
Time-Dependent Route Planning
for Truck Drivers

Alexander Kleff1,2 , Christian Bräuer1,2, Frank Schulz1, Valentin Buchhold2,
Moritz Baum2, and Dorothea Wagner2

1 PTV Group, Karlsruhe, Germany
{alexander.kleff,christian.braeuer,frank.schulz}@ptvgroup.com

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{buchhold,moritz.baum,dorothea.wagner}@kit.edu

Abstract. We study the problem of computing time-dependent shortest
routes for truck drivers. In contrast to conventional route planning, truck
drivers have to obey government regulations that impose limits on non-
stop driving times. Therefore, route planners must plan break periods in
advance and select suitable parking lots. To ensure that maximum driving
times are not exceeded, predictable congestion due to, e. g., peak hours
should also be taken into account. Therefore, we introduce the truck
driver routing problem in time-dependent road networks. It turns out
that the combination of time-dependent driving times with constraints
imposed by drivers’ working hours requires computation of multiple time-
dependent profiles for optimal solutions. Although conceptually simple,
profile search is expensive. We greatly reduce (empirical) running times
by calculating bounds on arrival and departure times during additional
search phases to only query partial profiles and only to a fraction of
the parking lots. Carefully integrating this approach with a one-to-many
extension of time-dependent contraction hierarchies makes our approach
practical. For even faster queries, we also propose a heuristic variant that
works very well in practice. Excellent performance of our algorithms is
demonstrated on a recent real-world instance of Germany that is much
harder than time-dependent instances considered in previous works.

Keywords: Time-dependent shortest paths · Drivers’ working hours · Truck
driver scheduling · Parking locations

1 Introduction

In many countries of the world, truck drivers are legally obligated to take breaks
on a regular basis to obviate drivers’ fatigue and hence increase road safety. For
instance, Regulation (EC) No. 561/2006 of the European Union [15] demands a
break of at least 45 minutes after at most 4.5 hours of driving. And according to
the hours-of-service regulation in the United States [16], a 30-minutes-break is
mandatory after at most eight hours have elapsed. Truck drivers must park their
vehicle at a suitable location before taking such a “lunch break”. Due to the size

© Springer International Publishing AG 2017
et al. (Eds.), ICCL 2017, LNCS 10572, pp. 110–126, 2017.

https://doi.org/10.1007/978-3-319-68496-3_8
T. Bektaş

(�)

of their trucks, the drivers are severely limited compared to car drivers when
in search of a parking space. For assistance in finding appropriate and available
parking lots, truck drivers use mobile apps like Truck Parking Europe [1] that
maintain databases of parking lots and display nearby lots to users. In this work,
we investigate the following optimization problem: En route from one customer
to another, when and where should the driver take a break (if at all) to conform
to the provisions on breaks and arrive at the destination earliest possible?

We only consider one drive from a source to a destination. In general, a
truck driver may visit multiple customers per day. In this case, the customers’
time windows also have to be regarded. Moreover, if a trip takes more than one
day, not only lunch breaks have to be scheduled but also longer rest breaks for
the driver to sleep. The problem of scheduling breaks in order to comply with
regulations while also taking customer time windows into account is known as
the truck driver scheduling problem [21]. However, the locations of the parking
lots remain disregarded in this setting. In this work, we take a major first step
towards combining time-dependent route planning and truck driver scheduling.
We determine not only when but also where to take a break.

We consider time-dependent driving times to model predictable congestion.
In this scenario, it might be beneficial to not depart from source right away, or to
prolong a break, or to wait at a parking lot for a time that is too short to count
as break. As an example of short-term waiting, imagine the following: At the
time of arrival at a parking lot, the driving time to the destination would be two
minutes longer than the remaining allowed driving time. Luckily, the driver just
has to wait ten minutes for the congestion to disperse and for the driving time
to drop by these two minutes. In contrast to the European Union, short-term
waiting does not pay off in the United States because the lunch break becomes
mandatory after eight hours have elapsed, and not after a certain accumulated
driving time. In the following, we focus on the EU regulation.

Time-dependency makes the problem particularly challenging, and the ques-
tion arises whether it can be solved efficiently in practice. We are interested
both in optimal and in heuristic approaches. There are a couple of parameters to
reduce the run-time, and we seek to shed light on their impact on the solution
quality. For our experimental analysis, it is sufficient to assume that the driver
stops at only one parking lot (if at all). For a planning horizon of one day, this
is no substantial limitation in practice as a daily driving time of 9h (US: 11h)
should not be exceeded, even though it may be extended to 10h twice a week. For
the sake of completeness, we discuss the implications regarding multiple stops.

Related Work. Route planning algorithms have received a large amount of
attention in recent years, resulting in a multitude of speedup techniques [2]. In
the time-dependent scenario, driving time functions associated with the edges
map the time of the day to a driving time [7]. Dijkstra’s algorithm [12] can be
generalized [14] to answer earliest arrival (EA) queries. However, profile queries
asking for the driving time function between two vertices are not feasible for large
road networks [11], as such functions may have superpolynomial complexity [17]
and maintaining them for all vertices makes Dijkstra’s algorithm impractical.

Time-Dependent Route Planning for Truck Drivers 111

Several classic speedup techniques have been generalized to the time-dependent
scenario [6, 9, 10], typically focusing on fast EA queries. Efficient EA and profile
queries at continental scale are provided by TCH [3], a generalization of Con-
traction Hierarchies (CH) [20]. Batched shorted paths in the time-dependent
scenario are studied in [19]. Recently, Strasser [30] introduced a simple heuristic
for time-dependent routing that is cheap in time and space, but drops optimality
and provides no approximation guarantees.

As far as the truck driver scheduling problem is concerned, the interested
reader can find descriptions of optimal algorithms for the EU variant of this
problem in [21, 13, 26] and for the US variant in [22, 24, 25]. Of these, [26] and [24]
propose a mixed-integer linear programming formulation. The former even takes
time-dependent driving times into account, the latter is the only one to include
real-world data of parking lots (here: interstate rest areas) into their experimental
analysis. However, in both cases not only the sequence of customers is fixed but
also the path in the road graph. So in the former case the path cannot change over
time, and in the latter case truck stops aside the path are disregarded. In [27], time-
dependent routes for truck drivers subject to government regulations and time
windows are solved heuristically. Finally, other lines of research have considered
problems that resemble our setting but are NP-hard, such as crew scheduling [29],
routing of electric vehicles [5], or time-dependent pollution-routing [18].

Contribution and Outline. We introduce the truck driver routing problem that asks
for the fastest route between two customers that complies with legal provisions for
truck drivers (Section 2). To the best of our knowledge, we are the first to integrate
the choice of routes, breaks and parking lots in one query – unlike previous works
that first fix the route and then schedule breaks, possibly missing the optimal
solution. Since rush hours severely affect driving times, we consider the time-
dependent scenario. We propose a naive approach (Section 3) that would be far
too expensive in time and space without at least one of two described acceleration
techniques (Sections 3.1 and 3.2): An implementation based on TCHs achieves
query times in the order of minutes on the German road network. Sophisticated
bounds computations on top of that speed queries up by a factor of 25, yielding
running times well below 10 seconds. Finally, a heuristic approach (Section 3.3)
enables queries below a second and less. Most of our experiments (Section 4) are
performed on a new instance of the German road network, currently used by
PTV in production systems. It turns out to be much harder than the ten-year-old
instance used in most publications so far. Before we conclude (Section 6), we
discuss the implications of allowing multiple stops (Section 5).

2 Problem Statement and Preliminaries

The basic input for every variant of the truck driver routing problem is the
following: Let a road network be given, modeled as a directed graph G = (V,E)
with n = |V | vertices and m = |E| edges, where vertices v ∈ V typically
correspond to intersections and edges (u, v) ∈ E to road segments. The subset

112 A. Kleff et al.

P ⊂ V of the vertices contains exactly the parking locations that represent the
parking lots (or even parking spaces) where the driver may take a break. The
minimum break period and the maximum driving time until such a break is
mandatory are denoted by break and limit respectively. These two parameters
are sufficient to handle the Regulation (EC) No. 561/2006 of the European Union
[15] for a planning horizon of one day.

We are also given a sequence of exactly two customers to be visited, source
s ∈ V \ P and destination d ∈ V \ P . An s–d-path Paths,d (in G) is a sequence
[v1 = s, v2, . . . , vk = d] of vertices such that (vi, vi+1) ∈ E and vi �= vj for
all 1 ≤ i < j ≤ k. A (truck driver) route Routes,d from s to d in turn is a
sequence [Pathui,vi]1≤i≤k of paths such that u1 = s and ui ∈ P for 1 < i ≤ k,
vk = d and vi ∈ P for 1 ≤ i < k, and vi−1 = ui for 1 < i ≤ k. In this paper, we
will only deal with routes with a sequence length |Routes,d| := k of at most two.

In the time-independent case, the weights on the edges are constants and
indicate the driving time along the edge. A path is feasible iff the accumulated
driving time along the path is no longer than limit , and a route is feasible iff
all its paths are. The duration of a truck driver route Routes,d is the sum of
the accumulated driving times of its paths plus (|Routes,d| − 1) · break . In time-
independent truck driver routing, we are interested in a shortest feasible route
from s to d if such a feasible route exists.

In time-dependent truck driver routing, we are given time-dependent driving
time functions for every edge instead of constant driving times. That is, for every
edge (u, v) there is a function Ψu,v : R → R

+ that maps the time of departure
from u to the driving time to v. In this work, all functions are supposed to be
piecewise-linear. The driver is not allowed to wait at any vertex other than the
parking locations or s. In this scenario, it is common to demand that the functions
fulfill the FIFO property because the shortest-path problem would become NP-
hard if it was not satisfied for all edges [28, 8]. We even presume that functions
are continuous and fulfill the strict FIFO property, i. e., for arbitrary t < t′ ∈ R,
the condition t+ Ψ(t) < t′ + Ψ(t′) holds for every edge (later departure leads to
later arrival). This way, the arrival time function id+Ψ is bijective (id being the
identity function) and we can build the inverse (id+Ψ)−1 that maps an arrival
time to the appropriate departure time.

To check feasibility of a route Routes,d = [Pathui,vi]1≤i≤k , we also ask for

departure and arrival times dep(ui) and arr(vi) for all i. This way, the duration
of a path Pathu,v can easily be computed by arr(v)− dep(u) (must be positive)
and the waiting time at a parking location by dep(ui) − arr(vi−1) (must be
non-negative). To be feasible, no single path is allowed to be longer than limit . In
addition, a route [Paths,p, Pathp,d] is feasible only if either the sum of the paths’
durations does not exceed limit or there is a waiting time that counts as break at
the parking location p in between. Among all feasible truck driver routes we look
for one with the earliest arrival at d. To this end, we are also given a lower bound
on the earliest departure lbED(s) from s, i.e., we demand dep(s) ≥ lbED(s). It
is only a lower bound because a feasible route with dep(s) = lbED(s) may not

Time-Dependent Route Planning for Truck Drivers 113

exist. In this paper, we call a vertex v reachable from u at time t if there is a
feasible route Routeu,v with dep(u) = t.

A (driving time) profile between u and v is a time-dependent function
ψu,v : R → R

+ that maps every departure time at u to the shortest driving
time to v. If (u, v) ∈ E, the profile is identical to the given driving time func-
tion Ψu,v. If not, we can compute the profile ψu,v recursively either forward or
backward using the link operation � and the merge operation ⊕:

ψu,v :=
⊕

w : (w,v)∈E

ψu,w �Ψw,v or ψu,v :=
⊕

w : (u,w)∈E

Ψu,w �ψw,v (1)

where ψ�ϕ is defined to be ψ + ϕ ◦ (id+ψ) and ψ⊕ϕ defined to be min(ψ,ϕ).
A profile search can be implemented as described in [11].

3 Solution Approach

We first describe a basic and rather naive approach to compute the earliest
arrival at destination d. There are three ways in which d may be reachable from
s: Either without passing a parking location at all, or by taking a break at a
parking location, or by short-term waiting at a parking location. Accordingly, we
will now compute three values optnone , optbreak , and optshort . The minimum of
these is then the overall optimal solution.

At first, we investigate whether d can be reached from s without passing a
parking location. To do this, we compute the driving time profile ψs,d from s to d
and then look up the earliest feasible departure time deps,d from s in this respect:
deps,d := min{t : ψs,d(t) ≤ limit ∧ t ≥ lbED(s)}. With this, we can conclude:
optnone := deps,d + ψs,d(deps,d).

To consider the parking locations, we have to search forward and backward in
order to compute the driving time profiles ψs,p and ψp,d for all p ∈ P . In the case
with a break at a parking location, the next step is, similarly as before and for
every parking location p ∈ P , to determine the earliest feasible departure time
deps,p from s when going to p as deps,p := min{t : ψs,p(t) ≤ limit ∧ t ≥ lbED(s)},
and then to look up the earliest feasible departure time depp,d from p when going
to d after a break as depp,d := min{t : ψp,d(t) ≤ limit ∧ t ≥ deps,p+ψs,p(deps,p)+
break}. In turn, we can conclude: optbreak := minp∈P {depp,d + ψp,d(depp,d)}.

But maybe the optimal solution consists in just waiting at a parking location
for a short time that does not necessarily count as break. To take this case into
account, we determine the earliest feasible departure time deps,p,d from p when
going from s to d for every parking location p ∈ P as follows: deps,p,d := min{t :
∃t′ : ψs,p(t

′) + ψp,d(t) ≤ limit ∧ lbED(s) ≤ t′ ≤ t− ψs,p(t
′)}. Again, we conclude:

optshort := minp∈P {deps,p,d + ψp,d(deps,p,d)}.
This description is only a sketch. It is meant to give an overview. A naive

implementation would certainly be far too slow for any practical use. This
motivates the following three acceleration approaches: by narrowing down profile
searches, by time-dependent contraction hierarchies, and heuristically.

114 A. Kleff et al.

3.1 Acceleration by Narrowing Down Searches

Some computations can be performed faster than others. The idea is to spend
little extra time on quick computations in order to gain bounds that help us
speed up the expensive calculations such as the profile search.

We define ubMax (ψ) as an upper bound on the maximum value of the profile
ψ, i.e., ubMax (ψ) ≥ maxt∈R ψ(t). Analogously, lbMin(ψ) is a lower bound on
the minimum value of ψ. A query for these bounds, called a profile bounds
query here, can be answered by applying Dijkstra’s algorithm [14] on a graph
where the constant edge weights are the minimum (maximum) values of the
respective driving time functions. Given a departure time t in addition, an earliest
arrival (EA) query asks for the earliest arrival at d when departing at time t.
Both queries can be processed rapidly and are described in greater detail in [3].
In our context, a usual EA query only gives a lower bound lbEA(d) on the earliest
arrival if lbEA(d) > t+ limit . To highlight this, we call it an lbEA query.

Computing Partial Profiles. One of the key acceleration techniques in this paper
is to only compute a partial profile. A partial profile maps a departure time t ∈ R

to a driving time in R
+ ∪ {⊥}, where ⊥ can be read as undefined. We have to

distinguish a partial forward profile from a partial backward profile. More precisely,
the following holds for a partial forward profile ψf given a departure time range
[tbegin, tend] ⊂ R: ψf (t) ∈ R

+ for tbegin ≤ t ≤ tend and ψf (t) = ⊥ otherwise. An
analog statement holds for a partial backward profile ψb given an arrival time
range [tbegin, tend] ⊂ R: ψb(t) ∈ R

+ for (id+ψb)−1(tbegin) ≤ t ≤ (id+ψb)−1(tend)
and ψb(t) = ⊥ otherwise.

A partial (forward or backward) profile for a given (departure or arrival time)
range can be computed similar to before. If (u, v) ∈ E, we set

ψf
u,v(t) :=

{
Ψu,v(t), if t in range

⊥, otherwise
ψb
u,v(t) :=

{
Ψu,v(t), if t+ Ψu,v(t) in range

⊥, otherwise

If not, we use the same (forward or backward) recursion formula as before in
(1). But we have to adjust the definitions of the link and merge operations and
distinguish the forward from the backward case. The forward and backward link
operations for a partial profile and a driving-time function of some edge are now
defined as follows:

(ψf
u,v �f Ψv,w)(t) :=

{
ψf
u,v(t) + Ψv,w(t+ ψf

u,v(t)), if ψf
u,v(t) �= ⊥

⊥, otherwise

(Ψu,v �b ψb
v,w)(t) :=

{
Ψu,v(t) + ψb

v,w(t+ Ψu,v(t)), if ψb
v,w(t+ Ψu,v(t)) �= ⊥

⊥, otherwise

The forward and backward merge operations for two partial profiles for the
same vertex pair and range are now defined as follows:

(ψf ⊕f ϕf)(t) :=

{
min{ψf (t), ϕf (t)}, if ψf (t) �= ⊥ ∧ ϕf (t) �= ⊥
⊥, otherwise

Time-Dependent Route Planning for Truck Drivers 115

(ψb ⊕b ϕb)(t) :=

⎧⎪⎨
⎪⎩
ψb(t), if ψb(t) �= ⊥ ∧ (id+ϕb)−1(t+ ψb(t)) ≤ t

ϕb(t), if ϕb(t) �= ⊥ ∧ (id+ψb)−1(t+ ϕb(t)) < t

⊥, otherwise

Given a source, a destination, and a range, we call a query for a partial profile
a profile range query.

One-to-one queries. At first, we perform a one-to-one lbEA query for s and d
and departure time lbED(s), that is, we compute the earliest arrival at d as if
there was no break to take when leaving s earliest possible. If this lower bound
lbEA(d) on the earliest arrival is no later than lbED(s) + limit , it is tight, and
we have found the requested earliest arrival at d.

The second step is to compute a lower bound lbMin(ψs,d) on the driving time
from s to d. If this bound is already greater than 2 · limit , we stop here because d
is considered to be not reachable from s as we only take one break into account.

If lbMin(ψs,d) ≤ limit , then an optimal solution may incorporate short-term
waiting at a parking location. We store this information by setting lbWaiting := 0.
Otherwise we set lbWaiting := break because it is certain that the driver will
have to take a break at one of the parking locations.

One-to-many-to-one queries. We perform both an lbEA search and a profile
bounds search from s to all potentially reachable parking locations, that is, we
compute lbMin(ψs,p), ubMax (ψs,p) and lbEA(p) for all p ∈ P with lbMin(ψs,p) ≤
limit . We insert all those parking locations p with lbEA(p) ≤ lbED(s)+ limit into
a set Blue1. So for all p ∈ Blue1, the lower bound lbEA(p) is tight and equals
the earliest arrival EA(p) at p. We add the other potentially reachable parking
locations p, i.e. with lbEA(p) > lbED(s) + limit (and also lbMin(ψs,p) ≤ limit
by construction), to a set Red1. These are the ones for which the lower bound
is known to be not tight. The set Red1 may remain empty, especially if waiting
at s was not allowed. An empty set Red1 helps to speed up computation as we
can omit the forward profile range query later. If both sets are empty, there is
no feasible solution. Blue1 and Red1 are each the first element of a sequence of
subsets of P that we will construct in the following. An illustration is shown in
figure 1.

The next step is to conduct a profile bounds search from d backwards to
all potentially reachable parking locations in Blue1 ∪ Red1, i.e., we compute
lbMin(ψp,d) and ubMax (ψp,d) for all p ∈ Blue1 ∪ Red1 with lbMin(ψp,d) ≤ limit .
Let Blue2 (resp. Red2) be the subset of parking locations in Blue1 (resp. Red1)
that are also potentially reachable backwards. Again, if Blue2 ∪ Red2 is empty,
there is no feasible solution. With the bounds on the driving time we get (better)
bounds on the earliest arrival at d. We can set the upper bound ubEA(d) to
min{EA(p) + break + ubMax (ψp,d) : p ∈ Blue2 ∧ ubMax (ψp,d) ≤ limit}, where
the minimum over the empty set is considered to be infinite. If lbWaiting = break
and improving, we can update the lower bound lbEA(d) to min{lbEA(p)+break +
lbMin(ψp,d) : p ∈ Blue2 ∪ Red2}.

116 A. Kleff et al.

s d

Blue1 Blue2 Blue3

Red1 Red2 Red3 Red4

Fig. 1. The set sequences Blue1 ⊃ Blue2 ⊃ Blue3 and Red1 ⊃ Red2 ⊃ Red3 ⊃ Red4.
The two sets Blue1 and Red1 are disjoint.

A profile range search backwards from d in the range [lbEA(d), ubEA(d)] to all
p ∈ Blue2∪Red2 yields a partial profile ψp,d for all these p. It is defined for exactly
those departure times t from p for which t+ ψp,d(t) ∈ [lbEA(d), ubEA(d)] holds.
For all p ∈ Blue2 we can now determine an upper bound ubED(p) on the earliest
departure from p as the earliest point in time t such that t ≥ EA(p) + break
and ψp,d(t) ≤ limit . In case lbWaiting = break , this bound is tight. In the other
case, we may be able to improve it by the earliest point in time t for which
t ≥ EA(p) and ψp,d(t) ≤ limit − (EA(p) − lbED(s)) holds. However, we might
not be able to find such an upper bound because neither of the conditions are
met. So let Blue3 ⊂ Blue2 be the set of parking locations for which ubED(p) can
be determined. Then, we may improve the upper bound ubEA(d) on the earliest
arrival at d by min{ubED(p) + ψp,d(ubED(p)) : p ∈ Blue3}.

On the other hand, we calculate a lower bound lbED(p) on the earliest
departure from p for all p ∈ Red2 as the earliest point in time t with t ≥ lbEA(p)+
break and ψp,d(t) ≤ limit . If lbWaiting = 0, we may have to lower this bound to
the earliest point in time t with t ≥ lbEA(p) and ψp,d(t) ≤ limit − lbMin(ψs,p).
And, again, let Red3 ⊂ Red2 be the set of parking locations for which lbED(p)
can be determined.

Let Red4 ⊂ Red3 be the set of parking locations p for which lbED(p) +
ψp,d(lbED(p)) < ubEA(d) holds. So Red4 contains those parking locations for
which a forward profile range search is inevitable. If this set is empty and
lbWaiting = break , then ubEA(d) is tight, so we are done. If not, we need to
compute an upper bound ubED(p) on the departure time from p for all p ∈ Red4

(and p ∈ Blue2 if lbWaiting = 0): It is the point in time t with t + ψp,d(t) =
ubEA(d). With the upper bound for all p, we can obtain an upper bound ubED(s)
on the departure from s: It is max{ubED(p)− lbWaiting − lbMin(ψs,p)} over all
p ∈ Red4 (and p ∈ Blue2 if lbWaiting = 0).

Time-Dependent Route Planning for Truck Drivers 117

Finally, we conduct a forward profile range search from s to all p ∈ Red4 (and
p ∈ Blue2 if lbWaiting = 0) for the departure time range [lbED(s), ubED(s)].
Now we have everything we need together: In case lbWaiting = break , we compute
optbreak similar to before, except that the earliest arrival at d via the parking
locations in Blue3 is already known and has to be determined only for Red4.
In case lbWaiting = 0, we have to compute optshort in addition, but only for
Blue2 ∪ Red4, and also optnone (provided that waiting at s is allowed). To speed
up the computation of optnone , we only perform a forward profile range search
from s to d for the range [lbED(s), ubEA(d)− lbMin(ψs,d)].

3.2 Acceleration by Contraction Hierarchies

In the previous section, we proposed techniques to reduce the number of profile
searches and restrict the remaining profile searches to smaller ranges. We accel-
erate our approach even further by speeding up the profile searches (and EA
queries) themselves using time-dependent contraction hierarchies [3]. (T)CHs were
originally proposed for point-to-point queries, whereas we also need to compute
a variant of one-to-many queries (from a source vertex to all parking lots). In
this section we recap the (time-dependent) contraction hierarchies algorithm and
describe our modifications of it.

A contraction hierarchy (CH) [20] is built by contracting the vertices of a
graph in increasing order of importance. Intuitively, vertices that lie on many
shortest paths (such as vertices on highways) are considered important. To
contract a vertex v, it is (temporarily) removed from the graph, and shortcuts are
added between its neighbors in order to preserve distances in the remaining graph.
Witness searches are performed to determine whether a shortcut is necessary or
can be discarded. For each pair of neighbors u,w with (u, v) ∈ E, (v, w) ∈ E, we
run a Dijkstra search from u to w. Only if the path via v is the unique shortest
u–w-path, we add the shortcut between u and w. In the time-dependent case,
we need to run a profile search from u to w. A shortcut can only be omitted if it
is not needed at any point in time.

CH queries are a modified variant of bidirectional Dijkstra, where both
forward and reverse search relax only upward edges, i. e., edges going from less
to more important vertices. In the time-dependent scenario, the reverse search is
particularly difficult, because the time of arrival at the target is unknown. In a
basic query variant, the reverse search only marks all edges in the reverse search
space from d, and the forward search is allowed to additionally relax all marked
arcs. More sophisticated query variants compute bounds during the reverse search
that guide the forward search into the direction of d.

The obvious approach to compute EA queries or profiles from a source to
all parking lots P runs |P | point-to-point TCH queries. However, we can do
better with the following modification. During the contraction process, we block
all vertices representing parking lots, i. e., we disallow to contract them. After
contraction, there remains a core graph at the top of the hierarchy, consisting of
all parking lots and (shortcut) arcs between them. Queries from a source s to
all parking lots now boil down to a forward search from s that relaxes no edges

118 A. Kleff et al.

to less important vertices. As long as the query has not yet reached the core, it
behaves like a normal forward CH search. On the core graph, it behaves like a
standard Dijkstra search. We can accelerate the search using the stall-on-demand
optimization [20] and stop it as soon as all parking lot vertices are settled, or
a certain time limit is reached. Since blocking arbitrary vertices can lead to
suboptimal contraction orders, we do not contract all vertices but the parking
lots, but rather stop contraction as soon as the remaining graph becomes too
dense.

3.3 Heuristic Acceleration

In our study, we schedule waiting times on the assumption that the time-dependent
driving times are deterministic. This is not the case in real-life. So it is questionable
whether a route with, for instance, scheduled short-term waiting would be
acceptable in practice. This is the motivation for the restricted waiting policy
that disallows waiting at s, short-term waiting at any parking location, and
the prolongation of a break. To conform to this policy, the driver must depart
immediately at time lbED(s) and may take a break of exactly 45 minutes if
inevitable. In this scenario, it is not necessary to query any profiles, even if d
cannot be reached directly without break. Then, the Red sets are ignored, and
instead of computing partial profiles backwards from d to Blue2, we conduct
multiple lbEA searches forward from the parking locations in Blue2, getting a
better and better upper bound on the earliest arrival at d.

4 Experiments

In this section, we first describe the data and the test setup and then analyze
run-time and solution quality of the described approaches. Our experiments are
based on two versions of the road network of Germany with time-dependent
driving time functions, see Table 1. The older network from the year 2006 has been
used by several other studies related to time-dependent routing (see Section 1)
and contains car driving times based on a traffic model. The very recent data
from 2017 is quite different: The new data is more detailed with respect to
time dependency, there are more edges with driving time functions that are not
constant, and the total number of breakpoints representing the functions is larger.
The driving times are based on historic data provided by TomTom which is
post-processed by PTV such that it models truck driving times.

We use the database of PTV Group’s Truck Parking Europe app [1]. It
contains currently more than 25 000 parking lots all over Europe. Some parking
lots cannot be linked to the old road network of 2006. Therefore, the number of
parking locations is a bit lower than in the road network of 2017. The database
does not only contain rest areas with fuel stations, restrooms, and restaurants
but also parking areas without any facilities. It is not clear if or under what
circumstances the choice of a parking area without facilities would be acceptable
in practice. We will take this into account by also testing our algorithm with a

Time-Dependent Route Planning for Truck Drivers 119

Table 1. Key figures of the input data used for the experiments. TD Edges denotes the
relative number of edges with a time-dependent and not constant driving time function.

Road network Vertices Edges TD Edges Breakpoints Parking set Parking subset

Germany 2017 7.2 M 15.7 M 28.6 % 136.9 M 6 596 759
Germany 2006 5.1 M 12.6 M 3.7 % 20.9 M 6 447 731

Fig. 2. The left image shows all available parking lots in Germany, the right image
shows the reduced set with only big parking lots.

smaller subset of parking lots that offer 30 parking bays or more each. Figure 2
shows these two sets of parking lots.

Test Setup. We run our experiments on a VMware ESX cluster. Our machine
has four cores of a 2.2 GHz Intel Xeon E5-2698 v4, 64 GB main memory, and
runs Ubuntu 16.04. Besides the construction of the contraction hierarchies the
algorithms use only one core. Our code is written in C++ and compiled with
gcc 5.4, optimization level -O3. Our CH implementation is based on the code by
Batz [3, 4] and has been extended as described in Section 3. We set the size of
the CH cores to 0.2 % of the vertices in case of the whole parking set and 0.02%
in case of the subset. This results in a CH search graph size of 38.90 GB in the
former and 37.28 GB in the latter case (and 2.03 GB in the case of the 2006 road
network).

Since our test data is the road network of Germany, we consider the EU
regulation, i.e., break=45 min and limit=4.5 h. We generate 10 000 truck driver
route queries for both versions of the road network. To this end, we randomly
select vertices s and d and (a lower bound on) the earliest departure from s
between 6 am and 9 am. Since the run-time of these queries can differ a lot, we
assign each of them to one of five categories: Category C1 comprises the queries
for which the lbEA query suffices, i. e., lbEA(d) ≤ lbED(s) + limit . Category

120 A. Kleff et al.

Table 2. Number of truck driver route queries per category.

C1 C2 C3 C4 C5 Over all

Query set 2017 4278 210 4943 165 404 10000
Query subset 2017 877 36 980 31 76 2000
Query set 2006 7109 126 2754 1 10 10000

Table 3. Mean run-time per category in seconds for different scenarios.

Scenario C1 C2 C3 C4 C5 Over all

Default scenario 0.0038 18.1756 5.9549 121.9516 0.0053 5.3392
Restricted waiting 0.0033 0.2925 0.2187 0.1163 0.0910 0.1212
Parking subset 0.0041 5.8109 1.0646 7.8424 0.0057 0.7796

Naive approach 2.8018 287.1991 227.5335 228.4150 195.4254 128.8562
Query subset 2017 0.0039 18.5811 5.8160 121.5858 0.0056 5.0708

Germany 2006 0.0013 0.9829 0.3932 23.8170 0.0021 0.1239

C2 contains the ones with lbEA(d) > lbED(s) + limit and lbMin(ψs,d) ≤ limit ,
category C3 the ones with lbMin(ψs,d) > limit and ubMax (ψs,d) ≤ 2 · limit , and
category C4 the ones with ubMax (ψs,d) > 2 · limit and lbMin(ψs,d) ≤ 2 · limit .
Finally, category C5 holds the instances with lbMin(ψs,d) > 2 · limit that cannot
be solved.

Table 2 lists how these queries are distributed among the five categories. In
case of the query set 2006, there are far more queries in C1 because with car
driving times the vehicle’s range is larger. Also in this list is the query subset
2017. We need this smaller subset of queries to measure the run-time of the long
running naive approach.

Results on Run-Time. Table 3 shows the mean run-time for different scenarios,
broken down into the five categories. The categories themselves are not part of
the input of the algorithm. For the default scenario, we use the 2017 road graph,
all described acceleration techniques, all parking locations, and allow waiting
of any duration. The other scenarios deviate from this in one aspect each. In
the default scenario, the run-time varies a lot with the category. A query from
category C4 takes more than 30 000 times longer than one from C1. Since there
are far more queries in C1 than in C4, the mean run-time over all 10 000 queries
is still less than 6 seconds. Queries from C4 take so long because in 106 cases no
upper bound on the earliest arrival at d can be determined, so a full backward
profile search is necessary. Figure 3 illustrates the run-time distribution among
the 10 000 queries.

In case of the restricted waiting policy, waiting at s is not allowed and waiting
at any parking location is only allowed if the waiting time equals exactly the
time for a break. This speeds the calculation up by a factor of 40 over all queries.
In the parking subset scenario, we allow waiting only at larger parking lots. We

Time-Dependent Route Planning for Truck Drivers 121

●●●

●

●

●

●

●●
● ●

●

●●

●
●

●
●

●●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●● ●
●

●

●
●

●

● ●

●

●

●●

●

●

●
●

●
●

●

●

●
● ●● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

●●

●

●

● ●

● ●
●

●●

●

●●
●

●

●
●

●

●

●

●
●

●

● ●

●●

●●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●●

● ●

●

●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

● ●● ●

●

●

●

●

●
●

●●

●
● ●

●

●

●

●
●

●●
●

●
●

●

● ●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●●

●● ●

●

●
●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●
●

● ●

●
●●

●

●

●
●

●●
●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●●
●

●
●

● ●
●

●●
●

●

●
●

●

●
●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

● ●
●

● ●

●

●

●

●

●

● ●

●

●●

●

●
●

●

● ●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●●
●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●
●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

● ●
● ●

●

●
● ●

●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●

●
● ●

● ●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●
●

●

● ●

● ●

●

●
●

●

●

●

●
●

●

●
● ●● ●●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●●
●

● ●
●

●

●●

●

●

●

●●●
●●

●
●

●

●
●

●

●
●

●

●
●●●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●●

●

●

●
●

●
●

●
●

●

●

●

●
●

●●

●

●

●●

●● ●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●

●● ●

●

●

●
●●

●

●

● ●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●●

● ●

●

●

●

●●

●
●

●
●

●

●

●
●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

● ●●
●

● ●●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●●
●

●●

●

●●
●

●

●

●
● ●●

●

● ●
●

●● ●
● ●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●
●●

●●

●
● ●

●

●

●

●

●

● ●●
●
●

●

●

●
●

●●
●

●

●

●

●

●●
●

●
●

●

●

●

●● ●● ●
●

●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●●● ●

●

● ●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●
●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

● ●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●
●

●● ●
●● ●

●

●●

●●

●

●
●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●●
●

● ●●
●

●

●

● ●

●

●

●

●
●

●

●

●
●

● ● ●●

●

●●

●

●

●

●

●

● ●

●

●
● ●

●

●

●
●

●

●●

●
● ●

●

●

●
●

●

●

●
●

●

●

●●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●● ●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●

● ●
●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●
●

●
● ●●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

● ●●

●
●

●

●●
●

●

●

●
●●

●

●
●

●

●

●
●●

●

● ●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●● ●●

● ●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

● ●

● ●
● ●

●●

● ●
●

●●

●

●

●

●
●

●●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●●

●

●

●
●●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

● ●

●

●●

●
●

●

●

●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●
●● ●

●

●●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●●● ●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

● ●
●

●

●

●
●

●●

●
●

●

● ●

●

●

●

●
●

●

● ●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●●●
●

●

●
●

●

●

● ●

●

●

●

●●

●

●
●

●

●
●

●
● ● ●●●

●

●

● ●

●
●

●

●

● ● ●

●

●

●
●

●

●

●
●●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

● ●
●

●

●

●

●

●

● ●

●

●
● ●

●

●

●●

●

●

●
●

●●

● ●

●

●

●

●

●●
●

●

●
● ●

●
●

●

●●

●●
●

●●

●

●

●●

●

●

●
●●

●

●
●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●
●●

●● ●
●● ●●

●

●

●
●

●

●

●

●

●
●● ●

●

●

●●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●
●

●
●

●●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
● ●

●

●●

●

●

● ●

●
●

●

●
●

●
●

●● ●
● ●

●●

● ●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
● ●

●
●●

●●
●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

● ●●

●●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

● ●●
●

●

●

●

●

●

●●
●●

● ●

●

●

●

●
●

●

●

●

●

● ●

● ●●

●●

●●●
●● ●

●

●
●●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●
●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●●
●

●
●

●
●

●

●

●
●

● ●
●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●●

●
●

●
●

●

●

●●

●

●

●
● ●

●

●●●●

●

●
●

●

●

● ●
●

●
●

●
●

●

●

●
●

●
●●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

● ●

●
●

●

●
●
●

●

●

●● ●
●

●

●●

●

●

●
●

● ●
●

●
●

●

●

●

●●

●
●

●● ●●

● ●
●

●
●

●

●

●
●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

● ●

●●

●

●

●

●

●
●

● ●

●

● ●

●

●
●

●

●
●

●

●

●

● ● ●
●

●

●●
●

●

●

●●

●●

●
● ●

●
●

●
●●

●
●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

● ●
●

●● ●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●● ●

●

●

●
●

●

●

●

●●

●●
●● ●

●
●

●●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●● ●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

● ●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●
●

●

●

●

●

●

●●
●●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●
●●

●

●●

●

●

●

●

●

●

●● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●
●●

●

●
●

●

● ●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

● ● ●

●

●

●

●●
●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●
●●

●

● ●

●

●

●
●

●●

●

●
●

●

●

● ●
● ●●●

●

● ● ●

●
●

●

●

●

●

●

●
●●●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●

● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●●● ●

●

●
●

●●

●

●
●

●
●

●
●

●

● ●

●
● ● ●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●
● ●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

●●

●

●

●

●

●

● ●
●

●

●
●

●
●

●
●

●

●

●●

●
●

●
●

●
●

●

●

● ●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●● ●

●
●

●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
● ●

●

●
●

● ●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●
● ●

●

● ●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●
●

●

● ●
●

●

●

●●●
●

●

●

● ●●
●

●
●

●
●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●
●●

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●●●

●

●

●

●●
● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●●

●
●● ●

●

●

●

●
●

●

●●

●

● ●

●

●

●●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

● ●●

●
●

●

●●

●

●
●

●

●

●●●

● ●

●
●

●

●●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●● ● ●

●

●
● ●●

●
●

●
●

●

●

●

●●

●

●

●
●

●
●

● ● ●
● ●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

● ● ●
● ●

●

●●

●

●
●●

●

●

● ●

●

●
●

● ●●●
●

●

● ●

●●

●
●

●
●

●●

●

●
●

●

●

● ●

●
●● ●

●

●

●

● ●

● ●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

● ●
●●

●

●●

●

●
●

●●●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

● ●●

●

●●
●

●

●
●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

● ●

●

●

●
●●

● ●
●

●

●

●

●

●●
●

●

●

●

●
● ●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●
●

●●

●●

●
●

●

●

●
●

● ●

0 10000 20000 30000 40000 50000

0.
00

1
0.
10

0
10

.0
00

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●● ●
●● ●●

●

●

●
●

●●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

● ●●

●
●

●

●

●

●

●

● ●
●●

●
●●

●

●
●

●

●

●

●

● ● ●

●
●

●●
●● ●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●●
● ●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●
●

●

●●

●

●
●

●
●●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

● ●

●●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●●
●

●

●
●

●

●

●

●
●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●

● ●
●●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

● ●
●

●

● ●●

●

●

●
●

●●●
●

●

● ●

●

●
●

●

●
●

●

● ●

●

●● ●
●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●● ●

●●

●

●
●

●

●
●

● ●

●

●
●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ● ●

●●

●

●
●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

● ●●
●

●●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●
●

●

●
●

● ●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●●
●

●

●
●●

●

● ●

●●

●

●

●

●

●
●

●●

●●

●

●

●

●

● ●

●

●

●●

●●

●● ●●
●

●

●

●

●

●

●

●

●

●

●●
● ●●

●

●
● ●●

●

●●
●

●

● ● ●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●
● ●●

●

●

●

●
●

●

● ●●

●

●

●
●●

●
●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●
● ●

●
●

● ●

●
● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●●
●

●
●● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●

●●
●

●

● ●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●●

●

●
●

●

●
● ●

●
●

●● ●
●

●

●

●

●●

●

●
● ●●

●

●

●
●

●

●
●

●

●

● ●

●

●

● ●

●●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

● ●
●

●

●

●

● ●

●
●

●
●

●

●

●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

● ●

●

●

●●
●

●

●

●

●

●●
● ●

●
●

●

●●
●

●

●

●

●
●

●

● ● ●●
●● ●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

● ●

●
●

●

● ●

●
●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●●

●

●●
●
●●

●

●

●

●

●

●

●●

●●

●●

●

●

●

● ●
●

●

●
●●

●

● ●●
●●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●●

●

●
●●

●
●

●

●
●●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●
●●

● ●●

● ● ●

●

●

●

●

●

●● ●● ●
●

●

●

●
●

●
●

●

●●● ●

● ●

●●

●

●●●

●

●
●

●
● ●

●
●

● ●

● ●

● ●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●
●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●● ●
●

●

●

●●

●●

●
●

●

●

●
●

● ●

●

●

●

●

●
●●

●

●

● ●
● ● ● ●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●

●

●

● ●

●

●●

●

●
●

●

● ●

●●

●

●

●

●
●

●●

●

●

●

●
●●

●

●
● ●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

● ●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●

●
●

●
●

●●
●

● ●

● ●

●

●

●●

●
●

●

●

●

●
● ●

●

●●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●
●

● ●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●● ● ●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●●

●

●

●

● ●

●

●●

●
●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

● ●●

●

●

● ●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●●
●

●●
●

●

●

●
● ●

●

● ●●
●

●
●● ●
● ●

●

●

●●

●

●

●

●

●
●●

●

●
●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

● ●
● ●

●

● ●
●

●

●

●

●●

●

●●

●
●

●

●

●

●●
●

●●

●

●

●

● ●
●●

●
●

●

●

●

●
●

●
●

●● ●●
●

●
●●

●

●

● ●● ●
●

●

●
●

●● ●
● ●

●
●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●
●

●

●
●

●
● ●●
●

●

●
●

●

●

● ●
●

●
●

●
●

● ●
●

●

●
●

●●
●

●

●

●●
●

●●
●

●●

●

●

●

●

●●

● ●●

●
●

●

●

●

●
● ●

●
●

●● ●

●
●

●

●●
● ●● ●

●
●●●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●●

●

● ●
●

●
●

●●
● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●
●
●●

● ●●

●
●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●
●

●
●●

●
●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●● ●

●
●

●

●

●●

●

●

●
●●

●
●●● ●

●● ●
●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●●

● ●
●

●

●

●
●

●

●

●
●

●●●
● ●●

●

●

●

●

●

●

● ●

●

●
●

●●

●
●

●
●

●●

●

●

●●

●

●
●●

●
●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●
●●

●

●

●

●

● ●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

● ●
●

●

●

●●
●

●

●

●

●
●

●●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●●
●●

●
●

● ●
● ●

●

●

●
●

●

●
●

●
●

●
●

●

●●

● ●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●● ●

● ●
●

● ●

●

●

●

●

● ●●

●

●

● ●●
●

●

●
●

●

●
● ●

●
●

●

● ●

●

● ●●●
●●● ●

● ●

●

●●

●

●

●

●

●
●●●

●

●

● ●

● ●

●
●

●

●●

●

●
●

●

●
●

●

●

● ●●
●●

● ●

●

●

●
● ●● ● ●

●

●
●

●
●

●

●

●

●● ●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
● ●

●●

●
● ●

●●
●

●
●●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●● ●

●
●

●

● ●● ●

●

●
●

●●

●

●

●

●

●●
●

●
●

●

●

●
●● ●●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
● ●●●

● ●●

●

●

●

●
●

● ●
●

●

●

●
● ●

●

●

● ●

● ●

● ●

●
●● ●●

● ●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●●●

●
● ● ●●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●
● ●●

●

●
●

●
●

●
●

●
●

●
●●

●

●

●
●●

●
●●

●

●
●

● ●●●
●

●

● ●
●

●

●
●

●

●

●

●
●

●●

●

● ●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●
●

● ●

●

●
●

● ●●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●●

●

●

● ●●

●
● ●

●

●

●

●
●

●

●
●

●

●
●● ●

●
●

●

●
●

●
●●●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●
●●

●

●
● ●●

●
●

●

●

●
●● ●●

●

●

●

●

●

●
●●

● ●

●

●

● ●

● ●●

●

●

●

●

●
●●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●
●

●

● ●
●

●●
●

●

●

●

●● ●
●

●

●

●

●●

● ●
●

●

●●●

●

●
●

●

●

●

●

●

●● ●●●

●

● ●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●
●

●

●●
● ●●

●

●
●

● ●●

●

●

●

●●

●●

●

●
●

●
●

●

●

●

●

●●●●

● ●● ●

●

●
●

●

●

●
●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●
●

●
●

●

●
●

●

●

●

●●
●

●●

●
●

●

●●

●●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●● ● ●
●● ●

●

●
●●

●

●

●

●
●

●
●

●

●

●
● ●● ● ●

●

● ●

●●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●●
●

●
●

●
●

●
●

●

● ●● ●
●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

● ●
●●

●

●●
●

●

●
●

●

●●

●

●●

●

●

●

● ●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●

●
●

●

●

●
●●

●
●

●

●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●●

●

●

●
●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●
●

●

●

●

●●

●

●

●

●●

● ●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●
● ●

●

●

● ●
●●

●

●

●
● ●

●

●● ●

●

●

●

●

●
●

●

●

● ●
●

●
●

●
●●

●

●
●

●

●

●
● ●

● ●

●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●
● ●

●

●●

●

● ●

● ●●
●

●
●

● ●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●● ●●

●

●●
●

●

●

●
●

●

●

●

●
●●

●●
●

● ●
●

●

●
●

●
●

●●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

● ●●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

● ●
●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

● ●●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●●

● ●
●

●
●

●

●● ●

●

●

●

●

●●●
●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●● ●

●

●

●● ●
●

●

●

●●●
●

●

●●●

●

● ●
●

●●

●

●
●

●

●

●

●
● ●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●

●
●

●

●

●●
●

● ●
●

●● ●
●

● ●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●
●

● ●
●

●

●
●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●
●

●
●

●

●
●

●●

●

●
● ●

●
●

● ●
●

●

●

●

●

●● ● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●●

●

●

●

●
●

●

●
●

●

●
● ●

●

●
●
●

●

●
●

● ●

●
●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●●

●

●● ●
●

●●
●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
● ●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●● ●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

● ●●

●
●

●
●

●

●

●●●

●

●

●

●● ● ●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●●

●
●

●●●

●

●
●●

● ●
●

●

●

● ●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●●

●

● ● ●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
● ●

●

●●

●

●●

● ●

●

●
●

●
●

●
●

●● ●

●
●

●
●

●
●

● ●
●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
● ●

●

●
●

●

●

●

● ●

●
●

●
●

●

● ● ●●
●

●

●
●

● ●●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●
●

●
●

● ●● ●

●●

● ●

●●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●
●●

●

●
●

●

●

●

●●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●

● ●

●
●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●
● ●

● ●

●

●
●

●

● ●

●

●

●
●

●●
●

●
●●

●

●● ●

●

●
●

●

● ●
●

●

●

●

●

●
●

●●

●

● ●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●
●●

●
●●

●
●

●●
●

●

●●

●

●

●
●
●

●

●
●

●

●
●●●
●
●
●●

●
●

●
●●

●●

●

●

●●

●

●
●●
●
●

●

●

●
●●

●
●●

●

●

●

●●●

●

●
●

●

●

●●●
●

●●

●

●●●

●●
●●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●

●

●●

●

●

●●●●●
●

●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●●

●●●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●●
●●●
●
●
●●●
●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●●●
●
●

●
●

●●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●
●

●

●
●

●
●●●

●
●

● ●
●
● ●

●
●

●●
●

● ●

●

●

●●●
●

●

●
●

●

●

●
● ●

●

●
●

●

●●
●

●

●
●

●

●
●●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

● ●●
●

●
●

●

●

●
●

●

●

●
● ●

●●
●●

●

●
●

●
●

●
●

●

● ●
●

●
●

●

●

●
●

●

●●

●
●●

●

●●

●●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●

● ●

●●
●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●
● ●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●
●

● ●
●

●

● ●

●

●●
●

● ●
●

●

● ●

●

●
●●

●

●
●●

●

●
●●

●

●

●●

●
●

● ●
●

●
●
●

●
●

●
●

●

● ●

●

●

●

● ●

●
●

● ●●●

●
●

●
●

●
●●

●
●●

●●
●

●

●

●
● ●

●

●

●
●

●
●
●

● ●
●

●
●

●●

●● ●
●

●●
●● ●

●

●
●●●

●
●

●

● ●

●
●

●

●
●

●

●
●

● ●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●
● ●●

●

●● ●

●

● ●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●●
●

●

●

●

●

●
●
●

●

●

●● ●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●

●

●
●

●
● ●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

● ●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●
●

● ●

●
●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●
●

●

● ●

●

●

● ●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●
●●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●● ●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

● ●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●● ● ●

●

●

●
● ●

●

●
●

● ●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ● ●

●
● ●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ● ●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●
●

●

● ●
●

●

● ●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●●●

●
●

●

●

●

●

●
● ●

●

●
●

●
●

●●

●
●

●●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●
●

● ●

●

●

●●

●

●
●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
● ●

●
● ●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

● ●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●
● ●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●●

●

●
●

●

●

● ●
●

●

●

●

●
●

●

●
● ●

●● ●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●● ●

●

●

●

●

● ●

●
●

●

●●● ●
●

●

● ●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●●●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●●

●

●

●

●

●
●

●
●

0 10000 20000 30000 40000 50000

0.
00

1
0.
00

5
0.
05

0
0.
50

0

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

● ● ●

●

●
●

●

●
●

●

●
●●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

● ●

●
●

● ●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

● ●

●

●

● ●
●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●● ●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
● ●

●

●
●

●

●

●

●

●

●

●

● ●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
● ●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

● ●

●

●●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●
●

●●

●

●
●

●
●

●●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

● ●
●

●

●●

●

●
●

●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

● ●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●
●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●●

●

●

●

●

●

●
●●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●● ●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
● ● ●

●

●
●

●

●

●

●

●
●

●

●

●

●●
● ●
●

●

●

● ●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●

●
●●●

●

●

●
●

● ●

●

●

●

●

● ●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ●
●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●

●

●●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●●

●

●
●

●

●
●●

●●

●
●

●●
●

●

●
●

●
●●
●●

●

●

●

●
●●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●
●

●● ●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

● ●

●
●

●
●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●
●
● ●

●
●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●●●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

● ●

●

●
●

●

● ●

●

●●

● ●
●

● ●

● ●
●

●

●

●

●

● ●
●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

Fig. 3. Run-time of each s-d-query in the default scenario (left) and according to
restricted waiting policy (right), lbMin(ψs,d) on abscissa and run-time in seconds on
ordinate (on a logarithmic scale). Points are colored by category. Scales differ.

run the algorithm on the Germany 2017 network but the search graphs differ.
Compared to the default setting, the smaller size of the core graph leads to
faster one-to-many profile range queries (approx. by a factor of 7.5) but slower
one-to-one profile range queries (approx. by a factor of 1.2). In both of these
scenarios, not all queries can be solved. Solution quality is discussed later.

The naive approach does not make use of the acceleration based on partial
profiles as described in Section 3.1 but still CH as in Section 3.2. Because of the
long run-time of the naive approach, the run-times are based on the reduced query
subset 2017 (see Table 2). For better comparability, we also give the run-times of
the default scenario for the reduced query subset. An achieved speed-up of 25
over all queries proves the effectiveness of our described acceleration in general.
The main aspect of it is the computation of only partial profiles that concerns
category C3 primarily. Here, we even achieve a speed-up of almost 40.

In case of the Germany 2006, we run the accelerated approach on the 2006
road graph that was used in the original TCH publication [3]. The run-time is
smaller by an order of magnitude compared to our recent data.

Some more numbers are of interest. A crucial issue of our bounds-based
acceleration is to find a (good) upper bound ubEA(d). In the default scenario,
there are 113 cases in which such a bound cannot be determined and so a complete
profile needs to be searched for backwards. A complete profile search backwards
takes 138.7 s on average. In contrast, a profile range search is performed in
5168 cases and takes 5.8 s on average. The mean length of these ranges, i. e.
ubEA(d)− lbEA(d), is 604 s. A second important aspect of the acceleration is to
avoid the profile (range) search forward if the set Red4 is empty. This set contains
elements only in 50 cases and then only a few, most often just one. Figure 4
shows a sample query with empty set Red4.

122 A. Kleff et al.

Fig. 4. Sample query from Hamburg to Dresden in the default scenario (left) and in
the parking subset scenario (right). Different parking lots (P) are selected. The largest
squares represent the sets Blue3 and Red3.

Results on Quality. Table 4 compares the solution quality of the default scenario
to the restricted waiting and the parking subset scenario. The results of the naive
approach are identical to the default, and the results of Germany 2006 are hardly
comparable, particularly since the driving times in this setting are based on a
car model.

In the default setting, 9558 of 10 000 queries can be solved. We observe that
the travel time, i. e., the driving time plus all waiting time (at s and at parking),
exceeds 15 hours in some cases, presumably to exploit the short driving times
during the night. Such a solution is feasible according to our problem statement
but most likely it would neither be acceptable in practice nor legal as truck
drivers have to take a sleep rest daily. In the following, we call a solved query
legal if the travel time does not exceed 15 hours. In case of the restricted waiting
policy, a solved query is always legal.

We also state how many queries are solved (legally and) optimally, i. e., how
often is the calculated earliest arrival at d identical to the default scenario. In
the parking subset scenario, this happens in 58% of the cases, even though there
are less than 12% of the parking lots in the subset. Parking lots with more than
30 parking bays are most often located right next to a freeway (Autobahn in

Table 4. Comparison of solution quality for different scenarios. Mean and maximum
deviation is in seconds over all queries that are legal but not optimal.

Scenario solved legal optimal & legal mean dev max dev

Default scenario 9558 9512 9512 0 0
Restricted waiting 9474 9474 9453 1211 2265
Parking subset 9518 9470 5518 127 17559

Time-Dependent Route Planning for Truck Drivers 123

Germany), whereas many of the small parking lots are further away from it.
In the restricted waiting scenario, only 21 of the solved queries are not solved
optimally. So in the vast majority of the cases, the computational effort spent
on taking waiting of any duration into account does not pay off. For instance,
short-term waiting is scheduled only 11 times in the default scenario.

5 Enhancement to Multiple Stops

Our algorithm is tailored to the one-stop case. What are the implications if we
allow more than one stop? For instance, if there were two drivers on board, they
could take turns and stop three times for a change before they must take a rest
and sleep. From a conceptual perspective, the multi-stop case is not too difficult.
Let Ps be the parking locations that are reachable from s at some point in time
without taking a break along the path, and let Pd be the parking locations that
are potentially reachable backwards from d, i. e., lbMin(ψpd,d) ≤ limit for all
pd ∈ Pd. Moreover, suppose we had precomputed a |P | × |P | matrix M of travel
time profiles such that for two parking locations ps and pd, M [ps, pd] maps the
departure time from ps (where the driver is expected to have taken a break) to
the shortest travel time to pd, including as many breaks as needed and also one
at pd (unless ps = pd). With this, a truck driver route query boils down to three
steps: First, we compute the earliest arrival at every ps ∈ Ps. Then, we determine
the earliest departure from every pd ∈ Pd with the help of M as follows:

ED(pd) = min
ps∈Ps

EA(ps) + break +M [ps, pd](EA(ps) + break)

Having done that, we can finally calculate the earliest arrival at d, also checking
if d could be reached without any break.

We could easily adapt the restricted waiting policy heuristic to this general
case. It is short-term waiting that makes the computation of the earliest arrival at
every ps ∈ Ps challenging. In order to do so, we could propagate a time-dependent
function forward (here: mapping an arrival time to the minimum accumulated
driving time). But as we have seen, propagating a time-dependent function is
expensive. So from a practical point of view, it would be important to again find
ways of narrowing down the search, like finding good bounds and only propagating
partial functions as we have demonstrated before. In addition to this challenge,
our assumption that we have a matrix M in memory is not realistic. Due to
the superpolynomial complexity of the travel time profiles, we would most likely
need hundreds of GB of main memory for the parking lots in Germany. So the
question is raised what a good trade-off would be between memory consumption
and computational effort (and solution quality).

6 Conclusion and Outlook

We have introduced the truck driver routing problem and described an exact
algorithm for it. While a naive approach would be far too costly in time and

124 A. Kleff et al.

space, it can be made feasible using our two proposed acceleration methods.
One is a modification of TCH. Additionally narrowing down TCH searches by
several fast bounds computations and queries of only partial profiles results in an
extra speed-up of 25 and practical run-times. We have also suggested a heuristic
based on the policy of restricted waiting and analyzed its effect. In this setting,
truck driver route queries take well below one second without losing too much
solution quality. Similarly effective is the restriction of the parking set to the
more relevant parking locations.

In this paper, we have left out our experiments with approximated driving time
functions. Using the algorithm of Imai and Iri [23] to approximate the functions of
both original and shortcut edges further reduces the run-time, especially of profile
(range) queries. In doing so, we only sacrifice a precision that is not justified in
practice. Future work includes a solution to the combined truck driver routing
and scheduling problem for a given sequence of customers by using the results of
this paper as a building block. Moreover, it would be interesting to reevaluate
the existing work on algorithms for time-dependent route planning on the new
benchmark instance. We conjecture that other shortcut-based methods such as
TD-CRP [6] also suffer significantly from the new instance. It could be promising
to further investigate shortcut-free approaches like the ALT algorithm [10].

Our algorithm will also be evaluated in the EU research projects AEOLIX
and Clusters 2.0.

References

1. Truck Parking Europe, https://truckparkingeurope.com/
2. Bast, H., Delling, D., Goldberg, A.V., Müller–Hannemann, M., Pajor, T., Sanders,

P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks. LNCS,
vol. 9220, pp. 19–80. Springer (2016)

3. Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum Time-Dependent
Travel Times with Contraction Hierarchies. ACM J. Exp. Algorithmics 18, 1.4:1–
1.4:43 (2013)

4. Batz, G.V.: KaTCH, https://github.com/GVeitBatz/KaTCH/
5. Baum, M., Dibbelt, J., Gemsa, A., Wagner, D., Zündorf, T.: Shortest Feasible

Paths with Charging Stops for Battery Electric Vehicles. ACM SIGSPATIAL’15,
pp. 44:1–44:10. ACM (2015)

6. Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Dynamic Time-Dependent Route
Planning in Road Networks with User Preferences. SEA’16, LNCS, vol. 9685, pp.
33–49. Springer (2016)

7. Cooke, K.L., Halsey, E.: The Shortest Route Through a Network with Time-
Dependent Internodal Transit Times. J. Math. Anal. Appl. 14(3), 493–498 (1966)

8. Dean, B.C.: Algorithms for Minimum-Cost Paths in Time-Dependent Networks
with Waiting Policies. Networks 44(1), 41–46 (2004)

9. Delling, D.: Time-Dependent SHARC-Routing. Algorithmica 60(1), 60–94 (2011)
10. Delling, D., Nannicini, G.: Core Routing on Dynamic Time-Dependent Road

Networks. Informs J. Comput. 24(2), 187–201 (2012)
11. Delling, D., Wagner, D.: Time-Dependent Route Planning, LNCS, vol. 5868, pp.

207–230. Springer (2009)

Time-Dependent Route Planning for Truck Drivers 125

12. Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numer. Math.
1(1), 269–271 (1959)

13. Drexl, M., Prescott-Gagnon, E.: Labelling Algorithms for the Elementary Shortest
Path Problem with Resource Constraints Considering EU Drivers’ Rules. Logistics
Research 2(2), 79–96 (2010)

14. Dreyfus, S.E.: An Appraisal of Some Shortest-Path Algorithms. Oper. Res. 17(3),
395–412 (1969)

15. European Parliament, Council of the European Union: Regulation (EC) No.
561/2006 of the European Parliament and of the Council of 15 March 2006 on the
harmonisation of certain social legislation relating to road transport and amending
Council Regulations (EEC) No. 3821/85 and (EC) No. 2135/98 and repealing
Council Regulation (EEC) No. 3820/85. OJ L 102(1), 1–13 (2006)

16. Federal Motor Carrier Safety Administration: Hours of Service of Drivers. Fed. Reg.
76(248), 81133–81188 (2011)

17. Foschini, L., Hershberger, J., Suri, S.: On the Complexity of Time-Dependent
Shortest Paths. Algorithmica 68(4), 1075–1097 (2014)

18. Franceschetti, A., Honhon, D., Van Woensel, T., Bektaş, T., Laporte, G.: The
Time-Dependent Pollution-Routing Problem. Transportation Res. B - Meth. 56,
265–293 (2013)

19. Geisberger, R., Sanders, P.: Engineering Time-Dependent Many-to-Many Shortest
Paths Computation. ATMOS’10, OASIcs, vol. 14, pp. 74–87 (2010)

20. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact Routing in Large Road
Networks Using Contraction Hierarchies. Transport. Sci. 46(3), 388–404 (2012)

21. Goel, A.: Truck Driver Scheduling in the European Union. Transport. Sci. 44(4),
429–441 (2010)

22. Goel, A.: Hours of Service Regulations in the United States and the 2013 Rule
Change. Transp. Policy 33, 48–55 (2014)

23. Imai, H., Iri, M.: An Optimal Algorithm for Approximating a Piecewise Linear
Function. Journal of Information Processing 9(3), 159–162 (1987)

24. Koç, C., Bektaş, T., Jabali, O., Laporte, G.: A Comparison of Three Idling Options
in Long-Haul Truck Scheduling. Transportation Res. B - Meth. 93, Part A, 631 –
647 (2016)

25. Koç, Ç., Jabali, O., Laporte, G.: Long-Haul Vehicle Routing and Scheduling with
Idling Options. J. Oper. Res. Soc. (forthcoming)

26. Kok, A., Hans, E., Schutten, J.: Optimizing Departure Times in Vehicle Routes.
Eur. J. Oper. Res. 210(3), 579 – 587 (2011)

27. Shah, V.D.: Time Dependent Truck Routing and Driver Scheduling Problem with
Hours of Service Regulations. Master’s thesis, Northeastern University (2008)

28. Sherali, H.D., Ozbay, K., Subramanian, S.: The Time-Dependent Shortest Pair
of Disjoint Paths Problem: Complexity, Models, and Algorithms. Networks 31(4),
259–272 (1998)

29. Smith, O.J., Boland, N., Waterer, H.: Solving Shortest Path Problems with a Weight
Constraint and Replenishment Arcs. Comput. Oper. Res. 39(5), 964–984 (2012)

30. Strasser, B.: Intriguingly Simple and Efficient Time-Dependent Routing in Road
Networks. CoRR abs/1606.06636 (2016)

126 A. Kleff et al.

	8Time-Dependent Route Planning for Truck Drivers
	Abstract
	Keywords
	1 Introduction
	2 Problem Statement and Preliminaries
	3 Solution Approach
	3.1 Acceleration by Narrowing Down Searches
	3.2 Acceleration by Contraction Hierarchies
	3.3 Heuristic Acceleration

	4 Experiments
	5 Enhancement to Multiple Stops
	6 Conclusion and Outlook
	References

