors, and inserted in both. The primary idea
behind sensor-assisted self-authentication is to use on-chip delay information from
the sensors to make an accurate prediction about the expected path delays. A higher
number of design paths increase the probability of Trojan detection with an overhead
of longer testing time.

Part IV (Chaps. 10 and 11) of the book encompasses studies on reverse
engineering and side-channel analysis-based Trojan detection methods.

Chapter 10 on “Detecting Hardware Trojans using Delay Analysis” by Jim
Plusquellic and Fareena Saqib surveys different delay-based techniques to detect
hardware Trojans by exploiting precise analog testing. The delay-based Trojan
detection methods can be characterized by the Heisenberg principle or observer
effect which states that any attempt to measure or monitor a system leads to a
change in its behavior. The chapter provides a comprehensive survey on path delay-
based testing methods that can detect subtle changes in delay caused by Trojan
connections and gate insertions which are basically the triggers and payloads of the
hardware Trojans, respectively. A high-level depiction of Trojan insertion strategies
is provided in this chapter with an emphasis on detection of layout or GDSII Trojans.
The constraints of detection methods are also described with an elaborate discussion

http://dx.doi.org/10.1007/978-981-10-2957-8_8
http://dx.doi.org/10.1007/978-981-10-2957-8_9
http://dx.doi.org/10.1007/978-981-10-2957-8_10
http://dx.doi.org/10.1007/978-981-10-2957-8_11
http://dx.doi.org/10.1007/978-981-10-2957-8_10
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on analyzing side-channel signals, e.g., power and delay information. The work also
introduces multiple-parameter-based side-channel method.

Chapter 11 on “Reverse-Engineering Based Hardware Trojan Detection” by
Chongxi Bao et al. depicts the fundamentals of IC reverse engineering and describes
how reverse engineering techniques can be employed to detect hardware Trojans.
The chapter introduces a machine learning approach to differentiate between Trojan-
free and Trojan-inserted ICs. The work includes training and testing support vector
machine (SVM) with features extracted from IC images obtained from a scanning
electron microscope. Experimental results demonstrate very high accuracy of SVM-
based reverse engineering technique in detecting Trojan-free and Trojan-infected
ICs. The chapter also studies security-aware design strategies for Trojan prevention
as these are crucial aspects of developing secure hardware platforms. A novel
design-for-security approach is proposed in this work where the standard cells with
higher sensitivity to hardware Trojan insertion are selected to synthesize the layout
of the chip. The approach helps to attain significant improvement in the fraction of
Trojan detection with an acceptable overhead.

Part V of the book (Chaps. 12, 13, and 14) describes the preventive approaches
introduced at the design phase of the product to thwart Trojan attacks.

Chapter 12 on “Hardware Obfuscation Methods for Hardware Trojan Prevention
and Detection” by Qiaoyan Yu et al. focuses on the application of hardware
obfuscation methods during IC design to prevent the outsourced chip from being
tampered or reverse engineered by malicious adversaries. The chapter discusses
the idea of introducing hardware obfuscation at different levels of abstraction, i.e.,
device, circuit, gate, and register transfer levels. The work also provides an overview
of approaches of hardware obfuscation in FPGAs and PCBs. The obfuscated
hardware design makes it more difficult for attackers to understand the original
circuit functionality. Moreover, the obfuscation process can be incorporated with
authentication techniques to generate special signatures for Trojan detection.

Chapter 13 on “Deterrent Approaches against Hardware Trojan Insertion” by
Qihang Shi, Domenic Forte, and Mark M. Tehranipoor introduces several deterrent
approaches employed at the design phase of ICs to prevent hardware Trojan
insertion. Contrary to conventional countermeasures of hardware Trojan, deterrent
approaches prevent Trojan insertions via design level modifications eliminating
the requirements of future Trojan detection. The chapter mainly discusses three
primary deterrent approaches, i.e., monitoring approach, obstructive approach, and
hybrid approach. The monitoring approach includes measuring and classifying side-
channel signatures. The obstructive approach obstructs the adversary’s access to
necessary information required to insert a Trojan. The hybrid approach combines
both monitoring and obstructive approaches to prevent Trojan insertion. The chapter
describes the archetypal techniques for each of the approaches and illustrates their
strengths and weaknesses on a relative basis. While the advantages and disadvan-
tages of the approaches are product and application specific, the development of a
holistic approach is yet subject to future research.

http://dx.doi.org/10.1007/978-981-10-2957-8_11
http://dx.doi.org/10.1007/978-981-10-2957-8_12
http://dx.doi.org/10.1007/978-981-10-2957-8_13
http://dx.doi.org/10.1007/978-981-10-2957-8_14
http://dx.doi.org/10.1007/978-981-10-2957-8_12
http://dx.doi.org/10.1007/978-981-10-2957-8_13
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Chapter 14 on “Hardware Trojan Attacks in FPGA and Protection Approaches”
by Vinayaka Jyothi and Jeyavijayan (JV) Rajendran discusses potential Trojan
attacks on FPGAs and the possible countermeasures available in the literature to
thwart such security risks. The chapter categorizes the threats originating from
untrusted foundries and adversaries in the FPGA supply chain and presents a
taxonomy tailored for FPGA-specific Trojans. It describes different types of Trojans
that can be inserted into the FPGA fabric at various phases of the life cycle.
The chapter provides an in-depth discussion on the primary classes of Trojans
in FPGA and demonstrates several Trojan insertion methodologies. The existing
countermeasures to prevent Trojans in FPGA are also described in the chapter.
The countermeasures focus on verifying the physical fabric of the FPGA by taking
account of spatially correlated intra-die process variations. The delay or voltage
changes stemming from inconsistent physical characteristics, especially the ones in
the close-by region, can aid in the Trojan detection in FPGA fabric.

Part VI of the book highlights the emerging trend, industrial practices, and new
attack instances of hardware Trojan.

Chapter 15 on “Hardware Trust in Industrial SoC Designs: Practice and Chal-
lenges” by Sandip Ray focuses on security and trust assurance techniques and
validation mechanisms employed in contemporary industrial practices and explores
their complexities and limitations. It provides a brief introduction to the spectrum
of trust vulnerability sources and discusses the security issues arising from the
distributed nature of modern SoC design flow. The current practices of trust valida-
tion and design implementation are described based on adversarial and deployment
methods. The study illustrates a comprehensive overview of the techniques from
software/design targets to those involving the PCB and the platform. At present, it is
challenging to perform a systematic analysis of the vulnerability sources due to the
diversity of attacks and complexity of devices. Moreover, the widely varying level of
expertise required for assurance activities from architecture to RTL/software models
and to silicon implementation attacks poses further difficulties to trust assurance. To
eliminate the gross inadequacy in current standards, a cohesive assurance approach
is required that can seamlessly move toward various abstraction levels and provide
comprehensive solutions for modern SoC design security issues.

Chapter 16 provides a summary of the chapter contents and describes future
research directions on hardware Trojan attacks. It enlists specific topic areas which
are likely to see growing number of research activities in both academia and
industry.

It has been pleasure and honor for the editors to edit this material, and we hope
the broad coverage on malicious modifications of electronic hardware bridges an
important gap in the current offerings on the hardware security space. We believe
the content of the book will provide a valuable reference on hardware Trojan issues
and solutions to a diverse readership including students, researchers, and industry
practitioners. Of course, it is impossible for any book on the topic to be exhaustive
like most areas of hardware security. Nevertheless, we hope that the book will help
to introduce the issue of hardware trust to its readers. Furthermore, it will provide a

http://dx.doi.org/10.1007/978-981-10-2957-8_14
http://dx.doi.org/10.1007/978-981-10-2957-8_15
http://dx.doi.org/10.1007/978-981-10-2957-8_16
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flavor of the current state of the research in this area and emerging challenges across
different sectors that need to be addressed to achieve the goal of understanding
hardware trust issues and developing trustworthy computing systems.
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Chapter 2
Introduction to Hardware Trojans

Jason Vosatka

2.1 Overview of Hardware Trojans

Hardware Trojans are malicious modifications to the intended functionality of a
hardware circuit [9, 17, 36, 37]. These modifications (i.e., tamperings) are undesired
and unknown to the hardware designer and can have devastating effects on the
electronic system. Trojans have three key characteristics: malicious intention,
evasion of detection, and rarity of activation [6]. The intent of a Trojan is always
the same: perform an unintended action to compromise the confidentiality, integrity,
or authentication of the underlying hardware.

This compromise may be in the form of a shortened operational lifetime of the
hardware (e.g., 5 years instead of 20 years) or complete failure of the system upon
the Trojan’s activation. It may allow an attacker to gain unauthorized access into the
hardware (i.e., remote access through a backdoor) or lead to leakage of information
(e.g., cryptographic keys for secure data communication). Hardware Trojans may
manifest from software Trojans inside of pirated software tool suites during the
synthesis portion of the design flow or be inserted as a result of collusion between
multiple parties at different stages of the hardware’s life cycle [45]. Trojans can
also be designed with the sole intention to damage or destroy the brand reputation
of a company, which may result in bankruptcy of the company and a competitive
advantage for the adversary.
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Fig. 2.1 Block diagram showing (a) original circuit, (b) simplified hardware Trojan, and (c)
hardware Trojan inserted into the circuit, which inverts O to O’ upon activation

Figure 2.1a shows a simplified block diagram of an original circuit, Fig. 2.1b
shows the hardware Trojan with trigger and payload, and Fig. 2.1c shows the Trojan
inserted into the circuit. When the Trojan activates in this example, its payload
delivers a malfunction in the form of inverting the output of the circuit (i.e., changing
the O to O’).

Historically, hardware has been considered the root of trust, and the software
or firmware that runs on top of the hardware has been untrusted until proven
otherwise [6, 37]. However, much research has been performed over the last
decade, and security researchers are aware of numerous Trojan models, attacks,
countermeasures, as well as the threats to security and trust of the underlying
hardware. Every entity (e.g., person, design house, foundry, supply chain) that
is involved with the design, fabrication, testing, packaging, and delivery of an
integrated circuit (IC) could be considered a potential adversary as they have the
opportunity to tamper with the IC at multiple points in the design cycle. Therefore,
the need exists to design “for security” in addition to specified functionality of the
hardware.

A hardware Trojan is not a design or manufacturing fault. A fault (e.g., SA0,
SA1, path delay) is an unintentional error or failure during these processes, and its
location for activation is usually known by the designer. A Trojan, in any form, is an
intentional insertion by an adversary, and its location for activation is unknown to
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the designer. Although the intentions of a hardware Trojan are similar to its nefarious
counterpart, the software Trojan, the hardware Trojan cannot be removed once the
IC is fabricated, whereas the software Trojan can be eradicated post-deployment [6].

Trojans are activated by a specific mechanism, called a trigger, and deliver a
specific function, called a payload. They can be small or large in size with respect
to the rest of the circuit, ranging from just a few transistors to thousands of gates in
a multimillion transistor SoC design [6]. Trojans exist in many forms and are most
commonly triggered by a sequential or combinational digital circuitry (or a hybrid
combination of both), but can also be triggered by analog stimuli. The payload
can be digital or analog with each being specifically crafted to deliver malicious
consequences upon activation.

Trojans are often undetectable to conventional pre-silicon and post-silicon
manufacturing testing processes such as informal and formal verification [47]. This
is due to test coverage for the hardware solely focusing on the specific functionality
of the circuit, as well as exhaustive testing of all possible functions being both
expensive and time-consuming. Trojans are intended to be stealthy and are inserted
into rare internal nodes of the circuit, which reduces the likelihood of activation
during normal testing. These nodes are often outside the scope (i.e., outliers or
corner cases) of the circuits’ intended functionality and are not activated during
conventional test and verification methods. Unconventional methods do exist for
detection, but these often require access to a verified and authentic (i.e., golden)
IC or model for comparisons, and these methods may be performed as destructive
(e.g., physical reverse engineering) or nondestructive (e.g., side-channel) testing
methodologies [6, 37].

2.2 Trends, Tradeoffs, and Threats of Trojans

2.2.1 Semiconductor Design Flow

Over the last decade, there has been a shift in the global manufacturing model
and design flow of companies that produce semiconductor ICs such as application-
specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), and
system-on-chips (SoCs). These new trends are driven by various economic factors
including monetary costs, time-to-market demands, and the increased complexity
of semiconductors. Historically, hardware design companies performed the entire
design flow as a trusted entity from “cradle-to-grave” including defining speci-
fications, generating schematics and netlists, fabrication, testing, packaging, and
delivery to the supply chain marketplace. This design flow was commonly referred
to as a “vertical model.” However, companies have been adopting a “horizontal
model” in which they outsource certain steps of the design flow to untrusted entities
and offshore foundries. Today, the majority of hardware design companies have
fully adopted the horizontal model and now are rapidly moving toward a “fabless
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model” in which they outsource all hardware fabrication. Many system integrators
outsource both the hardware design and fabrication in order to maximize service to
their customers and profits for their company.

The reliance on untrusted foundries reduces monetary costs for design companies
as it eliminates the need to build and maintain a multibillion dollar fabrication
facility. Using offshore foundries also allows design companies to have access to
state-of-the-art fabrication technologies and reduce the risk of fabrication errors. By
incorporating third-party intellectual property (3PIP) from untrusted entities into
the hardware design, companies are able to decrease the time-to-market delivery
and maximize the profit window of their product. These business decisions allow
design companies to leverage the economies of scale created by the untrusted
entities [39, 45].

However, these tradeoffs decrease the level of security and trust of the hardware,
thus violating the traditional hardware root of trust philosophy. Relying on untrusted
entities reduces control of the hardware design, thereby increasing the likelihood
of a vulnerability being introduced during the design life cycle and supply chain
distribution [45, 47]. These vulnerabilities exist in various forms including IP piracy,
counterfeiting, cloning, overproduction, and hardware Trojans [6, 30, 37, 39, 40].

The modern horizontal model for semiconductor IC design and fabrication flow
is shown in Fig. 2.2. Typically, a trusted entity (e.g., design house) is responsible for
the specification, register-transfer level (RTL) design, netlist generation, and layout.
An untrusted entity (e.g., foundry) is responsible for wafer fabrication, assembly,
and testing. However, this generality is not always the case as demonstrated by the
seven attack models described in Sect. 2.4.5.

2.2.2 Adversaries and Attacks

2.2.2.1 Adversarial Threats

Any entity that is involved with the design, fabrication, testing, packaging, or supply
chain of an IC has the potential to be an adversary. Adversaries may be people,
design houses, foundries, or even electronic design automation (EDA) or computer-
aided design (CAD) software tools. What is common with all adversaries is the
opportunity to tamper with the design (e.g., insert a Trojan) anytime the design
is outside of the control of the rightful owner. These opportunities occur at the
many stages of the IC’s life cycle as shown in Figs. 2.2 and 2.3. The motivation of
each adversary varies as does their design of the Trojan. Adversaries are motivated
by many factors including monetary gains, increased market space in the supply
chain, personal or political vendettas, tarnishing a competitor’s reputation, or even
the sole purpose of disrupting critical infrastructure through operational failures
or leakage of sensitive information. Adversarial actions result in specially crafted
malicious modifications to the original circuit, which are designed to achieve a
specific nefarious goal.
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Fig. 2.3 Vulnerable stages in
the integrated circuit (IC) life
cycle [6]

2.2.2.2 Attack Surfaces

The goal of a hardware Trojan is as unique as its adversary. Trojans may be inserted
into ICs including control circuitry, memory modules, sensors, and input/output
drivers. They may also be inserted into embedded system processors allowing for
software backdoors or inserted into cryptographic engines in SoCs to weaken,
bypass, or disable the security features of the system [6]. Three examples of
adversarial attacks that may occur during the design process are an untrusted third-
party intellectual property (3PIP) vendor introducing a Trojan into the IP core of
an SoC, an untrusted designer inserting a Trojan into unused cells of an IC, or
even a trusted designer inadvertently inserting a hardware Trojan through the use
of untrusted third-party EDA software tools.

Another example of attack surface is when an adversary at an untrusted foundry
inserts a Trojan into the lithography mask during the fabrication process of the
semiconductor wafer. This Trojan-infected wafer is then assembled into an IC
and returned to the design company. Unless the design company has specific
Trojan detection or prevention mechanisms for testing, such as a golden IC or
golden model, the infected IC will enter the supply chain for integration into an
unknowingly compromised electronic system. A golden IC or golden model is
considered to be trustworthy as it has been verified to be fabricated exactly per
the design specifications (i.e., nothing more, nothing less) and to be Trojan-free.

Furthermore, an adversary at a untrusted foundry or an untrusted design house
could reverse engineer the entire IC design for the purpose of cloning (i.e., creating
illegal copies) the IC. The adversary could insert a Trojan into the cloned IC and
release the infected IC directly into the supply chain, thus bypassing any Trojan
detection mechanism of the legitimate design owner. In this situation, there is no
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golden model for verification, so integrators have to rely on other approaches such as
self-referencing and side-channel analysis methods for Trojan detection [12, 23, 25].

Figure 2.3 shows examples of Trojan attacks during several vulnerable stages of
the IC life cycle.

2.3 Comparisons and Misconceptions with Trojan Attacks

2.3.1 Trojans Compared with Bugs or Defects

Trojans should not be considered design bugs or manufacturing defects as this
generalization is simply not accurate. Recall that a hardware Trojan is an intentional
and malicious modification of a circuit that is designed to alter the circuit’s behavior
in order to accomplish a specific objective. A design bug is an unintentional problem
(i.e., error) that is unknowingly introduced into the circuit during its design and
development phases. A manufacturing defect is an unintentional physical phe-
nomenon (e.g., imperfection) that occurs during the circuit’s fabrication, assembly,
and testing phases. Both design bugs and manufacturing defects can cause flaws,
failures, or faults in the final assembled IC or electronic system.

Although design bugs and manufacturing defects lead to incorrect results or
unexpected behaviors, these outcomes are detectable during conventional test and
validation methods. That is, bugs and defects are discoverable with functional or
structural testing as well as pre-silicon or post-silicon verifications. Similar to Trojan
taxonomies and attack models (discussed in Sect. 2.4), companies also use models to
detect bugs and defects. These models are typically bounded by the specification of
the design and will support testing and verification only within the intended design
of the circuit. For example, stuck-at-one (SA1), stuck-at-zero (SA0), opens, shorts,
and path delay faults are all detectable based upon specification models, and their
specific activation locations are usually identifiable within the circuit.

Trojans are similar to bugs and defect in that they all can lead to unwanted func-
tionality. However, Trojans deliver an unwanted functionality that is not bounded
by the specification of the design. As a result, Trojans are often undetectable with
standard testing and validation practices. Since conventional models typically do not
check for any functionality outside of the defined specification, adversaries often
attempt to hide Trojans in internal circuit nodes that are difficult to reach, control,
and observe during testing [38]. Trojans can also be designed to activate after a rare
and arbitrary set of complex conditions have occurred [6, 37]. Further details of
Trojan detection strategies are explained in Sect. 2.5.

Figure 2.4 illustrates the comparisons between hardware Trojans, design bugs,
and manufacturing defects.
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Fig. 2.4 Hardware Trojans
compared with bugs and
defects

2.3.2 Hardware Trojans Compared with Software Trojans

Trojans, whether software or hardware, share the same three key characteristics:
malicious intention, evasion of detection, and rarity of activation. They also
share a similar abstraction of two main components: a trigger and a payload. A
software Trojan is commonly known as a computer program that contains specially
crafted malicious code (i.e., payload) designed to cause harm to a targeted system
once triggered. The malicious objective of software Trojans can include privilege
escalation on the targeted system, leakage of sensitive user information including
credentials and passwords, as well as data corruption, unauthorized encryption, and
denial-of-service (DoS) attacks. Software Trojans are designed to remain stealthy,
require specific events to occur for activation, and require special programs to
detect and remove them. Most software Trojan detection programs include run-time
monitoring, a concept that has been extended to hardware security (Sect. 2.5.1.2) [6].

Although the malicious intention of a hardware Trojan is similar to its nefarious
counterpart, there are notable differences between these two Trojans. For example,
software Trojans are hidden inside software code and are activated during program
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Fig. 2.5 Hardware Trojans compared with software Trojans

execution, whereas hardware Trojans are hidden inside physical hardware and are
activated after specific conditions occur during operation. Also, legitimate users of
computer systems can unintentionally spread a software Trojan from user-to-user
through routine activities, or adversaries can intentionally spread them to targeted
or untargeted victims. This distribution can be accomplished in many ways such as
through peer-to-peer file sharing or running infected programs from the Internet.
Hardware Trojans, on the other hand, are typically spread from adversary-to-user
since an IC is not easily replicated by the end-user. Another key difference is that
hardware Trojans cannot be removed once the IC is fabricated, whereas the software
Trojan can be removed post-deployment by way of local or remote updates to the
program code [6].

Figure 2.5 provides a summary of comparisons between software and hardware
Trojans.

2.3.3 Hardware Trojan Cause and Effect Misconceptions

The pressure on design companies to further reduce costs, decrease the time to
market for product deliverables, and increase company profits has underpinned the
semiconductor industry’s shift toward horizontal and fabless business models. As a
result, companies are relying more often on the acquisition and reuse of hardware
third-party intellectual property (3PIP) as well as electronic design automation
(EDA) and computer-aided design (CAD) software tools. This reliance is prevalent
in the SoC industry where design specifications change many times during the
design and manufacturing flow, and the hardware semiconductor companies must
remain flexible to quickly respond to the market’s demands. Unfortunately, these
companies sometimes acquire 3PIP and design tools from untrusted entities (e.g.,
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gray- or black-market vendors) without fully understanding the implications of their
actions and the potential security risks to their SoC designs and to their customers.

Hardware Trojan attacks in hardware 3PIP are a serious security and trust risk
that is difficult to mitigate. Companies and vendors that provide the trusted 3PIP
(e.g., IP crypto cores) rarely make the golden model of their IP available to any
outside entity. This results in a potential attack surface for adversaries: an untrusted
entity (e.g., vendor, design house) can legally obtain a single version of the trusted
3PIP and insert a hardware Trojan into it, thus making it untrusted 3PIP. This
infected 3PIP can be distributed to many naive SoC companies through various
channels such as illegal file sharing services or other untrusted vendors. Since these
SoC companies do not have the golden model that is required for conventional
test and verification methods, they will have the virtually impossible challenge of
verifying that the acquired 3PIP is secure and trustworthy [38, 47].

While it is true the SoC company can perform simulation of the 3PIP, this will
only verify the functionality based on the design specifications; it will not guarantee
the 3PIP is Trojan-free. The SoC company will not be able to compare their design,
which is based on untrusted 3PIP, with the legitimate and trusted 3PIP. However,
the work of [28] devised a technique to use the same hardware 3PIP acquired from
several sources to reduce the risk and effects of a potential hardware Trojan. Also,
the work of [47] developed a multiple-step methodology to identify and remove
Trojans in 3PIP digital cores. Overall, the risk of using untrusted 3PIP still remains
high as does its potential for delivering infected SoC products to customers and the
supply chain.

Likewise, untrusted EDA tools present a similar risk of malicious modifications
being inserted into the hardware design. Similarly to hardware 3PIP owners, EDA
tool companies rarely make their golden model available to other companies.
Untrusted EDA tools may be obtained through various methods such as illegal
downloads, license key cracks, and untrusted vendors. It is a common practice for
hardware design companies to use several tools from the same EDA tool suite, such
as design automation, testing, and verification tools. Therefore, an adversary has
several attack surfaces in which to maliciously modify the software tools to facilitate
hardware Trojan insertion into a company’s design.

Since hardware Trojans can be inserted into designs via the untrusted software
EDA tools (e.g., through the hardware synthesis engine), detecting Trojans becomes
more difficult as the design progresses. This results in the possibility of a hardware
Trojan being inserted into a design early in the design flow via the untrusted EDA
tool, which is later ignored or not detected by a different, albeit trusted, tool from the
same vendor. The work of [26] uses the security paradigm of a completely specified
design and low latency observability in order to design trustable hardware using
untrusted software tools. However, again similar to untrusted 3PIP, using untrusted
software EDA tools still runs the risk of delivering infected hardware products to
customers and the supply chain [6].

Another popular misconception is that multiple untrusted entities result in
improved security and trust. However, this allows for malicious collusion between
multiple untrusted entities, also known as a multilevel attack, and results in a form
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Fig. 2.6 Cause and effect
misconceptions related to
hardware Trojans

of risk that is difficult to defend against. Collusion can occur throughout different
untrusted stages of the hardware design flow and life cycle [6]. For example, the
work of [1] demonstrates a hardware Trojan inserted by an untrusted entity that is
activated with a specific fault condition known only to the other colluding party.
As another example, the work of [19] demonstrates a hardware Trojan designed to
leak sensitive information through an analog side-channel. This Trojan is activated
by another untrusted entity who also obtains and analyzes the leaked information.
Collusion can also occur between multiple teams inside the same vendor. For
example, the work of [27] illustrates this point and provides a codesign approach for
preventing collusion between multiple rogue insiders at the design house. Although
anti-collusion techniques do exist, the work of [1] demonstrates that multilevel
collusion between untrusted entities results in a significantly stronger adversarial
threat than what results from only a single adversary.

Figure 2.6 provides a summary of the cause and effect misconceptions discussed
in this section.

2.4 Offensive Strategies

2.4.1 Taxonomy of Trojan Types

In order to properly model hardware Trojans for offensive and defensive postures,
one must first understand the different types of Trojans. The categories of these
types, referred to as taxonomies, represent the framework for classifying hardware
Trojans based on their individual characteristics and also provide the foundation
for building metrics to evaluate Trojan detection mechanisms. The first published
hardware Trojan taxonomy was proposed in 2008 by [43] and consisted of six
attributes including three principle categories based upon physical, activation, and
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Fig. 2.7 Five comprehensive hardware Trojan taxonomy categories [17]

action characteristics. As hardware Trojans became more complex, this elemental
taxonomy was improved to comprise of nine attributes for the same three principle
categories [36]. The most comprehensive taxonomy to date is the work of [17]
that comprises of five categories (insertion phase, abstraction level, activation
mechanism, effects, and location), with each category containing multiple attributes.
This taxonomy is predicated on two key criteria: (1) coverage (it should classify
any-and-all Trojans) and (2) resolution (it should separate significantly different
capabilities of Trojans). This comprehensive taxonomy is shown in Fig. 2.7.

The insertion phase describes the stages of the design and fabrication life cycle
where the hardware is vulnerable to malicious modification. This phase ranges
from defining the hardware characteristics (i.e., design specifications) to physical
IC placement (i.e., assembly) on a printed circuit board (PCB).

The abstraction level describes the various development stages of the hardware
IP prior to fabrication. This level spans from the physical dimensions and locations
of the internal components in the circuit (i.e., physical level) to the final definitions
of the interconnects and communication protocols used in the IC (i.e., system level).

The activation mechanism describes the means by which the Trojan is triggered.
This includes always-on Trojans such as those continually leaking information
through EM radiation, as well as Trojans requiring specific triggers for activation
such as internal sequential counters or external triggers from input data streams.

The effects category describes the unwanted result from the Trojan’s delivered
payload. This ranges from introducing small errors that are difficult to detect (i.e.,
change the functionality) to full consumption or failure of hardware resources, thus
preventing system availability (i.e., denial of service).

The location category describes where inside the hardware a Trojan can phys-
ically be inserted. This category spans from a single Trojan targeting a single
component (e.g., system clock) to perform fault-injection attacks to multiple
distributed Trojans targeting multiple complex components (e.g., processors) to alter
the order of instruction execution.

This comprehensive Trojan taxonomy has been validated against a total of 56
hardware Trojans for the coverage and resolution criteria described in this section,
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and it correctly captured all of the Trojans into the proper categories [17]. However,
as with many aspects of security and trust, continuous advances are required to be
made in order to stay ahead of the adversary. The website https://www.trust-hub.org
maintains a collection of hardware Trojan benchmarks that have been developed and
updated by researchers in the hardware security and trust community [32, 34, 41].

From 2007 through the present day, there has been much research focused on
hardware Trojan modeling, circuit generation, and benchmarks [32, 34, 36, 41, 45].
However, within just the last few years, the number of Trojan design publications
has started to trend downward, possibly indicating that Trojan designs have
saturated. On the other hand, the number of research publications focused on
countermeasures, such as detection and prevention, has greatly increased. These
trend changes may be due to the fact that there exist a virtually unlimited number
of different Trojan designs, and the critical research needs to be focused on the
defensive postures with prevention mechanisms possibly outweighing detection
mechanisms [45].

2.4.2 Taxonomy of Trojan Triggers and Payloads

The fundamental taxonomy of triggers and payloads, which are the two main
components for hardware Trojans, is shown in Fig. 2.8. The trigger continually
monitors specific signals in the circuit and activates when an expected event
occurs, which is typically derived from the original circuit. The payload is activated
by the trigger and delivers the malicious behavior to the circuit. Trojans may
remain undetected and inactivated for many years while waiting for the specific
circumstance to occur before they trigger and deliver their nefarious payload to the
circuit.

Trojan triggers occur in two types: digital or analog. Digital is the most
commonly researched Trojan as it consists of combinational and sequential circuits.

Fig. 2.8 Taxonomy of hardware Trojan triggers and payloads [6]

https://www.trust-hub.org
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Fig. 2.9 Generic models of combinational and sequential Trojans

Combinational Trojans are stateless, meaning they contain no state elements (e.g.,
flip-flops, latches), and they rely on a specific condition occurring at a specific set of
rare nodes within the circuit. Sequential Trojans are stateful, meaning they rely on
a specific sequence of states to be traversed before activation (e.g., counters, finite
state machines). Sequential Trojans are more difficult to detect since they require
a number of arbitrary conditions to be met before activation, which can become
computationally infeasible to detect with conventional testing methods. Analog
triggers, on the other hand, rely on various natural phenomena (e.g., temperature,
RF radiation, gate capacitance) for activation. A hybrid Trojan is a combination of
a digital and an analog Trojan. Two generic Trojan models can be seen in Fig. 2.9.

Recall that Trojans should be virtually undetectable and rarely activated. There-
fore, an adversary would choose nodes that are unlikely to activate during conven-
tional testing methods. Upon activation, the Trojan’s payload will be delivered to
the circuit. The payload can be categorized as digital (e.g., affecting logic values,
opening backdoors) or analog (e.g., affecting performance, EM emissions) or others
(e.g., acceleration of IC aging, leaking information). The payload is the critical part
of the Trojan as it is ultimately what modifies the original behavior of the circuit.
Examples of fundamental hardware Trojans with triggers and payloads are shown
in Sect. 2.4.3.

2.4.3 Fundamental Trojan Examples

Figure 2.10 shows a combinational Trojan with a NOR gate as a trigger and an
XOR gate as the payload. This Trojan is activated only when the specific condition
of A D 0 and B D 0 occurs at the NOR gate’s trigger nodes, resulting in the payload
delivering an inverted output Cmodified.

Figure 2.11 shows a synchronous sequential Trojan (a.k.a. Trojan “time bomb”)
with a simple counter for activation. The trigger consists of a k � bit counter and an
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Fig. 2.10 Combinational
Trojan circuit [9]

Fig. 2.11 Sequential Trojan
circuit [9]

Fig. 2.12 Hybrid Trojan
circuit [9]

Fig. 2.13 Analog Trojan
circuit [9]

AND gate, and the payload consists of an XOR gate. This Trojan is triggered after
a predefined 2k � 1 counts, resulting in an inverted output ER*. An asynchronous
version of this Trojan can be created by substituting the clock (CLK) with another
logic implementation.

Figure 2.12 shows a hybrid Trojan consisting of both synchronous (k1-bit)
and asynchronous (k2-bit) counters. Both of these counters must reach their
predetermined values for activation, resulting in an inverted output ER*.

Figure 2.13 shows an analog Trojan in which a capacitor is charged if the AND
gate output (driven by q1 and q2) has been set to 1 for a calculated period of time,
resulting in an inverted output ER*. If the AND gate output is not set high for the
correct duration of time, the capacitor will discharge to ground and the Trojan will
not activate.

The previous examples have shown hardware Trojans with digital or analog
triggers delivering a digital payload. Recall that digital payloads are designed to
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Fig. 2.14 Trojan with analog
payload to Vdd [9]

Fig. 2.15 Trojan with analog
payload to GND [9]

affect targeted logic values at specific internal nodes, whereas analog payloads affect
characteristics such as performance. Figures 2.14 and 2.15 offer examples of analog
payloads.

Figure 2.14 shows an analog payload in which a fault is created, via the resistor
to Vdd, when the output of the AND gate is logic zero.

Figure 2.15 shows an analog payload in which path delay is affected, via the
capacitor to GND, when the output of the AND gate is logic one.

2.4.4 Innovative and New Trojan Attacks: Designs
and Examples

Hardware Trojans have evolved to become more potent threats against secure and
trustworthy hardware. Trojan attacks now include more advanced functions such
as temperature-driven activation, radio, power, and optical side-channel leakage of
information, accelerated aging of ICs, as well as denial-of-service (DoS) attacks
against device availability [15, 18, 43]. This section explores several examples of
innovative and recent designs of hardware Trojan attacks.

2.4.4.1 Side-Channel Trojan

Malicious off-chip leakage enabled by side-channels (MOLES) [19] demonstrates a
hardware Trojan that is inserted by an untrusted foundry. MOLES leaks sensitive
information outside of the IC through an analog side-channel, which is later
acquired and analyzed by another untrusted entity. MOLES was designed to
compromise hardware security modules (HSMs), which are the tamper-resistant
cryptographic engines for embedded systems and general-purpose computers. It
was implemented in an Advanced Encryption Standard (AES) IP core to leak
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Fig. 2.16 MOLES circuit
embedded inside a hardware
security module [19]

multi-bit cryptographic keys. All of the bits were leaked with a signal-to-noise ratio
(SNR) below the noise power level of the infected IC in order to remain hidden
while the Trojan is activated. Also, MOLES was designed to be very small in size
(i.e., fewer than 50 gates) in order to evade detection from automatic test pattern
generation (ATPG) testing and layout inspection processes. Figure 2.16 shows the
block diagram of MOLES.

2.4.4.2 Semiconductor Trojan

Stealthy dopant-level hardware Trojans are described in the work of [4] in which
the dopant polarity was altered in the existing transistors of the infected IC. This
type of Trojan is inserted by an untrusted foundry after placement and routing
occurs during the layout level. Since there is no additional circuitry required for
this Trojan, the appearance and functionality of the IC are not changed. Therefore,
the malicious modification is virtually undetectable to optical inspection techniques
and can defeat golden IC model verification methods. This Trojan was inserted into
a case study model of a cryptographically secure processor in order to reduce the
entropy of the random number generator (RNG) used to produce the cryptographic
keys. The authors claim their Trojan will allow the compromised processor to still
pass the built-in self-test (BIST) as well as the National Institute of Standards and
Technology (NIST) test suite that is commonly used to rate the quality of random
number generation. Figure 2.17a shows an unmodified inverter gate, and Fig. 2.17b
shows a dopant Trojan inserted into the inverter gate resulting in a constant output
of VDD. A close inspection of this figure reveals the contact, metal, and polysilicon
areas are indeed identical in both cases. The only change is to the polarities of the
N and P dopants.
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Fig. 2.17 Layout of (a) Trojan-free inverter gate and (b) inverter gate with Trojan to output
constant VDD [4]

2.4.4.3 Analog Trojan

Analog malicious hardware, called “A2”, demonstrates how an untrusted foundry
can insert an analog hardware Trojan into empty cells of a circuit [16]. A2 is a
capacitor-based Trojan that slowly diverts charge from internal connections that
rarely toggle their digital values. Once A2’s capacitors reach a specified charge
state, the Trojan triggers and delivers a payload that overrides a flip-flop’s current
state, thus forcing it to a predetermined value. Although A2 is a hardware Trojan, its
objective is to enable a remotely controlled software privilege escalation attack by
forcing a targeted bit in a security register to a specific value. A2 was implemented
into an open-source CPU processor just prior to the CPU being fabricated, and
the Trojan attacks were successful. Essentially, A2 implements an analog counter
as a trigger, meaning that it does not require numerous additional gates as does
a conventional digital counter-based trigger. A2 can be as small as one gate and
is more stealthy than its digital counterpart; thus it is more elusive to functional
verification, simulation, and side-channel Trojan detection methods. Figure 2.18
shows the behavior of the A2 Trojan, which takes multiple rising-edge triggers to
charge the capacitor to the threshold voltage value required for activation.
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Fig. 2.18 “A2” analog Trojan circuit behavior. Notice capacitor requires multiple triggers prior to
activation [16]

2.4.4.4 Digital Trojan

Hardware Trojans can also exist in digital finite state machines (FSMs) as demon-
strated in [13]. Vulnerabilities exist in high-level incomplete design specifications,
which can be exploited by adversaries during the design flow, as well as in post-
fabrication through inadvertent trapdoors found in the defined FSM. When the
number of protected states is not a power of 2 (as in n2 states), there will be unused
states in the FSM that will be treated as “don’t-care” conditions. The adversary
inserts the logic Trojan into the don’t-care conditions inside a sequential FSM (i.e.,
where the next state or output is not specified), which allows an attacker access to
protected states in the FSM once the Trojan is triggered. If a don’t-care condition is
not Trojanized, logic design tools may use it for optimization. However, at the circuit
level, don’t-care conditions will be assigned a deterministic next-state value by the
EDA/CAD tools which may have been coerced by the Trojan. Since the Trojan is
inserted early in the flow, it may pass undiscovered by Trojan detection mechanisms
used later in the flow. Figure 2.19a shows a four-state transition graph, which was
originally a three-state FSM with state “11” as a don’t-care. The solid blue edge
lines represent the defined state transitions, and the dashed orange lines represent
the don’t-cares in the FSM. The dashed orange edge lines will be implemented by
the circuit (Fig. 2.19b) with their assignments allowing an attacker potential access
to protected states in the FSM.

2.4.4.5 Other Notable Trojans

2.4.4.5a: Insertion of hardware Trojans into the silicon of a fabricated wireless
cryptographic IC was accomplished in the work of [20]. These Trojans were inserted
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Fig. 2.19 Vulnerable four-state FSM (originally three states shown in blue) showing (a) dashed
orange edge lines and state “11” representing don’t-care conditions as a result of the digital
logic implementation (b) where the don’t-cares may allow an attacker access to protected FSM
states [13]

into the AES core and the ultra-wideband (UWB) transmitter of the application-
specific integrated circuit (ASIC) chipset. This attack resulted in encryption key
leakage that was concealed within the amplitude and frequency design margins
allowed due to fabrication process variations.

2.4.4.5b: A software-exploitable hardware Trojan was implemented inside an
embedded processor as demonstrated by [44]. This hardware Trojan was modeled
by a sequential FSM and was triggered with a specific combination of firmware
instructions and data processing sequences. The attack resulted in leakage of the
program IP, the encryption key, and also caused the system to malfunction.

2.4.4.5c: Reliability Trojans, which are malicious alterations of manufacturing
conditions during semiconductor fabrication, are introduced in [35]. These Trojans
exploit the wearing-out mechanisms for CMOS transistors, such as negative bias
temperature instability (NBTI) and hot carrier injection (HCI). The attack objectives
include reduced reliability, accelerated aging, and premature failure of ICs such as
SRAM cache memory, all of which are triggered only with time and usage of the IC.

2.4.4.5d: Small, optimized, and performance-based Trojans have been designed
to evade detection in the works of [7, 42]. These low-impact Trojans rely on
modifications such as resizing of logic gates, interconnect tampering, and insertion
of resistive bridging faults at single failure points in a circuit. They are designed
to be inserted without impacting path delays, power consumption, or area overhead
of the circuit. Their attack objectives include privilege escalation, erratic behavior,
incorrect outputs, and hardware failure.

2.4.4.5e: Field programmable gate arrays (FPGAs) and systems on chip (SoC) are
also vulnerable to hardware Trojan attacks. The work of [33] developed a com-
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prehensive taxonomy of Trojan attacks in FPGAs. The work of [11] demonstrates
an automated security analysis framework designed to detect hardware exploits
including Trojan attacks in SoCs. Also, the work of [34] demonstrates an extensive
database of hardware Trojan attacks which can be used to be insert Trojans into
FPGAs and SoCs for research of defensive security and trust techniques.

2.4.5 Trojan Attack Models

The proper modeling of hardware Trojans is essential to accurately categorizing the
adversarial threats and analyzing the effects of Trojan attacks. Prior to developing
an attack or countermeasure method, the adversary or defender must consider the
appropriate Trojan model. Recall that adversaries can insert Trojans into hardware
during many phases of the design flow, which leads to the need for multiple attack
models. Accurate Trojan attack models must be based on the entire semiconductor
supply chain. For SoCs, this can be divided into three phases: IP core development,
SoC development, and fabrication. These three phases result in three types of entities
that can potentially attack the hardware design: 3PIP vendors, SoC developers, and
fabrication foundries. This adversarial threat modeling concept can be extended
to other ICs, and existing research has been performed to categorize different
models of Trojans attacks [17, 29, 36]. The work of [45] provides us with seven
comprehensive attack models for SoCs, shown in Fig. 2.20.

A summary of the seven comprehensive Trojan attack models follows:
Model A: Untrusted 3PIP Vendor—Most SoC designers have to acquire some

forms of third-party IP (3PIP) cores to complete their designs. This is driven by
demands for reduced costs, faster time to market, and decreases in physical IC size
coupled with increased functional complexity. Adversaries at the untrusted vendor
can insert hardware Trojans into the 3PIP without the SoC designer’s knowledge.

Fig. 2.20 Seven comprehensive hardware Trojan attack models [45]
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Model B: Untrusted Foundry—Most design houses are partially or fully fabless,
meaning they outsource the fabrication of their ICs to offshore and untrusted
entities. The outsourcing decisions are a tradeoff between the need for the latest
fabrication technologies at the lowest costs and the security of their designs.
Adversaries at these untrusted foundries have access to all layers of the design
and are able to insert Trojans into any of the lithography masks, as well as reverse
engineer the design for counterfeiting purposes.

Model C: Untrusted SoC Developer—Highly trained SoC designers and special-
ized design tools are required to produce complex hardware designs. Adversaries in
this model are insider threats, and they may use untrusted (i.e., pirated) CAD and
EDA software tools.

Model D: Untrusted COTS Components—Many commercial off-the-shelf
(COTS) components are used in designs. COTS items are less expensive than
a custom product, and they typically do not require custom development for
integration into a system. These items are developed in a completely untrusted
manner resulting in multiple vulnerable stages in the design flow.

Model E: Untrusted Design House—Designs in this model are fabricated in a
trusted foundry, but the design house and 3PIP vendors are not trusted to produce
Trojan-free designs. Outside of the trusted foundry, the entire supply chain is
untrusted.

Model F: Untrusted Outsourcer—This is a combination of Model A and Model
B, and it applies to almost all fabless IC design houses. These designers use 3PIP
vendors and untrusted foundries resulting in the inability to guarantee a Trojan-free
hardware design.

Model G: Untrusted Systems Integrator—This model includes untrusted system
integrators catering to a variety of customers who wish to have a supplier capable of
both design and fabrication. This developer can pull from a variety of resources
to meet customer demands; however vulnerabilities may be introduced into the
completed hardware design.

The work of [45] also included a comprehensive analysis of 161 published
papers on countermeasures against these types of Trojan attack models. The results
show a remarkable 89% of the countermeasure papers covered Model F (untrusted
outsourcer), and almost 60% of the published papers covered Model B (untrusted
foundry). Model A (untrusted 3PIP vendor) was covered in almost 30%, and Model
C (untrusted SoC developer) was covered in 13% of these papers. It is worth noting
that Models D, E, and G accounted for virtually 0% of the papers as these three
models can be absorbed by other attack models.

It is widely known that Trojan attacks typically occur in untrusted entities.
Consequently, countermeasures should be performed only by trusted entities. These
seven attack models show that foundries, vendors, and designers all play the role of
either untrusted or trusted entities, but they cannot be both roles at the same time.
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2.5 Defensive Strategies

2.5.1 Taxonomy of Trojan Countermeasures

It is very difficult to detect hardware Trojans using conventional test and validation
processes, as introduced in Sect. 2.3.1 and analyzed in Sect. 2.5.5. Whether per-
forming pre-silicon or post-silicon verification or executing structural, functional,
or random test patterns, these conventional approaches perform poorly for detecting
hardware Trojans. These processes are designed to detect defects in manufacturing
workmanship and typically only test for expected operating conditions within the
circuit. Trojans, by nature, are hidden among rare internal nodes that are not nor-
mally activated during device testing. An adversary can choose from an extremely
large selection of Trojans to insert into the circuit, whereas performing deterministic
and exhaustive defensive testing for all conditions is computationally infeasible.
Additionally, parametric parameters such as path delay, internal noise, and power
consumption are different for each IC based upon manufacturing tolerances, thus
making detection inherently more challenging [3, 6, 9, 36, 43, 45, 48]. Therefore,
the need exists for both detection and prevention mechanisms to defend against
hardware Trojans.

Hardware security and trust researchers have developed three broad categories of
countermeasures for hardware Trojans and have proposed the taxonomy shown in
Fig. 2.21. The three main categories of countermeasures are Trojan detection, design
for trust, and split manufacturing for trust [45]. The single letters in the blocks of
this taxonomy cross-reference the listed countermeasure in this taxonomy with its
particular attack models that were discussed in Sect. 2.4.5.

2.5.1.1 Trojan Detection

The goal of Trojan detection is to verify hardware designs without requiring
supplemental circuitry [45]. Additional circuitry would lead to an increase in
manufacturing cost, circuit size and performance, and power overhead. Trojan
detection is performed during pre-silicon and post-silicon design stages. Pre-silicon
verification helps SoC designers to validate 3PIP in the final design stages prior
to fabrication. This includes performing functional validation, structural and code
analysis, and formal verification. Although these techniques are good for identifying
unintentional design errors and manufacturing faults, they offer no guarantees
against hardware Trojans. Post-silicon verification provides more guarantees against
Trojans, but at a different cost, which can be further categorized into destructive and
nondestructive methods [9, 45].

Destructive methods (e.g., depackaging of ICs, physical reverse engineering)
offer the highest assurance against Trojans as the fabricated IC can be visually
verified against a golden IC or golden model. It is a complicated process involving
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layer-by-layer de-metallization using a chemical mechanical polishing (CMP)
technique followed by image reconstruction and analysis using a scanning electron
microscope (SEM). This method allows for the identification of individual gates,
transistors, and routing elements contained within the IC. This process is performed
on a one-by-one basis taking several weeks to conduct, and the IC is destroyed
during this process. Additionally, an adversary can insert a Trojan into only a small
number of ICs instead of the entire lot, thus making destructive detection methods
impractical from a scalability perspective. However, destructively testing a limited
number of ICs is still beneficial as the information gained from the samples may
be used to form golden models for verification with other Trojan detection methods
(e.g., side-channel analysis) [6, 9, 45].

Nondestructive methods include functional testing and side-channel analysis to
identify possible hardware Trojans. Functional testing, also known as logic testing,
is a method of inputting specific logic patterns into the IC with the goal of triggering
any existing Trojans. This form of testing is not equivalent to conventional testing
as those test vectors aim to identify bugs and defects. Trojans are typically hidden
in low-controllable and low-observable nodes, thus making them difficult to reach
with conventional testing methods. Side-channel analysis is a method of acquiring
and analyzing characteristics that are unique to each IC. The goal is to identify
additional circuitry containing Trojans through observing changes in the physical
parameters of each IC. This method includes performing analysis on consumed
and leaked power, gate timing, path delay, circuit temperature, and electromagnetic
radiation. Side-channel analysis may use ring oscillators, shadow registers, and
delay elements to detect fluctuations indicative of hardware Trojans. Nondestructive
methods can be performed numerous times and on as many ICs as desired. Although
functional testing and side-channel analysis typically require a golden IC or model,
together they form a complementary approach toward nondestructive hardware
Trojan detection [6, 9, 36, 43, 45].

Functional validation is a form of pre-silicon Trojan detection with the main
idea being similar to functional testing (i.e., logic testing). Functional validation is
performed using modeling and simulation, which requires no physical connections
to the device under test (DUT). Functional testing, on the other hand, requires
physical connection to the DUT and is usually performed on a specialized test stand.
The test stand is required to apply all of the generated test input vectors (based on
the design specifications) and to collect the output of the device. Functional testing
methodologies can be applied to functional verification, but not vice versa [45, 47].

Formal verification is a pre-silicon or pre-synthesis design verification technique,
which is typically performed to confirm that a circuit has been indeed designed in the
precise manner as defined by the design requirements. In the context of security and
trust, formal verification is a mathematical approach toward exhaustively validating
the entire security and trust specification of an IC. It includes using a specified
set of security policies and proof-checking methods. Formal verification for Trojan
detection is based on three verification methods: property checking, equivalence
checking, and model checking. Respectively, these methods allow for verification
of requirements in hardware test bench properties, checking equivalence between
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RTL, netlist, and GDSII files, as well as checking the models used for system-
level languages (e.g., Verilog and VHDL) against the defined security specifications
[45, 47].

Code and circuit coverage is another pre-silicon Trojan detection technique.
Analysis of hardware description language (HDL) may be performed structurally or
behaviorally to identify rare and redundant internal nodes within the HDL code and
the circuit. The coverage typically includes RTL line execution, FSM reachability
coverage, and coverage of gate-level netlists combined with functional assertions
indicating success or failure. This analysis aims to locate and identify the nodes
with the highest probability indicative of a location for Trojan insertion. Quantitative
metrics and manual post-processing of the results may be used to identify unusually
rare nodes or gates with low observability, low reachability, and low probability, all
of which are ideal targets for adversaries to insert hardware Trojans [45].

2.5.1.2 Design for Trust (DfT)

An alternative to the Trojan detection methods described above is to design for
trust (DfT). DfT is a method that integrates security and trust throughout the
entire design and manufacturing flow. It includes facilitating detection, preventing
Trojan insertion, and trustworthy computing on untrusted components as shown in
Fig. 2.21.

The first approach to DfT is to facilitate detection by incorporating functional
testing, side-channel analysis (both previously described), and run-time monitoring.

Fig. 2.21 Taxonomy of Trojan countermeasures [45]
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Run-time monitoring can increase the trustworthiness of hardware by continually
monitoring all critical computations for abnormalities, thus reducing the effect of
Trojan attacks. Run-time monitoring can detect malicious behavior and automat-
ically disable or bypass the malicious logic allowing the IC to restore reliable
operation. It uses existing on-chip and supplemental off-chip (e.g., online) resources
to continually monitor characteristics of the IC including behavior, operating
conditions, transient power, and temperature [6, 9, 24, 36, 45].

Preventing Trojan insertion is another approach to DfT and includes obfuscation,
camouflaging, and functional filler cells. Obfuscation is a method of hiding circuit
functionality by inserting additional logic-locking circuitry into the design in order
to conceal the correct functionality and the intended hardware design. The obfus-
cated circuit regains full functionality when the correct logic key is applied to the
inputs. Obfuscation is effective for Trojan prevention in combinational, sequential,
and reconfigurable logic. Camouflaging is a method of creating indistinguishable
layouts of gates by using additional dummy contacts and fake interconnects between
layers of the different gates in the circuit. Camouflaging prevents the attacker’s
ability to reverse engineer the circuit’s netlist, thus preventing Trojan insertion.
Functional filler cells are a method of inserting functioning gates into empty spaces
in the hardware design. Typically, EDA/CAD tools fill empty spaces with non-
functioning standard cells, thus allowing an attacker to replace these unused cells
with a Trojan. Functional filler cells make use of all empty locations by inserting
functional gates to form specified combinational logic, which can be tested during
the design flow. A failure in the functionality of the filler cells can be indicative of
an inserted Trojan [6, 45].

Another method for DfT is by performing trustworthy computing on untrusted
components. This method is inherently resilient to Trojan attacks, which separates
it from other prevention methods such as run-time monitoring and obfuscation.
This method mitigates the effects of activated Trojans as the trusted computing
software, which is running on the untrusted hardware, can be distributed over
multiple independent mechanisms and processes. These risk reduction methods
include distributed software scheduling over multiple multicore processors, using
the identical untrusted 3PIP from different untrusted vendors, and comparing
multiple 3PIP sources with similar untrusted designs [45].

An important point for hardware designers to consider is the balance between
hardware Trojan detection and prevention methods with the actual need for
increased security and trust of the hardware design. For Trojan detection, as the
size of a circuit increases, so does the number of additional gates and internal
nodes. These additional gates may unintentionally introduce low-controllable and
low-observable nodes, which makes Trojan detection even more challenging. In
addition, intentional modifications of gates for Trojan prevention may negatively
impact the performance of the circuit. These impacts occur in many forms including
path delays, power consumption, and area overhead of the circuit. As with design
specifications, this inevitable tradeoff must be considered throughout the entire
design flow and manufacturing process.
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2.5.1.3 Split Manufacturing for Trust

Recently, split manufacturing has been offered to protect against hardware Trojans.
This manufacturing process divides the hardware design into front-end-of-line
(FEOL) and back-end-of-line (BEOL) sections that are fabricated by different
foundries. Typically, an untrusted foundry will fabricate only the FEOL portion of
the design and then ship their wafer sections to a trusted foundry who fabricates the
BEOL section and integrates both sections. The process is conducted in this fashion
as FEOL fabrication is of higher cost (i.e., monies, machinery, time) than BEOL
fabrication. Split manufacturing prevents the untrusted foundry from having access
to all layers of the IC, since having this information would allow an adversary to
easily insert Trojans.

Common techniques of split manufacturing include 2D integration (described
above), 2.5D integration, and 3D integration as shown in Fig. 2.21. In 2.5D
integration, the design is divided into two sections (FEOL and BEOL), which
are both fabricated by the untrusted foundry. A middle section, called a silicon
interposer as it contains the interchip connections, is fabricated at a trusted foundry.
The interposer, FEOL, and BEOL sections undergo final assembly in the trusted
facility. In 3D integration, both the FEOL and BEOL sections are fabricated by
different foundries. The 3D assembly consists of vertically stacking the sections and
inserting vertical interconnects called through-silicon vias (TSVs). Naturally with
any Trojan countermeasure technique, there are tradeoffs with split manufacturing
including higher manufacturing costs, increased area due to the interconnections,
increased timing and power overheads, and higher temperatures in the middle tiers
of the IC [6, 45, 46].

2.5.2 Detection of Trojans: Examples

2.5.2.1 Statistical Detection

Multiple excitation of rare occurrence (MERO) is a statistical form of Trojan
detection [10]. MERO aims to maximize the probability of triggering Trojans during
logic testing, while minimizing the number of test vectors required as compared
with a weighted random pattern testing approach. It works by first detecting low-
probability events at internal nodes and then creating a set of optimized test vectors
that triggers each internal nodes to their rare logic value multiple times (e.g., N
> 1000). It applies these vectors during testing in an effort to trigger any Trojans in
the circuit. Recall that conventional testing does not scale to detect Trojans due to
the exponential number of possible Trojan instances. Figure 2.22a shows the rare
event (abc D 011) required to trigger a combinational Trojan, and Fig. 2.22b shows
the rare occurrence (ab D 10) required to trigger a sequential Trojan. These two
conditions will be identified by MERO and toggled many times in order to trigger
and detect any Trojans in the circuits.
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Fig. 2.22 Statistical logic
testing of MERO for (a)
combinational Trojan and (b)
sequential Trojan [10]

2.5.2.2 Rare Event Removal

A methodology for identifying and removing rare nodes to increase Trojan detection
is demonstrated in [31]. It is widely known that adversaries target low-controllable
and low-observable nodes in which to insert Trojans, thus leading to challenges
with Trojan detection methods. This technique analyzes the hardware design to
identify nets with a transition probability less than a specific threshold value,
which makes them ideal candidates for Trojans. The transition probability threshold
value is modeled using a geometric distribution (GD) and estimates the number of
clock cycles required for a node to transition. One or more dummy scan flip-flops
(dSFF) are then inserted into the identified nodes to increase their probability of
transitioning, all without the flip-flops affecting the timing or functionality of the
design. The increased transitioning rate will result in a decrease of hard-to-activate
nodes in the circuit (i.e., removal of the rare events). Removing these rare events is
what allows for facilitating Trojan detection in the hardware, even if the gate-level
netlist is not trusted. Small Trojans may be fully activated resulting in detection
(via logic testing) through malfunctions and faulty circuit outputs. Large Trojans
may be partially activated resulting in detection (via side-channel analysis) through
measurable changes in signals such as transient power and path delay.

Figure 2.23a shows an original Trojan cone (i.e., logic gates connected to the
input of a Trojan gate) consisting of all AND gates with the probability of generating
a “1” (1=256 D 0:0039) at the Trojan gate (Tgi) being much less than generating
a “0” (255=256 D 0:9961). Figure 2.23b shows a single dummy scan flip-flop OR
gate inserted into the top net of the circuit. This single gate dramatically reduces
the number of clock cycles required to transition the Trojan gate (Tgi), thereby
increasing the transition probability of a “1” to be much greater than its original
value (“1,” 17=512 D 0:0332; “0,” 495=512 D 0:9668). This increase in transition
rate leads to an increased probability of Trojan detection.
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Fig. 2.23 Transition probability of the (a) original Trojan cone and (b) inclusion of a single
dummy scan flip-flop [31]

2.5.3 Prevention of Trojans: Examples

2.5.3.1 Obfuscation

Key-based design obfuscation deters adversaries from inserting Trojans by trans-
forming the circuit into another circuit that is functionally equivalent, but with
the added benefits of security features to prevent hardware Trojans [8]. It allows
a circuit to operate in two different modes (i.e., obfuscated mode and normal mode)
and requires a sequential logic key to unlock correct circuit functionality. In the
obfuscated mode (i.e., protected mode), the correct functionality and structural
design of the circuit is obscured, resulting in incorrect behaviors being produced by
the obfuscated circuit. In the normal mode, the correct behavior and functionality of
the circuit is restored, although the design itself is still obscured from an adversary.

Transitioning from obfuscated mode to normal mode requires the correct logic
key to be applied at the inputs during initial start-up of the circuit; otherwise
the circuit will remain in its protected mode. This technique makes inserting
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Fig. 2.24 Key-based obfuscation scheme for Trojan prevention and detection [8]

Trojans difficult for adversaries as the rare internal nodes are obfuscated (recall
that adversaries insert Trojans into rare circuit nodes to prevent detection). If
a Trojan is inserted, it is highly likely that it will be inserted into an isolated
region, thus negating any effect of a triggered Trojan. This approach results in an
increased prevention against hard-to-detect Trojans from being inserted into rare
nodes, increased Trojan detection, as well as protection against IP piracy (i.e., IP
theft via reverse engineering). It can prevent Trojans from being inserted by an
adversary at an untrusted foundry or by untrusted EDA/CAD tools in IC design
flows, albeit at a cost of higher overhead and the inability to prevent random Trojan
insertions.

Figure 2.24 shows a state transition graph (STG) of a circuit. Upon power-up, the
circuit starts in the obfuscated mode (i.e., state SO

0 ). Only the correct sequential logic
key (i.e., K1 ! K2 ! K3) will transition the circuit into the normal mode (i.e., state
SN

0 ). Any incorrect key will result in the circuit transitioning into the isolation state
space, where it will be trapped along with any invalid Trojans.

2.5.3.2 Hardware 3PIP

A design framework for a formal, yet computationally feasible, acquisition of
trustworthy hardware 3PIP is demonstrated in the work of [21, 37]. This framework
is called proof-carrying hardware intellectual property (PCHIP), and it is based on
the concept of proof-carrying code (PCC). PCHIP focuses on the security and trust
of the IP in the form of hardware description language (HDL) for FPGAs. Unlike
many other approaches, it does not require a golden IC or model, nor does it require
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Fig. 2.25 Hardware
intellectual property (IP)
acquisition and delivery
framework protocol [21]

a trusted 3PIP vendor. The IP consumer establishes a set of upfront security and
trust properties with the IP vendor, which become integrated as a component in
the entire design flow. These properties are temporal logic, meaning they are rule-
based symbolic expressions instead of exact hardware functionality. The IP vendor
creates a formal proof of these properties that is delivered with the 3PIP to the
IP consumer. The IP consumer then validates the 3PIP against the agreed-upon
security specifications. If the 3PIP fails verification, it means a security protocol has
likely been violated, thus resulting in the prevention of malicious Trojans from being
inserted into the IP consumer’s FPGA design. Since an inadequate set of security
specifications may have unknown vulnerabilities, this framework does not ensure
complete coverage and should be used only in conjunction with other detection
and prevention methods. Figure 2.25 shows the interaction cycle between the IP
consumer and the IP Vendor.

2.5.4 Other Notable Trojan Detection and Prevention Methods

Similarly to the evolution of hardware Trojan designs attacks, Trojan detection and
prevention mechanisms have also evolved in much the same manner. This section
will introduce other notable and new Trojan detection and prevention techniques.

2.5.4.1 Voltage Inversion

A voltage inversion technique to ascertain malicious insertions (VITAMIN) in
ICs was proposed by [2]. This technique utilizes an inverted voltage scheme to
complement the voltage level of CMOS gates (e.g., changing an AND gate into a
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NAND gate). It aims to detect the presence of hardware Trojans through enhancing
the differences in the power profiles between a golden IC and a test IC, resulting
in higher triggering frequencies for the rare nodes in the circuit. This approach was
combined with a sustained vector technique to further strengthen its effectiveness.

2.5.4.2 Temperature Tracking

A run-time method for detecting hardware Trojans was introduced in [14]. The goal
of this framework is to detect a deviation in the normal correlation between the
thermal and power profiles within an IC. Abnormalities in this profile may indicate
a Trojan activation. This approach consists of design-time, test-time, and run-time
monitoring phases. It is low overhead as it exploits the existing internal thermal
sensors on many FPGAs, SoCs, and other ICs. This approach enables online Trojan
detection during the entire lifetime of the IC.

2.5.4.3 Split Fabrication

A secure split manufacturing methodology using vertical slit field effect transistors
(VeSFET) inside of ICs is proposed by [46]. This approach uses the VeSFET’s two-
sided accessibility and 3D integration capability to hide transistors in a camouflaged
3D case. It allows two independent untrusted foundries to securely fabricate 2D and
3D ICs. If one foundry adds or moves transistors, the resulting crowbar current
effect is detected by the other foundry. This design methodology prevents hardware
Trojan insertion, reverse engineering, and IP piracy, as well as provides methods for
Trojan detection capabilities.

2.5.4.4 FPGA Trust

Hardware Trojan attack prevention and detection methods for FPGAs are demon-
strated in the works of [22]. This security and trust validation method, called adapted
triple modular redundancy (ATMR), enables protection against Trojans that are
inserted during device production at the foundry. It is adaptive since Trojans can
be independent of the final design. ATMR is a combined approach consisting of
logic testing and side-channel analysis, and it is designed to protect FPGAs from
Trojans of various sizes, locations, and functionalities. This work also developed a
Trojan attacks taxonomy and Trojan models that specifically target FPGAs. The
taxonomy covers Trojans that alter the programmed state and I/O blocks of the
FPGA, including Trojans inserted by the foundry that cause logical malfunctions
and physical damage.
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2.5.5 Comparisons of Various Trojan Defensive Methodologies

Detection and prevention of hardware Trojans attempt to solve the problem from
two unique viewpoints. Many detection methods have been researched and the
consensus is that detecting a small, quiet Trojan is very challenging, and the majority
of the methods for detection are based on the use of a golden IC or golden model
[6, 45]. Although the authors of [45] state that prevention may be better than
detection, it is worth considering that a balance of the two methods is perhaps the
best approach toward Trojan-free hardware.

Automatic test pattern generation (ATPG) is a method of circuit testing that
is used to distinguish between the correct behavior of the design and the faulty
behavior caused by defects. The goal of ATPG is 100% test coverage, and it is based
upon the specification of the circuit. Structural testing may detect some Trojans
since the number of nodes to test grows linearly with the number of inputs to the
circuit. However, functional testing is much more complex as the number of nodes
to test grows exponentially with the number of inputs to the circuit, thus making
it almost impossible to detect all possible Trojans. Formal verification methods
are algorithmic-based approaches that validate properties of the intended design.
Several proposed methods for Trojan detection, including formal verification,
identification and removal of suspicious signals, and equivalence checking, are
detailed in [38, 43, 47].

Functional and structural testing, in the forms of logic testing, aim to activate
unknown Trojans during the validation process and to propagate their effects to
an observable output node [6]. Logic testing is a straightforward approach that
works well for detecting ultrasmall Trojans. It is also robust in the presence of
environmental noise and manufacturing variations. However, it is not scalable and
quickly fails as the circuit or Trojan increases in size or complexity. The reason for
the lack of scalability is difficulty in generating a complete set of test vectors due
to the exponential increase in input combinations required to test all internal nodes
and generate all outputs. Essentially, logic testing has difficulties exciting rare, low-
controllable, and low-observable nodes. Also, logic testing cannot trigger externally
activated Trojans, and it requires a golden IC or model for Trojan detection [6, 45].

Side-channel power analysis is a detection method predicated on the expected,
albeit unknown magnitude, increase or decrease in the power overhead due to the
inclusion of a Trojan. Common methods include static current analysis and transient
current analysis. Static current analysis is a method of detection that relies on the
inactivated Trojan causing noticeable change in current draw from the power supply
due to the addition or modification of gates. Transient current analysis, on the
other hand, allows for the detection of switching activity inside an activated Trojan
[5, 6, 9, 45].

Side-channel analysis scales very well to detect large Trojans in both small and
large circuits. It is effective for Trojans that do not cause observable malfunctions
(e.g., data leakage), and it is easy to generate test vectors for Trojan detection.
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However, this form of testing performs poorly in the presence of environmental
noise and manufacturing variations and does not work well for detecting ultrasmall
Trojans. This limitation is due to the Trojan’s effects being masked by the noise in
the IC. Side-channel detection is a noninvasive and passive form of Trojan detection,
and its effectiveness depends on the signal-to-noise ratio (SNR) and the Trojan-to-
circuit ratio (TCR). The SNR is important as the effect of the Trojan can be masked
by system or environmental noise. The TCR is important as it is the measurement
of Trojan size to circuit size. Detecting small Trojans in large circuits is a growing
challenge as IC feature sizes are continually becoming smaller and the number of
transistors continues to increase in hardware designs. As with logic testing, side-
channel analysis also typically requires a golden IC or model for Trojan detection
[6, 45].

Although logic testing and side-channel analysis can be performed numerous
times and on as many ICs as desired, they too suffer from drawbacks including
Trojans in rare nodes remaining inactivated, activated Trojans being masked by
the presence of noise, or variations in the IC tolerances during the manufacturing
process. Therefore, performing a combination of logic testing and side-channel
analysis can provide the best coverage for detecting hardware Trojans. Figure 2.26
shows the comparison between these two noninvasive hardware Trojan detection
methods.

Fig. 2.26 Comparison of noninvasive hardware Trojan detection methods
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2.6 Conclusion

Hardware Trojans are a valid threat to hardware security and trust of integrated
circuits. These malicious modifications pose a safety and security risk to any
electronic system as the underlying hardware is no longer considered the root of all
trust. Trojans may remain undetected and inactivated for many years while waiting
for a specific circumstance to trigger so they may deliver their nefarious payload.
We have seen a plethora of Trojan attack designs and recognize the need for a solid
defense posture. In order to combat the threat of Trojans, accurate models for attacks
and countermeasures must be ensured. Only with these models will detection and
prevention techniques be realized. Current work in this domain relies on tradeoffs
between security and performance, and no defensive technique provides a 100%
guarantee. Future work in this domain will help answer the question if golden-free
models are a viable approach for hardware Trojan defense mechanisms.
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Chapter 3
Hardware Trojan Attacks in SoC and NoC

Rajesh JS, Koushik Chakraborty, and Sanghamitra Roy

3.1 Introduction

Mobile and ubiquitous computing have become an integral part of our everyday
life, with system on chip (SoC) at the heart of these devices. Three specific
factors have contributed to the massive growth of SoC in low-power computing
devices: (a) technology miniaturization, (b) modular system design in the form of
reusable intellectual property (IP), and (c) high device density. However, due to
unprecedented pressure of time to market, and to counter the rising costs of design
and verification, modern SoC designs use third-party intellectual property (3PIP),
procured from a diverse pool of trusted/untrusted vendors. The pervasive use of
3PIP components has introduced a zone of untrustworthy hardware within the SoC,
creating a cataclysmic security loophole. Hardware Trojans can be strategically
placed in critical 3PIPs to cause serious economic repercussions to both the IP
clients and the end user.

While the SoC is dominating the mobile computing market, more sophisticated
multiprocessor system on chip (MPSoC) is deemed to be the future of energy-
efficient high-performance computing systems. Pivotal to this development, network
on chip plays a critical role in improving the SoC scalability and energy efficiency.
NoC interconnects a diverse set of on-chip IP blocks to function seamlessly within
a single substrate. A key challenge however is to provide secure and reliable
communication in the SoC, even in the presence of an untrusted NoC IP. Due to
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its singular and central role in the SoC on-chip communication, the NoC has direct
access to all resources and information within the SoC. Hence, a compromised
NoC 3PIP can wreak havoc in the SoC by inflicting a plethora of attacks such as
information leakage, data corruption, and denial of service.

The exponential growth of our digital footprints, in the context of an untrusted
SoC environment (in both mobile and high-performance computing), makes SoC
security assurance an immediate necessity. This chapter focuses on security assur-
ance of the SoC, with a special emphasis on hardware Trojans that can be embedded
in the NoC. Section 3.2 discusses the challenges in SoC security. Section 3.3
presents an overview of the most conspicuous threat model, while Sect. 3.4 summa-
rizes some promising system level solutions proposed for SoC security assurance.
Section 3.5 delves into the less-explored territory of an untrusted malicious NoC
3PIP, with sample attack models and solutions.

3.2 Challenges of SoC Security

Over the last decade, hardware security has formed the foundation of modern
computing design. However, the rise in the adoption of a horizontal integration
strategy in the semiconductor industry has created a large number of untrusted zones
in the supply chain. The challenges of SoC security with respect to the SoC design
flow are enumerated below.

1. The SoC design flow is complicated and comprises numerous stages that incor-
porate both application-specific hardware design and software design processes.
During this laborious process, the design passes through several hands across the
world, creating a haven for malicious and unethical design practices.

2. The SoC design compels for several iterations of a few key stages. For example,
before the final design tape-out, a few principal engineers are iteratively involved
in the design and verification of the integrated circuits. This iterative process
gives them several opportunities to hide malicious circuits and backdoors in the
SoC design.

3. To reduce the design costs, as well as the time to market, SoC integrators acquire
pre-verified hard or soft IP blocks from a large pool of untrustworthy vendors.
These IPs largely serve as black boxes, since the third-party IP vendors do not
reveal the design information to maintain competitive advantage in the niche
market.

4. The innumerous third-party IP vendors often make use of untrustworthy and
sometimes unverified automation tools for the design and verification of their
IP blocks. Use of unreliable software tools can lead to design discrepancy and
open the door for below par IP designs, with malicious backdoors.

5. Due to the rising verification costs, the SoC integrator does not reverify the
procured IP blocks. Further, modern verification tools are often designed to
handle “no less” functionality but not for “no more.” In other words, the
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verification tools are capable of detecting missing functions compared to the
accepted specifications but cannot detect dormant functions/circuits in large and
complex digital designs.

6. SoC security comes at a formidable cost. For smaller applications, the SoC
integrator cannot afford to implement premium security features as it may lead
to severe design overheads in terms of chip area, performance, and cost.

7. Finally, the sheer complexity of modern SoC designs makes it nearly impossible
to verify and assure trustworthy behavior of every subcomponent, as well as the
interaction between multiple IP blocks.

Amidst this conundrum that the SoC design flow is, one specific issue stands
out as a necessary evil: the use of third-party IPs. The following section presents a
sample threat model of this quagmire.

3.3 SoC Threat Model

Proliferation of untrusted 3PIP components has been the biggest cause for security
concern in modern SoC. Figure 3.1 illustrates a classic scenario where a SoC
integrator procures various components from a diverse pool of 3PIP vendors. In
this example, the 3PIP NoC supplied to SoC integrator 4 has a hardware Trojan
embedded in it. One or more of the untrusted 3PIP blocks may contain a malicious
circuit. Table 3.1 presents an overview of the threat life cycle, when a malicious
circuit is inserted during the design of the IP block. Only the components designed
in-house by the SoC integrator go through complete security and functionality test

Fig. 3.1 Third-party NoC provider selectively supplies an NoC embedded with a hardware Trojan
to one of its SoC integrators. The malicious NoC, with an accomplice software, can carry out a
wide range of malicious activities at runtime damaging the unaware SoC integrator’s reputation
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Table 3.1 Threat life cycle in a SoC due to proliferation of untrustworthy third-party IPs

Trojan insertion

Malicious circuit can be inserted during the IP RTL design phase by one or few key IP design
engineers. The act of few employees may result in an unsuspecting IP vendor supplying Trojan
embedded IP to its clients

Trojan activation

To evade detection during IP verification and SoC integration tests, Trojans are designed to
remain dormant. At runtime, they can be activated either by internal or external triggers using
combinational or sequential rare event triggers

Trojan operation

At runtime, once active, the Trojan payload can inflict a plethora of attacks such as information
leakage, denial of service, function manipulation, and data corruption. The type of attack carried
out is only limited by the attackers’ imagination

and validation. The lack of 3PIP design transparency and rising verification costs
make it futile for the SoC integrator to assess the trust of procured 3PIPs, thereby
creating a cataclysmic security loophole.

In this context, Sect. 3.4 presents a few promising measures for security assur-
ance that have been explored in the recent past.

3.4 System-on-Chip Security Assurance

The goal of system-on-chip security is to ensure fair, secure, and reliable operation
of the chip, often defined by the three central aspects of trustworthiness:

• Confidentiality: Protection of data privacy against leakage, theft, and illegal
access.

• Integrity: Protection of data and chip functionality against undesired manipula-
tions.

• Availability: Assurance of fair distribution and access to the physical resources
based on correct functionality.

With research on SoC security still at its infancy, researchers have tried to adopt
existing techniques employed in processors, memory, and hardware accelerators.
Techniques such as physical side-channel analysis, built-in self-test (BIST), and
proof-carrying hardware have been found insufficient to protect against the complex
challenges imposed by hardware Trojan in SoC [2, 7, 8, 18, 19, 22]. For example,
Balasch et al. measured the electromagnetic (EM) emanations from the SoC on
actual hardware to detect hardware Trojan based on EM fingerprinting [2]. Although
side-channel analysis techniques can detect hardware Trojans to some effect,
they suffer from two important drawbacks. First, they require a golden/reference
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circuit to compare against, which is unavailable in the 3PIP threat model. Second,
many side-channel techniques suffer from inaccuracies due to process and test
environment variations.

Dubrova et al. explored the use of logic BIST with a configurable key [8].
In logic BIST, the pseudorandom pattern generator (PRPG) is used to generate
test inputs to the SoC circuit under test. The signature generated by the logic
BIST is then compared to a precalculated signature to detect faults. Dubrova et al.
proposed the use of a configurable key to set the initial state of PRPG, after the chip
manufacturing process. The user calculated signature based on the key is stored as
the “good” signature. Since the key is unknown at the manufacturing stage, addition
of malicious circuit can change the signature exposing the presence of a Trojan.
Despite its advantages, logic BIST suffers from high level of switching activity
(power dissipation) and lacks sufficient coverage.

Love et al. proposed a novel IP acquisition and delivery protocol, where the
vendor constructs a security compliance proof that is in agreement to the SoC
integrator [18]. The formal proof then becomes a part of the IP deliverable, which
can easily be checked by the SoC integrator. However, in this model, there is still
room for the vendor to manipulate the proof, as well as test benches to not cover
selected malicious modifications.

Dedicated infrastructure IPs and the use of fine-grained security policies have
been gaining steam in SoC security assurance. Security policies establish quan-
tifiable constraints based on abstract and complex high-level requirements such as
access control, information flow, and time of resource usage. Wang et al. proposed
a plug-and-play IP dedicated to security functions to protect against information
leakage from scan-based attacks, counterfeiting, and hardware Trojans [23]. The
centralized IP uses the core test wrapper architecture in the SoC and consolidates
a few well-established security measures to counter against threats. For Trojan
detection, a combinational path delay-based detection mechanism is employed.
Basak et al. extend this work by enforcing system-level security policies as firmware
code in the dedicated security IP block known as extended infrastructure IP for
Security (E-IIPS) [3]. The SoC security policies can be configured by upgrading
the firmware code stored in a secure memory. The security policy that can be
implemented is limited only by the observable and controllable signals accessible
from the security wrappers.

In the recent times, there has been a strong call for hardware software cooperation
in Trojan detection. The increasing SoC design complexity, along with increasing
untrusted boundary transactions between the hardware and software, requires a
system- level approach to Trojan detection. In this regard, Jin et al. proposed a
hardware anchor to allow cross-layer data and intelligence sharing between the
operating system and the hardware [14]. The hardware module is also responsible
for enforcing the security policies set by the OS. Guo et al. proposed a novel inte-
grated formal verification framework that combines an automated model checker
along with an interactive theorem prover [13]. The framework checks system-level
security properties against the SoC design.



60 R. JS et al.

Security assurance of SoC is fast becoming a disciple by itself. Although
hardware Trojan detection has garnered sufficient research interest, effort toward
protection against malicious circuits is still limited. In this regard, Kim et al.
proposed the use of an embedded or external reconfigurable logic to replace system
functions that have been infected with hardware Trojans at runtime [16]. Such self-
regenerative systems, although promising, are prohibitive in low-power computing
applications.

3.5 NoC Security

Network on chip is pervasive in modern MPSoC as it serves as a modular and
scalable interconnection fabric for all on-chip components. More than a decade’s
research in NoC has provided valuable insight to understanding the interconnection
network and its security aspects. However, a lion’s share of existing literature on
NoC security studies attacks on the NoC emanating from the software or hardware
Trojans in other IP blocks as shown in Table 3.2. In a majority of these works, the
security checks are embedded in the NoC. In this regard, Evain et al. presented an
interesting study on the various possible attacks in a NoC enumerated below [9].

1. Denial of service attacks aimed at degrading the system performance. The attack
can be carried out by introducing packets of data in incorrect paths, intentional
deadlock paths, and infinite livelock paths to consume valuable resources that
can be used by other packets.

2. Information extraction by reading data from an unauthorized target.
3. Hijacking a secure area to modify the system behavior.

Table 3.2 Summary of threat in the NoC

Trojan Loca Attackb Protc TMd

DPU[10] S/W Mem (confidentiality) NI —

KeyCore[12] S/W Mem (confidentiality) NI —

surfNoC[24] S/W S/W (confidentiality) NoC —

AE[15] S/W Mem (confidentiality) NI —

IMP[17] �P �P/Mem (confidentiality) — S/W

NoC-MPU[20] S/W Mem (confidentiality) NI —

FortNoC[1] NoC IP NoC (confidentiality) NI S/W-H/W

RLAN[21] NoC IP NoC (availability) NI —

Mal-NI[11] NI NoC (integrity & availability) NI —

FI-DoS[5] NoC Link NoC (availability) NoC —
aThe part of the system where a Trojan in inserted
bThe part of the system that is attacked and the type of attack
cThe part of the system where a protection mechanism is implemented to prevent the attack
dThe triggering mechanism in case of a hardware Trojan
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Owing to NoC’s pivotal role in the SoC, it is essential to consider the presence of
hardware Trojans in the 3PIP NoC circuit itself. This scenario gives rise to a unique
challenge as NoC has direct access to all the data, as well as resources in the SoC.
A compromised NoC can be far more potent in inflicting the attacks discussed by
Evain et al. [9]. Further, the security measures to protect the SoC can no longer
be placed in the NoC. The following sections showcase a handful of works that
consider a hardware Trojan embedded in the NoC and innovative solutions to detect
the malicious activity.

3.5.1 Information Leakage Attack

Dean et al. demonstrated that an information theft attack can be carried out by a
hardware Trojan embedded by the NoC in the presence of an accomplice software,
without relying on memory access [1]. To counter the threat, a three-layered security
measure was proposed by augmenting the SoC firmware. The first security layer
scrambles the data before transmitting it onto the network to deter Trojan activation
based on sequential coded message. In the second layer, a packet authentication
technique is used to prevent invalid packets from reaching undesired destinations.
At the topmost layer, the source and destination nodes of communicating nodes are
decoupled by periodically migrating running applications.

3.5.1.1 Attack Semantic

Figure 3.2 illustrates the attack semantics of the information leakage carried out
by the compromised NoC. The study considers a cloud computing environment in
an MPSoC, where multiple users are sharing hardware resources to execute their
applications. First and foremost, the third-party NoC IP supplier embeds a hardware
Trojan in the NoC during the IP design phase. The SoC integrator unaware of the

Fig. 3.2 Compromised NoC snooping data messages between programs A & B and leaking to the
accomplice program C
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malicious circuit tapes-out the design and supplies it to an end user. In the cloud
setting, an accomplice thread in the form of a third-party application is scheduled
on one of the on-chip processing elements. The malicious application establishes
a covert communication channel with the hardware Trojan in the NoC to activate
it. For example, in Fig. 3.2, an accomplice thread in the NoC node X could send a
command to node W to activate the dormant Trojan in its NoC router.

Once active, the Trojan duplicates specific instances of ongoing communication
in the network and leaks it to the accomplice thread. The hardware Trojan is
designed to snoop on the communication from the network interface and duplicate
the packets incoming to one of the input ports. The Trojan in node W (Fig. 3.2)
leaks all the communication between nodes Y and Z. The malicious circuit present
in NoC router of W will duplicate all packets traversing through it belonging to the
requested communication and sends it to the accomplice thread in node X. Finally,
the embedded hardware Trojan can also be instructed to suspend its malicious
activity by sending a sequence of coded message.

The hardware Trojan is implemented using a state machine with three major
states: inactive (Trojan dormant), waiting (Trojan active and awaiting snooping
commands), and Leaking (ongoing Trojan attack). The state machine changes are
only sanctioned by the accomplice thread using a specific coded sequence of flits.
The probability of an accidental state change is extremely low. Considering that a
code with five consecutive 32-bit sequences is required to activate the Trojan in the
NoC router, the probability of accidental state change (Trojan activation) can be to
the order of 1050.

3.5.1.2 Security Measures: FortNoCs

FortNoCs employ a three-layered security measure that is aimed to provide both
proactive and reactive protection against information theft. The security mechanism
is implemented in the NoC firmware that interfaces the processing element with the
network interface, by an in-house design team to forego any reliance on third-party
vendors. The three layers target specific goals for assuring secure communication in
the MPSoC.

1. Layer 1. The first line of defense against the hardware Trojan is to prevent
its activation. The SoC firmware ensures that the data processed by the core
is shuffled in the network interface, before injecting it into the network. Low-
cost XOR cipher-based encryptors and decryptors are used to scramble the data.
By distorting the data being injected into the network, the SoC firmware blocks
the Trojan activation. The layer also achieves a secondary goal. As the data in
the network is enciphered, the attacker must go through an additional step to
understand the stolen data.

2. Layer 2. A packet authentication-based data integrity protection mechanism is
employed, to protect against information theft in the event that the Trojan is
activated. An encrypted tag specific to each source and destination is packetized
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Fig. 3.3 Performance overhead incurred due to layers of FortNoCs security measures

along with the data required to be communicated. At each destination, the
SoC firmware verified the data and ensures that the tags match the intended
communication route. If a malicious application tries to reroute the packet to
an unintended location, the defense mechanism drops the packet and triggers
exceptions to alert the operating system of the anomalous behavior.

3. Layer 3. The final layer of FortNoCs aims to disrupt the formation of commu-
nication patterns by periodically migrating the applications to different nodes.
By decoupling the source and destination of communicating nodes, the security
mechanism introduces noise in the leaked data, making it harder for the attacker
to extract useful information.

The layered approach employed in FortNoCs benefits by allowing the designers
to configure the level of security required based on the design requirements.
Figure 3.3 illustrates the incremental impact on performance overheads due to the
addition of each security layer. FortNoCs security mechanisms have low overheads
with the overall technique creating a performance deficit of 6%, as compared to
another recent authentication-based security mechanism (NMPU, 8%). Individually
Layer 1 impacts the performance by 3:8% on an average, whereas addition of Layer
2 and Layer 3 impacts the performance by 2% and 0:01%, respectively.

3.5.2 Packet Security Against Fault Injection Attacks

Boraten et al. have proposed a three-pronged packet validation technique to protect
against fault injection-based side-channel attacks in the NoC [4]. They first enhance
the NoC router fault tolerance using configurable error detection encoding schemes.
At the second level, the packet header is encoded with the route information, and
finally, packet allocation is prioritized to improve the NoC quality of service.
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3.5.2.1 Attack Semantics

The aim of the attacker is to break the packet encoding by injecting faults onto
the router links. The attacker controls the inputs to an algebraic manipulation
detection (AMD) encoder and generates a set of error vectors on the link. Using the
knowledge obtained from different input combinations to the AMD, and observing
the effect of side-channel attacks on the encoder and decoders, the attacker can
iteratively decipher the encryption key. Once the encryption key is known, the
attacker can compromise the data computed and communicated in the MPSoC.
Three specific attack scenarios are presented. In the first case, data encoded using
cyclic redundancy check (CRC) encoding is attacked by inflicting side-channel
attacks on the compromised NoC links. In the second scenario, an AMD-encoded
packet is attacked on the compromised links. In the third attack, a compromised
router duplicates a target packet and sends it to another core to leak information.

3.5.2.2 Security Measures: P-Sec

To protect the data integrity, the NoC microarchitecture fault tolerance is improved
by adopting AMD encoding encryption for sensitive and critical data. For all other
packets, a cyclic redundancy check (CRC) is employed to provide basic fault
tolerance. To help decode the data correctly, the type of encoding is tagged along
with the packet header.

Due to its encoding simplicity, a side-channel attack on the CRC-encoded
packets goes undetected leading to silent data corruption. However, AMD-encoded
traffic can detect malicious alterations to the packet as AMD codes by definition
cannot be masked into other valid codes. The header information of all packets,
critical and noncritical, are encoded using AMD code word, to ensure secure
and reliable packet delivery. As an additional protection, to prevent a maliciously
constructed packet from using a valid header, a second level of encryption is added.
When the decoded packets are found to be maliciously rerouted to an undesired
location, the packets are dropped within the network interface, and a NACK is sent
to the source.

To enhance the quality of service of sensitive packets, the packets encoded using
AMD have an additional flag to signal the arbitration units to grant higher priority
to these packets. Two major drawbacks of AMD encoding are that it does not help
hardware Trojan localization and the overheads of packet-level AMD encoding are
very high.

3.5.3 Network Interface Malfunctions

Frey et al. demonstrated that a hardware Trojan in the state machines of the network
interface (NI) can cause its malfunction and hence degrade the system performance
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[11]. To counter the threat, they propose a key-based FSM with dummy states to
detect malicious state transitions.

3.5.3.1 Attack Semantic

The finite-state machine (FSM) control in the NI has two sets of roles based on
whether it is serving as the communication initiator or communication target. As
the initiator, it is responsible to receive data from the IP module, encapsulate data
into packets, and inject them into the network. Similarly, as a target, the FSM has
a set of responsibilities denoted by finite states. A hardware Trojan in the FSM
control of the NI can inconspicuously cause NI malfunctions by making undesired
state changes.

3.5.3.2 Security Measures

To counter the state-changing hardware Trojan, the FSM control in NI is obfuscated
by introducing an authentication key to the state change conditions and a few
dummy states. Since the attacker is unaware of the authentication, any state change
transactions made without the key or with a wrong key will result in a state change
to one of the dummy states, indicating the presence of malicious activity. Each true
state is connected to a dummy state, whereas in cases of hardware constraints,
multiple true states can be connected to the same dummy state. The technique
employed has a high Trojan detection rate.

3.5.4 Denial of Service Attack

Rajesh et al. proposed a focused bandwidth denial attack in the NoC, where
the communication from only a subset of the NoC nodes are disrupted [21]. By
selectively denying resources to certain packets, the hardware Trojan embedded in
the NoC causes severe performance bottlenecks to select applications. However,
the overall system performance remains largely unaffected thereby concealing
the malicious activity. To counter the threat, they propose a noninvasive runtime
solution based on packet latency monitoring.

3.5.4.1 Attack Semantic

Rajesh et al. consider a cloud computing-based environment, where multiple
applications compete for the same underlying hardware resources. By disrupting
the communication of specific applications, the NoC delivers unfair advantage to
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other applications running on the same MPSoC. The malicious hardware Trojan
is inserted into the NoC IP during the design phase and activated by a malicious
application at runtime. Figure 3.4 shows the malicious NoC router design employed
by them. The Trojan snoops on the input ports to collect statistics about the
communication patterns and affects resource availability by covertly manipulating
the NoC router control plane.

To implement a selective denial of service in a large network, the challenge lies
in the selection of victim node so as to cause a noticeable drop in application
performance. Figure 3.5 demonstrates an example of victim selection proposed
by Rajesh et al.. The embedded malicious circuit in the NoC router dynamically
identifies a node with high network usage rate. They propose a hierarchical approach
to victim selection, so as to monitor only a handful of nodes at any given time
and hence maintain a low Trojan design footprint. For example, in Fig. 3.5, a two-
stage victim selection process is shown. In the first stage, a region with heavy
traffic is selected using traffic aggregation techniques similar to those used in
congestion-aware networks. Subsequently, in stage 2, the victim selection converges
on that region to select one or few victim nodes with high ingress/egress rates. In
this rudimentary victim selection process, they do not account for the application
criticality or even the nature of packets that are attacked.

Once the victims are selected, the hardware Trojan covertly manipulates the
traffic flow of flits pertaining to the victim nodes. Resource contention modules such
as switch arbitration and virtual channel allocation stages within each router are
manipulated as shown in Fig. 3.4. The attacker conceals the attack by manipulating
the traffic flow in a distributed manner. Small delays are inflicted at each hop for

Fig. 3.4 Conceptual view of
a hardware Trojan in the NoC
router. The Trojan monitors
the usage rate of specific
nodes by snooping on the
input ports and attacks by
manipulating the resource
contention stages
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Fig. 3.5 Process of victim selection to inflict a focused denial of service attack. In stage 1,
aggregate bandwidth information of the region is collected and in stage 2, a victim is identified
based on high usage rates

the victim packets. The attack may be misinterpreted as traffic congestion-related
delays. By carefully selecting the delay at each router, the attackers degrade the
victim application packets by up to 72%.

3.5.4.2 Security Measures

To detect the traffic anomalies in the NoC, they employ a noninvasive runtime
detection mechanism by monitoring the packet latency. Packets that fulfill the
following three conditions are expected to have comparable packet latencies.

• First, the packets must have similar characteristics such as packet size and
message class.

• Second, the packets must traverse the same path between two nodes and must
have comparable hop count.

• Finally, the packets must traverse the network in nearly the same time.

The similarities between real-world automobile traffic and the communication
packets in the network are used to formulate the hypothesis. Figure 3.6 shows the
variance in time required to reach a destination if the spatial (different routes) and
temporal (different time of travel) conditions are not met. Similarly, an analogous
monitoring packet is inserted into the network for selected communication, such that
the analogous packet traverses the same path at nearly the same time. The technique
relies on comparing the difference in arrival time between the original packet and
the analogous packet to detect malicious traffic activity.

Figure 3.7 provides an overview of the technique. An analogous packet to that of
the victim is created by the SoC firmware after acquiring the characteristics of data
passing from the processing element to the network interface. A proximal node is
then selected considering that the route taken by the two packets must be the same
and should have a comparable hop count. The packet traversal time stamps between
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Fig. 3.6 Analogy used for the hypothesis formation of security mechanism

Fig. 3.7 Overview of latency auditor. The proximal nodes around the victim act as proxy
source/destination to the duplicate packets. Both the original and the duplicate packet traverse
the network in the same path at a similar timeframe. (a) Ingress packets of A under attack. (b)
Egress packets of A under attack. (c) Ingress & Egress packets of A under attack

the analogous packet and original packet are compared. The figure shows three cases
of attack and the process of proximal node selection.

• In case .a/, only the packets incoming to node A are under attack. In this scenario,
P is selected as a proxy node. In node B, when the packet is injected into the
network, an analogous packet is created and injected at B such that its destination
is P. Once the analogous packet arrives at P, the time stamp is noted, and the
packet is absorbed and reinjected to traverse to A. At A the latency and packet
arrival time are compared between the original and analogous.

• In case .b/, the packets originating from A are attacked. In this scenario, P is
selected as proxy, and an analogous packet is injected from P, with destination
as B. At B the arrival times are compared.
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Fig. 3.8 Efficacy of RLAN for four cases: no-attack and three attack scenarios, T1,T2, and T3,
with delay per hop as 1,2, and 3, respectively. All benchmarks are shown in lighter shade, with the
average shown in the darker shade. (a) Distribution of NLD (b) shows the magnified section for
selection of CDF-NLD threshold and analysis of false positives and false negatives

• In case .c/, both, incoming and outgoing packets of A, are attacked. The proxy
nodes are selected to serve as fake source, as well as fake destination.

If the difference in packet arrival time stamps between the original and the
analogous packets are beyond a set threshold, abnormal traffic activity is flagged
to be further inspected. Figure 3.8 presents the cumulative distribution (y-axis) of
the latency difference between the original and the analogous packet (x-axis). There
exists a clear contrast between the attack and no-attack scenario. In the no-attack
scenario, only a minimal percentage of the overall packets have a latency differential
greater than 12 cycles, whereas for all attack scenarios, a considerable portion of the
packets have high latency differential between the original and analogous packets.
A well-tuned latency auditor is able to detect selective denial of service attacks with
marginal overheads of 5:5%, on an average and high accuracy. A similar contrast
was also noticed between the no-attack and attack scenarios in a multi-application
environment.

3.5.5 Fault Injection-Based Denial of Service

Boraten et al. presented a fault injection-based attack in NoC, where the injected
fault triggers a response from the error correction code to cause repeated packet
retransmission thereby denying resources to actual transmission [5]. To detect and
counter the threat, they first classify the faults to discover compromised links and
then implement a switch-to-switch error correction code along with data obfuscation
to avoid Trojan triggering.
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3.5.5.1 Attack Semantic

A lightweight target-activated sequential payload (TASP) Trojan is implemented
to inspect the packets and identify specific packet information such as thread ID,
memory address, source, and destination. Based on the deciphered information, the
TASP selects a target packet to inject faults across multiple links. A finite-state
machine-based counter is developed to carefully generate locations to inject the link
faults and disguise them as transient link faults.

The TASP remains in dormant state until an externally driven kill switch is
enabled. Once the Trojan is enabled, TASP actively snoops the packets to select
a target/victim packet. The Trojan then injects faults across multiple links to inflict
irrecoverable errors on the packet. To circumvent NoC fault tolerance techniques
such as packet reroute in the presence of permanent link faults, the Trojan ensures
that the same link does not suffer from multiple faults. A finite state machine is used
to shift the injected faults to different links to mimic a transient fault in the network.
The injected faults force retransmission of packets from the source. Since multiple
links are rendered faulty by the hardware Trojan, the attacker expects retransmission
of multiple packets thereby creating high network congestion and saturation. The
attack potency can range from simple degradation in application performance to
full-chip failure as a result of communication backpressure causing deadlock.

3.5.5.2 Security Measures: Switch-to-Switch Obfuscation

To counter the threat of triggering hardware Trojans, three methods of packet
obfuscation are employed: data shuffling, inverting, and scrambling. Each router
is equipped with an L-Ob module attached to the retransmission buffer that employs
the packet obfuscation techniques for different granularity such as entire flit, only
payload or only header. By carefully selecting the granularity, the Trojan trigger can
be identified.

Lightweight switch-to-switch (s2s) error correction codes are employed within
each router. Further, a threat detector locally records the packet header information
when a link fault is detected in the network. If a packet with similar header
information has been recorded earlier, a built-in self-test is triggered to test the
link for permanent fault. Then, the mode of previous obfuscation is noted to alert
the L-Ob module to try alternate obfuscation techniques. Iteratively, all modes of
obfuscation are tried, and if no faults are detected at any given time, the method of
obfuscation is noted to speed up future selection process. The upstream router is
then notified of the successful transmission. Hardware Trojan by link classification
requires marginal area and power overheads due to the addition of L-Ob module
with switch-to-switch obfuscation.
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3.5.5.3 Secure Model Checkers

Boraten et al. in their other work employ invariant model checkers to provide
instantaneous fault detection [6]. To begin with, they first identify security points
of interest (SPOI) based on the vulnerabilities in the NoC microarchitecture and
fault-tolerant techniques. Manipulations to the NoC microarchitecture, such as
illegal virtual channel allocations, unfair arbitration techniques, and inadvertent
dynamic frequency voltage triggers, can result in covert performance degradation.
In the current NoC microarchitecture, router components such as buffers, the router
pipeline stages, and the status registers are all considered as points of interest.
Similarly, techniques such as cache protocols, DVFS, routing reconfiguration, wear-
out, and aging are all SPOI.

Model checkers compare the input of control logic to the output to determine if
an event or action is illegal. When a rule violation occurs, an assertion flag is raised.
Boraten et al. expand existing model checkers to include three new rules:

• Inefficient output: The NoC decisions that lead to flooding, starvation, and
de-prioritization of network resources are considered inefficient outputs. Fault-
tolerant techniques are adapted to detect the threat of inefficient outputs.

• Starvation and previous step validation: An invariant rule is introduced to
correlate to previous output with the next output to ensure timely functionality.

• De-prioritization: To account for the violation, the previous requests and
responses on resource contention stages are logged, and the arbitration fairness
is evaluated.

Based on the invariant rules proposed, Boraten et al. explore a host of security
enhancements. In the route computation stage, inefficient route selection and de-
prioritization rules are added. In the virtual channel and switch allocation stage,
rules are enforced to check allocation requests, mismatches in credit counts,
inconsistent allocations, and de-prioritization of grants.

3.5.6 Trojan Detection Using Error Control Approach

Yu et al. explored the use of error control coding (ECC) to detect the presence
of hardware Trojans in the NoC links [25]. The Trojans inserted in NoC links
maliciously alter the packet header to potentially create deadlock, livelock, and
packet loss. The Trojan model considered in this work attacks the NoC link wires to
induce errors in one or more link wires.

The transmitter router in the NoC is equipped with an ECC encoder, and the
receiver module is equipped with two ECC decoders. When a hardware Trojan
manipulated the flit, it is stored in the erroneous flit buffer, and it is signaled to be
retransmitted. During retransmission, the odd and even bits are switched to ensure
that the same bits are not affected by the malicious circuit in the NoC link. When
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the retransmitted flit is received, the reshuffled bits are combined with the flits saved
in the erroneous flit buffer to create two versions of the corrected flits. The correct
version is then passed to the next hop in the router. The proposed method can correct
errors and detect hardware Trojan as long as one of the three conditions are met: (a)
single link wire is affected, and (b) two even or two odd link wires are affected.
Another limitation of the technique is that the protection mechanism works only if
the hardware Trojan is active for a very short duration.

In cases where the hardware Trojan is active for longer duration, a link isolation
algorithm is employed. The link wire isolation can solve two-bit errors induced by
the hardware Trojan.

3.6 Open Challenges

The scope of hardware security requirements is largely defined by the application
domain. Hardware used in the finance sector or for safety critical applications are
subject to more stringent trust and security constraints, as compared to that used
in the multimedia applications. In this context, there is a need for comprehensive
analysis and classification of threats related to the NoC, with configurable and
modular strategies to address these threats at low cost. Although research on NoC
security has slowly progressed over the last decade, there exist several challenges
that need further attention.

• First and foremost, traditional NoC security assurance techniques largely rely
on the the NoC designer to perform circuit and architectural modifications.
However, due to a boom in the use of untrustworthy 3PIP designs, existing
threats should be reexamined with more emphasis on securing the entry and exit
checkpoints of the communication network.

• NoC designs lack transparency and suffer from indeterministic packet delivery
latency due to increasing demand for NoC state-aware routing and arbitra-
tion. Small malicious modifications to these adaptive techniques can often go
unnoticed and have catastrophic effects on NoC functionality, energy efficiency,
and performance. Runtime solutions to monitor and diagnose NoC fairness
and allocation decisions are required to counter denial of service attacks. In
addition, the recent introduction of learning techniques in NoC routing poses
new challenges to fair and secure packet transmission.

• The advent of photonic, optical, and wireless NoC architectures reveal uncharted
territory in NoC security. Introduction of crosstalk noise, altering signal-to-noise
ratios to inflict DoS attacks, is the tip of a fast-growing security problem.

• Modern NoC accounts for a significant portion of the total chip power and also
plays a critical role in chip temperature distribution. Power-based attacks in the
NoC to disrupt local/global chip operations need to be carefully studied.
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3.7 Summary

Modern electronic devices have complete access to our personal lives and handle
a large share of our sensitive information. Owing to this critical role, security
assurance of system on chips has quickly become a discipline by itself. With
each passing generation, the increasing complexity of system on chips further
piles on new and unique challenges to secure and reliable computing. Validation
and assurance of the three basic principles of security, confidentiality, integrity,
and availability, are quickly becoming unmanageable. In this context, there is an
immediate need for low cost, low design, and verification overhead solutions for
system-on-chip security assurance.

Security assurance requires a two-pronged approach. At one end, novel and
innovative attack vectors must be designed to stay ahead of the attackers. Care-
ful analysis of different hardware abstraction levels is required to identify and
understand the various points of security vulnerability. On the other hand, efforts
must be directed toward making designs more transparent and verifiable while
still maintaining the design internals confidential to promote innovation in the
niche market. In this regard, this chapter provides a brief insight into the two
complementary worlds of security assurance.
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Chapter 4
Hardware IP Trust

Mainak Banga and Michael S. Hsiao

4.1 Introduction

The current electronic market is dynamic and rapidly evolving with an ever-
increasing demand of digital hardware. Such digital hardware can range from a
discrete intellectual property (IP) to a system on chip (SoC) or even to a complete
platform or system. As the price of electronic items continues to trend downward,
hardware companies are primarily resorting on volume transaction for keeping up
their profit margin. To this end, reducing the design cost as well as the manufacturing
cost will help in bringing down the final cost of the product.

On the one hand, reducing the design cost often involves reusing or procuring
parts of the design from a third-party entity without creating everything in-house.
These parts might include processors like x86, ARM, NVIDIA general processing
units (GPUs), input-output (IO) blocks like Peripheral Component Interconnect
(PCI), Universal Serial Bus (USB), memory blocks like nonvolatile memories
(NVMs), dual data rate memories (DDRs), and many more. A typical product
involves multiple of these parts assembled together in a logical way to realize the
product specification provided by the customer. The trustworthiness of individual
parts is typically considered, though not rigorously challenged. Likewise, the inte-
gration of all the components is often done with the trust of individual components
in mind. How to ensure trust of the final system remains a major question for
safety-critical systems. On the other hand, reducing the cost of manufacturing often
involves producing the part at a lower cost, typically achieved by contracting the
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Fig. 4.1 Mix of IPs and processes that produce a HW product

job to a more economically viable offshore region, the process often termed as
outsourcing. The trust of offshore manufacturer may be in question, as they may
compromise the design integrity during the process.

In either of these cost reduction methods, since a part or the entirety of the design
is handled by a third party at some point in the life cycle of the design, functional
correctness, trust, and quality of the final product arise as a concern to the parent
company. This forces them to seek for ways that can check these circuits for possible
tampering/intrusions. At the same time, the cost associated with guaranteeing trust
and correctness is not expected to be excessively high. All of these competing
forces make this problem ever more challenging, as any compromise on either the
quality or correctness will directly affect the reputation and trustworthiness of the
supplier company. As evident from Fig. 4.1, today’s hardware (HW) product is a
combination of IPs and processes, both of which can be coming from untrusted
sources. IPs are realized in HW either in the form of integrated circuits (ICs) or
high-level description language (HDL) design files. In this chapter, the terms IPs
and ICs have been used interchangeably.

Business relations are driven by political and socioeconomic factors. A third-
party component with a malicious intent may introduce subtle alterations in the final
design to make it work contrary to the normal in special or rare situations. Under
the presence of such malicious modifications (which may be introduced either in
the design phase or in the manufacturing phase), the design is just like a ticking
time bomb waiting for the trigger to cause malicious outcomes. A traditionally
faulty or defective part does not pose as a serious threat in the sense that most of
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them can be detected during the production testing and/or the post-silicon validation
phase. For those that escape testing, a random operational failure is unlikely to
leak secret information of the chip or cause a disastrous consequence. This is
because manufacturing defects lack intelligence in their intent. To the contrary,
an intelligently tampered design is really severe to handle. They are inserted for
a specific purpose. Once triggered off, it can cause catastrophic consequences.

Such malicious intelligent alterations in the design that can make it behave
contrary to the expected under special situations are called as Hardware Trojans.
Hardware Trojan insertion may include addition of extra logic, addition of extra
wires to make undesired connections, removal of existing logic, or even varying the
design parameters and/or geometries.

4.2 The Beginning

In an effort to mitigate the risk arising from structural and technical vulnerabilities of
third-party IPs, Defense Advanced Research Projects Agency (DARPA) introduced
the “Trusted Foundry Program” in 2007 [1]. The ICs used by Department of
Defense (DOD) are very specialized ones. Domestic industry and national labs
such as SANDIA, NSA and Honeywell, etc. may not be able to provide the
performance, volume, cost, and variety of DOD needs. Consequently, they need
to be designed/manufactured by parties/foundries which are not under direct
surveillance from the national security agency. Thus, DARPA came up with these
hard to answer questions:

• How does one trust chips when they are designed or manufactured in a non-
trusted facility, such that they will faithfully perform only the function they are
designed for?

• How does one ensure that the testing on the chips will guarantee that it will
operate only as designed (no more – no less)?

• How does one ensure that the packaging of the chip does not introduce features
into or misidentify the chip?

• How does one determine that the packaged chip has not been tampered with after
installation, and how does one communicate the fact of tampering?

4.3 Trojan Characteristics

1. Trojans are minuscule when compared to the size of the design in which
they are implanted. They can be very well accommodated within the non-
used area of the IC thereby keeping the IC dimensions intact even with their
presence. Consequently they do not incur any silicon area overhead on the die.
Furthermore, since they are activated by internal signals and inject their effect
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in some other internal signals, they do not require additional input or output for
taking effect. Hence they do not increase the pin count either.

2. They are stealthy in nature. Activation of a Trojan generally depends on specific
or very rare triggering scenarios that are difficult to produce during conventional
testing. Even scan-based testing cannot expose the Trojan because the triggering
condition is unknown, and it would be prohibitively expensive to exhaustively
exercise the circuit. Furthermore, some Trojans may require a sequence of stimuli
to activate and propagate to some output, which means they have internal state
machines driven by flip-flops. In all likelihood, those flip-flops are created by the
intrusion and hence are not a part of the scan chain, making them difficult to be
controlled.

3. They are intentionally malicious. Triggering of an active Trojan affects one or
more output(s) of the IC, changing the desired behavior of the device in a way
such that the end result could be detrimental. A passive Trojan, on the other
hand, does not affect the functionality of the device. Instead, it may transmit
secret information to an adversary [2] who can use it to deter the performance of
the device or may induce some physical changes like excessive heat generation
to make the device fail.

4. The Trojans may be dormant for the most part of their life. Under normal
operating conditions of the IC, active Trojans do not interfere with the logical
behavior of the device unless the triggering condition arises. So there is no
difference in the outputs of a tampered IC from that of a genuine one.

4.4 Inadequacies of Existing Testing and Security Features

IP theft has always been viewed as a problem, and so the techniques to mitigate
the risk of such incidents have been explored. One of such technique is Water-
marking, which entails sculpting the information directly and imperceptibly into
the original data. Watermarking is employed for copyright protection, distribution
tracing, authentication, and authorized access control [3]. More recently, processing
technology variations have been exploited to characterize an IC. This is analogous
to the fingerprint of the device. Since reproducing the exact physical conditions
for creating a clone of an IC is virtually impossible, this technique is called as
Physically Unclonable Function (PUF) protection technique [4–6]. When a physical
stimulus is applied to the PUF structure, it reacts in an unpredictable and unique
way due to the presence of randomness [7–9]. For example, the delay of two or
more identical ring oscillators will be different across the chip. These can be used
to construct PUF circuits as the races between the various ring oscillators offer a
unique pattern of the chip. The applied stimulus is called the challenge, and the
reaction of the PUF is called the response.

Conventional methods of testing ICs involving scan chains and BIST modules are
not robust enough to detect intelligent intrusions or alterations in the design. This
is because design-for-test techniques are architected keeping the functional logic
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in mind. Anything that is beyond the expected functionality cannot be adequately
checked. The universe of all possible insertions is theoretically infinite. Hence
checking all input combination requires exhaustive pattern simulation. Even if the
scan capability allows full controllability of all flip-flops, the prohibitively large
number of inputs makes it infeasible to adopt such a test approach. In addition,
owing to the fact that these malicious intrusions are rarely activated except for under
very special conditions, the probability of accidental detection with a given test set
is almost nil. As a result, new methods for testing, validating, and assessing these
intrusions are needed.

4.5 Trojan Classification

Trojans can be classified in many different ways. Trojans can be distinguished
based on their physical characteristics, activation characteristics, or action
characteristics [10].

4.5.1 Trojan Classification Based on Physical Characteristics

Physical characteristics can be based on type, size, distribution, and structure
(Fig. 4.2):

• Type: There are two subcategories in type section. Functional Trojans include
alterations inflicted on the original structure of the design which can include
addition or deletion of gates from the circuit. Parametric Trojans involves

Fig. 4.2 Trojan classification based on physical characteristics
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modifications of existing wires and logic normally intended to detrimentally
affect the performance of the IC at runtime. This can include thinning of
interconnect wires, the weakening of transistor strength by varying the length-
width ratio to mention a few.

• Size: This refers to the actual silicon real estate consumed on the die by the
Trojan. Size can be an important factor for Trojan activation and detection.
Large/macro-Trojans are relatively easier to detect at lower frequencies because
of higher leakage current consumption resulting in a power profile variation that
is more easily observed [11]. On the other hand, small transistor/wire Trojans
may be easier to activate because they require less constrained conditions to
trigger them, but they add negligibility to any physical parameter difference in the
design. So physical parameter profiling-based techniques may not prove effective
for detecting them.

• Distribution: This refers to the location(s) of Trojan on the IC. While a tight
Trojan consists of a few gates topologically coalesced together in a localized
area, loose Trojan consists of gates distributed all over the circuit or portions
of a circuit. Flexibility of Trojan fabrication depends on the available space in
the original layout. Hence a malicious third-party manufacturer has to choose a
proper distribution of the required components to design the Trojan.

• Structure: Changing the structure of the IC affect the power, delay characteristics
of the device. Structural changes especially that leading to a layout modification
is very difficult to achieve. Thus, to incorporate such changes which inevitably
requires the layout to be reconfigured, the adversary is likely to use a Trojan with
a very small physical footprint. Physical footprint is measured in terms of the
area, power consumption, delay characteristics, and other such factors. Since for
a functional Trojan size and distribution have significant impact on the original
footprint of the Trojan, for larger Trojan sizes, distributing the components across
the layout can assist in reducing the impact on the power and delay characteristics
thereby making it stealthier. Trojans which require no change in the original
layout uses the existing spare cells in the original design to fabricate the Trojan
circuit in which case there will be no change in the original circuit structure.

4.5.2 Trojan Classification Based on Activation Characteristics

Activation characteristics refer to the conditions which trigger the Trojan toward
its objective. Broadly speaking, there are two types of Trojans based on activation
(Fig. 4.3):

• Externally Activated Trojans: These Trojans are those whose triggering con-
ditions are controlled using the input pins of the IC. Thus, it is on the part of
the operator as to when he/she wants to trigger the Trojan. This can be done by
monitoring the device conditions using a side-channel signal that transmits the
internal information of the device and using that information to appropriately
trigger the device.
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Fig. 4.3 Trojan classification based on activation characteristics

• Internally Activated Trojans: These Trojans monitor the internal configuration
of the system for its operation, i.e., they derive their condition for activation from
the existing internal environment. Internally activated Trojans are subdivided into
two categories:

– Always-on Trojans are perennially active and can get triggered any time inside
the operating device. This includes Trojans like thinning of transistor wires,
changing the drive strength of the transistors by tampering their length-width
ratio, etc. A device with such change may start working exactly as a normal
device, but it will fail whenever the internal conditions exceed the physical
threshold supported by the fabricated device. Thus, their failure cannot be
accurately predicted, but only a statistical probability of occurrence of such a
failure can be estimated.

– Condition-based Trojans are much more intelligent. They wait for the circuit
to enter a specific configuration or the state bits to attain a specific value to
get activated. Condition-based Trojans are further classified based upon the
conditions that trigger them. Thus they can be:

– Sensor-based Trojans whose activation depends on values/thresholds of some
physical parameters like temperature, voltage, or any types of external
environmental conditions like pressure, humidity, and electromagnetic inter-
ference that is monitored by the sensor.
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Fig. 4.4 Trojan classification based on action characteristics

– Logic-based Trojans are those where the logic inside the Trojan intelligently
monitors the internal circuit environment to get triggered. Examples of logic-
based Trojans are counter Trojans, sequence-detector Trojans, etc.

4.5.3 Trojan Classification Based on Action Characteristics

Action characteristics describe the effect of triggering of the Trojan on the underly-
ing design. These are of three types (Fig. 4.4):

• Modify Function: These Trojans change the original functionality of the logic.
This can imply removal of a portion of the logic to remove a property,
disablement of some functionality to cause an operational failure, or addition
of extraneous logic to realize something additional to what is intended.

• Modify Specification: This class of Trojans changes the properties of the chip
such as delay to realize their intended objective. These are similar to parametric
Trojans discussed earlier. Parametric Trojans tamper the strength like the fan-out
supporting capability of an output of a gate, ability to supply a desired current
through a wire, etc. Changing the strength of the wires or gates affects the delay
of the combinational path and hence falls within this category.

• Transmit Info: This type of Trojans doesn’t interfere with the operation of the
device. It has been proved that side-channel signals can be decrypted to reveal
important internal information embedded within the device. Trojans under this
class emit signals containing such key information. This information can be
misused by an adversary.
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4.6 General Trojan Mitigation Techniques

Just like any hard to solve problems, Trojan detection is also a problem with no
single silver bullet. A lot of research has already been conducted to solve the
problem from different angles. Broadly speaking, these efforts can be divided into
two categories:

4.6.1 Preventive Techniques

Preventive techniques focus on taking precautionary measures on the design itself
such that its alteration due to unintended insertions becomes more difficult, or
the alterations are relatively easier to detect. An example of preventive technique
is modifying the design to include special testing capabilities that can make the
Trojan effect either visible at the primary outputs or much more pronounced under
an altered testing condition by changing the intended mode of operation in an
unpredictable way [12, 13]. Another preventive technique is to put redundant logic
inside the design to make it hard for the adversary to figure out the actual functional
mode of the design [14]. The subsequent subsections will describe these methods in
detail.

4.6.1.1 Design for Trust (DFT)-Based Techniques

One of the DFT-based techniques for identifying Trojan insertion in IPs is the
voltage inversion technique [12]. Voltage inversion simply means that the power
(VDD) and ground (GND) sources for a set of gates are connected in the reverse
way. Although sounding odd, a little understanding of device physics shows that it
is possible the only reason it is not done is because the output voltage of a gate under
such a connection does not swing rail to rail [15]. The Trojan gate would normally be
inactive because the input condition to trigger the Trojan gate is difficult to achieve.
So, the gate(s) affected by the Trojan output is not as much visible. When the voltage
inversion is applied to any gate, its functionality complements. The complemented
Trojan gate output becomes controlling value for the gate(s) in which the Trojan
injects its effect. As a result, the effect of the Trojan gate is more pronounced on the
rest of the circuit.

In [13], both output values of a flip-flop are utilized to introduce new states in the
design. Conventionally, a D flip-flop has two outputs, Q and Q bar. Generally, only
one output is used (Q) to drive the state machine embedded in the design. Since the
original design is based on a specific logic, the finite-state machine realized by the
circuit is defined. The constraints imposed by the state machine make it hard for
the Trojan circuit to make itself impervious to an otherwise unexpected state. If the
state space is increased during test mode, the chances of activation of the Trojan are
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also increased. In the original functional mode, the activation of the Trojan is rare.
With the addition of new states that are now possible, the excitation behavior of the
Trojan changes.

4.6.1.2 Obfuscation-Based Techniques

In [14], the design is obfuscated by hiding the real functional mode with a starting
FSM. Until the design receives a specific input sequence that can transition the
internal state of the starting FSM through predefined stages, it would not enter the
real operating mode. Such obfuscation incurs some area overhead, but it blurs the
design in a way that the adversary cannot tell which portions of the design belong
to the functional mode and which ones are the intentional obfuscation logic. This
helps prevent the insertion of Trojans in two ways. First, it deters the adversary
from discovering the logic behind the design. Second, it decreases the chance that
any Trojan will adversely modify the core logic of the circuit.

4.6.2 Detection Techniques

Detection techniques focus on devising testing mechanisms to non-destructively
detect the presence of Trojan after it has been implanted. These techniques base their
premise on exaggerating and measuring one/more of the physical parameters of the
design which may include delay profile [16, 17], functional power consumption [18,
19], or leakage power consumption [20].

4.6.2.1 Delay-Based Detection Techniques

In [16], negatively skewed clock has been used to characterize the delay of the
functional paths. Any combinational path in the circuit is contained between a
source register and a destination register. To characterize the delay signature of this
path, a third register called as the shadow register is kept in parallel to the destination
register. But unlike the source and destination registers which are clocked by the
system clock, the shadow register is clocked by a different clock which is skewed
negatively with respect to the system clock. The output of the destination and the
shadow registers is compared, and the result bit is set to 1 if the outputs differ. For a
design that is infected with Trojans, this failure (setting of the result bit to 1) starts
happening at a much lesser skew that a genuine design because of the extra delay
introduced by the Trojan logic. The experiment is repeated with sufficient number
of genuine parts, statistical average of the skew gives a fairly accurate estimate of
the expected skew difference, and a combinational path should support and hence
can be used as a signature to distinguish it from tampered parts.



4 Hardware IP Trust 85

In [17], a genuine circuit netlist has been used to produce a high-coverage delay
fault test set. The effect of each of these patterns is observed at each output. The
experiment is repeated with a sample set of test ICs which are then destructively
tested to assure they were indeed genuine.

Based on the data obtained from the experiments, the points are plotted on a
three-dimensional chart to construct the convex hull. Once the hull is ready, if the
delay profile points for an IC that mostly lie outside the convex hull, it indicates a
suspicious behavior, and the IC is likely to be infected with Trojans.

4.6.2.2 Power-Based Detection Techniques

One of the earliest works attempting to detect a Trojan inserted into a circuit was
done by DARPA [11]. The transient power drawn during the partial/full excitation of
the Trojan was used as the parameter for comparison against the trusted reference
model. A set of random vectors was used to simulate the design and capture its
overall power consumption. Results provided in the work reveal that the portion
of power consumption contributed by gates in the Trojan accounts for a very
small difference in the overall circuit power consumption. Hence it can easily
be submerged within process variation, concluding that detecting an intelligent
malicious intrusion externally is a challenging task and more sophisticated methods
are needed for this.

In [18], a “vector set” is sustained at the circuit input for a specific number of
clock cycles before it is changed to different ones. This idea leverages the fact
that circuit activity is a combination of changing inputs/states or both. Sustaining
the inputs at a constant value for multiple clocks forces the circuit activity to be
generated only from the changing internal state (because the inputs are held steady).
At the same time, the synergic effect of both the inputs and state changing at the
same time is also diminished. As a result, this approach nicely minimizes the total
circuit activity which proves instrumental in exaggerating the activity difference
between the original and the infected designs. Because the inserted Trojan is tiny,
the power profile altered by the added Trojan may also be small. Thus, it is important
to keep the total power consumption low in order to see a clear difference between
a genuine and the compromised part. However, it must be ensured that the power is
not reduced so low that the chip enters a sleep state.

In [19], the original circuit is partitioned into regions. A power consumption
profile for each region is created by simulating the design with a test set that can
selectively increase the switching activity in the intended region while attempting
to keep the activity in other portions of the circuit as low as possible. The idea
is to exaggerate the localized activity going on within the region as compared to
the overall design. If a Trojan (or its part) belongs to the region under observation,
the difference between the power profiles of the golden reference design and the
tampered design would be enhanced beyond process variation, thereby giving an
indication of the intrusion.
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4.6.2.3 Charge Consumption-Based Detection Techniques

In [20] a current integration technique has been used to compute the total charge
consumed by the circuit over a period of time. This can be the leakage current if the
gates in the Trojan are not toggling or the dynamic current if a portion of the gates
are toggling. First a golden charge consumption profile is obtained by testing a set of
genuine ICs. Then the effect of process variation is included to reflect the change in
the charge consumption curve. Finally, the IC under the test is subjected to the same
testing mechanism, and if the charge consumption curve differs from the golden one
by a threshold value, the IC is declared to be malicious. So if the chip is tested from
the global power pads, chances are there that the process variation will overshadow
the minute additional current consumed by the Trojan. To avert this problem, it has
been suggested to test the chip from different power pin simultaneously, each of
which is dedicated to a particular region inside the IC.

4.7 Trojan Mitigation at IP Level

Methodologies have been proposed for detecting Trojans at IP level that leverage
one or more of the concepts explained in Sect. 4.6. A couple of such methods are
discussed below.

4.7.1 Detection Technique: Suspect Signal-Guided Sequential
Equivalence Checking

Malicious insertions in soft IPs in the pre-silicon stage are beyond simple, direct
recognition. This is because IPs are normally developed from a user supplied or a
publicly available specification. Final layout-/gate-level netlist obtained for such a
specification need not be necessarily unique. Design stages convert this specification
into behavioral code (Verilog), then into gate-level netlist (Register-Transfer Logic
or RTL), and finally to physical layout using synthesis. The toolchain used, the
optimization constraints specified for converting the gate-level netlist to physical
layout, the physical gate library used to map the netlist in layout, has a profound
impact on how the final output looks like. A highly constrained area optimization
would result in usage of large fan-in complex gates that would consume more power.
On the other hand, a power-optimized realization would use smaller gates and would
result in a larger die area on silicon. In either case, the final netlist/layout would look
much different than each other.

This makes the possibility of inserting a stealthy malicious alteration in soft IPs
very likely, and unless otherwise tested intelligently and rigorously, chances are they
would escape the conventional testing flow. Since these alterations are stealthy, from
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a fault detection point of view, one of the faults (either stuck-at-0 or stuck-at-1) on
such nodes is very hard to be detected. For a Trojan to be effective, it should be
able to propagate its effect to one/more primary outputs. These two assumptions
serve as the premises for the work described in [21]. This work attempts to address
this problem of checking the suspicious netlist (referred to as sus circuit) against
an original behavior (referred to as spec circuit). Since straightforward recognition
of alterations is unlikely, the problem maps to performing a sequential equivalence
checking (SEC) between the spec circuit and the sus circuit. However, in most of
cases, such a full-blown SEC approach is infeasible. Hence, intelligent constraining
at the inputs is required to narrow down the search space for the design.

In the approach proposed in [21], the easy-to-detect faults are first removed from
the third-party IP (3PIP) using functional vectors followed by an optional N-detect
full-scan automatic test pattern generation (ATPG) to identify those fault which
are functionally hard to excite and/or propagate. These identified faults are then
processed by a special SEC setup to compare behavioral consistency between the
original design and the 3PIPs. Finally, a region isolation approach is applied on the
filtered faults to map the possible location(s) of the insertion(s). The methodology
consists of four steps as described below:

4.7.1.1 Step-I: Functional Vector Simulation

In the first step, functional vectors are used to detect and drop as many stuck-at-
faults as possible from the sus circuit. These easy-to-excite/observe signals can be
omitted for future consideration. Since Trojan(s) are generally hard to excite and
propagate (even in the full-scan mode), it is highly unlikely that functional vectors
would detect them, else the functional vectors themselves serve as a witness to
differentiating the two circuits. Those signals corresponding to faults undetected
by functional vectors are categorized as suspect candidates.

4.7.1.2 Step-II: N-Detect Full-Scan ATPG

In a conventional full-scan mode, the state bits which were otherwise controlled by
the internal nets become fully controllable. This expands the state space. Hence
it is possible to achieve multiple full-scan vectors to detect the same stuck-at-
fault. Trojans have hard-to-achieve activation conditions because a Trojan is a very
specific logical interconnection and one/few specific full-scan vectors can set its
output to the triggering value and make its effect propagated to an observable point.
Consequently, if multiple unique vectors can excite and propagate fault on a signal
to a primary output, it is highly unlikely to correspond to a Trojan.

Nevertheless, an unconstrained initial state in the full-scan mode allows for
functionally illegal states making Trojan observable at the output by some vectors
which are not functionally reachable. Thus, an N-detect full-scan ATPG has been
used instead of selecting faults which are uniquely excitable in full-scan mode.



88 M. Banga and M.S. Hsiao

Fig. 4.5 Miter circuit setup for diluted SEC

Combinational untestable stuck-at-faults are removed from the suspect candidate
list in this step. The threshold N is suitably chosen. Keeping N too low removes
the Trojan-related signals (faults), whereas making it high results in a large set of
suspect candidates to process in the next step.

4.7.1.3 Step-III: Diluted Sequential Equivalence Checking

This step consists of two conjoining parts as represented in Fig. 4.5.
The first part selects a stuck-at-fault from the list of suspected candidate and

ensures that it is observed at primary output. This is realized with the miter shown
in Fig. 4.5 Part-I. It contains two instances of the sus circuit, each of which has
been unrolled a specific odd number of time frames. The fault on S is injected in the
central time frame of one of the instances. The initial state (PPI SUS) as well as the
INPUTS is left unconstrained. The effect produced by S is captured at the output of
the miter (gate OR-1). The pseudo-primary outputs (PPO-2) are not considered for
comparison to ensure that the selected signal specifically affects the output.

Three advantages of this setup are (1) untestable faults over multiple frames are
dropped; (2) successive states appearing at the internal state boundaries converge
toward reachable state space; and (3) faults which are excited but not propagated to
the output within the given unroll depth are also discarded thereby further pruning
the suspect candidate list. Although a completely unconstrained initial state will
eventually allow a portion of the unreachable state space to penetrate the successive
states, this does not discard any functionally possible state.



4 Hardware IP Trust 89

In the second part, the spec circuit is unrolled with the same number of time
frames as that of the sus circuit (shown as N in Fig. 4.5 Part-II). The outputs of
the spec circuit are constrained to have the same value as that in the sus circuit by
forcing the output of the miter in Part-II to 0 (OR-2). The primary inputs (INPUTS)
are thus constrained to a sequence that activated and observed signal S in sus circuit
(obtained from the miter setup in Part-I) effectively checking if the spec circuit can
produce the same behavior as the sus circuit when signal S has been activated and
observed in the sus circuit within the given unroll bound.

This combined two-part setup is converted into a CNF instance and given to the
SAT solver. If the solver returns a SAT result, nothing can be concluded about the
signal S because we don’t know the reachability of the state in the initial time frame
in the spec circuit. However, if it is UNSAT, it can be due to two reasons. Either it is
due to the effect of the Trojan and conditions produced by it in sus circuit that makes
it trigger (which is absent in the spec circuit) or due to the effect of an illegal state
at any time frame in sus circuit for which no corresponding state exists in the spec
circuit. But with unrolling the state illegality factor diminishes, and so it is more
likely that an UNSAT solution arises due to the effect of the Trojan. Results show
that for the cases where the SAT solver could not solve the instance, majority of the
signals belonged to the Trojan.

4.7.1.4 Step-IV: Infected Region Isolation

This is the final step in the approach. It aims to isolate the region(s) potentially
infected by the Trojan. It starts with the suspect candidate list obtained from the N-
detect ATPG. In general, the suspect candidate list may contain multiple undetected
faults associated with same gate. For a gate Gi (where i is the gate ID), its weight
Wi corresponds to its frequency of occurrence in the suspect candidate list. The
region around each of these suspect candidates is expanded. Since the number of
such gates is small, the number of regions is also small. For a region containing n
gates centered on gate i within a radius of x (denoted by Ri(x)), the suspect count
SCi of the region is computed by:

SCi.x/ D

nX

1

Wi j Gi 2 Ri.x/

The suspect index SI of the corresponding region centered on gate i is defined as:

SI.x/ D
SCi.x/

j Ri.x/ j

where jRi(x)j denotes the total number of gates within region centered around gate
i and x is the radius of the region around gate i. Suspect index represents a weighted
value of each gate in a region to be associated with the Trojan. For the region not
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containing the Trojan, with a growing radius, the number of gates in it increases
without adding to the suspect count thereby reducing the suspect index.

SSG-EC tends to remove a large number of gates because of the unconstrained
initial state; hence gates from the suspect candidate list obtained in N-Detect ATPG
(step-II) are selected. Notably not all the stuck-at-faults in the Trojan region gives
rise to conflicts within the given unroll depth and hence tends to get removed from
the suspect candidate list in step-III. The suspect candidates identified in step-II
are the ones which are definitely hard to detect. So it is more likely that a region
craved out of the suspect candidate list in step-II is more likely to contain the cluster
of gates in the Trojan. While a hard-to-test region need not necessarily represent a
Trojan, step-III helps in filtering out those regions which contains gates that show
inconsistent circuit behavior among the list of regions obtained. Thus, step-III and
step-IV are mutually beneficial in narrowing down the search.

In Fig. 4.6 the shaded gates are the ones associated with the Trojan. After
processing the fault list through steps I and II, let the suspected candidate list contain
fG1, G2, G3, G5, G6, G9g. The weight distribution for these gates is as follows:
W1 D 2, W2 D 3, W3 D 3, W5 D 1, W6 D 2, and W9 D 1. All other gates which are
not in the suspect candidate list receive a weight of 0. Noticeably W4 D 0 (belongs

Fig. 4.6 Infected region isolation based on gate weights
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to Trojan) and W9 D 1 (doesn’t belong to the Trojan). To explain the significance
of suspect index, let’s observe the effect of expanding the region around two of
these candidates, viz., G3 and G6. A region around gate G3 with radius of 1 unit
gives a suspect index of SIG3 D (W1 C W2 C W3 C W5 C W6)/5 D 2.2. The
corresponding suspect index centered on gate G6 with the same radius of 1 is given
by SIG6 D (W3 C W6 C W7 C W8 C W9)/5 D 1.2. Based on these values, the region
around G3 is more likely to contain the Trojan. Now, if we increase the radius around
gate G3 to 2, it will add gates G7, G8, and G10 along with DFF 1 and BUFFER
without increasing the suspect count thereby reducing the suspect index to 1.1. Thus,
the radius parameter needs to be balanced to get a maximum overlap with Trojan
region. Experimental results show a remarkable match between the gates contained
in the region with highest suspect index and those in the implanted Trojan.

4.7.1.5 Results

The results for this approach are summarized in Table 4.1. Column 1 represents the
ISCAS’89 and ITC’99 benchmarks used for the experiments. The total number of
collapsed stuck-at-faults in the sus circuit for each benchmark is given in column 2.
Column 3 (step-I) represents the total number of faults detected using the functional
vectors, with the remaining undetected faults in parentheses. Column 4 gives the
fault count which are uniquely detected less than N D 3 times using the full-scan N-
detect ATPG. The fifth column reports the percentage of faults associated with the
Trojan portion of the circuit that are contained in the list represented by column 4.
The result for Part-I of step-III is tabulated under column 6. A further reduction
in the size of the suspect candidate list is achieved here because of the factors
mentioned earlier: (1) non-propagation to output and (2) sequential untestability.
Columns 7–10 report the result of the diluted SEC. The SAT columns contain the
number of faults for which the SAT solver returned a solution; the UNSAT columns
contain the faults for which the SAT solver could not solve the instance. These
columns separately represent how many signals belong to the Trojan portion and
how many belong to the genuine circuit. Column 11 shows the result of step-IV
in our approach. The results have been tabulated for a radius of 2. For most of the
ISCAS’89 circuits (except for s349) and more than half of the ITC’99 circuits, all
the gates in the region that produced highest suspect index belonged to the Trojan,
i.e., all gates in the region were signals associated with the Trojan.

To verify that the Trojan instances were indeed stealthy enough, two different
analyses were performed. In the first experiment, functional simulation of both
the spec circuit and the sus circuit starting from a known initial state was done to
check that the Trojan effect is not visible at the output very easily. In the second
experiment, a bounded model checking (BMC) on the spec circuit and the sus circuit

at different unroll depths. The results are summarized in Table 4.2. Column 1 shows
the circuit names. For both random functional simulation and BMC, time-out limit
was capped at 3 hours. Column 2 shows the number of random vectors simulated on
the instances in 3 hours. Columns 3 through 7 show the result of BMC on the same
circuits with different unroll bounds. None of the Trojan instances were detectable
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by functional simulation for 3 h. In BMC almost all of the instances (except
for s298) were shown to be unsatisfiable or time-out. For the rest, experimental
evidences stand to the testimony of the fact that the Trojans used are not easily
detectable.

4.7.2 Prevention Technique: Proof-Carrying Code

Proof-carrying code (PCC) tries to address the issue of trust on 3PIPs by making
the consumer and the supplier agree on the using a proof-based language for
representing critical safety properties of the design and optionally also the design.
At the time of final delivery of the product, the supplier needs to provide the formal
properties along with the soft-IP to the consumer. The formal properties relate to
checking of critical circuit functionalities that cannot be compromised. These can
include disruption of operation, manipulation of signals, and misuse of sensitive
data to name a few. The IP vendor provides the proofs in the formal language
using temporal logic, whose correctness can be checked by the consumer having
the knowledge of the language syntax and semantics. While the implementation of
a design may not be directly visible, the proofs are written in the agreed formal
language and can be read and interpreted by someone having a background on the
same. Thus, the consumer knows that the IP supplier is indeed proving the intended
properties on the design. The formal language introduces a new semantic model for
any hardware description language (HDL) in the theorem-proving platform, which
facilitates tracking and proving security properties of the design.

For this to be feasible, the Verilog design model needs to be converted into
the formal semantics so that the proofs can be run on it. The IP supplier has to
either deliver a formal IP model or the soft-IP can be converted into the formal
representation using a conversion tool [25] which is provided by a trusted third
party, (understanding the fact that the IP supplier may not be apt in using the
formal language). In [22], this formal language is called as Coq. The Verilog-to-
Coq conversion is from a trusted third party that all users can trust. So if the Verilog
source is tampered, the Coq generated will not model the temporal properties (also
inspected and verified by the consumer) correctly. The IP supplier needs to make
sure that the internal implementation of the soft-IP does not violate any of these
properties. The process of creating the design and providing proofs for its data
secrecy properties is shown in Fig. 4.7.

This technique offloads the burden of ensuring the trustworthiness to the supplier.
As long as the consumer can make sure that the properties supplied by the vendor are
correctly modeled in temporal logic and are as intended in the original specification,
it is easy to check the correctness of the design by executing these properties on it.
These properties (also referred to as proofs) are written in Coq. The final design with
an inbuilt ability to prove its correctness on the stated properties has been called as
proof-carrying hardware (PCH). This approach converts each Verilog construct into an
equivalent formulation followed by creation of proofs in Coq.
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Fig. 4.7 Property generation and proof declaration flow

4.7.2.1 Formulating Verilog for Safe Hardware

In [22, 23] Verilog was selected as the HDL to convert into the corresponding
declaration in Coq. The syntax below shows the rules for such a translation.
It includes signals, expressions, operators, logic, and module declaration and
instantiation.
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Signal Definition

Signal values are defined in an inductive set with two values, viz., lo and hi. Every
single- or multibit signal is treated as a bus_value. The bus is defined as a list of
values representing the bus_value at any specific time represented by clock cycles
and given as a natural number.

Inductive value :D lo j hi.
Definition bus_value :D list value.
Definition bus :D nat -> bus_value.

Signal Operations

The semantic model of bus-handling methods include logical operations, such as
and, or, xor, etc., as well as comparisons such as checking for bus equality, bus_eq,
less than comparison, bus_lt, etc. Special functions to compare the bus value with
0, bus_eq_0 also exists.

Fixpoint bv_bit_and (a b : bus_value)
fstruct ag : bus_value :D match a with
j nil D> nil
j la :: a’ D> match b with
j nil D> nil
j lb :: b’ D> (and la lb) :: (bv_bit_and a’ b’)
end
end.
Definition bus_bit_and (a b : bus) :
bus :D fun t:nat D> bv_bit_and (a t) (b t).
Fixpoint bv_eq_0 (a : bus_value)
fstruct ag : value :D match a with
j hi :: lt D> lo
j lo :: lt D> bv_eq_0 lt
j nil D> hi
end.
Definition bus_eq_0 (a : bus) (t : nat) : value :D
bv_eq_0 (a t).

Signal Operations

An expression is defined as an inductive set with operators to construct new
expressions or combine expressions together. The econv and econb constructors
directly convert a constant value list and a bus, respectively. The logical AND, OR,
and XOR operations combining two expressions are performed by eand, eor, and
exor constructors, respectively.
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Inductive expr :D

j econv : bus_value -> expr
j econb : bus -> expr
j eand : expr -> expr -> expr
j eor : expr -> expr -> expr
j exor : expr -> expr -> expr
j enot : expr -> expr
j cond : expr -> expr -> expr -> expr
...

Expressions are recursively evaluated to compute its value at any instant of time
and returned as bus_value.

Fixpoint eval (e : expr) (t : nat)
fstruct eg : bus_value :D match e with
j econv v D> v
j econb b D> b t
j eand ex1 ex2 D> bv_bit_and (eval ex1 t) (eval ex2 t)
j eor ex1 ex2 D> bv_bit_or (eval ex1 t) (eval ex2 t)
j enot ex D> bv_bit_not (eval ex t)
j cond cex ex1 ex2 D> match (bv_eq_0 (eval cex t)) with
j hi D> eval ex1 t
j lo D> eval ex2 t end
...

Coq Semantic Model

The Coq semantic model comprises of semantic model of signals and expressions.
The output signals of the module is represented by outb and input signals by inb.
wireb denotes internal wire signals, while regb stands for internal registers. The
assign_* is used with combinational logic, while nonblock_assign_* is used
for non-blocking assignment in sequential logic. The selection of the’;’ mark is
consistent with the syntax of other HDLs.

Inductive code :D

j outb : bus -> code
j inb : bus -> code
j wireb : bus -> code
j regb : bus -> code
j assign_ex : bus -> expr -> code
j assign_b : bus -> bus -> code
j assign_case3 : bus -> expr -> code
j nonblock_assign_ex : bus -> expr -> code
j nonblock_assign_b : bus -> bus -> code
j codepile : code -> code -> code.
Notation “ c1 ; c2 ” :D (codepile c1 c2)
(at level 50, left associativity).
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Fig. 4.8 Trojan-affected DES circuit

4.7.2.2 Constructing Proof in Coq

Due to the close resemblance of Coq semantic model with Verilog, the only
conversion rule that needs to be obeyed during Verilog-to-Coq conversion is to
keep the resultant code structurally the same as the source. Details about Coq
proof assistant platform and the syntax of Coq language can be found in [24].
A combinational assign logic is mapped to an assign_ex statement, and module
instantiation is mapped to module_inst statement as shown below.

Verilog code: assign Lout D (roundSel DD 0) ?
IP[33:64] : R;
Converted Coq formal logic: assign_ex Lout (cond (eq
(econb roundSel)
(econv (lo::lo::lo::lo::nil))) (econb (IP @ [33, 64]))
(econb R));
Verilog code: crp u0 (.P(out), .R(Lout),
.K_sub(K_sub));
Converted Coq formal logic: module_inst2in out Lout
K_sub;

4.7.2.3 Trojan Detection Using PCC

The Trojan in the DES circuit shown in Fig. 4.8 bypasses the internal round key
directly to the output. In the scheme discussed, Trojan detection is independent
of the triggering condition, since it happens through a formal theorem-proving
approach, rather than actual application of stimuli to the circuit. When the Trojan-
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infested HDL code is converted into the coq formal model, and the proofs are
checked against it, the no_leaking_des theorem could not be proven (desOut
comes out to be of secure tag), thereby indication the presence of the Trojan.

4.8 Conclusion

This chapter provided a high-level overview of “third-party IP trust issues” and its
possible consequences. As outsourcing continues to be the mainstay for remaining
competitive and profitable in the IC design industry, preventing/detecting Trojans
in HW components is emerging as a critical and exciting area of research. With
a modern HW platform comprising of multiple IPs from different vendors, it
becomes a matter of paramount importance to ensure that the integrity of the parts
or the product as a whole has not been compromised in any way at any stage
in the design flow. Such compromise may include unwanted tampering leading
to targeted operational failures, leakage of secret information leading to IP theft,
compromising on the expected operational life of the product by altering physical
design parameters, etc. Toward the latter half of the chapter, we discussed some
of the research that has been done in devising nondestructive ways of preventing
as well as distinguishing such tampered parts from the genuine ones. A couple of
methodologies that have been proposed for detecting Trojan implantation at IP level
were discussed in detail. It is a requirement for the industry today where that the
final product supplier can adopt such test methodologies to distinguish a tampered
third-party IC from a genuine one in order to mitigate the aforementioned risks.
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Chapter 5
Hardware Trojans in Analog, Mixed-Signal,
and RF ICs

Angelos Antonopoulos, Christiana Kapatsori, and Yiorgos Makris

5.1 Introduction

Due to a number of factors entailing time to market pressure, intellectual property
(IP) reusability, and outsourced manufacturing and testing, compromising the IC
supply chain for sensitive commercial and defense applications has become possible
through hardware Trojan attacks targeting critical industrial sectors, such as military,
infrastructure, automotive, and telecommunication applications. For example, a
Syrian radar failure to warn the military of the incoming Israeli attack due to a
backdoor in off-the-self microprocessors, which were used in the radar system, was
reported in 2008 [5]. Another hidden backdoor in a computer chip that could allow
an attacker to control critical applications, such as navigation and flight control in
a Boeing 787, was dispatched in 2012 [3]. Counterfeit Cisco products, which were
bought by military agencies and contractors, and electric power companies in the
United States with a potential threat of gaining access to highly secure systems
have also been recorded [1]. In 2011, US military bought 59,000 counterfeit chips
from China destined for installation in critical defense systems [2]. Finally, Dell
warned of a hardware Trojan in some of its server motherboards in 2010 [35]. While
extensive research efforts have been expended over the last decade in understanding
the threat of hardware Trojans, as well as in developing prevention and detection
solutions in digital circuits [10, 24, 42, 45, 53], the topic remains largely unexplored
for their analog/mixed-signal (AMS) and radio-frequency (RF) counterparts. A
recent effort in [38] focuses in threats and countermeasures in digital ICs and
discusses their relevance with the AMS domain. Given the widespread use of analog
functionality (i.e., physical interfaces, sensors, actuators, wireless communications,
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etc.) in most contemporary systems, in this chapter we summarize and present the
existing, albeit limited work on known vulnerabilities and proposed remedies for
AMS/RF ICs, emphasizing on hardware Trojans.

5.2 Hardware Trojans in RF ICs

Wireless networks have become an inseparable part of everyday life and are now
prevalent in most electronic systems, due to the rapid growth of telecommunications
and the Internet of Things. At the same time, they are particularly vulnerable and
constitute an appealing target for malicious attacks; indeed, since they exchange
information over public channels, an attacker does not need to obtain physical access
to the nodes, making such attacks far more plausible. As a result, wireless networks
have been the target of covert channel attacks, most of which are staged via software
or firmware modifications. Beyond such attacks, which exploit legitimate hardware
and protocol capabilities, the first hardware Trojan targeting the baseband part of an
802.11a/g transmitter to leak sensitive information over the air was recently shown
in [44]. To date, however, only a few groups have investigated and reported existent
vulnerabilities in the analog/RF circuitry of transceivers used in wireless networks.
In the following sections, we summarize the existing exploitation examples of such
vulnerabilities by hardware Trojans along with respective defensive mechanisms.

5.2.1 Hardware Trojans in Wireless Cryptographic ICs

5.2.1.1 Attacks

A hardware Trojan attack in a wireless cryptographic IC, specifically in an ultra-
wideband (UWB) transmitter, was demonstrated through silicon measurements in
[30, 31]. The attack targets both the digital and analog/RF parts of the IC, and
its general principle is shown in Fig. 5.1. The attack is quite simple to implement
and can be staged in various phases of the IC supply chain, e.g., in the design
or the fabrication level. On the digital side, the added hardware taps into the
register that stores the 128-bit advanced encryption standard (AES) key, in order
to steal one bit at a time. The value of the stolen key bit is forwarded to the
UWB transmitter, through which it is leaked by modulating the parameters of the
wireless communication during transmission of one ciphertext bit. Overall, along
with every 128-bit block transmitted by the UWB transmitter, the 128-bit key is
also leaked [31]. Specifically, two hardware Trojans have been implemented on-
chip, modulating the amplitude and frequency characteristics of the transmission.
The first hardware Trojan, i.e., Trojan-I, which is modulating the amplitude, is
implemented in the power amplifier (PA), and its overhead is very small, since
it only demands one extra transistor to leak information. The key bit, which is
forwarded through the digital part, is provided to the gate of the extra PMOS
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Fig. 5.1 Hardware Trojan modifications in digital and analog circuitry of a wireless cryptographic
IC (Adapted from [31])

transistor. When the leaked key is “1”, the transistor is off and, thus, the transmission
power remains unaffected. However, when the leaked key bit is “0”, the transistor
turns on and adds a small current at the output node, thereby slightly increasing the
output power which is, in turn, passed to the antenna. On the other hand, Trojan-II,
which is modulating frequency, adds two extra transistors at the inputs of each of the
two RF pulse generators. Again, when the stolen key bit is “0”, the PMOS transistor
of Trojan-II in Fig. 5.1 is turned on, thereby resulting in a higher frequency.

In order to investigate the Trojan impact on the legitimate and rogue transmission,
the authors implemented 15 distinct Trojan levels [31]. Even for the maximum
Trojan level, the Trojan impact on the legitimate transmission is carefully hidden
in the transmission specification margins allowed for process variations. This is
depicted in Fig. 5.2, where the measured transmission power for transmitting a
ciphertext bit of “0” and “1” for 40 Trojan-free, 40 Trojan-I-infested, and 40 Trojan-
II-infested ICs is plotted versus time. For the Trojan-infested transmissions, the
maximum level of Trojan impact is employed. Each of the three distributions is
enclosed in the � ˙ 3� envelop of the Trojan-free ICs [30, 31]. Interestingly, none
of the Trojan-infested ICs falls out of the envelop boundaries.

Despite being hidden in the process variation margins, the impact of the hardware
Trojan on the transmission power waveform suffices for the informed adversary to
obtain the secret key and, by extension, the plaintext by deciphering the ciphertext.
All the attacker has to do is listen to the public wireless transmission channel,
focusing on the parameter manipulated by the hardware Trojan (i.e., amplitude or
frequency), in order to observe the different levels, which correspond to a key bit
of “1” and “0”, respectively, when a ciphertext bit of value “0” and a ciphertext bit
of value “1” are transmitted. This is shown in Fig. 5.3 for a Trojan-I-infested chip,
where the receiver waveform of a 4-bit ciphertext block is illustrated. The minute
amplitude increase when a key bit of “0” is transmitted – regardless of the text value
– provides the attacker the information needed to correctly obtain the key. Similarly
with Trojan-I, the attacker can also obtain the leaked information for the Trojan-II-
infested transmission [30, 31]. In both cases the receiver consists of an oscilloscope
and an antenna connected on it.
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Fig. 5.2 Transmission power of 40 (a) Trojan-free ICs, (b) Trojan-I-infested ICs, and (c) Trojan-
II-infested ICs enclosed in the �˙ 3� transmission [31]

Fig. 5.3 Received waveform of a 4-bit ciphertext block transmitted by Trojan-I-infested chip [31]
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5.2.1.2 Defenses

Unlike traditional test methods which are ineffective in detecting hardware Trojans
(i) with small overhead (in terms of area and power), (ii) which do not violate
any protocol specifications, and (iii) which remain within the margins allowed for
process variations, several defensive methods have been lately reported, capable
of raising a red flag under the presence of hardware Trojans, which manipulate
transmission characteristics, similarly with those previously described. These defen-
sive mechanisms range from statistical side-channel fingerprinting to concurrent and
formal methods and are discussed below.

Statistical Methods: Constructing IC fingerprints based on side-channel parame-
ters and using these fingerprints to statistically assess whether an IC is contaminated
by a hardware Trojan or not were first presented in [6, 23] through a global
power consumption-based and a delay-based method. The idea of side-channel
fingerprinting is the basis for detecting the two hardware Trojans, which were
previously presented. The general principle, which was originally described in
[24, 29, 30], relies on the systematic impact that hardware Trojans impose on
transmission characteristics. This systematic impact is essential for the attacker
to be able to discern the hidden information, as is shown in Fig. 5.3. In practice,
hardware Trojans add a statistical structure to the transmission characteristics,
either in power or in frequency, which is precisely what statistical side-channel
fingerprinting exploits in order to uncover malicious operation.

To demonstrate the effectiveness of statistical side-channel fingerprinting, the
authors in [24, 29, 30] performed the following experiment: Initially, the same six
blocks of ciphertext were transmitted by the UWB RF front end for each of the
40 Trojan-free, 40 Trojan-I-infested, and 40 Trojan-II-infested ICs. Visualization
of the accumulated power in a 3-D space does not reveal any suspicious operation
since all populations fall upon each other as depicted in Fig. 5.4a. However, when
a simple statistical processing, such as principal component analysis (PCA) along
with a one-class classifier, e.g., minimum volume enclosed ellipsoid (MVEE),
is employed, the three populations become clearly distinguishable, as shown in
Fig. 5.4b. Consequently, hardware Trojan existence can be detected.

Concurrent Hardware Trojan Detection Method: Statistical side-channel fin-
gerprinting methods, such as the one discussed above, operate either before an IC
is deployed or, periodically, during idle times, after an IC is deployed. Therefore,
they can be easily evaded by a hardware Trojan which remains dormant at all
times except during normal operation. To counteract this issue, a concurrent
hardware Trojan detection (CHTD) method which operates along with the normal
functionality of the IC was presented in [32] and is shown in Fig. 5.5.

The method checks an invariant property of the circuit and uses an on-chip
one-class classifier to assert a CHTD output when the invariance is violated. The
classifier is trained using trusted side-channel fingerprints obtained at test time
when the Trojan is dormant. The trained classifier can, then, be used to examine
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Fig. 5.4 Projection of hardware Trojan-free and hardware Trojan-infested circuits on a 3-D space
where each dimension corresponds to (a) total transmission power for transmitting one ciphertext
block, demonstrating that the populations are indistinguishable, and (b) one of the three top
principal components yielded by performing PCA on the total transmission power for transmitting
each of the six blocks for all the chips. The MVEE enclosing the hardware Trojan-free population,
which can be used to classify a chip as hardware Trojan-free or hardware Trojan-infested, is also
shown [31]
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compliance of runtime observations of the invariant property, by comparing their
footprint in the side-channel fingerprinting space to the learned boundary. To assess
whether the invariant property is violated or not, two observations are collected from
a single ciphertext bitstream transmission. Each of the observations consists of k
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number of bits, m of which are “1s.” If the integrated voltage for observations A and
B is VA and VB, respectively, then, the following invariance should always hold true:

jVA.k; m/ � VB.k; m/j D ınoise; (5.1)

where ınoise represents measurement noise and nonidealities. If different k and m
values are used for the two observations, the invariance becomes:

jVA � .kA; mA/ � VB � .kB; mB/j D ınoise

C j.mA � mB/ � VC1 C Œ.kA � mA/ � .kB � mB/ � VC0�j; (5.2)

where VC1 and VC0 are the integrated voltage for a transmission of a bit equal to
“1” and “0”, respectively. Apart from its nonintrusive performance, CHTD is a
self-referencing approach, which gives the flexibility of choosing different values
for kA, mA, kB, and mB, thus making the design of a hardware Trojan which can
evade the invariant property checking very difficult for an attacker. Effectiveness of
the CHTD method was verified on the Trojan-infested ICs of Sect. 5.2.1 and was
demonstrated in [32].

Formal Methods: The first information flow tracking (IFT) approach for ensur-
ing data confidentiality in analog/RF designs was presented in [12]. The IFT
was integrated into an automated proof-carrying hardware intellectual property
(PCHIP)-based framework which was initially used to enforce information flow
policies in digital designs. The proposed approach, which operates at the transistor
level, converts the netlist of the analog/RF circuitry to a Verilog representation and
accordingly uses an automated framework called VeriCoq-IFT to convert the Verilog
design to the Coq representation, generate security property theorems for preventing
sensitive information leakage, and construct their proofs [12].

As demonstrated in [12], the method is able to detect sensitive data leakage
from the digital domain to the analog domain and vice versa, without requiring any
modification of the analog/mixed-signal/RF circuit design flow. The formal method
was applied on the AES UWB transmitter design of Sect. 5.2.1. Its Verilog netlist
was extracted, and the Plaintext and Key signals were annotated with appropriate
sensitivity levels, as shown in Fig. 5.6. The corresponding sensitivity-reducing
operations in the AES core were also marked. Then, using VeriCoq-IFT, the design
was converted to the formal representation, and Coq was used to evaluate the
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automatically generated proof for the security theorem asserting the sensitivity
of the design output. In the Trojan-free case, the proof of the security property
theorem for the output passes in Coq, attesting that this output never leaks sensitive
information, under the provision that the initial sensitivity values and sensitivity
reducing operations were annotated correctly in the design. The effectiveness of the
method was also verified under the presence of Trojan-I and Trojan-II, wherein the
proof did not pass in Coq. This implies that a possible path exists through which
sensitive information may leak to the output. Figure 5.6 shows the information
leakage path and the propagated signal sensitivity levels in the AES UWB design
for Trojan-II.

Observation of Parasitic Loads: Detection of hardware Trojans, which add some
structure to the compromised IC, was recently discussed in [16] for RF circuits. The
method is based on the signature left due to rogue load capacitances. Specifically,
stimulus optimization experiments were performed in a typical cascode low-noise
amplifier (LNA) and allowed detection of capacitive loads (due to the presence of
hardware Trojans in the legitimate circuit) in several of the circuit’s internal nodes.

5.2.2 RF Transmission Below Noise Floor

5.2.2.1 Attacks

In line with [30, 31], the ability of hardware Trojans to hide unauthorized trans-
mission signals within the ambient noise floor through the use of spread-spectrum
techniques was presented in [15]. The original concept of communicating with
attackers below the noise power level of a compromised crypto-processor was ini-
tially demonstrated in [28], where multi-bit information was leaked through a power
side channel. Specifically, spread spectrum was used to distribute the power of side-
channel leakage to multiple clock cycles, so that the signal-to-noise ratio (SNR) of
each clock cycle is low enough to evade detection. The attacker can then exploit the
side-channel information by averaging over a large number of clock cycles.

Similarly, the Trojan system in [15] spreads the rogue data and attenuates the
Trojan signal so that it is pushed below the ambient noise floor. The principle
of a spread-spectrum transmitter/receiver chain is shown in Fig. 5.7. The low-rate
baseband data is multiplied by a higher-rate spread-spectrum code to generate a
higher-rate sequence. The legitimate and Trojan spread signals are then added in
the analog domain, constituting the signal to be transmitted, as shown in Fig. 5.7.
The transmitted signal, containing both the legitimate and rogue coefficients, has
an identical spectrum with the legitimate one, and thus the Trojan presence cannot
be easily detected. This higher bitrate digital sequence is then transmitted over the
noisy channel, which may undergo multipath fading and multiple interferers. At the
receiver, both the intended signal and interferers are mixed with the same spread-
spectrum code, de-spreading the original information and spreading the interferers
instead. Extremely low power levels are required to retain effective communication.
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However, this comes at the cost of reduced throughput for the attacker. The spread-
spectrum attack does not affect the legitimate transmission since it remains hidden
well below the noise floor, thereby evading any performance-based testing or
monitoring [15].

5.2.2.2 Defenses

A method for detecting such a hardware Trojan, as well as hardware Trojans
in mobile platforms, was presented in [25]. This method does not require any
golden reference; rather, it is based on self-referencing. In [25], the output of a
mobile platform running on a commercial MpSoC board is driven into a periodic
steady state (PSS) to decouple the response of the board from that of noise
and Trojan. The changes in the circuit behavior between periods indicate the
existence of unauthorized activity. After exciting the circuit and obtaining its current
consumption signal, this signal passes through a low pass filter to obtain the self-
referencing signal. This is then subtracted from the original signal to obtain a
difference signal, which consists of noise and malicious activity, if any. Analysis
of the difference signal in the time domain is not capable of distinguishing the
Trojan signal from channel noise. However, by using the fast Fourier transform of
the difference signal, calculating the average noise level, and setting a threshold
of 3�n for noise referencing, where �n is the noise variance, the Trojan signal can
be detected. Any unexpected bin, i.e., frequency bins that do not correspond to the
fundamental and its harmonics, above threshold is considered a spectral violation.



110 A. Antonopoulos et al.

Fig. 5.8 Histogram of
spectral violations for spectra
with and without Trojan
activity (Adapted from [25])
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For demonstration purposes, the authors in [25] collected 240 data spectra, half of
which were Trojan infested. For spectra without any Trojan activity, the maximum
number of extra bins is 3, whereas the corresponding additional bins for the Trojan-
infested spectra is much greater, i.e., greater than 380 for all spectra. This is shown
in Fig. 5.8. Despite the Trojan operation at or below the noise level, its activity is
clearly observable through the number of bin violations.

5.3 Hardware Trojans in AMS ICs

5.3.1 Attacks

Unlike RF circuits, where a hardware Trojan adds extra circuitry to the legitimate
structure to exploit its vulnerabilities, hardware Trojans in AMS ICs may not need
to add extra overhead to the target IC, neither must they leave a signature during
normal operation; rather, they may exploit Trojan states that might be present
in AMS components with positive feedback loops, which are commonly used to
desensitize the circuit outputs from supply voltage variations. It all began back in
1980, when it was shown that transistor networks with positive feedback loops can
have more than one solution to their DC equations, for some choice of network
parameter values. In [37] it was reported that any circuit with positive feedback
loops allows more than one DC operating points and, conversely, any circuit that
has more than one solution in the DC equations must have positive feedback loops.
These multiple DC operating points were demonstrated for verification purposes
in a CMOS log-domain filter employing a positive feedback loop [17], but were
never studied in the context of hardware security until recently. The problem of
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multiple operating states in analog circuits is commonly referred to as the start-up
problem, meaning that a start-up circuit should typically be added to remove the
undesired state. However, if no start-up circuit is used, which is quite common in
analog design, or if the start-up circuit is not effective, a redundant state harboring
a Trojan may still exist [14].

Several research results have shown that an AMS IC can exhibit a Trojan state,
which can be defined as an operating state that forces the circuit to behave in an
unexpected and undesired way, producing inconsistent results at its output and, thus,
directly affecting preceding blocks in a chain of IC components. These Trojan states
have been shown to affect the output characteristics of operational amplifiers (OP-
AMPs), current mirrors, bandgap references, oscillators, and filters [13, 14, 47–49,
51]. This has been verified via simulations performed in MATLAB and Cadence
Spectre, and results are summarized in Table 5.1.

In the inverse Widlar mirror shown in Fig. 5.9a, the output voltage may reach
values other than the expected for a specific temperature, due to multiple equilibrium
points [17, 47]. Indeed, as plotted in Fig. 5.9b, when temperature is swept, the
same output voltage, Vout2, is obtained for temperatures T1 and T2. Similarly,
a Trojan state was shown to exist in a fully differential operational amplifier
when performance enhancement feedback, i.e., a slew-rate enhancement circuit,
producing a positive feedback loop, is being used [13]. Trojan states were also

Table 5.1 Trojan states in
analog ICs

Reference Circuit topology Simulation level

[14, 47, 49] Inverse Widlar Cadence Spectre

[17, 48] Filter HSPICE

[33, 51] Bandgap Cadence Spectre

[13] OP-AMP Cadence Spectre

[48] Wien bridge oscillator N/A

Vout1

Vout

TempT1 T2
(a) (b)

M5

VDD

Gnd

Vout2

M4

Vout

M1

M3

M2

Fig. 5.9 (a) Schematic of the inverse Widlar current mirror and (b) multiple operating points in
DC temperature sweep of the inverse Widlar current mirror (Adapted from [47])
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demonstrated via simulation results for a Wien bridge oscillator [48]. These
states occur when high nonlinearities in the input-output characteristic are present.
Specifically, the circuit may have either a static (undesired) or a dynamic mode of
operation, and further, even when in its dynamic mode, oscillation states of different
amplitudes or frequencies may still occur, depending on the initial conditions of the
capacitors [48]. Therefore, hardware Trojans in an oscillator can correspond either
to a static mode, incapacitating the IC, or to unexpected oscillation characteristics,
e.g., modified amplitude and frequency. Given the widespread use of oscillators
in communication systems, a Trojan state could have devastating consequences in
information exchange, e.g., it could result in a shift of the local oscillator frequency
to a different band, which an attacker could exploit to leak sensitive information.

This class of hardware Trojans does not demand any increase in power, area, or
architecture and, thus, leaves no signature. Therefore, even if the complete circuit
schematic is available, the presence of multiple operating points during design and
verification can remain undetected.

5.3.2 Defenses

Defense mechanisms that have recently been applied for detecting multiple operat-
ing points in analog circuits with positive feedback loops are based on homotopy
theory, which has been long used for verification purposes [43]. Given an analog
circuit, the first step toward identifying Trojan states relies on determining the
circuit’s positive feedback loops. This is achieved by constructing a directed
dependency graph based on its circuit topology. For example, in the bootstrapped
Vt reference circuit of Fig. 5.10a, two feedback loops can be identified. These loops
are:

I1 ! B ! I2 ! A ! I1 (5.3)

I1 ! B ! I2 ! C ! I1 (5.4)

Specifically, changes in current I1 flowing through transistors M4 and M1 affect
voltage at node B, which in turn pushes I2 to change. Thereby, node voltage A
is also affected, which, accordingly, impacts I1. Similarly, the second graph is
described by Eq. (5.4). Since only the positive feedback loops need to be identified,
voltage/current dependencies are annotated with a sign. For example, an increase in
the node voltage A results in a decrease in I1, since A is applied to the gate of PMOS
transistor M4. Therefore, the edge A ! I1 in the top loop of Fig. 5.10c receives a
� sign. After all signs have been annotated, a positive feedback loop is defined
as a feedback loop which contains an even number of negative dependencies,
whereas a negative feedback loop contains an odd number of negative dependencies.
Therefore, the feedback loop described by Eq. (5.3) is a positive feedback loop
[33, 34, 50, 51].
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Fig. 5.10 Bootstrapped Vt reference circuit: (a) schematic, (b) directed dependency graphs, (c)
dependence sign for the top loop, and (d) dependence sign for the bottom loop (Adapted from
[33])

After the positive feedback loops have been identified, the continuation method
can be applied to identify the presence of multiple operating states. This method
involves the introduction of a voltage or current source that can be swept to trace
operating points of a circuit other than the desired and can be viewed as a homotopy
approach applied to each positive feedback loop [52]. The most common approach
in the continuation method involves insertion of sources that do not break any
loops in the circuit, thereby circumventing concerns about loop loading when a
feedback loop is broken. Methods in which feedback loops are broken can also be
used provided the operating points are not disturbed by breaking the loops [50, 52].
The continuation method has been demonstrated in several AMS ICs employing
positive feedback loops [33, 49–51, 51, 52]. An example of the method is shown
in Fig. 5.11, where a voltage source, VAUG, is inserted in a constant gm reference
circuit. When this voltage source is swept, the resulting current plot indicates three
operating points labeled A, B, and C. The right-most zero-crossing at point C is the
desired one, since at this point VAUG D �0:2V , which means that all transistors are
biased in saturation [21].
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Fig. 5.11 (a) Constant gm reference circuit and (b) I-V curve from the continuation method
(Adapted from [21])

A homotopy-type circuit simulation employing temperature sweeping can also
raise a red flag for the circuit designer, as has been shown in [47].

Ad hoc methods for preventing undesired states in analog ICs also exist in
literature. Specifically, in [14] simulation results indicated that by decreasing the
width of the diode-connected transistor M3 in the inverse Widlar current mirror of
Fig. 5.9a, the region in which output voltages overlap, thus resulting in potential
Trojan states, can be eliminated. Another route toward detection of Trojan states in
AMS circuits could be to use formal verification for AMS designs after they have
been approximated as purely Boolean models, as in [26, 27]. However, this has not
been investigated so far. The same holds for [56], wherein a formal-based solution to
the verification of AMS designs was applied to a delta-sigma modulator, validating
its operation with respect to a given set of properties. Recently, information flow
tracking in AMS designs through proof-carrying hardware was shown in [12]. This
method could also be applied for verifying security properties, e.g., detection of
multiple equilibrium points, of AMS designs.

5.3.3 Analog Triggers

A key limitation of the AMS Trojan states which were previously presented stems
from the lack of trigger mechanisms capable of driving a circuit into an undesired
state. So far, a few analog triggers have been presented in literature and are discussed
herein.
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Fig. 5.12 Behavioral model
of the capacitor-based analog
trigger circuit (Adapted from
[55])
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5.3.3.1 Capacitors

An analog trigger targeting a digital microprocessor was demonstrated in [55].
Similarly with [28], where a capacitor of adjustable value is used to leak information
conveyed by a power side channel, the circuit in [55] employs capacitors to siphon
charge from nearby wires as they transition between digital values. When the
capacitors are fully charged, an attack to a victim flip-flop is staged [55]. The
capacitor performs analog integration of charge from a victim wire while at the same
time being able to reset itself through charge leakage. Every time the victim wire
toggles, the capacitor’s charge increases and its voltage exceeds a predetermined
threshold voltage. When the trigger input is inactive, leakage current gradually
reduces the capacitor’s voltage and eventually stops the trigger output. Operation
of the analog trigger is described in Fig. 5.12.

5.3.3.2 Voltage Glitches

Voltage glitches of the power supply are another trigger mechanism whose impact
was shown on a mixed-signal IC consisting of digital logic along with a phased-
locked loop [7]. Voltage glitches can have devastating effects in frequency synthesis
and can induce large variations in the output voltage of bandgap references. These
voltage glitches can be produced using body biasing attacks [9]. The body biasing
injection (BBI) method applies high-voltage pulses on the circuit substrate, thereby
modifying the capacitive and/or resistive coupling between the substrate and power
supply or ground, as shown in Fig. 5.13a. This, in turn, locally affects the power
supply and/or ground voltages, as depicted in Fig. 5.13b, and can practically result
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Fig. 5.13 (a) BBI effects on CMOS logic (cross-sectional view) and (b) forward BBI effects on
VDD and ground nodes (Adapted from [9])

in large deviations of power supply voltage values, as has been experimentally
demonstrated in [9]. However, this requires that the packaged IC needs to be opened,
in order to apply a very high and short substrate bias pulse.

5.4 Other Threats in AMS/RF ICs

As the complexity of electronic systems has significantly increased over the past
years, the market of reusable IPs has tremendously grown. As a result, the vast
majority of silicon dies and systems on chips currently comprise AMS IP blocks
which are produced by third-party companies. Unlike their digital counterparts
whose security concerns have been addressed during the last two decades, solutions
for protecting AMS/RF IPs against reverse engineering and theft have only recently
been proposed. The same holds true for AMS/RF IP counterfeiting which is
considered a problem growing in magnitude [18, 20].

5.4.1 IC/IP Piracy and Counterfeiting

IP piracy has become a significant concern due to the large volume of reusable
IPs in silicon dies. IP piracy scenarios can be staged either at the foundry level,
e.g., through reverse engineering and illegal copying of an IP, or after the IP
has been produced, e.g., claiming ownership and reselling it as a black box [46].
Reverse engineering can be performed at the chip, printed circuit board, and system
level [39]. Many practical examples of counterfeit ICs, with an increased level of
sophistication, typically deployed after the IC has been produced, have also been
reported, raising health and safety concerns [18, 20]. To prevent reverse engineering,
obfuscation-based techniques applied either at the netlist or at the layout level



5 Hardware Trojans in Analog, Mixed-Signal, and RF ICs 117

(camouflaging) have been used to transform a design into one that is functionally
equivalent to the original but much more difficult to reverse engineer [39, 40].
Along with obfuscation, logic encryption was recently introduced to encrypt the
functionality of a design and protect it from malicious insertions by untrusted
foundries [41, 42]. IC ownership and authenticity can be preserved via watermarking
[46], which uniquely encodes the signature of the author both in the netlist and
the physical implementation stages. Finally, several counterfeit detection methods
have been proposed, which can be classified into physical and electrical inspections
and aging-based fingerprints [20, 54]. More details on the aforementioned detection
and prevention methods against reverse engineering and counterfeiting are provided
in [18, 20, 39–42, 46]. Despite the extensive work effort in the digital domain,
in the AMS/RF domain, only a small number of defenses against piracy and
counterfeiting have been reported. Accordingly, existing remedies for AMS/RF
piracy and counterfeiting are listed and described below:

5.4.2 Vulnerability Analysis

In [8] the authors propose an analysis in order to expose all vulnerabilities existent
in the design of an analog IP. The methodology aims to identify potential security
breaches in analog IP blocks and has to be performed after the IP specification
stage rather than after manufacturing, as shown in Fig. 5.14. The IP block used
for demonstrating the method is an analog block generating a clock signal,
which consists of a bandgap reference, a voltage doubler, and a voltage-controlled
oscillator. The subfunctions of each of the sub-circuits are analyzed, and the faults,
as well as their signatures, are identified. Finally, the potential attacks for each of the
faults are evaluated along with the identifying potential, which expresses the time
and effort required for an adversary to identify the attack. Once all attacks have been
identified, appropriate countermeasures can be taken by the designer.

Specifications Design Manufacturing Security 
Assessment

Specifications Vulnerability 
Analysis ManufacturingDesign

Fig. 5.14 AMS IP design flow before and after vulnerability analysis (Adapted from [8])
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5.4.3 Split Manufacturing

Split manufacturing was recently proposed to protect analog/RF IPs from reverse
engineering at the foundry level [11]. The key idea of split manufacturing is to
protect designs by dividing manufacturing chips into front end of line (FEOL) and
back end of line (BEOL). Accordingly, FEOL and BEOL layers are fabricated in
untrusted and trusted foundries, respectively. The general concept of this method
was presented in a PA design for RF applications. The top two metal layers of
the technology were removed from the FEOL. In such a case, the inductors and
capacitors of the PA become invisible to the attacker. The authors show that even
if the inductors’ and capacitors’ positions and sizes can be estimated through the
blank areas that are created, it is difficult to reverse engineer the chip given the
wide range of component values, bias voltages, and operating frequencies. In RF
designs, inductors are placed in metal rings, and lower metal layers inside the rings
will be removed for performance optimization. Therefore, the rings themselves may
indicate the exact position and size of the inductors. To counteract this issue, the
authors obfuscate the original design, by inserting nonfunctional rings and creating
empty zones. The empty blocks in the layout might increase performance overhead,
but this can be alleviated if the designers consider security in the early design stages.

5.4.4 AMS IP Watermarking

To protect AMS IP ownership, a layout watermarking method was proposed in
Algorithm 1 [22, 36]. This method uses an algorithm, which is described below,
to parse the layout netlist and sort transistors one level at a time, based on their type
(NMOS or PMOS), width, shortest distance to input, and shortest distance to output.
The outcome of the search algorithm is a uniquely ordered list of transistors.

Once this list has been created, the owner generates the watermark he/she wants
as a seed for a pseudorandom number generator. The bits which are generated from
the random function form a long bitstream that can be aligned with the stream of
uniquely sorted transistors. The bitstream is embedded by fingering the transistors
depending on the bit that aligns with each transistor. A bit value of “1” or “0”
corresponds to an even or odd number of fingers, respectively. Using this method a
design entity A, having a netlist A, can prove ownership of an IP against a design
entity B, having a netlist B. The IP owner can look into the nodes of the ordered
array of netlist B and generate bitstream B, corresponding to the odd or even number
of transistor fingers. The owner which has two bitstreams, A and B, can measure the
degree of correlation between them. Unless design entity B generates the correct
seed for bitstream B, design entity A can claim that design entity B has stolen the
layout. This technique has been effectively applied to a two-stage Miller operational
amplifier. The watermarked layout suffered only 0.25% increase in the chip area.
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Algorithm 1 Pseudocode for ordering transistors [22]
Make a dummy transistor
Connect it to all of the inputs of the circuit
Add the dummy transistor to the FIFO queue
while queue is not empty do

De-queue the next transistor
if it is not marked visited then

for the set of successor transistors do
if any are matched then

group them together
rank by channel type, width and distance to output

end if
if any are indistinguishable then

treat as matched
add the ordered transistors to the FIFO queue
append them to the final sequential array

end if
end for
Mark the current transistor visited

end if
end while

5.4.5 AMS Counterfeit Protection

Despite the fact that analog ICs are among the five most counterfeited parts [4], only
a few protection mechanisms have been reported. Specifically in [20], protection
against recycled analog ICs was achieved using statistical methods, such as one-
class classifiers and degradation curve sensitivity analysis. Typical test results from
production early failure rate analysis, such as minimum supply voltage (Vmin),
quiescent current (Iddq), and maximum oscillation frequency (Fmax), were used as
parametric measurements for evaluating both methods. Results were demonstrated
in a fully differential folded cascode operational amplifier designed in a 45 nm
technology node, showing that both methods were able to achieve 100% correct
classification between brand new and recycled devices. Recently, low-cost, on-chip
ring oscillators were used for protecting ICs against recycling [19]. It is likely that
such an approach can also be applicable in AMS and RF ICs.

5.5 Discussion

After over a decade of intense research efforts by numerous groups around the
world, the objective of ensuring trustworthiness of digital ICs and IPs is a fairly
well-understood and quite mature topic. Indeed, a large number of alternative threat
scenarios, as well as detection and/or prevention methods, have been demonstrated
and experimentally evaluated, often using actual silicon measurements. On the
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other hand, the operational complexity and the continuous-domain characteristics
of AMS/RF ICs have served as challenges which have limited the commu-
nity’s collective understanding, modeling, and mitigating of security risks in the
analog/RF domain. Among the most notable contributions in this domain, we
pinpoint the effectiveness of hardware Trojans in modifying the RF front end of
cryptographic ICs in order to covertly steal sensitive information, which has been
experimentally demonstrated in silicon by a few groups. In the AMS world, the
key contribution to date consists in the demonstration of innate Trojan states, which
may potentially result in undesired operating conditions. A few concepts of analog
triggers, which have mostly been used to compromise digital circuits, and a few
protection mechanisms against analog IP theft and reverse engineering complete
the picture of the rather limited literature on this subject matter. Moving forward,
a number of limitations in existing studies need to be addressed in order to raise
our understanding of the problem to the next level and lead to breakthroughs in this
area. For example:

• In AMS circuits, security implications have only been shown in a few basic
analog blocks; moreover, all of the relevant work is based on simulations. While
simulations are informative, demonstration and evaluation through actual silicon
implementation is needed for drawing definitive conclusions.

• How an AMS circuit can be triggered to enter an undesired state and what the
payload of such a Trojan state might be, other than circuit malfunction or denial
of service, should be further investigated and better understood. Most of the
current incarnations are either too simplistic or too unrealistic to be considered a
real threat.

• Systematic, generalizable HT detection/prevention methods need to be developed
for AMS/RF ICs, rather than the current ad hoc solutions. While this is inherently
difficult in the analog domain, it is nevertheless important in order to facilitate
automation and development of pertinent metrics.

• Formal, provably secure methods for protecting AMS/RF IPs are still at their
infancy and are urgently required. While analog formal verification has made
great strides recently, its findings have yet to be applied in the security and trust
domain.

5.6 Conclusions

Despite the operational complexity and the continuous-domain characteristics of
AMS/RF ICs, the research community is currently considering and investigating
security threats in the AMS/RF circuitry of ICs. Therefore, initial steps toward
understanding, modeling, and mitigating the security risks that AMS/RF ICs
bring along have been taken. Accordingly, disseminations of existing works were
summarized in this chapter. Specifically, we discussed the effectiveness of hardware
Trojans modifying the RF front end of ICs to covertly steal sensitive information
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and elaborated on Trojan states which may be present in several AMS circuits with
positive feedback loops. We also explored detection methods targeting hardware
Trojans in AMS/RF ICs, which are based on statistical analysis, formal approaches,
and concurrent operation. Lastly, we summarized existing protection mechanisms
against analog counterfeiting and reverse engineering, and we offered our thoughts
regarding the next research directions that the AMS/RF community should focus on.
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Chapter 6
Hardware Trojans and Piracy of PCBs

Anirudh Iyengar and Swaroop Ghosh

6.1 Introduction

Authenticity and security concerns due to hardware Trojans and counterfeiting at
the integrated circuit (IC) level have been studied extensively in recent times [1].
However, vulnerability with respect to hardware Trojans and cloning at higher levels
of system abstraction, e.g., at printed circuit board (PCB) level, has not been well
reported. PCBs are extensively used in every electronic system to enable electrical
interconnections between components and for mechanical support. The emerging
business model of PCB design and fabrication that favors extensive outsourcing
and integration of untrusted components/entities in the PCB life cycle to lower
manufacturing cost makes both malicious modification and cloning of PCBs highly
feasible [2]. Closer inspection of several common electronic products (e.g., mobile
devices and wearables) and their PCB manufacturers reveals that different parts of
PCB designs (e.g., schematic and layout) are often carried out in different physical
locations by different parties. Therefore the PCBs are greatly exposed to reverse
engineering, counterfeiting, overproduction, Trojan insertion, and recycling. Unlike
integrated circuits (ICs), where researchers have analyzed the various flavors of
hardware security primitives [3, 4], PCB security primitives are still evolving.
Previous studies have covered security of PCBs against piracy and various post-
fabrication tampering attacks. JTAG (Joint Test Access Group) and other field
programmability features, e.g., probe pins, unused sockets, and USB, have been
extensively exploited by hackers to gain access to internal features of the designs
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Fig. 6.1 (a) Taxonomy of various attacks on PCB; (b) general model of PCB-level hardware Tro-
jan; (c) a specific example of Trojan affecting the external memory access in PCB. Vulnerabilities
in PCB design with respect to Trojan attack: (d) thicker traces for high-frequency signals, (e) pair
of signals for differential signaling, and (f) group of traces indicating bus [12]

[5] as well as snooping of secret key, collection of test responses, and manipulating
JTAG test pins [6]. One instance demonstrated that Xbox can be hacked by disabling
the digital rights management (DRM) policy using JTAG [5–7]. We note that
modern PCBs are becoming increasingly vulnerable to malicious modification of
PCBs during design or fabrication in untrusted design or fabrication facilities unlike
the widely reported infield tampering attacks [3–9], such a vulnerability creates a
new class of threat for PCBs.

This reliance to third-party manufacturing facilities makes the PCB fabrication
process untrustworthy and, hence, vulnerable to malicious modifications, i.e., Trojan
insertion and piracy, i.e., counterfeiting. Furthermore, an adversary can be present
inside the design house, and the PCB design can be tampered with Trojans. Figure
6.1a shows broad classes of attacks on PCB including possible Trojan attacks.

In this chapter, we provide an overview of the various PCB security challenges
[10]. We describe several instances of PCB attacks and review some of the more
recent mitigation techniques/countermeasures. The chapter is organized as follows:
The security challenges are introduced in Sect. 6.2.1. The attack instances of hard to
detect Trojans are described in Sect. 6.2.2. Potential countermeasures are detailed in
Sect. 6.2.3. Section 6.3.1 describes the authentication challenges, while Sect. 6.3.2
illustrates PUF structures. Finally, Sect. 6.3.3 provides a quantitative and qualitative
analysis of the PUFs.
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6.2 PCB Security Challenges, Attacks, and Countermeasures

6.2.1 Security Challenges

6.2.1.1 Security Analysis

An attacker can exploit the vulnerabilities, design/test features, and test hooks that
are available on the board. Some common PCB features that can be exploited by an
adversary for understanding a design intent and efficiently mounting a Trojan attack
with minimal design modification are as follows:

(a) JTAG interface – JTAG is an industry standard to enable board-level test and
debug. It can be exploited by a hacker to get a clue about the hidden test
features or hidden control to access the data and address bus within the chip
[5–7]. For example, hackers can deduce information about the length and
properties of the instruction register through JTAG by trial and error. Next, a
particular instruction can be executed to gain permission to tamper/feed internal
data bus. JTAG can also be used to reverse engineer (RE) the board design
by deducing the connectivity between components and executing external
connectivity instructions. Aside from this, JTAG can be exploited too.

(b) Test pins or probe pads – Typical ICs contain several probe pads and test pins
to observe/control important signals for test/debug purposes. A hacker can tap
these pins and monitor the interesting signals to gain critical information about
the functionality of the design or feed malicious data into the design. Test pins
can also be used for RE where a test input can trigger certain data and address
and control signals that can help identify the board functionality.

(c) Infield alteration via ModChips – This involves alterations caused by mounting
integrated circuits, soldering wires, rerouting paths to avoid or substitute
existing blocks, adding or replacing components, and exploiting traces, ports,
or test interfaces in ingenuous manners [7, 11]. ModChips are one such class of
devices that alter the functionality or disable restrictions within a system, such
as computer or game console [12]. For instance, Xbox ModChips can modify
or disable the built-in restrictions integrated in Xbox consoles, allowing to play
pirated games in the tampered consoles.

(d) Vulnerabilities in PCB design – Figure 6.1d–f illustrates several additional
vulnerabilities as described below:

(i) Distinct properties of special signals: The thickness of clock and data
bus provides clues to the hackers about the functionalities of these pins.
Similarly, pins tied with identical pull-up/pull-down resistors indicate that
they belong to a bus.

(ii) Remnant signatures from test/debug: When pins (that are used for
test/debug) are accessed through ports, the remnant of soldering provides
clue to a hacker about the functionality of these pins. Similarly, an empty
socket can be used for hacking purposes.
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Fig. 6.2 (a) Vulnerability at PCB level with respect to Trojan attacks; (b) minor modifications
in Arduino Uno board layout to insert Trojans without addition of any new component; and (c)
examples of hardware Trojan insertion in a PCB component [10]

(iii) Miscellaneous hints: Figure 6.2a lists some additional vulnerabilities.
Apart from the above component-level hooks, a PCB design itself provides
lots of information to an adversary in fabrication house that can facilitate
powerful Trojan attacks.
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6.2.1.2 Attack Models

Trojan attacks in PCB can be divided into two broad classes, as described below:

1. Case I: The board design is trusted. In this model, the attack is mounted in the
PCB fabrication house. It is expected that the attacker would change the design in
a way that evades post-manufacturing test but causes functional deviations under
certain rare conditions, which are unlikely to be triggered during test.

2. Case II: The board design is not trusted (e.g., outsourced). In this model, the
attacker is assumed to be present in the board design or fabrication house. Only
the functional and parametric specifications of the board are trusted. The attacker
has higher flexibility of maliciously altering the design and/or choosing fake or
untrustworthy (and potentially malicious) components. Again, an attacker would
try to hide the modifications to avoid detection during functional and parametric
testing process.

Note that in both cases, there are two possible objectives of the attacker: (1)
malfunction and/or (2) information leakage. Next, the possible Trojan attacks of
different forms in a PCB are described.

(a) Signal trace modifications in the inner PCB layers: For boards with fewer
levels where hiding an extra component is difficult, an attacker can change
the resistance, capacitance, or inductance of the signal traces (self, mutual).
For example, signal trace in an internal layer can be made thinner to increase
the resistance such that it fails during long hour of operation due to heating.
Similarly, the metal coupling capacitance between two traces including traces
in the supply planes can be increased (by changing trace dimensions, inter-trace
distance via slight rerouting, and selective dielectric property modification) to
trigger coupling-induced voltage and delay failures in one of the lines. Leakage
resistance paths can also be incorporated in an internal layer trace for intentional
voltage degradation. Impedance mismatch between interconnected traces can be
introduced to cause malfunction in certain scenarios.

Modification in an example trace-4 scenario, causing malicious effects on
circuit parameters (coupled voltage, delay failures, and voltage degradation), is
illustrated in a commercial Arduino Uno board layout in Fig. 6.2b. It involves
changing the thickness and inter-trace distances by 2X and rerouting of single
trace. Even in a small two-layer board design like the Uno, these changes are
minimal and difficult to detect during the test but can cause undesired functional
behavior under certain scenarios. In complex PCB designs with more than four
layers, these changes would be confined within a small area of an internal
layer. Hence, the chances of detection with optical or X-ray-based imaging are
extremely low. Functional testing is typically not exhaustive, and hence these
can easily bypass detection. However, in certain rare conditions in field, their
effect on circuit parameters can be significant causing system failures.
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(b) Hidden components: For boards with more than two layers, an adversary
can insert extra components in an internal layer to either leak information
or conditionally cause malfunctions. Replacing a legitimate IC with Trojan-
infected IC is another possibility (Fig. 6.2c). The tampered IC would be
functionally equivalent to the legal IC; however, it may be equipped with
capabilities to leak secret information. The leakage can be direct (through
unused pins) or indirect (modulating supply voltage or current). Figure 6.1a
summarizes different categories of PCB attacks.

6.2.2 Attack Instances

6.2.2.1 Design House Is Trusted

This scenario arises when the PCB is designed by a trusted designer and outsourced
for fabrication. During the manufacturing process, malicious modifications can be
intelligently inserted by an adversary, such that the final design structurally matches
the original one (no additional components, logic, traces) but produces undesired
functionality under certain conditions. The small alterations can be confined in
the internal layers of a multilayer PCB. Hence, chances of detection with visual
inspection, optical imaging, and X-ray-based imaging techniques are low. Besides,
exhaustive functional testing is typically impossible with large number of test
nodes. Therefore, the malicious functions are very likely not triggered during the
in-circuit and boundary scan-based functional testing [13]. Usually modifications
can be made in the existing traces to increase the mutual coupling capacitance,
characteristic impedance, or loop inductance by changes in internal layer routing
and small leakage path insertion. Additional components with ultra-low area and
power requirements can also be inserted in the internal layers. Two Trojan examples
are presented in this class. The first case considers a multilayer PCB (10 cm length)
with possible application in a high-speed communication and video streaming
systems. It has a common scenario of two high-frequency (HF) PCB traces in an
internal layer running parallel to each other. Typically, HF traces are routed in
the internal layer shielded by power and ground planes to avoid interference (Fig.
6.3a). However, it significantly complicates the internal layer testing and debug
procedure and provides an opportunity to the attacker. The dimensions of the traces
are designed optimally to carry normal HF signals, i.e., 1 oz. copper trace with width
and thickness of 6 mils and 1.4 mils, respectively [14]. The dielectric is FR-4 with
a relative permittivity of 4.5. The inter-trace distance is chosen to be 30–40 mils to
avoid the negative effects of mutual inductive and capacitive coupling. These HF
traces are modeled by lumped parametric form [14]. Functional simulation shows a
maximum coupled near- and far-end voltage of �300 mV p-p on one of the traces,
with the other trace swept with pulse voltages of 3 V p-p at 10–500 MHz with a 50%
duty cycle. The maximum propagation delay for the pulse across the active trace is
�0.4 ns.
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Fig. 6.3 Impact of Trojans in a PCB inserted by selective trace/s property modification, without
addition of any new component (design house trusted scenario): (a) lumped trace-2 PCB model
with associated capacitance, inductance, and resistance; (b) trace-2 near- and far-end voltages and
(c) propagation delay in trace-1 (n1 and n4 nodes) at 220 MHz and 3 V p-p input; (d) effect on
trace-1 far-end voltage, on insertion of a leakage resistance path from trace-1 to ground; (e) and (f)
show the effect of change in trace properties in a four-wire scenario. Coupled voltages in near and
far end of victim trace, when all aggressors are switching in phase at 220 MHz and 3 V peak-to-
peak (p-p), are illustrated in (e), and voltage profile at near end (n9) of trace-3 and far end (n12) of
trace-4 is shown in (f) [10]

With the simulation setup described above, we observe the effects of various trace
level modifications during fabrication. The inter-trace distance in the internal layers
is reduced by 2X, widths of both wires are increased by 2X, and the thickness is
increased by 1.5X. These are minimal changes in a small target region of an internal
layer, rendering them mostly undetectable during structural testing. The dielectric
permittivity of the insulator between the traces is increased to 5.5 in order to model
moisture retention in certain insulating areas, impurity addition to epoxy base [15],
and, hence, the aging effect. Accelerated aging tests have a low probability of
detecting this as the permittivity is selectively altered by an adversary in a small
area. However, the effect of these changes on associated circuit parameters can be
significant.

At 220 MHz, the near-end peak-to-peak voltage in trace-2 is �1.4 V for an input
pulse voltage of 3 V p-p in trace-1 (Fig. 6.3b). This is an extraneous interference and
may cause unexpected behavior in terms of erroneous circuit activation or feedback.
The propagation delay increases by 2X, beyond 1 ns (Fig. 6.3c) which can induce
functional failures for higher switching frequencies and greater trace lengths. From
an attacker’s perspective, inserting a small leakage path (2X the trace resistances) to
ground can drain away the signal, resulting in a degraded, distorted waveform at the
far end of trace-1 (Fig. 6.3d) and hence malfunction in the connecting circuits. This
can easily evade detection by conventional PCB testing which is not exhaustive due
to prohibitive cost and time to market.

The effect of coupling is more prominent when multiple HF traces, over different
planes, are intentionally routed intelligently to increase mutual coupling. This can be
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achieved by (a) bringing the in-plane neighboring traces closer and (b) increasing
widths and thicknesses of the lines. These selective minute alterations are highly
likely to pass structural and functional testing. However, the effect of these changes
on the circuit performance could be significant as shown in Fig. 6.3e–f. The coupled
voltages at the near and far end of victim trace-1 are 3.1 V p-p and 1.3 V p-
p, respectively (Fig. 6.3e), with in-phase rising/falling transition on the adjacent
three traces (one in-plane, one above, and one below). This is 34X greater than
the case when active traces are switching in opposite directions. This interference
would certainly result in failures in terms of erroneous activation, feedback, and
performance. The voltage profile at the far end of trace-1 with the others inactive
shows some distortion and an average propagation delay of 1 ns (Fig. 6.3f). Higher
number of neighboring traces and greater trace lengths significantly affect the
propagation delay and cause delay failures at high switching speeds. Extraneous
coupled voltages in trace-3 and trace-4 are illustrated in Fig. 6.3f as well. It can be
noted from the above results that detecting these Trojans is extremely hard since
it is sensitized under very rare specific conditions. In the multi-wire scenario, the
degraded performance is prominent only in two out of eight possible combinations
of transition polarity (i.e., all rising/falling pulses) in the three neighboring traces.
The frequency of operation and the input vector patterns serve as two example
conditional triggers for these Trojans, inserted by selective trace property and
routing alterations during PCB fabrication.

6.2.2.2 Design House Is Untrusted

In this attack model, both PCB design and fabrication are done in untrusted facilities,
thus increasing the possibility of Trojan attacks. The board specifications generated
by the system designer are trusted. Post-manufacturing testing is done by the system
designer to ensure the board performance and functionality. Hence, along with the
possibilities of trace level alterations, an attacker can also leverage the opportunity
to modify the design structurally and/or insert additional components that would be
activated upon certain trigger conditions. The design alterations would be hidden
intelligently (e.g., physically or by rare input conditions) to evade detection during
post-fabrication structural and functional testing. A simple example of this attack
model is illustrated in Fig. 6.4, where a fan controller adjusts the speed of a 12 V
DC brushless fan based on the input received from a temperature sensor. The sensor
provides 0–5 V (depending on the current temperature) which is digitized by an
ADC and sent to a microcontroller that controls the speed of the fan through linear
regulation of the fan input voltage.

With minor structural modification, an attacker can maliciously tamper with
the functionality of the circuit (Fig. 6.4a). In this case, the Trojan prevents the
microcontroller from obtaining an accurate temperature. It includes a resistance,
a capacitor, and a PMOS transistor. The capacitor is charged using the output from
a voltage regulator (LM317) connected to the fan. The time needed to activate the
Trojan (i.e., the trigger condition) can be adjusted by manipulating the resistance and
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Fig. 6.4 (a) Fan controller circuit with a Trojan insertion; (b) a two-layer PCB layout of the
original circuit; and (c) a fabricated PCB board which demonstrates triggering and payload of
the Trojan [10]

capacitance values. The trigger deactivates the PMOS transistor inserted between
the temperature sensor and the ADC, effectively disabling the connection. Hence,
the microcontroller receives a null input that is interpreted as a very low temperature,
and the fan speed is reduced significantly. With a large value of time constant,
this design alteration has a high probability of evading functional testing. A two-
layer PCB schematic of the fan controller (prefabrication) is shown in Fig. 6.4b.
A fabricated PCB board to demonstrate the triggering and payload of the Trojan is
shown in Fig. 6.4c.

From the above discussion, it is obvious that achieving these minor structural
modifications in such a scenario is easy due to outsourcing of both design and fab-
rication. Since system integrator only possesses information about the major PCB
components (constituent ICs) and functional specifications, such small alternations
can go undetected. From the attacker’s perspective, a multilayered PCB is more
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attractive because it provides increased opportunities to hide the design changes. In
addition to the structural changes, an adversary in the foundry can perform layout
modifications to deliberately insert trace level Trojans, which are difficult to identify
by functional tests.

6.2.3 Possible Countermeasures

6.2.3.1 Hardware Trojan Detection in PCB

In [10] a noninvasive RE and multiparameter side-channel analysis to detect the
embedded Trojans is proposed. First, the Trojans are categorized by their nature,
e.g., Trojans that induce (a) parametric failures, such as unacceptable delay and
leakage (Trpar), (b) large static power (Trpwr), and (c) functional failures (Trfn).
Trojans in each category are treated differently for detection. Next, a criticality
analysis is performed to isolate the vulnerable nodes. This step is conducted to
identify the critical signals from design specification, e.g., clock, control signals,
data, and address bus. The PCB layout information is captured in the analysis to
identify the potential Trojans (i.e., the longest trace that runs in parallel with the
victim signal). For analysis we assume that (a) an intended PCB design is available
to the validation engineer, (b) a single Trojan is inserted at a time, (c) a Trojan
injection is limited to neighboring traces, and (d) the tampering does not involve
change in the signal routing.

Test pattern generation for Trojan detection can leverage on the principles
of conventional testing. The PCB layout and criticality analysis generate a list
of possible triggers/payloads and their locations. Test patterns are generated to
sensitize the trigger conditions of each Trojan and observe its effect. The process
continues till all the Trojans in the list are exhausted. Side-channel analysis such
as delay, frequency, static leakage, and dynamic current can also be administered
to sensitize Trojans of other types. Side-channel analysis, however, would require
a set of golden PCBs. The Trojan coverage and the test patterns are output of the
proposed methodology (Fig. 6.5a). The test patterns obtained above are applied to
both extracted parasitic model and actual PCB, and their responses are compared
to detect Trojans. Figure 6.5b illustrates this methodology for capacitive Trojans
through an example where net n3 is identified as the target signal from node
criticality analysis. Therefore, the Trojan list would contain fc1, c5, c6g. For this
example, test pattern will target to toggle nets n1, n3, and n5 in association with n3
to sensitize the Trojans for detection. Note that c2 is excluded from the list due to
shorter track segment of n2 in parallel with n3.
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6.2.3.2 Preventive Countermeasures Through Hardening

The following proactive techniques are proposed in [10] to protect against Trojan
attacks in PCBs:

1. Secure interfaces: Conventional JTAG cannot prevent unauthorized access, and
therefore it can be exposed for tampering. The security features inside JTAG are
updated so that the access to instruction and data registers is restricted until a
code/password is fed to unlock the TAP controller. Figure 6.5c shows the JTAG
structure containing TAP controller that provides access to the instruction and
data register (device registers, ID register, and bypass register) based on TMS and
TCK. The modified TAP controller (Fig. 6.5d) includes newly added states (S0–
S3) that look for a certain security key. In order to allow legitimate access (for
installing upgrades and patches), the secure JTAG can be unlocked by feeding the
correct keyword (0011111 in this case). However, in the event of wrong keyword,
the controller will go to a lock state (S4) where it will disconnect the TDI and
TDO by feeding a fixed value to TDO. Note that once the TAP goes to the lock
state, it cannot be reset back to factory state preventing the possibility of a trial-
and-error method by the hacker.

2. Secure PCB: Conventionally designed PCB traces can be reverse engineered
to discover the board design. An approach is proposed in [10] to address this
challenge through interconnect obfuscation. Figure 6.5e shows one possible
approach to obfuscate the interconnects by introducing dummy ICs that serves
three purposes:

(a) It scrambles the traces based on a scrambling function implemented in
the dummy logic. The dummy device is RE resistant due to the presence
of secure JTAG that prevents access to internal design without proper
authentication.

(b) It provides dummy outputs that are mixed with real traces to confuse the
hacker. The dummy traces are driven by random logic and counters to
obfuscate the data, address, and clock signals. Furthermore, the dummy
traces are drawn in the same way as the real data and clock signals to
obfuscate the real signals.

(c) It implements secure JTAG; therefore the access to real chips is also secured
even if they implement unsecured JTAG. In order to RE the real chips, the
hacker needs to unlock the JTAG of two dummy chips (D0 and D1) each
of them may have different security keywords. RE through JTAG could be
deterred further by incorporating the security states in the TAP controller of
the real chips as well.

6.2.3.3 Tamper Detection and Prevention

In this approach, a real-time system monitoring is enforced in order to prevent
tampering [11]. A critical trace is identified and is compared with an expected value.
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Fig. 6.6 A functional block diagram of the prototype tamper detection and prevention circuit on a
PCB [11]

Any deviation from this value can be identified by which the attack can be prevented.
Figure 6.6 describes the general methodology, where the components of interest
are identified along with their critical trace. During an attack, the resistance of the
critical trace will vary, which is correspondingly identified by the tamper detection
circuit. This is then relayed to an eFuse to shut down the device.

6.3 PCB Authentication Challenges and Prospective
Solutions

Aside from the Trojan attacks, PCBs are highly susceptible to cloning. This is
further exacerbated by the high distributive manufacture process. To solve similar
problem, ICs typically employ a physically unclonable function (PUF) [16], which
exploits device specific parameters toward generating a unique and authentic
signature. Such features however are still evolving in PCBs. One such work is
the BoardPUF [17], which employs the capacitance difference of an embedded
comb-like structure to generate response for a given challenge during authentication.
Figure 6.6 illustrates the architecture of the BoardPUF, with the variation source to
be the capacitor which is composed of a set of well-designed comb-like pattern
which is placed between layers of PCB, to reflect the variations observed during
PCB manufacture. A counter is used to record the signals by the sensing circuits for
a given time interval. This is then compared with counts from different compare
units specified by the compare pairs through which the final ID is generated.
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Although attractive, most of the authentication process is done via the on-board
chip, which can be corrupted and can lead to denial of service.

Another PCB-based PUF authentication methodology, proposed in [18], exploits
the impedance of PCB traces toward generating a unique signature at no area
overhead. The trace impedance being unique to each PCB acts as a good source
of authentication. However, one of the major drawbacks of this technique is the
sheer lack of eligible traces that can be directly probed. As most of the PCB
interconnections are in the internal layers, gaining access to a significant set of
interconnects at the top/bottom layer is difficult. This limits the number of responses
that can be obtained from the PCBs. Aside from this, work done by Andrew
et al. [7], utilizes the Boundry Scan Chain Architecture (BSA) design on the JTAG,
to create a unique signature from each PCB for authentication. The technique
exploits the inherent delay of the BSA for authentication. Due to manufacture-
induced process variations, the delay value of the BSA also varies correspondingly.
Therefore, the resultant delay is unique to each device. By correctly determining
the delay, one can distinguish one device’s delay with another. Thus, allowing us to
deterministically authenticate the device at hand. In an effort to realize a “strong-
PUF,” Anirudh et al. [19] proposed a unique PCB-based PUF design that captures
a high degree of process variation and also facilitates a large number of challenge-
based responses. Before dwelling into the design, we first need to understand the
various authentication challenges the PCBs face.

6.3.1 PCB Variations and Authentication Challenges

6.3.1.1 Sources of Variations

PCB manufacturing process can introduce various physical, electrical, and chemical
variations. These variations are broadly categorized as follows [19]:

(a) Variations in trace physical dimensions: This variation alters the electrical
properties of the trace such as resistance, inductance, and capacitance causing a
deviation from the expected behavior.

(b) Variations in via dimensions: This leads to an overall variation of via
impedance. Larger the number of vias for a single signal, greater is the
impedance variation.

(c) Density variations: Variations in deposition density also leads to impedance
variations. Cavities (mouse bites) are observed in long traces, causing a shift in
the electrical characteristic of the trace [20].

(d) Alignment between layers: Misalignment of masks during manufacturing leads
to variation in trace deposition.

(e) Layer lamination: Unevenly thick layers can result in some vias being taller
than the others and can also impact embedded capacitance, which too impacts
its intrinsic impedance.



6 Hardware Trojans and Piracy of PCBs 139

Fig. 6.7 BoardPUF architecture [17]

The above variations sources affect each PCB differently, making them perfect
candidates for PCB authentication (Fig. 6.7).

6.3.1.2 Qualitative Analysis of Authentication Issues and Metrics

One of the primary issues with PCB authentication using PUF is limited number
of challenges. Each PUF structure such as embedded comb [17] and PCB trace
[18] acts as a single challenge and provides single response. This is unlike IC PUF
where linear and exponential number of Challenges Response Pairs (CRPs) can
be generated. Generating exponential CRPs at low area overhead is a challenge.
Designing passive structures to convert the PCB variability (as discussed in Section
II.A) into a response is another key issue.

A key metric used to determine the quality of the PUF is the Hamming Distance
(HD). HD is the amount of variation one PUF signature is with another. For a good
(strong) PUF, the HD should be ideally 50%. The simple HD can be divided into
inter-die HD and intra-die HD. Where the inter-die HD is the HD between two PUF
responses of different devices, while the intra-die HD is the variation in the PUF
signature of one device w.r.t. environmental changes such as temperature, humidity
etc.

The concept of inter-die Hamming Distance (HD) metric can be extended to
obtain inter-PCB HD. The objective of this metric is to ensure sufficient difference
between responses of two PCBs for the same challenge (i.e., PUF structure in
this case). The concept of intra-HD used in IC authentication may not be readily
applicable to PCB though. This is due to the fact that temperature and voltage
during authentication depends on usage scenario. When the external bare PCB is
authenticated by the vendor, they can follow the exact voltage and temperature
conditions specified by the PCB manufacturer during authentication. Therefore,
intra-PCB HD will be 0%. However, when the PCB is assembled and deployed
in product it could be interrogated by the secure facility such as bank. Under this
circumstance the ambient temperature could be different. The voltage could still be
the same; however, the environmental moisture could be different. Therefore, the



140 A. Iyengar and S. Ghosh

Fig. 6.8 PUF features: coil (a) top view and (b) structure comprising of symmetric zigzag coils
separated by a dielectric. The notches capture edge rounding variations in resistance and inductance
whereas two coils in two layers capture the capacitance variation due to misalignment [20]

intra-PCB HD should consider temperature and moisture variation to determine the
stability.

6.3.2 Prospective PUF Structures

A passive structure has been proposed [19] that can capture various sources of
variations to provide a unique device signature [20]. Figure 6.8 illustrates a coil-
type structure which is designed using Allegro [21] PCB editor. Compared to a
typical straight coil, this structure exhibits additional resistance (wire resistance),
capacitance (enhanced due to the comb-shaped multilayer design) and inductance
(enhanced due to the coil shape) variation due to the high number of notches.
Therefore, this structure is suitable for capturing the many sources of manufacturing
process variations including edge rounding, density, and alignment variation.

6.3.2.1 Star-Coil PUF

This PUF works by exploiting the resonance frequency (RF) of the star-coil for
authentication. RF being unique to each coil (due to unique set of process variation)
acts as a good source of authentication. The star-coil is excited by a voltage source,
whose frequency is swept from a given minima to maxima. The frequency at which
the current through the coil is the highest, i.e., impedance is the least, is its resonance
frequency. The resonant frequency for an RLC circuit is given by:

fres D 1
.

2:�:
p

L:C (6.1)

where “fres” is the resonance frequency in Hz, “L” is the inductance in Henry, and
“C” is the capacitance in Farads. Due to the inverse relationship between impedance
(ignoring resistance) and resonance frequency, a small change in the impedance
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results in a large change in the resonance frequency. In order to understand the
impact of process variation on the resistance (R), inductance (L), and capacitance
(C) of the coil, a 10% introduced variation (assuming it to be 3¢ variation) on
the trace length, width and dielectric thickness. We know from [19] that a linear
relationship of R, L, and C with respect to the trace length, width, and thickness
persists. This observation is used in determining the mean and standard deviation of
R, L, and C due to each variation.

�1 D guassian distribution of trace length

�2 D guassian distribution of trace width

�3 D guassian distribution of dielectric width

Total Inductance .L/ D Inductance .�1/ C Inductance .�2/

C Inductance .�3/ C �L: (6.2)

Total Capacitance .C/ D Capacitance .�1/ C Capacitance .�2/

C Capacitance .�3/ C �C: (6.3)

Total Resistance .R/ D Resistance .�1/ C Resistance .�2/

C Resistance .�3/ C �R: (6.4)

where �L, �C, and �R are mean values of inductance, capacitance, and resistance,
respectively.

By combining the effects of trace length, width, and dielectric thickness on the
overall R, L, and C (using 2–4), a cumulative mean and standard deviation of
the star-coil PUF is obtained. A 10000-point Monte Carlo analysis performed on
the trace length, width, and dielectric thickness reveals the corresponding resonant
frequency distribution. The plot is as shown in Fig. 6.9. A spread of 10 MHz in the
resonant frequency is observed.

This design can be extended to incorporate more variations by using multiple
such coils connected together in a serial or parallel fashion (illustrated in Fig.
6.10a–d). This allows us to exploit the use of multiple layers (thickness variations,
lead to impedance variations), which further adds to the variations that the circuit
experiences. Measuring the resonance frequency of this stack will provide a
signature truly unique to the PCB.
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Fig. 6.9 Resonance
frequency distribution [19]

Fig. 6.10 Star-coil structure: (a) base configuration, (b) equivalent RLC circuit, (c) series
connected coils, and (d) parallel coil combination [19]

6.3.2.2 Arbiter-Coil PUF

One major limitation of the coil PUF is that, it has only one possible outcome
(one signature) for authentication. This does not adequately provide us linear or
exponential number of responses for reliable authentication. In order to improve the
CRPs a passive arbiter-PUF is proposed [17] where several stages of star-coils are
connected in various possible combinations to form a path through external jumpers
(manually connected during authentication) (as seen in Fig. 6.11). By varying the
jumper connection in accordance to a certain “challenge”, a corresponding response
unique to the path is obtained. The process can be repeated for different challenges
(paths) to get additional resonance frequency values. By comparing all these values
to the values stored in the database, a PCB can be authenticated with a high degree
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Fig. 6.11 Arbiter design-based PCB PUF [19]

of reliability. This PUF is considered as a strong-PUF due to its exponential increase
in CRPs with the increase in the number of rows and/or stages of coil PUFs. Note
that other types of passive structures (such as straight traces, comb traces) can also
be used in the individual PUF stage instead of the star-coil.

Aside from the abovementioned resonant frequency determination approach, the
arbiter-coil PUF can be used to measure the delay difference between the two paths
(with cascaded stages). As the rise/fall of the signal is directly proportional to
the capacitance and inductance of each individual coil, the cumulative effect will
provide an alternative means of authentication. To show proof of concept, Anirudh
et al. [19] show a 1 stage, 128 copy arbiter-coil-based delay PUF. A Gaussian
distribution on the R, L, and C obtained from allegro is incorporated into HSPICE
for the delay based analysis. The PUF signature is realized by exploiting the delay
difference between the two paths. By having 128 such copies, we are able to obtain
a 128-bit signature. It must be noted that the response in this example is static, and
does not vary in w.r.t. the challenge-response methodology. Additionally, care must
be taken to ensure correct termination to allow a reasonably accurate testing.

6.3.3 Qualitative and Quantitative Analysis

In order to perform inter- and intra-PCB HD, it is necessary to first determine
the min and max frequency between which the authentication signal frequency
will be swept. This is based on the calculated resonance frequency. The frequency
range between max and min is digitized with 2 N where N is the number of bits
in response. The resonance frequency of each PUF is associated with its digital
equivalent, i.e., min frequency is all 0 s and max frequency is all 1 s. This digitization
will require either an embedded hardware or an external digitizer. By comparing the
response generated between the various PCBs, the inter-PCB hamming distance
is observed. Next, the arbiter-coil-based delay PUF is subjected to an inter-die HD
analysis, additionally, by subjecting the PCB to temperature and moisture variations,
the intra-PCB HD can be obtained.
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6.4 Conclusions

PCB is a potential target of broad range of new attack vectors such as cloning,
Trojan insertion, Modchips, and reverse engineering. PCB authentication brings
new challenges that were absent in conventional IC authentication. We have shown
that clever localized modifications in PCB during design or fabrication can evade
conventional structural and functional testing. They can lead to malicious and often
catastrophic outcomes during field operation. We have also presented two possible
countermeasures through judicious trust validation and low-cost design approaches.
With growing complexity of multilayer PCBs including hidden vias and increasing
reliance on third-party resources, more complex Trojan attacks would become
feasible. Due to the widespread use of PCBs, their vulnerability to Trojan attacks
poses major concerns in trust and security of electronic products. Untrusted PCBs
can enable highly sophisticated and powerful attacks such as unauthorized access
to a system or wirelessly transmitting secret data. Aside from Trojan insertion,
piracy via counterfeiting of PCBs pose a significant threat as well. In this chapter
we presented a systematic methodology to authenticate the PCBs using PCB PUF.
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Detection: Logic Testing



Chapter 7
Logic Testing for Hardware Trojan Detection

Vidya Govindan and Rajat Subhra Chakraborty

7.1 Introduction

The issue of ensuring Trust has become one of the biggest challenges in the semi-
conductor integrated circuit (IC) industry [1, 2, 9]. This issue has become prominent
recently due to widespread outsourcing of the IC manufacturing processes to
untrusted foundries in order to reduce cost. It is estimated that a considerable
fraction of the ICs currently deployed and in circulation in the world are actually
counterfeit [15]. A greater threat is the threat of an adversary potentially tampering
a design in these fabrication facilities by the insertion of malicious circuitry termed
hardware Trojans. An intelligent adversary will try to hide such tampering by
ensuring that the IC’s functional behavior is modified in a way that makes it
extremely difficult to detect such tampering with conventional post-manufacturing
test [9]. Intuitively, it means that the adversary would ensure that such a tampering
is manifested or triggered under very rare conditions at the internal nodes, which
are unlikely to arise during test but can occur during long hours of field operation
[30].

Figure 7.1 shows general models and examples of Hardware Trojans. The
combinational Trojans as shown in Fig. 7.1a do not contain any sequential elements
and depend only on the simultaneous occurrence of a set of rare node conditions
(e.g., on nodes T1 through node Tn) to trigger a malfunction. The sequential Trojans
shown in Fig. 7.1b, on the other hand, undergo a sequence of state transitions (S1

through Sn) before triggering a malfunction. We refer to the condition(s) of inserted
hardware Trojan activation as the triggering condition and the node affected by the
hardware Trojan as its payload.
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Fig. 7.1 Generic model for combinational and sequential Trojan circuits and corresponding
examples. (a) Generic comb. Trojan. (b) Generic sequential Trojan. (c) Comb. Trojan example.
(d) Sequential Trojan example

In order to detect the existence of a Trojan using logic testing, it is important
not only to trigger a rare event at a set of internal nodes but also to propagate the
effect of such an event at the payload to an output node and observe it. Hence,
it is very challenging to solve the problem of Trojan detection using conventional
test generation and application, which are designed to detect manufacturing defects.
Most existing research on hardware Trojans mainly focuses on the modeling and
detection of hardware Trojans [7, 20, 26, 27, 29, 32]. A vast majority of the detection
mechanisms proposed till date utilize the anomaly in the side-channel signatures
(e.g., delay, transient, and leakage power) in the presence of hardware Trojan
in the circuit [5, 17, 29]. However, side-channel approaches are susceptible to
experimental and process variation noise. Thus, detection of small Trojans (less than
ten NAND-2 gate equivalents), especially combinatorial ones, becomes challenging
through these approaches. Another approach is to employ design modification
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techniques to either prevent Trojan insertion or to make inserted Trojans more easily
detectable [6, 27, 31].

Usually, it is assumed that the attacker will generate the trigger signal from a
combination of internal nets of the circuit whose transition probability is very low.
She may try to activate them simultaneously to their rare values thus achieving
an extremely low triggering probability. Based on this assumption, several Trojan
detection techniques have been proposed till date [8, 27] which try to activate the
Trojans either fully or partially by triggering the rare nodes, thus creating anomaly
at the output logic values or in some side-channel signals, viz., transient power.
In [27, 32], the authors proposed a design-for-testability (DFT) technique which
inserts dummy scan flip-flops to make the transition probability of low transition
nets higher in a special “authentication mode.” However, it was found that careful
attackers can evade this scheme easily [28]. Another powerful DFT technique is
obfuscating or encrypting the design by inserting some extra gates in it [6, 10], so
that the actual functionality of the circuit is hidden, consequently making it difficult
for an adversary to estimate the actual transition probabilities at the internal nodes.
However, such “logic encryption” schemes have also been broken [23].

In the sections that follow, we first propose a methodology, referred to as MERO
(multiple excitation of rare occurence) for statistical test generation and coverage
determination of hardware Trojans. The basic concept is to detect low probability
conditions at the internal nodes, select candidate Trojans triggerable by a subset
of these rare conditions, and then derive an optimal set of vectors that can trigger
each of the selected low probability nodes individually to their rare logic values
multiple times (e.g., at least N times, where N is a given parameter). The proposed
methodology is conceptually similar to N-detect test [3, 21] used in stuck-at ATPG
(automatic test pattern generation), where test set is generated to detect each single
stuck-at fault in a circuit by at least N different patterns, in the process improving
test quality and defect coverage [21]. We focus on digital Trojans [30], which can
be inserted into a design either in a design house (e.g., by untrusted CAD tool or IP)
or in a foundry. We do not consider the Trojans where the triggering mechanism or
effect is analog (e.g., thermal).

Since the proposed detection is based on functional validation using logic values,
it is robust with respect to parameter variations and can reliably detect very small
Trojans, e.g., the ones with few logic gates. Thus, the technique can be used as
complementary to the side-channel Trojan detection approaches [2, 4, 22] which
are more effective in detecting large Trojans (e.g., ones with area >0.1% of the total
circuit area).

Although MERO proposes a relatively simple heuristic for test generation, it
is found to have some shortcomings as discussed in [25]. To overcome these
shortcomings, later in this chapter, we propose an improved ATPG scheme to detect
small combinational and sequential hardware Trojans, which are otherwise often
difficult to detect by side-channel analysis or can bypass design modification-based
detection schemes. We note that for higher effectiveness, a test generation algorithm
for Trojan detection must simultaneously consider trigger coverage and Trojan
coverage. Firstly, we introduce a combined genetic algorithm (GA)- and Boolean
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satisfiability (SAT)-based approach for test pattern generation. GA has been used in
the past for fault simulation-based test generation [24]. GA is attractive for getting
reasonably good test coverage over the fault list very quickly, because of the inherent
parallelism of GA which enables relatively rapid exploration of a search space.
However, it does not guarantee the detection of all possible faults, specially for those
which are hard to detect. On the other hand, SAT-based test generation has been
found to be remarkably useful for hard-to-detect faults. However, it targets the faults
one by one and thus incurs higher execution time for easy-to-detect faults which
typically represent the majority of faults [11]. It has another interesting feature that
it can declare whether a fault is untestable or not.

In case of hardware Trojan, the number of candidate trigger combinations has
an exponential dependence on the number of rare nodes considered. Even if we
limit the number of Trojan inputs to four (because of VLSI design and side-channel
information leakage considerations), the count is quite large. Thus, we have a
large candidate trigger list, and it is not possible to handle each fault in that list
sequentially. However, many of these trigger conditions are not actually satisfiable
and thus cannot constitute a feasible trigger. Hence, we combine the “best of both
worlds” for GA- and SAT-based test generation. The rationale is that most of the
easy-to-excite trigger conditions, as well as a significant number of hard-to-excite
trigger conditions, will be detected by the GA within reasonable execution time.
The remaining unresolved trigger patterns are input to the SAT tool; if any of
these trigger conditions is feasible, then SAT returns the corresponding test vector.
Otherwise, the pattern will be declared unsolvable by the SAT tool itself. As we
show later, this combined strategy is found to perform significantly better than
MERO. In the second phase of the scheme, we refine the test set generated by
GA and SAT, by judging its effectiveness from the perspective of potency of the
triggered Trojans. For each feasible trigger combination found in the previous step,
we find most of the possible payloads using a fault simulator. For this, we model
the effect of each Trojan instance (defined by a combination of a feasible trigger
condition and the payload node) as a stuck-at fault and test whether the fault can
be propagated to the output by the same test vector which triggered the Trojan.
This step helps to find out a compact test set which remarkably improves the Trojan
coverage.

7.2 MERO Approach for Hardware Trojan Detection

As described in Sect. 7.1, the main concept of our test generation approach is based
on generating test vectors that can excite candidate trigger nodes individually to their
rare logic values multiple (at least N) times. In effect, the probability of activation
of a Trojan by the simultaneous occurrence of the rare conditions at its trigger nodes
increases. As an example, consider the Trojan shown in Fig. 7.1c. Assume that the
conditions a D 0, b D 1, and c D 1 are very rare. Hence, if we can generate a set
of test vectors that induce these rare conditions at these nodes individually N times
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where N is sufficiently large, then a Trojan with triggering condition composed
jointly of these nodes is highly likely to be activated by the application of this test
set. The concept can be extended to sequential Trojans, as shown in Fig. 7.1d, where
the inserted 3-bit counter is clocked on the simultaneous occurrence of the condition
ab0 D 1. If the test vectors can sensitize these nodes such that the condition ab0 D 1

is satisfied at least eight times (the maximum number of states of a 3-bit counter),
then the Trojan would be activated. Next, we present a mathematical analysis to
justify the concept.

7.2.1 Mathematical Analysis

Without loss of generality, assume that a Trojan is triggered by the rare logic values
at two nodes A and B, with corresponding probability of occurrence p1 and p2.
Assume T to be the total number of vectors applied to the circuit under test, such
that both A and B have been individually excited to their rare values at least N times.
Then, the expected number of occurrences of the rare logic values at nodes A and B
is given by EA D T �p1�N and EB D T �p2�N, which lead to:

T�
N

p1

and T�
N

p2

(7.1)

Now, let pj be the probability of simultaneous occurrence of the rare logic values at
nodes A and B, an event that acts as the trigger condition for the Trojan. Then, the
expected number of occurrences of this event when T vectors are applied is:

EAB D pj�T (7.2)

In the context of this problem, we can assume pj > 0, because an adversary is
unlikely to insert a Trojan which would never be triggered. Then, to ensure that
the Trojan is triggered at least once when T test vectors are applied, the following
condition must be satisfied:

pj�T�1 (7.3)

From inequality (7.1), let us assume T D c� N
p1

. where c�1 is a constant depending
on the actual test set applied. Inequality (7.3) can then be generalized as:

S D c�
pj

p1

�N (7.4)

where S denotes the number of times the trigger condition is satisfied during the test
procedure. From this equation, the following observations can be made about the
interdependence of S and N:
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1. For given parameters c, p1, and pj, S is proportional to N, i.e., the expected
number of times the Trojan trigger condition is satisfied increases with the
number of times the trigger nodes have been individually excited to their rare
values. This observation forms the main motivation behind the MERO test
generation approach for Trojan detection.

2. If there are q trigger nodes and if they are assumed to be mutually independent,
then pj D p1�p2�p3� � �pq, which leads to:

S D c�N�

qY

iD2

pi (7.5)

As pi < 1 8i D 1; 2; � � �q, hence, with the increase in q, S decreases for a
given c and N. In other words, with the increase in the number of trigger nodes,
it becomes more difficult to satisfy the trigger condition of the inserted Trojan for
a given N. Even if the nodes are not mutually independent, a similar dependence
of S on q is expected.

3. The trigger nodes can be chosen such that pi � � 8i D 1; 2; � � �q, so that � is
defined as a trigger threshold probability. Then as � increases, the corresponding
selected rare node probabilities are also likely to increase. This will result in
an increase in S for a given T and N, i.e., the probability of Trojan activation
would increase if the individual nodes are more likely to get triggered to their
rare values.

All of the above predicted trends were observed in our simulations, as shown in
Sect. 7.2.7.

7.2.2 Test Generation

Algorithm 7.1 shows the major steps in the proposed reduced test set generation
process for Trojan detection. We start with the golden circuit netlist (without any
Trojan), a random pattern set (V), list of rare nodes (L), and number of times to
activate each node to its rare value (N). First, the circuit netlist is read and mapped
to a hypergraph. For each node in L, we initialize the number of times a node
encounters a rare value (AR) to 0. Next, for each random pattern vi in V , we count
the number of nodes (CR) in L whose rare value is satisfied. We sort the random
patterns in decreasing order of CR. In the next step, we consider each vector in the
sorted list and modify it by perturbing one bit at a time. If a modified test pattern
increases the number of nodes satisfying their rare values, we accept the pattern in
the reduced pattern list. In this step we consider only those rare nodes with AR < N.
The process repeats until each node in L satisfies its rare value at least N times. The
output of the test generation process is a minimal test set that improves the coverage
for both combinational and sequential Trojans compared to random patterns.
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Algorithm 7.1 Procedure MERO
Generate reduced test pattern set for Trojan detection
Inputs: Circuit netlist, list of rare nodes (L) with associated rare values, list of random patterns
(V), number of times a rare condition should be satisfied (N)
Outputs: Reduced pattern set (RV )

1: Read circuit and generate hypergraph
2: for all nodes in L do
3: set number of times node satisfies rare value (AR) to 0
4: end for
5: set RV D ˚

6: for all random pattern in V do
7: Propagate values
8: Count the # of nodes (CR) in L with their rare value satisfied
9: end for

10: Sort vectors in V in decreasing order of CR

11: for all vector vi in decreasing order of CR do
12: for all bit in vi do
13: Perturb the bit and recompute # of satisfied rare values (C

0

R)
14: if (C

0

R > CR) then
15: Accept the perturbation and form v

0

i from vi

16: end if
17: end for
18: Update AR for all nodes in L due to vector vi

19: if v
0

i increases AR for at least one rare node then
20: Add the modified vector v

0

i to RV

21: end if
22: if (AR�N) for all nodes in L then
23: break
24: end if
25: end for

7.2.3 Coverage Estimation

Once the reduced test vector set has been obtained, computation of Trigger and
Trojan coverage can be performed for a given trigger threshold (� ) (as defined
in Sect. 7.2.1) and a given number of trigger nodes (q) using a random sampling
approach. From the Trojan population, we randomly select a number of q-trigger
Trojans, where each trigger node has signal probability less than equal � . We
assume that Trojans comprising of trigger nodes with higher signal probability than
� will be detected by conventional test. From the set of sampled Trojans, Trojans
with false trigger conditions which cannot be justified with any input pattern are
eliminated. Then, the circuit is simulated for each vector in the given vector set
and checked whether the trigger condition is satisfied. For an activated Trojan, if
its effect can be observed at the primary output or scan flip-flop input, the Trojan
is considered “covered,” i.e., detected. The percentages of Trojans activated and
detected constitute the trigger coverage and Trojan coverage, respectively.
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7.2.4 Choice of Trojan Sample Size

In any random sampling process, an important decision is to select the sample size
in a manner that represents the population reasonably well. In the context of Trojan
detection, it means further increase in sampled Trojans renders negligible change in
the estimated coverage. Figure 7.2 shows a plot of percentage deviation of trigger
and Trojan coverage (q D 4) from the asymptotic value for two benchmark circuits
with varying Trojan sample size. From the plots, we observe that the coverage
saturates with nearly 100,000 samples, as the percentage deviation tends to zero.
To compromise between accuracy of estimated coverage and simulation time, we
have selected a sample size of 100,000 in our simulations.

7.2.5 Choice of N

Figure 7.3 shows the trigger and Trojan coverage for two ISCAS-85 benchmark
circuits with increasing values of N, along with the lengths of the corresponding
test set. From these plots, it is clear that similar to N-detect tests for stuck-at fault
where defect coverage typically improves with increasing N, the trigger and Trojan
coverage obtained with the MERO approach also improves steadily with N, but then
both saturate around N D 200 and remain nearly constant for larger values of N.
As expected, the test size also increases with increasing N. We chose a value of
N D 1000 for most of our experiments to reach a balance between coverage and
test vector set size.

Fig. 7.2 Impact of sample size on trigger and Trojan coverage for benchmarks c2670 and c3540,
N D 1000 and q D 4: (a) deviation of trigger coverage, and (b) deviation of Trojan coverage
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Fig. 7.3 Impact of N (number of times a rare point satisfies its rare value) on the trigger/Trojan
coverage and test length for benchmarks (a) c2670 and (b) c3540

7.2.6 Improving Trojan Detection Coverage

As noted in previous sections, Trojan detection using logic testing involves simul-
taneous triggering of the Trojan and the propagation of its effect to output nodes.
Although the proposed test generation algorithm increases the probability of Trojan
activation, it does not explicitly target increasing the probability of a malicious
effect at payload being observable. MERO test patterns, however, achieve significant
improvement in Trojan coverage compared to random patterns, as shown in
Sect. 7.2.7. This is because the Trojan coverage has strong correlation with trigger
coverage. To increase the Trojan coverage further, one can use the following low-
overhead approaches.

1. Improvement of test quality: We can consider number of nodes observed along
with number of nodes triggered for each vector during test generation. This
means, at steps 13–14 of algorithm 7.1, a perturbation is accepted if the sum
of triggered and observed nodes improves over previous value. This comes at
extra computational cost to determine the number of observable nodes for each
vector. We note that for a small ISCAS benchmark c432 (an interrupt controller),
we can improve the Trojan coverage by 6.5% with negligible reduction in trigger
coverage using this approach.

2. Observable test point insertion: We note that insertion of very few observable
test points can achieve significant improvement in Trojan coverage at the cost
of small design overhead. Existing algorithm for selecting observable test points
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for stuck-at fault test [13] can be used here. Our simulation with c432 resulted
in about 4% improvement in Trojan coverage with five judiciously inserted
observable points.

3. Increasing N and/or increasing the controllability of the internal nodes: Internal
node controllability can be increased by judiciously inserting few controllable
test points or increasing N. It is well-known in the context of stuck-at ATPG,
that scan insertion improves both controllability and observability of internal
nodes. Hence, the proposed approach can take advantage of low-overhead design
modifications to increase the effectiveness of Trojan detection.

7.2.7 Results

7.2.7.1 Simulation setup

We have implemented the test generation and the Trojan coverage determination in
three separate C programs. All the three programs can read a Verilog netlist and
create a hypergraph from the netlist description. The first program, named as RO-
Finder (Rare Occurence Finder), is capable of functionally simulating a netlist for
a given set of input patterns, computing the signal probability at each node and
identifying nodes with low signal probability as rare nodes. The second program
MERO implements algorithm-7.1 described in Sect. 7.2.2 to generate the reduced
pattern set for Trojan detection. The third program, TrojanSim (Trojan Simulator),
is capable of determining both trigger and Trojan coverage for a given test set using
random sample of Trojan instances. A q-trigger random Trojan instance is created
by randomly selecting the trigger nodes from the list of rare nodes. We consider one
randomly selected payload node for each Trojan. Figure 7.4 shows the flowchart
for the MERO methodology. Synopsys TetraMAX was used to justify the trigger
condition for each Trojan and eliminate the false Trojans. All simulations and test
generation were carried out on a Hewlett-Packard Linux workstation with a 2 GHz
dual-core Intel processor and 2 GB RAM.

7.2.7.2 Comparison with Random and ATPG Patterns

Table 7.1 lists the trigger and Trojan coverage results for a set of combinational
(ISCAS-85) and sequential (ISCAS-89) benchmarks using stuck-at ATPG patterns
(generated using the algorithm in [19]), weighted random patterns, and MERO test
patterns. It also lists the number of total nodes in the circuit and the number of rare
nodes identified by RO-Finder tool based on signal probability. The signal probabil-
ities were estimated through simulations with a set of 100,000 random vectors. For
the sequential circuits, we assume full-scan implementation. We consider 100,000
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Fig. 7.4 Integrated framework for rare occurrence determination, test generation using MERO
approach, and Trojan simulation

random instances of Trojans following the sampling policy described in Sect. 7.2.4,
with one randomly selected payload node for each Trojan. Coverage results are
provided in each case for two different trigger point counts, q D 2 and q D 4, at
N D 1000 and � D 0:2.

Table 7.2 compares reduction in the length of the testset generated by the MERO
test generation method with 100,000 random patterns, along with the corresponding
run-times for the test generation algorithm. This run-time includes the execution
time for Tetramax to validate 100,000 random Trojan instances, as well as time to
determine the coverage by logic simulation. We can make the following important
observations from these two tables:

1. The stuck-at ATPG patterns provide poor trigger and Trojan coverage compared
to MERO patterns. The increase in coverage between the ATPG and MERO
patterns is more significant in case of higher number of trigger points.

2. From Table 7.2, it is evident that the reduced pattern with N D 1000 and � D 0:2

provides comparable trigger coverage with significant reduction in test length.
The average improvement in test length for the circuits considered is about 85%.
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Table 7.2 Reduction in test length with MERO approach compared to 100 K random patterns
along with runtime, q D 2, N D 1000, � D 0:2

Ckt. MERO test length % Reduction Run-time (s)

c2670 8254 91:75 30;051:53

c3540 14;947 85:05 9403:11

c5315 10;276 89:72 80;241:52

c6288 5014 94:99 15;716:42

c7552 12;603 87:40 160;783:37

s13207a 26;926 73:07 23;432:04

s15850a 32;775 67:23 39;689:63

s35932a 5480 94:52 29;810:49

Avg. 14;534 85:47 48;641:01
aThese sequential benchmarks were run with 10,000 random Trojan instances to reduce run time
of Tetramax

3. Trojan coverage is consistently smaller compared to trigger coverage. This
is because in order to detect a Trojan by applying an input pattern, besides
satisfying the trigger condition, one needs to propagate the logic error at the
payload node to one or more primary outputs. In many cases although the trigger
condition is satisfied, the malicious effect does not propagate to outputs. Hence,
the Trojan remains triggered but undetected.

7.2.7.3 Effect of Number of Trigger Points (q)

The impact of q on coverage is evident from the Fig. 7.5, which shows the decreasing
trigger and Trojan coverage with the increasing number of trigger points for two
combinational benchmark circuits. This trend is expected from the analysis of
Sect. 7.2.1. Our use of TetraMAX for justification and elimination of the false
triggers helped to improve the Trojan coverage.

7.2.7.4 Effect of Trigger Threshold (™)

Figure 7.6 plots the trigger and Trojan coverage with increasing � for two ISCAS-
85 benchmarks, at N D 1000 and q D 4. As we can observe, the coverage values
improve steadily with increasing � while saturating at a value above 0.20 in both the
cases. The improvement in coverage with � is again consistent with the conclusions
from the analysis of Sect. 7.2.1.
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Fig. 7.5 Trigger and Trojan
coverage with varying
number of trigger points (q)
for benchmarks (a) c3540 and
(b) c7552, at N D 1000,
� D 0:2

7.2.7.5 Sequential Trojan Detection

To investigate the effectiveness of the MERO test generation methodology in
detecting sequential Trojans, we designed and inserted sequential Trojans modeled
following Fig. 7.1d, with 0, 2, 4, 8, 16, and 32 states, respectively (the case with
zero states refers to a combinational Trojan following the model of Fig. 7.1c).
A cycle-accurate simulation was performed by our simulator TrojanSim, and the
Trojan was considered detectable only when the output of the golden circuit and the
infected circuit did not match. Table 7.3 presents the trigger and Trojan coverage,
respectively, obtained by 100,000 randomly generated test vectors and the MERO
approach for three large ISCAS-89 benchmark circuits. The superiority of the
MERO approach over the random test vector generation approach in detecting
sequential Trojans is evident from this table.

Although these results have been presented for a specific type of sequential
Trojans (counters which increase their count conditionally), they are representative
of other sequential Trojans whose state transition graph (STG) has no “loop.” The
STG for such a FSM has been shown in Fig. 7.7. This is an eight-state FSM which
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Fig. 7.6 Trigger and Trojan
coverage with trigger
threshold (� ) for benchmarks
(a) c3540 and (b) c7552, for
N D 1000, q D 4

changes its state only when a particular internal node condition Ci is satisfied at state
Si, and the Trojan is triggered when the FSM reaches state S8. The example Trojan
shown in Fig. 7.1d is a special case of this model, where the conditions C1 through
C8 are identical. If each of the conditions Ci is as rare as the condition a D 1; b D 0

required by the Trojan shown in Fig. 7.1d, then there is no difference between these
two Trojans as far as their rareness of getting triggered is concerned. Hence, we can
expect similar coverage and test length results for other sequential Trojans of this
type. However, the coverage may change if the FSM structure is changed (as shown
with dotted line). In this case, the coverage can be controlled by changing N.

7.2.7.6 Application to Side-Channel Analysis

As observed from the results presented in this section, the MERO approach can
achieve high trigger coverage for both combinational and sequential Trojans.
This essentially means that the MERO patterns will induce activity in the Trojan
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Fig. 7.7 FSM model with no loop in state transition graph

triggering circuitry with high probability. A minimal set of patterns that is highly
likely to cause activity in a Trojan is attractive in power- or current signature-based
side-channel approach to detect hardware Trojan [2, 4, 22]. The detection sensitivity
in these approaches depends on the induced activity in the Trojan circuit by applied
test vector. It is particularly important to enhance sensitivity for the Trojans where
the leakage contribution to power by the Trojan circuit can be easily masked by
process or measurement noise. Hence, MERO approach can be extended to generate
test vectors for side-channel analysis, which requires amplifying the Trojan impact
on side-channel parameter such as power or current. More detailed work on test
vector generation using side-channel analysis can be found in [16] which focuses
on statistical test generation for increasing the sensitivity of side-channel-based
hardware Trojan detection.

7.2.8 Shortcomings of MERO

Although MERO proposes a relatively simple heuristic for test generation, it is found
to have the following shortcomings:

1. When tested on a set of “hard-to-trigger” Trojans (with triggering probability in
the range of 10�6 or less), the test vector set generated by MERO was found to
have poor coverage both over triggering combinations and Trojans. Figure 7.8b
presents the variation of trigger and Trojan coverage with the rareness threshold
(� ) value for the ISCAS–85 circuit c7552, where the Trojan trigger probability
is the effective Trojan triggering probability considering all the nodes together,
unlike in [8], which considered trigger probability at individual nodes (see
Fig. 7.8a). It was found that best coverage was achieved for � in the range 0.08–
0.12, and this trend was consistent for all the benchmark circuits considered.
However, the best achievable coverage was still below 50%, for even circuits of
moderate size like c7552.

2. Although individual activation of each individual rare nodes at least N-times
increases the activation probability of rare node combinations on average, there
is always a finite probability that combinations with extremely low activation
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Fig. 7.8 Motivational example: variation of trigger and Trojan coverage with rareness threshold
(� ) by the MERO [8] technique for c7552 (a) on sets of Trojans considered as in [8]; (b) on a set
of rarely triggered Trojans (effective triggering probability below 10�6)

probability will not be triggered for a given value of N. As a result, even for
small ISCAS–85 circuits like c432, the MERO test generation method misses
some rare node patterns even after several independent runs. This fact can be
utilized by an intelligent adversary.

3. MERO explores a relatively small numbers of test vectors, as the heuristic
perturbs only a single bit at a time of an obtained test vector to generate new
test vectors.

4. Another problem with the MERO algorithm is that, while generating the test
vectors, it only considers the activation of the triggering conditions and
ignores whether the triggered Trojan actually caused any logic malfunction
at the primary output of the circuit under test.

In order to rectify the abovementioned shortcomings, we developed an improved
test pattern generation for hardware Trojan detection using genetic algorithm and
Boolean satisfiability which is discussed in the following section.

7.3 GA- and SAT-Based Approach for Hardware
Trojan Detection

7.3.1 Hardware Trojan Models

We consider simple combinational and sequential hardware Trojans, where a
hardware Trojan instance is triggered by the simultaneous occurrence of rare logic
values at one or more internal nodes of the circuit. We find the rare nodes (R)
of the circuit with a probabilistic analysis. Details of this analysis can be found
in [27, 32]. Once activated, the Trojan flips the logic value at an internal payload
node. Figure 7.9 shows the type of Trojans considered by us.



7 Logic Testing for Hardware Trojan Detection 167

Fig. 7.9 Example of (a) combinational and (b) sequential (counter-like) Trojan. The combina-
tional Trojan is triggered by the simultaneous occurrence of logic–1 at two internal nodes. The
sequential (counter-like) Trojan is triggered by 2k positive (0 ! 1) transitions at the input of the
flip-flops

Notice that it is usually infeasible to enumerate all hardware Trojans in a given
circuit. Hence, we are forced to restrict ourselves to analysis results obtained
from a randomly selected subset of Trojans. The cardinality of the set of Trojans
selected depends on the size of the circuit being analyzed. Since we are interested
only in small Trojans, a random sample S of up to four rare node combinations
is considered. Let us denote the set of rare nodes as R, with jRj D r for a
specific rareness threshold (� ). The set of all possible rare node combinations is
then the power set of R, denoted by 2R/. Thus, the population of Trojans under
consideration is the set K, where K � 2R and jKj is

�r
1

�
C

�r
2

�
C

�r
3

�
C

�r
4

�
. Thus,

S � K.
We intentionally chose � D 0:1 for our experiments, which is lower than the

value considered in [8] for MERO(� D 0:2). The choice is based on the observed
coverage trends of our experiments on “hard-to-trigger” Trojans in Sect. 7.1, where
it was observed that the coverage is maximized for � values in the range 0.08–0.12
for most ISCAS benchmark circuits.

7.3.2 Genetic Algorithm (GA) for ATPG

Genetic algorithm (GA) is a well-known bio-inspired, stochastic, evolutionary
search algorithm based upon the principles of natural selection [14]. GA has been
widely used in diverse fields to tackle difficult non-convex optimization problems,
both in discrete and continuous domains. In GA, the quality of a feasible solution
is improved iteratively, based on computations that mimic basic genetic operations
in the biological world. The quality of the solution is estimated by evaluating the
numerical value of an objective function, usually termed the “fitness function” in
GA. In the domain of VLSI testing, it has been successfully used for difficult test
generation and diagnosis problems [24]. In the proposed scheme, GA has been used
as a tool to automatically generate quality test patterns for Trojan triggering. During
test generation using GA, two points were emphasized:
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– an effort to generate test vectors that would activate the most number of sampled
trigger combinations

– an effort to generate test vectors for hard-to-trigger combinations

However, as mentioned in the previous section, the major effort for GA was
dedicated to meet the first objective.

To meet both of the goals, we used a special data structure as well as a proper
fitness function. The data structure is a hash table which contains the triggering
combinations and their corresponding activating test vectors. Let S denote the
sampled set of trigger conditions being considered. Each entry in the hash table (D)
is a tuple (s, ftig), where s 2 S is a trigger combination from the sampled set (S)
and ftig is the set of distinct test vectors activating the trigger combination s. Note
that, a single test vector ti may trigger multiple trigger combinations and thus can
be present multiple times in the data structure for different trigger combinations (s).
The data structure is keyed with trigger combination s. Initially, D is empty; during
the GA run, D is updated dynamically, whenever new triggering combinations from
S are found to be satisfied. The fitness function is expressed as:

f .t/ D Rcount.t/ C w � I.t/ (7.6)

where f .t/ is the fitness value of a test vector t, Rcount.t/ counts the number of
rare nodes triggered by the test vector t, w (> 1) is a constant scaling factor, and
I.t/ is a function which returns the relative improvement of the database D due
to the test vector t. The term “relative improvement of the database” (I.t/) can be
explained as follows. Let us interpret the data structure D as a histogram where the
bins are defined by unique trigger combinations s 2 S , and each bin contains its
corresponding activating test vectors ftig. Before each update of the database, we
calculate the number of test patterns in each bin which is to be updated. The relative
improvement is defined as:

I.t/ D
n2.s/ � n1.s/

n2.s/
(7.7)

where n1.s/ is the number of test patterns in bin s before update and n2.s/ is the
number of test patterns in bin s after update.

Note that for each test pattern t that enters the database D, the numerator will
be either 0 or 1 for an arbitrary trigger combination s. However, the denominator
will have larger values with the minimum value being 1. Thus, for any bin s, when
it gets its 1st test vector, the abovementioned ratio achieves the maximum value 1,
whereas when a bin gets its nth test vector, the fraction is 1

n . The value gradually
decreases as the number of test vectors in s increases. This implies that as a newer
test vector is generated, its contribution is considered more important if it has
been able to trigger a yet unactivated trigger condition s than if it activates
a trigger condition that has already been activated by other test vector(s).
Note that, for bins s having zero test vectors before and after update (i.e., trigger
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conditions which could not be activated at the first try), we assign a very small value
10�7 for numerical consistency. The scaling factor w is proportional to the relative
importance of the relative improvement term; in our implementation, w was set to
have the value 10.

The rationale behind the two terms in the fitness function is as follows. The
first term in the fitness function prefers test patterns that simultaneously activate
as many trigger nodes as possible, thus recording test vectors each of which can
potentially cover many trigger combinations. The inclusion of the second term
has two effects. Firstly, the selection pressure of GA is set toward hard-to-activate
patterns by giving higher fitness value to those test patterns that are capable of hard-
to-trigger conditions. Secondly, it also helps the GA to explore the sampled trigger
combination space evenly. To illustrate this, let us consider the following example.

Suppose, we have five rare nodes r1; r2; r3; r4; r5. We represent the activation of
these five nodes by a binary vector r of length five, where ri D 1 denotes that the ith

rare node has been activated to its rare value and ri D 0 otherwise. Thus, a pattern
11110 implies the scenario where the first four rare nodes have been simultaneously
activated. Now, the test vector t, which generates this rare node-triggering pattern,
also triggers the patterns 10000, 01000, 00100, 00010, 11000, : : : , 11100, i.e., any
subset of the triggered rare nodes. Mathematically, if there are in total r rare nodes
and r0 rare nodes are simultaneously triggered in a pattern (r0 < r) by a test
vector t, then the 2r0

subsets of the triggered rare nodes are also triggered by the
same test vector. Hence, maximizing r0 increases the coverage over the trigger
combination sample set.

The test generation problem is modeled as a maximization problem and solved
using a variation of GA termed binary genetic algorithm (BGA) [14]. Each
individual in the population is a bit pattern called a “chromosome,” which represents
an individual test vector. Two operations generate new individuals by operating on
these chromosomes: crossover and mutation. Crossover refers to the exchange of
parts of two chromosomes to generate new chromosomes, while mutation refers
to the random (probabilistic) flipping of bits of the chromosomes to give rise to
new behavior. Figure 7.10 shows examples of a two-point crossover and mutation

Fig. 7.10 Example of two–point crossover and mutation in Binary Genetic Algorithm
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in BGA. We used a two-point crossover and binary mutation, with a crossover
probability of 0:9 and mutation probability of 0:05, respectively. The collection
of individuals at every iteration is termed a population. A population size of 200

was used for combinatorial circuits and 500 for sequential circuits. Two terminating
conditions were used: (i) when the total number of distinct test vectors in the
database crosses a certain threshold value #T or (ii) if 1000 generations had been
reached. The initialization of the population is done by test vectors satisfying some
rare node combinations from the sample set. These rare node combinations are
randomly selected, and the test vectors were found using SAT tools (details are given
in the following subsection). Algorithm-7.2 shows the complete test generation
scheme using GA. Notice that the initial test vector population is generated by
solving a small number of triggering conditions using SAT.

Among the sampled trigger instances, many might not be satisfiable, as we do not
have any prior information about them. Moreover, although GA traverses the given
trigger combination sample space reasonably rapidly, it cannot guarantee to be able
to generate test vectors that would activate all the hard-to-trigger patterns. Thus,
even after the GA test generation step, we were left with some trigger combinations
among which some are not satisfiable and others are extremely hard to detect.
However, as the number of such remaining combinations is quite less (typically
5–10% of the selected samples), we can apply SAT tools to solve them. We next
describe the application of SAT in our ATPG scheme.

7.3.3 SAT for Hard-to-Activate Trigger Conditions

Boolean satisfiability (SAT) tools are being used to solve ATPG problems since the
last decade [11]. They are found to be robust, often succeeding to find test patterns
in large and pathological ATPG problems, where traditional ATPG algorithms have
been found wanting. Unlike classical ATPG algorithms, SAT solver-based schemes
do not work on the circuit representation (e.g., netlist of logic gates) directly.
Instead, they formulate the test pattern generation problem as one or more SAT
problems. A n-variable Boolean formula f .x1; x2; : : : ; xn/ in conjunctive normal
form (CNF) is said to be satisfiable if there exists a value assignment for the n
variables, such that f D 1. If no such assignment exists, f is said to be unsatisfiable.
Boolean satisfiability is an NP-complete problem. Sophisticated heuristics are used
to solve SAT problems, and powerful SAT solver software tools have become
available in recent times (many of them are free). The ATPG problem instance is
first converted into a CNF and then input to a SAT solver. If the solver returns a
satisfiable assignment within a specified time, the problem instance is considered to
be satisfiable and unsatisfiable, otherwise.

As mentioned previously, we apply the SAT tool only for those trigger combina-
tions for which GA fails to generate any test vector. Let us denote the set of such
trigger combinations as S 0 � S . We consider each trigger combination s 2 S 0 and
input it to the SAT tool. This SAT problem formulation is illustrated by an example
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Algorithm 7.2 TESTGEN_GA
/* Generate Triggering Test Vectors Using Genetic Algorithm */
Input: Circuit Netlist, Set of rare nodes (R), Set of sampled trigger combinations (S), Gmax, Tmax,

crossover probability, mutation probability, (empty) trigger database (D)
Output: Data structure (D) filled with triggering test vectors, set of unsatisfied trigger combina-

tions (S0 � S)
1: Fill D with tuples (s, �), 8s 2 S
2: Select a random subset Sinit � S, such that jSinitj D k � jSj
3: /* k is 0:025 for combinatorial and 0:055 for sequential circuits */
4: Solve all trigger combinations s 2 Sinit using SAT tool and generate corresponding set of test

vectors (Tinit)
5: Update D with tuples (s, t). where s 2 Sinit and t 2 Tinit

6: set vectcount jTinitj
7: set gencount 0

8: set S0  �

9: Initialize the population of GA (P) with Tinit.
10: repeat
11: for all t 2 P do
12: Simulate the circuit with test vector t and find the corresponding rare node activation

pattern (r).
13: Search D for all triggering patterns covered by r.
14: Compute the fitness using Eq. 7.6
15: Update D with all tuples (s; t), where s is a triggering pattern covered by r.
16: set vectcount vectcount C 1

17: end for
18: Perform Crossover on P
19: Perform Mutation on P
20: Update P with the best individuals
21: set gencount gencount C 1

22: until (gencount � Gmax jj vectcount � Tmax)
23: for all .s; ftig/ 2 D do
24: if (ftig D �) then
25: Include s in S0

26: end if
27: end for

in Fig. 7.11. Let us consider the three rare nodes shown in Fig. 7.11a with their rare
values. To create a satisfiability formula which simultaneously activates these three
nodes to their rare value, we construct the circuit shown in Fig. 7.11b. The SAT
instance is thus formed which tries to achieve a value 1 at wire (node) d.

After completion of this step, most trigger combinations in the set S 0 will be
found to be satisfiable by the SAT tool, which will also return the corresponding
test vectors. However, some of the trigger combinations will still remain unsolved,
which would be lebelled as unsatisfiable. Thus the set S 0 is partitioned into two
disjoint subsets Ssat and Sunsat. The first subset is accepted, and the data structure D
is updated with the patterns in this subset, whereas the second subset is discarded.
This part of the flow has been summarized in algorithm-7.3.
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Fig. 7.11 Illustration: formulation of a SAT instance which activates three rare nodes simultane-
ously

Algorithm 7.3 TESTGEN_SAT
/* Solve the triggering patterns which remain unsolved by GA (S0) using SAT tool
*/
Input: Set of triggering patterns unsolved by GA (S0), Data structure D
Output: Updated D with triggering patterns generated by SAT tool
1: for all s 2 S0 do
2: Input the triggering combination to SAT tool.
3: if (SAT(s) = SOLVED) then
4: Retrieve corresponding test vector t.
5: Update D with tuple .s; t/
6: Ssat  fsg
7: else
8: Sunsat  fsg
9: end if

10: end for

As the basic ATPG mechanism now in place, we next describe the refinement of
the scheme to take the impact of the payload into consideration and also achieve test
compaction in the process.

7.3.4 Payload Aware Test Set Selection and Test Compaction

7.3.4.1 Payload Aware Test Vector Selection

Finding out proper trigger-payload pairs to enumerate feasible hardware Trojan
instances a is nontrivial computational problem. In combinational circuits, one
necessary condition for a node to be a payload is that its topological rank must be
higher than the topologically highest node of the trigger combination, otherwise
there is a possibility of forming a “combinational loop”; however, this is not a
sufficient condition. In general, a successful Trojan triggering event provides no
guarantee regarding its propagation to the primary output to cause functional failure
of the circuit. As an example, let us consider the circuit of Fig. 7.12a. The Trojan
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Fig. 7.12 Impact of Trojan payload selection: (a) golden circuit; (b) payload-1 which has no effect
on output; (c) payload-2 which has effect on the output

Fig. 7.13 PTV generation example: Triggering pattern (left); Corresponding set of test vectors
(center); Generated PTV (right)

is triggered by an input vector 1111. Figure 7.12b, c show two potential payload
positions. It can be easily seen that independent of the applied test vector at in circuit
input, for position-1 the Trojan effect gets masked and cannot be detected. On the
other hand, the Trojan effect at position 2 can be detected.

It is important to identify, for each trigger combination, the constrained primary
input values. For this, we consider each trigger combination and their corresponding
set of trigger test vectors at a time. To be precise, we consider the entries (s,
ftig) from the database D, one at a time. Let us denote the set of test vectors
corresponding to a specific s as fts

i g. Next, for each test vector t 2 fts
i g, we find out

which of the primary inputs, if any, remains static at a specific value (either logic
0 or logic 1). These input positions are the positions needed to be constrained to
trigger the triggering combination. We fill the rest of the input positions with don’t-
care (X) values, thus creating a single test vector containing 0, 1, and X values.
We call such three-valued vectors pseudo test vector (PTV). Figure 7.13 illustrates
the process of PTV generation with a simple example, where the leftmost and the
rightmost positions of the vectors are at logic-1.

At the next step, we perform a three-valued logic simulation of the circuit with
the PTV and note down values obtained at all the internal wires (nodes) which are at



174 V. Govindan and R.S. Chakraborty

Algorithm 7.4 SELECT_TEST_VECT
/* Select Payload Aware test vectors */
Input: Data structure D, circuit netlist
Output: Final test set (Tfinal)
1: set Tfinal  �

2: for all .s; ftig/ 2 D do
3: Retrieve the test vector set ftig
4: Compute the corresponding PTV
5: do 3-value logic simulation and create the initial fault list Fs

6: if jfts
i gj > 5 then

7: set Testset fts
i g

8: else
9: Generate extra test vectors fts

extg by randomly filling the X positions of the PTV
10: Simulate the circuit with fts

extg and keep vectors satisfying s
11: set Testset fts

i g [ ft
s
extg

12: end if
13: do fault simulation using HOPE with inputs Fs and Testset
14: Retrieve F s

detected � Fs and Testsetdetected � Testset
15: Keep the subset Testsetcomp of Testsetdetected , which completely covers F s

detected .
16: set Tfinal  Testsetcomp

17: end for
18: return Tfinal

topologically higher positions from the nodes in the trigger combination. Then for
each of these nodes, we consider a stuck-at fault according to the following rule:

1. If the value at that node is 1, we consider a stuck-at-zero fault there.
2. If the value at that node is 0, we consider a stuck-at-one fault there.
3. If the value at that node is X, we consider a both stuck-at-one and stuck-at-zero

fault at that location.

At the next step, this fault list (Fs) and the set of test vectors considered
(fts

i g) are inputs to a fault simulator. We used the HOPE [18] fault simulator in
diagnostic mode for this purpose. The output will be the set of faults that are
detected (F s

detected � Fs) as well as the corresponding test vectors which detect
them. The detected faults constitute the list of potential payload positions for the
trigger combination. Thus, after detecting the feasible payloads, we greedily select
a subset of the test vector set Ts � fts

i g which achieves complete coverage for
the entire fault list. The test vectors belonging to the rest of fts

i g, i.e., fts
i g � Ts,

can be discarded to be redundant. Although a greedy selection, we found that this
step reduces the overall test set size significantly. Further test compaction can be
achieved, at the cost of additional computational overhead, using specialized test
compaction schemes (Fig. 7.14).

One important point worth noting is that it is not guaranteed by the proposed test
generation scheme that all possible test vectors which trigger a particular trigger
combination will get generated. As the fault list (Fs) is calculated only based
on the test vectors in fts

i g, it might not cover all possible payloads for a trigger
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Fig. 7.14 The complete test generation and evaluation flow

combination s. However, for each test vector t 2 fts
i g, it is guaranteed that all

feasible payloads will be enumerated. Further, it can be deterministically decided
if a test vector t 2 fts

i g will have any payload or not. In fact, for most of the
trigger combinations, we got test vectors which are either redundant or doesn’t have
any payload. It is also observed that the number of test vectors for some hard-to-
activate trigger combinations is really low (typically 1–5 vectors). For these cases,
the fault coverage may be poor and many payloads for the trigger combination
remain unexplored. To resolve this issue, we add some extra test vectors derived
by filling the don’t-care bits (if any) of the PTV. This is only done for those
trigger combinations for which the number of triggering vectors is less than five.
These newly generated vectors are needed to be checked by simulation so that they
successfully trigger the corresponding triggering combination, before their inclusion
to the test set fts

i g. This step is found to improve the test coverage. The compacted
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test vector selection scheme is described in algorithm-7.4. At the end of this step,
we obtain a compact set of test vectors with high trigger and Trojan coverage.

7.3.4.2 Evaluation of Effectiveness

It is reasonable to assume that an attacker will be only interested in Trojans with
low effective triggering probability, irrespective of the individual rareness values of
the constituent rare nodes. Thus, a natural approach for an attacker would be to rank
the Trojans according to their triggering probability and select Trojans which are
below some specific triggering threshold (Ptr). Intuitively, an attacker may choose
the Trojan which is rarest among all, but it may lead to easy detection as very
rare Trojans are often found to be significantly small in number and are expected
to be well tracked by the tester. Thus, a judicious attacker would select a Trojan
that will remain well-hidden in the pool of Trojans but achieves extremely low
triggering probability at the same time. To simulate the abovementioned behavior
of the attacker, we first select new samples of candidate Trojans from the Trojan
space with varying range of � values. We denote each of such samples as S�

test and
ensure that jS�

testj D jSj. Subsequently, each of these sets is refined by the SAT
tool by selecting only feasible Trojans. By feasible Trojans we mean the Trojans
which are triggerable and whose impacts are visible at the outputs. We denote the
set of such feasible Trojan sets obtained for different � values as fS f

testg. Next, we
filter out Trojans from these sets which are below a specified triggering threshold
Ptr. Finally, all these subsets are combined to form a set of Trojans S tr

test. This set
contains Trojans whose triggering probabilities are below Ptr and is used for the
evaluation of the effectiveness of the proposed methodology. The value of Ptr is set
to 10�6 based on the observation that for most of the benchmark circuits considered,
there are roughly 30% Trojans which have triggering probabilities below 10�6. Also,
below the range (10�7 � 10�8), the number of Trojans is extremely low, which may
leave the attacker only with a few options.

7.3.5 Results and Discussion

7.3.5.1 Experimental Setup

The test generation schemes, including the GA and the evaluation framework, were
implemented using C++. We used the zchaff SAT solver [12] and HOPE fault
simulator [18]. We restricted ourselves to a random sample of 100;000 trigger
combinations [8], each having up to four rare nodes as trigger nodes. We also
implemented the MERO methodology side by side for comparison. We evaluated
the effectiveness of the proposed scheme on a subset of ISCAS-85 and ISCAS-89
benchmark circuits, with all ISCAS-89 sequential circuits converted to full-scan
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Table 7.4 Comparison of the proposed scheme with MERO with respect to testset length

Ckt. Gates
Testset
(before Algo.-3)

Testset
(after Algo.-3) Testset (MERO) Runtime (sec.)

c880 451 6674 5340 6284 9798:84

c2670 776 10;420 8895 9340 11;299:74

c3540 1134 17;284 16;278 15;900 15;720:19

c5315 1743 17;022 14;536 15;850 15;877:53

c7552 2126 17;400 15;989 16;358 16;203:02

s15850 9772 37;384 37;052 36;992 17;822:67

s35932 16,065 7849 7078 7343 14;273:09

s38417 22,179 53;700 50;235 52;735 19; 635:22

Table 7.5 Trigger and Trojan coverage at various stages of the proposed scheme. at � D 0:1 for
random sample of Trojans upto 4 rare node triggers (Sample size is 100;000 for combinational
circuits and 10;000 for sequential circuits)

GA only GA + SAT GA + SAT + Algo. 3

Ckt. Trig. Cov. Troj. Cov. Trig. Cov. Troj. Cov. Trig. Cov. Troj. Cov.

c880 92:12 83:59 96:19 85:70 96:19 85:70

c2670 81:63 69:27 87:31 75:17 87:15 75:82

c3540 80:58 57:21 82:79 59:07 81:55 60:00

c5315 83:79 64:45 85:11 65:04 85:91 71:13

c7552 73:73 64:05 78:16 68:95 77:94 69:88

s15850 64:91 51:95 70:36 57:30 68:18 57:30

s35932 81:15 71:77 81:90 73:52 81:79 73:52

s38417 55:03 29:33 61:76 36:50 56:95 38:10

mode. The implementation was performed and executed on a Linux workstation
with a 3 GHz processor and 8 GB of main memory.

7.3.5.2 Test Set Evaluation Results

Table 7.4 presents a comparison of the test set lengths generated by the proposed
scheme, with that generated by MERO. It also demonstrates the impact of Algo-3, by
comparing the test vector count before Algo-3 (TCGASAT ) and after Algo-3 (TCf ). As
would be evident, for similar number of test patterns, the proposed scheme achieves
significantly better trigger as well as Trojan coverage than MERO. The gate count
of the circuits and the time required to generate the corresponding test sets are also
presented to exhibit the scalability of the ATPG heuristic.

Table 7.5 presents the improvement in trigger and Trojan coverage at the end of
each individual step of the proposed scheme, to establish the importance of each
individual step. From the table, it is evident that the first two steps consistently
increase the trigger and Trojan coverage. However, after the application of payload
aware test set selection (Algo-3), the trigger coverage slightly decreases for some
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Table 7.6 Comparison of trigger and Trojan Coverage among MERO patterns and patterns
generated with the proposed scheme with � D 0:1; N D 1000 (for MERO) and for trigger
combinations containing up to four rare nodes

MERO Proposed scheme

Ckt. Trigger coverage Trojan coverage Trigger coverage Trojan coverage

c880 75.92 69.96 96.19 85.70

c2670 62.66 49.51 87.15 75.82

c3540 55.02 23.95 81.55 60.00

c5315 43.50 39.01 85.91 71.13

c7552 45.07 31.90 77.94 69.88

s15850 36.00 18.91 68.18 57.30

s35932 62.49 34.65 81.79 73.52

s38417 21.07 14.41 56.95 38.10

Fig. 7.15 Comparison of trigger and Trojan coverage of the proposed scheme with MERO, with
varying triggering threshold (� )

circuits, whereas the Trojan coverage slightly increases. The decrement in trigger
coverage is explained by the fact that some of the trigger combinations do not have
any corresponding payload – as a result of which, they are removed. In contrary,
the addition of some “extra test vectors” by Algo-3 helps to improve the Trojan
coverage.

Table 7.6 presents the trigger and Trojan coverage for eight benchmark circuits,
compared MERO test patterns with N D 1000 and � D 0:1. In order to make a fair
comparison, we first count the number of distinct test vectors generated by MERO
(TCMERO) with the abovementioned setup and then set GA to run until the number
of distinct test vectors in the database becomes higher than TCMERO. We denote the
number of distinct test vectors after GA run as TCGA. Note that the SAT step is
performed after the GA run, and thus the total number of test vectors after the SAT
step (TCGASAT ) is slightly higher than TCMERO. The test vector count further reduces
after the Algo-3 is run. We denote the final test vector count as TCf .

To further illustrate the effectiveness of the proposed scheme, in Fig. 7.15 we
compare the trigger and Trojan coverage obtained from MERO with that of the
proposed scheme, by varying the rareness threshold (� ) for the c7552 benchmark
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Fig. 7.16 Trigger and Trojan coverage of the proposed scheme on a set of special Trojans, which
combine some easily triggerable nodes with some extremely rare nodes

circuit. It is observed that the proposed scheme outperforms MERO to a significant
extent. Further, it is interesting to note that both MERO and the proposed scheme
achieve the best coverage at � D 0:09. The coverage gradually decreases toward
both higher and lower values of � . The reason is that for higher � values (e.g.,
0:2, 0:3), the initial candidate Trojan sample set (S), over which the heuristic
implementation is tuned, contains a large number of “easy-to-trigger” combinations.
Hence, the generated test set remains biased toward “easy-to-trigger” Trojans and
fails to achieve good coverage over the “hard-to-trigger” evaluation set used. On the
other hand, at low � values, the cardinality of the test vector set created becomes
very small as the number of potent Trojans at this range of � is few, and they are
sparsely dispersed in the candidate Trojan set S . As a result, this small test set
hardly achieves significant coverage over the Trojan space. The coverage for Trojans
constructed by combining some easily triggerable nodes with some extremely rare
nodes also follows a similar trend (shown in Fig. 7.16). It can be thus remarked
that the tester should choose a � value, so that the initial set S contains a good
proportion of Trojans with low triggering probability, while also covering most of
the moderately rare nodes.

Finally, we test our scheme with sequential Trojans. The counter-based Trojan
model as described in [8] was considered. We consider Trojans up to four states, as
larger Trojans have been reported to be easily detectable by side-channel analysis
techniques [27]. It can be observed from Table 7.7 that as for the combinational
circuits, the proposed scheme outperforms MERO.
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Table 7.7 Coverage comparison between MERO and the proposed Scheme for sequential Trojans.
The sequential Trojan model considered is same as [8]

Trig. Cov. for proposed scheme Trig. Cov. for MERO

Trojan state count Trojan state count

Ckt. 2 4 2 4

s15850 64:91 45:55 31:70 26:00

s35932 78:97 70:38 58:84 49:59

s38417 48:00 42:17 16:11 8:01

Troj. Cov. for proposed scheme Troj. Cov. for MERO

Trojan state count Trojan state count

Ckt. 2 4 2 4

s15850 46:01 32:59 13:59 8:95

s35932 65:22 59:29 25:07 15:11

s38417 30:52 19:92 9:06 2:58

7.3.5.3 Application to Trojan Diagnosis

Diagnosis of a Trojan once it gets detected is important for system-level reliability
enhancement. In [29], the authors proposed a gate-level characterization (GLC)-
based Trojan diagnosis method. The scheme proposed in this chapter can be
leveraged for a test diagnosis methodology. The data structure D can be extended
to a complete Trojan database, which will contain four tuples (s; V; P; O), where
s is a trigger combination, V is the set of corresponding triggering test vectors, P
is the set of possible payloads, and O is the set of faulty outputs corresponding to
the test patterns in V , due to the activation of some Trojan instance. Based on this
information, one can design diagnosis schemes using simple cause-effect analysis
or other more sophisticated techniques. The complete description of a diagnosis
scheme is however out of the scope of this chapter.

7.4 Conclusions

Conventional logic test generation techniques cannot be readily extended to detect
hardware Trojans because of the inordinately large number of possible Trojan
instances. We have presented a statistical Trojan detection approach using logic
testing where the concept of multiple excitation of rare logic values at internal
nodes is used to generate test patterns. Simulation results show that the proposed
test generation approach achieves about 85% reduction in test length over random
patterns for comparable or better Trojan detection coverage. The proposed detection
approach can be extremely effective for small combinational and sequential Trojans
with small number of trigger points, for which side-channel analysis approaches
cannot work reliably. Hence, the proposed detection approach can be used as
complementary to side-channel analysis-based detection schemes.
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This work is further extended for improving the test quality by developing
an ATPG scheme for detection of hardware Trojans dependent on rare input
triggering conditions, based on the dual strengths of genetic algorithm and Boolean
satisfiability. The technique achieves good test coverage and compaction and also
outperforms a previously proposed ATPG heuristic for detecting hardware Trojans
for benchmark circuits. Future research would be directed toward developing
comprehensive Trojan diagnosis methodologies based on the database created by
the current technique.
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Chapter 8
Formal Approaches to Hardware Trust
Verification

Farimah Farahmandi, Yuanwen Huang, and Prabhat Mishra

8.1 Introduction

With the globalization of the IC industry, the outsourcing and integration of third-
party hardware IPs (intellectual property) have become a common practice for
system-on-chip (SoC) design [4, 16]. However, it raises major security concerns
as the attacker can insert malicious components in third-party IPs and tamper
our system. There are various security threats throughout the IC design and
manufacturing process. In the pre-silicon stage, we have (1) designer mistakes,
rogue employees, and untrusted third-party IPs during the design integration phase,
(2) untrusted EDA tools in the synthesize phase, and (3) untrusted EDA tools
and untrusted vendors when design for test (DFT), design for debug (DFD), and
dynamic power management (DPM) functions are added. In the post-silicon stage,
we have (1) untrusted foundry during manufacturing and (2) physical attacks or side-
channel attacks after the chip is shipped. It is of paramount importance to verify the
trustworthiness of hardware IPs.

The task to differentiate trustworthy third-party IPs from untrustworthy ones is to
detect any malicious insertions (widely known as hardware Trojans) which are not in
the specification. Hardware Trojans consist of two main parts: trigger and payload.
The trigger is a condition which activates the Trojan circuit, and the payload is the
part of the circuit (functionality) which can be affected by an activated Trojan. A
major challenge for Trojan identification is that Trojans are usually stealthy [4].
Therefore, conventional validation techniques [39, 40] fail to detect them. It is
difficult to activate a Trojan and even more difficult to detect or locate it. Besides
hardware Trojan, there are other trust and reliability issues concerning hardware
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IPs, such as the vulnerability of test and debug infrastructure like scan chain [45]
and trace buffer [25, 26], the vulnerability of cache [23] due to soft errors, and
malicious parametric variations [24] like power or temperature virus.

There has been plenty of research on Trojan detection in the post-silicon stage,
which focuses on first two directions in Fig. 8.1: simulation-based approaches
and side-channel analysis. Simulation-based approaches aim on generating tests to
activate a Trojan and propagate the payload of the Trojan to primary outputs to
check with the golden circuit. The difficulty of logic testing is to generate efficient
tests to activate and propagate the effect of Trojans, which are stealthy enough to
hide through the traditional manufacturing testing. The MERO (multiple excitation
of rare occurrences) approach [9], proposed by Chakraborty et al., can generate
high-quality tests to achieve very high activation and coverage rate for Trojans. A
later work by Saha et al. [41] extended this approach by using genetic algorithm to
further improve the quality of tests. Side-channel analysis-based approaches focus
on analyzing the side-channel signatures (such as current [27], leakage power [1],
path delay [29], electromagnetic waves [34], etc.). If the side-channel signature of a
chip is different from the golden chip over a certain threshold, a Trojan is detected.
The problem with side-channel analysis is the presence of process variation and
measurement noise. It is also difficult to detect ultrasmall Trojans which have little
effect on the side-channel signal. The MERS (multiple excitation of rare switching)
approach [27] can greatly increase the side-channel sensitivity of switching by
generating high-quality tests. A major problem of Trojan detection in the post-
silicon stage is that there is usually not much we can do with the Trojan (if detected)
and need to discard the chip. Therefore, it is crucial to have design-time methods
that can detect, localize, and eliminate the Trojan and produce Trojan-free circuits.
Formal methods are suitable for detecting and localizing Trojans during the design
phase (pre-silicon stage).

In this chapter, we focus on different formal methods to verify the design
and detect undesired functions (possibly Trojans). As shown in Fig. 8.1, major
formal trust validation methods include SAT-based equivalence checking, property
checking, theorem proving, and symbolic algebra-based equivalence checking.

SAT-Based Equivalence Checking: Equivalence checking is used to verify that
the implemented design is equivalent to the specification [19]. Both the specification
and the implemented design need to be formalized into an abstract model, which is
the Boolean formula in the case for satisfiability (SAT)-based equivalence checking.
More details on this topic will be described in Sect. 8.2.

Property Checking: Model checkers operate on a finite transition representation
of the design and check if a property holds on this model [38]. If the corresponding
malicious property related to a Trojan is formally checked, the Trojan is identified.
More details on this topic will be discussed in Sect. 8.3.

Theorem Proving: Given a set of axioms and hypotheses, theorem proving can
work on a conjecture (logic statement) to prove or disprove it. Proof-carrying code
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Fig. 8.1 Hardware trust verification can be categorized in three major directions: (1) simulation-
based approaches, (2) side-channel analysis, and (3) formal approaches

[30] can be used as a trust metric which provides formal proof to ensure the integrity
of code gathered from third-party suppliers. More details on this topic will be
discussed in Sect. 8.4.

Symbolic Algebra for Equivalence Checking: This method maps the equivalence
checking problem to ideal membership testing using Gröbner basis theory [16]. It
starts with converting the design specification and implementation to polynomials
ffspecg and ffimplg and uses symbolic algebra to check the equivalence between the
two sets. More details on this topic will be discussed in Sect. 8.5.

8.2 Trust Validation Using Satisfiability Problem

Given a Boolean formula, the satisfiability problem relies on finding Boolean values
to the formula’s variables such that the formula is evaluated to true. If such an
assignment does not exist, the formula is called unsatisfiable. It means that any
possible assignments to formula’s variables force the formula to be evaluated to
false. The Boolean formula is constructed from AND, OR, and NOT operators
between various variables which can be either assigned to true or false. Many of
the validation and debugging problems can be mapped to satisfiability problems.
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Fig. 8.2 Equivalence checking using SAT solvers

One of the applications is to check the equivalence between the specification of the
circuit and its implementation using SAT solvers. Figure 8.2 shows the equivalence
checking using SAT solvers. If the specification and implementation have the same
functionality, the output of the XOR gate should always be false. If the output of
XOR gate becomes true for any input pattern, it implies that the implementation
and the specification do not have the same functionality for the same input pattern.
In other words, if the circuit shown in Fig. 8.2 is converted to conjunction normal
form (CNF), a SAT solver can be used to check the equivalence between the
specification and implementation. If the SAT solver reports unsatisfiability, we
can conclude that specification and implementation are equivalent. Otherwise, they
are not equivalence, and the root of mismatch should be found. SAT solvers are
excessively used for design validation [2, 3, 32].

Equivalence checking can be done using SAT solvers to identify hardware
Trojans [20]. If hardware Trojans exist in the implementation, the SAT solver finds
assignments to the internal variables to reveal the hidden Trojan. However, this
method requires a golden model and suffers from scalability issues. The SAT solver
may encounter state explosion when the design is large, and the specification and
the implementation significantly differ from each other.

Several works explore the existence of Trojans in unspecified functionality [17,
18]. Therefore, the Trojan does not alter the specification of the design, and existing
statistical or simulation-based methods cannot identify the Trojan-inserted design
[19]. Fern et al. propose a SAT-based technique to detect Trojans which exploit the
design signals in their unspecified functionality to cause malfunction. Figure 8.3
shows a hardware Trojan in an unspecified functionality of a FIFO. The designer
did not specify the functionality of the FIFO when the “read_enable” of the FIFO
is not asserted. The attacker takes the advantage of the incomplete specification
and inserts a malicious circuit to leak the secret information when the read_enable
signal is not asserted. This kind of Trojans can be inserted in RTL code or at any
high-level description of the design.

Fern et al. try to address unspecified Trojan detection where the Trojan targets
information leakage [19]. Suppose that the function “func” is unspecified when
internal signal “s” is under condition “C.” Suppose that signal s can have two
possible values: v0 and v1. Under condition C, Eq. 8.1 should be unsatisfiable if
the design is Trojan-free. Therefore, any assignment which make Eq. 8.1 satisfiable,
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Fig. 8.3 Trojan in
unspecified functionality of a
FIFO [19]

it is a trace to detect the covert Trojan. For example, in the FIFO shown in
Fig. 8.3, output signal should remain the same when the read_enable D 0 (C D

read_enable D 0 and s D output).

C ^ .func.s D v0/ ˚ func.s D v1// (8.1)

To detect Trojans in an unspecified functionality of the design, pairs C and s
should be identified. For any function in the design, several s and C pairs can be
found, and the process of marking the potential pairs is not automatic yet. For
every pair .s; C/, one CNF formula is constructed, and an SAT solver (for Boolean
values) or satisfiability module theory solvers (SMT solvers) can be used to find the
potential threats. The Trojan can be detected when the CNF formula is satisfiable.
The success of this approach is dependent on the SAT solvers and identifying .s; C/

pairs. Moreover, the approach requires manual intervention.

8.3 Security Validation Using Property Checking

Model checking is a famous technique in design verification which checks a design
for a set of given properties. To solve the model checking problem, the design and
the given properties are converted to a mathematical model/language, and all of the
design’s states are checked to see whether the given properties are satisfied. A class
of model checkers is designed based on temporal logic formula [11]. The properties
are described using linear temporal logic (LTL) formulas to describe expected
behaviors of the design. The properties are checked using the model checkers. A
model checker either proves the correctness of a given property over all of the
possible behaviors of the design or find a counterexample when the property fails.

A model checker tries all of the possible states of a design to prove a given
property using a binary decision diagram (BDD). However, the number of design
states can be huge since every bit introduces two states in the design. For example, a
32-bit register can add 232 states to the design state space. Although some techniques
such as slicing, abstracting, etc. have been proposed [10, 44], state space explosion
still is the largest limitation of using model checking in property verification.
Bounded model checking (BMC) is introduced to overcome the amount of memory
that a model checker requires for constructing and storing different states of a design
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Fig. 8.4 Verification using
model checking

Fig. 8.5 Verification using
bounded model checking

[5]. BMC tries to find a counterexample in the first K cycles during execution. If a
counterexample is found within K cycles, the property does not hold. Otherwise, K
can be increased in the hope of finding a counterexample in upper bounds. BMC
is not able to prove a property since it unrolls the circuit for a specified number of
clock cycles. However, it can provide a statistical metric for a given property when
the model checker fails (e.g., no counterexample can be found in K clock cycles).
The BMC problem can be mapped to satisfiability problem, and SAT solvers can be
utilized to solve the problem. Therefore, the BMC addresses some of the state space
explosion problems associated with BDDs in model checking. Figures 8.4 and 8.5
show the model checking and bounded model checking approaches, respectively.
Clearly, bounded model checking cannot provide proof for property P. However, it
can reveal when property P is violated within K clock cycles.

Security properties describe the expected behaviors which a trustworthy design
is required to follow. Model checkers can be used to ensure safety properties. A
SoC designer and a third-party vendor can agree on certain security properties that
should be held on the design. When the design is sent to the SoC integrator, the
SoC integrator converts the design to a formal description to check the security
properties using a model checker. If all of the security properties are verified,
the expected security behaviors are met. Rajendran et al. have proposed a Trojan
detection technique which is based on using bounded model checking [36]. They
have considered the threat model as an attempt to corrupt the critical data such as
secret keys of a cryptographic design, random numbers which are required by most
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of the cryptography algorithms, or stack pointer of a processor. The assumption
is that these critical data should be stored in some specific registers, and accesses
to these registers should be protected. In other words, the registers which contain
critical data should be accessed through valid ways, and any undefined access to
these registers is considered as a threat. The safe access conditions to these registers
are formulated as properties (assertions), and a bounded model checker is utilized
to find a counterexample when the security properties are violated.

Example 1 Suppose that the program counter (PC) register is considered as a
critical data. The only valid ways to change the PC register is either using a reset
signal (V1), by CALL instruction which increments the PC register V2, or using RET
instruction which decrements the value of the PC register V3. Otherwise, the PC
register should keep its value. The safety property of PC register can be formulated
as:

Safe_PC_change W assert always PCaccess … V D fV1; V2; V3g ! PCt D PCt�1/

When this property is fed into a bounded model checker alongside with the
processor design, a counterexample is expected to be found whenever PC register
or a part of it is changed using an unauthorized access.

Using model checking to find unauthorized access to secret and critical data of
design is beneficial since the method does not require any golden model of the
design. However, the success of this method is dependent on the SAT engine (it
may fail for large and complex designs) and precise definition of security properties
which needs prior knowledge of all safe ways to access a critical register. The
performance of the presented method can be further improved using an automatic
test pattern generation (ATPG) tool to ensure the trustworthiness of the assets for a
large number of clock cycles. The property is synthesized as a circuit monitor, and
it is appended to the original design. The ATPG tool is used to generate a test for
a stuck-at-1 fault at the output of the monitor circuit. The counterexample can be
found if the test can be generated. The success of this approach is dependent on the
ATPG tools and complete definition of circuit monitors.

A similar model checking-based approach is used to detect information leakage
[37]. The security properties check whether there is an input assignment (or a
sequence of input assignments) I which triggers the leakage of secret data S to output
ports or observable points (O) of the design.

9i 2 I ! .S DD O/

The property and formal description of the design are fed into a bounded model
checker to find the possible leakage. However, the abovementioned property has
several challenges. If the secret information S contains n bits, the model checker
needs to check 2n different values. Checking all possible values may not be feasible
when n is in the order of hundred (which is normal for encryption algorithms).
The authors have proposed some refinements to limit the Trojan search to make
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information leakage detection feasible. However, the assumptions and refinement
rules restrict the applicability of the solution to find different information leakage
threats. Moreover, BMC may fail since the complexity of problem increases for
each cycle of unrolling. Therefore, BMC works only for a certain number of clock
cycles depending on the design size. When an adversary inserts a Trojan, which is
triggered after a large number of clock cycles, this method cannot detect the Trojan.

Security property checking can be done in two general ways: (i) checking
forbidden behaviors and (ii) checking expected security properties. The malicious
behavior of design is formalized and checked using model checkers in [38]. The
method can be applied only for known Trojan types. Hasan et al. have proposed a
hardware Trojan detection technique using LTL and computation tree logic (CTL)
security properties to generate hardware Trojan monitors in order to improve the
resiliency of hardware designs against malicious functionality [22]. The attacker is
considered as an untrustworthy third-party designer that can insert Trojans in the IP,
and the defender is SoC integrator. The SoC integrator needs to formulate dangerous
behaviors as security properties to perform vulnerability verification using model
checkers. The generated counterexample, as well as the involved signals, is provided
to the in-house designers to produce a guideline for efficient run-time security
monitors.

Potential threats introduced from electronic design automation (EDA) tools of
the third party are considered in [35]. It is possible that an adversary modifies a
design using nontransparent EDA tools such as synthesis tools. A synthesis tool
may optimize some registers and unsafely modify the finite-state machine (FSM).
The authors have proposed a hardware Trojan detection technique which is based on
property coverage analysis to ensure that a gate-level netlist is free from hardware
Trojans inserted by synthesis tools. The proposed Trojan detection method is based
on both security property checking and state coverage to mark suspicious unused
circuit states. Figure 8.6 shows the different ways to insert Trojans in an FSM.

Example 2 Consider the FSM shown in Fig. 8.6a. Whenever the current state is A,
the next state should be either A or B. The property can be formulated using a LTL
formula as shown below:

assert always .cur_state DD A/ ! X.next_state D Ajj next_state D B/

Note that X symbol shows the next cycle and ! shows implication.
The success of using model checking-based approaches to detect hardware

Trojans is highly dependent on the size of the design, SAT engine, and the quality
of the provided properties. The model checker cannot guarantee inexistence of
hardware Trojans. However, it can provide a trust-level metric.
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Fig. 8.6 Trojans in an FSM. (a) A Trojan-free FSM; (b) Trojan can be inserted to an FSM using
different ways: (i) changing the state output (e.g., state B), (ii) modification to state transitions (e.g.,
extra transition from state A to C), and (iii) adding extra states (e.g., state D) and transitions (such
as state transitions B! D and D! C ) to FSM

8.4 Theorem Provers for Trojan Detection

The attempt of proving a conjecture (logical statement) from a set of axioms and
hypotheses is called theorem proving. Problems from different domains such as
mathematics, hardware, and software verification can be mapped to theorem prov-
ing. Automated theorem provers (ATPs) are computer programs which try to prove
given problems. They need appropriate and precise formulation of conjectures,
axioms, and hypotheses in logical languages such as first-order logic or higher-
order logic. The language provides a formal description of the problem’s statements;
therefore, mathematical manipulation of statements is possible using ATPs. In other
words, ATPs can show how the conjecture can be logically proved by following a set
of related fact and statements. Figure 8.7 shows an overview of a theorem proving
flow.

8.4.1 Secret Data Protection Using Proof-Carrying Codes

Theorem provers are widely used in trust validation domain. Proof-carrying code
(PCC)[33] has been proposed to provide a trust metric for a code often gathered
from untrusted suppliers. The idea is that the code consumer should be able to
confirm a set of predefined properties when the code producer delivers it. Using
the PCC, the supplier is required to provide the formal proof of safety properties,
and the consumer performs the proof validation to ensure the integrity of the code.
Proofs are generated using theorem provers. Jin and Makris [30] have proposed an
IP information tracking methodology which is based on proof-carrying concept. The
method is proposed to establish the trust between the untrusted IP vendor and the
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Fig. 8.7 Validation using theorem prover

SoC Integrator. The IP vendor creates proof of security properties that was agreed
upon with the SoC integrator. The design is instrumented with secrecy tags, and it
is converted to a formal description. The design, secret tags, as well as their formal
descriptions are passed to the consumer as a package. The consumer formalizes
the agreed security properties and regenerates the formal model of the HDL code
to enable a formal property checker to validate proofs delivered by the producer.
The assumption is that if an adversary inserts a hardware Trojan in the design to
violate security properties, the proof validation will fail. Figure 8.8 shows the overall
approach. The “Pass” result demonstrates the security preserving behavior of the
delivered IP. However, the “Fail” result reveals the existence of malicious code to
potentially leak secret information. Jin and Makris [30] have developed a set of
rules to convert an HDL code to Coq formal language to automate formal model
generation procedure.

Example 3 Suppose that the IP vendor is asked to deliver the implementation of
DES algorithm [6] which is a data encryption algorithm. Our goal is to ensure that
none of the secret data can be leaked through primary outputs. This requirement can
be formalized as theorem “Safe_DES.” In the implementation of DES algorithm, the
secret input “KEY,” plaintext “DesIn,” and internal key rounds “KEY_Rounds” are
considered as secret information, and they should be protected. Therefore, they will
be marked with security tags. Three axioms showing the secret character of KEY,
Des_In, and KEY_Rounds in all clock cycles are added to the formal logic which is
used by the theorem prover. In the next step, three axioms, the DES implementation,
as well as the safe_DES theorem, are converted to the Coq formal model. The
theorem prover tries to prove the theorem by considering the formal behavior of
the DES algorithm and axioms. If the proof can be generated, the DES algorithm
is safe. Therefore, the design and the proofs can be delivered to the consumer. The
user validates the proof using a property checker.
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Fig. 8.8 Information flow tracking based on proof-carrying codes

A dynamic information tracking approach has been proposed in [31]. Similar to
the statistical approach, the design, as well as security properties, is formalized and
validated to detect unauthorized leakage of sensitive data. Unlike statistical scheme,
all variables are assigned to a list of values showing their level of sensitivity during
different clock cycles. Some updating rules are designed to change the sensitivity
values of different variables over time. Two sensitivity lists are considered for
data protection, (i) initial list and (ii) the stable list, where values indicate stable
sensitivity levels of circuit signals. The SoC integrator checks the content of both
lists first to ensure the safe distribution of the secret data through the circuit. In the
next step, proofs are validated.

A similar approach has been applied for trust validation of EDA tools [28]. The
idea is that the trustworthy RTL design cannot guarantee the security of the IP
cores. The gate-level netlist may be contaminated either by malicious implants or
untrusted EDA tools. Jin [20] has proposed a framework to check the trust level of
the produced gate-level netlists of synthesis tools. The framework consists of three
major steps: (i) generates proof-carrying code based on the security properties of
the trusted RTL code, (ii) validates proofs on the corresponding synthesized gate-
level netlist, and (iii) measures the trust level of the EDA tools based on the result
of the second step. The aforementioned approaches require flattening the design
to check the integrity of the whole system. However, design flattening increases
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the complexity of formalization steps and proof generation phase and limits the
applicability of these approaches due to scalability problems. Similar to property
checking approaches discussed in Sect. 8.3, the Trojan detection is dependent on
the quality of security properties.

8.4.2 Integration of Theorem Provers and Model Checkers

The primary challenge in using proof-carrying code approach is to measure the
trust of RTL, or gate-level code is the scalability. SoC designs are usually large
and complex, and proofs cannot be easily constructed as the size of the design
is increased. Proof validation is also very time-consuming for large designs. To
address these issues, an integrated approach has been proposed [21]. The main
idea is to combine interactive theorem provers with model checkers to check
security properties. The hierarchical structure of the SoC design is considered as
a choice of design partitioning to reduce the verification efforts and address the
scalability issues. The security properties are formalized as theorems, and theorems
are decomposed into several lemmas each related to one partition of the design.
The lemmas are converted to assertions, and a model checker is used to validate
the assertions. Each assertion is called a sub-specification. Sub-specifications are
selected in a way that they are dependent on each other. If all of the partitions
satisfy security lemmas, we need to use the theorem prover to validate the security
of whole design using checked lemmas. If the security theorem can be proven, the
whole system is considered safe.

This method distributes the proof construction to overcome the scalability
problem. However, the success of this approach is dependent on the model checking
engine. In some cases, it may not be possible to validate the lemmas because of the
model checker limitations.

8.5 Trojan Detection Using Symbolic Algebra

Equivalence checking is used to formally prove two representations of a design
exhibit the same behavior. Equivalence checking can be done between different
layers of design abstractions. Equivalence checking has been done using SAT
solvers and industrial tools such as Formality [43] traditionally. However, these
methods are promising when the specification and implementation structures are
similar such as between RTL (pre-synthesis) and gate-level (post-synthesis) models.
However, existing methods can lead to state space explosion when complex SoCs
are involved with significantly different (lack of structural or FSM-level similarity)
specification and implementation.

A promising direction to address the state space explosion problem of equiva-
lence checking of hardware design is to use methods based on symbolic computer
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algebra. Symbolic algebraic computation refers to the application of mathematical
expressions and algorithmic manipulations methods to solve different problems.
Symbolic algebra has received attention because of its applicability in equivalence
checking of hardware designs. There are equivalence checking methods based on
symbolic algebra that are successful to detect deviations from the specification for
combinational circuits especially arithmetic circuits [13, 15, 20, 42]. This method
maps the equivalence checking problem to ideal membership testing and solves the
problem using Gröbner basis theory.

8.5.1 Equivalence Checking Using Gröbner Basis Theory:
Background

A set of polynomials F D fF1; F2; : : : ; Fng which are defined over a field generates
an ideal I where I D< F1; F2; :::; Fn >. Set F is called basis or generator of ideal I.
Generally, ideal I can have several bases. One of the bases is called Gröbner basis G
which can be derived from Buchberger’s algorithm [8]. The main characteristic of
Gröbner basis is the ability to solve the ideal membership problem [7]. In other
words, if we want to check whether polynomial f resides in ideal I, f can be
reduced over setting G (reduction can be done using polynomial sequential division
regarding a specific order). If the result of reduction is equal to zero polynomial, f
belongs to ideal I. Otherwise f does not reside in the ideal I [12].

The equivalence checking problem can be efficiently mapped to ideal mem-
bership testing for arithmetic circuits. In order to apply Gröbner basis theory,
specification is modeled as polynomial fspec, and implementation is converted to
a set of polynomials I D ff1; f2; : : : ; fsg, and ideal I is constructed as I D< I >D<

f1; f2; : : : ; fs >. Set I is derived in a way that every pair .fi; fj/ has relatively prime
leading monomials. Thus, set I is also Gröbner basis (G) of ideal I (I D G).
To check equivalence between specification and implementation, fspec is reduced
over set G. If the remainder is zero, it shows that the implementation has correctly
implemented the specification. In other words, the specification and implementation
are equivalent.

The arithmetic circuit equivalence checking problem formulation starts with
converting the design specification to a polynomial fspec which represents the word-
level abstraction of arithmetic circuit functionality using primary inputs and primary
outputs as variables. For example, the specification of a n-bit adder with primary
inputs A D fa0; a1; : : : ; an�1g and B D fb0; b1; : : : ; bn�1g and primary output
Z D fz0; z1; : : : zng can be formulated as Z D A C B or can be written as .2n:zn C

: : :C2:z1 Cz0/�..2n�1:an�1 C : : :C2:a1 Ca0/C.2n�1:bn�1 C : : :C2:b1 Cb0// D 0

where fai; bi; zig 	 f0; 1g.
The functionality of logic gates (such as AND, OR, XOR, NOT, and buffer)

can be represented by polynomials such that the input and output signals of gates
act as variables of the corresponding polynomial. Each variable xi which appears
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Fig. 8.9 Overview of arithmetic circuit verification using Gröbner basis theory

in a circuit polynomial belongs to Z2 where (xi
2 D xi). The basic logic gates

are described using polynomials shown in Fig. 8.9. In other words, a gate-level
netlist of a circuit can be modeled as a set of polynomials F by modeling each
gate as a polynomial. Suppose that we want to make sure an arithmetic circuit
implements correctly its specification. In other words, we want to verify that there
are no functional errors in the arithmetic circuit. The equivalence checking starts
with consecutively reducing the fspec over implementation polynomials (Fimp) until
either zero remainder or a remainder that contains only primary input variables is
reached. If the remainder is zero, it shows that the arithmetic circuit performs the
exact specification. However, the non-zero remainder shows that the implementation
is not trustworthy and there are some malfunctions. Figure 8.9 shows the overview
of the equivalence checking approach.

Example 4 Suppose that we want to verify the functional correctness of a full-adder
implementation shown in Fig. 8.10. The specification can be formulated as .2:CoutC

S � .A C B C Cin//, and each gate in the implementation can be modeled as a
polynomial based on Fig. 8.9. The topological order of the circuit (since the circuit
is acyclic) is chosen for reduction as Cout > fS; n3g > fn2; n1g > fA; B; Cing. The
reduction starts from the most significant primary output and ends at primary inputs.
Variables in the curvy brackets have the same order, and they can be reduced in one
iteration. Equation 8.2 shows the reduction process. It can be seen that the final
result (remainder) is a non-zero polynomial and implementation is untrustworthy.
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Fig. 8.10 Faulty gate-level
netlist of a full adder

step0 W 2:Cout C S � A � B � Cin

step1 W S � 2:n3:n2 C 2:n3 C 2:n2 � A � B � Cin

step2 W 2:n2:n1:Cin � 4:n1:Cin C n1 � A � B C 2

step3.remiander/ W 8:A:B:Cin � 4:A:Cin � 4:B:Cin � 2:A:B C 2

(8.2)

8.5.2 Trojan Activation and Detection in Arithmetic Circuits
Using Symbolic Algebra

From the security point of view, it is extremely important to make sure that the
design performs exactly the intended specification, nothing more, nothing less.
Every extra, incorrect, or missing component can threaten the security of the design.
The remainder (as shown in Example 4) defines the results of the equivalence
checking. It has been shown that the remainder can be beneficial in root causing
the threat [14]. The threat model is considered any deviation from the expected
functionality. The remainder can be utilized to generate tests to activate the Trojan.
If there are more than one malicious functionality in the implementation, the
remainder will be affected by all of them. Therefore, each assignment that makes
the remainder non-zero activates at least one of the existing faulty scenarios. The
generated tests and the remainder’s patterns can be used to localize malicious
scenarios.

8.5.3 Trojan Localization in Third-Party IPs

The approach presented in Sect. 8.5.2 can be extended to find whether a hardware
Trojan, which changes the functionality, has been inserted in a combinational
arithmetic circuit. However, applying the same approach on general IPs is limited
due to several reasons. First, it is possible that the specification of a general circuit
cannot be described as one simple polynomial. Second, the circuit may not be
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acyclic, and loops may exist due to their sequential nature. Third, unrolling may
increase the complexity of the problem, so the reduction of fspec over implementation
polynomials will face polynomial terms explosion. Finally, the Trojan activation
may require an extremely large number of unrolling steps which may be practically
infeasible, and also there is no specific information on after how many cycles Trojan
will be activated.

To address these challenges, Farahmandi et al. have proposed a method to
localize and detect Trojans in third-party IPs [16] based on Gröbner basis. The
method localizes and activates Trojans between two versions of design. Suppose
that there is a golden model of design (specification) and a modified version
(implementation) of it (after performing some nonfunctional changes such as doing
synthesis, adding clock trees, scan-chain insertion, etc.). Once the third-party IP
comes back (after synthesis or other functionality-preserving transformations), it is
crucial to ensure the trustworthiness of these IPs. The method is based on extracting
two different sets of polynomials from the specification and the implementation
netlist. The equivalency between two sets is checked using Gröbner basis reduction.
Figure 8.11 shows the overall view of the approach.

Unlike arithmetic circuits which can be defined with one general specification
polynomial, a general IP can be represented by a set of polynomials S extracting
from the golden IP. The golden netlist (specification) is partitioned into several
regions, and each region is converted to a polynomial. The output of each region
is either input of a flip-flop (clock, enable, reset, etc.) or one of the primary outputs.
The inputs of a region are either from primary inputs or inputs/outputs of flip-
flops. Then, corresponding equations (based on Fig. 8.9) of gates inside a region

Fig. 8.11 Overall view of
Trojan localization in
third-party IPs using Gröbner
basis reduction
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are combined to construct one polynomial representing the functionality of the
region. Similarly, the implementation polynomials I are driven by modeling every
gate except flip-flops from the untrusted design as a polynomial.

To detect a Trojan, each polynomial fspeci from set S is reduced over a subset
of polynomials from set I to check membership of every polynomial fspeci in ideal
I constructed from polynomials from set I (I D< I >). The process continues
until fspeci is reduced either to zero polynomial or a remainder polynomial which
contains primary inputs as well as flip-flop’s inputs/outputs. The non-zero remainder
indicates that implementation does not correctly implement the functionality of fspeci
and that part of the implementation is suspicious. Note that, based on Gröbner basis
theory, when the remainder is zero for a specific region, the region is safe. In other
words, it is not possible for a smart attacker to insert malicious gates in a way that
the remainder becomes zero. By using this approach, a set of malicious regions is
identified. Suppose the adversary inserts some extra flip-flops as part of Trojans.
These buggy flip-flops do not have any correspondence in the specification. In
other words, there is no fspeci which describes their inputs’ functionality. Therefore,
the corresponding region in the implementation is also considered as a suspicious
region. However, scan-chain flip-flops can easily be detected and removed from
suspicious candidates because of their structures. To identify the gates that most
likely are responsible for the malicious activity, gates which are contributing to
the construction of safe regions (regions which have zero remainders) are removed
from suspicious regions. This technique reduces the number of suspicious gates.
Figure 8.12 shows the pruning procedure of suspicious gates.

In this chapter, we described various formal approaches for verification of
hardware security and trust. Considering the increasing importance and complexity
designing trustworthy SoCs, it is expected that there will be many more approaches
for trust analysis and validation in the near future.

Fig. 8.12 Potential Trojan
gates are equal to:
Gatessuspicious D .Gatesfaulty�
Gatessafe/[ Gatesunused



200 F. Farahmandi et al.

8.6 Conclusion

Several security issues such as intentional or unintentional design mistakes can be
introduced during different stages of a SoC design. Therefore, trust establishment
becomes critical. Formal methods are promising in hardware validation as they
evaluate the functionality and structure of the mathematical model to verify that
the design contains the functions described in the specification. Moreover, they can
provide proofs for security properties. Formal approaches for security verification
can be broadly classified into four groups: (i) approaches based on satisfiability
problem, (ii) property checking approaches, (iii) theorem proving strategies, and
(iv) equivalence checking methods. In this chapter, we discussed security validation
methods based on each category of formal methods to improve security validation
efforts at different stages of the design life cycle.
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Chapter 9
Golden-Free Trojan Detection

Azadeh Davoodi

9.1 Introduction

A vast number of existing Trojan detection techniques rely on a golden IC (GIC)
during an IC authentication phase. A GIC is a fabricated instance of the design
which is guaranteed to be free of any Trojans. During the authentication phase, the
GIC is used to provide reference signals reflecting the correct chip behavior under
a set of applied input patterns. These reference signals could be, for example, in
the form of transient timing or power patterns. They will then be used to evaluate
an IC under authentication. This is done by applying the same input patterns and
comparing the signals generated by the IC under authentication with the ones
obtained from GIC.

However, a fundamental limitation with the above detection approach is that a
GIC may not even exist. For example, consider the following scenarios when a
GIC may not exist: (a) the design team has a malicious member who inserts the
Trojan during the design phase and the Trojan is not detected during the verification
process, and (b) a design without Trojan is sent for fabrication at an untrusted
foundry and an attacker inserts the Trojan during the fabrication phase by altering
one of the masks. In both scenarios, all fabricated instances of the chip will be
infected by Trojans, and thus a GIC won’t exist.

Even when there are no reasons to suspect that a GIC may not exist, one needs
to first identify a GIC before it can be used to compare against the IC under
authentication. For example, this identification may be done by making a potential
GIC candidate to go through an aggressive testing procedure – possibly far more
aggressive than the one used for IC under authentication, for example, by applying
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a significantly higher number of input patterns and verifying correct functionality
under various environmental variations. However an aggressive testing procedure
would still not be able to cover all possible workloads and environmental conditions;
a Trojan may specifically be designed to only be triggered by a rare event, and even
though that such a GIC candidate would be a more reliable chip, the aggressive test
may not have included the rare event.

The above issues fundamentally limit the vast majority of Trojan detection
techniques because the detection framework relies on having access to a GIC.

9.2 Golden-Free Trojan Detection and Its Challenges

The objectives of golden-free Trojan detection are similar to any other Trojan
detection scheme: it needs to determine if an IC under authentication contains a
Trojan. It can also point to the location of the Trojan on the layout and conditions
(workload, process, and environmental factors) that triggers the Trojan.

Detection of a Trojan is a challenging task because of the combination of the
following factors: (1) lack of observability and controllability in a fabricated chip;
(2) complexity due to existence of billions of nanoscale components and due to
the large number of soft, firm, and hard IP cores that may have been integrated
in the system; (3) high cost and challenges associated with physical inspection of
nanometer feature sizes for reverse engineering which may yet be intrusive and only
applicable to a small portion of the chip population that are infected by a Trojan;
(4) difficulty to activate a Trojan since it may only be triggered by rare events; and
(5) increasing fabrication and environmental variations in nanometer technologies
which cause deviation in the expected characteristics of an IC.

Golden-free detection is also subject to all the above challenges. In addition,
lack of a GIC means that the detection scheme cannot assume existence of a
set of reference patterns which can guarantee the existence of a Trojan. This
assumption significantly limits the types of approaches that can be taken for golden-
free detection. Next we give examples of golden-free detection techniques which
have aimed to overcome these barriers.

9.3 Some Possible Solutions

In this section, we give an overview of different schemes that have been proposed
for golden-free Trojan detection. Similar to golden-dependent techniques, some of
these techniques also utilize on-chip sensors or side-channel information. However
they do so without the need for a golden IC.

Detection with machine learning and imaging techniques: The work [1] proposes
techniques using machine learning to reverse engineer a chip using layout images
in order to identify a GIC. While this work aims to identify a GIC, the proposed
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techniques are naturally suitable for golden-free Trojan detection. This work
uses a combination of machine learning techniques in order to identify between
“suspected” and “expected” structures in an IC. This requires detailed images from
various layers of the layout in order to develop and train the models to identify these
structures.

Detection with self-referencing analysis: Another approach is to use multiple
measurements from the chip at different times in order to detect a Trojan. This
self-referencing can be done using side-channel information to record temporal
current signatures [7]. It is specific to identifying sequential Trojans; these Trojan
may manifest over multiple time windows. A broader variation of this scheme
also uses current measurements but at block level, within a chip, among blocks
which are similar and ideally adjacent to each other [12]. While this approach
requires knowledge of similarity within the chip, it is likely able to eliminate the
impact of process-induced variations on the current measurements because similar
blocks will be subject to similar variations, especially if they are physically close or
adjacent to each other. Besides current measurements, self-referencing has also been
implemented based on delay measurements on design paths with similar structures
which also can help to eliminate the impact of process-induced delay variations [11].

Authentication with golden PCM using side-channel information: The work [6]
proposes chip authentication using golden process control monitors (PCMs) rather
than golden ICs. The PCMs are simple structures such as ring oscillators which are
typically placed on the wafer. The authentication process uses measurements from
PCMs to get an idea about process variations for the dies belonging to the same
wafer which provides a more accurate idea about their expected post-fabrication
characteristics. The PCMs typically won’t be able to differentiate between dies
within the same wafer. Nevertheless, they are standard structures which allow
measuring the process characteristics at the wafer-to-wafer level fairly accurately.
The authentication scheme utilizes statistical techniques applied to the collected
side-channel information and is able to eliminate the impact of variations caused
by the fabrication process which are obtained from the PCM measurements.
Identification and existence of golden PCMs are less challenging tasks than golden
IC. This is because it is less challenging for a process engineer to detect if a PCM is
not behaving correctly, in case it may be Trojan-infected.

Sensor-assisted self-authentication with on-chip sensors: This detection scheme
relies on on-chip detection sensors for self-authentication of each IC, thus allevi-
ating the GIC requirement. Both delay and power sensors have been proposed in
prior work [3, 4]. In [4], the detection sensors are design-dependent, as opposed to
generic on-chip structures such as ring oscillators. As a result, they allow coverage
of characteristics of the design, such as features of the netlist and dependencies
due to the physical implementation on the layout. Specifically the detection sensors
are designed to provide custom information for as many paths in the design’s
netlist as possible. Moreover, they are designed to capture individual process
variations at a die-to-die level and are placed at various regions on the chip to also
capture variations a within-die level. The sensor measurements should be made for
individual chips but they allow making chip-specific delay-based calibration to more
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effectively detect the impact of an inserted Trojan on the delay of the design. Next
we will discuss the sensor-assisted self-authentication scheme in more detail.

9.4 Case Study: Sensor-Assisted Self-Authentication

9.4.1 Overview

Figures 9.1 and 9.2 give an overview of a sensor-assisted framework for self-
authentication of a suspect IC. There are two stages in the framework: (1) design
of so-called detection sensors and their layout integration which occur at the design
stage (and during the implementation of the design using the CAD tools) and
(2) self-authentication of a suspect IC using sensor-assisted analysis at the post-
fabrication stage.

Self-authentication uses on-chip measurements from the detection sensors and
from arbitrary design paths and involves a correlation analysis between the two
measurements to determine if a Trojan exists in the suspect IC.

First, at the design stage, a set of detection sensors are identified and integrated
with the layout. Each sensor is realized as a new logic structure and added to the
layout. If the sensor reading is in the form of delay, then special delay measurement
circuitry should also be added to each sensor to allow post-fabrication reading of
the sensor delay.1

Fig. 9.1 In sensor-assisted
self-authentication, detection
sensors are created and
integrated with the layout
during the design stage. The
sensors are custom-built to
capture most commonly used
logic structures in the design
and capture within-die
process variations for each
region in the layout and help
create a unique fingerprint of
an IC

1Prior work such as [8] have already proposed solutions for designing on-chip delay measurement
circuitry.
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Fig. 9.2 At the post-fabrication stage, the measurements of the detection sensors are combined
with measurements made to some design paths within a correlation analysis framework which
alerts existence of a Trojan

There are various ways to design a delay sensor. A desirable goal during self-
authentication is to capture unique characteristics of that design and that chip, so
the reading from the delay sensor can serve as a source of delay “fingerprint”
representing that chip. In [4], the delay sensor is designed by finding the most
commonly used logic structure for different regions of the chip. For example, as
shown in Fig. 9.1, the chip is divided into different regions. Each region has its
unique within-die process variations. Then for each region of the layout, the design
is analyzed to identify a logic structure (i.e., subset of connected gates) which is
repeatedly found in that region.

This structure could be a sequence of logic gates in the most simple scenario.
The sensor is then realized by inserting the commonly used logic structure in that
particular region. This approach allows predicting the delays of those portions of
the design which are included in that region while accounting for specific die-to-
die and chip-to-chip variations as well as within-chip variations seen in different
regions. The integration of the sensor in the existing layout should be done in the
available white spaces as much as possible, so the original layout is not changed
much. This will be a specific consideration in the sensor generation process.

Second, at the post-fabrication stage, the Trojan identification framework takes
advantage of the delay fingerprints obtained from the detection sensors. For an IC
under self-authentication, these delay fingerprints help estimate an expected delay
range for various paths in the design because the design paths include the same
common gate structures captured by the sensors and are subject to the same die-to-
die and within-die process variations as the sensors.

This chip-specific path delay estimation using the sensors relies on having a
model of logic and layout which has been verified to be accurate and Trojan-free,
for example, one that is obtained from a trusted design environment but may be
subject to an untrusted fabrication process. Besides obtaining estimates for some
path delays, at the post-fabrication stage, the delays of these paths are also directly
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measured.2 If one of these paths contains a Trojan, a mismatch will be detected
between the measured path delay and the estimated delay using the detection
sensors. This mismatch alerts existence of the Trojan.

Given the above overview of a sensor-assisted self-authentication process, in the
remainder of this chapter, we will discuss in more details how the delay sensors
can be designed. Moreover, the above example discusses one scenario that a Trojan
may be detected; we will discuss all possible scenarios to understand the detection
scheme in more details. We will also discuss how a Trojan can be localized using
the above framework. Finally, we will discuss some limitations and areas for
improvement.

9.4.2 Sensors for Capturing Design-Dependent Delay Features

The work [5] gives a mathematical formulation which is able to generate custom
sensors. These sensors depend both on logic synthesis of the design as well as its
layout realization.3 (The layout realization impacts the delay of a fabricated design
because each chip has its own unique die-to-die and within-die process variations.)
Given an arbitrary design, the objective of the optimization is to form groups of
similar structures in order to maximize the coverage of the design paths. This is
subject to area constraint for the sensor. Maximizing the design coverage helps with
increasing the likelihood of Trojan detection while not making any assumptions
about the potential locations in the netlist that the Trojan may be inserted.

More specifically, consider a model of a design described as a placed and routed
netlist of connected gates and interconnects. First, a timing graph is extracted for
this netlist which is a directed acyclic graph (DAG) denoted by G D .V ; E /. Each
node corresponds to the output pin of a gate. An edge between two nodes represents
the delay of the path between two gates, so it includes factors such as loading
capacitance and interconnect delay on this path. Let a sequence be a directed path
between two arbitrary nodes in this DAG. Therefore a sequence corresponds to a set
of consecutively connected gates and interconnects.

Denote X to be a column vector representing the parameters which are subject
to process variations. Each entry in X lies in the category of die-to-die, within-die,
and random variations in physical parameters. All the entries in X are assumed to
be independent from each other. This model of process variations is identical to

2One way to measure arbitrary path delays is using an automatic test equipment (ATE), by
generating test patterns which excite the desired path(s), assuming they are testable, and then
sweeping the clock period in a similar way until failure occurs.
3In [5], these sensors were proposed in the context of custom test structures to isolate the paths that
fail their delay constraints during post-silicon validation. But they can also be used in the described
self-authentication process.
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the many works in statistical static timing analysis such as [2, 9, 10]. Define the
variation-aware delay of edge ei using the following linear model:

Dei D �ei C aT
ei

X (9.1)

where �ei is the nominal delay of ei and aei is a sensitivity vector corresponding to
X. These sensitivities depend on the fabrication facility and technology and can be
pre-characterized and communicated beforehand to the designer. The above model
also includes interconnect delay variations.

Let a sequence si be a set of consecutive edges in G. The variation-aware delay
expression of si is found by adding the corresponding delay expressions of the edges
that are included in it. It is given by Dsi D

P
8jjej2si

Dej which can be further

reexpressed in a form similar to the above equation as follows: Dsj D �sj C aT
sj

X.
Using the above variation-aware delay model, the work [5] defines a mathe-

matical optimization procedure which automatically forms a set of nonoverlapping
sequences such that “similar” sequences are grouped together so they can be
represented by one sensor. Two sequences si and sj are similar if their sensitivities to
the parameter variations vector X are less than a small error tolerance denoted by 	.
This condition is given by the following inequality:

���aT
si

� aT
sj

���
1

� 	 (9.2)

The sensor is then implemented to be the smallest-area sequence that it represents
in a neighborhood close to it in order to satisfy the above similarity constraint.
If whitespace is available, then the addition of the sensor does not result in any
additional area overhead. Otherwise, the sequences are formed such that the sensor
area overheads do not exceed a specified threshold.

The objective of the optimization is to maximize the coverage of edges ei 2 E .
The mathematical optimization framework is described as an integer linear pro-
gramming which can optimally solve the above problem. The reader is referred to
[5] for the technical details.

9.4.3 Scenarios in Post-fabrication Self-Authentication

After the sensors are added to the die, Trojan detection happens during a self-
authentication process at the post-fabrication stage. For each chip, an arbitrary set
of paths are picked and their delays are measured together with the sensors to detect
if a Trojan exists. This detection process is also able to account for inaccuracy in
on-chip delay measurement (for both the paths and on-chip sensors). The duration
of self-authentication depends on the number of selected paths; if a higher number
of paths are picked, the authentication obviously takes longer since the analysis is
made on a path-by-path basis. However, in this case, it will be more likely to detect
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the Trojan. Specifically if none of the selected paths and the sensors are affected
by the Trojan, the self-authentication process fails to generate an outcome in either
positive or negative way.

We divide the discussion in three different cases, when the Trojan is inserted in
the design paths, in the sensors, and in both design paths and the sensors. We discuss
these details next.

9.4.3.1 Trojan Inserted in the Design Paths

Consider the case when the Trojan is inserted somewhere in the logic representing
the design. (Note that this case excludes the situation when the Trojan is added
in the layout in the existing white space because the logic of the design remains
unchanged.) As a result, one or more design paths will have their delays affected
due to the Trojan insertion. If the path that is affected by the Trojan is among the
design paths that has been selected, then the sensors may be able to detect the Trojan.

This case is shown in Fig. 9.3 using a very simple example to illustrate the idea.
The affected path is shown with a dashed arrow, and the Trojan is shown as an extra
chain of inverters. The sensor is shown on the right corner and its matched sequences
in the netlist are circled. Note that the sequences are similar according to Eq. (9.2)
which means they may not necessarily be identical to each other.

To detect the Trojan, for each path, an actual and a predicted delay range is
computed. First, the actual delay range of path p is computed by measuring its delay
using an on-chip measurement infrastructure. Having a range and not an exact value
is due to a measurement error associated with the used infrastructure.

Fig. 9.3 Trojan detection
when it is inserted in one or
more design paths but the
sensor is unaffected
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Next, a sensor-assisted predicted delay range is found for path p using the
sensors. Specifically, the on-chip delays are computed for the sensors which have
partial similarity on the path. Recall, each sensor is formed to have the same change
in its on-chip delay as the sequences that it represents. So any post-fabrication
change in the delay of the sensor can be computed by comparing against its
prefabricated delay model in order to predict the on-chip delay of the sequence that
it matches on the path. Denote the aggregate delay of the matched sequences on one
path by �match ˙ 
 , where 
 is the error associated with the on-chip measurement
infrastructure.

These sensor delays will be used to predict the rest of the path delay. For path
p, consider its remaining portion which is not matched by any sensor. It is denoted
by prmn and identified by a set of edges on p which are not matched by any sensors
during the sensor generation process.

Denote the delay corresponding to prmn by Drmn which has a variation-aware
delay expression obtained by adding the expressions of the edges that are included
in it, similar to Eq. (9.1). Therefore the delay of the path is given by

Drmn D
X

8ijei2Prmn

.�ei C aT
ei

X/ D �rmn C aT
rmnX: (9.3)

Next, worst-case and best-case values of Drmn are computed which are denoted
by D.WC/

rmn and D.BC/
rmn . This is by assuming the varying parameters x 2 X are

simultaneously in their extreme values in the Drmn expression. The predicted delay
range of path p is then given by the following expression:

�match C �rmn ˙
�

 C D.WC/

rmn � D.BC/
rmn

�
: (9.4)

Figure 9.3 shows the Trojan detection analysis in this first scenario when the Trojan
is inserted in one or more design paths. On the left-hand side, two predicted delay
ranges are drawn, corresponding to with and without sensor matching. The actual
delay range always falls on the right-hand side of the predicted delay ranges. This is
due to the insertion of the Trojan on the path which shifts its measured delay range
to the higher values. The following analysis can be made:

• If a predicted delay range has no overlap with the actual delay range, then a
Trojan is detected. Furthermore, the observation that the actual delay range is
higher also prompts that the Trojan is inserted on the path which helps with
localization of the Trojan.

• Recall the sensor-assisted prediction results in a smaller delay interval compared
to the one without sensor matching. This reduction in interval increases the
likelihood that the predicted and the actual delay ranges do not overlap if a Trojan
is present.

• The decrease in the Trojan delay results in the predicted and actual delay ranges
to be closer to each other and makes the detection more challenging.
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Please note that, in the situation when the path does not have similarity with any
of the sensors, the path delay range can only be determined based on worst case
and best case of process variations and prefabrication delay models. In other words,
we have Dp D Drmn. In this case, the predicted path delay range is expressed as

�p ˙
�

D.WC/
p � D.BC/

p

�
: This delay range is larger than the sensor-assisted one since

the partial matching of a path with a sensor helps reduce the path delay range to a
smaller one.

For such paths, the same analysis can still be made. However, without the aid
of the sensors, it is more likely that the (now) wider path delay range overlaps
with its actual delay range, so the Trojan may not be detected. However, note that
the objective of sensor generation process is to maximize the coverage to as many
design paths as possible which should reduce the number of such cases.

Alternatively the set of paths which can get selected may be restricted based
on information provided by sensor generation process. If most of the design paths
have a match with the generated sensors, the information can be communicated by
providing the set of paths which does not match a sensor, so they are excluded from
sensor-assisted analysis.

9.4.3.2 Trojan Inserted in the Detection Sensors

Figure 9.4 shows this case. The insertion of the Trojan increases the measured on-
chip sensor delay. Since the Trojan does not impact the path, the actual delay range
of the path and the predicted one without sensors will both be accurate and computed

Fig. 9.4 Trojan detection
when it is inserted in the
sensor but not any of the
design paths
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similar to the previous case. These two ranges will overlap with each other. So by
solely comparing those two ranges, the existence of the Trojan cannot be identified.

However, the sensor-assisted prediction of the path delay range will be inaccurate
and shifted to the right-hand side of the actual delay range. This interval will likely
not overlap the actual interval (obtained from on-chip measurement) which allows
detection of the Trojan. If the predicted interval falls completely on the right-hand
side of the actual, we conclude that the Trojan is inserted in the sensor.

For localization, the Trojan-affected sensor(s) will be one or more of the sensors
which have matched with a sequence on the path.

9.4.3.3 Trojan Inserted in the Paths and Sensors

As shown in Fig. 9.5, the sensor-assisted predicted range and the actual one are
more likely to overlap with each other in this case, because the insertion of the
Trojan shifts both of the intervals to the right-hand side. The predicted delay without
sensors may still overlap due to its larger interval. Recall that Trojan can only be
detected when no overlap exists. Therefore in this scenario, it will be less likely for
the Trojan to be detected.

We also note that in all the described three scenarios, if a path does not have
any match with the sensor, then sensor-assisted authentication cannot be helpful
to it. When this happens, the only way to detect the Trojan is if the predicted
path delay range using prefabrication model is nonoverlapping with the actual path
delay range using post-fabrication measurement. This may still be possible if the
Trojan significantly impacts the path delay; the delay of Trojan-inserted path is

Fig. 9.5 Trojan detection
when it is inserted in both the
sensor and the design paths
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higher than the worst-case prediction of path delay under process variations and
using prefabrication models. Even though such a case self-authentication can be
used without assistance of sensor, occurrence of this case (of having a Trojan with
very significant impact on path delay) is even less likely.

9.5 Summary

In this chapter, we discussed the challenges associated with a golden-dependent
Trojan detection which inspired switching to a golden-free IC authentication process
in order to eliminate the golden IC from the authentication loop. We gave an
overview of existing techniques for golden-free Trojan detection and then focused
on one technique in detail, as a case study for self-authentication of a chip based on
assistance from custom design-dependent on-chip sensors.

For the sensor-assisted self-authentication framework, we discussed three sce-
narios that can happen during a sensor-assisted self-authentication process when
the sensor is inserted in the design paths, inserted in the sensors, and inserted in
both of them. As far as the accuracy of the framework, if it had alerted existence
of a Trojan, then its detection was accurate. Otherwise the framework would not
generate an outcome to indicate that it was not able to determine if a Trojan existed.
The framework also relied on testing an arbitrary set of design paths. These paths
can be randomly selected, or they can be selected based on prior information about
the design or if there are clues about areas on the chip that would be more important
candidates for testing for Trojans. In general, the higher number of paths increased
the likelihood of Trojan detection (if it existed) but required a longer testing time.
The main idea behind sensor-assisted self-authentication was to use on-chip delay
information from the sensors to make a more accurate prediction about the expected
path delays.
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Chapter 10
Detecting Hardware Trojans Using Delay
Analysis

Jim Plusquellic and Fareena Saqib

10.1 Introduction

Hardware Trojans (HT) are a deliberate and malicious change to an IC that adds or
removes functionality or reduces reliability of an integrated circuit (IC) or system
[1–8]. The changes can be designed to leak secret information, e.g., encryption keys
or other types of private internal information, or they may be designed to cause the
system to fail at some specific or predetermined time while the IC is in mission
mode. Adversaries design the HT to be difficult to discover, either accidentally
via manufacturing test or purposely using tests specifically designed to activate
the HT. Sophisticated HT insertion strategies also consider resilience to advanced
HT detection methods that utilize high-resolution measurements of side-channel
signals, such as electromagnetic (EM) emanations, power consumption (steady-state
IDDQ or transient IDDT), delay testing, and temperature profiling.

In addition to these testing challenges, HT detection methods are further tasked
to deal with several other fundamental HT properties. First, the task of identifying an
HT is akin to finding a needle in a haystack, i.e., the adversary has a huge advantage
because he/she can choose to insert the HT anywhere while the trusted authority
is tasked with determining if the IC has in fact been modified and if so, finding
the unknown malicious function in a “sea” of gates. Second, HT and “bugs,” either
hardware or software, share the same characteristics, and it is widely accepted that
finding all the bugs in a complex program is generally infeasible [9]. In fact, cleverly
inserted HT can be designed to appear as bugs, making it difficult to decide if the
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malicious function, if discovered, was accidental or purposeful. Third, any attempt
by the trusted authority to increase the “ease” of HT detection may be visible to the
adversary, i.e., the adversary can reverse engineer the IC and avoid countermeasures
added by the trusted authority. Fourth, the adversary can choose to “selectively”
insert the HT into only a subset of the manufactured ICs, making it necessary to
verify all manufactured ICs. Last, HT designed to leak information may not cause a
change in the functional behavior of the IC, and, therefore, the trusted authority may
need to apply nonstandard tests, e.g., tests for anomalous EM radiations. Moreover,
the appropriate detection strategy will vary greatly depending on the assumptions
made regarding the “insertion point,” i.e., design-inserted HT requires very different
detection techniques than those inserted into a layout description of the design.

The only advantage afforded to the trusted authority is that his/her detection
strategy can be “parallelized” because the HT needs to be detected only once and is,
in most cases because of mask cost issues, inserted in the same fashion in every
copy of the targeted IC population. Therefore, tests applied post-manufacturing
can be partitioned among multiple independent IC testers (referred to as automatic
test equipment or ATE) and applied in parallel. Unfortunately, even high levels
of parallelism “run out of gas” when the full extent of the search space, both
combinational and sequential, is considered.

This chapter is focused on surveying methods that utilize very precise analog-
based testing to discover HT. The underlying basis of these methods can be
characterized by the Heisenberg principle or observer effect, i.e., any attempt to
measure or monitor a system changes its behavior. The testing methods described
herein attempt to determine if an adversary has inserted an HT that is “observing”
the evolving state of the IC, which is used by the adversary as the mechanism to
activate the HT. In particular, we survey path delay-based testing methods which
are designed to detect subtle changes in delay introduced by the HT connections
and gate insertions, referred to as the trigger and payload of the HT, respectively.
The authors of [10] propose a generic characterization of these concepts as shown
in Fig. 10.1.

The rest of this chapter is organized as follows. Section 2 presents a high-
level view of HT insertion strategies and discusses the constraints on the detection
methods. Section 3 covers HT detection strategies designed to detect layout or
GDSII Trojans (other HT insertion points are detailed in other chapters of this
book) with subsections that survey detection methods that analyze “side-channel”
signals, e.g., power and delay. Section 4 describes important fundamental concepts
related to implementing path delay-based HT methods. Section 5 provides a survey
of delay-based HT detection techniques, while Section 6 describes the first proposed
multiple-parameter side-channel method. Conclusions are provided in Sect. 7.
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Fig. 10.1 Generic characterization of a hardware Trojan trigger and payload from [10]. Trigger
signals q1 through qq typically connect to nodes in the existing design and therefore add capacitive
load to these signals, creating an observer effect. Both the trigger signals and payload add delay to
paths in the existing design

10.2 Hardware Trojan Insertion Points

The horizontal dissemination of the IC design, fabrication, and test processes to
many distinct companies around the world has dramatically increased the potential
for malicious activities. Intellectual property (IP) block reuse has compounded this
threat by partitioning the design space itself among multiple third-party vendors.
Standardization activities have enabled multiple independently designed IP blocks
to seamlessly integrate into CAD tool flows. However, the electronic design automa-
tion (EDA) community developed this multiparty collaborative design system using
a model in which all parties are largely trusted. Unfortunately, the same types
of malicious activities endured by the software community are now presenting
themselves in the hardware design community.

All of the primary processes associated with design, manufacture, and test are
vulnerable to malicious activities where adversaries can add to, remove from, or
change the functionality of the IC. We refer to these opportunities as insertion
points. Figure 10.2 provides a graphical illustration of the major insertion points,
which are further distinguished by the following list:

• Designing third-party IP blocks
• Developing CAD tool scripts
• Integration activities where IP blocks and glue logic are assembled into system-

on-chip (SoC) ICs
• Behavior synthesis and place and route (PnR) carried out by CAD tools
• Layout mask data generation and mask preparation
• Process parameter control mechanism used in the multistep fabrication process
• Supply chain transactions associated with transferring wafers from one facility

to another
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Fig. 10.2 Hardware Trojan insertion points

• Generating test vectors using automatic test pattern generation (ATPG)
• Wafer-probing activities associated with measuring test structures and detecting

defects
• Supply chain transactions associated with creating and transferring dice
• Processes responsible for packaging ICs
• Applying ATPG vectors to packaged ICs using ATE
• Supply chain transactions associated with transferring packaged parts
• Printed circuit board (PCB) design and fabrication
• Processes responsible for installing PCB components (populating PCBs)
• Supply chain transactions associated with transferring boards
• System integration and deployment activities

The wide range and widely distributed nature of these activities presents an
overwhelming opportunity for subversion. Moreover, the wide diversity among the
tasks will require a very sophisticated and complex system to manage the entire set
of trust vulnerabilities from start to finish. The research community is tackling the
trust challenges one at a time and is focused on those that are the most attractive
insertion points for adversaries. For example, subversion of IP blocks is a serious
concern given the ease in which malicious functionalities can be covertly inserted
and the absence of alternate representations and models to which the IPs can be
compared [11]. Layout modifications and IC fabrication insertion points represent
another important focus area, especially given the huge complexity associated with
analyzing fabricated ICs at this lowest layer of design abstraction, and the wide
range of opportunities available to the adversary in designing HT with sophisticated,
sometime analog, triggering and payload mechanisms.

Note that significant differences exist in the HT countermeasures and detection
strategies that are applicable even when only considering these two insertion points.
For example, golden models are not available at the IP block insertion point, but
architectural changes that obfuscate the design are available as countermeasures.
On the other hand, the layout insertion point allows layout design data to be used
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to validate the functional and analog behaviors of the IC, but obfuscation is limited
to “dummy via” insertion and other nano-level manipulations of the design. Also,
side-channel information is not available or is not accurate enough to be useful
for IP blocks but can be leveraged as a very powerful HT detection method for
layout-level validation. The focus of this chapter is on HT detection methods, and
countermeasures where appropriate, that are applicable at the layout level. Other
chapters of this text survey techniques which target other insertion points.

10.3 Approaches to Detecting Layout-Inserted Hardware
Trojans

A layout is a physical representation of the design, i.e., it is a set of geometric shapes
that represent a physical model of the IC. The shapes define transistors, wires, vias,
and contacts. A layout is the lowest layer of abstraction in the design process and
contains all the logic gates that define the function as well as all of the electrical
connections between the logic gates and the power supply rails. The complexity of
layouts increases as technology feature sizes shrink into the nanometer regime, and
additional wiring layers are added. Figure 10.3 shows several standard (std.) cell
layouts on the left and a tool-synthesized layout of a relatively small functional unit
called the Advanced Encryption Standard (AES). The layout of the AES IP block
contains approx. 12,000 std. cells and 50,000 wires and typically would represent
one IP block of several 100 on a modern SoC. The technology used in this example is
an IBM 90 nm process which provides nine vertically stacked layers for metal wires.
The image is a screen capture of the designer’s view of the layout using Cadence
Virtuoso. Most layout design tools provide this type of top-down view, with upper
metal layers obscuring the transistors in the bottom-most layer, i.e., nearly all of
what is shown in the AES layout are metal wires.

Fig. 10.3 Layout of std. cells (left) and AES layout (right)
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Once the physical model of the layout is completed as shown by the AES layout
in Fig. 10.3, a set of masks are generated. The masks decompose the layout into
a set of (x,y) planes, which can be vertically aligned to define the transistors and
wiring layers. Layout-inserted HT are characterized as changes in one or more of the
masks used in photolithography process to create physical instances of the IC. The
multitude of overlapping wires and the tightly packed form of the transistors define
a complex structure which represents the haystack in the “needle-in-a-haystack”
paradigm. Adversaries are free to add or change very small regions in the masks,
which can affect connectivity relationships between a small set of existing std.
cells, or new std. cells can be added. The latter is possible using “white space,”
i.e., areas in the lowest layers of the layout that contain nonfunctional filler cells or
cells implementing decoupling capacitors.

10.3.1 Layout-Oriented HT Detection Methods

HT detection methods which are designed to detect malicious modifications to the
IC layout fall into three fundamental categories [1]:

• Nondestructive logic-based testing methods
• Nondestructive side-channel-based testing methods
• Destructive physical inspection techniques

10.3.1.1 Nondestructive Logic-Based HT Detection Methods

Logic-based methods derive test vectors that attempt to activate the HT [12–
18]. Unlike manufacturing tests which activate and propagate faults on each node
individually within the fabricated IC, HT activation is akin to multiple fault
activation, which is rarely practiced in manufacturing test because of the high time
complexity for ATPG and high cost of applying very large numbers of vectors.
Also, unlike manufacturing defects which tend to distribute randomly across circuit
nodes, the adversary chooses a stealthy location for the HT, i.e., he/she inserts
the HT on circuit nodes that are difficult to control or observe. Unfortunately, the
task of generating test vectors that provide coverage of all possible states for these
nodes is orders of magnitude more difficult than it is for manufacturing defects,
and, therefore, achieving high levels of HT coverage is difficult or impossible given
limited resources and existing manufacturing test cost constraints. The authors of
[12–18] present alternative test generation strategies that are optimized to deal with
these challenges, either alone or in combination with design modifications and side-
channel-based testing approaches, as detailed in other chapters of this text.
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10.3.1.2 Side-Channel Analysis Approaches

Side channels refer to access and measurement techniques that bypass the designer-
intended input-output mechanisms, e.g., the digital I/O pins of an IC. Side channels,
as the name implies, refer to auxiliary electrical and/or electromagnetic (EM) access
mechanisms, such as the VDD and GND (power supply) pins or the top-layer metal
connections in the physical layout of the IC. Side-channel attacks utilize these
auxiliary electrical paths to introduce signals, usually in an attempt to create a fault
while the IC is operational [19], or to measure signals, in an attempt to extract private
internal information [20].

Side channels can also be leveraged by the trusted authority to obtain information
regarding the integrity of the IC. For example, leakage current (IDDQ) and transient
current (IDDT) measurements have been widely used to detect manufacturing defects
[21–23]. Moreover, the trusted authority can also introduce on-chip design for
testability (DFT) [24] and other types of specialized instruments [25, 26] which
allow access to additional side channels that are not directly accessible using
auxiliary channels to the IC. DFT components are designed to improve visibility
of the internal and localized behavior of the IC and include mechanisms to measure
path delays, localized transients, and temperature profiles. DFT added by the trusted
authority can also be leveraged by adversaries as “backdoor” access mechanisms to
internal secrets, e.g., encryption keys, so security features such as fuses must be
included to disable DFT after the IC is fabricated.

Side-channel signals are typically analog in nature and can provide detailed,
high-resolution information about the internal timing and regional signal behavior
of the IC. For example, IDDT measurements reflect performance characteristics of
individual gates as logic signals propagate along one or more paths in the circuit.
This type of temporal information can be reverse engineered and compared with
simulation-generated data to validate the structural characteristics of the fabricated
layout, i.e., to ensure the chip is consistent with the golden model representation
described by the design data.

Path delay measurements, if measured at high resolutions, can also serve this
role. Unlike IDDx measurements which provide a large-area regional observation,
path delays are influenced by only those components that interact with the wires
and gates along the sensitized path (defined as a path that propagates a logic signal
transition). Therefore, path delay measurements can potentially be used to define
a high-resolution HT detection methodology. Unfortunately, path delays are also
affected by variations which occur in fabrication processing conditions, commonly
referred to as process variations. Path delay variations caused by process variation
effects are unavoidable and must be distinguished from delay variations introduced
by an HT. Failure to do so is costly both in terms of the time and effort involved
in verifying false alarms and, worse, in HT escapes that leave fielded systems
vulnerable to attack. Subsequent sections of this chapter investigate both the benefits
and challenges of using path delays as a HT detection method.
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10.3.1.3 Destructive Physical Inspection-Oriented Methods

A third tactic to determining whether a chip is free of malicious inclusions is to
apply destructive delayering and imaging techniques. Companies such as TechIn-
sights [27] and Analytical Solutions [28] provide services that reverse engineer
the physical characteristics of a chip to design data such as a schematic, which
can then be inspected to identify IP infringements or HT circuitry. Failure anal-
ysis techniques, including scanning optical microscopy (SOM), scanning electron
microscopy (SEM), picosecond imaging circuit analysis (PICA), voltage contrast
imaging (VCI), light-induced voltage alteration (LIVA), charge-induced voltage
alteration (CIVA), are used as needed in the reverse-engineering process [1, 29].
The primary disadvantage of these methods is their high cost and long processing
times. Moreover, many destroy the chip and, therefore, cannot be used to validate
chips for field use.

10.4 Fundamentals of Delay-Based HT Detection Methods

This section introduces the three fundamental technical domains that need to
be considered by path delay-based methodologies: (1) the test vector generation
strategy, (2) the technique employed for measuring path delays, and (3) the
statistical detection method for distinguishing between process variation effects and
HT anomalies. A commercially viable HT detection method must address each
of these in a cost-effective manner. We investigate the challenges associated with
each of these domains and describe proposed solutions in this section. Many of the
methods surveyed in Sect. 5 address only a subset of these technical domains and
therefore must be combined with other techniques to be fully operational in practice.

10.4.1 Path Delay Measurement Schemes and Other Concepts

When technology scaling entered the deep submicron era circa 2000, higher
frequency operation, within-die variations, coupling, modeling challenges, and
power supply noise drove the IC design and test community to more sophisticated
statistical modeling approaches for IC development and test [30, 31]. This era also
renewed interest in delay fault models [32], namely, transition fault, gate delay
fault, and path delay fault models, which were introduced earlier in previous works
[33–36]. Although it became apparent that delay fault testing was needed to keep
defect levels low, work-arounds were developed to allow the two-vector sequences
which define a delay fault test (described below) to be applied. The work-arounds
became known as launch-on-shift (LOS) and launch-on-capture (LOC). LOS and
LOC allow two-vector delay tests to be applied while minimizing the amount of
additional on-chip logic needed to support this type of manufacturing test.
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Unfortunately, LOS and LOC delay test mechanisms also create constraints on
the form of the two-vector sequences, i.e., they do not allow the two vectors that
define a sequence to be independently specified. These constraints reduce the level
of fault coverage that can be attained for delay defects. More elaborate design-
for-testability (DFT) structures that do allow both vectors of the sequence to be
independently specified have been proposed [24], but are difficult to justify because
of their negative impact on area and performance, and the fact that they would only
be used during manufacturing test. These constraints continue to hold for modern-
day SoCs. However, increasing awareness of hardware trust concerns may provide
the impetus for a paradigm shift which would justify additional on chip support,
particularly given the significant security and trust benefits associated with path
delay testing, as we discuss in the following.

10.4.1.1 Path Delay Testing Defined

Path delay tests are defined as a two-vector sequence <V1,V2>, with the initialization
vector V1 applied to the inputs of a circuit at time t0. The circuit is allowed to
stabilize under V1. At time t1, vector V2 is applied, and the outputs are sampled at
time t2. The Clk signal is used to drive both the launch flip flops (FFs), which apply
V1 and V2 to the combinational block inputs, and the capture FFs which sample the
new functional values produced by V2. The time interval (t2 – t1) is referred to as
the launch-capture interval (LCI) and is typically set to the operational clock period
for the chip. Figure 10.4 shows the standard form of a path delay test. Note that the
standard form places no constraints on the values used for V1 and V2.

Unfortunately, external, off-chip access to the launch and capture FFs which
connect to the combinational blocks within an IC is not possible. Figure 10.5
shows a typical configuration with several cascaded combinational blocks B1 and

Fig. 10.4 Standard form of
path delay test
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Fig. 10.5 Actual form uses scan flip-flops

B2, with interleaved FFs. The manufacturing test community introduced a design-
for-testability (DFT) feature called scan to address the difficulty of applying
manufacturing tests to embedded combinational blocks [24]. Scan provides a
second, serial path through all (or most) of the FFs in the IC. The second path is
commonly implemented by adding a 2-to-1 MUX before the input of every FF (as
shown in the figure). A scan-enable (SE) control signal is added as an I/O pin on
the chip to allow test engineers to enable the serial path and to shift in a sequence
of 0s and 1s using a second I/O pin referred to as scan-in (SI). The scan path allows
the internal FFs to be configured with test data that is designed to maximize fault
coverage. Once a test vector is scanned into the chip, Clk is used to apply a launch-
capture test, which captures the functional outputs of the blocks Bi in the capture
FFs. A second scan operation allows those values to be read out using a third I/O
pin called scan-out (SO).

The scan architecture shown in Fig. 10.5 allows only a single vector V1 to
be applied. Manufacturing tests that target defects which prevent circuit nodes
from switching (called stuck-at faults) can be applied directly using scan because
the process involves applying a fixed set of values to the combinational block
inputs (represented by V1) and determining if the outputs possess the correct
functional values. Stuck-at fault testing is referred to as a DC test because no
timing requirements exist, i.e., delays are irrelevant. As discussed at the beginning
of this section, the deep submicron era brought with it more occurrences of timing-
related failures and the need to apply delay tests. The two-vector requirement
for delay testing can be solved in two ways as discussed earlier. Launch-on-shift
(LOS) derives V2 by shifting the scanned in vector V1 by 1 bit position using the
scan chain. Launch-on-capture (LOC) derives V2 from the outputs of the previous
combinational block, shown as B1 in Fig. 10.5 for testing paths in B2. In both cases,
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it is not possible to choose V2 arbitrarily as shown for the standard form in Fig. 10.4.
It is important to recognize that these constraints exist (they are often ignored) and
that the effectiveness of deriving delay tests for detecting HT will be negatively
impacted by them.

Another issue that is often ignored deals with obtaining accurate timing infor-
mation for paths. The timing diagram shown in Fig. 10.4 shows that it should
be possible to set the launch-capture interval (LCI), i.e., the interval of time
between the application of V2 at t1 and the capture event at t2, to any arbitrary
value. Unfortunately, this is not the case. The external tester (ATE) driving the clock
pin on the chip is limited in how close consecutive edges of Clk can be placed.
Moreover, most applications of delay tests for manufacturing defects only need to
determine if the chip runs at the operational clock frequency. As a consequence,
the LCI is typically fixed for all tests, and only upper bounds on the delays of
paths within the chip can be obtained. Therefore, HT detection methods that require
picosecond resolutions for individual path delays will require alternative clocking
strategies and/or additional DFT components to be incorporated on the IC, which
are described below.

A last important issue regarding path delay testing is related to circuit hazards.
Combinational logic blocks often possess instances of reconvergent fanout. A sim-
ple example is shown in Fig. 10.6a for a NAND gate implementation of the XOR
function. The integers inside the NAND gates represent one possible assignment of
gate delays. The test sequence AB D f01,11g is designed to test the highlighted path
but in fact propagates logic transitions along both branches of the fanout point C.
The timing diagram shown on the right side of Fig. 10.6b identifies a “glitch” on the
output F that is created by differences in the relative delays of these two paths.

Although this test is classified by the manufacturing test community as robust,
the glitch introduces uncertainty for the security community in cases where the
precise delay of the highlighted path is needed. The three transitions that occur on
F each represent the delay of a subpath in the circuit, with the first, leftmost edge
in this case corresponding to the highlighted path. Although subpath information
might prove useful in providing additional HT coverage, process variations render
this information challenging to leverage because of the difficulty associated with
deciding which edge corresponds to which subpath. In other words, the same test

Fig. 10.6 (a) Reconvergent fanout and (b) circuit hazards
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applied to a different chip with different assignments of delays to the NAND gates
may reorder the edges or may in fact result in only single transition, i.e., the glitch
disappears altogether. All major synthesis tools are oblivious to hazards, making
them very common in synthesized implementations of functional units. Special
logic synthesis algorithms are needed to construct circuits that are hazard-free, but
hazard-free implementations usually have large area overheads and therefore are
rarely used. Unfortunately, hazards are largely ignored in many proposed HT test
generation strategies even though they can invalidate tests and raise false alarms.

10.4.1.2 Similarities and Distinctions of Delay Test for Manufacturing
Defects and HT

Unlike logic-based testing, the goals of testing for defects and testing for HT
using path delay tests are very similar. Path delay tests for defects are designed
to determine if an imperfection introduced during the fabrication process causes
a signal propagating along a path to emerge later than designed. Similarly, path
delay tests for HT are designed to determine if an adversary has added fanout to
logic gate inputs and outputs, i.e., additional wires that monitor the state of the IC
(trigger) or inserted additional gates in series with the original design as a means
of modifying its function (payload). Both of these scenarios also cause the delay of
paths to increase.

The main distinguishing characteristic between defects and HT relates to false
positives. False positives are situations in which a test for an HT indicates it is
present when in fact it is not. This issue is less relevant for defects and can be
minimized using modern ATPG tool flows. False positives can occur for HT when
the detection method does not adequately account for normal delay variations
introduced by process variations. The cost associated with false-positive detection
decisions is very different for defects and HT. A false positive in manufacturing
test results in a defect-free chip is being falsely discarded, while a false-positive
HT detection can initiate a very expensive and time-consuming reverse-engineering
process of the IC.

False negatives, on the other hand, need to be handled by both manufacturing
defect and HT testing communities. False negatives are situations in which a defect
or HT exists, and it is not detected by the applied tests. False negatives can occur
in either application either because the measurement technique does not provide
sufficient resolution or because the applied tests do not provide adequate coverage.
The cost associated with false negatives can be high in either case, resulting in
system failure once the IC is installed in a customer application.

10.4.1.3 High-Resolution Path Delay Measurement Techniques

Delay-locked loop (DLL), phase-locked loops (PLLs), and digital clock managers
(DCM) are on-chip IP blocks responsible for maintaining phase alignment with
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external oscillators and for creating multiple internal clocks at different frequencies
and with specific phase shifts.1 They can be used to create the Clk signal shown
in Fig. 10.4 for path delay testing. Although automatic test equipment (ATE) can
be used to carry out path delay testing, on-chip clock and phase shift mechanisms
generally provide higher accuracy and resolution because off-chip parasitic resistor-
inductor-capacitor (RLC) components are eliminated and noise sources are reduced.
Many of the HT detection techniques described in subsequent sections depend on
high-resolution timing measurements, making on-chip techniques better suited.

Figure 10.7 shows three examples of measurement techniques that can be used
to provide fine-grained timing resolution. The first, called single-clock scheme
(or clock sweeping), requires repeated application of a two-vector sequence
(Fig. 10.7a). On each iteration, the frequency of C1 is increased, which moves the
launch and capture edges, i.e., the LCI, of the Clk signal closer together. The process
is halted as soon as a condition is met or violated, which is usually related to whether
the capture FF successfully captures the functional value produced by vector V2

(see Fig. 10.4). An estimate of the path delay is computed as 1/frequencyfinal where
frequencyfinal is the stop point frequency. Although this scheme requires the fewest
resources, i.e., only one clock tree is included on the chip, it lower bounds the
length of the path that can be measured. For example, short paths would require
a very high-frequency clock, which creates undesirable secondary effects, e.g.,
power supply noise, that make it difficult to obtain accurate timing measurements.
Single-clock schemes which use an externally generated (ATE) clock constrain the
minimum path length even further.

The second, called dual-clock scheme (or clock strobing), also requires repeated
application of the two-vector sequence [37, 38]. On each iteration, the phase of
the capture clock C2 is decremented by a small �t relative to C1 as shown in
Fig. 10.7b. The additional overhead introduced by the second clock tree is offset
by the benefit of being able to time a path of any length. This is possible because
the two clock networks are independent and modern clock manager IP designs are
capable of allowing the time base of C2 to be very precisely shifted. Moreover, the

1FPGA vendors commonly refer to IP blocks for clock control as DCMs.
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power supply noise issue mentioned above is also mitigated because only two clock
edges are required to carry out a launch-capture delay test instead of three.

The third timing mechanism, referred to as the RO scheme, is shown in Fig. 10.7c
[44].2 It adds the components shown in magenta to the design. Paths in the circuit
are timed by creating a ring oscillator (RO) configuration where the output of a path
is connected back to the input of the path using a MUX (and optionally a NOT gate
as shown). A timing measurement is performed by enabling the MUX connection
and then allowing the path to “ring” for a specific time interval. A counter (Cnter)
is used to record the number of oscillations. This is accomplished by tieing the
output signal from the path to the clock input of the counter. The actual path delay is
obtained by dividing the time interval by the counter value (note, the NOT gate and
MUX add two gate delays to the delay of the actual path). No launch-capture event is
required in this scheme. Therefore, the clock noise associated with high-frequency
clocks in the single-clock scheme is eliminated. The main drawback is related to the
limited number of paths that can be timed in this fashion. For example, paths that
have hazards as discussed in reference to Fig. 10.6 produce artifacts in the count
values. As discussed, hazards are very common in combinational logic circuits, and
therefore, they will negatively impact HT coverage.

A fourth alternative, called a time-to-digital converter (TDC), is shown in
Fig. 10.8 [25, 26, 59]. Similar to the RO scheme, it eliminates clock strobing and,
therefore, is able to obtain path delay measurements that better represent mission
mode path delays. The TDC is an example of a “flash” converter, which is a class
of converters that digitize path delays very quickly. The path select unit shown on
the left is responsible for selecting a pair of paths, one of which can be the clock
signal. The delay chain unit shown on the right is responsible for creating a digital
representation of the relative difference between the delays of the two input paths,
PAx and PBx. The arrival of a rising or falling transition on one path creates the first
edge in the delay chain (labeled first in the figure), while a transition on the second

Fig. 10.8 Time-to-digital converter (TDC)

2A similar scheme called Path RO is proposed earlier by the authors of [39] but for application to
design for manufacturability.
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path generates the trailing edge (labeled second). The width of the initial (leftmost)
pulse shown in red represents the delay difference between the two signals being
timed. The pulse propagates along the delay chain as shown by the annotations
along the top of the figure.

The inverters in the delay chain include an additional series-inserted NFET
transistor as shown by the callout on the far right. An analog control signal labeled
Calx is used to control the pull-down strength of the inverter, with higher gate
voltages allowing faster operation. The inverter chain is configured with two such
control signals, Cal0 and Cal1. The combination of the two allows independent
control over the propagation speed of the first and second edges. A calibration
process is carried out in advance of making delay measurements to determine
the best values of Cal0 and Cal1. These analog control signals are set to allow
the worst-case (widest) pulse to propagate through most of the inverters before
“disappearing.” The pulse disappears when the second edge catches up to the first
edge. The calibration process is described later in Sect. 5.11.

The output of the inverters in the delay chain also each connects to a “set-reset”
latch. The presence of a negative pulse (for odd inverters) or positive pulse (for even
inverters) changes the latch value from 0 to 1. A digital thermometer code (TC),
i.e., a sequence of 1s followed by zero or more 0s, is produced in the sequence of
latches after a test completes. The TC can be converted into a discretized delay value
(if needed) using pulse width information applied during the calibration process. In
addition to being very fast (less than 100 ns per measurement), the TDC is also
resilient to some types of circuit hazards. For example, a series of pulses can be
introduced by circuit hazards but only the widest one determines the TC value
(shorter pulses die out earlier in the delay chain). The EdgeCnt components in the
path select unit can be used to decide when hazards are present.

A fifth scheme, called REBEL in [26], also uses a delay chain to obtain timing
information. REBEL is a light-weight embedded test structure that combines the
delay chain component of the TDC (without the pulse shrinking characteristic)
with the clock strobing technique referred to in Fig. 10.7. A significant benefit of
REBEL over the TDC is complete resilience to circuit hazards. In fact, REBEL
is able to provide timing information regarding each of the edges associated with
hazards in a single launch-capture test. As indicated earlier, the edges produced by
circuit hazards each represent the delay of some internal segment in the functional
unit. Although process variations add uncertainty and diminish their usefulness,
as discussed above, the ability to instantly have knowledge of their presence adds
robustness to the delay measurement process and can help reduce the likelihood of
false-negative HT detection decisions.

10.4.2 Dealing with Process Variations

A significant benefit of techniques designed to detect HT in fabricated chips is
the availability of a golden model of the IC. The assumption made by most of the
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techniques described in Sect. 5 is that the HT is introduced by changing the layout,
via mask manipulation or through other fabrication process-related steps. Therefore,
all design data prior to the mask and chip fabrication steps, e.g., HDL, schematic,
and even the geometric layout data itself, are considered trusted. A golden model,
and simulation data derived from it, provides a trusted reference to which hardware
data can be compared. Path delay methods attempt to identify anomalies in the
hardware data that cannot be explained by the golden model.

The most significant challenge associated with detecting HT with path delay
testing is distinguishing between changes in delay introduced by an HT and those
introduced by process variation effects. Failing to distinguish between these two
types of delay variations leads to false-positive and false-negative HT detection
decisions. The former declares an HT is present when it is not, while the latter fails
to detect the presence of an actual HT. Minimizing false-positive and false-negative
rates is a critical design parameter of an HT detection technique.

There are three basic approaches for dealing with process variation effects in
HT methods. The first method, called GoldenSim-based and GoldenChip-based,
creates simulation models or uses HT-free chips, respectively, to characterize the
HT-free space. The second, called PCM-based, uses data from process control
monitors (PCM) to “tune” the boundaries of the HT-free space derived from golden
models using chip-measured test structure data. The third, called Chip-Centric,
creates a nominal simulation model and calibrates and averages path delays to the
nominal model (or data from HT-free chips). All approaches create a bounded HT-
free space that represents normal variations in path delays introduced by process
variations and/or measurement noise. Data collected from the test chips is compared
with this bounded HT-free space. Data points that fall outside the boundaries are
called outliers, e.g., are path delays that exceed the limits defined by the HT-free
space. Chips that produce outlier data points are considered HT candidates.

The three approaches are graphically portrayed in Fig. 10.9 and are described in
more detail throughout Sect. 5 as needed. The 2-D shapes labeled “Simulations with
process variations modeled” and “Delay variations across chip population” can in
fact be multidimensional, with each dimension representing one path delay or one
of multiple features extracted from the set of path delays using statistical techniques
such as principle component analysis (PCA).

GoldenChip-based and GoldenSim-based techniques train a classifier using
HT-free data from chips or simulations, respectively. GoldenChip-based methods
measure delays from HT-free chips, which are then destructively validated to be HT-
free using techniques from Sect. 10.3.1.3. GoldenSim-based methods typically use
data from Spice-level simulations of a resistor-capacitor-transistor (RC-transistor)
model of the golden design. Both techniques can be expensive in terms of
reverse-engineering effort, model development, and simulation time. Delayering
technologies utilized for GoldenChip-based methods can take weeks or months. For
GoldenSim-based methods, CAD tools such as Mentor Graphics Calibre must first
be used to create the RC-transistor models of the layout using complex process
models obtained from the foundry in which the chips are fabricated. The modeling
files can be very large, e.g., 100s of MB, even for relatively small designs on order



10 Detecting Hardware Trojans Using Delay Analysis 235

Fig. 10.9 Mechanisms to account for process variations using a golden model approach for HT
detection

of 20,000 gates, and simulation times can easily extend to weeks and months when
performing transient simulations with only a couple 100 input vectors. The effort
required to construct and/or confirm the HT-free boundaries using either technique
is very large and is often under-reported.

Of even greater concern for GoldenSim-based techniques is the level of mismatch
that can exist between the simulation results and the hardware. Foundry models
in advanced technologies have become very complex, providing the user with a
variety of statistical evaluation methodologies including fixed corners and Monte
Carlo options. Fixed corner models are provided to enable the user to predict
worst-case and best-case performance of the chip by modeling the range of global
process shifts that can occur over time. Unfortunately, this typically expands the
HT-free space beyond what is required to represent the behavior of the chips
under test. The expansion leads to a decrease in the sensitivity of HT methods and
increases the level of mismatch between simulation and hardware data. Moreover,
foundry models typically provide limited capabilities for modeling within-die
variation effects, making it difficult to predict the uncertainties related to specific
hardware path delays. These modeling and simulation challenges are compounded
by measurement noise that occurs during chip testing and by nonzero jitter and
drift tolerances introduced by the tester during the generation and delivery of high-
frequency clocks. Taken together, these issues work to increase in the possibility of
false-positive and false-negative HT detection decisions.

10.4.3 Test Vector Generation Strategies

The last issue deals with an important distinction that exists between fault models
used in manufacturing test and those required for detecting HT. The manufacturing
test community developed several fault models, including transition delay faults
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and path delay faults, for dealing with timing problems resulting from a wide
variety of defect mechanisms. For example, the transition delay fault (TDF) model
assumes that defects occur on individual nodes in the circuit and that they manifest
as slow-to-rise and slow-to-fall signal behaviors at those nodes. The path delay
fault (PDF) model, on the other hand, makes no such assumptions, i.e., it accounts
for defects which may in fact be distributed across one or more logic gates and
wires that define the paths, and as a result, the PDF model provides more complete
information about the integrity of the tested chip.

Unfortunately, obtaining 100% PDF coverage requires all (or a large fractions)
of the paths in a chip to be tested. For even moderately sized circuits, the costs
associated with the generation and application of a complete PDF test set is
prohibitive. This is true because the number of paths can be exponentially related to
the number of inputs to the chip (or functional unit). Therefore, most chip companies
generate and apply TDF vectors instead because the number of such tests is linear
to the number of circuit nodes in the design. Fortunately, for the security and trust
community, the TDF model is a better match to the types of malicious modifications
an adversary is likely to make to the layout. The node-oriented TDF model used for
defects is leveraged by a large fraction of the proposed HT detection techniques
described in Sect. 5.

There are two important points to consider with regard to test generation for HT
detection. The first relates to the options that are available when the TDF model is
used. Although far fewer tests are required under the TDF model to obtain high
levels of HT coverage (when compared to the PDF model), there are typically
many choices for the path that is sensitized through each of the nodes. A variety
of techniques are proposed by authors of published work including random vectors,
an incremental coverage strategy driven by the sequence of vectors generated so
far, traditional TDF vectors, or, in some cases, the test generation strategy which
is left unspecified. Others leverage the TDF model and direct ATPG to target the
shortest paths through the node because the additional delay added by the HT (via
fanout load or gate insertion) has a larger fractional impact on the path delay. The
traditional TDF model for defects, on the other hand, typically target the longest
paths as a mechanism to ensure that at least this subset of tested paths meet the
timing constraints.

The length of the path relates to the second important point regarding test
generation. Automatic test equipment is outfitted for manufacturing test, which is
focused on testing the longest paths. For test cost reasons, it is common that only
one clock frequency is used to apply TDF tests to the chip because the primary goal
of manufacturing test is to ensure that the delays of all tested paths are less than
the upper bound defined by the clock period. The most sensitive tests for defects
therefore are those that test the longest paths. This is true because the longest paths
minimize the slack, i.e., the difference between the clock period and the delay of
the tested path.

Many believe that these manufacturing test constraints for defects are not
sufficient for providing high levels of HT coverage. This is reflected in the proposed
use of clock sweeping, clock strobing, and other on-chip embedded test structures for
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obtaining precise measurements of path delays. In other words, the slacks inherent
in tests for defects provide too many opportunities for adversaries to “hide” the
additional delay of the HT in the slack, and, therefore, a paradigm shift is required
regarding the manner in which delay testing is carried out on the test floor. Clock
sweeping and clock strobing are expensive in terms of test time, and HT detection
techniques which use these clocking strategies need to account for the higher levels
of clock noise associated with high-frequency clocks and invalidations introduced
by circuit hazards. It remains to be seen how the economic trade-offs of delay-based
HT detection schemes will play out.

10.5 HT Detection Methods Based on Path Delay Analysis

This section is dedicated to describing a selected subset of the proposed HT
detection strategies that have been proposed over the last decade. Our goal is to
describe methods that offer some unique perspective, and therefore, this exposition
does not provide an exhaustive survey of every published paper on the topic.
The choice to include a description of a published work was based on whether
it promoted the state of the art in at least one of the three technical domains
described earlier, including the path measurement technique, the statistical method
used to distinguish between HT anomalies and process variation effects, and the test
vector generation strategy. The techniques are presented chronologically instead of
by technical domain. The latter organization presented challenges because many
techniques propose solutions to more than one domain.

10.5.1 Early HT Detection Techniques and On-Chip
Measurement Methods

The first works on using path delays for HT detection are described in [40] and
[41]. The primary focus of each paper is on only one of the technical domains, in
particular [40] on a statistical method for distinguishing between process variations
effects and HT and [41] on a high-resolution on-chip measurement technique.

In [40] the HT detection method assumes that high-resolution path delay
measurements are available, i.e., no measurement strategy is proposed. Although
not explicitly stated, the test vector generation strategy appears to be based on
the standard transition delay fault model. They base their detection method on
the GoldenChip-based model described in Sect. 4.2. A multivariate statistical
technique is used to extract distinguishing features from the full set of path delays.
HT-free chips are used to construct the HT-free boundaries, which they refer to as
a fingerprint. The fingerprints define the boundaries of the shape labeled “Delay
variations across chip population” shown on the left side of Fig. 10.9. HT are
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Fig. 10.10 Convex hull characterization showing detection of an HT [40]

detected by comparing the delay fingerprints measured from the untrusted test chips
with the boundaries defined by the HT-free fingerprints.

They demonstrate their technique using simulations in which ATPG-derived two-
vector sequences are applied to a DES functional unit. Principle component analysis
(PCA) is used to extract distinguishing features from a set of 10,432 simulated path
delays as a means of reducing the HT-free space to a 3-D structure. A statistical
technique based on a convex hull characterization of the HT-space is used to define
the boundaries for each of the 64 outputs of DES. Four HT are inserted into another
set of models, with three representing explicit payload HT and one representing an
implicit payload HT. The explicit payload HT inserts one or more additional gates in
series with paths in the HT-free design, while the implicit payload HT is represented
as a simple counter with no ability to change the functional characteristics of DES.
They show that the explicit payload HT are easily detected (see Fig. 10.10), while
the implicit payload HT is only detected approx. 36% of the time.

A high-resolution on-chip path delay measurement technique is proposed in [41],
which is extended in [42] to include a GoldenSim-based HT detection strategy. The
measurement technique is based on the dual-clock scheme described in reference
to Fig. 10.7. A set of shadow registers are added to each of the outputs from the
combinational components of the design, next to the capture FFs or destination
registers as shown in Fig. 10.11a. The second clock of the dual-clock scheme,
CLK2, is used to drive the clock inputs of the shadow registers. CLK2 is generated
as a “fine-phase-shift” adjusted version of CLK1 using a DCM on the FPGA.

The process of measuring the path delay of the combination path from Fig. 10.11
begins by setting the phase shift of CLK2 to a small negative value, on order of
10–100 ps (see Fig. 10.7). A two-vector sequence is applied to the source registers
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Fig. 10.11 (a) On-chip path timing architecture proposed in [41] and (b) equation giving actual
path delay

using a launch-capture test. The comparator, also added to the design, is used to
determine if the captured values in the destination and shadow register are the
same or different. If they are the same, which is the case when the clock strobe
operation begins, the negative phase shift difference between CLK1 and CLK2 is
increased, and the same two-vector sequence is applied. This process is repeated
until the comparator indicates the values are different. The actual delay of the path
is computed by multiplying the number of phase shifts, np, by the �tp provided by
each phase shift increment. Subtracting this value from the CLK1 period yields an
estimate of the path delay, tpath, as given by the equation in Fig. 10.11b.

The extended work in [42] investigates the detection capabilities of a
GoldenSim-based technique on an 8-bit Braun multiplier functional unit. HT
are modeled as series-inserted two-inverter chains. The proposed method derives a
path delay distribution using simulation data but is constrained by the measurement
resolution provided by the timing technique. Process variations are modeled by
varying transistor threshold voltage, Vth, and transistor channel length, Leff , in
simulations with and without HT. Data from these simulations is used to define
the boundaries of the shape labeled “Simulations with process variations modeled”
shown on the left side of Fig. 10.9. The amount of skew in the mean of the
distributions is used as the detection criteria. The results using four inserted HT
show that three can be detected and the last one is detectable on some outputs but
not others.

10.5.2 Ring Oscillator-Based HT Detection Approaches

A distributed set of ring oscillators (RO) is proposed in [43] as a means of
detecting HT. The array of ROs is distributed uniformly across the (x,y) space of
the functional unit as shown in Fig. 10.12. The detection criteria are based on HT
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Fig. 10.12 RO distribution architecture proposed in [43] for detecting HT switching activity

power consumption. If an HT is present, the test stimulus applied to the functional
unit may cause at least some gates within the HT to switch (referred to as partial
activation in [1]), and the HT will necessarily consume power. The additional HT
power consumption creates localized voltage drops on the supply rail (VDD) that can
be detected by comparing the delay of a nearby RO with that of an HT-free chip or
simulation. The delay variations introduced by the HT-switching-induced voltage
drops in the RO are integrated by the RO over time and are reflected in a counter
value. A counter is connected to the RO using MUX2 as shown along the bottom
of Fig. 10.12. MUX1 is used to select and enable one RO at a time as a random,
LFSR-based test vector sequence is applied to the inputs of the functional unit. This
process is repeated for the n ROs (12 in figure) with the set of counts representing
the signature for the chip.
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Fig. 10.13 Subset of results from [43] using proposed advanced outlier analysis method on
FPGAs

Process parameter variations are accounted for by collecting data from a large
number of HT-free chips (GoldenChip-based model), and a statistical analysis is
applied to the signature using principle component analysis (PCA) and correlation
analysis. One of the techniques, called advanced outlier analysis, analyzes data
obtained from pairings of ROs as a means of detecting regional power droop
anomalies. The results shown in Fig. 10.13 plot the RO pairings that show the
best detection capability for each of the six HT inserted into the design. The points
within each graph represent experimental results with process variations derived
from FPGA experiments. The separation of the red HT-inserted and blue HT-free
points illustrates that nearly all are detected in every FPGA.

The authors of [44] propose a design-for-trust (DFTr) technique designed to
detect HT by creating ROs from the functional paths in a design.3 They propose an
algorithm that selects paths with the maximum number of “unsecured gates,” i.e.,
gates that have not already been included in other ROs, i.e., a method characterized

3A related design-for-manufacturability scheme was proposed earlier in [39] for measuring critical
path delays.
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Fig. 10.14 ISCAS-85
benchmark C17 configured
with a set of ROs using the
DFTr method proposed in
[44]

as an incremental coverage-driven strategy. For each selected path, a MUX, a
control signal, and optionally an inverter are added to the design to complete
the ring. Automatic test pattern generation (ATPG) is then used to generate input
patterns that place nondominant values on the off-path inputs of gates sensitized by
the ring. Nondominant refers to gate input values that do not determine the gate’s
output value by themselves, e.g., a “1” is the nondominant value for an AND gate.
Off-path inputs refer to side inputs of gates in the RO that are not on the sensitized
path of the RO. These conditions ensure that the RO will “ring” when enabled by the
control signal. Figure 10.14 shows the ISCAS-85 benchmark circuit C17 configured
with a set of ROs.

Simulation experiments with process variation effects modeled are carried out to
determine the golden frequencies, Fgolden (GoldenSim-based model). HT detection
is carried out by comparing Fmeasured obtained from each of the untrusted test
chips with Fgolden. The authors implemented their technique on a Xilinx Spartan
3 FPGA using six ISCAS-85 benchmark circuits. The number of ROs required
to attain a specific level of HT coverage is given in Fig. 10.15a. As is typical
of test generation for manufacturing defects, coverage per RO drops dramatically
for coverage targets above 90%. Test times are given in Fig. 10.15b which shows
similar trends. Although the proposed technique is very promising, the authors do
not address hazards that occur within circuits with reconvergent fanout.

10.5.3 Lightweight On-Chip Path Timing Techniques for HT
Detection

Two on-chip delay measurement techniques, called TDC and REBEL, are proposed
in [26]. An HT detection method which leverages REBEL [45] is described in the
following. A second HT detection method which uses the TDC [59] is covered in
Sect. 5.11.

REBEL is designed as an embedded test structure (ETS). ETS is an instrument
that is integrated directly into functional units as a mechanism to obtain regional,



10 Detecting Hardware Trojans Using Delay Analysis 243

100

90

80

70

60

50

40

30

20

10

0

0 25

23

50

50 75

a

b

No. of ring oscillators

S
ec

ur
ed

 g
at

es
 (

%
)

S
ec

ur
ed

 g
at

es
 (

%
)

Number of clock cycles

100 125 150

100

90

80

70

60

50

40

30

20

10

0

1 201 401 601 801 1001 1201

C17 C432

C499 C880

C1908

C17

C499

C1908

C7552

C432

C880

C7552

1401 1601

Fig. 10.15 (a) Number of ROs required as a function of coverage for six ISCAS-85 benchmark
circuits, and (b) test time required to obtain Fmeasured for each chip [44]

high-precision information about its operational characteristics. ETS must be
designed to be minimally invasive and low in overhead to avoid violating power,
area, and performance constraints associated with the functional unit. REBEL
satisfies these ETS attributes by leveraging components in the existing scan chain
architecture.
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Fig. 10.16 (a) Integration of an embedded test structure called REBEL in a pipelined functional
unit as described in [45], (b) sequence of digital “snapshots” stored in the REBEL delay chain
with successive rows showing an increasing launch-capture interval (LCI) and (c) illustration of
regression analysis applied to path delays measured from 62 chips for an HT-free path (x-axis) and
a second path (y-axis) with and without the inclusion of HT

REBEL is designed to provide regional, high-resolution measurements of path
delays. It also addresses the clock noise issue discussed in Sect. 4.1 related to using
single-clock schemes to obtain timing information for short paths. The architecture
of REBEL allows paths within the functional unit to be extended along a delay
chain, effectively eliminating the need for high-frequency clocks. The delay chain
is created using the existing capture FFs attached to the outputs of the functional
unit. Figure 10.16a shows an example configuration with REBEL integrated into
a pipelined functional unit. A path under test (PUT) within the functional unit is
highlighted as well as the delay chain that is created through the capture FFs. Row
control logic is added to the design to enable one of the path outputs to be selected
as the target of the timing measurement process.
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A path is timed by applying a two-vector sequence to the inputs of the functional
unit. The transition along the PUT emerges at the output and propagates along
the delay chain. The capture edge of the clock creates a digital snapshot of the
transition by storing in the capture FFs a sequence of digital values which represent
its behavior over time. Each of the snapshots immediately reveal whether the
propagating signal has more than one transition, i.e., whether a hazard is present
or not.

A sequence of digital snapshots is shown in Fig. 10.16b as rows labeled 120
to 180, which represent a clock sweeping sequence of LCIs as described earlier
in reference to the single-clock scheme of Fig. 10.7. For each successive LCI, the
propagating falling transition driving the input of the capture FF15 is given more
time to propagate along the delay chain. The path tested in this example does
not generate any type of hazard (is hazard-free); otherwise, one or more of the
snapshots would show interleaved “1s” in the sequence of “0s.” In practice, the LCI
test sequence is actually applied in reverse, starting with 180, because larger LCI
increases the amount of temporal information stored in the capture FFs regarding
the propagating transition. The larger time window provides a better opportunity to
detect hazards which can invalidate the HT test.

As proof of concept, a 90 nm chip is designed and tested which allows paths in
the functional unit (in this case, an eight-function floating point unit or FPU) to be
reconfigured with and without an HT. Although the experimental results presented
use hardware data to define the HT-free space (GoldenChip-based model), the
authors also acknowledge that a GoldenSim-based approach is possible.

The statistical method proposed in [45] is based on linear regression analysis.
Figure 10.16 shows a subset of the results in which delays from one HT-free path
(x-axis) and a second path that can be configured with and without HT (y-axis)
are compared. The HT-free space is highlighted in green and is delineated by three
sigma regression bands. It is derived using data from 62 copies of the test chips
configured without the HT included in the second path. The red and blue points
each represent the results with the second path configured with one of two possible
HT. All but one of the data points fall outside the regression limits and are therefore
classified as detected. Additional results for a larger set of HT are reported in the
paper.

10.5.4 Self-Authentication: A Golden Model-Free HT
Detection Method

A golden model-free HT detection method is described in [46] which inserts a
framework of HT detection sensors into the layout representation of a design.4

4A self-referencing technique is also proposed earlier in [47] but is based on the correlation of
transient power supply currents produced by replicas of the functional unit.
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The sensors are designed as replicas of common sequences of logic gates (path
sequences) that already exist in the design. Custom CAD tools are used to
decompose the timing graph of a design to identify a set of commonly occurring
delay features. Delay features correspond to layout-specific patterns of gates and
interconnect that share common geometries and sensitivities to process parameter
variations. Similarity among features is determined by evaluating the changes
in delay that occur when the path sequences are subjected to similar process
conditions. Two sequences are considered similar if the changes in their delay track
within a small error tolerance.

Once a set of target path sequences are identified in the design, a set of matching
sensors are integrated into the layout in close proximity to the targeted path
sequences. After fabrication, the delay fingerprints of the sensors and corresponding
full-length paths (that contain the path sequence(s)) are measured. Data from each
of the sensors is used to construct an HT-free delay range, which captures the
measurement noise profile for the sensor. A similar process is carried out for each
of the paths. The delay associated with other components of the full-length paths,
in which the path sequences are contained, is accounted for using variation-aware
expressions. A nominal simulation or static timing analysis estimate is used to
determine the nominal delay of the sensor, which, in combination with the measured
delays, allows the delay of the full-length paths to be predicted. Correlation analysis
is used to compare the predicted and measured delay ranges for the sensors and
paths. Outliers are considered anomalies introduced by HT in either the sensor,
the path, or both. Figure 10.17 provides a flow diagram of the self-authentication
process and shows examples of the HT insertion and detection scenarios considered
[46].

The authors assume on- or off-chip delay measurement schemes such as those
described in reference to Fig. 10.7 are available. The sensors act as silicon-anchor
points for calibration, and therefore the proposed HT detection technique shares
similarities to the process control monitor approach described in Sect. 4.2 and
referred to as PCM-based.

The authors apply the technique to the ISCAS-89 benchmark circuits, synthe-
sized to layouts using a 90 nm TSMC technology. Process variations are modeled
in the simulations by varying major device parameters within 10% of nominal using
a Monte Carlo selection process. A multilevel hierarchical model of the layout is
processed as a means of partitioning the design into regions where it is assumed that
process variations are more highly correlated. Sensors are identified and designed
but constrained to use no more the 15% additional area in the layout. A set of
paths are randomly selected to serve as the HT insertion points for evaluation of
the method. A set of 30 HT are inserted into each path with varying amounts of
delay to determine sensitivity, and 10 K process models are created and simulated
(300 K per path). HT detection rates are shown to improve from between 2 and 16%
when compared to a similar method that does not leverage sensors as a sensitivity-
enhancing technique.
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Fig. 10.17 (a) Self-authentication chip testing process proposed in [46] and (b) sensor (both
simulated and measured) and measured full-length path delay range illustrations under three
HT attack models. Mismatches in the overlap among the sensor distributions or low levels of
correlation between sensor and path distributions is flagged as an HT detection

10.5.5 Linear Programming Methods and Test Point Insertion
for HT Detection

A linear programming method is proposed to derive leakage, power, and delay
characteristics of individual gates based on solving a system of equations, referred
to as gate-level characterization (GLC) [48–50]. Chip measurements of power and
delay are used in the system of equations, along with estimates of measurement
errors, to derive scaling factors for the parameters associated with the logic gates in
the design.

GLC is combined with a test point insertion technique in [49] as a means
of improving coverage of HT. The authors propose to add FFs (test points)
to components of the design that exhibit reconvergent fanout. An example of
reconvergent fanout is shown in Fig. 10.18 from [49] where both the fanout and
reconvergence points are identified. The task of generating path delay tests for
circuits which contain complex reconvergent fanout networks is an NP-complete
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Fig. 10.18 Circuit showing
reconvergent fanout [49]

problem. Automatic test pattern generation (ATPG) algorithms can fail to determine
two-vector sequences that are able to test the individual paths within reconvergent
fanout blocks, such as those labeled “path 1” and “path 2,” even when such tests
exist. Although in the example it is trivial to derive test patterns that test these two
paths individually (node assignments are shown that allow path 1 to be tested by
itself), there are other more complex configurations which require an exhaustive
search, proportional to 2n, to find suitable two-vector sequences.

The authors propose an algorithm that first identifies all paths that can be easily
tested and then a set of paths in reconvergent fanout logic structures that are the best
candidates for test point insertion. A SAT-based process is proposed to select input
vectors that maximize the number of independent linear equations for application of
GLC. A second circuit partitioning scheme based on maximum fanout free cones is
proposed in [50] to increase the number of delay access points within the circuit as
a means of improving coverage further for large designs.

10.5.6 Process Calibration and Test Vector Selection for
Enhancing HT Detection

A delay calibration technique is described in [51] that leverages information
obtained from test structures as a means of detecting HT delay anomalies that
are very small, i.e., within the margin of those introduced by process parameter
variation effects in advanced technologies. The test structure measurements are used
to estimate the global mean shift in delay introduced by variations in the process
parameters for each chip. Based on the estimate, the mean value for the paths in the
region of the embedded test structures is calibrated to eliminate the mean shift.

The process flow proposed in [51] is shown in Fig. 10.19. The first step is to
extract information from the embedded test structures, such as ring oscillators, as
a means of obtaining process parameter information for each chip. Test structures
are added to the layout in regions close to the functional unit to be tested. This
ensures that both global process variations and systematic within-die variations
are accurately captured in the measurements. Path selection and vector generation
are carried out such that test cost is minimized. ATPG is constrained to generate
robust tests (when possible) for critical (longest) paths passing through each possible
HT site, and therefore test generation is based on the traditional TDF model.
Path delays are measured using the dual-clock scheme shown in Fig. 10.7 as a
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Fig. 10.19 (a) Process flow model proposed in [51], (b) simulation-derived delay statistics
obtained by applying the proposed method under different types (global and within-die) process
variations

means of minimizing clock noise and obtaining high-resolution measurements. The
integration of silicon anchor points for calibration of process variations classifies
the proposed technique as PCM-based.An estimate of the mean shift in each
region of the chip is computed using test structure data and a minimum mean
square (MMSE) estimator. The MMSE finds the mean that minimizes the sum of
the squared differences between the test structure data and the computed mean
as given by Eq. 10.1. This estimator can then be used to calibrate all the path
delays for a given chip by simply subtracting the mean from each measurement.
A novel nonparametric hypothesis testing method based on a likelihood-ratio test
is proposed which leverages integer linear programming (ILP) for determining the
number of chips that need to be tested to achieve a specific confidence level against
false-positive and false-negative HT detection decisions.
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The technique is evaluated on a set of inverter chains of length 2 through 12
with and without HT insertions. HT are modeled using a minimum size inverter
connected to the output of the first inverter in the chain. Monte Carlo simulations
were performed using circuit models with different types of global and within-die
process variations modeled, referred to as case I (global only), case II (across-chip
random and systematic within-die only), and case III (local random and systematic
within-die only). Figure 10.19b shows that the best results are obtained for case
III which uses simulation models with only local process variations included. The
proposed calibration method in this case makes this possible by eliminating case I
and case II via the test structure measurements, which minimizes the � /� statistical
variation parameters as well as the number of required chips.

This technique is extended in [52] to address the best paths to target for HT
detection. In contrast to their earlier work, the authors argue that the shortest
paths through each HT site maximize detection sensitivity (see shortest path TDF
discussion in Sect. 4.3). The column labeled �/� in Fig. 10.19b expresses the
impact of the HT on path delay and is the focus of the current work. Given that
the adversary’s goal is to minimize the impact of the HT on path delay, shorter
paths are better suited to reveal these small delay variations because the (constant)
delay added by the HT becomes a larger fraction of the total delay for short paths. A
similar argument regarding the effect of process variations also holds. In particular,
the � of variations is approx. Proportional to the nominal delay of the path, i.e.,
shorter paths have smaller � . This characteristic is illustrated in Fig. 10.20 which
shows the path distributions for a long path (top) and short path (bottom) with
and without HT. The HT, represented as an “additional fanout,” creates a more
distinguishable shift in the short path distribution when normalized as a fraction
of the total width of the distribution. In both cases, the HT adds only 8 ps to the path
delay but the smaller � corresponding to the shorter path provides a higher level of
confidence in detecting the anomaly.

The authors also argue that shorter paths are more likely to be the targets
of an HT insertion because longer paths, particularly critical paths, increase the
chance of accidental discovery. Moreover, generating vectors for shorter paths is
generally “easier” for ATPG tools to accomplish because fewer side inputs need to
be “justified” (forced to specific values) in order to sensitize the path from PI to PO.
The main benefit of short paths, however, according to the authors, is the reduction
in the number of chips that need to be tested (see column labeled N in Fig. 10.19b).
On the downside, shorter paths are harder to time, especially when using the single-
clock scheme from Fig. 10.7, because the chip needs to be tested at much faster than
at speed to obtain precise delay measurements. The dual-clock scheme provides a
solution, but it also requires the addition of a second clock tree as described in [41].

An algorithm is presented that both selects the shortest path through each circuit
node (each HT site) and enforces constraints on the robustness of the test to ensure
the target path is in fact the path tested by the two-vector sequence. The authors
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Fig. 10.20 Impact on path delay distribution for a long and short path, with short path showing
larger fractional change [52]

present simulation results using the ISCAS-89 benchmark circuits that show a 2.1X
improvement in test cost over a traditional TDF strategy. They further show that
the improvement increases to 4.51X when combined with the calibration technique
proposed in [51].

10.5.7 Clock Sweeping for HT Detection

The authors of [53] propose a clock sweeping method to address sensitivity issues
associated with using a traditional TDF model and the path delay fault (PDF) model
for detecting HT. Clock sweeping refers to the single-clock scheme referenced
earlier in Fig. 10.7 in which the clock frequency is incrementally increased (by a
fixed step size) and a two-vector sequence is applied repeatedly until a delay fault is
detected in the capture FFs for one or more of the tested paths.

The authors propose to generate tests using the TDF model described earlier and
acknowledge that short paths whose delay is smaller than the maximum frequency
are not testable because of the limits of ATE and clock noise. The algorithm that
they propose is shown in Fig. 10.21a. It partitions TDF tests into two groups, those
sensitizing long paths to be tested in the proposed HT delay technique and those
sensitizing short paths to be tested using a power-based HT method. They argue
that long paths experience less switching activity because more conditions need to
be met in order to sensitize them. Therefore, power-based methods are less effective
for detecting HT on these paths.

The failing frequencies for long paths are recorded in a table as shown in
Fig. 10.21b. Chips are listed on rows, while the columns identify the pattern, Px, and
Capture FF, FFx, of the tested paths. A multidimensional scaling (MDS) statistical
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Fig. 10.21 (a) Algorithm proposed for HT detection in [53], (b) chip signatures recording the first
failing frequency for pattern (Px) and capture FF (FFx), and (c) MDS/convex hull results for 2 HT

method is proposed for distinguishing between delay variations introduced by
process variation effects and those introduced by HT. MDS leverages PCA to map
from a higher-dimensional space to a smaller space. Unlike the technique proposed
in [40], however, they configure MDS to preserve signature components that
represent dissimilarities introduced by HT delay anomalies in the lower-dimensional
space. A 3-D convex hull is constructed using signatures from HT-free chips and
outlier data points from the untrusted chips are classified as HT candidates. Their
detection technique therefore is based on the GoldenSim-based or GoldenChip-
based model described in reference to Fig. 10.9.

An ISCAS-89 benchmark circuit s38417 is used in their simulation experiments
to validate the technique. Simulation models representing process variations are
constructed by varying threshold voltage, oxide thickness, and channel length over
5% of nominal both globally and locally to model within-die variations. A total
of six HT are introduced in a layout representation of the benchmark circuit with
varying trigger and payload configurations. The clock frequency range and step size
used for clock sweeping is set to 700 MHz to 1.5 GHz and 10 ps, respectively. The
results of applying MDS and constructing a convex hull are shown in Fig. 10.21c.
The detection rate for HT #1 is 64%, while the rate for HT #2 (and the remaining
four HT not shown) is 100%. A similar set of results are obtained in hardware
experiments using a set of 44 FPGAs.

10.5.8 A Golden Chip-Free Method for HT Detection

The authors of [54] propose the use of process control monitors (PCMs) that are
designed to eliminate the need for a set of HT-free golden chips. PCMs are in-line
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test structures traditionally inserted by process engineers for tracking wafer-level
variations in transistor parameters such as threshold voltage. The authors use the
delay of a special path as a surrogate for a PCM as a silicon calibration method.
Path delays from this PCM are measured from the test chips and used to improve
the accuracy of the classification boundary first obtained from simulation data. This
detection strategy is therefore PCM-based as discussed in Sect. 4.2.

The authors employ nonlinear regression and kernel mean matching techniques
to learn the relationship between PCM data and side-channel fingerprints, in this
case, output power measurements from a set of 40 wireless cryptographic chips
which instantiate AES with and without HT. A series of “learned” boundaries are
incrementally tuned as each of five statistical transformations are applied using
simulation data obtained from the PCM and AES process models and from the
PCM and power measurements from the test chips; Fig. 10.22a shows the first set of
transformations which are derived from simulation data, illustrating transformations
that take place in the shape and boundaries of the HT-free space. The remaining
transformations are derived using PCM and path delay data measured from a set of
HT-free chips and are illustrated in their paper. Figure 10.22b shows experimental
results in which all 80 HT are correctly classified as HT infested, while only three
of the HT-free chips are classified incorrectly, i.e., are false positives.

10.5.9 HT Detection by Comparing Paths with Structural
Symmetry

An HT detection method based on validating delay consistency among instances of
distinct transistor-level paths with the same topology is proposed in [55]. Symmetry
is defined by considering both the structural characteristics of the logic gate(s) and
state assignments on its inputs under each of the vectors of an applied two-vector
sequence. For example, a NAND gate exhibits symmetry in delay by having two
identical pull-up paths through its two PMOS transistors and when input transitions
are crafted to exercise each of these paths, at a time, during a delay test. An HT
detection algorithm is proposed that first identifies transistor-level symmetry in the
netlist or layout and then adds constraints to ATPG algorithms to test pairs of pairs
that exhibit this symmetry. A self-referencing detection algorithm is proposed that
compares the delays of symmetrical paths and classifies a chip as having an HT
when the two path delays are not identical within a threshold.

The authors present an example of transistor-level symmetry using the ISCAS-
85 c17 benchmark circuit, which is reproduced with enhancements in Fig. 10.23.
The gate-level netlist of c17 is shown on the far left, while transistor-level netlists
representing subsets of the netlist are shown in (a) through (d). The transistor-level
diagrams are annotated with numbers to enable the NAND gates to be cross-
referenced to the c17 schematic. The transistor level schematics along the top and
bottom rows represent the two paths that exhibit symmetry. The first two-vector
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Fig. 10.22 (a) Initial simulation-based statistical transformations designed to iteratively learn the
best boundaries associated with the HT-free fingerprint space for a wireless cryptographic IC from
[54], (b) top three principle components from PCA analysis after application of proposed statistical
learning process. All 80 HT are detected, and all but three of the HT-free chips (of 40) are classified
correctly
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Fig. 10.23 Transistor-level symmetry illustration adapted from [55]

sequence of the symmetry pair is labeled ’1 and ’2, while the second two-vector
sequence is labeled “1 and “2. The two-vector sequences used as the tests are given
as (’1,’2) and (“1,“2).

The red highlighted components show the pull-up and pull-down paths that
connect the output of each NAND gate to one of the supply rails, which is
determined by the logic state imposed by each of the four vectors. For example, the
outputs of the three NAND gates in (a) are connected to VDD, GND, and VDD for
gates labeled 2, 3, and 5. The key observation is the consistency of the highlighting
between (a)–(c) and (b)–(d) and the fact that the actual gates in these pairs are
different except for one of the gates. In other words, the application of the two two-
vector sequences tests the same pull-up and pull-down paths in the NAND gates
but do so along different paths in c17. Given that the NAND gates have identical
layout structures, the path delays are expected to be nearly identical. Therefore, if an
adversary inserts one or more payload gates in series with either of these paths, the
delays will be different and can be flagged as a malicious modification. Simulation
and FPGA results are shown to demonstrate this concept.

The delay changes introduced by global shifts in process variations (and within-
die variations to some degree) are eliminated because the comparisons are made
between paths on the same chip and preferably in close proximity. Therefore, none
of the golden model techniques referenced in Sect. 4.2 for dealing with process
variations are required. However, margins are needed to account for measurement
noise and routing differences in the two paths; otherwise, the false-positive rates
will be high. The authors indicate that finding structural symmetries in the layout
and then deriving qualifying test patterns can be challenging given the large number
of constraints that must be satisfied to ensure consistency in the behaviors of the
pull-up and pull-down components of the tested paths. This feature can be argued
as a benefit because it makes the task difficult for the adversary to carry out and then
defeat the technique by inserting the HT such that the delays of symmetrical pairs
of paths remain consistent.
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10.5.10 HT Detection Using Pulse Propagation

A high-resolution HT detection method is proposed in [56] that is based on
propagating pulses along digital logic paths. HT detection is accomplished by
detecting whether pulses survive, i.e., do not die out, before reaching the capture
FF where they are detected. Minimum pulse widths that allow the gates along the
path to sustain the pulse are constrained by only one of the gates along the path,
in particular, the gate that has the largest rise C fall time. The authors argue that
this characteristic greatly enhances the HT detection sensitivity of their method to
capacitive loading effects over other delay testing methods, particularly for long
paths and when considering process variation effects.

Delay variations introduced by process variation effects are cumulative, and,
therefore, the HT-free boundaries or margins associated with standard delay meth-
ods must be increased for longer paths, which reduce their sensitivity to small,
fixed-sized variations in delay introduced by HT. On the other hand, pulses will
shrink when they encounter the capacitive load of an HT and will die out at the gate
that was used to determine the minimum pulse width for the path (note: this assumes
the HT insertion occurs before the gate that was used to define the minimum-sized
pulse). Therefore, the authors argue that HT detection sensitivity remains constant
and is independent of the length of the path. The embedded components needed for
pulse generation and pulse detection can be designed as shown in Fig. 10.24a, b,
respectively, and these components can be shared among multiple FFs, as shown for
the pipelined architecture in Fig. 10.24c.

An algorithm is presented that uses n random test patterns that are each evaluated
through simulation using k pulses of different widths. Test for paths that are able
to propagate the pulse from a launch FF and to a capture FF is deemed valid.
The authors refer to these paths as single-path sensitizable5). Simulations are again
used to determine the minimum pulse width for each path using worst-case process
models. HT are emulated on each node of every path using different capacitive loads
to determine the minimum capacitance that succeeds in “killing” the propagating
pulse.

The proposed method is validated using simulation experiments on a chain of
NAND gates, a ripple carry adder and 4x4 multiplier. Process variations are modeled
by changing threshold voltage (Vt) by C/� 10% globally and C/� 10% locally.
The detection results for the chain of NAND gates are shown in Fig. 10.24d,
with “pulse test” results corresponding to the proposed technique and “delay test”
identifying results using a standard delay test strategy. The columns labeled “Min
Cap Detected” represent the smallest HT capacitive load that was detectable for
the paths of different lengths specified by the rows. The last column expresses the
improvement in sensitivity of the proposed method over the standard delay test
method and supports the claim that the pulse method remains sensitive to small

5Single-path sensitizable refers to paths that are hazard-free robust testable, indicating all side-
inputs along the path must remain constant under both applied vectors.
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Fig. 10.24 (a) Proposed pulse generator, (b) pulse detector, (c) an example illustrating sharing
within a pipelined architecture, and (d) simulation results comparing proposed technique (labeled
pulse test) with standard delay test (labeled delay test) [56]

HT even when the path length becomes very large. Similar results are obtained for
the other functional units as reported in [56].

10.5.11 Chip-Centric Calibration Techniques for HT Detection

The authors of [57, 59] propose HT detection methods which use actual path delay
measurements, in contrast to PCMs and other types of on-chip test structures, as a
mechanism to calibrate for global shifts and within-die process variation effects.6

These methods represent variants of the chip-centric technique described in Sect.
4.2. Chip-centric techniques can potentially provide higher levels of sensitivity to
HT because the path delays used in the detection method also serve as the basis
for calibration. Moreover, by using chip-measured path delays to shrink the HT-free
space, as depicted on the right side of Fig. 10.9, such methods can also simplify the
development of a simulation-based golden model, as demonstrated in [59].

6Note the path delay technique described in [59] is based on the same concept presented earlier in
[58] which uses leakage currents.
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The authors of [57] average path delays measured from a set of chips to
reduce the adverse impact of both inter-chip and intra-die process variation effects
on HT detection sensitivity. The proposed golden model is based on hardware
measurements of delays from HT-free chips, i.e., design and simulation data are
not used to develop the HT-free space. The data collected from the chips is
multidimensional. The authors use # to symbolize the chip number, P to represent
the pattern (two-vector sequence) number, NP to represent the number of patterns,
˛ to identify functional unit outputs (Capture FFs), and N˛ to represent the number
of outputs. Calibration of inter-chip (global) process variation effects on path delays
uses a centering operation in which the delays D under all patterns P to an output
˛ for chip # are averaged and subtracted from each of the raw delays as given by
Eq. 10.2. Therefore, the method uses the distribution of delays to each output ˛

for calibration of the global mean shift in path delays that occurs within chip #.
A second centering operation is then performed to further reduce intra-die variations
which averages the globally calibrated delays to each output ˛ across all chip
outputs as given by Eq. 10.3. This chip-wide average is then subtracted from the
raw path delays for a chip to provide a set of locally calibrated delays.
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The ratios of two locally calibrated delays for a pattern P are used in the
formulation of a golden model, each referred to as a relative performance metric,
RPP,˛,ˇ as given by Eq. 10.4. A matrix of relative performances is constructed for
each chip #, and the mean value RPP,˛,ˇ computed across all HT-free chips, NGM ,
is used as the references for comparison of the RPP,˛,ˇ values computed from the
untrusted chips. A margin referred to as the coefficient of irrelevance is proposed
for dealing with false-positive HT detections. It is defined as the standard deviation,
�P,˛,ˇ , of the RPP,˛,ˇ computed using NGM HT-free chips. The threshold that bounds
the HT-free space is given by Eq. 10.5 and is referred to as a distinguisher.

The technique is validated using a set of four Xilinx Spartan FPGAs programmed
with an AES-128 functional unit and modified in a second design to include one
combinational and one sequential HT. The golden model is built using delays
measured from the AES-128 without the HT. The single-clock scheme (or clock
sweeping from Sect. 4.1.3) is used with a step size of 35 ps and a frequency range
from 100 MHz to 121.2 MHz. Test vector selection is performed randomly, i.e.,
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Fig. 10.25 HT detection results as presented in [57]

no test vector generation strategy is proposed. A set of 50 patterns (plaintexts) are
used as the test vector set, and paths from all 128 bits of the AES are monitored.
Path delays shorter than 8.25 ns (1/121.2 MHz) are ignored. The authors report on
a subset of the distinguishers, in particular, the distinguishers which produced the
maximum value for each of the 128 outputs when computed using the HT-free data
and data from the two HT experiments. The results are shown in Fig. 10.25, with
highlights indicating the outputs that provide the highest levels of confidence in
detecting the two HT.

Although the technique proposed in [57] is demonstrated to work well, the
averaging techniques that the authors employ do not deal directly with intra-chip
process variations. The technique presented in [59] (discussed below), on the other
hand, averages delays across chips for each path and two-vector sequence, instead
of across vectors and outputs. Within-die variations have been shown to have a
significant random component in each chip instance [60], and, therefore, a path-by-
path averaging strategy is likely to be more effective in reducing unwanted intra-chip
variations. Moreover, the strategy proposed in [57] only calibrates for the global
shift in the mean values of path delays introduced by inter-chip process variation
effects. The technique described in the following also considers scaling effects.

A chip-averaging HT detection method that calibrates for both intra-chip and
inter-chip process variations and measures path delays using an on-chip time-to-
digital converter (TDC) is proposed in [59]. The TDC was described earlier in
reference to Fig. 10.8 in Sect. 4.1.3. The TDC provides approx. 25 ps of timing
resolution, is very fast, e.g., no clock strobing or clock sweeping operation is
required, and can be multiplexed and shared across a large number of the functional
unit outputs. The method is also classified as chip-centric but unlike [57] does
not depend on a set of golden chips. Rather, a golden simulation model is used
to characterize the HT-free space. The development of the golden model requires
only a single nominal simulation to be run for each of the applied two-vector
sequences, and therefore the approach significantly reduces the level of effort and
time required over previously proposed simulation-based golden model approaches.
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Fig. 10.26 (a) Chip layout showing 2 copies of the AES [26], (b) TCs from 44 chips with CAD
values shown on far right, and (c) configurations of HT added to AES2

This is possible because the calibration processes are geared toward deriving a
nominal chip-averaged-delay (CAD) value for each path from hardware data, and
therefore, process variation effects do not need to be accounted for in the golden
model.

Calibration and chip averaging are designed to reduce performance differences
and the adverse effects of process variations on delay while preserving any type
of systematic variation that shows up in all (or a large subset) of the tested chips.
Chip averaging leverages a key difference between random process variations and
HT anomalies; random variations average to 0, while HT anomalies introduce
systematic differences that survive the averaging process.

The authors validate the method using data collected from 44 copies of an ASIC
fabricated in a 90 nm technology which has two exact copies of the layout of an AES
functional unit, one representing the original design and one with five embedded
HT. A layout of the chip showing the two copies of the AES and four instances of
the TDC is shown in Fig. 10.26a. The two 8-to-1 multiplexers shown in the block
diagram of the TDC from Fig. 10.8 connect to 15 of the 128 outputs of the AES
(the 16th input is connected to the Clk). The two copies of the TDC in each AES
instance allow signals propagating to 30 of the outputs of AES to be timed against
the Clk.
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The calibration process used to reduce inter-chip process variations is carried out
in advance of the HT detection procedure on each chip separately. Similar to the
HT detection process, calibration involves measuring delays from paths of various
lengths within the functional unit on each chip. Unlike HT detection, the goal of
calibration is to tune the control signals, Cal0 and Cal1, of the TDC as a means
of shifting (and scaling) the delay distribution obtained for each chip to a fixed
mean value. From Sect. 4.1.3, the output of the TDC is a thermometer code (TC),
i.e., an integer value between 0 and 120, that represents the relative delay difference
between the Clk and the path being tested. The fixed mean value is set to the halfway
point (60). By using the same fixed mean value for all chips, this process effectively
standardizes the TCs, thereby eliminating most of the delay variations introduced
by chip-to-chip process variation effects.

The chip-averaging technique is designed to remove the remaining intra-chip
variation that exists in the path delays. Once the TDC is calibrated, a set of TDF-
based vectors designed to test each possible HT site in a hazard-free fashion is
applied to the chips. The HT detection method is applied once data from all or a
large sample, e.g., 50 or more, chips is collected. A chip-averaged-delay (CAD)
value is computed for each tested path by averaging the TC delays obtained from
all chips. The CAD averages and ideally eliminates random within-die variations,
making it possible to observe very small systematic differences which occur in the
chip values but are not present in a Spice-level simulation of the nominal model.

As an illustration, Fig. 10.26b plots the raw TC values for 5 HT-free paths of
different lengths. The x-axis lists the chip, 1–44, for each TC value on the y-axis.
The two curves represent the data collected from each of the two nearly identical
AES instantiations shown in Fig. 10.26a. The variations in the data points across
chips and between the AES instantiations are what remain after calibration and are
attributed to intra-die variations and measurement noise. The CAD values for each
of the five paths are shown as the last point of the waveforms on the far right. The
chip-averaging effect is reflected in the “closeness” of the two points computed from
the 44 chips of each AES instantiation. The layout of the two AES instantiations is
identical, and, therefore, ideally, the CAD values should be superimposed. Although
this is not the case, the CAD values are closer than most of raw TC values for any
given chip. This reduces the boundaries associated with the HT-free space, which in
turn, improves the HT detection sensitivity of the proposed method.

The authors validate the detection sensitivity of the method by measuring
the delay anomalies introduced by five layout-inserted HT. Figure 10.26c gives
schematic-level diagrams illustrating the structure and insertion points of the HT,
which are highlighted in red. Four fanout HT and one series-inserted HT are added
to the layout of AES2 by replacing filler cells and connecting the inputs and outputs
of the HT as shown by the schematic. A nominal simulation model of the AES
layout and TDC is created using Mentor Graphics Calibre XRC extractor and
the foundry-provided models for the 90 nm technology in which the chips were
fabricated. Transient simulations using Cadence Spectre are carried out to obtain
the TC values associated with the nominal model.
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Fig. 10.27 (a) DCAD values of golden simulation model against HT-infested AES2 and (b)
DCAD value of golden simulation model against HT-free AES1 from [59]

The graphs shown in Fig. 10.27 plot two sets of results, (a) plots the simulation
nominal model data against the HT-infested AES2 data, while (b) plots the simu-
lation data against the HT-free AES1 data for the same 20 paths. The y-axis plots
a DCAD value, which is simply the difference between the simulation TC value
and hardware-derived CAD values. HT that introduce larger anomalies therefore
generate larger DCAD values. The paths are sorted left to right according to the
magnitude of the HT delay anomaly, with the largest DCAD values on the left.
The red curves represent data collected from paths that include one of the HT
shown in Fig. 10.26c, while the black curves represent data from HT-free paths.
The displacement of the red curves upward with respect to the black curves in (a)
portrays the presence of the delay anomaly introduced by the HT. The curves in (b),
on the other hand, show that the DCAD values for these same paths from AES1

(which does not include the HT) are interleaved with the HT-free (black) curves.

10.6 Multiparameter Detection Methods

The authors of [61] leverage correlations between maximum operating frequency,
Fmax, and transient current, IDDT , as a mechanism to enhance the HT detection
sensitivity of IDDT . Multiparameter side-channel analysis refers to the joint analysis
of two or more circuit parameters, such as power and delay, as a means of accounting
for process variation effects or to provide higher levels of confidence that an
HT exists through corroborative evidence, or a lack thereof, from multiple signal
sources. This concept is portrayed in Fig. 10.28a which plots IDDT against Fmax.
Here, simulation experiments are used to show an embedded HT effect IDDT because
of additional HT switching activity but does not impact Fmax. The mismatch in
the correlation of IDDT and Fmax allows the HT to be identified in the “tampered”
IDDT curve that would otherwise not be possible. Fmax is effectively used to track
process variation effects. The distinction is blurred to some degree with the addition
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Fig. 10.28 (a) Correlations between IDDT and Fmax distinguish HT-free and HT-infested chips in
the presence of process noise, (b) similar analysis with random intra-die variations added [61]

of random within-die variations as shown in Fig. 10.28b, but the correlation and
benefit provided by Fmax remain apparent in the displacement and separation of the
red (HT) and blue (HT-free) data points. The authors note that any path or set of
paths can be used for the correlation analysis to make it nearly impossible for the
adversary to defeat the technique.

The authors propose a test vector generation strategy that first partitions the
multi-module design into nonoverlapping functional blocks as a mechanism to
amplify the HT IDDT contribution (signal) over normal background IDDT (noise).
Vectors optimized to target HT nodes are selected and directed at testing one of
the blocks while simultaneously minimizing activity in other functional blocks. The
test vectors for IDDT and a separate set for Fmax are used in the proposed test flow
to optimize correlations as shown in Fig. 10.28. Simulation and FPGA results are
presented which validate their approach.

10.7 Conclusion

Hardware Trojans (HT) represent a serious threat and a significant challenge. Side-
channel techniques, such as power and delay analysis, can be argued as the most
sensitive and cost-effective strategies for detecting HT. This chapter surveyed a wide
variety of delay-based approaches that have been proposed over the last decade.
Important technical aspects and distinctions that characterize the proposed HT
detection methods can be summarized as follows:

• Path delay measurement strategy for obtaining precise measurements of path
delays:

– Clock sweeping implemented by adjusting the frequency of applied clock
– Two clock approaches which tune the phase between launch and capture

clocks (clock strobing)
– On-chip, embedded test structures which create (tunable) delay chains
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• Test stimulus strategies for HT detection:

– Random vectors
– Vectors generated using the traditional transition fault delay (TDF) model
– Vectors generated from a pseudo-TDF model targeting shortest sensitizable

paths
– Pulse stimulus-based techniques

• Approaches to account for process variation effects, both chip-to-chip and
within-die:

– HT-free space created from process simulation models
– HT-free space created from data collected from golden (HT-free) chips (which

are validated using destructive delayering techniques)
– Simulation-derived HT-free space calibrated with hardware data from process

control monitors (PCMs), ring oscillators (ROs), critical paths, etc.
– Techniques which average path delays measured from (untrusted) chips and

compared against (nominal) simulation models or golden HT-free chips
– Techniques which correlate multiple side-channel signals

• Design-for-trust additions, modifications, and analyses to support HT detection
methods:

– Techniques which create ROs from functional unit paths
– Techniques which add a distributed set of ROs designed to detect HT

switching activity
– Methods designed to find structural symmetry in path delays for comparison
– Techniques which add symmetrical components to enable calibration using

chip data

• Statistical HT detection methods:

– Simple thresholding and linear regression-based methods
– Advanced statistical analysis techniques which employ nonlinear regression,

kernel mean matching, principle component analysis, multidimensional scal-
ing, and convex hull construction

– Ad hoc statistical techniques which leverage path delay differences, ratios,
and other mathematical transformations

Taken collectivity, three critical features emerge as requirements for a fully
specified and effective HT detection method:

• First, traditional manufacturing test methods are not capable of providing precise
measurements of path delays, which is a requirement of nearly all proposed HT
detection methods. Therefore, a paradigm shift is required in the way path delay
testing is carried out by automatic test equipment and/or in the capabilities of
design-for-testability support structures included on the chip. Several low-cost
embedded test structures were described that support high-resolution on-chip
measurements of path delays.
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• Second, both within-die and chip-to-chip process variations pose significant
limits on HT detection sensitivities and must be dealt with in a cost-effective
manner. Golden model-based methods must be based on realistic assumptions
regarding the availability of golden chips and the amount of simulation time and
effort required to define the boundaries of a multidimensional HT-free space.
Golden model-free methods must have validation techniques to guard against
subversion by the adversary.

• Third, a low-cost test vector generation strategy must be developed that is
effective at detecting subtle HT loading effects and which also provides high
levels of HT coverage while minimizing test cost.

Achieving all of these goals is very challenging, but the commercial acceptance
of path delay testing as a mainstream HT detection strategy critically depends on
low-cost solutions to all three of these technical domains.
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Chapter 11
Reverse Engineering-Based Hardware Trojan
Detection

Chongxi Bao, Yang Xie, Yuntao Liu, and Ankur Srivastava

11.1 Introduction

Nowadays, most integrated circuit (IC) designers do not keep an in-house foundry
for economic reasons. Instead, they often outsource their designs to outside
foundries (maybe untrusted) for fabrication. This leaves the possibility that an
adversary in the untrusted foundry may maliciously modify the original circuit to
do evil. Therefore, although design outsourcing helps to lower costs and reduce
time-to-market pressure, it also leads to security problems described above. The
malicious modifications made to the original circuit are called hardware Trojans
(HTs). HTs can cause a number of damages to the original design, including a
change in functionality, a reduction in IC reliability, leakage of valuable information
from the IC, and denial of service [1]. Depending on the applications, the conse-
quences of HTs range from loss of profit if used in consumer-electronic devices to
life-threatening if used in military devices.

To reduce the devastating consequences hardware Trojans may bring, researchers
have proposed different approaches to detect them. Among all approaches, test-
time detection approaches [2–5] have drawn the greatest amount of attention
from researchers because (1) they are noninvasive and (2) they usually require
fewer resources compared to other techniques. In many functional testing-based
approaches, functional and/or side-channel behavior of suspect ICs are compared to
a “golden model” that represents the expected behavior of a Trojan-free IC. If the
functionality of the suspect IC deviates sufficiently from that of the golden model, it
is classified as Trojan infected. Although some of these approaches have been quite
successful, it is still an open problem how to obtain such golden models/data.
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Motivation. In prior works such as [6], it is suggested that reverse engineering
(RE) should be used to verify that an IC is Trojan-free and data extracted from this
IC can subsequently be used as golden models. However, the reverse-engineering
process is actually very complex, time-consuming, and error-prone. RE process
usually consists of five steps [7]: decapsulation, delayering, imaging, annotation,
and schematic creation. After the first three steps, images of the physical layout of
the IC under test are taken. Then during the last two steps, netlists for the circuit are
extracted based on the images. One way (and also a naïve way) to use RE to detect
hardware Trojans is to apply all these five steps and compare the resulting netlist
with a golden netlist. However, this approach is flawed for the following reasons.
First, some Trojans will be missed out by only comparing netlists. For example,
parametric Trojans [8] differ from a golden IC only in some circuit parameters such
as wire length. Comparing at the netlist level won’t detect them. Second, the above
naïve approach requires unnecessarily excessive human effort and is very time-
consuming because generating the netlist via the last 2 RE steps requires extensive
human interaction.

Organization. The fundamentals of RE of integrated circuits are explained in
Sect. 11.2. The applications of RE in hardware Trojan detection are introduced in
Sect. 11.3. In Sect. 11.4, we propose a novel RE-based hardware Trojan detection
method which also involves support vector machines (SVMs). A design-for-security
approach is proposed in Sect. 11.5. The chapter is concluded in Sect. 11.6.

11.2 Reverse Engineering of Integrated Circuits

11.2.1 Introduction to Reverse Engineering

Reverse engineering (RE) of integrated circuits is the process of examining and
analyzing the internal structures of the chip to extract the schematic or reveal some
information about the fabrication process. This is often done by removing the chip
package and stripping off the die layer by layer. Torrance and James [7] introduce a
state-of-the-art RE flow which contains the following steps:

1. Decapsulation: The package of the die is opened, and the die is removed from
its package.

2. Delayering: The layers of the die are stripped off one at a time using chemical
methods. The new surface is polished to keep planar.

3. Imaging: Extremely high-resolution images of each layer are taken using a
scanning electron microscope when the layer is exposed which are then stitched
together into a complete image of the layer. After the images of all layers are
obtained, the images are aligned so that the interlayer structures, i.e., contacts
and vias, are lined up.
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4. Annotation: The transistors and other structures (interconnects, vias, etc.) in the
chip are annotated manually or automatically.

5. Schematic Generation: The schematic of the circuitry in the chip is generated
based on what was obtained in the last step as well as other information.

Even though the RE process is highly automated nowadays, all of the above steps
are still error-prone. In the first two steps, the die is physically manipulated which
will affect the structure of the exposed layer and introduce additional noise in the
measurements. The chemical process may even affect the lower layers. Annotating
the structures and generating the netlist are also challenging. Even advanced image
recognition software sometimes make mistakes, and experienced analysts are often
needed [7].

11.2.2 Applications of Reverse Engineering

Many parties within the supply chain of integrated circuits are interested in RE.

• Circuit designer. The circuit designer may wish to reverse-engineer the fabricated
chip that has returned from the foundry and see whether the fabricated chip has
incurred any malicious modifications.

• Foundries. Foundries may wish to reverse-engineer chips manufactured by their
competitors to analyze the fabrication process that they use.

• IP vendors. The IP vendors may reverse-engineer some suspicious chips to see
whether there is an unauthorized use of their IP.

11.3 Hardware Trojan Detection Using Reverse Engineering

11.3.1 General Information

Researchers in both academia and industry have proposed different approaches
to detect hardware Trojans (HTs). These methods fall into the following four
categories:

• Design-time approaches have two types: (1) formal verification and (2) design-
for-security (DFS). Formal verification [9] requires that the design house proves
certain security properties hold in the design. DFS approaches (see [10]) are
aimed at increasing the controllability and observability of ICs in order to aid
test-time detection approaches.

• Test-time approaches consist of tests in addition to normal IC post-manufacturing
tests are the most widely studied approaches in the literature. There are two
types: (1) functional testing and (2) side-channel fingerprinting [5]. Functional
testing approaches [2, 4] aim to detect HTs that change the functionality (primary
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outputs) of the IC from the intended one. Side-channel fingerprinting [11, 12]
is an alternative approach that measures side-channel signals (timing, power,
electromagnetic, etc.) and uses them to distinguish genuine ICs from Trojan-
infected ones.

• Run-time approaches add circuitry that monitors the behavior/state of a chip after
it has been deployed. If deviation from the expected golden behavior is detected,
additional circuitry can disable the chip or bypass the malicious logic before the
HT can do any damage. Most test-time and run-time approaches assume that a
TF chip, also known as a golden chip (a chip with intended functionality and
behavior), is available to compare with. They suggest RE be used to obtain such
a golden chip [6].

• RE-based approaches apply the RE process (discussed above) to ICs in order
to detect HTs. One naïve approach is to extract the design/netlist by applying
all five RE steps and compare it with an intended (golden) netlist. However,
such approach is not only time-consuming but also destructive. They have been
pursued the least for HT detection. Their main use of RE has been to verify the
TF chips used in the golden model development [6]. Another type of RE-based
approaches [13–15] develops a more efficient and robust RE approach without
extracting netlists altogether. They only utilize the first three steps of reverse
engineering (decapsulation, delayering, and imaging) to obtain internal images of
each layer (poly, metal1, etc.) for the ICs. By omitting reverse engineering (RE)
steps 4–5, they save lots of unnecessary effort. The images recovered represent
the physical structures and layout of the ICs. Then, ICs are classified using these
images and support vector machines. In contrast to the naïve RE approach which
requires manual effort, these SVM supported RE-based approaches are fully
automated and more efficient in terms of computational and storage resources.

11.3.2 Advantages of Applying Reverse Engineering to Trojan
Detection

RE-based approaches have several advantages:

1. It does not need a golden chip to compare with. Instead, it can verify that a chip
is golden, serving as foundations for many other test-time approaches.

2. It is able to detect small Trojans and parametric Trojans. These Trojans are hard
or even impossible to detect using other techniques.
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11.3.3 Challenges of Applying Reverse Engineering to Trojan
Detection

For naïve RE-based HT detection approach, the challenges are as follows. First,
some Trojans (e.g., parametric Trojans) can actually be missed by only comparing
netlists. Second, the effort required by this naïve approach is excessive. RE steps 4–5
are time-consuming and require manual input for annotation and schematic read-
back. Furthermore, Plaza and Markov [16] stated that RE at advanced technology
nodes such as 22 nm is not feasible without access to the gate-level netlist. This
means that extracting the gate-level netlists from the layout images (RE steps 4–5)
will be infeasible in technologies beyond 22 nm.

11.4 Reverse Engineering-Based Hardware Trojan Detection
Using SVM

In Sect. 11.3, several reverse engineering-based hardware Trojan detection
approaches are reviewed. In this section, we will go over one detection method in
greater details, i.e., reverse engineering-based hardware Trojan detection approach
using support vector machine (SVM) [13]. This approach is very efficient and
robust. It involves a machine learning approach that classifies ICs as Trojan-free
and Trojan-inserted based on features extracted from the IC images. The approach
essentially eliminates the annotation and schematic recover steps in the reverse-
engineering (RE) process, which can save lots of unnecessary effort.

11.4.1 Problem Statement

Assume that ICs fabricated by one or more untrusted foundries are given. The
problem is to determine which ICs are Trojan-free (TF) and which have Trojan-
inserted (TI). Three types of Trojans are considered:

• Trojan Addition (TA) : In this type of Trojans, malicious transistors, intercon-
nects, and gates are added into the original circuit.

• Trojan Deletion (TD) : In this type of Trojans, components such as transistors,
interconnects, and gates are maliciously removed, usually causing functional
error or denial of service.

• Trojan Parametric (TP) : In this type of Trojans, circuit parameters such as wire
width are modified by an adversary to change circuit property such as timing
behavior.

Examples of TF, TA, TD, and TP are shown in Fig. 11.1. Note that the above
problem can be viewed as an instance of the classification problem defined as
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Fig. 11.1 Example of three kinds of trojans. SEM image of metal1 layer is shown. (a) Trojan free
case (TF). (b) Trojan addition case (TA). (c) Trojan deletion case (TD). (d) Trojan parametric case
(TP)

follows. There are two classes of objects, denoted by C0 and C1, respectively. Each
object is represented by a feature vector x D .x1; : : : ; xn/ where xi denotes the ith
feature, xi 2 R and n denotes the # of features. Given an unknown object A, the
problem is to determine the correct class of A. In our case, objects are chips under
test, and TF represents class C0, while the TI cases (TA, TD, and TP) represent class
C1.

Prior works such as [6] suggest reverse engineering (RE)-based methods be used
to identify Trojan-free ICs in order to develop the golden models for other HT
detection approaches. However, there was not any work devoted toward performing
this classification prior to [13]. One could only assume that a golden netlist exists
and naïvely apply all steps in the reverse-engineering 180 process to extract netlists
from all unknown chips. There are some issues with this naïve approach. First,
some Trojans (e.g., parametric Trojans) can actually be missed by only comparing
netlists. Second, the effort required by this naïve approach is excessive. Schematic
recovery step in the RE process is time-consuming and requires manual input for
annotation and schematic read-back. To address these issues, [13] introduced a more
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efficient and robust RE approach for solving the above classification problem. In
the work, extracting netlists is avoided altogether. Instead, a one-class SVM-based
approach is developed. One-class SVM makes a classification decision based on
features extracted from the IC images. The salient contribution of [13] is the ability
to detect all the above Trojan cases automatically and efficiently. We will introduce
implementation details next.

11.4.2 Proposed Approach

11.4.2.1 Overall Algorithm

The approach takes as input the golden layout, N chips to classify, and some learning
parameters governing learning accuracy. It will output a label for the circuit, which
is either Trojan-free or Trojan infected. The N chips undergo only decapsulation,
delayering, and imaging steps in the reverse-engineering process, and as a result,
images of each layer for all N chips are produced. Then those images belonging to
the same layer in a chip are divided into nonoverlapping grids. Physical features are
extracted from each grid in all chips. Then a one-class SVM classifier is trained for
each layer using a subset of the chips (possibly even just one chip). After training,
all the grids in the one layer are classified using the classifier corresponding to
that layer. Each grid is either labeled as Trojan-free (TF) or Trojan-inserted (TI).
Finally, based on the label for all the grids within a chip, a label for the whole chip
is determined.

The culprit of the above approach is to solve the classification problem defined in
Sect. 11.4.1. Many machine learning approaches can perform classification. Support
vector machine (SVM) is chosen because of its high accuracy and easy to tune
nature [17]. Generally, classification via SVM usually involves two phases:

• Training: During the training phase, SVM takes as input a training dataset DST D

f.xj; yj/ j j D 1; : : : ; jDST jg where xj and yj are the jth feature vector and its
class label (C0 or C1). Then it solves an optimization problem that relies on the
dot product of feature vectors to find a decision boundary! which separates the
feature vectors of class C0 from class C1 so that as many objects from DST as
possible are correctly classified.

• Classification: In the classfication phase, SVM takes as input a feature vector
x� of an unknown object and classifies it based on which side of the decision
boundary ! that x� resides.

11.4.2.2 Feature Selection

As discussed above, we break the images (layouts) into smaller nonoverlapping
grids as shown in Fig. 11.2. Features are extracted from each grid by comparing
the corresponding grids of the IC under test (ICUT) with the golden layouts grids
(which we know from design).
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Fig. 11.2 Gridding
techniques. Part of metal1
layer of s298 benchmark with
gridsize 160�160 pixels is
shown

We select several features which are determined based on area and centroid
differences between the RE and golden layouts. To be specific, we calculate the
percentage of the layout that is added to/removed from the golden layout. We also
calculate the centroid difference (in X and Y direction) between actual layout and
golden layout. These features should be able to capture most of the differences
between actual layout and golden layout.

11.4.2.3 Final Classification

Once each grid has been classified, we can classify the whole chip accordingly.
Note that if we classify a chip as Trojan-infected only because it has a few sparse
Trojan-infected grids, the false-positive rate will be very high due to imperfections
in the reverse-engineering process. Instead, we look at the number of grids classified
as Trojan-inserted (TI) and their location and then classify the whole chip. More
specifically, we assume that in order for the chip to be classified at TI, there must be
at least n neighboring TI classified grids in the chip. Both horizontally adjacent grids
and vertically adjacent grids are considered neighboring grids in this context. The
intuition behind it is that malicious modifications tend to be continuous. In order
to be functional, these modifications are connected either to one layer or to some
other malicious modifications through neighboring layers. The maximum number
of connected negative grids reflects the level of deviations from the golden layout
existed in the chip under test.
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Table 11.1 Benchmarks used in the experiments

Benchmarks #gates Source #training chips Training time(s)

b18 122;559 ITC99 1 13;054

s27 57 ISCAS89 20 121

s298 283 ISCAS89 5 175

s5378 3455 ISCAS89 1 351

s15850 10;984 ISCAS89 1 1032

s38417 30;347 ISCAS89 1 3055

Table 11.2 Chip
classification accuracy rate
averaged over 500 trials

Benchmark TF (%) TA (%) TD (%) TP (%)

s27 100 100 100 99.8

s298 100 100 100 99.6

s280 100 100 100 100

s15850 100 100 100 100

s38417 100 100 100 99.8

b18 99.4 100 100 100

11.4.3 Experiments and Results

Benchmarks. The performance of the proposed approach is tested on six publicly
available benchmarks. These benchmarks are drawn from ISCAS89 and ITC99 are
all synthesized using Cadence RTL Compiler with Synopsys 90 nm generic library.
The gate count of each benchmark given by the Cadence tool is listed in Table 11.1.
Results. We list the detection accuracy averaged over 500 trials are listed in
Table 11.2. Clearly, the proposed method can detect three kinds of malicious
modifications, including Trojan addition, Trojan deletion, and parametric Trojans,
with high accuracy. It is also noteworthy to point out that the method can recognize
Trojan-free chips reliably (low false-positive rate).

11.5 Design-for-Security Approaches

We have reviewed several reverse engineering-based hardware Trojan detection
approaches in Sects. 11.3 and 11.4. In this section, we explore security-aware design
strategies. Note that although test-time and run-time hardware Trojan detection
have been well-studied, design strategies remain a vital link in keeping hardware
secure [18]. These strategies either help to prevent the insertion of hardware
Trojans or to facilitate the detection of hardware Trojans in test-time and run-time.
Combating hardware Trojan attacks is not an easy job, and the cooperation between
design-time, test-time, and run-time approaches is always preferred.
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Many reverse engineering-based hardware Trojan detection approaches includ-
ing the one introduced in Sect. 11.4 extract some physical features from the layout
and decide whether the Trojan is present on the chip depending on those features.
Since there are many ways to lay out a chip, one design strategy can be choosing a
layout that is more sensitive to hardware Trojan insertion (we will define sensitivity
later in this section). As digital circuits are built (synthesized) using standard cells,
the above strategy translates to finding the best set of standard cells, in a given
technology library, that are more sensitive to Trojan insertion. Then intuitively, when
the circuit is synthesized on that subset of standard cells, the resulting chip is more
sensitive to hardware Trojan insertion. We will formally define this problem and
give one solution in this section.

11.5.1 Problem Definition and Challenges

Motivation. We will use the hardware detection approach introduced in Sect. 11.4
as our post-manufacturing hardware Trojan detection method. We are interested in
finding any design-time strategies that can make detection of Trojans easier using
that method.

As a motivating example, we choose one benchmark, s298, from ISCAS89 [19].
We select two subsets of standard cells from Synopsys 90 nm generic library,
namely, {DFFX1, INVX4, NAND2X1, NOR2X0} and {DFFX1, INVX2,
NAND2X4, NOR2X2}. We synthesize the benchmark using these two subsets,
respectively, and generate two synthesized designs. For each design, we randomly
select one standard cell from it as the attack target and make several malicious
modifications including structure deletion and addition to that target at the layout
level. These modified designs will serve as the Trojan-infected designs. In total,
for each design, random selection of the attack target is done 10 times, and each
time 10 different modifications are applied to it, making the total number of Trojan
designs 100 for each synthesized design. We then apply training and classification
techniques introduced in [13] to both designs. The training is done on five Trojan-
free chips. After classification of each grid in the IC is done, the Trojan miss rate
(TMR) and the false-positive rate (FPR) defined below averaged over 100 Trojan
designs are recorded. The area and leakage power are also reported in Table 11.3.
Note that no timing constraints are specified during the synthesis.

TMR D
#grids with malicious modifications and are NOT detected

#grids that have malicious modifications
(11.1)

FPR D
#grids without malicious modifications but are mislabeled

#grids that have no malicious modifications
(11.2)

This table shows that two designs have a significant difference in Trojan miss
rate. In general, we can detect 41% more malicious modifications made to the
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Table 11.3 Trojan miss rate, false-positive rate, area, and leakage power values of two bench-
marks. Numbers in parenthesis are ratios of values in two designs

TMR (%) FPR (%) Area (�m2) Power (nW)

Design 1 33.14 (1.41�) 0.35 1167 6622

Design 2 23.55 0.43 (1.21�) 1403 (1.20�) 9122 (1.38�)

second design than those made to the first design. However, this does not come
for free. Design 2 also has a higher false-positive rate and incurs 20% overhead
in area and leakage power. We summarize our findings from the above motivating
examples:

• Malicious modifications made to some standard cells in a given library may be
easier to be detected than those made to other standard cells. Put in another way,
some standard cells are more sensitive to malicious modifications and are thus
favored over others in terms of Trojan detection.

• Though design 2 has a higher false-positive rate (FPR) which is 0.43%, it is
negligible. Moreover, since we intend to use the technique to identify golden
chips, what is more important is to decrease the Trojan miss rate, which is also
the false-negative rate. Because false-positive rate and false-negative rate cannot
be decreased at the same time, we will neglect FPR and only focus on TMR.

• The increase in Trojan detection accuracy usually leads to extra area/power
overhead.

This motivates us to find a “best” subset of standard cells such that if the circuit
is synthesized on it, detection of Trojans using [13] will be the most accurate, while
area/power/timing overheads are acceptable. However, we do not want to write our
own EDA tool because it is tedious and error-prone. Instead, we are interested in
modifying existing EDA tool flow to make it security-aware so that our approach
can be readily used. We will define this problem formally next.
Problem Definition. Given a technology library l consisting of a set of n standard
cells such that l D fC1; C2; : : : ; Cng , a circuit in the form of RTL code or netlist
denoted by d, an area upper bound Aup, leakage power upper bound Pup and some
timing constraints t1; t2; : : :, find a subset of l, namely, ls D fCs1 ; Cs2 ; : : : ; Csig,
such that when we synthesize d on ls, malicious modifications made to it will be
the easiest to be detected (among all possible subsets ls) given that the following
constraints are met:

ls is universal; t1; t2; : : : are satisfied

area � Aup; leakage power � Pup (11.3)

Challenges. Note that the above problem is actually an optimization problem where
the possible solution space is the power set (the set of all subsets) of l, the objective
is to maximize Trojan detection accuracy, and the constraints are defined by (11.3).
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We argue that the following challenges have to be addressed before solving the
above problem:

• The objective function is vague. We have to define mathematically Trojan
detection accuracy.

• In order to find the best subset of standard cells, a characterization of each
standard cell has to be done.

• The possible solution space is exponential. For example, the saed90nm library
has 340 standard cells. Thus, its power set contains 2340 D 2:23
10102 elements.
Moreover, for each possible solution, we need to run the entire synthesis flow to
estimate the area, power, etc. thereby making the approach highly complicated.
Obviously, an exhaustive search is computationally prohibited, and heuristics are
needed.

11.5.2 Our Proposed Method

11.5.2.1 Characterization of Each Standard Cell

Before proposing our method of standard cell selection, we first investigate what
causes the difference in sensitivity to malicious modifications between different
standard cells. Reverse engineering-based Trojan detection approaches such as [13]
usually extract several features like centroid difference, area of difference, etc. from
each grid. Since different primitive structures (such as “T” shape, “L” shape, “F”
shape, etc.) in a grid have different centroid patterns, they may have different
sensitivities to malicious modifications. Therefore, in order to characterize the
sensitivity of each standard cell, we have to characterize its building blocks, which
are these primitive structures first.

We identify 16 possible structures (shown in Fig. 11.3) in a grid as primitives.
Note that though these 16 primitives are not exhaustive, our experiments show that
over 90% of the grids contain exactly one of them. Therefore, they are a good
representative of primitive structures. We will synthesize several benchmarks, apply
gridding, and use the method in [13] to train one classifier for each benchmark. We
say a grid is of type i.1 � i � 16/ if it contains only ith primitive. Otherwise, we say
it is of type 17. After training, we make some malicious deletions and additions to
these benchmarks and use the classifier to classify each grid. We then calculate the
Trojan miss rate (TMR) defined by Eq. (11.1) for each type of the grid, respectively.
We let pi .1 � i � 17/ denote the TMR of grid type i.

After the characterization of each primitive structure is done, given a technology
library, we can apply the same gridding to each standard cell and label each grid as
1–17 using the same way as above. Say that there are ni grids of type i .1 � i � 17/

in the standard cell. We define below CTMR (cell Trojan miss rate) which measures
the average probability that a malicious modification is not detected if it happens at
one random grid of the cell.
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Fig. 11.3 16 primitive
structures

Table 11.4 CTMR and
actual Trojan miss rate of
some standard cells

Standard cell CTMR (%) TMR (%)

NAND2X0 36:08 27:32

NAND2X1 43:08 39:33

NAND2X2 38:31 32:83

NAND2X4 33:18 25:38

CTMR D

P17
iD1 ni 
 piP17

iD1 ni

(11.4)

By definition, the smaller CTMR a cell has, the easier it is to detect malicious
modifications made to it. To see this, we measure the actual Trojan miss rate of all
NAND2 standard cells by synthesizing a NAND2 gate using these standard cells
respectively, making some malicious modifications to the synthesized design and
calculating TMR defined by Eq. (11.1). We also calculate CTMR of these standard
cells and list them in Table 11.4. The results indicate that CTMR is a great metric
for cell’s sensitivity to malicious modifications.

11.5.2.2 Mathematical Description of the Objective Function

Now that we have a good metric for cell’s sensitivity to malicious modifications, we
can define a design’s sensitivity accordingly. Suppose a circuit is synthesized on a
technology library and the synthesized design contains ki .1 � i � n/ standard cell
Ci. Let l D fC1; C2; : : : ; Cng. Then we calculate this synthesized design’s Trojan
miss rate (DTMR) as below:

DTMR.l/ D

Pn
iD1 ki 
 CTMRiPn

iD1 ki
(11.5)
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where CTMRi is the Trojan miss rate for cell Ci (defined by Eq. 11.4). We use
DTMR as the metric to measure the design’s sensitivity to malicious modifications.
The smaller DTMR a design has, the easier it is to detect malicious modifications
made to this design. Note that when the circuit is fixed, DTMR is only determined
by a subset of standard cells, denoted by l, on which the circuit is synthesized. Thus,
we write DTMR as a function of l.

We can reformulate the problem in Sect. 11.5.1 as:

minli22l DTMR.li/ (11.6)

subject to constraints defined in Eq. (11.3). Here 2l means the power set (the set of
all subsets) of the given technology library l. The subset of standard cells denoted
by lopt that leads to the optimal value of the above optimization problem is what we
want. We will call lopt the solution to the above problem.

11.5.2.3 Steepest Descent Method

As stated in Sect. 11.5.1, an exhaustive search is computationally prohibited.
Heuristics are needed to reduce the search space and find a near-optimal solution.
We will, instead, adopt the idea of the steepest descent method (SDM) to solve the
above problem. To find a local minimum of function f , the general SDM works as
follows:

1. Find an initial solution x0 and set xold D x0.
2. Calculate the gradient at the current solution and construct a new solution xnew D

xold � �rf .xold/ where � is the step size that controls the convergence rate and
should be kept relatively small.

3. If f .xnew/ < f .xold/, then we set xnew D xold and go back to step 2. Otherwise, a
local minimum point xold has been found.

Note that the performance of SDM depends heavily on the initial solution.
However, when the initial solution and the step size are chosen carefully, it can
lead to very good solutions. Therefore, we will adapt its idea to solve our problem.
But applying SDM to our problem has the following challenges, some of which are
due to the nature of the method and some are unique to our problem.

• The performance of the SDM relies heavily on the choice of the initial solution.
How to select the initial solution should be carefully investigated.

• The SDM is based on recursively updating the current solution to get a better
solution. How to do this efficiently and effectively has yet to be examined.

• The SDM only works where the function to be optimized is differentiable.
However, in our problem, it is a discrete function. We have to define the gradient
accordingly.

We will address these challenges in the following text.
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Fig. 11.4 Overall block diagram of our proposed method

11.5.2.4 Our Proposed Algorithm

The overall proposed flow is shown in Fig. 11.4. We will explain each step as well
as the intuition behind the step.
Choice of initial solution. We can make up an arbitrary initial solution, which is
to choose an arbitrary subset of standard cells. However, there is no guarantee that
synthesizing the circuit d on this subset will meet area/timing/power constraints. In
fact, the chance is very low. However, we can obtain an initial solution in a better
way. We synthesize the design on the whole library applying all timing constraints.
This will give us a list of standard cells used together with the area and the leakage
power of the design. This is a baseline design, and its area and leakage power are
the minimum values we can get given that all timing constraints are met. So it must
be one feasible solution (if this design does not meet the area and power constraints,
then no design will meet those constraints and no feasible solution exists) and is
a very good point to start with. We will set the list of standard cells used in that
synthesis as our initial solution.
How to modify the current solution. In the context of our problem, the modification
is done by adding/removing several standard cells into/from the current solution.
This is where the exponential complexity comes in because there are exponential
numbers of ways of adding/removing standard cells to/from the old solution. To
reduce the computation complexity, we make a key observation here.

Typically in a library, there are multiple standard cells with different drive
strength that implement exactly the same logic function. For example, AND2X1,
AND2X2, and AND2X4 all implement logic AND function of two operands:
Out D In1&In2 but with increasing drive strength. We group all standard cells that
implement the same logic function but with different drive strength into one group.
For each standard cell Ci, we say standard cell C0i is a possible alternative of Ci if
it satisfies the following three properties: (1) It is in the same group with Ci. (2) It
has a larger drive strength than Ci. (3) It has a lower CTMR defined by Eq. (11.4)
than Ci. We call all possible alternatives of Ci its list of possible alternatives, and we
limit the way we modify the old solution such that a standard cell in the old solution
can only be replaced by another standard cell in its list of possible alternatives. If
such list is empty, that standard cell is fixed in the solution and can never be moved
out from the old solution. Such limitations have the following advantages:
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• By ensuring that a standard cell is replaced with another one that implements
exactly the same function, we can perform incremental synthesis in EDA which
can obtain power/area/timing information much faster than synthesizing a design
from scratch. The correct functionality of the new design is also trivially
guaranteed.

• Since all standard cells in the possible alternative list have a greater drive
strength, enough drive strength originally required by the design is guaranteed.

• By limiting the replacement of one standard cell with only another standard cell
in its list of possible alternatives, the search space is cut significantly. By the third
property of the possible alternative, the search space is further reduced without
affecting the optimality of the solution.

• It can be easily implemented, fully automated, and 100% compatible with the
current flow of a commercial CAD tool.

Note that when we impose the above limitations, the modifications to the
current solution can be done additively. This means that instead of adding/removing
multiple standard cells from the design in one shot, we can always limit each
modification to replacing only one standard cell say Ci with another standard cell Cj

i
in its list of possible alternatives.
Gradient calculation. Since each modification to the current solution is done by
replacing one standard cell with another one that is in its list of possible alternatives,
we only need to define the gradient for each standard cell in all lists of possible
alternatives of the initial solution. The gradient should assess the quality of the
modification. Due to the discrete nature of our problem, gradient has to be defined
in a different way. The detailed steps to obtain the gradient are defined below:

1. Let l0 D fC1; C2; : : : ; Ckg denote the initial solution. Let p0, a0, p0 denote the
leakage power, area, and timing slack obtained after initial synthesis.

2. For each standard cell in l0, we identify its list of possible alternatives. We
replace a standard cell Ci with one of its possible alternative Cj

i and keep all
the other standard cells in l0 unchanged. We call this new subset of standard cells
lji. We resynthesize the design on lji and obtain new leakage power pj

i, area aj
i, and

timing slack tj
i. Let DTMR.l0/ and DTMR.lji/ denote the design’s Trojan miss

rate (defined by Eq. 11.5) when synthesizing the circuit on l0 and lji, respectively.
We define the following quantity first:

DTMR.lji/ D DTMR.l0/ � DTMR.lji/

t.lji/ D
t0 � tj

i

t0
; a.lji/ D

aj
i � a0

a0

; p.lji/ D
pj

i � p0

p0

We then define the gradient as follows:

rDTMR.lji/ D
DTMR.lji/

t.lji/ C a.lji/ C p.lji/
(11.7)
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Intuitively, this quantity measures how much improvement in DTMR we can get
with 1% overhead in power, area, and timing slack by replacing Ci with Cj

i in l0
to form the new library lji. The greater this gradient is, the more improvement in
DTMR such replacement can yield given that the overhead stays the same.
Overall Algorithm. Putting all things together in the framework of the steepest
descent method, we detail the steps of our algorithm below:

1. Identify and characterize primitive structures. Then characterize each standard
cell in a given technology library. Note that for a given technology library, this
step only needs to be done once.

2. Synthesize the design using the whole technology library and obtain the subset
of standard cells used denoted by l0. This is our initial solution. We set lold D l0.

3. Identify the list of possible alternatives for each of the standard cells in l0. Obtain
the gradient defined by Eq. (11.7) for every standard cell in every list of possible
alternatives.

4. Find in all lists of possible alternatives the standard cell with the largest corre-
sponding gradient, say Cj

i which is jth standard cell in the possible alternative list
of Ci.

5. Replace Ci with Cj
i in lold and let lnew denote the new subset of standard cells.

Synthesize the design on lnew, and check if area/power/timing constraints are
met. If so, set lold D lnew, and set the possible alternative list of Ci to empty. If
not, remove Cj

i from the possible alternative list of Ci, and keep lold unchanged.
6. Repeat steps 4–5 until all lists of possible alternatives are empty. lold is what we

want.

11.5.3 Experiments and Result

11.5.3.1 Experiment Setup

Benchmarks. We test our approach on eight publicly available benchmarks (from
ISCAS89 [19] and trustHub [20]). They are all synthesized using Cadence RTL
Compiler with Synopsys 90 nm generic library. Reports from Cadence tool show
that these benchmarks have gate counts ranging from 69 for s298 to 175,456 for
AES (shown in Table 11.5).
Applying constraints. We set the load capacitance to 100 pF on all output ports for all
benchmarks. We set the input/output delays to 200 ps. The clock frequency of each
benchmark is listed in Table 11.5. For each benchmark, we apply the above timing
constraints (no timing violations are tolerated in our experiments) and synthesize
the design using the Synopsys 90 nm generic library. We can then obtain the area
and leakage power after synthesis is done. We then set the allowed overhead for
leakage power and area to 30%, which means the leakage power and area should
not exceed their original values by more than 30%.
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Table 11.5 Benchmarks
used in the experiments

Benchmark Source #Gates Clock frequency

s298 ISCAS89 69 25 MHz

s5378 ISCAS89 728 25 MHz

s15850 ISCAS89 1968 25 MHz

s38417 ISCAS89 5066 25 MHz

AES TrustHub 175,456 500 MHz

b19 TrustHub 45,150 25 MHz

MC8051 TrustHub 6927 50 MHz

XGE_MAC TrustHub 60,222 156.25 MHz

Baseline design and security-aware design generation. For each benchmark, we
synthesize the circuit using the whole library with all timing constraints applied. We
call this design the baseline design. It represents a design that is optimized in area
and meets all timing constraints but lacks any security concerns. We then apply our
algorithm and obtain a list of standard cells. We resynthesize the circuit on this list
of standard cells and call it security-aware design. We will use Cadence Encounter
tool to place and route both designs.
Trojan insertion. For each benchmark, for both baseline design and security-aware
design, we randomly choose a standard cell as our attack target and make four
malicious modifications to it (two additions of structures and two removals of
structures). The random selection of attack target is done 15 times and in total 60
Trojan-inserted chips are generated.
Experiment conducted and results recorded. For each benchmark, for both baseline
design and security-aware design, we train SVM over 5 Trojan-free chips for s298
and 1 Trojan-free chip for all other benchmarks and use the classifier to classify the
60 Trojan-inserted chips. The detailed training and classification steps as well as
parameter selection follow the work in [13] with one small distinction. Instead of
classifying the whole IC, we only generate the labels for each grid in the IC. We then
calculate the Trojan miss rate defined in Eq. (11.1) for both designs averaged over
60 chips. The difference of Trojan miss rate between baseline design and security-
aware design is then calculated, and the ratio of the difference to the Trojan miss
rate of the baseline design is reported as TMR improvement. We also report the
leakage power and area overhead of security-aware design compared with baseline
design. The results are listed in Table 11.6. The algorithm run-time as well as the
time consumed for the initial synthesis is also reported. Note that the algorithm
run-time does not include the pre-synthesis step shown in Fig. 11.4.

11.5.3.2 Results

From Table 11.6, we can see that using our method, we can detect on average
16.87% more malicious modifications with only 7.87% area overhead and 17.72%
leakage power overhead. Note that Cadence RTL Compiler always optimizes



11 Reverse Engineering-Based Hardware Trojan Detection 287

Table 11.6 TMR improvement, leakage power overhead (LO), area overhead (AO), algorithm
run-time (AT), and the original synthesis time (OT) of all benchmarks

Benchmark TMR improvement (%) AO (%) LO (%) OT(s) AT(s)

s298 20.93 10.09 17.67 16.4 283.9

s5378 13.04 7.91 16.05 31.3 663.6

s15850 15.23 6.21 13.94 44.4 906.1

s38417 16.00 4.00 8.58 103.4 990.4

AES 23.45 16.68 28.21 2302 9941

b19 23.21 8.51 29.74 759.1 3841

MC8051 15.62 7.70 21.99 204.3 10,010

XGE_MAC 7.48 1.85 5.60 2031 9055

the area given that all timing constraints are met, making the area overhead
very small compared with leakage overhead. We also note that our algorithm’s
performance depends heavily on the timing requirements of the design. If a design’s
timing requirements are easily met, then our algorithm can improve TMR greatly.
Examples are AES and b19. However, if a design’s timing requirements are very
hard to meet, then the improvement in TMR is limited. The example is XGE_MAC
benchmark which implements MAC functions for 10 Gbps operation. The reason is
that when timing requirements are hard to meet, each standard cell will have only
very few possible replacement alternatives because a replacement is very likely to
cause timing violations. Therefore, the search space for our algorithm is small and
the improvement in TMR is limited. Nevertheless, we still can detect 7.48% more
Trojans with only 1.85% overhead in area and 5.60% in leakage power in the latter
case. This proves the efficacy of our algorithm.

11.6 Conclusion

In this chapter, we introduce the fundamentals of IC reverse-engineering and the
hardware Trojan detection methods using RE. Then, we introduce the RE-based
hardware Trojan detection approach which leverages SVM to determine whether
a chip is Trojan-infected. Experimental results show that this approach correctly
detects Trojan-free and Trojan-infected chips in more than 99% of the cases. To
make Trojan detection more accurate, a design-for-security approach is introduced
where the standard cells that are more sensitive to the insertion of hardware
Trojans are selected to synthesize the layout of the chip. Significant improvement
in the fraction of the Trojans detected is achieved using this design approach with
acceptable overhead.
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Chapter 12
Hardware Obfuscation Methods for Hardware
Trojan Prevention and Detection

Qiaoyan Yu, Jaya Dofe, Zhiming Zhang, and Sean Kramer

12.1 Introduction

Integrated circuits (ICs) and systems are increasingly using the global resources to
reduce the hardware cost. Unfortunately, the untrusted parties in the global supply
chain may tamper the original design or bring in malicious components, which
are known as hardware Trojans. Being aware of potential hardware Trojans in the
design, researchers have developed functional testing, optical analysis, and side-
channel analysis methods. Hardware Trojan detection through functional testing
is challenging in terms of finding effective input vectors to activate the rarely
triggered Trojans. The success of optical analysis on circuit layout pictures strongly
relies on the availability of precise delayering, high-resolution imaging, and pattern
recognition techniques. As the size of hardware Trojans becomes relatively tiny
compared with the circuit under attack, the amount of changes appeared on the
side-channel signals, delay, power, area, and temperature will not be sufficiently
noticeable for side-channel analysis-based Trojan detection. Moreover, the lack of a
golden model for reference makes Trojan detection difficult.

In this chapter, we introduce another set of countermeasures, hardware obfus-
cation, for hardware Trojan prevention and detection. Different with functional
testing, scanning electronic microscope (SEM) image-based analysis, and side-
channel analysis methods, hardware obfuscation methods are applicable to design
time. Therefore, obfuscation-based countermeasures prevent the outsourced circuit
design from being tampered or reverse engineered, rather than simply discarding
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the compromised chips. Furthermore, the circuit modification made through obfus-
cation techniques will facilitate hardware Trojan detection after fabrication.

The remainder of this chapter is organized as follows. The principle of obfus-
cation is introduced in Sect. 12.2. After a short summary of hardware Trojans, the
obfuscation methods for different abstraction levels are reviewed in Sect. 12.3. In
Sect. 12.4, we present the key idea of the hardware obfuscation methods at device,
circuit, gate, and register-transfer levels. Obfuscation in FPGAs and printable circuit
boards (PCBs) are briefly discussed in Sects. 12.5 and 12.6, respectively. Since there
are no any standard evaluation metrics available for hardware obfuscation methods,
we convene the metrics that have been used in the existing literature so far in
Sect. 12.7. This chapter is concluded in Sect. 12.8.

12.2 Obfuscation

12.2.1 Concept of Obfuscation

Obfuscation is a process to make a target of interest obscure or unclear. Obfuscation
techniques are common in the software world. In particular, obfuscation in software
is often referred to code obfuscation techniques. The purpose is to modify source
codes, execution instructions, or metadata but do not change the program final
output. The obfuscated source code is altered in a way that is difficult for a hacker
to understand and reverse engineer. Consequently, obfuscation techniques provide
a defense layer to prevent the source code from intellectual property (IP) theft,
unlicensed reuse, and tampering. Figure 12.1 shows a simple example of using
ASCII (American Standard Code for Information Interchange) code to replace the
characters in a string used in software programming. The string Save Secure Key
is replaced with a series of Chr or hexadecimal codes, which are not readable for
humans.

The original definition of circuit obfuscation (or generally speaking, hardware
obfuscation) was first proposed by Barak et al. [3]. The initial circuit obfuscation
has two strong requests: (1) the obfuscated circuit executes the same function as
its original circuit at the expense of “polynomial-time slowdown”, and (2) the
circuit after obfuscation will only leak as much information that is available on the
input and output names. The second requirement means that an obfuscated circuit
should be recognized as a black box. Because the second request is too strong
to be reachable, the term “obfuscation” refers to what is known as best-possible
obfuscation, which does not guarantee that the obfuscated circuit will completely
hide the functionality of the original circuit.
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Fig. 12.1 Example of obfuscation in software

12.2.2 Differentiating Obfuscation from Encryption

Obfuscation is fundamentally different from encryption. An obfuscated source code
is executable without de-obfuscation. Obfuscation increases the level of difficulty
in understanding a design while maintaining the original design functionality. We
hope that the benefit of obfuscation will deter attackers. A secret key is not always
required in the process of obfuscation. Once the principle of adopted obfuscation
process is leaked, the defense layer provided by obfuscation is nullified. In contrast,
any encrypted program is not executable before being decrypted. Without the correct
cipher key, the wrongly decrypted design will produce a completely different output
than the original one due to the avalanche effect. As long as the cipher key is kept
secret, the leak of encryption/decryption algorithms does not affect the security
offered by encryption.

12.2.3 Obfuscation Techniques in Software World

In software, there are many ways to obfuscate source codes. Renaming is a basic
technique, which makes variables meaningless or uses unprintable or invisible
characters to replace the readable phrases. The .NET, iOS, Java, and Android system
often use this technique to obfuscate source codes. Common types of obfuscation
techniques used in software are summarized in Table 12.1. Due to the different
nature of hardware implementation over software, the techniques in Table 12.1 are
not applicable to hardware.
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Table 12.1 Summary of typical obfuscation techniques in software

Obfuscation techniques Main process

Renaming Make variable name meaningless, unreadable

String encryption Hide the string in the executable and restore the string
when needed

Control flow obfuscation Synthesize conditional, branching, and iterative pro-
gram constructs

Instruction pattern transformation Change the common instruction constructs into an
irregular pattern

Dummy code insertion Insert extra dummy code to the original executable

Unused code and metadata removal Remove unused code and information that may serve
as a hint for hackers

Binary linking/merging Combine multiple executables/libraries into a flat-
tened single one

Opaque predicate insertion Insert dead code as an additional branch, which will
never be reached in real-time execution

Anti-tamper Add self-protection code to verify the presence of
tampering codes

Anti-debug Remove the debug interface

Fig. 12.2 Example of functional hardware Trojan

12.3 The Role of Obfuscation in Hardware Trojan
Prevention and Detection

12.3.1 Hardware Trojan

Hardware Trojan refers to malicious hardware modification that is made by an
adversary. Hardware Trojans can be introduced during the process of design or
fabrication. The hardware Trojan taxonomy is extensively studied in [57]. Some
hardware Trojans are manifested as an addition or a removal of logic gates,
transistor, or interconnect, resulting in malfunctions. This type of hardware Trojans
is called functional hardware Trojans. As Fig. 12.2 shows, if an inverter is added
between input signal A and the AND gate of the half adder, then the circuit function
is changed to a half subtracter. Another type of hardware Trojans changes the
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Fig. 12.3 Example of parametric hardware Trojan

Fig. 12.4 Another example of parametric hardware Trojan causing delay variation

electrical parameters, named as parametric hardware Trojans. An example, provided
in Fig. 12.3, shows that if the NMOS transistor of an inverter is weakened, it
will become more difficult to pull down the output. Figure 12.4 provides another
example of parametric hardware Trojans. The layout on the left is the standard
one, while the layout on the right is modified by increasing the wire’s length.
The change on the layout leads to an increased delay. Some hardware Trojans are
externally activated, meaning that they can be triggered by antennas or sensors
connected to the outside world. Figure 12.5 illustrates an example of hardware
Trojan being triggered remotely via an antenna. In contrast, hardware Trojans
can also be internally activated, where one portion of hardware Trojan is always
operating. Internal hardware Trojans could potentially modify the geometries of a
circuit or be conditionally active. In this case, the hardware Trojan activates when
the trigger condition is satisfied. Overall functional hardware Trojans triggered by
internal states or logic signals are the main focus of this chapter.
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Fig. 12.5 Externally triggered hardware Trojan

Fig. 12.6 Hardware obfuscation obscuring logic function to prevent hardware attacks

12.3.2 Overview of Hardware Obfuscation

The principle of hardware obfuscation is to alter the design in a way that has
the equivalent functionality as the original one but appears to be significantly
more difficult for an adversary to understand and exploit. As shown in Fig. 12.6,
obfuscation methods facilitate to create look-alike logic, uncertain logic (until
post-fabrication configuration), and key-controlled logic. An attacker who does
not have sufficient knowledge of the applied specific obfuscation procedure could
misunderstand the logic function of the module of interest. For instance, the NOR
gate is recovered as a NAND gate; an XOR function is recognized as an addition.
Consequently, hardware Trojan insertion following that misunderstanding would
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Fig. 12.7 Hardware obfuscation at different abstraction levels

lead to either a non-triggered hardware Trojan or a Trojan which cannot fulfill
the desired attack purpose. The application of hardware obfuscation has been
demonstrated at different abstraction levels in integrated circuits and systems. We
summarize that in Fig. 12.7. The following subsections introduce the key idea of the
methods at each level in details.

12.4 Chip-Level Obfuscation

Chip-level obfuscation includes the hardware modification that we make on the
device, circuit, gate, and register-transfer levels to confuse attackers who intend to
insert hardware Trojans.

12.4.1 Device-Level Obfuscation

Device-level obfuscation is to disguise the real function of a device by introducing
controllable faults, such as stuck-at and delay faults. Without knowing the exact
details of the device implementation procedure, a reverse engineer may misinterpret
the device (and the associated circuits) function based on the superficial understand-
ing from, for instance, the SEM images. We can realize the device-level obfuscation
by altering the doping concentration for transistors. To disguise a PMOS transistor,
we can obfuscate the transistor in a way shown in Fig. 12.8. The source and drain
regions of the transistor are doped with N-type dopant, rather than P-type dopant in
the original setting. Once we connect the source to Vdd, a short circuit is created
by the doping-induced obfuscation. An obfuscated device can be further applied
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Fig. 12.8 Hardware obfuscation through changing doping concentration. Source and drain regions
of a transistor use the same dopant. The PMOS transistor yields a constant Vdd output if the source
terminal is connected to Vdd [63]

Fig. 12.9 The fault induced by the obfuscated PMOS transistor leading to a different logic
function

to a circuit to mislead the reverse engineer. A simplified example is illustrated in
Fig. 12.9. The transistor P1 is an obfuscated one (using the doping method from
Fig. 12.8). As the transistor P1 is constantly connected to Vdd, the dynamic NAND
gate no longer functions like a real NAND gate. The use of obfuscated logic
gates will cause reverse engineers tremendous amounts of extra effort to extract
the original functionality from the circuit using obfuscated devices. As a result,
an attacker who intends to insert hardware Trojans in such circuits will not easily
achieve his/her ultimate attack goal, as the logic gate contaminated by a hardware
Trojan may not be a true functioning gate initially.

In addition to source/drain regions, transistor channel and transistor-to-transistor
interconnect can also be a place for an obfuscation candidate [63]. Virtual connec-
tion leads to an open circuit. Manipulation of interlayer dielectric (ILD) results
in stealthy capacitive signals (i.e., crosstalk). The techniques optical proximity
correction (OPC) and sub-resolution assist features (SRAFs) are initially developed
to improve the quality of fabricated chips, and those techniques can be exploited
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to generate timing faults for the obfuscation purpose. However, the doping-based
obfuscation technique does not change the transistor geometry. Passive voltage
contrast (PVC) [54] and picosecond imaging circuit analysis (PICA) [59] can detect
the modification on the source/drain doping and channel doping, respectively. There
is superconducting quantum interference device (SQUID) [42] microscopy available
for attackers to examine the open/short interconnect. Table 12.2 provides a summary
of device-level obfuscation methods and the corresponding detection schemes. More
details for device-level obfuscation are available in the survey paper [63].

12.4.2 Circuit-Level Obfuscation

The circuit-level obfuscation techniques are divided into two categories: camouflag-
ing layout and transistor locking. Camouflaging at circuit layout is used to thwart
the reverse engineers from successfully reading the layout and thus recovering
the transistor-level schematic for that circuit. The camouflaging techniques have
been applied to two-dimensional (2D) and three-dimensional (3D) ICs. Transistor
locking is another type of obfuscation (in a general sense), which changes the logic
gate functionality by muting some transistors in the schematic [32, 40]. A recent
work [20] combines the camouflaging and transistor-level locking techniques for
obfuscating circuits in 3D ICs. In the next subsections, representable circuit-level
obfuscation methods are introduced.

12.4.2.1 Camouflaging in 2D ICs

Circuit camouflaging is a technique that makes subtle changes within the physical
layout of a logic cell to hide its actual logic function [15, 16, 48]. The main goal of
camouflaging is to disguise the circuit such that a reverse engineer who utilizes
SEM pictures cannot recover the original chip design. The general principle of
camouflaging is either to make the connected nodes appear to be isolated or to have
the isolated nodes appear to be connected. In real applications, one can partially
camouflage the circuit using a strong custom cell camouflage library [14, 16, 21] or a
generic camouflaged cell layout [48]. The work [16] illustrates that the conventional
and camouflaged 2-input AND gates have the same SEM image, as shown in
Fig. 12.10. As a result, the attacker could easily extract a wrong netlist if he/she
relies on the SEM image analysis only. Furthermore, because of the wrong netlist
extraction, the attacker cannot precisely modify the netlist to insert hardware
Trojans. In the camouflage library [16], every cell looks identical at every mask
layer to prevent automated layout recognition [14, 21]. However, making every
cell identical in terms of size and spacing with other cells will reduce the cell
performance. To address this limitation, Cocchi et al. provide elementary block
camouflage libraries that are derived from each logic gate layout [21] and could
be programmed after the manufacturing process.
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Fig. 12.10 SEM images of (a) conventional and (b) camouflaged AND gate [16]

12.4.2.2 Camouflaging and Multi-tier Locking in 3D ICs

A multi-tier logic locking mechanism for monolithic three-dimensional (M3D) ICs
is proposed in [20] to thwart IP piracy and reverse engineering attacks [52, 58].
In M3D ICs, a functional block is fabricated in two tiers, PMOS pull-up net-
work (PUN) on the bottom tier and NMOS pull-down network (PDN) on the
top tier [64]. PUN and PDN on different tiers are independently locked by the
camouflaged parallel or serial locking circuit. The number of locking units, key
values, camouflaged contact information, and locking circuit locations for two
tiers is different. This arrangement protects the 3D circuit from attacks that try to
exploit the collaborative analysis on two tiers. Without the correct key, the locked
functional block either leads to malfunctions (flip the output value or result in
either a floating ground/power pin or a shorted ground/power line) or significant
changes on the power profile. The locking keys are only available to authorized
users. Even if the complete layout is available to an adversary, it would still be
highly challenging for attackers to reverse engineer the entire locked 3D circuit. In
total, the work [20] introduces four locking configurations: PMOS parallel locking
(PPL), NMOS parallel locking (NPL), PMOS serial locking (PSL), and NMOS
serial locking (NSL). Moreover, that work exploits the contact camouflaging to
thwart image-analysis-based reverse engineering and hardware Trojan insertion.

Serial 3D Logic Locking: The concept of the serial locking circuit is depicted in
Fig. 12.11. The PMOS transistor (P1) is controlled by a key bit (Key1). The power
pin VDD and the P1 source terminal are connected with PUN through camouflaged
contacts. One of the camouflaged contacts is filled with dielectric, which results in
only one real connection. As demonstrated in 2D ICs, contact camouflaging is a
feasible and promising method to thwart image-analysis-based reverse engineering
attacks [48]. The locking circuit can also be applied to the PDN tier, where NMOS
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Fig. 12.11 3D logic cell with serial locking (PSL and NSL) and camouflaged monolithic inter-tier
vias (MIVs) [20]

locking with a short circuit wire is inserted between the NMOS PDN and the real
ground line. Different Key1 and Key2 will help to reduce the correlation between tier
1 and tier 2. For simplicity, the same value for Key1 and Key2 is used in the following
example. Table 12.3 lists the connection configuration for the camouflaged contacts
CN1, CN2, CP1, and CP2 for different key value scenarios. In the first half of
Table 12.3, the real design setting is as follows: the correct key bit is 0, the contacts
CN1 and CP2 are disconnected with dielectric; only CN2 and CP1 are truly connected.
The hypothesis key of 1 will turn off PMOS P1, thus causing a floating VDD.
Figure 12.11 depicts this scenario. The second half of Table 12.3 shows another
configuration if the correct key bit is 1. In this case, the camouflaged contacts CN2

and CP1 are not truly connected. The wrong hypothesis key of 0 will turn off NMOS
N1 and cause PDN to have a floating ground. To implement this configuration, the
camouflaged contacts in Fig. 12.11 need to be modified.

Parallel 3D Logic Locking: Alternatively, the proposed camouflaged logic lock-
ing can be performed in parallel with the original PDN and PUN, as shown in
Fig. 12.12. Contrary to the serial locking circuit, no short circuit wire is needed
in parallel locking. If the correct key is 0 (the first half of Table 12.4), the contact
CN is truly connected, but the contact CP is disconnected in the camouflaged layout.
Because of the camouflaged disconnection in CP, the wrong key bit (i.e., 1) produces
a pull-down network always shorted to ground. The second half of Table 12.4
indicates that the camouflaged disconnection in CN will cause the pull-up network
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Table 12.3 Contact and transistor status in serial locking

Correct Key1, Key2 = 0

Key CN1 CN2 CP1 CP2 N1 P1 Result

0 X X X X Off On Normal

1 X X X X On Off Floating VDD
Correct Key1, Key2 = 1

Key CN1 CN2 CP1 CP2 N1 P1 Result

0 X X X X Off On Floating GND
1 X X X X On Off Normal

PMOS

Pull-up Network

NMOS
Pull-down Network

MIV

Key 1

VDD

GND

TIER 1

TIER 2

P1

CP

N1

CN

Key 2

Or

Or

Fig. 12.12 3D logic cell with parallel locking (PPL and NPL) and camouflaged MIVs [20]

always shorted to VDD if the wrong key of 0 is applied to P1. Figures 12.11
and 12.12 show that a single transistor is used in locking units. In real designs,
the locking circuits for PUN and PDN are not necessarily symmetric. Asymmetric
locking circuits will provide stronger protection against reverse engineering attacks.

This method is particularly designed to prevent the attacker from correlating
PUN and PDN after the separation of the PMOS and NMOS tiers. The ultimate goal
of the proposed method is to circumvent attackers from understanding the entire 3D
IC design and inserting hardware Trojans. Even if the attacker retrieves the design
of one tier, it is still difficult to completely derive the design in another tier.

In the work [20], monolithic cells are used to implement an ISCAS’85 bench-
mark circuit, c17. The VDD of one NAND2X1 gate in c17 is locked by PSL
shown in Fig. 12.13a. Camouflaged contacts are applied in the PDN of that same
NAND2X1 gate. As the NMOS locking transistor is shorted to ground via CN2

contact, the locking circuit is omitted in Fig. 12.13a. When the key bit is low, the
PMOS is turned on and thus c17 operates normally. Figure 12.13b shows the impact
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Table 12.4 Contact and
transistor status in parallel
locking

Correct Key1, Key2 = 0

Key CN CP N1 P1 Result

0 X X Off Off Normal

1 X X On Off Always pull-down
Correct Key1, Key2 = 1

Key CN CP N1 P1 Result

0 X X Off Off Always pull-up
1 X X Off Off Normal

of key on the c17 primary outputs and power. The input patterns for valid and
invalid key period are exactly the same. However, the primary outputs, N22 and
N23, yield different values for invalid and valid key scenarios. The corresponding
power profiles for valid and invalid key periods are also different. This example
demonstrates that the circuit locked by key bits through PSL do alter the primary
outputs and power profile, thus obscuring the 3D circuit if the attacker does not
have the valid key. The experiment is repeated by replacing PSL with PPL. The
corresponding output signals and power profile are shown in Fig. 12.13c. Compared
to Fig. 12.13b, the consequence of always pull-down caused by an incorrect key
leads to a significant change on power, which does not match to the power profile
for any logic gate. Hence, the proposed locking circuit can also resist power-based
side-channel attacks.

12.4.3 Gate-Level Obfuscation

There is a considerable amount of hardware Trojans that are based on rare events.
Due to the rareness of Trojan trigger conditions, traditional testing methods that
examine the functionality are not practical because tremendous amounts of different
input patterns are required to trigger the Trojan. As the chip scale increases, the
size of a hardware Trojans is minuscule compared with the chip size. As a result,
side-channel analysis methods are not feasible to detect the changes on delay,
area, and power caused by the presence of hardware Trojans. Gate-level netlist
obfuscation complements the device-level obfuscation. Instead of obscuring the
true device functionality, the netlist obfuscation methods modify the state transition
function of a circuit such that the attacker is not able to reach the real power-up
state. Thus, the inserted hardware Trojan is either in the states belonging to the
authentication mode or in the normal operation mode. As the attacker does not know
the correct obfuscation key, the Trojans in the latter mode will never be triggered.
Consequently, the gate-level obfuscation methods hinder the hardware Trojans from
affecting the module under protection.

Logic encryption is prevalent to protect combinational logic circuits. The locked
combinational logic will yield, ideally, the opposite logic output to the original one.
Literatures [22, 39, 44, 47, 50] have done extensive studies on how to choose the
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Fig. 12.13 (a) Schematic for locked c17 circuit and impact of invalid/valid key on output signals
and power of the (b) serial and (c) parallel locked c17

location for encryption and how to strengthen the logic encryption methods to thwart
possible IP piracy reverse engineering attacks. In the following subsection, we will
focus on the obfuscation for sequential circuits.
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12.4.3.1 HARPOON: Obfuscation on State Transition Graph and
Internal Node Structure

Obfuscation on the state transition graph (STG) [6, 7] was first proposed to prevent
IP piracy. The key idea of obfuscation on STG is depicted in Fig. 12.14. A small
finite state machine (FSM) for the obfuscation mode is added before the normal
operation mode. Only the correct key sequence will drive the obfuscation FSM
to take the path of P0 ! P1 ! P2 and then reach the state S5. As soon as
the obfuscation FSM completes the correct transition path before the real initial
state, the FSM output configures the modification cells in the combinational logic
to realize the original circuit functionality. A wrong obfuscation key will lead to
the FSM never reach the real initial state S5 and turn the modification cell into a
different logic function. The locations of the modified cells are vital to disguise the
original functionality. Subhra and Bhunia [7] suggested that the nodes with large
fan-in and fan-out logic cones are preferred for strong obfuscation. A larger fan-in
logic cone typically indicates that the associated node may have a higher logic depth;
while a larger fan-out logic cone will affect more nodes. Hence, it is more cost-
effective to choose those logic cones for FSM-controlledmodification. The same

Fig. 12.14 HARPOON: functional and structural obfuscation by modification on STG and
internal nodes [7]
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Fig. 12.15 The obfuscation scheme for protection against hardware Trojan [10]

authors further expanded the obfuscation FSM to include an authentication FSM
in the same obfuscation mode to simultaneously thwart hardware tampering and
piracy.

Later, the concept of that obfuscation method was proved to be effective for
hardware Trojan prevention and detection as well [10, 11]. Different from the
obfuscation for piracy prevention, the obfuscation for hardware Trojan prevention
and detection, shown in Fig. 12.15, introduces an isolation state space to the
obfuscation mode. The isolation states are either unused states from the original
FSM, or new states are created by adding new bits to the original state vector. As the
hardware Trojan has a nature of stealthiness, the rare events exploited by the Trojan
designer have a high chance of falling into the isolated state space. Consequently,
once the attacker does not have the correct obfuscation key, the hardware Trojans
are confined in the obfuscation mode. Valid Trojans in the original state space may
alter the original function if the Trojan trigger condition is satisfied, but an invalid
obfuscation key will block the FSM from entering the normal operation mode, thus
preventing the effect of Trojan from harming the system. The automatic obfuscation
flow for gate-level netlist was developed in [10].

12.4.3.2 Dynamic State-Deflection Method

Obfuscation on the true power-up state of a finite state machine (FSM) has been
demonstrated as a promising countermeasure to thwart IP piracy. The state machine
cannot enter in the normal mode without the correct key. However, once the FSM
operates in the normal operation mode, no more protection is available. This leaves
a security vulnerability for attackers to exploit, especially in the context of soft or



308 Q. Yu et al.

Fig. 12.16 Proposed dynamic state-deflection method for netlist obfuscation

firm IP piracy scenarios. To address this security vulnerability, a novel dynamic
state-deflection method [19] is proposed to protect the states in the normal operation
mode. As shown in Fig. 12.16, each normal state STx transition in the normal mode
needs to pass the key authentication. If a wrong key KS is applied to the FSM, a
normal state will be deflected to its black hole cluster Bx. The FSM never returns to
the normal state once it enters the black hole cluster.

Each black hole cluster is composed of multiple states (only three shown), rather
than a single one. Each black hole state can be mapped to a unique wrong key.
Attackers can try a brute-force attack with the different wrong key attempts; hence
the method in [19] utilizes a Mapfunc function to dynamically assign one black
hole state to one wrong key case. The other significant feature of the method is
that the state within the black hole cluster does not remain stable. Instead, the FSM
constantly switches to other black hole states to obscure the attacker from reverse
engineering.

Considering that a gate-level netlist does not provide a clear picture of used and
unused states, a state flip vector FlipReg is used to selectively invert the state bits and
a logic flip vector FlipLogic to modify the primary outputs. Thanks to the inherent
feedback loops in the sequential circuit, the FSM state bits will naturally switch over
time without using predetermined transition specifications.

Dynamic State-deflection in Black Hole Cluster: In the new FSM, each state
(i.e., fS3; S2; S1; S0; B3; B2; B1; B0g) is composed of all the original state bits
fS3; S2; S1; S0g and several newly added flip-flops fB3; B2; B1; B0g (for black hole
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Fig. 12.17 Flow chart for the dynamic state-deflection method [19]

states). When the correct key sequence is applied, the newly added flip-flops
fB3; B2; B1; B0g are set to zero, and the new states remain consistent with the FSM
state before the state extension. Hence, the newly added flip-flops do not change the
original function if the key is correct. If the state of fB3; B2; B1; B0g is not all zero,
due to a wrong key, then the new state fS3; S2; S1; S0; B3; B2; B1; B0g belongs to
one of the black hole states in the cluster.

To raise the difficulty for reverse engineering attacks, the FSM is further
hardened by creating dynamic transitions in black hole clusters. Different than the
existing works [7, 8, 10], state transitions among the black hole states is not static
and predefined. As highlighted in the obfuscation flow chart shown in Fig. 12.17,
the dynamicity in the dynamic state-deflection method is achieved by utilizing the
secret Rotatefunc and Mapfunc algorithms. A Mapfunc algorithm is used to deflect
the original state bits from the correct state transition. The algorithm takes the newly
added state bits and the wrong key sequence as an input to generate the FlipReg
vector, which will selectively flip some bits in the FSM state. Each wrong key
sequence will lead to a unique FlipReg vector.

A detailed example of dynamic state-deflection is shown in Fig. 12.18. If a wrong
key sequence (!KS) is used, the new state bits are preset to a nonzero vector (e.g.,
4’b0001), and the original state bits remain whatever they are defined in the original
design. After cycle 0, the newly added state bits are modified by a Rotatefunc
algorithm, which changes the vector fB3; B2; B1; B0g to a new nonzero vector. The
Rotatefunc is a circular left-shift function, but it could be any algorithm defined by
the obfuscation provider. When fB3; B2; B1; B0g is 4’b0001, the S3 original state bit
is flipped by a FlipReg of 4’b1000. As the entire FSM state registers are deflected to
a new value, the FSM will generate a new FlipReg vector of 4’b1101 after cycle 1.
Thus, the S2 and S0 bits in the original state are then flipped to its complementary
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Fig. 12.18 An example of
FSM state deflection induced
by a wrong key sequence [19]

B3 B2 B1 B0 S3 S2 S1 S0
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value, and S3 is inverted back at the end of cycle 2. Hence from the description,
it is clear that the dynamic state-deflection method inverts FSM state bits pseudo-
randomly and selectively, rather than setting the original state bits to a fixed vector.
As a result, the black hole state is not determined at the design time and dynamically
selected depending on the applied wrong key. The correct key can be hard wired in
the netlist or saved in a trusted memory. The former one is less secure (but more
hardware efficient) than the latter one to a certain degree.

12.4.3.3 Obfuscation Using Reconfigurable Logic

Alternatively to key-controlled obfuscation method discussed in Sects. 12.4.3.1
and 12.4.3.2, a logical function can also be obfuscated with post-fabrication recon-
figurable logic. Liu and Wang utilized LUT-based reconfigurable implementation
to achieve design obfuscation [40]. The reconfiguration-based logic turns the
functional unit into a moving target, rather than a determined attack node. Wendt
and Potkonjak proposed to implement a portion of the functional module with a
combination of a physically unclonable function (PUF) unit and a FPGA [66]. As
the output of a PUF is unpredictable and the FPGA is not configured at design time,
the functionality of the module is not completely implemented before fabrication.



12 Hardware Obfuscation Methods for Hardware Trojan Prevention and Detection 311

Fig. 12.19 Hardware
obfuscation using PUF and
FPGA based logic [66]

Hence, theoretically, it is not a trivial task for an attacker to identify extremely rare
events for a hardware Trojan insertions. Moreover, the blindly inserted Trojan may
be nullified after post-fabrication configuration. It is reasonable to assume that the
incomplete function unit composed of PUF and FPGA will be reserved to realize the
security-critical functions for the system. In other words, that incomplete function
unit has the potential to be the Trojan target. Functional testing on the circuit
obfuscated with PUF and FPGA can detect the hardware Trojans in the obfuscated
circuit. Figure 12.19 shows one simplified example of PUF-based logic obfuscation.
The NAND gates D and F are obfuscated by FPGA and PUF. In the work [66], the
authors also analyze possible ways to obfuscate the interconnect network with the
PUF-based logic.
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Fig. 12.20 Interlocking
based obfuscation [1]

Fig. 12.21 Interlocking
based obfuscation [18]

12.4.4 Register-Transfer Level

A remote activation scheme [1] shown in Fig. 12.20 was initially proposed to resist
IP piracy. The continuousness of state transition is granted by a key uniquely
generated by the random unique block on the chip. This method duplicates one of
the existing states three times to stop the transition from the state under protection
to the next valid state when a wrong key is applied to the FSM. In this method, an
attacker could identify the stalled state, then force the state registers to change to
other values. Thus, the obfuscation mechanism may fail.

The work [18] suggests using obfuscation to thwart hardware tampering.
Figure 12.21 illustrates the main idea of that work. Different from using an external
key sequence in [7], this work locks the design with an internally generated code
word that is based on a special order of state transitions chosen as secret. Although
this method may be helpful to address the issue of key leaking in [7, 8, 10], the
degree of circuit obfuscation is significantly reduced. This is because a wrong key
only causes the FSM to temporarily deviate from the correct transition path; the
normal state transition will resume (after one or few state transitions). Another
limitation of this method is, if the internal code word generation module is
compromised, the obfuscation on the entry mode will be nullified.

The piracy-aware IC design flow in [51] proposes to enrich the RTL description
with an on-chip true random number generator and public-key cryptography (RSA).
The authors further extend their work in [37]. Besides the idea of an obfuscation
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Fig. 12.22 Black hole state obfuscation [37]

mode similar to the work in [8], the authors in [37] also add a channel from the
normal state transition to the black hole states, which prohibits the state recovery
to the normal operation. The path from normal states to black hole ones provides
protection for the normal operation mode, as shown in Fig. 12.22.

Subhra and Bhunia extended their gate-level obfuscation method to register-
transfer level (RTL) [8, 9, 11]. They transform the RTL description to gate-level
netlist using synthesis tools and then utilize their new STG and modification cells
to obfuscate the synthesized netlist [8]. In [11], Subhra et al. propose an on-demand
transparency method to facilitate logic testing based Trojan detection. First of all,
Subhra et al. define a transparent mode, in which the circuit generates a specific
signature based on a user-defined key and passes that signature to the primary
output. If a hardware Trojan is inserted to the circuit, the specific signature will
be different from the expected one. Thus, we can examine the signature to detect
the presence of hardware tampering. Figure 12.23a summarizes the on-demand
transparency scheme. For a multi-module design, this scheme can be applied in
a cascade fashion, as shown in Fig. 12.23b, until the specific signature is transferred
to the primary output port.

12.4.5 On-Chip Communication Level

As billions of transistors are integrated on a single die, Networks-on-Chip (NoCs)
emerge as an efficient on-chip communication infrastructure [4, 17, 62]. The conse-
quence of using a compromised NoC has been highlighted in [2, 5, 26, 31, 46]. The
hardware Trojans inserted in NoCs will lead to information leakage, unauthorized
memory access, and denial-of-service attacks, such as incorrect path routing,
deadlock, and livelock. This section introduces a runtime hardware Trojan detection
and mitigation method to harden the NoC against tampering. Compared to the
existing approaches, this method fully considers the NoC features, including high
modularity, large scalability, and parallel transmission channels, while strengthening
the NoC capability to resist potential hardware Trojan attacks.
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Fig. 12.23 On-demand transparent scheme for hardware Trojan detection. (a) Detection scheme
and (b) signature propagation in a multi-module design [11]

In the previous work [24, 36], examination on the memory access range is used
as a main method to ensure the security of NoC. However, those countermeasures
have a common limitation – the memory range checking unit itself is lack of the
protection (unless a cipher is used in the memory). Moreover, after the packet
passes the address filter, no further protection is available in the network interface
(NI) or router. Unfortunately, NIs and routers can be compromised after the route
computation stage. For instance, one may modify the memory address of a packet
that is saved in the output buffer. Many hardware Trojan countermeasures for
NoCs [23, 24, 45] are mainly located in NIs, rather than routers. Routers have five
interconnection channels with neighboring nodes (i.e., routers and NI); in contrast,
NIs only have one connection to its IP core and one connection to its router. The
hardware Trojan mitigation method in [25] aims to detect and mitigate the hardware
Trojan attacks that (1) modify the flit type, (2) change the legal packet destination
address to an unauthorized one, and (3) sabotage the integrity of a packet. The
main consequence of the hardware Trojan targeted in [25] is the NoC bandwidth
depletion.

As shown in the left side of Fig. 12.24, a generic mesh-NoC is composed of links,
NIs, and routers with five ports (north, east, south, west, and local input/output
ports). A pair of input and output ports (shadowed area in Fig. 12.24) is used as
an example to present the novelty of the router design. The zoomed in picture
on the right side of Fig. 12.24 depicts the high-level view of the hardware Trojan
countermeasures (HTC) applied in the south input port and the east output port.
In the input port, the HTC1 module dynamically permutes the incoming NoC flit
bits before reaching the FIFO. As a result, the NoC flit saved in the input FIFO is
scrambled. Due to the randomness and dynamicity of the permutation patterns, it
is much harder for an attacker to change the flit content into something meaningful
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Fig. 12.24 A high-level overview of the countermeasure for hardware Trojan prevention and
detection for on-chip communication network [25]

Fig. 12.25 Obfuscated router architecture proposed in [25]. Solid blocks highlight the proposed
innovations over the generic router architecture

through hardware Trojans in the proactively defended router than in a router with
static protection. The goal of the flit permutation in [25] is to reduce the probability
of a hardware Trojan inserted in the FIFO successfully modifying the critical bits in
the NoC packet. The HTC2 module is used to examine the integrity of flits, which
could be sabotaged by the hardware Trojans placed in the input FIFO. The main
function of the HTC2 is to prevent the malicious flits from entering the rest of the
network by dropping the flit and flushing the input FIFO if necessary. Hardware
Trojans could also be located in the flit processing unit and the FIFO in the east
output port. Hence, a HTC3 module is placed after the FIFO to stop the malicious
flit from leaving the current router and then recover the scrambled flit back to the
original bit order. The three HTC modules proposed in Fig. 12.24 cooperatively
provide a proactive defense to thwart the potential hardware Trojans that harm the
NoC flit integrity and thus deplete the NoC bandwidth.

The HTC modules in Fig. 12.24 are detailed in Fig. 12.25. The highlighted solid
blocks in Fig. 12.25 are the changes over the generic router. To guarantee a packet
has reached its original destination, the critical fields (i.e., source/destination address
and flit type bits) in a NoC packet cannot be tampered. To maintain the flit integrity
despite the potential hardware Trojans in the router, the method in [25] first encode
the critical flit fields with an error control code (ECC). Next, apply a dynamic flit
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permutation (DFP) technique to the packet buffers so that critical information bits
in a NoC flit are randomly reordered before that flit is sent to the input FIFO. If the
attacker could not precisely know the dynamic permutation pattern at each specific
moment, the hardware Trojans he/she inserted in the router will not be triggered as
expected or execute the malicious mission as designed. Symmetrically, the dynamic
flit de-permutation (DFDeP) is applied at the output port. After de-permutation, an
ECC decoder (DeECC) facilitates the router to detect and correct all 1-bit errors in
the critical flit content.

The permutation randomness is achieved by a pattern selection vector, which is
dynamically generated by the Local Random-Vector Generator. Each router has its
own random number generator, which provides the selection vector to choose one
of the flit permutation patterns for the DFP and DFDeP units. The unique routing
history saved in the arbiter is exploited to generate a random vector through a
PUF structure implemented in each router. Due the uniqueness of each PUF and
the routing history, the dynamic permutation pattern for DFP and DFDeP varies
over time and is different from router to router. As the packet routing history in
each router depends on the NoC application at deployment stage, the output of
Local Random-Vector Generator is unpredictable at the NoC design stage. Thus, the
adversary cannot easily place hardware Trojans to perform successful attacks at the
design time. The proposed route computation unit is designed to interpret multiple
versions of the permutated flit content into a request to use the correct output port
for the next routing hop. To reduce the hardware cost, partial flit de-permutation and
DeECC are proposed to correctly interpret important internal and external signals
such as write request and FIFO buffer status signals.

Furthermore, the flit bit positions are permuted before storing it to the input buffer
and de-permute the flit after the output buffer. The principle of proposed permutation
is as expressed in (12.1). The pattern selection vector is the output of a PUF-based
structure and varies with process variations and the dynamic challenge vector X, as
expressed in (12.2):

flitdp
�
t; i; j

�
D ˆŒflit.i; i; j/; PPS.t; i; j/� (12.1)

PPS.t; i; j/ D f
�
ProcessVariation; X.t; i; j/

�
(12.2)

In which, the variables i and j in (12.1) and (12.2) mean the router ID and
the input port ID, respectively. Variables flit(t) and flitdp(t) are the original flit
and the flit after dynamic permutation at the time t, respectively. The function
� stands for the proposed dynamic permutation algorithm, which is a function
of the incoming flit and a unique PPS vector. Equation (12.1) is not an explicit
mathematic expression of flit permutation; instead, this equation is used to show
the dependant factors for the proposed dynamic permutation. The challenge vector
X.t; i; j/ depends on the routing history in each router’s output port. As each
router has a unique and unpredictable routing history, the random PPS(i; j; t) and
permutation configurations are unique for each router’s input port at different
moments. The permutation circuit is shown in Fig. 12.26.
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Fig. 12.26 Schematic for the PUF-based flit permutation function �. The permutation algorithms
are implemented with hardwiring before the multiplexers [25]

12.4.6 Other Methods

Split manufacturing methods [29, 43, 60, 67, 69] obfuscate the design by dividing
a circuit into multiple tiers, which are sent to different foundries for fabrication.
As each foundry does not have the complete design, attackers from the untrusted
foundry have limited understanding on the entire design and may not be able to
insert effective hardware Trojans to the design portion they have. In recent years,
researchers have realized that split manufacturing may not be as necessarily secure
as expected [41, 49, 61, 65].

12.5 FPGA Obfuscation

Hardware Trojan attacks can also happen to FPGAs. Trojans may be inserted in
an unencrypted configuration bitstream [12] to cause redundant circuit switching,
which results in increased power consumption and circuit operating temperature.
Even if the configuration bitstream is protected with encryption, attackers can use
algorithms [55] and Boolean matching [56] to reverse engineer a device netlist
from its bitstream. The recent attack presented in [38] slightly alters the hardware
description language (HDL) code in a way that the inserted Trojan can evade the
detection from synthesis tools or other existing security measures.

A multitude of countermeasures do exist with the purpose of detecting and
thwarting hardware Trojan in FPGAs. One particular method is built on the concept
of code flattening [33]. That method flattens the program source code and obfuscates
the control flow through hardware-assisted branching functions to prevent exploits
or modifications to source code. In addition to bitstream encryption, the work in [34]
proposes design obfuscation through the use of a key bit. The fact that the look-up
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tables (LUTs) in FPGAs are seldom fully utilized indicates that extra memory bits
are always available. We can store the key bits for obfuscation in the unused memory
within LUTs. Attackers now have increased difficulty in identifying the functions
inside the LUTs; hence, they have less chances to successfully perform a malicious
modification attack in that FPGA. Another countermeasure utilizing the free space
on FPGAs is inserting dummy logic [35]. All unused resources such as flip-flops,
LUTs, and multiplexers are instantiated with low-level HDL files without changing
the original design functionality. Attackers now have to deal with a substantially
harder bitstream to reverse engineer and have less space to insert a Trojan in the
unused clusters. Similarly, a constant value generator (CVG) circuit [53] can be
placed in the design for a form of lexical obfuscation. Here, 0 and 1 pins are
permanently substituted with appropriate logical values, creating fictive connections
and increased dependencies between circuit nodes. When employed, the HDL code
is rendered illegible to humans, and the circuit becomes more difficult to analyze.

12.6 Board-Level Obfuscation

Obfuscation at PCB level is even harder than that at chip level because attackers
can directly probe the board and bypass the applied countermeasures for Trojan
insertion. The work [28] proposes an intelligent permutation method, which per-
mutes the unused general ports (as dummy ports) together with the other ports for
dedicated purposes. The permutation is controlled by a secret key. Ghosh et al. [27]
propose to realize design obfuscation by incorporating dummy chips at the PCB
level. The dummy chips scramble the traces on the board and mix their fake output
signals with the real signals generated from the original components. Moreover, the
dummy chips can also provide security for joint test access group (JTAG), which
has to be exploited if adversaries want to reverse engineer the PCB design.

12.7 Evaluation Metrics for Hardware Obfuscation

The common metrics used to define the obfuscation strength are defined in the
Table 12.5. The metrics shown in rows from 1 to 7 are quantifiable, while ones in
row 8 are not quantifiable (obfuscation degree is not proved through these metrics).

Hamming Distance: Hamming distance (HD) between two binary vectors of equal
length measures the number of positions at which the vectors have different values.
In security perspective, HD is measured by comparing the outputs of the design
on applying the valid key and a wrong key. An attacker can utilize this metric to
reverse engineer the design. HD approaching 50% is desirable, which indicates that
the functionality of the reverse engineered logic diverges substantially from the
original functionality. In combinational circuits the output HD is used to evaluate
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Table 12.5 Evaluation metrics for hardware obfuscation

Sr. No Evaluation Obfuscation method Security evaluation metric

1. Q Key-based obfuscation [19] �� Register and output Hamming
distance

�� Code coverage

�� Autocorrelation coefficient for
FSM registers

2. Q Logic encryption [50] �� Output hamming distance

3. Q Layout obfuscation [49] �� Proximity attack correctness

4. Q Transistor-level logic locking [20] �� Output hamming distance

5. Q Circuit similarity-based partition
and trimming method for obfusca-
tion [13]

�� Circuit similarity

6. Q Key-based control and data flow
obfuscation [9]

�� Potency

�� Resilience and stealth

7. Q Permutation of interconnections by
a secret key [28]

�� Bruteforce attack attempts

8. NQ Split-fabrication obfuscation [29,
43]

�� Neighbor connectedness

�� Cell-level obfuscation
Q quantifiable metric, NQ nonquantifiable metric

the obfuscation strength [50]. A similar idea is extended for sequential circuits
in [19] where along with output HD, the register HD is also assessed for defining
the resilience toward reverse engineering attacks. The mathematical expression for
output HD is represented in (12.3):

OHD.t/ D
Out.t/^Out0.t/

Total Number of Outputs
(12.3)

Where the Out(t) and Out0(t) are outputs when the correct key and incorrect key
are applied at time instance t.

Code Coverage: Code coverage is a metric that evaluates the effectiveness of
a test bench in exercising the design. Code coverage analysis report (e.g., from
Cadence Incisive Comprehensive Coverage (ICCR)) clearly highlights which nets
of the design under test are toggled or never toggled in the given test bench. This
metric can be used by an attacker to reverse engineer a design using advanced EDA
tools like ICCR. The high coverage of obfuscated design with wrong key sequences
indicates that the method will yield less net toggle complementary percentage for
correct and wrong key scenarios. The high value of code coverage is desirable for
successful obfuscated design. It can be obtained by blending the dummy (extra states
added for obfuscation) states with the original states to make it difficult for attackers
to identify the dummy states through code coverage analysis.
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Autocorrelation Coefficient for FSM Registers: If the FSM register contents are
repeated in a predictable way for the scenarios of wrong key sequences, attackers
may get a clue to correlate the key sequence with the register pattern. In the ideal
case, the FSM register content should randomly change without a clear pattern, even
in the obfuscation mode. Unfortunately, due to the constraint on hardware cost, once
the FSM enters the obfuscation mode, the FSM register pattern may be repeated
after a while. The desired value of autocorrelation coefficient for FSM registers
should be low.

Proximity Attack Correctness: This metric is related to proximity attacks [49, 68]
that can be used to conduct the reverse engineering attacks in split manufacturing
fabrication using layout geometry information under the assumption that two
connected gates are placed nearby. The attacker can be an untrusted foundry that has
access to the GDSII layout files of two sub-netlists, but he/she lacks the knowledge
of the correct connection between them. Proximity attack correctness can be used to
measure the security of split manufacturing and defined as the percentage of correct
connections that are recovered by the proximity attack algorithm [49]. The desired
proximity attack correctness should be around 0% for a secure layout design. The
lowest value indicates the inability of an attacker to reveal the correct connections
within a design.

Circuit Similarity: This metric demonstrates the actual similarity degree of two
circuit structure, including both the topology and all containing logic gates. The
bigger the circuit similarity is, the harder it is to differentiate similar sub-circuits
and attack particular cells in one specific sub-circuit. The fact that circuits have
their own internal structure similarity which can be used to increase the difficulty of
malicious insertions in the design if the value of the metric is high.

Potency: This metric is the complexity in comprehending the obfuscated program
compared to the unobfuscated one. In digital design, it is estimated by the structural
and functional differences between the obfuscated and the original circuit. The
success of the functional/structural modification is evaluated by the percentage of
nodes failing verification when the original and the obfuscated designs are subjected
to formal verification. This is because the modifications in the control and data
flow of the circuit have a direct impact on the Boolean functionality of the internal
nodes in the circuit. A higher percentage of verification failures indicates that the
obfuscated design differs substantially from the original design in both functionality
and structure.

Resilience and Stealth: This metric is defined in [9]. Instead of having separate
mode-control FSM (which is used as an obfuscation FSM), the state element of
mode-control FSM can be hosted in the original registers to increase the level of
obfuscation. Once the FSM is hosted in set of host registers, several control and data
flow graph nodes are modified with the help of control signals generated by FSM.
The resilience and stealth of the obfuscation scheme is calculated by the level of dif-
ficulty faced by an attacker in inventing the hosted mode-control FSM and the mod-
ification signals. The mathematical representation of this metric is shown in (12.4):
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Mobf D
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m

� (12.4)

where n is mode-control registers hosted with N blocking/non-blocking assignment
statements, M is the total no. of blocking/non-blocking assignment statements in
design, and m is size of the modification signal pool.

A small value of Mobf is desirable as it indicates the greater obfuscation
efficiency. The values of n and M in real circuits could be much greater making
Mobf smaller and increasing the reverse engineering efforts of attackers.

Neighbor Connectedness: This metric is used in split-fabrication obfuscation. It
measures the proximity of the interconnected cells to their neighbors. A higher value
of this metric reveals more details of the circuit by exploring the location of cells and
their neighbors. A lower value shows that the cells are spread out more in the circuit
and neighboring cells and do not divulge any information of the design. Hence, the
circuit is more difficult to reverse engineer. A method to determine the neighbor
connectedness can be determined by calculating the number of neighbors, a specific
cell has and how many connections it has to those for a given area around the cell;
this relationship is represented in (12.5):

C.R/ D

P
Connections to the neighbors in RP

neighbors in R
(12.5)

Cell-Level Obfuscation: This metric also designed for split manufacturing obfus-
cation, where a circuit is split into a front half, incorporating front-end-of-line
(FEOL) processing, which is sent to a first foundry, and a back half, incorporating
the remainder of the back-end-of-line (BEOL) wiring interconnect [30]. Finding the
details of standard cell is one of the first steps performed during reverse engineering
attacks. This metric measures the percentage of standard cells that have been
obfuscated to hide their functionality in the FEOL layers. To evaluate this metric
one has to calculate the percentage of cells that have been modified through either a
finer or coarser cell implementation and are no longer identifiable visually.

Brute-force Attempts: Brute-force attack is a trial and error method used by
attackers for gaining access to restricted designs through exhaustive effort rather
than employing intellectual strategies. This metric is applicable for the most of the
obfuscation method whose objective is to protect designs from reverse engineering.
The probability of success for brute-force attacks depends heavily on the number of
combinations (obfuscation strength) and the time required to validate the system for
correct behavior after applying each key.
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12.8 Summary

Complementary to testing, SEM image-based analysis, and side-channel signal
analysis, hardware obfuscation methods facilitate chip designers to build a defense
line in their product to thwart potential hardware tampering, reverse engineering,
IP privacy, and cloning attacks. In particular, literatures reviewed in this chapter
demonstrate that hardware obfuscation at different abstraction levels is a promising
solution to prevent hardware Trojan insertion or detect the malicious modification
made by untrusted entities in the IC supply chain. The obfuscated hardware design
makes it more difficult for attackers to understand the original circuit functionality.
Thus, it will be more challenging for attackers who lack the full understanding of the
design to successfully place hardware Trojans in the obfuscated system for several
reasons. First, the hardware Trojans may be triggered more often than the attacker
expected because the rareness of the Trojan triggering condition may not be true
in the original design. Second, because of hardware obfuscation, attackers who do
not have the correct secret key may not be able to access the states for the normal
operation mode. Consequently, the inserted hardware Trojan is likely to be isolated
or never triggered. Lastly, the obfuscation process can also be incorporated with
authentication to generate a special signature for Trojan detection.

Despite significant growth that has been made on hardware obfuscation, there
is a great need of quantifiable evaluation metrics for obfuscation methods. ISCAS
benchmarks are typically used to assess the hardware overhead and performance
degradation induced by various hardware obfuscation methods. More meaningful
benchmarks would help the community to perform fair and effective comparison.
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Chapter 13
Deterrent Approaches Against Hardware
Trojan Insertion

Qihang Shi, Domenic Forte, and Mark M. Tehranipoor

13.1 Introduction

The hardware Trojan threat has become a major security concern for modern
integrated circuits (ICs) [1]. A hardware Trojan is a modification of original circuitry
with malicious intent during the design or manufacturing processes [2]. Hardware
Trojans can be designed to increase malfunctions in the field, lower the reliability of
the ICs, leak confidential information to adversaries, or destroy the system under a
predefined condition [3]. This makes it possible for hardware Trojans to threaten
both commercial and government procurements for both civilian and military
applications. Unlike manufacturing defects, Trojans can be designed specifically
to evade state-of-the-art IC testing and diagnosis processes and therefore are very
difficult to detect [4]. The distributed nature of modern IC supply chain implies that
most parties involved in the development of the end product have the opportunity
of inserting hardware Trojan (see Fig. 13.1) and therefore might be untrustworthy.
A more comprehensive summary of possible Trojan attack scenarios is discussed
in [5]. This makes the hardware Trojan threat a concern for both producers and
consumers of electronic products: infection by hardware Trojans can both hurt the
consumer by making his device defective and out of spec and/or leaking sensitive
information and hurt the producer by giving his product a reputation of being so.
Each party in the IC supply chain must ensure ability to detect a Trojan that might
exist in products it procures and prevent Trojan from infesting the product it sells to
its clients.
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To address the hardware Trojan threats and establish trust among parties in
the IC supply chain, several countermeasures have already been developed [6].
These techniques generally approach the problem from one of the following angles:
Trojan detection, obstruction of Trojan insertion, design-for-trust (DfTr) circuitry, or
detection through measurements with test equipment [5, 6]. Anti-Trojan techniques
generally provide one or both forms of security: to prove the existence of or lack
of Trojan in a procured product or to make it unlikely for the user’s product to be
infected with Trojans. We term techniques designed to provide the second form
of security a deterrent approach. The most important distinction between the two
categories is that in an investigative technique, the ultimate goal is to determine
whether any unspecified product is Trojan-free or not, while in a deterrent technique,
the objective is to discourage hardware Trojan insertion into a specific product,
which can be achieved either by making it very easy to detect Trojans in it or making
it very difficult for certain untrusted parties to insert Trojans. This chapter is focused
on deterrent approaches against hardware Trojan insertion, including representative
technical solutions and their relative weaknesses and strengths, as well as the kinds
of Trojan threats that each solution is most and least suitable to address.

Several approaches to implement Trojan-deterrent techniques [5, 6] exist (shown
in Fig. 13.2). The most popular approach among them is the monitoring approach,
which uses on-chip sensors to monitor side-channel information such as power
and/or temperature as a result of circuit activities [7–10]. Data collected by the
on-chip sensors are then sent through various classification algorithms to identify
Trojan-infested and/or Trojan triggered samples. For such classification to succeed,
switching activity due to the Trojan trigger and/or payload circuitry must cause it
to depart from the normal range of circuit operations. Therefore, it would help if
normal functional circuit activity can be kept low so that Trojan activity becomes
more significant. This gives rise to the so-called scan cell reordering technique [11].
By optimizing the choice of scan flip-flops for each scan chain, this technique
limits circuit activity to specific regions, so that side-channel measurements of
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Trojan-infested ICs can be more easily distinguished from Trojan-free ICs. In
contrast to the monitoring approach, other techniques seek to make Trojans insertion
physically impossible. We term this approach the obstructive technique, as it
prevents Trojan insertion as opposed to monitoring Trojan activity. One most
widely known obstructive technique is split manufacturing [12]. By preventing
the untrusted party – the untrusted foundry – from obtaining complete layout
information, split manufacturing also prevents any Trojan insertion targeted at
specific circuit function. In addition to these two dichotomies, techniques that
combine features from both approaches also exist, an example of which is the
built-in self-authentication (BISA) [13–15]. The BISA technique prevents Trojan
insertion by occupying all available spaces in the layout with its member gates, and
it prevents its member gates from being removed by monitoring them.

Each of these approaches has its own unique merits and satisfies a particular
need; however none of them is suitable for all needs or strong against all threats. For
example, monitoring approach usually requires a sample known to be good (also
known as the “golden IC”) to compare suspected samples against, a requirement
that is not always practical in real world. Obstructive approach does not rely on
this requirement but may be vulnerable to Trojan insertion that does not require
information it precludes. A hybrid approach could solve both problems but may
be vulnerable to attacks specifically designed to overcome its defenses. As of
yet, no approach has emerged substantially more secure than other techniques.
Therefore, this chapter is dedicated to discuss relative applicability of each approach
by introducing representative techniques in all of them.
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The rest of this chapter is organized as follows: Sect. 13.2 presents a number
of techniques archetypal of the monitoring approach and discusses their relative
strengths. Section 13.3 presents two techniques that do not require any monitoring
to deter Trojan insertion with a focus on how their protection may be attacked or
overcome by the attacker. Section 13.4 introduces the BISA technique, specific
attacks against it, and their possible remedies. Finally, Sect. 13.5 concludes the
chapter.

13.2 Monitoring Approach

Detection of Trojan presence through monitoring is most commonly done through
side-channel measurements impacted by Trojan activity. This is due to the unpre-
dictability of a Trojan’s payload. A functionality-based detection approach may miss
a Trojan that is designed to leak information through unconventional methods such
as radio antennas, while any circuit consumes power, produces heat, and creates
noise. As hardware Trojans on an IC are overwhelmingly made with parasitic
circuits, monitoring side-channel signatures is most likely to capture Trojan activity.
Another advantage of detection through side-channel measurements is that they can
function at any time; this allows implicit feature to double as runtime measurement,
which can be useful in deterring very hard to trigger Trojans, such as Trojans that
only come into existence when certain conditions are met. Such Trojans can be
placed in an IP core in bitstream format intended for reconfigurable devices [16]
and would have been very hard to detect without runtime monitoring. Although the
requirement of having on-chip measurement sensors seems to add an overhead to
the design, such sensors can also serve other performance objectives such as in situ
timing slack monitoring [17] and are inserted frequently enough for their existence
to be assumed in some cases.

The problem with this side-channel measurement approach lies primarily in
difficulty to irrefutably identify a Trojan signature. To begin with, identification
of Trojan signature through side-channel measurements requires side-channel
signatures of Trojan-free samples (often referred to as “golden” chips). Without
knowing what kind of signatures are Trojan-free (“normal”), it is nigh impossible
to know what kind of signatures are Trojan infected (“abnormal”). However, the
assumption of having access to golden chips is not always valid. For example, if an
untrusted foundry chooses to insert a Trojan into chips it fabricates, it is natural for
it to insert into all of them. Unless service of a trustworthy foundry can be procured
– in which case it becomes doubtful why the untrusted foundry is used – it may
not be possible to locate samples without Trojans. Simulations with typical values
can help; however due to the presence of parametric variation due to fabrication
process (commonly referred to as “process variation”), simulated values may not
even match chips that are Trojan-free. Further, side-channel signatures are also
affected by short-term conditions, such as temperature, power supply noise and
power drop in power grids, switching activity and crosstalk, as well as input test
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patterns. Finding a simple separation between Trojan-infected samples and Trojan-
free samples is often nontrivial, and it is difficult to avoid overfitting or underfitting.
Therefore, side-channel measurement methods are usually evaluated with correct
detection rates and false alarm percentages.

In this section, we present two classes of techniques that address the above
problem. The first class of methods uses various classification methods to achieve
reasonable separation between Trojan-infected and Trojan-free samples, while
another method tries to restrict functional circuit switching activity and therefore
magnify Trojan switching activity.

13.2.1 Side-Channel Signature Measurement

Two types of sensors have been used for side-channel measurements for the
purpose of identifying Trojan-infected chips. Most techniques use some kind of
ring oscillator (RO)-based sensors [7, 9], while some other research makes use
of current monitors [8] or process control monitors (PCM) [10]. As shown in
Fig. 13.3a, RO-based sensors are often inserted at regular geometric positions on
design layout. This design simply assumes that all side-channel impacts of Trojan
activity, such as noise, power drop, and crosstalk, will be captured by RO sensors
in the form of RO frequency changes; classification is then performed based on that
measurement alone. In this sense, the use of PCM can be considered a similar choice
as PCM does not have one single standardized implementation and is intended to
measure parametric drift during fabrication – in other words, measurement of side-
channel signatures is not even its intended use. Since most of them also make use
of classifiers that does not rely on mathematical modeling of the data to be precise
[7, 10], this is unlikely going to constitute a very serious problem to the approach.
One advantage of RO and PCM sensors is that they are often already present in the
design, negating area overhead due to their insertion.

On the other hand, the current monitor approach is much more precise: As
shown in Fig. 13.3b, the design is divided into regions, and each region is measured
by one current monitor. This allows a very precise measurement and can yield
multidimensional data: for example, transient current can be measured, and based
on it delays between current peaks can be gauged and matched to major circuit
activities, an analysis less feasible with ROs of limited precision. Another advantage
of this approach is that current monitor is an analog circuit; it is likely quieter and
leaves less impact on circuit function. This would be very helpful when used in
runtime monitoring.

However, all of these benefits are not without drawbacks. The first problem,
ironically, is also its impact on functional circuit: its function relies on analog-
to-digital conversion, a circuit likely much larger and sophisticated than ring
oscillators. This will force its user to make a compromise between area overhead and
measurement precision. Also, precision in its measurement means it needs multiple
bits in the bus to shift the data out, which may be difficult in a large and congested
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Fig. 13.4 A typical classifier based on training with golden IC samples

design. Being analog in nature also makes the measurement more susceptible to
process variation. Lastly, the detailed data it measures will likely become a target
for information theft itself – after all, matching current draw to circuit activities is
also known as timing attack, a tool in side-channel cryptoanalysis.

13.2.2 Classifiers for Side-Channel Measurements

After side-channel data are measured, classification needs to be done to separate
Trojan-infected samples from Trojan-free samples. As mentioned earlier, how this
is done is heavily dependent on whether the technique assumes existence of golden
ICs. One archetypal design where the technique does make this assumption is
presented in [7]. In this technique, measurements from golden ICs are first collected
to compute a power signature for each sensor, i.e., a convex hull that envelops all
data points (see Fig. 13.4). Then this convex hull is used in authentication of other
unknown samples: if a sample falls outside of this convex hull, it is rejected as
Trojan infected.

Requirement of golden ICs leaves much to be desired, and techniques have been
proposed to remove this requirement. One way to do this is to build a convex hull
classifier with the help of pre-silicon simulations. One technique following this
approach is presented in [10], where the said pre-silicon simulations are further
calibrated with post-silicon measurements using PCMs. Such measurements will
update the model with process variation information of each sample. The authors
of this technique argues that this calibration step removes the need of golden ICs;
in reality, this likely removed inaccuracy due to process variation, while functional
circuit activity is still addressed by pre-silicon models, which is hard to calibrate
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since modeling this highly nonlinear and pattern-dependent process is difficult.
Moreover, calibrating the convex hull classifier is unlikely an efficient process, and
having to do it for each sample will be time-consuming. This might result in forcing
a trade-off between efficiency and accuracy onto the designer.

Another similarly minded technique [9] also performs calibration, but instead of
calibrating a convex hull classifier, it calibrates a parameterized model. This is likely
more efficient to calibrating a convex hull classifier, which is a learning process.
In addition, instead of using a convex hull classifier, this technique uses sensor
measurements to perform an estimation of chip temperature using extended Kalman
filtering (EKF) and then computes the discrepancy between estimated temperature
and temperature sensor measurements (referred to as “residual”). Trojan activity
will cause autocorrelation of residual to diverge from zero and become detected.
The advantage of this approach is that functional circuit activity is taken care of by
EKF and therefore should not be a concern. However, calculating autocorrelation is
a statistical process and requires a large number of samples; observation-correction
cycle of EKF further extended this requirement. Further, the temperature model
used in this technique can be considered as a low-pass filter of transient power and
therefore may miss Trojans with short and/or small power signatures.

13.2.3 Scan Cell Reordering

Scan cell reordering is a technique otherwise used for scan power reduction,
improvement of fault coverage, or reducing scan paths [18]. Its application in scan
power reduction is apparently also useful in reducing functional circuit side-channel
signatures to make Trojan impact more noticeable [11]. To this end, composition of
scan chains is reorganized so that each will only consist of scan cells located in the
same geometric neighborhood (see Fig. 13.5). Then, when performing the test to
activate Trojans and take side-channel measurements, each scan chain is activated
individually to restrict functional circuit activity to each region of the design. This is
expected to lower activity in functional circuit and dissociate it from that of Trojans.
The effectiveness of this approach is then gauged by Trojan-to-circuit switching
activity (TCA) and Trojan-to-circuit power consumption (TCP).

One advantage of this technique is that it can be used in conjunction with other
sensor designs and classifiers to improve their performance. A problem lies in that a
Trojan designer who has access to the layout can choose to scatter his triggering
inputs across the layout to reduce likelihood of activation and the difficulty to
activate the correct regions increases exponentially as more regions are used.
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Fig. 13.5 Scan cell reordering: reorder scan chains post-route so that activity in functional circuit
can be localized

13.3 Obstructive Approach

Instead of trying to activate the Trojans and capture their activity, the obstructive
approach seeks to prevent their insertion altogether. The advantages of this approach
are apparent: If Trojans cannot be inserted, then there is no need to activate and/or
detect a Trojan. As a corollary, golden chips/models, side-channel profiling, and
accurate classification are not needed. Techniques in this approach are often also
intended against a wider spectrum of threats in addition to Trojans and malicious
modifications, for example, intellectual property (IP) theft, cloning, and overproduc-
tion, since malicious intentions are difficult to quantify and model. To achieve these
objectives, obstructive techniques often seek to deny leakage of critical information,
such as the design or the layout to untrusted parties, and in doing so deny any attack
that requires this information, including insertion of Trojans. Hence, techniques in
this category rarely require one to insert any additional circuit to the design and
therefore greatly reduce design overhead.

Despite the obvious advantage of being efficient and effective against a wider
spectrum of threats, the obstructive techniques are not perfect. The first limitation
of this approach is that it can only prevent modifications and leakage by a party that
receives design of the user; it is not possible to obstruct Trojans inserted in a product
the user acquires, for example, design blocks in the form of IP cores or electronic
design automation (EDA) tools. It is also ineffective against Trojans that do not
require the specific information the technique denies leakage of. And finally, for
reconfigurable devices, if the Trojan is designed to only manifest during function,
no existing technique of the obstructive approach can prevent it.
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In this section we present one representative technique of the obstructive
approach: split manufacturing, a technique intended to defeat attacks by an untrusted
foundry.

13.3.1 Split Manufacturing

Split manufacturing is a technique intended to address the threat to IP security posed
by untrusted foundries [12]. Untrusted foundries exist as a result of current econom-
ical reality resulting in a globalized IC supply chain. State-of-the-art IC fabrication
plants become separated from IP owners and moved to overseas locations where
it is hard for IP owners to inspect or influence. Hence, IP owners and sometimes
end users (e.g., government and military organizations) are presented with the hard
choice between losing access to affordable and state-of-the-art fabrication service
and losing security to the IP and/or the end product. Split manufacturing addresses
this problem by removing complete knowledge of the IP from the untrusted foundry.
In split manufacturing, an IP owner contracts an untrusted foundry manufacture
the front-end-of-line (FEOL) part of the IC and then ships it to a trusted foundry
to deposit back-end-of-line (BEOL) part onto it (see Fig. 13.6). By denying the
untrusted foundry complete layout information, split manufacturing prevents it
from stealing IP information or committing attacks that require knowledge of the
complete design. This technique deters Trojan insertion by preventing an untrusted
foundry from locating important gates and nets of the design and therefore deters
the attacker from inserting Trojans at these places.

Split manufacturing can be done with 2D, 2.5D, or 3D fabrication processes.
In 2.5D and 3D fabrication, not only BEOL but also parts of the design including
transistors are denied from the untrusted foundry, making it even more secure. One

Split

Layout Design

Fabricate in 
trusted foundry

Fabricate in 
untrusted 
foundry

Align, integrate, 
package

Back-end-of-Line (BEOL) PartBack-end-of-Line (BEOL) Part

Front-end-of-Line (FEOL) Part

Back-end-of-Line (BEOL) Part

IC

Fig. 13.6 Split manufacturing: separation between Front-End-Of-Line (FEOL) and Back-End-Of-
Line (BEOL) part of the IC [19]
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method to improve its security is through optimizing separation of the design so
that minimum amount of information is left on the FEOL part which the untrusted
foundry has access to. This process is called wire lifting, as in 2D case it only
consists of lifting wires to BEOL part of the layout [20]. A quantified security
metric would be required for such an optimization to use as objective, and in
[20] the concept of k-security was presented to serve as optimization objective
function. k-security is defined based on number of possible mappings between cells
in the layout and cells in the netlist. This is because by definition, a specific attack
against split manufacturing will be aiming at recovering the BEOL connections;
any attack that does not have this ultimate goal is not an attack specifically
against split manufacturing, and any attack that succeeds in this goal will have
completely compromised split manufacturing. Short of BEOL connections, the
strongest position an untrusted foundry can have is to have access to netlist of
the design. In this scenario, the last line of defense would be difficulty for the
attacker to map cells in the layout (ones he want to attack) to the cells in the netlist
(one which he has knowledge of), a method that makes the most use of the netlist
information. k-security therefore defines the difficulty of matching one gate to its
correct counterpart in the known netlist (i.e., identifying its function) as the number
of other gates (k) that are indistinguishable from it; and the security of the FEOL
layout to be the lowest k among all FEOL gates. As an example, consider the full
adder design shown in Fig. 13.7. For the purpose of demonstration, let’s assume
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that the wires shaded with gray are routed on BEOL stack of the IC and therefore
invisible to the untrusted foundry. Since the untrusted foundry cannot see any wire
connected to either XOR gates (painted in red in Fig. 13.7), it is not possible for
him to distinguish the two gates. Therefore, the k-security of either XOR gate is
2. Since no other gate has any identical FEOL doppelganger, the security of the
full adder will be 1. In addition to wire lifting, other approaches to improve split
manufacturing security also exist [21–26], mostly by proposing possible attacks
and security metrics to split manufacturing. One of the most widely known work
in this approach is the proximity attack, which simulates an attacker who makes
educated guesses on BEOL connections of open input/output pins in FEOL. Unlike
wire lifting, techniques of this category focus more on preventing specific exploits
than proposing a universal approach to quantitatively improve split manufacturing
security.

There are two major weaknesses associated with split manufacturing: its imple-
mentation overhead and the kind of attacks it cannot prevent. Although split
manufacturing does not require insertion of additional circuits, its requirement to
have different parts of the design fabricated by different foundries does indeed
impact yield, and wire lifting usually requires non-polynomial processing time
to generate a solution. Also, although split manufacturing prevents all attacks
that require complete knowledge of the whole layout, not all attacks require that
information. One example is the untargeted Trojan insertion [13], the details of
which can be found in [27]. Untargeted hardware Trojans do not target specific
functions of the original circuitry and therefore cannot commit attacks that require
knowledge of such functions. Nevertheless, untargeted hardware Trojans are still
capable of degrading the performance and/or reliability of manufactured ICs or
trigger a denial of service (DoS) in critical control systems [28]. Further, since split
manufacturing is designed to deter attacks committed by an untrusted foundry, it
does not prevent attacks by other possible perpetrators, such as untrustworthy EDA
tool provider, IP core designer, or SoC designer (e.g., sabotage by employee).

13.4 Hybrid Approach

The hybrid approach refers to techniques that consist of both monitoring and
obstruction and therefore does not have the same strengths and weaknesses of either.
The built-in self-authentication (BISA) technique is one such example.

13.4.1 Built-In Self-Authentication (BISA)

Built-in self-authentication (BISA) prevents hardware Trojan insertion by exhaust-
ing one resource essential to it: white spaces. Normally, during the placement step
of the back-end design of the circuit, gates in the circuit are placed at optimized
locations based on density and routability [29]. This leaves spaces in the layout that
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are not filled with standard cells. White spaces have to exist, because meeting power
dissipation, crosstalk, and routing objectives demand it. For design purposes other
than security against hardware Trojan insertion, these white spaces can be filled with
filler cells to serve as decoupling capacitors and/or extension of power tracks [30].

However, unsupervised filler cells are not monitored by any logic and therefore
prone to malicious removal by Trojan inserters in order to make room for hardware
Trojans. If white spaces or decoupling filler cells are replaced by Trojan gates, it
would likely incur a mild level of performance loss, nothing more, and certainly not
raising suspicion of Trojan presence.

13.4.1.1 BISA Architecture

BISA prevents hardware Trojan insertion by occupying white spaces with testable
standard cells instead. Then, all inserted BISA cells are connected into tree-like
structures to form a built-in self-test (BIST) circuitry, so that they could be tested
to verify no BISA cell has been removed. Removal of its member cells will lead
to a BIST failure, so that no attempt to make room for hardware Trojans will
evade detection. As shown in Fig. 13.8a, BISA consists of three parts: the BISA
circuit under test, the test pattern generator (TPG), and the output response analyzer
(ORA). The BISA circuit under test is composed of all BISA cells that have
been inserted into unused spaces during layout design. In order to increase its
stuck-at fault test coverage, the BISA circuit is divided into a number of smaller
combinational logic blocks, called BISA blocks shown in Fig. 13.8a. Each BISA
block can be considered as an independent combinational logic block. The TPG
generates test vectors that are shared by all BISA blocks. The ORA will process the
outputs of all BISA blocks and generate a signature. TPG has been implemented
with linear feedback shift register (LFSR), while ORA has been implemented with
multiple-input signature register (MISR) in prior work [31]. LFSR and MISR are
used in the generation of random vectors and compression of responses into a
signature. Other types of TPG and ORA can also be applied [32].

Effective monitoring of the existence of all BISA cells requires very high
testability of the BISA blocks, since untestable BISA cells are vulnerable to iden-
tification and removal without knowledge of the BISA testing circuits. Therefore,
each BISA block needs optimized routing so that they are completely testable. The
BISA technique addresses this requirement by organizing each BISA block into
combinational logic trees, as shown in Fig. 13.8b. This process is performed by first
sorting BISA cells chosen for a BISA block, then creating connections between
BISA cells according to their sorted sequence. The method shown in Fig. 13.8b
chooses BISA cells by finding all BISA cells in a rectangular bounding box, sorting
them randomly, and creating connections between them by iteratively connecting
outputs of each BISA cell to unconnected inputs of BISA cells before it in the sorted
list.

The main advantage of BISA over other techniques with similar objectives is
that it has no golden chip requirement. Since BISA relies on logic testing, process
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variation is not a factor either, as compared to Trojan detection techniques based on
side-channel analysis. As an additional advantage, impact of BISA on the original
design in terms of area and power is also negligible.
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13.4.1.2 Specific Attacks and Limitations of BISA

Unfortunately, specific attacks exist for BISA. To attack BISA, an attacker would
have to find a way to remove enough of cells to create room for his Trojan insertion,
without triggering detection by BISA. Depending on targets and methods used in
this removal, several possible alternatives exist to attack BISA:

1. Attack TPG or ORA of BISA;
2. Directly removing cells from BISA or original circuitry, this is known as a

removal attack;
3. Replace BISA or original circuitry with a smaller functionally equivalent, known

as a redesign attack; in particular, if large cells are replaced with functional
equivalents of smaller area, this is known as a resizing attack.

Of the three possible attacks against BISA, attacking TPG or ORA is the least
likely to succeed. BISA uses pseudorandom pattern to perform BIST; this makes
it very easy to increase pattern count and consequently very difficult for the attacker
to make sure all responses of modified TPG and/or ORA will stay the same for
arbitrarily many patterns. Similarly, direct removal of BISA cells is unlikely to
succeed as they are covered by BISA test coverage during BISA insertion. It is
indeed possible to remove cells from original design as long as they do not serve
crucial functions; however, design optimization and test coverage will minimize
this opportunity for the attacker.

The attack most likely to succeed against BISA is the so-called redesign attack.
This attack replaces original circuitry with smaller functionally equivalent circuitry
to make room for Trojan insertion. Both BISA and original circuitry can be targeted
in this attack. Redesigning the original circuit will result in significant changes of
the electrical parameters, such as power and path delay. These can be detected much
more easily by delay-based and power-based techniques [33–42]. Therefore, it is
more likely for the attack to succeed against BISA cells. It is possible to further
secure BISA cells by performing this optimization on BISA design to prevent this
particular attack; however, the attacker can also choose to design a custom cell
functionally equivalent to several BISA cell in order to make room for Trojan
insertion. Prevention of such an attack would require anticipation of all possible
custom cell designs that are functionally equivalent to any combination of BISA
cells. That is not likely feasible except for very small BISA circuitry. Therefore this
attack remains a possible threat to BISA security.

In addition to specific attacks, BISA is also under a few limitations on its
performance. For example, due to the existence of resizing attack, all BISA cells
have to be of the smallest variant in area among standard cells of the same function,
which might make it easier for the attacker to identify them. Further, although
it conducts logic test to verify the absence of tampering, it still prevents Trojan
insertion by obstruction of its insertion and does not use the logic test to measure
any classifiable signature. Therefore, it cannot be used for runtime monitoring and
therefore is unlikely effective against Trojans in bitstreams to be downloaded into
reconfigurable devices.
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Some of the existing limitations and attacks may be eliminated; for example, if
split manufacturing is used in conjunction with BISA, it may help to eliminate the
problem with redesign attack and limitation of only being able to use minimum-
sized cells, because it takes away an adversary’s ability to identify any part of the
circuitry and hence takes away his ability to reducing their area occupation [13].
For this to achieve best effect, wire lifting is a desirable candidate as it reduces
recognizable circuitry size with a mathematical certainty [43].

The BISA technique obstructs Trojan insertion by occupying layout spaces with
gates. However, simply occupying available spaces will not be effective, as they
can be removed by the adversary. In this case, obstruction necessitates monitoring
of inserted gates to ensure that none of them is removed by the adversary to make
room for Trojan insertion. In a sense, the BISA technique achieves an obstructive
objective by implementing monitoring sensors.

13.5 Conclusion

In this chapter, we provided an introduction and discussion on deterrent approaches
against hardware Trojan insertion, defined as techniques designed to deter insertion
of hardware Trojans into certain specified products. We show three main approaches
that best represent these deterrent approaches: the monitoring approach which
predominately works by measuring and classifying side-channel signatures, the
obstructive approach which seeks to take away necessary information for the
adversary to insert a Trojan, and the hybrid approach that combines features of both
approaches. Then, we introduced a few archetypal techniques of each approach and
discussed on their relative strengths and weaknesses. From the discussion, it is seen
that each approach is advantageous against some category of threats, and a silver
bullet technique that can address all threats has yet to be found.
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Chapter 14
Hardware Trojan Attacks in FPGA
and Protection Approaches

Vinayaka Jyothi and Jeyavijayan (JV) Rajendran

14.1 Introduction

Field-programmable gate arrays (FPGAs) are integrated circuits (ICs) containing
programmable logic components that can be reconfigured by an end-user post
manufacturing. In the recent years, the usage of FPGAs has drastically increased;
the FPGA market share is estimated to reach $9.9 billion by 2020 [36]. FPGAs
are used in a wide range of applications such as application-specific integrated
circuit (ASIC) prototyping, communication devices, medical instruments, high-
performance computing systems, aerospace, and defense systems. The growing
demand for power-efficient and high-performance ICs has created a surge in usage
of FPGAs in the recent years. FPGAs are also available as cloud services [3], where
one can create and run custom hardware designs on a remote FPGA in a server farm.
Hence, exploring security issues associated with FPGA designs is critical.

Simultaneously, globalization of IC design flow has reduced design complexity
and fabrication cost, but it has introduced several security vulnerabilities [13]. A
rogue element anywhere in the IC supply chain can perform the following attacks:
reverse engineering (RE), hardware Trojans, counterfeiting (specifically, recycled
ICs), and IP piracy [17, 35]. These attacks cost the semiconductor industry billions
of dollars annually [30, 37], undermine national security [1, 14], and put critical
infrastructure into danger [15]. Though part of the problem is that designers have
no control over their design in this distributed supply chain, a more important issue
is that current IC design tools do not consider security as a design metric.
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This chapter explores insertion of hardware Trojans into genuine designs targeted
for FPGAs. Such compromised designs may result in subpar performance, leakage
of confidential information, and unauthorized and pernicious operations by an
attacker. The use of compromised designs in critical infrastructures such as smart
grids, nuclear power plants, medical prosthetic devices, and military equipment can
be catastrophic. To explain the different classes of Trojans, this chapter uses Xilinx
FPGA design flow. However, the same methodology can be extended to any FPGA
and CAD tool vendors.

This chapter is organized as follows: We first present the threat model and a
taxonomy of FPGA Trojans in Sect. 14.2. Next, we focus on three broad categories
of FPGA Trojans: Trojans in FPGA fabric (see Sect. 14.3), Trojans in FPGA tool
chain (see Sect. 14.4), and Trojans in FPGA bitstreams (see Sect. 14.5). Section 14.6
discusses the countermeasures that specifically target Trojans in FPGA bitstreams.
Finally, Sect. 14.7 concludes the chapter.

14.2 Threat Models and Taxonomy

14.2.1 FPGA Design Flow

Figure 14.1 shows the FPGA design flow. An FPGA designer designs the FPGA
fabric. Fabless FPGA design houses send the layout of the FPGA fabric to a foundry

FPGA Designer

Post-Fab Test
FPGA Design Company

Untrusted 
FPGA foundry

FPGA Supply Chain

Malicious Distributor

Recycled FPGAs

End User/
Company

Design 
Deliverables

Compromised
FPGA

Inside Attacker 1

2

3

A1

4
5

6

A2

A3

7

Fig. 14.1 FPGA threat model: The attacker can insert hardware Trojans at the untrusted foundry
(A1). A malicious distributor can reduce the reliability of an FPGA in the supply chain (A3), and
even recycled FPGAs can be inserted into the FPGA supply chain (A2). Design Trojans can also
enter through FPGA CAD tool flow
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for manufacturing. Many of these foundries are located typically offshore and are
untrusted. Post-fabrication, the FPGAs are tested for defects and faults. FPGAs
are sold on the market. The end-user implements the target design on the FPGA.
Converting a design described in a modeling language (VHDL or Verilog) into an
FPGA-specific programming file involves multiple steps, as explained below:

1. Synthesis involves the conversion of HDL into a logical netlist (similar to logic
diagram or circuit).

2. Implementation consists of translate and map processes,1 where the logical
netlist gets converted and mapped to target device’s physical primitives.

3. Place and route (PAR) takes a mapped native circuit description (NCD) file,
places and routes the design, and produces an NCD file to be used by the
programmable file generator.

4. In bitfile generation, the routed NCD is used to create a bitfile that can be
programmed onto an FPGA.

14.2.2 Threat Model

In the quest to reduce the development cost of hardware/system, the silicon industry
has inadvertently created a complex and extremely vulnerable supply chain shown
in Fig. 14.1. An attacker can be present anywhere in the supply chain. The threat
model, shown in Fig. 14.1, involves:

Overproduction: An untrusted foundry that has access to the FPGA layout mask
fabricates more number of FPGAs than requested or authorized by the design
company. It can insert these FPGAs into the supply chain without the knowledge of
FPGA design company. These FPGAs may not be properly tested and can introduce
reliability issues. This results in either loss of revenue or reputation for the design
company.

Recycling and remarking: FPGAs can be extracted from electronic waste, used
FPGAs can be removed, and their package can be repainted and/or remarked. The
die can also be removed from the packaging, repackaged, and remarked. These
FPGAs are then reinserted into the supply chain as genuine and new FPGAs. These
FPGAs can be highly unreliable, are prone to defects, and typically lead to subpar
performance.

Cloning and piracy: It is an unauthorized reproduction of an FPGA by reverse
engineering without the legal intellectual property (IP) rights to manufacture the
FPGA. These FPGAs can also have malicious modifications.

Apart from these threats, FPGAs are also susceptible to insertion of Trojans,
which is described in detail below.

1Translate and map processes are the terms used by Xilinx, an FPGA vendor. These processes may
use different names/terms.
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Fig. 14.2 FPGA hardware Trojan taxonomy based on two primary attributes

14.2.3 Taxonomy

Malicious changes can be made at any phase of the FPGA design such as design,
fabrication, packaging, and in the supply chain as shown in Fig. 14.1. A taxonomy
based on hardware Trojans’ physical, activation, and functional characteristics have
already been proposed [19, 34]. We classify Trojans based on the method of creation,
activation, and point of entry into the FPGA fabric as shown in Fig. 14.2. The
definitions of most of the FPGA Trojans are similar to the IC Trojan taxonomy
in [19, 34]. In this chapter, we will focus on the FPGA-specific attributes of the
taxonomy. Interested readers can refer to the comprehensive taxonomy presented
in [19, 34].

14.2.4 Point of Entry

Based on the point of entry of Trojans in FPGA, they can be classified as:

• Prefabrication: It is the phase where the specification of systems such as
functionality, size, power, delay, etc., is finalized. Trojan insertion in this step
will result in alteration of design or constraints. For example, it could alter the
timing of circuit or increase switching frequency of the circuit. A rogue employee



14 Hardware Trojan Attacks in FPGA and Protection Approaches 349

can insert a malicious circuit, e.g., a backdoor, to take control of the chip at a later
point in time when the FPGAs are deployed in the field. These manifest as FPGA
fabric Trojans.

• Fabrication: Here, a set of masks are designed to fabricate the digital circuit on
a silicon wafer. Trojans can be added by a malicious attacker inside an untrusted
foundry. These Trojans can be either functional or parametric. These are called
as FPGA fabric Trojans.

• Post-fabrication: In this phase, RTL/HDL designs are used to program an FPGA
to achieve desired functionality. Trojans can be either inserted in RTL/HDL
designs by a rogue employee or can also enter RTL/HDL designs from IPs from
third-party IP providers. These are FPGA design Trojans. Additionally, even the
reliability of an FPGA can be reduced by such type of Trojans.

14.2.5 Creation Method

Based on the creation method, Trojans can be classified into:

• Functional Trojan: They are created by modifying the FPGA fabric. This
includes addition/deletion of gates/transistors, modifying the RTL or layout
without affecting the primary functionality of the FPGA fabric. It can enter
during prefabrication phase by a rogue employee in the FPGA design company
or during fabrication phase by a malicious insider at an untrusted foundry.

• Parametric Trojan: They are created by modifying physical device parameters,
such as thinning of wires, gate channel length variation, dopant level varia-
tion [5], transistor size variation, etc. It is always on and primarily created to
reduce the reliability and lifespan of an FPGA.

• Life-span reduction Trojan (LRT): It is the only class of Trojans that are not
inserted in the hardware during or before fabrication. It is created by subjecting
the FPGA with external factors, such as extreme temperatures, focused ion
beams [9], etc. LRT accelerates aging of complete or part of FPGA fabric. It is
typically created by a malicious distributor in the FPGA supply chain to reduce
the reliability and, hence, reduce the lifespan of FPGAs.

• Bitstream Trojan: It is inserted by modifying the FPGA bitfile itself. Bitstreams
can be reverse engineered to identify the areas of FPGA occupied by the
programmed logic, and malicious circuits can be inserted into it. If the malicious
circuit does not disturb the original circuit, it is called Type-I bitstream Trojan.
Type-II Trojans typically modify the original circuitry with respect to CLBs or
other FPGA resources to perform malicious operations.

• CAD tool Trojan: They are FPGA design Trojans that exploit the CAD tool flow
to insert the Trojans at various intermediate netlist formats. These Trojans can
be inserted in a synthesized netlist and even in mapped or placed and routed
netlists. Due to the lack of resources to understand the intermediate and typically
proprietary formats, these Trojans can easily evade detection.
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14.3 Trojans in FPGA Fabric

FPGA fabric Trojans are inserted into the FPGA silicon fabric. They can be
inserted either during fabrication by a untrusted foundry or during the design
phase of FPGA by a rogue employee in the FPGA design company. Functional
fabric Trojans are characterized by addition/deletion of gates by the attacker to
carry out malicious activities, whereas parametric fabric Trojans are created by
changing device parameters/specification such as thinning of wires and weakening
of transistors or flip-flops to reduce the reliability of the FPGA [18, 25]. In this
section, we describe three Trojans that can be inserted into the FPGA fabric: Trojans
that increase delay, create voltage fluctuations, and reduce lifetime.

14.3.1 Trojans That Increase Delay

The delay-based fabric Trojan is created by modifying interconnect connecting
lookup tables (LUTs) across two configurable logic blocks (CLBs). The delay-based
fabric Trojans correspond to change or perturbation in the physical layout of FPGA
due to the addition of malicious elements as shown in Fig. 14.3. The assumption is
that the silicon fabric of the FGPA is dense and highly utilized. An attacker needs
to alter the FPGA silicon in order to add a Trojan. For example, when a Trojan is
inserted in a CLB or routing switch matrix (RSM), it will perturb the physical layout
of original fabric, thereby increasing the delay.

Example Figure 14.4 is a screenshot of an FPGA editor tool. The routes colored in
red are before and after modification, respectively. This emulates a Trojan inserted
in an interconnect that affects the net delay which in turn impacts total delay of the
path connecting the two I/O pins of CLBs. Consider this path is configured to be
a path of a ring oscillator (RO) programmed using the LUTs in the corresponding
CLBs. All the routes, LUTs, and pins remain the same, for both ROs without and

CLB

a

CLBTrigger

b

Fig. 14.3 FPGA fabric Trojan disturbing the original layout. (a) Trojan-free FPGA CLB with the
RSM. (b) A Trojan inserted in the RSM
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Fig. 14.4 Trojans that increase delay. (a) RSM without Trojan and (b) the route in RSM changes
due to the presence of a Trojan

Fig. 14.5 Trojans that induce voltage fluctuations. (a) CLB without Trojan and (b) CLB with a
Trojan. The Trojan causes the increased switching activity near the path/route of interest. This, in
turn, manifests as significant voltage drop near the CLB

with Trojan, except the Trojan-perturbed route. The delays are 0.140 and 0.419 ns,
before and after the interconnect modification, respectively. The delay difference
caused by the Trojan is 0.279 ns.

14.3.2 Trojans That Induce Voltage Fluctuations

This set of Trojans is implemented by adding simultaneous switching signals that
utilize dense interconnect resources around a CLB. This corresponds to the addition
of malicious elements without disturbing the genuine layout of FPGA fabric. This
switching signal is connected to unused wires and programmable interconnect
points (PIPs) in the tile where the target CLB is configured as shown in Fig. 14.5.
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This Trojan increases switching activity that will increase dynamic power and
therefore impacts the oscillation frequency. In [39], it was observed that voltage
drop due to the Trojan switching activity had impacted the RO frequency.

14.3.3 Life-Span Reduction Trojan (LRT)

Life-span reduction Trojan (LRT) can be induced into an FPGA by artificially
creating conditions that accelerate aging of FPGA fabric. Key contributors for
an FPGA aging (or any IC) among several physical factors are negative-bias
temperature instability (NBTI) and hot carrier injection (HCI) [6]. Both the factors
lead to a shift of threshold voltage of the affected transistors, which manifest
as increase in switching and path delays. This will subsequently lead to timing
violations and wears out an FPGA faster.

NBTI. Transistor parameters can be evolved over a large range of stress conditions.
Bias temperature instabilities are observed when a transistor is stressed at relatively
high temperatures. Electrical parameters of transistors such as the threshold voltage
(Vth) can be shifted by the creation of interface traps and trapping of holes into the
oxide [16]. This in turn reduces the mobility and degrades device parameters, and
the transistor yields a lower level of performance. This inherently ages the devices
faster. NBTI primarily affects PMOS devices. Supply voltage and temperature
exponentially increase the NBTI effect. Thus, NBTI degradation can be induced
by subjecting an FPGA to higher operating temperatures and supply voltage.

HCI primarily affects NMOS; where accelerated electrons in the channel can
collide with gate oxide interface, electron-hole pairs are created. Vth increases due
to free electrons trapped in the gate oxide layer. The degradation associated with
HCI attributes to physical breakdown and characteristic distortion of the transistor.
Operating conditions and switching frequency are the primary contributors to the
rate of HCI degradation [31]. The Vth shift has a sublinear dependence on frequency,
runtime, and activity factor (ratio of transitions and runtime) [7].

14.3.3.1 Accelerating FPGA Aging

Because of NBTI and HCI effects, the aging of transistors can be increased
significantly by increasing temperature, supply voltage, and switching activity. A
malicious distributor can subject an FPGA to extreme temperatures and supply
voltage and even program the FPGA to run rogue design with a high switching
activity under stressful conditions. To negate the aging effects, manufacturers
specify safe operating margins. Running an FPGA outside the safe operating
margins would inherently degrade the performance and, hence, reduce the reliability
of the chip.
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A simple heat gun and an external power supply can be used to operate an FPGA
under such extreme conditions. An attacker with access to sophisticated equipment
can use focused ion beam irradiation [9, 32] and even create selective-LRT, where
only a few specific tiles or CLBs in an FPGA wear out. Using a focused heat
gun can also be used to create selective-LRT. However, as the FPGA packaging
is designed to spread the heat evenly throughout the FPGA, it is difficult to achieve
such precision when compared to focused ion beams.

14.3.3.2 An Example LRT Trojan

An LRT Trojan is created by subjecting the FPGA to extreme temperature of 180ıC,
while the fabric is configured with a design that increases the switching activity
inside the FPGA. The setup uses a soldering heat gun placed on the FPGA with a
small air gap as shown in Fig. 14.6. FPGA sensors register an internal temperature
of 170ıC (50ıC above the manufacturer-specified maximum temperature of 120ıC).

16 ROs are used to measure the performance degradation on Day 3, Day 6, and
Day 7. To accurately measure the impact of aging effects due to NBTI and HCI,
the heat gun is switched off, and the FPGA is allowed to cool down for 24 h, as
studies show that the transistors recover from the aging effects to a certain extent [4].
Figure 14.7 shows the frequencies of the 16 ROs from Day 0 to Day 7. Figure 14.8
shows that the FPGA fabric at the RO locations has degraded by 10% on Day 7.

Fig. 14.6 Experimental setup to create the LRT Trojan. The FPGA board, Xilinx Nexys 4, is
subjected to an external temperature of 200 ıC for 7 days using a soldering heat gun. The internal
supply voltage is around 0.905 V. This setup avoids damaging any interfaces and peripherals on
FPGA board
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Fig. 14.7 Change in the frequency response of FPGA tiles due to the LRT Trojan. As the FPGA
tiles age, the performance degrades due to the LRT Trojan

Fig. 14.8 The delay of the CLB increases by 1.9% in 7 days due to the LRT Trojan
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14.4 Trojans in FPGA Design

14.4.1 Trojan Insertion in FPGA Designs

The goal of the attack tool is to decide where to place the Trojan for a given design.
The placement of Trojan can be achieved with or without disturbing the original
design mapping and routing. The latter requires considerable effort and access to
multiple files from the FPGA design cycle.

To insert hardware Trojans in FPGA designs, an attacker may need to have
knowledge of internal wires or logic and preferably where the design is physically
placed on the FPGA. If the Trojan is conditionally activated based on the input
or internal states, the attacker needs to tap into the required wires of the design
and connect the Trojan activator circuit. The Trojan payload can be connected to
the target elements by disconnecting the wires connecting to these elements and
reconnecting with the output of the payload circuit. The original payload and Trojan
payload can be connected using multiplexers, with the select line controlled by the
activator circuit.

After the logic synthesis process, FPGA CAD tools typically rename and merge
(after logic optimization) the internal wires connecting logic elements. An attacker
needs to track the name changes in the design, to connect them with the Trojans.
This can be achieved by converting the synthesized binary netlist (called NGC by
Xilinx) to a readable Electronic Design Interchange Format (EDIF) file and Xilinx
Design Language (XDL) file. Figure 14.9a shows the HDL code, and Fig. 14.9b
shows the corresponding XDL file obtained from routed netlist (NCD) after PAR,

Fig. 14.9 HDL to FPGA physical implementation. (a) Description of the design in HDL. (b) The
configuration of a routed CLB described in XDL format. Only LUT B is used in this CLB. (c) The
physical implementation of the design
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Fig. 14.10 Partial view of the detailed configuration of a slice in a CLB (slice marked in blue in
Fig. 14.9). The highlighted path represents how the primitives in CLB are used

which describes how the HDL is mapped into LUTs. Additional information on
the location of configurable logic block (CLB) and LUT is also present in the
XDL file. Figure 14.9c shows how the CLB blocks are connected with each other
to implement the functionality described in HDL. We can extract the locations
and interconnections used by the original design from the NCD or XDL files.
Additionally, even the post-PAR timing simulation model can also be used to get
the locations used by the design (Fig. 14.10).

14.4.2 Trojans in HDL

An attacker can insert the Trojan in the HDL design. In the HDL, the attacker can
easily track the logic elements or states to be used as an activator and deliver the
Trojan payload to the target. Inserting Trojan at this level is significantly easier for
an attacker, as the wires and logic elements can be found from the behavioral or
structural code.

Example Consider the C17 circuit of ISCAS 85 benchmark [8]. The RTL represen-
tation is shown in Fig. 14.11. The number of internal logic nodes available in RTL
for an attacker is four: N1, N11, N16, and N19 (except five primary inputs (PI) and
two primary outputs (PO)). A functional Trojan inserted at the internal node N16 is
shown in Fig. 14.12. The Trojan component is a MUX activated when N2 is logic
“1” and the payload is switching result of node N16 with N11. This Trojan corrupts
the functionality when activated. This example demonstrates the design space for an
attacker with RTL or HDL circuits.
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Fig. 14.11 Possible Trojan insertion points of ISCAS-85 C17 genuine HDL circuit. Each input
and output of a gate are possible insertion points in RTL/HDL
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Fig. 14.12 A functional Trojan inserted in ISCAS-85 C17 HDL circuit. The Trojan is a MUX that
corrupts the operation when N2 is logic 1

14.4.3 Trojans in Post-synthesis Netlist

An attacker can insert the Trojan in the post-synthesized netlist (called as the NCD
file). To perform this, the post-synthesized NCD file can be converted to the XDL
format. The XDL file contains the CLB configuration, the interconnection between
CLB’s, and information on routing inputs and outputs of the FPGA design. The
mapped/routed netlist typically would have undergone logic optimization; wires
and interconnections will be renamed and, hence, will not have the same wires
and components as described in the behavioral/structural code. Logic merging
by the CAD tools also makes it difficult to manually tap into internal logic. For
instance, consider two equations, A D B C CD and E D F ˚ CM. A CAD tool
can implement these two equations by using just one 6-input LUT by selecting
parameters appearing left-hand side as inputs to LUT and outputs E and F can
be connected to O5 (output of 5-input LUT) and O6 (output of 6-input LUT),
respectively.
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Fig. 14.13 Graphical view of
C17 post-synthesis circuit N1
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N23

CLB1
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To insert Trojans at this level, the attacker needs to have information of renamed
signals that can be obtained from synthesized netlist, by converting it to the EDIF.
After obtaining the available wires and logic in the design, the attacker can adapt the
Trojan activation circuit and payload circuit. The Trojan will be described in XDL
language and inserted into the synthesized design by following a similar approach
as explained in inserting Trojan at HDL level.

Example Consider the same C17 circuit targeted for FPGA implementation; the
design space for an attacker changes significantly to insert Trojans in post-synthesis
netlists. The equivalent C17 circuit after synthesis stage of implementation for
Nexys4-DDR FPGA is shown in Fig. 14.13. All the internal nodes of RTL/HDL
shown in Fig. 14.11 are unavailable. Xilinx CAD tool implements the C17 using just
two LUTs due to optimization. The new post-optimized nodes are N221 and N231.
N221 corresponds to merged logic from nodes N10 and N16. N231 corresponds
to N11 and N16 in Fig. 14.11. The contents and the connections of the LUT are
shown using LUT-perspective graphical representation as shown in Fig. 14.14. As
node N16 is not available, the RTL Trojan described in Fig. 14.12 cannot be inserted
in the same way after post-synthesis without disrupting the original mapped design.
We present two methodologies of inserting this Trojan.

Additional hardware. Here we do not modify the mapped LUTs in the netlist.
We create an additional LUT (say MUXLUT) that uses the inputs from IBUF N2
(Fig. 14.14) to get the same activation condition as the Trojan in Fig. 14.12. Another
LUT, say Payload-LUT, to generate the payload using N1, N2, N3, and N6 is used.
The output is connected to MUXLUT. The connection between N221 LUT and
N221_OBUF in Fig. 14.14 is deleted, and N221 is connected to MUXLUT. When
N2 is 1, MUXLUT will output the content of Payload-LUT to output else will output
the content of N221 (normal output of C17). Without optimization, this requires
two additional LUTs. However, only one LUT is required after optimization. The
number of nodes involved including activator and payload is five: N1, N2, N3, N6,
and N221. Hence, we can pack the logic into a single 6-input LUT.

Reuse existing hardware. In this case, we modify the content of original LUT
itself to achieve the desired functionality. From the original C17 in Fig. 14.11 and
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Fig. 14.14 Graphical view of
C17 post-synthesis with
malicious LUT contents
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Trojan in Fig. 14.12, we can see that both depend on nodes – N1, N2, N3, and
N6 – and the LUT in Fig. 14.14 after post-map consists of truth table expressed
as a function of normal C17 circuit. We could modify the truth table to achieve
the functionality of the Trojan and normal C17 using the same LUT. This way, we
introduce the Trojan into the circuit without incurring any extra additional logic and
without any changes to the hardware. In this case, the truth table of LUT 221 is
given by the expression .D3D4/ C .D3..D4D5/ C D6// for the Trojan-free circuit.
We reprogram the LUT 221 with malicious truth table given by expression ..D6 C

D4/.D6 C D5/D3/, where D4 is the input of LUT driven by N2 (Trojan trigger).
This way C17 will function correctly when the Trojan is not triggered (N2 is 0) and
will deliver the Trojan payload when activated (N2 is 1). The required expression
is found by converting the logical equivalence of Trojan with normal operation and
minimizing it to the conjunctive normal form.

14.4.4 Case 3: Trojans in the Mapped/PAR Netlist

Inserting Trojans in mapped/PAR netlist follows the same procedure as inserting
Trojans in the post-synthesized netlist. After the Trojan insertion, the XDL file
is converted back to NCD (the CAD tool may rerun the “place and route” step),
and the bitstream file is generated. After the Trojan is inserted at this level, the
consequent step is generating the programmable bitstream file. Inserting Trojans
in a fully mapped or routed design requires significant effort. The effort can be
alleviated by designing scripts to insert Trojans and verify the routing of design.
Detecting Trojans at this level is also considerably difficult, and the probability of
detection of such Trojans is low.
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14.5 Trojan in Bitstream

FPGAs are configured (or programmed) by loading a binary file, called as configura-
tion bitstream or bitfile on the FPGA’s configuration memory from a PC or over the
network. The structure of a Xilinx configuration bitstream file is essential to insert
the Trojans. The syntax and semantics of this bitfile are usually proprietary, with
very less and basic information publicly available about the bitstream organization,
e.g., in [38]. However, useful software tools have been designed in the academic
community by utilizing this relatively scarce information, primarily to achieve
greater control over the configuration process [23].

14.5.1 Xilinx Bitstream Structure

The description about the configuration bitstream is proposed in [10, 38] and [23]
and focuses on Virtex-II FPGAs. It is described below.

Xilinx Virtex-II FPGA building blocks. In Virtex-II FPGAs, CLBs are the basic
building blocks. They are typically organized in rows and columns and occupy
the majority of the FPGA silicon area. A CLB consists of four slices, with each
slice containing two flip-flops (FFs), two four-input LUTs used to implement logic
functions, and multiplexers to connect and route the logic resources internally. Each
CLB is connected to the RSM which provides paths to interconnect multiple CLBs
in the FPGA. Block BRAM (BRAM) are used as memories. The input/output logic
for each pin on the FPGA device is present in the input/output blocks (IOBs). These
resources are represented using dedicated and separate columns in the bitstream.

Xilinx configuration bitstream file organization. The Xilinx Virtex-II configura-
tion bitstream is stored in a configuration memory and is arranged in frames that are
1 bit wide and stretches from the top edge of the device to the bottom edge, as shown
in Fig. 14.15. All operations must act over complete configuration frames as they
are the smallest addressable segments of the configuration memory space. Single
piece of hardware is not directly mapped by configuration memory frames, but,
they configure a vertical slice of many physical resources [38]. The size of the frame
depends on the device family such as Virtex-II and specific FPGA device (XC2V40)
of interest for which the configuration file is being generated. The relation between
the number of configuration bits and frame count is given by:

No: of configuration bits D frame count 
 frame size (14.1)

Apart from the configuration bits in the frames, the bitfile also contains other
auxiliary information that includes the header of ASCII-encoded name of the top-
level module of the design, cyclic redundancy check (CRC) words, device family,
and timestamp. It also consists of a long trailing series of zeros at the end of the
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Fig. 14.15 Bitstream file organization of Xilinx Virtex-II [10]

files that signify no operation. Each configuration frame has a unique 32-bit address
that consists of a block address, a major and minor address, and a byte number. The
major address represents a specific column within a block, and the minor address
represents a specific frame within a column.

14.5.2 Trojans That Modify the Bitstream

Modification of the configuration bitstream to add a hardware Trojan can be
performed in two ways:

• Type-I Trojans. Without any resource or area overlap between inserted Trojan
circuitry and the original circuitry on the FPGA. In other words, the part of the
bitstream that configures the Trojan circuitry on the FPGA is simply inserted
into the existing bitstream file at positions where no resources have been utilized
originally, and the unoccupied resources of the FPGA are configured with the
extra circuit. In this case, the functionality of the original circuit and the Trojan
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are independent of each other as there is no interconnection between the original
design and the hardware Trojan. This kind of Trojans are called Type-I Trojans.

• Type-II Trojans. There is an overlap between inserted Trojan circuitry and the
original circuitry in terms of the resources occupied on the FPGA. The original
circuit and the Trojan circuits are interconnected, and this kind of Trojans is
called Type-II Trojans. Here, the Trojan can either extract information from the
original circuitry or interfere with its functionality.

Type-I Trojans are easier to insert into the bitstream. However, Type-II Trojans
are relatively harder to insert as it requires the detailed knowledge of the correlation
between routing of the interconnections in the FPGA fabric with the bitstream. Even
for a relatively low-end FPGA model like Virtex-II (device XC2V40), insertion
of Type-II Trojan is an extremely complex task in the absence of supporting
documentation to provide with some basic information. This has been tackled
in [24]. However, the approach taken in [24] derives the design description in XDL,
modifies this file, and transforms to bitfile. This approach does not directly operate
on the bitfile.

14.5.3 Example Trojans in Literature

In [10], a software-based bitstream Trojan insertion technique using an unencrypted
bitstream is demonstrated. The proposed Trojan attack directly modifies the bitfile
to insert Trojans into it. The effectiveness of the attack lies in the fact that at
present there is no verification mechanism for the correctness of FPGA bitfile, apart
from an inbuilt CRC generating and matching mechanism, which can be disabled.
This modification would be extremely difficult to detect before deployment. A
major strength of this attack is that there will be no trace of Trojan insertion in
the generated log files during FPGA CAD tool design processes, as the Trojan is
inserted after these steps are completed.

Researchers have exploited the dynamic reconfiguration capability of modern
FPGAs to add extra functionality [20]. Furthermore, many modern high-end FPGA
families such as Xilinx Virtex family support bitstream encryption. However, there
are many other FPGA families with numerous deployed FPGAs such Xilinx Spartan
family FPGAs with no bitstream encryption support. Moreover, it was also recently
reported that bitstream encryption, which relied on a Triple DES engine inside the
FPGA, was broken using side-channel attacks [22].

Additionally, it has been shown in [33] that it is possible to reverse engineer
crypto algorithms, identify cryptographic elements in bitstream, and perform
modifications that can weaken the FPGA cryptographic implementations. It has
also been demonstrated that by employing such modifications to bitstreams, one
can easily extract the secret key from cryptographic algorithms [33].
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14.6 Countermeasures Against FPGA Trojans

Hardware Trojan detection techniques in the literature can be classified into two
categories: invasive and noninvasive. Invasive techniques require some modification
to the original design to aid in fingerprinting the IC and to verify the authenticity
after fabrication. A few examples include ring oscillator-based design-for-trust, IC
camouflaging, and logic encryption [26, 27].

FPGAs consist of a massive amount of programmable components, and invasive
techniques would require additional gates or hardware for each of these pro-
grammable components. Thus, invasive techniques are not feasible for FPGAs as
this would lead to exponential silicon area overhead. Moreover, physical reverse
engineering techniques can be used to test a small number of ICs, but do not
guarantee that the remaining ICs are free from malicious modifications (Fig. 14.16).

Noninvasive techniques, on the other hand, do not modify the original design.
Instead, a fingerprint of power, timing delay, and/or other side channels of a golden
design, in combination with functional testing, are used. Most of the techniques in
this category use statistical analysis to distinguish a malicious chip from a genuine
one.

There are only a handful of works that detect hardware Trojans in the FPGA
fabric [18, 21, 25] and are described below.

Proposed Attack

Golden.v

Golden.bit

Encrypted.bit?
No 

Modification

Trojan1.v

Trojan1.bit

Trojan2.v

Trojan2.bit

TrojanN.v

TrojanN.bit

Xilinx ISE Xilinx ISE Xilinx ISE Xilinx ISE

Trojan Database

Select Trojan

Appropriate CLB 
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1. Disable CRC Check
2. Modify Configuration File

Modified Golden.bit

End
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No 
Modification

Yes

No
Yes

No

No

Fig. 14.16 Methodology of inserting Trojans in bitstream [10]
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14.6.1 Hardware Trojan Tolerance Using Modular
Redundancy [21]

A triple modular redundancy (TMR)-based technique is used to create a Trojan-
tolerant design methodology in [21, 28, 29]. TMR is a renowned fault mitigation
methodology used to mask circuit faults wherein three redundant copies of the
original system perform a process, and the result is processed by a majority voting
system to produce a single output. Any single fault in one of the redundant modules
will not lead to an error at the output as the majority voter selects the result from
the two faultless modules. TMR, however, leads to 3
 area and power overhead. To
reduce the overhead, adapted TMR (ATMR) is proposed where only two modules
are used at a time, and the third module is employed only when there is a mismatch
in the results of two active modules and shown in Fig. 14.17. An arbiter is used to
identify the erroneous module. The experimental results show a 1.5
 reduction in
power by using ATMR with negligible performance and hardware overhead when
compared to TMR.

The threat model assumes that the Trojans will not be activated simultaneously
in the redundant modules. This assumption may not always be true. To overcome
this limitation, the Trojan tolerance scheme is extended to improve the protection
by using variants of the redundant modules. The key idea here is that instead of
implementing all the redundant modules using the same logic circuit, the redundant
modules implement variants of each other in terms of logic structures and storage
blocks. This way the same nodes are not available across the redundant modules,
and hence, if a Trojan activates across both the modules, then it is assumed to have
a different effect on both the modules. The primary requirement is that the variants
need to differ in both LUT and interconnect structures while keeping the functional
behavior and parametric specifications intact.

Algorithm

+

+

+

If(p==q) then
    pass p to output
else
    stall one cycle;
    recompute with S1;
    if (r==p)
        pass r to output;
        discard q
    else if (r==q)
        pass r to output;
        discard p
    else
        raise ERROR sig.  

Comparator

Arbiter

Input
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O1

R1

S1
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q
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Fig. 14.17 Adapted TMR Trojan-tolerant technique [21]
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To address the limitation of the comparator or arbiter being programmed on a
compromised area, the use of majority voting system for comparator and arbiter is
suggested. However, this approach has considerable hardware overhead.

Moreover, this technique can be used to identify functional Trojans that effect
functionality of the original circuit. It might fail when key-leaking Trojans are
present, as they typically do not interfere or change the functionality of original
designs.

14.6.2 FPGA TrustFuzion [18, 25]

The FPGA TrustFuzion (FTZ) security mechanism is a nondestructive methodology
to detect and isolate anomalies such as Trojans in the FPGA fabric. The authors
use the term anomalies to indicate the presence of Trojans and reliability problems
in FPGA fabric. Anomalies are detected based on the violation to the spatial
correlation of intra-die PV in the FPGA fabric. These anomalies are then isolated
such that any designs can run reliably even on a Trojan-infected FPGA chip. FTZ
is based on the observation that physical characteristics of FPGA fabric’s intra-die
process variation (PV) display a huge amount of spatial correlation [2, 11, 12].

Based on the observation in [2, 12, 40], it is assumed that intra-die variations
measured from the devices under test should exhibit a strong spatial correlation, with
tiles that are closer exhibiting similar characteristics when configured with the same
logic and interconnect resources. An anomaly is said to be detected if the spatial
correlation is violated by even a single device or set of devices for FPGA under test.
Spatial correlation violation is characterized by large deviation in spatial correlation
caused by inconsistent variations among neighboring tiles. Ring oscillators are used
to measure PV [18, 25, 39].

Anomalies are detected based on the spatial correlation violations. The device
locations with anomalies are isolated and excluded from being used in the designs
targeting the FPGA device with anomalies. The FPGA is then divided into different
zones accounting for the exclusion of locations with anomalies. These FPGA areas
are called TrustFuzion zones.

14.6.3 Bitstream Trojan Countermeasures

Countermeasures against bitstream Trojans involve:

Filling up unused resources of the FPGA with dummy logic. Type-I bitstream
Trojans inserts malicious circuits in unused FPGA resources. This can be
prevented by filling up all the unused resources with dummy logic. This way, the
attack space for the adversary is reduced significantly [10]. However, this would
increase the power consumption of the FPGA and adversely affect performance.
Grounding unused pins of an FPGA design. Type-II bitstream Trojans can leak
secret key through covert channels using unused I/O pins of the FPGA. This can
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be prevented by grounding the unused pins [10]. However, this does not prevent
Trojans that leak key through the pins used in the FPGA design or any other side
channels.
Built-in self-test. Type-II Trojans that weaken crypto-algorithms can be identified
by using an integrated self-test that checks the functionality of the algorithm
implemented in FPGA for a fixed key and plaintext [33]. However, integrity
value has to be stored within the FPGA bitstream itself and can be identified
and modified by an attacker.
Dedicated hardware to check CRC status. Type-I Trojan described in [10] can
disable the CRC in the bitstream. A custom hardware can be placed between the
configuration memory and the FPGA to check for disabling CRC and can be used
to prevent the loading of bitstream when CRC is disabled [10].
Scrambling and descrambling the bitstream file. The bitstream can be scrambled
by software, and a dedicated hardware can be used to descramble prior to
loading into FPGA [10]. This would add an additional layer of complexity
to an attacker and prevent direct modification of the bitstream. However, the
scrambling mechanism has to be kept secret, and this acts a low-cost alternative
to encrypting bitstreams in FPGA.

14.7 Conclusion

In the last decade, the use of FPGAs has increased significantly and even has
been employed in various applications including mission critical systems. Hence,
studying the threat landscape for FPGA security is critical. This chapter identifies
the different FPGA Trojans that can be inserted at various phases of FPGA life
cycle. Most research on FPGA security emulates Trojan on FPGA while trusting the
FPGA fabric. Trojans can be inserted in even FPGA fabric, similar to any other type
of ICs/ASICs. FPGA fabric Trojans that can be inserted by an untrusted foundry and
a malicious actor in the supply chain in literature are identified, and the taxonomy is
introduced. The bitstream files and the designs in HDL format can also be corrupted
with Trojans.

This chapter also discussed the countermeasures proposed in the literature. Only
a couple of technique exists to verify the physical fabric of FPGA for hardware
Trojan. Trojans present in physical FPGA fabric could be detected by accounting
for spatially correlated intra-die process variations. The intra-die process variation-
based approach can identify anomalies contributing to delay or voltage change by
locating inconsistent physical characteristics from the ones in close-by regions.
Comprehensive work on malicious modification effects can be done by designing
and simulating layout without and with anomalies. This would give a better insight
into anomaly characteristics and would potentially aid in indicating the precise type
of anomaly inserted into the FPGA fabric. However, many of the design details
remain proprietary information and are not available to researchers, thus impeding
the research.
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Chapter 15
Hardware Trust in Industrial SoC Designs:
Practice and Challenges

Sandip Ray

15.1 Introduction

We are living in the regime of Internet of things (IoT)—a regime in which the
number of connected, smart computing devices (or “things”) exceeds the human
population and is proliferating at an even faster pace [12]. Today, our environment
includes billions of these computing devices sensing, identifying, tracking, and
analyzing some of our most intimate personal activities including health, sleep,
location, and network of friends. With such pervasive, ubiquitous, and invasive
application of computing systems on all aspects of our life, it is critical to our well-
being to ensure that we can trust these systems to behave reliably, securely, and
according to specification.

Unfortunately, ensuring such trustworthiness in modern computing systems is
a highly challenging enterprise. Vulnerabilities undermining trustworthiness can
creep into the industrial system development flow at various stages, including
architecture, design, system integration, and even validation. Furthermore, the effect
of an “obscure” vulnerability can get magnified into a recipe for catastrophe given
the reality that the same system design is replicated across multiple platforms and
the same device is deployed in a myriad operating environments. On the other
hand, system complexity is shooting up with progressive miniaturization of VLSI
technology, advances in system architecture and design techniques, and exacting
demands of modern applications. Furthermore, time-to-market requirements for
these complex systems have become more aggressive than ever before, making it
ever more challenging to perform comprehensive design validation. Consequently, it
is getting imperative that we rethink our trust paradigms, understand the limitations
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of the current paradigms, and invent technologies that ensure trustworthiness of
computing systems being developed under these challenging constraints.

This chapter is about hardware trust validation techniques. Trustworthiness, as
suggested above, would encompass the entire platform and include functionality,
software compatibility, electrical and physical characteristics, marginality, and
security. Clearly, it is impossible to provide a comprehensive treatment of this
entire spectrum within the context of a single article. Rather, keeping with the
motivations of the collection, we focus here on trust issues as they directly pertain
to system security, i.e., techniques to prevent an adversary from gaining access to
some unauthorized information or data in the system.

Even with this restriction, however, trust challenges in a modern hardware
design is a vast topic. Security challenges arise from a myriad potential attack
opportunities, the large attack surface of modern computer systems, variety of
attacker motivations, etc. In Sect. 15.2 we provide a brief high-level overview of
this diversity of factors. For the reader interested in details of these, we recommend
a variety of other related research in the area [1, 11, 14]. The focus of this chapter
is on the practicum of addressing these challenges, i.e., trust validation technologies
being actually used in industry. The goal is to provide a consolidated reference for
security trust validation practice and emphasize the big gaps between the state of
the practice and the trustworthiness requirements in modern hardware designs.

Unlike most other chapters in this treatise, the trust validation practice itself is
not confined solely to Trojan detection. While handling Trojans remain an important
target of hardware trustworthiness requirements, current approaches to (security-
based) trust assurance attempt to provide general flows and methodologies for
ensuring trust independent of whether the source of vulnerability is a malicious
Trojan or innocuous mistake. Indeed, in many cases, the difference is unclear from
the detection standpoint.

The remainder of the chapter begins with an introduction of the spectrum of trust
vulnerability sources as they pertain to security. We then look at detection practices
currently being use. These vary depending on the adversarial and deployment
models. Rather than going into detail on any specific aspect of the techniques,
we focus here on providing a comprehensive overview of the slew of techniques
involved, from software/design targets to those involving the PCB and the platform.
The exposition in this chapter does not assume any familiarity on hardware trust
challenges or previous experience with any of the trust validation techniques used
in practice.

15.2 The Spectrum of Trust Challenges

Perhaps the most important source of system vulnerability in design that directly
affects security arises from the globally distributed nature of the modern system
design flow. One of the critical achievements of the Internet-based communication
and computing technology over the last decades has been to bring humans across the
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Fig. 15.1 An SoC would often contain hardware IP blocks obtained from entities distributed
across the globe (Source [13])

globe closer together than any time in the history. We are living today in a highly
connected world where physical proximity is getting increasingly irrelevant as an
obstacle for collaboration and coordination. Indeed, it is common for a single com-
pany to have globally dispersed teams across multiple continents, with workforce
highly diverse in terms of culture, religion, history, and heritage (cf. Fig. 15.1). One
upshot of this globalization has been the emergence of increasingly global supply
chain. Virtually, any complex product development today—independent of sector—
involves multiple players typically dispersed physically all across the world. This of
course implies that all players of this complex, distributed supply chain must work
in concert to create the product. Unfortunately, like any distributed system, this is
hard to get right. In particular, from the supply chain perspective, there are at least
three unique challenges that influence system vulnerability.

Interface Consistency: A modern hardware design is typically developed as
a System-on-Chip (SoC), whereby a collection of hardware blocks of coherent
functionality (often referred to as “Intellectual Properties” or “IPs”) are developed
by various IP providers which are then integrated to provide the complete system
functionality. In today’s supply chain, individual IPs are developed by different
organizations (whether multiple organizations inside the same company or by inde-
pendent IP vendors), geographically and culturally dispersed. For this architecture to
be trustworthy, it is important that the interfaces of through which IPs communicate
with each other are clearly defined and respected by each all IPs participating in such
communication. Geographical separation and distributed control can often make
such communication difficult, leaving each party with a different expectation on
the nature of the interface. Of course, a primary effect of this gap is a compromise
in functional correctness; e.g., if an IP A can send a message across an interface
that IP B never expected to receive, then the message may never get processed
leading eventually to starvation or deadlock. However, the mismatch of expectation
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can lead to leakage of secure or sensitive information as well; e.g., a receiving IP
might mishandle a security-sensitive message as a result of ambiguities in interface
specification.

Functional Expectation Consistency: Consistency in functional specification is
a more general case of interface consistency, whereby ambiguities in functional
specification may lead to security vulnerabilities. For example, suppose that an IP
A is required to maintain the invariant that some data variable should not exceed
a certain size bound. This invariant may be assumed (potentially by other IP
providers) to define container data structures for data from the variable with hard
size bounds. If the invariant is not enforced (perhaps inadvertently) by the developer
of IP, A the result may be a buffer overflow resulting in a security compromise
or backdoor. Other results from inconsistent functional expectations for various IP
developers may include confusion between the use of British vs. metric units for
quantities, real-time expectations, etc.

Design Modifications for Fun or Profit: Another obvious challenge in a glob-
alized, distributed design flow is to have effective control over the quality of the
design. An upshot of lack of control is the possibility of malicious modifications of
the design—perhaps by a rogue employee or a malicious IP vendor—that enables
the system to leak information under certain (difficult-to-trigger) circumstances.
For example, in 2012, a study by a group of researchers in Cambridge revealed
an undocumented silicon-level backdoor in a highly secure military-grade ProAsic3
FPGA [16], which was later described as a vulnerability induced unintentionally
by on-chip debug infrastructure. In a recent report, researchers have demonstrated
such an attack where a malicious upgrade of a firmware destroys the processor
it is controlling by affecting the power management system [7]. This problem—
also known as the Trojan problem—has been discussed extensively in various
chapters of the book, and we do not go into details here. However, we point out
that such malicious modifications may come not only from a malicious intent
but perhaps even an inadvertent or innocuous optimization of the design. This
is particularly true in the context of side-channel Trojans. For example, an obvi-
ous performance optimization in computation-intensive algorithms is to develop
heuristics that speed up the common cases. If this is done without proper care, it
can result in a side-channel Trojan that enables the external user to infer, through
observing computation speed, whether the common case is being exercised or not.
Trusted and untrusted CAD tools pose similar trust issues to the SoC designers.
Such tools are designed to optimize a design for power, performance, and area.
Security optimization is not an option in today’s tools; hence, sometimes during the
optimization, new vulnerabilities are introduced [9].

The Problem of Untrusted Foundries: Another crucial outcome of globalization
(and potential lack of quality) is the potential for counterfeit systems and devices.
During distribution of fabricated SoC designs through a typically long distribution
supply chain, consisting of multiple layers of distributors, wholesalers, and retailers,
the threat of counterfeits is a growing one. These counterfeits can be low-quality
clones, overproduced chips in untrusted foundry, or recycled ones [19].



15 Hardware Trust in Industrial SoC Designs: Practice and Challenges 375

The above discussion suggests that we need to rethink security concerns of our
devices as it passes through the entire distributed supply chain, identify potential
vulnerabilities that can be introduced at each point, and determine mitigation
actions. Of course, given the distributed nature of the production process, the
mitigation action can only be defined from the point of view of one player, who
treats the rest of the players in the supply chain as potentially untrusted. In the
remainder of the chapter, we will take two specific points of view. From the
perspective of design, we will treat the SoC integration house as the trusted party
that treats individual IP vendors as untrusted; from the perspective of the full
platform, we will treat the chip supplier as the trusted party—after all, they are
selling the chip and have some stake in the chip being trusted—with all other players
(e.g., foundry, production, validation, etc.) being untrusted.

15.3 Security Policies and Enforcement

A key component of security assurance in a modern SoC designs is enforcement
of security policies. A security policy is a (system-level) requirement that specifies
how access to security-sensitive assets must be handled by the system. Here, we
give a brief high-level overview of security policies and typical industrial flow to
enforce them. The following are two example policies:

• Example 1: During boot time, data transmitted by the crypto engine cannot be
observed by any IP in the SoC other than its intended target.

• Example 2: A programmable fuse containing a secure key can be updated during
manufacturing but not after production.

In general, security policies can specify a variety of requirements ranging from
access control, information flow, liveness, and time-of-check time-of-use. A key
component of trust assurance in a modern SoC design involves ensuring that the
policies are indeed enforced as expected. In current industrial practice, this is done
by a process referred to as threat modeling. Threat modeling roughly involves the
following five steps, which are iterated until completion:

Asset Definition: Identify the system assets governing protection. This requires
identification of IPs and the point of system execution where the assets originate.
As discussed above, this includes statically defined assets as well as those generated
during system execution.

Policy Specification: For each asset, identify the policies that involve it. Note that
a policy may “involve” an asset without specifying direct access control for it. For
example, a policy may specify how a secure key K can be accessed by a specific
IP. This in turn may imply how the controller of the fuse where K is programmed
can communicate with other IPs during boot process for key distribution.
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Attack Surface Identification: For each asset, identify potential adversarial
actions that can subvert policies governing the asset. This requires identification,
analysis, and documentation of each potential “entry point,” i.e., any interface that
transfers data relevant to the asset to an untrusted region. The entry point depends
on the category of the potential adversary considered in the attack; e.g., a covert-
channel adversary can make use of nonfunctional design characteristics such as
power consumption or temperature to infer the ongoing computation.

Risk Assessment: The potential for an adversary to subvert a security objective
does not, in and of itself, warrant mitigation strategies. The risk assessment and
analysis are defined in terms of the so-called DREAD paradigm, composed of the
following five components: (a) damage potential; (b) reproducibility; (c) exploitabil-
ity, i.e., the skill and resource required by the adversary to perform the attack;
(d) affected systems, e.g., whether the attack can affect a single system or tens or
millions; and (e) discoverability. In addition to the attack itself, one needs to analyze
the likelihood that the attack can occur on-field, motives of the adversary, etc.

Threat Mitigation: Once the risk is considered substantial given the likelihood of
the attack, protection mechanisms are defined, and the analysis must be performed
again on the modified system.

Obviously, performing the above activities manually over the range of system
assets and policies, in the presence of subtleties related to implicit expectations,
potential adversaries that break the risk/mitigation analysis, and complex interplay
between functional behavior and security constraints, is a daunting task. Admittedly,
there is a host of available tools to assist in the different steps, e.g., tools for doc-
umenting steps in threat and severity identification identifying security scenarios,
etc. [8, 17]. Nevertheless, the key architectural decisions and analysis still depend
highly on human insights.

15.4 Trust Validation on Design and Implementation

Security validation remains the primary tool for trust assurance in modern SoC
designs. The goal of this activity is to ensure that protections on security-critical
assets work as intended and identify ways in which an adversary can potentially
subvert such protection. Obviously, security validation technology forms a crucial
component of threat modeling. But validation in general is a complex activity,
spanning the entire design life cycle with various interdependent pieces. In current
practice, we divide security validation into four categories.

Functional Validation of Security-Sensitive Design Features: This is essentially
extension to functional validation but pertains to design elements involved in critical
security feature implementations. An example is the cryptographic engine IP. A
critical functional requirement for the cryptographic engine is that it encrypts
and decrypts data correctly for all modes. As with any other design block, the
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cryptographic engine is also a target of functional validation. However, given that
it is a critical component of a number of security-critical design features, security
validation planning may determine that correctness of cryptographic functionality
to be crucial enough to justify further validation beyond the coverage provided by
vanilla functional validation activities. Consequently, such an IP may undergo more
rigorous testing or even formal analysis in some cases. Other such critical IPs may
include IPs involved in secure boot, on-field firmware patching, etc.

Validation of Deterministic Security Requirements: Deterministic security
requirements are validation objectives that can be directly derived from security
policies. Such objectives typically encompass access control restrictions, address
translations, etc. Consider an access control restriction that specifies a certain range
of memory to be protected from DMA access; this may be done to ensure protection
against code-injection attacks or protect a key that is stored in such location, etc.
An obvious derived validation objective is to ensure that all DMA calls for access
to a memory whose address translates to an address in the protected range must
be aborted. Note that validation of such properties may not be included as part of
functional validation, since DMA access requests for DMA-protected addresses are
unlikely to arise for “normal” test cases or usage scenarios.

Negative Testing: Negative testing looks beyond the functional specification of
designs to identify if security objectives can be subverted or are underspecified.
Continuing with the DMA protection example above, negative testing may extend
the deterministic security requirement (i.e., abortion of DMA access for protected
memory ranges) to identify if there are any other paths to protected memory in
addition to address translation activated by a DMA access request and, if so,
potential input stimulus to activate such paths.

Hackathons: Hackathons, also referred to as white box hacking, fall in the “black
magic” end of the security validation spectrum. The idea is for expert hackers
to perform goal-oriented attempts at breaking security objectives. This activity
depends primarily on human creativity, although some guidelines exist on how to
approach them (see discussion on penetration testing in the next section). Because
of their cost and the need for high human expertise, they are performed for attacking
complex security objectives, typically at hardware/firmware/software interfaces or
at the chip boundary.

To perform the spectrum of security validation tasks, various validation tech-
nologies are used in current practice. Three common technologies are fuzzing,
penetration testing, and formal verification. Here, we briefly summarize these
technologies as applied to security validation practice.

Fuzzing: Fuzzing, or fuzz testing [18], is a testing technique for hardware or
software that involves providing invalid, unexpected, or random inputs and mon-
itoring the result for exceptions such as crashes or failing built-in code assertions
or memory leaks. It was developed as a software testing approach and has since
been adapted to hardware/software systems. In the context of security, it is effective
for exposing a number of potential attacker entry points, including through buffer
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or integer overflows, unhandled exceptions, race conditions, access violations,
and denial of service. Traditionally, fuzzing uses either random inputs or random
mutations of valid inputs. A key attraction to this approach is its high automation
compared to other validation technologies such as penetration testing and formal
analysis. Nevertheless, since it relies on randomness, fuzzing may miss security
violations that rely on unique corner-case scenarios.

Penetration Testing: Penetration testing, also referred to as intrusion testing, is
a process of systematically attacking a computing system or platform to identify
security vulnerabilities. This is a highly manual process often performed by expert
hackers with deep knowledge of the design and implementation. Penetration testing
can target the system at any level of abstraction, from architecture to the fabricated
IC. In Sect. 15.5, we will discuss penetration testing techniques that target the
physical IC. That process involves sophisticated electronic aids, including ion beam,
laser attacks, fault attacks, etc. When the target is a design or software (before
the IC has been fabricated), the penetration testing job is to identify functional
vulnerabilities. This is done in the following three phases:

1. Attack Surface Enumeration. The first task is to identify the features or aspects
of the system that are vulnerable to attack. This is typically a creative process
involving a smorgasbord of activities, including documentation review, network
service scanning, and even fuzzing or random testing (see below).

2. Vulnerability Exploitation. Once the potential attacker entry points are discov-
ered, applicable attacks and exploits are attempted against target areas. This may
require research into known vulnerabilities, looking up applicable vulnerability
class attacks, engaging in vulnerability research specific to the target, and
writing/creating the necessary exploits.

3. Result Analysis. If the attack is successful, then in this phase the resulting state
of the target is compared against security objectives and policy definitions to
determine if the system was indeed compromised. Note that even if a security
objective is not directly compromised, a successful attack may identify additional
attack surface which must then be accounted for with further penetration testing.

Note that while there are commonalities between penetration testing and testing
done functional validation, there are several important differences. In particular,
the goal of functional testing is to simulate benign user behavior and (perhaps)
accidental failures under normal environmental conditions of operation of the design
as defined by its specification; penetration testing goes outside the specification to
the limits set by the security objective and simulates deliberate attacker behavior.

Formal Reasoning: This involves making use of mathematical logic to either
derive a security assurance requirement formally or identify flaws in the target
system (architecture, design, or implementation). Application of formal methods
typically involve significant effort, either in the manual exercise of performing
deductive reasoning or in developing abstractions of the security objective which are
amenable to analysis by automated formal tools [2, 4]. In spite of the cost, however,
the effort is justified for highly critical security objectives, e.g., cryptographic algo-
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rithm implementation. Furthermore, for some critical properties, automated formal
methods can be used in a lightweight manner as effective state exploration tools.
For example, TOCTOU property violations often involve scenarios of overlapping
execution of different instances of the same protocol, which are effectively exposed
by formal method tools [6]. The efficacy of formal reasoning in particular to
find corner-case vulnerabilities in design has resulted in EDA vendors developing
targeted “apps” on top of formal tools specifically for security targets and enabled
ease of use for those cases. For example, Cadence JasperGold™ provides apps for
security path verification that targets information flow properties of hardware [5].
In spite of such efforts—and their successful use in various industrial projects—
formal verification remains a complex exercise requiring highly skilled dedicated
personnel.

15.5 Platform-Level Trust Assurance

The preceding sections covered trust assurance techniques in the context of
integrating untrusted IP and software models during SoC system integration.
Unfortunately, these techniques cannot adequately cover implementation errors
that can lead to side-channel or covert-channel information leaks that depend
significantly on the physical characteristics of the device, e.g., leaks through voltage,
current, or emission characteristics. To detect such leaks before deployment, a key
component of security assurance involves intrusion testing on the physical (silicon)
implementation of the device. Typically, such approaches involve removing and
adding materials to the integrated circuit (IC) to access and modify information
in the chip. Potential attacks include optical inspection, reading internal data, or
adding/removing/modifying wires in silicon. In this section, we summarize some
of the key activities involved. As with penetration testing on design models,
these activities involve essentially mimicking the attack on the device as an
external hacker might do, identifying design or implementation vulnerabilities,
and performing mitigatory actions. Note of course that these activities are highly
nontrivial and creative and often make use of highly sophisticated instruments.

Hardware Reverse Engineering: Hardware reverse engineering refers to the act
of inferring the functionality and implementation of a module or system from
layout or silicon implementations. This process typically involves the following
four steps: (1) chip imaging, through polishing, microscoping, etc., to identify
the layout-level structure from silicon, (2) recognizing and interpreting layout-
level structures through sophisticated pattern recognition to turn the layout-level
design into gates, and (3) inferring higher-level functionality from the resultant
gate-level netlist through a combination of gate-level simulation, static analysis,
and machine learning techniques. Obviously, each such activity is complex and
computation intensive and has a large probability of error. Furthermore, these tests
are destructive; consequently, care must be taken to apply them judiciously to
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Fig. 15.2 A nanoprobe
device. The needles are
controlled by motorized arm
for precise scanning and
modification of IC

maximize the chances of success. Unfortunately, tools in this area that scale to
industrial systems are sorely lacking. (This might be considered a benefit, since
if available, such tools could potentially be used for malicious hacking once the
device is in-field.) At the time of this writing, a viable tool is Degate [15] that
facilitates interpretation of circuit images. Developing reverse engineering tools that
enable validation while not permitting in-field reverse engineering is a challenging
question.

Nanoprobing and Atomic Force Microscopy: This activity entails the use of
sophisticated scanning probes (Fig. 15.2) with resolutions of the order of a nanome-
ter or lower. In current practice, we often use nanoprobes with fine probe needles
of step size less than 1 nm, with motorized control for effective efficiency. Such
devices enable accurate and precise movements on electronic commands as well as
extremely precise scanning of the device.

Side-Channel Analysis: Side-channel analysis attacks refer to the inference of
information and data in the device through measurement of its nonfunctional
characteristics. Side-channel attacks used for trust assurance in industry today
include timing attacks (i.e., measurement of runtime differences to statistically
extract a secret asset), power attacks (i.e., measurement of power or differential
power), electromagnetic emanation attacks, communication attacks (i.e., inferring
secrets based on the response of the system to specific commands such as error
messages for a failed the user-supplied response to a system challenge), and even
heat measurements. As we develop devices and infrastructures with hundreds of
devices, the number and diversity of potential side channels are also significantly
high. Consequently, side-channel analysis for trust assurance must be judicious in
navigating effectively through this space.

Fault Attacks: Fault attacks are used to determine if a faulty or defective behavior
of a circuit can be exploited to infer critical information in the device. This attack
involves two stages. In the first stage, a fault is introduced in the computation
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through an external device. Common fault introduction sources include laser beam,
clock jitter, voltage burst, or focused ion beam (among others). The specific device
used depends on a variety of factors, including the type of fault being introduced,
the target chip, the amount of control available, etc. Once a fault is introduced, in
the second phase, one attempts to use the faulty behavior as a side channel to infer
secrets in the system.

15.6 Security Certification

Certification is a process by which an organization (typically a product supplier)
can provide some assurance on the efficacy of security features of a product to the
external world. Certification is an essential component of industrial trust assurance.
In this section, we provide a flavor of the variety of certification processes employed
for security-critical hardware (and software systems).

Security certification involves two additional players (in addition to the supplier
or manufacturer of the product being supplier) who are both independent of the
product supply chain:

• A laboratory or facility (referred to as Information Technology Security Evalua-
tion Facility or “ITSEF”) that evaluates the security claims of the product;

• An organization (referred to as Certification Body) that approves the security
claims based on the evaluation reports from ITSEF.

To illustrate the role and scope of certification, we discuss below two specific
certification standards, Common Criteria and FIPS. In addition to those below, there
are other (nonstandard and sometimes proprietary) application-specific certification
criteria for devices targeted toward specific highly sensitive applications [3], e.g.,
for credit cards, banking systems, etc.

Common Criteria: Common Criteria for Information Technology Security Eval-
uation [20], colloquially referred to as Common Criteria (CC), is an international
standard (ISO/IEC 15408) for guidelines and specifications developed for evaluating
information security products, specifically to ensure they meet an agreed-upon
security standard for government deployment. The criteria can be used on a diversity
of products from operating system down to hardware. As with other certifications,
the manufacturer provides the product collateral (e.g., product overview, security
requirements, enforcement architecture, validation flow, etc.), ITSEF performs the
evaluation, and Certification Body provides the final certification. To standardize
the certification process, Common Criteria sets forth a collection of Evaluation
Assurance Levels (EAL) for the security assurance claim of the product. The
assurance level provides a numerical rating specifying the rigor of evaluation. Each
EAL corresponds to a set of security assurance requirements (or “SARs”) which
covers the development of the product. There are seven EALs listed in the common
criteria, with EAL1 being the most basic and EAL7 the most rigorous (and hence
most expensive to apply).
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FIPS 140-2: The Federal Information Processing Standard (FIPS) [10] is a United
States government computer security standard applicable specifically to crypto-
graphic modules. Its goal is to coordinate cryptographic components of a design that
includes both hardware and software elements. It covers specification, interfaces,
and ports of the modules, their roles in service and authentication, physical security,
deployment targets, electromagnetic interference, etc. FIPS 140-2 defines four levels
of security, where level 1 is the lowest and level 4 is the highest. Level 1 focuses on
the basic security requirements, algorithms, and functionality of the module; level 2

deals with tamper resistance, e.g., seals and coatings to protect against attacks due
to physical access; level 3 requires mechanisms to prevent a malicious agents from
gaining access to the security parameters inside the module; and level 4 requires
protection and isolation against unauthorized attempts at physical access.

While certification is a critical component in ensuring trustworthiness of
security-critical systems and devices, it is important to carefully understand the
evaluation result and exactly what is being certified; a certificate does not necessarily
ensure that the device is immune to attacks and vulnerabilities. For example,
EAL6 of Common Criteria requires a security policy model and evidence that the
functional specification satisfies certain security requirements. This is obviously a
critical requirement in ensuring trustworthiness of the target device. However, this
certificate alone does not imply the implementation of the device would indeed
adhere to the security policy model used in the certification. A customer deploying
the device in a specific environment must comprehend such discrepancies and
potential subtleties and determine how to use the result of certification to ensure
trustworthiness of the application.

15.7 Conclusion

We have provided an overview of security and trust assurance and validation
mechanisms employed in current industrial practice. Trust assurance techniques
applied in practice today range over a large class of technologies and model targets,
from architecture to silicon implementation. The high complexity and expense in
the process is in part because security assurance today is inherently reactive: one
identifies security attacks and their mitigation strategies principally by creativity and
experience with past attacks, not by a thorough, systematic analysis of deployment
requirements and vulnerability sources. Indeed, given the diversity of attacks and
complexity of devices, it is unclear how to be more systematic. Furthermore, the
expertise required for the various assurance activities varies wildly as we move
from architecture to RTL/software models and finally to silicon implementation
attacks. This suggests the need to develop a cohesive research on security that
can seamlessly move toward various abstraction level. We hope that the exposition
here will contribute to that research by showing the gaps in the current industrial
practicum.



15 Hardware Trust in Industrial SoC Designs: Practice and Challenges 383

References

1. S. Bhunia, S. Ray, S. Sur-Kolay (eds.), Fundamentals of IP and SoC Security: Design,
Validation, and Debug (Springer, Cham, 2017)

2. E.M. Clarke, O. Grumberg, D.A. Peled, Model-Checking (The MIT Press, Cambridge, 2000)
3. EMVCo: EMV® Specifications. See http://www.emvco.com
4. A. Gupta, Formal hardware verification methods: a survey. Formal Methods Syst. Des. 2(3),

151–238 (1992)
5. JasperGold Security Verification Path App. See https://www.cadence.com/content/

cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-
verification/jasper-gold-verification-platform/security-path-verification-app.html

6. S. Krstic, J. Yang, D.W. Palmer, R.B. Osborne, E. Talmor, Security of SoC firmware load
protocol, in IEEE HOST (2014)

7. E. Messmer, RSA security attack demo deep-fries Apple Mac components (2014). See http://
www.networkworld.com/news/2014/022614-rsa-apple-attack-279212.html

8. Microsoft Threat Modeling & Analysis Tool version 3.0 (2009)
9. A. Nahiyan, K. Xiao, D. Forte, Y. Jin, M. Tehranipoor, AVFSM: a framework for identifying

and mitigating vulnerabilities in FSMs, in Design Automation Conference (2016)
10. NIST: Federal information processing standards publication: security requirements for crypto-

graphic modules. See http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
11. S. Ray, J. Bhadra, Security challenges in mobile and IoT systems, in IEEE System-on-Chip

Conference (2016)
12. S. Ray, Y. Jin, A. Raychowdhury, The changing computing paradigm with Internet-of-Things:

a tutorial introduction. IEEE Des. Test Comput. 33(2), 76–96 (2016)
13. S. Ray, S. Bhunia, P. Mishra, Security validation in modern SoC designs, in Fundamentals of

IP and SoC security: design, validation, and debug, ed. by S. Bhunia, S. Ray, S. Sur-Kolay
(Springer, Cham, 2017), pp. 9–28

14. S. Ray, E. Peeters, M. Tehranipoor, S. Bhunia, System-on-Chip platform security assurance:
architecture and validation. Proc. IEEE (2017). https://doi.org/10.1109/JPROC.2017.2714641

15. Reverse engineering integrated circuits with degate. See http://www.degate.org
16. S. Skorobogatov, C. Woods, Breakthrough silicon scanning discovers backdoor in military

chip, in CHES (2012), pp. 23–40
17. J. Srivatanakul, J.A. Clark, F. Polac, Effective security requirements analysis: HAZOPs and

use cases, in 7th International Conference on Information Security (2004), pp. 416–427
18. A. Takanen, J.D. DeMott, C. Mille, Fuzzing for Software Security Testing and Quality

Assurance (Artech House, Norwood, 2008)
19. M. Tehranipoor, U. Guin, D. Forte, Counterfeit Integrated Circuits: Detection and Avoidance

(Springer, Cham, 2014)
20. The Common Criteria. See http://www.commoncriteriaportal.org/cc/

http://www.emvco.com
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
http://www.networkworld.com/news/2014/022614-rsa-apple-attack-279212.html
http://www.networkworld.com/news/2014/022614-rsa-apple-attack-279212.html
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://doi.org/10.1109/JPROC.2017.2714641
http://www.degate.org
http://www.commoncriteriaportal.org/cc/


Chapter 16
Conclusion and Future Work

Swarup Bhunia and Mark M. Tehranipoor

Hardware Trojan horse or hardware Trojan attacks have been the subject of active
research for the past decade. The scope of this research has broadened over time –
with the possibility of malicious hardware modification extending to different stages
of integrated circuit’s life cycle (from IP to microchips) as well as to different
levels of hardware abstractions (from microchips to printed circuit boards). It now
represents a new branch of hardware security. Security concerns caused by hardware
Trojans are relevant to various parties involved in the life cycle of electronic
hardware – from system-on-chip designer to original equipment manufacturers
(OEMs) to end users. The fact that the electronic hardware is subject to malicious
alterations is an intriguing departure from conventional wisdom, which assumes that
hardware is hard to compromise, is fundamentally more secure and trustworthy than
its software counterparts, and hence can be used as trust anchors or “root of trust”
for diverse computing and communication systems.

Over the past decades, research on hardware Trojan has followed one of the two
broad tracks: (1) exploration of the threat models and attack modalities and (2)
approaches to deal with the attacks at different levels. The first track has focused
on discovering how hardware can be modified for malicious purpose at different
stages of hardware manufacturing process and how different payload can be
implemented to satisfy multitude of attack objectives. The second track has focused
on countermeasures, which fall into two classes: (1) hardware trust verification
and (2) “design-for-security” (DfS) solutions. The problem of hardware Trojan is
rapidly creating a new field of hardware trust verification, which aims at analyzing
a hardware – either IP or chip or PCB – to verify its trustworthiness with respect
to malicious design artifacts. The first class of countermeasure comprises of wide-
ranging hardware trust verification solutions, which include targeted functional test,
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statistical test, and formal verification approaches. The second class, on the other
hand, follows a preemptive approach where protection against Trojan attacks is
built into a design before the hardware is fabricated. Such solutions can try to
“harden” a design making malicious implantation difficult or infeasible, or make
trust verification easier, or allow online monitoring of Trojan activation to detect
and/or tolerate Trojan effect during field operation. In particular, design techniques
for Trojan resilience or Trojan tolerance (similar to the concept of fault tolerance)
during field operation usher in a promising new direction of Trojan research.

The book has tried to capture all these aspects of hardware Trojan research over
the past decade (2007–2017) in a collection of chapters contributed by prominent
researchers and practitioners in this field. The chapters try to cover the spectrum
of vulnerabilities of modern electronic hardware in terms of Trojan attacks as
well as the whole gamut of possible protection approaches. We hope the chapters
would collectively serve as a comprehensive resource on hardware Trojan attacks
and would provide researchers, students, and practitioners with fundamentals of
hardware Trojan attacks. We are glad to be able to collect these high-quality chapter
contributions to produce the first book of this kind that includes compendium of
materials on this important topic in the field of hardware security.

Over the past decade, Trojan attacks and hardware trust assurance have primarily
been of interest to the Department of Defense. This is due to the potential for
catastrophic consequence caused by hardware infected with malicious implantation
in diverse military applications. Untrusted hardware has emerged as serious con-
cerns for our national security. Such concerns are aggravated by rapidly diminishing
control over microelectronic design and fabrication cycle and a complex distributed
supply chain for electronics which involves multiple untrusted parties. The relative
ease of cloning modern chips and PCBs allows an adversary to incorporate cloned
chips with embedded malicious circuits into a supply chain. Recent reports show
that cloning of chips adds a new and critical dimension to the hardware trust issue. It
is extremely challenging for a system integrator (e.g., OEM) to verify trust of chips
acquired from a supply chain primarily due to the lack of golden chip instances
or reference designs. Trust verification of electronic components acquired from a
supply chain will remain a critical problem and an area of active research in the
foreseeable future. Such a problem may trigger key innovations in hardware trust
verification fundamentally different from the scenario where a chip designer tries
to verify the trust of chips fabricated in an untrusted foundry. In the latter case, the
chip designer would have access to the entire design and knowledge of its expected
functional/parametric behavior.

The issue of hardware trust is, however, gradually being accepted as a problem of
growing significance in the mainstream semiconductor industry. Malicious implants
of different forms, e.g., design modifications in untrusted IPs that may leak secret
information, are being considered to be a valid concern for the system-on-chip
designers. We expect to see increasing emphasis in research and development
activities related to hardware Trojan from the major chip design and electronic
design automation companies in the coming years.
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16.1 Future Work

While the book covers well prior and ongoing research activities in this area, we
hope it would stimulate new research explorations in many directions. In particular,
it is expected to create new research pathways on the following topics:

1. More Complex Attacks

Research on mounting complex and powerful attacks on a computing system
enabled by malicious hardware modification is expected to remain an active research
topic. Clever hardware modification that can be leveraged by software or data during
field operation needs to be investigated and appropriate countermeasures developed.
Such modifications can lead to leaking secret information from inside a hardware
unit or cause malfunction, possibly at an adversary-controlled time. Hardware
modification can also be studied for its effectiveness in mounting different forms
of physical attacks, including side-channel attacks – e.g., fault injection attacks,
where a Trojan can facilitate key leakage through fault injection. Finally, a Trojan
can be implemented that exploits the collusion across multiple parties – e.g., a rogue
physical designer in the design house and an adversary in the foundry. Such Trojans
can be significantly more difficult to detect with post-silicon test since they may alter
functional or parametric behavior of a design under a very rare operating condition
unlikely to be activated during test.

2. Automatic Vulnerability Analysis

There is a growing need to develop CAD tools to automatically analyze a design
with respect to its trustworthiness or its vulnerability for malicious modifications.
The first tool will be important for evaluating trustworthiness for untrusted IPs
that are integrated into an SoC. Such a tool would help us to understand possible
malicious behavior of an IP with respect to known Trojan models, before it is used
by a SoC designer. Note that it is possible that in addition to deliberate malicious
alterations, apparently benign nonfunctional design artifacts, such as design-for-test
(DFT) or design-for-debug (DFD) infrastructure, can be exploited by an attacker for
malicious intent, such as information leakage. An automatic vulnerability analysis
tool should ideally catch these issues too. The second tool is important to analyze
how vulnerable a design is with respect to malicious modification in a foundry. It
should highlight the components or regions of a design which are more vulnerable
than others. There will be a growing need for such automatic analysis tools with
increasing reliance of chip designers on third-party IP blocks and growing trust
concerns in the chip manufacturing process.

3. Metrics and Benchmarks

Associated with the CAD tools, new research is needed to develop trust metrics
and benchmarks for different hardware abstraction levels. For example, ways to
quantify trust for hardware IP blocks would involve a number of important research
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questions – e.g., (1) what structures can be considered untrusted, (2) what functional
behavior of the IP or components of an IP (e.g., the arithmetic logic unit of a
processor) can raise trust issues, and (3) can we come up with a set of well-defined
properties which can be checked for an IP and the results can be used for trust
quantification? A trust metric needs to consider all aspects of trust evaluation to
come up with an aggregate trust value. Similarly, there will be growing demand
for trust benchmarks to evaluate trust verification or trusted design solutions. While
there have been some prominent efforts in this regard, further research is needed
to augment the benchmark suites with respect to emerging attack modalities and to
cover various hardware abstractions.

4. Trust Verification

It is well accepted that a “silver bullet” solution which can reliably protect
against Trojan attacks of all types, forms, and sizes is extremely difficult to achieve.
Effective trust verification which can provide high confidence against diverse trust
issues would remain to be an active research. Trust verification through logic testing
and side-channel analysis has been extensively investigated. The book has dedicated
chapters that elaborate on these solutions. However, the current solutions are often
effective for very specific types of Trojan or have unrealistic assumptions. Further,
golden-free trust verification problem has not received adequate attention from the
research community. There is a clear need for significant new research in this area.

5. Design-for-Security (DfS) Approaches

While trust verification solutions are attractive since they do not incur hardware
or design overhead and can work for legacy components, they suffer from limited
effectiveness and fail to provide complete trust assurance. Trust verification solu-
tions can provide much higher confidence if combined with commensurate design
solutions. Trust-aware design approaches try to make Trojan insertion difficult,
i.e., effectively “harden” a design, and/or make a Trojan easy to activate/observe.
Low-overhead design solutions which are amenable for automation and provide
significant benefit in trust assurance are expected to remain attractive research topic
in both academia and industry.

6. Trojan Attacks in Nanoscale Devices

Continuous scaling of CMOS technology has brought us to sub-10 nm technol-
ogy regime, where new nanoscale devices with interesting switching characteristics
have emerged. These devices often exploit unique material properties and introduce
fundamentally new device structure or state variables (e.g., spins of electrons,
mechanical state of a cantilever, or resistive state of a solid dielectric material).
They exhibit promising behavior in many aspects – e.g., performance, power,
nonvolatility, reliability, manufacturability, and integration density. The operating
principles of nanoscale devices are also expected to modify the concepts of hardware
Trojans. For example, the current in nanoscale transistors strongly depends on
the channel stress, which can be modified through changes in the process steps
or even small layout changes. The more challenging problems will be reliability



16 Conclusion and Future Work 389

Trojans where malicious changes are engineered to radically accelerate the device
aging process. Similar Trojans are possible in non-charge-based devices, e.g.,
by marginally modulating spin polarization, or magnetic tunnel junction (MTJ)
resistance. Future research is expected to focus on exploring Trojan attacks for
nanoscale devices and Trojan-resilient design approaches for these devices.
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