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Abstract. We propose an effective metaheuristic for the Team Orien-
teering Problem with Time Windows. The metaheuristic is based on the
principle of Large Neighborhood Search and can outperform the perfor-
mance of algorithms available in the literature. We provide computa-
tional experiments for well known benchmark instances and are able to
compute new best solutions for 17 of these instances. On average, the
gap between our results and best known solutions so far is below 1%, and
our solution approach yields 70% of the best known solutions available
in the literature. The new results can serve as benchmarks for future
computational studies.

1 Introduction

Traditional routing problems such as the vehicle routing problem (VRP) or the
vehicle routing problem with time windows (VRPTW) aim at cost-efficient ser-
vice to a given number of customers. They consider a fixed fleet of vehicles
and minimize total costs while guaranteeing feasibility of the resulting routes
with respect to side constraints such as customer time windows, vehicle capac-
ities, and total route durations. In this paper, we tackle a related problem: the
Team Orienteering Problem with Time Windows (TOPTW). The TOPTW is
a generalization of the well studied VRPTW, which tries to service a subset of
potential customers. As opposed to the VRPTW, the complexity of the problem
is extended by an additional degree of freedom, namely the choice to service a
customer (or not). Every customer is associated with a profit, which may be
collected upon visiting her. The goal is to maximize the total collected profit as
opposed to minimizing total costs in the traditional VRP or VRPTW.

Possible applications of the TOPTW include, but are not limited to home
fuel delivery [5], athlete recruiting from high schools [1], and the sport game of
orienteering [2]. [22] consider the case of routing technicians to service customers
in geographically distributed locations. Leisure related applications are discussed
in [24], who present a personalized mobile tour guide for tourists in need for
finding a plan to visit the most interesting sights. In [19] and [18], two approaches
for selecting bars to be visited during a bar crawl are discussed.
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Since orienteering problems belong to the class of NP-hard problems, it is
unlikely that proven optimal solutions for the TOPTW can be found within
polynomial time. Even when neglecting the quest for optimality, finding high-
quality solutions within a reasonable amount of time remains a challenging task.
For this reason, heuristics or more sophisticated metaheuristics seem to be a
feasible way of tackling this problem. As pointed out in [4], despite the apparent
simplicity of the orienteering problems, it is rather difficult to devise consistently
good heuristics for these types of problems. This is partly due to the fact that
profits and their locations and distances between locations are independent, and
a good solution with respect to one criterion is often unsatisfactory with respect
to the other. Hence, it is usually challenging to select the proper nodes albeit its
feasible sequence that should be part of a (near-)optimal solution.

The sheer simplicity and the embedded computational complexity has at-
tracted many researchers to investigate orienteering problems. [8] provide an
excellent overview on the literature about orienteering problems and its appli-
cations. They give a formal description of the OP and present several relevant
variants thereof. Within their survey, they extensively discuss and compare pub-
lished exact and (meta)heuristic approaches presented so far. According to [8],
the algorithms developed by [7] and [6] provide the largest proportion of current
best known solutions so far. [7] present an iterated local search approach, which
starts from an initial solution built with a greedy construction heuristic. The
initial solution is improved by well-known local search components such as 2-
OPT, SWAP and MOVE. They are able to improve a significant number of best
known solutions from standard instances. [6] embed the iterated local search into
a simulated annealing framework, which helps overcoming local optima.

Given related work, our aim is to provide a rather simple framework that
solves the TOPTW effectively. We build our framework on an LNS-based meta-
heuristic. We embed the concept of forward time slack in the evaluation of adding
or removing nodes from solutions in a smart way. We also investigate the pair-
wise removal of nodes, which turns out to be very effective for certain problem
instances. Overall, by keeping the set of operators clear and manageable, we
avoid the algorithm to be tuned and tailored to a specific set of instances. The
contributions of this paper can be summarized as follows: i) We present an
effective metaheuristic for solving the TOPTW, ii) we present innovative ways
of choosing nodes to be added into any given solution, and iii) our approach is
applied to a wide range of different types of instances for which the proposed
algorithm performs exceptionally well and outperforms algorithms available in
the literature.

The paper is structured as follows. We provide a mathematical formulation
of the problem (Sect. 2) and describe the proposed solution approach in detail
(Sect. 3). The performance of the algorithm is demonstrated on various sets of
instances available in the literature (Sect. 4). We also provide a sensitivity anal-
ysis for the chosen parameter setting and compare our obtained results against
the best ones available in the literature. We then conclude the main findings of
this paper in Sect. 5.
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2 Mathematical Problem Formulation

To formulate the TOPTW mathematically, we introduce the following notation:
We consider a total number of n (potential) customers, where C = {1, . . . , n}
denotes the set of customers. The fleet of m homogeneous vehicles is referred to
as set K. Vehicles may start their routes from a central depot, which we will refer
to as node 0. For modeling purposes, we also define an identical copy of that node
as n+ 1. Hence, the set of all nodes is denoted as V, where V = C ∪ {0, n+ 1}.
A time window [ei, ai] is associated with every node i ∈ V. Upon visiting node
i ∈ V, a profit of pi may be collected and it takes di time units to do so. For
depot nodes (i.e. for i ∈ {0, n + 1}) pi = di = 0. The time required to travel
to node j after i is referred to as tij (∀i, j ∈ V). The maximum route length is
denoted as Tmax. Let M denote a sufficiently large number.

We introduce binary decision variables yki which evaluate to one if and only
if node i ∈ V is visited by vehicle k ∈ K. Additionally, we define binary decision
variables xk

ij , which will be equal to one if and only if vehicle k ∈ K attends

node j immediately after i, where i, j ∈ V. Decision variables ski model the start
of service of vehicle k ∈ K at node i ∈ V. Then, the problem can be formulated
as follows:

Z =
∑

i∈V
pi

∑

k∈K
yki → max (1)

s.t.
∑

j∈V
xk
ij = yki ∀i ∈ V\{n+ 1}, k ∈ K (2)

yki = 1 ∀i ∈ {0, n+ 1}, k ∈ K (3)
∑

j∈V
xk
ji = yki ∀i ∈ V\{0}, k ∈ K (4)

ski + di + tij ≤ skj +M(1− xk
ij) ∀i, j ∈ V, k ∈ K, where i �= j (5)

ski ≥ eiy
k
i ∀i ∈ V, k ∈ K (6)

ski ≤ ai ∀i ∈ V, k ∈ K (7)
∑

i∈V
diy

k
i +

∑

i∈V

∑

j∈V
tijx

k
ij ≤ Tmax ∀k ∈ K (8)

xk
ij ∈ {0, 1} ∀i, j ∈ V, k ∈ K (9)

yki ∈ {0, 1} ∀i ∈ V, k ∈ K (10)

ski ≥ 0 ∀i ∈ V, k ∈ K. (11)

The objective function (1) maximizes the total collected profit. Constraints (2)
and (4) ensure that nodes have a successor and predecessor along the route. Con-
straints (3) ensure that every route contains and consequently starts from and
returns to the depot. Constraint (5) guarantees that the routes of all vehicles
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are feasible and that sub tours are avoided. Due to Constraints (6) and (7),
it is ensured that nodes may only be (started to be) serviced within the given
time window. Constraints (8) ensure that the maximum duty time per vehicle
is not exceeded. Finally, Constraints (9)–(11) restrict the feasible domain of the
decision variables.

3 Solution Approach

As outlined above, the TOPTW can be seen as a generalization of a classical
routing problem such as the VRPTW and hence is NP-hard. We propose to solve
the problem with a metaheuristic based on Large Neighborhood Search (LNS), a
metaheuristic which originally has been proposed by [15] for solving a pickup and
delivery problem with time windows (PDPTW). Below, their ideas are extended,
and additional problem specific operators are presented. LNS itself is an iterative
metaheuristic which destroys and repairs a given solution consecutively. This
concept has been proposed by [20], who describe the general idea of iteratively
destroying (ruin) and repairing (recreate) solutions. Within the PDPTW and
classical routing problems such as the VRPTW, all customers or requests need
to be served. This is no longer the case for the TOPTW. Hence, specific operators
are required to take care of the choice of customers to be visited.

Our algorithm works as follows. We generally employ the main ideas under-
lying the concept of LNS as proposed by [20] and [15]. First, an initial feasible
solution S is generated. Then, the initial or, from the second iteration, current
solution is destroyed and repaired. This is done until a given number of iterations
N has been reached. Solutions are compared based on their objective function
value. Any solution improving (or tying with) the best solution obtained so far
is stored in a pool of best solutions Sbest. The pool of best solutions is updated
whenever a new improving solution has been found. Otherwise, a solution is
chosen randomly from the set of best solutions found. To include some degree
of diversity within the search process and avoid being stuck in a local optimum,
after R iterations without improving the current best solution, the current best
solution is replaced through a randomly selected solution from the pool of best
solutions. A technical outline of the proposed solution approach is depicted in
Algorithm 1. Details on the operators are provided below.

The sketched components and procedures are described in more detail within
the following subsections. In particular, we introduce several problem-specific
operators to be used within this framework.

3.1 Solution Representation

To represent a solution within the algorithm, we encode the individual routes
of all vehicles in use. To this end, we focus on the specific customers visited
and their sequence within the route. The latter allows us to derive additional
information with respect to the timing of visits, the waiting times that may
occur in between, and any buffer time (slack) between any two customer nodes
on a route that allows for rapid feasibility checks upon inserting new customers.
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Algorithm 1 A Large Neighborhood Search for the TOPTW

1: S ← GenerateInitialSequence � generate initial solution
2: Zbest ← Z(S) � save objective of best solution so far
3: Sbest ← {S} � initialize pool of best solutions
4: while termination criterion not reached do
5: S ′ ← Destroy(S) � destroy solution
6: S ′ ← Repair(S ′) � repair solution (& apply local search within)
7: if Z(S ′) ≥ Zbest then � (new) best solution found?
8: Zbest ← Z(S ′) � update objective of best solution so far
9: update Sbest � update pool of best solutions
10: else
11: S ← any solution from Sbest � pick solution from pool
12: end if
13: end while

3.2 Destroy Operators

In every iteration, we destroy the current solution by removing a number of
customer nodes nD from the current set of routes, where nS denotes the total
number of customers currently scheduled. Note that nD ≤ nS ≤ n. We remove
up to d% of all customer nodes currently scheduled to be visited. The actual
number of customer nodes to be selected for removal is chosen randomly from a
discrete uniform distribution nD ∼ U(1, d ∗ nS).

Traditionally, nodes are removed individually. This approach may lead to
a suboptimal solution, which may be hard to improve. Imagine a route where
a subsequence of nodes is far away from the remainder of the route (e.g. see
nodes is and is+1 in Figure 1a). Typically, the removal of a single node of the
subsequence would neither lead to a significant reduction in travel time nor would
there result a sufficient amount of slack upon removal for insertion of alternative
nodes. Hence, we allow to remove sequences of nodes: rather than removing them
individually, we remove several nodes simultaneously.

In particular, sequences of nodes are removed until the total number of nodes
to be removed nD has been reached. The actual length evolves iteratively, i.e.,
the length of the sequence under consideration is extended gradually as long
as the average savings in travel time increase. Note that, contrary to classical
routing problems, not all customers need to be part of the solution for it to
become feasible. Instead, only a subset of customers may be visited if beneficial
for the objective function given that we are still able to satisfy all constraints.

More formally, we consider a route defined as a sequence of nodes
(0, i1, i2, . . . , ink

, 0), where nk denotes the number of customers currently sched-
uled on route k.3 The length l of the sequence of nodes to be removed starting
from node is is extended as long as the following condition holds or the end of

3 For improved readability we refrain from using an index referring to the actual route.
The following considerations will be made independently for every route.
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the route has been reached:

1

l
(

s+l∑

p=s

tip−1,ip − tis−1,is+l
) <

1

l + 1
(

s+l+1∑

p=s

tip−1,ip − tis−1,is+l+1
). (12)

is−2 is−1

is is+1

is+2 is+3

(a) original tour (before destroy)

is−2 is−1

is is+1

is+2 is+3

(b) destroy operator starting at is (l =
1)

is−2 is−1

is is+1

is+2 is+3

(c) destroy operator starting at is (l =
2)

is−2 is−1

is is+1

is+2 is+3

(d) destroy operator starting at is (l =
3)

Fig. 1: Estimating consequences for detouring nodes within the Destroy Operator

This approach has shown to be especially useful when the considered nodes are
geographically clustered. The following Fig. 1 illustrates the underlying idea.
Fig. 1a shows a subsequence of the original route before being destroyed. Fig. 1b-
1d show the resulting changes if l is set to 1, 2 and 3, respectively. Nodes and
arcs that are about to be removed are shown in gray, new arcs to be added are
highlighted in red. Assuming that the travel time along all horizontal (vertical)
arcs in Fig. 1a equals 1 (2) and all travel times are to scale, the average savings
are 2 −√

2 (l = 1), 1 (l = 2) and 0.6̇ (l = 3). As 1 > 0.6̇, the dynamic length l
would be set to 2, and the route would be destroyed as shown in Fig. 1c.
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Once the number of nodes to be removed has been determined, a destroy
operator is selected to identify consequences upon removal of particular nodes.
We have developed the following five destroy operators, which focus on different
important characteristics of a customer node with regard to solution quality:

– Profit (P) calculates the impact the removal of a node has upon the total
profit as quantified by the objective function.

– Travel Time (T) calculates the impact the removal of a node has upon
total travel time.

– Potential (POT) calculates the potential that the removal of a node yields
for the insertion of another node. Details are given below.

– POT/TT denotes the potential of a removal of a node relative to the travel
time reduction.

– POT 2/TT Alternative variant of POT/TT , i.e., the squared potential
relative to travel time.

Upon removal of nodes, slack time as defined by [17] may appear within a
route. The slack time may result from arriving before the start of a time window
and hence causes waiting time. Additionally, it may correspond to additional
delays that could feasibly be considered, e.g. by postponing the start of a service
within the time window without making the remainder of the route infeasible.
The idea of operator POT is as follows: upon removal of a node, we investigate
the possibility of inserting other nodes instead at the same position of the route.
The potential is determined by the sum of the maximum profit of up to o ad-
ditional nodes to be inserted within the available slack time. Similar ideas are
considered upon insertion of a node. Here, there might still be some additional
slack left which is used to investigate the potential of o additional nodes to be
inserted thereafter.

Having quantified the impact of a node’s removal on the solution quality,
the particular nodes or node sequences are selected for removal. The removal of
nodes is implemented according to one of the three following variants:

– Random (R) We randomly pick the node (sequence) from the set of can-
didates available for removal.

– Greedy (G) We delete the best node (sequence) according to the above
destroy operators.

– Bias (B) We randomly pick the node (sequence), and the probabilities are
defined according to the above measures of the destroy operators. For in-
stance, when picking nodes based on their profit, the selection probabilities
would reflect the relative proportions of the individual nodes’ profits.

3.3 Repair Operators

Following a destroy operation, routes are reconstructed by a repair operator. In
particular, in every iteration, customer nodes that are not part of the current
solution are inserted back into the destroyed solution. To this end, we analyze
the current routes in random order and compute the consequences of insertion
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of each removed node at its best insertion position, which is derived according to
smallest increase of travel time. From all possible nodes available for insertion,
we select the one for insertion that fits best according to a particular repair oper-
ator. Following the ideas of the destroy operators, the repair operators evaluate
the consequence of insertion of a customer node with regard to the quality of the
current solution (P, T, POT, POT/TT , POT 2/TT ). This procedure is finalized
for a route once there are no more candidate nodes that could be inserted fea-
sibly into the route, and we can continue with the next route. Note again that
we can conduct the required feasibility checks quickly thanks to efficient slack
computation as described by [17].

The generation of an initial solution for the TOPTW is trivial. We create
an initial solution starting from an empty solution where no customer nodes are
currently included. Then, we use the repair operators presented above to fill the
initial solution.

4 Results

In this section, we investigate the performance of the proposed algorithm, com-
pare it against benchmark results available in the literature, and justify the
chosen parameter settings.

4.1 Benchmark Data and Computational Setup

We tested our algorithm on various sets of instances available in the literature.
We present results for instances of both the TOPTW and OPTW (which is a
special case of the TOPTW where m = 1). [16] propose two sets of instances
for the TOPTW: The first set comprises 29 instances (which from now on will
be referred to as Solomon1 in general and c1*, r1*, rc1* in particular), which
are based on the Solomon’s instances for the VRPTW ([21]). Additionally, they
propose 10 instances developed by [3] for the multi-depot vehicle routing problem
(pr01-pr10). [13] were among the first to use a second test set of 27 instances
from the Solomon set (Solomon2, c2*, r2*, rc2*). Finally, [14] proposed to use
another set of 10 instances from the Cordeau data set (pr11-pr20). We well refer
to pr01-10 and pr11-20 as Cordeau1 and Cordeau2, respectively.

The number of customers corresponds to 100 for instances derived from the
Solomon data set and is between 48 and 288 for instances derived from the
Cordeau data set. Instances within Solomon2 have wider time windows than
those in Solomon1. As a consequence, the resulting routes tend to become longer.
Distances between locations for Solomon instances were rounded down to the
first decimal point and rounded down to the second decimal point for the instance
set Cordeau1 and Cordeau2 as originally reported in [16].

For the TOPTW, [14] suggest to vary the number of vehicles in Solomon1,
Solomon2, Cordeau1 and Cordeau2 between 1 and 4. No optimal solutions are
available for those instances mentioned so far. Hence, we will compare our results
against the best known solutions so far (BKS).
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Additionally, we consider the set of instances proposed in [24], which we
will refer to as set VanSteenwegen: These instances correspond to the data sets
provided in Solomon1, Solomon2 and Cordeau1. For these instances, the number
of vehicles was set to the minimum number of vehicles required to serve all
customers. Hence, the optimal value of the objective function can be derived in
a straightforward way.

Our solution approach was implemented in C++. All experiments where
carried out on a Xeon CPU at 3.1 GHz with 32 GB of RAM, which was shared
with 7 other CPUs. If not noted otherwise, all reported CPU times are in seconds.
Due to the stochastic nature of our algorithm, we report both the best and
average solution found within five independent runs.

In the following, we will provide a comprehensive sensitivity analysis with
respect to different parameter settings and proposed operators. We then com-
pare the results against the following state-of-the-art algorithms available in
the literature: the ant colony (ACO) system developed by [14], the iterated
local search (ILS) algorithm proposed in [24], a variable neighborhood search
(VNS) by [23], a hybrid evolutionary local search algorithm which has been com-
bined with a greedy randomized adaptive search procedure (GRASP, see [11]),
the slow version of the heuristic based on SSA by [12], the LP-based granular
variable neighborhood search (GVNS) developed by [10], the iterative three-
component heuristic (I3CH) by [9], the iterative local search as presented by [7]
and the iterative local search combined with SA as discussed by [6]. Detailed
results for the latter are available from the Orienteering Problem Library at
http://centres.smu.edu.sg/larc/orienteering-problem-library/.

4.2 Overall Results

First, we present aggregated results across the various sets of instances. For
these instances, our LNS has been parameterized as follows. In every iteration,
we destroy up to d = 40% of the current solution. Nodes to be removed are evalu-
ated according to the resulting reduction in travel time upon removal (TT-based
destroy operator). We evaluate the consequences upon removal of sequences of
nodes. Then, the sequence is selected for removal in a biased way, the probabil-
ity of being selected for removal being proportional to the resulting reduction in
travel time. In the following repair step, we add nodes depending on a combina-
tion of their squared potential with a lookahead of l = 1 and the corresponding
increase in travel time (POT 2/TT -based repair operator). The node to be in-
serted is selected in a greedy way, thereby selecting the node with the highest
potential (POT operator). The run time limit has been set to N = 100, 000 it-
erations, and we perform R = 100 iterations without improved solutions before
we reinitialize the current solution. Justification of all parameter settings is pro-
vided in Sect. 4.3. Note that we have investigated combinations of all reasonable
parameter settings in a preliminary study to derive the optimal settings.

In Tables 1 and 2, the set column denotes the type of instances that have
been aggregated. BKS reports the average of the best known solutions available
so far, Best reports the average of the best solution found per instance across the
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entire set of instances, and Avg gives the average objective function value found
by our algorithms. The latter are shown in bold if they meet or are superior
to the BKS. CPUf and CPUt give the average run times required (in seconds)
to find the solution and the run time in total, respectively. Detailed results for
each underlying instance can be found in the electronic appendix at https:

//goo.gl/jjOvU2.

For the case of one vehicle (OP, Table 1,m = 1), we can find the BKS for all of
the Solomon1 instances and for most of the Solomon2 instances. Average CPU
times are very reasonable: about 1-2 seconds for the Solomon1 instances, 16-30
seconds for the Solomon2 instances, 12 seconds for Cordeau1 and 33 seconds for
the Cordeau2 instances on average. Generally, the Cordeau instances are more
challenging to solve than the Solomon instances. For instances considering two
vehicles (m = 2), the best solutions obtained by our algorithm are the same
as BKS for RC1, C2 and R2. They are quite close for the remaining Solomon
instances. The average gap is 0.1-0.2% for the Solomon and 1.0-2.6% for the
Cordeau instances. Run times are between about 20 seconds (RC1) and 135
seconds (Cordeau2 ) on average.

Table 1: Aggregated Results Averaged over Various Instance Sets
set BKS Best Avg CPUf CPUt set BKS Best Avg CPUf CPUt

Solomon1, m = 1 Solomon2

C1 366.67 366.67 366.67 1.4 19.0 C2 932.50 932.50 931.75 3.4 47.0
R1 281.92 281.92 281.73 2.1 15.2 R2 1002.36 1003.45 1001.00 30.8 65.6
RC1 265.38 265.38 264.60 0.6 10.5 RC2 959.25 957.38 954.88 16.0 47.2

Cordeau1 Cordeau2

1-10 462.90 462.30 461.82 11.9 40.1 11-20 534.10 525.10 521.14 33.4 67.5

Solomon1, m = 2 Solomon2

C1 673.33 672.22 672.00 5.6 30.6 C2 1478.75 1478.75 1475.75 6.4 63.5
R1 510.83 510.08 509.27 8.0 25.5 R2 1410.45 1413.55 1410.40 22.9 42.2
RC1 510.50 510.50 510.25 3.2 20.6 RC2 1566.25 1569.25 1563.20 30.2 52.5

Cordeau1 Cordeau2

1-10 850.00 844.60 840.12 50.1 85.0 11-20 952.70 934.70 925.04 85.9 135.1

Solomon1, m = 3 Solomon2

C1 921.11 920.00 916.44 11.5 40.5 C2 1810.00 1810.00 1810.00 0.3 0.3
R1 717.17 716.58 715.38 12.5 35.3 R2 1456.45 1456.36 1456.16 1.2 4.9
RC1 736.25 736.13 733.58 10.9 30.2 RC2 1720.13 1719.13 1718.25 5.8 14.8

Cordeau1 Cordeau2

1-10 1159.60 1147.80 1139.00 81.6 124.2 11-20 1271.80 1244.30 1233.78 111.4 191.7

Solomon1, m = 4 Solomon2

C1 1136.67 1128.89 1123.33 18.6 48.5 C2 1810.00 1810.00 1810.00 0.0 0.0
R1 892.42 891.50 889.35 18.3 42.7 R2 1458.00 1458.00 1458.00 0.0 0.0
RC1 944.25 943.50 941.15 12.1 37.7 RC2 1724.00 1724.00 1724.00 0.0 0.1

Cordeau1 Cordeau2

1-10 1407.10 1379.00 1366.10 92.7 156.1 11-20 1526.00 1481.00 1467.22 137.7 234.8

With increasing number of vehicles (m = 3), we can still determine the
BKS for all Solomon and C2 instances. For the remaining Solomon instances,
the gap is negligible. Cordeau instances show a gap that is similar to results
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with two vehicles. Run times increase for Solomon1, Cordeau1 and Cordeau2
instances, but decrease heavily for Solomon2 instances. For instances considering
four vehicles (m = 4), all BKS of Solomon2 could be found in a very short run
time. The average gap for Solomon1 remains small (about 0.6%), while the gap
for Cordeau1 and Cordeau2 increases up to 3.3%. Again, the Cordeau instances
are harder to solve and require more run time for the same number of iteration.

Table 2 presents the average results for the VanSteenwegen instances. Note
that for these instances, the number of vehicles was set to the minimum number
of vehicles required to service all customers. For the majority of instances, we are
able to determine the BKS – except for Cordeau1 instances, where we observe
an average gap of 1.2%.

Table 2: Aggregated Results Averaged over Vansteenwegen Instance Sets with
Minimum Number of Vehicles

set BKS Best Avg CPUf CPUt set BKS Best Avg CPUf CPUt

C1 1810.00 1810.00 1810.00 1.50 1.52 C2 1810.00 1810.00 1810.00 0.00 0.03
R1 1449.58 1449.58 1447.32 24.04 45.38 R2 1458.00 1458.00 1457.91 5.91 9.68
RC1 1719.00 1719.00 1717.28 25.34 39.08 RC2 1724.00 1724.00 1724.00 2.59 2.62
1-10 2270.40 2259.00 2255.90 89.12 154.86

4.3 Parameter Settings

In the following, we investigate and justify the parameter settings obtained for
the computation of above results.

Selection of Destroy and Repair Operators We proposed five different
destroy and repair operators (see Sect. 3.2 and 3.3). They differ in the way
consequences upon removal or insertion of nodes are evaluated. We tested all
resulting 25 combinations of destroy and repair operators in order to identify
the best possible combination for the given benchmark instances (see Table 3).
We show average objective function values of the best solutions found (columns
“best”) as well as averages of all solutions obtained (columns “Avg”). For both
cases, the combination of a TT-based destroy operator and POT 2/TT -
based repair operator yields the best overall results.

Procedure of Selection Operator When selecting the nodes to be inserted
into or removed from the current solution, we tested three variants on how to
choose them based on the estimated consequences. Table 4 presents the average
results of all combinations of selection procedure of destroy and repair operators.
For both average solution values of best solutions obtained and all solutions, the
biased selection of customer nodes for removal and the greedy repair yield
the best results.
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Table 3: Identifying the Best Combination of Destroy and Repair Operators
Best Avg

Destroy / Repair P TT POT POT/TT POT2/TT P TT POT POT/TT POT2/TT

Profit (P) 999.13 1001.29 1000.50 1002.45 1002.95 995.09 997.70 998.08 999.75 1000.36

Travel Time (TT) 1000.50 1001.50 1002.09 1002.79 1003.36 997.41 997.85 1000.32 1000.19 1001.20
Potential (POT) 999.00 1001.02 1000.55 1002.73 1003.20 995.66 997.76 998.26 1000.12 1001.07
POT/TT 999.11 1001.61 1001.04 1002.73 1003.09 995.94 998.10 998.51 1000.12 1000.81

POT2/TT 999.20 1001.43 1000.68 1002.79 1003.05 995.28 997.28 998.35 1000.11 1000.48

Table 4: Identifying the Best Selection Procedure when Using Destroy and Repair
Operators

Best Avg

Destroy / Repair Random (R) Greedy (G) Biased (B) Random (R) Greedy (G) Biased (B)

Random (R) 987.71 1003.04 1000.41 981.20 1000.50 996.79
Greedy (G) 983.25 995.27 994.63 973.58 988.11 987.08
Biased (B) 991.43 1003.36 1001.41 985.56 1001.20 997.84

Degree of Destruction An important issue for the parameterization of our
LNS is the degree of destruction of a solution for further improvement. We in-
vestigated the resulting solution quality and run time when varying the degree
of destruction d between 10% and 100%. Table 5 shows the corresponding re-
sults. As can be observed from the table, CPU times increase significantly with
increasing degree of destruction, since this requires increasing efforts of repairing
a solution. As can be seen from the table, for the given instances, the optimal
degree of destruction is at 40%. For this value, the obtained solution qual-
ity is best in terms of the average solution quality as well as the average best
solution per instance found, while run times still remain at an acceptable level
(on average: 12.8 seconds until the solution could be found/38.2 total run time).

Table 5: Effects of Varying d when Destroying Solutions

d 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Best 1001.04 1002.57 1002.86 1003.36 1002.93 1003.29 1002.86 1002.50 1002.64 1002.32
Avg 997.26 999.89 1000.52 1001.20 1001.11 1000.89 1001.15 1000.58 1000.60 1000.23
CPUf 7.8 8.1 10.7 12.8 15.0 19.0 23.1 26.8 27.2 33.6
CPUt 19.3 24.6 30.6 38.2 45.0 53.0 63.9 73.0 82.5 91.6

Length of Removal As described in Sect. 3.2, we propose to remove sequences
of nodes rather than individual nodes. To prove the effectiveness of this approach,
we designed the following experiment: Rather than removing subsequences (of
dynamic length) of nodes, we also removed them individually. With a slightly
superior solution quality than removing single nodes, removing sequences of
nodes leads to better results, both in terms of average and best solutions found,
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and also reduces the required run time (avg: 1001.20 vs. 999.26; best: 1003.36
vs. 1002.41; CPUt: 38.2 vs. 51.0).

Lookahead of Potential For the operator POT , we propose to identify the
potential of inserting up to o nodes additionally upon destroying or repairing the
current solution. In order to identify how many nodes o should be considered,
we varied our lookahead parameter between o = 1 and o = 3. Table 6 shows
the corresponding results of this experiment. The variant with o = 1 works
best. Note that the run time increases significantly when we consider o > 1 due
to the increasing number of subsets of nodes to be investigated. We have not
investigated o = 0, since this would correspond to the profit of a single node
(and the proposed operator P).

Table 6: Effects of Varying Lookahead o of Potential

o 1 2 3

Best 1003.36 1003.09 1001.77
Avg 1001.20 1000.94 1000.43
CPUf 38.2 137.9 747.9
CPUt 12.8 36.3 154.6

4.4 Comparison with other Algorithms

Many related TOPTW papers base their experiments on the same set of in-
stances, which allows for a comparison of the number of BKS obtained by the
corresponding algorithm. Table 7 shows the percentage of BKS obtained by most
recent TOPTW algorithms at the time they were published compared to the
number of BKS our algorithm could obtain. For the cited papers, all Solomon
and Cordeau instances have been considered with a fixed number of vehicles
(m = 1/2/3/4). We can see from the table that our LNS framework can pro-
vide the largest proportion of BKS for the benchmark instances compared with
most recent algorithms. Our algorithm seems to be especially beneficial for the
instances with two vehicles (m = 2). Although our algorithm can provide good
solutions in a very short runtime, note that we could not compare the runtimes
here due to varying computational environments.

5 Conclusion & Outlook

In this paper, we proposed a simple but effective LNS framework including neigh-
borhood operators especially developed for the characteristics of the TOPTW.
We presented smart ideas of destroying and repairing solutions, which turned
out to be quite effective for the majority of well-known benchmark instances. In
particular, we were able to provide 17 new BKS, and our algorithm was able to
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Table 7: Percentage of BKS obtained by Different Algorithms, extending [8]

Reference Algorithm Percentage of best known solutions Average
m=1 m=2 m=3 m=4

Labadie et al. (2011) GRASP-ELS 50.0 21.1 32.9 46.1 37.5
Lin and Yu (2012) SSA 51.3 34.2 39.5 56.6 45.4
Labadie et al. (2012) GVNS 36.8 30.3 40.8 44.7 38.2
Souffriau et al. (2012) GRILS 51.3 15.8 22.4 39.5 32.3
Hu and Lim (2014) I3CH 43.4 34.2 57.9 55.3 47.7
Cura (2014) ABC 48.7 36.8 46.1 48.7 45.1
Gunawan et al. (2015b) ILS 68.4 51.3 56.6 55.3 57.9
Gunawan et al. (2015a) SAILS 67.1 50.0 57.9 53.9 57.2

Schmid & Ehmke (2017) LNS 82.9 71.1 65.8 60.1 70.0

provide about 70% of current BKS at reasonable run times. For future research,
we would like to consider a variant of the metaheuristic that automatically tunes
the parameter d, i.e., a framework that automatically balances between diversi-
fication and intensification. Furthermore, we think it would be fruitful to extend
our solution framework to a parallel version. Considering GPU computing tech-
niques might also be worthwhile in order to improve the efficiency and effective-
ness of our LNS. Finally, it would be interesting to compare the performance of
the metaheuristic with commercial solvers like CPLEX.
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