
Alessandro Fantechi · Thierry Lecomte
Alexander Romanovsky (Eds.)

 123

LN
CS

 1
05

98

Second International Conference, RSSRail 2017
Pistoia, Italy, November 14–16, 2017
Proceedings

Reliability, Safety, 
and Security 
of Railway Systems 
Modelling, Analysis, Verification, and Certification



Lecture Notes in Computer Science 10598

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Alessandro Fantechi • Thierry Lecomte
Alexander Romanovsky (Eds.)

Reliability, Safety,
and Security
of Railway Systems

Modelling, Analysis, Verification,
and Certification

Second International Conference, RSSRail 2017
Pistoia, Italy, November 14–16, 2017
Proceedings

123



Editors
Alessandro Fantechi
Università di Firenze
Florence
Italy

Thierry Lecomte
ClearSy
Aix-en-Provence
France

Alexander Romanovsky
Newcastle University
Newcastle upon Tyne
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-68498-7 ISBN 978-3-319-68499-4 (eBook)
https://doi.org/10.1007/978-3-319-68499-4

Library of Congress Control Number: 2017956780

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

The RSSRail conference series began in 2016, in Paris, and this year the conference
was held in Pistoia, Italy, hosted by DITECFER, the Tuscany-based railway techno-
logical district, which formally associates more than 40 enterprises and research bodies,
and acts as a reference for many more companies that work in the railway domain.

The RSSRail conference aims to bring together researchers and engineers interested
in building critical railway applications and systems, as a working conference in which
research advances are discussed and evaluated by both researchers and engineers,
focusing on their potential to be deployed in industrial settings.

This is the first international conference focusing on the reliability, safety, and
security of railway systems. The conference is devoted to critical problems faced by the
modern railway: how to deliver reliable service to passengers and to freight operators,
while maintaining very high levels of safety. While it is true that these are problems
that the railway sector has faced for almost 200 years, new factors and new trends
demand new solutions. One of the biggest challenges stems from ever-increasing
automation, driven by requirements for increased capacity and greater efficiency that
are further compounded by increased integration of the railway network with other
transport systems. The outcome is incorporation of ever more digital systems, with
increasing complexity. This, together with the increased openness and interconnection
of the railway systems, brings an ever-greater need for effective cyber security,
guarding against malicious threats that could compromise both safety and operational
performance.

Advanced techniques and tools are needed for modelling, analysis, verification, and
validation that can cope with the new more complex systems; these techniques must
support rather than impede the development process and must address and ensure:

– Required functionality
– Safety and integrity
– System security
– Adherence to standards

Our aim is to hold a conference that contributes to a range of key objectives. We feel
that there is a pressing need to bring together researchers and developers working on
railway system reliability, security, and safety to discuss how these requirements can be
met in an integrated way. It is also vital to ensure that all advances in research (both in
academia and industry) are driven by real industrial needs. This can help ensure that
such advances are followed by industrial deployment. Another particularly important
objective is to integrate research advances into the current development processes, and
make them usable and scalable. Finally, a key goal is to develop advanced methods and
tools that will ensure that the systems meet the requirements imposed by the standards
and in building the arguments.

We hope that this conference will successfully contribute to all of these objectives.



RSSRail 2017 attracted 34 submissions from 12 countries. In all, 16 papers were
accepted after a rigorous review process with every paper receiving at least three
reviews. These include 11 technical papers, three industrial experience reports, and two
PhD students papers. The papers confirm a wide interest in developing and applying in
practice formal modelling and verification techniques as the most cost-effective way to
guarantee the safety of today’s very complex railway system. Besides these continued
research area, two important topics clearly emerge from the accepted papers: the
challenges posed to the safety and security of railway systems by the increasing reli-
ance on advanced communication means, and the industrial interest in the expansion of
automation and advanced signalling from the sector of main line railways to light rail
and urban transit.

Three prominent researchers working on railway engineering, Jens Braband, from
Siemens AG, Rail Automation and Honorary Professor of the Technical University of
Braunschweig, Germany, Michael Leuschel, from Heinrich Heine Universität,
Düsseldorf, Germany, and Aryldo Ar. Russo, from CERTIFER, France, kindly agreed
to deliver keynote talks.

We would like to thank the Program Committee members and the additional
reviewers for all their efforts. We warmly thank DITECFER, as well as all the industrial
sponsors1, for their help in making it possible to organize this event in Pistoia. We
would like to acknowledge the help of Newcastle University staff: Joan Atkinson, Tom
Anderson, Wayne Smith, and Dee Carr. We are grateful to Alfred Hofmann from
Springer for supporting the publication of these proceedings in the LNCS series. But,
most of all, our thanks go to all the contributors and the attendees of the conference for
consolidating the success that this conference has experienced since its first edition.

August 2017 Alessandro Fantechi
Thierry Lecomte

Alexander Romanovsky

1 AdaCore, ALSTOM, Altran, Ansaldo STS, ANSYS, ClearSy, ECM, Italcertifer, Sirti, Systerel,
VectorCast.

VI Preface



Organization

Conference Chairs

Alessandro Fantechi University of Florence, Italy
Thierry Lecomte ClearSy, France
Alexander Romanovsky Newcastle University, UK

Local Organization Chair

Veronica Bocci DITECFER, Italy

Conference Organization and Financial Chair

Joan Atkinson Newcastle University, UK

Web Chair

Wayne Smith Newcastle University, UK

Organizing Committee

Tom Anderson Newcastle University, UK
Dee Carr Newcastle University, UK
Gloria Gori University of Florence, Italy
Paolo Pacini DITECFER, Italy

Program Committee

Carlo Becheri ALSTOM, Italy
Marc Behrens DB Projekt Stuttgart-Ulm GmbH, Germany
Andrea Bondavalli University of Florence, Italy
David Bonvoisin RATP, France
Fares Chucri SNCF, France
Simon Collart-Dutilleul IFSTTAR, France
Francesco Flammini UMUC Europe, Germany
Stefania Gnesi ISTI-CNR, Italy
Frank Golatowski University of Rostock, Germany
Anne Haxthausen Technical University of Denmark, Denmark
Baseliyos Jacob Deutsche Bahn, Germany
Michael Jastram Formal Mind, Germany
Alexei Iliasov Newcastle University, UK
Tim Kelly University of York, UK



Hironobu Kuruma Hitachi, Japan
Michael Leuschel Düsseldorf University, Germany
Gianluca Mandò Thales, Italy
Jean Marc Mota Thales R&T, France
Jan Peleska Verified Systems International, Germany
Ralf Pinger Siemens AG, Germany
Christophe Ponsard CETIC, Belgium
Peter Popov City University, UK
Etienne Prun ClearSy, France
Matteo Rossi Politecnico di Milano, Italy
Aryldo Russo CERTIFER, France
Balazs Saghi BUTE, Hungary
Kenji Taguchi AIST, Japan
Jaco van de Pol University of Twente, The Netherlands
Laurent Voisin Systerel, France
Kirsten Winter University of Queensland, Australia

Additional Reviewers

Katrina Attwood University of York, UK
Davide Basile ISTI, CNR, Italy
Benjamin Beichler University of Rostock, Germany
Gautier Dallons CETIC, Belgium
Renaud De Landtsheer CETIC, Belgium
Vincenzo Di Massa Thales, Italy
Mark Douthwaite University of York, UK
Dominik Hansen Düsseldorf University, Germany
Sebastian Krings Düsseldorf University, Germany
Chris Leong University of York, UK
Thorsten Schulz University of Rostock, Germany
Romain Soulat Thales R&T, France
Giorgio Oronzo Spagnolo ISTI-CNR, Italy
Hannes Raddatz University of Rostock, Germany
Matteo Tempestini ALSTOM, Italy

VIII Organization



Abstracts of Keynote Talks



Cyber Security in Railways: Quo Vadis?

Jens Braband

Siemens AG, Braunschweig, Germany
jens.braband@siemens.com

Abstract. Some recent incidents and analyses have indicated that possibly the
vulnerability of IT systems in railway automation is increasing. Due to several
trends, such as digitalization or the use of commercial IT and communication
systems, the threat potential has increased. This paper discusses the way forward
for the railway sector, how many advantages of digitalization can be realized
without compromising safety. In particular topics such as standardization or
certification are covered, but also technical issues like SW update.

Keywords: Railway • Cyber security • Safety • Risk assessment • Cyber
security requirements



The Unreasonable Effectiveness of B for Data
Validation and Modelling of Railway Systems

Michael Leuschel

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,
Universitätsstr. 1, D-40225 Düsseldorf
michael.leuschel@hhu.de

Abstract. The B method [2] is quite popular for developing provably correct
software for safety-critical railway systems, particularly for driverless trains [6].
In recent years, the B method has also been used successfully for data valida-
tion.1 There, the B language has proven to be a compact way to express complex
validation rules, and tools such as predicateB, Ovado, or PROB can be used to
provide high assurance validation engines, where a secondary toolchain vali-
dates the result of the primary toolchain [1, 3–5, 7, 8]. This talk will give an
overview of our experience in using B for data validation tasks, as well as for
other modelling tasks in the railway domain. We will also touch on subjects
such as training and readability. We will examine which features of B make it
well suited for the railway domain, but also point out some weaknesses and
suggestions for future developments.

Keywords: B method • Data validation • Constraint programming

References

1. Abo, R., Voisin, L.: Formal implementation of data validation for railway safety-related
systems with OVADO. In: SEFM Workshops, vol. 8368, pp. 221–236 (2013)

2. Abrial, J.-R.: The B-Book. Cambridge University Press (1996)
3. Ayed, R.B., Dutilleul, S.C., Bon, P., Idani, A., Ledru, Y.: B formal validation of

ERTMS/ETCS railway operating rules. In: Ameur, Y.A., Schewe, K. (eds.) ABZ 2014.
LNCS, vol. 8477, pp. 124–129. Springer, Heidelberg (2014)

4. Badeau, F., Amelot, A.: Using B as a high level programming language in an industrial
project: Roissy VAL. In: ZB 2005. LNCS, vol. 3455, pp. 334–354. Springer, Heidelberg
(2005)

5. Badeau, F., Doche-Petit, M.: Formal data validation with Event-B. In: Proceedings of
DS-Event-B 2012, Kyoto. CoRR abs/1210.7039 (2012)

1 http://www.data-validation.fr.

http://www.data-validation.fr


6. Essamé, D., Dollé, D.: B in large-scale projects: the Canarsie line CBTC experience. In:
Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 252–254. Springer,
Heidelberg (2007)

7. Lecomte, T., Burdy, L., Leuschel, M.: Formally checking large data sets in the railways. In:
Proceedings of DS-Event-B 2012, Kyoto. CoRR abs/1210.6815 (2012)

8. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification for large
scale B models with ProB. Formal Aspects Comput. 23(6), 683–709 (2011)

The Unreasonable Effectiveness of B for Data Validation XIII



Safety Certification: Considering Processes
Around the World

Aryldo Ar. Russo

CERTIFER, France
aryldo.russo@certifer.eu

Abstract. The theoretical development path of a safety-critical system is for a
SILx (where 1 <= x <=4) => safety standards -> development + independent
safety team + ISA -> safety certificate -> OK to operate. This development path,
unfortunately, is followed mostly when formally required or imposed by the
buyer, line operator, or grant authority, and this formalization is not a reality all
around the world. This talk presents the process that is normally applied to
certify safety-critical systems, the differences and pitfalls around the world, and
briefly discusses the drawbacks and trade-offs of using automatic tools to replace
manual development processes.

The main purpose on a railway system is to take passengers from point A to point B in
a comfortable a safe way. By comfortable we can understand, besides ergonometric, an
on time transport, without disruption, etc… by safe, clearly, a transport that do not kill
people. To cope with this last requirement, meaning, safety, it’s necessary to use a
certain type of system, what’s is called safety critical one. And, finally, to demonstrate
that this safety critical system can contribute to maintain a certain level of safety on the
entire system, the certification process takes place.

The theoretical development path of safety critical system is, for a SILx (where
1 <= x <=4) => Safety Standards -> development + Independent Safety team + ISA ->
Safety Certificate -> OK to operate. In railways, a set of standards exists to support the
development, verification & validation and the certification process. These standards
are the CENELEC 50126/128/129 (or the equivalent IEC 62278, 62279, 62425).
Besides the development lifecycle, these standards determine the 3 pillars that have to
exists, in an independent manner, that means, the development team, responsible for
define the requirements, design the systems, implement it, etc…, the V&V team or
Safety team, responsible for verify that the safety requirements were respected and
validate that they were correctly implemented, and the Independent Safety Assessor,
responsible for recheck each step of the development and V&V process to identify its
compliancy with respect to the standards to the extent of the specific required safety
level (SIL).

This development path, unfortunately, is followed mostly when formally required
or imposed by the buyer, line operator or grant authority, and this formalization is not a
reality all around the world. This talk presents the process that is normally applied to
certify safety critical systems, the differences and pitfalls around the world. Most of the
time, the requirements to cope with these standards are not well understood, what leads
to an endless debate about what should be provided as evidence, the deepness of the



analysis that should be performed, and when the assessment should begin. Moreover,
there is a misunderstood between “Safety Analysis” and “Safety Assessment”.

Finally, this talk briefly discusses the drawbacks and trade-offs of using automatic
tools to replace manual development process. More and more the manual development
process is being replaced by the use of automatic tools, during the specification phase,
like the use of formal methods, during the implementation phase, like automatic code
generators, during the test phases, like automatic test cases generators, or automatic test
execution and analysis, just to cite a few. Even if those tools help a lot the develop-
ment, decreasing the time to market, and helping to find hidden bugs, they also have to
cope with the safety standards. Depending on the level of interaction of those tools,
from a tool that it’s just an aid, where no errors can be introduced by the tool itself, to a
tool that performs part (or all) of the developer’s job, like a code generator, more and
more evidences shall be provided to allow the use of such tools. Those tools are
classified by the standards as T1, T2 and T3.

Safety Certification: Considering Processes Around the World XV



Contents

Keynote Talk

Cyber Security in Railways: Quo Vadis? . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Jens Braband

Communication Challenges in Railway Systems

LTE System Design for Urban Light Rail Transport . . . . . . . . . . . . . . . . . . 17
Gianluca Mandò and Giovanni Giambene

A Framework to Evaluate 5G Networks for Smart and Fail-Safe
Communications in ERTMS/ETCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Roberto Canonico, Stefano Marrone, Roberto Nardone,
and Valeria Vittorini

Systems-Theoretic Likelihood and Severity Analysis for Safety
and Security Co-engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

William G. Temple, Yue Wu, Binbin Chen, and Zbigniew Kalbarczyk

Formal Modelling and Verification for Safety

Formal Modelling Techniques for Efficient Development of Railway
Control Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

M. Butler, D. Dghaym, T. Fischer, T.S. Hoang, K. Reichl, C. Snook,
and P. Tummeltshammer

OVADO: Enhancing Data Validation for Safety-Critical Railway Systems . . . 87
Manel Fredj, Sven Leger, Abderrahmane Feliachi, and Julien Ordioni

A Domain-Specific Language for Generic Interlocking Models
and Their Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Linh H. Vu, Anne E. Haxthausen, and Jan Peleska

Bayesian Network Modeling Applied on Railway Level Crossing Safety . . . . 116
Ci Liang, Mohamed Ghazel, Olivier Cazier, Laurent Bouillaut,
and El-Miloudi El-Koursi

Deductive Verification of Railway Operations. . . . . . . . . . . . . . . . . . . . . . . 131
Eduard Kamburjan and Reiner Hähnle

http://dx.doi.org/10.1007/978-3-319-68499-4_1
http://dx.doi.org/10.1007/978-3-319-68499-4_2
http://dx.doi.org/10.1007/978-3-319-68499-4_3
http://dx.doi.org/10.1007/978-3-319-68499-4_3
http://dx.doi.org/10.1007/978-3-319-68499-4_4
http://dx.doi.org/10.1007/978-3-319-68499-4_4
http://dx.doi.org/10.1007/978-3-319-68499-4_5
http://dx.doi.org/10.1007/978-3-319-68499-4_5
http://dx.doi.org/10.1007/978-3-319-68499-4_6
http://dx.doi.org/10.1007/978-3-319-68499-4_7
http://dx.doi.org/10.1007/978-3-319-68499-4_7
http://dx.doi.org/10.1007/978-3-319-68499-4_8
http://dx.doi.org/10.1007/978-3-319-68499-4_9


Safety Analysis of a CBTC System: A Rigorous Approach with Event-B. . . . 148
Mathieu Comptier, David Deharbe, Julien Molinero Perez,
Louis Mussat, Thibaut Pierre, and Denis Sabatier

B-PERFect: Applying the PERF Approach to B Based
System Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Alexandra Halchin, Abderrahmane Feliachi, Neeraj Kumar Singh,
Yamine Ait-Ameur, and Julien Ordioni

Formal Verification of Train Control with Air Pressure Brakes . . . . . . . . . . . 173
Stefan Mitsch, Marco Gario, Christof J. Budnik, Michael Golm,
and André Platzer

Light Rail and Urban Transit

An Efficient Evaluation Scheme for KPIs in Regulated
Urban Train Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Bruno Adeline, Pierre Dersin, Éric Fabre, Loïc Hélouët,
and Karim Kecir

Redundant and Reliable Architecture Based on Open Source Tools
for Light-Rail-Transit On-Board-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Vincenzo Di Massa, Mirko Damiani, Maurizio Papini,
and Gianluca Mandò

Dependable Dynamic Routing for Urban Transport Systems
Through Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Davide Basile, Felicita Di Giandomenico, and Stefania Gnesi

Engineering Techniques and Standards

Theories, Techniques and Tools for Engineering Heterogeneous
Railway Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Paulius Stankaitis and Alexei Iliasov

Are Standards an Ambiguity-Free Reference for Product Validation? . . . . . . . 251
Alessio Ferrari, Mario Fusani, and Stefania Gnesi

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-68499-4_10
http://dx.doi.org/10.1007/978-3-319-68499-4_11
http://dx.doi.org/10.1007/978-3-319-68499-4_11
http://dx.doi.org/10.1007/978-3-319-68499-4_12
http://dx.doi.org/10.1007/978-3-319-68499-4_13
http://dx.doi.org/10.1007/978-3-319-68499-4_13
http://dx.doi.org/10.1007/978-3-319-68499-4_14
http://dx.doi.org/10.1007/978-3-319-68499-4_14
http://dx.doi.org/10.1007/978-3-319-68499-4_15
http://dx.doi.org/10.1007/978-3-319-68499-4_15
http://dx.doi.org/10.1007/978-3-319-68499-4_16
http://dx.doi.org/10.1007/978-3-319-68499-4_16
http://dx.doi.org/10.1007/978-3-319-68499-4_17


Keynote Talk



Cyber Security in Railways: Quo Vadis?

Jens Braband(✉)

Siemens AG, Brunswick, Germany
jens.braband@siemens.com

Abstract. Some recent incidents and analyses have indicated that possibly the
vulnerability of IT systems in railway automation is increasing. Due to several
trends, such as digitalization or the use of commercial IT and communication
systems the threat potential has increased. This paper discusses the way forward
for the railway sector, how many advantages of digitalization can be realized
without compromising safety. In particular topics like standardization or certifi‐
cation are covered, but also technical issues like SW update.

Keywords: Railway · Cyber security · Safety · Risk assessment · Cyber security
requirements

1 Introduction

Over the last years, reports on Cyber security incidents related to railways have increased
as well as public awareness. For example, it was reported that, on December 1, 2011,
“hackers, possibly from abroad, executed an attack on a Northwest rail company’s
computers that disrupted railway signals for two days” [1]. Although the details of the
attack and also its consequences remain unclear, this episode clearly shows the threats
to which railways are exposed when they rely on modern commercial-off-the-shelf
(COTS) communication and computing technology. Only recently it was reported that
the WannaCry virus also affected railway passenger information systems [2].

What distinguishes railway systems from many other systems is their inherently
distributed and networked nature with tens of thousands of kilometer track length for
large operators. Thus, it is not economical to provide complete protection against phys‐
ical access to this infrastructure and, as a consequence, railways are very vulnerable to
physical denial-of-service attacks leading to service interruptions.

Another feature of railways distinguishing them from most other systems is the long
lifespan of their systems and components. Current contracts usually demand support for
over 25 years and history has shown that many systems, e.g. mechanical or relay inter‐
lockings, last much longer. Cyber security analyses have to take into account such a
long lifespan.

Concerning Cyber security another difference to many other application sectors is
that railway automation is a highly safety-critical field, which has a rather strict approval
regime similar to civil aviation. It seems that so far many Cyber security considerations
have been made without this background. While in railway automation harmonized

© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 3–14, 2017.
https://doi.org/10.1007/978-3-319-68499-4_1



safety standards were elaborated almost two decades ago, up to now no harmonized
Cyber security requirements for railway automation exist.

This paper starts with a discussion of the normative and legal background. A short
overview of the basic concepts of ISA99/IEC62443 [3] is given. Then several
approaches towards Cyber security risk assessment are discussed with particular focus
on their applicability to safety-critical systems. Then a Cyber security risk assessment
framework is defined which aims to separate Cyber security and safety requirements as
well as certification processes as far as possible. This can be beneficial when SW is
updated. As an example a particular update-friendly architecture is discussed.

2 Normative Background

In railway automation, there exists an established standard for safety-related communi‐
cation, IEC 62280 [4]. The first version of the standard was elaborated in 2001. It has
proven quite successful and is also used in other application areas, e.g. industry automa‐
tion. This standard defines threats and countermeasures to ensure safe communication in
railway systems. So, at an early stage, the standard established methods to build a safe
channel (in security, called “tunnel” or “conduit”) through an unsafe environment.
However, the threats considered in IEC 62280 arise from technical sources or the envi‐
ronment rather than from humans. The methods described in the standard are partially
able to protect the railway system also from intentional attacks, but not completely. Until
now, additional organizational and technical measures have been implemented in railway
systems, such as separated networks, etc., to achieve a sufficient level of protection.

The safety aspects of electronic hardware and systems are covered by IEC 62425 [5].
However, security issues are taken into account by IEC 62425 only as far as they affect
safety issues, but, for example, denial-of-service attacks often do not fall into this cate‐
gory. Questions such as intrusion protection are only covered by one requirement in
Table E.10 (unauthorized access). Nevertheless, IEC 62425 provides a structure for a
safety case which explicitly includes a subsection on protection against unauthorized
access (both physical and informational).

Only recently a survey group for the railway domain has delivered a recommendation
that the safety standards like IEC 62425 shall be supplemented by a guideline on Cyber
security. Particularly the proposal was made to adapt the ISA99/IEC62443 series, which
is a set of standards currently elaborated by the Industrial Automation and Control
System Security Committee of the International Society for Automation (ISA) in coop‐
eration with IEC. This standard is not railway-specific and focuses on industrial control
systems. It is dedicated to different hierarchical levels, starting from concepts and going
down to components of control systems.

Railways are certainly critical national and international infrastructures, so recently
national governments, e.g. the USA and Germany, as well as the EU have identified the
problem. They have defined clear policies to support the implementation of industry-
defined sector-specific Cyber security standards.

How can the gap between information security standards for general systems and
railways be bridged? One bridge is provided by the European Commission Regulation

4 J. Braband



No. 402/2013 on Common Safety Methods [6]. This Commission Regulation mentions
three different methods to demonstrate that a railway system is sufficiently safe:

(a) by following existing rules and standards (application of codes of practice),
(b) by similarity analysis, i.e. showing that the given (railway) system is equivalent to

an existing and used one,
(c) by explicit risk analysis, where risk is assessed explicitly and shown to be accept‐

able.

We assume that, from the process point of view, security can be treated just like
safety, meaning that threats would be treated as particular hazards. Using the approach
under (a), ISA99/IEC62443 may be used in railway systems, but particular tailoring
would have to be performed due to different safety requirements and application condi‐
tions. By this approach, a code of practice that is approved in other areas of technology
and provides a sufficient level of security can be adapted to railways. This ensures a
sufficient level of safety.

However, application of the general standards [4] requires tailoring them to the
specific needs of a railway system. This is necessary to cover the specific threats asso‐
ciated with railway systems and possible accidents and to take into account specific other
risk-reducing measures already present in railway systems, such as the use of specifically
trained personnel.

This finally leads to a kind of “Cyber security for safety approach”, where the Cyber
security objectives and processes are referenced by the technical safety report from IEC

4 Operation 
w. external 
influences

IT security

Technical Safety Report IEC 62425

4.6 Access 
protection

. . . . . .

IEC 62443

IEC 62280

Other

Fig. 1. Embedding on Cyber security in the technical safety report from IEC 62425

Cyber Security in Railways: Quo Vadis? 5



62425, see Fig. 1. Other security objectives can also be described in that structure,
however the puzzle is not complete today and needs further railway-specific supporting
standards and guidelines.

3 Problems with Threat and Risk Analysis for Safety-Related
Systems

From the risk analysis point of view, many concepts from safety and Cyber security
seem very similar; only the wording seems different. What’s called a hazard in safety is
called a threat in Cyber security, but the risk analysis processes really look alike. Thus
it would be a logic conclusion to apply the same risk assessment techniques to Cyber
security. This idea is even more supported by fact that many measures of Cyber security
are adapted for safety and residual failure probabilities are computed, e.g. for transmis‐
sion errors in communication, see e.g. IEC 62280. As a matter of fact this similarity is
used in many security standards, ISO 27005 [7] being the most general, but instead of
probability the term likelihood is introduced. A commonly used Cyber security risk
matrix is shown in Fig. 2.

Fig. 2. Risk matrix based on ISO 27005

In ISO 27005 “likelihood is used instead of the term ‘probability’ for risk estima‐
tion”. It is admitted that “its ease of understanding” is an advantage, but “the dependence
on subjective choice of scale” is a disadvantage.

NIST guidance [8] explains in more detail: “The likelihood of occurrence is a
weighted risk factor based on an analysis of the probability that a given threat is capable
of exploiting a given vulnerability (or set of vulnerabilities). The likelihood risk factor
combines an estimate of the likelihood that the threat event will be initiated with an
estimate of the likelihood of impact (i.e., the likelihood that the threat event results in
adverse impacts). For adversarial threats, an assessment of likelihood of occurrence is
typically based on: (i) adversary intent; (ii) adversary capability; and (iii) adversary
targeting.”

Also scientifically the probabilistic approach does not really apply to Cyber security,
e.g. we can’t rely on statistical data or experience as we often do in safety as the threat
landscape and risk assessment may change immediately if a new vulnerability becomes
known. Also the attacks, at least the targeted attacks, don’t occur randomly. So as a
matter of fact we have both systematic causes as the initiators of a security threat and

6 J. Braband



we have vulnerabilities, flaws in the system or SW engineering, as contributing factors,
which also have a systematic nature.

4 Overview of ISA99/IEC62443 Standards

Currently, 10 parts are planned in this standard series covering different aspects for
industrial automation and control systems (IACS, the main stakeholders are addressed
in brackets):

General (all):

• 1-1 Terminology, concepts and models
• 1-2 Master glossary of terms and abbreviations

Policies and procedures (railway operators)

• 2-1 Establishing an industrial automation and control system security program 2-3
Patch management in the IACS environment

• 2-4 Security program requirements for IACS solution suppliers

System (system integrators)

• 3-1 Security technologies for IACS
• 3-2 Security levels for zones and conduits
• 3-3 System security requirements and security levels

Components (suppliers of Cyber security products)

• 4-1 Product development requirements
• 4-2 Technical security requirements for IACS products

The documents are at different stages of development, some being already interna‐
tional standards, while others are at the first drafting stage. This leads in particular to
problems when the documents build on each other, e.g. Part 3-3 [9] with detailed security
requirements is published, but it builds on Part 3-2 which defines the security levels and
is restarted after a negative vote.

The fundamental concept of the standard is to define foundational requirements (FR)
and security levels (SL) which are a “measure of confidence that the IACS is free from
vulnerabilities and functions in the intended manner”. There are seven groups of FR:

1. Identification and authentication control
2. Use control
3. System integrity
4. Data confidentiality
5. Restricted data flow
6. Timely response to events
7. Resource availability

Each FR group has up to 13 sub-requirement categories which are tailored according
to the SL.

Cyber Security in Railways: Quo Vadis? 7



5 Security Levels

The default SL assignment for each zone and conduit is based on the attacker capability
only:

SL 1: casual or unintended
SL 2: simple means: low resources, generic skills and low motivation
SL 3: sophisticated means: moderate resources, IACS-specific skills and moderate
motivation
SL 4: sophisticated means: extended resources, IACS-specific skills and high moti‐
vation

The default assignment can be changed based on the results of a threat and risk
analysis. For each FR, a different SL may be assigned. There is a distinction between a
target SL (as derived by threat and risk analysis), a design SL (capability of the solution
architecture) and finally the achieved SL (as finally realized). If either the design SL or
the achieved SL does not match the target SL, then additional measures have to be
implemented (e.g. physical or organizational) as compensation.

Taking into account the fact that there may also be no Cyber security requirement
(SL 0), a SL assignment results in a seven-dimensional vector with 57 = 78.125 possible
different assignments. Based on the SL assignment, a standardized set of Cyber security
requirements can be found in Part 3-3, which is a great advantage of the approach and
which would simplify certification greatly.

Note that there is no simple match between SL and the Safety Integrity Levels (SIL)
applied in safety standards. However, the definition of SL 1 is very similar to require‐
ments in the safety field as also safety-related systems have to address topics such as
operator error, foreseeable misuse or effects of random failure. So we can conclude that
a safety-related system (SIL > 0) should also fulfill the technical requirements of IEC
62443-3-3 as the threats which SL 1 addresses are also safety hazards.

A concise comparison shows that there are some differences in detail. IEC 62443-3-3
contains 41 requirements for SL 1, of which more than half are directly covered by safety
standards such as IEC 62425 or IEC 62280, and about a quarter are usually fulfilled in
railway safety systems representing good practice. However, another quarter of the
requirements are usually not directly addressed in IEC 62425 safety cases. The main
reasons are that these requirements do not fall under the “Cyber security for safety”
category but address availability requirements in order to prevent denial of service or
traceability requirements.

The current proposal is to include all SL 1 requirements from IEC 62443-3-3 in the
system requirements specification of any safety-related signaling system. In this way,
no additional SL 1 Cyber security certification would be necessary and it would be a
contribution to the defense-in-depth principle. Finally, these requirements should find
their place in the IEC 62278 standards series.

8 J. Braband



For the sake of brevity, we are focusing on system aspects in this paper. The first
step after system definition would be to divide the system into zones and conduits
according to the following basic rules:

• The system definition must include all hardware and software objects.
• Each object is allocated to a zone or a conduit.
• Inside each zone, the same Cyber security requirements are applicable.
• There exists at least one conduit for communication with the environment.

The next step is the threat and risk analysis resulting in SL assignment to each zone
and conduit. Here, railway applications might need procedures different from industry
automation as factories and plants are usually physically well protected and are not
moving.

As soon as the SL is assigned, standardized requirements from IEC 62443-3-3 can
be derived. These requirements would be taken over to the railway automation domain
without any technical changes. They would define the interface to use pre-certified Cyber
security components for the railway automation domain.

Finally, correct implementation of the Cyber security countermeasures according to
IEC 62443-3-3 must be evaluated similar to the validation of safety functions.

6 Approaches Towards Cyber Security Risk Assessment

6.1 IEC 62443-3-2 Proposal

Recently, a novel approach towards semi-quantitative Cyber security risk assessment
has been proposed in the draft IEC 62443-3-2 [10]. It tried to define the security level
as a level of cyber security risk reduction. It used a similar matrix like in Fig. 2, but with
a different ranking of risk. But it did not pass the voting as the argumentation was
unfounded and was not well integrated with other parts of the standard series. In the
review of IEC 62443-3-2 it was recently decided not to propose a particular method for
cyber security risk assessment and allocation of SL.

6.2 German DKE 0831-104 Proposal

In a recently published standard for railway automation [11] the approach seems to avoid
the uncertainty or infeasibility of credible likelihood estimation, but rather to focus on
the capability of the attacker as stipulated by the SL definition. The rationale behind this
approach is that the worst case would be a remote attack, which cannot be traced and
which has safety impact. This case would deserve the highest Cyber security require‐
ments as such attacks would scale in contrast to attacks that need local or physical access.

In a first step, it must be decided whether the zone or conduit is exposed to malicious
attacks at all. If no malicious attacks have to be assumed, then SL 1 is assigned for all
FR. Otherwise, the parameters already addressed by IEC 62443 would be assessed
separately for each zone and each conduit according to Table 1. This means a score is
assigned to each of the parameters resources, know-how and motivation of the attacker.

Cyber Security in Railways: Quo Vadis? 9



The following railway specific risk parameters should be considered in addition to
the parameters already dealt with in IEC 62443, also in comparison with NIST 800-30:

• Attack location (from where can the attack be launched?)
• Traceability of the attack (in the sense of non-repudiation)
• Potential extent of damage (Safety-critical impact)

It is important that a realistic type of attacker is evaluated, rather than an evaluation
of which resources, capabilities and motivation an attacker would need for a successful
attack. As it has also been demonstrated that in particular the motivation of an attacker
and the location of the attack and its traceability are dependent on one another, the
evaluation of the attacker’s motivation does not need to take place directly, but is covered
by the other parameters.

A combination rule is needed to be able to evaluate these two parameters independ‐
ently. This is specified in Table 2.

Table 2. Preliminary SL assignment

R2 R3 R4
K2 PSL 2 PSL 3 PSL 4
K3 PSL 3 PSL 3 PSL 4
K4 PSL 3 PSL 4 PSL 4

In particular, the following facts were taken into account:

• According to IEC 62443, an SL x is sufficient to successfully ward off an attacker
belonging to the combination Rx, Kx and Mx.

• An attacker who possesses higher resources (Rx) than skills (Kx) could acquire the
applicable skills by using his resources.

• The motivation of an attacker and the location of the attack and its traceability are
dependent on one another. So no particular direct scale for motivation (Mx) is neces‐
sary.

The provisional SL (PSL) listed in Table 2 corresponds to the SL in compliance with
IEC 62443 without considering railway specific risk factors.

Generally, several attacker types have to be considered. In this case, the highest PSL
of the different attacker types’ shall be taken into account. The railway specific param‐
eters have a special importance compared with other application domains and can there‐
fore give rise to adapted SL requirements.

The PSL may then be altered based on railway-specific risk parameters, e.g.

Table 1. Assessment of attacker capability

Score 2 3 4
Resources (R) Low Medium Extended
Know-how (K) Common System-specific Extended
Motivation (M) Low Limited High

10 J. Braband



• location of the asset and the attacker (ORT), e.g. does the attacker need access to the
site or can the attack be launched remotely, e.g. from home?

• traceability and non-repudiation of the attack (NAC), e.g. is it possible to trace the
attacker and to collect sufficient evidence to identify him?

• potential of the attack (POT), e.g. is there no or limited safety implication of the
attack?

All these additional variables are binary and are set to 1 if the question can be
answered by YES. The final SL is assignment is then by

SL = PSL - maximum{ORT, NAC, POT}

meaning that the PSL can be reduced if there is at least one railway risk reduction factor
present, but not more.

It should be noted that, according to IEC 62443, the assessment would have to be
carried out for all seven FR. However, from a railway safety point of view, some of the
FR have only little safety impact so that FR such as “Data confidentiality” or “Resource
availability” should always be assigned SL 1 as a default. Also, it can be argued that
there is no real reason to distinguish between the other FR, because they are not inde‐
pendent, and it is proposed to allocate the same SL to all five remaining FR. This would
lead to only four classes for railway signaling applications

• SL 1 = (1,1,1,1,1,1,1)
• SL 2 = (2,2,2,1,2,2,1)
• SL 3 = (3,3,3,1,3,3,1)
• SL 4 = (4,4,4,1,4,4,1)

In the approach presented here, it has to be decided against which kind of attackers
the system has to be made secure, which is a decision to be taken by the railway operator
and the safety authority. This decision is guided by the parameters in Table 1. The SL
then represents the effort which must be made so that the system effectively withstands
attacks by these kinds of attackers. Only attackers who exceed this effort considerably
might be able to overcome the Cyber security countermeasures. Different kinds of
attackers on railway assets have already been researched [12] and the results were
compatible with the classification proposed here.

However it may be criticized that this approach concentrates too much on the attacker
capability without exploiting all attack scenarios or taking all security aspects into
account. In order to satisfy these critics we extend the approach in the next chapter.

7 Combined Approach

We can summarize the analysis so far that the former approach proposed by IEC
62443-3-2 has several systematic flaws which cannot be easily overcome. In particular,
the question of calculating Cyber security-related risks is very complex and should be
avoided [13]. But we have sketched an approach how to derive the SIL from a safety
point of view.

Cyber Security in Railways: Quo Vadis? 11



However, the use of risk matrices in Cyber security is so widely used in Threat &
Risk Analysis (TRA) that it should be kept, but it should be properly used with the
definition of SL in IEC 62443.

We start from the following assumptions (without further justification):

• There exists an agreed risk matrix, like Fig. 2
• We can derive SLs which are defined by the type of attacker and the measures defined

by IEC 62443 (like in the previous chapter)

For the sake of the example, we assume the same sample risk matrix as shown from
Fig. 2 (but we do not use the criticalities). The precise form of the matrix is not important,
however there should be a clear procedure which would be followed based on the
classification of the results. Normally color codes green, yellow and red are used ranging
from broadly acceptable to intolerable risks.

In a TRA, we would assess all possible threat scenarios and classify them according
to their risk. Assume we have defined the SL by the type of attacker, say initially SL is
equal to (3,3,3,1,3,3,1). Then, we would start the TRA as a check and should arrive at
tolerable risks for safety-related threats (usually green (0–2) or yellow (3–5) fields). For
yellow classifications we would only have to reduce risk if it is economically reasonable.
If we arrive at red (6–8) classifications, this means we either misjudged the SL in the
beginning or we may have scenarios that represent additional Cyber security related
risks which are not safety-related. For example this might be a loss of reputation after
a data breach. This would mean that we have to define additional security requirements
which are not safety-related.

8 Software Patch Management

Software update or software patch management is a topic where fundamental dilemmas
between safety and security manifest themselves. Safety-related software undergoes a
lengthy and costly approval process with many independent steps such as testing, veri‐
fication, validation and assessment. Thus, safety-related systems are updated only rarely
and infrequently as updating would change the approved software configuration and
invalidate the safety case and a new approval process would have to be started. However,
in Cyber security, updating or patching occurs frequently, e.g. for COTS operating
systems or anti-virus software.

The UK Department for Transport acknowledges these problems in their guidance
[14] by stating that safety-related systems “should be updated and patched where this
does not violate the safety case”. But what if such systems use COTS operating systems?
At least it is required that new safety-related systems “can be patched without violating
the safety case”. However, no concrete solution is presented.

We sketch a solution that even allows the co-existence of a non-safety third-party
software and a safety-related software on the same platform. We assume that we have
multiple redundant hardware channels and a voter and we distinguish between different

12 J. Braband



kinds of patches for the third-party software: change of configuration data, error correc‐
tion (without any change of the intended functionality) and new functionality. The
solution is as follows:

1. At least one channel (called A channel) contains only the approved safety-related
software; at least one (called B channel) additionally contains the third-party soft‐
ware.

2. Initially, the complete system is approved.
3. Before a safety-relevant output is executed, the voter checks that at least one A

channel and the majority of B channels have agreed (or produced the same output).
4. The third-party software on the B channels may be updated, if by a change analysis

and a system integration test it can be shown that the risk associated with the change
is broadly acceptable.

As a consequence, it is ensured that the third-party software cannot influence the
safety-related software, as the A channel is not affected by the update. Under normal
conditions, a change of configuration data and error correction should always be broadly
acceptable in such architecture, so that, in the most frequent cases, the third-party soft‐
ware can be patched. This means that malware protection software may be regularly
updated without invalidating the safety case (Fig. 3).

B RR

VoterOutput Output

Safety 
software

A

Antivirus Safety 
software

Third 
party

Third 
party

Approved system 
(original)

Approved system 
(updated)

Fig. 3. Update-friendly architecture example

9 Conclusion

This paper has shown a way forward how to deal with cyber security in railways: it
should be based on an adaptation of the industry standard ISA99/IEC 62443.

However particular care has to be taken for risk assessment approaches with respect to
Cyber security, as currently there is no established approach which combines risk matrices
and SL allocation. For this purpose a combined framework for risk assessment with partic‐
ular focus on railway automation applications has been proposed. The concept aims at the
separation of safety and security aspects, as far as possible. This is achieved by integrating
safety-related security requirements into the safety process and the safety case.

Cyber Security in Railways: Quo Vadis? 13



Finally the particular problem of SW update has been discussed as an example where
safety and security have conflicting goals. However it has been shown that this problem
cannot be solved by standards but by architecture.

References

1. http://www.nextgov.com/nextgov/ng_20120123_3491.php
2. The Telegraph: Cyber attack hits German train stations as hackers target Deutsche Bahn.

http://www.telegraph.co.uk/news/2017/05/13/cyber-attack-hits-german-train-stations-hacke
rs-target-deutsche/

3. ISA 99: Standards of the Industrial Automation and Control System Security Committee of
the International Society for Automation (ISA) on information security. http://isa99.isa.org/
Documents/Forms/AllItems.aspx

4. IEC 62280 Railway applications, Communication, signaling and processing systems–Safety
related communication in transmission systems, September 2010 (CENELEC EN 50159)

5. IEC 62425 Railway applications, Communication, signaling and processing systems – Safety-
related electronic systems for signaling, February 2003 (CENELEC EN 50129)

6. Commission Implementing Regulation (EU) No 402/2013 on the common safety method for
risk evaluation and assessment and repealing Regulation (EC) No 352/2009, 30 April 2013

7. ISO: Information technology - Security techniques - Information security risk management,
ISO 27005 (2011)

8. NIST: Guide for conducting risk assessments, SP800-30 (2012)
9. IEC: Industrial communication networks – Network and system security – Part 3-3: System

security requirements and security levels, IEC 62443-3-3 (2015)
10. IEC 62443-3-2: Security for industrial automation and control systems – Part 3-2: Security

risk assessment and system design, draft for comments, August 2015
11. Electric signaling systems for railways – Part 104: IT Security Guideline based on IEC 62443

(in German) (2015)
12. Schlehuber, C.: Analysis of security requirements in critical infrastructure and control

systems (in German), Master thesis, TU Darmstadt (2013)
13. Braband, J., Schäbe, H.: Probability and Security – Pitfalls and Chances. In: Proceedings of

the Advances in Risk and Reliability Technology Symposium 2015, Loughborough (2015)
14. UK Department for Transport: Rail Cyber Security - Guidance to Industry (2016)

14 J. Braband

http://www.nextgov.com/nextgov/ng_20120123_3491.php
http://www.telegraph.co.uk/news/2017/05/13/cyber-attack-hits-german-train-stations-hackers-target-deutsche/
http://www.telegraph.co.uk/news/2017/05/13/cyber-attack-hits-german-train-stations-hackers-target-deutsche/
http://isa99.isa.org/Documents/Forms/AllItems.aspx
http://isa99.isa.org/Documents/Forms/AllItems.aspx


Communication Challenges in Railway
Systems



LTE System Design for Urban Light Rail Transport

Gianluca Mandò1(✉) and Giovanni Giambene2

1 Thales Italia SpA, Via Lucchese, 33, Osmannoro, 50019 Florence, Italy
gianluca.mando@thalesgroup.com

2 Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche,
Università degli Studi di Siena, Via Roma, 56, 53100 Siena, Italy

giambene@unisi.it

Abstract. This paper deals with the performance of LTE-A (Long Term Evolu‐
tion-Advanced) cellular networks for supporting operational, safety-critical
signaling, and standard IT services for urban transportation. Our interests have
been focused on Light Rail Transit (LRT) signaling performance for the Song‐
jiang (China) tramway project. Several stationary and mobility use cases have
been considered and mean end-to-end delay and Packet Loss Rate (PLR) key
performance indicators have been evaluated. Simulation results highlight that, in
stationary conditions, LRT signaling performance requirements are fulfilled,
while PLR performance degrades when mobility is introduced. Furthermore, we
have evaluated the impact of non-critical IT traffic (e.g., UDP-based video) on
TCP-based signaling by demonstrating that signaling throughput is not affected
by video in stationary scenarios, whereas, in the presence of mobility, handovers
degrade signaling performance, which can be guaranteed only if a QoS-aware
scheduler is adopted. In conclusions, our results demonstrate that LTE-A can
safely support operative and non-critical applications in urban transportation
scenarios, where strong connectivity requirements are crucial.

Keywords: Light rail transit · Safety-critical signaling · LTE

1 Introduction

Reliability, availability and safety play a crucial role for the increasingly use of public
transport systems. In this paper, we analyze all major challenges that wireless commu‐
nication systems are facing today in order to guarantee signaling services for train
control, passenger safety, and to allow the coexistence with other new, non-critical
applications [1]. Today, traffic control and management of public transportation systems
are mainly provided by wireless communication technologies such as GSM-R for rail‐
ways, TETRA, and WiFi in metro applications. But, if we consider today communication
needs for rail transport, we realize that the above technologies have some limitations,
mainly due to their inefficiency and limited capacities, thus paving the way to the intro‐
duction of new mobile digital technologies.

In this paper, after a brief summary of the existing radio systems used in public
transport, we evaluate LTE technology performance for Light Rail Transit (LRT) appli‐
cations [2]. After defining the main elements of a typical tramway control system, we

© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 17–33, 2017.
https://doi.org/10.1007/978-3-319-68499-4_2

http://orcid.org/0000-0002-5756-4603


will describe the simulation of a real urban tram line (Songjiang Line 1 [3]) by using
the Ns-3 network simulator [4] and evaluate the performance of an LTE infrastructure
for transmitting both control signaling and video traffic.

2 Radio Communications for Urban Transport

Public transport systems can be divided in two main categories, such as: railway trans‐
port and Urban Guided Transport (UGT) [5]. The former refers to wheeled vehicles
running on rails and is also commonly referred to as train transport. The latter is a public
transport system in an urban area with motorized vehicles operated on a guideway (i.e.,
the vehicles follow a determined trajectory for all or part of their journey). These are,
therefore, metro, subways, trams, and LRTs.

Connectivity is one of the key issues for these transport systems. In fact, a moving
vehicle cannot obviously be connected to ground-based infrastructure by any other mean
than legacy inductive systems or radio communications. In the past, such radio systems
have been based on analogue technology, dedicated to voice and not suitable for carrying
data. Nowadays, due to the necessity to provide more operational and safety services
for train control, passenger security, and new non-critical applications, there is a lot of
interest in introducing new digital mobile technologies for urban guided transport
systems. In what follows, a survey is presented on the main services provided by radio
communication systems for transport systems. Then, a very quick view is given on the
state-of-the-art of radio communication technologies for railways and UGT systems.

2.1 Radio Communications Services for Transport Systems

Safety and non-safety services, which are provided today in transport systems through
communication technologies, have different Quality of Service (QoS) requirements.
They can be classified into three main categories:

• Safety-critical signaling for the safe movement of trains and operations. It can be
distinguished in two categories: signaling related to the safety of the train itself and
public safety signaling, also including voice communications. They generally require
a low throughput (up to 100 kbps), but have strong requirements in terms of security,
reliability, availability (at least 99.99%), robustness (typically a packet error rate of
10−3 for a 200-byte packet) and timing (delay constraints lower than 500–800 ms) [1].

• Operational non-safety services for non-critical services for train operation support.
They do not have a direct impact on the safety and efficiency, but aim to improve
internal railway operations. These services consist of passenger information (to
provide contents related to the train location, stations, latest updates on delay and
traffic disruption), Closed Circuit TV (CCTV) for security and Internet of Things
(IoT) for sensing, communicating and aggregating all information.

• Non-critical applications for infotainment that are devoted to providing services
to train passengers (e.g., Internet access, advertisement, and movie streaming).

18 G. Mandò and G. Giambene



2.2 LTE as a Future Communication Solution for Railway Applications

Today, train operators receive an increasing data traffic demand for signaling, opera‐
tions, and to provide travel comfort by offering more services to passengers through
real-time multimedia data. Technologies such as GSM-R and TETRA, which are ETSI
(European Telecommunications Standard Institute) standards, provide an insufficient
data rate if we consider today’s communication needs for urban transport, while WiFi
technologies, although achieving high data rates, have limitations in mobility support
and because of interference. LTE is a 4G wireless technology whose standardization
started in 2008 by the 3rd Generation Partnership Project (3GPP). Its architecture consists
of Base Stations, called eNodeBs (eNBs), which allow connectivity between User
Equipment (UE) and Core Network, called Evolved Packet Core (EPC). The introduc‐
tion of LTE in railway and urban guided transport is an open research issue that is gaining
more and more interest from the railway industry.

In a few years, GSM communication systems will be decommissioned as the public
communication market is evolving toward LTE. As a consequence, GSM-R also has a
foreseeable end of its lifetime [6]. A new system is thus required to fulfill railway
operational needs with the capability of being consistent with LTE, offering new serv‐
ices, but still coexisting with GSM-R for a certain period of time. In view of both the
performance and the level of maturity of LTE, LTE-Railway (LTE-R) will likely be the
next-generation LRT communication systems. Table 1 provides a comparison of LTE
with other wireless technologies.

Table 1. Comparison of existing radio communication technologies.

GSM-R TETRA WiFi LTE
Operational voice
support

Yes Yes VoIP VoLTE

Data support < 10 kbps < 28.8 kbps > 10 Mbps > 10 Mbps
All IP (native) No No Yes Yes
Vital traffic support Yes Yes No Yes
P2T/call setup time 1 to 5 s 250 ms 100 ms 100 ms
Handover mechanism Standard Standard Proprietary Standard
Priorities/pre-emption Yes Yes 4 QoS classes/No 9 QoS

classes/Yes
Available frequencies 900 MHz UIC 400 MHz PMR 2.4/5 GHz 400 MHz to

3.5 GHz
Cell range 10 km 25 km < 1 km 1 km
Maturity End by 2025 Mature Widely adopted

in urban areas
Emerging

3 LRT and Tramway Control System

LRT and tramways are playing an ever more important role in creating environmentally-
sustainable cities, enforcing the concept of sustainable mobility within the smart cities

LTE System Design for Urban Light Rail Transport 19



contextual environment. It is a kind of urban transportation system for which automation
systems for service operation are actually not applied, since these trains share their ways
with other vehicles, like buses, cars and even pedestrians. Indeed, the safety in tramways
is based on the principle that the train movement is fully controlled by the driver: railway
operation is under his responsibility and no level of automation is allowed. Tramway
Control System (TCS) is the signaling and control system that provides supervision and
control over tramway and LRT networks, including routing and headway management.
TCS is a complete signaling and control system that optimizes performances, providing
an unprecedented level of supervision and control over tramway and LRT networks,
including routing and headway management. It is a modular and scalable system made
up of three main building blocks:

• Traffic Manager (TM) at the Operation Control Center (OCC) for real-time vehicles
localization and circulation management;

• Interlocking System (IS), which manages LRT signaling alongside and in the
depots. It is usually a fault-tolerant system with a high grade of SIL (Safety Integrity
Level) that controls line switches, track circuits, axle counters and signals.

• On Board Computer (OBC) to manage on-board signaling, communication and
comfort.

The general TCS network architecture (see Fig. 1) consists in a transmission system
based on a Gigabit Ethernet Backbone connecting the OCC to the stations and in a radio
system to connect the OCC to the trams. Furthermore, TCS allows a safe management
of the tram movement at the depot, where electrical switches are monitored and
controlled by using the same TCS equipment foreseen for the switch area management
in the main line. The main functions of TCS are: automatic vehicle localization, priority
management at road and crossing area, train regulation, timetable management, junc‐
tions and depot management, and passenger information.

Fig. 1. General TCS architecture.

20 G. Mandò and G. Giambene



4 Simulation Approach and Results

For the simulation study carried out in this work, we have assumed an LTE cellular
network for the Songjiang Tram Line T1. The details of Songjiang tram lines are
provided in Table 2 [3].

Table 2. Characteristics of T1 and T2 tram lines.

Songjiang tram lines T1 & T2 Lines Total
Line T1 Line T2

Length (km) 15.659 15.24 30.941
Stations 23 22 (one station is reserved for future) 45
Trains 15 30
OCC 1 1

First of all we are interested in evaluating the performance in terms of mean end-to-
end (e2e) delay and packet loss rate of the signaling traffic from trains to OCC and back,
and then we will add a non-critical bandwidth-demanding traffic in order to evaluate the
impact of this traffic on signaling traffic. Line T1 is 15.659 km long with 23 stations. At
first, 16 trains are provided on the line, but this number will increase to 30 trains during
the years. Each train reaches the maximum speed of 70 km/h and its average speed is
about 30 km/h. This line is double track; after having reached a terminus point each train
goes back to the other terminus. Multiple cells are need in order to cover the whole line
T1 with an LTE network. A link budget analysis is then required in order to find the cell
range and the number of eNBs to be deployed to cover the target area. We assume that
the designed LTE network is dedicated entirely to train traffic.

We model trains as LTE User Equipments (UEs), while the OCC is modelled as a
Remote Host and traffic flows are generated in both uplink and downlink directions. We
consider the following performance indicators:

• The mean end-to-end delay (e2e delay), calculated as the ratio of the sum of all
end-to-end delays for all received packets of a data flow to the number of received
packets;

• The Packet Loss Rate (PLR), calculated as the ratio of lost packets to the sum of
lost packets and received packets, where lost packets refer to those that were trans‐
mitted, but have not been reportedly received or forwarded for a long time.

Transmission Control Protocol (TCP) is used as the transport layer protocol for
signaling traffic. TCP provides reliable and ordered delivery of stream of IP packets
from one sender to one receiver. LRT signaling traffic is on top of TCP and is intended
as the sum of the following traffic flows in downlink:

Traffic position request (32-byte packet size) + Passenger information (128-byte
packet size) + Driver logic answer (16-byte packet size) and Time synchronization
answer (16-byte packet size).

LTE System Design for Urban Light Rail Transport 21



In uplink, signaling is the sum of the following traffic flows:
Train position request (32-byte packet size) + Route request (16-byte packet

size) + Train diagnostic telemetry (32-byte packet size) + Time synchronization request
(8-byte packet size).

Both downlink and uplink signaling traffic are modelled (at application level) as a
Constant Bit Rate (CBR) traffic having 200-byte packets and data rate of 1600 bps. CBR
traffic flows are modelled as ON/OFF traffic processes.

On-board video surveillance is on top of User Datagram Protocol (UDP) that is
another common transport layer protocol used in today’s Internet. UDP is connectionless
and does not provide any sort of reliability, rate limiting or congestion control mecha‐
nism to the applications using it, such as video streaming. Table 3(a) summarizes the
characteristics of traffic sources and their QoS requirements defined by the train operator.
The second phase of this work involves the study of the impact of non-critical traffic
(video modelled as CBR traffic having 1000-byte packets and data rate of 1 Mbps) on
signaling. Table 3(b) illustrates video traffic characteristics and QoS requirements.

Table 3. Traffic characteristics and QoS requirements for signaling (a) and video (b) traffic.

(a) (b)

4.1 Simulator Implementation

We have implemented the LTE scenarios of Songjiang Tram Line T1 using the Ns-3
simulation environment [4]. Ns-3 is an open-source discrete-event network simulator
under the GNU GPLv2 license. Ns-3 is primarily used on Linux systems, although
support exists for Windows systems as well. To implement the LTE scenario, we have
used the Ns-3 LENA (LTE-EPC Network simulAtor) module [7]. LENA is a free open-
source LTE network simulator developed by the Centre Tecnològic de Telecomunica‐
cions de Catalunya (CTTC). The LTE model supports Radio Resource Management
(RRM), Inter-Cell Interference Coordination (ICIC), dynamic spectrum access and
QoS-aware packet scheduling. At radio level, the granularity of the model is at the level
of Resource Blocks (RBs), which are the fundamental units of resource allocation.
Packet scheduling is done on a Transmission Time Interval (TTI) basis (= 1 ms). An
eNB can transmit on a subset of the available RBs, interfering with other eNBs trans‐
mitting on the same RBs. The simulator is designed to manage tens of eNBs (each
controlling a cell) and hundreds of UEs (corresponding in this case to trains). The simu‐
lator can be used to simulate many IP packets flows, but in the LTE simulator, scheduling
and radio resource management do not directly work with IP packets, but rather with

22 G. Mandò and G. Giambene



Radio Link Control (RLC) packets, obtained by segmentation and concatenation of IP
packets at the RLC layer.

4.2 Results: Stationary Trains at Train Depot

This scenario implements the simplest use case where all trains are located at the train
depot and turn on signaling traffic all at the same time (data rate 1600 bit/s/train). This
situation corresponds to a real case when all trams are started at the same time in the
depot (the operational services are activated in the morning) (Fig. 2).

Fig. 2. Stationary trains at train depot.

We consider covering this area with only one eNB with a cell radius of approximately
1 km; thus, all the trains are connected to this cell and exchange data with the OCC. All
the trains are modelled as stationary nodes and they are uniformly distributed in the cell.
Each simulation run lasted 10 min and was repeated 10 times with different seed numbers
in order to achieve reliable results. The main simulation parameters are shown in
Table 4 below.

Table 4. Simulation parameters of the stationary scenario.

Parameter Value
LTE Bandwidth 5 MHz
eNB/UE antenna height 50 m/3.5 m
Cell radius 1 km
eNB/UE antenna gain 18 dBi/0 dBi
eNB/UE Tx Power 26 dBm/23 dBm
Number of trains 15, 20, 25, 30
Simulation repetitions 10

In this scenario, we have found that the mean e2e signaling delay in relation to the
number of trains at the train depot is approximately constant in all investigated cases
and is below 14 ms and 23 ms (respectively for downlink and uplink) for a number of
trains up to 30 at the depot. Uplink delay is a bit higher than downlink because the uplink
radio resource scheduling is different from downlink [8]. As for PLR, we have verified

LTE System Design for Urban Light Rail Transport 23



that it is negligible for both uplink and downlink, thus fulfilling the requirements of the
train operator.

Furthermore, within this depot scenario we have also investigated the impact of non-
critical traffic on LRT signaling. In other words, OCC sends a further video flow
modelled with 1 Mbps data rate. Both flows share the same LTE resources so that a QoS
provisioning mechanism is required in order to prioritize and protect signaling. In LTE,
the QoS mechanism is provided using EPS bearers, which carry packet flows between
the UEs and a specific packet data gateway (P-GW). Hence, in order to guarantee some
specific QoS requirements for a specific application, a dedicated bearer will be estab‐
lished for that application. All the details of each traffic type are summarized in Table 3.
Unfortunately, the Ns-3 simulator for LTE only supports QoS-aware schedulers for
downlink traffic, while only the Round Robin (RR) scheduler is implemented for uplink.
Figure 3 shows the mean delay for signaling traffic for both uplink and downlink in
relation to the number of trains. We have supposed that not all the trains activate
signaling and video traffic, but only a selected number of them. Due to the congestion
of LTE air interface resources caused by video, we noticed an increment of the mean
e2e delay for signaling with respect to the case without video. The signaling PLR is still
almost zero: the PLR of signaling is not affected by the video even if the number of
trains increases. This is an important result since it suggests that in a scenario with
stationary trains, the introduction of a non-critical application does not influence the
QoS of signaling, which is a vital traffic for train operation and safety.

Fig. 3. Signaling traffic delay in relation to the number of trains.

Figure 4 presents the mean delay performance for video. As we can see, due to its
high throughput, the mean delay for video is higher than the signaling one.

24 G. Mandò and G. Giambene



Fig. 4. Video delay in relation to the number of trains.

As for video PLR, it is almost zero in the downlink case until 16 trains are considered
at the train depot, since the capacity of an LTE cell is sufficient to support all these traffic
flows and a target bit rate is used by the scheduler for each traffic. In the case with 19
trains, the cell capacity is not sufficient so there are packet losses due to congestion.
Video PLR requirements defined in Table 3 are not fulfilled in uplink, while they are
met in downlink when there is no congestion in the network.

4.3 Results: Cell Planning

The number of eNBs that are needed to cover the tram line with cells of radius R depends
on the eNB transmission power according to the link budget analysis. In particular, we
use the following equation to determine the cell size R:

R[km] = 10(Ptx+Gtx−Ltx−Pmin+Grx−IM−Lrx−x)∕z (1)

where:
R is the cell radius
Ptx is the transmission power (dBm)
Gtx, Grx are transmitter and receiver antenna gains (dB), respectively
Ltx, Lrx are the losses (dB) at transmitter and receiver, respectively
Pmin is the minimum receiver power (dBm)
IM is the interference margin (dB)
x, z are terms that depend on the pathloss.

For a given number of trains in transit into the line, we simulate some scenarios
where the number of eNBs varies, accordingly to the transmission power, and we eval‐
uate the performance of signaling traffic in terms of mean end-to-end delay and packet
loss rate for the communications between trains and OCC. We assume to consider the
worst-case conditions for interference: values of the interference margins for both uplink
and downlink are chosen as the worst values within a typical range for LTE systems [8].

LTE System Design for Urban Light Rail Transport 25



Furthermore, the noise figure values are chosen as the worst ones for a conservative
performance evaluation. Table 5 summarizes the main assumptions and simulation
parameters for this scenario. By applying the simulation parameters of Table 5 to
Eq. (2) below, we can characterize the path loss Lp in dB as a function of the distance d
between transmitter and receiver as:

Lp[dB] = 46.3 + 33.9 × log10(f ) − 13.82 × log10(hb) − F(hM) + C + [44.9 − 6.55 × log10(hb)] × log10(d), (2)

where
F(hM) =

[
1.1 × log10(f )

]
− 0.7 × hM −

[
1.56 × log10(f )

]
− 0.8, for medium cities

C is a constant term equal to 0 dB for medium cities
f is the carrier frequency [MHz]
ℎb is the eNB antenna height above the ground [m]
ℎM is the UE antenna height above the ground [m]
d is the distance between the eNB and the UE [km].
Since uplink is commonly more critical than downlink for the link budget, we deter‐

mine the cell size R, referring to uplink coverage. In order to define the proper parameters
for determining the cell radius R, we can refer to the expected Cell Edge Throughput
(CET) or to the minimum receiver power level, Pmin. Fixing the CET for a single user,
we determine the minimum Modulation and Coding Scheme (MCS) index, which has
a corresponding Signal-to-Interference and Noise Ratio (SINR) threshold value. Thus,
knowing this SINR threshold, the receiver noise figure and the thermal noise, which
depends on the number of RBs we assume to allocate to the UE at cell edge, we obtain
the minimum receiver power Pmin, and then R is simply given by (1).

Table 5. Simulation parameters.

Parameter Value
LTE bandwidth 5 MHz
eNB/UE antenna height 50 m/3.5 m
eNB/UE antenna gain 18 dBi/0 dBi
Type of handover/Handover algorithm X2-based handover/Strongest cell
CET 1 Mbps
Type of uplink scheduler Round Robin (RR)
Type of downlink scheduler Priority Set Scheduler (PSS)
Adaptive modulation and coding Piro’s model
UL/DL receiver sensitivity −100 dBm/−96 dBm
eNB/UE Tx power 18–48 dBm/23 dBm
eNB noise figure/UE noise figure 5 dB/9 dB
UL/DL interference margin 10 dB/8 dB
Number of trains 16
Tramway line length 15.7 km

26 G. Mandò and G. Giambene



Since in our simulation scenario we randomly place 16 trains along the line (8 trains
move in a direction and the other 8 trains move in the opposite direction), we can suppose
that at most there will be 2 trains at the edge of a cell at the same time. This is only an
assumption we have done for our work, but it is of considerable importance in order to
define the cell edge throughput and the corresponding number of resource blocks to be
allocated to each user. Knowing the CET and the total bandwidth (= 5 MHz in our case,
corresponding to 25 RBs), if we consider to have 2 UEs at the cell border, the network
could not allocate more than 12 RBs per UE (= train). Assuming an uplink CET of
1 Mbps and allocating 12 RBs, the corresponding MCS index is 6 that corresponds to
use a QPSK modulation.

In our Ns-3 simulator, only even MCS indexes from 0 to 28 (out of 30) are considered
according to [9]. Each MCS index corresponds to a certain SINR threshold value. So
that, knowing the required MCS index to fulfil the CET condition, we can find the
corresponding SINR value used by the simulator and the minimum received power Pmin.
In Fig. 5, the MCS level is shown as a function of the SINR level, as implemented in
the Ns-3 simulator for the Adaptive Modulation and Coding (AMC) scheme [9].

Fig. 5. AMC levels implemented in Ns-3.

In Fig. 6, we provide the graphs for uplink and downlink cell radius. As expected,
the higher is the transmission power, the larger is the cell radius. Furthermore, consid‐
ering the maximum transmission power for UEs equal to 23 dBm, we notice from
Fig. 6 that the maximum cell radius is about 0.5 km if we consider the more stringent
condition of uplink coverage. This demonstrates that the LTE system is uplink limited.
Then, knowing the cell radius, the number of eNBs, NeNB, to be deployed along a tram
line according to a linear cellular model is obtained as follows:

NeNB = ⌈Length∕(2 × R)⌉, (3)

where ℎ is the total tram line length and 2R is the distance between two eNBs (linear
cellular model).

LTE System Design for Urban Light Rail Transport 27



Fig. 6. Cell radius vs. eNB/UE transmission power.

According to the uplink coverage, since the maximum UE transmission power is
fixed to 23 dBm, the cell radius is quite small and this has consequence on the minimum
number of required eNBs. As shown in Fig. 6, if we limit to have 23 dBm UE trans‐
mission power, the cell radius should be about 0.5 km. However, since in uplink and
downlink we have considered different values for noise figure and interference margin,
we note that the downlink cell radius is smaller than the cell radius calculated for uplink
for eNB transmission power of 23 dBm. This entails the need to use a higher eNBs
transmission power, specifically the one matching 0.5 km cell radius. Reducing the eNBs
transmission power until the minimum value of 18 dBm, we will deploy more eNBs
along the track due to the shorter cell radius. Table 6 shows the possible values of eNBs
transmission power (in steps of 2 dBs) with the corresponding cell radius R and the
corresponding number of eNBs to cover the entire line.

Table 6. Selected eNB transmission power.

Ptx[dBm] R[km] NeNB

18 0.312984 26
20 0.358709 22
22 0.411115 20
24 0.471178 17
26 0.540015 15

4.4 Results: Impact of Train Mobility, Handover Performance

We are now going to evaluate the signaling performance when trains move along the
tramway line. With the purpose of evaluating the impact that mobility and handovers
have on signaling traffic performance [10, 11] in relation to the number of trains and
varying the number of eNBs, we firstly consider a simple scenario where few trains are
moving along the track and different transmission powers are considered, i.e., different
numbers of eNBs are deployed along the track. As shown in Fig. 7, we assume a linear
deployment of the eNBs with an inter-eNB distance of 2R. Trains are moving in the
same direction and each train is randomly distributed and travels at a constant speed
crossing different eNBs and coming back.

28 G. Mandò and G. Giambene



Fig. 7. Handover scenario.

From simulation results not shown here, we have obtained that the mean e2e delays
for downlink and uplink for different transmission powers and numbers of trains are not
sensitive to the increase in the number of trains and are below 14 ms and 22 ms, respec‐
tively, up to 4 trains. Let us now consider the PLR results in Figs. 8(a) and (b). As shown
in these graphs, PLR increases when trains have mobility. This increment is mainly due
to the handovers that the trains trigger when moving across different cells. Moreover,
PLR increases with the number of trains, since more trains trigger handovers at the same
time and eNBs do not handle properly the handover procedure and data forwarding. We
also notice that the downlink PLR is higher than the uplink one. Regarding this scenario,
we can conclude that using higher transmission power for each eNBs could improve the
performance at the cost of higher total transmission power in the network. However,
increasing the eNB transmission power we reduce the number of cells, thus there could
be too congestion and this entails a performance degradation.

Fig. 8. Downlink (a) and uplink (b) PLR vs. number of trains and eNB transmission power.

4.5 Results: Impact of the Number of eNBs on Signaling Traffic

In order to evaluate the impact that the eNB deployment has on LRT signaling in an
LTE access network, we have fixed the number of trains to 16 in the simulation scenario.
Besides, we set different eNB transmission powers, corresponding to different cell radii
and numbers of deployed eNBs to cover the entire line. Furthermore, we consider a

LTE System Design for Urban Light Rail Transport 29



linear deployment of the eNBs with an inter-eNB distance of 2R. Half of the trains moves
in one direction, instead the other half moves in the opposite direction, as shown in
Fig. 9. Each train is randomly distributed along the tramway line and after reaching a
terminus point comes back to the other one and then stops at its starting point. Consid‐
ering the same simulation parameters, as in Table 5, each simulation run is repeated 10
times, changing the seed numbers in order to achieve reliable results.

Fig. 9. Simulation scenario topology.

Even if the mean e2e delay is not strongly affected by the number of eNBs deployed,
our results show a slight increment in delay for both downlink and uplink when more
eNBs are placed. This behavior is mainly due to the more frequent handovers as they
will delay transmission and reception of packets. In Fig. 10, instead, we note that the
more eNBs are deployed, the higher is the PLR value: this is again due to the more
frequent handovers with an increase in packet losses, especially for downlink. Therefore,
a trade-off is needed between the total transmission power (and the consequent number
of eNBs) and the performance requirements.

Fig. 10. PLR vs. number of eNBs.

30 G. Mandò and G. Giambene



4.6 Results: Impact of the Number of Trains on Signaling Traffic

In this simulation scenario, we consider a deployment with 15 eNBs (considered as a
good trade-off solution) and evaluate the performance in relation to the number of trains
in the line. We consider the same simulation parameters as in Table 5. Each simulation
run is repeated 10 times, changing the seed numbers in order to achieve reliable results.

Even if the number of trains does not strongly affect the mean e2e delay, it has a
negative impact on packet loss rate. Indeed, as it can be seen in Fig. 11, the more trains
are in the line, the higher the PLR value is; this is mainly due to the more frequent
handovers caused by the increment in the number of trains.

Fig. 11. PLR vs. number of trains.

PLR requirements are met for uplink up to 25 trains and never for downlink. Further‐
more, since in the Ns-3 simulator only intra-frequency handovers are supported, addi‐
tional interference is present in our model, since all eNBs transmit on the same frequency
(in real scenarios, there is frequency differentiation among adjacent cells and inter-
frequency handovers are adopted).

4.7 Results: Impact of Non-critical Traffic on Signaling

Finally, we are interested in evaluating the impact that non-critical video (500-byte
packet) has on signaling when trains are moving. This UDP traffic is modelled as CBR
having a data rate of 500 kbps. Compared to the stationary case, there is an increment
for both mean e2e delay and PLR: the mean delay continues to match the delay
constraint, while the PLR requirement is not met. Figure 12, obtained by varying the
number of trains, shows that the PLR of signaling traffic in uplink is significantly
degraded, because a QoS-aware scheduler is not used in uplink. Finally, as for the video
performance, the mean end-to-end delay and PLR increase with the number of trains,
with downlink performance approximately one order of magnitude better than uplink
one, because of the use of a QoS scheduler.

LTE System Design for Urban Light Rail Transport 31



Fig. 12. Signaling traffic PLR vs. number of trains.

5 Conclusions and Future Work

In this paper, we have investigated major challenges faced in urban transportation when
using an LTE-A cellular network for safety-critical signaling and standard IT services.
Our interests have been focused in evaluating LRT signaling performance using LTE
for the citywide Songjiang tramway project. A simulator of LTE railway communica‐
tions has been built, based on the Ns-3 environment; we have considered several opera‐
tional scenarios involving time-critical (TCP-based) signaling by differentiating
between stationary and mobility use cases. For what concerns PLR in stationary condi‐
tions, requirements are fulfilled independently of the number of trains in the depot, while
the PLR performance degrades when mobility is introduced. In a second simulation
session, we have evaluated the impact of non-critical IT traffic (UDP-based video) on
TCP-based signaling. We have obtained that safety-critical signaling throughput is not
affected by video in stationary scenarios, whereas, in the presence of mobility, handovers
degrade signaling performance that can be guaranteed only if a QoS-aware scheduler is
adopted. Results have also shown that QoS requirements are met if there is no congestion
in the LTE network.

In conclusions, we have shown that LTE-A radio resources can be safely shared
between time-critical and time-non-critical applications, thus allowing the simultaneous
use of safety-critical signaling with non-critical traffic such as video surveillance, tick‐
eting, and passenger information. Hence, LTE technology is a good candidate for unified
communications in next-generation urban rail infrastructures.

References

1. Bertout, A., Bernard, E.: Next generation of railways and metros wireless communication
systems. In: Proceedings of IRSE ASPECT (2012)

2. Sniady, A., Soler, J.: Performance of LTE in high speed railway scenarios. In: Berbineau, M.,
Jonsson, M., Bonnin, J.-M., Cherkaoui, S., Aguado, M., Rico-Garcia, C., Ghannoum, H.,
Mehmood, R., Vinel, A. (eds.) Nets4Cars/Nets4Trains 2013. LNCS, vol. 7865, pp. 211–222.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-37974-1_17

32 G. Mandò and G. Giambene

http://dx.doi.org/10.1007/978-3-642-37974-1_17


3. Thales: LRT & Tramway Solution for Optimised Operations and Maintenance. https://
www.thalesgroup.com/sites/default/files/asset/document/lrt_tramway_brochure_ld_0.pdf

4. Ns-3 Tutorial: https://www.nsnam.org/docs/release/3.24/tutorial/ns-3-tutorial.pdf
5. Furlan, L., Schmidt, H.: Importance of interchangeability for urban guided transport. Eur.

Transp. Res. Rev. 3(2), 95–101 (2011)
6. Sniady, A., Soler, J.: An overview of GSM-R technology and its shortcomings. In:

Proceedings of the 12th International Conference on ITS Telecommunications (2012)
7. Ns-3 Models: https://www.nsnam.org/docs/release/3.24/models/ns-3-model-lib.pdf
8. Holma, H., Toskala, A.: LTE for UMTS: Evolution to LTE-Advanced, 2nd edn. Wiley,

Chichester (2011)
9. Ns-3 LTE PHY layer: https://www.nsnam.org/docs/release/3.24/models/html/lte-testing.

html#adaptive-modulation-and-coding-tests
10. Sauter, M.: From GSM to LTE-Advanced: An Introduction to Mobile Networks and Mobile

Broadband. Wiley, Chichester (2014)
11. Racz, A., Temesvary, A., Reider, N.: Handover Performance in 3GPP Long Term Evolution

(LTE) Systems. In: Proceedings of Mobile and Wireless Communications Summit (2007)

LTE System Design for Urban Light Rail Transport 33

https://www.thalesgroup.com/sites/default/files/asset/document/lrt_tramway_brochure_ld_0.pdf
https://www.thalesgroup.com/sites/default/files/asset/document/lrt_tramway_brochure_ld_0.pdf
https://www.nsnam.org/docs/release/3.24/tutorial/ns-3-tutorial.pdf
https://www.nsnam.org/docs/release/3.24/models/ns-3-model-lib.pdf
https://www.nsnam.org/docs/release/3.24/models/html/lte-testing.html#adaptive-modulation-and-coding-tests
https://www.nsnam.org/docs/release/3.24/models/html/lte-testing.html#adaptive-modulation-and-coding-tests


A Framework to Evaluate 5G Networks
for Smart and Fail-Safe Communications

in ERTMS/ETCS

Roberto Canonico1, Stefano Marrone2, Roberto Nardone1,
and Valeria Vittorini1(B)

1 DIETI, Università di Napoli Federico II, Naples, Italy
{roberto.canonico,roberto.nardone,valeria.vittorini}@unina.it

2 Dip. di Matematica e Fisica, Università della Campania “Luigi Vanvitelli”,
Caserta, Italy

stefano.marrone@unicampania.it

Abstract. ETCS is an European system for high speed trains control
and protection within ERTMS, the European standard for rail traffic
management system. ERTMS/ETCS implementations use GSM-R for
communications. As GSM-R is becoming obsolete, the adoption of more
advanced technologies is investigated for next generation trains. New
communication systems for railway infrastructures are expected to over-
come the limitations of GSM-R, providing enhanced performance and
reliability, as well as safety and security functionality to meet the require-
ments of the future signalling systems, control and users’ applications.
While 4G technologies (LTE and LTE-A) are currently tested in a few
field trials, railway operators should consider that fifth generation (5G)
mobile communications technologies will soon be available. One of the
foundational aspects of the 5G architecture is control-plane programma-
bility, achieved through the SDN paradigm. Being aware that in a railway
scenario this opportunity can be exploited to dynamically reconfigure the
network behavior to better match the communication flows produced
by moving trains, we aim at defining a framework, integrating formal
modeling and analysis tools and techniques into a network emulator, to
evaluate the impact on ERTMS/ETCS safety and security deriving from
the adoption of an SDN model in the communication infrastructure. In
this paper we describe a first step towards this objective, by presenting
a first proof-of-concept implementation of the framework and its use to
reproduce a simple railway infrastructure. In our current implementa-
tion, Finite State Machines are used to model communication protocols
between ERTMS/ETCS entities and to automatically produce code and
Promela models. Generated code is directly used to control the network
behavior while the Promela model allows to generate and verify a net-
work configuration by model checking.

Keywords: 5G networks · ERTMS/ETCS · Model checking · Model
transformation · Network emulation

c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 34–50, 2017.
https://doi.org/10.1007/978-3-319-68499-4_3



A Framework to Evaluate 5G Networks for ERTMS/ETCS 35

1 Introduction

Train-to-ground communications in today’s high speed railways are based on
the Global System for Mobile Communications for Railways (GSM-R) standard.
As GSM-R is becoming obsolete, different solutions are being investigated for
the next generation trains. These solutions must contribute to the control and
safe separation of trains and cope with the necessity to answer the dramatic
increase in demand for communication services. The winning solution of this
challenge will have a great impact on an important market segment including
service providers, telecommunication operators and transportation companies.

At the state, the 4G UMTS Long Term Evolution (LTE) technology and
its advanced version (LTE-A) are considered in important research and inno-
vation initiatives (e.g., the Signalling – Innovation Programme 2 of the Euro-
pean Shift2Rail initiative) and in some field trials aimed at testing proprietary
solutions [21]. Before switching to a completely new communications infrastruc-
ture, however, railway operators should consider that mobile communications
are going to experience another evolutionary leap in the next few years. A great
research effort, in fact, is currently in place to define a fifth generation (5G)
mobile communications standard. 5G networks are expected to support a multi-
tude of diverse services on top of a heterogeneous infrastructure. The 5G archi-
tecture is currently designed to be highly flexible for supporting traditional use
cases as well as easy integration of future ones. In particular, active 5G research
projects suggest that 5G access networks will be based on the emerging Software
Defined Networking (SDN) paradigm. By pursuing SDN, the network infrastruc-
ture will be made easily programmable and hence able to reliably and safely
support a number of concurrent multi-tenant applications with diverse require-
ments. In a railway scenario, 5G networks could support control, monitoring,
video-surveillance, infotainment services thanks to control-plane programmabil-
ity which allows dynamic reconfiguration of the network behavior to better match
the communication flows produced by moving trains [1].

This paper presents the preliminary results thatwe obtained in a research activ-
ity aimed at evaluating the opportunities that may derive from the adoption of an
SDN model to control the networking infrastructure of next generation railways. In
particular,wedescribe a framework that integrates a network emulatorwith formal
modeling and analysis tools and techniques to evaluate network control strategies
specifically tailored for railway communications. The rest of the paper is organized
as follows. In Sect. 2webriefly illustrate the basic concept of control plane program-
mability that characterizes the SDN paradigm and provide references to related
work. In Sect. 3 we describe the framework we have defined, its objectives and its
general architecture. Finally, in Sect. 4 we describe a proof-of-concept implemen-
tation of the framework and its usage in a simple use case.

2 Background and Related Work

The adoption of 5G communications technologies for future high speed railways
has already been proposed in a few recent works, in particular to address the



36 R. Canonico et al.

new communications demands of travellers and of security applications (e.g.,
videosurveillance) [8,15,23].

One of the foundational aspects of the 5G architecture is control-plane pro-
grammability, achieved through the adoption of the Software Defined Network-
ing (SDN) paradigm. The fundamental characteristic of SDN is the separation
between control and data plane. In a network device, the data plane is responsi-
ble of actually forwarding packets from one input port to one (or more) output
ports, possibly after a manipulation of some header fields. How this forwarding
is performed is responsibility of the control plane. In traditional networking, the
control plane functionality is embedded in the device itself. With SDN, the con-
trol plane functionality is located outside of network devices and is performed by
a logically centralized SDN Controller entity, i.e. a software system running on a
commodity server. A single SDN Controller is usually responsible of controlling
many network switches.

In this paper we assume that the SDN paradigm is implemented by means
of the well known OpenFlow protocol [14], which is standardized by the Open
Networking Foundation (ONF). An OpenFlow Controller is an SDN Controller
that is able to control the packet forwarding behavior of OpenFlow-enabled
switches by inserting flow entries into the switches’ flow tables. A flow entry
consists of packet header fields, counters, and actions associated with that entry.
The header fields in a flow entry describe to which packets the entry is applicable.
A wildcard value may be specified for some of the header fields of packets.

Control plane programmability provided by SDN has been proposed as an
instrument to solve emerging networking issues in several contexts. So far, SDN
is primarily employed in datacenter networks, to cope with Virtual Machine
migrations. However, the same paradigm is also finding useful applications to
support Mobile Cloud Computing [4] and mobility management (i.e. the ability
to quickly configure and manage network resources to accommodate a large
number of moving terminals) [22].

Some open issues need to be considered when applying the SDN paradigm
to safety- and security-critical domains. An SDN controller needs to update the
configuration of a potentially high number of network devices. “Naively updat-
ing individual node configurations can lead to incorrect transient behaviors, such
as loops, black holes, access control violations, and others” [13]. Hence, research
is focusing on efficient techniques for formal verification of control plane strate-
gies and their automatic deployment in network devices in the context of SDN
networks. In such networks, efficient paths for each source and destination pair
should be automatically computed and defined to improve network manage-
ment, service performance, survivability and resiliency. Some recent works in
this direction propose to integrate a Path Computation Element [18] into SDN
networks [17]. The need for formal verification of control plane configuration
in SDN networks has been recently recognized and addressed in several papers
(e.g., [2,6,9,11,12,19,20]). Most of these works apply model checking techniques
to prove that SDN programs behave correctly. However, in general, scaling these
methods to large networks is challenging and, moreover, they cannot guarantee



A Framework to Evaluate 5G Networks for ERTMS/ETCS 37

the absence of errors. To cope with this problem, in [6] the authors adopt sym-
bolic execution properly identifying which inputs would exercise different code
paths through an event handler; the framework proposed in [2] requires that
admissible network topologies and network-wide invariants are specified through
a first-order logic. An ad-hoc language is proposed in [24] for the specification of
SDN forwarding policies for which model-checking problems are defined. In [13],
the authors investigate the problem of SDN network configuration consistency
and propose an approach for synthesizing correct update programs from a formal
specification.

In this work we combine formal methods for paths computation and verifica-
tion of control policies with network emulation. This allows validation of results
with real implementations of communicating applications.

3 Framework Definition

3.1 Objectives

This paper proposes a methodological approach and a software architecture for
evaluating the impact of 5G networks on signalling (ERTMS/ETCS future sys-
tems) as well as on other railway systems, such as surveillance and infotainment
systems. The general objective is to provide a framework for the emulation and
the verification of different SDN control-planes against the communication flows
generated by moving high speed trains. At this aim the framework should pro-
vide enhanced capability with respect to common network emulators enabling
the seamless integration of evaluation and verification methods and tools. Sev-
eral users’ scenarios can be defined and exploited by the framework. As network
programming commonly implements best-effort systems or is specifically focused
on non-critical needs, some major objectives are:

– design verification: automatically verify safety, security and correctness prop-
erties of SDN controllers according to the ERTMS/ETCS requirements;

– failure handling: automatically derive network re-configuration strategies in
case of failure events (e.g., to prevent packets loss affecting vital signalling
procedures);

– resources management: automatically derive resource management strategies
oriented to maximize the network performance in the fulfillment of specifica-
tions and constraints.

In this paper we do not claim to have reached these objectives, as they are
the point of arrival of a long-term work, but we provide a proof of concept of
how the approach and the tool chain defined in this paper can be exploited to
meet them.

3.2 Approach

A model-driven approach is proposed in which all artifacts needed to verification,
emulation and analysis purposes can be automatically generated from models.
Artifacts can be models, code or analysis results.



38 R. Canonico et al.

The starting point is a formal model of the system behavior and of the
network. At the state we focus on signalling protocols. State Machines are used
to model the system behavior and the network is modeled by a graph, possibly
enriched with information about network nodes and resources.

The ending point is the specification of the emulation scenario and the pro-
grams implementing the behavior of both the SDN controller and the railway
entities (e.g., the train and the ETCS controller) to be executed by the emulator.
In particular, the emulation scenario must reproduce at the network level the
exchange of the message packets needed to implement the train-to-ground com-
munication as specified by the system model. The automatic synthesis of these
software artifacts is performed by defining and applying proper transformations.

The model of the system behavior and the model of the network are used to:

(a) Derive a new model and a property specification: the capability of a model
checker to extract counterexamples of violated properties is exploited to
automatically derive traces which specify (re)configuration strategies of the
network under given constraints.

(b) Derive a state machine modeling the behavior of the SDN control plane:
again we use state machines, in this case as a target formalism; this model
also takes into account the (re)configuration strategies referred above. In
more details, a configuration strategy provides the rules that the controller
must enact for packet routing. Safety and correctness properties can be
specified on the controller behavior and checked by translating this state
machine into an input model for the model checker.

(c) Perform the automated synthesis of code implementing the emulation sce-
nario and the railway entities: the code to customize the behavior of the
SDN controller is directly generated from the state machine produced in
(b).

The set of traces produced by the model checker (a) depends on the con-
straints included in the model and on the specifications used to obtain the coun-
terexamples. Hence, the set may include strategies that fulfill specific require-
ments, spanning from the definition of alternative routes in case of failures of
network nodes or links, to configurations that meet given resource management
requirements. Consequently, the resulting state machine (b) and software con-
troller (c) will provide the SDN with the capability to react (at run time) to spec-
ified events or conditions, according to what was specified by its state machine
model.

3.3 Software Architecture

Figure 1 illustrates a general software architecture of the framework according to
the approach described in Sect. 3.2. The architecture has three layers. From the
bottom of the figure, the Emulation Layer is in charge of executing a scenario
from the real world, the Configuration Layer is in charge of building this scenario
and the Specification Layer is in charge of providing the information needed to



A Framework to Evaluate 5G Networks for ERTMS/ETCS 39

Fig. 1. Framework architecture

build the scenario. The figure also reports the artifacts that are input or output
for the software components. The components are: (i) available tools (providing
the functionality of the network emulator, the SDN controller and the model
checker); (ii) software applications developed to realize the transformations and
the management of the process, in particular a software component (Manager) is
needed to properly invoke the model checker according to the specific objective
and work-flow (generation of one or more strategies, verification, etc.). It is also



40 R. Canonico et al.

in charge of building the state machine model of the network control-plane; (iii)
software artifacts that are generated automatically, i.e. the program implement-
ing the emulation scenario, the program encoding the control-plane state model,
and the programs implementing the railway entities involved in the emulation.
The Manager and the software artifacts are represented by ellipses in Fig. 1. A
database (Configuration Rules Repository) maintains the traces produced by the
model checker after they have been parsed and translated into a format suitable
to be used by a SDN controller.

Three different classes of transformations are part of this architecture: the
source and the target languages of a Model-to-Model (M2M) transformation
are modeling formalisms or notations; a Model-to-Text (M2T) transformation
translates a (formal) model to plain text, e.g. source code or an XML document;
a Text Transformation translates text documents into other text documents. The
proposed architecture uses M2M transformations to generate the input model for
the model checker from the System and Network Models and from the Controller
Model. M2T transformations are used for code generation from the same models.
A Text Transformation is necessary to translate the counterexamples produced
by the model checker into rules for the control-plane.

4 A Feasibility Prototype

So far we have described a methodological approach. At the state we have not
fully realized the logical architecture defined in the previous section, but we have
instantiated the software components necessary to perform simple trials which
could support us in the refinement of the approach and in the evaluation of its
potential.

We first established an experimental testbed that embodies the functionality
of the Emulation Layer. In our current prototype, the Emulation Layer consists
of a Virtual Machine, configured with a Linux Ubuntu 16.04 Desktop system, in
which two main software components have been installed:

– Mininet-Wifi;
– Floodlight.

Mininet-Wifi is a network emulator that allows to reproduce the behaviour
of a set of end-hosts, switches, as well as WiFi access points and mobile ter-
minals in a single Linux-based machine [7]. It was developed as an extension
of Mininet, a network emulator that is largely used by researchers to evaluate
SDN solutions. By executing a Python script, Mininet-WiFi is able to repro-
duce a network scenario composed of both network devices and end-systems. By
executing a script, Mininet-WiFi instantiates the emulated nodes and runs real
network programs in the emulated hosts. With Mininet-WiFi it is also possible
to reproduce node mobility and evaluate, over time, the impact on applications
of variable network conditions (e.g. due to handovers). Emulated end-systems
may be virtually connected to access point devices through emulated wireless



A Framework to Evaluate 5G Networks for ERTMS/ETCS 41

links. Currently, Mininet-WiFi is only able to emulate IEEE 802.11-based wire-
less networks and not cellular networks. Since our main interest, however, is in
evaluating the ability of the fixed part of the network to reconfigure its forward-
ing rules to follow the train movement, we considered the fact that Mininet-WiFi
only reproduces 802.11-based networks not a big issue. Nonetheless, in the future
we plan to use other approaches to more faithfully reproduce the behaviour of
the Evolved Packet Core(EPC) of 4G (LTE) and 5G networks.

Floodlight is a Java-based modular OpenFlow SDN Controller. Besides
implementing the core functionality of an SDN Controller (e.g. topology dis-
covery), Floodlight includes a number of optional software modules that may
be instantiated to customize the behaviour of an SDN network. In particular,
by loading the Forwarding module, the network administrator may force into
the network a reactive configuration strategy: each time that a packet belong-
ing a new flow arrives to a network switch, the Floodlight controller, knowing
the entire network topology, computes the path that the packet should follow
to reach its destination and configures the switches along the path accordingly.
Such a configuration is not permanent, as flow entries pushed by the Forwarding
module are subject to a (configurable) timeout. Alternatively, Floodlight may
be used to proactively configure switches by receiving flow entry specifications
from an external entity, through a REST API. In this latter case, an external
program (e.g. a Python script) translates the desired network configuration in
a number of flow entries specifications that are formatted as JSON objects and
transmitted to the Floodlight Static Flow Pusher module by means of HTTP
requests.

Then, we have established the formal methods, languages and tools to be used
at the Specification Layer in support of the automatic generation of the Configu-
ration Strategies and the verification of the controller behavior. A configuration
strategy will be translated into Rules, i.e. the flow entries used by the Open-
Flow Controller to control the packet forwarding behavior of network switches.
We currently use state machines to model the system behavior, GraphML [5] to
describe the network (graph and data of interest) and Spin [10] as model checker.

Spin is a well known on-the-fly model checker for the verification of concur-
rent systems. The modeling language used by Spin is Promela (Process Meta
Language), the properties to be verified are expressed as Linear Temporal Logic
formulas. We chose Spin and Promela because some of their features are essen-
tial to tackle the problem of modeling the behavior of railway asynchronous
communicating systems, in particular they support dynamic creation of concur-
rent processes, buffered message passing and communication via shared mem-
ory. The state machine System Model and the GraphML representation are used
to derive the Promela model from which the configurations are extracted as
counterexamples.

At the state the transformations and the Manager have not been imple-
mented yet. Nevertheless, we have performed by hand the main M2M transfor-
mation (from the initial models to Promela) and developed the software appli-
cations needed to realize the trials, in particular the Emulation Scenario, the
railway entities and the Software Controller (Fig. 1). In our previous works we



42 R. Canonico et al.

Fig. 2. An example of network scenario and route paths.

have already defined and implemented a number of M2M transformations [3], so
that the hand-made construction of artifacts is driven by our previous experi-
ence, in particular we have already implemented a complex transformation chain
from an extension of state machines to Promela with the aim of generating test
cases [3,16].

In this paper we apply the proposed approach to the problem of deriving
configurations and emulating a very simple communication scenario between
the Radio Block Centre (RBC) on the trackside and the Euro Vital Computer
(EVC) on-board the train. RBC is a computing system at ERTMS/ETCS Level
2 in charge of ensuring a safe inter-train distance on the track area under its
supervision. In today’s implementation RBC interacts with the on-board system
by managing a communication session using the EURORADIO protocol and the
GSM-R network.

In the following we assume that the network infrastructure is the one
described in Fig. 2. It consists of a two levels hierarchy of switches and a num-
ber of base stations located along a linear piece of railway. A top-level switch
connects the infrastructure to a fixed station, running the RBC entity. Each of
the two switches located at the lower level is connected to six different access
points, acting as base stations. In such a network topology, several paths may
be exploited to deliver packets from the centralized RBC to the moving EVC
entity. Starting from the model of the network and of the communication pattern
between RBC and EVC we derive the emulation scenario which reproduces the
communication flows in Mininet-WiFi. In our simple scenario RBC just sends
messages to the EVC on-board a moving train.

4.1 Specification Layer

The purpose of the Specification Layer is to generate and verify a set of Rules to
configure the network. The Configuration Rules define flow paths on the network
from a source node to a target node. The source node represents the network



A Framework to Evaluate 5G Networks for ERTMS/ETCS 43

switch that receives the messages from RBC on the trackside. The messages
must be delivered to EVC on-board the train. The target nodes represent the
base stations located along the railway track that allow EVC to connect to the
network. In our current prototype we use the Spin model checker to generate
a set of paths from the source node to the target nodes. These paths repre-
sent solutions to the packet routing problem according to specified constraints
and requirements. In the most general case, this problem is more complex than
finding a shortest path on a weighted graph, as not only the network graph
topology should be considered but also constraints (e.g., a limited number of
flow entries per switch, paths differentiation for different classes of services, or
QoS requirements).

From Fig. 2, the three switches are named s0, s1 and s2, the six base stations
are numbered from BS 0 to BS 5 and there are fifteen wired links. Local iden-
tifiers are used to specify at each node the output ports on which the links are
physically attached. We encode the network into a Promela model together with
the model representing the communication from RBC to EVC.

Each node is translated into a Promela process type (proctype), a link is
mapped to two Promela global channels, one for each direction of the commu-
nication between the nodes connected by the link. In our first simple trials the

Fig. 3. Promela model (excerpt)



44 R. Canonico et al.

channels may convey bits. Output ports are represented by global integer vari-
ables. Figure 3(a) reports the process and the variables used to represent the
switch s0.

An additional Promela process models the communication procedure between
RBC and EVC. In this case RBC just sends messages to EVC (top of Fig. 3(b)).
We want a route from node s0 to the base station to which EVC is connected.
This is specified by the Promela process modeling the base station through the
variable received. Each node waits over the channels on which it can receive
messages. When a message is received, the node forwards it using one of its
output ports. An additional process (the master in Fig. 3(b)) selects for each
node the port number to be used to forward the received message. A Promela
never claim models a linear time temporal logic formula. The never claim in
Fig. 3(b) requires that the variable received never assumes a value equal to 1, i.e.
the target base station is never reached. Of course this model just helps finding
paths on a graph. More complex problems can be solved by using more complex
data types and adding constraints, as mentioned before. In the second trial, the
process master is used to model the unavailability of nodes.

Trace 1 in Fig. 4(left) reports the counterexample obtained by using the
model just described to find a route between the up-level switch s0 and
the base station BS 0. Trace 2 in Fig. 4(right) has been obtained by slightly

Fig. 4. Counterexamples



A Framework to Evaluate 5G Networks for ERTMS/ETCS 45

modifying the master process and the never claim to extract an alternative
path in case of unavailability of s1.

A set of routes is built by varying the problem parameters. They are used
to define the behavior of the SDN controller, expressed by a state machine.
The proposed approach also exploits model checking to verify properties to be
satisfied by the control-plane, but this is not described in this paper.

4.2 Configuration Layer

The primary purpose of the Configuration Layer is to automatically produce a
number of artifacts that are needed to configure the underlying Emulation Layer.
Our current prototype relies on three kinds of artifacts:

– an Emulation Scenario, i.e. a Python script to be executed by the Mininet-
WiFi emulator to reproduce the network setup (network topology, physical
position of both base stations and motion models for modeling trains);

– a Software Controller, i.e. a Python script that takes as input a textual
description of the OpenFlow rules corresponding to the desired network
behaviour and sends them to the SDN controller through a REST API;

– Railway Entities, i.e. a set of executable Java programs that, by exchang-
ing messages through the network, mimic the behaviour of ERTMS/ECTS
signalling entities (RBC and EVC).

All of these three artifacts are produced by the Configuration Layer and passed
to the Emulation Layer. While our ultimate goal is to produce these artifacts
automatically, from the outputs of the Specification Layer, by means of model
transformation techniques, as of now they are manually produced.

To control the behavior of the emulated network, switches need to be config-
ured with flow entries provided by an OpenFlow controller. The purpose of flow
entries is to determine the paths that, at a given time, packets should follow to
reach the EVC from the RBC, or viceversa. Assuming that a traffic flow of inter-
est may be identified in the network by specific header field values of transmitted

Fig. 5. Python script to send flow rules to the controller



46 R. Canonico et al.

packets 1, by properly writing these flow entries, the network control plane may
be able to apply different forwarding policies and routes to specific traffic flows.

Furthermore, since train trajectories are largely predictable, the network con-
trol plane may compute in advance such forwarding policies and change them
according to proper patterns. In this way, we are able to establish a control
strategy that is only partially reactive, and hence more predictable in terms of
performance.

In our system, flow entries are passed to network switches by the Floodlight
Openflow controller, which, in turn, receives them from an external Python script
through the Static Entry Pusher REST API. This REST API allows listing,
insertion or deletion of flow entries by means of HTTP GET or POST messages

Fig. 6. Mininet-WiFi script (excerpt)

1 For instance, layer-2 (MAC) and/or layer-3 (IP) addresses, layer-4 (TCP or UDP)
port numbers, or a combination of them.



A Framework to Evaluate 5G Networks for ERTMS/ETCS 47

carrying data formatted in JSON syntax. Figure 5 shows a minimal Python script
that, by issuing an HTTP POST request to the Floodlight OpenFlow Controller,
instantiates into the switch identified by ID 00:00:00:00:00:00:00:01 a flow entry
to forward incoming packets from port 1 through output port 2. More complex
scripts, not included here for space reasons, have been developed to parse JSON-
encoded flow entries and send them to the controller.

4.3 Emulation Layer

The purpose of the Emulation Layer is to reproduce as faithfully as possible the
real network conditions in which the communicating entities operate.

The simple network scenario described in Fig. 2 is reproduced in Mininet-
WiFi by running a Python script, an excerpt of which is in Fig. 6. A moving
node (emulating a train) runs another software module reproducing the behavior
of an EVC entity. In the Mininet-WiFi script, such a node is made to move
along a linear trajectory parallel to the row of access points. Train movement,
hence, will produce, over time, a number of handovers between access points.
Figure 7 shows a screenshot of the VM running the Mininet-WiFi emulation
script. During the emulation run, the node hosting the EVC component moves
from the base station on the left towards the base station on the right, with an
emulated constant speed of 100 km/h. While the train moves, the SDN controller
dynamically changes the switches configurations according to the precomputed
rules generated by the model checker, as explained before. Two xterm windows

Fig. 7. Mininet-WiFi in execution



48 R. Canonico et al.

show the messages generated by the running RBC and EVC programs. From the
log messages it is possible to verify if there is any message lost or disconnection
while the train moves. Additionally, timing information regarding the delivered
messages are provided and shown.

5 Conclusions

In this paper we propose a methodological approach and a software architecture
to evaluate the opportunities that may derive from the adoption of a program-
mable control plane in the networking infrastructure of future generation rail-
ways. Such a paradigm shift opens up the opportunity for efficiently and flexibly
managing traffic flows generated from different applications and with different
QoS requirements. However, SDN also brings new challenges. In this paper we
present a framework that combines formal methods with network emulation to
design and validate SDN Controller configurations with realistic applications. In
particular, we use the framework to address, in a simple scenario, the problem
of automatically creating network configurations that are able to cope with the
problem of managing network flows involving signalling messages exchanged by
moving trains. Our future work will be aimed at completing the implementation
of the framework, at extending the emulation capabilities to reproduce more
faithfully the behavior of the network and at applying the framework to evalu-
ate more complex configurations strategies, also considering the case of failures
of network devices.

References

1. Ai, B., Guan, K., Rupp, M., Kurner, T., Cheng, X., Yin, X.F., Wang, Q., Ma, G.Y.,
Li, Y., Xiong, L., Ding, J.W.: Future railway services-oriented mobile communica-
tions network. IEEE Commun. Mag. 53(10), 78–85 (2015)

2. Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M.,
Schapira, M., Valadarsky, A.: Vericon: towards verifying controller programs in
software-defined networks. In: Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pp. 282–293 (2014)

3. Benerecetti, M., De Guglielmo, R., Gentile, U., Marrone, S., Mazzocca, N.,
Nardone, R., Peron, A., Velardi, L., Vittorini, V.: Dynamic state machines for
modelling railway control systems. Sci. Comput. Program. 133, 116–153 (2017)

4. Bifulco, R., Canonico, R.: Analysis of the handover procedure in Follow-Me Cloud.
In: 2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET),
pp. 185–187 (2012)

5. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML
progress report structural layer proposal. In: Mutzel, P., Jünger, M., Leipert, S.
(eds.) GD 2001. LNCS, vol. 2265, pp. 501–512. Springer, Heidelberg (2002). doi:10.
1007/3-540-45848-4 59

http://dx.doi.org/10.1007/3-540-45848-4_59
http://dx.doi.org/10.1007/3-540-45848-4_59


A Framework to Evaluate 5G Networks for ERTMS/ETCS 49

6. Canini, M., Venzano, D., Pereš́ıni, P., Kostić, D., Rexford, J.: A NICE way to
test openflow applications. In: Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (2012)

7. Fontes, R.R., Afzal, S., Brito, S.H.B., Santos, M.A.S., Rothenberg, C.E.: Mininet-
WiFi: emulating software-defined wireless networks. In: Proceedings of the 2015
11th International Conference on Network and Service Management (CNSM), pp.
384–389. IEEE (2015)

8. Gopalasingham, A., Van Pham, Q., Roullet, L., Chen, C.S., Renault, E., Natarianni,
L., De Marchi, S., Hamman, E.: Software-defined mobile backhaul for future train to
ground communication services. In: 2016 9th IFIP Wireless and Mobile Networking
Conference (WMNC), pp. 161–167 (2016)

9. Guha, A., Reitblatt, M., Foster, N.: Machine-verified network controllers. In: Pro-
ceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 483–494. ACM (2013)

10. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional (2003)

11. Kang, M., Kang, E.Y., Hwang, D.Y., Kim, B.J., Nam, K.H., Shin, M.K., Choi, J.Y.:
Formal modeling and verification of sdn-openflow. In: 2013 IEEE Sixth Interna-
tional Conference on Software Testing, Verification and Validation, pp. 481–482,
March 2013

12. Majumdar, R., Tetali, S.D., Wang, Z.: Kuai: a model checker for software-defined
networks. In: 2014 Formal Methods in Computer-Aided Design (FMCAD), pp.
163–170 (2014)

13. McClurg, J., Hojjat, H., Černý, P., Foster, N.: Efficient synthesis of network
updates. In: Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2015, pp. 196–207. ACM,
New York (2015)

14. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

15. Müller, M.K., Taranetz, M., Rupp, M.: Providing current and future cellular ser-
vices to high speed trains. IEEE Commun. Mag. 53(10), 96–101 (2015)

16. Nardone, R., Gentile, U., Benerecetti, M., Peron, A., Vittorini, V., Marrone,
S., Mazzocca, N.: Modeling railway control systems in promela. In: Artho, C.,
Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 121–136. Springer, Cham
(2016). doi:10.1007/978-3-319-29510-7 7

17. Oliveira, D., Pourvali, M., Bai, H., Ghani, N., Lehman, T., Yang, X., Hayat, M.:
A novel automated SDN architecture and orchestration framework for resilient
large-scale networks. In: SoutheastCon 2017, pp. 1–6 (2017)

18. Paolucci, F., Cugini, F., Giorgetti, A., Sambo, N., Castoldi, P.: A survey on the
path computation element (PCE) architecture. IEEE Commun. Surv. Tutor. 15(4),
1819–1841 (2013)

19. Sethi, D., Narayana, S., Malik, S.: Abstractions for model checking SDN controllers.
In: 2013 Formal Methods in Computer-Aided Design, pp. 145–148, October 2013

20. Skowyra, R.W., Lapets, A., Bestavros, A., Kfoury, A.: Verifiably-safe software-
defined networks for CPS. In: Proceedings of the 2nd ACM International Confer-
ence on High Confidence Networked Systems, pp. 101–110. ACM (2013)

21. Sniady, A., Soler, J.: LTE for railways: impact on performance of ETCS railway
signaling. IEEE Veh. Technol. Mag. 9(2), 69–77 (2014)

http://dx.doi.org/10.1007/978-3-319-29510-7_7


50 R. Canonico et al.

22. Wang, Y., Bi, J.: A solution for IP mobility support in software defined networks.
In: 2014 23rd International Conference on Computer Communication and Networks
(ICCCN), pp. 1–8 (2014)

23. Yan, L., Fang, X.: Reliability evaluation of 5G C/U-plane decoupled architecture
for high-speed railway. EURASIP J. Wirel. Commun. Netw. 2014, 127 (2014)

24. Zakharov, V.A., Smelyansky, R.L., Chemeritsky, E.V.: A formal model and ver-
ification problems for software defined networks. Autom. Control Comput. Sci.
48(7), 398–406 (2014)



Systems-Theoretic Likelihood and Severity
Analysis for Safety and Security Co-engineering

William G. Temple1(B), Yue Wu1, Binbin Chen1, and Zbigniew Kalbarczyk2

1 Advanced Digital Sciences Center, Illinois at Singapore, Singapore, Singapore
{william.t,wu.yue,binbin.chen}@adsc.com.sg

2 University of Illinois at Urbana-Champaign, Champaign, IL, USA
kalbar@crhc.illinois.edu

Abstract. A number of methodologies and techniques have been pro-
posed to integrate safety and security in risk assessment, but there is
an ideological divide between component-centric and systems-theoretic
approaches. In this paper, we propose a new hybrid method for Systems-
Theoretic Likelihood and Severity Analysis (STLSA), which combines
desirable characteristics from both schools of thought. Specifically,
STLSA focuses on functional control actions in the system, including
humans-in-the-loop, but incorporates semi-quantitative risk assessment
based on existing industry practice. We demonstrate this new approach
using the case study of train braking control.

1 Introduction

Until recently, the security of information, communication and control systems
has been considered separately from issues of safety during system design. How-
ever, there is growing recognition that safety and security properties and related
design features may influence one another. This has led to a growing body of
work relating to safety and security co-engineering. However, while there are a
number of analysis methods available to help designers analyze the safety and
security of a system, cyber security threats today are becoming more complex,
and attackers can exploit physical phenomena in the system and environment
(e.g., Stuxnet), as well as humans-in-the-loop (e.g., phishing) to cause harm. In
addition, for systems such as an automated (unattended) metro train, safety fea-
tures like the emergency braking function could be exploited by cyber attackers
to cause large-scale service disruptions. For example, in 2016 in Singapore, the
circle line metro train system was affected with intermittent emergency braking
of several different trains over the course of more than a week [22]. While the
issue was eventually traced to a component failure on an individual train [5], it
raises questions about whether such an event could be replicated maliciously.

Those types of complex interactions are challenging to account for using tra-
ditional methods for design-stage risk assessment such as fault trees, or failure
mode and effects analysis—methods we refer to as component-centric [20]. The
Systems-Theoretic Process Analysis for Security approach (STPA-Sec) [23], with

c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 51–67, 2017.
https://doi.org/10.1007/978-3-319-68499-4_4



52 W.G. Temple et al.

its emphasis on control loops, emergent system behavior and qualitative assess-
ment of unsafe or insecure scenarios may offer one path to addressing these chal-
lenges. However, following the STPA-Sec process results in the identification of
a large number of threat and/or failure modes [16], and that methodology does
not provide further guidance on how to address those scenarios. The complexity
of today’s cyber-physical systems implies a great need for risk-based analysis
to help system stakeholders understand the significance of safety/security issues
and prioritize remediation. In this paper, we propose a new safety and secu-
rity co-engineering method, Systems-Theoretic Likelihood and Severity Analysis
(STLSA), which provides a top-down view of the functional control structure of
a system and enriches threat/failure scenarios with a semi-quantitative risk rat-
ing system (severity times likelihood) inspired by a component-centric analysis
method [15]. Specifically, we make the following contributions:

– We propose a new hybrid method, STLSA, to leverage advantages of STPA-
Sec [23] and FMVEA [15] and address gaps.

– We present a case study applying this method on a realistic train braking
system based on information provided from a railway operator.

The outline of this paper is as follows: in Sect. 2 we discuss related work in Safety
and Security Co-Analysis; in Sect. 3 we present the Systems-Theoretic Likelihood
and Severity Analysis method; in Sect. 4 we apply the STLSA method on a train
braking system case study and discuss the results before concluding in Sect. 5.

2 Related Work in Safety and Security Co-Analysis

A number of methods have been proposed to improve the completeness of sys-
tem risk assessment by covering the interactions between both unintentional/non-
malicious failures, and intentional/malicious threats [4,9,12]. Different schools of
thought have emerged regarding the appropriate manner of examining a system
and evaluating potential hazards and corresponding risks. Many of the approaches
in the literature are related to the field of security requirements analysis, which
has been an active research area of its own (e.g. [11] and references therein) and
often makes use of graphical models and risk assessment. Requirement analysis
has been studied in the context of safety critical systems [8] as well. However, in
our discussion of related work we focus on research that attempts to explicitly ana-
lyze safety and security risks together, often by combining or extending existing
approaches from standards or academic literature. Below, we summarize a review
and classification of safety/security methods from our earlier position paper [20]
before detailing our STLSA approach in later sections.

Table 1 presents a taxonomy of prior work on safety and security co-analysis.
In the first column of the table, Security Aware Hazard Analysis and Risk
Assessment (SAHARA) [10] and Failure Mode, Vulnerabilities and Effect Analy-
sis (FMVEA) [15] extend existing safety analysis techniques from ISO 26262
and IEC 60812, respectively, by incorporating threat information based on the
STRIDE [19] model. In the middle column, the Failure-Attack-CountTermeasure



Systems-Theoretic Likelihood and Severity Analysis for Safety 53

Table 1. Classification of related work [20]

Extend Combine Alternative

Component-based SAHARA [10],
FMVEA [15]

FACT Graph [14],
EFT [6]

Systems-based CHASSIS [13] STPA-Sec [23],
STPA-SafeSec [7]

(FACT) Graph [14], and Extended Fault Tree (EFT) [6] are based on a com-
bination of fault tree and attack tree methods. Combined Harm Assessment of
Safety and Security for Information Systems (CHASSIS) [13], which involves
the combination of use/misuse cases and sequence diagrams, is classified as a
systems-based approach because it places more emphasis on interactions between
entities (which may include human actors) as opposed to the hardware/software
structure of the system. In the last column, System-theoretic Process Analysis
for Security (STPA-Sec) [23] and the subsequent STPA-SafeSec [7] approaches
emphasize a top-down assessment of a system’s functional control structure to
identify unsafe/insecure control actions.

In our position paper [20], we advocated combining aspects of STPA-Sec
(a systems-theoretic approach) and FMVEA (a component-centric approach).
In complex systems, a systems-theoretic approach such as STPA-Sec seems to
offer advantages in hazard/threat identification. However, the qualitative nature
of the output of STPA-Sec and the large number of causal scenarios generated
leads to challenges assessing risk. On the other hand, as a component-centric
analysis method, FMVEA provides an assessment process with semi-quantitative
ratings which is closer to existing industry practice.

3 Systems-Theoretic Likelihood and Severity Analysis

In this section we describe a new process for identifying and jointly analyz-
ing the risks from safety (hazard/accident) and security (threat) perspectives.
The Systems-Theoretic Likelihood and Severity Analysis method combines fea-
tures from STPA-Sec and FMVEA, and integrates them into a unified analytical
process. In this section, we first provide a more thorough introduction of the steps
in each of the original methods before presenting the hybrid STLSA method.

3.1 Original STPA-Sec Process

STPA-Sec [23] is a security extension of the System-Theoretic Process Analysis
(STPA) method from the safety engineering community, which is itself derived
from the System-Theoretic Accident Modeling Process (STAMP). The motiva-
tion behind STPA-Sec is to consider the impact of cyber security on system
safety from a “strategic” rather than a “tactical” perspective: taking a top-
down analysis approach focusing on the functionality provided by a system, and



54 W.G. Temple et al.

its functional control structure, rather than focusing on threats and attacker
properties such as intent and capability.

The process for carrying out STPA-Sec analysis is as follows:

1. Identifying unacceptable losses that should be avoided (called, Systems
Engineering Foundation in [23]).

2. Modeling the system’s functional control structure (see Fig. 1)
3. Identifying unsafe and/or insecure control actions from the functional

control structure using guide phrases (e.g., control provided too early/late)
4. Identifying causal scenarios which may be used to define security require-

ments and constraints.

Fig. 1. Partial example of a functional control structure for a train braking system

It should be noted that the output of STPA-Sec analysis is qualitative in
nature: a list of control actions in the system that may be unsafe or insecure, and
how those control actions may lead to unacceptable losses in one or more causal
scenarios. The STPA-Sec approach does not evaluate the relative likelihood or
severity of impact for those causal scenarios, which is not fully aligned with
current safety/security standards [9,16]. In fact, the authors of [7] motivate their
STPA-SafeSec approach in part by noting that the original method does not
provide guidance on how to proceed after unsafe/insecure control actions and
causal scenarios are identified.

3.2 Original FMVEA Process

FMVEA is an extension of the widely-used Failure Mode and Effect Analy-
sis [15] method for safety risk assessment, as described in IEC 60812 [1]. FMVEA
includes security-related information such as vulnerabilities, threat modes (based
on STRIDE [19]), and threat effects. As described in [15], the FMVEA analysis
process is as follows:

1. Divide a system into components
2. For each component, identify failure modes and/or threat modes
3. Identify the effect of each failure and/or threat mode (includes attack

probability)



Systems-Theoretic Likelihood and Severity Analysis for Safety 55

4. Determine severity of the final effect
5. Identify potential causes/vulnerabilities/threat agents
6. Estimate frequency or probability of occurrence for the failure/threat mode

during the predetermined time period
7. Steps 3–6 repeat until there are no more failure modes/vulnerabilities or

components left to analyze

We consider FMVEA to be a component-centric analysis method, as opposed
to STPA-Sec which is systems-centric. The authors of [7] adopt a similar taxon-
omy, considering methods such as traditional FMEA and Fault Tree Analysis as
failure-based hazard analysis (i.e., based on component failure), while STPA-Sec
is regarded as systems-based hazard analysis. One challenge that component-
based methods face is scalability: for large systems, particularly those with com-
plex interactions or emergent behavior, is it sufficient to consider lower level
failures and threats? Another challenge is the issue of multiple failures, which
are far more plausible in a deliberate attack (security context) as compared with
an accidental or random failure (safety context). Finally, in FMEA/FMVEA
the effect component considers system effects, but the manner in which they are
identified is not always made explicit.

An FMVEA case study paper [18] elaborates that components can be either
hardware/software, or functions depending on the maturity level of the system
design. Similarly, a more recent FMVEA case study [17] includes a three-layer
dataflow model of the system as first step in the analysis process, to support the
identification of failure modes and effects. If one takes the view that this prelim-
inary system modeling exercise is independent from the documented FMVEA
process as described in [15], it raises the question of whether STPA-Sec’s func-
tional control structure models could serve the same purpose, and whether the
unsafe/insecure control actions would also help to inform FMVEA analysis.

3.3 STLSA Combination

STLSA aims to leverage the high level (functional) control models from STPA-
Sec, as well as the guide words and phrases, while introducing a familiar rating
process inspired by FMVEA for evaluating the risk of causal scenarios. Risk in
this sense is the product of a scenario’s severity and the likelihood of occurrence.
Severity and likelihood are rated on an ordinal scale (e.g., 1–4), providing a
semi-quantitative risk score. In this paper, we use rating scales from existing
railway standards and apply the method in a railway case study (see Sect. 4),
however other industries (e.g., aviation) may have alternate rating systems that
are already familiar to practitioners, and that could be applied within STLSA.
Figure 2 depicts the steps in the STLSA analysis process, which we outline in
detail below.

Systems-theoretic analysis

We start with an STPA-Sec analysis, with the steps summarized in [23]. However,
there are a number of ways in which the functional control structure (step 2),



56 W.G. Temple et al.

Ini ate STLSA of a system

Create a model of the system’s func onal control structure 

Iden fy unsafe/insecure control ac ons

Iden fy possible accidents (unacceptable losses) and hazards 
related to this system

Select an unsafe/insecure control ac on (UCA) to analyze

Iden fy inten onal scenarios for 
the UCA 

Iden fy uninten onal scenarios 
for the UCA 

Complete STLSA

Select an inten onal scenario to 
analyze

Select an uninten onal scenario 
to analyze 

Determine severity of its effect Determine severity of its effect

Es mate frequency of occurrence 
for the uninten onal scenario

Es mate probability of occurrence 
for the inten onal scenario

Are there more 
inten onal scenarios to 

analyze?

Are there more 
uninten onal scenarios 

to analyze?

Are there more UCA  to 
analyze?

No

No

Yes

Yes

Yes

Derived from STPA-Sec

Derived from FMVEA

Fig. 2. STLSA: a hybrid method of FMVEA and STPA-Sec

and identification of unsafe/insecure control actions (step 3) are enhanced to
better address complex interactions (see Sect. 4 for an example).

– Explicitly indicating which aspects of the functional control structure are in
the system and which are in the environment. Connections between the two
are indicated with dashed edges.

– Showing multiple instances of actors & components in the system. This is
intended to prompt analysts to think about complex failure modes between
instances (e.g., multiple trains in a metro, or supposedly identical components
behaving differently).

– Applying the extended guide word analysis from [16] (shown in Fig. 3) when
identifying causal scenarios for unsafe/insecure control actions. This intro-
duces additional coverage for intentional scenarios (e.g., considering a spoofed
controller).

An example of a causal scenario could be jammed control input for a train
braking control unit, where the italicized text refers to a guide word applied to
a generic control loop that is used to aid the assessment process (see Fig. 3).



Systems-Theoretic Likelihood and Severity Analysis for Safety 57

Process model 
inconsistent, 

incomplete, or 
incorrect

Process model 
tampered

Inadequate control 
algorithm 

(Flaws in crea on, 
process changes, 

incorrect 
modifica on or 

adap on)

Injec on of 
manipulated 

control 
algorithm

Unauthorized 
changes to the 

control 
algorithm

Control input or 
external informa on 

wrong or missing

Replayed control input

Jammed control input

Sending manufactured control input 
overriding legimitate control inputController Controller 3

Spoofed 
Controller

Inadequate or 
missing feedback

Feedback delays

Inten onal 
conges on of 
feedback path

Injec on of input

Tampered or 
fabricated sensor 

signal

Sensors
Inadequate 
opera on

Manipulated 
opera on 

Replaced 
sensors

Incorrect or no 
informa on provided

Measurement 
inaccuracies

Feedback delays

Tampered 
feedback

Controlled Precess

Component failure 
changes over me

Process output contributes to 
system hazardUniden fied or 

out-of-range 
disturbance

Actuators

Controller 2 Delayed opera on

Conflic ng control 
ac ons

Process input 
missing or wrong

Inappropriate, 
ineffec ve or missing 

control ac ons

Sending manufactured 
control ac ons, 

overriding legi mate 
control ac ons

Tampered or manufactured 
informa on

Fig. 3. Control loop with extended guide word (adapted from [16])

Once the causal scenarios for each unsafe/insecure control action are identified,
we borrow concepts from FMVEA [15] to assess the risk of each causal scenario
in a more nuanced manner.

Severity analysis of causal scenarios

A causal scenario for an unsafe/insecure control action may be thought of as
a failure mode in FMVEA. A failure mode has an effect, and that effect has a
severity associated with it (see Fig. 4). In STLSA, the effect of a causal scenario
may be identified from the functional control structure. The severity of a causal
scenario is assigned a rating; in this case we use railway safety standard EN
50126-1 [3] which includes four levels:

1. Insignificant: Possible minor injury, and/or system damage.
2. Marginal: Minor injuries and/or minor damage to the environment, and/or

severe system damage.
3. Critical: Severe injures and/or few fatalities and/or large damage to envi-

ronment, and/ or loss of a major system.
4. Catastrophic: Many fatalities and/or extreme damage to the environment.

The classification of severity levels is common between failure (safety) and threat
(security) modes.



58 W.G. Temple et al.

Fig. 4. Annotated FMVEA cause-effect chain (black) illustrating differences in the
STLSA method: failure modes and effects are identified via STPA-Sec, while likelihood
(probability) and severity have different rating systems.

Rating the likelihood of causal scenarios

We assess the likelihood (called “probability” in [15]) differently for safety and
security scenarios, as seen in Fig. 2. In safety scenarios, the likelihood is expressed
as a frequency score. This is quantified according to a 6-tier event occurrence
frequency classification, as suggested in EN 50126-1 [3], ranging from highly
improbable (1) to frequent (6). The descriptions and for each frequency level are
listed as follows:

1. Highly improbable: Extremely unlikely to occur. It can be assumed that
the event may not occur.

2. Improbable: Unlikely to occur but possible.It can be assumed that the event
may exceptionally occur.

3. Rare: Likely to occur sometime in the system life-cycle. Event can reasonably
be expected to occur.

4. Occasional: Likely to occur sometime in the system life-cycle. Event can
reasonably be expected to occur.

5. Probable: Will occur several times. Event can be expected to occur often.
6. Frequent: Likely to occur frequently. Event will be frequently experienced.

For security related scenarios, however, we adopt an alternative method to
assess the likelihood, which is more closely connected to FMVEA. In [15] likeli-
hood is defined as a combination of system susceptibility and threat properties.
However, a challenge arises because the STPA-Sec method—the starting point



Systems-Theoretic Likelihood and Severity Analysis for Safety 59

of STLSA—explicitly rejects a threat-based approach (i.e., focusing on a poten-
tial adversary’s motivation, resources, etc.), arguing instead for a system-centric
focus that starts from identifying unacceptable losses.

Therefore, in our STLSA approach, we exclude the Motivation and Capa-
bility elements that characterize threats in FMVEA and focus only on the sys-
tem’s susceptibility to a threat, which is characterized by reachability (“R”) and
uniqueness (“U”). The likelihood score for security scenarios is given by R+U .
These are rated according to the following scales:

– Reachability (0 = no network, 1 = temporary connected private network,
2 = normal private network, 3 = public network)

– Uniqueness (1 = restricted, 2 = commercially available, 3 = standard)

The Reachability and Uniqueness levels describe how easy it is for a potential
adversary to connect to and acquire knowledge about the system. This numerical
rating system, while simple, allows analysts to incorporate practical information
such as the presence of air-gapped networks or the use of proprietary versus
commercial-off-the-shelf devices. While Uniqueness is classified into 3 levels as
suggested in [15], we add one additional classification in Reachability, which is
called temporary connected private network. This is intended for components
that are occasionally connected to network during patching or maintaining peri-
ods. Following this change from the original FMVEA, the likelihood rating scale
for both intentional and unintentional sources take values up to 6.

Figure 4 illustrates the STLSA process in a different manner from Fig. 2,
focusing on the differences from the original FMVEA method. As shown, the
upstream aspects of the FMVEA cause-effect chain are replaced with the
systems-theoretic modeling in STPA-Sec, while the downstream assessment steps
are maintained with modifications to the rating systems. In the next section we
go through a case study to illustrate the end-to-end assessment process.

4 Case Study: Train Braking System

A train’s braking system is perhaps the most safety-critical of any subsystem, and
as a result of this, modern trains have service and emergency braking processes.
However, while there are multiple processes of activating and controlling various
braking actions, many of the components involved in braking are shared. In
addition to the obvious issue of train collision, the braking system should be
designed to prevent other undesirable events. Two high-profile incidents from
Singapore’s mass rapid transit system illustrate the complex safety and security
challenges inherent in this system.

Incident 1: Oil leakage on the track. One of the most prominent railway safety
incidents in Singapore was a train collision in 1993 [2]. A train that was stationary
at the Clementi station was struck by another oncoming train that was unable
to stop, injuring 156 passengers. Investigators traced the cause to an oil spill on
the track from a maintenance locomotive. The spill had been detected earlier, but



60 W.G. Temple et al.

delay and miscommunication about clean-up led to a hazard and ultimately an
accident. A number of operational changes were made after the accident, including
checking all locomotives for oil leakage before and after leaving the depot [21].

Incident 2: Signalling interference from a nearby train. More recently, in late
2016, the automated Circle Line train system in Singapore was afflicted with
mysterious service disruptions. Trains would lose the signalling network con-
nection seemingly at random and activate the emergency brake. After a detailed
investigation, it was determined that a malfunctioning train was emitting a wire-
less signal that interfered with nearby trains’ connectivity [5,22].

Based on those incidents, a safety and security co-analysis method needs to
be able to model complex system interactions, potentially including multiple
instances of the same subsystem (e.g., train) within a larger environment and
operational context. At the same time, safety engineers today need to consider
both physical hazards and acts of tampering (e.g., oil on the track) as well as
cyber threats (e.g., tampering with a train to jam nearby trains). In the case
study below we aim to illustrate how the STLSA analysis method can help
systems engineers confront these risk assessment challenges.

4.1 System Description

Rolling stock are equipped with both electrical brakes and frictional brakes.
Figure 5 shows a typical train with three cars, and overlays the key components
of both braking systems. These components and their main functions are:

– ATC: Automatic Train Control. Pre-programmed to initiate service braking.
– BCE: Braking control electronics. Generally in charge of electrical braking

and frictional braking at appropriate time.
– BCU: Braking control unit. Activates frictional brake via pneumatic control.
– PCE: Power control electronics. To activate electrical braking.
– EBK/EBR: Emergency brake contractor/Emergency brake relay. De-

energized to activate emergency braking.
– Bogie: undercarriage with train wheels

Fig. 5. Topology of the train brake system



Systems-Theoretic Likelihood and Severity Analysis for Safety 61

Under normal circumstances of service braking, electrical brake is activated
in the early phase, then BCUs activate the frictional brake at mid speed to
compensate for the decrease in electric braking effort. This control constraint
aims to ensure a smooth braking process and it’s known as a blending request.
When the train speed decreases to below 3 km/hr, full frictional brake would be
applied regardless of the receptivity of the traction power system.

Electrical braking is applied for energy saving purpose, since this process
boosts power regeneration that kinetic energy of the train converts into elec-
trical energy. In fact, the failure of conducting electrical braking does not have
impact to train operation, since the braking force from electrical brake could be
fully compensated by frictional braking. However, if frictional brake fails to be
conducted properly, train operation will be affected. To specify, a single frictional
brake failure of one bogie will not cause the train to stop immediately, and if
it is a minor fault, no effects will be exposed to train normal operation, while
major fault may affect the train’s status, such as overrun.

Unlike normal braking, emergency brake is controlled by a different loop
across the trainline, which is called the emergency brake loop. When the emer-
gency brake loop is interrupted (e.g., by a passenger pressing the emergency call
button) the train will activate the emergency brake to stop immediately. In an
emergency brake scenario only the frictional brake is used, and full brake force
is applied. When the emergency brake loop is interrupted, EBK and EBR are
de-energized in sequence, which will be sent to BCE to activate frictional brake.
The following process of activation of frictional brake from BEC works in the
same way as the frictional brake in normal brake.

4.2 Analysis

According to the system description, we construct the control model for the train
brake management system as shown in Fig. 6. We first identify the main entities
involved in the train brake scenario, including automated controllers, cyber and
physical components, as well as human factors (e.g. passengers and station staff).
In the hierarchical control structure shown in Fig. 6, the interactions among
entities are modeled as control loops, composed of the actions or commands
that a controller sends to controlled process, and the responses or feedback that
the controller receives from controlled process. In every control loop, any flaws or
inadequacies could possibly lead to unsafe control actions and hazardous states
in the system.

In Table 2, we list several of the possible accidents related to the train brake
management system. Here we focus on safety related losses and exclude other
losses like financial or operational losses. Four common accidents (A1 to A4)
related to the braking scenario are suggested. For example, if sequential brake
processes fail to connect in an appropriate way, train’s smooth operation can no
more be ensured, and this may cause passengers fall down or even get injured
(A1). Another accidental scenario is property damage (A2). For instance,during
the regeneration phase of electrical braking, there are risks of damage to traction



62 W.G. Temple et al.

Fig. 6. Hierarchical control loops of a train brake management system

power system when 3rd rail voltage is too high or too low. Similarly, the couplings
between cars will be compromised by excessive force if individual bogie does not
brake at correct rate. Collision with objects or other trains (A3) is another major
type of accident. Additionally, braking failure can cause disruption of availability
as well, like the train unexpectedly stops in the middle of a tunnel, or misses the
platform (A4).

According to the aforesaid braking accidents, the hazardous scenarios are
identified and attached to the related accidents, as shown in Table 2. For example,
in train braking phase, individual cars need to sense weight and brake with
different force accordingly, since the corresponding equipment like BCE and
BCU are dedicated to control the braking process for each bogie. Due to the
complex interactions of their control loops, the couplings of cars could suffer
from excessive extrusion force or separating force, once there is any inadequate
control in this process. This condition could be a significant hazardous scenario
(H-1)leading to the damage of relevant equipment (A2), especially for the train
with multiple cars.

We further investigate the contexts under which control actions could be
unsafe and lead to hazardous status. As per STPA-Sec, unsafe control actions
could be categorized into four types: (1) control action not given, (2) control



Systems-Theoretic Likelihood and Severity Analysis for Safety 63

Table 2. Accidents and system hazards in braking control process

Identified accident

A1. Train decelerates or stops in a sudden way, making passengers fall down and
even get injured

A2. Related system or equipment are damaged

A3. Collision with objects or other trains

A4. Train stops at wrong places

Identified hazards and corresponding accidents (in parentheses)

H1. Coupling between adjacent cars is being compromised (A2)

H2. Train is not at the right speed at certain location (A3, A4)

H2-1. Train is overrun

H2-2. Train is underrun

H3. Substantial phases fail to connect smoothly (A1)

H4. Traction power system e.g., 3rd rail, is over voltage (A2)

H5. Procedure continues for a prolonged time (A3, A4)

H6. Train does not stop properly (A3)

H7. Braking phases are conducted with unintended timing, in an unintended
amount, or at an unintended location (A3, A4)

action given not correctly, (3) wrong timing or order of control action, (4) control
action stopped too soon or applied too long. In this step, to identify unsafe
control actions, all the control loops in Fig. 6 are reviewed. Due to the limitation
of space, we only show one example under each type (see Table 3).

In Table 3, we highlight the unsafe control action type, the unsafe control
actions which could lead to a hazard, and the possible system hazards. For
example, an unsafe control action is that too little brake force is performed and
transmitted to downstream brake units (UCA-3), which would lead to hazardous
system status like wrong speed, compromised couplings, etc. Another example is
electrical brake is applied too long and fails to properly stop in time, when the
3rd rail is fully regenerated (UCA-5), and it may cause the damage of related
equipment.

Afterwards, with the help of the annotated control graph from [16,23], we
consider intentional and unintentional causal scenarios for each unsafe control
action. Table 4 shows a few possible causal scenarios for UCA-3. We distinguish
unintentional scenarios and intentional scenarios with the label of “U” and “I”
respectively. Unintentional causal scenarios may include safety oriented factors
such as possible flaws in the algorithms and models, malfunctions of related com-
ponents, inadequate or evening missing feedback. While in security perspective,
intentional scenarios focus on malicious attacks such as injection of manipulated
data, tampered or congested feedback etc.



64 W.G. Temple et al.

Table 3. Example conditions under which control actions may lead to hazard

Type Control action UCA No. Unsafe control actions Possible hazards

Required

action not

performed

Request electrical

braking

UCA-1 Electrical braking request

is not preformed by PCE in

the train braking scenario

Non-hazardous

Activate frictional

braking

UCA-2 Frictional braking is not

activated during the train

braking phase

H1, H2-1, H5, H6

Hazardous

action

performed

Activate frictional

braking

UCA-3 Inadequate braking force is

performed and transmitted

to downstream braking

units in frictional braking

phase

H1, H2-1, H5, H7

Incorrect

timing or

order

Activate pneumatic

control

UCA-4 Pneumatic control isn’t

properly be applied at the

mid of speed to

compensate for the

decrease in electrical break

effort

H3, H7

Incorrect

duration

Activate electrical

braking

UCA-5 Electrical braking is

preformed too long, and

fails to stop before traction

power system has been

fully regenerated

H4

These scenarios should not be seen as exhaustive checklist which covers all
possibilities, but a starting point for further thoughts and investigations. It is
also important to note that quite a number of unsafe control actions may share
similar causal scenarios, but they happen on different controller and controlled
process. That means there are some common causes for unsafe and insecure
scenario which calls for extra attention and efforts.

Last, we assess the likelihood of identified causal scenarios with the method
suggested in Sect. 3. Specifically, we rate “Reachability” and “Uniqueness”
according to the braking management case. The example of evaluation is shown
in Table 4 (for UCA-3).

Reachability. Internal cyber components in a train brake management system
are not public accessible and best described as a private network. In most of cyber
attacks targeting this system, attackers need to manage the control process via
a private network connection (reachability = 2).

Uniqueness. Most of train brake systems are restricted and not common for
commercial or non-commercial applications (uniqueness = 1). While the process,
operation and a few devices such as sensors can be assumed as commercially
available (uniqueness = 2).



Systems-Theoretic Likelihood and Severity Analysis for Safety 65

Table 4. Potential causal scenarios and assessment of UCA-3

ID Potential causal scenarios Type
(U/I)

S R U p/f
score

A Sensors or related equipment(e.g. BCE, BCU)
malfunction

U 1 - - 5

B Inadequate control algorithm occur to BCE calculation
model, which causes the amount of breaking force is not
calculated correctly

U 2 - 2

C Unidentified disturbance such as the changes of
environment(e.g. the track is oily), makes the
braking force in normal circumstance not
adequate any longer

U 3 - - 2

D The feedback path to BCE may be congested
intentionally, then the train cannot explicitly determine
the required brake force for each bogie

I 2 2 1 3

E Manufactured braking force amount is sent by BCE to
the downstream braking equipment, and that forged
message overwrites the legitimate braking force

I 3 2 1 3

F Maliciously tamper or fabricate readings of
relevant devices (e.g. oil gauge,sensors) after
creating an unsafe situation of environment

I 3 2 2 4

Note: Type(U/I)–Type(Unintentional scenario/Intentional scenario); S–Severity; R–
Reachability; U–Uniqueness; p/f score–probability/frequency score.

4.3 Discussion

As seen in the analysis above, elements from STPA-Sec and FMVEA can be
combined to provide a system-level view of unsafe or insecure control actions
with greater support for structured risk assessment in the form of likelihood and
severity scores grounded in standards such as EN 50126-1 for railway applica-
tions. By reconciling those perspectives on safety/security co-analysis, we arrive
at a method that can be used to identify unsafe situations posed by the environ-
ment’s impact on system control actions (i.e., oil on the track in Table 4) and
prioritize high-risk security/safety issues (high S and p/f score) for remediation.

This work represents an initial attempt to reconcile concepts from STPA-
Sec with more traditional component-based analysis methods. As such, there
are a few limitations we would like to acknowledge. First, it may be possible to
incorporate other methods into an STPA-Sec inspired analysis process. We chose
FMVEA in this work due to its close alignment with a classical safety/reliability
engineering approach used in industry (FMEA). Second, the control structure
diagram in Fig. 3, while more expressive than the functional control diagrams
used in [23], is also more complex with the addition of multiple instances and
environmental interaction. Also, as pointed out in [16], the STPA-Sec process
results in a large number of control loops and causal scenarios to analyze. It
is our view that these factors point to a need for tool support to assist with



66 W.G. Temple et al.

creating/maintaining/tracking assessment documentation. This is a topic we will
explore in future work.

5 Conclusion

In this paper, we propose a new method for identifying and evaluating safety and
security risks. Our Systems-Theoretic Likelihood and Severity Analysis (STLSA)
method combines aspects from the systems-theoretic STPA-Sec method, which
identifies unsafe/insecure control actions in a system, and component-centric
FMVEA method, which is an extension of failure mode and effects analysis from
IEC 60812. We illustrate the STLSA process using a railway case study.

Acknowledgements. This work was supported in part by the National Research
Foundation (NRF), Prime Minister’s Office, Singapore, under its National Cybersecu-
rity R&D Programme (Award No. NRF2014NCR-NCR001-31) and administered by
the National Cybersecurity R&D Directorate. It was also supported in part by the
research grant for the Human-Centered Cyber-physical Systems Programme at the
Advanced Digital Sciences Center from Singapore’s Agency for Science, Technology
and Research (A*STAR).

References

1. IEC 60812: Analysis techniques for system reliability ? procedure for failure mode
and effects analysis (FMEA)

2. First mrt accident (2004). http://eresources.nlb.gov.sg/infopedia/articles/SIP
814 2004-12-31.html

3. BS EN 50126–1. Railway applications-The Specification and Demonstration Reli-
ability, Availability, Maintainability and Safety (RAMS). Part 1: Basic Require-
ments and Generic Process (2015)

4. Chockalingam, S., Hadziosmanovic, D., Pieters, W., Teixeira, A., van Gelder, P.:
Integrated safety and security risk assessment methods: a survey of key character-
istics and applications. In: CRITIS (2016)

5. Defence Science and Technology Agency blog. How we caught the circle line
rogue train with data (2016). https://blog.data.gov.sg/how-we-caught-the-circle-
linerogue-train-with-data-79405c86ab6a#.4fu3jqint

6. Fovino, I.N., Masera, M., De Cian, A.: Integrating cyber attacks within fault trees.
Reliab. Eng. Syst. Saf. 94(9), 1394–1402 (2009)

7. Friedberg, I., McLaughlin, K., Smith, P., Laverty, D., Sezer, S.: STPA-SafeSec:
safety and security analysis for cyber-physical systems. J. Inf. Secur. Appl. 34,
183–196 (2016)

8. Henniger, O., Apvrille, L., Fuchs, A., Roudier, Y., Ruddle, A., Weyl, B.: Security
requirements for automotive on-board networks. In: 2009 9th International Confer-
ence on Intelligent Transport Systems Telecommunications, (ITST), pp. 641–646.
IEEE (2009)

9. Kriaa, S., Pietre-Cambacedes, L., Bouissou, M., Halgand, Y.: A survey of
approaches combining safety and security for industrial control systems. Reliab.
Eng. Syst. Saf. 139, 156–178 (2015)

http://eresources.nlb.gov.sg/infopedia/articles/SIP_814_2004-12-31.html
http://eresources.nlb.gov.sg/infopedia/articles/SIP_814_2004-12-31.html
https://blog.data.gov.sg/how-we-caught-the-circle-linerogue-train-with-data-79405c86ab6a#.4fu3jqint
https://blog.data.gov.sg/how-we-caught-the-circle-linerogue-train-with-data-79405c86ab6a#.4fu3jqint


Systems-Theoretic Likelihood and Severity Analysis for Safety 67

10. Macher, G., Höller, A., Sporer, H., Armengaud, E., Kreiner, C.: A combined
safety-hazards and security-threat analysis method for automotive systems. In:
Koornneef, F., Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 237–250.
Springer, Cham (2015). doi:10.1007/978-3-319-24249-1 21

11. Massacci, F., Paci, F.: How to select a security requirements method? a compar-
ative study with students and practitioners. In: Jøsang, A., Carlsson, B. (eds.)
NordSec 2012. LNCS, vol. 7617, pp. 89–104. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34210-3 7

12. Piètre-Cambacédès, L., Bouissou, M.: Cross-fertilization between safety and secu-
rity engineering. Reliab. Eng. Syst. Saf. 110, 110–126 (2013)

13. Raspotnig, C., Karpati, P., Katta, V.: A combined process for elicitation and analy-
sis of safety and security requirements. In: Bider, I., Halpin, T., Krogstie, J., Nur-
can, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) BPMDS/EMMSAD
-2012. LNBIP, vol. 113, pp. 347–361. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31072-0 24

14. Raspotnig, C., Karpati, P., Katta, V.: A combined process for elicitation and analy-
sis of safety and security requirements. In: Bider, I., Halpin, T., Krogstie, J., Nur-
can, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) BPMDS/EMMSAD
- 2012. LNBIP, vol. 113, pp. 347–361. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31072-0 24

15. Schmittner, C., Gruber, T., Puschner, P., Schoitsch, E.: Security application of
failure mode and effect analysis (FMEA). In: Bondavalli, A., Di Giandomenico, F.
(eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 310–325. Springer, Cham (2014).
doi:10.1007/978-3-319-10506-2 21

16. Schmittner, C., Ma, Z., Puschner, P.: Limitation and improvement of STPA-sec
for safety and security co-analysis. In: Skavhaug, A., Guiochet, J., Schoitsch, E.,
Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9923, pp. 195–209. Springer, Cham
(2016). doi:10.1007/978-3-319-45480-1 16

17. Schmittner, C., Ma, Z., Schoitsch, E., Gruber, T.: A case study of fmvea and chassis
as safety and security co-analysis method for automotive cyber-physical systems.
In: ACM Workshop on Cyber-Physical System Security, pp. 69–80. ACM (2015)

18. Schmittner, C., Ma, Z., Smith, P.: FMVEA for safety and security analysis of
intelligent and cooperative vehicles. In: Bondavalli, A., Ceccarelli, A., Ortmeier, F.
(eds.) SAFECOMP 2014. LNCS, vol. 8696, pp. 282–288. Springer, Cham (2014).
doi:10.1007/978-3-319-10557-4 31

19. Shostack, A., Lambert, S., Ostwald, T., Hernan, S.: Uncover security design
flaws using the STRIDE approach. MSDN Mag., November 2006. https://msdn.
microsoft.com/magazine/msdn-magazine-issues

20. Temple, W.G., Wu, Y., Chen, B., Kalbarczyk, Z.: Reconciling systems-theoretic
and component-centric methods for safety and security co-analysis. In: Tonetta, S.,
Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10489, pp. 87–93.
Springer, Cham (2017). doi:10.1007/978-3-319-66284-8 9

21. The Straits Times. Oil spillage led to mrt train collision, Panel (1993). http://
eresources.nlb.gov.sg/newspapers/Digitised/Article/straitstimes19931020-1.2.2

22. The Straits Times. Train’s faulty signals behind circle line woes (2016).
http://www.straitstimes.com/singapore/transport/trains-faulty-signals-behind-cir
cle-line-woes

23. Young, W., Leveson, N.: Systems thinking for safety and security. In: ACSAC, pp.
1–8. ACM (2013)

http://dx.doi.org/10.1007/978-3-319-24249-1_21
http://dx.doi.org/10.1007/978-3-642-34210-3_7
http://dx.doi.org/10.1007/978-3-642-34210-3_7
http://dx.doi.org/10.1007/978-3-642-31072-0_24
http://dx.doi.org/10.1007/978-3-642-31072-0_24
http://dx.doi.org/10.1007/978-3-642-31072-0_24
http://dx.doi.org/10.1007/978-3-642-31072-0_24
http://dx.doi.org/10.1007/978-3-319-10506-2_21
http://dx.doi.org/10.1007/978-3-319-45480-1_16
http://dx.doi.org/10.1007/978-3-319-10557-4_31
https://msdn.microsoft.com/magazine/msdn-magazine-issues
https://msdn.microsoft.com/magazine/msdn-magazine-issues
http://dx.doi.org/10.1007/978-3-319-66284-8_9
http://eresources.nlb.gov.sg/newspapers/Digitised/Article/straitstimes19931020-1.2.2
http://eresources.nlb.gov.sg/newspapers/Digitised/Article/straitstimes19931020-1.2.2
http://www.straitstimes.com/singapore/transport/trains-faulty-signals-behindcircle-line-woes
http://www.straitstimes.com/singapore/transport/trains-faulty-signals-behindcircle-line-woes


Formal Modelling and Verification for
Safety



Formal Modelling Techniques for Efficient
Development of Railway Control Products

M. Butler1, D. Dghaym1, T. Fischer2, T.S. Hoang1, K. Reichl2, C. Snook1(B),
and P. Tummeltshammer2

1 ECS, University of Southampton, Southampton, UK
{mjb,dd4g12,t.s.hoang,cfs}@ecs.soton.ac.uk

2 Thales Austria GmbH, Vienna, Austria
{tomas.fischer,klaus.reichl,peter.tummeltshammer}@thalesgroup.com

Abstract. We wish to model railway control systems in a formally
precise way so that product lines can be adapted to specific customer
requirements. Typically a customer is a railway operator with national
conventions leading to different variation points based on a common
core principle. A formal model of the core product must be precise and
manipulatable so that different feature variations can be specified and
verified without disrupting important properties that have already been
established in the core product. Cyber-physical systems such as railway
interlocking, are characterised by the combination of device behaviours
resulting in an overall safe system behaviour. Hence there is a strong
need for correct sequential operation with safety “interlocks” making up
a process. We utilise diagrammatic modelling tools to make the core
product more accessible to systems engineers. The RailGround example
used to discuss these techniques is an open source model of a railway
control system that has been made available by Thales Austria GmbH
for research purpose, which demonstrates some fundamental modelling
challenges.

Keywords: Event-B · iUML-B · ERS · Interlocking

1 Introduction

A railway control system is a safety-critical cyber-physical system where common
principles are well established and adopted on a broadly generic infrastructure,
but with an abundance of feature variations across national boundaries. In order
to be able to offer a configurable, yet certified, product it is therefore essential
to adopt an efficient product development process that allows a verified core
product to be adapted to specific solutions. We propose a model-based approach
that will support such a development process.

Motivation. Our motivation is to model railway control systems in a formally
precise way so that product lines can be adapted to specific customer require-
ments. Typically a customer is a railway operator with national conventions

c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 71–86, 2017.
https://doi.org/10.1007/978-3-319-68499-4_5



72 M. Butler et al.

leading to different variation points based on a common core principle such as
Interlocking (IXL). A formal model of the core product therefore must be precise
and manipulatable so that different feature variations can be specified and veri-
fied without disrupting important properties that have already been established
in the core product. Such properties include the safety principles of a technology
and we assume that they have already been proven to ensure safety. For example,
in our IXL model, we assume that if conflicting paths are exclusively enabled,
this is sufficient to ensure that trains do not collide. In future work, we envisage
using various domain-specific languages (DSLs) so that customers can precisely
specify their specific feature requirements. For now, we focus on modelling the
core system.

We model the core system using notations that are accessible to systems engi-
neers. These engineers have extensive domain knowledge, are skilled at specifiy-
ing systems in the railway domain and usually have experience in semi-formal
modelling tools such as UML and SysML. They are generally less experienced at
formal modelling and proof. For this reason we utilise graphical representations
of the formal model. To fully understand the model, and to debug models when
proofs do not discharge automatically, it is necessary to understand the formal
notation. Formal methods specialists are needed to help with proof and specific
modelling difficulties, but the main content of the models must be accessible to
less specialised systems engineers and other stakeholders.

Event-B and extensions. The Event-B modelling method [1] is suitable for this
formal modelling task because it allows us to verify (core) properties while leav-
ing certain features underspecified, and subsequently refine the model to fully
specify those features in a consistent manner with respect to the abstract model.
Event-B has strong tool support for verification and validation in the form of the-
orem provers and model-checkers. Diagrammatic modelling notations and tools
are available which aid model accessibility. We use the iUML-B class diagrams
and state-machines [15,18,19] in conjunction with Event Refinement Structure
(ERS) [5,6] to visualise event refinement structures.

RailGround. For research and illustration purposes we use an example railway
interlocking specification called RailGround [14]. RailGround is provided as an
open specification and model for this purpose. This is a simplified version of
interlocking systems, built specifically for research on formal validation and ver-
ification of railway systems [14]. This example is used as part of the rail use case
of the European project Enable-S3 [4].

Contribution. Cyber-Physical Systems (CPS) such as the railway interlocking,
are made up of many disparate devices with interrelationships. They are charac-
terised by the combination of device behaviours resulting in an overall safe system
behaviour. Hence there is a strong need for correct sequential operation with safety
“interlocks” making up a process. To model CPS we start by modelling the entity
relationships of the devices using an iUML-B class diagram, we then model the
individual behaviour of instances of these entities using iUML-B state-machines.



Formal Modelling Techniques for Efficient Development 73

However, this is not sufficient to show the overall system process. To show this
we add the ERS view which shows the process based on the sequences of events
involved in the interaction of all devices.

Our contribution is an approach for modelling CPS using diagrammatic nota-
tions for the three views above: Entity-Relationships, Entity-Behaviour and Sys-
tem Process. Our approach utilises an integration of iUML-B and ERS.

Structure. In Sect. 2 we describe the requirements of the RailGround system
and introduce the modelling notations and tools that we use to model it. In
Sect. 3 we describe our model of the RailGround system in order to illustrate
the use of the formal modelling notations. Section 4 discusses related work to
our approach and the case study. In Sect. 5 we reflect on the effectiveness and
benefits of combining the modelling notations and indicate future work.

Dataset. The Event-B model illustrating this paper is available as a dataset
here: https://doi.org/10.5258/SOTON/D0184. The required Rodin and plug-in
configuration is given in a ‘readme’ file within the dataset.

2 Background

We first present some background information on the case study including its
requirements in Sect. 2.1. Subsequently, we give a brief overview of the Event-B
method in Sect. 2.2, of iUML-B in Sect. 2.3, and of ERS in Sect. 2.4.

2.1 RailGround

The example used in this paper is based on RailGround, a formal model of a
railway interlocking system using Event-B, which was developed by Thales Aus-
tria GmbH [14]. Railway systems, in general, aim at providing a timely, efficient
and most importantly a safe train service. This requires a reliable command and
control system that ensures a train can safely enter its specified path. In the
system under consideration, the railway topology consists of a set of connected
elements, which are protected by signals passing information to the trains. The
safety of a train is ensured by allowing its path to be set, only if it does not con-
flict with the current available paths. The following requirements are extracted
and simplified from [14]. For illustration, we will consider the network topology
with one track and two points as in Fig. 1. Note that we focus on modelling
the system functional safety here. This is a subset of the overall system safety
functionality. In particular, technical measures from other domains to achieve
the desired Safety Integrity Level (SIL) are not considered.

Railway Topology. The railway topology is formed by a set of Rail Elements.
A rail element is a unit which provides a physical running path for the trains, i.e.
rails (e.g. track, points, crossing). A Rail Connector is a port of a rail element
used to define the element’s connectivity via Rail Segments as well as to link

https://doi.org/10.5258/SOTON/D0184


74 M. Butler et al.

*⊕*

a b

*⊕*

c d

*⊕*

e f

*⊕*

i j

*⊕*

g h
T P1 P2

S1 S2

S3 S4

Fig. 1. An example railway topology [14]

this element with the adjacent ones via rail links. Depending on its type, each
rail element usually has 2 to 4 rail connectors. Each rail connector belongs to
exactly one rail element. Typically, a rail element is made up of one or more
Segments. A rail segment is a connection from an element’s rail connector to
another connector of the same rail element.

REQ 1 The network topology is a set of rail elements.
REQ 2 A rail element has 2 to 4 rail connectors. Each rail connector belongs to

exactly one rail element.
REQ 3 A rail segment is a connection from a rail connector of some rail element

to another rail connector of the same rail element.

In Fig. 1, there are three rail elements, namely T (a track), P1, P2 (points). The
connectors are a, b, ..., h and associate with the rail elements as follows:

T �→ {b, c}, P1 �→ {d, e, i}, P2 �→ {f, j, g}.

The segments are {bc, cb, di, id, de, ed, jg, gj, fg, gf}. The relationship between
the rail elements and the segments are as follows:

T �→ {bc,cb}, P1 �→ {di, id, de, ed}, P2 �→ {jg, gj, fg, gf}.

Element Positions. For each rail element, an Element Position is a distinct
situation of that rail element. Furthermore, each element position defines the
set of possible element connections (defined by segments) for that particular rail
element.

REQ 4 For each rail element, there is a set of possible element positions
REQ 5 Each rail element and position correspond to a set of rail segments

For example, a set of points has three possible positions POS X (in transition),
POS L (left), POS R (right). Consider the points P1, position POS X corresponds
to an emptyset of segments, POS L corresponds to segments {di, id}, and POS R
corresponds to segments {de, ed}.



Formal Modelling Techniques for Efficient Development 75

Paths. A path is a sequence of rail segments, with the constraint that two rail
segments of the same rail element are not allowed within one path. A path can
be activated so that trains are allowed to be on that path.

REQ 6 A path is a sequence of rail segments.
REQ 7 Two rail segments belonging to the same element are not allowed within

one path.

Consider the example in Fig. 1, a path could be the following sequence of seg-
ments [bc, di, jg], or [gf, ed, cb].

Path Life-Cycle. A set of paths are pre-defined in the network. Before becom-
ing active, a path must be requested. As soon as all conditions for the path (e.g.,
rail elements must be in the required position to establish its path), a requested
path can be activated. As a train moves along a path, rail elements that are no
longer in use can be released. An active path can be removed only after all its
rail elements are released. A rail element position can only be changed if the rail
element is not part of an active path.

REQ 8 A requested path can become an active path when all conditions for
that path are met

REQ 9 An active path can be removed only after all its rail elements are
released.

REQ 10 A rail element position can only be changed if it is not part of an active
path.

In the example network topology, we can have the following paths R1–R4, with
the following associations:

R1 �→ [bc, de, fg], R2 �→ [bc, di, jg], R3 �→ [gf, ed, cb], R4 �→ [gj, id, cb].

Vacancy Detection. In order to detect trains on the network, the system is
equipped with Track Vacancy Detection (TVD). Each segment belongs to exactly
one TVD section. A TVD section is either vacant or occupied. A TVD section is
occupied if there is some train on some segment belonging to that TVD section.

REQ 11 Each segment belongs to exactly one TVD section.
REQ 12 A TVD section can be either in vacant or occupied state.

Signals. A Signal is an entity capable of passing information to trains. A signal
is associated with a rail element for a particular traversal direction. A signal
aspect is an (abstract) information conveyed by a signal. Signal Default is a
predefined aspect of signals. Trains are assumed to obey the signals, in particular,
stop at a signal containing default aspect.

REQ 13 A signal may be set to an aspect other than default, only if there is an
active element after this signal.



76 M. Butler et al.

REQ 14 A signal is associated to a connector and hence to a specific location
within the topology, i.e., the information passed by the signal are only valid
to a specific direction which in this case will be the segment starting at the
signal connector.

In Fig. 1, we have 4 signals, S1–S4 associated with different connectors as follows.

S1 �→ a, S2 �→ c, S3 �→ d, S4 �→ h

Safety Properties. Safety in this model is ensured by the paths which are
active. The paths can only be set if all its elements are in the right positions.
Safety is ensured by preventing paths to be requested if there are other paths
requiring the same elements.

REQ 15 Two active paths cannot overlap
REQ 16 An active path must have all its elements in the right positions
REQ 17 A path can be requested if it is disjoint from other active or requested

paths.

2.2 Event-B

Event-B [1] is a formal method for system development. Main features of Event-
B include the use of refinement to introduce system details gradually into the
formal model. An Event-B model contains two parts: contexts and machines.
Contexts contain carrier sets, constants, and axioms that constrain the carrier
sets and constants. Machines contain variables v, invariants I(v) that constrain
the variables, and events. An event comprises a guard denoting its enabling-
condition and an action describing how the variables are modified when the
event is executed. In general, an event e has the following form, where t are the
event parameters, G(t, v) is the guard of the event, and v := E(t, v) is the action
of the event1.

e == any t where G(t,v) then v := E(t,v) end

A machine in Event-B corresponds to a transition system where variables rep-
resent the states and events specify the transitions. Contexts can be extended
by adding new carrier sets, constants, axioms, and theorems. Machine M can
be refined by machine N (we call M the abstract machine and N the concrete
machine). The state of M and N are related by a gluing invariant J(v,w) where v,
w are variables of M and N, respectively. The gluing invariant specifies the con-
sistency between the abstract and concrete machines and must be maintained
by the execution of both machines. Intuitively, any “behaviour” exhibited by
N can be simulated by M, with respect to the gluing invariant J. Refinement
in Event-B is reasoned event-wise. Consider an abstract event e and the corre-
sponding concrete event f. Somewhat simplifying, we say that e is refined by f if

1 Actions in Event-B are, in the most general cases, non-deterministic [8].



Formal Modelling Techniques for Efficient Development 77

f’s guard is stronger than that of e and f’s action can be simulated by e’s action,
taking into account the gluing invariant J. More information about Event-B can
be found in [8]. Event-B is supported by Rodin platform (Rodin) [2], an exten-
sible toolkit which includes facilities for modelling, verifying the consistency of
models using theorem proving and model checking techniques, and validating
models with simulation-based approaches.

2.3 iUML-B

iUML-B [15,18,19] provides a diagrammatic modelling notation for Event-B
in the form of state-machines and class-diagrams. The diagrammatic elements
are contained within an Event-B model and generate or contribute to parts of
it. For example a state-machine will automatically generate the Event-B data
elements (sets, constants, axioms, variables, and invariants) to implement the
states, and contribute additional guards and actions to existing events. iUML-
B Class diagrams provide a way to visually model data relationships. Classes,
attributes and associations are linked to Event-B data elements (carrier sets,
constants, or variables) and generate constraints on those elements. In iUML-B
class diagrams, a class represents some set of instances and the class may be used
to show relationships with other classes. Usually the set of instances is given by
an Event-B data element, but in some scenarios it is useful to construct a set
using an expression as the class name.

2.4 Event Refinement Structures

In Event-B, behaviour can be decomposed during refinement into a combination
of new and refining atomic events. However, the relationship between the events
at different refinement levels is not explicit, for this we use ERS [5,6] diagrams.
ERS, is a tree-like structure, inspired by Jackson Structure Diagrams (JSD) [10],
that provides a graphical extension of Event-B to represent event decomposition
explicitly. In addition to specifying event decomposition, an ERS diagram can
explicitly represent control flow. Similar to JSD diagrams, the ordering of events
is read from left-to-right. In addition to sequencing ERS provides different com-
binators that support iteration, choice and different forms of non-deterministic
interleaving.

3 RailGround Model Using iUML-B and ERS

In this section we describe our version of the RailGround model which is modelled
in iUML-B and ERS. For each refinement level we discuss the iUML-B class
diagram and state-machine (where applicable) and then describe the behaviour
of that refinement level, including the refinement relationships of events, using
an ERS diagram.

The overall ERS diagram of the RailGround model is illustrated in Fig. 2. The
root of the diagram represents the name of the system and it is parametrised



78 M. Butler et al.

by p of type PATH to show the possible interleaving of different paths. The
different regions represent the different refinement levels. One of the refinement
levels (Rails) does not change the event refinement structure, hence the second
region represents two refinement levels. Events of the RailGround model are
represented by the leaf nodes of the tree, where an event connected to its parent
by a dashed line is a newly added event, while a solid line represents a refining
event which is identified by the keyword refines in the Event-B model.

Fig. 2. Event Refinement of the RailGround model shown in ERS (solid lines: refining
events, dashed lines: new events)

The refinement sequence adopted for the iUML-B model is as follows:

1. Paths - abstract representation of the path of a train through a rail network
(REQ 15, REQ 17).

2. ElemPos - positioning of elements in the rail network to put a path in the
right state (REQ 1, REQ 4, REQ 8, REQ 9, REQ 10, REQ 16).

3. Rails - connectivity of elements and their organisation into segments (REQ 5,
REQ 6, REQ 7).

4. Vacancy detection - the ability of elements in the rail network to detect when
they are occupied by a train (REQ 11, REQ 12).

5. Signal - signals that inform trains to stop or proceed through a path (REQ 2,
REQ 3, REQ 13, REQ 14).



Formal Modelling Techniques for Efficient Development 79

The reasons for choosing this sequence are

– The exclusive reservation of a path is the primary concept upon which inter-
locking safety is based. Therefore it is important to model this first when the
model is simple, so that it is easier to validate.

– More detail about the operation of paths is introduced next (Element posi-
tioning, Rails).

– The occupation of a path is an important concept that can be introduced as
soon as paths are sufficiently modelled.

– Signals are a design detail which can vary depending on customer. It is there-
fore more convenient to introduce this late.

Paths. Our first abstract model introduces the notion of paths through a rail
network. Paths are reserved for exclusive use ensuring that trains cannot collide.
Paths are a conceptual device used by the control system, which are related to
a set of physical elements in the railway system. The iUML-B class diagram,
Fig. 3a, defines a finite given set PATH of paths and an association, Path Exc of
paths that conflict with each other. Axioms constrain this association so that
paths do not conflict with themselves and the association is symmetric. The
iUML-B state-machine, Fig. 3b defines the behaviour of paths. A path is initially
requested (add path req) and can then be made active (add path curr), followed
by released (add path rel) and then removed (remove path curr). Paths that have
been made active but not yet removed are called current. This is represented by
superstate path curr which allows us to specify the state invariant that for all
current paths, none of their conflicting paths are also current. This is the safety
principle of interlocking systems. It is ensured by a guard on add path curr.
There is also the possibility remove path req of un-requesting a path without it
ever becoming current.

(a) iUML-B Class Dia-
gram for path properties

(b) iUML-B State-machine for
path behaviour

Fig. 3. Abstract model of paths through a rail network



80 M. Butler et al.

The process involved at this abstract level of the model is represented by
the Paths region in Fig. 2 on page 8. The RailGround model starts by adding a
required path, then there is a choice (indicated by xor) between either removing
the path or making it the current path. If the path p is added as current, then it
can be followed by releasing the path, after which the path can be removed from
the current paths. At this level, since there is only one (conceptual) device and
no refinement, the ERS diagram has a close correspondence with the iUML-B
state-machine diagram.

Element Position. In the first refinement we introduce the idea that elements
need to be in a particular position for a path. This corresponds to physical
devices such as railway “points”. We define a constant function Path Elem Pos
(Fig. 4a) which, for each path, gives a functional mapping from elements to posi-
tions. That is, the position that each element of the path needs to be in for that
path to be ready. We also define a default position Default Elem Pos for each
element. Variable functional associations are defined for the current position
rail elem pos curr and current path rail elem path curr of each rail element. Two
RAIL ELEM class methods are provided to set the position, rail elem pos curr, of
a particular element. Method setRailElemPos Curr sets the position when the ele-
ment is not involved in a path, and method setRailElemPath Curr sets the element
to the appropriate position for a given path. The current path of an element is
set and reset when the path is made current and released respectively (i.e. these
actions are added to the relevant state-machine transitions). Two class invari-
ants are added to class RAIL ELEM. The first states that, if an element belongs
to a current path, then that element must have a defined position for that path
according to Path Elem Pos. The second ensures that the element is currently in
the correct position according to Path Elem Pos. Two state invariants in state
path req (Fig. 4b) require that the requested path has no elements in common
with another requested path and no elements in common with a current path.

The ElemPos region (Fig. 2 on page 8), illustrates how the atomicity of adding
a current path is broken into two events, the first sets the rail elements position
of the current path to the required position, followed by adding the path as
current, which is in this case the refining event (solid line). However in order to
add the path as current, there is a requirement that all elements of the required
path should be in the right position, that is why we apply the all combinator
adding an additional dimension, elem of type RAIL ELEM, to the ERS model. The
other new event (setRailElemPos Curr) is not associated with a path and therefore
does not appear in the process described by the ERS diagram. The ERS diagram
visualises the system level process requirement that the positioning of elements
must be completed before the path becomes current. This is not apparent in the
iUML-B model which focusses on the behaviour of individual devices (PATH and
RAIL ELEM). The fact that setRailElemPath Curr is a preliminary (stuttering)
event leading to add path curr is made clear in the ERS diagram. Arguably,
this is shown in the iUML-B state-machine by adding setRailElemPath Curr as a
transition on the source state, path req of add path curr but the event refinement



Formal Modelling Techniques for Efficient Development 81

(a) iUML-B Class Diagram for element position

(b) State-invariants for element position

Fig. 4. First refinement introducing element positioning

relationship is not as explicit as in the ERS diagram. On the other hand, the ERS
diagram does not illustrate state constraint information such as the requirement
that setRailElemPath Curr is only performed while the associated path is in the
state path req.

Rails. In the second refinement we introduce a stronger relationship describing
the physical construction of paths using rail segments. To do this we introduce
a given set RAIL SGMT (Fig. 5) with a functional association Rail Sgmt Elem
to RAIL ELEM. An association Path Segmt gives the subset of RAIL SGMT that
makes up each path. Class axioms specify various constraints to ensure the new
segment representation is consistent with other configuration data.

In this refinement, we extended the context to introduce details about the
rail’s connectivity using segments, which only resulted in changing the model’s
behaviour by adding some invariants and guards to the existing events relating
connectivity to the element position. Consequently, there were no changes to the
structure and ordering of events, which remains the same as the ElemPos region.

Vacancy Detection. In the third refinement (Fig. 6) we introduce the detection
of trains as they occupy rail segments. A new given set TVD SECT is introduced
to represent TVD sections that can detect when they are occupied. A many-
to-one relationship TVD Seg Sect from RAIL SGMT to TVD SECT specifies the



82 M. Butler et al.

Fig. 5. Second refinement introducing rail segments

TVD section of each segment. The TVD sections own an attribute tvd state curr
which represents the current occupancy state: Vacant or Occupied. Class meth-
ods are provided for setting the state of this attribute: event set tvd state curr
sets it to Occupied while event release path sect sets it to Vacant. These events
are only enabled when the section belongs to a segment of an active path, i.e.,
it is assumed that trains only move over active paths. (This will be ensured by
signals in the next refinement.)

At the Vacancy Detection level (Fig. 2 on page 8), we break the atomicity
of set path rel, which releases the current active path. Here we introduce the par
combinator which allows the interleaving of its instance values zero or more times
before its follow-on event executes. In this case, the par shows the possibility of
occupying a TVD section (set tvd state curr) then leaving it (release path sect)
before releasing an active path. This ensures that all TVD sections are vacant
before releasing the path. The ERS diagram visualises the system level process
requirement leading to releasing a path which is not so explicit in the iUML-B.

Fig. 6. Third refinement introducing detection of trains

Signals. In the final refinement (Fig. 7) we introduce signals that control the
entry of trains wanting to use a path. The given set (class) SIGNAL has a vari-
able attribute signal aspect curr which represents the current aspect and a con-
stant attribute Signal Aspect Avail that provides the set of available aspects for
that signal. Note that the only specific signal aspect defined at this level is
Signal Aspect Default which represents the signal’s stop aspect. Other aspects
may by introduced at later stages when tailoring the specification to a particu-
lar product. Class method set signal aspect proceed sets the aspect of the signal



Formal Modelling Techniques for Efficient Development 83

to proceed (i.e., not default) while method set tvd state signal sets the signal
back to default as the corresponding connected section becomes occupied. Sig-
nals are related to paths via connectors. This is modelled by class (Elem Ctor)
and the associations Signal Ctor and Path Ctor Beg. Signals are also related to
Track Vacancy Detection (TVD) sections via their connectors and the associa-
tion Sgmt Ctor. A class invariant cdm inv2 ensures that a signal is only set to a
non-default value when there is an active path at the rear of the signal.

Fig. 7. Fourth refinement introducing signalling

In the Signals region of Fig. 2, we split set tvd state curr into two cases using
the xor combinator. In the first case the TVD section is part of a path but is
not protected by a signal (set tvd state path). In the second case the section is
protected by a signal. In this latter case we need to set the signal’s aspect to
proceed first. Then it is possible to occupy that section (set tvd state signal),
in which case we also set the signal’s aspect back to default to indicate that
the section is now occupied. Again the ERS diagram compliments the iUML-B
model by visualising the system level process details of signal setting and how
it interacts with TVD occupation.

4 Related Work

Our approach combines a state-based modelling notation (iUML-B) with a
process-based notation (ERS). Essentially, iUML-B diagrams captures the com-
plex data aspect of the system and their evolution, while ERS diagrams represent
the behavioural aspect of the system, in particular sequencing of events. In this
sense, this is similar to various existing approaches combining state-based and
process-based notations, e.g., CSP and Z [21], CSP and B [3,16], CSP and Event-
B [17], etc. In particular, these approaches also support development of systems



84 M. Butler et al.

via (separate) refinement of the state-based model and the process-based model.
In our work, both iUML-B and ERS get there semantics by transforming them
to Event-B and can contribute to the underlying Event-B model, hence their
meanings are given entirely using Event-B. This is in contrast with the above
mentioned approaches where essentially combining the different formalisms. As
a result, the semantics of these approaches are given using more expressive nota-
tion such as Unifying Theories of Programming (UTP), for example [13].

We illustrate our approach on a case study based on the RailGround
model [14]. The RailGround model is atypical in that it begins by modelling
the established principals of interlocking systems without modelling the safety
properties that those systems are designed to achieve. The reason for this is
that the principles of interlocking are a proven design mechanism for controlling
trains in a safe way. The model focusses instead on providing a precise and accu-
rate specification of the interlocking product-line. The same case study has been
used in [9] for illustrating the use of iUML-B class-diagrams to visualise domain-
specific Abstract Data Types (ADTs). The RailGround case study is similar to
the one tackled by Abrial [1, Chapter 17], however, our focus here is on the
complementary usage of iUML-B and ERS diagrams for modelling. In [7], the
authors present the development of a train control system using Event-B with
the focus is on the use of ADTs to simplify the modelling task. In particular, the
system is based on Commnications-based Train Control (CBTC) and hence the
focus is on train tracking using moving blocks. In [11], the authors use CSP||B
[16] to model an interlocking system and verifying the system using ProB model
checker [12]. In [20], the authors present an approach for formal development of
interlocking systems using a DSL to specify the configuration data of the inter-
locking system. The data is then used to generate a concrete behaviour model
of the interlocking system from a generic behavioural model and concrete sys-
tem properties from generic properties. The concrete properties and the concrete
system are then verified using SMT-based bounded model checking (BMC) and
inductive reasoning. In both [11,20], refinement is not considered.

5 Conclusion

In this paper we present an alternative development to the RailGround interlock-
ing system, which was originally developed by Thales Austria GmbH using plain
Event-B. Our approach is based on a combination of a state-based (iUML-B)
and a process-based (ERS) approach. The RailGround model contains several
complex entity relationships to represent the railway topology. By separating
the entity relationship model, illustrated by the class diagrams, from the behav-
ioural model, we are making the modelling process more efficient. The class
diagram allows us to explore different abstractions efficiently compared with
specifying these data relationships textually in Event-B. The behavioural model
of the system is represented by both the state-oriented state-machines and the
process-oriented ERS diagrams. The statemachines give a view of the behaviour
which is local to a particular type of entity. ERS makes the system level ordering



Formal Modelling Techniques for Efficient Development 85

of the transitions more visible. ERS also explicitly represents the event decom-
position and their refinement relationships. In our developments, we used the
iUML-B graphical tool which also automatically generates part of the Event-B
model, making the modelling process more intuitive and efficient for engineers.
Here, we only used the ERS as a visualisation to avoid the duplication of con-
trol variables generated by both ERS and state-machines. However, the ERS
and state-machine views of behaviour complement each other and facilitate the
modelling process.

The presented approach, which is based on different visualisations from dif-
ferent perspectives makes the model more understandable and easier to commu-
nicate, but also simplifies the model and is thus cheaper to verify and validate,
which is a primary goal of the Enable-S3 project. This is a huge benefit for any
further model adaptation and modifications, which are inevitable due to long
product life time (25+ years). In future work we will do some trials to assess the
complexity of making changes to the model with and without visualisations.

Future work. In this paper, our focus is on building an approach for the generic
modelling of the core system. Currently iUMLB and ERS specify control flow
from different perspectives. We are looking at a tool integration of ERS with
iUML-B to have a common generation mechanism of Event-B.

We have started to complement the approach with DSLs for specifying
customer-specific variations in feature requirements. For example, a DSL for
specifying signalling has been developed. The DSL is precise enough to per-
form a certain amount of static-checking, but easily understood by the cus-
tomer’s domain experts. The signalling specification is translated into an Event-
B machine which is proven to refine the generic signalling required by the core
product model. We are developing composition and instantiation mechanisms
so that we can isolate the generic signalling requirements as a separate compo-
nent in the core product model. This component structuring of the model helps
to address scalability and re-use as well as facilitating customer specific feature
variants in order to efficiently obtain a complete and verified model of a customer
specific product.

Acknowledgement. This work has been conducted within the ENABLE-S3 project
that has received funding from the ECSEL Joint Undertaking under Grant Agree-
ment no. 692455. This Joint Undertaking receives support from the European Union’s
HORIZON 2020 research and innovation programm and Austria, Denmark, Germany,
Finland, Czech Republic, Italy, Spain, Portugal, Poland, Ireland, Belgium, France,
Netherlands, United Kingdom, Slovakia, Norway.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An open toolset for modelling and reasoning in Event-B. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)



86 M. Butler et al.

3. Butler, M., Leuschel, M.: Combining CSP and B for specification and property
verification. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol.
3582, pp. 221–236. Springer, Heidelberg (2005). doi:10.1007/11526841 16

4. The Enable-S3 Consortium. Enable-S3 European project (2016). www.enable-s3.eu
5. Dghaym, D., Trindade, M.G., Butler, M., Fathabadi, A.S.: A graphical tool for

event refinement structures in event-B. In: Butler, M., Schewe, K.-D., Mashkoor,
A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 269–274. Springer, Cham
(2016). doi:10.1007/978-3-319-33600-8 20

6. Fathabadi, A.S., Butler, M., Rezazadeh, A.: Language and tool support for event
refinement structures in Event-B. Formal Aspects Comput. 27(3), 499–523 (2015)

7. Fürst, A., Hoang, T.S., Basin, D.A., Sato, N., Miyazaki, K.: Large-scale system
development using abstract data types and refinement. Sci. Comput. Program.
131, 59–75 (2016)

8. Hoang, T.S.: An introduction to the Event-B modelling method. In: Romanovsky,
A., Thomas, M. (eds.) Industrial Deployment of System Engineering Methods, pp.
211–236. Springer, Heidelberg (2013)

9. Hoang, T.S., Snook, C., Dghaym, D., Butler, M.: Class-diagrams for abstract data
types. In: Van Hung, D., Deepak, K. (eds.) International Colloquium on Theoretical
Aspects of Computing–ICTAC 2017. LNCS, pp. 100–117. Springer, Cham (2017).
doi:10.1007/978-3-319-67729-3 7

10. Jackson, M.A.: System Development. Prentice-Hall, Englewood Cliffs (1983)
11. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S.A., Treharne,

H.: On modelling and verifying railway interlockings: Tracking train lengths. Sci.
Comput. Program 96, 315–336 (2014)

12. Leuschel, M., Butler, M.: ProB: An automated analysis toolset for the B method.
Softw. Tools Technol. Transf. (STTT) 10(2), 185–203 (2008)

13. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for circus. Formal
Aspects Comput. 21(1–2), 3–32 (2009)

14. Reichl, K.: RailGround model on github (2016). https://github.com/klar42/
railground/. Accessed 20 Apr 2017

15. Said, M.Y., Butler, M., Snook, C.: A method of refinement in UML-B. Softw. Syst.
Model 14(4), 1557–1580 (2015)

16. Schneider, S., Treharne, H.: CSP theorems for communicating B machines. Formal
Aspects Comput. 17(4), 390–422 (2005)

17. Schneider, S., Treharne, H., Wehrheim, H.: A CSP approach to control in event-B.
In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 260–274. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16265-7 19

18. Snook, C.: iUML-B state-machines. In: Proceedings of the Rodin Workshop 2014,
Toulouse, France, pp. 29–30 (2014). http://eprints.soton.ac.uk/365301/

19. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

20. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of inter-
locking systems featuring sequential release. Sci. Comput. Program. 133, 91–115
(2017)

21. Woodcock, J., Cavalcanti, A.: The semantics of Circus. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 184–203.
Springer, Heidelberg (2002). doi:10.1007/3-540-45648-1 10

http://dx.doi.org/10.1007/11526841_16
www.enable-s3.eu
http://dx.doi.org/10.1007/978-3-319-33600-8_20
http://dx.doi.org/10.1007/978-3-319-67729-3_7
https://github.com/klar42/railground/
https://github.com/klar42/railground/
http://dx.doi.org/10.1007/978-3-642-16265-7_19
http://eprints.soton.ac.uk/365301/
http://dx.doi.org/10.1007/3-540-45648-1_10


OVADO

Enhancing Data Validation for Safety-Critical
Railway Systems

Manel Fredj, Sven Leger, Abderrahmane Feliachi(B), and Julien Ordioni

RATP, ING/STF/QS, 54 rue Roger Salengro, 94724 Fontenay-sous-Bois, France
{manel.fredj,sven.leger,abderrahmane.feliachi,

julien.ordioni}@ratp.fr

Abstract. The safe behavior of railway software systems depends unde-
niably on the correctness of all data used by its components. Formal ver-
ification methods are nowadays successfully applied for the assessment
of safety-critical systems in order to avoid inconsistencies, ambiguities
or incompleteness. Unfortunately, these methods are rarely used by data
validation tools, although they seem well-suited for this purpose. In this
regard, RATP designed OVADO, a generic formal data-validation tool,
which has been used in several projects covering a variety of data.

This paper gives an overview of the past, present and future devel-
opments, applications and improvements of OVADO. It emphasizes how
OVADO allowed RATP to be more efficient in its data validation process
and how new enhancements will improve its usability, reliability and effi-
ciency. OVADO’s ease-of-use is, thereby, improved through the devel-
opment of the B-OVADO editor. Additionally, the process is optimized
with the definition of a common library for CBTC applications.

Keywords: OVADO · Data validation · Formal methods · Safety-
critical railway systems

1 Introduction

Railway systems contain safety-critical components, the failure or malfunction
of which may cause economical loss, environmental damages, severe injuries and
even human life loss. These components come under heavy scrutiny in RATP’s1

safety assessment labs as passengers safety is at the heart of its commitments.
Furthermore, taking as an example the RER2 line A in Paris used by over 300
million passengers each year, RATP operates one of the world’s busiest networks.
Thus, any system failure or malfunction may have considerable consequences.

Having this in mind, the safe behavior of safety-critical software compo-
nents of a railway system must be scrupulously validated. This safety assessment
1 Régie Autonome des Transports Parisiens is a public transport operator headquar-

tered in Paris, France.
2 RER: Paris suburban railway lines.

c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 87–98, 2017.
https://doi.org/10.1007/978-3-319-68499-4_6



88 M. Fredj et al.

depends undeniably on the correctness of all the data used by this system, which
are assessed during data validation activities. These activities may rely on for-
mal methods which are mathematically based languages, techniques and tools.
Formal methods [9,11] typically allow for better detection of inconsistencies,
ambiguities and incompleteness that might otherwise go unrevealed.

Adopted and promoted by RATP, formal methods, such as the B method,
have been successfully used in the transportation industry on many occasions.
For instance, over 115 000 lines of B models were written during the development
of METEOR [4], an automatic train operating system deployed in 1998 on the
metro line 14, the first driver-less metro line in Paris. No bug has been detected
since then on this system.

In this paper, addressing the issue of safety-critical data validation, we intro-
duce OVADO3, a generic and extensible tool designed by RATP for formal data
validation activities. The motivations that led to its development and its success-
ful applications in various railway projects are detailed as well. Finally, recent
enhancements brought to OVADO or to the overall data validation methodology
relying on OVADO are highlighted.

In the world of data validation, many project-specific or supplier-specific
tools have been developed. As we explain throughout this paper, OVADO is
meant to be generic and applicable for different types of projects. One other
specificity of OVADO is the use of formal methods which is not always the case
for the other tools, providing, thereby, all counter-examples for each falsified
property to help the analysis of the potential errors. In the same tradition of
OVADO, some generic formal data validation tools have been developed to fill
the gap. We highlight mainly the tools by Clearsy [12] and SafeRiver [2] where,
the former uses the B formal method, while the latter uses a synchronous formal
language for data and software verification. In the family of B-based formal data
validation tools, we note also the ProB model checker [10] used in some railway
industrial projects.

2 OVADO - Background and Learned Lessons

2.1 Origins and Genesis

In 1977, SACEM4 has been developed with new methods for safe computer-
based application, including rigorous development model, and implemented in
MODULA-2 code (≥ 60000 lines of code). However, it was not sufficient as, in
1989, 20 unsafe scenarios have been discovered by applying a retro-modeling of
the system using the Z formal method. Since then, RATP has made the decision
to develop and systematize the use of formal methods for safety-critical systems.
This led to the development of the first automatic driver-less metro line in Paris
(Line 14) in the METEOR project operating since 1998. The development of

3 OVADO stands for Outil de VAlidation des DOnnées, meaning data validation tool.
4 SACEM is equivalent to the Automatic Train Protection system for the RER A

suburban railway in Paris.



OVADO 89

this system, realized by an external supplier, was entirely based on the formal
B method.

After these successful applications of formal methods in the safety assessment
of critical software, RATP highly recommend its suppliers to use formal methods
to develop or verify railway critical software. In addition, RATP developed its
own a posteriori verification technique called PERF [5] which intended to be
applicable independently of the supplier’s implementation choices.

A considerable effort was invested in the application of formal methods on
the software components of safety-critical systems, leading to the development
of methodologies, e.g. Scade, B. However, data validation was not afforded the
same way of investment. Indeed, different data validation tools were developed
for each project. However, these project-specific tools have been found to be
hardly maintainable, barely extensible and not reusable from one project to
another.

As an anticipation of new RATP’s projects with heterogeneous suppliers
processes, the problem of safety-critical data validation became palpable in
2009. The need to pool the efforts and to establish a generalized data validation
process applicable to all projects emerges. The answer to this requirement relies
inevitably on the development of a generic and extensible data validation tool.
This was the starting point for the development of the OVADO tool [1,3] that
eases the verification of safety requirements on configuration data.

OVADO is classified T25 according to the CENELEC EN50128 Standard [6].
OVADO offers a rich integrated environment for properties [7] checking and
counter examples analysis. Concretely, OVADO uses a subset of the B formal
language (covering B expressions and predicates), named B Predicate, as a source
language for the formalization of safety properties. Data and parameters can be
integrated to the tool as B constant values, sets or relations. A screenshot of
OVADO is given in Fig. 2.

The use of a formal language allows for a clear, unambiguous definition of
the safety requirements as B properties. However, the use of a formal language
does not necessarily imply a correct formalization of the safety properties. Thus,
specific measures have to be taken in order to reduce the risk of incorrect for-
malization, like cross-checking for instance. Proof engines are used to check the
correctness of the properties or, if not, to produce a set of counter examples. The
advantage of using proof engines is their exhaustive exploration of the verified
data space, giving a complete coverage of the targeted data. In the context of
this T2 tool, in addition to the V & V activities, two independent proof engines
are used in order to reduce the risk of errors in the proof task. The first proof
engine is developed within OVADO while the second one is based on ProB.

As aforementioned, the prime needs that motivated the development of the
OVADO tool are the genericity, reusability, extensibility and maintainability. In
order to address all these concerns, the tool was designed following a plugin-

5 Type 2 tools support the test or verification of the design or executable code. Errors
in these tools can fail to reveal defects but cannot directly create errors in the
executable software.



90 M. Fredj et al.

oriented architecture, with a central kernel orchestrating the different extensions.
The kernel ensures the interaction with the proof engine by providing a number of
interfaces that have to be implemented by the different plugins. In order to sup-
port multiple data format for instance, an interface that maps data source defini-
tions to B expressions is provided. With such configuration, the extensibility and
the genericity of OVADO are guaranteed and the maintenance efforts are reduced
since not all the tool is concerned but only a part of the plugins.

2.2 Use Cases and Learned Lessons

Since its first deployment in 2010–2011, OVADO has been extensively used to
validate system and software data in numerous projects. As illustrated in Fig. 1,
OVADO is used in 3 application types for data validation: (1) system data vali-
dation, (2) validation of the transformation of system data into embedded data
and (3) embedded data validation. We call system data high-level information
related to the track, for instance, track configuration, topology, beacons, signals
and alike. We call embedded data, all data computed from system data using a
set of transformations in order to be consumed directly by the software.

1 System data validation: It consists of validating safety constraints related to
the system design (only if step 2 is considered). At this step, we verify whether
the constraints that ensure system safety are compatible with the data col-
lected from the track. For the validation, we use “System B predicates”, a set
of properties that are formalized in B language, to check the truthfulness of
the predicates modeling the safety constraints to be applied on system data.

2 Software data transformation: It consists of validating the representativeness
of the software embedded data with respect to system data. At this step,

Fig. 1. Data assessment process



OVADO 91

we check, using “Transformation B predicates”, whether software embedded
data are consistent with system data (verified in step 1), meaning that the
supplier transformation process has not introduced errors when generating
software embedded data.

3 Software embedded data validation: It consists of verifying the safety con-
straints on embedded data. These constraints may result from an additional
safety analysis or emerge from the software implementation as exported con-
straints. OVADO uses “Software B predicates” to check the truthfulness of
the predicates modeling the safety constraints to be applied on “software
data”.

OVADO has been used in several projects, namely in L13, L1, L3, L5 and L9,
which are mainly Communication Based Train Control (CBTC) [8,13] software
systems. Still, we are planning to use it for future CBTC systems and hybrid
interlocking systems such as PHPI. For the 5 cases of CBTC, the 3 above-
mentioned validation types are performed. In the following, we summarize the
metrics, giving a range of values for the number of OVADO properties that are
implemented for each step. We emphasize on specific metrics for Line 5, as it is
the most recent data validation project and it includes the know-how developed
throughout the previous safety assessments.

For system data validation, OVADO provides around 80% coverage of the
system safety constraints. The remaining 20% of the constraints are manually
validated, mainly due to data format incompatibility. For instance, data in track
layout are not automatically processible, thus the related constraints need to
be validated manually. Approximately, to model 80% of the system safety con-
straints, the number of OVADO properties is 1.3 times of the number of safety
constraints. The latter is in the range of 120 to 200 constraints. For instance,
system safety constraints are 123 for Line 13, 172 for Line 5 and 184 for Line 9.
Interestingly, one-shot constraints formalization and their automatic verification
may require more time and effort than a manual validation. However, OVADO
turns out to be more effort-efficient when used for successive versions as the val-
idation is performed automatically for the new versions with a minimal human
intervention.

Regarding software embedded data and data transformation, OVADO
enables to check up to 100% of the software constraints and the data trans-
formation ones. As system data are assessed in step 1, all format issues are
removed. In general, for software data transformation (i.e. step 2), the number
of safety constraints are in the range of 150 to 200 constraints. Safety team
implement the same number of OVADO properties as the number of software
safety constraints. For instance, regarding the data transformation properties for
Line 5, there are 3 kinds of equipments: an in/out module, a wayside controller
and an on-board controller, which required to implement respectively 130, 58
and 143 OVADO properties for data transformation.

For embedded data validation, OVADO checks the validity of software con-
straints and/or additional safety constraints on the software data level. The
safety constraints are in the range of 0 to 1000, requiring simple properties,



92 M. Fredj et al.

essentially for ensuring typing compliance. For instance, in defensive program-
ming the set of embedded data properties is almost empty.

The number of properties is not representative of the effort required for the
data validation. OVADO is able to process more than a thousand of proper-
ties in few minutes, e.g. in Line 5, safety team implemented more than 1800
properties (including typing, right-construction of the database and additional
control properties) that have been processed in 2 min on an 8-core Intel Xeon
E5 processor with 2.60 GHz and 4 GB of RAM memory.

In fine, OVADO reduces drastically the time allocated for data validation,
once the initial formalization of properties is completed as explained earlier.
Consequently, once properties are implemented, data set changes require only
to re-run the verification of the properties without any modification. Hence,
the data validator can focus more on counter-examples analysis. Properties are
revisited only when fundamental changes are performed on the database or on
the safety constraints. Thus, in some projects, the entire validation activity was
performed in less than one workday by a single person while the same activity
used to last for several workdays and involved more than one person.

Still, throughout the use of OVADO on multiple projects, several needs have
emerged to ease data validation process. In this paper, we focus and detail three
of them in the following section.

2.3 Emerging New Needs

Need for easing edition. OVADO offers a large panel of data validation facil-
ities and functionalities. The data and properties are fed to OVADO through B
expressions and predicates presented in XML files. In order to gain in organiza-
tion, performance and rapidity, a need for an appropriate editor emerges from
the limitations of the current configuration. In addition, editing B expressions
externally can be tedious, needing thereby to run numerous and complex scripts
to manage XML entry files. Besides, the use of external scripts adds more com-
plexity with regard to syntactic and semantic errors handling. For instance, in
order to overcome syntactic errors, the user has first to generate the project on
the OVADO Platform, then load the generated files and afterwards, eventually
detect syntactic or semantic errors. For heavy models, a precious time is wasted
in syntactic reviewing and type correction for the models, while this time may
be used for properties formalization and validation.

Hence, from the need for an ergonomic and intuitive editing facilities, the
B-OVADO editor was born. Section 3.1 details the way the editor is integrated
in OVADO and the user facilities it offers.

Needs for sharing. Validating a single data set, using OVADO, is straightfor-
ward: (1) transform the data so that they can be provided as input to OVADO
(if necessary), (2) identify the properties these data must comply with, (3) write
these properties in the B language then (4) run OVADO and analyze its output.
However, validating several data sets in a multi-project context where different
team members are involved is arguably a bit trickier. The fact that there is no



OVADO 93

import mechanism in OVADO is one factor. Thus, some versatile definitions or
properties tend to be manually copied from one project to another over time.

Obviously, reusing a definition or a property is not a bad practice. Never-
theless, as illustrated below, it must be done properly in order to avoid any
deleterious consequence. Assume that a definition has been manually copied
from one project to another, that the copy relation is not formalized in any way
(with a comment, for instance) and that a semantic error with potentially severe
consequences is identified and corrected on the copy. It is very likely that the
correction will never be fed back to the original definition.

Therefore, definitions and properties which can be of interest to different
projects might be grouped together, much like a library in software programming.
This library can be imported by any project, using, for instance, symbolic links
(a file-system functionality). Hence, errors found on definitions and properties
inside the library will be corrected and these corrections will be more easily
extended to every project that uses them.

Needs for guidelines. A property or a definition will surely be named, for-
malized and even indented differently by two different persons. Obviously, the
fact that the B language is formal does not imply that there is a single way
to write a property or a definition. Nonetheless, there are good practices that
should be disseminated and bad practices that should be avoided. For instance,
using meaningful names for definitions, properties and local variables is a good
practice as it will help readers to understand their usage. On the contrary, hav-
ing a very long file containing numerous definitions and properties can be a bad
practice as it will be harder to find a specific definition or property.

Therefore, publishing a writing guide, similar to a programming guide in
software programming, helps validators, especially the least experienced ones,
to avoid some common pitfalls and improve the quality and maintainability of
their work. This guide helps validators to better understand each other as well.
As such, it is the first step toward the implementation of a shared library.

3 Enhancing OVADO

In order to overcome the different limitations and to fulfill the emerging needs,
some developments have been started to extend OVADO with new functional-
ities. This resulted in the definition of three major enhancements for OVADO
and more generally for the data validation process. The first enhancement is the
extension of OVADO with an rich sophisticated editor. The second enhancement
is more oriented to the data validation activity for railway applications, which
is the definition of a common OVADO library for railway projects. The third
enhancement is to provide good practice rules, to standardize properties and
definitions writing. These enhancements are detailed in the following.

3.1 B-OVADO Editor

One major enhancement of OVADO is the recent development of the B-OVADO
rich editor. The main purpose of the editor is to help and assist users in the



94 M. Fredj et al.

development of definitions and properties. In the tradition of integrated devel-
opment environment, the editor is meant to some several functionalities that
ease the usage of OVADO. The first functionality is the syntactic control and
auto-completion, based on the expressions and predicates syntax of the B lan-
guage. The editor offers a Javadoc-like documentation, easy navigation using
object linking and some basic quick fixing support.

In the semantic level, the editor supports very well nested scoping which can
be very helpful when writing complex expressions. Another important semantic
support is the sophisticated type inference and control system that have been
integrated to the editor. This type system is based on the B typing rules for
expressions and predicates with an additional notion of generic types. The typing
is performed by assigning generic types to the parsed elements then refining these
types following the full expression using type unification. Type errors are directly
shown in the editor to avoid feeding OVADO with ill-typed constructs.

The editor is developed in an independent yet integrated way. It is indepen-
dent from OVADO because it is developed as an additional plugin that does not
interfere with the internal functioning of OVADO. The integration of the editor
is transparent, the generation of all internal OVADO files is not visible to the
user. The B-OVADO editor was immediately embraced by all internal OVADO
users since its development, and provided important efficiency improvement.
This improvement cannot be quantified since the use of the editor was only
recently generalized. More enhancements are currently under study to provide
more functionalities to the editor like semantic-oriented typing for instance.

3.2 Common Library

Data validation is quite often a time-consuming process and, arguably, one
that tends to be underestimated. Nevertheless, data from different projects may
present some similarities that have to be identified in order to speed up the
process, using a technique inspired by modular programming. Obviously, the
stronger the similarities are, the better the gain might be.

Modular programming is a pervasive software design technique which consist
in separating the functionality of a program into independent modules. This
technique seems to present a number of benefits, among which is reusability,
as modules may be reused between different projects. Surely, identifying how to
split a program in order to maximize reusability might be difficult as it requires a
good knowledge of the current projects and those to come as well, which denotes
a high level of maturity.

With OVADO, definitions are equivalent to modules in modular program-
ming, which are named and reusable expressions. Note that definitions may use
literals, constants (corresponding to the validated data) and call other defini-
tions, again, like modules in modular programming. However, definitions do not
have parameters like functions or procedures in programming languages, mean-
ing that names used to access the data fed to OVADO or other definitions are
static. Without rewriting a definition before importing it from one project to



OVADO 95

another, the validator may have to write few additional definitions to rename
some constants or definitions before using it.

Nevertheless, building a library of, rather basic but well tested or even proved
to be correct, definitions that will be shared among different projects is a key-
concept to speed up and improve the overall quality of data validations activities
conducted for these projects. Future projects will greatly benefit from this library
as well as they won’t have to start from scratch, which usually requires a lot of
time and effort and might be considered the riskiest phase in the validation
process.

Such library has been initiated for the purpose of validating safety-critical
data consumed by the software components of the CBTC systems, known as
OCTYS, which currently equip the lines 3, 5 and 9 of the Parisian metro, given
their strong similarities (as a matter of fact, metro lines 5 and 9 share some
generic software components which are instantiated with different sets of data).
So far, this library has been used for several validation campaigns and is currently
being deployed on other projects, such as SACEM (RER A) and SAET L14.

The aforementioned library contains a number of basic functions to define
and manipulate points and zones on a model of a rail track, such as a metro
line. For instance, one of these functions is used to define a zone from on a point
on track, a direction and a distance, while another one is used to compute the
intersection of two zones. Furthermore, these two functions can be used together
to check if two points on track are at least a certain distance afar.

Obviously, projects must conform to the underlying topological choices this
library has been built upon in order to use it. Accordingly, depending on the
available data, it may be necessary to set up an abstraction layer. Nevertheless,
it is proved according to our experience to be far easier than starting from
scratch. Moreover, functions contained in the library have been carefully written
by experienced validators to be efficient and are well tested. Therefore, less
experienced validators greatly benefit from using them.

An example of a topological choice is described in the following. The rail
track must be described with a set of non-overlapping continuous segments.
Each segment has a name, a length and 0, 1 or 2 attached segments on each of
its possible extremities. One of these extremities is the beginning of the segment
while the other is its end. As such, a segment is always oriented.

3.3 Guidelines

Regarding properties and definitions naming, indentation, structure, etc., sev-
eral good practices have been identified over time. They have been explicitly
written down and centralized to be more easily disseminated, especially to the
least experienced validators. Furthermore, for these practices to be easily under-
standable and more useful, the motivations behind them have been be exposed
and examples were given to illustrate their purpose. These practices have been
applied to the shared library introduced earlier and applied on several occasions.



96 M. Fredj et al.

3.4 Feedback

Since the deployment of the B-OVADO editor for internal data validation
projects and by the more recent integration of the common railway data library,
a drastic increase in the efficiency of the data validation activity is observed,
be it on the required workload or on the whole process time. In addition to all
the improvements brought by OVADO, the new enhancements presented herein
make the data validation easily manageable. Even though proof and analysis
times are not substantially improved by the new enhancements, preparation and
formalization tasks, which are usually very time-consuming at the beginning
of a project, can be reduced to less than the half as observed on current data
validation activities conducted for the SACEM and SAET L14 projects.

Moreover, the new enhancements made OVADO more easy-to-use and user-
friendly, which makes it very simple to train new team members. Consequently,
more internal applications and projects are now gladly using OVADO for differ-
ent purposes, which contribute to the enrichment of OVADO with new extensions
and more feedback.

Fig. 2. A screenshot of OVADO

4 Conclusion

Data validation is a key activity in safety assessment of critical systems. For
this purpose, RATP developed and used a formal tool called OVADO for the
validation of system or software data used in its applications. One of the main



OVADO 97

strengths of this tool is being generic which makes it usable for different project
types without considerable adjustments. Another strength is the use of formal
methods for the expression of safety properties and for exhaustive data explo-
ration which reduces the risk of any potential bias.

Over the different applications of OVADO for critical data validation, a num-
ber of new needs were identified to improve the overall validation process. In
order to fulfill these needs, some enhancements were introduced and are now
part of the whole process. The first improvement is the development of a rich
editor for B expressions and predicates which simplifies the usability of the tool.
The second improvement is the definition of a common library for railway appli-
cations capitalizing the know-how and easing the application of OVADO for
new projects. The last enhancement is the definition of a number of coding rules
making OVADO projects more readable, homogeneous and maintainable.

With this experience and expertise, OVADO and its associated data vali-
dation process can be considered as a generic mature industrial solution. Its
application is planned to be generalized for all data validation projects at RATP
using B-OVADO and the common library. The use of OVADO will also be gener-
alized to other applications than CBTC, like signaling for instance. New libraries
might be defined for these new applications if needed.

References

1. Ovado website. http://www.ovado.net/fr/index.html
2. Saferiver website. http://www.saferiver.fr/index.php?id=plateformes
3. Abo, R., Voisin, L.: Formal implementation of data validation for railway

safety-related systems with OVADO. In: Counsell, S., Núñez, M. (eds.) SEFM
2013. LNCS, vol. 8368, pp. 221–236. Springer, Cham (2014). doi:10.1007/
978-3-319-05032-4 17

4. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful appli-
cation of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.)
FM 1999. LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). doi:10.1007/
3-540-48119-2 22

5. Benaissa, N., Bonvoisin, D., Feliachi, A., Ordioni, J.: The PERF approach for
formal verification. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSS-
Rail 2016. LNCS, vol. 9707, pp. 203–214. Springer, Cham (2016). doi:10.1007/
978-3-319-33951-1 15

6. CENELEC: Railway applications - communication, signalling and processing sys-
tems - software for railway control and protection systems (en50128) (2011)

7. Clabaut, M., Metaye, C., Morand, E.: Formal data validation - formal techniques
applied to verification of data properties. In: ERTS 2010. SIA/3AF/SEE (2010)

8. Rail Transit Vehicle Interface Standards Committee: IEEE Standard for
Communications-based Train Control (CBTC) Performance and Functional
Requirements. IEEE (2005)

9. Fantechi, A., Flammini, F., Gnesi, S.: Formal methods for railway control systems.
Int. J. Softw. Tools Technol. Transf. 16(6), 643–646 (2014)

http://www.ovado.net/fr/index.html
http://www.saferiver.fr/index.php?id=plateformes
http://dx.doi.org/10.1007/978-3-319-05032-4_17
http://dx.doi.org/10.1007/978-3-319-05032-4_17
http://dx.doi.org/10.1007/3-540-48119-2_22
http://dx.doi.org/10.1007/3-540-48119-2_22
http://dx.doi.org/10.1007/978-3-319-33951-1_15
http://dx.doi.org/10.1007/978-3-319-33951-1_15


98 M. Fredj et al.

10. Hansen, D., Schneider, D., Leuschel, M.: Using B and ProB for data valida-
tion projects. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.)
ABZ 2016. LNCS, vol. 9675, pp. 167–182. Springer, Cham (2016). doi:10.1007/
978-3-319-33600-8 10

11. Haxthausen, A.E.: An introduction to formal methods for the development of
safety-critical applications (2010)

12. Lecomte, T., Mottin, E.: Formal data validation in the railways. In: Developing
Safe Systems, SSS 2016, February 2016

13. Pascoe, R.D., Eichorn, T.N.: What is communication-based train control? IEEE
Veh. Technol. Mag. 4(4), 16–21 (2009)

http://dx.doi.org/10.1007/978-3-319-33600-8_10
http://dx.doi.org/10.1007/978-3-319-33600-8_10


A Domain-Specific Language for Generic
Interlocking Models and Their Properties

Linh H. Vu1, Anne E. Haxthausen1, and Jan Peleska2(B)

1 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
{lvho,aeha}@dtu.dk

2 Department of Mathematics and Computer Science, University of Bremen,
Bremen, Germany

jp@cs.uni-bremen.de

Abstract. State-of-the-art railway interlocking systems typically
adhere to the product line paradigm, where each individual system is
obtained by instantiating a generic system with configuration data. In
this paper, we present a domain-specific language, IDL, for specifying
generic behavioural models and generic properties of interlocking
systems. An IDL specification of a generic model consists of generic
variable declarations and generic transition rules, and generic properties
are generic state invariants. Generic models and generic properties can
be instantiated with configuration data. This results in concrete models
and concrete properties that can be used as input for a model checker to
formally verify that the system model satisfies desired state invariants.
The language and a configuration data instantiator based on the
semantics have been implemented as components of the RobustRailS
tool set for formal specification and verification of interlocking systems.
They have successfully been applied to (1) define a generic model and
generic safety properties for the new Danish interlocking systems and to
(2) instantiate these generic artefacts for real-world stations and lines in
Denmark. A novelty of this work is to provide a domain-specific language
for generic models and an instantiator tool taking not only configuration
data but also a generic model as input instead of using a hard-coded
generator for instantiating only one fixed generic model and its properties
with configuration data.

Keywords: Railway interlocking systems · Domain-specific languages ·
Formal methods · Formal models · Formal verification

1 Introduction

This paper describes a domain-specific language, IDL, for defining generic models
and properties of interlocking systems.

L.H. Vu and A.E. Haxthausen research has been funded by the RobustRailS project
granted by Innovation Fund Denmark.

c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 99–115, 2017.
https://doi.org/10.1007/978-3-319-68499-4_7



100 L.H. Vu et al.

Context. Over the next 5–6 years, new signalling systems compatible with the
standardised European Train Control System (ETCS) Level 2 [3] will be deployed
on all long-distance lines in Denmark. A key component of these systems are the
interlocking systems which are responsible for the safe routing of trains trough
the railway network. In Europe, the development of software for railway control
systems, including interlocking systems, must adhere to the CENELEC 50128
standard [2] which strongly recommends the use of formal methods for such
safety-critical systems. The objective of using formal methods is to ensure that
potential safety breaches can be identified systematically and efficiently.

Therefore, in the RobustRailS research project1, accompanying the Danish
re-signalling programme on a scientific level, a formal method with tools
support for automated, formal verification of such interlocking systems has
been developed [7,14–17]. The tools are centred around two inter-related DSLs
(domain-specific languages):

– IDL (Interlocking Dynamic Language) for specifying (1) generic, behavioural,
formal models of interlocking systems and their environment, and (2) generic
properties, and

– ICL (Interlocking Configuration Language) for specifying configuration data
that can be used to instantiate the generic artefacts.

This paper focuses on the first of these two languages (IDL), while the other
language (ICL) has been described in the paper [14].

Contribution and Related Work. The main novelty of our method is to
introduce the IDL in addition to the ICL: former approaches to tool-based
interlocking system verification usually applied a hard coded model generator
for creating models describing the concrete behaviour of an interlocking system
and of trains passing through the network for each configuration data set. Hence,
the tool could only be used for one single product line of interlocking systems
based on the same generic behavioural rules. With the IDL at hand and a tool
that besides the configuration data also takes an IDL generic model as input, it
is now possible to create behavioural models for different product lines without
changing the verification tool core.

Domain-specific languages, e.g. RailML, have been well-adopted to hide the
use of formal methods in the formal development and verification of railway
interlocking systems. For examples of this, see [1,4,6,8–10,12,18]. In all these
cases, there is a DSL for specifying the configuration data, but no DSL for
generic behavioural models and generic properties. Instead, these are specified in
a GPL (general-purpose-language) like RSL, CASL, or ASM by formal methods
experts, and configuration data specified in the DSL by domain experts has to
be translated (by a tool) into a representation in the GPL, such that the generic
models and properties can be instantiated. A drawback of this approach is the
understanding gap between the formal methods experts and domain experts. The

1 http://robustrails.man.dtu.dk.

http://robustrails.man.dtu.dk


A Domain-Specific Language for Generic Interlocking Models 101

former need to acquire reasonably deep understanding of the domain in order to
encode the generic models and properties. The latter need to understand, review,
and provide feedback on GPL specifications. Therefore, GPL specifications are
not the most efficient and concise communication medium, and consequently
may be error-prone.

The IDL presented in this paper is an appropriate formalism to bridge this
understanding gap:

– Ease to write and change generic models. As will be explained in the next
sections, the movement of trains through different railway networks may
follow different behavioural rules, and this depends on (1) the granularity
of the modelling paradigm which may depend on the verification objectives,
and (2) on the operational rules applicable for the interlocking domain.
Therefore, it is of considerable advantage to have a DSL for specifying generic
behavioural models, instead of having to code new versions of the model
generator, each time these rules change.

– Readability. DSL specifications of generic artefacts are easier for domain
experts to understand as they use some dedicated language constructs based
on intuitive and familiar terms and concepts of the railway domain. A
corresponding GPL specification would typically be longer, using technically
complicated GPL expressions.

Overview. The paper is organised as follows: First Sect. 2 gives a brief
introduction to the railway domain as well as the RobustRailS tool set and its
mathematical foundations. Then Sect. 3 informally describes the domain-specific
language and its semantics. Finally, a conclusion is given in Sect. 4.

2 Background

This section gives a short introduction to the new Danish interlocking systems,
an overview of the RobustRailS method, and mathematical preliminaries, in
order to give the context of the IDL domain-specific language.

2.1 Interlocking Systems

Complete ETCS signalling systems consist of a multitude of components, such as
interlocking systems, radio block centres, track elements (e.g. points, balises, axle
counters), and on-board equipment (e.g. the European Vital Computer (EVC)
performing automated train protection according to the ETCS protocols). An
interlocking system has the task to control track side elements (e.g. points) in
a railway network and to set safe train routes through this network according
to traffic control requests. In the old signalling systems, interlocking systems
also controlled signals placed along the tracks. In the new signalling systems,
there are no signals installed along the tracks, but only marker boards to show
the start and end of routes. The interlocking systems now have a virtual signal



102 L.H. Vu et al.

associated with each marker board. A virtual signal can be OPEN or CLOSED,
allowing or disallowing trains to pass the associated marker board. Based on the
state of the virtual signals, movement authorities (permissions to proceed) are
sent via radio block centres to the on-board units in the trains.

For the specification of an interlocking system instance of a product line
of interlocking systems, the railway signalling engineers use two documents: a
network diagram describing the network under control and an interlocking table
as described below. From these documents the configuration data for the generic
control software is derived. In a similar way we will use these documents to derive
configuration data for our generic models and properties.

Fig. 1. An example railway network.

Network Diagrams. A network diagram outlines the geographical arrange-
ment of the tracks and track-side equipment. Figure 1 shows an example of
a network diagram for a typical smaller station. From the diagram it can be
seen that the station has six linear sections (b10,t10,t12,t14,t20,b14), two
points (t11,t13), and eight marker boards (mb10,...,mb21). Linear sections
and points are collectively called (train detection) sections, as they are each
provided with train detection equipment which the interlocking system uses to
determine whether the section is occupied by a train or not. Along each section,
up to two marker boards (one for each direction) can be installed. A marker
board can only be seen in one direction and is used as reference location (for
start and end of routes) for trains going in that direction. For instance, mb13 in
Fig. 1 is installed along section t12, and it is intended for travel direction up.

Interlocking Tables. An interlocking table specifies the routes in a given
network and the conditions (to be used by the interlocking system) for setting
these routes. A route is a path from a source markerboard to a destination
markerboard in the given railway network. In railway signalling terminology,
setting a route denotes the process of allocating the resources (i.e. linear sections,
points, and virtual signals) for the route, and then locking the route exclusively
for only one train.

An interlocking table has one row for each route r. For an example,
see Table 1. Each row has the following fields. Field id contains the route
identification r, field source states its source marker board src(r), field dst
states its destination marker board dst(r), and field path specifies the sequence



A Domain-Specific Language for Generic Interlocking Models 103

Table 1. Excerpt of the interlocking table for the network layout in Fig. 1.

id src dst path points signals conflicts

1a mb10 mb13 t10;t11;t12 t11:p;t13:m mb11;mb12;mb20 1b;2a;2b;3;4;5a;5b;6b;7

.. . . . . . . . . . . . . . . . . . .

7 mb20 mb11 t11;t10 t11:m mb10;mb12 1a;1b;2a;2b;3;5b;6a

The overlap column is omitted as it is empty for all of the routes.
Position ‘p’ means PLUS/straight/normal, ‘m’ means MINUS/diverging/reverse.

path(r) of track sections associated with r. Field points describes the set
points(r) of points associated with the route. This includes points in the path
and overlap, and points used for flank and front protection. For each point p
associated with r, its required position req(r, p) to be enforced when allocating
r is specified. The table field signals specifies the set signals(r) of virtual
signals that must be CLOSED for flank or front protection of the route. The
field conflicts describes the set conflicts(r) of routes conflicting with r: if two
routes require the same point to be in different positions, or if the routes overlap
such that concurrent use could lead to train collisions, they are considered to
be conflicting. Function next(r, e) returns the next section after e on the route
r. For the last section of a route, the function returns the first section of the
consecutive route. Functions first(r) and last(r) may be used to return the
route’s first and last section, respectively.

2.2 The RobustRailS Method

This section gives a short overview of the RobustRailS method and core tools for
formal verification of interlocking systems. More details can be found in [7,14–
17].

Two Domain-Specific Languages. As mentioned in the introduction, the
method and tools are centred around two inter-related DSLs (domain-specific
languages):

– IDL for specifying (1) generic, formal behavioural models of interlocking
systems and their environment, and (2) generic properties, and

– ICL for specifying configuration data that can be used to instantiate the
generic artefacts of IDL. The configuration data consists of a network
description and an interlocking table.

The idea is that for a specific product line of interlocking systems the generic
artefacts are specified once-and-for-all, while the configuration data is defined
for each network to be controlled by an interlocking system.

Method Steps. For a given product line, the method consists of the following
steps as illustrated in Fig. 2.



104 L.H. Vu et al.

(1.1) ICL specification
of configuration data

Network

generator

Interlocking
Table

(1.2) static
checker

Well-formed?

(2.1) model
instantiator

(2.1)
property

instantiator

Generic
Behavioural

Model

(0) IDL specification

Generic
Properties

(0) IDL specification

Behavioural
Model

Properties

(2.2) model
checker

×
Counterexamples

�

Fig. 2. Verification method and the associated toolchain.

(0) Initially a generic model and generic properties (which are common for all
interlocking systems of the product line) are expressed in the domain-specific
language IDL as explained in Sect. 3.

Then for each interlocking system to be verified, the following activities should
be performed:

(1) First, (1.1) the configuration data should be specified in the domain-
specific language ICL [14,16,17] as described in Sect. 2.1 and (1.2) the
resulting specification should be validated by means of a static checker. The
interlocking table may optionally be generated from the network diagram.

(2) Next, (2.1) instantiator tools should be applied to instantiate the generic
model and the generic properties, respectively, with the specification of
configuration data to produce a model M of the control system and its
physical environment and the required properties φ. Finally, (2.2) a bounded
model checker is applied to automatically check the validity of φ in M by
means of k-induction.

Generated Models and Properties. A model generated by the tools is represented
by a Kripke structure with an initial state and a transition relation, both
expressed as first order predicates as explained in Sect. 2.3. Properties are given
as state invariants, i.e., state predicates that must hold in all reachable states of
the Kripke structure.

Tool Components. The toolchain associated with the method has been
implemented in C++ using the RT-Tester framework [11,13].



A Domain-Specific Language for Generic Interlocking Models 105

2.3 Mathematical Foundations

Behavioural Models. The behavioural models generated by the tools are
representations of Kripke structures that can be parsed and processed by model
checkers or model-based testing tools.

A Kripke structure K is a five-tuple (S, s0, R, L,AP ) with state space S,
initial state s0 ∈ S, a total transition relation R ⊆ S × S, and labelling function
L : S → 2AP , where AP is a set of atomic propositions and 2AP is the power
set of AP . The labelling function L maps a state s to the set L(s) of atomic
propositions that hold in s.

In the considered models, the states of a Kripke structure are represented
by valuation functions s : V → D over a finite set V of variables, where each
variable v ∈ V has an associated finite domain Dv. The range of a state s is
D =

⋃
v∈V Dv. The whole state space S is the set of all valuation functions

s : V → D for which s(v) ∈ Dv for all v ∈ V .
The initial state s0 is represented by the following predicate I over free

variables in V : ∧

v∈V

v = iv (1)

where iv ∈ Dv, called the initial value of v, is chosen such that s0(v) = iv.
Similarly, the transition relation R ⊆ S × S is represented by a first order

expression ΦR over free variables in V ∪ V ′ such that

R = {(s, s′) ∈ S × S | ΦR(s, s′)}, (2)

where V ′ = {v′ | v ∈ V } is a duplicate of V used to representing the next state,
and ΦR(s, s′) is the predicate ΦR with every occurrence of v ∈ V replaced by
the value s(v), and every occurrence of v′ ∈ V ′ replaced by the value s′(v).

The set of atomic propositions AP is the set A(V ) of (type-correct) atomic
propositions with free variables in V built from value literals, variable names
v ∈ V , arithmetic operators (+, −, ∗, /), bitwise operators (&, ⊕, �, 	), and
relational operators (=, 
=, <, ≤, >, ≥). For example, v = d with v ∈ V and
d ∈ Dv and v1 < v2 + 1 with v1, v2 ∈ V with numerical domains are elements of
A(V ).

The labelling function L is derived in a natural way by

∀s ∈ S : L(s) = {p ∈ AP | s |= p}
where s |= p (“s is a model of p”) means that proposition p, after replacing every
free variable occurrence v by its valuation s(v), evaluates to true.

3 Interlocking Dynamic Language, IDL

3.1 Overview

An IDL specification consists of a generic behavioural model specification and a
collection of generic properties. The generic model behaviour is expressed by IDL



106 L.H. Vu et al.

encodings (generic variable declarations) and an IDL generic transition relation
specification. Genericity is reflected by generic encodings, to be instantiated
as concrete variables with associated types, by built-in generic domain-specific
functions facilitating the reference to specific element-related data, and by
quantifications over generic sets of elements. When instantiating the generic
model and its properties, the encodings, function applications, and generic sets
are instantiated with variables and constant data that are specified using the
ICL. The generic transition relation is instantiated to a concrete one, specifying
how the interlocking system behaves and how trains move in a controlled way
through the concrete railway network managed by the interlocking system.

IDL specifications S have a transformational semantics formally defined
in the thesis [16]: the meaning of S is a function mapping each admissible
set of configuration data to a concrete Kripke structure K and associated
concrete properties (obtained by instantiating the generic model and the generic
properties, respectively). Hence, the meaning of two different generic models,
may, when applied to the same configuration data, lead to different Kripke
models. Each K is equipped with a concrete variable set and a state space
consisting of variable valuation functions, and its behaviour is specified by a
transition relation represented as a first order predicate over variable pre-states
and post-states.

We emphasise again that the motivation for introducing the IDL is given by
the fact that many different generic models have to be created for interlocking
systems: (1) each set of new – often country-dependent – operational rules
for interlocking induces a new generic specification, and (2) different levels of
abstraction to be used in varying verification goals give rise to new – more or
less abstract – parameters, encodings, and transition relations.

3.2 Accompanying Example

To illustrate the definition of the IDL and its instantiation rules, we use a toy
example that suffices to highlight important IDL aspects. Readers are referred
to [16,17] for far more complex IDL specifications applicable to real-world
interlocking systems and their verification by model checking.

The toy example considers interlocking systems with conventional block
section logic: blocks are specified by all the track elements connecting an entry
signal to an exit signal. At most one train may reside in a block at a time. Routes
always lead from the entry signal of a block to its exit signal. Blocks sharing one
or more track elements are in conflict and may not be allocated at the same time.
Routes have a life cycle, where they transit through several modes: Initially,
they are FREE. When a route is requested it becomes DISPATCHED, and then
the interlocking checks that no conflicting routes are allocated. If this is the
case, it commands signals and points to their required aspects and positions (as
stated for the route in the interlocking table) and turns into the ALLOCATING
mode. When the signals and points have reached their commanded states, the
interlocking commands the entry signal of the route to open, and the route enters
the LOCKED mode. When a train enters the route, the route commands the



A Domain-Specific Language for Generic Interlocking Models 107

entry signal to close and enters the OCCUPIED mode. Finally, when the train
leaves the route, the route goes back to FREE.

We use a very coarse grained level of abstraction for modelling how trains
move along sequences of track elements: either the train covers the element,
or it does not; therefore it suffices to associate each element with a counter
indicating how many trains cover the element. For safe operation, the counter
may only be zero or 1. This concept is further simplified by the (unrealistic)
assumption that the train only covers one track element at a time. Similarly,
we make the simplifying assumption that points can change position from plus
to minus (or vice verse) without first going through an intermediate state. Such
coarse grained level of abstractions can be useful, for example, for very fast,
preliminary verification of concrete models, before using the more refined and
more realistic ones. As long as safety violations are still found in the coarse-
grained model, there is no need to perform more refined, and therefore more
time-intensive, checks.

3.3 IDL Definition

Encodings. In IDL, so-called encodings provide generic variable declarations.
An encoding is a blueprint of the set of variables that should be used to represent
the state of any interlocking-related element.2 An encoding takes the form:

encoding
elem−ty ::

var−decl1
...
var−decln

where elem-ty ∈ {Linear, Point, Section, Signal, Route} states the element
type and each var-decli is a generic variable declaration of the form

vi → [rolei,tyi,ivali,mini,maxi] (∗)

In this variable declaration, vi is the identifier of the variable, tyi its type
(only integers or Booleans are allowed here), mini and maxi are a minimum
and a maximum value, respectively, ivali is the initial value of vi, and rolei
∈ {INPUT, OUTPUT, LOCAL} is the role of the variable as seen from the
interlocking system.

Example 1. For the toy example introduced above, the following encodings are
used for linear sections, points, signals, and routes (recall that sections are just
the union of linear sections and points).

encoding
Linear::
CNT → [INPUT,”unsigned int”,0,0,2] /∗ occupied counter ∗/

2 Encodings are similar to classes in object-oriented languages, but only allow for the
declaration of variables (fields). Moreover, the variables can only be specified for a
pre-defined set elem-ty of interlocking-related elements (objects).



108 L.H. Vu et al.

Point::
CNT → [INPUT,”unsigned int”,0,0,2] /∗ occupied counter ∗/
POS → [INPUT,”unsigned int”,0,0,1] /∗ Actual position PLUS(0)/MINUS(1) ∗/
CMD → [OUTPUT,”unsigned int”,0,0,1] /∗ commanded position ∗/

Signal::
ACT → [INPUT,”unsigned int”,0,0,1] /∗ actual aspect CLOSED(0) or OPEN(1) ∗/
CMD → [OUTPUT,”unsigned int”,0,0,1] /∗ commanded aspect ∗/

Route ::

MODE → [LOCAL,”unsigned int”,0,0,4] /∗ current mode FREE(0), ... ∗/

The variables CNT for linear sections and points indicate the number of trains
residing in the section. For every train entering the section, the counter is
incremented, with a maximum value 2. Below, a safety condition will be specified
stating that the counter must always be 0 or 1, so that 2 represents a safety
violation. The variables POS for points and ACT for signals represent the actual
position and the actual aspect of the point and the signal, respectively, while the
variables CMD represent the last commanded position and aspect, respectively,
requested by the interlocking system. The variables MODE for routes keeps track
of the current mode of the route. �

Instantiation Rules for Encodings. When instantiated with configuration
data, an encoding of element type elem-ty gives rise to a set of variables for
each concrete element e of type elem-ty. For this e, the instantiated variables are
named e.v1, . . . , e.vn, and they are specified according to the generic declaration
of each v1 given in (∗).

Example 2. For the concrete railway network shown in Fig. 1, the encoding of
linear sections gives rise to variables t10.CNT, t12.CNT, . . . , t20.CNT. The
point-related variables are t11.CNT, t11.POS, t11.CMD and t13.CNT, t13.POS,
t13.CMD. The signal-related variables are mb10.ACT, mb10.CMD, . . . , mb20.ACT,
mb20.CMD. For routes, the interlocking table shown in Table 1 gives rise to route
variables r1a.MODE, . . . , r7.MODE. �

Instantiation of the Initial Condition. For a concrete interlocking system,
the initial state is given by the conjunction of initialisation expressions for all
concrete model elements. This conjunction can be directly derived from the
generic encodings, as soon as the concrete sets of elements of the types Linear,
Point, Section, Signal, and Route are known for the specific interlocking
system. Below, for simplicity, we re-use these type names also to denote their
respective sets of concrete elements of the configuration data.

Then each encoding gives rise to the following predicate, representing the
initial state of all the concrete elements of type elem-ty:

IE ≡
∧

e∈E

(e.v1 = ival1) ∧ ... ∧ (e.vn = ivaln), (3)

where E is the set of concrete element identifiers of type elem-ty in the
configuration data and ivali is the initial value of variable vi defined in the



A Domain-Specific Language for Generic Interlocking Models 109

encoding for elements of type elem-ty. The complete initial condition is then
specified as the conjunction

ILinear ∧ · · · ∧ IRoute

Example 3. For our example, the encodings specified in Example 1 give rise to
the following initial condition.

I ≡ t10.CNT = 0 ∧ · · · ∧ t20.CNT = 0 ∧
t11.CNT = 0 ∧ t11.POS = 0 ∧ t11.CMD = 0 ∧ · · · ∧
mb10.ACT = 0 ∧ mb10.CMD = 0 ∧ · · · ∧
r1a.MODE = 0 ∧ · · · ∧ r7.MODE = 0 �

Macro Declarations. Similar to C pre-processor declarations, the IDL allows
for macro definitions.

Example 4. For specifying the mode of routes, the values of the following macro
definition are used.

macro
def FREE = 0, def DISPATCHED = 1, ..., def OCCUPIED = 4

With these macros, the last line of the formula in Example 3 could be written:

r1a.MODE = FREE ∧ · · · ∧ r7.MODE = FREE

More complex macros are parameterised and use expressions; the parameters
and expressions are instantiated using term replacement according to the given
concrete ICL specifications. �

Built-In Domain-Specific Functions. The IDL provides pre-defined
functions for referring to various element-related data. For instance,

src : Route −→ Signal

is a generic function mapping routes to their entry signals. When instantiated,
expressions src(r) are replaced by the identifier of the entry signal obtained
for concrete route r from the interlocking table. Similarly, the other functions
dst(r), conflicts(r), . . . introduced in Sect. 2.1 are provided as built-in functions
of the IDL.

Generic Logical Expressions. Generic logical IDL expressions are used in
the specification of the generic transition relation and generic properties. We
will see below, that neither the former, nor the latter may contain free variables.
Therefore, every reference from a logical IDL expression to a variable v specified
by an encoding must carry an element identifier e referring to a section, a signal,
or a route. This identifier will be bound to a quantifier when the expression is
used in the transition relation or in a property specification. Logical expressions
are built according to the following rules.



110 L.H. Vu et al.

1. Atomic propositions may refer to constants and variables of the form id.v,
where id is an identifier and v a variable specified in an encoding for linear
sections, points, signals, or routes. The identifier id is then interpreted as an
element of the respective encoding type. Macros and built-in domain-specific
functions may also be applied to represent constants and element identifiers.
As operators connecting constants and variables, the usual arithmetic and
comparison operators may be applied, so that this results in a Boolean
expression.

2. Every atomic proposition is a generic logical expression.
3. If ϕ1, ϕ2 are valid generic logical expressions then ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2,

ϕ1 ⇒ ϕ2 are valid expressions as well.
4. If ϕ is a valid generic logical expression and id.v a variable occurring free in

ϕ and interpreted by element type elem-ty ∈ {Linear, . . . ,Route}, then

( quantifier id : elem−ty • ϕ)

is a valid generic IDL expression, where the quantifier is one of ∀,∃.

Instantiation of Generic Logical Expressions. Generic logical expressions
– whether occurring in the transition relation or in a property – are instantiated
for a concrete interlocking system by first instantiating any subexpression which
is a quantified expression, as will be explained below. If the result contains
applications of built-in domain-specific functions these must then be instantiated
as explained above. Any quantified generic logical expression

(∀ id : elem−ty • ϕ)

is instantiated by ∧

e∈elem−ty

ϕ[e/id]

The generic expression is turned into a conjunction containing one conjunct per
concrete element e in the instantiation of set elem-ty. In the conjunct associated
with e, the bound element identifier id is replaced by e. Here we have assumed
that ϕ is quantifier free. If this is not the case, the instantiation rule above is
applied repetitively. For

(∃ id : elem−ty • ϕ)

the instantiation rule is ∨

e∈elem−ty

ϕ[e/id]

Examples for this instantiation technique will be given below for a safety
property.



A Domain-Specific Language for Generic Interlocking Models 111

Generic Transition Relation Definition. A transition relation definition
takes the following form

transrel te

where te is a generic transition relation expression. These expressions are
basically generic logical IDL expressions as introduced above, but some
additional syntax is used to structure large logical expressions. Moreover, the
concept of variable pre-states and post-states needs to be introduced, so that
the transition between states can be specified. Finally, additional operators are
provided to express choice.

Specifying updates: pre-states and post-states. In transition relation expressions,
all references id.v which are based on encoding variables v are complemented
by primed references id.v’. The former denote the pre-state of an encoding
variable bound to id, while the latter denotes its post state.

An atomic transition expression specifies the condition and the effect of a
valuation change for some referenced generic variables id.v. It takes the general
form

[name] guard −→ update

where name is a unique identification of this transition relation sub-expression,
guard is a generic logical IDL expression over unprimed variables only, and update
is a generic logical expression where – apart from unprimed variable references
– at least one primed variable reference occurs. Note that, as motivated above,
atomic transition expressions need to be bound to quantifiers in order to become
valid IDL expressions.

Example 5. For our example, the following atomic transition expression specifies
how a point switches to a new position, when commanded by the interlocking
controller.

[switch point] p.CMD �= p.POS −→ p.POS′ = p.CMD

The next atomic transition expression explains how trains move on routes
in our simple model: the train entering a new section next(r, e) on its route r
is expressed by incrementing the counter of next(r, e), and leaving the previous
section e is modelled by decrementing its counter. When incrementing, the upper
bound 2 of the counter needs to be taken into account. Since two trains on the
same section already represent a safety violation, a higher value is not required.

[move along route] r.OCCUPIED ∧ e ∈ path(r) ∧ e �= last(r) ∧ e.CNT > 0 −→
next(r,e).CNT′ = min(2,next(r,e).CNT+1) ∧ e.CNT′ = e.CNT − 1

The following expression describes that a new route can be entered when its
marker board (the same as the signal at the end of the current route) signals
OPEN. Recall from Sect. 2.1 that in this situation, next(r, e) denotes the first
element of the next route.3
3 Here it is assumed that the last element of route r is not a point, so that the next

element is uniquely determined. This assumption is realistic for real interlocking
systems.



112 L.H. Vu et al.

[ enter next route ] e = last(r) ∧ dst(r).ACT = OPEN ∧ e.CNT > 0 −→
next(r,e).CNT′ = min(2,next(r,e).CNT+1) ∧ e.CNT′ = e.CNT − 1

Additional rules describe how trains can enter the network and how
virtual signals and the interlocking system behave. Binding atomic transition
expressions to quantifiers will be illustrated in the next example. �

Quantification by Nondeterministic Choice. When expressing that one atomic
transition relation expression out of several enabled ones may “fire”, this is
expressed by the nondeterministic choice operator [=] which can be used like a
quantifier:

([=] id : elem−ty • [name id] te)

specifies that the effect of te may become visible, if its guard condition evaluates
to true for the specific variable reference id. If the guard evaluates to true for
several id, then one of them is chosen nondeterministically.

Example 6. If several points are commanded to switch their position and our
behavioural model should act according to an interleaving semantics, only one
of the points changes its position per transition step. This is expressed as

([=] p : Point • [switch point] p.CMD �= p.POS −→ p.POS′ = p.CMD) �

Composition of transition relations. Quantified transition expressions can be
combined by

– te1 [=] te2: nondeterministic choice between te1 and te2, if both are
enabled.

– te1 [>] te2: if te1 is enabled, its effect will become visible, otherwise the
effect of te2 will become visible, if the latter is enabled (prioritised choice).4

Instantiation of Transition Relations. Any transition relation expression
can be instantiated according to the following rules.

1. An atomic transition expression guard−→update is instantiated to φg∧φu∧φ,
where φg and φu are the instantiations of the sub-expressions guard and
update, respectively, and φ is a predicate expressing that all variables that
do not occur as primed variable references in update remain unchanged.

2. A quantified transition expression ([=] id : elem-ty • [name id] te) is
instantiated by

∨
e∈elem−ty ϕe, where ϕe is the instantiations of te[e/id].

3. The expression te1[=]te2 is instantiated by disjunction ϕ1 ∨ϕ2, where ϕi are
the instantiations of the generic transition relation sub-expressions tei.

4. The expression te1[>]te2 is instantiated by prioritised disjunction ϕ1∨(¬g1∧
ϕ2), where ϕi are the instantiations of the tei, and g1 is a predicate expressing
that at least one of the transition expressions in ϕ1 may fire.

4 This priority operator was invented by Hansen in [5].



A Domain-Specific Language for Generic Interlocking Models 113

Example 7. Instantiating the transition rule for points shown in Example 6 with
data from the network diagram in Fig. 1 yields the first order predicate:

(t11.CMD �= t11.POS ∧ t11.POS′ = t11.CMD ∧ φt11.POS) ∨
(t13.CMD �= t13.POS ∧ t13.POS′ = t13.CMD ∧ φt13.POS)

where φid.v is a formula expressing that all variable instances except id.v remain
unchanged by the transition. �

Generic Properties. Generic properties are specified by generic logical
expressions representing state invariants. Typically, these are used to specify
safety properties. A property specification takes the form

invariant
[ id ] prop

where prop is a generic logical IDL expression, such that all element references
are bound to quantifiers. The instantiation of properties is performed according
to the rules for instantiating generic logical IDL expressions described above.

Example 8. For our example, the following property specifies that no collisions
should happen anywhere. It refers to the counter variable CNT associated with
linear sections and points we have specified for the encodings of this example.

invariant
[ no collision ] (∀s : Section • s.CNT < 2)

Following the usual recipe, this is instantiated for the interlocking system from
Fig. 1 to the first order predicate

no collision ≡ t10.CNT < 2 ∧ · · · ∧ t20.CNT < 2 ∧ t11.CNT < 2 ∧ t13.CNT < 2.

�

4 Conclusion

This paper presented a domain-specific language IDL for generic behavioural
interlocking models and their properties. The language and configuration data
instantiators based on the semantics have been implemented in the RobustRailS
environment and have successfully been applied to model and verify interlocking
systems of the Danish Signalling Programme. The language turned out to be easy
to use with its facilities for writing generic constructs like generic transition rules
and generic properties, and its built-in domain-specific constructions making the
specifications shorter to write and also easier to understand for domain experts
than they would have been if a typical GPL had been used. The language was
also powerful enough for specifying the behaviour of the Danish systems.

The language was designed for the purpose of being used in the process
of specifying the future Danish ERTMS/ETCS level 2 compatible interlocking
systems. For this practical application, the IDL parsers and the instantiator tools



114 L.H. Vu et al.

(shown in Fig. 2) have been implemented as components of the RobustRailS
tool set. The tool set uses the framework of the RT-Tester model-based testing
tool which provides an efficient bounded model checker for Linear Temporal
Logic LTL [11].

The generic models and generic safety properties used for the verification task
are far too big to be shown in this paper, but they can be found in [16] and http://
www.imm.dtu.dk/∼aeha/RobustRailS/data/casestudy/generic models, and a
general description can be found in [16,17]. These documents also provide
examples for which the generic model and properties have been instantiated,
and they provide verification metrics for the model checking of the resulting
concrete models and concrete properties.

Acknowledgements. The authors would like to thank Ross Edwin Gammon and
Nikhil Mohan Pande from Banedanmark (Railnet Denmark) and Jan Bertelsen from
Thales for helping us with their expertise about Danish interlocking systems; and
Dr.-Ing. Uwe Schulze and Florian Lapschies from University of Bremen for their help
with the implementation in the RT-Tester tool-chain.

References

1. Cao, Y., Xu, T., Tang, T., Wang, H., Zhao, L.: Automatic generation and
verification of interlocking tables based on domain specific language for computer
based interlocking systems (dsl-cbi). In: Proceedings of the IEEE International
Conference on Computer Science and Automation Engineering (CSAE 2011), pp.
511–515. IEEE (2011)

2. CENELEC European Committee for Electrotechnical Standardization: EN 50128:
2011 - Railway applications - Communications, signalling and processing systems
- Software for railway control and protection systems (2011)

3. European Railway Agency: Annex A for ETCS Baseline 3 and GSM-R
Baseline 0, April 2012. http://www.era.europa.eu/Document-Register/Pages/
New-Annex-A-for-ETCS-Baseline-3-and-GSM-R-Baseline-0.aspx

4. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J.: Towards
model checking executable UML specifications in mCRL2. Innovations Syst. Softw.
Eng. 6(1), 83–90 (2010)

5. Hansen, J.B.: A formal specification language for generic railway control systems.
Master’s thesis, Technical University of Denmark, DTU Compute (2015)

6. Haxthausen, A.E.: Automated generation of formal safety conditions from railway
interlocking tables. Int. J. Softw. Tools Technol. Transfer (STTT) 16(6), 713–726
(2014). Special Issue on Formal Methods for Railway Control Systems

7. Haxthausen, A.E., Østergaard, P.H.: On the use of static checking in the
verification of interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9953, pp. 266–278. Springer, Cham (2016). doi:10.1007/
978-3-319-47169-3 19

8. James, P., Roggenbach, M.: Encapsulating formal methods within domain specific
languages: a solution for verifying railway scheme plans. Math. Comput. Sci. 8(1),
11–38 (2014)

http://www.imm.dtu.dk/~aeha/RobustRailS/data/casestudy/generic_models
http://www.imm.dtu.dk/~aeha/RobustRailS/data/casestudy/generic_models
http://www.era.europa.eu/Document-Register/Pages/New-Annex-A-for-ETCS-Baseline-3-and-GSM-R-Baseline-0.aspx
http://www.era.europa.eu/Document-Register/Pages/New-Annex-A-for-ETCS-Baseline-3-and-GSM-R-Baseline-0.aspx
http://dx.doi.org/10.1007/978-3-319-47169-3_19
http://dx.doi.org/10.1007/978-3-319-47169-3_19


A Domain-Specific Language for Generic Interlocking Models 115

9. Luteberget, B., Johansen, C., Feyling, C., Steffen, M.: Rule-based incremental
verification tools applied to railway designs and regulations. In: Fitzgerald, J.,
Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp.
772–778. Springer, Cham (2016). doi:10.1007/978-3-319-48989-6 49

10. Mewes, K.: Domain-specific Modelling of Railway Control Systems with Integrated
Verification and Validation. Verlag Dr. Hut, München (2010)

11. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: Petrenko, A.K., Schlingloff, H. (eds.) Proceedings 8th Workshop
on Model-Based Testing, Rome, Italy. Electronic Proceedings in Theoretical
Computer Science, vol. 111, pp. 3–28. Open Publishing Association (2013)

12. Peleska, J., Baer, A., Haxthausen, A.E.: Towards domain-specific formal
specification languages for railway control systems. In: Schnieder, E., Becker, U.
(eds.) Proceedings of the 9th IFAC Symposium on Control in Transportation
Systems 2000, 13–15 June 2000, Braunschweig, Germany, pp. 147–152 (2000)

13. Verified Systems International GmbH: RT-Tester Model-Based Test Case and Test
Data Generator - RTT-MBT - User Manual (2013). http://www.verified.de

14. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for railway
interlocking systems. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2014
– 10th Symposium on Formal Methods for Automation and Safety in Railway and
Automotive Systems, pp. 200–209. Technische Universität Braunschweig, Institute
for Traffic Safety and Automation Engineering (2014)

15. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modeling and verification of
interlocking systems featuring sequential release. In: Artho, C., Ölveczky, P.C.
(eds.) FTSCS 2014. CCIS, vol. 476, pp. 223–238. Springer, Cham (2015). doi:10.
1007/978-3-319-17581-2 15

16. Vu, L.H.: Formal development and verification of railway control systems - in the
context of ERTMS/ETCS Level 2. Ph.D. thesis, Technical University of Denmark,
DTU Compute (2015)

17. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of
interlocking systems featuring sequential release. Sci. Comput. Program. 133(Part
2), 91–115 (2017). http://dx.doi.org/10.1016/j.scico.2016.05.010

18. Winter, K., Robinson, N.J.: Modelling large railway interlockings and model
checking small ones. In: Proceedings of the 26th Australasian Computer Science
Conference, ACSC 2003, vol. 16, pp. 309–316. Australian Computer Society, Inc.,
Darlinghurst (2003)

http://dx.doi.org/10.1007/978-3-319-48989-6_49
http://www.verified.de
http://dx.doi.org/10.1007/978-3-319-17581-2_15
http://dx.doi.org/10.1007/978-3-319-17581-2_15
http://dx.doi.org/10.1016/j.scico.2016.05.010


Bayesian Network Modeling Applied on Railway
Level Crossing Safety

Ci Liang1,2,5(B), Mohamed Ghazel1,2,5, Olivier Cazier1,3, Laurent Bouillaut4,
and El-Miloudi El-Koursi1,2,5

1 FCS Railenium, Valenciennes, France
ci.liang@railenium.eu

2 IFSTTAR-COSYS/ESTAS, 20 Rue Élisée Reclus, BP 70317,
59666 Lille, Villeneuve d’Ascq, France

3 SNCF Réseau, Paris, France
4 IFSTTAR-COSYS/GRETTIA, Paris, Marne-la-Vallée, France

5 University Lille 1, Lille, Villeneuve d’Ascq, France

Abstract. Nowadays, railway operation is characterized by increasingly
high speed and large transport capacity. Safety is the core issue in railway
operation, and as witnessed by accident/incident statistics, railway level
crossing (LX) safety is one of the most critical points in railways. In the
present paper, the causal reasoning analysis of LX accidents is carried
out based on Bayesian risk model. The causal reasoning analysis aims
to investigate various influential factors which may cause LX accidents,
and quantify the contribution of these factors so as to identify the crucial
factors which contribute most to the accidents at LXs. A detailed statis-
tical analysis is firstly carried out based on the accident/incident data.
Then, a Bayesian risk model is established according to the causal rela-
tionships and statistical results. Based on the Bayesian risk model, the
prediction of LX accident can be made through forward inference. More-
over, accident cause identification and influential factor evaluation can
be performed through reverse inference. The main outputs of our study
allow for providing improvement measures to reduce risk and lessen con-
sequences related to LX accidents.

Keywords: Bayesian network modeling · Level crossing safety · Train-
car collision · Risk assessment · Statistical analysis

1 Introduction

Railway Level crossings (LXs) are potentially hazardous locations where trains,
road vehicles and pedestrians move in close proximity to one another. LX safety
remains one of the most critical issues for railways despite an ever-increasing
focus on improving design and application practices [1,2]. Accidents at European
LXs account for about one-third of the entire railway accidents and result in
more than 300 deaths every year in Europe [2]. In France, the railway network
shows more than 18,000 LXs for 30,000 km of railway lines, which are crossed
c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 116–130, 2017.
https://doi.org/10.1007/978-3-319-68499-4_8



Bayesian Network Modeling Applied on Railway Level Crossing Safety 117

daily by 16 million vehicles on average, and around 13,000 LXs show heavy road
and railway traffic [3]. Despite numerous measures already taken to improve the
LX safety, SNCF Réseau (the French national railway infrastructure manager)
counted 100 collisions at LXs leading to 25 deaths in 2014. This number was
half the total number of collisions per year at LXs a decade ago, but still too
large [4]. In order to significantly reduce the accidents and lessen their related
consequences at LXs, an effective risk assessment means is needed urgently.

Many available studies dealing with LX safety have tended to take a qual-
itative approach to understand the potential factors causing accidents at LXs.
These works employ surveys [5], interviews [6], focus group methods [7] or driving
simulators [8], rather than collecting real field data. For example, Lenné et al. [9]
examined the effect of installing active controls, flashing lights and traffic sig-
nals on vehicle driver behavior. This study was achieved through adopting the
driving simulation. Tey et al. [10] conducted an experiment to measure vehicle
driver response to LXs equipped with stop signs (passive), flashing lights and half
barriers with flashing lights (active), respectively. In this study, both a field sur-
vey and a driving simulator have been utilized. Although those aforementioned
approaches are beneficial to explore the potential factors causing accidents, they
still show some limits. For instance, they do not allow for quantifying the con-
tribution degree of these factors. In addition, the reaction of vehicle drivers in
simulation scenarios could differ from that in reality, due to the different levels
of feeling of danger. Therefore, quantitative approaches based on real field data
are indispensable if we want to understand the impacting factors thoroughly and
enable the identification of practical design and improvement recommendations
to prevent accidents at LXs.

Nowadays, risk analysis approaches are required to deal with increasingly
complex systems with a large number of configuration parameters. Therefore,
such approaches should satisfy the following requirements:

– Strong modeling ability;
– Easy to specify a risk scenario or a system;
– High computational efficiency.

In the domain of risk assessment, various approaches are adopted for the
modeling and analyzing process. Due to the combination of qualitative and quan-
titative analysis, the Fault Tree Analysis (FTA) developed by H.A. Watson at
Bell Laboratories [11] has been widely used for risk analysis in various contexts.
FTA is a deductive and top-down method which aims at analyzing the effects
of initiating faults and events on a complex system and offering the designer an
intuitive high-level abstraction of the system. Compared with the Failure Mode
and Effects Analysis (FMEA), which is an inductive and bottom-up analysis
method aimed at analyzing the effects of single component or function failures
on equipment or subsystems, FTA is more useful in showing how resistant a
system is to single or multiple initiating faults. However, one obvious disad-
vantage of FTA is that it is not clear on failure mechanism, since the causal



118 C. Liang et al.

relationship between events is not a simple YES or NO (1 or 0). Therefore,
FTA is prone to missing the possible initiating faults. In addition, traditional
static fault trees cannot handle the sequential interaction and functional depen-
dencies between components. Consequently, it is necessary to employ dynamic
methodologies to overcome these weaknesses. Markov Chains (MCs) and their
extensions have been mainly used for modeling complex dynamic system behav-
ior and dependability analysis of dynamic systems. Two-state Markov switching
multinomial logit models are introduced by [12] to explain unpredictable, uniden-
tified or unobservable risk factors in road safety. Although MCs can elaborate
the statistical state transition of different variables, they cannot formalize causal
relationships between the various events.

Afterward, risk analysis based on formal modeling expanded. In order to
compare the effectiveness of two main Automatic Protection Systems (APSs)
at LXs: two-half-barrier APS and four-half-barrier APS, Generalized Stochastic
Petri Nets (GSPNs) were used in [13] to analyze the aleatory fluctuations of var-
ious parameters involved in the dynamics within the LX area. Over the last few
years, Bayesian network (BN), a method of reasoning using probabilities, has
been an increasingly popular method used for risk analysis of safety-critical sys-
tems or large and complex dynamic systems [14]. In order to obtain proper and
effective risk control, risk planning should be performed based on risk causal-
ity, which can provide more information for decision making. In this context, a
model using BNs with causality constraints (BNCC) for risk analysis was pro-
posed in [15]. In [16], Bouillaut et al. discussed the development of a decision
tool realized by hierarchical Dynamic BNs (DBNs), which is dedicated to the
maintenance of metro lines in Paris. This modeling work has comprehensively
described the rail degradation process, the different diagnosis actors (devices
and staff) and the maintenance actions decision. In [17], Langseth and Porti-
nal introduced the applicability of BNs for reliability analysis and offered an
instance of BNs application for preventive maintenance. The advantages behind
BNs were discussed in this article: (a) BNs constitute a modeling framework,
which is particularly easy to use for interaction with domain experts; (b) the
sound mathematical formulation has been utilized in BNs to generate efficient
learning methods; and (c) BNs are equipped with an efficient calculation scheme
which often makes BNs preferable to traditional tools like Fault Trees (FTs). To
sum up, the BN technique offers interesting features: the flexibility of modeling,
strong modeling power, high computational efficiency and, most importantly,
the outstanding advantages involving causality analysis based on both forward
inference and reverse inference [18] and the conjunction of domain expertise.

Therefore, based on the above investigation of risk analysis, an approach of
Causal Reasoning Analysis based on Bayesian risk model (CRAB) is presented
in this paper to deal with the risk assessment at LXs. Namely, a thorough sta-
tistical analysis based on the accident/incident data pertaining to French LXs
is firstly performed, and the statistical results are used as the import sources of
BN risk model. Then, the BN risk model is developed according to the causal



Bayesian Network Modeling Applied on Railway Level Crossing Safety 119

relationships between the accidents and various influential parameters consid-
ered. Through the BN risk model, one can quantify the risk level impacted by
various potential factors and identify the factors which contribute most to the
accidents at LXs, as well as their combined impact on LX safety.

2 Preliminary Introduction of Bayesian Belief Networks

In railways, potential hazards including equipment failures, human errors and
some non-deterministic factors, such as environment aspects, may lead to acci-
dents. In fact, causalities between accidents and these impacting factors exist, as
shown in Fig. 1. Identifying such causality relationships is a crucial issue in the
process of reasoning. In particular, a functional intelligent identification model
should have the ability of making reasoning based on the causal knowledge.

The Bayesian belief network (BN) employed to model causality is a graphical
model that can be characterized by its structure and a set of parameters [19].
BN = (P,G), where P represents the parameters of prior probabilities that
quantify the arcs, while G defines the model structure. G = (V,A), which is a
Directed Acyclic Graph (DAG), is comprised by a finite set of nodes (V ) linked
by directed arcs (A). The nodes represent random variables (Vi) and directed arcs
(Ai) between pairs of nodes represent dependencies between the variables [19].

In our study, the BN works based on the theory of probability for discrete
distributions. Assume that there is a set of mutually exclusive events: B1, B2,
. . . ,Bn and a given event A, such that, P (A) can be expressed as follows:

P (A) =
n∑

i=1

P (Bi)P (A|Bi) (1)

According to Bayes’ formula:

P (Bi|A) =
P (Bi)P (A|Bi)∑n

j=1 P (Bj)P (A|Bj)
(2)

Causes
Hazards

Consequences
Accidents

Causality

Forward inference

Reverse inference

Fig. 1. Reasoning between hazards and accidents.



120 C. Liang et al.

Equation (2) can be converted into:

P (Bi|A) =
P (Bi)P (A|Bi)

P (A)
(3)

where P (Bi) is the prior probability, P (Bi|A) is the posterior probability.
For any set of random variables in a BN, the joint distribution can be com-

puted through conditional probabilities using the chain rule as shown in Eq. (4):

P (X1 = x1, . . . , Xn = xn) =
n∏

v=1

P (Xv = xv|Xv+1 = xv+1, . . . , Xn = xn) (4)

Due to the conditional independence, Xv only relates to its parent node
Pa(Xv) and is independent of the other nodes. Hence, Eq. (4) can be rewritten
as follows:

P (X1 = x1, . . . , Xn = xn) =
n∏

v=1

P (Xv = xv|Pa(Xv)) (5)

For more details about BN, the reader can refer to the tutorial book on
Bayesian networks edited by [20].

3 Methodology

As mentioned before, the present study aims to perform risk assessment at
French LXs. The CRAB approach is illustrated to assist our risk assessment
based on the accident/incident data collected by SNCF Réseau. Namely, it is
applied to assessing the risk level with regard to various impacting factors taken
into account and evaluating the contribution degree of these factors. Thus, we
pave the way towards identifying the important factors which contribute most
to the overall risk.

There are 4 LX types in France [21]:

– SAL4: Automated LXs with four half barriers and flashing lights;
– SAL2: Automated LXs with two half barriers and flashing lights;
– SAL0: Automated LXs with flashing lights but without barriers;
– Crossbuck LXs, without automatic signaling.

As shown in Table 1, SAL2 (more than 10,000) is the most widely used type of LX
in France. Moreover, more than 4,000 accidents at SAL2 LXs contributed most
to the total number of accidents at LXs from 1974 to 2014. Since the motorized
vehicle is the main transport mode causing LX accidents in France [22], consid-
ering the train/motorized vehicle (train-MV) collisions, SAL2 LXs also have the
most part of LX accidents according to the accident/incident statistics as shown
in Fig. 2. Moreover, according to the SNCF statistics, these accidents can be
considered as the most representative for LX accidents in general. For all these
reasons, our analysis will focus on train-MV accidents occurring at SAL2 LXs.



Bayesian Network Modeling Applied on Railway Level Crossing Safety 121

Table 1. Accidents at different types of LXs in France from 1974 to 2014

Type of LX Number #Accident

SAL4 >600 >600

SAL2 >10, 000 >4, 200

SAL0 >60 >50

Crossbuck LX >3, 500 >700

0

50

100

150

200

250

1978 1983 1988 1993 1998 2003 2008 2013

All  the LXs

SAL2

SAL4

Crossbuck LX

SAL0

Fig. 2. The number of train-MV collisions at different types of LX from 1978 to 2013

3.1 Data Collection

SNCF Réseau has recorded the detailed elements of each LX accident, including
various attributes of LX accidents/incidents, surrounding characteristics of LXs
and accident causes, and provides two accident/incident databases to support
our study. The first database (D1) records the accident/incident data that cover
SAL2 LXs in mainland France from 1990 to 2013.

From D1, the subdataset (SD1) including the data ranging in the decade
from 2004 to 2013 is selected, which provides reliable and sufficient information
about both LX accidents and static railway, roadway and LX characteristics.
Namely, the selected LX inventory presents the LX identification number, the
railway line involved, the LX kilometer point, the LX accident timestamp, the
average daily railway traffic, the average daily road traffic, the rail speed limit,
the LX length and width, the profile and alignment of the entered road and
geographic region involved. There are 8,332 public SAL2 LXs included in SD1.



122 C. Liang et al.

According to the statistics of SNCF Réseau, the majority of train-MV acci-
dents at LXs are caused by motorist violations. Due to the lack of accident causes
in SD1, causal relationship analysis cannot be performed with regard to the sta-
tic factors and motorist behavior. Therefore, we seek another database which
records detailed accident causes. Fortunately, the second database (D2) contains
the information about SAL2 LX accidents from 2010 to 2013, the LX identifi-
cation number, the railway line involved and detailed accident causes (including
static factors and inappropriate motorist behavior). Thus, using the LX ID and
the railway line ID, data merging of these two databases is carried out to create
a new database (ND) containing the LX accident information, static railway,
roadway and LX characteristics and accident causes related to static factors and
motorist behavior. This combined database ND covers LX accidents during a
period of 4 years from 2010 to 2013, which forms the basis of our present study.

The detailed accident causes considered in this study are shown in Table 2.
Here, a second-level cause is given: corrected moment. The conventional formula
of the traffic moment is defined as: Traffic moment = Road traffic frequency ×
Railway traffic frequency [22]. However, based on the previous analysis of SNCF
Réseau, we adopt a variant called “corrected moment” instead (CM for short).

Table 2. Accident causes

Primary

causes

Second-level

causes

Third-level causes Explanation

Static factors Corrected Moment

(CM)

Average daily

railway traffic (T)

CM = V 0.354 × T 0.646;

Average daily road

traffic (V)

Railway speed

limit

The maximum permission speed of

train within the LX section;

Alignment Horizontal road alignment shape:

“straight”, “curve” or “S”;

Profile Vertical road profile shape: “normal”

or “hump or cavity”;

Width The width of LX;

Length The length of LX that road vehicles

need to cross;

Region risk Region Risk factor, highlighting the

general LX-accident-prone region:

The number of SAL2 accidents

over the observation period in

the region considered/The

number of SAL2 LXs in the

region considered;

Inappropriate

motorist

behavior

Stall on LX Blocked on LX A vehicle is blocked on the SAL2 LX

by the external environment;

Stop on LX A motorist intentionally stops the

vehicle on the SAL2 LX;

Zigzag violation A vehicle skirts the half barriers to

cross the SAL2 LX;



Bayesian Network Modeling Applied on Railway Level Crossing Safety 123

CM = V a×T b, where b = 1−a and the best value of a in terms of fitting is com-
puted to be a = 0.354 according to the statistical analysis performed by SNCF
Réseau [23], since railway traffic has a more marked impact on LX accidents than
road traffic. Therefore, (V 0.354×T 0.646) is considered as an integrated parameter
that reflects the combined exposure frequency of both railway and road traffic.

3.2 Bayesian Risk Model Establishment

Variable Definition. Based on the combined database ND, the statistical
results are organized as input sources which will be imported to the BN risk
model. Data discretization is applied on continuous variables. Namely, the con-
tinuous variables, i.e., “Average Daily Road Traffic”, “Average Daily Railway
Traffic”, “Railway Speed Limit”, “Width”, “Length” and “Corrected Moment”,
are divided into 3 groups and each group has the similar number of samples. As
for the “Region Risk” factors corresponding to 21 regions in mainland France,
they are divided into 3 groups as well, ranked according to the risk level in
descending order, and each group contains 7 region risk factors. As for the finite
discrete variables, i.e., “Alignment”, “Profile”, “Stall on LX”, “Zigzag Viola-
tion”, “Blocked on LX” and “Stop on LX”, we allocate an individual state to
each value of the variable. The consequence severity of SAL2 accidents [24] is
defined according to the number of fatalities and injuries in an SAL2 accident.
The definition of consequence severity pertaining to an SAL2 accident is shown
in Table 3. Five levels of consequence severity are set according to the number
of fatalities, severe injuries and minor injuries caused by the accident, respec-
tively. The consequence severity increases progressively from level 1 to 5. Thus,
a summary of states of each node in the BN risk model is offered in Table 4.

Table 3. Consequence severity definition

Consequence severity Level 1 Level 2 Level 3 Level 4 Level 5

0 ≤ fatalities < 5, 0 ≤ severe injuries < 5,
0 ≤ minor injuries < 20;

× – – – –

0 ≤ fatalities < 5, 0 ≤ severe injuries < 5,
20 ≤ minor injuries;

– × – – –

0 ≤ fatalities < 5, 5 ≤ severe injuries, 0 ≤
minor injuries < 20;

– – × – –

0 ≤ fatalities < 5, 5 ≤ severe injuries,
20 ≤ minor injuries;

– – × – –

5 ≤ fatalities, 0 ≤ severe injuries < 5, 0 ≤
minor injuries < 20;

– – – × –

5 ≤ fatalities, 0 ≤ severe injuries < 5,
20 ≤ minor injuries;

– – – × –

5 ≤ fatalities, 5 ≤ severe injuries, 0 ≤
minor injuries < 20;

– – – – ×

5 ≤ fatalities, 5 ≤ severe injuries, 20 ≤
minor injuries;

– – – – ×



124 C. Liang et al.

Table 4. States of nodes in the BN risk model

Node name Node property Node state

Corrected Moment (CM) Chance node CM below 19 (0 ≤ CM < 19),

CM 19 49 (19 ≤ CM < 49),

CM 49 up (49 ≤ CM);

Average Daily Railway Traffic

(ADRT)

Chance node ADRT below 9 (0 ≤ ADRT < 9),

ADRT 9 25 (9 ≤ ADRT < 25),

ADRT 25 up (25 ≤ ADRT);

Average Daily Road Vehicle (ADRV) Chance node ADRV below 72 (0 ≤ ADRV < 72),

ADRV 72 403 (72 ≤ ADRV < 403),

ADRV 403 up (403 ≤ ADRV);

Railway Speed Limit (RLS) Chance node RLS below 70 (0 km/h ≤ RLS <

70 km/h),

RLS 70 110 (70 km/h ≤ RLS <

110 km/h),

RLS 110 up (110 km/h ≤ RLS);

Alignment Chance node Straight, C shape, S shape;

Profile Chance node Normal, Hump cavity;

Width (W) Chance node W below 5 (0m ≤ W < 5m),

W 5 6 (5m ≤ W < 6m),

W 6 up (6m ≤ W);

Length (L) Chance node L below 7 (0m ≤ L < 7m),

L 7 11 (7m ≤ L < 11m),

L 11 up (11m ≤ L);

Region Risk (R) Chance node R low (region with low risk level),

R medial (region with medial risk

level),

R high (region with high risk level);

Stall on LX Chance node True, False;

Blocked on LX Chance node True, False;

Stop on LX Chance node True, False;

Zigzag Violation Chance node True, False;

Motorist Behavior Accident Chance node True, False;

Static Factor Accident Chance node True, False;

SAL2 MV Accident Chance node True, False;

Fatalities (F) Chance node F 0 5 (0 ≤ F < 5), F 5 up (5 ≤ F);

Severe Injuries (S) Chance node S 0 5 (0 ≤ S < 5), S 5 up (5 ≤ S);

Minor Injuries (M) Chance node M 0 20 (0 ≤ M < 20), M 20 up

(20 ≤ M);

Consequence Severity Deterministic node Level 1, Level 2, Level 3, Level 4,

Level 5;

Model Structure. Artificial restrictions are adopted to build the model struc-
ture, which means the model structure is defined according to the causal rela-
tionships between accident occurrence and influential variables based on expert
proposes, instead of using general structure learning methods, since the gen-
eral structure learning methods suggest us unreasonable model structures which



Bayesian Network Modeling Applied on Railway Level Crossing Safety 125

Table 5. Spearman correlation checking

             Static factors 
Motorist 
behavior 

Railway 
speed limit 

Length Width Corrected 
moment 

Alignment  Profile Region 
risk factor 

Blocked on LX -0.0444 0.0031 -0.0341 -0.0525 -0.1769 -0.0352 -0.0432 

Stop on LX 0.0179 -0.0668 -0.1138 -0.0402 -0.0329 -0.0307 -0.0420 

Zigzag violation 0.0347 0.0374 0.1143 0.2118 -0.0462 -0.0221 0.1238 

ADRV_below_72
ADRV_72_403
ADRV_403_up

Average_Daily_Road_Vehicle
ADRT_below _9
ADRT_9_25
ADRT_25_up

Average_Daily_Railway_Traffic

CM_below _19
CM_19_49
CM_49_up

Corrected_Moment

RSL_below_70
RSL_70_110
RSL_110_up

Railway_Speed_Limit

W_below_5
W_5_6
W_6_up

Width

Straight
C_shape
S_shape

Alignment

Hump_cavity
Normal

Profile
R_low
R_medial
R_high

Region_Risk

L_below_7
L_7_11
L_11_up

Length

False
True

SAL2_MV_Accident

F_0_5
F_5_up

Fatalities

S_0_5
S_5_up

Severe_Injuries
M_0_20
M_20_up

Minor_Injuries

True
False

Zigzag_Violation

True
False

Stall_on_LX

True
False

Stop_on_LX

True
False

Blocked_on_LX

False
True

Static_Factor_Accident

False
True

Motorist_Behavior_Accident

Level_1
Level_2
Level_3
Level_4
Level_5

Consequence_Sev...

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Layer 1

Layer 2

Fig. 3. BN risk model

are inconsistent with the causal relationships in reality and impede identifica-
tion of important accident causes. It is worth noticing that there are still some
potential connections between static factors and motorist behavior. The Spear-
man correlation checking is adopted to explore important connections and filter
off negligible connections between these two kinds of variables. As shown in
Table 5, the absolute values of correlation bigger than 0.05 are highlighted (Red
color highlights negative values and green color highlights positive values). Their
corresponding connections will be considered in our model. Conditional proba-
bility parameters are generated based on the real field accident/incident data.



126 C. Liang et al.

The final model is developed as shown in Fig. 3, which contains 3,132 conditional
probabilities.

4 Analysis and Discussion

As shown in Fig. 3, the risk model contains two layers: (1) Layer 1 is used for
predicting accident occurrence and diagnosing influential factors; (2) Layer 2
is used for evaluating consequences related to LX accidents. The “SAL2 MV
Accident” node is the key node connecting the two layers, as well as the target
node of accident prediction. Note that the Receiver Operating Characteristic
(ROC) curve and the Area Under the ROC Curve (AUC) [25] have already been
adopted to ensure that the model performance is sound (the AUC values of key
consequence node prediction, i.e., “SAL2 MV Accident”, “Fatalities”, “Severe
injuries” and “Minor injuries”, are all bigger than 0.9 > 0.5: the standard limit);
while the detailed validation process is not presented here due to space limitation.

One can estimate the probability of a train-MV accident occurring at an
SAL2 LX through forward inference based on the BN risk model. As shown in
Fig. 4, the general probability of a train-MV accident influenced by the interac-
tion of all factors considered, is estimated as almost 0.0061. In detail, the prob-
ability of a train-MV accident caused by static factors is about 0.0011 and the
probability of a train-MV accident caused by inappropriate motorist behavior is
about 0.0049. Moreover, fatalities and severe injuries caused by the accident are,
to a large extent, fewer than 5. Minor injuries caused by the accident are most
likely to be fewer than 20. Thus, the consequence severity level are most likely
to be level 1. However, Fig. 5 shows that the probability of a train-MV accident
occurring at a SAL2 would increase to 0.0107 if all the second-level causes occur,
namely, “Corrected Moment” in the “CM 49 up” group, “Railway Speed Limit”
in the “RSL 110 up” group, “Alignment” in the “S shape” group, “Profile” in
the “Hump cavity” group, “Width” in the “W 6 up” group, “Length” in the
“L 11 up” group, “Region Risk” in the “R high” group, “Stall on LX” being

SAL2_MV_Accident             Static_Factor_Accident      Motorist_Behavior_Accident 

Fatalities                               Severe_Injuries                     Minor_Injuries 

Consequence_Severity 

Fig. 4. General prediction results



Bayesian Network Modeling Applied on Railway Level Crossing Safety 127

SAL2_MV_Accident             Static_Factor_Accident       Motorist_Behavior_Accident 

Fatalities                                Severe_Injuries                    Minor_Injuries 

Consequence_Severity 

Fig. 5. Prediction results when second-level causes occur

ADRV_below_72 30%
ADRV_72_403 32%
ADRV_403_up 39%

Average_Daily_Road_Vehicle

ADRT_below_929%
ADRT_9_25 34%
ADRT_25_up 37%

Average_Daily_Railway_Traffic

CM_below _1911%
CM_19_49 15%
CM_49_up 74%

Corrected_Moment

RSL_below_7029%
RSL_70_110 33%
RSL_110_up 38%

Railway_Speed_Limit

W_below_5 27%
W_5_6 30%
W_6_up 44%

Width

Straight 61%
C_shape 21%
S_shape18%

Alignment

Hump_cavity 34%
Normal 66%

Profile
R_low 19%
R_medial 34%
R_high 46%

Region_Risk

L_below_7 30%
L_7_11 34%
L_11_up 37%

Length

False 0%
True 100%

SAL2_MV_Accident

True 58%
False 42%

Zigzag_Violation

True 42%
False 58%

Stall_on_LX

True 1%
False 99%

Stop_on_LX

True 41%
False 59%

Blocked_on_LX

False 83%
True 17%

Static_Factor_Accident

False 20%
True 80%

Motorist_Behavior_Acci
dent

Fig. 6. Cause diagnosis when a train-MV accident occurs

true and “Zigzag Violation” being true. The related consequences are likely to
be severer as well.

Subsequently, the “SAL2 MV Accident = True” state is configured as the
targeted state. In this way, one can assess the contribution degree of each influ-
ential factor to train-MV accident occurrence through reverse inference. Detailed
results are given in Fig. 6. It is worth noticing that accidents caused by inap-
propriate motorist behavior contribute 80% to the entire train-MV accidents
at SAL2 LXs, while accidents caused by static factors contribute only 17%. As
for inappropriate motorist behavior, “Zigzag violation” is more significant than
“Stall on LX” in terms of causing train-MV accidents, due to the contribution of
58% (compared with 42% contribution of “Stall on LX”). On the other hand, in
terms of static factors, when a train-MV accident occurs at a SAL2 LX, this LX



128 C. Liang et al.

has the probabilities of 74%, 38%, 44%, 37% and 46% respectively involved in
the most risky situations that “Corrected Moment” in the “CM 49 up” group,
“Railway Speed Limit” in the “RSL 110 up” group, “Width” in the “W 6 up”
group, “Length” in the “L 11 up” group and “Region Risk” in the “R high”
group. These results indicates that more attention needs to be paid to LXs hav-
ing the above risky static characteristics. Moreover, technical solutions need to
be implemented to prevent motorist zigzag violations, for example, transforming
SAL2 LXs into SAL4 LXs (Four-half barrier systems) or SAL2F (two-full barrier
LXs) or installing median separators between opposing lanes of road traffic in
front of SAL2 LXs.

5 Conclusions

The contributions of the present study are as follows: the approach of Causal
Reasoning Analysis based on Bayesian risk model (CRAB) is proved to be fruit-
ful and practical when analyzing French LX accidents. Although the conditional
probabilities of our BN risk model is tailored to SAL2 LX accidents in France,
the CRAB approach and the model structure can be applied to different contexts
pertaining to LX safety. Based on the CRAB approach, various important static
factors pertaining to LX safety, namely, the corrected moment, the rail speed
limit, the LX length and width, the profile and alignment of the entered road and
geographic region involved, and significant inappropriate motorist behavior, i.e.,
zigzag violation, blocked on LX and stopping on LX, have been analyzed metic-
ulously. Moreover, the application of CRAB to investigating LX safety allows
us to not only predict the probability of accident occurrence, but also evaluate
related consequence severity level, quantify the respective contribution degrees
of the above influential factors to the overall LX risk and identify the most risky
factors, which are rarely achieved in many existing related works. Besides, in our
study, expert knowledge is integrated with real field data to optimize the model
structure, so as to neglect inappropriate connections to facilitate highlighting
the main causes.

In summary, the outcomes of the BN risk model offer a significant perspective
on potential parameters causing LX accidents and pave the way for identifying
practical design measures and improvement recommendations to prevent acci-
dents at LXs. In future works, a thorough analysis on inappropriate motorist
behavior will be carried out due to its significant contribution to LX accident
occurrence. In addition, practical solutions will be proposed to improve LX safety
according to the analysis results of the BN risk model and the effectiveness
of these solutions (e.g., transforming SAL2 LXs into SAL4 LXs or SAL2F or
installing median separators) will be investigated.

Acknowledgements. This work has been conducted in the framework of “MORI-
PAN project: MOdèle de RIsque pour les PAssages à Niveau” within the Railenium
Technological Research Institute, in partnership with the National Society of French
Railway Networks (SNCF Réseau) and the French Institute of Science and Technology
for Transport, Development and Networks (IFSTTAR).



Bayesian Network Modeling Applied on Railway Level Crossing Safety 129

References

1. Ghazel, M.: Using stochastic Petri nets for level-crossing collision risk assessment.
IEEE Trans. Intell. Transp. Syst. 10(4), 668–677 (2009)

2. Liu, B., Ghazel, M., Toguyeni, A.: Model-based diagnosis of multi-track level cross-
ing plants. IEEE Trans. Intell. Transp. Syst. 17(2), 546–556 (2016)

3. SNCF Réseau World Conference of Road Safety at Level Crossings (Journée Mon-
diale de Sécurité Routière aux Passages à Niveau), France (2011). http://www.
planetoscope.com/automobile/1271-nombre-de-collisions-aux-passages-a-niveau-
en-france.html

4. SNCF Réseau: 8th National Conference of Road Safety at Level Crossings
(8ème Journée Nationale de Sécurité Routière aux Passages à Niveau), France
(2015). http://www.sncf-reseau.fr/fr/dossier-de-presse-8eme-journee-nationale-de-
securite-routiere-aux-passages-a-niveau

5. Wigglesworth, E.C.: A human factors commentary on innovations at railroadhigh-
way. J. Saf. Res. 32(3), 309–321 (2001)

6. Read, G.J., Salmon, P.M., Lenné, M.G., Stanton, N.A.: Walking the line: under-
standing pedestrian behaviour and risk at rail level crossings with cognitive work
analysis. Appl. Ergon. 53, 209–227 (2016)

7. Stefanova, T., Burkhardt, J.-M., Filtness, A., Wullems, C., Rakotonirainy, A.,
Delhomme, P.: Systems-based approach to investigate unsafe pedestrian behav-
iour at level crossings. Accid. Anal. Prev. 81, 167–186 (2015)

8. Larue, G.S., Rakotonirainy, A., Haworth, N.L., Darvell, M.: Assessing driver accep-
tance of intelligent transport systems in the context of railway level crossings.
Transp. Res. Part F Traffic Psychol. Behav. 30, 1–13 (2015)

9. Lenné, M.G., Rudin-Brown, C.M., Navarro, J., Edquist, J., Trotter, M., Tomasevic,
N.: Driver behaviour at rail level crossings: responses to flashing lights, traffic
signals and stop signs in simulated rural driving. Appl. Ergon. 42(4), 548–554
(2011)

10. Tey, L.S., Ferreira, L., Wallace, A.: Measuring driver responses at railway level
crossings. Accid. Anal. Prev. 43(6), 2134–2141 (2011)

11. Ericson, C.A., Li, C.: Fault tree analysis. In: Proceedings of 17th International
Systems Safety Conference, Orlando, Florida, pp. 1–9 (1999)

12. Malyshkina, N.V., Mannering, F.L.: Markov switching multinomial logit model: an
application to accident-injury severities. Accid. Anal. Prev. 41(4), 829–838 (2009)

13. Ghazel, M., El-Koursi, E.-M.: Two-half-barrier level crossings versus four-half-
barrier level crossings: a comparative risk analysis study. IEEE Trans. Intell.
Transp. Syst. 15(3), 1123–1133 (2014)

14. Chemweno, P., Pintelon, L., Van Horenbeek, A., Muchiri, P.: Development of a
risk assessment selection methodology for asset maintenance decision making: an
analytic network process (ANP) approach. Int. J. Prod. Econ. 170, 663–676 (2015)

15. Hu, Y., Zhang, X., Ngai, E.W.T., Cai, R., Liu, M.: Software project risk analy-
sis using Bayesian networks with causality constraints. Decis. Support Syst. 56,
439–449 (2013)

16. Bouillaut, L., Francois, O., Dubois, S.: A Bayesian network to evaluate under-
ground rails maintenance strategies in an automation context. Proc. Inst. Mech.
Eng. Part O J. Risk Reliab. 227(4), 411–424 (2013)

17. Langseth, H., Portinale, L.: Bayesian networks in reliability. Reliab. Eng. Syst. Saf.
92, 92–108 (2007)

http://www.planetoscope.com/automobile/1271-nombre-de-collisions-aux-passages-a-niveau-en-france.html
http://www.planetoscope.com/automobile/1271-nombre-de-collisions-aux-passages-a-niveau-en-france.html
http://www.planetoscope.com/automobile/1271-nombre-de-collisions-aux-passages-a-niveau-en-france.html
http://www.sncf-reseau.fr/fr/dossier-de-presse-8eme-journee-nationale-de-securite-routiere-aux-passages-a-niveau
http://www.sncf-reseau.fr/fr/dossier-de-presse-8eme-journee-nationale-de-securite-routiere-aux-passages-a-niveau


130 C. Liang et al.

18. Weber, P., Medina-Oliva, G., Simon, C., Iung, B.: Overview on Bayesian networks
applications for dependability, risk analysis and maintenance areas. Eng. Appl.
Artif. Intell. 25(4), 671–682 (2012)

19. Jensen, F.V.: An Introduction to Bayesian Networks, vol. 210. UCL Press, London
(1996)

20. Pourret, O., Naim, P., Marcot, B.: Bayesian Networks: A Practical Guide to Appli-
cations. Wiley, Hoboken (2008)

21. SNCF: Research on the material of level crossing in 2014, France (2015)
22. Liang, C., Ghazel, M., Cazier, O., El Koursi, E.M.: Risk analysis on level cross-

ings using a causal Bayesian network based approach. Transp. Res. Procedia 25,
2172–2186 (2017)

23. SNCF Réseau: Statistical analysis of accidents at LXs, France (2010)
24. EN 50126: Railway applications-The specification and demonstration of Reliability,

Availability, Maintainability and Safety (RAMS), British Standards Institution
(1999)

25. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)



Deductive Verification of Railway Operations

Eduard Kamburjan(B) and Reiner Hähnle

Department of Computer Science, Technische Universität Darmstadt,
Darmstadt, Germany

{kamburjan,haehnle}@cs.tu-darmstadt.de

Abstract. We use deductive verification to show safety properties for
the railway operations of Deutsche Bahn. We formalize and verify safety
properties for a precise, comprehensive model of operational procedures
as specified in the rule books, independently of the shape and size of the
actual network layout and the number or schedule of trains. We decom-
pose a global safety property into local properties as well as composition-
ality and well-formedness assumptions. Then we map local state-based
safety properties into history-based properties that can be proven with
a high degree of automation using deductive verification. We illustrate
our methodology with the proof that for any well-formed infrastructure
operating according to the regulations of Deutsche Bahn the following
safety property holds: whenever a train leaves a station, the next section
is free and no other train on the same line runs in the opposite direction.

1 Introduction

In the paper [14] we reported on our ongoing effort to create a formal and highly
comprehensive model of the regulations described in the rulebooks [4,5] that
govern railway operations of Deutsche Bahn. This executable model is expressed
in terms of the Abstract Behavioral Specification (ABS) language [12], a formal,
concurrent modeling language that follows the active objects paradigm. ABS is
equipped with a program logic that supports specification and verification of
properties expressed over first-order event histories. The program verification
system KeY-ABS [6] allows users to perform mechanical proofs of safety prop-
erties for ABS models by means of deductive verification [1]. In [14] we gave a
proof-of-concept that deductive verification of safety properties for our ABS rail-
way model is possible. The main contribution of the present paper is to extend
that approach into a full-fledged verification methodology for railway operations.

Rulebooks are long and complex documents that—at their core—describe
those communication protocols between train drivers, controllers, track elements,
etc., that are supposed to guarantee safe operation. Their complexity stems
mainly from the requirement to ensure continuing and safe train operation even
in the case of failure of individual components. Moreover, at any time the system
must guarantee that any safety-critical action cannot be inadvertently revoked or
compromised. Changing a rulebook and having it re-certified is a complex, time-
consuming, and expensive procedure, for which at the moment only minimal tool
support and no formal analysis is available. For this reason, a methodology for
c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 131–147, 2017.
https://doi.org/10.1007/978-3-319-68499-4_9



132 E. Kamburjan and R. Hähnle

Fig. 1. Decomposition of global safety properties. Loc are local guarantees, Comp
composition guarantees, Glob a global safety property. Si are stations.

the formalization and tool-supported verification of safety properties pertaining
to rulebooks is highly desirable.

Rulebooks of railway operators state operational rules that are valid for any
track layout that satisfies certain regulations [5], well-formed infrastructures, as
we call them. The rules are also valid independent of the number of trains or
schedules, as long as these satisfy a valid initial state (for example, not more than
one train is placed in each segment). This means that model checking is ruled
out as a technique for verification of global, system-wide properties. Instead, we
use deductive verification in the program logic of ABS, as outlined in Fig. 1.

Assume we want to prove that a global safety property Glob holds in a
given ABS model for any well-formed infrastructure, any number of trains and
any number of stations S. First, we decompose the proof of this property into
proofs for a local guarantee Loc at each station and composition guarantees
Comp. For local composition guarantees (for example, aspects of the interlocking
system), established model checking techniques may be used. Our approach is
not intended to replace established and well-working verification technology, but
to extend it so as to be able to prove global properties of a highly precise model.
Local guarantees Loc only hold under assumption of a well-formed infrastructure,
expressed in Comp.

In this paper we make two contributions: first, a systematic methodological
approach to decompose global system properties for any well-formed infrastruc-
ture into local guarantees that are then proven by a combination of deductive
verification and model checking. As detailed in Sect. 5.1, we prove state-based
global properties expressed over actions by transforming them into history-based
properties of processes. The latter can then be expressed and proved as local
method invariants in KeY-ABS. Second, we demonstrate the viability of our
approach with an ABS model of a part of the actual Deutsche Bahn rulebooks
and a typical safety property. Contrary to prior work [14] we prove (1) the pro-
cedures used in current operations and (2) show a global safety property, rather
than only one of its fractions.



Deductive Verification of Railway Operations 133

The paper is organized as follows: In Sect. 2 we explain very briefly those
elements of the ABS language needed to understand the paper. In Sect. 3 we
give a short account of the program logic of ABS. Section 4 explains how we
modeled railway operations and rules in ABS. Section 5 is the core of the paper
where we explain our methodology in detail and sketch the proof of one of the
safety properties. We conclude, and give related as well as future work, in Sect. 6.

2 The Abstract Behavioral Specification Language (ABS)

We give a very brief introduction to the Abstract Behavioral Specification lan-
guage (ABS), for a full account and the formal semantics we refer to [10,12].

ABS is a modeling language for distributed systems, which has been designed
with a focus on analyzability. Its syntax and semantics are similar to Java to
maximize usability. We list the main language features (slightly simplified) and
the statements associated with them.

Strictly encapsulated objects. Communication between different objects is
only possible via method calls. All fields of an object are private and inacces-
sible even to other instances of the same class and there are no static fields.
This ensures that the heap of an object is only accessed by its own processes.

Asynchronous communication with futures. Asynchronous calls are dis-
patched with the statement Fut<T> f = o!m(e), where method m is called on
the object stored in o with parameters e. Upon making this call, the caller
obtains the future f and continues execution without interrupt. A future is
a handle to the called process and may be passed around. Once the called
process terminates, its return value may be accessed via the associated future.
To read a value from a future, the statement T i = f.get; is used.

Cooperative scheduling. In ABS at most one process is active per object.
Running processes cannot be preempted, but give up control only when they
suspend or terminate. Hence the ABS modeler has explicit control over inter-
leaving. The active process suspends itself by waiting for a guard. A guard
can be a future—then the suspension statement has the form await f?; and
the process may become active again once f was resolved (i.e., its process ter-
minated). Otherwise, a guard can be a side-effect-free Boolean expression—
then the suspension statement has the form await e; and the process may
become active again if e evaluates to true. If a future is accessed with f.get

before it was resolved, then the whole object blocks until f is resolved. When
blocked, an object may still receive method calls, but it will not execute
them.

Cooperative scheduling enables one to reason about code between the start
and end of a method, as well as suspension statements, as if it were executed
sequentially, because the process is guaranteed to have exclusive access to the
memory of its object. ABS is not completely object-oriented, as the enforced
asynchronous communication leads to overhead for simple look-up operations.
To avoid the overhead, ABS uses Algebraic Data Types (ADT) to abstract from



134 E. Kamburjan and R. Hähnle

data values which have no internal state. Figure 4 shows an ABS class using the
ADT SignalState.

3 The ABS Program Logic

The calculus used for reasoning about concurrency in ABS uses a history of
communication events [6,7], modeled as finite first-order sequences. A commu-
nication event is an action on a future: either an invocation event modeling an
asynchronous method call, an invocation reaction event, modeling the start of
the corresponding process, a completion event modeling the termination of a
process, and a completion reaction event modeling the read access to a future.

Definition 1 (Events). Let o, o′ range over object IDs, f over futures, e over
values and m over method names. The symbol e∗ denotes a possibly empty
sequence of values and represents the parameters of a method call. Events Ev
are defined by the following grammar:

Ev ::= invEv(o, o′,m, f, e∗) (Invocation Event)
| invREv(o, o′,m, f, e∗) (Invocation Reaction Event)
| futEv(o′,m, f, e) (Completion Event)
| futREv(o, f, e) (Completion Reaction Event)

Histories are used for a compact representation and specification of commu-
nication behavior. They abstract away from computations and allow to reason
directly about communication on futures.

Figure 2 illustrates the connection of events to processes and futures. Every
history h, which an ABS system produces is well-formed, satisfying certain
conditions on the ordering of events. For example, if there is an i ∈ N

with h[i] = invREv(o, o′, f,m, e∗), then there must be a j < i with h[j] =
invEv(o, o′, f,m, e∗). This condition expresses that every process starts its execu-
tion only after it was called. The well-formedness conditions for all event types
are listed in [7].

ABS uses invariant reasoning: Safety and consistency properties are formu-
lated as first-order formulas and are shown to hold at the beginning of each
method execution and at every suspension point. First-order properties are
expressed in the ABS Dynamic Logic (ABSDL) [6], a program logic over state-
ments from the ABS language. Matching the ABS concurrency model, formulas
can only access the fields of a single class, hence only reason about a single
object. Heap memory is modeled with a dedicated program variable heap, which
can be accessed and changed with select and store functions, respectively.
While every object has its own heap, multiple heap may be used for technical
reasons, e.g., to refer to the state before the method starts.

Example 1. The following formula φ expresses that the field l on an object self
is a list containing only positive values:

φ ≡ ∀ Int k.
(
0 ≤ k < length(select(heap, self , l)) → select(heap, self , l)[k] > 0

)



Deductive Verification of Railway Operations 135

Fig. 2. Events on futures, diagram taken from [6].

ABSDL formulas may reference the history visible to the object in question.
Whether an ABSDL formula is an invariant for the methods declared in a class
can be mechanically checked with the KeY-ABS theorem prover [6].

Example 2. The following ABSDL formula expresses that if the last element of
the history h is a completion event on m, then φ holds

∀ Fut f. ∀ Object e. last(h) .= futEv(self , m, f, e) → φ

ABSDL formulas are inherently local. To specify global properties we use an
extension of ABSDL, called ABSDL∗, that lifts the restriction to reason about
only one object. Therefore, KeY-ABS cannot be used to reason about ABSDL∗

formulas. To express that the state σ of an object o satisfies the formula ψ at
the moment when the i-th event was added to the history we use the notation
σ[i](o) |= ψ.

Example 3. The following ABSDL∗ formula expresses that whenever object o
reads from a future f , then its field k is positive:

∀ Object o. ∀m, f, e, i.
(
h[i] = futREv(o, f, e) → (σ[i](o) |= select(heap, o, k) > 0

))

4 Modeling Railway Operations

We give a brief summary of our ABS model for railway operations. Here we are
concerned with communication between stations, so we introduce only the most
important concepts needed for our safety analysis. In particular, we refrain from
describing our train model. The description of the full ABS model is in [14].



136 E. Kamburjan and R. Hähnle

4.1 Infrastructure

The concurrency model of ABS is a good match for railway operations: All ele-
ments are encapsulated and have no shared memory. Thus all communication can
be reduced to message passing, which in turn can be mapped to ABS asynchro-
nous method calls. This unifies the treatment of communication, as we abstract
away from the means of communication and only consider the communicated
information.

The railway infrastructure is modeled as a graph, centered around the concept
of point of information flow (PIF).

Definition 2 (Point of Information Flow). A point of information flow
(PIF) is an object at a fixed position on a track that participates in informa-
tion flow, if one of the following criteria applies:

– It is a structural element allowing a train to receive information, for example,
a signal or a data transmission point of a train protection system.

– It has a critical distance before another PIF, where its information is trans-
mitted at the latest. E.g., at the point where a signal is seen at the latest.

– It is a structural element allowing a train to send information, for example,
a track clearance detection device (axle counter), or the endpoints of switches
that may transfer information when passed over.

A PIF is a position at a track and an object that describes the information
to be transmitted or relayed. Instead of modeling all features of a PIF in one
object, we use a model of four layers to organize and separate its structure:

1. Graph Layer. The lowest layer is an undirected graph, where edges corre-
spond to tracks and nodes correspond to the position on a track of a PIF. We
refer to the set of tracks between two signals as a section and to the set of
sections between the exit signal of one station and the entry signal of another
as a line. There may be multiple lines between two stations.

2. Physical Element Layer. The second layer corresponds to track elements.
Each track element is either a physical device that allows information flow
either from or to a virtual element that is responsible to model information
flow at a specific distance from a physical element. Each element of this layer
is assigned to one node of the graph layer. In case several devices are at the
same position, a node at the graph layer has multiple track elements assigned.

3. Logical Element Layer. The third layer groups physical elements from the
second layer, e.g., a pre-signal and a main signal (an exhaustive list of physical
elements belonging to a logical object is in [14]). Each physical element can
be assigned to multiple logical elements, e.g., a pre-signal can be assigned to
two logical signals with two different main signals, or to no logical element,
if the physical element never changes its state.

4. Interlocking Layer. This layer models the interlocking logic and the com-
munication between stations. Each logical element is assigned to one station.



Deductive Verification of Railway Operations 137

Fig. 3. Illustration of the lower three layers of a station entry in the layer model.

1 class SignalImpl(...) implements Signal {

2 SignalState state = STOP;

3 ...

4 Train observedBy = null;
5 Unit triggered() { if (resp != null) resp!triggered(this); }

6 Unit setObserver(Train obs) { observedBy = obs; }

7 Unit setGo() {

8 // ... notify physical elements
9 state = FAHRT;

10 if (observedBy != null) { observedBy!notify(Info(FAHRT),now()); }

11 }

12 }

Fig. 4. Simplified implementation of a logical signal.

The lower three layers of a station entry are illustrated in Fig. 3. The (sim-
plified) implementation of a logical signal is shown in Fig. 4.

The lower three layers only communicate up or down. This means that log-
ical objects only communicate to assigned physical objects and to the assigned
station at the interlocking layer. Every global property is established by com-
munication on the interlocking layer.

4.2 Communication

The German railway system has different modes of operation for driving trains
outside and inside of stations. Here, we focus on operation outside of stations
and do not model, e.g., intermediate signals inside of a station. The rulebooks
differentiate between two kinds of stations: Blockstellen which operate block
signals and only divide a track line into two parts to increase the possible number
of trains on the line and Zugmeldestellen (Zmst) which are able to “store” trains
and rearrange their sequence. The generalization of both is Zugfolgestelle (Zfst).
In the following, we use the term “station” for Zmst.

A Zfst is responsible for safety on the next section, a Zmst is additionally
responsible for establishing safety on a whole line. To let a train drive from
Zmst A to Zmst B on a line L, the following conditions must be fulfilled:



138 E. Kamburjan and R. Hähnle

– It is possible to set the signal at A covering the first section S of L to “Go”,
i.e., S is not locked by A and A has the permit token for S.

– B accepted the train and is thus notified about its departure.

There are three communication protocols that ensure safety:

Locking sections. Each Zfst is responsible for several logical elements such
as switches and signals. In addition to the internal state of the signals, the
interlocking system itself has a state that depends on the neighboring Zfst.
Each section has an additional Boolean state locked. Consider a signal cov-
ering a section leading out of the Zfst. After a signal is set to “Go” and a
train passes it, the section it covers is automatically locked and the electronic
message “preblock” is sent to the subsequent signal. A signal cannot be set
to “Go” again, as long as the section it covers is locked. It must be unlocked
by receiving the “backlock” message from the subsequent signal. That signal
in turn can only send “backlock” after the train passed.

Permit token. For each line there is exactly one token that allows a station to
admit trains on this line. Without the token the signal that covers the track
cannot be set to “Go”.

Accepting and reporting back trains. Before a train leaves a station A with
destination B, A offers the train and waits for B to accept. This ensures
that B has (or will have) a track to park the train. Before the train departs,
the departure is announced to B. The offering, announcement and acceptance
of trains are modeled as methods—the current state of a Zmst is not encoded
only in its fields, but also in the currently active (but possible suspended)
processes.

4.3 Well-Formedness

The interlocking layer in Sect. 4.1 only communicates to logical objects, it has
neither direct control nor knowledge about the layers below it. Every Zmst is
assuming that its knowledge about the train network is correct and that its
fields reflect its state correctly. Consider, e.g., an entrance signal: A station is
only notified that the train detection device covering the danger point of this
signal was triggered. It relies on the guarantees that (1) the train detection
device is set up at the correct position and in the correct direction, (2) the train
detection device is assigned to the correct signal and (3) the line covered by the
signal is indeed the one which is listed as covered inside the station. The most
critical point for this to work is the correct encoding of tracks: The other field
must realize the mapping between the endparts of a line correctly and the line
must correspond to a path in the graph layer.

Definition 3 (Well-Formed Infrastructure). We say that an ABS railway
model is well-formed, when its initialization block fulfills the following conditions:

Correct Encoding of Lines. Every line corresponds to a path through the
graph of the lowest layer and is partitioned correctly into sections according to



Deductive Verification of Railway Operations 139

the intermediate signals. The other field of the Zmst implementation realizes
lines correctly: If a line L has starting sections S, S′ then for the neighbouring
stations map the section on each other: S = other(S′) and S′ = other(S).
Formally, if L is a line between two stations A and B with starting sections
S, S′ then the following holds:

S = A.other(S′) = B.other(S′) S′ = A.other(S) = B.other(S)
A.other(S′′) = S → S′′ = S′ B.other(S′′) = S → S′′ = S′

A.other(S′′) = S′ → S′′ = S B.other(S′′) = S′ → S′′ = S

Additionally, for each line L, the method forcePermit, which initializes the
permit token, is called exactly once.

Correct Encoding of Zfst. For each section S bordering a Zfst, the field next

encodes sections correctly. I.e., next(S) is the signal at the end of S. For
each signal S′, we denote its covered section with S′.covers.

This definition of well-formedness is suitable for our verification methodol-
ogy and can be extended. For example, we do not reason about safety inside
the stations here, but a fitting well-formedness condition would be the classical
notion of safety for interlocking systems. Well-formedness is decidable, but here
we are not concerned with checking an initialization block for well-formedness.

5 Deductive Verification

5.1 Methodology

Safety properties in technical documents, e.g. [18] are given as informal descrip-
tions. A system state is considered safe if it fulfills a property. ABS is verified
with invariants, which state that the history, i.e., the past states have a certain
property. To express safety properties of railways we connect state invariants
with history invariants. As described in Sect. 4, we map railway concepts partly
to methods instead of fields. E.g., the dispatching of a train is modeled by the
method process. In a well-formed infrastructure, we can connect events of meth-
ods with the state of the whole system. To model informally stated safety notions
in ABSDL we use the following schema:

1. We formulate the safety notion informally as a property of the global state.
2. We reformulate the safety notion informally as a property of past actions.
3. Using the model in Sect. 4, we map actions to methods and states to fields,

thus deriving a formal, global invariant of histories in ABSDL∗.
4. Finally, we prove the global invariant by splitting it into local invariants by

using well-formedness of histories and infrastructure. To connect histories and
state, we formulate and prove local invariants with KeY-ABS.

Well-formedness of the infrastructure is needed at two points: In step 3 it
is used to connect model and reality: E.g., only in a well-formed infrastructure



140 E. Kamburjan and R. Hähnle

we can assume that the termination of process(t) models a dispatch of train
t and does not set the route and signal for some other train: we need well-
formedness to translate the informal property “A train t was dispatched.” to
“Method process(t) terminated.”. In step 4 well-formedness is used to reason
about consistency of the model: E.g., only in a well-formed infrastructure we can
assume that a signal S covering line L is indeed unlocked by the signal at the
end of L.

We illustrate deductive reasoning with two safety properties. Each of the
property establishes (partial) safety on one of the described layers for train
departure: The first property establishes that the permit token is exchanged
correctly and the second property establishes that a signal is set to “Go” only
when the covered section is free. Together with the obvious property that for
every line at any given point in time only one station has the token 1, we regard
these properties as the safety notion for departure of trains from A to B: the
next section is free and the whole line is free of trains going from B to A. For
presentation’s sake, we only present the proof of the first property in detail.

5.2 Permission

Recall the description of the permit token from Sect. 4: Each line L has an
associated token. This token models the permission to dispatch trains on this
line. The token is implemented as a field permit in the Zmst class that maps
the first section of the line to a Boolean value modeling the token. A Zmst has
the token for a section st if permit[st] is set to True. When a station plans to
dispatch a train, it must first acquire the token for line L. The exchange is not
only secured by the station having the token, but also by the station requesting
it: The requesting station knows which trains are on the line in its direction, as
all the trains are announced and saved as expected. It only requests the token
if it is known that no trains are on the line in its direction. The station having
the token only checks that the token is not locked, i.e., it is not in the process
of dispatching a train using this token.

We examined the case where only the station having the token secures it
in [14], however, that protocol is not in use in modern railway operations of
Deutsche Bahn. Here we show the following, more complex, property. This prop-
erty corresponds to Step 1 in the verification scheme.

“If station A acquires the permit token for line L from station B, then
there is no train on L with arrival station A.”

Station A acquires the permit token when the call on B.rqPerm from method
setPreconditions terminates. If we assume that all stations are connected cor-
rectly, the condition that there are no trains on L with arrival station A can
be expressed as A.expectIn[st] == Nil, where st is the first section of L from A.
1 We do not give a proof for this, as this property follows directly from well-formed

infrastructure and that the adding of the token at one end is synchronized to happen
after its removal at the other end.



Deductive Verification of Railway Operations 141

We can rewrite the above property into the following property. This property
corresponds to Step 2 in the verification scheme.

“If station A reads from the future for B.rqPerm, then at this moment the
following holds: A.expectIn[st] == Nil.”

The formulations differ, as the first condition describes a state, but the second
one additionally the history. We can now formalize the property in ABSDL. This
property corresponds to Step 3 in the verification scheme. Step 4 is performed
in the proof itself.

Lemma 1. The following formula holds for all histories generated by the model
in Sect. 4 with a well-formed infrastructure. Let A be a Zmst and L a line bor-
dering A with st being the first section of L from A and A.other(st) the last.

φ1(A, st) ≡
∀i, f. h[i] = futREv(A, rqPerm, f, [True, st]) →

σ[i](A) |= expectIn(A.other(st)) = Nil

Proof. To show that claim expectIn(A.other(st)) = Nil holds at the point where
rqPerm is read it must be shown that expectIn is not extended while the process
executing setPreconditions is suspended. The method that can do so is offer. So
we have to show that between calling and reading True from rqPerm, no process
that is executing offer terminates. We distinguish two cases:

1. rqPerm is scheduled after offer is called. In this case the station having the
token has locked its token—rqPerm would return False.

2. rqPerm is scheduled before offer is called. In this case the station requesting
the token has locked acceptance—offer will not terminate.

The cases correspond to two, intuitively wrong, situations: (1) the token is
released by B while it is in the process of dispatching a train (2) a train is
accepted by A while it is in the process of requesting the token.

The formal argument is as follows (we mark all properties that were proven
mechanically with KeY-ABS with K).2 First, by the well-formedness axioms
there are indices i′′′, i′′, i′ with i′ < i′′ < i′′′ < i and

h[i′] = invEv(A,B, rqPerm, f, [A, st])
h[i′′] = invREv(A,B, rqPerm, f, [A, st])
h[i′′′] = futEv(B, rqPerm, f, [True, B.other(st)])

Position i′ corresponds to a call on rqPerm: the only call is in setPreconditions at
line 458. We have the following property, because the statement directly before
the call has this condition as its guard.

σ[i′](A) |= expectIn(st) = Nil ∧ allowed[st] = False

2 The model, invariants and KeY-ABS and instructions to compile are available under
http://formbar.raillab.de/en/publications-and-tools/latest/.

http://formbar.raillab.de/en/publications-and-tools/latest/


142 E. Kamburjan and R. Hähnle

It remains to show that expectIn is not modified between the read and the
mentioned guard at line 460. The only method adding to expectIn is offer. I.e,
we show that there is no position k with i′ < k < i and

h[k] = futEv(B,A, offer, f ′, [T, st]))

for any Train T. Assume there is such a k. Then, by the well-formedness axioms,
there are indices k′′, k′ with k′′ < k′ and

h[k′] = invEv(B,A, offer, f ′, [T, st, B])
h[k′′] = invREv(B,A, offer, f ′, [T, st, B])

We have k′ < k′′ < k < i and make a case distinction

– Case 1: i′ < k′′, i.e. the process for offer is scheduled after the call on rqPerm

is made. However, when A.offer terminates, A.allowed[A.other(st)] is set to
True. This is proven by the following invariant in KeY-ABS:

∀ Train T. ∀ Section st. (K)

last(h) = futEv(self , offer, f, [T, st]) → self .allowed[st] = True

Thus σ[k](A) |= allowed[st] = True. But as σ[i′](A) |= allowed[st] = False

holds, it must be set to True at some point between i′ and k′. The only method
setting any key of allowed to True is setPreconditions. Only one such process
is active at any one time, thus there cannot be such a modification, and hence
no such k′ or i′.

– Case 2: k′′ < i′, i.e. the process for offer is scheduled before the call on
rqPerm is made. In this case we cannot rely on the allowed field of A. But,
B.unlocked[st] is set to False at the moment the call is made, i.e.,

σ[k′](B) |= unlocked[st] = False

This is proven by the following invariant in KeY-ABS:

∀ Train T. ∀ Section st. ∀ Station B. (K)

last(h) = invEv(self , B, offer, f, [T, st, self ]) → self .unlocked[st] = False

But when rqPerm terminates and returns True, then the line must be unlocked.
This is proven by the following invariant in KeY-ABS:

∀ Section st. (K)

last(h) = futEv(self , rqPerm, f, [True, st]) → self .unlocked[st] = True

Thus there cannot be such k′ or i′. ��

5.3 Train Involvement

Railway signals are managed by interlocking systems, but are not detached from
the actual movement of the trains: Zugmitwirkung (“Train Involvement”) is an



Deductive Verification of Railway Operations 143

Fig. 5. Zugmitwirkung (“Train Involvement”): The train has to trigger the second
signal before the first can be set to “Go” again.

established concept in German railway operations and states that certain actions
of the dispatcher are linked to actions of the train and their detection by the
infrastructure. We show the following property, taken from [18]: A signal can
only be set to “Go”, if the train that passed it the last time has left the covered
track. To ensure this, when a signal is set to “Halt”, after a train passed it, the
used line is locked. A signal can no longer be set to “Go” when the route is set to
the line while the signal is locked. A signal can only be unlocked when the signal
at the end of the covered section sends a backlock message. Figure 5 illustrates
the situation. The desired property, expressed as a statement over states (Step 1
in the verification scheme):

“If a non-entry signal S is set to “Go”, then the covered section is free of
trains going away from it.”

Given the procedure described above, we can again rephrase this into a
history-oriented version. For presentation’s sake, we do not consider the case
that a signal may cover multiple sections. Especially we do not deal with the
special requirements for entry signals (Step 2 in the verification scheme).

“If a signal S is set to “Go” twice, then a train triggered the point of
danger of the next signal at some time in between.”

Using our assumption of well-formed infrastructure (in particular that the
next field encodes the lines correctly), we can rephrase it more formally with
methods and fields as:

“If there are two position i, j with j < i, such that h[i] and h[j] are
invocation reaction events on setGo on some Signal S covering section S′,
then there is a k with j < k < i such that h[k] is an invocation reaction
event on trigger on next (S′).”

We can now formalize the property in ABSDL as an invariant (Step 3 in the
verification scheme, Step 4 is again performed in the proof):

Lemma 2. The following formula holds for all histories generated by the model
in Sect. 4 with a well-formed infrastructure. Let A be a Zmst and S a signal.

φ2(A,S) ≡ ∀i.
(
h[i] = invREv(A, S, setGo, f, []) →

∀j.
(
j < i ∧ h[j] = invREv(A, S, setGo, f ′, []) →

∃ DangerPt P.∃k. j<k<i ∧ h[k]=invREv(P, next(S.covers), trigger, f ′′, [])
))



144 E. Kamburjan and R. Hähnle

Proof sketch. W.l.o.g we only look at the last such position j. Let S be an exit
signal managed by Zfst A and covering section st. Whenever S.setGo is called, the
managing Zfst has outLocked[st] set to False. But after a train passed signal S,
outLocked[st] is set to True. In a well-formed infrastructure, before a train passed
a signal, no other train is dispatched on the same section, thus outLocked[st] must
have been set to False. The only such method is backlock which is only called by
the next Zfst once a signal has been triggered. In a well-formed infrastructure,
this can only be S.next. �	

5.4 Discussion

We have shown the following (informal) theorem:

Theorem 1. Every train departure is safe: when the exit signal S in station A
is set to “Go” for train T on a line L to station B, then the first section of L is
free, no train is on L in direction of A.

Formally, this theorem states that the following is an invariant for all histories
produced by the model when executed on a well-formed infrastructure.

∀ Zmst A. ∀ Section st. (φ1(A, st) ∧ ∀Signal S. φ2(A,S))

As Lemma 2 also reasons about block signals, we can also state the following:

Corollary 1. Every train run from station A to station B is safe: during the
run, no train will enter the line in the direction of A and whenever a signal is
set to “Go”, the next section is free.

Proof sketch. Induction on n, the number of Zfst between A and B.

– Case n = 0: In this case this is Theorem 1.
– Case n = n′ + 1: By induction hypothesis, the train passed the first n′ Zfst.

By Lemma 1 the permit token cannot be exchanged when the next signal is
set to “Go”, as the train is still on the line. By Lemma 2 the next section is
free, as a Zfst has no entry signals. �	
Formally, Corollary 1 states that the following is an invariant for all histories

produced by the model when executed on a well-formed infrastructure.

∀ Zmst A. ∀ Section st. φ1(A, st) ∧ ∀ Zfst Z. ∀Signal S. φ2(Z, S)

We do not discuss entry signal and entrance into stations. German regulations
differ between rules inside and outside of stations and in this work we only
reason about the outside rules. The shown properties involve multiple communi-
cating parties. More simple properties can be verified directly by reformulation
in ABSDL.

Lemma 3. If a station A accepts a train t, then there is a track reserved for t.
I.e., the following is an ABSDL invariant for the ZugMelde class:

∀ Train T. ∀ Section st. ∀ Station B. (K)

last(h) = futEv(self , B, offer, f, [T, st, B]) → ∃ Signal S. self .reserved[S] = T



Deductive Verification of Railway Operations 145

6 Conclusion

Following the feasibility study [14], the present work is the first time deductive
verification is applied to railway operations. Prior verification approaches con-
centrated on single components, not on the communication structure, and they
mainly used model checking. Our method is not intended to replace model check-
ing of interlocking tables and of consistency properties of the infrastructure. On
the contrary, we rely on those results by assuming a well-formed infrastructure
while reasoning about safety at a higher abstraction level. This allows us to
reason globally about systems, however, at the cost of full automation.

Our schema for verifying safety properties with active objects and deduc-
tive verification is not limited to the safety properties discussed above. It is as
well applicable to other domains than railways, as long as state changes can be
associated with events visible in the history. The proofs presented here are a
combination of mechanized and pen-and-paper proofs. It would have been pos-
sible to formalize and mechanize the whole theory and all proofs. The reasons
for the decision to refrain from doing so are twofold: (1) the pen-and-paper app-
roach allows to relate the structure of the proof to informal concepts from the
modeled domain, for example, the case distinction in Lemma 1. This strength-
ens confidence in the model. (2) While the theory of local histories is formalized
in KeY-ABS, arguments on the level of multiple objects require a more gen-
eral logic. KeY-ABS was designed and optimized with the verification of single
methods in mind—we conjecture that a formalization of stateful global histories
is possible, but the required amount of effort does not correlate with the benefits
of having more confidence in the proof.

Possibly, an other approach than a purely logical approach to compositional
reasoning may be a better fit, however, we do not know of any. The automation
of decomposition and localization of safety properties in distributed systems is
an open research question.

6.1 Related Work

This is the first full-fledged case study on deductive verification of railway oper-
ations, but verification of other aspects of railways has a long tradition which is
surveyed in [8].

Verifying railway operations so far has been mostly based on model check-
ing, where the state explosion problem prohibits the reasoning about microscopic
models with a large number of participants. To mitigate state explosion, several
approaches were proposed. Macedo et al. [16,17] describe a topological decompo-
sition that allows to check the monolithic model of the whole network by checking
sub-models. They propose two different cuts to split the monolithic model and
corresponding criteria for stations, that ensure that composition is sound. Sim-
ilarly to our approach, composition guarantees are shown outside of the tool.
However, they are still restricted to checking scenarios with a fixed number
of model elements, no general infrastructure. Their approach has tool support
for OCRA [3,15], a refinement-based approach which models component-based



146 E. Kamburjan and R. Hähnle

infrastructure with LTL contracts. Cappart et al. [2] verify by simulating the
most likely runs in a train station. However, their approach is not exhaustive.

A systematic comparison of the differences between our modeling of railway
operations and previous approaches to model components can be found in [14].

6.2 Future Work

The split of global invariants into local invariants was performed manually. We
plan to formulate safety properties as session types [11], which were recently
extended to the ABS concurrency model [13]. This will further automate the
verification, while the additional structure of session types allows to relate the
strucutre of the proof to real world concepts. We are also interested in the
verification of non-functional safety properties, especially deadlock-freedom. We
plan to extend the DECO tool [9] with all features needed to handle our model.
Furthermore, we plan to model all faults described in [4], fully formalizing and
verifying the notion of safety provided there and in related technical documents.

Acknowledgments. We thank the anonymous reviewers for their constructive
and valuable feedback. This work is supported by FormbaR, “Formalisierung von
betrieblichen und anderen Regelwerken”, part of AG Signalling/DB RailLab in the
Innovation Alliance of Deutsche Bahn AG and TU Darmstadt.

References

1. Beckert, B., Hähnle, R.: Reasoning and verification. IEEE Intell. Syst. 29(1), 20–29
(2014)

2. Cappart, Q., Limbrée, C., Schaus, P., Legay, A.: Verification by discrete simula-
tion of interlocking systems. In: 29th Annual European Simulation and Modelling
Conference ESM, pp. 402–409 (2015)

3. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: a tool for checking the refinement of
temporal contracts. In: 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 702–705 (2013)

4. DB Netz AG, Frankfurt, Germany: Richtlinie 408, Fahrdienstvorschrift (2017)
5. DB Netz AG, Frankfurt, Germany: Richtlinie 819, LST-Anlagen planen (2017)
6. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for

the concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.)
CADE 2015. LNCS, vol. 9195, pp. 517–526. Springer, Cham (2015). doi:10.1007/
978-3-319-21401-6 35

7. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Aspects Comput. 27(3), 551–572 (2015)

8. Fantechi, A., Flammini, F., Gnesi, S.: Formal methods for railway control systems.
STTT 16(6), 643–646 (2014)

9. Flores-Montoya, A.E., Albert, E., Genaim, S.: May-Happen-in-Parallel based dead-
lock analysis for concurrent objects. In: Beyer, D., Boreale, M. (eds.) FMOODS/-
FORTE -2013. LNCS, vol. 7892, pp. 273–288. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38592-6 19

http://dx.doi.org/10.1007/978-3-319-21401-6_35
http://dx.doi.org/10.1007/978-3-319-21401-6_35
http://dx.doi.org/10.1007/978-3-642-38592-6_19
http://dx.doi.org/10.1007/978-3-642-38592-6_19


Deductive Verification of Railway Operations 147

10. Hähnle, R.: The abstract behavioral specification language: a tutorial intro-
duction. In: Giachino, E., Hähnle, R., de Boer, F.S., Bonsangue, M.M. (eds.)
FMCO 2012. LNCS, vol. 7866, pp. 1–37. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40615-7 1

11. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. SIG-
PLAN Not. 43(1), 273–284 (2008)

12. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25271-6 8

13. Kamburjan, E., Din, C.C., Chen, T.-C.: Session-based compositional analysis for
actor-based languages using futures. In: Ogata, K., Lawford, M., Liu, S. (eds.)
ICFEM 2016. LNCS, vol. 10009, pp. 296–312. Springer, Cham (2016). doi:10.1007/
978-3-319-47846-3 19

14. Kamburjan, E., Hähnle, R.: Uniform modeling of railway operations. In: Artho,
C., Ölveczky, P.C. (eds.) FTSCS 2016. CCIS, vol. 694, pp. 55–71. Springer, Cham
(2017). doi:10.1007/978-3-319-53946-1 4

15. Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification of railway inter-
locking - compositional approach with OCRA. In: Lecomte, T., Pinger, R.,
Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 134–149. Springer,
Cham (2016). doi:10.1007/978-3-319-33951-1 10

16. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional verification of multi-
station interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9953, pp. 279–293. Springer, Cham (2016). doi:10.1007/978-3-319-47169-3 20

17. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional model checking of
interlocking systems for lines with multiple stations. In: Barrett, C., Davies, M.,
Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 146–162. Springer, Cham
(2017). doi:10.1007/978-3-319-57288-8 11

18. Pachl, J.: Systemtechnik des Schienenverkehrs: Bahnbetrieb Planen, Steuern und
Sichern. Springer Vieweg, Berlin (2008)

http://dx.doi.org/10.1007/978-3-642-40615-7_1
http://dx.doi.org/10.1007/978-3-642-40615-7_1
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/978-3-319-47846-3_19
http://dx.doi.org/10.1007/978-3-319-47846-3_19
http://dx.doi.org/10.1007/978-3-319-53946-1_4
http://dx.doi.org/10.1007/978-3-319-33951-1_10
http://dx.doi.org/10.1007/978-3-319-47169-3_20
http://dx.doi.org/10.1007/978-3-319-57288-8_11


Safety Analysis of a CBTC System: A Rigorous
Approach with Event-B

Mathieu Comptier1, David Deharbe1(B), Julien Molinero Perez1,
Louis Mussat2, Thibaut Pierre3, and Denis Sabatier1

1 ClearSy System Engineering, Aix-en-Provence, France
{mathieu.comptier,david.deharbe,

julienmolinero.perez,denis.sabatier}@clearsy.com
2 RATP, Paris, France
louis.mussat@ratp.fr

3 ClearSy System Engineering, Paris, France
thibaut.pierre@clearsy.com

Abstract. This paper describes a safety analysis effort on RATP’s com-
munication-based train control (CBTC) system Octys. This CBTC is
designed for multi-sourcing and brownfield deployment on an existing
interlocking infrastructure. Octys is already in operation on several metro
lines in Paris, and RATP plans its deployment on several other lines in
the forthcoming years. Besides the size and complexity of the system, the
main technical challenges of the analysis are to handle the existing inter-
locking functionalities without interfering with its design and to clearly
identify the responsibilities of each subsystem supplier. The distinguish-
ing aspect of this analysis is the emphasis put on intellectual rigor, this
rigor being achieved by using formal proofs to structure arguments, then
using the Atelier B tool to mechanically verify such proofs, encoded in
the Event-B notation.

With this approach, we obtain a rigorous mathematical proof of the
safety at system level—a level that is usually covered by informal reason-
ing and domain expert knowledge only. Such proof is thus feasible and
it brings to light and precisely records the knowledge and know-how of
the domain experts that have designed the system.

1 Introduction

Formal proof, instrumented with a formal method such as Event-B [1] and the
accompanying software Atelier B, has been shown to be a powerful tool to per-
form rigorous safety analysis at the system level [5,6].

Paris metro operator RATP has mandated ClearSy to perform a safety analy-
sis of an existing CBTC system, named Octys. The aim is to prove that the
system meets the safety goals: absence of collisions and derailments caused by
uncontrolled switches, no over-speeding, and passenger safety. The Octys CBTC
system is an assembly of subsystems, including for instance wayside and carborne
computers, also linked to external subsystems such as the wayside interlocking.
ClearSy’s task is to mathematically assert the safety by proving the above safety

c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 148–159, 2017.
https://doi.org/10.1007/978-3-319-68499-4_10



Safety Analysis of a CBTC System: A Rigorous Approach with Event-B 149

goals, based on the detailed specifications of these subsystems. We bring out the
reasoning ensuring these goals, first in an informal but completely rigorous way,
then we turn these reasonings into Event-B models proven with the Atelier-B
tool. The role assigned to each subsystem has to be based only on what we find
in the subsystems requirements, possibly with addenda or precisions if some
requirements turn out to be ambiguous or incomplete.

The Octys CBTC system is particularly fit for this, being the standard sys-
tem for the automation of existing RATP lines, carried out by a brownfield
migration to Grade of Automation level 3 (GoA 3), i.e. train operation is mostly
automatic, with a human pilot responsible for starting the train and taking over
driving in case of emergencies. Octys is defined through a set of interoperability
specifications allowing the use of subsystems from different independent suppli-
ers. Every global function has been carefully split into precise roles for each sub-
system, and the resulting requirements have gone through a considerable work,
to ensure that each subsystem can be seamlessly purchased from any compliant
vendor. This implies in particular very detailed interface specifications. Con-
versely, this carefully defined decomposition constitutes a system level design
that has a paramount global impact, including on the safety. So it would be
possible, and undesirable, that all subsystems match their Octys requirements,
but that safety issues still remain at the system level. Such pitfalls are difficult
to detect and solve, and, in case of failure, the responsibilities would likely be
that of the system integrator, namely RATP. This motivates the system level
mathematical proof presented here.

In this proof-oriented approach, we produce not only Event-B models and
Atelier B proofs, but more importantly textual documents, at least for the sake
of usability by users unfamiliar with Event-B. These documents identify the set
of requirements from the original subsystem specifications used to perform the
proof: because the proof was possible, we know that this set is at least sufficient.
All the needed precisions, complements or disambiguations are also listed and
explained. What if some requirements from the Octys specifications are not in
this set, in particular if they are marked as safety critical? In such cases their
role for the safety has to be carefully reviewed: either they are not needed, or
something has been missed.

In this paper, we first present details about Octys. Then we describe the
organization needed to perform such a proof. To give the reader an insight into
how such a proof works, we expose some example mechanisms involved in the
safety of Octys and how their rigorous proof is possible. We will also explain a
key point: how it is possible to insert the existing interlocking in such a proof,
without a detailed knowledge of its legacy design, considering its paramount role
in the safety for such brownfield CBTCs. Finally, we discuss the benefits of this
approach and the use of the results.

2 The CBTC System Octys

RATP (Paris Transport Authority) is undertaking a vast project to gradually
upgrade their subway lines with driver. Accordingly, a Communication Based



150 M. Comptier et al.

Train Control (CBTC) solution [3,7] named Octys, for Open Control of Train
Interchangeable and Integrated System, has been deployed since 2010. As a CBTC
system, its main goals are to improve throughput and safety by ensuring contin-
uous train speed control, to participate in ensuring the safety of passenger trans-
fers through the train and platform screen doors, to diminish the headway and
to reduce wayside signaling requirements. Also, Octys relies on multi-sourcing
and interchangeability. Indeed, the system is split in different sub-parts that are
to be developed by different suppliers and interchangeable as any compliant sub-
part, whatever its supplier, shall fit seamlessly in the system. Octys has been
deployed successively on Paris lines 3, 5 and 9; two other lines are scheduled to
be equipped in the near future. Since service should not be disrupted during the
migration, a key challenge is to maintain a good level of line availability.

The CBTC has four different subsystems: the train controllers, the zone con-
trollers, the data communication system and the I/O modules (Fig. 1). The train
controller is an on-board equipment that estimates the position of the train on the
line, according to the cartography, signals from beacons installed along the track,
and on-board odometric sensors. This calculated position is communicated to the
zone controller subsystem. The second main function of the train controller is to
continuously calculate and control the maximum speed authorized for the train
depending on movement authority sent by the zone controller. The zone controller
uses the train localizations and the interlocking system informations (track cir-
cuits, spot detectors, ...) to compute a track occupation mapping. This track occu-
pation is thenused to computemovement authority limits for each automatic train.
These limits are calculated to avoid train-to-train collisions and derailments over
uncontrolled switches. The I/O modules interface zone controllers with the inter-
locking for data such as track circuits occupation states or signal states. While the
communicationwith the zone controllers ismessage-based, the interfacewith inter-
locking is analog. Finally, the data communication subsystem provides the com-
munication infrastructure between the other equipments.

The specificity of the Octys CBTC is its adaptation to the RATP signal-
ing system: in Octys, the interlocking remains a separated system with a legacy

Fig. 1. Octys decomposition into subsystems. The blue blocks represent the wayside
CBTC systems, the carborne CBTC systems and the data communication system
between the wayside and carborne CBTC systems. The black boxes represent the
existing sub-parts to be renewed to operate with the CBTC solution. (Color figure
online)



Safety Analysis of a CBTC System: A Rigorous Approach with Event-B 151

design. Octys functions are tailored so that they fit with this existing design,
introducing groups of automated trains in spaces already protected by the inter-
locking. Indeed, Octys mainly relies on the interlocking to guarantee that trains
will not encounter unlocked switches, face-to-face collisions or side collisions over
switches (in particular, the Octys CBTC does not move the switches, they remain
under the sole control of the interlocking). This close interaction has an impor-
tant impact on our system level proof as we want it to be independent from the
legacy interlocking design; we had to carefully formulate the safety ensured by
the interlocking before addition of the CBTC and check that all the modifica-
tions involved by the CBTC indeed preserve the system safety. Two examples
are presented in Sect. 4.

3 Methodology

3.1 Organization

This project involves three partners: the operator of the system, the safety analy-
sis team, and a solution expert. The system operator is RATP and involves
experts in both formal methods and railway systems. These experts also have
access to the configuration of the existing lines where Octys is deployed and are
able to answer clarification requests with respect to the system requirements.
The analysis team is from ClearSy and initially started with three persons. It
gradually built up to a group of five engineers (not all of them working full
time on the project), with different technical background, but all with a strong
knowledge of formal methods. The solution expert partner is Siemens and has
a deep knowledge of Octys.

The main input for the analysis consists essentially of a dozen documents in
PDF format, on the following subjects: functional and technical system speci-
fication describing the overall architecture, the top-level requirements and the
main functionalities; specification of each subsystem with the specific hypotheses
and requirements; interfaces and communication protocols between the different
subsystems; interface between Octys and interlocking; system parameters; the
system data base; and the rationale for some (but not all) design choices for the
interface between Octys and interlocking. Each such source document is mainly
textual, with illustrative diagrams and a few tables.

The partners have monthly meetings where the agenda consists mainly of
presentations by the safety analysis team members. Such presentations typically
revolve around a specific property: the corresponding Octys mechanism is intro-
duced, illustrated with different scenarios and the draft of the proof mechanism
is presented. This serves several purposes: to obtain clarifications and to verify
that there is no misunderstanding with respect to the input documents, to vali-
date argument hypotheses, to present proof mechanisms. Also, partners interact
regularly by phone or by email, on an on-demand basis, mostly to provide to the
safety analysis team the elements they need to conduct their work. Within the
safety analysis team, informal discussions over technical issues occur routinely.



152 M. Comptier et al.

3.2 Approach

The goal is to produce a well-founded argument readable by anyone familiar with
the main mechanisms of a CBTC, where safety appears as a logical consequence
of a set of verified hypotheses. The absence of collision and of derailment derives
from precise properties that hold for every possible event. This allows to conclude
safety with a network topology that is neither known nor static. In a nutshell, we
associate to every train a so called train protection zone where it is guaranteed
to stay by its own braking forces, if nothing but the train changes on the track. If
such zones are safe from collision and derailment, then we may conclude globally.
An approach would be to study the evolution of the train protection zones caused
by the interlocking and the CBTC functions. However only the CBTC functions
are known and documented, whereas the sole hypothesis for interlocking is its
safety when no CBTC is added. The key is to prove that each CBTC function
leaves train protection zones safe, under the assumption that all the mechanisms
of interlocking, that may occur concurrently, are safe.

Initially, some, but not all members of the safety analysis teams, had a strong
background in CBTC systems. Of course none of them had previous knowledge of
the specifics of Octys. Therefore the initial stage consisted in leveling the domain
expertise across the team and in understanding the system. This was achieved by
reading the source documents, and by producing so-called exploratory scenarios,
i.e. simulating the system functionalities according to their understanding of the
specification. Such scenarios are validated by the solution expert.

The safety analysis follows a hierarchical decomposition, guided by a top-level
analysis of the different levels of protection zones and the impact of the differ-
ent functions of Octys on these protections. The result is a collection of related
safety arguments, each addressing a different target property. When expressing
properties, our formal approach proves beneficiary as it demands an unambigu-
ous and meaningful statement. A safety argument is a rigorous demonstration
demanding a global understanding of the system. Such demonstration is based on
hypotheses, which are justified with unsafe scenarios that would happen in case
they do not hold. In some cases, hypotheses are considered as terminal, if close
enough to a realistic truth (i.e. it is stated in the input document, is a physical
property, or is submitted to validation). Otherwise, an additional demonstration
is needed (see examples in Sect. 4).

For each analyzed property, a specific Word document is produced, according
to the following template: a front matter identifying the document, its author(s)
and history; an introduction describing the property, the corresponding mech-
anism, its role in Octys, and a list of reference documents; a statement of the
target property, with an exposition of the technical aspects of Octys related to
this property; a compendium of all hypotheses needed to argue that the prop-
erty stands; the rigorous demonstration of the target property under the given
hypotheses; the formalization in B of this demonstration, given as a set of formal
models that have been mechanically verified with the Atelier B tool; a lexicon
of frequently used notions useful to simplify explanations.



Safety Analysis of a CBTC System: A Rigorous Approach with Event-B 153

Hypotheses. There are three kinds of hypotheses. Firstly, an hypothesis may be
a pointer to a requirement, or set of requirements, found in the source documen-
tation. This is the most common kind of hypotheses, and may come together
with a request to change the wording of the requirement. Secondly an hypoth-
esis may be an implicit assumption that needs to be made explicit. It must be
submitted to the validation by an authority in the corresponding field. Thirdly,
an hypothesis may be a new property about some mechanism of the CBTC. In
that case, a proof of the property is necessary and a new document needs to be
produced.

Demonstration. It is in textual form, and is sometimes illustrated with pictures.
For clarity, entities may be represented by identifiers and conditions stated in
mathematical form, yet the argument is presented in a such way that it can be
read, followed and verified by an engineer without expertise in Event-B.

Formalization. The Event-B models formalizing the demonstration are included
in the document, together with comments. Event-B is a text-based formalism
to model systems by both specifying their properties, using classical logic, and
describing their behavior, as event-based state machines [1]. Although Event-B is
application domain-agnostic, its language includes simple mathematical entities
useful for system modeling: integers, sets, relations, sequences to mention but
a few. Event-B enforces that the user verify the behavior is consistent with the
properties, by including a systematic generation of so-called proof obligations
that the user must discharge, with the help of certified automatic and interactive
theorem provers. The Event-B models that this project produces are usually of
a small to moderate size and little effort is required from the user to discharge
the proof obligations. The reason is that each model captures the essence of an
argument establishing a specific property and nothing else, this argument has
been established beforehand. In some cases, this formalization uncovers a corner
case that has been omitted in the original argument. It usually requires little
work to rectify the argument and the corresponding Event-B model.

How do we ensure that Event-B models do not miss a technical detail, ren-
dering the proof irrelevant? Imagine for instance some kind of back-door func-
tionality requested in a remote part of a document, that would bypass the proven
mechanisms. There is obviously no other method to avoid this than to go through
all the source documents. We do this exhaustive coverage in a traced way; for
each document section we verify that it does not contradict what was modeled.
Indeed, as we model only what is needed to ensure the target safety proper-
ties, functional and performance related mechanisms are not detailed. To give a
rough example, we model that a train will stop before its movement authority
limit but we do not model anything predictive about how it could accelerate.
Nevertheless we do model that, when not braking in emergency, the train may
accelerate at any time, so all functionalities linked to starting train movements
(while not braking in emergency) in the source documents do not contradict the
models. So we have to check this for all models and all the source documents—a
demanding task, but the grouping of source documents by topics is of great help



154 M. Comptier et al.

here. If a requirement was given in the wrong source document regarding this
topic splitting, it would not be applicable correctly anyway.

4 Illustrative Examples

4.1 Track Circuits Backup Example

As stated in Sect. 2, railway interlocking systems use sensor devices, such as
track circuits, to detect trains. For instance, interlocking maintains a switch
locked as long as occupation of the track portion containing this switch holds,
ensuring protection against derailment on an uncontrolled switch (a top-level
safety property).

When a track circuit (TC) fails, it falls back to the occupied state. For
interlocking, this means that this track portion is potentially unsafe and that
trains should be prevented from entering it. Consequently, this fall-back behavior
preserves safety, but at the expense of availability. To improve throughput, Octys
has a function to back up TC occupancy, based on a logical tracking of trains
done by the zone controller. When Octys TC backup is enabled, interlocking sees
the track portion free if one of the sensor state and the output of this backup
function is free.

The backup modifies the timing between the detection of a train by a TC
and the acquisition of the information by interlocking. The traditional path
corresponds to the relay drop time (approximatively 200 ms). With backup, the
path requires additional time due to communication and processing. Therefore,
safety cannot be guaranteed without a careful analysis.

Without hypotheses on maximum train speed, minimal train length or min-
imal TC size, this new “occupation delay” may be so large that a train could
have left the TC area when it is seen occupied by interlocking. In theory, this
consideration exists already with the legacy system, but with a maximum delay
of 200 ms, it is clearly not an issue in practice. This is no longer the case when
the backup interfere, so a detailed analysis to prove that, when TC backup is
enabled, interlocking still ensures protection against derailment has been per-
formed. Essentially this analysis boils down to show whether the new delay is
small enough to ensure that interlocking will always follow train progression
based on TC information. This provides us the following target property (see
also Fig. 3).

Fig. 2. Flow of information for the track circuit backup.



Safety Analysis of a CBTC System: A Rigorous Approach with Event-B 155

Fig. 3. Trailing TC.

When a train circulates on an oriented track portion, covered by a set of
TCs N0, N1, . . . , Nk, there exists continuously a so-called “trailing track
circuit” having the following properties:

– interlocking sees it as occupied;
– the tail of the train is downstream the area covered by this TC.

The existence of such trailing TC ensures that interlocking maintains locked
the switches not yet crossed by the train and consequently protects the train
progression, as it did originally with TC sensors (see Fig. 2).

The proof of this property uses induction and consists in showing that,
assuming N0 is a trailing TC at time t0, then there exists a t1 such that t0 ≤ t1
and both N0 and N1 are trailing TCs. A simplified version of this argument
follows. Let us introduce a few notations: N being a TC,

– Ti(N): the time the train enters the area covered by N ;
– To(N): the time the rear of the train leaves the area covered by N ;
– Tocc(N): the time interlocking starts seeing N occupied;
– Tfre(N): the time interlocking starts seeing N free again.

This notation being set, we claim that:

Tocc(N1) ≤ Tfre(N0) (1)

The argument to establish those properties is based on the following hypotheses:

H1. Once a train has occupied a TC N , this TC takes a minimum delay Tmin ≥ 0
before it is freed upon the train leaving completely the area covered by this
sensor: To(N)+Tmin ≤ Tfre(N). Explanation: This is essentially equivalent to
say that a TC cannot become free while under a train. Note that, otherwise,
the legacy system would not have been safe.

H2. After a train gets on a TC N , this TC will eventually be seen occupied
by interlocking before a maximum delay Tmax: Tocc(N) ≤ Ti(N) + Tmax.
Explanation: This is the same as stating that a train cannot “jump over” a
TC. Again, otherwise the legacy system would not have been safe.

By applying H1 to N0 and H2 to N1, and assuming TCs are contiguous
(H3), the additional hypothesis Tmax − Tmin ≤ To(N0) − Ti(N1) establishes
inequality 1. This condition is sufficient to establish the proof. Essentially, it



156 M. Comptier et al.

imposes a constraint on the auto-crossing time, i.e. the time it takes a train to
cover, at full speed, the distance corresponding to its own length. Under the
given set of hypotheses H1–H3, this quantity has to be less or equal to the
difference between Tmax and Tmin. Assuming that trains respect speed limits
(H4), this leads to the following hypothesis about the possible values for the
system parameters to be able to deploy safely Octys’ TC backup function (H5):

Tmax − Tmin ≤ MinLength
MaxSpeed

Comments. The actual proof of the property takes into account other system
parameters, namely the gap of shunt between consecutive TCs and the non-
shunting dimensions at the ends of the trains. The existence and the value of
Tmin and Tmax must be verified by another study which needs to consider other
functionalities of the CBTC. We have verified that the values of the system
parameters in Octys are such that hypothesis H5 is indeed fulfilled, even though
neither the hypothesis nor its argument are explicit in the source document.
The analysis has been coded as an Event-B model and validated with Atelier B,
guaranteeing the correctness of the reasoning presented with no possible contest.

Our analysis based on formal proofs aims to uncover such arguments, done
during the design phase, and to explicit all necessary hypotheses. For the backup
function, we exhibited an hypothesis that constrains the possible values of
the system parameters and demonstrated that it is necessary to fulfill it to
avoid sequences of events leading to the derailment of a train over uncontrolled
switches.

4.2 Emergency Cancellation/Nominal Crossing Example

In railway interlocking, setting a route reserves a space for a train, where it can
progress with the guarantee that it is protected against collisions and derailments
on uncontrolled switches. When an emergency cancellation is requested, the
route signal turns red so that no train can enter it. But the route signal also
turns red as soon as a train occupies the first TC of that route. In Octys, signal
status is an input to several functions of the ZC. For automated Octys trains,
localization uncertainties difficult identifying the cause of the signal change by
the ZC. If the ZC wrongly identifies the cause of the signal change, it may either
force an unnecessary emergency brake of the train or authorize it to progress on
an unprotected route, as explained below.

First, consider a localized automated train K that crosses a signal S that
turns red because K occupies the first TC after S. The new aspect of S is
communicated to the zone controller (ZC). Also, K being localized, its position
is calculated by the on-board calculator then transmitted to the ZC. Note that
this position is tainted with two uncertainties: the measurement, transmitted as
well and known by the ZC; and the flight time of the messages. For the ZC,
K has been localized some seconds ago between two extreme positions. In this
scenario, the last position of K received by the ZC does not allow it to conclude



Safety Analysis of a CBTC System: A Rigorous Approach with Event-B 157

that the train has occupied the first TC. Assessing the situation, the ZC cannot
exclude the possibility that K is still approaching S, which could have turned
red due to a cancellation. This uncertainty occurs nominally, and commanding
the train to brake here would impair seriously availability. So the CBTC shall
avoid stopping a train on a red signal if there is a doubt that this red signal may
be caused by the progression of K.

Second, consider again a train K approaching a signal S, but now an emer-
gency cancellation occurs, causing S to turn red. As in the previous scenario,
the new aspect of S is communicated to the ZC, and due to the uncertainty in
the localization information, the ZC may see the head position of K downstream
S. Since the ZC cannot exclude the possibility that K has crossed the signal, it
cannot command to brake immediately. If nothing is done though, K may cross
S after the moment when the emergency destruction was executed. K would risk
either derailing on a moving switch or colliding against another train engaged in
a conflicting route set later.

The solution to this uncertainty is to delay braking after the signal turned
red. Nevertheless, this delay shall imperatively end soon enough to ensure that K
will be stopped before the route cancellation delay expires. As far as formalism
is concerned, the proof consists in exhibiting the reason why K is safe, either if
it is stopped soon enough, or if it crosses the signal before the deadline.

Synthesis. On the one hand, a supplier wishing to implement the ZC subsystem
should obey rigorously the safety demand and command the train to brake before
it is too late, on the other hand, it should also optimize the functionality for its
system, by providing the widest possible window for the train to cross the signal.
In order to meet both criteria, an unambiguous description of the last moment at
which the ZC should command the braking is needed. Conveniently, one corollary
result of the formal argument we developed for this case is the valuation of the
maximum delay before a ZC commands the braking.

5 Discussion and Lessons Learnt

As presented before, for each target property we analyze the mechanisms and we
find the “reason why it always holds” before writing Event-B models. However we
discovered that the reasoning is far from being complete until the corresponding
Event-B models are written and proved. It appears that it is very difficult, or
nearly impossible, to obtain the expected rigor without formulating in some
kind of mathematical language; Event-B and the Atelier B tool serve here as a
test of rigor. Of course, we have to ensure that all aspects of the reasoning are
correctly captured in the B models: this is done by verifying that if we remove
any required hypotheses according to the informal reasoning, the proof in the B
model actually becomes impossible.

With this process we isolate a set of hypotheses sufficient to ensure each
property; these hypotheses have to be requirements found in the input docu-
ments, sub-properties proved afterwards, or agreed precisions to be added. Our



158 M. Comptier et al.

output documents detail these requirements and precisions: this is probably the
most important benefit of this work, as it allows the identification of possible
pitfalls and the improvement of the source documents. One interesting case is
when some requirements marked as safety critical are not used in our reasoning.
Then the topic must be carefully examined with the domain experts to find out
what those requirements were meant for. This can be difficult as Octys is based
on the design of existing CBTCs that were developed over a long period of time.

Anyway, the interaction maintained with the domain experts is of paramount
importance. This is not an easy topic: the proof team in this effort arrives after
the design, as a kind of independent assessment in an already multi-supplier
context, and the proof directly deals with the know-how and the know-why of
this design. Any pitfall or needed precision that we find will be correctly taken
into account only if the involved domain experts have enough time to carefully
check these findings and are convinced. Then this contribution is perceived as a
benefit, not a burden.

The ideal solution would be that the proof team be present with the design
team from the time of what we could call the “prospective design ready” phase,
i.e. when the design exists but is not yet finalized. There the notions found by
the proof team could be directly used by the design, with benefits in obtaining
the system level safety as well as in optimizing the subsystem requirements,
potentially leading to an easier development of subsystems. We think that the
proof team shall remain separated from the design team, as proof as well as
design are demanding tasks that deserve a full dedication and because the proof
team shall remain neutral regarding the choice of design solutions. A frequent
and trusted interaction between the teams, although not necessary, would make
the approach even more efficient and beneficial.

In the case of a multi-supplier interoperability specification like Octys, the
interaction between design and proof is more complicated: the system level design
is stabilized and the subsystems’ design is the responsibility of suppliers, either
existing or future. In this context the subsystem properties used as assumptions
in our proofs could become target proof goals for the design of these parts.
RATP uses formal methods to assert the correctness of such subsystems’ design,
particularly at software level by verifying the software source code of the supplier.
So the output proof assertions from the system level proof could be used as target
properties for this software formal verification. This is not yet done but certainly
forecasted.

6 Conclusion

We have presented an on-going effort to analyze the safety of a CBTC sys-
tem designed for deployment on existing interlocking using a rigorous approach.
This approach consists in expressing properties key to the system safety, both in
natural language and mathematical notation, and in constructing formal proofs
that these properties hold. During the construction of these proofs, all neces-
sary hypotheses are identified, be they explicitly stated in the specification of



Safety Analysis of a CBTC System: A Rigorous Approach with Event-B 159

the system, physical laws, or requirements appearing to be missing from the
specification.

While this effort is yet unfinished, it is now clear that such system level
proof is feasible for a system like the Octys CBTC, with the appropriate level of
independence with the intricate but out of scope interlocking. The findings are
discussed in an on-going basis and already provide their benefits. In addition,
the output results are expected to be used as input properties for subsystem
formal analysis performed by RATP [2].

We forecast that the future Octys instantiations will put into light the benefits
of this proof, through the presence of well established, strong safety related
reasonings and the absence of system level pitfalls or doubts. We believe that
this work will stimulate the application of this kind of system level proof for
industrial projects.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Bonvoisin, D.: 25 years of formal methods at RATP. From manual approach for
proof of programs to instrumented demonstration of railway systems safety (2016)

3. Forioni, S.: An Innovative Approach and An Adventure in Rail Safety. Computer
Engineering Series. Wiley, New York (2014)

4. Lecomte, T., Pinger, R., Romanovsky, A. (eds.): RSSRail 2016. LNCS, vol. 9707.
Springer, Cham (2016). doi:10.1007/978-3-319-33951-1

5. Sabatier, D.: Using formal proof and B method at system level for industrial
projects. In: Lecomte, T., et al. [4], pp. 20–31. doi:10.1007/978-3-319-33951-1 2

6. Sabatier, D., Burdy, L., Requet, A., Guéry, J.: Formal proofs for the NYCT Line 7
(Flushing) modernization project. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid,
S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp.
369–372. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30885-7 34

7. Tremblin, C., Lesoille, P., Rezzoug, O.: Use of Formal Proof for CBTC (Octys).
Computer Engineering Series. Wiley, New York (2014)

http://dx.doi.org/10.1007/978-3-319-33951-1
http://dx.doi.org/10.1007/978-3-319-33951-1_2
http://dx.doi.org/10.1007/978-3-642-30885-7_34


B-PERFect

Applying the PERF Approach to B Based
System Developments

Alexandra Halchin1,2(B), Abderrahmane Feliachi1, Neeraj Kumar Singh2,
Yamine Ait-Ameur2, and Julien Ordioni1

1 RATP, ING/STF/QS, 54 Rue Roger Salengro, 94724 Fontenay-sous-Bois, France
{alexandra.halchin,abderrahmane.feliachi,julien.ordioni}@ratp.fr

2 INPT-ENSEEIHT/IRIT, 2 Rue Charles Camichel, 31071 Toulouse, France
{Alexandra.Halchin,nsingh,yamine}@enseeiht.fr

Abstract. An independent safety assessment of railway software systems
is performed by RATP (Régie Autonome des Transports Parisiens) for all
safety-critical systems before their deployment in its network. Whenever
possible, this activity is performed using the PERF approach (Proof Exe-
cuted over a Retro-engineered Formal model). PERF is a methodology
which handles formal verification of already developed software. This app-
roach is applied to a variety of software systems, developed using languages
such as SCADE, Ada or C. It provides an alternative verification that can
be applied for the independent safety assessment of critical systems used by
RATP. In this paper, we propose the B-PERFect method to generalize the
application of the PERF approach for critical systems which are based on
the B method. In particular, this paper focuses on transformation strategy
from B language to the pivot language of PERF: HLL. HLL is a synchro-
nous data-flow language equipped with formal verification techniques. The
differences between B and HLL are pointed out and the translation process
is presented in this regard.

Keywords: PERF · B method · HLL · Safety assessment · Translation

1 Introduction

For several years, RATP has been involved in the application of formal ver-
ification techniques to assess the safety level of railway systems. RATP pays
a lot of attention to the safety of its deployed systems. This safety regime is
implemented through a mandatory internal independent safety assessment of all
safety-critical railway systems. It gave birth to a formal verification methodology
called PERF [3]. It is an independent assessment that helps to double-check the
safety of the developed software in addition to the verification performed by the
software supplier.

PERF was designed to be applicable to any software system independently
of their development processes and languages. By taking the source code of
the developed software as the target of the verification, it ensures a complete
c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 160–172, 2017.
https://doi.org/10.1007/978-3-319-68499-4_11



B-PERFect 161

language-agnostic and non-interference with the software supplier which dras-
tically reduces any possible bias. It also allows for applying formal verification
techniques to the safety assessment activity, which is not always achieved by the
software supplier in its safety verification.

In order to support the different solutions of all RATP’s suppliers, a number
of translators were developed and integrated into PERF. These translators give
a formal representation of the targeted source code in the PERF’s pivot language
HLL, a synchronous data-flow language, similar to Lustre, allowing to express, in
the same formalism, the system behavior as well as safety requirements. The role
of the translators is to give a semantics-preserving formalization of the software
to be analyzed in HLL. Currently, translators for SCADE, Ada and C languages
are integrated in the PERF tool chain.

In a similar vein, the B-PERFect project was initiated in order to investigate
the applicability of PERF on software systems developed using the B method
[1]. Software systems developed using B are valid by construction with respect
to safety requirements. The idea behind the B-PERFect project is not to replace
the formal verification process of B but to propose a verification alternative to
be used for the internal independent safety assessment. This will not question
the proof process of B. However, it may eventually reveal any error in the initial
formalization of safety requirements.

This paper describes a new approach for software safety verification and
gives an overview of a translation process from B0 (a subset of B language close
to imperative programs) to HLL, the pivot language of PERF. Moreover, it
shows the general architecture of the code generation process, including technical
challenges related to tool development. Section 2 introduces the context of this
work and motivates the proposed approach. The required background related
to the B method and HLL is described in Sect. 3. Section 4 presents the general
translation strategy. In Sect. 5, we present some related works. Finally, Sect. 6
concludes our work along with future directions.

2 Context

RATP operates one of the most complex urban multi-modal public transporta-
tion networks in the world. In the Parisian region, its network includes 16 metro
lines, 2 RER (intercity trains) lines, 7 tramway lines and more than 300 bus
lines; transporting not less than 10 Million passengers each day. RATP has built,
throughout the years, a rich expertise not only in operating transportation net-
works, but also in the engineering of railway transportation systems. This exper-
tise made RATP one of the world pioneers in metro automation and one of the
experts in automating existing lines.

The growing demand of transportation capacity coupled with continuous
advances in computer technology accelerates the obsolescence of existing sys-
tems. These factors, added to the improvement and modernization desires, have
led RATP to upgrade its network by adopting integrated and upgradeable solu-
tions, through partially or fully automated transportation systems. The coexis-
tence of these different systems brings additional difficulties, particularly related



162 A. Halchin et al.

to the safety assessment of the railway systems which depend on the automation
level of these systems. One major concern of RATP is to ensure the safety of
any deployed system on the network during all the project phases.

In order to guarantee a better and more extensive safety analysis, RATP’s
engineering department (ING) relies, whenever possible, on rigorous verification
methodologies based on formal methods. One of the first application of formal
methods in an RATP project goes back to the late eighties were the Z method
revealed a number of safety critical bugs for the SACEM system (RER A) which
already passed the tests campaign. This successful application of formal methods
led RATP to require their use by all safety-critical software systems suppliers. As
a consequence, the development of the first driverless metro line in Paris (Line
14) in 1998 was realized using the B formal method. The safety of the system
was proven by the construction which helped to remove all testing phases while
guaranteeing a complete coverage.

The use of formal methods cannot be required by RATP anymore because,
according to the regulations, this would promote some suppliers over the others.
However, the use of a formal development method is still highly recommended
by RATP to all its suppliers. In addition, an independent safety assessment is
performed internally by RATP. RATP’s opinion is that using formal methods
independently of the supplier reveals usually more bugs than the simple verifica-
tion of the supplier’s testing campaign. Since the 2000s, RATP is working with
different suppliers, using different development methods and languages. This
heterogeneity requires RATP to master all its supplier methods and languages,
which introduced a skill management difficulty with regards to the assessment
process. The solution was to use a unified verification approach, pointed as an
“ex post facto” proof, for the different projects which allows for the application
of formal verification independently of the supplier’s development language or
method.

This situation was the starting point of the PERF (Proof Executed over
a Retro engineered Formal model) methodology and its supporting team. The
technique has been successfully used on Thales, Ansaldo and Alstom (ex-Areva
TA) products, in charge of the Computer Based Interlocking Lines 1, 4, 8 &
12, the wayside and the on-board equipment of CBTC (Communication Based
Train Control) Line 3, 5, 9 & 13 projects. PERF is now applied in every project,
whenever possible, meaning essentially when the source language of the software
is supported. This is currently the case for projects developed using C, Ada
or Scade languages. The general workflow of the PERF methodology is given
in Fig. 1. The real strength of PERF is its supporting tool chain, composed of
translators, counter-example analyzers and SAT-based proof engines [17].

A number of projects keep using the B method for the development of safety-
critical systems. In this case, the independent assessment is a bit more com-
plicated and might be intrusive in some situations. Even though the formal
verification performed by the B proof engines can be trusted, the validation
of the safety properties can only be performed by cross-reading which, besides
being a tedious task, may not be very effective. The idea of the B-PERFect
project is to provide an independent alternative for the verification of the safety



B-PERFect 163

Software
(source code, for-

mal model ...)

Front End
(Translator)

Formal execution
model

System
environment
(assumptions)

Formal envi-
ronment model

Safety
requirements

Proof Obligations

Proof engine

Counter
examples

Proof
certificate

Counter exam-
ple analyzer

Fig. 1. The PERF verification workflow

properties on systems developed using the B method. The B code is transformed
in a HLL formal execution model. To this model, the safety requirements targeted
by the verification are added and the entire model is passed to the prover. By
doing so, one can prove initial system properties which are expressed in natural
language. The idea behind this is not to prove again the existent B code but to
check if safety properties were modeled correctly in the initial code. The PERF
approach makes this verification non intrusive and also supports the verifica-
tion of the code generation process if needed. It will also help, in the context of
heterogeneous systems, to apply a unified verification to all system components.

3 Background

B Method. The B method is a formal method based on first-order logic and
set theory. It can handle a complete critical-software development process from
specification to code [1]. The B development process is layered. Each layer corre-
sponds to an abstraction level and the refinement provides the relation between
layers. This method has proven its feasibility for large-scale industrial applica-
tions, particularly in railway domain [2].

Models are represented in B as machines. A machine contains state variables,
instances of other machines, a state invariant, an initialization clause and oper-
ations acting on the defined variables. Generally, B project models represent a
state transition system in which the initialization clause sets the initial values of
variables and the operation clause specifies how variables are modified from one
state to another. The invariant describes the safety properties of the model and
is specified using predicate logic. The highest level of abstraction is the specifica-
tion, a representation of functional requirements and the lowest one corresponds to
the implementation where only programming-like constructs are allowed [7]. The
refinement is the process of transformation from an abstract model into a con-
crete model specified in a subset of the B language: the B0 language, which can



164 A. Halchin et al.

be automatically translated into executable code [5,14,18,19]. Last level of refine-
ment called implementation must be deterministic. For instance, parallel substitu-
tions are not allowed, the type of variables must be scalar and modules are written
in a procedural style. The advantage of using the B method is that it supports a
correct by construction development approach which implies that each step of the
development process can be proved if the target is a zero bug development.

B Development Example. As an example, the below implementation
describes a simplified B machine which reads the input values from an external
machine and computes the minimum of two variables. This example contains two
B machines: Utils i defines auxiliary operations and Main i defines the main
program. The Main i machine represents an entry point of the execution. Main
is an operation to select an order of the execution using defined operations in the
imported machine. In the example, firstly, the operation computeSum is called
that changes the state of the machine Utils i as a side effect. The variable xx
is initialized using the output of the operation readVar. This operation returns
the value of a variable which is modified when computeSum is called. Finally,
the minimum of two variables is computed using the operation minimum.

1 IMPLEMENTATION Main_i REFINES Main IMPORTS Utils
2 CONCRETE_VARIABLES xx,yy,rr
3 INVARIANT xx ∈ NAT ∧ yy ∈ NAT ∧ rr ∈ NAT
4 INITIALISATION xx := 0 ; yy := 0 ; rr := 0
5 OPERATIONS
6 Main =
7 computeSum ; xx <-- readVar ; rr <-- minimum (xx , yy)
8 END
9 END

Listing 1. Main Implementation of B Machine

1 IMPLEMENTATION Utils_i REFINES Utils
2 CONCRETE_VARIABLES sum
3 INVARIANT sum ∈ NAT
4 INITIALISATION sum := 0
5 OPERATIONS
6 rr <-- minimum (aa, bb) =
7 IF aa >= bb THEN rr := bb ELSE rr := aa END ;
8 computeSum =
9 VAR ii IN ii := 0 ;

10 WHILE ii < 2 DO
11 ii := ii + 1 ; sum := sum + ii ;
12 INVARIANT ii ∈ NAT ∧ ii ≤ 2
13 VARIANT 2 - ii
14 END
15 END ;
16 rr <-- readVar =
17 rr := sum
18 END

Listing 2. Utils Implementation of B Machine



B-PERFect 165

HLL, the Pivot Language of PERF. The PERF approach is built around
HLL (High Level Language), a formal declarative and synchronous data flow
language in the tradition of LUSTRE [11]. Models are defined by typed streams
that can be composed using either temporal or data operators. Temporal oper-
ators can be used to describe clock-dependent expressions. The data operators,
such as arithmetic, logical and array operators, are used to manipulate streams
values. The declarative nature of the language makes it suitable for the definition
of formal models as well as safety properties.

An HLL model is described by a number of sections containing type defini-
tions, constant definitions, stream declarations and definitions, proof obligations,
constraints and namespaces definitions. Streams can have integer or boolean val-
ues and they are interpreted in the mathematical sense, without any notion of
side effects. The notion of sequentiality is absent, which means that the order of
the items does not affect the meaning of the HLL model. A HLL project is orga-
nized in namespaces sections. Streams are declared in declarations blocks with
type checking information, and their values are given in the definitions blocks.
The proof obligations block contains a set of properties related to streams for
verification purpose. Constraints expressions are used to reduce the domain def-
inition of unbound input streams.

HLL Development Example. This section describes the HLL model that
would result from translating the B example given above. The produced HLL
model contains two namespaces, one corresponding to the translation of the
Main i machine and another for the translation of the imported machine
Utils i. For each B operation, a corresponding HLL namespace section is cre-
ated, such as "Main" which contains the translation of the B operation Main.

1 Namespaces: "Main_i"{ // B: Main_i implementation
2 Declarations:
3 int "xx"; int "yy"; int "rr"; int "xx<0>"; int "yy<0>";int "rr

<0>";
4 Definitions: "xx<0>" := 0; "yy<0>" := 0; "rr<0>" := 0;
5 "xx" := "Main"::"xx<1>"; // B: xx <-- readVar;
6 "yy" := "Main"::"yy<0>";
7 "rr" := "Main"::"rr<1>"; // B: rr <-- minimum(xx,yy)
8 Namespaces: "Main"{ // B: Main operation
9 Declarations: int "xx<0>"; int "yy<0>"; int "rr<0>";

10 Definitions:
11 "xx<0>" := "Main_i"::"xx<0>"; // Maps the initial values of

variables
12 "yy<0>" := "Main_i"::"yy<0>";
13 "rr<0>" := "Main_i"::"rr<0>";
14 "xx<1>" := "Utils_i<0>"::"readVar<0>"::"rr"; // Operation call
15 "rr<1>" := "Utils_i<0>"::"minimum<0>"::"rr"; // Operation call
16 }}

Listing 3. HLL Translation of Main Machine

HLL is an SSA language (Single State Assignment) since, in a model, a stream
can be assigned only once. As stated in [8], when converting from a programming
language to SSA form, assignments of a program variable are replaced with



166 A. Halchin et al.

assignments to new versions of the variable. Each B assignment will thus be
translated to an HLL assignment with a new version of the modified variable.
The value of the original variable is replaced by the value of the last known
version of this variable.

17 Namespaces: "Utils_i<0>"{ // B:Utils_i implementation
18 Declarations: int "sum<0>"; int "sum<1>";
19 Definitions: "sum<0>" := 0;
20 "sum<1>" := "computeSum<0>"::"sum";
21 Namespaces: "computeSum<0>"{ // First call of B: computeSum

operation
22 Declarations:
23 int "sum<0>"; int "ii<0>"; int "ii<1>"; int "ii<2>"; int "sum";
24 Definitions:
25 "sum<0>" := "Utils_i<0>"::"sum<0>"; "ii<0>" := 0;
26 // While Loop - iter 0
27 "ii<1>" := "ii<0>" + 1;
28 "sum<1>":= "sum<0>" + "ii<1>";
29 "ii<2>" := if "ii<0>" < 2 then "ii<1>" else "ii<0>";
30 "sum<2>" := if "ii<0>" < 2 then "sum<1>" else "sum<0>";
31 //... Repeat the loop code with new index
32 "sum" := "sum<4>";
33 }
34 "readVar<0>"{ // First call of B: readVar operation
35 Declarations: int "rr";
36 Definitions: "rr":= "Utils_i<0>"::"sum<1>";
37 }
38 "minimum<0>"{ // First call of B: minimum operation
39 Declarations:
40 int "aa<0>";int "bb<0>";int "rr";int "rr<0>";int "rr<1>";int"rr

<2>";
41 Definitions:
42 "aa<0>" := "Main_i":":Main"::"xx<1>"; //Mapping of input

parameters
43 "bb<0>" := "Main_i"::"Main"::"yy<0>";
44 "rr<0>" := "bb<0>"; // IF block substitution
45 "rr<1>" := "aa<0>"; // ELSE block substitution
46 "rr<2>" := if "aa<0>" >= "bb<0>" then "rr<0>" else "rr<1>";//IF

block
47 "rr" := "rr<2>";
48 }}

Listing 4. HLL Translation of Utils Machine

Line 3 defines the variables used for the translation of the machine Main i
with their corresponding type. Line 4 and lines 8–16 represent the computation
done in blocks INITIALISATION and OPERATIONS of the B machine, respec-
tively. In line 14, the output of the operation readVar is assigned to the local
variable "xx<1>". Note that state variables are necessary to memorize the final
values of variables after the execution of the operation Main (lines 5–7). As
the operation call computeSum, does not modify the state of variables in the
machine Main i, its translation is not present in the Main namespace. Lines
21–35 represent the translation of the first call of computeSum.



B-PERFect 167

4 Translation Principles

Our work consists in translating concrete formal models based on B0 language
in HLL. We propose a transformation strategy, allowing to obtain an equivalent
HLL code which is further used for verification purposes. The goal of this work
is to obtain HLL models which are behaviorally equivalent to B modules.

The semantic-preserving translation from B to HLL is not straightforward.
The first issue to handle is the semantic mismatch between the two paradigms.
Thus, a particular attention has to be given to several notions like variable
values evolution and updates or loops behaviors. An example of such problems
is illustrated in Listing 1. There, a B machine may have operations with side-
effects, implicitly affecting the state of another B machine. For Main i machine,
the changes that occur to the variables in order to compute the value of the
sum are transparent and not explicit. If the translation process does not follow
the correct sequence of the variable changes, the generated HLL model may be
erroneous. This kind of scenarios is very tricky to handle. It leads to incorrect
HLL models and may hide problems related to safety. Figure 2 illustrates the
general translation process made of three main steps: B parsing, preprocessing
and code generation. In this paper, we focus on the code generation phase.

The first step of our approach generates an intermediate tree representa-
tion AST (Abstract Syntax Tree) of an input code by analyzing it syntactically
and semantically. B0 is close to an imperative programming language and han-
dles deterministic B instructions: concrete data (variables and constants), SEES,
USES and IMPORTS clauses, and operation calls. Due to the semantics of the
HLL language, the preprocessing step annotates the abstract syntax tree with
additional information useful for variables evolution or loop transformation. This
annotation defines an environment used and updated on the fly by each applica-
tion of a translation rule. The last part of the process is the HLL code generation.
Below, we give the relevant elements related to the code generation process we
have set up. We have limited this description due to space limitation.

General Concepts. At the present time, we are interested in translating the
IMPLEMENTATION module, the lowest level of a B project, in HLL. Since
HLL proposes constructs to divide models in small units and to avoid naming
conflicts, the initial B component structure can be preserved in the translation.

B Model B Parsing Preprocessing HLL Generation HLL Model
Env

Update Environment

Translator

Fig. 2. Translation Workflow from B to HLL



168 A. Halchin et al.

Therefore, we propose to model B machines as HLL namespaces because both
have a notion of variable scoping and structuring facilities which lead to a certain
data encapsulation. Dependent machines obtained from IMPORTS, USES and
SEES clauses must also be translated into HLL namespaces.

The language used in B expressions is essentially predicate logic and set
theory. A B arithmetic expression is a mathematical formula that can con-
tains constants, variables and operators. The supported arithmetic operators
are: +,−,×,÷. A predicate expression is evaluated to be true or false in B0 as
branching conditions of if substitutions or in while loops. Except for division, the
translation of B expressions and B predicates is straightforward because HLL
provides the same quantifiers as B [15].

Sequence. In B0, a sequence represents an action which leads to the next action
in a predetermined order. All B variables are translated in HLL variables with
equivalent types. The link between B0 variables and HLL variables is very crucial
for semantics preservation of the translation. This link is not very obvious. In B,
variables may evolve during the execution of operations, whereas, in HLL, they
correspond to data streams without memory and having a unique value during a
cycle. However, our goal is to maintain memory state consistency between B and
HLL representation. The HLL equivalent representation of a B variable xx is
"xx<i>" for each occurrence i of this variable in left-hand side of an assignment.
A new HLL variable is defined by the concatenation of the B variable name and
its state evaluated in the translation context. While applying this renaming
process, the following properties must be preserved: (i) all value changes of a
variable shall be traced and (ii) generated code shall preserve the semantics of
the B language. Therefore, the context in which a variable modification occurs
is stored and associated to a variable.

Operations. In B language, the dynamic parts of the components are modeled
by substitutions, which allow the modification of the data space of a model.
Substitutions are used in INITIALISATION and OPERATIONS clauses of a B
machine. The proposed transformation of B0 substitutions is based on the under-
standing of the semantic differences between HLL and B. The general form of
an operation is: out ← op name(in) where in and out can be variables or lists of
variables representing the parameters of the operation op name. Each B oper-
ation is translated in HLL as follows: inside the namespace associated to the
translation of a machine we define a new namespace section which contains the
translation of an operation. This namespace will have the same name as the
original operation appended to an index, counting the different calls of the lat-
ter. Parameter passing is one of the crucial points for the semantics preservation
when translating programs [4]. In the B language, parameters are passed by ref-
erence when calling operations. HLL does not support functions with non scalar
types as it is used in common programming languages. In order to preserve the
B semantics when transforming to HLL, the translation of B operation call is
realized in two steps by separating the operation body substitutions translation



B-PERFect 169

and the parameter mapping translation. Extra assignments are introduced in
order to map the effective input parameters to formal input ones in an opera-
tion call namespace. This situation is illustrated in Listing 4, lines 42–43 where
variables "aa<0>","bb<0>" have the role of formal input parameters of the
namespace. The operation output it is transformed in a new assignment as shown
in Listing 3, line 15.

If Conditions. Both languages provide IF construction with the difference that
in HLL it is an expression where in B language it is a statement. In order to
merge the information issued from different control flow branches, the translation
is performed in two steps. First, the blocks of instructions of each branch are
translated (Listing 4, lines 44–45 ), second, extra conditional HLL assignments
are introduced taking into account the condition evaluated initially and the
previous substitutions. In the example of minimum operation, this corresponds
to line 46 of Listing 4.

While Loops. Unlike the B language, HLL does not support loop structures.
Therefore, B loops should be flattened in the HLL model. The general form of
a loop construct in B0 is WHILE C DO S INVARIANT I VARIANT V END,
where S is a substitution, C is a boolean expression, I is a loop invariant and V is a
variant that guarantees the loop termination. In B, while loop is a shorthand
for writing the same block of instructions many times. A while loop must
end after a finite number of iterations a variant is required. We propose to
translate while loop as HLL if expressions repeated as many times as
the maximum number of iterations needed to exit the loop. This information is
extracted using the VARIANT clause. The substitution S is translated using HLL
constructs. The translation of invariant is not explicitly required in the HLL code,
but it could be modeled as HLL Proof Obligations or Constraints. In the example
presented in Listing 2 the maximum number of iterations of the loop is 2, so the
HLL translation process repeats according to it. In Listing 4, lines 26–30 show
the translation of the first loop iteration. The fact that variables are expressed
in function of condition and their previous value guarantees the correctness of
the translation by value propagation even if the number of iterations is an over-
approximation.

5 State of the Art

There are several works [4,18,19] focusing on code generation in many pro-
gramming languages (i.e. C, Ada and Java) from B specifications. In [13], the
authors present a set of translation rules from B to Java/SQL studied in the
database domain. To increase the use of formal methods, a tool B2Jml [6] was
developed to produce JML specifications from B models. Bonichon et al. [5]



170 A. Halchin et al.

have developed LLVM-based code generator that provides llvm executable code
for B specification. Moreover, they have also developed a tool b2llvm to auto-
mate the code generation process. Furst et al. [10] proposed a code generator
to produce C code from Event-B models. In Singh et al. [14], a tool supported
code generator, namely EB2ALL, producing source code in many programming
languages from verified Event-B specifications is described. Following similar
principles, Ge et al. [15] have proposed an approach for translating Event-B
models into HLL models. In fact, the main objective of this work is to produce
C code from Event-B specification using an intermediate HLL representation.
To our knowledge, the proposed translation approach from Event-B to HLL is
not automated yet. Similarly, Petit-Doche et al. [16] reported an a posteriori
approach for applying formal methods on the developed software, in which a
translation strategy is proposed to transform SCADE code to HLL code. In [12],
the authors present an approach based on the synchronous language SIGNAL [9]
to validate system designs. SIGNAL formal models are generated from C/C++
programs using an SSA intermediate representation. Moreover, translators from
C, ADA to HLL already exist. The used translation strategy is not a direct one.
An intermediate imperative language is used as a pivot language. There, the
goal is to avoid multiple translation steps and to master the whole translation
process. It is important to observe that our approach is in similar vein in order to
increase confidence in the generated code and promote the use of formal meth-
ods in industrial practices. In our work, we propose a translation strategy to
produce HLL code from B specification covering the whole B project. Moreover,
our approach also highlights the process of translation from a tool development
point of view.

6 Conclusion

We study the applicability of PERF, an industrial toolset which allows the formal
verification of systems independently of their development process, on software
developed in B. This paper presents our approach to generate verifiable HLL
code from an implementation described as B0 code. We focus on the core con-
cepts to ensure semantics preservation when translating B0 implementations to
HLL data-flow language. The semantic differences between the two studied lan-
guages are pointed out and a general translation scheme is proposed. We describe
a translation process as well as a set of translation principles for the constructs
that require a particular attention. Our initial ideas are already under develop-
ment on a prototype tool for automatic translation. In this perspective, we have
investigated the existing B parsers and BCompiler1, an open source tool that
offers complex parsing features for syntactical and semantical analysis.

Our future work consists in providing a formalization of the translation rules
which shall cover the whole B components and constructs. The correctness of
1 https://sourceforge.net/projects/bcomp/.

https://sourceforge.net/projects/bcomp/


B-PERFect 171

the translation is not studied in this paper. A possible starting point could be
the definition of the semantics of both B and HLL in a unified framework and
then check semantics preservation. Another possible extension of this work is to
handle higher abstraction levels of the B developments in order to enrich the
HLL model with lemmas or hints that might help the proof of properties.

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful appli-
cation of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.)
FM 1999. LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). doi:10.1007/
3-540-48119-2 22

3. Benaissa, N., Bonvoisin, D., Feliachi, A., Ordioni, J.: The PERF approach for
formal verification. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSS-
Rail 2016. LNCS, vol. 9707, pp. 203–214. Springer, Cham (2016). doi:10.1007/
978-3-319-33951-1 15

4. Bert, D., Boulmé, S., Potet, M.-L., Requet, A., Voisin, L.: Adaptable translator
of B specifications to embedded C programs. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003. LNCS, vol. 2805, pp. 94–113. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45236-2 7

5. Bonichon, R., Déharbe, D., Lecomte, T., Medeiros, V.: LLVM-based code genera-
tion for B. In: Braga, C., Mart́ı-Oliet, N. (eds.) SBMF 2014. LNCS, vol. 8941, pp.
1–16. Springer, Cham (2015). doi:10.1007/978-3-319-15075-8 1

6. Cataño, N., Wahls, T., Rueda, C., Rivera, V., Yu, D.: Translating B machines to
JML specifications. In: SAC 2012, pp. 1271–1277. ACM (2012)

7. ClearSy: Atelier B user manual version 4.0 (2009)
8. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently

computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

9. Espresso: Polychrony tool. http://www.irisa.fr/espresso/Polychrony
10. Fürst, A., Hoang, T.S., Basin, D., Desai, K., Sato, N., Miyazaki, K.: Code genera-

tion for Event-B. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739,
pp. 323–338. Springer, Cham (2014). doi:10.1007/978-3-319-10181-1 20

11. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

12. Kalla, H., Talpin, J.P., Berner, D., Besnard, L.: Automated translation of C/C++
models into a synchronous formalism. In: ECBS 2006. pp. 9–436, March 2006

13. Mammar, A., Laleau, R.: From a B formal specification to an executable code:
application to the relational database domain. Info. Soft. Technol. 48(4), 253–279
(2006)

14. Méry, D., Singh, N.K.: Automatic code generation from EVENT-B models. In:
SoICT 2011, pp. 179–188. ACM (2011)

15. Ge, N., Dieumegard, A., Jenn, E., Voisin, L.: Correct-by-construction specification
to verified code. Ada-Europe 2017 (2017)

16. Petit-Doche, M., Breton, N., Courbis, R., Fonteneau, Y., Güdemann, M.: Formal
verification of industrial critical software. In: Núñez, M., Güdemann, M. (eds.)
FMICS 2015. LNCS, vol. 9128, pp. 1–11. Springer, Cham (2015). doi:10.1007/
978-3-319-19458-5 1

http://dx.doi.org/10.1007/3-540-48119-2_22
http://dx.doi.org/10.1007/3-540-48119-2_22
http://dx.doi.org/10.1007/978-3-319-33951-1_15
http://dx.doi.org/10.1007/978-3-319-33951-1_15
http://dx.doi.org/10.1007/978-3-540-45236-2_7
http://dx.doi.org/10.1007/978-3-319-15075-8_1
http://www.irisa.fr/espresso/Polychrony
http://dx.doi.org/10.1007/978-3-319-10181-1_20
http://dx.doi.org/10.1007/978-3-319-19458-5_1
http://dx.doi.org/10.1007/978-3-319-19458-5_1


172 A. Halchin et al.

17. Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based
formal verification. Int. J. Softw. Tools Technol. Transf. 7(2), 156–173 (2005)

18. Storey, A.C., Haughton, H.P.: A strategy for the production of verifiable code using
the B Method. In: Naftalin, M., Denvir, T., Bertran, M. (eds.) FME 1994. LNCS,
vol. 873, pp. 346–365. Springer, Heidelberg (1994). doi:10.1007/3-540-58555-9 104

19. Tatibouët, B., Requet, A., Voisinet, J.-C., Hammad, A.: Java card code generation
from B specifications. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol.
2885, pp. 306–318. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39893-6 18

http://dx.doi.org/10.1007/3-540-58555-9_104
http://dx.doi.org/10.1007/978-3-540-39893-6_18


Formal Verification of Train Control
with Air Pressure Brakes

Stefan Mitsch1(B), Marco Gario2, Christof J. Budnik2, Michael Golm2,
and André Platzer1

1 Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

{smitsch,aplatzer}@cs.cmu.edu
2 Siemens Corporate Technology, Princeton, NJ, USA

{marco.gario,christof.budnik,michael.golm}@siemens.com

Abstract. Train control technology enhances the safety and efficiency of
railroad operation by safeguarding the motion of trains to prevent them
from leaving designated areas of operation and colliding with other trains.
It is crucial for safety that the trains engage their brakes early enough in
order tomake sure theynever leave the safe part of the track.Efficiency con-
siderations, however, also require that the train does not brake too soon,
which would limit operational suitability. It is surprisingly subtle to reach
the right tradeoffs and identify the right control conditions that guarantee
safe motion without being overly conservative.

In pursuit of an answer, we develop a hybrid system model with discrete
control decisions for acceleration, brakes, and with continuous differential
equations for their physical effects on the motion of the train. The resulting
hybrid system model is systematically derived from the Federal Railway
Administration model for flat terrain by conservatively neglecting minor
forces.

The main contribution of this paper is the identification of a controller
with control constraints that we formally verify to always guarantee col-
lision freedom in the FRA model. The safe braking behavior of a train is
influenced not only by the train configuration (e.g., train length and mass),
but also by physical characteristics (e.g., brake pressure propagation and
reaction time). We formalize train control safety properties in differential
dynamic logic and prove the correctness of the train control models in the
theorem prover KeYmaera X.

1 Introduction

Train control (TC) technology is meant to safeguard the control of trains such
that they cannot collide with other trains, cannot move into unauthorized track
segments, and cannot derail because of excessive speed. While they do not pre-
vent accidents caused by mechanical failures like axle breakage, train protection
systems are the major safety technology controlling the safety of the motion of
trains.

This material is based upon work supported by Siemens Corporate Technology.

c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 173–191, 2017.
https://doi.org/10.1007/978-3-319-68499-4_12



174 S. Mitsch et al.

Train protection systems monitor the motion and the operator’s control deci-
sions and take infrastructure information into account to stop the train before
reaching the position of other trains or otherwise moving into unauthorized track
segments. Of course, TC needs to initiate the brakes early enough in order to
make sure the train finally comes to a stop safely (or below the speed limit)
before the unsafe track position. At the same time, railway operation would
be disrupted substantially if an automatic train protection system were to fre-
quently cause a train to brake unnecessarily.

Consequently, it is useful to find out how late the train brakes can still be
applied without losing guaranteed stopping capabilities of the train. More gen-
erally, the challenge is to identify a maximally permissive train protection con-
troller that gives the operator and other train controllers maximal degrees of
freedom in operating the train, while still always ensuring that the train brakes
will automatically be applied early enough so that the train will come to a stop
before reaching any unsafe track positions.

Trains can perform different types of braking, e.g., through traction of the
motors in the locomotive, and magnetic or pneumatic brake shoes on the train’s
cars. Combined with various ways of triggering the brakes (e.g., electronically or
through air pressure pipes), we get a range of available brake forces and durations
until full braking force is available. For example, air pressure propagation along
the train causes the effective braking force to change and ramp up slowly over
time. This complicates the safety analysis and requires safe TC controllers to
be aware of the worst-case influence of the various train parameters on the
guaranteed safe stopping distance. Some parameters (e.g., train length) have
significant influence on the pressure propagation and in turn on the stopping
distance, while others (e.g., aerodynamic drag) can be approximated by either
their upper or lower bound, depending on the direction of their influence.

Approach. In order to discover the right safety constraints and justify their safety
with mathematical rigor, we develop a controller for a mathematical model based
on the physics of the Federal Railway Administration (FRA) model [6]. This
results in a hybrid systems model, because it includes differential equations for
the continuous physical effects of motion and the discrete control decisions of
when to accelerate, when to apply moderate braking in normal operation, and
when to begin or stop applying maximum brakes. The model considers train
length and mass, reaction times, brake pressure propagation, penalty brake force,
service brake force, and acceleration force. Unlike the FRA model, we ignore roll
resistance, air resistance, and curve resistance, because these are negligible for
freight trains and only make the train stop earlier (so the controller is safer).
As a first step, we simplify the model to consider flat terrain only, leaving more
complex terrain profiles as future work.

We formalize safety of the TC controller as a formula in differential dynamic
logic dL [19–22], which is the logic for hybrid systems. Besides the identification
of the safety conditions for the TC controller, our main contribution is its rig-
orous mathematical justification by providing a proof in the dL theorem prover
KeYmaera X [13]. Formalizing and proving motion and controller together in a



Formal Verification of Train Control with Air Pressure Brakes 175

Train Control Model
(Models 4, 6, and 7)
Track Control Model

(Model 2)

H
yb

rid
Pr
og

ra
m

Train Motion Model
(differential equations)
(Models 1, 3 and 5)

dL Theorem Prover
KeYmaera X

Safety and Performance
Specification in dL

(Theorems 1, 2, and 3)

Differential Dynamic Logic

Proofs of
Theorems
1, 2, and 3

Fig. 1. Overview of formal verification process in dL and artifacts

hybrid systems model has the additional benefit of identifying constraints on the
decisions that a controller has to make ahead of time for any subtle combina-
tion of system state and control choice. Fig. 1 summarizes our formal verification
approach and the artifacts of this paper. These findings are part of an ongoing
effort to rigorously formalize the safety of train controllers.

2 Preliminaries: Differential Dynamic Logic

We use differential dynamic logic dL [19–22] to verify safe braking behavior.
Differential dynamic logic has a notation for hybrid systems as hybrid programs,
which use differential equations as program statements to describe continuous
behavior in addition to discrete computations.

One of the challenges of developing a safe braking controller is to analyze
its safety over a broad range of possible control decisions that were taken prior
to braking, where a train should be allowed to speed up or slow down in any
appropriate way. In addition to programming constructs familiar from other lan-
guages (e.g., assignments and conditional statements), hybrid programs provide
nondeterministic operators that allow us to describe such unknown prior behav-
ior concisely. Nondeterminism has the additional benefit that later optimization
(e.g., use better sensors or implement a faster algorithm) may be possible with-
out re-verification as variations are already covered.

Table 1 summarizes the syntax of hybrid programs together with an informal
semantics. We briefly describe each operator with an example. Sequential com-
position α;β says that program β starts after α finishes (e.g., first determine
track grade, then let the train choose acceleration). The nondeterministic choice
α ∪ β follows either α or β (e.g., the train may be in normal operation or in
braking mode). The nondeterministic repetition operator α∗ repeats α zero or
more times (e.g., the train’s target speed may be revised over and over again, but
we do not know exactly how often). Assignment x := θ instantaneously assigns
the value of the term θ to variable x (e.g., let the train choose maximum brak-
ing). Instead x := ∗ assigns an arbitrary value to x (e.g., the track grade may
change arbitrarily, we do not know which value exactly). x′ = θ & F describes
a continuous evolution of x along the differential equation x′ = θ of arbitrary
duration (even zero time). The evolution domain F can be used to restrict the



176 S. Mitsch et al.

Table 1. Hybrid program representations of hybrid systems

Statement Effect

α; β sequential composition, first run program α, then β

α ∪ β nondeterministic choice, following either program α or β

α∗ nondeterministic repetition, repeats program α any n ≥ 0
times

x := θ assign value of term θ to variable x (discrete jump)

x := ∗ assign any arbitrary real number to variable x
nondeterministically

?F check that formula F holds at the current state, and abort if
it does not

{x′
1 = θ1, . . . ,

x′
n = θn&F}

evolve xi along differential equation system x′
i = θi restricted

to maximum evolution domain F for any duration r ∈ R

continuous evolution to a certain region in space-time (e.g., restrict duration to
at most 5s). The test ?F checks that a particular condition F holds and aborts
if it does not (e.g., continue accelerating only when the distance to the track
position limit is large enough). Execution of hybrid programs with backtracking
is a good intuition, since other nondeterministic choices may still be possible if
one run fails. A typical pattern that involves assignment and tests is to limit the
assignment of arbitrary values by their bounds (e.g., limit acceleration to the
normal operation conditions, as in fa := ∗; ? − Fsb ≤ fa ≤ A, which assigns to
fa any value between the service brake force −Fsb and acceleration force A).

The set of dL formulas is generated by the following grammar (∼ is any
operator in {<,≤,=, �=,≥, >}, θ1, θ2 are arithmetic expressions in +,−, ·, / over
the reals):

φ : := θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | φ ↔ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

To specify the desired correctness properties of hybrid programs, a dL for-
mula F → [α]G means that if started at an initial state in which formula F is
true, then all executions of the hybrid program α only lead to states in which
formula G is true. Differential dynamic logic comes with a formal verification
technique to prove these and other correctness properties. We did all our proofs
in the verification tool KeYmaera X [13], which implements the dL verification
technique [19,21,22]. The dL verification technique is sound, which means that a
formula that has a proof is valid, i.e., true in all states. For high confidence, the
dL verification technique has been cross-verified [3] in the Isabelle and Coq the-
orem provers. This gives dL-based verification results an extraordinarily strong
degree of reliability for high confidence safety assurance cases.



Formal Verification of Train Control with Air Pressure Brakes 177

3 Train Control Models

In normal operation, trains may speed up or slow down at will. The brakes
are then typically operated with moderate braking force, referred to as service
braking. When a train is about to violate the track position limit or speed limit
in normal operation, the goal of TC is to ensure safety by switching to penalty
braking with maximum brake force. The air pressure brakes on a train exert
strong braking force but require some time to build up maximum brake force
by propagating air pressure along the train. For fail-safety reasons, air brakes
along a train apply pressure brakes in proportion to how the air pressure from
the locomotive is lost instead of increased, but they are, nevertheless, subject to
slow propagation and build-up of braking force along the train.

Figure 2 illustrates the behavior that we model. In free driving—i.e., when
the train respects the speed limit and is at a safe distance from the track position
limit e—the train may speed up or slow down at will (e.g., according to the train
driver’s decisions or those of other optimizing controllers). At time t = 1, the
train receives a speed limit d1 = 1 that is in place from e1 onwards, so it engages
its service brakes −Fsb and afterwards decides to coast to respect the speed limit.
Later, the speed limit changes to a full stop d2 = 0 at e2. The remaining distance
to e2 is too small to stop safely just using the service brakes. Therefore, at time
t = 2 the train engages its penalty brakes, which, however, need time tappl until
they are operational at full force −Fpb. The train then continues braking with
full brake force −Fpb until it is fully stopped. This scenario includes the following
model components (detailed subsequently):

– A track controller may repeatedly issue new speed limits d that are in place
from a position e onwards. Limit d = 0 means stop at e. It should not demand
physically impossible maneuvers (e.g., ask a freight train traveling at 60mph
to stop in 3ft).

– A train controller decides between free driving (using arbitrary engine accel-
eration and the service brakes) and penalty braking using maximum brake

0

Engage
locomotive

brake

Engage
pressure
brake

tappl
−Fsb

−Fpb

d2 = 0

d1
e1

e2

t

(a) Free driving, service brakes −Fsb to re-
spect speed limit d1 at e1, and penalty brake
−Fpb to stop before track position limit e2

0

tappl
−Fpb

−Fsb

t

Acceleration Velocity v Position z

(b) Engage locomotive brake and pressure
brakes at the same time. Later release brakes
before full stop and continue driving

Fig. 2. Braking with instantaneous service brakes and air pressure penalty brakes



178 S. Mitsch et al.

force. The decision is based on the resulting slowdown/stopping distance from
its current speed v to speed limit d and the remaining safety distance to track
position e.

– The safety margins follow from a motion model of the train, whose behavior
depends on train parameters (e.g., length) and external conditions (e.g., track
grade).

– Acceleration and service brake via the train’s engine have immediate but
limited effect. Penalty brakes provide higher overall braking force at the cost
of pressure propagation time along the individual freight or passenger cars of
the train.

3.1 Safety and Performance Considerations

The main safety objective in train control is to respect speed and track position
limits [6]. Predicting the stopping distance is therefore key to a safe and effective
controller. Errors in the prediction may let a train run past the track position
limit (overshoot), stop unnecessarily early (undershoot), or brake unnecessarily,
resulting in undesired effects on the overall railway network operation. The FRA
characterizes safety by limiting overshoots, i.e., with 99.9995% probability trains
must not overshoot the track position limit [6]. Usually one overestimates the
stopping distance by some safe factor. While this can improve the overall safety
of the system, it might be detrimental to system performance: trains significantly
underperform when train length and weight are not considered in the braking
decision [24], and braking frequently or significantly earlier than needed has neg-
ative impacts both on energy considerations as well as on the overall throughput
of the network. An orthogonal performance objective, therefore, limits under-
shoots to 500 ft for trains at less than 30mph, and 1000 ft above 30 mph [6].

To find a suitable safety and performance trade-off, we need to consider
more realistic (and therefore complex) models of the dynamics to which the
train is subject. We compare a simpler model that considers only the delay
of brake pressure propagation with a more accurate model of gradual pressure
propagation.

3.2 Train Motion and Brake Forces

The model of train motion is developed in Model 1. By Newtonian physics, the
time-derivative of the train’s position z is its velocity v, which explains differ-
ential equation z′ = v. The derivative of the train’s velocity v is the sum of
external forces F as well as the controlled acceleration/braking force fa. Both
are subject to the train’s mass m to capture motion inertia, giving v′ = F+fa

m .
Because trains do not move backwards just because they are braking with a
negative acceleration, we include v ≥ 0 as an evolution domain constraint. The
system’s control cycle duration is modeled with a timer t that is reset to t := 0
before the differential equation, evolves with t′ = 1, and interrupts the differ-
ential equation after at most ε time due to the evolution domain t ≤ ε. This
ensures that the motion will “stop” to give the subsequent controllers a chance



Formal Verification of Train Control with Air Pressure Brakes 179

Model 1. Train Motion Model

motion ≡ t := 0; {z′ = v, v′ =
F + fa

m
, t′ = 1 & v ≥ 0 ∧ t ≤ ε} (1)

Model 2. Track Control

tc ≡ e := ∗; d := ∗; ?
(
d ≥ 0 ∧ (v2 − d2)m ≤ 2Fsb(e − z)

)
(2)

to run at the latest after ε time again. The initial values of position z and speed
v are unknown.

The forces that act on the train are its own braking force Fb and locomotive
traction Fl, as well as the track grade force Fg (incline or decline), the track cur-
vature force Fc, and the bearing, rolling, and aerodynamic resistive forces Fr [6,
p. 57]. Model 1 uses fa to summarize the train’s braking force Fb and locomotive
tractive effort Fl, so F = −(Fg +Fr +Fc) in (1). The train’s acceleration will be
limited by a maximum braking force −Fpb and a maximum acceleration force A.
An important characteristic of air pressure brakes is the time tappl that it takes
from initiating braking until the full braking force Fpb is available [6]. The time
tappl depends on the length l of the train with constants c

tappl
1 to c

tappl
3 as follows:

tappl = c
tappl
1 + c

tappl
2 l + c

tappl
3 l2 by [6, p. 57].

The resistive forces Fr can be estimated from the train’s speed v, weight
W = mg with gravity constant g > 0, number of cars N and axles n with
constants cr

1 to cr
4 using Fr = cr

1W +cr
2n+cr

3Wv+cr
4Nv2 [6]. The track curvature

force Fc depends on the train’s weight W and the average curvature C under
the train Fc = cc

1CW [6]. Since both resistive force and track curvature force
oppose forward motion (i.e., improve braking), we can neglect them for safety
analysis purposes by assuming cr

i = cc
i = 0. The track grade force Fg depends on

the train’s weight and average track grade G under the train by Fg = cg
1GW , so

Fg = 0 for flat tracks. Additional detail on the external forces acting on trains is
in [2]. We take a first step by assuming external forces F = −(Fg +Fr +Fc) = 0
to focus solely on the effect of brake pressure propagation on fa in flat terrain
(forces Fr and Fc improve braking, so make our controllers safer).

3.3 Track Control

The central track controller tc in Model 2 can update speed limits d and track
position limit e at any time, as long as it does not demand the train moves
backwards (so d ≥ 0) and the remaining distance between the train’s position z
and the track position limit e allows the train to respect the speed limit safely
within the limits of physics. For a reasonable system design, the track controller
should also only choose d and e such that the train can safely follow by just
using the service brakes −Fsb.

Crucially, the condition (2) characterizes the relationship between the train’s
current speed v and position z, and the speed limit d and track position limit e.



180 S. Mitsch et al.

Condition (2) can be discovered in KeYmaera X by proving a simplified hybrid
program (3) that uses the service brakes fa := −Fsb and neglects other model
details (external force F = 0):

F = 0 ∧ Fsb > 0 ∧ m > 0 → [fa := −Fsb; motion](z ≤ e → v ≤ d) (3)

Formula (3) is not valid but still true in some states, which allows KeY-
maera X to find conditions on e and z that make it provable. These conditions
can be explained as follows: from v′ = F+fa

m in motion we see that, with ser-
vice brakes, the train needs (v−d)m

Fsb
time to overcome the difference between its

current speed v and speed limit d. The differential equation in motion is solv-

able, so its solution gives the slowdown distance
∫ (v−d)m

Fsb
0

(
v − Fsb

m t
)
dt, implying

(v2−d2)m
2Fsb

as minimum distance between the track position limit e and the train
z, see equivalent condition in (2).

3.4 Train Control

The primary safety question in train controller design is finding conditions under
which it is safe to drive freely, and when it is necessary to engage the brakes as
a last resort safety action. The major safety argument for the controller has to
justify why the train will always respect the target speed at the track position
limit.

For traceability purposes and for managing the analytic complexity it is
beneficial to develop these conditions in increasingly realistic brake pressure
propagation models. We first consider a conservative approximation delaying
the whole effect of brakes for the entire propagation time (Sect. 3.5). Then we
follow the FRA model that gradually increases the effect of the air pressure
brakes with a constant jerk or jolt (Sect. 3.6).

Keeping acceleration constant between decisions significantly simplifies the
task of finding the safety distances. The effects of changing accelerations manifest
in position constraints: with gradual increase j in braking force we need to solve
z′′′ = j. With delayed brake onset z′′ = fa is enough. Figure 3 illustrates the
conservative approximation in comparison to a gradual increase in brake force.
Both models behave the same in free driving. When engaging the pressure brakes,

0

tappl
−Fpb

t

Conservative accel
Conservative vel
Conservative pos
Acceleration
Velocity
Position

Fig. 3. Delayed brake onset conservatively approximates brake pressure propagation.
The train length determines how long (tappl) it takes to reach full braking force −Fpb.



Formal Verification of Train Control with Air Pressure Brakes 181

the conservative approximation coasts for the entire brake pressure propagation
time, while gradual braking force already decelerates the train with limited force
while the brake force builds up. Since we prove the safety of both controllers, we
can subsequently compare the loss in performance for the more simplistic model
compared to the more accurate FRA model with jerk.

3.5 Delayed Braking

The simpler train model that conservatively takes the effect of gradual pressure
brake build-up into account simply pretends the pressure brakes would have no
effect at all until they finally have full effect after the pressure propagated along
the train. This is counterfactual with reality but a conservative approximation,
because some braking force already takes effect in the middle of the process of
building up braking force from the pressure brakes. Pretending this deceleration
would be 0 is inaccurate but only makes the real train brake quicker than the
model, so safer.

The train motion in Model 3 follows the motion of Model 1 with changes
highlighted in bold. The pressure brake build-up delay is modeled with a timer
c with c′ = s that can be enabled or disabled by setting its slope s either to 1
(enabled) or to 0 (disabled), but it never exceeds the brake delay (c ≤ tappl),
which is only relevant if s �= 0.

The train controller for delayed brake onset that we develop in Model 4 can
(nondeterministically) choose to either drive or brake (5). The choice is nonde-
terministic in order to maximize flexibility of the train controller and, thus, also
maximize how many concrete train controller implementations are covered by
our single safety proof.

When driving freely, in (6) any choice between the train’s service brake force
−Fsb and maximum acceleration force A is allowed by a nondeterministic assign-
ment fa := ∗ followed by a subsequent test to check that −Fsb ≤ fa ≤ A is true.
The choice of fa is nondeterministic in order to cover a large variety of concrete
controllers under the safety argument (imagine controllers optimizing secondary
objectives such as energy consumption or decisions by train conductors that
determine the concrete choice of fa during each execution of drive). The brake
delay timer c is reset (c := 0) and turned off (s := 0) in (7), because the penalty
brakes are not activated when driving freely.

Of course, driving freely or accelerating is not always safe. KeYmaera X
points us to the worst possible scenario of this control decision: acceleration
with full force A for the maximum allowed time ε and postponing braking for the
maximum allowed delay tappl. Condition (8) checks whether or not the remaining

Model 3. Train Motion Model with Delayed Brake Onset, extends Model 1

motion ≡ t := 0; {z′ = v, v′ =
F + fa

m
, t′ = 1, c′ = sc′ = sc′ = s & v ≥ 0∧ t ≤ ε∧c ≤ tapplc ≤ tapplc ≤ tappl} (4)



182 S. Mitsch et al.

Model 4. Train Controller for Delayed Brake Onset

ctrlz ≡ drive ∪ brake (5)
drive ≡ fa := ∗; ?(−Fsb ≤ fa ≤ A); (6)

c := 0; s := 0; (7)
? (e − z ≥ margin) (8)

margin =
(v2 − d2)m

2Fpb
+

(
A

Fpb
+ 1

)(
A

2m
ε2 + εv

)
+

(
v +

A

m
ε

)
tappl (9)

brake ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if
(
e − z ≥ (v2−d2)m

2Fsb

)
fa := −Fsb; c := 0; s := 0

else if (c ≥ tappl) fa := −Fpb; s := 0

else if (c > 0) fa := fa

else fa := 0; s := 1

(10)

distance e − z on the track is large enough to handle this worst-case scenario,
i.e., defer braking for yet another control cycle duration ε. If it is large enough,
the chosen acceleration force fa will be made operational. Otherwise (i.e., if (8)
does not hold), the controller falls back to executing brake as the only remaining
option in nondeterministic control choice (5). When introducing brake pressure
propagation we will see later that the condition (8) could be improved with
separate conditions on braking and accelerating.

Braking is modeled along four increasingly critical cases in (10). The train
prefers the service brake over the penalty brakes fa := −Fsb if the remaining
distance to e is still enough for service brakes alone to ensure safety. Otherwise,
the penalty brakes are used in the following way: If the brake delay has expired
(c ≥ tappl), the full braking force is available with fa := −Fpb. If the brake
delay has not been reached yet but the train is already waiting for the brakes
to activate (c > 0), then it just keeps waiting by keeping its current acceleration
force fa := fa. Otherwise, the train turns the engine off to stop accelerating
fa := 0 and the brake delay timer is started with s := 1.

Theorem 1 (Train Controller with Delayed Brake Onset). The brak-
ing controller for motion with delayed brake onset from Model 4 guarantees
to observe a maximum speed v ≤ d when the train passes the track posi-
tion limit z ≥ e. That is, the following dL formula is proved: assumptions →
[
(
tc ∪ (ctrlz; motion)

)∗](z ≥ e → v ≤ d).

3.6 Brake Pressure Propagation

The FRA’s dynamical model of trains with brake pressure propagation differs
in subtle but substantial ways from the simplified delayed braking model. The
key differences of the resulting Model 5, highlighted in boldface, are that the
acceleration force fa is increasing continuously over time along f ′

a = j with



Formal Verification of Train Control with Air Pressure Brakes 183

Model 5. Train Motion Model with Brake Pressure Propagation

motion ≡ t := 0; {z′ = v, v′ =
F + fa

mz
, f ′

a = jf ′
a = jf ′
a = j, t′ = 1 & v ≥ 0 ∧ −Fpb ≤ fa−Fpb ≤ fa−Fpb ≤ fa ∧ t ≤ ε}

(11)

1 2−1

0

1

2

3

tappl

−Fpb

t

(a) At slow speed v ≤ F2
pb

2mJ
the train stops

while building up braking force

1 2−1

0

1

2

3

tappl

−Fpb

t

Threshold F2
pb

2mJ
Brake force fa Velocity v Position z

(b) At high speed v ≥ F2
pb

2mJ
the train stops

after reaching full braking force −Fpb

Fig. 4. Brake force and stopping distance

the jerk j from the pressure brake propagation. The effective force of penalty
braking is limited by −Fpb, reflected in an additional evolution domain constraint
−Fpb ≤ fa, beyond which the subsequently developed physics controller will
deactivate jerk and keep constant acceleration force.

Our train controller for brake pressure propagation in Model 6 follows the
same basic setup as the controller for brake delay; differences are highlighted
in bold. The main difference is condition (13)–(14) and its components (15)–
(21) that allow driving with any acceleration, and the control decisions on the
brake jerk j in the braking cases. In mode drive, penalty braking is deactivated
j := 0 and the train controller chooses any acceleration between service braking
with force −Fsb and full acceleration force A. This is safe if service braking later
ensures that the train will still always respect the speed limit d (13), or if penalty
braking to a full stop with the pressure brakes will later always keep the train
inside the track position limit (14). The pressure propagation along the train
increases the available brake force over time up to the maximum braking force
Fpb. As a result, the distance margin for stopping safely splits into two cases,
as pointed out by KeYmaera X during the proof: slow trains will stop while the
braking force is still ramping up (see Fig. 4a), fast trains will stop after reaching
the maximum braking force (see Fig. 4b). In each case, the margin additionally
depends on whether the train controller presently wants to slow down fa ≤ 0
(slow− (15) and fast− (17)) or speed up fa ≥ 0 (slow+ (16) and fast+ (18)).
KeYmaera X points to a subtle combination of the worst-case bounds in margins
(20) and (21). Per condition (16), a slow train may accelerate with current force
fa for the maximum allowed duration ε, if the safety margin e−z is large enough
for the future higher speed u = v + faε

m . In the converse scenario (17), however,



184 S. Mitsch et al.

Model 6. Train Controller for Brake Pressure Propagation

ctrlz ≡ drive ∪ brake (12)
drive ≡ j := 0j := 0j := 0; fa := ∗; ? − Fsb ≤ fa ≤ A; (13)

?

(

e − z ≥ (v2 − d2)m

2Fsb
+

(
A

Fsb
+ 1

)(
A

2m
ε2 + vε

)
?

(

e − z ≥ (v2 − d2)m

2Fsb
+

(
A

Fsb
+ 1

)(
A

2m
ε2 + vε

)
?

(

e − z ≥ (v2 − d2)m

2Fsb
+

(
A

Fsb
+ 1

)(
A

2m
ε2 + vε

)

∨ slow− ∨ slow+ ∨ fast− ∨ fast+
)

∨ slow− ∨ slow+ ∨ fast− ∨ fast+
)

∨ slow− ∨ slow+ ∨ fast− ∨ fast+
)

(14)

slow−slow−
slow− ≡ ¬isFast(v) ∧ fa ≤ 0 ∧ e − z ≥ vε + mSlow(v) (15)

slow+slow+
slow+ ≡ [u := v+

faε

m
]

(
¬isFast(u) ∧ fa ≥ 0 ∧ e − z ≥ vε +

faε2

2m
+ mSlow(u)

)

(16)

fast−fast−fast− ≡ isFast(v) ∧ fa ≤ 0 ∧ e − z ≥ vε + mFast(v) (17)

fast+fast+fast+ ≡ isFast(v) ∧ fa ≥ 0 ∧ e − z ≥ vε +
faε2

2m
+ mFast

(
v +

faε

m

)
(18)

isFast(v)isFast(v)isFast(v) ≡ v ≥ F 2
pb

2mJ
(19)

mSlow(v)mSlow(v)mSlow(v) =
2

3
v
√

2mv/J (20)

mFast(v)mFast(v)mFast(v) =
mv2

2Fpb
+

vFpb

2J
− F 3

pb

24mJ2
(21)

brake ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if
(
e − z ≥ (v2−d2)m

2Fsb

)
fa := −Fsbfa := −Fsbfa := −Fsb

else if (v ≤ d)(v ≤ d)(v ≤ d) j := 0;j := 0;j := 0; fa := ∗; ?−Fsb ≤ fa ≤ 0

else if (fa ≤ −Fpb)(fa ≤ −Fpb)(fa ≤ −Fpb) j := 0j := 0j := 0

else j := −J ; fa := min(fa, 0)j := −J ; fa := min(fa, 0)j := −J ; fa := min(fa, 0)

(22)

KeYmaera X reveals with a counterexample that using the future speed v + faε
m

is unsafe, because all intermediate speeds up to ε time require a larger safety
margin (i.e., the current speed v determines the worst-case bound).

Akin to Model 4, braking is structured into increasingly critical cases: the
train’s main preference is to use service braking fa := −Fsb if the remaining
distance is sufficient (e − z ≥ (v2−d2)m

2Fsb
). If the train is slow enough already

(v ≤ d), then penalty braking is disabled j := 0 and any level of service braking
or coasting is used instead (in the force range −Fsb to 0); If the brake pressure
propagation is finished, meaning that the brakes are fully engaged (fa ≤ −Fpb),
then there will be no further increase in braking force (j := 0). Otherwise, the
train did not yet build up sufficient braking force, but at least keeps increasing
braking force with jerk j := −J and J = Fpb

tappl
from its current deceleration (fa :=

min(fa, 0)). Note that min(fa, 0) also models that the train stops acceleration
through its locomotive when it starts the brake pressure propagation. The term



Formal Verification of Train Control with Air Pressure Brakes 185

min(fa, 0) in (22) also covers the case where the train already uses service braking
in drive but decides to switch to the stronger penalty braking for safety reasons.

Theorem 2 (Train Controller with Brake Pressure Propagation is
Safe). Model 6 with brake pressure propagation stays within a maximum speed
v ≤ d beyond track position limit z ≥ e. That is, the following dL formula is
proved in KeYmaera X:

assumptions → [
(
tc ∪ (ctrlz; motion)

)∗](z ≥ e → v ≤ d).

4 Performance Analysis

The safety analysis proved train control is safe both with delayed braking
(Model 4) and with pressure brake propagation models (Model 6). While the
former was much easier to design and prove safe, its controller suffers an addi-
tional safety margin because it neglects that real brakes already have partial
effect while pressure is still propagating along the train. Model 6 is certainly the
more realistic model while Model 4 is further away from the FRA model. It might
still be a better tradeoff to settle for a conservative overapproximation that is
easier to analyze than a full-blown realistic model.

To analyze this tradeoff we use the FRA performance objective [6] of not
stopping too early (but still before a certain critical point). The performance
objective can be analyzed in the following ways. (i) Comparing the performance
objective of motion models Models 3 and 5 through simulation of some scenarios,
e.g., as illustrated in Fig. 3. (ii) More systematic characterization by comparing
the symbolic safety margins of the models, see Sect. 5. (iii) Full formal guarantees
for all permitted behaviors when proving a lower bound on the stopping point
of the train, dual to the upper bounds from the safety proofs (this section).
Intuitively, a train controller has a good performance if it does not stop “too
early” but without ever endangering safety.

For proving performance it is important to only engage penalty braking when
it is absolutely necessary to avoid overshoot, i.e., when (8) is no longer satisfied,
but not earlier. Braking for any other reason at any earlier point is detrimental
to proving performance bounds, but allowed in Model 4 for flexibility, so that
train operators can do so to react to other unforeseen events along the track or
to simply stop at a station. For a performance proof, Model 7 adapts Model 4
to favor free driving over braking by making the nondeterministic choice drive∪
brake deterministic (23). This deterministic choice implies that, at the start of
the braking maneuver, the safety margin to the track position limit e is at most
(v2−d2)m

2Fpb
+ accMargin(v), cf. (26). The model keeps track of this margin by

remembering the initial speed v0 at the beginning of the brake maneuver.
For safety reasons, the train assumes all aspects in accMargin might be dis-

advantageous for the train (e.g., just a split-second later accelerating may no
longer be safe). As a result, if all aspects in accMargin turn out in favor of the
train (e.g., if the train could still have accelerated almost the full ε time later),



186 S. Mitsch et al.

Model 7. Train Controller for Late Braking

ctrlz ≡ if (e − z ≥ margin) {drive} else {brake}if (e − z ≥ margin) {drive} else {brake}if (e − z ≥ margin) {drive} else {brake} (23)
drivedrivedrive ≡ fa := ∗; ?(−Fsb ≤ fa ≤ A); c := 0; s := 0 (24)

accMargin(v) =

(
A

Fpb
+ 1

)(
A

2m
ε2 + εv

)
+

(
v +

A

m
ε

)
tappl (25)

margin = (v2 − d2)m/(2Fpb) + accMargin(v) (26)

brake ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if
(
e − z ≥ (v2−d2)m

2Fsb

)
fa := −Fsb; c := 0; s := 0

else if (c ≥ tappl) fa := −Fpb; s := 0

else if (c > 0) fa := fa

else fa := 0; s := 1; v0 := vv0 := vv0 := v

(27)

the train will stop with accMargin(v0) distance to the track position limit e.
Theorem 3 formalizes this intuition. Note that we neglect track control tc here,
since it issues stopping points for the service brakes.

Theorem 3 (Late Braking of Train Controller with Brake Delay).
Model 7 ensures that the train stops no earlier than point e − accMargin(v0)
when it uses pressure brakes. The following formula is proved in KeYmaera X:

assumptions → [(ctrlz; motion)∗]
(
c > 0︸ ︷︷ ︸

Pressure brake engaged

∧ v ≤ d
︸ ︷︷ ︸

Braking finished

→ z ≥ e − accMargin(v0)︸ ︷︷ ︸
Earliest stopping point

)
.

5 Experimental Results

Simulation (Fig. 3) of the motion models suggests that, for safety reasons, the
symbolic safety margin (9) of the brake delay model (Model 4) needs to be
more conservative than the margins (15)–(18) of the pressure propagation model
(Model 6). The difference in safety margins to the latest stopping point is char-
acterized by this brake performance:

margin −

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vε + mSlow(v) if ¬isFast(v) ∧ fa ≤ 0

vε + faε2

2m + mSlow
(
v + faε

m

)
if ¬isFast(v) ∧ fa ≥ 0

vε + mFast(v) if isFast(v) ∧ fa ≤ 0

vε + faε2

2m + mFast
(
v + faε

m

)
if isFast(v) ∧ fa ≥ 0

(28)

We use formula (28) to compare the performance of Models 4 to 6 on para-
meters chosen according to standard configurations [6], see Table 2. Using these
parameters, the net stopping distance with full braking force −Fpb when neglect-
ing brake pressure propagation is v2m

2Fpb
(e.g., 8 682ft for a fast, long, loaded train,



Formal Verification of Train Control with Air Pressure Brakes 187

Table 2. Experiment parameter choices (in FRA standard units)

Parameter Value Description Source

lz Short 753ft 10 cars [6, Fig. 20]

Medium 2 345ft 40 cars [6, Fig. 20]

Long 5 531ft 100 cars [6, Fig. 20]

m Loaded 263 klb
car

e.g., medium train 10 520klb [6, Table 2]

Empty 64 klb
car

e.g., medium train 2 560klb [6, Table 2]

v Slow, Fast 10, 60mph [6, Table 2]

Fpb Loaded 35 750 lbf
car

e.g., medium train 1 430klbf [6, p. 22]

Empty 10 575 lbf
car

e.g., medium train 423klbf [6, p. 22]

Unknown 23 338 lbf
car

e.g., medium train 933.5klbf [6, p. 22]

tappl 12.22 + 0.0156lz + 0.000000278l2z [6, Fig. 20]

A 5mph
min

Force by 0.44704A
60

m, e.g., medium train
391.91klbf

[6, Fig. 27]

fa 1.75mph
min

e.g., medium train 136.76klbf [6, Fig. 27]

ε 100ms

which is close to the stopping distances in [6, Fig. 10]). With brake pressure
propagation, the proofs of Theorems 1 and 2 show that an additional safety
margin is needed to avoid overshoot. The resulting stopping distances includ-
ing these safety margins are summarized for various configurations in Table 3.
Note that Fpb in [6] is approximated with 23 338 lbf

car for unknown load, i.e., when
trains are not equipped with sensors to determine whether or not their cars are
empty. This approximation “improves” the brakes of empty cars, so in Table 3
empty trains with Fpb = 23 338 lbf

car for unknown load stop sooner than those
with Fpb = 10 575 lbf

car for known load. The brake pressure propagation time tappl
is much larger than control cycle time ε, so the additional safety margin of the

Table 3. Stopping distance with brake pressure propagation (in ft, lower is better);
bold differences exceed the performance objective of [6] (slow: 500ft, fast: 1000ft)

Cars Slow Fast

Loaded Empty Loaded Empty

10 40 100 10 40 100 10 40 100 10 40 100

Brake force for unknown load Fpb = 23 338Fpb = 23 338Fpb = 23 338 lbf
car

Model 4 726 1,110 1,942 446 830 1,662 15,436 17,742 22,730 5,369 7,676 12,664

Model 6 541 710 1,017 239 345 503 14,364 15,494 17,880 4,278 5,334 7,383

Difference 185 400 925 207 485 1,161 1,072 2,248 4,850 1,091 2,342 5,281

Brake force for known load, loaded: Fpb = 35 750Fpb = 35 750Fpb = 35 750 lbf
car , empty: Fpb = 10 575Fpb = 10 575Fpb = 10 575 lbf

car

Model 4 597 982 1,814 554 939 1,771 10,817 13,123 18,111 9,277 11,583 16,571

Model 6 409 565 822 364 512 746 9,743 10,859 13,188 8,200 9,309 11,602

Difference 188 417 992 190 427 1,025 1,074 2,264 4,923 1,077 2,274 4,969



188 S. Mitsch et al.

conservative model is dominated by the train’s speed and the brake pressure
propagation time. After all, the delay term (v + A

mε)tappl implies that the train
controller assumes it might be driving with its current speed for the entire brake
propagation time tappl. The effect is even more pronounced for empty trains,
because a larger fraction of the entire braking process occurs while pressure is
still propagating. The remaining improvements of Model 6 over Model 4 target
effects during the control cycle time (e.g., distinguish between accelerating and
braking, account for the actual chosen acceleration instead of worst-case accel-
eration), so could be neglected without much impact on the performance for the
specific values of our experiments. The cases highlighted in bold indicate cases
where just the additional error incurred by the delay model exceeds the FRA’s
performance objective goal. This indicates the potential for using more advanced
control algorithms.

Proof Effort. From an engineering viewpoint, more realistic models are certainly
desirable. However, higher modeling fidelity often results in higher proof com-
plexity, especially in the resulting arithmetic. Proofs in KeYmaera X consist of
three main aspects: (i) find invariants for loops and differential equations, (ii)
symbolically execute programs to determine their effect (results in formulas in
real arithmetic), and finally (iii) verify the resulting real arithmetic with exter-
nal solvers. High modeling fidelity becomes expensive in the arithmetic parts of
the proof, since real arithmetic is decidable but of high complexity. As a result,
proofs of high-fidelity models may require arithmetic simplifications (e.g., reduce
the number of variables by abbreviating complicated terms, or by hiding irrel-
evant facts) before calling external solvers. The proof process in KeYmaera X
can be scripted with tactics to provide human guidance when necessary.

The main insights of doing the proofs are reflected in the model in terms of
the control constraints that switch between driving and braking. We illustrated
how to obtain such constraints systematically from the motion model of the
train when designing the track control. Further guidance provided in the proof
tactics of Theorems 1 and 2 are related to arithmetic simplifications, deferred
case splitting to avoid duplicate proof effort, and to speed up rerunning proofs
over automated tactics.

The proof of Model 4 was mostly automated with minor case-splits. The
tactics nevertheless script differential equation handling to speed up rerun-
ning the proofs. Model 6, in contrast, required arithmetic simplifications to
become tractable, and even then resulted in significantly lower proof perfor-
mance. Table 4 summarizes the proof statistics.

6 Related Work

Train interlocking systems check that trains are not scheduled to share route
sections at the same time. Formal verification techniques was used in acad-
emia [8,16] and industry [5]. Formal methods provide an effective way to satisfy
certification requirements such as CENELEC EN-50126 [7]. The properties are



Formal Verification of Train Control with Air Pressure Brakes 189

Table 4. Proof statistics

Main tactic purpose Tactic size Proof steps Time [s] Performance [Steps
s

]

LOC Steps

Theorem 1 Case-splitting
(loop invariant max)

107 200 35,740 100 357

Theorem 2 Arithmetic
simplifications

216 624 59,998 270 222

phrased as safety properties in temporal logic, and analyzed by model check-
ing, e.g., in SystemC [14], or Simulink [4,12]. High-level safety specifications
can also be linked to interlocking rules represented in lookup tables through
assurance case arguments [17]. At industrial scale, discrete aspects of train con-
trol were formally specified and with the B method [1] preserved along refine-
ments to implementations, e.g., in the Paris METEOR project and the New York
City Canarsie line [10], or for analyzing railway network topology [11]. Safety of
approaching and passing railroad crossings was analyzed with timed automata
(e.g., [15,18]), with motion represented, if at all, as jumps at discrete time steps.
These approaches provide guarantees on the discrete train coordination but not
the motion.

We analyze the complementary question whether the physical motion of
trains respects the instructions issued by a correct route interlocking protocol.
The combination of both answers is required for safe control. The job of inter-
locking approaches is to guarantee that disjoint movement authorities are issued
to trains. Our results guarantee that the train controllers with their continu-
ous dynamics ensure that the trains never move outside these permitted areas,
without which the system would not be safe.

ETCS verification [20,23] formally verifies collision freedom between trains
when following the movement authorities issued by a radio-block controller. The
protocol is modeled as a hybrid systems model, including motion of the train.
The ETCS proofs were the basis for a case study on the Chinese train control
system [25]. Similar motion models were used for safety verification of railroad
crossings with hybrid automata [9].

Here, we focus on significantly more detailed physical models for train brak-
ing, which are the gold standard by the Federal Railway Authority. Their addi-
tional considerations of mass, length of the train, their effect on pressure brake
propagation, and resulting jerk on the dynamics leads to a more realistic yet
also more challenging verification result. We analyze the models both for safety
and performance objectives.

7 Conclusion

We analyzed the safety of train control by formalizing hybrid systems mod-
els of control decisions and their physical effect in terms of stopping distance



190 S. Mitsch et al.

under two braking models. We studied a lower-fidelity braking model that con-
servatively approximates pressure propagation with delayed brake onset, and a
higher-fidelity braking model with gradual braking force increase during pressure
propagation. Our proofs in the hybrid systems prover KeYmaera X show that
safety is achievable in both braking models with appropriate control constraints
that indicate when free driving is safe and when braking is required for safety.
We developed these constraints alongside the proof.

Conservative approximation in braking controllers may degrade performance
and engage brakes unnecessarily early, but more complex controller designs and
physics models may increase verification/implementation complexity and run-
time resource consumption. We analyzed the trade-off between modeling fidelity
and verification complexity: the performance comparison between the two mod-
els indicates a significantly better performance (i.e., lower stopping distance)
in the higher-fidelity model. However, in this case higher modeling fidelity also
results in higher proof complexity, especially in the resulting arithmetic. KeY-
maera X provides support for scripting proofs with tactics to provide the neces-
sary human guidance in a machine-repeatable way.

References

1. Abrial, J.: The B-book - Assigning Programs to Meanings. Cambridge University
Press, New York (2005)

2. Ahmad, H.A.: Dynamic braking control for accurate train braking distance esti-
mation under different operating conditions (2013)

3. Bohrer, B., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differ-
ential dynamic logic. In: Bertot, Y., Vafeiadis, V. (eds.) Certified Programs and
Proofs - 6th ACM SIGPLAN Conference, Cp. 2017, Paris, France, January 16–17,
2017, pp. 208–221. ACM (2017)

4. Bonacchi, A., Fantechi, A., Bacherini, S., Tempestini, M., Cipriani, L.: Validation
of railway interlocking systems by formal verification, a case study. In: Counsell,
S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 237–252. Springer, Cham
(2014). doi:10.1007/978-3-319-05032-4 18

5. Borälv, A.: Case study: Formal verification of a computerized railway interlocking.
Formal Aspects Comput. 10(4), 338–360 (1998)

6. Brossaeu, J., Ede, B.M.: Development of an adaptive predictive braking enforce-
ment algorithm. Technical report FRA/DOT/ORD-9/13, Federal Railroad Admin-
istration (2009)

7. Cimatti, A., Corvino, R., Lazzaro, A., Narasamdya, I., Rizzo, T., Roveri, M., San-
seviero, A., Tchaltsev, A.: Formal verification and validation of ERTMS indus-
trial railway train spacing system. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 378–393. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31424-7 29

8. Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D., Torielli, F., Traverso,
P.: Model checking safety critical software with spin: an application to a railway
interlocking system. In: Ehrenberger, W. (ed.) SAFECOMP 1998. LNCS, vol. 1516,
pp. 284–293. Springer, Heidelberg (1998). doi:10.1007/3-540-49646-7 22

http://dx.doi.org/10.1007/978-3-319-05032-4_18
http://dx.doi.org/10.1007/978-3-642-31424-7_29
http://dx.doi.org/10.1007/978-3-642-31424-7_29
http://dx.doi.org/10.1007/3-540-49646-7_22


Formal Verification of Train Control with Air Pressure Brakes 191

9. Damm, W., Hungar, H., Olderog, E.-R.: On the verification of cooperating traffic
agents. In: Boer, F.S., Bonsangue, M.M., Graf, S., Roever, W.-P. (eds.) FMCO
2003. LNCS, vol. 3188, pp. 77–110. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30101-1 4

10. Essamé, D., Dollé, D.: B in large-scale projects: the Canarsie line CBTC experience.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 252–254.
Springer, Heidelberg (2006). doi:10.1007/11955757 21

11. Falampin, J., Le-Dang, H., Leuschel, M., Mokrani, M., Plagge, D.: Improving rail-
way data validation with ProB. In: Romanovsky, A., Thomas, M. (eds.) Industrial
Deployment of System Engineering Methods, pp. 27–43. Springer, Berlin (2013)

12. Ferrari, A., Fantechi, A., Magnani, G., Grasso, D., Tempestini, M.: The Metrô Rio
case study. Sci. Comput. Program. 78(7), 828–842 (2013)

13. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 527–538. Springer, Cham (2015).
doi:10.1007/978-3-319-21401-6 36

14. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction
and verification of railway control systems. Formal Asp. Comput. 23(2), 191–219
(2011)

15. Heitmeyer, C.L., Lynch, N.A.: The generalized railroad crossing: a case study in
formal verification of real-time systems. In: RTSS, pp. 120–131. IEEE Computer
Society (1994)

16. Hong, L.V., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of
interlocking systems featuring sequential release. Sci. Comput. Program. 133, 91–
115 (2017)

17. Iliasov, A., Romanovsky, A.: Formal analysis of railway signalling data. In: HASE
2016, pp. 70–77. IEEE Computer Society (2016)

18. Ortmeier, F., Reif, W., Schellhorn, G.: Formal safety analysis of a radio-based
railroad crossing using deductive cause-consequence analysis (DCCA). In: Cin,
M., Kaâniche, M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 210–224.
Springer, Heidelberg (2005). doi:10.1007/11408901 15

19. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2),
143–189 (2008)

20. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010)

21. Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24. IEEE (2012)
22. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reas. 59(2), 219–265 (2017)
23. Platzer, A., Quesel, J.-D.: European train control system: a case study in formal

verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 246–265. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10373-5 13

24. Polivka, A., Ede, B.M., Drapa, J.: North american joint positive train control
project. Technical report DOT/FRA/ORD-09/04 (2009)

25. Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying chinese
train control system under a combined scenario by theorem proving. In: Cohen,
E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 262–280. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54108-7 14

http://dx.doi.org/10.1007/978-3-540-30101-1_4
http://dx.doi.org/10.1007/978-3-540-30101-1_4
http://dx.doi.org/10.1007/11955757_21
http://dx.doi.org/10.1007/978-3-319-21401-6_36
http://dx.doi.org/10.1007/11408901_15
http://dx.doi.org/10.1007/978-3-642-10373-5_13
http://dx.doi.org/10.1007/978-3-642-54108-7_14


Light Rail and Urban Transit



An Efficient Evaluation Scheme for KPIs
in Regulated Urban Train Systems

Bruno Adeline1, Pierre Dersin1, Éric Fabre2, Löıc Hélouët2(B),
and Karim Kecir1,2

1 ALSTOM, Saint-Ouen, France
{bruno.adeline,pierre.dersin}@alstom.com

2 INRIA Rennes, Rennes, France
{eric.fabre,loic.helouet,karim.kecir}@inria.fr

Abstract. This paper considers evaluation of Key Performance Indi-
cators (KPIs) for urban train systems equipped with regulation algo-
rithms. We describe an efficient simulation model that can represent a
network, animate metros, and integrate existing regulation schemes as
black boxes. This macroscopic model allows efficient simulation of sev-
eral hours of networks operations within a few seconds. We demonstrate
the capacities of this simulation scheme on a case study and show how
statistics can be derived during simulation campaigns. We then discuss
possible improvements to increase accuracy of models.

Keywords: Key Performance Indicators · Metro networks · Regulation ·
Simulation

1 Introduction

Urban train systems are subject to performance requirements originating from
customers, operators or local authorities. These requirements (or Key Perfor-
mance Indicators) can focus on punctuality of metros, regularity of service, pas-
sengers comfort... Recent indicators also address energy consumption. Usually,
trains follow optimized schedules (a.k.a. timetables) that allow, if realized as
expected, to meet quality requirements. In a perfect world, trains arrive at sta-
tions and leave at the exact dates prescribed by a timetable or by a service rate.
However, in everyday life, perturbations arise, and schedules are rarely satisfied.

Indeed, urban train systems are subject to random perturbations originating
from weather conditions, passengers misbehavior, or failures. To recover from
small delays, metro systems are equipped with regulation mechanisms, that give
advice to train drivers (or to automated systems embedded in trains, if the
line is driverless). Advice can be, for example, to reduce/increase dwell time or
change commercial speed for a while to resume to the original timetable or to
meet a regular service rate. Regulation mechanisms are hence a key element for
metros performance. They should be seen as an important part of the design
of a metro line, and be considered at early design stages. Several standard reg-
ulation techniques appear in the literature: the simplest ones try to stick to a
c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 195–211, 2017.
https://doi.org/10.1007/978-3-319-68499-4_13



196 B. Adeline et al.

prescribed timetable, but complex proprietary regulation algorithms are also in
use. One can however notice that there is no consensual mechanism considered
as the best regulation technique: efficiency of a regulation scheme depends on
frequency of delays, passengers behaviors, metro lines topology, and many other
contextual features. Considering regulation and evaluating its performance at
early design stages has several advantages. First, it allows to decide which reg-
ulation technique is adapted to particularities (inter-station length, maximal
commercial speed of trains, number of trains, passenger behaviors...) of the line
under construction. Second, it allows to build timetables and to estimate achiev-
able performance.

Several tools have been used to evaluate performance of mainline railway sys-
tems. Following the classification in [8], one can define these tools as macroscopic
or microscopic simulation tools. Macroscopic approaches abstract away details
(fine modeling of trains acceleration, adherence to tracks...) and do not usu-
ally consider trains particularities for simulation; they usually lead to optimistic
results. An example of such macroscopic model is the NEMO tool [6]. This tool
uses abstract network graphs to compute timetables and detect possible bot-
tlenecks. Microscopic approaches consider trains details, and many parameters
such as weather conditions and up to passenger flows. Usually, these approaches
consider how trains influence one another at runtime. They use synchronous
techniques, i.e., repeatedly evaluate evolution of a network during user-defined
time steps (for instance one second). OpenTrack is an example of such simula-
tion framework (see for instance a description in [8]). Synchronous simulation is
time consuming, and many steps simulated by the tools are simply useless, as
no interaction between trains (forcing one of them to brake, for instance) nor
change to a train’s behavior (excepted for their positions) occur during most of
time steps. OpenTrack and NEMO, as well as commercial softwares such as Rail-
Sys target main lines, where delays between departures and arrivals are quite
long, and where small local perturbations have little influence on service per-
formance. Challenges for these models are to design timetables, that are quite
stable, and in case of failure in a network, find alternative paths for trains (see [3]
for an introduction to the timetabling problem and associated tools). Compu-
tation of best alternative routes can take a few minutes without affecting too
much traffic. In metro networks, paradigms change: trains are really close, minor
disturbances may affect service quality, and advice has to be computed as fast
as possible to be usable. Hence, corrective mechanisms are quite reactive, and
the computed solutions to recover from a delay are applied as soon as possible.
Models such as those proposed in the SimMETRO tool [7] address performance
of metro systems in a microscopic (and stochastic) setting.

This paper describes a macroscopic performance evaluation scheme for reg-
ulated metro systems, that can be used at early design stages. Metro networks
are modeled as a variant of Stochastic Time Petri Nets [5]. Dwell and trip times
are modeled as sojourn times in places, perturbations are modeled as random
variations for these durations. In addition to the network dynamics, the system
integrates a timetable and a regulation algorithm. The regulation algorithm is
used as a black box that sends departure orders to trains and recomputes the



An Efficient Evaluation Scheme for KPIs in Regulated Urban Train Systems 197

timetable. We consider a fixed block policy: the metro network is divided into
zones that can be entered by a single train. The distributions governing trip and
dwell durations are defined using expolynomial distributions. Indeed, as delays
are more likely than advances the repartition of trip durations have particular
asymmetric shapes that cannot be captured by standard uniform, exponential or
Gaussian distributions. Distributions are hence defined on an interval in which
durations with the highest probabilities are concentrated around several nomi-
nal values (nominal dwell or running times). Simulation of traffic is performed
using an efficient technique that advances time to the date of the next event(s)
(departures and arrivals), hence avoiding useless steps of standard synchronous
simulation approaches. The proposed model is abstract enough to allow effi-
cient simulation (many characteristics of trains, tracks and so on are abstracted
away), but yet accurate enough to derive useful performance measures. We show
that KPIs can be easily evaluated from our model, and demonstrate its practi-
cal interest on a real case study, namely line 1 on Santiago’s metro. The paper
is organized as follows: Sect. 2 introduces our simulation model. Section 3 intro-
duces KPIs and shows statistics obtained from a simulation of 4 h of exploitation
on our case study. Section 4 discusses our design choices, and possible improve-
ments of the model, before conclusion.

2 Modeling

Urban train networks are composed of tracks, trains, safety and regulation mech-
anisms. Tracks can be decomposed in stations, rails and platforms, depots and
turn back areas. Trains follow paths expressed as a succession of trips from
departure to arrival terminuses and turn back maneuvers. The trip plans are
usually detailed in a prebuilt timetable for a day or part of a day of exploita-
tion. Timetables give a desired ideal schedule of trains departures and arrivals.
They are an idealized representation of behaviors of trains, that is never per-
fectly met because of random delays due to incidents, weather conditions, etc.
To leverage the effects of these disturbances, urban train systems are equipped
with traffic regulation mechanisms that observe delays and compute orders and
reschedulings to help the system get back to the ideal timetable.

We propose to model urban train systems with a variant of Stochastic Time
Petri Nets as defined by Horváth et al. [5]. As we will show later in this section,
this graphical model is particularly adapted to represent a network topology,
and to manipulate durations subject to random perturbations. In the rest of the
section, we only give an informal presentation of the model and refer to [4] for
a complete presentation of the model and of its semantics.

Definition 1 (Stochastic Time Petri Net). A Stochastic Time Petri Net
(STPN for short) is a tuple N = 〈P, T,•(), ()•,m0, eft, lft,F〉 where P is a finite
set of places; T is a finite set of transitions; •() : T → 2P and ()• : T → 2P are
pre and post conditions depicting from which places transitions consume tokens,
and to which places they output produced tokens; m0 : P → {0, 1} is the initial



198 B. Adeline et al.

•
PS1 trip1→2 PS2

•
trip2→3PS3trip3→1

t1
[2,10]

t2
[350,500]

t3
[2,10]

t4
[250,300]

t5
[2,10]

t6
[250,300]

S1 S2

S3

2km

1.5km1.5km

Fig. 1. An example STPN, symbolizing a simple ring topology with two trains.

marking of the net; eft : T → Q≥0 and lft : T → Q≥0∪{+∞} respectively specify
the minimum and maximum time-to-fire that can be sampled for each transition;
and F : T → Σpdf associates a probability distribution to each transition.

Intuitively, places of a net represent either a track segment, a station, or
a boolean condition allowing departure of trains. Transitions represent actions,
i.e., departures or arrivals of trains. Intervals associated to transitions symbolize
the range of possible dwell and trip times, and the distributions attached to
transitions the probability distribution for each of these durations.

We denote by ft the distribution F(t). To be consistent, we assume that
for every t ∈ T , the support of ft is [eft(t), lft(t)]. For a given transition t ∈
P ∪ T , •t will be called the preset of t, and t• the postset of t. Transitions
represent departures or arrivals of trains. The preset of an arrival transition has
a single place representing the track portion arriving to the station. A departure
transition has two places in its preset: a place representing a station, and a place
representing an order from the regulation system allowing departures (we will
come back to these places later in this section). Consider for instance the drawing
at the left of Fig. 1. This is a toy ring topology with 3 stations (S1, S2, S3). The
distance between S1 and S2 is 2 km, and the distance between S2 and S3 is
equal to the distance between S3 and S1 and is equal to 1.5 km. The commercial
speed of train is 20 km/h, and the ring contains 2 trains. This simple topology
can be depicted by the STPN at the right of the figure. The places labeled
by PSi

symbolize station Si, and places labeled by tripi→j the track portion
between station Si and station Sj . Transitions t1, t3, t5 symbolize departures,
and t2, t4, t6 arrivals of trains. The intervals associated with transitions represent
possible ranges of dwell and running times. In the represented net, places PS1

and trip2→3 contain tokens, which represents a situation where a train is stopped
at station S1 and another one is moving from station S2 to station S3.

This syntax of STPNs is similar to the one in [5], but we need to adapt their
semantics to represent metro systems: for safety reasons, trains in a metro net-
work have to preserve a safety headway. A way to address this safety requirement
is to decompose a network into blocks, and allow a train to enter a block only
when no other train uses it. This policy is called fixed block policy. Standard
semantics of transitions firing in Petri nets consume tokens from the preset of a
transition and produce tokens in its postset regardless of the contents of a place.



An Efficient Evaluation Scheme for KPIs in Regulated Urban Train Systems 199

In the standard setting, places can contain more that one token. To implement
a fixed block policy, we define a blocking semantics that requires, in addition to
standard rules, that places in •t that receive tokens when firing a transition t are
empty.

The semantics of STPNs is defined in terms of sequences of discrete transition
firings, and timed moves. We will say that a transition t is enabled by a marking
m iff ∀p ∈ •t,m(p) = 1. For a given marking m and a set of places P ′, we will
denote by m−P ′ the marking that assigns m(p) tokens to each place p ∈ P \P ′,
and m(p)−1 tokens to each place p ∈ P ′. Similarly, we will denote by m+P ′ the
marking that assigns m(p) tokens to each place p ∈ P \ P ′, and m(p) + 1 tokens
to each place p ∈ P ′. Firing a transition t is done in two steps and consists in:
(1) consuming tokens from •t, leading to a temporary marking mtmp = m − •t,
then (2) producing tokens in t•, leading to a marking m′ = mtmp + t•.

The blocking semantics of an STPN can be informally described as follows.
A variable τt is attached to each transition t of the STPN. If a transition t
represents an arrival at a station S, when •t is marked, this means that there
is a train on its way to station S. If t represents a departure from a station S,
when •t is marked this means that a train is stationed at station S, and has
received an authorization to leave. As soon as a transition t is enabled, τt is set
to a random value ζt (called the time-to-fire of t, or TTF for short) sampled
from [eft(t), lft(t)] according to ft. Intuitively, this TTF represents a duration
that must elapse before firing t once t is enabled. The value of τt then decreases
as time elapses but cannot reach negative values. When the TTF of a transition
t reaches 0, then if t• is empty t becomes urgent and has to fire unless another
transition with TTF 0 and empty postset fires; otherwise (if t• is not empty),
t becomes blocked : its TTF stops decreasing and keeps value 0, and its firing
is delayed until the postset of t becomes empty; in the meantime, t can be
disabled by the firing of another transition. The semantics of STPNs is urgent :
time can elapse by durations that do not exceed the minimal remaining TTF of
enabled transitions that are not blocked. At a given moment, one can consider all
remaining time to fire of enabled transitions, and compute the delay that has to
elapse before some transition firing will occur. This allows to avoid synchronous
approaches and perform macro time steps between two discrete events.

Let us say a few words about distributions attached to transitions. In our
model, transitions symbolize departures and arrivals of trains. Places symbolize
a station, or a track portion between two stations. A departure occurs a certain
amount of time after arrival of the train at the considered station, and similarly,
going from one station to another one takes time. Distributions describe the
probability of durations for dwell and running times. If one wants to obtain
realistic models and accurate enough performance measures, these distributions
have to be realistic enough. Distributions can be discrete (i.e., a list of possible
values with associated weight), but for precision reasons, it is preferable to use
continuous distributions. An usual way to model continuous distributions is to

use Gaussian distributions, i.e., of the form f(x) = 1√
2πσ2 .e

(x−μ)2

2σ2 , where μ and
σ are parameters of the distribution. Such distributions describe a bell shaped



200 B. Adeline et al.

curve, centered around the most probable value. In the setting of durations for
dwell times or trips, delays are more likely than advance, and in general our
distributions are not that symmetric. We hence use asymmetric distributions,
modeled with expolynomial functions.

Definition 2. A truncated expolynomial function over domain [u, v] is a func-

tion of the form f(x) =
{∑K

0 ck.xake−λk.x if x ∈ [u, v]
0 otherwise

where u, v and ck, ak, λk

for every k ∈ {
0, 1, . . . ,K

}
are rational values.

f(x) is an expolynomial probability density function iff
∫ v

u
f(x) = 1.

During simulations of our Petri net model, dwell and trip durations are
sampled according to distributions attached to transitions. Sampling from con-
tinuous distributions can be done using inverse transform techniques (see for
instance [11]). Let us denote by Ft the cumulative distribution function (CDF)
associated with ft, i.e., Ft(x) =

∫ x

0
ft. We will assume that every CDF Ft is

strictly increasing on [eft(t), lft(t)], which allows for inverse transform sampling.
Then sampling a value for a distribution defined by ft amounts to sampling a
value v from the standard uniform distribution in the interval [0, 1], compute
the value x such that Ft(x) = v, and take x as the random duration sampled
from law ft.

For efficiency reasons, one can also approximate truncated expolyno-
mial functions with areas defined by zones, which greatly simplifies sam-
pling for an acceptable precision loss. Figure 2 shows a Gaussian distribution

g(x) = 1√
2π

.e− (x−4)2

2 (i.e., with parameters μ = 4 and σ = 1), an expolynomial
distribution f(x) = 0.58.x2.e−1.7x + 0.29.x3.e−1.2x defined over [0.5, 6], and an
approximation of this function on the same domain by an area delimited by two
affine functions. On this figure, one can notice that a Gaussian distribution is
centered around a pivot value: g(x) describes a distribution in which the most
probable values lay around 4 time units, but where the probability density of
values before and after 4 is exactly 0.5. Conversely, the expolynomial distrib-
ution f(x) has its most probable values centered around 2 time units, but the
probability mass of values greater than 2 (0.67) is larger than that of values

0.5 4 6
x

f(x)

Fig. 2. A Gaussian distribution (plain line), an expolynomial function (dashed line),
and its area approximation (dotted line).



An Efficient Evaluation Scheme for KPIs in Regulated Urban Train Systems 201

smaller than 2 (0.33). This can be interpreted as: the most probable value for a
delay is 2, and the probability to be delayed is higher than the probability to be
in advance.

Now, STPNs only describe the dynamics of trains, i.e., how they move from
one track portion to another, and the time needed to move from one part of
the network to another. As already mentioned, unwanted delays are recovered
using regulation techniques that should hence be considered when evaluating
the overall dynamics and performance on an urban train network. The overall
behavior of our model is hence provided by a combination of a Petri net, and
of a regulation algorithm. The Petri net part of our simulator simulates train
moves, dwell and running times and random delays for these durations. Firing a
transition in this net means a departure or an arrival of a train at a given date.
The regulation part of the model reads arrival and departure dates of trains
(i.e., firing dates of transitions of the Petri net), and allows departures at dates
prescribed by a timetable. Upon delay, the regulation algorithm recomputes a
new timetable according to a regulation policy. Regulation algorithms usually
recompute future departure or arrival dates of trains, which amounts to change
dwell time or commercial speed (through the reduction of running and dwell
times) upon observation of a delay. These techniques usually allow to catch up
delays within a few stations. However, more involved regulation algorithms can
redefine trains paths, allow overtaking of trains, insert/extract trains, etc.

Our simulation framework integrates regulation as follows: places of the Petri
net represent stations or track portions. Transitions of the net represent depar-
tures or arrivals of trains. Some places in the preset of a departure transition
(dotted places in Fig. 3) represent orders given by the regulation algorithm.
When all places of •t are filled and in particular the dotted place, the departure
is allowed. This way, regulation algorithms can allow departures at a precise
date, or impose a direction to a train leaving a station, in order to follow a plan.
Consider the example of Fig. 3. Place PS1 contains a token. This token was put
in the place by transition t1. The occurrence date of t1 can be recorded and com-
pared by the regulation algorithm to detect whether this event (a train arrival)
was late. If this is the case, then the time table attached to the system can be
updated. As soon as the regulation part fills place C1, a value from [12, 20] can
be sampled, and the train will leave as soon as this TTF reaches 0. Place PS2 also
contains a token, but the place has several transitions consuming tokens from
it. According to the mission of the next train leaving station S2, the regulation
module will fill either place C2, allowing firing of t4 between 20 and 25 s later,
or C3, allowing firing of t5 between 18 and 25 s later.

This way, our simulator is an abstract representation of trains moves, but
integrates a real regulation policy. Regulation algorithms are written as a set of
rules applicable following a triggering event such as the delayed arrival of a train.
They can be simple rules of the form “if a train arrives late by more than x time
units then reduce dwell time to minimum allowed dwell time for the station”.
They can also be intricate rules choosing a decision to perform according to a set
of thresholds... The framework proposed above has the advantage of integrating



202 B. Adeline et al.

•
PS1

•
PS2

C1
C2

C3

t1

[200, 250]

t2

[12, 20]

t3

[180, 200]

t4

[20, 25]

t5

[18, 25]

Regulation

Timetable Log

Fig. 3. The SIMSTORS simulation framework

a real regulation policy. The same network and train fleets can be tested with
different regulation algorithms without changing the whole model. However, this
modularity and the expressiveness allowed in regulation has a cost: it is very hard
to formalize and analyze the effect of regulation on the overall behavior of the
model, that is hence more adapted to statistical analysis of performance via
simulation. The first results obtained are quite promising: the structure of the
net mimics the topology of the specified network, and the behavior of trains and
the corrections brought by regulation are very similar to those usually observed.

In the modeled setting, we consider that regulation is a deterministic process:
for a given delay detected at departure or arrival of a train, the changes to the
schedule computed by the regulation algorithm is always the same. Though our
simulation framework uses regulation as a black box, i.e., imposes no constraint
of the type of regulation used by the system, this assumption seems sensible.
An advantage of this assumption is that randomness comes exclusively from the
part of the system represented by the stochastic time Petri net. An access to the
current state of the schedule and to the times to fire of all transitions suffices
to know the date of the next event that will occur in the system (a departure
order given by the regulation, an effective departure, or an arrival of a train). As
a consequence, one needs not discretize time according to a fixed sampling rate,
and can consider only dates at which events occur. This is called event-based
simulation, and allows for fast simulation of long runs of metro systems.

We have used this model to represent Line 1 of Santiago’s metro [1]. This line
is a complex ring topology: two intertwined rings connecting 24 stations. The
Petri net built for this line is a net with 102 dwell places, 147 trip places, 147
control places, 147 departure transitions and 147 arrival transitions. The model
contains depots and turn back zones in addition to stations and their intercon-
nections. With this Petri net, we can simulate 4 h of operations of Santiago’s
metro with 50 trains and random perturbations in 40 s on an average laptop.



An Efficient Evaluation Scheme for KPIs in Regulated Urban Train Systems 203

3 KPIs and Simulation Campaign Results

Urban train networks are driven by operators that have commitments with
local authorities to meet quality criteria. These criteria are standardized by the
UITP [9], and known as Key Performance Indicators (KPIs for short). Failing to
meet fixed performance objectives can result in financial penalties for operators.
KPIs address several criteria: punctuality, regularity of service, number of fail-
ures, ratios of successful missions completed, but also more subjective measures
such as passengers comfort... Usually, KPI measures are obtained by computing
statistics from logs of train operations. Of course, these statistics make sense
only if logs are recorded for a sufficiently long duration (day, week or month).
Statistics are derived from a set of complete trips (travel from one terminus of a
line to another endpoint of a line). In what follows, we assume that a sufficiently
large set of effectively realized trips T is recorded. For each trip, departure and
arrival dates at all stations have been recorded. We also assume that reference
timetables are provided, indicating expected dates of departures and arrivals of
trains when no perturbation arises.

Given this set T , the punctuality KPI is defined as “the ratio of train trips
delayed by less than x minutes over the total number of trips” [9]. As formalized
by UITP, this KPI only considers ending dates of trips. Formally speaking, this
KPI is defined as

PKPI �
∣∣{t ∈ T | ḋ(t) − d(t) < x

}∣∣ / ∣∣T ∣∣
ḋ(t) is the occurrence date of the last event of trip t, d(t) the scheduled date of
the last event of t, and x is a given threshold (in minutes).

The regularity KPI is defined by UITP as “the ratio of train departures
at specified stations complying with planned headways within x minutes over
the total number of departures from the specified stations”. More formally, we
assume a selection of stations S = {s1, s2, . . . , sm} of interest where regularity is
important. For each station sj ∈ S, we denote by Edj = {ed1,j , ed2,j , . . . , edk,j}
the ordered set of departures from station sj . We also denote by ḣ(edi+1,j) the
effective headway between departure event edi+1 and its predecessor edi, and
by h(edi+1,j) the reference headway (for instance the headway planned for these
trips in a reference timetable). The regularity KPI is then formally defined as:

RKPI �
m∑

j=1

∣∣{edi+1,j ∈ Edj | 1<i≤k ∧ ḣ(edi+1,j)−h(edi+1,j) < x
}∣∣ / m∑

j=1

∣∣Edj

∣∣

x is a given threshold.
We have performed a simulation campaign for Santiago’s metro based on the

model of line 1 mentioned in Sect. 2. We have simulated the first 4 h of operation
of the line, with 50 trains operating on the line1. The system was equipped with

1 Traffic is not immediately maximal but increases progressively as trains are inserted
in the network.



204 B. Adeline et al.

a regulation algorithm trying to stick as much as possible to a precomputed ideal
timetable TT id. The regulation plays on dwell times to recover from unexpected
delays, and maintains a feasible timetable that associates to departures and
arrivals their earliest possible occurrence date. This 4 h simulation has been
performed 100 times to record arrival and departure dates at all stations. During
each simulation, dwell and running times for each event are randomly sampled
from their respective distributions. The distributions attached to transitions were
discretization of asymmetric bell shaped curves (i.e., close to a discretization of
an expolynomial function).

At the end of the simulation campaign, the obtained data were a succession
of departure and arrival dates corresponding to 100 simulations, each simulation
providing departure and arrival dates for all steps of realized trips. From these
data, we have computed statistics and derived a KPI, namely the mean deviation
w.r.t. desired departure headways. Overall, the campaign took around 1 h.

Figure 4 depicts the mean deviations computed for each individual simula-
tion. Abscissa indicate the simulation number (ranging from 1 to 100). The dif-
ferent curves on the picture represent the mean deviation with respect to the ideal
timetable TT id at each station (1 curve per station). The dark curve represents one
particular station, namely Pajaritos, in running direction 1. Note that we slightly
abuse the term “station”, as for each physical location of line 1, we have a station
number for each running direction. (There are two possible directions: direction 1
from station “San Pablo” to “Los Dominicos” and direction 2 the converse way.)
From these recorded mean deviations w.r.t. TT id, one can observe the randomness
of the simulation, as for each run, the results are different.

Fig. 4. Mean deviations from reference timetable for n = 100 runs



An Efficient Evaluation Scheme for KPIs in Regulated Urban Train Systems 205

Let n be the number of simulations performed during a campaign (in our
case n = 100), and let rj with j = 1, 2, . . . , n denote the jth simulation (also
called a run hereafter). Let m be the number of stations, and let us denote by sk

with k = 1, 2, . . . , m the kth station on the line. Events occurring at a given sta-
tion sk in a run rj are denoted ei,j,k with i = 1, 2, . . . , qk. Note that, during our
simulation campaign, the number of events per station was the same from a run
to another. Considering the idealized timetable TT id, one can easily find the ith

event (departure or arrival) at station k, and hence obtain its planned occurrence
date. We denote by d(ei,j,k) the reference date for the occurrence of event ei,j,k,
which is the ideal occurrence date. Note that as d(ei,j,k) is the same for all runs,
we can simply write it as di,k. We denote by ḋi,j,k the effective occurrence date of
event ei,j,k in run rj at station sk. The deviation (w.r.t. the reference timetable
dates) for an event ei,j,k is the difference δi,j,k = ḋi,j,k −di,k between its effective
date of occurrence and its desired occurrence date. Consider Fig. 5. This graphics
represent data collected during a single run of our simulation. Each curve repre-
sents the evolution of deviations for a particular station. Abscissa represent time
elapsing, and ordinates give the deviations δ1,1,k, δ2,1,k, . . . , δqk,1,k. It might seem
surprising that deviations grow but this is due to the chosen parameters for the
simulation: we have deliberately selected high values of perturbations, to be able
to observe the impact of regulation. One can see that, in the beginning of the
simulation, the regulation is able to recover, more or less, from the perturbations
but, as time progresses, the system becomes unstable. This is due to the fact
that more and more trains are inserted into the network. As a consequence, it
becomes harder for regulation algorithms to recover from consequent delays, and
bunching phenomena appear.

Fig. 5. Progress of deviations from reference timetable for station Pajaritos, direction 1



206 B. Adeline et al.

Fig. 6. Effective and reference headways for station Los Héroes, dir. 1 for one simulation

Instead of reasoning in terms of occurrence dates and deviations, one can
also consider headways, as they give a better measure of traffic regularity. For
headways to be relevant, they have to be measured only between events of the
same type (i.e., departures or arrivals). We hence denote by ed

i,j,k (resp. ea
i,j,k)

the ith departure (resp. arrival) at station sk in run rj . Similarly, we denote by qd
k

(resp. qa
k) the total number of departures (resp. arrivals) at station k (one need

not differentiate between runs). We then denote by hd
i,k � d(ed

i+1,k)− d(ed
i,k) the

reference headway at departure i+1 and by ha
i,k � d(ea

i+1,k)−d(ea
i,k) the reference

headway at arrival i+1 at station sk. We denote by ḣd
i,j,k � ḋ(ed

i+1,j,k)− ḋ(ed
i,j,k)

the effective headway at departure i+1 in run rj and ḣa
i,j,k � ḋ(ea

i+1,j,k)−ḋ(ea
i,j,k)

the reference headway at arrival i + 1 at station sk.
We can then define h

d

k �
∑qd

k−1
i=1 hd

i,k

/ (
qd
k − 1

)
and h

a

k �
∑qa

k−1
i=1 ha

i,k

/
(qa

k − 1)
as the mean reference headways for departures and arrivals at station sk respec-
tively. Also, h̃d

j,k �
∑qd

k−1
ix=1 ḣd

i,j,k

/ (
qd
k − 1

)
and h̃a

j,k �
∑qa

k−1
i=1 ḣa

i,j,k

/
(qa

k − 1) are
the mean effective departure (resp. arrival) headway at station sk during run
rj , and h̃d

k �
∑n

j=1 ḣd
j,k

/
n and h̃a

k �
∑n

j=1 ḣa
j,k

/
n the mean effective headway at

station sk for the simulation campaign.
Figure 6 shows departure headways from Los Héroes station in running direc-

tion 1. Abscissa depict events indexes, and ordinates the effective departure
headways for one simulation run. Reference headways are depicted in gray and
effective headways in black. One can observe that the regulation has an effect on
headways. Indeed the curves of reference and effective headways are different, but
their general profile remains close (there is no divergence in the effective head-
way curve). Now, one cannot draw conclusions from a single run of a stochastic
simulation. In what follows, we give confidence intervals for means of deviations
between mean effective departure headways and mean reference headways per
station derived from a simulation campaign of several runs (here, 100).

A stochastic simulation campaign can be used to measure KPIs defined as
mean value of some quantity ζi measured for each sampled run ri. It is however
interesting to know how the computed value approaches the theoretical mean μ
for this KPI. Such a confidence can be quantified through confidence inter-
vals. We call M � 1

n

∑n
i=1 ζi the sample mean obtained from ζi’s, and σ the



An Efficient Evaluation Scheme for KPIs in Regulated Urban Train Systems 207

Fig. 7. 99.9% confidence intervals for means of deviations between mean effective
departure headways and mean reference headways per station

corresponding estimated standard deviation. According to the law of large num-
bers, M approaches μ only when the number of samples n is sufficiently large.
To increase confidence in the computed value, a standard approach is to set a
confidence level α, and compute a confidence interval I from M . I is the confi-
dence interval for μ at confidence level 1−α, i.e., the probability that μ belongs
to I is 1 − α. Given n, M , σ and α, the confidence interval is defined as:

I �
[
M − γα

σ√
n

,M + γα
σ√
n

]
(1)

where γα is a value depending only on α called the z-score.2

Let us now consider a KPI measuring the mean deviation w.r.t. reference
departure headways for a station. The headway deviation (difference between
the effective headway and the reference headway) for event i, in run rj at
station sk is defined as θi,j,k = ḣd

i,j,k − hd
i,k. The mean headway deviation in

a run rj at station sk is given by θj,k �
∑qd

k−1
i=1 θi,j,k

/ (
qd
k − 1

)
. Finally, the

mean headway deviation at station sk for a simulation campaign of n runs is
θk �

∑n
j=1 θj,k

/
n. The standard deviation of θk in a simulation campaign of n

runs is σk �
√∑n

j=1

(
θk − θj,k

)2 /
(n − 1).

Figure 7 shows the confidence intervals computed for headway deviations at
each station. The parameters of the simulation are n = 100 runs, and the inter-
vals are computed for a confidence 1 − α = 99.9%. In this Figure, the horizontal
axis carries station names, and the ordinates represent values of mean devia-
tions. For each station, the graphics contain an interval around the sample mean
value computed from the simulation campaign. One can notice that headway
deviations grow progressively from station Pajaritos direction 1 to Manquehue
direction 1 and from Manquehue direction 2 to Pajaritos direction 2. This is
explained by an accumulation of delays due to bottlenecks at both ends of the
2 This value is the real value such that P [|N | ≤ γα] = 1 − α, where N is a variable

following a normal law N (0, 1). This value is not easily computable, but all statistical
tools provide means to obtain γα, for instance using precalculated z-tables.



208 B. Adeline et al.

network. One can also notice that mean headway deviations at the ends of the
line (stations SP1, NP1, HM1, LD1, SP2, NP2, HM2, and LD2) do not follow this
general profile (they have smaller effective headways). This is due to the fact that
these stations are used for train insertion and turn back maneuvers and allow
for more flexible regulation margins. Accumulated delays can be recovered at
these stations (up to a certain limit) by considerably reducing sojourn time or
using fast turn back techniques. Last, one can see that the chosen perturbation
level for this simulation is too high to allow recovery from delays by the selected
regulation.

4 Discussion and Improvements

The model proposed in this paper has been tested on a real case study; namely,
the Line 1 of Santiago’s Metro, with a hold-on regulation policy that tries to stick
as much as possible to a predetermined timetable. This first experimentation
allows to obtain simulation results within a reasonable time (a few seconds for
4 h of operation of a real network, i.e., a real topology with its actual train
fleet). This shows feasibility of a simulation approach to evaluate performance
of regulation algorithms. Now, this simulation framework can be improved along
several directions. First of all, distributions for delays were designed from an a
priori knowledge of normal dwell and running times between two stations. To
guarantee that these distributions are accurate enough, one could observe trains
and passengers behaviors over a long enough period, and derive distributions
from the collected data.

A second issue regarding distributions is that the delays are modeled as
Markovian noise. In this setting, every delay is sampled independently from
the others. In urban train networks, latencies are correlated. For instance, if
a train gets late, more passengers will enter the train, which will increase the
chances of delay. Similarly, if a train is delayed due to bad weather between
two stations, all trains of the network are likely to be delayed on the same part
of the network. This means that sampling in our simulator should consider a
context, and that distributions should be conditional distributions of the form
p (x | c1, c2, . . . , ck) where x is a delay, and c1, c2, . . . , ck are variables representing
the context (station, weather, day of the week, time of the day, etc.) in which
delay x is sampled. This change does not require much effort to be integrated to
our simulation model. However, it does require a lot of effort from designers to
evaluate the impact of an environmental factor on the distributions.

Train fleets: A second issue that should be considered is the impact of fleet
composition on computed metrics. In the simulation that we have performed, we
have considered regulation techniques that cannot change composition of fleets
to meet their objectives. The number of running trains changes according to the
period of the day, but follow planned insertions and removals of trains: It would
be interesting to consider regulation techniques that can recommend to insert
or remove trains to meet a desired KPI. In a similar way, we have considered



An Efficient Evaluation Scheme for KPIs in Regulated Urban Train Systems 209

uniform fleets. This is however not the case that all trains have the same speed,
same capacities, etc. One can easily integrate to distributions (and to the context
as described above) the type of each train when sampling a dwell or running
duration. As for all environmental factors, this difference between trains can be
defined using conditional distributions, but with an increased design cost.

Moving block: In this paper, all experiments have been conducted assuming
that the line was operated with a fixed block policy, forbidding trains to enter
an already occupied track section (block). However, in reality, trains can also
follow a moving block policy [10]. The moving block policy as described by
Pearson states that “A train is continuously supplied with accurate information
of the position of the nearest obstacle on the track ahead of it [. . . ] it may be
a preceding train, which itself may be moving or stationary. The speed of the
train is constantly checked and adjusted [. . . ] so that it is always possible for the
train to be brought to rest without colliding with the obstacle.” In this setting,
several trains can enter a track portion as long as they adapt their speed to
their predecessors. Changing the Petri net setting to adapt to this change needs
to consider running times as constrained delays attached to trains and not as
time to fire attached to transitions. This change to the model is currently under
study.

Distributions: Currently, the sampling technique for running and dwell times
represented by an expolynomial probability density function f with domain [u, v]
uses a discretization of the cumulative distribution function F (x) =

∫ x

0
f(y).

That is we obtain a set of values x1, . . . xK , where K in the number of slices
for our cumulative function and xi = (v − u) · i/K. Then after sampling a
value η from the uniform distribution, we select the discrete value z = xi such
that η lays within [F (xi), F (xi+1)]. This raises two issues. First of all these
distributions are designed from a priori knowledge of Santiago’s network, and
in particular the commercial speeds on the network, and from an abstraction of
the behavior of metro users resulting in bounded delays. These distributions can
be improved through a fine observation of delays and using learning algorithms
once a network is operational. Second, the sampling technique can result in a
loss of accuracy if the probability density function is too roughly discretized, or
in a loss of performance if the sampling technique consumes too much time.

Regulation: The regulation considered in this paper is a simple policy that
tries to stick to a predetermined timetable. The architecture of our tool uses
regulation algorithms as a particular module and replacing the current regulation
by another one is quite simple. Currently, what our regulation does is: first receive
an arrival date for a train, then compare it with the expected date in a timetable.
Last it propagates the delays and taken decisions to the yet unexecuted part of
the timetable. Changing this regulation for another one (for instance, one that
tries to maintain headways between trains) within this architecture is an easy
task, and other regulation techniques are currently under implementation.



210 B. Adeline et al.

Passengers flows: The last aspect that may improve accuracy of the model
is to consider how passengers transfer from one line to another. Indeed, metro
networks are often composed of several interconnected lines. A flow of passen-
gers entering a line at an endpoint is likely to transfer to another line at a
junction point of the network. This flow of passengers is often captured with
Origin-Destination Matrices, in which entries indicate the proportion of passen-
gers alighting at station i that leave a train at station j, or which proportion of
passengers leaving at a junction station enter the next train of another line. In
its current status, our model does not integrate flows nor address the number
of passengers. As already mentioned, the number of passengers impacts the dis-
tribution of delays. However, integrating passengers flows to our model is likely
to increase simulation time dramatically, as it requires counting (or at least
quantizing) trains population, and remembering passengers alighting histories
to guarantee faithful representation of passengers flows. An inspiration for this
improvement of our model and of our simulation framework is the multiphase
fluid Petri nets proposed in [2]. Another difficulty in flows representation is that
Origin-Destination matrices are not known a priori. They are not available at
early design stages. They have to be built once a metro network is operational,
which usually requires observation of passenger habits for long periods of time.

5 Conclusion

In this paper, we have detailed a framework for performance evaluation of regula-
tion algorithms on a particular metro line. This framework consists of a high-level
model of the network and of train moves, with random perturbations, in which a
regulation algorithm is inserted to correct these delays. The overall system allows
for fast simulation, and hence for realization of simulation campaigns to obtain
statistics on the efficiency of a regulation algorithm to meet KPI objectives.

The proposed framework allowed us to derive statistics for a case study,
namely Line 1 of Santiago’s Metro. A key question raised by our study is the
tradeoff between abstraction (allowing efficiency of simulation) and accuracy
of the statistics derived. Petri nets allow for an accurate modeling of network
topologies, the key ingredient for our model is hence accuracy of running and
dwell times. As explained in the paper, truncated expolynomial functions allow
for precise modeling of distributions in which trains are more likely to be delayed
than advanced. When sampling for such functions is too time consuming, these
functions can be approximated with areas delimited by affine functions.

Now, a major challenge is to define these distributions. Of course, at early
stages of design, one can rely on expected characteristics of the network and
trains to design distributions a priori. For an existing system, when the chal-
lenge is not design but rather to adapt regulation train fleets and their paths to
improve KPIs, one may want to work with accurate distributions, that consider
elements from context: passengers, trains, but also regulation itself. In such a
situation, collected logs can help learning parameters of a distribution for dwell
or running time, but it remains a challenging task to estimate the contribution



An Efficient Evaluation Scheme for KPIs in Regulated Urban Train Systems 211

of passengers or regulation to a certain duration, as these parameters are usually
not remembered in logs. As a future work, we plan to use our tool to compare
regulation techniques, and to improve its accuracy by learning distributions.

References

1. Santiago’s metro map. http://transitmap.net/post/18863388725/santiago
2. Haar, S., Theissing, S.: A hybrid-dynamical model for passenger-flow in trans-

portation systems. In: ADHS’15, IFAC-PapersOnLine, vol. 48(27), pp. 236–241
(2015)

3. Hansen, I.A.: Railway network timetabling and dynamic traffic management. Int.
J. Civil Eng. 8(1), 19–32 (2010)

4. Hélouët, L., Kecir, K.: Realizability of schedules by stochastic time Petri nets with.
In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp. 155–175.
Springer, Cham (2016)

5. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-markovian
models using stochastic state classes. Perform. Eval. 69(7–8), 315–335 (2012)

6. Kettner, M., Sewcyk, B., Eickmann, C.: Integrating microscopic and macroscopic
models for railway network evaluation. Association for European Transport (2003)

7. Koustopoulos, H.N., Wang, Z.: Simulation of urban rail operations: model and cal-
ibration methodology. In: Chung, E., Dumont, A.-G. (eds.) Transport Simulation,
Beyond Traditional Approaches, pp. 153–169. EFPL Press, Lausanne (2009)

8. Nash, A., Huerlimann, D.: Railroad simulation using opentrack. In: Allan, J., Hill,
R.J., Brebbia, C.A., Sciutto, G., Sone, S. (eds.) Computers in Railways IX, pp.
45–54. WIT Press, Southampton (2004)

9. UITP (International Association of Public Transports). Metro service performance
indicators, a uitp information sheet (2011)

10. Pearson, L.V.: Moving Block Railway Signalling. Ph.D. thesis, Wiley (1973)
11. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, 2nd edn.

Wiley, Hoboken (2008)

http://transitmap.net/post/18863388725/santiago


Redundant and Reliable Architecture Based
on Open Source Tools for Light-Rail-Transit

On-Board-Systems

Vincenzo Di Massa1(B), Mirko Damiani2, Maurizio Papini1,
and Gianluca Mandò1

1 Thales Italia S.p.A., Florence, Italy
{vincenzo.dimassa,maurizio.papini,gianluca.mando}@thalesgroup.com

2 Develer S.r.l., Campi Bisenzio, Italy
mirko.damiani@develer.com

Abstract. The LRT (Light Rail Transit) systems are a kind of urban
transport that has aspects in common to both tramways and metros. This
paper analyses the Thales LRT On-Board-Systems (OBS) architecture,
which is designed to achieve a high level of availability. Such architecture
is built on top of open source technologies and consolidated telecommuni-
cation standards. Architectural requirements are met also thanks to the
used Open-Source foundations. In particular the Qt framework, the 0MQ
and the ASN.1 to C compiler have been used to develop a micro-service ori-
ented fault resistant system. Redundant services are spawned on replicated
identical hardware units, one of which is the master, and are seamlessly
and automatically kept in sync by the algorithms described in this paper.
In case of a service failure on one of the replicated hardware boxes, a choice
is made between two alternatives: (1) a full mastership changeover is per-
formed and another redundant box becomes the new master (2) a micro-
service is migrated to another redundant box in order to take control of the
same non-faulty device. The described architecture is being actively used
in both LRT and metro solutions, thus this work will describe the benefits
on the field and the effectiveness of the architecture in terms of code qual-
ity and maintainability. Since the development of the mentioned projects
has been carried on inside an Agile team, some considerations will be made
about benefits, constraints and pitfalls of such kind of methodologies, on
strictly regulated and safety related projects.

Keywords: On board systems · Light rail transit · Open source ·
Software architecture · Redundant system · Micro service · Agile

1 Introduction

The architecture this paper describes has been selected, implemented and oper-
ated on the field by the authors. This paper focuses on analyzing the benefits and
trade-offs of the selected architecture in the context of LRT on board devices.

c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 212–220, 2017.
https://doi.org/10.1007/978-3-319-68499-4_14



Redundant and Reliable LRT OBS Architecture 213

The techniques and the architecture described in the following chapters have
been chosen in order to overcome the problems of the former implementation
that can be summarized in: complexity of the software, high cost to test the soft-
ware, difficulty in documenting the interfaces and changing system components.
Because the reasoning behind the authors’ choices is driven by their context, the
reader must be warned that this paper will not address pitfalls this architecture
could have in different contexts.

In order to understand the LRT environment, Sect. 2 will briefly describe the
authors LRT context, Sect. 3 will explain the relevant design goals of the authors,
Sect. 4 will provide an overview about the architecture, Sect. 5 will analyze the
performance of the system and Sect. 6 will conclude highlighting the benefits and
pitfalls.

2 The LRT Context

An LRT system is composed by different subsystems that offer different func-
tionalities. All the subsystems consume and send data to both allow monitoring
the LRT service by an Operational Control System (OCC) and to feed inputs
and read outputs from the other subsystems. The physical distribution of the
systems is conventionally classified into three different zones:

the OCC where operators monitor the service by reading the system generated
events in real-time and can intervene by talking to drivers and on board
personnel and by acting on the LRT subsystems (e.g. manual override);

the wayside (WS) is a distributed system that provides and distributes infor-
mation about the LRT physical status and state like, e.g. status of the trains,
current configuration of the signals and switches, passenger information and
announces services (PIS/PAS), video disk recording (VDR);

the on board systems (OBS) are connected to train devices, sensors, dis-
plays speakers, radios (e.g. Tetra, 802.11abgn, LTE) and are able to collect,
distribute and store service data that is used to both allow the train to:
connect to wayside elements (e.g. when a train reaches a junction area it
requests a route to the signaling system); to allow devices, personnel and
passengers to communicate with the OCC and wayside (to receive and send
service related data - e.g. PIS/PAS - while on board); to localize the train
using e.g. GNSS and tag readers data.

The authors, and thus this paper, are focused on the non safety critical OBS. The
on board systems can be split in two categories: safety critical (e.g. systems that
are able to influence train position and speed) and non safety critical (e.g. train
localization and PIS/PAS). Note that fleet safety critical decisions (signaling) is
delegated to wayside units, thus, even if a train fails at communicating its status,
the wayside units are designed to prevent incidents without train collaboration.
Thus the authors context can be summarized as:

– No safety critical issues;
– Redundancy required with seamless switch of mastership;



214 V. Di Massa et al.

– Embedded device environment;
– Many network interfaces devices and protocols (Tetra, LTE, Wifi);
– Processing of real time data;

In this context a monolithic application, as was implemented in previous ver-
sions of the same OBS, tends to be fragile. E.g. a single protocol handler for
a low priority data source can crash an entire OBCU (on board control units,
i.e. an embedded PC). This motivated the authors to investigate a distributed
architecture.

3 Redundancy

An OBS malfunction can cause a system failure that can interrupt or damage the
continuity of the LRT operation. For this reason the OBS use redundancy as a
means to provide degraded modes of operation that can permit the normal LRT
service to continue also in case of on board failures. In particular the described
architecture allows the seamless migration of single services from instances of
replicated devices. This is particularly useful for services that handle hardware
components: in case of multiple failures the system can continue to work in
degraded mode unless the failures take down all the same kind of resource among
all the replicas. E.g. on a system that has two replicated OBCUs connected to
both a Tetra radio and a tag reader each, this architecture allows a degraded
mode to work even if both the tag reader of one OBCU and the radio of the
other OBCU are in fault condition. Still, if only one OBCU fails, even though
the failure completely prevents its operation, the system can gracefully degrade
with the other OBCU as the new master.

All the mastership changes can happen at any time. For this reason the
status of the slave systems/devices is always kept in sync: when a system failure
happens the new candidate master devices already have their state ready and
they can switch mode within an as little as possible time gap.

4 Architecture and the Problem of Distributed
Applications

Shared state updates is necessary when the complexity of a project justifies
its organization into separate software applications. The authors addressed this
problem using the Open Source project ØMQ [1]. The following section will show
what design decisions have been chosen in order to address the problems this
approach poses in our context.

ØMQ is a communication library aimed at making messaging patterns simple.
The connect of two software processes, is often implemented using client-server
paradigm, where the server side provides some service to one or more clients.
Actually client-server is a generic pattern because there are many ways for which
a service can be provided. In fact client-server only defines which process is



Redundant and Reliable LRT OBS Architecture 215

listening and which one is connecting. ØMQ tries to abstract away how the
two parties are connected to each other, focusing instead on how messaging
takes place. There are various types of sockets in order to exploit the basic
messaging patterns. In the following we will motivate the authors’ reasons to
use an advanced messaging pattern such as the Clone Pattern.

4.1 Patterns for Interconnected of Applications

When implementing a distributed system, or separating the complex logic of a
system into several separate processes, it must be considered that this approach
often involves higher communication costs and system complexity, so it's not
always convenient to follow this pattern, especially on small projects. However,
the organization of the overall business logic into separate applications has some
advantages including:

– A smaller application usually has a lower complexity than a larger one, so it
is easier to maintain.

– Working in large teams is easier.
– Responsibility can be bound, in case of malfunctions.
– Parts of the system can be updated without turning down the entire service.
– The overall systems scales better, if properly organized.
– A possible crash doesn’t affect other applications, but just the one showing

the bug.
– Testing smaller applications that define clear interfaces is easier to automate.

Since the logic of the whole system is distributed over several applications,
also the state turns out to be distributed. In fact, each application or component
has its own state. Usually the most immediate solution is the direct connection
between such components, as illustrated in Fig. 1a.

(a) Decentralized connections

(b) Centralized connections

Fig. 1. Interconnection of software applications



216 V. Di Massa et al.

This decentralized architecture in Fig. 1a is very flexible because there are no
constraints. However, this high degree of flexibility leads to higher complexity
and maintenance costs. In fact, potentially each application could communicate
with each peer independently, thus defining many per application state update
policies and possibly endpoints.

A centralized architecture (in Fig. 1b) can be used to address the raise of
complexity. In this case, a solution that uses a broker that manages both delivery
and storage of distributed applications states is a well known pattern. The usage
of a central component brings both advantages and potential pitfalls.

– Advantages:
• A broker simplifies the discovery of network applications.
• Each application is connected to the broker using the same protocol.
• No need to define which one, in every possible couple of communicating

applications, has to bind and which one has to connect.
• The system scales better along with the number of applications in terms

of number of connections, even though the broker's data traffic increases.
For example, if the system is composed of 10 applications, the broker
approach would need 10 connections, but the broker-less approach would
potentially require 100 connection.

• The addition of a new application does not always involve the modification
of all the already present ones.

– Pitfalls:
• The broker may be a bottleneck, thus the amount of traffic data must

known and evaluated.
• There may be some latency and jitter upon sending messages, according

to the data traffic and system load.

4.2 Shared State and the ØMQ Clone Pattern

The ØMQ ClonePattern [2] was chosen as the communication pattern for inter
process communication and used to enable applications to communicate and
share their state. The applications connected to the broker will be called clone
nodes or simply nodes or applications in the following.

This architecture is centralized and broker centric. However, in the author’s
implementation of this paradigm, the broker is not limited to the delivery of
messages, but it also performs the state storage. Such storage capability is a
variation with respect to the generic centralized model, described in the previous
paragraph. State storage and forwarding happens inside the broker itself since
the other software modules can not directly communicate to each others.

This paradigm can be described by the following operations:

1 Synchronize operation. Applications synchronize as soon as they connect
to the Clone broker. During synchronization the application obtains from the
broker the shared state it needs. Thanks to this, the application could e.g. be
restarted from where it was before crashing or being stopped. Synchronization



Redundant and Reliable LRT OBS Architecture 217

is performed using a pair of Request-Reply [2] sockets. The broker always
listens to state requests and whenever it receives one, it stops its normal
operations work-flow in order to send its whole state back.

2 Update operation. Propagation of data within the network takes place
through a couple of Publisher-Subscriber [2] sockets. The messages shared
among nodes are key-value couples. The key is called topic while the value
is the payload. Applications can subscribe to topics. When a subscription is
established, the broker forwards to the application all the messages it receives
with the subscribed topic, i.e. the application receives a topic update.

3 Change operation. Applications can change shared data by sending messages
whose topic is recognized by the broker as a change topic. In particular, each
module forwards its change through a pair of Pipeline [2] sockets. The broker
serializes all changes that are received from applications, it updates its state
and it republishes (update) the change. After any change, the shared state
whose key is equal to the message topic’s name will have a value equal to the
message payload.

The Clone Pattern, and thus our implementation, defines how messages are
exchanged between components, but it imposes no constraints on the payload
format. In order to have well defined software interfaces, the payload can be
defined by other formalisms like ASN.1 [3], MessagePack, JSON and others. But
this decision is up to the business logic of the application.

The authors choice for the payload is to use the well proved and much used
in telecoms ASN.1 format.

4.3 State Replication and Changeover

A hot spare mechanism (hot-standby) has been added to the centralized archi-
tecture described in Sect. 4.2 to increase its availability. In this context, the term
system defines the set of all applications and the broker, running on the same
machine. Two systems are instantiated and linked (see Fig. 2) together. In par-
ticular the two brokers are connected in a way that is described below. One of
the two systems is the Spare the other is the Active system.

The broker system which assumes the role of hot spare (system B) subscribes
to the entire state of the active system (system A), without any limitation.
This means system B will get all updates and keeps its own state aligned with
system A’s. The broker does not need to be extended so that it can connect to
another broker: a federation-style approach is used, rather than having ad-hoc
communication channels (peering approach).

In Fig. 2 the implementation of this mechanism is shown. Two special appli-
cations, similar to normal nodes, bridge system A and system B. The special
applications OuterApp and InnerApp are in charge of injecting messages from
one system into the other. Note that OuterApp uses an ad-hoc connection to
the InnerApp. As described above, every message sent to system A (e.g. from
App1) is republished to every application connected to it: to prevent message
loops OuterApp tags the messages it receives and filters out messages that have



218 V. Di Massa et al.

Fig. 2. Hot Redundancy

Fig. 3. Full changeover operation example

already been tagged by any OuterApp. This mechanism is sufficient to keep nodes
on both systems synchronized and to allow live migration of a single application
form one system to the other.

4.4 Mastership Change

A full changeover operation may be initiated at any time by one of the par-
ticipants. That is, any of the two systems may request to switch master-slave
(Active-Spare) roles, as depicted by the sequence diagram in Fig. 3.

In this case the entire system gets activated or deactivated, causing every
application to migrate from one system to another. This kind of synchronization
is designed in order to prevent multiple copies of the same service from running
simultaneously on different replicas.



Redundant and Reliable LRT OBS Architecture 219

5 Performance Considerations

We extensively tested our system on a quite recent embedded system, with a Intel
Atom 1.6 GHz processor, 1 GiB of RAM and the Linux operating system. During
the performance tests an OBCU was running in a production like environment
with 35 running nodes. Table 1 shows the statistics of a 60 s temporal window.

Table 1. Statistics of the clone network

Min Max Avg Std

Round trip time [ms] 0.91 74.41 5.30 9.21

Round trip jitter [ms] −56.07 71.32 0.68 14.29

Changeover time [ms] 268 702 362.06 106.91

Update posts [#/s] 4 83 29.13 19.29

Payload size [B] 0 2736 279.93 470.61

Network data rate [B/s] 8418

Topics count [#] 73

Apps count [#] 35

The round trip time is very low on average, but we experienced also very few
cases where this value increases up to 75 ms. The total number of applications is
35 and there are peaks of 83 updates per seconds over a range of 73 different data
types. Exchanged payload size varies from a minimum of 0 bytes to a maximum of
2736 bytes. The total network data rate is about 8 KiB/s. Eventually changeover
time is about 360 ms on average. These figures nicely fit a non safety-critical
LTR on-board system.

6 Conclusion

Detecting the right time and circumstances to perform a full changeover is not
straightforward and the possible triggers events can be undetectable or impos-
sible to distinguish from events in which a changeover is not desirable.

In particular there some observations that could require context dependent
reasoning before adapting this technique to other cases:

– We use a keep alive message to detect if the other system has stopped working.
The timeout is a critical parameter.

– It would be desirable to have a dual channel of communication between the
two brokers in order to avoid that a network fault can be mistaken for a
malfunction of the active system.

– The two systems have to reach a consensus if both of them are spare, especially
at boot up.



220 V. Di Massa et al.

– Changeovers should be minimized because the service is shortly down during
the change of mastership.

– Before activating the spare system, all modules in the active system must be
properly deactivated.

From the authors’ point of view the architecture proposed above has been a
winning choice. The key benefits have been:

– Higher code quality because the small services can be tested in depth more
easily.

– Improved task parallelization due to independence between services.
– Lowered the learning curve for new team members.
– Writing a small service fits well even into a two weeks SCRUM sprint.
– The system is easy to extend and to measure.
– Powerful and extensive logging capabilities. This point is really important for

the described context. Having all the shared state available for easy inspection
allows developing safety, security and debugging features with small develop-
ment effort.

References

1. Sustrik, M.: ØMQ: The Theoretical Foundation (2011). http://250bpm.com/
concepts

2. ØMQ The Guide. http://zguide.zeromq.org/page:all
3. ITU-T Recommendation X.680 (2002) – ISO/IEC 8824–1:2002, Information tech-

nology - Abstract Syntax Notation One (ASN.1): Specification of basic notation

http://250bpm.com/concepts
http://250bpm.com/concepts
http://zguide.zeromq.org/page:all


Dependable Dynamic Routing for Urban
Transport Systems Through Integer

Linear Programming

Davide Basile1,2(B), Felicita Di Giandomenico1, and Stefania Gnesi1

1 I.S.T.I “A.Faedo”, CNR Pisa, Italy
davide.basile@isti.cnr.it

2 Department of Information Engineering, University of Florence, Florence, Italy

Abstract. Highly automated transport systems play an important role
in the transformation towards a digital society, and planning the opti-
mal routes for a set of fleet vehicles has been proved useful for improv-
ing the delivered services. Traditionally, routes are planned beforehand.
However, with the advent of autonomous urban transport systems (e.g.
autonomous cars), possible obstructions of tracks due to traffic conges-
tion or bad weather conditions need to be handled on the fly. In this
paper we tackle the problem of dynamically computing routes of vehi-
cles in urban lines in the presence of potential obstructions. The problem
is formulated as an integer linear optimization problem. The proposed
algorithm will assign routes to vehicles dynamically, considering the track
segments that are no longer available and the positions of the vehicles in
the urban area. The recomputed routes guarantee the minimal waiting
time for passengers. Safety of the computed routes is also guaranteed.

1 Introduction

Nowadays, most of the research in the transport sector is devoted to build smart
solutions for moving people within the cities, to reduce costs and improving
sustainability while ensuring reliability and safety of the transport services.
Highly automated transport systems play an important role in the transfor-
mation towards a digital society and technologies as driver-less transports are
already adopted in metropolitan cities [17]. In particular, planning the optimal
routes for a set of fleet vehicles has been proved useful for reducing costs and
energy consumption of vehicles while improving user satisfiability in terms of
waiting time.

This problem has been widely studied in the literature [15,16]. Traditionally,
two-step approaches based on planning fixed routes and execute them have been
studied and are adopted in the railway industry. These approaches rely on the
availability of tracks, which is in general guaranteed for railway tracks but it
is no longer possible in urban area, where events such as obstructions of tracks
must be handled. More recently, newly dynamic routing applications are emerg-
ing, thanks to a number of technological advances. For example, the increasing
hardware performances for data processing, together with accurate positioning
c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 221–237, 2017.
https://doi.org/10.1007/978-3-319-68499-4_15



222 D. Basile et al.

systems as Global Positioning Systems (GPS) and Geographic Information Sys-
tems (GIS) led to the development of Intelligent Transport Systems (ITS). These
systems combine the above technologies and made possible to track fleet vehicles
and to manage them in real time.

In particular, the possibility of dynamically computing new routes for vehicles
opens new opportunities for reducing operational costs and environmental impact
while improving customer services dependability. Indeed, especially in urban area
it is often the case that itineraries may be temporarily unavailable due to obstruc-
tions. In this case, a mechanism can be adopted to recompute dynamically new
routes for the affected vehicles, such that they are able to complete their missions.
This aspect is of crucial importance for improving the overall dependability of these
urban transport services and improving the user satisfiability.

In this paper we propose a routing algorithm for handling possible detected
obstructions of tracks in urban area, by assigning new routes dynamically and
by considering a set of tracks temporarily unavailable. The proposed algorithm
takes in input a graph abstracting an urban map, where edges correspond to
itineraries and nodes to points, the locations and destinations of vehicles in the
urban area and the set of detected obstructed tracks. The output of the algorithm
is the set of optimal routes for each vehicle, to be communicated to the vehicles
until the obstructed tracks are restored to their normal operation. The optimal
routes computed are safe by construction. In particular, it is guaranteed that
no collisions among vehicles will ever occur both on itineraries and on points.
Moreover, the computed routes guarantee progress of the overall network of
vehicles: no deadlocks will ever occur, i.e. each vehicle eventually reaches its
destination. Note that, although there are specific subsystems strongly tailored
to assure safety (e.g., interlocking), also at the level of route planning safety can
be considered by developing solutions that avoid potential train collisions, as we
pursue in our study.

We modelled the dynamic vehicle routing as an optimization combinator-
ial problem, through a set of linear equations. In particular, the vehicle routes
are modelled as flows in a graph such that the objective function minimises
the arrival time of each vehicle to its destination. This in turns guarantees an
improvement in user satisfiability by minimising the waiting time. Safety aspects
are enforced by a set of constraints allowing only one vehicle in each itinerary
and only one vehicle to traverse a point in a given time step.

The proposed model has been implemented in A Mathematical Programming
Language [8] (AMPL). Preliminary experiments were performed showing the
feasibility of the proposed approach. The implementation of the dynamic vehicle
routing algorithm is open source. It can be downloaded at https://github.com/
davidebasile/routingproblem, together with data and set-ups of experiments.

Structure of the paper. The paper starts with a description of the problem in
Sect. 2. The proposed architecture of a dependable dynamic vehicle routing
system is introduced in Sect. 3. Section 4 contains some background on Inte-
ger Linear Programming (ILP) and flow problems; and the proposed model for
solving the routing problem is described in Sect. 5. The implementation of the

https://github.com/davidebasile/routingproblem
https://github.com/davidebasile/routingproblem


Dependable Dynamic Routing for Urban Transport Systems 223

algorithm and some experiments are, respectively, in Sect. 6 and Sect. 7. Finally,
related work is in Sect. 8 while conclusion and future work are in Sect. 9.

2 Description of the Problem

Planning the time schedule and routing of vehicles (known as Dynamic Vehicle
Routing Problem) is a problem that has been widely researched and nowadays
several transport systems adopt automatic solutions for planning the routes of
vehicles and for supervising their movements [9,15,16].

Recently, these systems have been extended from subway and train lines to
comprehend other urban systems, as tramway lines. Tramway lines are gener-
ally less expensive than subway lines and automatic systems can be applied to
optimize the time scheduling and energy consumption. Solutions as signals, pri-
ority management and traffic lights are adopted to regulate the circulation and
ensure safety. While metropolitan lines widely adopt automated guidance sys-
tems, in tramway systems the driver is in charge of enforcing speed, braking and
safety distances. Generally, signal entities are used to allow trams to occupy the
specified route.

An important problem in urban scenarios is the presence of possible obstruc-
tions in the assigned routes. This can be due, for example, to other vehicles or
to accidents. Generally technologies as, for example, radars and gps are used
to detect these hazardous situations. Hence, implementing innovative depend-
able routing solutions while enforcing rail safety represents a challenge for the
research community.

In particular when a specific route is no longer available due to obstructions
of the path or other possible failures, the preassigned routes are no longer valid.
It is important to recompute efficiently a new route from the location of each
vehicle to its destination, to avoid obstructed tracks and potential deadlocks.
Signalling systems are in charge of communicating to the drivers the newly
assigned routes, set up the traffic lights, commute points, and set up the other
devices composing the signalling system.

3 Dynamic Vehicle Routing

In Fig. 1 our proposed dynamic vehicle routing system is depicted. In particular,
through the on-board equipment each vehicle can communicate its precise loca-
tion thanks to GPS coordinates or similar systems. Moreover, communications
with the control station are also handled. In case of possible obstructions in one
of the assigned tracks (detected by sight or by automatic devices as, e.g. radar)
the preassigned standard routes are no longer valid; and the blocked vehicle
will communicate to the central control station its coordinates and will identify
such obstructed track. In this scenario it is necessary to adopt alternative routes
until the unavailable tracks are restored to their normal operation conditions.
We assume that the unavailable tracks notified to the control station will remain
so for an amount of time worthy of recomputing new routes. On the contrary,



224 D. Basile et al.

Fig. 1. The dependable dynamic vehicle routing system for urban lines

vehicles will wait until the obstructed tracks are restored to normal operation
conditions.

Once the communication has been received by the control unit, the coor-
dinates (also called locations) and the destinations of all vehicles in the urban
area will be collected by the control unit. These data will be used by the control
system to compute new routes for each vehicle dynamically, given its current
location and its destination, and communicate them to the signalling system. In
our framework destinations are, for example, next stops, i.e. we divide a round
trip of a vehicle into a sequence of stops that are computed dynamically. Our
proposed model will compute the optimal solution by minimising the overall
time needed by all vehicles to arrive at their destination, that is optimising the
user satisfiability in terms of minimal waiting time. Moreover, the model will
ensure route safety, i.e. no collisions on tracks or points will ever occur.

The newly computed routes are communicated to the drivers and to the
signalling system. Indeed, the problem of setting traffic lights, commutating
points and other operations on the tracks useful to implementing the selected
routes are managed by other systems. It is assumed that other systems are in
charge of communicating to the drivers the assigned route and to implement the
signalling system to allow each vehicle to move according to its selected route
(see Sect. 2).

In the following sections the algorithm for computing new routes (right block
in Fig. 1) is specified, implemented and tested. Note that the proposed algorithm
is not tailored to a specific urban transport system, but can be reused in different
scenarios such as, among the others, autonomous cars and tramway lines.

4 Network Flow Problem

In this section we introduce network flow problems and their formalisations. The
dynamic vehicle routing problem will be formalised and solved as a network flow
problem in the following section.



Dependable Dynamic Routing for Urban Transport Systems 225

A flow network [6] (also known as a transportation network) is a directed
graph where each edge has a capacity and each edge receives a flow. Let G =
(Q,T ) be a graph with set of nodes Q and edges T , that are pair of nodes.
Generally there are two types of special nodes: source nodes, that are generating
flow, and sink nodes, that are consuming the flow. Given a node q ∈ V , the
forward star FS(q) is the set of outcoming edges of q, while the backward star
BS(q) is the set of incoming edges in the node q.

For each edge t ∈ T , the flow variable xt represents the flow that is passing
through the edge t. Generally, a maximum capacity at is assigned to each edge
t, representing the maximum amount of flow allowed, and a cost ct representing
the cost of utilising the edge t. A network flow problem is a type of network
optimization problem where the objective function requires to optimize a flow
such that the solution respects the following constraints:

– the amount of flow on an edge cannot exceed the capacity of the edge (capacity
constraints), written ∀t ∈ T.xt ≤ at;

– the amount of flow incoming into a node equals the amount of flow leaving
it, unless it is a source, with only an outgoing flow d, or a sink, with only an
incoming flow d (flow conservation), written:

∀q ∈ Q.
∑

t∈BS(q)
xt −

∑
t∈FS(q)

xt =

⎧
⎨

⎩

−d if q = qs
0 if q �= qs, qf
d if q = qf

– depending on the studied problem, it can be required that the computed flow
must be an integer value (integrity constraints), written: ∀t ∈ T.xt ∈ N.

Examples of network flow problems are the Maximum flow problem [7] or the
Minimum-cost flow problem [11]. The first problem consists in maximizing the
amount of flow that can be sent from the source nodes to the sink nodes. The
objective function is then max d. In the second problem a cost is associated with
each edge of the network, and the objective function is minimised in order to
find the optimal cost for sending a given amount of flow from the source nodes
to the sink nodes, that is min

∑
t∈T xtct.

These problems are solved by using Integer Linear Programming (ILP) [10,19].
Indeed, all constraints are represented by linear inequalities, and the objective
function is linear. Several solvers are available for solving linear optimization prob-
lems automatically and efficiently, by using for example the simplex algorithm [8].

In the next section we will formalise the automatic route scheduling as a flow
problem. The flow variables will be split into time steps 1, . . . K, where K will be
the upperbound to the maximum number of edges that a route can traverse. The
maximum capacity for each edge will be of one unit, that is only one vehicle can
be on a specific track in a specific moment. Similarly, the flow d will be of one
unit, that is each flow will be in correspondence with a single route. We will not
consider costs for edges, which are left as future work (e.g. energy, performance).



226 D. Basile et al.

Finally, the flow variables will be split into a set of binary variables xu,k,t where
u identifies the vehicle, k identifies the discrete step considered in our analysis
and t will identify the itinerary (i.e. edge). In particular, xu,k,t = 1 if and only
if vehicle u at moment k is in itinerary t. These flow variables will describe the
optimal routes computed by our ILP model. The goal will be to minimise the
overall routing time.

5 Description of the Model for the Vehicle Routing
Problem

In this section we formalise the dynamic vehicle routing problem as a network
flow problem. Similarly to [3,14,20], we abstract a generic urban tramway layout
as a graph. At our level of abstraction, we are only interested in modelling the
path that each vehicle must traverse in order to arrive at its destination. A
destination could be the next stop that the vehicle needs to reach. Each edge of
the graph will possibly represent a sequence of segments where a single vehicle
is allowed (i.e. an itinerary), that must be traversed in order to move from one
point to another. Nodes in the graph are in correspondence with points in the
track. We assume that vehicles may only get stuck in points, and not while
traversing itineraries. Indeed, unavailability of itineraries is ascertained in the
nearest points.

We firstly introduce the notation used in this section. We assume a finite set
of vehicles U , where each vehicle has one route, a finite set of itineraries (i.e.
edges) T , a finite set of nodes Q. Trivially, no segment has the same point as
source and destination. Indeed, we assume that no inner cycles are present in
the graph, i.e. ∀q ∈ Q.FS(q) ∩ BS(q) = ∅. This requirement can be imposed as
a constraint in the model (see Eq. 13).

Moreover, let |S| be the cardinality of a set S. Then K = |U | ∗ |T | is the
upper bound to the maximum amount of time needed by each vehicle to reach its
destination provided that at each discrete step k ∈ 1 . . . K at least one vehicle
in U moves into an itinerary in T . In particular in the worst case |U | ∗ |T |
only one vehicle moves at each step, all vehicles need to traverse all itineraries
in the graph and each route traverses each itinerary at most one time (i.e. no
loops). Moreover, given a vehicle u ∈ U , let location(u), destination(u) ∈ Q be
the location and destination of vehicle u. Finally, we assume the presence of
a subset of itineraries F ⊂ T that are temporarily unavailable and cannot be
traversed. The output of the ILP model will be the new routes assigned to each
vehicle.

Example 1. Before providing the details of the model we explain the formal-
isation with the help of an intuitive example. In Fig. 2 a graph representing
a sub-portion of an urban area is depicted. Adjacent nodes are connected in
both directions, to improve readability for each pair of connected nodes only



Dependable Dynamic Routing for Urban Transport Systems 227

Fig. 2. The grid used for the experiments with the routes computed in Experiment 1
(thick edges) and obstructed itineraries (dotted edges)

one edge is reported in Fig. 2. In Sect. 7 this graph will be used for testing the
proposed model. Assuming that the obstructed tracks are itineraries in F =
{(1, 2), (1, 6), (2, 1), (2, 7), (6, 1), (7, 2), (10, 2)} and that two vehicles u1 and u2

are present such that location(u1) = 15, location(u2) = 9, destination(u1) = 12,
destination(u2) = 11. The optimal route for u1 is represented by the variables
xu1,1,(15,14) = 1, xu1,2,(14,13) = 1, xu1,i,(13,12) = 1 where i = 3, . . . , K (all other
variables xu1,k,t having value zero). The optimal route for u2 is represented by
the variables xu2,1,(9,8) = 1, xu2,2,(8,7) = 1, xu2,3,(7,6) = 1, xu2,j,(6,11) = 1, where
j = 4, . . . , K (all other variables xu2,k,t having value zero). In particular, at step
k = 1 we have that vehicle u1 is on itinerary (15, 14) and vehicle u2 on (9, 8);
at step k = 2 vehicle u1 has moved to the adjacent itinerary (14, 3) and u2 to
(8, 7), at step k = 3 vehicle u1 has moved to (13, 12) (so reaching its destination)
and u2 to (7, 6). Finally at step k = 4 vehicle u1 remains idle while u2 reaches
its destination (6, 11).

These xu,k,t variables are computed automatically by the ILP model
described below, and are such that each vehicle reaches its destination in the
shortest number of steps possible.

5.1 Integer Linear Programming Model

The ILP model is defined below.

Objective function. We start by defining the objective function:

max γ (1)
γ ≥ 0 (2)

The objective function maximises a threshold γ, which is constrained to be a
positive integer. The parameter γ will represent the overall amount of time spent
by vehicles in their destinations in terms of number of discrete steps (see Eq. 4),
i.e. the earliest a vehicle reaches its destination the higher γ will be.



228 D. Basile et al.

Flow Constraints. We now discuss the flow constraints used to model the
routes of vehicles. As mentioned before, we will split the time window under
analysis into discrete steps 1 . . . K such that K is the upper bound to the number
of steps needed by each vehicle to reach its destination. In particular, at each
discrete step k ∈ 1 . . . K, for each itinerary t ∈ T and vehicle u ∈ U a binary
variable xu,k,t identifies if vehicle u at step k is in itinerary t. The set of variables
xu,1,t1 , . . . , xu,K,tn set to one will identify the sequence of itineraries (i.e. route)
t1, . . . , tn that must be traversed be vehicle u to reach its destination tn starting
from its location t1, and the discrete steps k that the vehicle must spent in these
itineraries.

∀k ∈ 1 . . . K,∀u ∈ U,∀t ∈ T. xu,k,t ∈ {0, 1} (3)

The following equation ensures that each vehicle u reaches its destination in
the minimum possible amount of time. In particular, for all vehicles u ∈ U ,
steps k ∈ K, and for all itineraries t ∈ T incoming into each vehicle destination
(t ∈ BS(destination(u)), the sum of all variables xu,k,t must be greater or equal
to γ.

Indeed, the objective function (1) maximises the threshold γ, and as a result
the sum (left hand side term of Eq. 4) will be maximised: the earliest each vehicle
u reaches its destination, the higher this sum will be (i.e. vehicles u ∈ U will
spend more time in itineraries t ∈ BS(destination(u)).

∑

u∈U,k∈K,t∈BS(destination(u))

xu,k,t ≥ γ (4)

Note that constraint 4 also guarantees the problem to be bounded: in par-
ticular by constraint 4 it holds that γ ≤ |K| ∗ |U |.

The constraints ensuring that a set of variables xu,1,t, . . . , xu,K,t correctly
identify one route are now discussed. The following equation constraints a vehicle
u to be in only one itinerary t at each step k.

∀u ∈ U,∀k ∈ 1 . . . K.
∑

t∈T

xu,k,t = 1 (5)

The following equations ensure that each vehicle starts its trip from its current
location and arrives at its destination (in the worst case it arrives at step K).

∀u ∈ U.
∑

t∈FS(location(u))

xu,1,t = 1 (6)

∀u ∈ U.
∑

t∈BS(destination(u))

xu,K,t = 1 (7)

The constraints below are necessary for ensuring that each vehicle only moves
into a connected path or stays idle at each step k. In particular, fixing a vehicle
u, for each node q, and step k such that vehicle u is incoming in q at step k − 1
we require that the difference between the incoming itineraries in q at step k −1



Dependable Dynamic Routing for Urban Transport Systems 229

and the sum of the incoming and outgoing itineraries at step k (for the same
point q and vehicle u) must be equal to zero.

∀q ∈ Q,∀u ∈ U,∀k ∈ 2 . . . K,
∑

t∈BS(q)

xu,k−1,t > 0.

∑

t∈BS(q)

xu,k−1,t − (
∑

t∈FS(q)

xu,k,t +
∑

t∈BS(q)

xu,k,t) = 0 (8)

We further detail Eq. 8; recall that by Eq. 5 and the conditions on constraints 8
(
∑

t∈BS(q) xu,k−1,t > 0, i.e. vehicle u at step k − 1 is incoming into node q),
it must be that at step k either u is still incoming (i.e.

∑
t∈BS(q) xu,k,t =

1 and
∑

t∈FS(q) xu,k,t = 0); or vice-versa (i.e.
∑

t∈BS(q) xu,k,t = 0 and∑
t∈FS(q) xu,k,t = 1), that is u is outgoing from q. However, Eq. 8 does not

prevent scenarios in which a vehicle moves from one incoming itinerary t in q
at step k − 1 to another incoming itinerary t′ �= t in q at step k. The following
constraints are used to avoid this scenario:

∀q ∈ Q,∀u ∈ U,∀k ∈ 2 . . . K,∀t1, t2 ∈ BS(q), t1 �= t2.xu,k−1,t1 + xu,k,t2 ≤ 1 (9)

Safety. The following constraints are those entailing safety of the computed
routes. In particular, the proposed model will compute optimal routes such that
no collisions will ever occur. Moreover, it is ensured that an obstructed itinerary
will never be traversed by any vehicle. Note that the absence of deadlocks is
entailed by constraints 7.

The constraints below are used to avoid possible collisions among vehicles.
Firstly, only one vehicle is allowed in each itinerary t and step k:

∀k ∈ 1 . . . K,∀t ∈ T.
∑

u∈U

xu,k,t ≤ 1 (10)

Moreover, in the presence of more vehicles approaching a point q ∈ Q, they
cannot be served at the same step k. The constraints below guarantee that at
most one vehicle can be served by a point q for each step k.

∀q ∈ Q,∀k ∈ 2 . . . K.
∑

u∈U

∑

t∈BS(q)

xu,k−1,t − 1

≤
∑

u∈U

∑

t∈BS(q)

xu,k−1,txu,k,t ≤
∑

u∈U

∑

t∈BS(q)

xu,k−1,t (11)

Note that Eq. 11 contains a product of two binary variables. Recall that given
two binary variables v1 and v2, their product z = v1∗v2 can be linearised through
constraints: z ≤ v1; z ≤ v2; z ≥ v1 + v2 − 1. For brevity, here we prefer to use
this compact version than the linearised one.



230 D. Basile et al.

In Eq. 11, the term
∑

u∈U

∑
t∈BS(q) xu,k−1,txu,k,t represents the number of

vehicles approaching point q that have not moved between consecutive steps
k − 1 and k. Indeed, vehicles that have approached q at step k but were not
present at step k − 1 are ruled out (their product is zero), as well as those
that were approaching q at step k − 1 and left at step k. This product is used
for avoiding vehicles approaching u at step k but not present at step k − 1.
Since at most one vehicle must be served by q between steps k − 1 and k,∑

u∈U

∑
t∈BS(q) xu,k−1,txu,k,t must be equal to either:

–
∑

u∈U

∑
t∈BS(q) xu,k−1,t, that is no vehicle has moved between steps k − 1

and k from q, or
–

∑
u∈U

∑
t∈BS(q) xu,k−1,t − 1, in this case only one vehicle has been served by

point q between steps k − 1 and k.

Finally, the last constraint ensures that no failed itinerary is ever traversed
by any route computed by the ILP model.

∀t ∈ F.
∑

u∈U

∑

k∈1...K

xu,k,t = 0 (12)

Graph Structure. The constraints below are used to verify that the graph
does not contain inner cycles. Note that these constraints are not necessary for
solving the routing problem. They are used for preprocessing the user input and
can be avoided provided that the input is verified. The equation below could
sum up to 2 only if there exists an itinerary t ∈ T such that t ∈ FS(q) ∩ BS(q),
i.e. an inner cycle.

∀q ∈ Q,∀u ∈ U,∀k ∈ 1 . . . K,∀t ∈ T.
∑

t∈FS(q)

xu,k,t +
∑

t∈BS(q)

xu,k,t ≤ 1 (13)

Cyclic routes are also ruled out in our model. Indeed, a round trip of a vehicle
will be split into two separate routes, the first into one direction and the other in
the opposite one (note that this assumption is crucial for ensuring K = |U |∗|T |).

Output. Recall that the output of the ILP model will be the set of routes U
computed by our procedure. These routes will be communicated to the signalling
system. Moreover, the routes of each vehicle u are described in terms of steps
k and locations t, such that for each vehicle in correspondence with a variable
u ∈ U its route will be ∀u ∈ U.Route(u) = {xu,k,t|xu,k,t = 1, k ∈ 1 . . . K, t ∈ T},
that is, we identify for each step the position of vehicle u.

6 Implementation

In Fig. 3 the implementation of the ILP model described in the previous
section is displayed. This implementation is open source and can be downloaded



Dependable Dynamic Routing for Urban Transport Systems 231

Fig. 3. The implementation in AMPL of the dynamic routing optimization problem.



232 D. Basile et al.

at https://github.com/davidebasile/routingproblem. The ILP model has been
implemented in A Mathematical Programming Language (AMPL) [8], a widely
used language for describing and solving optimization problems. The model can
be loaded and executed in AMPL through command line. In particular, script
routeplanning.run, to be launched with the command ampl, is described below:

Firstly the solver cplex is selected, that is the simplex method implemented
in C. However it is possible to select other available solvers. The script loads the
automaton from the file routeplanning.dat, displayed in Fig. 3. The input file
provides the number of vehicles u and nodes n, and two binary matrix Q × Q
called t and F . In this implementation edges are represented as pairs of nodes,
i.e. source and target nodes of the corresponding edge. The first matrix is used
for identifying the graph structure, in particular t[n1, n2] = 1 if there is an edge
connecting node n1 with node n2, t[n1, n2] = 0 otherwise. Similarly, the second
matrix F identifies the unavailable itineraries. Finally, two arrays location and
destination are such that, for example, location[u] = n if the location of vehicle
u is n.

The implementation file routeplanning.mod in Fig. 3 follows the model
described in Sect. 5, with few differences detailed in the following. The addi-
tional graph constraints ∀i ∈ U, j ∈ K, s ∈ Q, d ∈ Q : x[i, j, s, d] <= t[s, d] (lines
12–13) are used to ensure that the flow variables x only use edges of the graph.
Indeed, if t[s, d] = 0 then the flow x[i, j, s, d] on edge (s, d) is forced to be zero.

Moreover constraints linearise 1 ... 6 (lines 27–33) are used to linearise
the products of Eqs. 8 and 11. In particular, for Eq. 8 it is not possible to spec-
ify the condition

∑
t∈BS(q) xu,k−1,t > 0 directly in AMPL, hence the following

constraints (lines 43–47) have been used in the implementation:

∀q ∈ Q,∀u ∈ U,∀k ∈ 2 . . . K.
∑

t∈BS(q)

xu,k−1,t − (
∑

t′∈FS(q),t∈BS(q)

xu,k,t′xu,k−1,t +
∑

t∈BS(q)

xu,k,txu,k−1,t) = 0

If
∑

t∈BS(q) xu,k−1,t = 0 then the above term will sum up to zero. The binary
variable uxu[u, k, s, d] (line 6) identifies product x[u, k, s, d]x[u, k − 1, s, d] (also
used in Eq. 11, lines 56–60), while variable uxu2[u, k, s, q, d] (line 6) identifies
product x[u, k, q, d]x[u, k − 1, s, q].

https://github.com/davidebasile/routingproblem


Dependable Dynamic Routing for Urban Transport Systems 233

7 Experiments

In this section we report on preliminary experiments that have been performed
for evaluating and validating the proposed model. Similarly to [20] we will use
a grid 5 × 5 as graph to test the ILP model, displayed in Fig. 2, which may
represent a sub-portion of an urban area. We will assume the presence of four
vehicles in the grid. The script routeplanning.run has been enriched with the
automatic generation of obstructed tracks, locations and destinations of vehicles.
These data are randomly generated according to a uniform distribution. Three
experiments have been carried on, where in each of them a round of the ILP
model has been executed. In Sect. 9 we discuss future extensions to simulate a
whole day, with several obstructions and computations.

The ILP model successfully computed the routes of each experiment. The
results are displayed in Table 1. For each experiment the failed tracks are
reported, together with location, destination and computed routes of each vehi-
cle. When a vehicle reaches its destination, it is assumed that in the remaining
steps the vehicle stays idle. In particular, concerning Experiment 1, locations
and destinations of vehicles are the furthest possible and have been inserted

Table 1. For each experiment the computed routes are displayed, together with
obstructed tracks, location and destination of each vehicle.

Experiment 1

Obstructed tracks (2,7) (6,7) (9,8) (11,6) (13,14) (17,12) (19,18) (22,23) (23,24)

Vehicle 1 Location = 1, destination = 24

Route = (1,2) (2,3) (3,8) (8,9) (9,14) (14,15) (15,20) (20,25)

Vehicle 2 Location = 25, destination = 1

Route = (25,20) (20,15) (15,10) (10,5) (5,4) (4,3) (3,2) (2,1)

Vehicle 3 Location = 5, destination = 21

Route = (5,10) (10,9) (9,14) (14,13) (13,12) (12,17) (17,16) (16,21)

Vehicle 4 Location = 21, destination = 5

Route = (21,16) (16,11) (11,12) (12,7) (7,8) (8,9) (9,4) (4,5)

Experiment 2

Obstructed tracks (1,6) (2,1) (2,7) (6,1) (6,7) (7,2) (9,8) (10,2) (10,15) (23,22)

Vehicle 1 Location = 14, destination = 11, route = (14,13)(13,12)(12,11)

Vehicle 2 Location = 8, destination = 10, route = (8,9)(9,10)

Vehicle 3 Location = 13, destination = 18, route = (13,18)

Vehicle 4 Location = 21, destination = 12, route = (21,16)(16,11)(11,12)

Experiment 3

Obstructed tracks (1,2) (1,6) (2,1) (2,7) (6,1) (7,2) (10,2)

Vehicle 1 Location = 15, destination = 12, route = (15,14)(14,13)(13,12)

Vehicle 2 Location = 9, destination = 11, route = (9,8)(8,7)(7,6)(6,11)

Vehicle 3 Location = 14, destination = 19, route = (14,19)

Vehicle 4 Location = 22, destination = 13, route = (22,17)(17,12)(12,13)



234 D. Basile et al.

Table 2. Performances of experiments.

Experiment Time (seconds) Cumulative allocated memory (byte) MIP simplex iterations

1 49.5 13315294784 5532

2 48.9531 13315330472 5438

3 44.9531 13315215272 6127

manually; the routes of the four vehicles are displayed in Fig. 2 with different
colours.

In Table 2 for each experiment we report the time, memory consumption and
iterations of the simplex algorithm. In particular, the memory consumption is
displayed as the cumulative sum of the memory allocated in the different phases
of the execution (i.e. compile, genmod, collect, presolve, solve). The performances
are similar in all experiments, and are mainly due to the size of the input graph
(in terms of number of nodes) and the number of vehicles. It has been used a
machine with CPU Intel Core i5-4570 at 3.20 GHZ with 8 GB of RAM, running
64-bit Windows 10 and the CPLEX solver version 12.7.1.0.

8 Related Work

The dynamic vehicle routing problem (i.e. finding optimal routes for vehicles
with minimum travel time) was firstly introduced by Dantzig and Ramser [4] as
a generalization of the Traveling Salesman Problem introduced by Flood [5], and
it has been surveyed in [15,16]. Different solutions have been proposed in the
literature, for example by using neural networks [13], dynamic programming [1],
mixed integer non-linear programming [2] and random search strategy [12].

Standard vehicle routing problems solutions are not suitable when the con-
ditions of the traffic layout can change dynamically, due for example to traf-
fic congestions, accidents or bad weather conditions. More recently, with the
advent of automatic driving systems, as for example autonomous vehicles, the
dynamic routing problem has been revived. Modern technology, for example
global positioning system and geographic information systems, can be used to
collect dynamically the traffic situation to allow the dynamic assignment of
routes to vehicle, as proposed by our methodology.

The problem of vehicle routing in urban traffic network is discussed in [20].
A notion of critical node is used to identify the current position of vehicles in the
network, and each vehicle has associated a set of customers that must be visited
in minimal time. The route of each vehicle is computed locally. An approximate
initial starting solution is computed through a genetic algorithm. By dividing
the flow variables into discrete steps we are able to identify the current location
of each vehicle in the urban network, instead of using special nodes that would
augment the state space of the problem. Moreover, our approach does not need
to generate an initial solution. Indeed, once a vehicle reaches a destination,
its new destination will be updated and the new routes will be recomputed.



Dependable Dynamic Routing for Urban Transport Systems 235

This is mainly due to the presence of possible faulty events in the tracks (e.g.
obstructions), a condition not addressed in [20]. The routing solution is generated
globally by considering routes of each vehicle in the network.

The problem of computing the train scheduling and routing in combination is
addressed in [18]. A multi-objective function constituted by the minimum aver-
age travel time of all trains, the minimum energy consumption and the minimum
delayed times is used. The train scheduling problem is solved through a simula-
tion algorithm according to the train control strategies, and a genetic algorithm
is used in case of large scale networks for the train routing problem. Compared
to our work, in [18] faulty events are not considered, whilst we only focus on
the vehicle routing problem and we abstract away from details of time schedule.
Indeed, our ILP model should be executed to restore the system to a work-
ing state when obstructions in the tracks are detected, until normal operation
conditions are established.

The routing problem for freight trains is studied in [3]. Similarly to our
approach, the minimum time in terms of vehicles reaching their destination is
computed globally, by taking into account all routes of vehicles. Moreover, the
layout structure of the rail road track is abstracted as a graph, and the day
partitioned into time steps. A fixed number of vehicles is allowed to enter a
particular track segment throughout the whole day. An important difference
with respect to our approach is that routes are statically assigned to vehicles
and are not adapted dynamically, i.e. faults in tracks are not considered. We
also enforce safety properties for avoiding possible collisions among vehicles.

In [14] an Automatic Train Supervision for preventing the occurrence of
deadlocks in train routes is studied. Similarly to our solution, the track layout
is abstracted as a graph. However, the proposed solution does not account for
possible failures in tracks (i.e. dynamic vehicle routes). Indeed, each route of a
train is fixed and it is an input parameter. Trains decide whether to move at
a given discrete steps autonomously and according to their routes, whilst we
dictate when vehicles move (i.e. steps). The algorithm takes in input also the
graph layout and a set of areas (i.e. nodes in the graph) where only a given
number of trains are allowed to enter. The absence of possible deadlocks is
verified through model checking given the aforementioned data.

We conjecture that our model can be extended with minor changes to solve
the deadlock problem. Indeed, it suffices to add to our model additional con-
straints to only allow a fixed number of vehicles to enter a predetermined area
(modelled as set of transitions), and to fix a specific route to each vehicle as an
input parameter. Moreover by using a bi-level objective function min max it is
possible to determine if a configuration of routes into discrete steps exists such
that vehicles are deadlocked.

9 Conclusion and Future Work

We presented a dependable dynamic vehicle routing system, focussing on the
ILP model for computing new routes of vehicles given their actual location,



236 D. Basile et al.

destination and detected obstructed tracks. Similarly to [3,14,20], we abstracted
the urban map as a graph such that edges and nodes are in correspondence,
respectively, with itineraries and points of the urban area. The algorithm has
been modelled as a flow problem, where each flow corresponds to a vehicle route.
The newly computed routes are equipped with safety guarantees on the absence
of deadlocks and possible collisions among vehicles, both in points and itineraries.
The proposed solution has been implemented in A Mathematical Programming
Language [8](AMPL) and preliminary experiments have been carried, on showing
the effectiveness of the proposed solution; the implementation and all data are
available at https://github.com/davidebasile/routingproblem.

Some possible future extensions of the proposed approach are discussed
below. Whilst preliminary experiments showed the feasibility of our approach,
we would like to apply the proposed solution to a real world urban scenario.
Moreover, it would be valuable to extend the proposed model to include also
aspects related to performances of vehicles (i.e. acceleration, speed, braking)
and energy consumption (fuel, other energy dissipation). Indeed, it is possible
to associate to each edge of the graph (i.e. itinerary) also a pair of cost and time
for traversing the itinerary, which are inversely proportional. Different strategies
could be adopted for synthesising the routes of vehicles, for example by min-
imising either the cost or time, or a linear combination of both. Concerning the
experiments, we would like to include the proposed ILP model into a framework
for simulating possible failures of tracks, to evaluate the ILP model in the pres-
ence of different conditions randomly generated and throughout a whole day. It
would be then possible to measure the energy consumption and user satisfiability
adopting different strategies for computing the routes, to select the best one.

Acknowledgements. This work has been partially supported by the Tuscany Region
project POR FESR 2014–2020 SISTER and H2020 2017–2019 S2R-OC-IP2-01-2017
ASTRail.

References

1. Assad, A.: Analysis of rail classification policies. INFOR: Inf. Syst. Oper. Res.
21(4), 293–314 (1983). doi:10.1080/03155986.1983.11731905

2. Bodin, L.D., Golden, B.L., Schuster, A.D., Romig, W.: A model for the blocking
of trains. Transp. Res. Part B: Methodol. 14(1), 115–120 (1980). http://www.
sciencedirect.com/science/article/pii/0191261580900375

3. Borndörfer, R., Klug, T., Schlechte, T., Fügenschuh, A., Schang, T., Schülldorf, H.:
The freight train routing problem for congested railway networks with mixed traffic.
Transp. Sci. 50(2), 408–423 (2016)

4. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6, 80–91
(1959)

5. Flood, M.M.: The traveling-salesman problem. Oper. Res. 4(1), 61–75 (1956)
6. Ford, D.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press,

Princeton (2010)
7. Ford, L.R., Fulkerson, D.R.: A simple algorithm for finding maximal network flows

and an application to the hitchcock problem. Canadian J. Mathe, 210–218 (1957)

https://github.com/davidebasile/routingproblem
http://dx.doi.org/10.1080/03155986.1983.11731905
http://www.sciencedirect.com/science/article/pii/0191261580900375
http://www.sciencedirect.com/science/article/pii/0191261580900375


Dependable Dynamic Routing for Urban Transport Systems 237

8. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: a mathematical programming
language. AT & T Bell Laboratories Murray Hill (1987)

9. Ghiani, G., Guerriero, F., Laporte, G., Musmanno, R.: Real-time vehicle routing:
solution concepts, algorithms and parallel computing strategies. Eur. J. Oper. Res.
151(1), 1–11 (2003)

10. Hemmecke, R., Koppe, M., Lee, J., Weismantel, R.: Nonlinear integer program-
ming. In: Junger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank,
W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Program-
ming 1958–2008, pp. 561–618. Springer, Heidelberg (2010)

11. Klein, M.: A primal method for minimal cost flows, with applications to the assign-
ment and transportation problems (1967)

12. Li, F., Gao, Z., Li, K., Yang, L.: Efficient scheduling of railway traffic based on
global information of train. Transp. Res. Part B Methodol. 42(10), 1008–1030
(2008). http://www.sciencedirect.com/science/article/pii/S0191261508000337

13. Martinelli, D.R., Teng, H.: Optimization of railway operations using neural net-
works. Transp. Res. Part C Emerg. Technol. 4(1), 33–49 (1996). http://www.
sciencedirect.com/science/article/pii/0968090X9500019F

14. Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Experiments in formal modelling of a
deadlock avoidance algorithm for a CBTC system. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2016. LNCS, vol. 9953, pp. 297–314. Springer, Cham (2016). doi:10.
1007/978-3-319-47169-3 22

15. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle
routing problems. Eur. J. Oper. Res. 225(1), 1–11 (2013)

16. Psaraftis, H.N., Wen, M., Kontovas, C.A.: Dynamic vehicle routing problems: three
decades and counting. Netw. 67(1), 3–31 (2016)

17. Schoitsch, E.: Introduction to the special theme - autonomous vehicles. ERCIM
News 2017 (109) (2017)

18. Sun, Y., Cao, C., Wu, C.: Multi-objective optimization of train routing problem
combined with train scheduling on a high-speed railway network. Transp. Res.
Part C Emerg. Technol. 44, 1–20 (2014). http://www.sciencedirect.com/science/
article/pii/S0968090X14000655

19. Wallace, S.W. (ed.): Algorithms and Model Formulations in Mathematical Pro-
gramming. Springer, New York (1989)

20. Yanfeng, L., Ziyou, G., Jun, L.: Vehicle routing problem in dynamic urban traffic
network. In: ICSSSM 2011, pp. 1–6 (2011)

http://www.sciencedirect.com/science/article/pii/S0191261508000337
http://www.sciencedirect.com/science/article/pii/0968090X9500019F
http://www.sciencedirect.com/science/article/pii/0968090X9500019F
http://dx.doi.org/10.1007/978-3-319-47169-3_22
http://dx.doi.org/10.1007/978-3-319-47169-3_22
http://www.sciencedirect.com/science/article/pii/S0968090X14000655
http://www.sciencedirect.com/science/article/pii/S0968090X14000655


Engineering Techniques and Standards



Theories, Techniques and Tools for Engineering
Heterogeneous Railway Networks

Paulius Stankaitis(B) and Alexei Iliasov

School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
{p.stankaitis,alexei.iliasov}@ncl.ac.uk

Abstract. Modernising outdated national railway systems will be done
gradually due to practical constraints thus creating network areas with
different signalling systems. Formal methods have been successfully
applied in the railway domain for years. Yet the latest railway challenges
such as heterogeneous railway signalling will require novel modelling
techniques and adequate verification tools support. In this research we
aim to develop new theories, techniques and tools for modelling and ver-
ification of complex networks comprising areas with a mixed signalling.
This student paper discusses the research problem, related work and
presents the ongoing work.

Keywords: Distributed railway interlocking · Hybrid systems · Event-B
method

1 Introduction

In the last few decades railway domain has proved to be a fruitful area for apply-
ing various formal methods. Yet the latest railway challenges will require novel
modelling techniques and adequate formal verification tools support. Integrating
modern railway signalling systems within an outdated national railway networks
is currently one of the major challenges. Indeed a gradual railway modernisation
process means that heterogeneous railway signalling networks will be inevitable
due to practical constraints. In some situations mainline services must be inte-
grated with urban networks which simply require different signalling solutions
as high service availability can only be achieved with a moving block signalling
solution1. To give an example Crossrail is a major ongoing railway project where
mainline services will be integrated with a high performance urban railway sys-
tem. This particular network will operate with three different signalling systems.
In western and eastern branches of the network fixed block signalling systems will
operate whereas the central area will be operated with a moving block principle.
Novel signalling interfaces will be developed to ensure a smooth and safe rolling
stock signalling transition. In short this PhD study aims to address the chal-
lenge of modelling and verification of railway networks with different signalling
systems.
1 To this date a moving block signalling solution only operates in urban networks.

c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 241–250, 2017.
https://doi.org/10.1007/978-3-319-68499-4_16



242 P. Stankaitis and A. Iliasov

The following section overviews key difficulties in formally modelling and
verifying such systems which are in fact cyber-physical systems. Secondly we
discuss more notable related work examples and present technical contributions
this research aims to achieve. Last two sections discuss the current work on mod-
elling and verification of a distributed railway network in the Event-B language
and future research objectives.

2 Formal Methods in Railway Domain

Formal methods - a mathematical model driven methods provide a systematic
approach for developing complex systems. They offer an approach to specify
systems precisely via a mathematically defined syntax and semantics as well
as formally validate them by using semi-automatic or automatic techniques. At
the moment among the biggest challenges in the field is ensuring safety and
correctness of cyber-physical systems.

For years formal methods have been successfully applied to the railway
domain however yet a considerably little work has been done in including a cyber-
physical nature of railway for a safety reasoning. Established railway operation
principles did not require that so formal methods mainly focused on a static
railway data verification - control table verification. However modern signalling
systems were developed to reduce an overdesign and hence increase the capacity
of railway networks. Railway operational principles have been rapidly moving
towards a continuous agent communication and a more dynamic parameter (e.g.
permitted speed profile) computation which are indeed two essential aspects of
cyber-physical systems - communication and computation. Therefore to model
and reason about safety of a modern signalling system we believe it is paramount
to consider a cyber-physical nature of railway.

In general cyber-physical systems [30] have tight integration of communica-
tion, computation and control aspects and include discrete as well as continuous
behaviours. Indeed the difficulty in modelling and verifying cyber-physical sys-
tems is a necessity to consider all these aspects together. To this date there exists
no formal framework which could capture a tight integration of these systems
aspects [18]. Furthermore for a lot of safety-critical system the dynamic nature
of an environment has to be considered in the model as well. For instance a lossy
communication aspect is particularly important when modelling modern-radio
based railway signalling systems or railway systems with signalling transitions.
Hybrid systems formal verification challenges arise mainly due to continuous
variables with non-linear dynamics [3,31]. An algorithmic verification of hybrid
systems with available model checking tools is limited even under severe restric-
tions whereas simulation tools coverage is not adequate for a safety reasoning.
In spite of that system validation through simulation is still the most prevalent
method used by railway industry today. Alternative methods such as a deductive
verification method are not limited by the state space and combined with com-
puter algebra systems can deal with non-linear dynamics though some problems
for an automated deductive verification still have to be resolved [4].



Theories, Techniques and Tools for Engineering Heterogeneous Railway 243

Related work. Over the years formal methods were primarily applied only for a
discrete safety reasoning of the railway systems. The literature review revealed
that only a small fraction of all railway oriented research considered a cyber-
physical nature of railway systems. The following paragraphs discuss a more
notable related work on distributed dynamic railway systems which are a class
of cyber-physical systems.

To authors knowledge the earliest attempt to formally analyse distributed
railway solid-state interlocking systems was completed by Morley [23]. In this
interesting work author developed a formal model of a protocol for a cross bound-
ary route locking and releasing mechanism. By analysing temporal properties of
the model he discovered that in certain scenarios safety properties can be vio-
lated. Few years later a paper by Cimatti et al. [10] presented an industrially
driven formal methods study where authors formally modelled a communica-
tion protocol for safety-critical distributed systems including distributed railway
interlocking systems. Their method used Statecharts diagrams to specify high
level protocol properties and the objectGEODE model checker for the protocol
validation. In other work a different concept of distributed railway control sys-
tem was introduced by Haxthausen and Peleska [14]. Their presented engineering
concept of the control system relied on a radio based communication and switch
boxes - systems which can only control a single railway point. Authors formally
modelled the system with the RAISE [13] specification language which allowed
to develop a formal model incrementally using a refinement process and prove
refinement and safety properties with available justification tools. The timing
properties of the design were considered in the extended work [22]. Similar ideas
for distributed railway interlocking system were also presented in [8,15] where
authors used Statecharts and Petri Nets to model and verify decentralised rail-
way interlocking.

At the same time André Platzer introduced an alternative approach to explor-
ing a state-space with model checkers in verifying systems safety. A developed
formalism and logic for reasoning about hybrid systems uses a deductive verifi-
cation and can be implemented in a KeyMaera X verification tool [24,26]. The
later work presented a case study where differential dynamic logic was applied
for a safety verification of the European Train Control System [27]. Differential
Dynamic Logic was also used to model and verify a handover protocol between
two trackside train control systems (radio-block centres) by Liu et al. [21]. In a
work by Cimatti et al. [11] authors proposed a different logic based on the tempo-
ral logic with regular expressions. Their motivation was driven by a need of the
automatic verification method for verifying hybrid requirements for hybrid rail-
way system. A more recent work by Iliasov et al. [17] proposed a domain specific
language - Unified Train Driving Policy. The formal notation allows to express
both static and dynamic properties of railway in readable syntax which can be
interpreted by railway engineers without prior knowledge of formal methods. A
few recent formal methods projects on cyber-physical systems applied their novel
techniques for modelling and verification of hybrid railway systems [16,28,29].



244 P. Stankaitis and A. Iliasov

In the previous project on modelling and verification of railway interlocking
systems we discussed possible future PhD study directions for addressing the
safety of heterogeneous railway networks [32]. The two year project focused on
developing an expressive railway oriented simulator which would enable mod-
elling and analysing complex railway including railway systems with mixed sig-
nalling. In the future we plan to use the system-level simulator as a specification
front-end for our modelling framework discussed in the following paragraph.

This PhD research aims to focus on theories and techniques for formal mod-
elling and verification of classes of distributed hybrid railway systems which are
in fact what we define as heterogeneous railway networks. In particular we are
interested in developing a railway oriented formal modelling framework which
could capture dynamic distributed hybrid systems. A similar work [12,20] has
been completed for more general cooperating agent based systems by explor-
ing design patterns or more focused on dynamic distributed hybrid systems in
[25]. In our work we would like to continue in this direction but by restricting
our methodology to the railway domain. First of all to develop such a formal
framework to reason about distributed hybrid railway networks one needs to
understand and formally define a general railway design structure. The for-
mal framework should not only capture existing railway operation principles
for which a number of domain-specific languages already exists but also allow
modelling moving block signalling systems. In the previous paragraphs we also
emphasised the necessity to consider a cyber-physical nature of railway for safety
reasoning. Therefore an important requirement for the modelling formal frame-
work is to allow capturing continuous evolution of agents and for that we can
use existing approaches for instance hybrid automata. The modelling notation
should not only have executional semantics which is exactly the simulation of
railway operation but it also should offer proof semantics. The work by Damm
et al. [12] proposed a generic proof-rules for reducing the complexity of the rea-
soning about collision avoidance systems. In this PhD research we will attempt
to further improve this approach by specifically addressing the railway domain.
To enable reasoning about safety of heterogeneous railway signalling we will need
to include new safety rules for a system transition reasoning - a similar but more
generic to presented in [21]. Lastly in order to ensure that results have potential
to be useful in the industrial setting this research will be conducted in a close
cooperation with Siemens Rail Automation.

In the following section we present an ongoing work which aims to develop
a generic design pattern for distributed railway networks. For that we use the
Event-B modelling language as a back-end formal notation which offers a refine-
ment based modelling language. It allows to start with an abstract model for
instance the skeleton of a dynamic distributed railway system and then include
new details through a number of correctness preserving refinement steps for
instance details of a specific signalling system. In this paper we will not discuss
hybrid modelling part of the framework but we will base our work on existing
methods developed for Event-B [5,7].



Theories, Techniques and Tools for Engineering Heterogeneous Railway 245

3 Distributed Formal Railway Model in Event-B

The Event-B mathematical language used in the system development and analysis
is an evolution of the classical B method [1] and Action Systems [6]. Perhaps due
to the success of the B method and a good tool support Event-B has also been a
popular language choice for modelling railway systems [2,9,19]. The formal speci-
fication language offers a fairly high-level mathematical language based on a first-
order logic and Zermelo-Fraenkel set theory as well as an economical yet expressive
modelling notation. The formalism belongs to a family of state-based modelling
languages where a state of a discrete system is simply a collection of variables and
constants whereas the transition is a guarded variable transformation.

A cornerstone of the Event-B method is the step-wise development that facil-
itates a gradual design of a system implementation through a number of correct-
ness preserving refinement steps. The model development starts with a creation
of a very abstract specification and the model is completed when all require-
ments and specifications are covered. The Event-B model is made of two key
components - machines and contexts which respectively describe dynamic and
static parts of the system. The context contains modeller declared constants and
associated axioms which can be made visible in machines. The dynamic part of
the model contains variables which are constrained by invariants and initialised
by an action. The state variables are then transformed by actions which are
part of events and the modeller may use predicate guards to denote when event
is triggered (see Fig. 1). Specifying a model is not sufficient one must provide
evidence about the correctness of the model as well. The Event-B method is a
proof driven specification language where model correctness is demonstrated by
generating and discharging proof obligations - theorems in the first-order logic.
The model is considered to be correct when all proof obligations are discharged.

The following subsections present an ongoing work on modelling a distributed
railway interlocking. In particular we focus on modelling the distributed resource
allocation problem where processes can capture and release available resources as
it is paramount for a distributed railway interlocking. To develop a protocol for
a safe distributed route locking mechanism in further refinements undischarged
proof obligations will be used.

machine M
sees Context
variables v
invariant I(c, s, v)
initialisation R(c, s, v′)
events

E1 = any vl where g(c, s, vl, v) then S(c, s, vl, v, v′) end
. . .

end

Fig. 1. Event-B machine structure.



246 P. Stankaitis and A. Iliasov

3.1 Abstract Distributed Railway Interlocking Model

First of all we describe the modelling and refinement plan of a distributed railway
signalling with main requirements at each step. The initial abstract model spec-
ifies the general concept of a distributed resource allocation protocol - processes
capturing and releasing available resources. Starting with such a mathematical
abstraction allows to simplify the development of a protocol without considering
complicated railway requirements at early modelling stages.

Initial model. An abstract model of processes capturing resources.

1. An abstract model context - processes and resources (finite sets).
2. An abstract model contains events for capturing and releasing resources.
3. Processes can only capture not already captured resources.
4. Processes can only release their captured resources.
5. Processes could capture more than a single resource at a time.
6. No two or more processes can have same resources captured.

Refinement 1. Extending the model with events for requesting and granting
resources and solving a contention problem.

1. Introducing events for requesting and granting resources.
2. Introducing events for detecting and solving the contention problem.
3. Resources can only be captured if requested and granted by the process.
4. Same resources can be requested by multiple processes at the same time.
5. Resources request from a single process cannot be partially granted.
6. Processes can request any set of resources.
7. Resources can be granted to the process if they have not been requested,

granted or captured by other processes or if the conflict has been solved with
detect/solve events.

Other Refinements. Introducing graph based resource structures and railway
related context (not discussed in this paper).

1. Distributing resources in to separate zones with associated controllers.
2. Introducing a graph based resource structure in to the model.
3. Introducing a railway related context and route locking principles.

Other properties such as a system progress can be addressed by assuming
that processes release resources eventually and also by introducing a resource
granting queue. In the initial model we only impose a single railway related
safety rule which states that collision freedom is ensured if no two or more
trains share the same route. This can be simply expressed by the invariant - no
two or more processes can have same resources captured.

The modelling was started by creating the abstract context with two carrier
sets for processes and resources with two associated axioms stating that these
sets are finite. In the dynamic part of the model we defined a global variable
mrk (marked) for mapping resources to processes. Furthermore we introduced



Theories, Techniques and Tools for Engineering Heterogeneous Railway 247

two events for capturing and releasing resources which are in fact abstract repre-
sentations of a railway route locking and releasing operations. Both events have
similar guards except one can only release resources if they have already been
captured.

Event capture =̂
any

r, p, pr
where

grd1 : r �⊆ dom(mrk)
grd2 : p ∈ P

grd3 : pr ∈ r → {p}
grd4 : ∅ ⊂ pr

then
act1 : mrk := mrk ∪ pr

end

Event release =̂
any

r, p, pr
where

grd1 : r ⊆ dom(mrk)
grd2 : p ∈ ran(mrk)
grd3 : pr ∈ r → {p}
grd4 : ∅ ⊂ pr

then
act1 : mrk := mrk \ pr

end

In the next model refinement a logical step then was to introduce two new
events for requesting and granting resources and two buffers for storing resourced
requests (req) and granted resources (ack). A process can request any subset of
resources and grant event then checks whether those resources are not captured
or granted for other processes. Because of new events we also needed to update
the abstract capture event with stronger guards and additional action to update
both buffers.

Event send request =̂

any
r, p, pr

where
grd1 : p ∈ P
grd2 : r ⊆ R

grd3 : pr ∈ r → {p}
grd4 : ∅ ⊂ pr

then

act1 : req := req ∪ pr
end

Event grant request =̂
any

p
where

grd1 : p ∈ ran(req)

grd2 : req−1[{p}] ∩ dom(mrk �− {p}) = ∅

grd3 : req−1[{p}] ∩ dom(req �− {p}) = ∅

grd4 : req−1[{p}] ∩ dom(ack �− {p}) = ∅

then
act1 : ack := ack ∪ (req � {p})
act2 : req := req �− {p}

end

The request buffer may contain multiple requests for the same resources from
different processes. So the resource grant event will only grant a set of resources
to a single process if they have not been requested by other process. In case of
multiple requests for the same resources from different processes we needed to
introduce another two events for detecting and solving such a situation discussed
in the following subsection.

3.2 Contention Problem for Distributed Railway Interlocking

A very common problem in developing distributed systems is the contention
problem. In our model the problem can arise when a number of same resources
have been requested by different processes. Since we do not allow partial resource



248 P. Stankaitis and A. Iliasov

allocation because of the safety principle which comes from the railway domain
the system deadlocks. To resolve this we simply introduced two new events for
detecting and solving this problem. The contention detection event is enabled
when there exists a set of processes which all requested common resources and
if those resources have not been captured yet. This event action simply copies
the set of interested requests to another buffer - cnt (contention).

Event detect contention =̂
any

p
where

grd1 : p = {x|∃y ·y �= x ∧ req−1[{x}] ∩ req−1[{y}] �= ∅}
grd2 : p = {x|req−1[{x}] ∩ dom(mrk �− {x}) = ∅}
grd4 : p �= ∅

then

act1 : cnt := cnt ∪ (req � p)
end

After that the following event grant (not shown here) nondeterministically
selects a process from that buffer and grants resources for that single process
and also removes its requests from the request buffer. The detect/solve process
then can be repeated for remaining processes. At this level one does not need
to consider which process is given a priority this becomes more important when
graph based resource structure is introduced.

4 Conclusions and Future Work

In this paper we presented the main motivation of this PhD research which is
the need of new formal methods techniques for modelling distributed dynamic
railway networks and reasoning about their safety. The research proposed to
develop a new railway oriented modelling framework with proof rules which
could capture a cyber-physical nature of the heterogeneous railway networks.
Then we presented an ongoing work on modelling a distributed railway signalling
system which is necessary in order to explore common distributed railway design
patterns and also deduce invariants for heterogeneous railway networks. In the
following months we aim to complete this model and focus on hybrid framework
part for modelling and reasoning about heterogeneous railway networks.

Acknowledgements. This work is supported by an iCASE studentship (EPSRC
and Siemens Rail Automation). We are grateful to our colleagues from Siemens Rail
Automation for invaluable feedback. We would also like to thank Guillaume Babin and
Yamine Aı̈t-Ameur for useful conversations.



Theories, Techniques and Tools for Engineering Heterogeneous Railway 249

References

1. Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2013)

3. Alur, R.: Formal verification of hybrid systems. In: Proceedings of the Ninth ACM
International Conference on Embedded Software, EMSOFT 2011, pp. 273–278.
ACM, New York (2011)

4. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theor. Comput. Sci. 138(1), 3–34 (1995)

5. Babin, G., Aı̈t-Ameur, Y., Nakajima, S., Pantel, M.: Refinement and proof based
development of systems characterized by continuous functions. In: Li, X., Liu, Z.,
Yi, W. (eds.) SETTA 2015. LNCS, vol. 9409, pp. 55–70. Springer, Cham (2015).
doi:10.1007/978-3-319-25942-0 4

6. Back, R.J.R.: Refinement calculus, part II: parallel and reactive programs. In:
Bakker, J.W., Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp.
67–93. Springer, Heidelberg (1990). doi:10.1007/3-540-52559-9 61

7. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid Event-B I: single
hybrid event-B machines. Sci. Comput. Program. 105, 92–123 (2015)

8. Banci, M., Fantechi, A., Gnesi, S.: The role of formal methods in developing a
distributed railway interlocking system. In: Proceedings of the 5th Symposium on
Formal Methods for Automation and Safety in Railway and Automotive Systems
(FORMS/FORMAT 2004), pp. 220–230 (2004)

9. Butler, M.: A system-based approach to the formal development of embedded
controllers for a railway. Des. Autom. Embed. Syst. 6(4), 355–366 (2002)

10. Cimatti, A., Pieraccini, P.L., Sebastiani, R., Traverso, P., Villafiorita, A.: Formal
specification and validation of a vital communication protocol. In: Wing, J.M.,
Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1584–1604. Springer,
Heidelberg (1999). doi:10.1007/3-540-48118-4 34

11. Cimatti, A., Roveri, M., Tonetta, S.: Requirements validation for hybrid systems.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 188–203.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 17

12. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents.
Int. J. Control 79(5), 395–421 (2006)

13. George, C., Haxthausen, A.E., Hughes, S., Milne, R., Prehn, S., Pedersen, J.S.:
The RAISE Development Method. Prentice Hall International (1995)

14. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Software Eng. 26(8), 687–701 (2000)

15. Hei, X., Takahashi, S., Hideo, N.: Toward developing a decentralized railway sig-
nalling system using petri nets. In: Proceedings of the IEEE Conference on Robot-
ics, Automation and Mechatronics, pp. 851–855 (2008)

16. Hermanns, H., Jansen, D.N., Usenko, Y.S.: A comparative reliability analysis of
ETCS train radio communications. Reports of SFB/TR 14 AVACS 2, SFB/TR 14
AVACS, February 2005. ISSN: 1860-9821. http://www.avacs.org

17. Iliasov, A., Lopatkin, I., Romanovsky, A.: Unified Train Driving Policy, pp. 447–
474. Wiley (2014)

18. Kim, K.D., Kumar, P.R.: Cyber-physical systems: a perspective at the centennial.
Proc. IEEE 100(Special Centennial Issue), 1287–1308 (2012)

http://dx.doi.org/10.1007/978-3-319-25942-0_4
http://dx.doi.org/10.1007/3-540-52559-9_61
http://dx.doi.org/10.1007/3-540-48118-4_34
http://dx.doi.org/10.1007/978-3-642-02658-4_17
http://www.avacs.org


250 P. Stankaitis and A. Iliasov

19. Kiss, T., Jánosi-Rancz, K.T.: Developing railway interlocking systems with session
types and Event-B. In: Proceedings of the IEEE 11th International Symposium on
Applied Computational Intelligence and Informatics (SACI), pp. 93–98, May 2016

20. Knudsen, J., Ravn, A.P., Skou, A.: Design verification patterns. In: Jones,
C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time Sys-
tems. LNCS, vol. 4700, pp. 399–413. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75221-9 18

21. Liu, Y., Tang, T., Liu, J., Zhao, L., Xu, T.: Formal modeling and verification of
RBC handover of ETCS using differential dynamic logic. In: Proceedings of the
International Symposium on the Autonomous Decentralized Systems (ISADS), pp.
67–72. IEEE (2011)

22. Madsen, M.S., Bæk, M.M.: Modelling a distributed railway control system. Mas-
ter’s thesis,TechnicalUniversity ofDenmark,DTU,DK-2800Kgs, Lyngby,Denmark
(2005)

23. Morley, M.J.: Safety assurance in interlocking design. PhD thesis (1996)
24. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),

143–189 (2008)
25. Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems.

In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15205-4 36

26. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS, vol. 5195, pp. 171–178. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-71070-7 15

27. Platzer, A., Quesel, J.-D.: European train control system: a case study in formal
verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 246–265. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10373-5 13

28. ADVANCE project: Final report on application on railway domai, deliverable d1.4
workpackage 1. Technical report, 30 November 2014

29. INTO-CPS project: Case studies 2, deliverable d1.2. Technical report, November
2016

30. Sha, L., Gopalakrishnan, S., Liu, X., Wang, Q.: Cyber-physical systems: a new
frontier. In: Proceedings of the IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing, SUTC 2008, pp. 1–9, June 2008

31. Silva, B.I., Stursberg, O., Krogh, B.H., Engell, S.: An assessment of the current
status of algorithmic approaches to the verification of hybrid systems. In: Proceed-
ings of the 40th IEEE Conference on Decision and Control, vol. 3, pp. 2867–2874.
IEEE (2001)

32. Stankaitis, P., Iliasov, A.: Safety verification of heterogeneous railway networks. In:
Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707,
pp. 150–159. Springer, Cham (2016). doi:10.1007/978-3-319-33951-1 11

http://dx.doi.org/10.1007/978-3-540-75221-9_18
http://dx.doi.org/10.1007/978-3-540-75221-9_18
http://dx.doi.org/10.1007/978-3-642-15205-4_36
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-642-10373-5_13
http://dx.doi.org/10.1007/978-3-319-33951-1_11


Are Standards an Ambiguity-Free Reference
for Product Validation?

Alessio Ferrari, Mario Fusani(B), and Stefania Gnesi

ISTI-CNR, Pisa, Italy
{alessio.ferrari,mario.fusani,stefania.gnesi}@isti.cnr.it

Abstract. The increased use of standards as references for safety-
critical applications is drawing the attention of researchers on the fact
that the responsibility for the safety of standard-compliant systems may
depend not only on developers and assessors, but also on the standards
themselves. This paper is focused particularly on some quality aspects of
standard clauses, i.e., the natural language statements that are expressed
by the standards, and to which a standard-compliant process or prod-
uct is required to adhere. Various railway standards are considered, and
some linguistic issues, potentially leading to ambiguity of clause interpre-
tation, are discovered with the aid of natural language processing (NLP)
tools. Real cases of problems in clause interpretation, taken from indus-
trial experience, are reported, to show the possible impact in products
and processes that must be validated against such clauses, and to justify
the importance of the analysis.

Keywords: Standard · Clause · Requirement · Ambiguity · Railway ·
Natural language · NLP · Defect detection · Vagueness · Generality

1 Introduction

Railway systems in Europe shall be developed according to the process standards
issues by the CENELEC committee1. These are a set of norms and methods to
be followed when developing a certain safety-critical railway product.

Perhaps it is not explicitly declared in their foreword sections, but railway
standards bear a nice deal of responsibility for the characteristics of the products
that are expected to comply. Indeed, to the vast majority of their users, typi-
cal process-related standards are undisputed reference for “the methods which
need to be used in order to provide software which meets the demands for safety
integrity. . . ” – quoting the introduction of EN50128:2011 [8], the specific CEN-
ELEC norm for software development.

Nevertheless, even standards are no immutable reference. To cope with the
evolution of technology, they are periodically submitted to a long, regulated
revision process. Reasons for change are also recognised by the standardizing
organisms as improvement opportunities across successive revisions, regarding
1 European Committee for Electrotechnical Standardization. https://www.cenelec.eu.

c© Springer International Publishing AG 2017
A. Fantechi et al. (Eds.): RSSRail 2017, LNCS 10598, pp. 251–264, 2017.
https://doi.org/10.1007/978-3-319-68499-4_17

https://www.cenelec.eu


252 A. Ferrari et al.

“the coherency and consistency of the standard, the concept of safety manage-
ment and the practical usage. . . ” – quoting what would likely be the introduction
of a new revision of EN50126 [9]), the specific CENELEC norm for the RAMS
Reliability, Availability, Maintainability and Safety process.

Other potential entities exist that could manifest reasons for standards
improvement. Such entities are different from the standardizing organizations,
such as CENELEC, and from the target users explicitly mentioned in the
norms – i.e., Duty Holders and Suppliers. They are governmental organisms and
safety/security agencies, who are interested in representing end-users. Further-
more, these entities include research and academic institutions, who are inter-
ested in providing standards with sound scientific grounds. These latter made
their suggestions public at conferences and in scientific journals [16,17,26,30].

This paper aims to be part of the small but continuing stream of research
on the effectiveness of standards, and focuses on a set of quality properties that
may affect the ambiguity of the statements declared by the standards, which are
generally expressed in natural language (NL) – e.g., English, Italian –, and are
named clauses2. This research theme takes from a more mature work done in
the field of requirements engineering (RE), in which natural language processing
(NLP) techniques have been developed to detect NL defects in requirements
specification documents [15,24,32,34]. Within this context, the purpose of the
paper is twofold:

1. To show, with examples, that lack of linguistic qualities in clause-based doc-
uments, such as standards, can have an impact on the quality characteristics
– e.g., project development time, safety of developed systems, lifecycle costs
– of the projects expected to be standard-compliant;

2. To show, using a NLP methodology supported by tools, that some popu-
lar standards, adopted in railways applications, are not immune from those
defects.

It is not in the paper intents to criticize in any way the analysed standards:
they have been the base for safety certification of countless actual well per-
forming products. The work that may result from this investigation is aimed to
possibly improve some aspects of current and future standards revisions. Fur-
thermore, there are other kinds of issues about standards that are outside the
scope of this work. Reported problems introduced by (non-functional) standard
compliance are broad scale, ranging from measurability of prescribed objects
[17], to unfocused target determination among process-product-resource [17], to
inopportunely mixing levels of abstraction and doping pure requirements with
implementation aspects or technicalities at risk of obsolescence [6].

The paper is organised as follows. In Sect. 2, two independent literature
streams are discussed. The first one concerns investigations on standards effi-
cacy. The second one concerns methods and tools developed in the RE field for
2 Some authors, e.g., Fenton and Neil [17], refer to these statements as requirements.

Here, we use the term clause, to distinguish the statements of the standards from
those used in requirements specification documents.



Are Standards an Ambiguity-Free Reference for Product Validation? 253

discovering linguistic defects in requirements documents. In Sect. 3, the essentials
of a quality model for natural language, created in late 1990’s with the purpose
of analysing the text of system and software requirements, are described as back-
ground information.

In Sect. 4 various reasons for justifying linguistic analysis of standards are
sketched. In Sect. 5 results from analyses of popular railway standards, performed
by a tool in conformity with the model described in Sect. 3, are shown and
discussed. In Sect. 6 conclusions are drawn.

2 Related Literature

The works related to the current paper can be broadly partitioned into two
research lines. The first one is aimed straight at improving standards, especially
safety-related ones, in a variety of aspects. The second one, much more prolific in
articles, is concerned with the linguistic aspects that affect the correct interpre-
tation of sentences in general texts and, more specifically, in system and software
requirements documents.

2.1 Works on Standards Evaluation

The history of the sporadic but relevant literature of the first line evolved in two
steps, widely separated by a couple of decades.

The first step is basically concentrated in the late 1990s, with the works of
Norman Fenton and several co-authors [16,17,30] are the ones worth of notice.
Especially in [17], in which a systematic standard analysis is presented, the
importance of clarity and objectivity in requirements is highlighted, among other
aspects. More specifically, Fenton and Neil [17], presents a reference framework
for standards’ interpretation, and an associated structured approach that guides
a reader towards an objective interpretation of the standard clauses, even in pres-
ence of vague statements. Furthermore, the authors also suggest an approach to
improve the standards, by introducing the notion of ministandards, i.e., “coher-
ent subsets of requirements all relating to the same specific process, product, or
resource” [17]. While Fenton and Neil focus on improving the structure of the
standards, by partitioning them into more manageable subsets, in our work we
focus on improving the language of single clauses. In also is worth noticing that
Fenton and co-authors also examine how the characteristics of the standards
impact in different kind of users, typically, developers and assessors – we will
also briefly discuss this aspect in Sect. 4.

The second step did not happen until 2014. On the awareness of the increasing
interest in safety-related standards of different domains (such as avionics, auto-
motive, rail, nuclear power plants and others), a workshop was called by Patrick
Graydon at the annual European Dependable Computing Conference (EDCC) in
Newcastle3. A group of experts gathered to examine and discuss the efficacy of
3 Proceedings of Planning the Unplanned Experiment: Assessing the Efficacy of Stan-

dards for Safety Critical Software (AESSCS), May 2014.



254 A. Ferrari et al.

safety Related standards from different perspectives, also presenting several posi-
tion papers. The basic outcome was that the situation of the standards was not sen-
sibly improved since Fenton’s analysis and suggestions – perhaps disregarded or,
likely, unnoticed. The safety-related standards, and the consequent work of com-
pliance implementation and demonstration, are still considered as an “unplanned
experiment”: there is little evidence about how and why standards do work, that
is, they are such that safety expectations can be satisfied in products declared
standard-compliant. A NASA Memorandum [25] was issued in 2015 by Graydon
and Holloway, where the inputs from the workshop are elaborated and a list of
research questions, aswell as defined investigations and experiments, are proposed.
The Memorandum also refers all the position papers.

In 2010, the ongoing research on requirements at our institute produced a
work on ambiguity evaluation of the standard clauses [6], which in some way
was across the two research lines mentioned in this Section. At the time it was
basically an exercise of tool application, since we did not perceive in full what
the successive 2014 workshop wanted to examine, and why.

2.2 Works on Requirements Evaluation Using NLP

The second line of research concerns the analysis of linguistic aspects that affect
the quality of requirements documents. As mentioned, several works were pro-
duced in the requirements engineering (RE) area proposing techniques to address
the problem of requirements defects, with a particular focus on linguistic ambi-
guity. Part of the techniques suggests to use formal, semi-formal languages or
constrained NL to prevent or limit ambiguity. Other techniques start from uncon-
strained NL and generally aims at detecting ambiguity.

In particular, strategies were defined to prevent ambiguities by means of for-
mal approaches [1,27,29] or constrained natural languages [2,28]. The works of
Kof [27], tools like Circe-Cico [1], LOLITA [29], and NL2ACTL [14], which trans-
form requirements into formal/semi-formal models and languages, have ambigu-
ity prevention among their objectives. Concerning the use of constrained natural
languages, the EARS template [28] and the Rupp’s template [31] are well known
constrained formats for editing requirements. Arora et al. [2] defined an approach
to check the conformance of requirements to these templates.

Also in the railway domain, works were performed to translate requirements
into formal models, normally by means of manual procedures. Among these
works, in Ferrari et al. [18], railway requirements for an automatic train pro-
tection (ATP) system were manually translated into statecharts models from
which safety-critical code was automatically generated. Instead, Ghazel [21] and
Cimatti et al. [11] formalised a subset of the ERTMS/ETCS standard by means
of the NuSMV language. In these latter cases, the goal was formal verification
by means of model checking.

Other approaches aim to detect ambiguities in requirements. These
approaches are mainly rule-based, i.e., based on linguistic patterns to be matched
within requirements [3]. Most of these works stem from the typically defective
terms and constructions classified in the ambiguity handbook of Berry et al. [3].



Are Standards an Ambiguity-Free Reference for Product Validation? 255

Based on these studies, tools such as QuARS [24], SREE [34] and the tool of
Gleich et al. [23] were developed. More recently, industrial application of these
approaches were studied by Femmer et al. [15] and by Rosadini et al. [32]. As
shown also in these studies, rule-based approaches tend to produce a high num-
ber of false positive cases – i.e., linguistic ambiguities that have one single reading
in practice. Hence, statistical approaches were proposed by Chantree et al. [10]
and by Yang et al. [35] to reduce the number of false positive cases, referred as
innocuous ambiguities.

Among the works on ambiguity detection, the paper of Rosadini et al. [32] is one
of the few that focus specifically on railway requirements. In thiswork, consolidated
NLP techniques for ambiguity detection inspired from QuARS [24] were intro-
duced in a railway signalling company to verify a large set of about 1800 require-
ments, showing that the techniques were mature for industrial adoption.

3 Background: A Quality Model for NL-expressed
Requirements

In principle, a Quality Model describes an ideal set of properties a real object
must possess to achieve some defined goals related to its use. Such properties,
usually called quality characteristics, have themselves some global or individual
properties, or meta-properties, such as measurability and others. We do not
address here the general problem of Quality Model generation, but just recall
the concept of quality of requirements expressions. The relevance of the quality of
early work products in systems lifecycle has been pointed out by Gilb [22] and by
other authors. What is “just” a quality defect in system/software requirements
documents, if not resolved in time, can result in technical problems or in vital
system functionality loss during validation or service.

As mentioned in the introduction, the aspect of the intrinsic quality of expres-
sions has been studied by the authors in the case of software requirements, a
research that has produced the tool QuARS and a specific Quality Model for
NL-expressed requirements [33].

This Quality Model can be better described as a set of negative qualities,
or defects, that represent the lack of specific, wanted qualities. Some of these
defects, here denoted as sub-characteristics, are listed below. Most of them are
grouped by the corresponding wanted property, or capability, here denoted as
characteristic. Figure 1 shows the complete set.

– Vagueness: the sentence contains items having no uniquely quantifiable
meaning.
• Vagueness-revealing words: adequate, bad, clear, close, easy, efficient, far,

fast, good, in front, near, recent, significant, slow, strong, suitable, ...
– Subjectivity: the sentence expresses personal opinion.
• Subjectivity-revealing expressions: similar, taking-into-account.

– Optionality: the sentence contains an optional part (i.e. a part that can be
considered or not).



256 A. Ferrari et al.

Fig. 1. Representation of a NL quality model.

• Optionality-revealing words: possibly, eventually, in case, if possible, if
appropriate, if needed, ...

– Under-specification: the sentence contains terms that are general, and need
to be specified in more detail to clarify their meaning in the context of the
sentence.
• Underspecification-revealing words: function, document, process, unit,

interface, manual.

3.1 QuARS

QuARS (Quality Analyzer for Requirements Specifications) was introduced as
an automatic analyzer of NL requirement documents for the automatic detection
of potential linguistic defects that can determine ambiguity problems. QuARS
performs an analysis at sentence level, both syntactical and lexical, whose aim
is to find the evidence of indicators of the characteristics and sub-characteristics
of the above Quality Model in the sentence. These indicators are either ele-
ments (verbs, adjectives) of defined dictionaries for the lexical characteristics, or
other elements and constructs for the syntactical characteristics. The dictionar-
ies, whose composition typically depends on the particular knowledge domain the
object of the analysis belongs to, can be defined by the user. QuARS performs
a linguistic analysis of a requirements document in plain text format and points
out sentences that are potentially defective according to the expressiveness qual-
ity model. The defect identification process is split in two parts: (i) the “lexical
analysis” capturing optionality, subjectivity, vagueness and weakness defects, by
identifying candidate defective words that are identified into a corresponding set



Are Standards an Ambiguity-Free Reference for Product Validation? 257

of dictionaries; and (ii) the “syntactical analysis” capturing implicitness, mul-
tiplicity and under-specification defects. In the same way, detected defects may
however be false defects. This may occur mainly for three reasons: (i) a correct
usage of a candidate defective word, (ii) a usage of a candidate defective wording
which is not usually considered a defect in the specific system or domain, and
(iii) a possible source of ambiguity inserted on purpose to give more freedom to
implementors. For this reason, a false positive masking feature is also provided
by the tool.

Applying the analysis supported by QuARS to project requirements helps
achieving the mentioned qualities: the tool warns about all potential defects
it is programmed for, and the human inspector just has to confirm/reject the
tool proposal on the basis of semantics insight and experience. This might seem
hard-work, but some studies showed a gain in defect detection of 2/3, by a time-
saving up to the 80% (that also includes manual resolution of false-positives after
automated analysis) with respect to a completely manual process [12,20]. Also,
introducing NLP tools in a working team demands limited resource: as shown
in [32], a NLP tool can be proficiently used by practitioners with little training.

4 Motivation for a Linguistic Analysis of Standards

In this Section, some reasons for which the linguistic quality of the standards
deserves specific investigation are sketched, which are related to the CELELEC
recommendations, and to historical cases that illustrate the impact of NL defects
in standards. Furthermore, we also provide some discussion on the differences
between product requirements and standard clauses (Sect. 4.1).

CENELEC Recommendations. The organizations that publish standards also
issue guidelines on how their products should be written. In the railway domain,
the CENELEC Guide 17 [7] is aimed at this purpose. Among other recommenda-
tions, it contains a sub-section, named “clear language”, that gives some advice
about writing text.

We want to be more precise and propose an analysis, described in Sect. 5,
which it is more articulated, verifiable and provides a metrics-based approach.
We have no notion about any other specific work investigating how and to what
extent a standard can enjoy clear language properties.

Impact of Standards Defects. Perhaps the most important motivation regards
the impact of a safety-related standard defective in clarity and other linguistic
qualities. Determining such an impact is similar to perform a preliminary hazard
analysis (PHA) for safety-related systems, a typical what if search. Quite a
difficult laborious job if performed analytically, it can be done empirically, by
looking for real cases in which textual quality issues led to unwanted situations.
So far, we do not have but one record of facts related to standards, as most
of them regard system/software requirements. On the other hand, the what if
paradigm warns us that similar cases can happen, so that it is worth it to adopt
counter-measures whenever feasible.



258 A. Ferrari et al.

These cases are drawn from the experience of the second author in the devel-
opment of standards, and from his participation in standardisation committees.

– Case 1: In baseline 19 (Final Draft) of the functional safety standard ISO
26162, that has been a voluntary reference for years in the automotive domain,
the expression [software] “requirements verification” has two distinct mean-
ings in the context of (1) Part 6, clauses 6.4 and Table 9; and (2) Part 8, clause
9. In (1) requirements are considered as a reference against which to verify
software modules. In (2) requirements are an object of verification – against
other requirements and other non mentioned properties. The impact of this
issue could be delay in development of in conformity assessment, or missing
requirements analysis. Although baseline 19 was no International Standatd
yet, it was pretty popular and adopted by car makers in contracts with sup-
pliers.

– Case 2: During development of a brake system for a city train in the US
(2000 to 2003), the term “parameter” in a document has had, for several
months, different meanings for different roles. For the owners of the software
requirements it was intended as a set of configuration data to be externally
provided during defined vehicle tests. Instead, some developers interpreted
it as a list of arguments for some functions to be compiled. We see in next
Sections that this is an occurrence of an under-specification defect – also
referred as generality in the literature [5] –, where an entity (here, ‘parameter’)
is not sufficiently specified. To a certain extent, these defects can be detected
also by automated tools [24]. This problem caused misunderstandings among
stakeholders and sensible delay in the project.

– Case 3: During a training course (2005) on software inspection processes
and techniques for an European automotive supplier of various different car
brands, it was decided to use the documentation of some of the current
projects as material for exercises. While running a manual checklist on a
set of software requirements, a lively discussion on the meaning of a require-
ment (on the control of the catalytic converter) started between developers
and testing engineers. This had an impact on the real project, because the
owner of the requirements was out for a mission and could not get involved
in any explanatory meeting than many days after.

4.1 Difference Between Product Requirements and Standard
Clauses

In order to orient methods and tools towards specific standard analysis, further
investigation should be done on the root causes that would make standard clauses
different from software/system requirements. Some differences are the following.

– Developers can try to negotiate on requirements with their customers and
often collaborate with them to make requirements clearer, but they cannot
correct possibly defective standards. The meaning of a clause can be deter-
mined by comparing it with similar ones, by analysing the context in which



Are Standards an Ambiguity-Free Reference for Product Validation? 259

it is expressed and by consulting the informative documentation that usually
comes with the normative parts. This effort takes time and is often skipped,
increasing the risk of non-standard-compliant implementation.

– As already noticed, the audience of a standard is the whole community of
developer and of assessors, while product requirements as expressed by a
customer are often limited to a single developing environment.

– Standard documents are issued after years of discussions in a community of
experts and are often accompanied by books, guides and conferences. Instead,
product requirements documents are the result of a more limited group of
interested stakeholders, and are sometimes the only source of information
about the product, before this is developed and accompanied with manuals.

There are, of course, documents that are standards, i.e., issued by interna-
tional organisations, and are also product related, instead of process related, as,
e.g., the ERTM systems specification that will be used in our analysis presented
in Sect. 5. In principle, the differences outlined above make product standards
more similar to process standards than to product requirements. However, we
will see that differences exist in the language used by the different types of
standards, and in the types of defects identified.

5 Analysis

The mere existence of the facts mentioned in Sect. 4, no matter how frequent
they are, tells us that some impact of standard textual quality in the behavior
of standard-compliant processes and products cannot be denied. In this section,
the model used in Sect. 3 is adopted as a reference for an analysis of standards,
which showcases how NLP techniques can be useful for standards’ improvement.
In particular, we show that, even with the help of a moderately simple tools
as QuARS, developed years before the current work [24], it is possible to high-
light potential linguistic defects in standards. This is not the only outcome. The
analysis presented here also shows that the tool reports defects, but also unim-
portant findings and even expected and wanted properties. This aspect can be
better understood if we try to examine the results of analyses made on differ-
ent standards. Often, such results are more interesting if compared with those
obtained from different standards and not as absolute quantities. Furthermore,
we know that counts and percentages are affected by false positives – defects
identified by the tool, that are not defects in practice –, and a patient work of
manual inspection becomes necessary to prune the results lists. However, if we
want to check if an indicator of a potential defect is more present in a text than
in another one, it may be unnecessary to remove false positives.

Here we examine two different types of railway standards, namely, a
process standard, and a product standards. One is the popular CENELEC EN
50128:2011 [8], related to the software life-cycle. The other contains the func-
tional requirements specifications for ERTMS Systems issued by the European
Railway Agency (ERA) [13].



260 A. Ferrari et al.

Fig. 2. An example of comparative metrics.

The results of the tool application are reported in Fig. 2. For each sub-
characteristic of the adopted quality model, the number of potentially defective
sentences and percentage of such sentences over the total number of sentences
are given. We will first discuss some issues associated to the numerical differences
that can be observed, and then we will present some relevant cases of potential
defects in the considered standards.

Even before doing the job to eliminate false positives, we notice that for
the ERTMS clauses, the percentage of potential defects is generally lower than
for CENELEC. In particular, if we look at under-specification, the difference
becomes evident. We can consider this as no surprise, since the EN50128:2011 is
a reference for lifecycle processes. Hence, its content shall be general enough so
that several process implementations are able to comply to the same clauses. This
is not the case for ERTMS systems, for which we have strict inter-operability
requirements – due to the nature of the project – which shall not allow too much
freedom of implementation to different suppliers. We argue that, for this rea-
son, ERTMS clauses show a lower degree of under-specification, and the under-
specification observed in EN50128:2011 may be, in general, a desirable property.

It is worth reflecting on the different roles that may be played by under-
specification cases. The situation presented in Case 2 of Sect. 4, and associated to
the under-specified term “parameter”, was a project risk, while in EN50128:2001
under-specification may be a desirable property. under-specification in standards
can in some cases give an useful indication of possible variability, either in design
choice, in implementation choices or configurability, which may be finalised in
the products’ development. In [25] it was argued that removing linguistic ambi-
guity from standards could affect the important goal for a standard of not being
an obstacle for technical evolution in society. Yet, situations like those mentioned
above in Case 2 of Sect. 4 should be avoided. How can an automatic tool dis-
tinguish between wanted and unwanted ambiguity is a question on which much
investigation must still be carried out [19].

As pointed out, there are findings related to under-specification and other
potential defects that can create problems with developers. For reasons of space,
only a few from EN50128:2011 are reported here.



Are Standards an Ambiguity-Free Reference for Product Validation? 261

Figure 3 shows an item (related to Clause 7.3.4.19 on interfaces description)
out of the 115 listed by QuARS for under.specification. In this case, it can be
agreed that the term “functions” needs more specification, both in type (pro-
gramming language functions? functions associated to one or more requirements?
safety functions?) and in identification (what functions of a certain type?). The
users of the standard may come to a conclusion with a certain degree of con-
fidence, with the aid of the context of the clause and a careful study of the
standard itself.

It is worth noticing that, in our analysis, many findings related to under-
specification refer to plural nouns. As noted by Berry and Kamsties [4], plurals
are ambiguous, and should be avoided. Indeed, “the use of plural to describe a
property of elements of a set or of sets makes it difficult to determine whether
the property is that of each element or of the whole set” [4].

Other findings, regarding vagueness, are reported in Figs. 4 and 5. The finding
shown in Fig. 4 (related to Clause 8.4.4.8) can be discarded by manual inspection
as a false positive after noticing that there are internal references that can clarify
the meaning of the word “general”. Sometimes, however, internal references may
not be this helpful or can even contribute to generate comprehension problems.
In any case, to deal with the false positive problem both analyser’s experience
and careful readings of the context in which the clause is located are advised.
Instead, in Fig. 5 (related to Clause 8.4.8.6) “relevant” is appropriately flagged
as a vague word, since no explicit criterion is mentioned to assess whether a
certain combination of data and algorithms is relevant or not.

Fig. 3. QuARS Finding about under-specification.

Fig. 4. QuARS finding about vagueness (false positive case).

Fig. 5. QuARS finding about vagueness.



262 A. Ferrari et al.

Fig. 6. QuARS finding about subjectivity.

Fig. 7. QuARS finding about optionality.

In Fig. 6, (related to Clause 6.7.4.9) a finding is shown about subjectivity.
The interpretation of the term “similar” is, indeed, subjective. One may con-
sider a compiler, or a test-suite generation tool, as similar to an automatic code
generator, since they are all automatic translators. However, a doubt remains
whether all these different types of tools are subject to the same clause.

In Fig. 7 (related to Clause 7, 6.6.4.1) a finding is shown about optionality.
In this case, we cannot know if only one or both items, i.e., documentation on
“problems” and documentation on “corrective actions”, must be provided.

6 Conclusions

The quality of the language used by railway standards has an impact on the
processes and products that have to abide to the standards. In this paper, we
discuss potential issues that may be raised by vague or ambiguous terminology
used in standards, and we showcase how automated tools can be employed to
detect these language quality defects. In particular, the experience of one author,
involved for many years in standard working groups (ISO/IEC, CENELEC)
has joined with that of two authors, who have been active since long in the
application of natural language processing (NLP) to technical documents, to
produce a simple but significant case study. Clauses of two popular standards
in the railway domain have been analysed with a NLP tool. The results of this
analysis have been discussed to demonstrate on one side that the risk exists of
interpreting standard clauses in an incorrect way, and on another side that the
efficacy of different standards can be compared with the aid of the same analysis.
Encouraged by some expressions of interest coming from conveners of working
groups, we hope that NLP methods and tools will be considered and adopted
by the international experts working at the current and future revisions of the
standards in the railway domain.



Are Standards an Ambiguity-Free Reference for Product Validation? 263

References

1. Ambriola, V., Gervasi, V.: On the systematic analysis of natural language require-
ments with CIRCE. ASE 13, 107–167 (2006)

2. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated checking of confor-
mance to requirements templates using natural language processing. TSE 41(10),
944–968 (2015)

3. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software spec-
ification: linguistic sources of ambiguity (2003)

4. Berry, D.M., Kamsties, E.: The syntactically dangerous all and plural in specifica-
tions. IEEE Softw. 22(1), 55–57 (2005)

5. Berry, D.M., Kamsties, E.: Ambiguity in requirements specification. In: do Prado
Leite, J.C.S., Doorn, J.H. (eds.) Perspectives on Software Requirements. Springer
International Series in Engineering and Computer Science, vol. 753, pp. 7–44.
Springer, Boston (2004). doi:10.1007/978-1-4615-0465-8 2

6. Biscoglio, I., Coco, A., Fusani, M., Gnesi, S., Trentanni, G.: An approach to ambi-
guity analysis in safety-related standards. In: International Conference on the Qual-
ity of Information and Communications Technology, QUATIC 2010, pp. 461–466
(2010)

7. CENELEC: Guidance for writing standards taking into account micro, small and
medium-sized enterprises (SMEs) needs. Guide (2010)

8. CENELEC: Railway applications - communication, signalling and processing sys-
tems - software for railway control and protection systems. Standard (2011)

9. CENELEC: prEN 50126-1:2016 (to be published)
10. Chantree, F., De Bashar Nuseibeh, A.N., Roeck, A.W.: Identifying nocuous ambi-

guities in natural language requirements. In: RE 2006, pp. 56–65 (2006)
11. Cimatti, A., Corvino, R., Lazzaro, A., Narasamdya, I., Rizzo, T., Roveri, M., San-

seviero, A., Tchaltsev, A.: Formal verification and validation of ERTMS indus-
trial railway train spacing system. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 378–393. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31424-7 29

12. Setamanit, S., Sethanandha, B., Raffo, D., Ferguson, R.: Evaluating the impact of
requirements analysis tools using simulation. Softw. Process Improv. Pract. 13(91),
63–73 (2008)

13. ERA: ERTMS/ETCS - Functional Requirements Specification, Version 5 (2007)
14. Fantechi, A., Gnesi, S., Ristori, G., Carenini, M., Vanocchi, M., Moreschini, P.:

Assisting requirement formalization by means of natural language translation.
Form. Methods Syst. Des. 4(3), 243–263 (1994)

15. Femmer, H., Fernández, D.M., Wagner, S., Eder, S.: Rapid quality assurance with
requirements smells. JSS 123, 190–213 (2017)

16. Fenton, N., Page, S.: Towards the evaluation of software engineering standards.
In: Proceedings of the Software Engineering Standards Symposium, pp. 100–107.
IEEE (1993)

17. Fenton, N.E., Neil, M.: A strategy for improving safety related software engineering
standards. IEEE Trans. Software Eng. 24(11), 1002–1013 (1998)

18. Ferrari, A., Fantechi, A., Magnani, G., Grasso, D., Tempestini, M.: The Metrô Rio
case study. Sci. Comput. Program. 78(7), 828–842 (2013)

19. Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity cues in requirements elicitation
interviews. In: 2016 IEEE 24th International Requirements Engineering Conference
(RE), pp. 56–65. IEEE (2016)

http://dx.doi.org/10.1007/978-1-4615-0465-8_2
http://dx.doi.org/10.1007/978-3-642-31424-7_29
http://dx.doi.org/10.1007/978-3-642-31424-7_29


264 A. Ferrari et al.

20. Ferguson, R., Lami, G.: An empirical study on the impact of automation on the
requirements analysis process. J. Comput. Sci. Technol. 22(3), 338–347 (2007)

21. Ghazel, M.: Formalizing a subset of ERTMS/ETCS specifications for verification
purposes. Transp. Res. Part C Emerg. Technol. 42, 60–75 (2014)

22. Gilb, T., Graham, D., Finzi, S.: Software Inspection. Addison-Wesley Longman
Publishing Co., Inc. (1993)

23. Gleich, B., Creighton, O., Kof, L.: Ambiguity detection: towards a tool explaining
ambiguity sources. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol.
6182, pp. 218–232. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14192-8 20

24. Gnesi, S., Lami, G., Trentanni, G.: An automatic tool for the analysis of natural
language requirements. IJCSSE 20(1), 53–62 (2005)

25. Graydon, P.J., Holloway, C.M.: Planning the unplanned experiment: assessing the
efficacy of standards for safety critical software. NASA/TM-2015-218804, Septem-
ber 2015

26. Graydon, P.J., Kelly, T.P.: Using argumentation to evaluate software assurance
standards. Inf. Softw. Technol. 55(9), 1551–1562 (2013)

27. Kof, L.: From requirements documents to system models: a tool for interactive
semi-automatic translation. In: RE 2010 (2010)

28. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements
syntax (ears). In: RE 2009, pp. 317–322. IEEE (2009)

29. Mich, L.: NL-OOPS: from natural language to object oriented requirements using
the natural language processing system LOLITA. NLE 2(2), 161–187 (1996)

30. Pfleeger, S.L., Fenton, N., Page, S.: Evaluating software engineering standards.
Computer 27(9), 71–79 (1994)

31. Pohl, K., Rupp, C.: Requirements Engineering Fundamentals. Rocky Nook Inc.
(2011)

32. Rosadini, B., Ferrari, A., Gori, G., Fantechi, A., Gnesi, S., Trotta, I., Bacherini, S.:
Using NLP to detect requirements defects: an industrial experience in the railway
domain. In: Grünbacher, P., Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp.
344–360. Springer, Cham (2017). doi:10.1007/978-3-319-54045-0 24

33. Trentanni, G., Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: An automatic tool
for the analysis of natural language requirements. Int. J. Comput. Syst. Sci. Eng.
20(1) (2005). Special Issue on Automated Tools for Requirements Engineering

34. Tjong, S.F., Berry, D.M.: The design of SREE — a prototype potential ambiguity
finder for requirements specifications and lessons learned. In: Doerr, J., Opdahl,
A.L. (eds.) REFSQ 2013. LNCS, vol. 7830, pp. 80–95. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-37422-7 6

35. Yang, H., De Roeck, A.N., Gervasi, V., Willis, A., Nuseibeh, B.: Analysing
anaphoric ambiguity in natural language requirements. Requirements Eng. 16(3),
163–189 (2011)

http://dx.doi.org/10.1007/978-3-642-14192-8_20
http://dx.doi.org/10.1007/978-3-319-54045-0_24
http://dx.doi.org/10.1007/978-3-642-37422-7_6


Author Index

Adeline, Bruno 195
Ait-Ameur, Yamine 160

Basile, Davide 221
Bouillaut, Laurent 116
Braband, Jens 3
Budnik, Christof J. 173
Butler, M. 71

Canonico, Roberto 34
Cazier, Olivier 116
Chen, Binbin 51
Comptier, Mathieu 148

Damiani, Mirko 212
Deharbe, David 148
Dersin, Pierre 195
Dghaym, D. 71
Di Giandomenico, Felicita 221
Di Massa, Vincenzo 212

El-Koursi, El-Miloudi 116

Fabre, Éric 195
Feliachi, Abderrahmane 87, 160
Ferrari, Alessio 251
Fischer, T. 71
Fredj, Manel 87
Fusani, Mario 251

Gario, Marco 173
Ghazel, Mohamed 116
Giambene, Giovanni 17
Gnesi, Stefania 221, 251
Golm, Michael 173

Hähnle, Reiner 131
Halchin, Alexandra 160
Haxthausen, Anne E. 99

Hélouët, Loïc 195
Hoang, T.S. 71

Iliasov, Alexei 241

Kalbarczyk, Zbigniew 51
Kamburjan, Eduard 131
Kecir, Karim 195

Leger, Sven 87
Liang, Ci 116

Mandò, Gianluca 17, 212
Marrone, Stefano 34
Mitsch, Stefan 173
Mussat, Louis 148

Nardone, Roberto 34

Ordioni, Julien 87, 160

Papini, Maurizio 212
Peleska, Jan 99
Perez, Julien Molinero 148
Pierre, Thibaut 148
Platzer, André 173

Reichl, K. 71

Sabatier, Denis 148
Singh, Neeraj Kumar 160
Snook, C. 71
Stankaitis, Paulius 241

Temple, William G. 51
Tummeltshammer, P. 71

Vittorini, Valeria 34
Vu, Linh H. 99

Wu, Yue 51


	Preface
	Organization
	Abstracts of Keynote Talks
	Cyber Security in Railways: Quo Vadis?
	The Unreasonable Effectiveness of B for Data Validation and Modelling of Railway Systems
	Safety Certification: Considering Processes Around the World
	Contents
	Keynote Talk
	Cyber Security in Railways: Quo Vadis?
	Abstract
	1 Introduction
	2 Normative Background
	3 Problems with Threat and Risk Analysis for Safety-Related Systems
	4 Overview of ISA99/IEC62443 Standards
	5 Security Levels
	6 Approaches Towards Cyber Security Risk Assessment
	6.1 IEC 62443-3-2 Proposal
	6.2 German DKE 0831-104 Proposal

	7 Combined Approach
	8 Software Patch Management
	9 Conclusion
	References

	Communication Challenges in Railway Systems
	LTE System Design for Urban Light Rail Transport
	Abstract
	1 Introduction
	2 Radio Communications for Urban Transport
	2.1 Radio Communications Services for Transport Systems
	2.2 LTE as a Future Communication Solution for Railway Applications

	3 LRT and Tramway Control System
	4 Simulation Approach and Results
	4.1 Simulator Implementation
	4.2 Results: Stationary Trains at Train Depot
	4.3 Results: Cell Planning
	4.4 Results: Impact of Train Mobility, Handover Performance
	4.5 Results: Impact of the Number of eNBs on Signaling Traffic
	4.6 Results: Impact of the Number of Trains on Signaling Traffic
	4.7 Results: Impact of Non-critical Traffic on Signaling

	5 Conclusions and Future Work
	References

	A Framework to Evaluate 5G Networks for Smart and Fail-Safe Communications in ERTMS/ETCS
	1 Introduction
	2 Background and Related Work
	3 Framework Definition
	3.1 Objectives
	3.2 Approach
	3.3 Software Architecture

	4 A Feasibility Prototype
	4.1 Specification Layer
	4.2 Configuration Layer
	4.3 Emulation Layer

	5 Conclusions
	References

	Systems-Theoretic Likelihood and Severity Analysis for Safety and Security Co-engineering
	1 Introduction
	2 Related Work in Safety and Security Co-Analysis
	3 Systems-Theoretic Likelihood and Severity Analysis
	3.1 Original STPA-Sec Process
	3.2 Original FMVEA Process
	3.3 STLSA Combination

	4 Case Study: Train Braking System
	4.1 System Description
	4.2 Analysis
	4.3 Discussion

	5 Conclusion
	References

	Formal Modelling and Verification for Safety
	Formal Modelling Techniques for Efficient Development of Railway Control Products
	1 Introduction
	2 Background
	2.1 RailGround
	2.2 Event-B
	2.3 iUML-B
	2.4 Event Refinement Structures

	3 RailGround Model Using iUML-B and ERS
	4 Related Work
	5 Conclusion
	References

	OVADO
	1 Introduction
	2 OVADO - Background and Learned Lessons
	2.1 Origins and Genesis
	2.2 Use Cases and Learned Lessons
	2.3 Emerging New Needs

	3 Enhancing OVADO
	3.1 B-OVADO Editor
	3.2 Common Library
	3.3 Guidelines
	3.4 Feedback

	4 Conclusion
	References

	A Domain-Specific Language for Generic Interlocking Models and Their Properties
	1 Introduction
	2 Background
	2.1 Interlocking Systems
	2.2 The RobustRailS Method
	2.3 Mathematical Foundations

	3 Interlocking Dynamic Language, IDL 
	3.1 Overview
	3.2 Accompanying Example
	3.3 IDL Definition

	4 Conclusion
	References

	Bayesian Network Modeling Applied on Railway Level Crossing Safety
	1 Introduction
	2 Preliminary Introduction of Bayesian Belief Networks
	3 Methodology
	3.1 Data Collection
	3.2 Bayesian Risk Model Establishment

	4 Analysis and Discussion
	5 Conclusions
	References

	Deductive Verification of Railway Operations
	1 Introduction
	2 The Abstract Behavioral Specification Language (ABS)
	3 The ABS Program Logic
	4 Modeling Railway Operations
	4.1 Infrastructure
	4.2 Communication
	4.3 Well-Formedness

	5 Deductive Verification
	5.1 Methodology
	5.2 Permission
	5.3 Train Involvement
	5.4 Discussion

	6 Conclusion
	6.1 Related Work
	6.2 Future Work

	References

	Safety Analysis of a CBTC System: A Rigorous Approach with Event-B
	1 Introduction
	2 The CBTC System Octys 
	3 Methodology 
	3.1 Organization
	3.2 Approach

	4 Illustrative Examples 
	4.1 Track Circuits Backup Example 
	4.2 Emergency Cancellation/Nominal Crossing Example

	5 Discussion and Lessons Learnt 
	6 Conclusion 
	References

	B-PERFect
	1 Introduction
	2 Context
	3 Background
	4 Translation Principles
	5 State of the Art
	6 Conclusion
	References

	Formal Verification of Train Control with Air Pressure Brakes
	1 Introduction
	2 Preliminaries: Differential Dynamic Logic
	3 Train Control Models
	3.1 Safety and Performance Considerations
	3.2 Train Motion and Brake Forces
	3.3 Track Control
	3.4 Train Control
	3.5 Delayed Braking
	3.6 Brake Pressure Propagation

	4 Performance Analysis
	5 Experimental Results
	6 Related Work
	7 Conclusion
	References

	Light Rail and Urban Transit
	An Efficient Evaluation Scheme for KPIs in Regulated Urban Train Systems
	1 Introduction
	2 Modeling
	3 KPIs and Simulation Campaign Results
	4 Discussion and Improvements
	5 Conclusion
	References

	Redundant and Reliable Architecture Based on Open Source Tools for Light-Rail-Transit On-Board-Systems
	1 Introduction
	2 The LRT Context
	3 Redundancy
	4 Architecture and the Problem of Distributed Applications
	4.1 Patterns for Interconnected of Applications
	4.2 Shared State and the ØMQ Clone Pattern
	4.3 State Replication and Changeover
	4.4 Mastership Change

	5 Performance Considerations
	6 Conclusion
	References

	Dependable Dynamic Routing for Urban Transport Systems Through Integer Linear Programming
	1 Introduction
	2 Description of the Problem
	3 Dynamic Vehicle Routing
	4 Network Flow Problem
	5 Description of the Model for the Vehicle Routing Problem
	5.1 Integer Linear Programming Model

	6 Implementation
	7 Experiments
	8 Related Work
	9 Conclusion and Future Work
	References

	Engineering Techniques and Standards
	Theories, Techniques and Tools for Engineering Heterogeneous Railway Networks
	1 Introduction
	2 Formal Methods in Railway Domain
	3 Distributed Formal Railway Model in Event-B
	3.1 Abstract Distributed Railway Interlocking Model
	3.2 Contention Problem for Distributed Railway Interlocking

	4 Conclusions and Future Work
	References

	Are Standards an Ambiguity-Free Reference for Product Validation?
	1 Introduction
	2 Related Literature
	2.1 Works on Standards Evaluation
	2.2 Works on Requirements Evaluation Using NLP

	3 Background: A Quality Model for NL-expressed Requirements
	3.1 QuARS

	4 Motivation for a Linguistic Analysis of Standards
	4.1 Difference Between Product Requirements and Standard Clauses

	5 Analysis
	6 Conclusions
	References

	Author Index



