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Abstract. Train control technology enhances the safety and efficiency of
railroad operation by safeguarding the motion of trains to prevent them
from leaving designated areas of operation and colliding with other trains.
It is crucial for safety that the trains engage their brakes early enough in
order tomake sure theynever leave the safe part of the track.Efficiency con-
siderations, however, also require that the train does not brake too soon,
which would limit operational suitability. It is surprisingly subtle to reach
the right tradeoffs and identify the right control conditions that guarantee
safe motion without being overly conservative.

In pursuit of an answer, we develop a hybrid system model with discrete
control decisions for acceleration, brakes, and with continuous differential
equations for their physical effects on the motion of the train. The resulting
hybrid system model is systematically derived from the Federal Railway
Administration model for flat terrain by conservatively neglecting minor
forces.

The main contribution of this paper is the identification of a controller
with control constraints that we formally verify to always guarantee col-
lision freedom in the FRA model. The safe braking behavior of a train is
influenced not only by the train configuration (e.g., train length and mass),
but also by physical characteristics (e.g., brake pressure propagation and
reaction time). We formalize train control safety properties in differential
dynamic logic and prove the correctness of the train control models in the
theorem prover KeYmaera X.

1 Introduction

Train control (TC) technology is meant to safeguard the control of trains such
that they cannot collide with other trains, cannot move into unauthorized track
segments, and cannot derail because of excessive speed. While they do not pre-
vent accidents caused by mechanical failures like axle breakage, train protection
systems are the major safety technology controlling the safety of the motion of
trains.
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Train protection systems monitor the motion and the operator’s control deci-
sions and take infrastructure information into account to stop the train before
reaching the position of other trains or otherwise moving into unauthorized track
segments. Of course, TC needs to initiate the brakes early enough in order to
make sure the train finally comes to a stop safely (or below the speed limit)
before the unsafe track position. At the same time, railway operation would
be disrupted substantially if an automatic train protection system were to fre-
quently cause a train to brake unnecessarily.

Consequently, it is useful to find out how late the train brakes can still be
applied without losing guaranteed stopping capabilities of the train. More gen-
erally, the challenge is to identify a maximally permissive train protection con-
troller that gives the operator and other train controllers maximal degrees of
freedom in operating the train, while still always ensuring that the train brakes
will automatically be applied early enough so that the train will come to a stop
before reaching any unsafe track positions.

Trains can perform different types of braking, e.g., through traction of the
motors in the locomotive, and magnetic or pneumatic brake shoes on the train’s
cars. Combined with various ways of triggering the brakes (e.g., electronically or
through air pressure pipes), we get a range of available brake forces and durations
until full braking force is available. For example, air pressure propagation along
the train causes the effective braking force to change and ramp up slowly over
time. This complicates the safety analysis and requires safe TC controllers to
be aware of the worst-case influence of the various train parameters on the
guaranteed safe stopping distance. Some parameters (e.g., train length) have
significant influence on the pressure propagation and in turn on the stopping
distance, while others (e.g., aerodynamic drag) can be approximated by either
their upper or lower bound, depending on the direction of their influence.

Approach. In order to discover the right safety constraints and justify their safety
with mathematical rigor, we develop a controller for a mathematical model based
on the physics of the Federal Railway Administration (FRA) model [6]. This
results in a hybrid systems model, because it includes differential equations for
the continuous physical effects of motion and the discrete control decisions of
when to accelerate, when to apply moderate braking in normal operation, and
when to begin or stop applying maximum brakes. The model considers train
length and mass, reaction times, brake pressure propagation, penalty brake force,
service brake force, and acceleration force. Unlike the FRA model, we ignore roll
resistance, air resistance, and curve resistance, because these are negligible for
freight trains and only make the train stop earlier (so the controller is safer).
As a first step, we simplify the model to consider flat terrain only, leaving more
complex terrain profiles as future work.

We formalize safety of the TC controller as a formula in differential dynamic
logic dL [19–22], which is the logic for hybrid systems. Besides the identification
of the safety conditions for the TC controller, our main contribution is its rig-
orous mathematical justification by providing a proof in the dL theorem prover
KeYmaera X [13]. Formalizing and proving motion and controller together in a



Formal Verification of Train Control with Air Pressure Brakes 175

Train Control Model
(Models 4, 6, and 7)
Track Control Model

(Model 2)

H
yb

rid
Pr
og

ra
m

Train Motion Model
(differential equations)
(Models 1, 3 and 5)

dL Theorem Prover
KeYmaera X

Safety and Performance
Specification in dL

(Theorems 1, 2, and 3)

Differential Dynamic Logic

Proofs of
Theorems
1, 2, and 3

Fig. 1. Overview of formal verification process in dL and artifacts

hybrid systems model has the additional benefit of identifying constraints on the
decisions that a controller has to make ahead of time for any subtle combina-
tion of system state and control choice. Fig. 1 summarizes our formal verification
approach and the artifacts of this paper. These findings are part of an ongoing
effort to rigorously formalize the safety of train controllers.

2 Preliminaries: Differential Dynamic Logic

We use differential dynamic logic dL [19–22] to verify safe braking behavior.
Differential dynamic logic has a notation for hybrid systems as hybrid programs,
which use differential equations as program statements to describe continuous
behavior in addition to discrete computations.

One of the challenges of developing a safe braking controller is to analyze
its safety over a broad range of possible control decisions that were taken prior
to braking, where a train should be allowed to speed up or slow down in any
appropriate way. In addition to programming constructs familiar from other lan-
guages (e.g., assignments and conditional statements), hybrid programs provide
nondeterministic operators that allow us to describe such unknown prior behav-
ior concisely. Nondeterminism has the additional benefit that later optimization
(e.g., use better sensors or implement a faster algorithm) may be possible with-
out re-verification as variations are already covered.

Table 1 summarizes the syntax of hybrid programs together with an informal
semantics. We briefly describe each operator with an example. Sequential com-
position α;β says that program β starts after α finishes (e.g., first determine
track grade, then let the train choose acceleration). The nondeterministic choice
α ∪ β follows either α or β (e.g., the train may be in normal operation or in
braking mode). The nondeterministic repetition operator α∗ repeats α zero or
more times (e.g., the train’s target speed may be revised over and over again, but
we do not know exactly how often). Assignment x := θ instantaneously assigns
the value of the term θ to variable x (e.g., let the train choose maximum brak-
ing). Instead x := ∗ assigns an arbitrary value to x (e.g., the track grade may
change arbitrarily, we do not know which value exactly). x′ = θ & F describes
a continuous evolution of x along the differential equation x′ = θ of arbitrary
duration (even zero time). The evolution domain F can be used to restrict the
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Table 1. Hybrid program representations of hybrid systems

Statement Effect

α; β sequential composition, first run program α, then β

α ∪ β nondeterministic choice, following either program α or β

α∗ nondeterministic repetition, repeats program α any n ≥ 0
times

x := θ assign value of term θ to variable x (discrete jump)

x := ∗ assign any arbitrary real number to variable x
nondeterministically

?F check that formula F holds at the current state, and abort if
it does not

{x′
1 = θ1, . . . ,

x′
n = θn&F}

evolve xi along differential equation system x′
i = θi restricted

to maximum evolution domain F for any duration r ∈ R

continuous evolution to a certain region in space-time (e.g., restrict duration to
at most 5s). The test ?F checks that a particular condition F holds and aborts
if it does not (e.g., continue accelerating only when the distance to the track
position limit is large enough). Execution of hybrid programs with backtracking
is a good intuition, since other nondeterministic choices may still be possible if
one run fails. A typical pattern that involves assignment and tests is to limit the
assignment of arbitrary values by their bounds (e.g., limit acceleration to the
normal operation conditions, as in fa := ∗; ? − Fsb ≤ fa ≤ A, which assigns to
fa any value between the service brake force −Fsb and acceleration force A).

The set of dL formulas is generated by the following grammar (∼ is any
operator in {<,≤,=, �=,≥, >}, θ1, θ2 are arithmetic expressions in +,−, ·, / over
the reals):

φ : := θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | φ ↔ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

To specify the desired correctness properties of hybrid programs, a dL for-
mula F → [α]G means that if started at an initial state in which formula F is
true, then all executions of the hybrid program α only lead to states in which
formula G is true. Differential dynamic logic comes with a formal verification
technique to prove these and other correctness properties. We did all our proofs
in the verification tool KeYmaera X [13], which implements the dL verification
technique [19,21,22]. The dL verification technique is sound, which means that a
formula that has a proof is valid, i.e., true in all states. For high confidence, the
dL verification technique has been cross-verified [3] in the Isabelle and Coq the-
orem provers. This gives dL-based verification results an extraordinarily strong
degree of reliability for high confidence safety assurance cases.
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3 Train Control Models

In normal operation, trains may speed up or slow down at will. The brakes
are then typically operated with moderate braking force, referred to as service
braking. When a train is about to violate the track position limit or speed limit
in normal operation, the goal of TC is to ensure safety by switching to penalty
braking with maximum brake force. The air pressure brakes on a train exert
strong braking force but require some time to build up maximum brake force
by propagating air pressure along the train. For fail-safety reasons, air brakes
along a train apply pressure brakes in proportion to how the air pressure from
the locomotive is lost instead of increased, but they are, nevertheless, subject to
slow propagation and build-up of braking force along the train.

Figure 2 illustrates the behavior that we model. In free driving—i.e., when
the train respects the speed limit and is at a safe distance from the track position
limit e—the train may speed up or slow down at will (e.g., according to the train
driver’s decisions or those of other optimizing controllers). At time t = 1, the
train receives a speed limit d1 = 1 that is in place from e1 onwards, so it engages
its service brakes −Fsb and afterwards decides to coast to respect the speed limit.
Later, the speed limit changes to a full stop d2 = 0 at e2. The remaining distance
to e2 is too small to stop safely just using the service brakes. Therefore, at time
t = 2 the train engages its penalty brakes, which, however, need time tappl until
they are operational at full force −Fpb. The train then continues braking with
full brake force −Fpb until it is fully stopped. This scenario includes the following
model components (detailed subsequently):

– A track controller may repeatedly issue new speed limits d that are in place
from a position e onwards. Limit d = 0 means stop at e. It should not demand
physically impossible maneuvers (e.g., ask a freight train traveling at 60mph
to stop in 3ft).

– A train controller decides between free driving (using arbitrary engine accel-
eration and the service brakes) and penalty braking using maximum brake

0

Engage
locomotive

brake

Engage
pressure
brake

tappl
−Fsb

−Fpb

d2 = 0

d1
e1

e2

t

(a) Free driving, service brakes −Fsb to re-
spect speed limit d1 at e1, and penalty brake
−Fpb to stop before track position limit e2

0

tappl
−Fpb

−Fsb

t

Acceleration Velocity v Position z

(b) Engage locomotive brake and pressure
brakes at the same time. Later release brakes
before full stop and continue driving

Fig. 2. Braking with instantaneous service brakes and air pressure penalty brakes
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force. The decision is based on the resulting slowdown/stopping distance from
its current speed v to speed limit d and the remaining safety distance to track
position e.

– The safety margins follow from a motion model of the train, whose behavior
depends on train parameters (e.g., length) and external conditions (e.g., track
grade).

– Acceleration and service brake via the train’s engine have immediate but
limited effect. Penalty brakes provide higher overall braking force at the cost
of pressure propagation time along the individual freight or passenger cars of
the train.

3.1 Safety and Performance Considerations

The main safety objective in train control is to respect speed and track position
limits [6]. Predicting the stopping distance is therefore key to a safe and effective
controller. Errors in the prediction may let a train run past the track position
limit (overshoot), stop unnecessarily early (undershoot), or brake unnecessarily,
resulting in undesired effects on the overall railway network operation. The FRA
characterizes safety by limiting overshoots, i.e., with 99.9995% probability trains
must not overshoot the track position limit [6]. Usually one overestimates the
stopping distance by some safe factor. While this can improve the overall safety
of the system, it might be detrimental to system performance: trains significantly
underperform when train length and weight are not considered in the braking
decision [24], and braking frequently or significantly earlier than needed has neg-
ative impacts both on energy considerations as well as on the overall throughput
of the network. An orthogonal performance objective, therefore, limits under-
shoots to 500 ft for trains at less than 30mph, and 1000 ft above 30 mph [6].

To find a suitable safety and performance trade-off, we need to consider
more realistic (and therefore complex) models of the dynamics to which the
train is subject. We compare a simpler model that considers only the delay
of brake pressure propagation with a more accurate model of gradual pressure
propagation.

3.2 Train Motion and Brake Forces

The model of train motion is developed in Model 1. By Newtonian physics, the
time-derivative of the train’s position z is its velocity v, which explains differ-
ential equation z′ = v. The derivative of the train’s velocity v is the sum of
external forces F as well as the controlled acceleration/braking force fa. Both
are subject to the train’s mass m to capture motion inertia, giving v′ = F+fa

m .
Because trains do not move backwards just because they are braking with a
negative acceleration, we include v ≥ 0 as an evolution domain constraint. The
system’s control cycle duration is modeled with a timer t that is reset to t := 0
before the differential equation, evolves with t′ = 1, and interrupts the differ-
ential equation after at most ε time due to the evolution domain t ≤ ε. This
ensures that the motion will “stop” to give the subsequent controllers a chance
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Model 1. Train Motion Model

motion ≡ t := 0; {z′ = v, v′ =
F + fa

m
, t′ = 1 & v ≥ 0 ∧ t ≤ ε} (1)

Model 2. Track Control

tc ≡ e := ∗; d := ∗; ?
(
d ≥ 0 ∧ (v2 − d2)m ≤ 2Fsb(e − z)

)
(2)

to run at the latest after ε time again. The initial values of position z and speed
v are unknown.

The forces that act on the train are its own braking force Fb and locomotive
traction Fl, as well as the track grade force Fg (incline or decline), the track cur-
vature force Fc, and the bearing, rolling, and aerodynamic resistive forces Fr [6,
p. 57]. Model 1 uses fa to summarize the train’s braking force Fb and locomotive
tractive effort Fl, so F = −(Fg +Fr +Fc) in (1). The train’s acceleration will be
limited by a maximum braking force −Fpb and a maximum acceleration force A.
An important characteristic of air pressure brakes is the time tappl that it takes
from initiating braking until the full braking force Fpb is available [6]. The time
tappl depends on the length l of the train with constants c

tappl
1 to c

tappl
3 as follows:

tappl = c
tappl
1 + c

tappl
2 l + c

tappl
3 l2 by [6, p. 57].

The resistive forces Fr can be estimated from the train’s speed v, weight
W = mg with gravity constant g > 0, number of cars N and axles n with
constants cr

1 to cr
4 using Fr = cr

1W +cr
2n+cr

3Wv+cr
4Nv2 [6]. The track curvature

force Fc depends on the train’s weight W and the average curvature C under
the train Fc = cc

1CW [6]. Since both resistive force and track curvature force
oppose forward motion (i.e., improve braking), we can neglect them for safety
analysis purposes by assuming cr

i = cc
i = 0. The track grade force Fg depends on

the train’s weight and average track grade G under the train by Fg = cg
1GW , so

Fg = 0 for flat tracks. Additional detail on the external forces acting on trains is
in [2]. We take a first step by assuming external forces F = −(Fg +Fr +Fc) = 0
to focus solely on the effect of brake pressure propagation on fa in flat terrain
(forces Fr and Fc improve braking, so make our controllers safer).

3.3 Track Control

The central track controller tc in Model 2 can update speed limits d and track
position limit e at any time, as long as it does not demand the train moves
backwards (so d ≥ 0) and the remaining distance between the train’s position z
and the track position limit e allows the train to respect the speed limit safely
within the limits of physics. For a reasonable system design, the track controller
should also only choose d and e such that the train can safely follow by just
using the service brakes −Fsb.

Crucially, the condition (2) characterizes the relationship between the train’s
current speed v and position z, and the speed limit d and track position limit e.
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Condition (2) can be discovered in KeYmaera X by proving a simplified hybrid
program (3) that uses the service brakes fa := −Fsb and neglects other model
details (external force F = 0):

F = 0 ∧ Fsb > 0 ∧ m > 0 → [fa := −Fsb; motion](z ≤ e → v ≤ d) (3)

Formula (3) is not valid but still true in some states, which allows KeY-
maera X to find conditions on e and z that make it provable. These conditions
can be explained as follows: from v′ = F+fa

m in motion we see that, with ser-
vice brakes, the train needs (v−d)m

Fsb
time to overcome the difference between its

current speed v and speed limit d. The differential equation in motion is solv-

able, so its solution gives the slowdown distance
∫ (v−d)m

Fsb
0

(
v − Fsb

m t
)
dt, implying

(v2−d2)m
2Fsb

as minimum distance between the track position limit e and the train
z, see equivalent condition in (2).

3.4 Train Control

The primary safety question in train controller design is finding conditions under
which it is safe to drive freely, and when it is necessary to engage the brakes as
a last resort safety action. The major safety argument for the controller has to
justify why the train will always respect the target speed at the track position
limit.

For traceability purposes and for managing the analytic complexity it is
beneficial to develop these conditions in increasingly realistic brake pressure
propagation models. We first consider a conservative approximation delaying
the whole effect of brakes for the entire propagation time (Sect. 3.5). Then we
follow the FRA model that gradually increases the effect of the air pressure
brakes with a constant jerk or jolt (Sect. 3.6).

Keeping acceleration constant between decisions significantly simplifies the
task of finding the safety distances. The effects of changing accelerations manifest
in position constraints: with gradual increase j in braking force we need to solve
z′′′ = j. With delayed brake onset z′′ = fa is enough. Figure 3 illustrates the
conservative approximation in comparison to a gradual increase in brake force.
Both models behave the same in free driving. When engaging the pressure brakes,

0

tappl
−Fpb

t

Conservative accel
Conservative vel
Conservative pos
Acceleration
Velocity
Position

Fig. 3. Delayed brake onset conservatively approximates brake pressure propagation.
The train length determines how long (tappl) it takes to reach full braking force −Fpb.
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the conservative approximation coasts for the entire brake pressure propagation
time, while gradual braking force already decelerates the train with limited force
while the brake force builds up. Since we prove the safety of both controllers, we
can subsequently compare the loss in performance for the more simplistic model
compared to the more accurate FRA model with jerk.

3.5 Delayed Braking

The simpler train model that conservatively takes the effect of gradual pressure
brake build-up into account simply pretends the pressure brakes would have no
effect at all until they finally have full effect after the pressure propagated along
the train. This is counterfactual with reality but a conservative approximation,
because some braking force already takes effect in the middle of the process of
building up braking force from the pressure brakes. Pretending this deceleration
would be 0 is inaccurate but only makes the real train brake quicker than the
model, so safer.

The train motion in Model 3 follows the motion of Model 1 with changes
highlighted in bold. The pressure brake build-up delay is modeled with a timer
c with c′ = s that can be enabled or disabled by setting its slope s either to 1
(enabled) or to 0 (disabled), but it never exceeds the brake delay (c ≤ tappl),
which is only relevant if s �= 0.

The train controller for delayed brake onset that we develop in Model 4 can
(nondeterministically) choose to either drive or brake (5). The choice is nonde-
terministic in order to maximize flexibility of the train controller and, thus, also
maximize how many concrete train controller implementations are covered by
our single safety proof.

When driving freely, in (6) any choice between the train’s service brake force
−Fsb and maximum acceleration force A is allowed by a nondeterministic assign-
ment fa := ∗ followed by a subsequent test to check that −Fsb ≤ fa ≤ A is true.
The choice of fa is nondeterministic in order to cover a large variety of concrete
controllers under the safety argument (imagine controllers optimizing secondary
objectives such as energy consumption or decisions by train conductors that
determine the concrete choice of fa during each execution of drive). The brake
delay timer c is reset (c := 0) and turned off (s := 0) in (7), because the penalty
brakes are not activated when driving freely.

Of course, driving freely or accelerating is not always safe. KeYmaera X
points us to the worst possible scenario of this control decision: acceleration
with full force A for the maximum allowed time ε and postponing braking for the
maximum allowed delay tappl. Condition (8) checks whether or not the remaining

Model 3. Train Motion Model with Delayed Brake Onset, extends Model 1

motion ≡ t := 0; {z′ = v, v′ =
F + fa

m
, t′ = 1, c′ = sc′ = sc′ = s & v ≥ 0∧ t ≤ ε∧c ≤ tapplc ≤ tapplc ≤ tappl} (4)
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Model 4. Train Controller for Delayed Brake Onset

ctrlz ≡ drive ∪ brake (5)
drive ≡ fa := ∗; ?(−Fsb ≤ fa ≤ A); (6)

c := 0; s := 0; (7)
? (e − z ≥ margin) (8)

margin =
(v2 − d2)m

2Fpb
+

(
A

Fpb
+ 1

)(
A

2m
ε2 + εv

)
+

(
v +

A

m
ε

)
tappl (9)

brake ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if
(
e − z ≥ (v2−d2)m

2Fsb

)
fa := −Fsb; c := 0; s := 0

else if (c ≥ tappl) fa := −Fpb; s := 0

else if (c > 0) fa := fa

else fa := 0; s := 1

(10)

distance e − z on the track is large enough to handle this worst-case scenario,
i.e., defer braking for yet another control cycle duration ε. If it is large enough,
the chosen acceleration force fa will be made operational. Otherwise (i.e., if (8)
does not hold), the controller falls back to executing brake as the only remaining
option in nondeterministic control choice (5). When introducing brake pressure
propagation we will see later that the condition (8) could be improved with
separate conditions on braking and accelerating.

Braking is modeled along four increasingly critical cases in (10). The train
prefers the service brake over the penalty brakes fa := −Fsb if the remaining
distance to e is still enough for service brakes alone to ensure safety. Otherwise,
the penalty brakes are used in the following way: If the brake delay has expired
(c ≥ tappl), the full braking force is available with fa := −Fpb. If the brake
delay has not been reached yet but the train is already waiting for the brakes
to activate (c > 0), then it just keeps waiting by keeping its current acceleration
force fa := fa. Otherwise, the train turns the engine off to stop accelerating
fa := 0 and the brake delay timer is started with s := 1.

Theorem 1 (Train Controller with Delayed Brake Onset). The brak-
ing controller for motion with delayed brake onset from Model 4 guarantees
to observe a maximum speed v ≤ d when the train passes the track posi-
tion limit z ≥ e. That is, the following dL formula is proved: assumptions →
[
(
tc ∪ (ctrlz; motion)

)∗](z ≥ e → v ≤ d).

3.6 Brake Pressure Propagation

The FRA’s dynamical model of trains with brake pressure propagation differs
in subtle but substantial ways from the simplified delayed braking model. The
key differences of the resulting Model 5, highlighted in boldface, are that the
acceleration force fa is increasing continuously over time along f ′

a = j with
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Model 5. Train Motion Model with Brake Pressure Propagation

motion ≡ t := 0; {z′ = v, v′ =
F + fa

mz
, f ′

a = jf ′
a = jf ′
a = j, t′ = 1 & v ≥ 0 ∧ −Fpb ≤ fa−Fpb ≤ fa−Fpb ≤ fa ∧ t ≤ ε}

(11)

1 2−1

0

1

2

3

tappl

−Fpb

t

(a) At slow speed v ≤ F2
pb

2mJ
the train stops

while building up braking force

1 2−1

0

1

2

3

tappl

−Fpb

t

Threshold F2
pb

2mJ
Brake force fa Velocity v Position z

(b) At high speed v ≥ F2
pb

2mJ
the train stops

after reaching full braking force −Fpb

Fig. 4. Brake force and stopping distance

the jerk j from the pressure brake propagation. The effective force of penalty
braking is limited by −Fpb, reflected in an additional evolution domain constraint
−Fpb ≤ fa, beyond which the subsequently developed physics controller will
deactivate jerk and keep constant acceleration force.

Our train controller for brake pressure propagation in Model 6 follows the
same basic setup as the controller for brake delay; differences are highlighted
in bold. The main difference is condition (13)–(14) and its components (15)–
(21) that allow driving with any acceleration, and the control decisions on the
brake jerk j in the braking cases. In mode drive, penalty braking is deactivated
j := 0 and the train controller chooses any acceleration between service braking
with force −Fsb and full acceleration force A. This is safe if service braking later
ensures that the train will still always respect the speed limit d (13), or if penalty
braking to a full stop with the pressure brakes will later always keep the train
inside the track position limit (14). The pressure propagation along the train
increases the available brake force over time up to the maximum braking force
Fpb. As a result, the distance margin for stopping safely splits into two cases,
as pointed out by KeYmaera X during the proof: slow trains will stop while the
braking force is still ramping up (see Fig. 4a), fast trains will stop after reaching
the maximum braking force (see Fig. 4b). In each case, the margin additionally
depends on whether the train controller presently wants to slow down fa ≤ 0
(slow− (15) and fast− (17)) or speed up fa ≥ 0 (slow+ (16) and fast+ (18)).
KeYmaera X points to a subtle combination of the worst-case bounds in margins
(20) and (21). Per condition (16), a slow train may accelerate with current force
fa for the maximum allowed duration ε, if the safety margin e−z is large enough
for the future higher speed u = v + faε

m . In the converse scenario (17), however,
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Model 6. Train Controller for Brake Pressure Propagation

ctrlz ≡ drive ∪ brake (12)
drive ≡ j := 0j := 0j := 0; fa := ∗; ? − Fsb ≤ fa ≤ A; (13)

?

(

e − z ≥ (v2 − d2)m

2Fsb
+

(
A

Fsb
+ 1

)(
A

2m
ε2 + vε

)
?

(

e − z ≥ (v2 − d2)m

2Fsb
+

(
A

Fsb
+ 1

)(
A

2m
ε2 + vε

)
?

(

e − z ≥ (v2 − d2)m

2Fsb
+

(
A

Fsb
+ 1

)(
A

2m
ε2 + vε

)

∨ slow− ∨ slow+ ∨ fast− ∨ fast+
)

∨ slow− ∨ slow+ ∨ fast− ∨ fast+
)

∨ slow− ∨ slow+ ∨ fast− ∨ fast+
)

(14)

slow−slow−
slow− ≡ ¬isFast(v) ∧ fa ≤ 0 ∧ e − z ≥ vε + mSlow(v) (15)

slow+slow+
slow+ ≡ [u := v+

faε

m
]

(
¬isFast(u) ∧ fa ≥ 0 ∧ e − z ≥ vε +

faε2

2m
+ mSlow(u)

)

(16)

fast−fast−fast− ≡ isFast(v) ∧ fa ≤ 0 ∧ e − z ≥ vε + mFast(v) (17)

fast+fast+fast+ ≡ isFast(v) ∧ fa ≥ 0 ∧ e − z ≥ vε +
faε2

2m
+ mFast

(
v +

faε

m

)
(18)

isFast(v)isFast(v)isFast(v) ≡ v ≥ F 2
pb

2mJ
(19)

mSlow(v)mSlow(v)mSlow(v) =
2

3
v
√

2mv/J (20)

mFast(v)mFast(v)mFast(v) =
mv2

2Fpb
+

vFpb

2J
− F 3

pb

24mJ2
(21)

brake ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if
(
e − z ≥ (v2−d2)m

2Fsb

)
fa := −Fsbfa := −Fsbfa := −Fsb

else if (v ≤ d)(v ≤ d)(v ≤ d) j := 0;j := 0;j := 0; fa := ∗; ?−Fsb ≤ fa ≤ 0

else if (fa ≤ −Fpb)(fa ≤ −Fpb)(fa ≤ −Fpb) j := 0j := 0j := 0

else j := −J ; fa := min(fa, 0)j := −J ; fa := min(fa, 0)j := −J ; fa := min(fa, 0)

(22)

KeYmaera X reveals with a counterexample that using the future speed v + faε
m

is unsafe, because all intermediate speeds up to ε time require a larger safety
margin (i.e., the current speed v determines the worst-case bound).

Akin to Model 4, braking is structured into increasingly critical cases: the
train’s main preference is to use service braking fa := −Fsb if the remaining
distance is sufficient (e − z ≥ (v2−d2)m

2Fsb
). If the train is slow enough already

(v ≤ d), then penalty braking is disabled j := 0 and any level of service braking
or coasting is used instead (in the force range −Fsb to 0); If the brake pressure
propagation is finished, meaning that the brakes are fully engaged (fa ≤ −Fpb),
then there will be no further increase in braking force (j := 0). Otherwise, the
train did not yet build up sufficient braking force, but at least keeps increasing
braking force with jerk j := −J and J = Fpb

tappl
from its current deceleration (fa :=

min(fa, 0)). Note that min(fa, 0) also models that the train stops acceleration
through its locomotive when it starts the brake pressure propagation. The term
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min(fa, 0) in (22) also covers the case where the train already uses service braking
in drive but decides to switch to the stronger penalty braking for safety reasons.

Theorem 2 (Train Controller with Brake Pressure Propagation is
Safe). Model 6 with brake pressure propagation stays within a maximum speed
v ≤ d beyond track position limit z ≥ e. That is, the following dL formula is
proved in KeYmaera X:

assumptions → [
(
tc ∪ (ctrlz; motion)

)∗](z ≥ e → v ≤ d).

4 Performance Analysis

The safety analysis proved train control is safe both with delayed braking
(Model 4) and with pressure brake propagation models (Model 6). While the
former was much easier to design and prove safe, its controller suffers an addi-
tional safety margin because it neglects that real brakes already have partial
effect while pressure is still propagating along the train. Model 6 is certainly the
more realistic model while Model 4 is further away from the FRA model. It might
still be a better tradeoff to settle for a conservative overapproximation that is
easier to analyze than a full-blown realistic model.

To analyze this tradeoff we use the FRA performance objective [6] of not
stopping too early (but still before a certain critical point). The performance
objective can be analyzed in the following ways. (i) Comparing the performance
objective of motion models Models 3 and 5 through simulation of some scenarios,
e.g., as illustrated in Fig. 3. (ii) More systematic characterization by comparing
the symbolic safety margins of the models, see Sect. 5. (iii) Full formal guarantees
for all permitted behaviors when proving a lower bound on the stopping point
of the train, dual to the upper bounds from the safety proofs (this section).
Intuitively, a train controller has a good performance if it does not stop “too
early” but without ever endangering safety.

For proving performance it is important to only engage penalty braking when
it is absolutely necessary to avoid overshoot, i.e., when (8) is no longer satisfied,
but not earlier. Braking for any other reason at any earlier point is detrimental
to proving performance bounds, but allowed in Model 4 for flexibility, so that
train operators can do so to react to other unforeseen events along the track or
to simply stop at a station. For a performance proof, Model 7 adapts Model 4
to favor free driving over braking by making the nondeterministic choice drive∪
brake deterministic (23). This deterministic choice implies that, at the start of
the braking maneuver, the safety margin to the track position limit e is at most
(v2−d2)m

2Fpb
+ accMargin(v), cf. (26). The model keeps track of this margin by

remembering the initial speed v0 at the beginning of the brake maneuver.
For safety reasons, the train assumes all aspects in accMargin might be dis-

advantageous for the train (e.g., just a split-second later accelerating may no
longer be safe). As a result, if all aspects in accMargin turn out in favor of the
train (e.g., if the train could still have accelerated almost the full ε time later),
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Model 7. Train Controller for Late Braking

ctrlz ≡ if (e − z ≥ margin) {drive} else {brake}if (e − z ≥ margin) {drive} else {brake}if (e − z ≥ margin) {drive} else {brake} (23)
drivedrivedrive ≡ fa := ∗; ?(−Fsb ≤ fa ≤ A); c := 0; s := 0 (24)

accMargin(v) =

(
A

Fpb
+ 1

)(
A

2m
ε2 + εv

)
+

(
v +

A

m
ε

)
tappl (25)

margin = (v2 − d2)m/(2Fpb) + accMargin(v) (26)

brake ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if
(
e − z ≥ (v2−d2)m

2Fsb

)
fa := −Fsb; c := 0; s := 0

else if (c ≥ tappl) fa := −Fpb; s := 0

else if (c > 0) fa := fa

else fa := 0; s := 1; v0 := vv0 := vv0 := v

(27)

the train will stop with accMargin(v0) distance to the track position limit e.
Theorem 3 formalizes this intuition. Note that we neglect track control tc here,
since it issues stopping points for the service brakes.

Theorem 3 (Late Braking of Train Controller with Brake Delay).
Model 7 ensures that the train stops no earlier than point e − accMargin(v0)
when it uses pressure brakes. The following formula is proved in KeYmaera X:

assumptions → [(ctrlz; motion)∗]
(
c > 0︸ ︷︷ ︸

Pressure brake engaged

∧ v ≤ d
︸ ︷︷ ︸

Braking finished

→ z ≥ e − accMargin(v0)︸ ︷︷ ︸
Earliest stopping point

)
.

5 Experimental Results

Simulation (Fig. 3) of the motion models suggests that, for safety reasons, the
symbolic safety margin (9) of the brake delay model (Model 4) needs to be
more conservative than the margins (15)–(18) of the pressure propagation model
(Model 6). The difference in safety margins to the latest stopping point is char-
acterized by this brake performance:

margin −

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vε + mSlow(v) if ¬isFast(v) ∧ fa ≤ 0

vε + faε2

2m + mSlow
(
v + faε

m

)
if ¬isFast(v) ∧ fa ≥ 0

vε + mFast(v) if isFast(v) ∧ fa ≤ 0

vε + faε2

2m + mFast
(
v + faε

m

)
if isFast(v) ∧ fa ≥ 0

(28)

We use formula (28) to compare the performance of Models 4 to 6 on para-
meters chosen according to standard configurations [6], see Table 2. Using these
parameters, the net stopping distance with full braking force −Fpb when neglect-
ing brake pressure propagation is v2m

2Fpb
(e.g., 8 682ft for a fast, long, loaded train,
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Table 2. Experiment parameter choices (in FRA standard units)

Parameter Value Description Source

lz Short 753ft 10 cars [6, Fig. 20]

Medium 2 345ft 40 cars [6, Fig. 20]

Long 5 531ft 100 cars [6, Fig. 20]

m Loaded 263 klb
car

e.g., medium train 10 520klb [6, Table 2]

Empty 64 klb
car

e.g., medium train 2 560klb [6, Table 2]

v Slow, Fast 10, 60mph [6, Table 2]

Fpb Loaded 35 750 lbf
car

e.g., medium train 1 430klbf [6, p. 22]

Empty 10 575 lbf
car

e.g., medium train 423klbf [6, p. 22]

Unknown 23 338 lbf
car

e.g., medium train 933.5klbf [6, p. 22]

tappl 12.22 + 0.0156lz + 0.000000278l2z [6, Fig. 20]

A 5mph
min

Force by 0.44704A
60

m, e.g., medium train
391.91klbf

[6, Fig. 27]

fa 1.75mph
min

e.g., medium train 136.76klbf [6, Fig. 27]

ε 100ms

which is close to the stopping distances in [6, Fig. 10]). With brake pressure
propagation, the proofs of Theorems 1 and 2 show that an additional safety
margin is needed to avoid overshoot. The resulting stopping distances includ-
ing these safety margins are summarized for various configurations in Table 3.
Note that Fpb in [6] is approximated with 23 338 lbf

car for unknown load, i.e., when
trains are not equipped with sensors to determine whether or not their cars are
empty. This approximation “improves” the brakes of empty cars, so in Table 3
empty trains with Fpb = 23 338 lbf

car for unknown load stop sooner than those
with Fpb = 10 575 lbf

car for known load. The brake pressure propagation time tappl
is much larger than control cycle time ε, so the additional safety margin of the

Table 3. Stopping distance with brake pressure propagation (in ft, lower is better);
bold differences exceed the performance objective of [6] (slow: 500ft, fast: 1000ft)

Cars Slow Fast

Loaded Empty Loaded Empty

10 40 100 10 40 100 10 40 100 10 40 100

Brake force for unknown load Fpb = 23 338Fpb = 23 338Fpb = 23 338 lbf
car

Model 4 726 1,110 1,942 446 830 1,662 15,436 17,742 22,730 5,369 7,676 12,664

Model 6 541 710 1,017 239 345 503 14,364 15,494 17,880 4,278 5,334 7,383

Difference 185 400 925 207 485 1,161 1,072 2,248 4,850 1,091 2,342 5,281

Brake force for known load, loaded: Fpb = 35 750Fpb = 35 750Fpb = 35 750 lbf
car , empty: Fpb = 10 575Fpb = 10 575Fpb = 10 575 lbf

car

Model 4 597 982 1,814 554 939 1,771 10,817 13,123 18,111 9,277 11,583 16,571

Model 6 409 565 822 364 512 746 9,743 10,859 13,188 8,200 9,309 11,602

Difference 188 417 992 190 427 1,025 1,074 2,264 4,923 1,077 2,274 4,969
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conservative model is dominated by the train’s speed and the brake pressure
propagation time. After all, the delay term (v + A

mε)tappl implies that the train
controller assumes it might be driving with its current speed for the entire brake
propagation time tappl. The effect is even more pronounced for empty trains,
because a larger fraction of the entire braking process occurs while pressure is
still propagating. The remaining improvements of Model 6 over Model 4 target
effects during the control cycle time (e.g., distinguish between accelerating and
braking, account for the actual chosen acceleration instead of worst-case accel-
eration), so could be neglected without much impact on the performance for the
specific values of our experiments. The cases highlighted in bold indicate cases
where just the additional error incurred by the delay model exceeds the FRA’s
performance objective goal. This indicates the potential for using more advanced
control algorithms.

Proof Effort. From an engineering viewpoint, more realistic models are certainly
desirable. However, higher modeling fidelity often results in higher proof com-
plexity, especially in the resulting arithmetic. Proofs in KeYmaera X consist of
three main aspects: (i) find invariants for loops and differential equations, (ii)
symbolically execute programs to determine their effect (results in formulas in
real arithmetic), and finally (iii) verify the resulting real arithmetic with exter-
nal solvers. High modeling fidelity becomes expensive in the arithmetic parts of
the proof, since real arithmetic is decidable but of high complexity. As a result,
proofs of high-fidelity models may require arithmetic simplifications (e.g., reduce
the number of variables by abbreviating complicated terms, or by hiding irrel-
evant facts) before calling external solvers. The proof process in KeYmaera X
can be scripted with tactics to provide human guidance when necessary.

The main insights of doing the proofs are reflected in the model in terms of
the control constraints that switch between driving and braking. We illustrated
how to obtain such constraints systematically from the motion model of the
train when designing the track control. Further guidance provided in the proof
tactics of Theorems 1 and 2 are related to arithmetic simplifications, deferred
case splitting to avoid duplicate proof effort, and to speed up rerunning proofs
over automated tactics.

The proof of Model 4 was mostly automated with minor case-splits. The
tactics nevertheless script differential equation handling to speed up rerun-
ning the proofs. Model 6, in contrast, required arithmetic simplifications to
become tractable, and even then resulted in significantly lower proof perfor-
mance. Table 4 summarizes the proof statistics.

6 Related Work

Train interlocking systems check that trains are not scheduled to share route
sections at the same time. Formal verification techniques was used in acad-
emia [8,16] and industry [5]. Formal methods provide an effective way to satisfy
certification requirements such as CENELEC EN-50126 [7]. The properties are
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Table 4. Proof statistics

Main tactic purpose Tactic size Proof steps Time [s] Performance [Steps
s

]

LOC Steps

Theorem 1 Case-splitting
(loop invariant max)

107 200 35,740 100 357

Theorem 2 Arithmetic
simplifications

216 624 59,998 270 222

phrased as safety properties in temporal logic, and analyzed by model check-
ing, e.g., in SystemC [14], or Simulink [4,12]. High-level safety specifications
can also be linked to interlocking rules represented in lookup tables through
assurance case arguments [17]. At industrial scale, discrete aspects of train con-
trol were formally specified and with the B method [1] preserved along refine-
ments to implementations, e.g., in the Paris METEOR project and the New York
City Canarsie line [10], or for analyzing railway network topology [11]. Safety of
approaching and passing railroad crossings was analyzed with timed automata
(e.g., [15,18]), with motion represented, if at all, as jumps at discrete time steps.
These approaches provide guarantees on the discrete train coordination but not
the motion.

We analyze the complementary question whether the physical motion of
trains respects the instructions issued by a correct route interlocking protocol.
The combination of both answers is required for safe control. The job of inter-
locking approaches is to guarantee that disjoint movement authorities are issued
to trains. Our results guarantee that the train controllers with their continu-
ous dynamics ensure that the trains never move outside these permitted areas,
without which the system would not be safe.

ETCS verification [20,23] formally verifies collision freedom between trains
when following the movement authorities issued by a radio-block controller. The
protocol is modeled as a hybrid systems model, including motion of the train.
The ETCS proofs were the basis for a case study on the Chinese train control
system [25]. Similar motion models were used for safety verification of railroad
crossings with hybrid automata [9].

Here, we focus on significantly more detailed physical models for train brak-
ing, which are the gold standard by the Federal Railway Authority. Their addi-
tional considerations of mass, length of the train, their effect on pressure brake
propagation, and resulting jerk on the dynamics leads to a more realistic yet
also more challenging verification result. We analyze the models both for safety
and performance objectives.

7 Conclusion

We analyzed the safety of train control by formalizing hybrid systems mod-
els of control decisions and their physical effect in terms of stopping distance
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under two braking models. We studied a lower-fidelity braking model that con-
servatively approximates pressure propagation with delayed brake onset, and a
higher-fidelity braking model with gradual braking force increase during pressure
propagation. Our proofs in the hybrid systems prover KeYmaera X show that
safety is achievable in both braking models with appropriate control constraints
that indicate when free driving is safe and when braking is required for safety.
We developed these constraints alongside the proof.

Conservative approximation in braking controllers may degrade performance
and engage brakes unnecessarily early, but more complex controller designs and
physics models may increase verification/implementation complexity and run-
time resource consumption. We analyzed the trade-off between modeling fidelity
and verification complexity: the performance comparison between the two mod-
els indicates a significantly better performance (i.e., lower stopping distance)
in the higher-fidelity model. However, in this case higher modeling fidelity also
results in higher proof complexity, especially in the resulting arithmetic. KeY-
maera X provides support for scripting proofs with tactics to provide the neces-
sary human guidance in a machine-repeatable way.
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axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 527–538. Springer, Cham (2015).
doi:10.1007/978-3-319-21401-6 36

14. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction
and verification of railway control systems. Formal Asp. Comput. 23(2), 191–219
(2011)

15. Heitmeyer, C.L., Lynch, N.A.: The generalized railroad crossing: a case study in
formal verification of real-time systems. In: RTSS, pp. 120–131. IEEE Computer
Society (1994)

16. Hong, L.V., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of
interlocking systems featuring sequential release. Sci. Comput. Program. 133, 91–
115 (2017)

17. Iliasov, A., Romanovsky, A.: Formal analysis of railway signalling data. In: HASE
2016, pp. 70–77. IEEE Computer Society (2016)

18. Ortmeier, F., Reif, W., Schellhorn, G.: Formal safety analysis of a radio-based
railroad crossing using deductive cause-consequence analysis (DCCA). In: Cin,
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