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Abstract. We wish to model railway control systems in a formally
precise way so that product lines can be adapted to specific customer
requirements. Typically a customer is a railway operator with national
conventions leading to different variation points based on a common
core principle. A formal model of the core product must be precise and
manipulatable so that different feature variations can be specified and
verified without disrupting important properties that have already been
established in the core product. Cyber-physical systems such as railway
interlocking, are characterised by the combination of device behaviours
resulting in an overall safe system behaviour. Hence there is a strong
need for correct sequential operation with safety “interlocks” making up
a process. We utilise diagrammatic modelling tools to make the core
product more accessible to systems engineers. The RailGround example
used to discuss these techniques is an open source model of a railway
control system that has been made available by Thales Austria GmbH
for research purpose, which demonstrates some fundamental modelling
challenges.
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1 Introduction

A railway control system is a safety-critical cyber-physical system where common
principles are well established and adopted on a broadly generic infrastructure,
but with an abundance of feature variations across national boundaries. In order
to be able to offer a configurable, yet certified, product it is therefore essential
to adopt an efficient product development process that allows a verified core
product to be adapted to specific solutions. We propose a model-based approach
that will support such a development process.

Motivation. Our motivation is to model railway control systems in a formally
precise way so that product lines can be adapted to specific customer require-
ments. Typically a customer is a railway operator with national conventions
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leading to different variation points based on a common core principle such as
Interlocking (IXL). A formal model of the core product therefore must be precise
and manipulatable so that different feature variations can be specified and veri-
fied without disrupting important properties that have already been established
in the core product. Such properties include the safety principles of a technology
and we assume that they have already been proven to ensure safety. For example,
in our IXL model, we assume that if conflicting paths are exclusively enabled,
this is sufficient to ensure that trains do not collide. In future work, we envisage
using various domain-specific languages (DSLs) so that customers can precisely
specify their specific feature requirements. For now, we focus on modelling the
core system.

We model the core system using notations that are accessible to systems engi-
neers. These engineers have extensive domain knowledge, are skilled at specifiy-
ing systems in the railway domain and usually have experience in semi-formal
modelling tools such as UML and SysML. They are generally less experienced at
formal modelling and proof. For this reason we utilise graphical representations
of the formal model. To fully understand the model, and to debug models when
proofs do not discharge automatically, it is necessary to understand the formal
notation. Formal methods specialists are needed to help with proof and specific
modelling difficulties, but the main content of the models must be accessible to
less specialised systems engineers and other stakeholders.

Event-B and extensions. The Event-B modelling method [1] is suitable for this
formal modelling task because it allows us to verify (core) properties while leav-
ing certain features underspecified, and subsequently refine the model to fully
specify those features in a consistent manner with respect to the abstract model.
Event-B has strong tool support for verification and validation in the form of the-
orem provers and model-checkers. Diagrammatic modelling notations and tools
are available which aid model accessibility. We use the iUML-B class diagrams
and state-machines [15,18,19] in conjunction with Event Refinement Structure
(ERS) [5,6] to visualise event refinement structures.

RailGround. For research and illustration purposes we use an example railway
interlocking specification called RailGround [14]. RailGround is provided as an
open specification and model for this purpose. This is a simplified version of
interlocking systems, built specifically for research on formal validation and ver-
ification of railway systems [14]. This example is used as part of the rail use case
of the European project Enable-S3 [4].

Contribution. Cyber-Physical Systems (CPS) such as the railway interlocking,
are made up of many disparate devices with interrelationships. They are charac-
terised by the combination of device behaviours resulting in an overall safe system
behaviour. Hence there is a strong need for correct sequential operation with safety
“interlocks” making up a process. To model CPS we start by modelling the entity
relationships of the devices using an iUML-B class diagram, we then model the
individual behaviour of instances of these entities using iUML-B state-machines.
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However, this is not sufficient to show the overall system process. To show this
we add the ERS view which shows the process based on the sequences of events
involved in the interaction of all devices.

Our contribution is an approach for modelling CPS using diagrammatic nota-
tions for the three views above: Entity-Relationships, Entity-Behaviour and Sys-
tem Process. Our approach utilises an integration of iUML-B and ERS.

Structure. In Sect. 2 we describe the requirements of the RailGround system
and introduce the modelling notations and tools that we use to model it. In
Sect. 3 we describe our model of the RailGround system in order to illustrate
the use of the formal modelling notations. Section 4 discusses related work to
our approach and the case study. In Sect. 5 we reflect on the effectiveness and
benefits of combining the modelling notations and indicate future work.

Dataset. The Event-B model illustrating this paper is available as a dataset
here: https://doi.org/10.5258/SOTON/D0184. The required Rodin and plug-in
configuration is given in a ‘readme’ file within the dataset.

2 Background

We first present some background information on the case study including its
requirements in Sect. 2.1. Subsequently, we give a brief overview of the Event-B
method in Sect. 2.2, of iUML-B in Sect. 2.3, and of ERS in Sect. 2.4.

2.1 RailGround

The example used in this paper is based on RailGround, a formal model of a
railway interlocking system using Event-B, which was developed by Thales Aus-
tria GmbH [14]. Railway systems, in general, aim at providing a timely, efficient
and most importantly a safe train service. This requires a reliable command and
control system that ensures a train can safely enter its specified path. In the
system under consideration, the railway topology consists of a set of connected
elements, which are protected by signals passing information to the trains. The
safety of a train is ensured by allowing its path to be set, only if it does not con-
flict with the current available paths. The following requirements are extracted
and simplified from [14]. For illustration, we will consider the network topology
with one track and two points as in Fig. 1. Note that we focus on modelling
the system functional safety here. This is a subset of the overall system safety
functionality. In particular, technical measures from other domains to achieve
the desired Safety Integrity Level (SIL) are not considered.

Railway Topology. The railway topology is formed by a set of Rail Elements.
A rail element is a unit which provides a physical running path for the trains, i.e.
rails (e.g. track, points, crossing). A Rail Connector is a port of a rail element
used to define the element’s connectivity via Rail Segments as well as to link

https://doi.org/10.5258/SOTON/D0184
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Fig. 1. An example railway topology [14]

this element with the adjacent ones via rail links. Depending on its type, each
rail element usually has 2 to 4 rail connectors. Each rail connector belongs to
exactly one rail element. Typically, a rail element is made up of one or more
Segments. A rail segment is a connection from an element’s rail connector to
another connector of the same rail element.

REQ 1 The network topology is a set of rail elements.
REQ 2 A rail element has 2 to 4 rail connectors. Each rail connector belongs to

exactly one rail element.
REQ 3 A rail segment is a connection from a rail connector of some rail element

to another rail connector of the same rail element.

In Fig. 1, there are three rail elements, namely T (a track), P1, P2 (points). The
connectors are a, b, ..., h and associate with the rail elements as follows:

T �→ {b, c}, P1 �→ {d, e, i}, P2 �→ {f, j, g}.

The segments are {bc, cb, di, id, de, ed, jg, gj, fg, gf}. The relationship between
the rail elements and the segments are as follows:

T �→ {bc,cb}, P1 �→ {di, id, de, ed}, P2 �→ {jg, gj, fg, gf}.

Element Positions. For each rail element, an Element Position is a distinct
situation of that rail element. Furthermore, each element position defines the
set of possible element connections (defined by segments) for that particular rail
element.

REQ 4 For each rail element, there is a set of possible element positions
REQ 5 Each rail element and position correspond to a set of rail segments

For example, a set of points has three possible positions POS X (in transition),
POS L (left), POS R (right). Consider the points P1, position POS X corresponds
to an emptyset of segments, POS L corresponds to segments {di, id}, and POS R
corresponds to segments {de, ed}.
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Paths. A path is a sequence of rail segments, with the constraint that two rail
segments of the same rail element are not allowed within one path. A path can
be activated so that trains are allowed to be on that path.

REQ 6 A path is a sequence of rail segments.
REQ 7 Two rail segments belonging to the same element are not allowed within

one path.

Consider the example in Fig. 1, a path could be the following sequence of seg-
ments [bc, di, jg], or [gf, ed, cb].

Path Life-Cycle. A set of paths are pre-defined in the network. Before becom-
ing active, a path must be requested. As soon as all conditions for the path (e.g.,
rail elements must be in the required position to establish its path), a requested
path can be activated. As a train moves along a path, rail elements that are no
longer in use can be released. An active path can be removed only after all its
rail elements are released. A rail element position can only be changed if the rail
element is not part of an active path.

REQ 8 A requested path can become an active path when all conditions for
that path are met

REQ 9 An active path can be removed only after all its rail elements are
released.

REQ 10 A rail element position can only be changed if it is not part of an active
path.

In the example network topology, we can have the following paths R1–R4, with
the following associations:

R1 �→ [bc, de, fg], R2 �→ [bc, di, jg], R3 �→ [gf, ed, cb], R4 �→ [gj, id, cb].

Vacancy Detection. In order to detect trains on the network, the system is
equipped with Track Vacancy Detection (TVD). Each segment belongs to exactly
one TVD section. A TVD section is either vacant or occupied. A TVD section is
occupied if there is some train on some segment belonging to that TVD section.

REQ 11 Each segment belongs to exactly one TVD section.
REQ 12 A TVD section can be either in vacant or occupied state.

Signals. A Signal is an entity capable of passing information to trains. A signal
is associated with a rail element for a particular traversal direction. A signal
aspect is an (abstract) information conveyed by a signal. Signal Default is a
predefined aspect of signals. Trains are assumed to obey the signals, in particular,
stop at a signal containing default aspect.

REQ 13 A signal may be set to an aspect other than default, only if there is an
active element after this signal.
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REQ 14 A signal is associated to a connector and hence to a specific location
within the topology, i.e., the information passed by the signal are only valid
to a specific direction which in this case will be the segment starting at the
signal connector.

In Fig. 1, we have 4 signals, S1–S4 associated with different connectors as follows.

S1 �→ a, S2 �→ c, S3 �→ d, S4 �→ h

Safety Properties. Safety in this model is ensured by the paths which are
active. The paths can only be set if all its elements are in the right positions.
Safety is ensured by preventing paths to be requested if there are other paths
requiring the same elements.

REQ 15 Two active paths cannot overlap
REQ 16 An active path must have all its elements in the right positions
REQ 17 A path can be requested if it is disjoint from other active or requested

paths.

2.2 Event-B

Event-B [1] is a formal method for system development. Main features of Event-
B include the use of refinement to introduce system details gradually into the
formal model. An Event-B model contains two parts: contexts and machines.
Contexts contain carrier sets, constants, and axioms that constrain the carrier
sets and constants. Machines contain variables v, invariants I(v) that constrain
the variables, and events. An event comprises a guard denoting its enabling-
condition and an action describing how the variables are modified when the
event is executed. In general, an event e has the following form, where t are the
event parameters, G(t, v) is the guard of the event, and v := E(t, v) is the action
of the event1.

e == any t where G(t,v) then v := E(t,v) end

A machine in Event-B corresponds to a transition system where variables rep-
resent the states and events specify the transitions. Contexts can be extended
by adding new carrier sets, constants, axioms, and theorems. Machine M can
be refined by machine N (we call M the abstract machine and N the concrete
machine). The state of M and N are related by a gluing invariant J(v,w) where v,
w are variables of M and N, respectively. The gluing invariant specifies the con-
sistency between the abstract and concrete machines and must be maintained
by the execution of both machines. Intuitively, any “behaviour” exhibited by
N can be simulated by M, with respect to the gluing invariant J. Refinement
in Event-B is reasoned event-wise. Consider an abstract event e and the corre-
sponding concrete event f. Somewhat simplifying, we say that e is refined by f if

1 Actions in Event-B are, in the most general cases, non-deterministic [8].
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f’s guard is stronger than that of e and f’s action can be simulated by e’s action,
taking into account the gluing invariant J. More information about Event-B can
be found in [8]. Event-B is supported by Rodin platform (Rodin) [2], an exten-
sible toolkit which includes facilities for modelling, verifying the consistency of
models using theorem proving and model checking techniques, and validating
models with simulation-based approaches.

2.3 iUML-B

iUML-B [15,18,19] provides a diagrammatic modelling notation for Event-B
in the form of state-machines and class-diagrams. The diagrammatic elements
are contained within an Event-B model and generate or contribute to parts of
it. For example a state-machine will automatically generate the Event-B data
elements (sets, constants, axioms, variables, and invariants) to implement the
states, and contribute additional guards and actions to existing events. iUML-
B Class diagrams provide a way to visually model data relationships. Classes,
attributes and associations are linked to Event-B data elements (carrier sets,
constants, or variables) and generate constraints on those elements. In iUML-B
class diagrams, a class represents some set of instances and the class may be used
to show relationships with other classes. Usually the set of instances is given by
an Event-B data element, but in some scenarios it is useful to construct a set
using an expression as the class name.

2.4 Event Refinement Structures

In Event-B, behaviour can be decomposed during refinement into a combination
of new and refining atomic events. However, the relationship between the events
at different refinement levels is not explicit, for this we use ERS [5,6] diagrams.
ERS, is a tree-like structure, inspired by Jackson Structure Diagrams (JSD) [10],
that provides a graphical extension of Event-B to represent event decomposition
explicitly. In addition to specifying event decomposition, an ERS diagram can
explicitly represent control flow. Similar to JSD diagrams, the ordering of events
is read from left-to-right. In addition to sequencing ERS provides different com-
binators that support iteration, choice and different forms of non-deterministic
interleaving.

3 RailGround Model Using iUML-B and ERS

In this section we describe our version of the RailGround model which is modelled
in iUML-B and ERS. For each refinement level we discuss the iUML-B class
diagram and state-machine (where applicable) and then describe the behaviour
of that refinement level, including the refinement relationships of events, using
an ERS diagram.

The overall ERS diagram of the RailGround model is illustrated in Fig. 2. The
root of the diagram represents the name of the system and it is parametrised
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by p of type PATH to show the possible interleaving of different paths. The
different regions represent the different refinement levels. One of the refinement
levels (Rails) does not change the event refinement structure, hence the second
region represents two refinement levels. Events of the RailGround model are
represented by the leaf nodes of the tree, where an event connected to its parent
by a dashed line is a newly added event, while a solid line represents a refining
event which is identified by the keyword refines in the Event-B model.

Fig. 2. Event Refinement of the RailGround model shown in ERS (solid lines: refining
events, dashed lines: new events)

The refinement sequence adopted for the iUML-B model is as follows:

1. Paths - abstract representation of the path of a train through a rail network
(REQ 15, REQ 17).

2. ElemPos - positioning of elements in the rail network to put a path in the
right state (REQ 1, REQ 4, REQ 8, REQ 9, REQ 10, REQ 16).

3. Rails - connectivity of elements and their organisation into segments (REQ 5,
REQ 6, REQ 7).

4. Vacancy detection - the ability of elements in the rail network to detect when
they are occupied by a train (REQ 11, REQ 12).

5. Signal - signals that inform trains to stop or proceed through a path (REQ 2,
REQ 3, REQ 13, REQ 14).
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The reasons for choosing this sequence are

– The exclusive reservation of a path is the primary concept upon which inter-
locking safety is based. Therefore it is important to model this first when the
model is simple, so that it is easier to validate.

– More detail about the operation of paths is introduced next (Element posi-
tioning, Rails).

– The occupation of a path is an important concept that can be introduced as
soon as paths are sufficiently modelled.

– Signals are a design detail which can vary depending on customer. It is there-
fore more convenient to introduce this late.

Paths. Our first abstract model introduces the notion of paths through a rail
network. Paths are reserved for exclusive use ensuring that trains cannot collide.
Paths are a conceptual device used by the control system, which are related to
a set of physical elements in the railway system. The iUML-B class diagram,
Fig. 3a, defines a finite given set PATH of paths and an association, Path Exc of
paths that conflict with each other. Axioms constrain this association so that
paths do not conflict with themselves and the association is symmetric. The
iUML-B state-machine, Fig. 3b defines the behaviour of paths. A path is initially
requested (add path req) and can then be made active (add path curr), followed
by released (add path rel) and then removed (remove path curr). Paths that have
been made active but not yet removed are called current. This is represented by
superstate path curr which allows us to specify the state invariant that for all
current paths, none of their conflicting paths are also current. This is the safety
principle of interlocking systems. It is ensured by a guard on add path curr.
There is also the possibility remove path req of un-requesting a path without it
ever becoming current.

(a) iUML-B Class Dia-
gram for path properties

(b) iUML-B State-machine for
path behaviour

Fig. 3. Abstract model of paths through a rail network
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The process involved at this abstract level of the model is represented by
the Paths region in Fig. 2 on page 8. The RailGround model starts by adding a
required path, then there is a choice (indicated by xor) between either removing
the path or making it the current path. If the path p is added as current, then it
can be followed by releasing the path, after which the path can be removed from
the current paths. At this level, since there is only one (conceptual) device and
no refinement, the ERS diagram has a close correspondence with the iUML-B
state-machine diagram.

Element Position. In the first refinement we introduce the idea that elements
need to be in a particular position for a path. This corresponds to physical
devices such as railway “points”. We define a constant function Path Elem Pos
(Fig. 4a) which, for each path, gives a functional mapping from elements to posi-
tions. That is, the position that each element of the path needs to be in for that
path to be ready. We also define a default position Default Elem Pos for each
element. Variable functional associations are defined for the current position
rail elem pos curr and current path rail elem path curr of each rail element. Two
RAIL ELEM class methods are provided to set the position, rail elem pos curr, of
a particular element. Method setRailElemPos Curr sets the position when the ele-
ment is not involved in a path, and method setRailElemPath Curr sets the element
to the appropriate position for a given path. The current path of an element is
set and reset when the path is made current and released respectively (i.e. these
actions are added to the relevant state-machine transitions). Two class invari-
ants are added to class RAIL ELEM. The first states that, if an element belongs
to a current path, then that element must have a defined position for that path
according to Path Elem Pos. The second ensures that the element is currently in
the correct position according to Path Elem Pos. Two state invariants in state
path req (Fig. 4b) require that the requested path has no elements in common
with another requested path and no elements in common with a current path.

The ElemPos region (Fig. 2 on page 8), illustrates how the atomicity of adding
a current path is broken into two events, the first sets the rail elements position
of the current path to the required position, followed by adding the path as
current, which is in this case the refining event (solid line). However in order to
add the path as current, there is a requirement that all elements of the required
path should be in the right position, that is why we apply the all combinator
adding an additional dimension, elem of type RAIL ELEM, to the ERS model. The
other new event (setRailElemPos Curr) is not associated with a path and therefore
does not appear in the process described by the ERS diagram. The ERS diagram
visualises the system level process requirement that the positioning of elements
must be completed before the path becomes current. This is not apparent in the
iUML-B model which focusses on the behaviour of individual devices (PATH and
RAIL ELEM). The fact that setRailElemPath Curr is a preliminary (stuttering)
event leading to add path curr is made clear in the ERS diagram. Arguably,
this is shown in the iUML-B state-machine by adding setRailElemPath Curr as a
transition on the source state, path req of add path curr but the event refinement
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(a) iUML-B Class Diagram for element position

(b) State-invariants for element position

Fig. 4. First refinement introducing element positioning

relationship is not as explicit as in the ERS diagram. On the other hand, the ERS
diagram does not illustrate state constraint information such as the requirement
that setRailElemPath Curr is only performed while the associated path is in the
state path req.

Rails. In the second refinement we introduce a stronger relationship describing
the physical construction of paths using rail segments. To do this we introduce
a given set RAIL SGMT (Fig. 5) with a functional association Rail Sgmt Elem
to RAIL ELEM. An association Path Segmt gives the subset of RAIL SGMT that
makes up each path. Class axioms specify various constraints to ensure the new
segment representation is consistent with other configuration data.

In this refinement, we extended the context to introduce details about the
rail’s connectivity using segments, which only resulted in changing the model’s
behaviour by adding some invariants and guards to the existing events relating
connectivity to the element position. Consequently, there were no changes to the
structure and ordering of events, which remains the same as the ElemPos region.

Vacancy Detection. In the third refinement (Fig. 6) we introduce the detection
of trains as they occupy rail segments. A new given set TVD SECT is introduced
to represent TVD sections that can detect when they are occupied. A many-
to-one relationship TVD Seg Sect from RAIL SGMT to TVD SECT specifies the
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Fig. 5. Second refinement introducing rail segments

TVD section of each segment. The TVD sections own an attribute tvd state curr
which represents the current occupancy state: Vacant or Occupied. Class meth-
ods are provided for setting the state of this attribute: event set tvd state curr
sets it to Occupied while event release path sect sets it to Vacant. These events
are only enabled when the section belongs to a segment of an active path, i.e.,
it is assumed that trains only move over active paths. (This will be ensured by
signals in the next refinement.)

At the Vacancy Detection level (Fig. 2 on page 8), we break the atomicity
of set path rel, which releases the current active path. Here we introduce the par
combinator which allows the interleaving of its instance values zero or more times
before its follow-on event executes. In this case, the par shows the possibility of
occupying a TVD section (set tvd state curr) then leaving it (release path sect)
before releasing an active path. This ensures that all TVD sections are vacant
before releasing the path. The ERS diagram visualises the system level process
requirement leading to releasing a path which is not so explicit in the iUML-B.

Fig. 6. Third refinement introducing detection of trains

Signals. In the final refinement (Fig. 7) we introduce signals that control the
entry of trains wanting to use a path. The given set (class) SIGNAL has a vari-
able attribute signal aspect curr which represents the current aspect and a con-
stant attribute Signal Aspect Avail that provides the set of available aspects for
that signal. Note that the only specific signal aspect defined at this level is
Signal Aspect Default which represents the signal’s stop aspect. Other aspects
may by introduced at later stages when tailoring the specification to a particu-
lar product. Class method set signal aspect proceed sets the aspect of the signal
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to proceed (i.e., not default) while method set tvd state signal sets the signal
back to default as the corresponding connected section becomes occupied. Sig-
nals are related to paths via connectors. This is modelled by class (Elem Ctor)
and the associations Signal Ctor and Path Ctor Beg. Signals are also related to
Track Vacancy Detection (TVD) sections via their connectors and the associa-
tion Sgmt Ctor. A class invariant cdm inv2 ensures that a signal is only set to a
non-default value when there is an active path at the rear of the signal.

Fig. 7. Fourth refinement introducing signalling

In the Signals region of Fig. 2, we split set tvd state curr into two cases using
the xor combinator. In the first case the TVD section is part of a path but is
not protected by a signal (set tvd state path). In the second case the section is
protected by a signal. In this latter case we need to set the signal’s aspect to
proceed first. Then it is possible to occupy that section (set tvd state signal),
in which case we also set the signal’s aspect back to default to indicate that
the section is now occupied. Again the ERS diagram compliments the iUML-B
model by visualising the system level process details of signal setting and how
it interacts with TVD occupation.

4 Related Work

Our approach combines a state-based modelling notation (iUML-B) with a
process-based notation (ERS). Essentially, iUML-B diagrams captures the com-
plex data aspect of the system and their evolution, while ERS diagrams represent
the behavioural aspect of the system, in particular sequencing of events. In this
sense, this is similar to various existing approaches combining state-based and
process-based notations, e.g., CSP and Z [21], CSP and B [3,16], CSP and Event-
B [17], etc. In particular, these approaches also support development of systems
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via (separate) refinement of the state-based model and the process-based model.
In our work, both iUML-B and ERS get there semantics by transforming them
to Event-B and can contribute to the underlying Event-B model, hence their
meanings are given entirely using Event-B. This is in contrast with the above
mentioned approaches where essentially combining the different formalisms. As
a result, the semantics of these approaches are given using more expressive nota-
tion such as Unifying Theories of Programming (UTP), for example [13].

We illustrate our approach on a case study based on the RailGround
model [14]. The RailGround model is atypical in that it begins by modelling
the established principals of interlocking systems without modelling the safety
properties that those systems are designed to achieve. The reason for this is
that the principles of interlocking are a proven design mechanism for controlling
trains in a safe way. The model focusses instead on providing a precise and accu-
rate specification of the interlocking product-line. The same case study has been
used in [9] for illustrating the use of iUML-B class-diagrams to visualise domain-
specific Abstract Data Types (ADTs). The RailGround case study is similar to
the one tackled by Abrial [1, Chapter 17], however, our focus here is on the
complementary usage of iUML-B and ERS diagrams for modelling. In [7], the
authors present the development of a train control system using Event-B with
the focus is on the use of ADTs to simplify the modelling task. In particular, the
system is based on Commnications-based Train Control (CBTC) and hence the
focus is on train tracking using moving blocks. In [11], the authors use CSP||B
[16] to model an interlocking system and verifying the system using ProB model
checker [12]. In [20], the authors present an approach for formal development of
interlocking systems using a DSL to specify the configuration data of the inter-
locking system. The data is then used to generate a concrete behaviour model
of the interlocking system from a generic behavioural model and concrete sys-
tem properties from generic properties. The concrete properties and the concrete
system are then verified using SMT-based bounded model checking (BMC) and
inductive reasoning. In both [11,20], refinement is not considered.

5 Conclusion

In this paper we present an alternative development to the RailGround interlock-
ing system, which was originally developed by Thales Austria GmbH using plain
Event-B. Our approach is based on a combination of a state-based (iUML-B)
and a process-based (ERS) approach. The RailGround model contains several
complex entity relationships to represent the railway topology. By separating
the entity relationship model, illustrated by the class diagrams, from the behav-
ioural model, we are making the modelling process more efficient. The class
diagram allows us to explore different abstractions efficiently compared with
specifying these data relationships textually in Event-B. The behavioural model
of the system is represented by both the state-oriented state-machines and the
process-oriented ERS diagrams. The statemachines give a view of the behaviour
which is local to a particular type of entity. ERS makes the system level ordering



Formal Modelling Techniques for Efficient Development 85

of the transitions more visible. ERS also explicitly represents the event decom-
position and their refinement relationships. In our developments, we used the
iUML-B graphical tool which also automatically generates part of the Event-B
model, making the modelling process more intuitive and efficient for engineers.
Here, we only used the ERS as a visualisation to avoid the duplication of con-
trol variables generated by both ERS and state-machines. However, the ERS
and state-machine views of behaviour complement each other and facilitate the
modelling process.

The presented approach, which is based on different visualisations from dif-
ferent perspectives makes the model more understandable and easier to commu-
nicate, but also simplifies the model and is thus cheaper to verify and validate,
which is a primary goal of the Enable-S3 project. This is a huge benefit for any
further model adaptation and modifications, which are inevitable due to long
product life time (25+ years). In future work we will do some trials to assess the
complexity of making changes to the model with and without visualisations.

Future work. In this paper, our focus is on building an approach for the generic
modelling of the core system. Currently iUMLB and ERS specify control flow
from different perspectives. We are looking at a tool integration of ERS with
iUML-B to have a common generation mechanism of Event-B.

We have started to complement the approach with DSLs for specifying
customer-specific variations in feature requirements. For example, a DSL for
specifying signalling has been developed. The DSL is precise enough to per-
form a certain amount of static-checking, but easily understood by the cus-
tomer’s domain experts. The signalling specification is translated into an Event-
B machine which is proven to refine the generic signalling required by the core
product model. We are developing composition and instantiation mechanisms
so that we can isolate the generic signalling requirements as a separate compo-
nent in the core product model. This component structuring of the model helps
to address scalability and re-use as well as facilitating customer specific feature
variants in order to efficiently obtain a complete and verified model of a customer
specific product.
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