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Abstract. When supply chain networks become more complex through
the application of modern trends such as outsourcing and global market-
ing, supply chains become more uncertain. Supply chain planning under
uncertainty is a challenge for decision makers. Without considering un-
certainties in supply chain planning, global supply chains may suffer
enormous economic costs. When probability distributions for uncertain
parameters can be estimated, stochastic programming can be used for
capturing the characteristics of uncertainties and generating flexible pro-
duction and transportation plans for global supply chains. This paper
presents an outline on how to use stochastic programming for decision
support under uncertainty. This includes a high level exposition of how to
quantify uncertainties, develop stochastic programming models, generate
representative scenarios, apply algorithms for model solving, undertake
experimental design and present computational results. Through exem-
plifying supply chain planning and decision making under uncertainty
by using stochastic programming, this paper aims to provide a valuable
reference for future research in this area.

Keywords: stochastic programming, supply chain planning, decision
making, uncertainty

1 Introduction

With larger and more complex networks, global supply chains (SCs) become
more uncertain and unpredictable. Without effective risk mitigation strategies,
SCs are vulnerable in uncertain environments. In this paper, uncertainty means
that some of the problem data can be represented as random variables. When
supply chain (SC) uncertainties can be quantified by random variables, stochas-
tic programming can be used for providing flexible SC plans which helps to
mitigate negative impacts from uncertainties in environments with stochastic
disruption risks. For a SC where decisions are made or plans are revised pe-
riodically with updated information, stochastic programming can be used for
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SC decision support in a rolling horizon approach. The aim of stochastic pro-
gramming is to find an optimal decision in problems involving uncertain data.
The treatment of uncertainties depends on the moment when the information
becomes available (Birge and Louveaux, 1997).

Although research in the area of SC management is increasing, there is a
clear research gap in quantitative analyses for global SC uncertainties, espe-
cially for SC disruption risks. In order to boost research in this domain, based
on the authors’ recent research (Fan et al., 2016, 2017a,b), this paper reviews
how to use stochastic programming for supply chain planning under uncertain
environments. This introduction addresses the issues:

– how to build stochastic programming models for global SCs under uncer-
tainties,

– how to solve a related model,

– how to design computational experiments, and

– how to analyze and present computational results.

SC uncertainties may include, e.g., customer demand fluctuations, disruption
risks at SC partner companies as well as transportation delays. In order to
include uncertainties in the process of SC plan generation, these uncertainties
should be quantified in advance. Based on historical records analytics, customer
demand can be expressed with probability distribution functions. For disruption
risks and transportation delays, the lasting time of negative impacts and the
point in time of occurrence can be characterized according to historical records
as well as real time information. With quantified SC risks, a mathematical model
can be developed for a global SC.

The rest of this paper is organized as follows: Stochastic programming and
other methods for decision support in uncertain environments are reviewed and
compared in Section 2. A two-stage stochastic programming model can be de-
veloped by incorporating uncertainties in the second stage. The basic model
and the principles for setting up stages are introduced in Section 3. PySP, an
open-source framework for modeling and solving stochastic programs with a
Progressive Hedging Algorithm (PHA), can be used for solving the model. Both
the algorithm as well as user-defined parameters of the algorithm are explained
in Section 4. When the number of possible realizations for uncertainties (sce-
narios) of a model is large, only a limited number of realizations and therefore
only a subset of all possible scenarios is taken into consideration in the com-
putational analyses. These scenarios are called representative scenarios. In this
case, a representative scenario generation method is needed. Different scenario
generation methods and their applicable scales are presented in Section 5. In
computational experiments, benchmark solutions can be calculated for compar-
ison. Different benchmarks are provided in Section 6. After solving a stochastic
programming model, a solution can be evaluated through simulating the solution
with a large number of scenarios generated with Monte Carlo sampling for sim-
ulating possible realizations. A flowchart is presented to illustrate how to design
computational experiments. This paper ends with the conclusions in Section 7.

438 Y. Fan et al.



2 Literature Review

Usually most natural and man-made catastrophes cannot be precisely and accu-
rately predicted, especially with a comparatively long prediction lead time. How-
ever, by utilizing big data analytics and other advanced prediction techniques,
the probability distribution of occurrence and/or the severity can be predicted
for an increasing number of catastrophes, e.g., extreme weathers (Fan et al.,
2015). A range of approaches is available for making use of imperfect prediction
information for decision support, (e.g., stochastic programming, robust optimiza-
tion, metaheuristics and simulation-optimization approaches. These approaches
are briefly sketched in this section.

When uncertainties can be quantified by random variables, stochastic pro-
gramming can be used for capturing the essence of uncertainties. PHA proposed
by Rockafellar and Wets (1991) is a scenario-based decomposition technique for
solving stochastic programming problems. In a stochastic programming model,
random variables can take on numerous values. It may not be possible and rea-
sonable to take all those values into consideration for solving the model. In many
cases, characteristics of uncertainties can be captured by specifying a reasonable
number of representative scenarios (Løkketangen and Woodruff, 1996). Out-of-
sample simulation is used for evaluating the quality of solutions generated from
representative scenarios.

When the prediction information is only known in the form of interval values
without the probability distribution of random data, a robust optimization can
be implemented. A robustness approach aims at finding solutions that hedge
against the worst contingency that may arise (Goren and Sabuncuoglu, 2008;
Yu, 1997). The minmax criterion can be used for quantifying robustness of a
decision.

Approximate solutions of optimization problems can be efficiently produced
by using metaheuristics. Metaheuristics benefit from different random-search
and parallel paradigms, but they frequently assume that the problem inputs,
the objective function, and the set of constraints are deterministic (Caserta and
Voß, 2010; Juan et al., 2015).

The computing time for solving large-scale models for real-world problems,
such as transportation, production, finance and telecommunication problems,
is comparatively long. In order to obtain high-quality solutions for large-scale
stochastic problems with a short computing time, simulation-optimization ap-
proaches have attracted an increasing number of researchers’ attentions (Gosavi,
2015; Juan et al., 2015). Although an optimal solution might not be produced in
this way, obtaining an approximate solution for an accurate model of a real sys-
tem is more meaningful than obtaining the optimal solution for an oversimplified
model.

In Fan et al. 2016, 2017a,b), stochastic programming is used for global
SCs in environments with stochastic disruption risks. Medium-scale stochastic
programming models are investigated in the first two papers and a large-scale
stochastic programming model is developed in the latter. The large-scale model
is solved by running PySP on a High-Performance Computing (HPC) cluster.
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Stochastic programming is also used by Haugen et al. (2001), Veliz et al. (2015)
and Gade et al. (2016) for lot-sizing and forest planning problems.

In the sequel we explain how to use stochastic programming for SC planning
in environments with stochastic disruption risks. A PHA according to Rockafellar
and Wets (1991) is employed for solving stochastic programming models. Monte
Carlo simulation is applied for generating out-of-sample scenarios for evaluating
the quality of solutions.

3 A Basic Two-Stage Stochastic Programming Model

Two-stage stochastic programming models are widely applied for decision sup-
port in uncertain environments. The decision maker takes some action in the
first stage in the presence of uncertainties about future realizations. Recourse
decisions can then be made in the second stage after uncertainties are disclosed.

For a SC, plans for the coming time period (the first-stage decision) are
made without perfect information for future realizations. The first-stage deci-
sion should be ideal for all those possible realizations. When uncertainties are
revealed, additional decisions (recourse decisions) can be taken. A recourse de-
cision may concern SC plans for the subsequent time period with the knowledge
of uncertainties for the coming time period or emergency plans when disruptive
events arise. A recourse decision depends on the realization of the uncertainty.
For a two-stage stochastic programming model for a SC, the overall objective is
to minimize the cost of the first-stage decision plus the expected costs over the
uncertain scenarios.

Let us focus on two-stage stochastic programming models for global SCs. In
order to explain the basic model, the following notation is used:

S : The set of possible scenarios
s : An individual scenario, s ∈ S
x : The first-stage decision variable
ys : The second-stage decision variable in scenario s ∈ S
c : The first-stage cost coefficient
fs : The second-stage cost coefficient in scenario s ∈ S
Rs : The probability of occurrence of scenario s ∈ S, ∑s∈S Rs = 1
Qs : The set of constraints in scenario s ∈ S
T bang
s : The point in time of occurrence of a disruptive event in scenario

s ∈ S
T dur
s : The duration of negative impacts once a disruption arises in

scenario s ∈ S
Note that x, ys, c and fs are vectors. The basic model can be mathematically

described as follows (Birge and Louveaux, 1997; Kall and Wallace, 1994):

min
x,ys

c · x+
∑

s∈S
(Rs · fs · ys) (1)

subject to: (x, ys) ∈ Qs ∀s ∈ S
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Each scenario represents a possible realization in the future. The first-stage
decision variable, x, is unified for all scenarios. The second-stage variable, ys,
is scenario-specific with the associated cost coefficient fs. Problem (1) is the
well-known extensive form of a two-stage stochastic program.

In order to develop a quantitative analysis of catastrophic disruptions as a
stochastic programming problem, each scenario s can be characterized by three
parameters: the probability of occurrence (Rs), the point in time of occurrence
(T bang

s ) and the duration of negative impacts (T dur
s ). Parameters for each sce-

nario s ∈ S of our investigation are included both in the cost coefficient vector
and in the constraints (see (2) and (3)). In this paper, a scenario with a disrup-
tion is called a disruptive scenario. A scenario without a disruption is called a
non-disruptive scenario.

fs ←
(
T bang
s , T dur

s

)
(2)

Qs ←
(
T bang
s , T dur

s

)
(3)

The overall probability of all disruptive scenarios for a time-span is assumed
to be predictable according to the historical records. The point in time of occur-
rence (T bang

s ) can be assumed to be uniformly distributed within a time-span.
The duration of negative impacts (T dur

s ) depends on the severity of a disruption
and the flexibility of a SC and is assumed to be exponentially distributed.

When specifying the stages, according to the statements above, the first-
stage decision is identical for all future realizations and the second-stage de-
cisions depend on the particular realizations. For a two-stage stochastic pro-
gramming model, the principle of setting up stages is that the first stage is
scenario-independent and the second stage is scenario-dependent. Based on this
principle, two approaches of setting up stages for our stochastic programming
models are introduced:

1. According to the time line
This approach fits for predictable disasters. According to the description
in Fan et al. (2017b), probability predictions for predictable disasters are
available a certain period of time in advance. Updated predictions become
available before the occurrence of a disaster. With periodically updated pre-
dictions for disruptions, stages for stochastic programming models can be set
up according to the time line. In this case, decisions are periodically updated
according to a rolling horizon scheme.

2. According to uncertainty related and unrelated costs
This approach fits for disasters which we call half-predictable disasters.
In Fan et al. (2017b), half-predictable disasters are those for which a prob-
ability of occurrence can be estimated a proper period of time in advance.
The point in time of occurrence of a half-predictable disaster cannot be pre-
dicted in advance. In this situation, stages should be set up in a way that
uncertainty related costs are assigned to the second stage and costs that are
not related to uncertainty are assigned to the first stage.
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Algorithm 1: Progressive Hedging Algorithm (PHA)

1 k ← 0
2 for s ∈ S do

3 x
(k)
s ← argminx,ys

(c · x+ fs · ys) : (x, ys) ∈ Qs

4 x̄(k) ← ∑
s∈S Rs · x(k)

s

5 for s ∈ S do

6 w
(k)
s ← ρ

(
x
(k)
s − x̄(k)

)

7 k ← k + 1
8 for s ∈ S do

9 x
(k)
s ← argminx,ys

(
c · x+ w

(k−1)
s x+ ρ/2

∥∥∥x− x̄(k−1)
∥∥∥
2

+ fs · ys
)

: (x, ys) ∈
Qs

10 x̄(k) ← ∑
s∈S Rs · x(k)

s

11 for s ∈ S do

12 w
(k)
s ← w

(k−1)
s + ρ

(
x
(k)
s − x̄(k)

)

13 g(k) ← ∑
x∈S Rs ·

∥∥∥x(k)
s − x̄(k)

∥∥∥
14 if g(k) ≤ ε then
15 terminate.

16 else
17 if k = K then
18 terminate and implement a local search to find an identical feasible

solution for x.

19 else
20 go to 7

4 Progressive Hedging Algorithm and PySP

In this section, the PHA proposed by Rockafellar and Wets (1991) as well as
PySP are introduced. PHA is implemented for solving stochastic problems in
different areas, i.e., Haugen et al. (2001), Watson and Woodruff (2011), Veliz
et al. (2015) and Gade et al. (2016). In these papers, PHA is proven to be an
effective method for solving stochastic programming models.

For the optimization problem in Section 3, the basic PHA can be stated in
Algorithm 1, taking a penalty factor ρ > 0, a termination threshold ε, and a
maximum number of iterations K as input parameters.

PHA is embedded in PySP, an open-source framework for modeling and solv-
ing stochastic programs in Python. In this framework, the runph script provides
a command-line interface to solve stochastic programming models with PHA.

When PySP is implemented for solving stochastic programming models, the
maximum number of iterationsK and the value of ρ are user-defined parameters.
Effective methods for determining element-specific ρ (i) values based on problem-
specific data are developed in Watson and Woodruff (2011). For independent
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integer variables, we have:

ρ (i) ← c (i)

xmax + xmin + 1
(4)

For independent continuous variables, ρ(i) is calculated by:

ρ (i) ← c (i)

max
((∑

s∈S Rs · |x(0)
s − x̄(0)|

)
, 1
) (5)

Element-specific ρ (i) values are implemented for stochastic programming
models in Fan et al. (2016, 2017a,b).

The intention of solving a stochastic programming model with PySP is to
find a good quality feasible solution, rather than obtaining a provably optimal
solution. In particular, it may not be possible to find an optimal solution and
prove optimality for a stochastic programming model for a global SC. For SC
planning problems, feasible and good quality solutions generated within a rea-
sonable time frame are meaningful and valuable in practice.

5 Scenario Generation

For two-stage stochastic programming models with a small number of possible
realizations, the list of all possible realizations can be incorporated in the solu-
tion process for stochastic programming problems. For problem instances with a
large number of possible realizations for the second stage, it is more efficient to
include a certain number of representative possible realizations (in-sample sce-
narios) than to incorporate all possible realizations in the solution process. When
different representative scenarios are used, the solutions are probably different.
In this section, methods for generating representative scenarios for capturing
characteristics of uncertainties are investigated.

For a stochastic programming model with multiple uncertain parameters,
representative scenarios are composed by uncertain parameters’ representative
values. The probability for each scenario is deduced from probabilities of rep-
resentative values. Three methods for generating representative values for un-
certain parameters are presented in this section. In order to exemplify these
methods, the duration T dur in Fan et al. (2016) is taken as an example. T dur is
the duration of negative impacts for a global SC in case of a disruption which is
assumed to be exponentially distributed and uncorrelated with other uncertain
parameters (see Fig. 1). Uncertainties are assumed to be uncorrelated for low
frequency and high impact SC disruptions because the probability for the occur-
rence of more than one disruption at the same time period is extremely low. It is
possible to explore SCs with complicated multiple intercorrelated uncertainties
with Monte Carlo sampling which will be introduced in this section.

Different methods are implemented for generating representative values for
the uncertain parameter T dur. For scenario s, the value of T dur is indicated by
T dur
s . In Fig. 2–5, the values of T dur

s (s ∈ S) generated with different methods
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Fig. 1. Probability distribution

are presented. T bang
s (s ∈ S) in the basic model in Section 3 can be calculated

with the same methods.

1. Selecting equal probability values
By splitting the probability distribution of an uncertain parameter into a
number of equal probability segments, the medians of these segments can
be selected as representative values. The median is the value that splits the
probability distribution into two portions whose areas are identical. Repre-
sentative values selected in this way have the same probability.
Fig. 2 shows 5 and 10 representative values, which are generated with

this method for T dur. The probabilities for representative values, in case of
T dur
Num = 5 and T dur

Num = 10, are 20% and 10%, respectively. However, this
method need not work for generating discrete representative values.

2. Selecting representative values and calculating probabilities
For a discrete parameter, representative values can be selected at first. In or-
der to calculate the probability of these representative values, the probability
distribution is split into segments in a way that each representative value is
the median or close to the median of a segment. The overall probability of
a segment is the probability of the representative value in this segment.
Fig. 3 gives examples of representative values and probabilities generated

with this method when T dur
Num is 5 and 10. In order to assure that each

representative value is the median of a segment, in Fig. 3 representative
values and segments are alternately selected from the left side to the right
side one by one. The right frontier of the previous segment is the left frontier
of the next segment. This method is implemented in Fan et al. (2016).

3. Monte Carlo sampling
An easy way for generating representative values for uncertain parameters
is to use Monte Carlo sampling. With an uncertain parameter’s probability
distribution function as the input, representative values can be generated by
using statistical functions of SciPy, which is a collection of mathematical al-
gorithms and functions built in Python. Representative values generated with
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Fig. 2. Representative values with equal probability

Fig. 3. Discrete representative values and their probabilities

Monte Carlo sampling have equal probability. With probability distribution
functions, Monte Carlo sampling can also be used for generating representa-
tive values for multi-dimensional correlated random variables which makes
it possible to explore SC planning problems with intercorrelated and real
world uncertainties (Joy et al., 1996; Touran and Wiser, 1992).
Representative values and their frequencies generated with Monte Carlo

sampling for uncertain parameters are shown in Fig. 4 and Fig. 5. Monte
Carlo sampling also fits for uncertain parameters with a large number of
dimensions, e.g., the customer demand for each production at each seller in
each time period (Fan et al., 2017b).

In order to test the quality of a solution for a stochastic programming model,
a number of out-of-sample scenarios is required for simulating possible realiza-
tions. When Monte Carlo sampling is adopted, it is more accurate to simulate
the reality with a larger number of out-of-sample scenarios (see Fig. 6). For in-
stance, 500 or 1000 scenarios may be generated with Monte Carlo sampling for
simulating possible realizations.

6 Benchmarks

As mentioned in Section 4, the intention of solving stochastic programming mod-
els for global SCs is to obtain high quality feasible solutions. Instead of proving
optimality, we demonstrate the quality of solutions from stochastic programming
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Fig. 4. Monte Carlo methods for generating discrete representative values

Fig. 5. Monte Carlo methods for generating representative values

through comparing with different benchmark solutions. In our previous research,
solutions for stochastic programming models generated with PySP based on rep-
resentative scenarios are always superior to benchmark solutions. In this section,
we describe decision makers with four different attitudes to deal with risk, which
are pessimistic, moderate, optimistic and rational attitudes. In the following, the
assumptions for these attitudes are introduced (Fan et al., 2017b):

1. Pessimistic (pess)
Decision makers with pessimistic attitudes prepare for the worst possible
catastrophe, which is characterized by the longest duration and the earli-

Fig. 6. Monte Carlo methods for generating a large set of out-of-sample values
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est time of occurrence. fpess and Qpess indicate the parameter set and the
constraints set for the worst possible catastrophe.

2. Moderate (mod)
Decision makers with moderate attitudes believe that a moderate catastro-
phe will happen. The moderate catastrophe has the mean duration and the
mean occurrence time. fmod and Qmod indicate the parameter set and the
constraints set for the moderate catastrophe.

3. Optimistic (opt)
Decision makers with optimistic attitudes believe that catastrophes will
never happen. They anticipate catastrophes in no way. For this type of deci-
sion makers, disruptions appear to be totally unpredictable in the first stage.
fopt and Qopt indicate the parameter set and the constraints set for a case
without the occurrence of any catastrophe.

4. Rational (sp)
Decision makers with rational attitudes are aware of the fact that catastro-
phes may be of different severities. Probability distributions of their time
of occurrence and duration are incorporated in a stochastic programming
model for decision support.

In addition, the expected value of wait-and-see (ws) solutions for each prob-
lem instance represents a lower bound. The ws solution represents an ideal situ-
ation that all uncertainty will be resolved before decisions have to be made. For
the sake of a compact presentation, we treat ws as an additional element for the
set of attitudes. We use a set U = {pess, mod, opt, sp, ws} to indicate solutions
introduced above.

A large set of out-of-sample scenarios is generated with Monte Carlo sam-
pling for simulating possible realizations (see Section 5). Solutions by solving a
stochastic programming model (SP solutions) and solutions for decision makers
with different attitudes are tested with these scenarios. Ω indicates the set of
out-of-sample scenarios. gω indicates the parameter set for each scenario ω ∈ Ω.
The size of Ω is N . The expected value of ws solutions is calculated by (6).
The expected values of solutions for decision makers with different attitudes are
deduced from (8).

1. Expected value of wait-and-see solutions
A ws solution is generated until an observation of the uncertainty is made (Madan-
sky, 1960). The expected value of ws solutions for representative scenarios
can be obtained by:

EVws =
1

N

∑

ω∈Ω

[
min
x,yω

(c · x+ gω · yω)
]

(6)

As mentioned in Section 5, scenarios generated with Monte Carlo sampling
have the same probability. Thus, the probability for each scenario is 1

N .
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2. Expected value of solutions for decision makers with different at-
titudes
The pess, mod and opt solutions are obtained by solving the model in (1) with
a single scenario. fpess, fmod and fopt are the secon stage parameters. Then
the stochastic programming model in (1) is transformed into a deterministic
model in (7). x∗

u indicates the first-stage optimal solution for a decision maker
with an attitude u ∈ {pess,mod, opt}.

x∗
u ← min

x,y
(c · x+ fu · y)

s.t. (x, y) ∈ Qu, ∀u ∈ {pess,mod, opt}
(7)

Note that the SP solution, which is indicated by x∗
sp, is not included in (7).

x∗
sp is deduced by solving the stochastic programming model in (1). The

expected value of a solution for a decision maker with an attitude u ∈
{pess,mod, opt, sp} is calculated by:

EVu = c · x∗
u +

1

N
min
yω

∑

ω∈Ω

(gω · yω)

s.t. (x∗
u, yω) ∈ Qω, ∀u ∈ {pess,mod, opt, sp} , ω ∈ Ω.

(8)

GAPu indicates the gap between the expected value of a solution x∗
u and the

expected value of ws solutions. It shows the quality of a solution: The smaller
GAPu, the better the solution. GAPu is calculated by:

GAPu =
EVu − EVws

EVws
(9)

In Fig. 7, a flowchart is presented for explaining processes of computational
experiments. The following abbreviations are used:

Param(s) : Parameter(s)
Probs : Probability distribution functions
SimScen : Scenarios for simulating possible realizations (out-of-

sample)
RepScen : Representative scenarios for the stochastic programming

model (in-sample)
DET
Model

: Deterministic model, which is the SP model with a single
scenario

Incorporating probability distribution functions of uncertain parameters as
input, representative scenarios (s ∈ S) and scenarios for simulating possible
realizations (ω ∈ Ω) can be generated with a RepScen Generator and a SimScen
Generator, respectively. Scenario generation methods for RepScen Generators
depend on the characteristics of uncertain parameters (see Section 5). Monte
Carlo sampling can be used for SimScen Generators. For problem instances with
a medium-scale of possible realizations, the full list of all possible realizations
can be included in set Ω (Fan et al., 2014).
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Param
cSP Model DET Model

RepScen
Set S

RepScen
Generator

Probs for
Uncertain
Params

x∗
sp

EVu

Param
fu |u∈
{pess,mod,opt}

SimScen
Set Ω

SimScen
Generator

x∗
u

EVws Model

EVws

EVu Model
u ∈ {pess,mod, opt, sp}

Fig. 7. A flowchart for computational experiments

With representative scenarios and the first-stage parameter set c as input,
a solution x∗

sp for the stochastic programming model can be obtained by using
PySP. With parameter set fu and c as input, the first-stage optimal solutions x∗

u

for decision makers with attitude u ∈ {pess,mod, opt} are obtained by solving
deterministic models (see (7)).

To evaluate the quality of a solution, each solution x∗
u | u ∈ {pess,mod, opt, sp}

is tested with a large number of scenarios (ω ∈ Ω) through an evaluation model.
EVu | u ∈ {pess,mod, opt, sp} is calculated according to (8). EVws is calculated
by solving (6). An identical first-stage solution for ws solutions is not required.
In order to compare the quality of different solutions, final results can be pre-
sented with box plots (see Fig. 8). Another way is calculating GAPu according
to (9) and presenting the obtained values in a table.
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Fig. 8. Presenting results; see Fan et al. (2017a)

7 Conclusion

When we try to realize automated business processes, Industry 4.0, the 5G era
or autonomous logistics, autonomous decision making under uncertainty is an
essential problem. This paper introduced how to generate and evaluate flexi-
ble supply chain plans under uncertainty by using stochastic programming. The
framework for supply chain planning problems presented here is a general frame-
work for decision making regarding problems under uncertainty. This paper is
meaningful as it provides a valuable reference for the research in the domain of
supply chain planning and decision making under uncertainty. For the next step,
it is important to develop an autonomous decision making system by combining
the framework for supply chain planning with a framework for big data analytics
for demand and risk prediction.
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