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Preface

Logistics is central to world trade. It encompasses a wide range of activities, including
the production, handling, storage, and distribution of goods, as well as the use of
communication technologies needed for the flow of information to meet consumer
demand. In order for these activities to be run in an efficient manner, good, or optimal,
decisions are to be taken in relation to various aspects of a logistics system, including
the design of the physical and the digital infrastructure on which the logistics network
will operate, the interaction between various entities in the network, and the flow of
products and information. The breadth and the range of tasks involved in logistics make
the management and coordination of the activities complex and challenging, and
require advanced methods for the design, planning, and control of the system. This is
where computational tools are of competitive advantage, offering ways to capture,
store, visualize, and share information to solve complex problems employing opti-
mization techniques, to evaluate systems and policies using simulation, and to enable
collaborative schemes through the use of algorithmic mechanisms. The use of com-
putational technology facilitates addressing these challenges within reasonable amounts
of computational time and supports decision-making.

The International Conference on Computational Logistics (ICCL) is a forum where
recent advances on the topic are presented and discussed. This volume offers a
selection of 38 peer-reviewed papers submitted to the 8th International Conference on
Computational Logistics (ICCL 2017), held in Southampton during October 18–20,
2017. The papers are indicative of the recent work that is being undertaken in com-
putational logistics, categorized in what emerged as four sufficiently distinct but
interrelated areas within computational logistics, and which appear as four sections in
the volume:

1. Vehicle Routing and Scheduling: The papers in this area address planning problems
arising in road transportation, and, in particular, various extensions of the vehicle
routing problem describing algorithmic advances as well as applications in route
planning for truck drivers, disaster logistics, snow plowing, offshore petroleum
wells, and collaborative logistics.

2. Maritime Logistics: As a recurring and a popular theme within computational
logistics, the papers that fall in this area relate to fleet deployment, routing,
scheduling, and inventory problems arising in maritime shipping and in offshore
wind farms. This section also presents two survey papers, one in the area of
autonomous surface vessels structured in two parts, and the other in the use of fuzzy
techniques in maritime shipping operations.

3. Synchromodal Transportation: Being an emerging area of research, synchromodal
transportation has its unique advantages and challenges. One of the papers that
appear in this section presents a framework to classify the problems in this area,
whereas another paper reviews the particular aspects of synchromodal



transportation when used within global cold chains. The third paper in this section
presents computational tools to solve a scheduling problem arising in the same area.

4. Transportation, Logistics, and Supply Chain Planning: The papers that appear in this
section relate to a range of topics concerning various planning problems in trans-
portation, warehouse operations, perishable goods, bike-sharing systems, con-
struction projects, road traffic, container packing, and airport emissions. The section
also includes a paper with a tutorial flavor on the use of stochastic programming in
supply chains.

ICCL 2017 was the eighth edition of this conference series, following those held in
Shanghai (2010, 2012), Hamburg (2011), Copenhagen (2013), Valparaiso (2014),
Delft (2015), and Lisbon (2016).

The editors thank all the authors for their contributions and the reviewers for their
invaluable support and feedback. We hope that the present volume will help to con-
tinue the dialogue within computational logistics and inspire further developments in
this exciting area of research.

October 2017 Tolga Bektaş
Stefano Coniglio

Antonio Martinez-Sykora
Stefan Voß

VI Preface



Organization

The 8th International Conference on Computational Logistics 2017 (ICCL 2017) was
organized by the Centre for Operational Research, Management Sciences and
Information Systems (CORMSIS) spanning the Southampton Business School and
Department of Mathematical Sciences at the University of Southampton, in association
with the Universität Hamburg.

Organizing Committee

Program Committee

Tolga Bektaş University of Southampton, UK
Stefano Coniglio University of Southampton, UK
Antonio Martinez-Sykora University of Southampton, UK
Stefan Voß University of Hamburg, Germany

Local Committee

Silvia Gonzato University of Southampton, UK
Rahimeh Neamatian-Monemi University of Southampton, UK
Chris Potts University of Southampton, UK

Scientific Committee

Panagiotis Angeloudis Imperial College London, UK
Khalid Bichou Imperial College, UK
Miguel Ayala Botto Instituto Superior Técnico, Portugal
Jürgen W. Böse TU Hamburg-Harburg, Germany
Buyang Cao Tongji University, China and ESRI, USA
Rafael Carmona Universidad Anahuac Mexico Norte, Mexico
José Ceroni Católica de Valparaíso, Chile
Marielle Christiansen Norwegian University of Science and Technology,

Norway
Francesco Corman Delft University of Technology, The Netherlands
Joachim Daduna University of Economics and Law, Germany
Rommert Dekker Erasmus University, The Netherlands
Karl F. Doerner Johannes Kepler University, Austria
Wolfgang Domschke TU Darmstadt, Germany
Roberto Domínguez Cañizares Universidad de Sevilla, Spain
Kjetil Fagerholt Norwegian University of Science and Technology,

Norway
Enzo Frazzon Universidade Federal de Santa Catarina, Brazil
Monica Gentili University of Salerno, Italy



Rosa González Universidad de los Andes, Chile
Luis Gouveia University of Lisbon, Portugal
Peter Greistorfer Karl-Franzens-Universität Graz, Austria
Hans-Otto Guenther TU Berlin, Germany
Richard Hartl University of Vienna, Austria
Geir Hasle SINTEF, Norway
Leonard Heilig University of Hamburg, Germany
Sin Ho Aarhus University, Denmark
Patrick Jaillet Massachusetts Institute of Technology, USA
Rune Møller Jensen IT University, Denmark
Carlos Ocampo-Martinez Technical University of Catalonia, Spain
André Ludwig University of Leipzig, Germany
Herbert Kopfer University of Bremen, Germany
René de Koster Erasmus University, The Netherlands
Ioannis Lagoudis Malaysia Institute for Supply Chain Innovation,

Malaysia
Jasmine Siu Lee Lam Nanyang Technological University, Singapore
Gilbert Laporte HEC Montreal and CIRRELT, Canada
Janny Leung The Chinese University of Hong Kong, SAR China
Shijie Li Delft University of Technology, The Netherlands
José Maestre University of Seville, Spain
Vittorio Maniezzo University of Bologna, Italy
João Nabais Escola Superior de Tecnologia de Setúbal, Portugal
Rudy R. Negenborn Delft University of Technology, The Netherlands
Dario Pacino Technical University of Denmark, Denmark
Ana Paias University of Lisbon, Portugal
Margarida Pato University of Lisbon, Portugal
Julia Pahl University of Southern Denmark, Denmark
Guenther Raidl Vienna University of Technology, Austria
Jana Ries Portsmouth University, UK
Mario Ruthmair University of Vienna, Austria
Simona Sacone University of Genoa, Italy
Juan Jose Salazar González University of La Laguna, Spain
Frederik Schulte University of Hamburg, Germany
Xiaoning Shi University of Hamburg, Germany
L. Douglas Smith University of Missouri, USA
Lori Tavasszy Delft University of Technology, The Netherlands
Kevin Tierney Paderborn University, Germany
David Woodruff University of California Davis, USA
Jianbin Xin Delft University of Technology, The Netherlands
Tsz Leung Yip Hong Kong Polytechnic University, SAR China
Shiyuan Zheng Shanghai Maritime University, China

VIII Organization



Additional Reviewers

Douglas Alem
Henrik Andersson
Panagiotis Angeloudis
Christopher Bayliss
Marton Benedek
Julia Bennell
Patrick Beullens
Marta Cabo
Bülent Çatay
Karl Doerner
Jan Fabian Ehmke
Kjetil Fagerholt
Juan José

Salazar González
Stefano Gualandi
Richard F. Hartl
Leonard Heilig
Sin C. Ho

Ola Jabali
Angel Juan
Jörg Kalcsics
Herbert Kopfer
Eduardo Lalla-Ruiz
Gilbert Laporte
Philip Le
Fabien Lehuédé
Janny Leung
Martijn Mes
Rahimeh Neamatian

Monemi
Tri-Dung Ngyuen
Julia Pahl
Ana Paias
Dimitris Paraskevopoulos
Meltem Peker
Edgar Possani

Jakob Puchinger
Günther Raidl
Jana Ries
Ruben Ruiz
Mario Ruthmair
Frederik Schulte
Frank Schwartz
L. Douglas Smith
Sven Spieckermann
Magnus Stålhane
Kevin Tierney
Juan G. Villegas R.
Stein W. Wallace
Tony Wauters
Bart Wiegmans
David Woodruff
Yuan Zhang
Shiyuan Zheng

Sponsoring Institutions

Southampton Marine and Maritime Institute

Organization IX



Contents

Vehicle Routing and Scheduling

An Effective Large Neighborhood Search for the Team Orienteering
Problem with Time Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Verena Schmid and Jan Fabian Ehmke

Hybrid Heuristic for the Clustered Orienteering Problem . . . . . . . . . . . . . . . 19
Ala-Eddine Yahiaoui, Aziz Moukrim, and Mehdi Serairi

An Adaptive Large Neighborhood Search for the Periodic Vehicle Routing
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Sandra Zajac

The Vehicle Routing Problem with Dynamic Occasional Drivers . . . . . . . . . 49
Lars Dahle, Henrik Andersson, and Marielle Christiansen

Maximizing the Number of Served Requests in an Online Shared Transport
System by Solving a Dynamic DARP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Sven Vallée, Ammar Oulamara, and Wahiba Ramdane Cherif-Khettaf

A Polyhedral Study of the Elementary Shortest Path Problem with Resource
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Jiarui Da, Lanbo Zheng, and Xin Tang

Vehicle Routing with a Heterogeneous Fleet of Combustion
and Battery-Powered Electric Vehicles Under Energy Minimization. . . . . . . . 94

Herbert Kopfer, Benedikt Vornhusen, and Jan Dethloff

Time-Dependent Route Planning for Truck Drivers . . . . . . . . . . . . . . . . . . . 110
Alexander Kleff, Christian Bräuer, Frank Schulz, Valentin Buchhold,
Moritz Baum, and Dorothea Wagner

A Combinatorial Auction for Transportation Matching Service:
Formulation and Adaptive Large Neighborhood Search Heuristic . . . . . . . . . 127

Baoxiang Li and Hoong Chuin Lau

Metaheuristic Framework for a Disaster Logistics Problem
with Time-Dependent Demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Jorge F. Victoria, H. Murat Afsar, and Christian Prins

Planning of an Offshore Well Plugging Campaign:
A Vehicle Routing Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Steffen Bakker, Mats Aarlott, Asgeir Tomasgard, and Kjetil Midthun

http://dx.doi.org/10.1007/978-3-319-68496-3_1
http://dx.doi.org/10.1007/978-3-319-68496-3_1
http://dx.doi.org/10.1007/978-3-319-68496-3_2
http://dx.doi.org/10.1007/978-3-319-68496-3_3
http://dx.doi.org/10.1007/978-3-319-68496-3_3
http://dx.doi.org/10.1007/978-3-319-68496-3_4
http://dx.doi.org/10.1007/978-3-319-68496-3_5
http://dx.doi.org/10.1007/978-3-319-68496-3_5
http://dx.doi.org/10.1007/978-3-319-68496-3_6
http://dx.doi.org/10.1007/978-3-319-68496-3_6
http://dx.doi.org/10.1007/978-3-319-68496-3_7
http://dx.doi.org/10.1007/978-3-319-68496-3_7
http://dx.doi.org/10.1007/978-3-319-68496-3_8
http://dx.doi.org/10.1007/978-3-319-68496-3_9
http://dx.doi.org/10.1007/978-3-319-68496-3_9
http://dx.doi.org/10.1007/978-3-319-68496-3_10
http://dx.doi.org/10.1007/978-3-319-68496-3_10
http://dx.doi.org/10.1007/978-3-319-68496-3_11
http://dx.doi.org/10.1007/978-3-319-68496-3_11


Arc Routing with Precedence Constraints: An Application
to Snow Plowing Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Anders H. Gundersen, Magnus Johansen, Benjamin S. Kjær,
Henrik Andersson, and Magnus Stålhane

Analysis of the Partner Selection Problem in Horizontal Collaboration
Among Shippers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Hanan Ouhader and Malika El Kyal

A Simple Mechanism for the Disaster Emergency Unit Scheduling
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

P.J. Araya-Córdova and Óscar C. Vásquez

Maritime Logistics

Survey on Autonomous Surface Vessels: Part I - A New Detailed Definition
of Autonomy Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Matteo Schiaretti, Linying Chen, and Rudy R. Negenborn

Survey on Autonomous Surface Vessels: Part II - Categorization of 60
Prototypes and Future Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Matteo Schiaretti, Linying Chen, and Rudy R. Negenborn

Review of Fuzzy Techniques in Maritime Shipping Operations. . . . . . . . . . . 253
Jana Ries, Rosa G. González-Ramírez, and Stefan Voß

A Relax-and-Fix Algorithm for a Maritime Inventory Routing Problem . . . . . 270
Marcelo W. Friske and Luciana S. Buriol

Strategic Optimization of Offshore Wind Farm Installation . . . . . . . . . . . . . . 285
Stian Backe and Dag Haugland

Maritime Load Dependent Lead Times - An Analysis . . . . . . . . . . . . . . . . . 300
Julia Pahl and Stefan Voß

Integrating Fleet Deployment into the Liner Shipping Cargo Allocation
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Daniel Müller, Stefan Guericke, and Kevin Tierney

A New Formulation for the Combined Maritime Fleet Deployment
and Inventory Management Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Bo Dong, Tolga Bektaş, Saurabh Chandra, Marielle Christiansen,
and Kjetil Fagerholt

The Liner Shipping Routing and Scheduling Problem under Environmental
Considerations: The Case of Emission Control Areas. . . . . . . . . . . . . . . . . . 336

Philip Dithmer, Line Reinhardt, and Christos A. Kontovas

XII Contents

http://dx.doi.org/10.1007/978-3-319-68496-3_12
http://dx.doi.org/10.1007/978-3-319-68496-3_12
http://dx.doi.org/10.1007/978-3-319-68496-3_13
http://dx.doi.org/10.1007/978-3-319-68496-3_13
http://dx.doi.org/10.1007/978-3-319-68496-3_14
http://dx.doi.org/10.1007/978-3-319-68496-3_14
http://dx.doi.org/10.1007/978-3-319-68496-3_15
http://dx.doi.org/10.1007/978-3-319-68496-3_15
http://dx.doi.org/10.1007/978-3-319-68496-3_16
http://dx.doi.org/10.1007/978-3-319-68496-3_16
http://dx.doi.org/10.1007/978-3-319-68496-3_17
http://dx.doi.org/10.1007/978-3-319-68496-3_18
http://dx.doi.org/10.1007/978-3-319-68496-3_19
http://dx.doi.org/10.1007/978-3-319-68496-3_20
http://dx.doi.org/10.1007/978-3-319-68496-3_21
http://dx.doi.org/10.1007/978-3-319-68496-3_21
http://dx.doi.org/10.1007/978-3-319-68496-3_22
http://dx.doi.org/10.1007/978-3-319-68496-3_22
http://dx.doi.org/10.1007/978-3-319-68496-3_23
http://dx.doi.org/10.1007/978-3-319-68496-3_23


A Shortest Path Heuristic for evaluating the Quality of Stowage Plans
in Roll-On Roll-Off Liner Shipping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Jone R. Hansen, Kjetil Fagerholt, and Magnus Stålhane

Optimising and Recognising 2-Stage Delivery Chains with
Time Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Frank Phillipson, Max Ortega del Vecchyo, Bart van Ginkel,
Dylan Huizing, and Alex Sangers

Synchromodal Transportation

Framework of Synchromodal Transportation Problems. . . . . . . . . . . . . . . . . 383
M.A.M. De Juncker, Dylan Huizing, Max Ortega del Vecchyo,
Frank Phillipson, and Alex Sangers

Scheduling Drayage Operations in Synchromodal Transport . . . . . . . . . . . . . 404
Arturo E. Pérez Rivera and Martijn R.K. Mes

Survey on Characteristics and Challenges of Synchromodal Transportation
in Global Cold Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Wenjing Guo, Wouter Beelaerts van Blokland, and Gabriel Lodewijks

Transportation, Logistics and Supply Chain Planning

Stochastic Programming for Global Supply Chain Planning Under
Uncertainty: An Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Yingjie Fan, Frank Schwartz, Stefan Voß, and David L. Woodruff

Towards the Physical Internet Paradigm: A Model for Transportation
Planning in Complex Road Networks with Empty Return Optimization . . . . . 452

Claudia Caballini, Massimo Paolucci, Simona Sacone,
and Evrim Ursavas

Simulating Storage Policies for an Automated Grid-Based Warehouse
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

Michaela Beckschäfer, Simon Malberg, Kevin Tierney,
and Christoph Weskamp

Quality-Aware Modeling and Optimal Scheduling for Perishable Good
Distribution Networks: The Case of Banana Logistics . . . . . . . . . . . . . . . . . 483

Xiao Lin, Rudy R. Negenborn, Mark B. Duinkerken,
and Gabriel Lodewijks

Cost-Efficient Allocation of Bikes to Stations in Bike Sharing Systems . . . . . 498
Patrick Vogel, Jan Fabian Ehmke, and Dirk Christian Mattfeld

Contents XIII

http://dx.doi.org/10.1007/978-3-319-68496-3_24
http://dx.doi.org/10.1007/978-3-319-68496-3_24
http://dx.doi.org/10.1007/978-3-319-68496-3_25
http://dx.doi.org/10.1007/978-3-319-68496-3_25
http://dx.doi.org/10.1007/978-3-319-68496-3_26
http://dx.doi.org/10.1007/978-3-319-68496-3_27
http://dx.doi.org/10.1007/978-3-319-68496-3_28
http://dx.doi.org/10.1007/978-3-319-68496-3_28
http://dx.doi.org/10.1007/978-3-319-68496-3_29
http://dx.doi.org/10.1007/978-3-319-68496-3_29
http://dx.doi.org/10.1007/978-3-319-68496-3_30
http://dx.doi.org/10.1007/978-3-319-68496-3_30
http://dx.doi.org/10.1007/978-3-319-68496-3_31
http://dx.doi.org/10.1007/978-3-319-68496-3_31
http://dx.doi.org/10.1007/978-3-319-68496-3_32
http://dx.doi.org/10.1007/978-3-319-68496-3_32
http://dx.doi.org/10.1007/978-3-319-68496-3_33


A Dynamic Network Flow Model for Interdependent Infrastructure
and Supply Chain Networks with Uncertain Asset Operability . . . . . . . . . . . 513

Nils Goldbeck, Panagiotis Angeloudis, and Washington Y. Ochieng

Establishing Outsourcing and Supply Chain Plans for Prefabricated
Construction Projects Under Uncertain Productivity. . . . . . . . . . . . . . . . . . . 529

Pei-Yuan Hsu, Marco Aurisicchio, and Panagiotis Angeloudis

Agent-Based Simulation to Assess the Performance of Intersections with
Pre-signals: Comparison with Roundabouts . . . . . . . . . . . . . . . . . . . . . . . . 544

António A.C. Vieira, Luís M.S. Dias, Guilherme A.B. Pereira,
and José A. Oliveira

Efficient Local Search Heuristics for Packing Irregular Shapes in
Two-Dimensional Heterogeneous Bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

Ranga P. Abeysooriya, Julia A. Bennell, and Antonio Martinez-Sykora

Reducing Airport Emissions with Coordinated Pushback Processes:
A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

Branko Bubalo, Frederik Schulte, and Stefan Voß

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

XIV Contents

http://dx.doi.org/10.1007/978-3-319-68496-3_34
http://dx.doi.org/10.1007/978-3-319-68496-3_34
http://dx.doi.org/10.1007/978-3-319-68496-3_35
http://dx.doi.org/10.1007/978-3-319-68496-3_35
http://dx.doi.org/10.1007/978-3-319-68496-3_36
http://dx.doi.org/10.1007/978-3-319-68496-3_36
http://dx.doi.org/10.1007/978-3-319-68496-3_37
http://dx.doi.org/10.1007/978-3-319-68496-3_37
http://dx.doi.org/10.1007/978-3-319-68496-3_38
http://dx.doi.org/10.1007/978-3-319-68496-3_38


Vehicle Routing and Scheduling



An Effective Large Neighborhood Search for the
Team Orienteering Problem with Time Windows

Verena Schmid1 and Jan Fabian Ehmke2

1 CD Laboratory for Efficient Intermodal Transport Operations, Department of
Business Administration, University of Vienna, Vienna, Austria

2 Management Science Group, Otto-von-Guericke University Magdeburg,
Magdeburg, Germany, jan.ehmke@ovgu.de

Abstract. We propose an effective metaheuristic for the Team Orien-
teering Problem with Time Windows. The metaheuristic is based on the
principle of Large Neighborhood Search and can outperform the perfor-
mance of algorithms available in the literature. We provide computa-
tional experiments for well known benchmark instances and are able to
compute new best solutions for 17 of these instances. On average, the
gap between our results and best known solutions so far is below 1%, and
our solution approach yields 70% of the best known solutions available
in the literature. The new results can serve as benchmarks for future
computational studies.

1 Introduction

Traditional routing problems such as the vehicle routing problem (VRP) or the
vehicle routing problem with time windows (VRPTW) aim at cost-efficient ser-
vice to a given number of customers. They consider a fixed fleet of vehicles
and minimize total costs while guaranteeing feasibility of the resulting routes
with respect to side constraints such as customer time windows, vehicle capac-
ities, and total route durations. In this paper, we tackle a related problem: the
Team Orienteering Problem with Time Windows (TOPTW). The TOPTW is
a generalization of the well studied VRPTW, which tries to service a subset of
potential customers. As opposed to the VRPTW, the complexity of the problem
is extended by an additional degree of freedom, namely the choice to service a
customer (or not). Every customer is associated with a profit, which may be
collected upon visiting her. The goal is to maximize the total collected profit as
opposed to minimizing total costs in the traditional VRP or VRPTW.

Possible applications of the TOPTW include, but are not limited to home
fuel delivery [5], athlete recruiting from high schools [1], and the sport game of
orienteering [2]. [22] consider the case of routing technicians to service customers
in geographically distributed locations. Leisure related applications are discussed
in [24], who present a personalized mobile tour guide for tourists in need for
finding a plan to visit the most interesting sights. In [19] and [18], two approaches
for selecting bars to be visited during a bar crawl are discussed.
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Since orienteering problems belong to the class of NP-hard problems, it is
unlikely that proven optimal solutions for the TOPTW can be found within
polynomial time. Even when neglecting the quest for optimality, finding high-
quality solutions within a reasonable amount of time remains a challenging task.
For this reason, heuristics or more sophisticated metaheuristics seem to be a
feasible way of tackling this problem. As pointed out in [4], despite the apparent
simplicity of the orienteering problems, it is rather difficult to devise consistently
good heuristics for these types of problems. This is partly due to the fact that
profits and their locations and distances between locations are independent, and
a good solution with respect to one criterion is often unsatisfactory with respect
to the other. Hence, it is usually challenging to select the proper nodes albeit its
feasible sequence that should be part of a (near-)optimal solution.

The sheer simplicity and the embedded computational complexity has at-
tracted many researchers to investigate orienteering problems. [8] provide an
excellent overview on the literature about orienteering problems and its appli-
cations. They give a formal description of the OP and present several relevant
variants thereof. Within their survey, they extensively discuss and compare pub-
lished exact and (meta)heuristic approaches presented so far. According to [8],
the algorithms developed by [7] and [6] provide the largest proportion of current
best known solutions so far. [7] present an iterated local search approach, which
starts from an initial solution built with a greedy construction heuristic. The
initial solution is improved by well-known local search components such as 2-
OPT, SWAP and MOVE. They are able to improve a significant number of best
known solutions from standard instances. [6] embed the iterated local search into
a simulated annealing framework, which helps overcoming local optima.

Given related work, our aim is to provide a rather simple framework that
solves the TOPTW effectively. We build our framework on an LNS-based meta-
heuristic. We embed the concept of forward time slack in the evaluation of adding
or removing nodes from solutions in a smart way. We also investigate the pair-
wise removal of nodes, which turns out to be very effective for certain problem
instances. Overall, by keeping the set of operators clear and manageable, we
avoid the algorithm to be tuned and tailored to a specific set of instances. The
contributions of this paper can be summarized as follows: i) We present an
effective metaheuristic for solving the TOPTW, ii) we present innovative ways
of choosing nodes to be added into any given solution, and iii) our approach is
applied to a wide range of different types of instances for which the proposed
algorithm performs exceptionally well and outperforms algorithms available in
the literature.

The paper is structured as follows. We provide a mathematical formulation
of the problem (Sect. 2) and describe the proposed solution approach in detail
(Sect. 3). The performance of the algorithm is demonstrated on various sets of
instances available in the literature (Sect. 4). We also provide a sensitivity anal-
ysis for the chosen parameter setting and compare our obtained results against
the best ones available in the literature. We then conclude the main findings of
this paper in Sect. 5.
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2 Mathematical Problem Formulation

To formulate the TOPTW mathematically, we introduce the following notation:
We consider a total number of n (potential) customers, where C = {1, . . . , n}
denotes the set of customers. The fleet of m homogeneous vehicles is referred to
as set K. Vehicles may start their routes from a central depot, which we will refer
to as node 0. For modeling purposes, we also define an identical copy of that node
as n+ 1. Hence, the set of all nodes is denoted as V, where V = C ∪ {0, n+ 1}.
A time window [ei, ai] is associated with every node i ∈ V. Upon visiting node
i ∈ V, a profit of pi may be collected and it takes di time units to do so. For
depot nodes (i.e. for i ∈ {0, n + 1}) pi = di = 0. The time required to travel
to node j after i is referred to as tij (∀i, j ∈ V). The maximum route length is
denoted as Tmax. Let M denote a sufficiently large number.

We introduce binary decision variables yki which evaluate to one if and only
if node i ∈ V is visited by vehicle k ∈ K. Additionally, we define binary decision
variables xk

ij , which will be equal to one if and only if vehicle k ∈ K attends

node j immediately after i, where i, j ∈ V. Decision variables ski model the start
of service of vehicle k ∈ K at node i ∈ V. Then, the problem can be formulated
as follows:

Z =
∑

i∈V
pi

∑

k∈K
yki → max (1)

s.t.
∑

j∈V
xk
ij = yki ∀i ∈ V\{n+ 1}, k ∈ K (2)

yki = 1 ∀i ∈ {0, n+ 1}, k ∈ K (3)
∑

j∈V
xk
ji = yki ∀i ∈ V\{0}, k ∈ K (4)

ski + di + tij ≤ skj +M(1− xk
ij) ∀i, j ∈ V, k ∈ K, where i �= j (5)

ski ≥ eiy
k
i ∀i ∈ V, k ∈ K (6)

ski ≤ ai ∀i ∈ V, k ∈ K (7)
∑

i∈V
diy

k
i +

∑

i∈V

∑

j∈V
tijx

k
ij ≤ Tmax ∀k ∈ K (8)

xk
ij ∈ {0, 1} ∀i, j ∈ V, k ∈ K (9)

yki ∈ {0, 1} ∀i ∈ V, k ∈ K (10)

ski ≥ 0 ∀i ∈ V, k ∈ K. (11)

The objective function (1) maximizes the total collected profit. Constraints (2)
and (4) ensure that nodes have a successor and predecessor along the route. Con-
straints (3) ensure that every route contains and consequently starts from and
returns to the depot. Constraint (5) guarantees that the routes of all vehicles
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are feasible and that sub tours are avoided. Due to Constraints (6) and (7),
it is ensured that nodes may only be (started to be) serviced within the given
time window. Constraints (8) ensure that the maximum duty time per vehicle
is not exceeded. Finally, Constraints (9)–(11) restrict the feasible domain of the
decision variables.

3 Solution Approach

As outlined above, the TOPTW can be seen as a generalization of a classical
routing problem such as the VRPTW and hence is NP-hard. We propose to solve
the problem with a metaheuristic based on Large Neighborhood Search (LNS), a
metaheuristic which originally has been proposed by [15] for solving a pickup and
delivery problem with time windows (PDPTW). Below, their ideas are extended,
and additional problem specific operators are presented. LNS itself is an iterative
metaheuristic which destroys and repairs a given solution consecutively. This
concept has been proposed by [20], who describe the general idea of iteratively
destroying (ruin) and repairing (recreate) solutions. Within the PDPTW and
classical routing problems such as the VRPTW, all customers or requests need
to be served. This is no longer the case for the TOPTW. Hence, specific operators
are required to take care of the choice of customers to be visited.

Our algorithm works as follows. We generally employ the main ideas under-
lying the concept of LNS as proposed by [20] and [15]. First, an initial feasible
solution S is generated. Then, the initial or, from the second iteration, current
solution is destroyed and repaired. This is done until a given number of iterations
N has been reached. Solutions are compared based on their objective function
value. Any solution improving (or tying with) the best solution obtained so far
is stored in a pool of best solutions Sbest. The pool of best solutions is updated
whenever a new improving solution has been found. Otherwise, a solution is
chosen randomly from the set of best solutions found. To include some degree
of diversity within the search process and avoid being stuck in a local optimum,
after R iterations without improving the current best solution, the current best
solution is replaced through a randomly selected solution from the pool of best
solutions. A technical outline of the proposed solution approach is depicted in
Algorithm 1. Details on the operators are provided below.

The sketched components and procedures are described in more detail within
the following subsections. In particular, we introduce several problem-specific
operators to be used within this framework.

3.1 Solution Representation

To represent a solution within the algorithm, we encode the individual routes
of all vehicles in use. To this end, we focus on the specific customers visited
and their sequence within the route. The latter allows us to derive additional
information with respect to the timing of visits, the waiting times that may
occur in between, and any buffer time (slack) between any two customer nodes
on a route that allows for rapid feasibility checks upon inserting new customers.
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Algorithm 1 A Large Neighborhood Search for the TOPTW

1: S ← GenerateInitialSequence � generate initial solution
2: Zbest ← Z(S) � save objective of best solution so far
3: Sbest ← {S} � initialize pool of best solutions
4: while termination criterion not reached do
5: S ′ ← Destroy(S) � destroy solution
6: S ′ ← Repair(S ′) � repair solution (& apply local search within)
7: if Z(S ′) ≥ Zbest then � (new) best solution found?
8: Zbest ← Z(S ′) � update objective of best solution so far
9: update Sbest � update pool of best solutions
10: else
11: S ← any solution from Sbest � pick solution from pool
12: end if
13: end while

3.2 Destroy Operators

In every iteration, we destroy the current solution by removing a number of
customer nodes nD from the current set of routes, where nS denotes the total
number of customers currently scheduled. Note that nD ≤ nS ≤ n. We remove
up to d% of all customer nodes currently scheduled to be visited. The actual
number of customer nodes to be selected for removal is chosen randomly from a
discrete uniform distribution nD ∼ U(1, d ∗ nS).

Traditionally, nodes are removed individually. This approach may lead to
a suboptimal solution, which may be hard to improve. Imagine a route where
a subsequence of nodes is far away from the remainder of the route (e.g. see
nodes is and is+1 in Figure 1a). Typically, the removal of a single node of the
subsequence would neither lead to a significant reduction in travel time nor would
there result a sufficient amount of slack upon removal for insertion of alternative
nodes. Hence, we allow to remove sequences of nodes: rather than removing them
individually, we remove several nodes simultaneously.

In particular, sequences of nodes are removed until the total number of nodes
to be removed nD has been reached. The actual length evolves iteratively, i.e.,
the length of the sequence under consideration is extended gradually as long
as the average savings in travel time increase. Note that, contrary to classical
routing problems, not all customers need to be part of the solution for it to
become feasible. Instead, only a subset of customers may be visited if beneficial
for the objective function given that we are still able to satisfy all constraints.

More formally, we consider a route defined as a sequence of nodes
(0, i1, i2, . . . , ink

, 0), where nk denotes the number of customers currently sched-
uled on route k.3 The length l of the sequence of nodes to be removed starting
from node is is extended as long as the following condition holds or the end of

3 For improved readability we refrain from using an index referring to the actual route.
The following considerations will be made independently for every route.

An Effective Large Neighborhood Search for the Team Orienteering Problem             7



the route has been reached:

1

l
(

s+l∑

p=s

tip−1,ip − tis−1,is+l
) <

1

l + 1
(

s+l+1∑

p=s

tip−1,ip − tis−1,is+l+1
). (12)

is−2 is−1

is is+1

is+2 is+3

(a) original tour (before destroy)

is−2 is−1

is is+1

is+2 is+3

(b) destroy operator starting at is (l =
1)

is−2 is−1

is is+1

is+2 is+3

(c) destroy operator starting at is (l =
2)

is−2 is−1

is is+1

is+2 is+3

(d) destroy operator starting at is (l =
3)

Fig. 1: Estimating consequences for detouring nodes within the Destroy Operator

This approach has shown to be especially useful when the considered nodes are
geographically clustered. The following Fig. 1 illustrates the underlying idea.
Fig. 1a shows a subsequence of the original route before being destroyed. Fig. 1b-
1d show the resulting changes if l is set to 1, 2 and 3, respectively. Nodes and
arcs that are about to be removed are shown in gray, new arcs to be added are
highlighted in red. Assuming that the travel time along all horizontal (vertical)
arcs in Fig. 1a equals 1 (2) and all travel times are to scale, the average savings
are 2 −√

2 (l = 1), 1 (l = 2) and 0.6̇ (l = 3). As 1 > 0.6̇, the dynamic length l
would be set to 2, and the route would be destroyed as shown in Fig. 1c.
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Once the number of nodes to be removed has been determined, a destroy
operator is selected to identify consequences upon removal of particular nodes.
We have developed the following five destroy operators, which focus on different
important characteristics of a customer node with regard to solution quality:

– Profit (P) calculates the impact the removal of a node has upon the total
profit as quantified by the objective function.

– Travel Time (T) calculates the impact the removal of a node has upon
total travel time.

– Potential (POT) calculates the potential that the removal of a node yields
for the insertion of another node. Details are given below.

– POT/TT denotes the potential of a removal of a node relative to the travel
time reduction.

– POT 2/TT Alternative variant of POT/TT , i.e., the squared potential
relative to travel time.

Upon removal of nodes, slack time as defined by [17] may appear within a
route. The slack time may result from arriving before the start of a time window
and hence causes waiting time. Additionally, it may correspond to additional
delays that could feasibly be considered, e.g. by postponing the start of a service
within the time window without making the remainder of the route infeasible.
The idea of operator POT is as follows: upon removal of a node, we investigate
the possibility of inserting other nodes instead at the same position of the route.
The potential is determined by the sum of the maximum profit of up to o ad-
ditional nodes to be inserted within the available slack time. Similar ideas are
considered upon insertion of a node. Here, there might still be some additional
slack left which is used to investigate the potential of o additional nodes to be
inserted thereafter.

Having quantified the impact of a node’s removal on the solution quality,
the particular nodes or node sequences are selected for removal. The removal of
nodes is implemented according to one of the three following variants:

– Random (R) We randomly pick the node (sequence) from the set of can-
didates available for removal.

– Greedy (G) We delete the best node (sequence) according to the above
destroy operators.

– Bias (B) We randomly pick the node (sequence), and the probabilities are
defined according to the above measures of the destroy operators. For in-
stance, when picking nodes based on their profit, the selection probabilities
would reflect the relative proportions of the individual nodes’ profits.

3.3 Repair Operators

Following a destroy operation, routes are reconstructed by a repair operator. In
particular, in every iteration, customer nodes that are not part of the current
solution are inserted back into the destroyed solution. To this end, we analyze
the current routes in random order and compute the consequences of insertion
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of each removed node at its best insertion position, which is derived according to
smallest increase of travel time. From all possible nodes available for insertion,
we select the one for insertion that fits best according to a particular repair oper-
ator. Following the ideas of the destroy operators, the repair operators evaluate
the consequence of insertion of a customer node with regard to the quality of the
current solution (P, T, POT, POT/TT , POT 2/TT ). This procedure is finalized
for a route once there are no more candidate nodes that could be inserted fea-
sibly into the route, and we can continue with the next route. Note again that
we can conduct the required feasibility checks quickly thanks to efficient slack
computation as described by [17].

The generation of an initial solution for the TOPTW is trivial. We create
an initial solution starting from an empty solution where no customer nodes are
currently included. Then, we use the repair operators presented above to fill the
initial solution.

4 Results

In this section, we investigate the performance of the proposed algorithm, com-
pare it against benchmark results available in the literature, and justify the
chosen parameter settings.

4.1 Benchmark Data and Computational Setup

We tested our algorithm on various sets of instances available in the literature.
We present results for instances of both the TOPTW and OPTW (which is a
special case of the TOPTW where m = 1). [16] propose two sets of instances
for the TOPTW: The first set comprises 29 instances (which from now on will
be referred to as Solomon1 in general and c1*, r1*, rc1* in particular), which
are based on the Solomon’s instances for the VRPTW ([21]). Additionally, they
propose 10 instances developed by [3] for the multi-depot vehicle routing problem
(pr01-pr10). [13] were among the first to use a second test set of 27 instances
from the Solomon set (Solomon2, c2*, r2*, rc2*). Finally, [14] proposed to use
another set of 10 instances from the Cordeau data set (pr11-pr20). We well refer
to pr01-10 and pr11-20 as Cordeau1 and Cordeau2, respectively.

The number of customers corresponds to 100 for instances derived from the
Solomon data set and is between 48 and 288 for instances derived from the
Cordeau data set. Instances within Solomon2 have wider time windows than
those in Solomon1. As a consequence, the resulting routes tend to become longer.
Distances between locations for Solomon instances were rounded down to the
first decimal point and rounded down to the second decimal point for the instance
set Cordeau1 and Cordeau2 as originally reported in [16].

For the TOPTW, [14] suggest to vary the number of vehicles in Solomon1,
Solomon2, Cordeau1 and Cordeau2 between 1 and 4. No optimal solutions are
available for those instances mentioned so far. Hence, we will compare our results
against the best known solutions so far (BKS).
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Additionally, we consider the set of instances proposed in [24], which we
will refer to as set VanSteenwegen: These instances correspond to the data sets
provided in Solomon1, Solomon2 and Cordeau1. For these instances, the number
of vehicles was set to the minimum number of vehicles required to serve all
customers. Hence, the optimal value of the objective function can be derived in
a straightforward way.

Our solution approach was implemented in C++. All experiments where
carried out on a Xeon CPU at 3.1 GHz with 32 GB of RAM, which was shared
with 7 other CPUs. If not noted otherwise, all reported CPU times are in seconds.
Due to the stochastic nature of our algorithm, we report both the best and
average solution found within five independent runs.

In the following, we will provide a comprehensive sensitivity analysis with
respect to different parameter settings and proposed operators. We then com-
pare the results against the following state-of-the-art algorithms available in
the literature: the ant colony (ACO) system developed by [14], the iterated
local search (ILS) algorithm proposed in [24], a variable neighborhood search
(VNS) by [23], a hybrid evolutionary local search algorithm which has been com-
bined with a greedy randomized adaptive search procedure (GRASP, see [11]),
the slow version of the heuristic based on SSA by [12], the LP-based granular
variable neighborhood search (GVNS) developed by [10], the iterative three-
component heuristic (I3CH) by [9], the iterative local search as presented by [7]
and the iterative local search combined with SA as discussed by [6]. Detailed
results for the latter are available from the Orienteering Problem Library at
http://centres.smu.edu.sg/larc/orienteering-problem-library/.

4.2 Overall Results

First, we present aggregated results across the various sets of instances. For
these instances, our LNS has been parameterized as follows. In every iteration,
we destroy up to d = 40% of the current solution. Nodes to be removed are evalu-
ated according to the resulting reduction in travel time upon removal (TT-based
destroy operator). We evaluate the consequences upon removal of sequences of
nodes. Then, the sequence is selected for removal in a biased way, the probabil-
ity of being selected for removal being proportional to the resulting reduction in
travel time. In the following repair step, we add nodes depending on a combina-
tion of their squared potential with a lookahead of l = 1 and the corresponding
increase in travel time (POT 2/TT -based repair operator). The node to be in-
serted is selected in a greedy way, thereby selecting the node with the highest
potential (POT operator). The run time limit has been set to N = 100, 000 it-
erations, and we perform R = 100 iterations without improved solutions before
we reinitialize the current solution. Justification of all parameter settings is pro-
vided in Sect. 4.3. Note that we have investigated combinations of all reasonable
parameter settings in a preliminary study to derive the optimal settings.

In Tables 1 and 2, the set column denotes the type of instances that have
been aggregated. BKS reports the average of the best known solutions available
so far, Best reports the average of the best solution found per instance across the
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entire set of instances, and Avg gives the average objective function value found
by our algorithms. The latter are shown in bold if they meet or are superior
to the BKS. CPUf and CPUt give the average run times required (in seconds)
to find the solution and the run time in total, respectively. Detailed results for
each underlying instance can be found in the electronic appendix at https:

//goo.gl/jjOvU2.

For the case of one vehicle (OP, Table 1,m = 1), we can find the BKS for all of
the Solomon1 instances and for most of the Solomon2 instances. Average CPU
times are very reasonable: about 1-2 seconds for the Solomon1 instances, 16-30
seconds for the Solomon2 instances, 12 seconds for Cordeau1 and 33 seconds for
the Cordeau2 instances on average. Generally, the Cordeau instances are more
challenging to solve than the Solomon instances. For instances considering two
vehicles (m = 2), the best solutions obtained by our algorithm are the same
as BKS for RC1, C2 and R2. They are quite close for the remaining Solomon
instances. The average gap is 0.1-0.2% for the Solomon and 1.0-2.6% for the
Cordeau instances. Run times are between about 20 seconds (RC1) and 135
seconds (Cordeau2 ) on average.

Table 1: Aggregated Results Averaged over Various Instance Sets
set BKS Best Avg CPUf CPUt set BKS Best Avg CPUf CPUt

Solomon1, m = 1 Solomon2

C1 366.67 366.67 366.67 1.4 19.0 C2 932.50 932.50 931.75 3.4 47.0
R1 281.92 281.92 281.73 2.1 15.2 R2 1002.36 1003.45 1001.00 30.8 65.6
RC1 265.38 265.38 264.60 0.6 10.5 RC2 959.25 957.38 954.88 16.0 47.2

Cordeau1 Cordeau2

1-10 462.90 462.30 461.82 11.9 40.1 11-20 534.10 525.10 521.14 33.4 67.5

Solomon1, m = 2 Solomon2

C1 673.33 672.22 672.00 5.6 30.6 C2 1478.75 1478.75 1475.75 6.4 63.5
R1 510.83 510.08 509.27 8.0 25.5 R2 1410.45 1413.55 1410.40 22.9 42.2
RC1 510.50 510.50 510.25 3.2 20.6 RC2 1566.25 1569.25 1563.20 30.2 52.5

Cordeau1 Cordeau2

1-10 850.00 844.60 840.12 50.1 85.0 11-20 952.70 934.70 925.04 85.9 135.1

Solomon1, m = 3 Solomon2

C1 921.11 920.00 916.44 11.5 40.5 C2 1810.00 1810.00 1810.00 0.3 0.3
R1 717.17 716.58 715.38 12.5 35.3 R2 1456.45 1456.36 1456.16 1.2 4.9
RC1 736.25 736.13 733.58 10.9 30.2 RC2 1720.13 1719.13 1718.25 5.8 14.8

Cordeau1 Cordeau2

1-10 1159.60 1147.80 1139.00 81.6 124.2 11-20 1271.80 1244.30 1233.78 111.4 191.7

Solomon1, m = 4 Solomon2

C1 1136.67 1128.89 1123.33 18.6 48.5 C2 1810.00 1810.00 1810.00 0.0 0.0
R1 892.42 891.50 889.35 18.3 42.7 R2 1458.00 1458.00 1458.00 0.0 0.0
RC1 944.25 943.50 941.15 12.1 37.7 RC2 1724.00 1724.00 1724.00 0.0 0.1

Cordeau1 Cordeau2

1-10 1407.10 1379.00 1366.10 92.7 156.1 11-20 1526.00 1481.00 1467.22 137.7 234.8

With increasing number of vehicles (m = 3), we can still determine the
BKS for all Solomon and C2 instances. For the remaining Solomon instances,
the gap is negligible. Cordeau instances show a gap that is similar to results
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with two vehicles. Run times increase for Solomon1, Cordeau1 and Cordeau2
instances, but decrease heavily for Solomon2 instances. For instances considering
four vehicles (m = 4), all BKS of Solomon2 could be found in a very short run
time. The average gap for Solomon1 remains small (about 0.6%), while the gap
for Cordeau1 and Cordeau2 increases up to 3.3%. Again, the Cordeau instances
are harder to solve and require more run time for the same number of iteration.

Table 2 presents the average results for the VanSteenwegen instances. Note
that for these instances, the number of vehicles was set to the minimum number
of vehicles required to service all customers. For the majority of instances, we are
able to determine the BKS – except for Cordeau1 instances, where we observe
an average gap of 1.2%.

Table 2: Aggregated Results Averaged over Vansteenwegen Instance Sets with
Minimum Number of Vehicles

set BKS Best Avg CPUf CPUt set BKS Best Avg CPUf CPUt

C1 1810.00 1810.00 1810.00 1.50 1.52 C2 1810.00 1810.00 1810.00 0.00 0.03
R1 1449.58 1449.58 1447.32 24.04 45.38 R2 1458.00 1458.00 1457.91 5.91 9.68
RC1 1719.00 1719.00 1717.28 25.34 39.08 RC2 1724.00 1724.00 1724.00 2.59 2.62
1-10 2270.40 2259.00 2255.90 89.12 154.86

4.3 Parameter Settings

In the following, we investigate and justify the parameter settings obtained for
the computation of above results.

Selection of Destroy and Repair Operators We proposed five different
destroy and repair operators (see Sect. 3.2 and 3.3). They differ in the way
consequences upon removal or insertion of nodes are evaluated. We tested all
resulting 25 combinations of destroy and repair operators in order to identify
the best possible combination for the given benchmark instances (see Table 3).
We show average objective function values of the best solutions found (columns
“best”) as well as averages of all solutions obtained (columns “Avg”). For both
cases, the combination of a TT-based destroy operator and POT 2/TT -
based repair operator yields the best overall results.

Procedure of Selection Operator When selecting the nodes to be inserted
into or removed from the current solution, we tested three variants on how to
choose them based on the estimated consequences. Table 4 presents the average
results of all combinations of selection procedure of destroy and repair operators.
For both average solution values of best solutions obtained and all solutions, the
biased selection of customer nodes for removal and the greedy repair yield
the best results.
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Table 3: Identifying the Best Combination of Destroy and Repair Operators
Best Avg

Destroy / Repair P TT POT POT/TT POT2/TT P TT POT POT/TT POT2/TT

Profit (P) 999.13 1001.29 1000.50 1002.45 1002.95 995.09 997.70 998.08 999.75 1000.36

Travel Time (TT) 1000.50 1001.50 1002.09 1002.79 1003.36 997.41 997.85 1000.32 1000.19 1001.20
Potential (POT) 999.00 1001.02 1000.55 1002.73 1003.20 995.66 997.76 998.26 1000.12 1001.07
POT/TT 999.11 1001.61 1001.04 1002.73 1003.09 995.94 998.10 998.51 1000.12 1000.81

POT2/TT 999.20 1001.43 1000.68 1002.79 1003.05 995.28 997.28 998.35 1000.11 1000.48

Table 4: Identifying the Best Selection Procedure when Using Destroy and Repair
Operators

Best Avg

Destroy / Repair Random (R) Greedy (G) Biased (B) Random (R) Greedy (G) Biased (B)

Random (R) 987.71 1003.04 1000.41 981.20 1000.50 996.79
Greedy (G) 983.25 995.27 994.63 973.58 988.11 987.08
Biased (B) 991.43 1003.36 1001.41 985.56 1001.20 997.84

Degree of Destruction An important issue for the parameterization of our
LNS is the degree of destruction of a solution for further improvement. We in-
vestigated the resulting solution quality and run time when varying the degree
of destruction d between 10% and 100%. Table 5 shows the corresponding re-
sults. As can be observed from the table, CPU times increase significantly with
increasing degree of destruction, since this requires increasing efforts of repairing
a solution. As can be seen from the table, for the given instances, the optimal
degree of destruction is at 40%. For this value, the obtained solution qual-
ity is best in terms of the average solution quality as well as the average best
solution per instance found, while run times still remain at an acceptable level
(on average: 12.8 seconds until the solution could be found/38.2 total run time).

Table 5: Effects of Varying d when Destroying Solutions

d 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Best 1001.04 1002.57 1002.86 1003.36 1002.93 1003.29 1002.86 1002.50 1002.64 1002.32
Avg 997.26 999.89 1000.52 1001.20 1001.11 1000.89 1001.15 1000.58 1000.60 1000.23
CPUf 7.8 8.1 10.7 12.8 15.0 19.0 23.1 26.8 27.2 33.6
CPUt 19.3 24.6 30.6 38.2 45.0 53.0 63.9 73.0 82.5 91.6

Length of Removal As described in Sect. 3.2, we propose to remove sequences
of nodes rather than individual nodes. To prove the effectiveness of this approach,
we designed the following experiment: Rather than removing subsequences (of
dynamic length) of nodes, we also removed them individually. With a slightly
superior solution quality than removing single nodes, removing sequences of
nodes leads to better results, both in terms of average and best solutions found,
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and also reduces the required run time (avg: 1001.20 vs. 999.26; best: 1003.36
vs. 1002.41; CPUt: 38.2 vs. 51.0).

Lookahead of Potential For the operator POT , we propose to identify the
potential of inserting up to o nodes additionally upon destroying or repairing the
current solution. In order to identify how many nodes o should be considered,
we varied our lookahead parameter between o = 1 and o = 3. Table 6 shows
the corresponding results of this experiment. The variant with o = 1 works
best. Note that the run time increases significantly when we consider o > 1 due
to the increasing number of subsets of nodes to be investigated. We have not
investigated o = 0, since this would correspond to the profit of a single node
(and the proposed operator P).

Table 6: Effects of Varying Lookahead o of Potential

o 1 2 3

Best 1003.36 1003.09 1001.77
Avg 1001.20 1000.94 1000.43
CPUf 38.2 137.9 747.9
CPUt 12.8 36.3 154.6

4.4 Comparison with other Algorithms

Many related TOPTW papers base their experiments on the same set of in-
stances, which allows for a comparison of the number of BKS obtained by the
corresponding algorithm. Table 7 shows the percentage of BKS obtained by most
recent TOPTW algorithms at the time they were published compared to the
number of BKS our algorithm could obtain. For the cited papers, all Solomon
and Cordeau instances have been considered with a fixed number of vehicles
(m = 1/2/3/4). We can see from the table that our LNS framework can pro-
vide the largest proportion of BKS for the benchmark instances compared with
most recent algorithms. Our algorithm seems to be especially beneficial for the
instances with two vehicles (m = 2). Although our algorithm can provide good
solutions in a very short runtime, note that we could not compare the runtimes
here due to varying computational environments.

5 Conclusion & Outlook

In this paper, we proposed a simple but effective LNS framework including neigh-
borhood operators especially developed for the characteristics of the TOPTW.
We presented smart ideas of destroying and repairing solutions, which turned
out to be quite effective for the majority of well-known benchmark instances. In
particular, we were able to provide 17 new BKS, and our algorithm was able to

An Effective Large Neighborhood Search for the Team Orienteering Problem 15



Table 7: Percentage of BKS obtained by Different Algorithms, extending [8]

Reference Algorithm Percentage of best known solutions Average
m=1 m=2 m=3 m=4

Labadie et al. (2011) GRASP-ELS 50.0 21.1 32.9 46.1 37.5
Lin and Yu (2012) SSA 51.3 34.2 39.5 56.6 45.4
Labadie et al. (2012) GVNS 36.8 30.3 40.8 44.7 38.2
Souffriau et al. (2012) GRILS 51.3 15.8 22.4 39.5 32.3
Hu and Lim (2014) I3CH 43.4 34.2 57.9 55.3 47.7
Cura (2014) ABC 48.7 36.8 46.1 48.7 45.1
Gunawan et al. (2015b) ILS 68.4 51.3 56.6 55.3 57.9
Gunawan et al. (2015a) SAILS 67.1 50.0 57.9 53.9 57.2

Schmid & Ehmke (2017) LNS 82.9 71.1 65.8 60.1 70.0

provide about 70% of current BKS at reasonable run times. For future research,
we would like to consider a variant of the metaheuristic that automatically tunes
the parameter d, i.e., a framework that automatically balances between diversi-
fication and intensification. Furthermore, we think it would be fruitful to extend
our solution framework to a parallel version. Considering GPU computing tech-
niques might also be worthwhile in order to improve the efficiency and effective-
ness of our LNS. Finally, it would be interesting to compare the performance of
the metaheuristic with commercial solvers like CPLEX.
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Abstract. This paper addresses the Clustered Orienteering Problem, a
recent variant of the Orienteering Problem. In this variant, customers are
grouped into subsets called clusters. A profit is assigned to each cluster
and is collected only if all customers belonging to the cluster are served.
The objective is to visit the customers of a subset of clusters in order to
maximize the total collected profit with respect to a travel time limit. Our
solution method is based on the order first-cluster second approach. It
incorporates a split procedure that converts a giant tour into an optimal
solution. Experiments conducted on benchmark instances show that our
algorithm outperforms the existing methods in the literature. Actually,
we have found the best known solution for 916 instances from 924 with
strict improvement of 82 instances.

Keywords: Clustered Orienteering Problem · Adaptive Large Neigh-
borhood Search · Branch and Bound · Knapsack Problem

1 Introduction

The Orienteering Problem (OP) is a well studied variant of the Traveling Sales-
man Problem (TSP). In the OP, a profit is associated with every customer to
represent the value of service, and the aim is to select a subset of customers to
visit in order to maximize the total collected profit without exceeding a prede-
fined travel time limit.

Recently, a new generalization of the OP was introduced by Angelelli et al.
[1] called the Clustered Orienteering Problem (COP). In this problem, customers
are grouped into subsets called clusters. Unlike the OP, profits are associated
with the clusters instead of the customers. The profit of a given cluster is gained
only if all of its customers are served.

A COP instance, that we denote by ICOP , is modeled as a complete undi-
rected graph G = (V,E) where V = {1, . . . , n} ∪ {0} is the set of vertices repre-
senting customers and the depot, and E is the set of edges. A cost c(e) is assigned
to each edge e ∈ E which represents the travel time needed to cross e. We assume
that travel times satisfy the triangle inequality. A cover S = {S1, S2, . . . , SK} is
a set of K clusters where ∪K

i=1Si = V \{0}. Each customer can belong to more
than one cluster. A profit Pi is associated with each cluster Si which is collected

. Split
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only if customers belonging to cluster Si are all served. One vehicle is available to
serve customers with a maximum travel time Tmax. It is noteworthy to mention
that there is no requirement on the order of visits, i.e. a vehicle can alternate
the visits between customers belonging to different clusters.

Fig.1 shows a feasible COP solution for an instance where |S| = 3, |V | = 9.
Customers with two circles means that they belong to two clusters. In this so-
lution, only the customers of cluster S2 and cluster S3 are served.

Fig. 1: Example of COP solution

The interest in the COP arises in many real-life applications that can be
modeled as variants or generalizations [1]. One of the applications of the COP
is when customers are grouped into clusters according to their geographical
locations, and a profit is gained only if all customers belonging to a particular
area are served. Another example is in the distribution of mass products, where
customers are supply chains that contain many retailers. In the case where a
contract is made between a carrier and a supply chain, the carrier should serve
all the retailers of that supply chain.

Angelelli et al. [1] proposed an exact and a heuristic method to solve the COP.
The exact method is a branch and cut algorithm based on the OP formulation
proposed in Fischetti et al. [4]. Angelelli et al. [1] solved a linear relaxation of the
model without subtour elimination constraints. These constraints are added to
the model once violated. The branch and cut algorithm is able to solve optimally
small and medium-sized instances. To tackle large-scale instances, Angelelli et al.
[1] proposed a heuristic method based on tabu search (TS). TS used an ordered
set of insertion and removal moves. Each time a cluster is inserted, TS used a
TSP heuristic called Lin-Kernighan heuristic [5] to check the move feasibility.

In this paper, we propose a hybrid heuristic scheme based on the order first-
cluster second approach [8] to solve the COP. The first component is a meta-
heuristic scheme called Adaptive Large Neighborhood Search (ALNS) heuristic,
whose aim is to generate giant tours with good quality. The giant tours are then
provided to the second component which is a split procedure in order to extract
solutions with better profit. The split is based on a branch and bound algorithm
that incorporates a knapsack-based upper bound to fathom inferior nodes.

The remainder of this paper is as follows. The global scheme of the proposed
heuristic is introduced in Section 2. The ALNS heuristic is detailed in Section 3.
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sented in Section 5. Finally, we conclude by some remarks in Section 6.

2 Heuristic global scheme

In the last decade, numerous heuristics based on the order first-cluster second
approach have been proposed for the VRP and its variants [8]. This approach
consists of two phases: the ordering phase in which a giant tour covering all
customers is constructed. In the second phase, a split procedure is used to extract
the optimal solution while respecting the predefined order of customers. The first
split method was introduced by Beasley in [2] for the CVRP. Then, this method
was incorporated within a genetic algorithm by Prins in [7].

For selective VRP, in most cases it is impossible to serve all the customers
due to the travel time limit. Thus, the objective of a split procedure is to se-
lect a subset of customers that satisfies the objective function. Vidal et al. [10]
and Vargas et al. [9] studied some selective problems like the Team Orienteer-
ing Problem, Capacitated Profitable Tour Problem, Covering Tour Problem,
etc. while considering the giant tour. Vidal et al. [10] modeled the problem as
a resource constrained shortest path. To solve the problem, they proposed an
efficient split procedure based on dynamic programming in order to maximize
the total collected profit. Vargas et al. [9] used also in their heuristic a dynamic
programming based split to minimize the total travel time. For more detailed
literature on the order first-cluster second approach, we reffer the reader to [8].

Our solution method adopts also the order first-cluster second approach. Al-
gorithm 1 describes the global scheme of our heuristic. It is composed of two
main components: an ALNS metaheuristic and a split procedure. The ALNS
generates solutions with good quality in a short time (line 4). From a given
solution, a giant tour is constructed by randomly inserting the unrouted cus-
tomers (line 5). Then, the giant tour is given to the split procedure in order to
extract a solution with better profit (line 6). We use in Algorithm 1 Eval(X)
to denote the profit of a solution X. This process is iterated until a stop con-
dition is reached. In our algorithm, we consider two conditions: the first one is
the maximum number of iterations which is fixed at n, where n is the number
of customers. The second stop condition is the maximum number of iterations
without improvement, which is fixed at the average number of customers per
cluster.

3 Adaptive large neighborhood search

The main feature of the ALNS is the use of multiple neighborhoods in parallel
during the search process [6]. These different neighborhoods are identified by a
set of competing removal and insertion operator. An operator is defined as a fast
heuristic that explores a large part of the neighborhood in a polynomial time. In
each iteration, the algorithm selects a removal and an insertion operator based
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Algorithm 1: Global scheme

Input: Solution X
Output: Solution Xbest

1 Xbest ← X
2 LB ← Eval(X)
3 repeat
4 ALNS(X)(see Section 3)
5 Construct a giant tour GT from X
6 X ← SPLIT (GT,LB)(see Section 4)
7 if (Eval(X) > Eval(Xbest)) then
8 Xbest ← X
9 LB ← Eval(X)

10 until (stop condition is reached)
11 return Xbest

on statistics gathered during the search process. This characteristic improves the
flexibility of the heuristic to tackle a wide variety of instances.

Our ALNS scheme includes one removal operator and a set of three insertion
operators. We use a local search operator called 2-opt to improve the travel time
of the current solution. This operator is called at each iteration between the
removal and the insertion operator.

Random removal operator

This operator selects a random number of clusters between 1 and dmax and
removes their customers from the current solution. Note that customers which
are shared with other clusters in the solution are not removed. The worst-case
complexity of this operator is O(n ∗K).

The parameter dmax is a diversification/intensification parameter. If it is
small, the heuristic tries to intensify the search in a limited neighborhood. On
the other hand, if dmax is large, it helps the heuristic to modify a large part of
the solution in order to escape from local optima. In our heuristic, dmax is set
to initial value equal to 3, then it is increased by 1 after each iteration without
improvement. Note that dmax must not exceed the current number of routed
clusters. Once the current solution is improved, dmax is set to 3.

Insertion operators

Insertion operators are incorporated in a global scheme that inserts unrouted
clusters one by one in the current solution. A cluster is unrouted if and only if
at least one of its customers is unrouted. At each iteration, an unrouted cluster
is randomly selected, then its unrouted customers are identified (probably some
of its customers have been already inserted) and given to one of the insertion
operators. The process is iterated until either no further insertions are possible
or all the clusters are inserted.
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Best insertion operator (BIO): This operator evaluates all feasible inser-
tions for each unrouted customer. Then the best insertion with the smallest
travel time gap is selected. The process is iterated until either all customers are
inserted or the solution cannot accept other customers. The complexity of this
operator is O(n3).

Insertion with regret Operator (IRO): IRO evaluates all feasible insertions
for each unrouted customer. Then, it calculates the gap in terms of travel time
between the two best insertions of each customer. We call this gap as regret. Then
it selects the customer with the highest regret and inserts it in the solution. The
process is iterated until either all customers are inserted or no customer can be
added to the solution. The complexity of this operator is O(n3).

Random Best Insertion Operator (RBIO): RBIO randomly selects one
unrouted customer then evaluates all of its feasible insertions that respect the
travel time limit. The best insertion is then selected. The process is iterated until
either all customers are inserted or no customer can be added to the solution.
The complexity of this operator is O(n2).

Adaptive weight adjustment

An important aspect of the ALNS is the dynamic weight adjustment carried out
during the search process. Weights are associated with insertion operators and
are initialized using the same value. Then, these weights are dynamically changed
during the search progress according to the performance of each operator. The
aim is to give larger weights to operators which have contributed better to the
solution process. The criteria used to measure how much an operator contributes
during the search process is based on the quality of the solution found after each
iteration:

– if it is a new best solution, it gives a large weight to the operator.
– if it is better than the current solution, it gives a medium weight to the

operator.
– if it is worse than the current solution, it gives a small weight.

For more details about the update procedure, the reader is referred to Pisinger
and Ropke [6].

4 Split procedure

We propose in the following a split procedure based on a branch and bound
scheme. The aim of the split is to find the subset of clusters that maximizes the
collected profit while respecting the order of customers in π and the travel time
limit. Before detailing our split procedure, let us first introduce a preliminary
result. This result is used afterwards in the upper bound.
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Algorithm 2: ALNS

Input: Solution X
Output: Solution Xbest

1 dmax ← 1 + rand()%3
2 Xbest ← X
3 repeat
4 Remove dmax clusters from X
5 Apply 2-opt on X
6 Select an insertion operator i
7 Apply i on X
8 if (Eval(X) > Eval(Xbest)) then
9 Xbest ← X

10 dmax ← 1 + rand()%3

11 else dmax ← dmax + 1
12

13 Update weights using the adaptive weight adjustment procedure

14 until (stop condition is reached)
15 return Xbest

4.1 Preliminary result

In this subsection, we present a relaxation scheme for the COP based on the OP.

Definition 1. Given a COP instance ICOP . We define an OP associated in-
stance IOP composed of the same set of vertices V = {0, 1, . . . , n} and the
same set of edges E. Profits of customers in IOP are computed as follows:

ρj =
∑

i:j∈Si

Pi

|Si| . In fact, the ratio
Pi

|Si| could be interpreted as the contribu-

tion of the customer j to the cluster Si. Finally, the maximal travel time is
Tmax.

Proposition 1. For any COP instance ICOP , the optimal objective value of the
associated OP instance, IOP , represents an upper bound on the profit of ICOP .

Proof. We prove in the following that the optimal solution of a given ICOP is
a feasible solution for IOP with a profit lower than or equal to the optimal
objective value of the IOP .

Assume that S∗ is the set of clusters of the optimal solution of ICOP with
a total collected profit Pcop(S

∗) =
∑

i:Si∈S∗ Pi = P ∗
cop(ICOP ). Let V ∗ be the

set of customers belonging to S∗. It is obvious that this optimal solution is a
feasible solution for the IOP and its profit is Pop(V

∗) =
∑

j∈V ∗ ρj . We denote
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by P ∗
op(IOP ) the optimal objective value for IOP .

Pop(V
∗) =

∑

j∈V ∗
ρj =

∑

j∈V ∗

∑

i:j∈Si

Pi

|Si|

=
∑

j∈V ∗

∑

i:j∈Si andSi∈S∗

Pi

|Si| +
∑

j∈V ∗

∑

i:j∈Si andSi /∈S∗

Pi

|Si|

= Pcop(S
∗) +

∑

j∈V ∗

∑

i:j∈Si andSi /∈S∗

Pi

|Si|

= P ∗
cop(ICOP ) +

∑

j∈V ∗

∑

i:j∈Si andSi /∈S∗

Pi

|Si| (1)

We conclude that an optimal solution for ICOP is feasible for the IOP . Further-
more, P ∗

cop(ICOP ) = Pcop(S
∗) ≤ Pop(V

∗) ≤ P ∗
op(IOP ). ��

Let us consider now a giant tour π = (π1, π2, ..., πn) that covers all the
customers of ICOP . The giant tour π imposes an order of visit among all the
customers of ICOP . This can be seen as a derived instance I ′COP , in which arcs
that do not respect this ordering are not considered. The following corollary
holds.

Corollary 1. Given a COP instance ICOP , its associated instance IOP and a
giant tour π. The optimal objective value of IOP while considering π represents
an upper bound on the optimal objective value of ICOP w.r.t. to π.

4.2 Principle of the split

The goal is to calculate a partial sequence σ that visits the customers of a subset
of clusters in order to maximize the total collected profit while preserving the
original order of customers in π. To that end, the branch and bound algorithm
explores a search tree generated according to decisions made on clusters.

In the root node, an arbitrary order of branching is established among clus-
ters. In each node of the search tree, the possible decision that can be made
regarding a given cluster is whether it is selected or rejected. This leads to a
binary search tree with at most 2K+1 − 1 nodes.

Several components are embedded within the branch and bound algorithm
in order to achieve high performance. These components include in addition
to the branching scheme, a suitable node selection strategy, an upper bound
to fathom inferior nodes, a feasibility test to discard unfeasible nodes. In what
follows, we describe the different components implemented in our branch and
bound algorithm.

Before proceeding further, we distinguish in each node η three subsets of
clusters: the selected clusters denoted by Sη

s , the removed clusters denoted by
Sη
r and the potential clusters denoted by Sη

p representing the remainder set of
clusters on which decision has not been made yet.
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4.3 Knapsack-based upper bound

Vargas et al. [9] proposed a dynamic programming split procedure that incor-
porates a lower bound based on the Fractional Knapsack Problem (FKSP). We
propose in this paper an upper bound that is also based on the FKSP. We make
use of the cluster constraint in order to improve this upper bound.

Given a giant tour π and a node η in the branch and bound tree. We consider
the Knapsack instance IFKSP in which we associate an item to each potential
customer. A customer is considered as potential if it belongs at least to one of
the potential clusters Sη

p and does not belong to any of the selected clusters Sη
s .

The profit of a given item/potential customer πj is calculated using Def-
inition 1. Note that to calculate these profits in a node η, we consider only
contributions related to potential clusters Sη

p and we discard those related to
removed clusters Sη

r . Consequently, in a given node η and for a given potential

customer πj , we have: ρηπj
=

∑
i:πj∈Si and Si∈Sη

p

Pi

|Sη
i |
, where |Sη

i | is the number

of potential customers belonging to cluster Si in the node η.
The weight wη

πj
of the item/potential customer πj in a given node η is mod-

eled by the minimal insertion cost. Assume that Iηj is the set of all valid in-
sertion positions composed of a predecessor and a successor of πj in π, i.e.
Iηj = {(πl, πr)|l < j < r, πl, πr ∈ Sη

s ∪ Sη
p}. Thus the minimal insertion cost is

calculated as wη
πj

= min{c(πl, πj) + c(πj , πr) − c(πl, πr)|(πl, πr) ∈ Iηj }, where
c(πl, πr) is the travel time between customers πl and πr.

To model the knapsack size W η, we proceed as follows. We consider the par-
tial sequence that contains the customers of the selected clusters Sη

s . AssumeD is
the travel time needed to go from the depot, visit all these customers and return
back to the depot. W η is modeled as the residual distance, i.e. W η = Tmax −D.

Proposition 2. Given a giant tour π and a node η in the branch and bound
tree, the optimal objective value of the IFKSP previously defined represents an
upper bound on the profit of the ICOP while considering π and η.

Proof. Given a giant tour π covering all the customers of ICOP and a node η.
We construct FKSP instance IFKSP in which, each item/ potential customer
πj has a weight wη

j and a profit ρηπj
. According to Corollary 1, an upper bound

on IOP is also an upper bound on the ICOP while considering π and η. In the
following, we prove that the optimal solution of IFKSP is an upper bound on
IOP while considering π and η.

Assume ση is the optimal partial sequence in the node η and δη(πj) is the
insertion cost of the customer πj in ση. According to the definition of the minimal
cost insertion, we observe that wη

j ≤ δη(πj) for any potential customer πj in Sη
p .

Consequently, the optimal solution for the IFKSP is an upper bound on the
profit of IOP while considering π and η. ��

Each customer can have n2 possible insertion positions. In the following, we
propose to reduce this number. Assume that πj is a potential customer and
(πl, πr) ∈ Iηj is a possible insertion position. This couple of customers must
satisfy the following rules.
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– The first rule is that (πl, πr) must not skip any visited customer, i.e. (πl, πr)
is considered only if:

� ∃j′/(l < j′ < j or j < j′ < r) and πj′ ∈ Sη
s (2)

– The second rule is that for any skipped customer, its cluster set must not
include the cluster set of any of the involved customers in the insertion (πl, πr

or πj). Let us define Ω(i) as the set of clusters which customer i is included
in, i.e. (πl, πr) is considered only if:

� ∃j′/(l < j′ < j or j < j′ < r)

and (Ω(πl) ⊆ Ω(πj′) or Ω(πr) ⊆ Ω(πj′) or Ω(πj) ⊆ Ω(πj′)) (3)

For computational efficiency, the best insertion for each customer is pre-
computed beforehand and saved. Each time a cluster is selected or rejected, this
list of possible insertions is updated.

4.4 Feasibility check

Feasibility check (FC) is done every time a potential cluster is selected. This
is done by computing the length of the partial sequence that contains only the
customers of the selected clusters while considering the given order of the giant
tour. If the length of this partial sequence exceeds Tmax, and due to the triangle
inequality, node η can be pruned. The complexity of this test is O(n).

4.5 Local search procedure

We propose to improve the split procedure by integrating a Local Search heuristic
(LS). The LS uses some relevant information from the enumeration tree in order
to explore efficiently the search space alongside with the branch and bound. The
solution value obtained by LS is used also as a lower bound in the branch and
bound.

Each time the LS is called in a given node η, it considers only the selected
and the potential sets of clusters Sη

s ∪ Sη
p . The LS consists of two phases: a

destruction phase which is used as a perturbation technique. It removes a small
number of clusters from the current solution. This number is chosen randomly
between 1 and 3.

The second phase is a constructive heuristic which tries to insert clusters
one by one until either the solution cannot accept additional clusters or there is
no clusters left. It randomly selects in each iteration one unrouted cluster and
tries to insert its customers in the current solution. To check the feasibility of
a cluster insertion, this procedure calls an Iterative Destructive Constructive
Heuristic (IDCH) proposed in [3]. If IDCH fails to insert the customers, the
Lin-Kernighan TSP heuristic [5] is used (see Algorithm 3).
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Algorithm 3: Iterative insertion

Input: Solution X
Output: Solution X

1 Δ ← unrouted clusters of X
2 insert ← true
3 while (Δ �= ∅ and insert = true) do
4 insert ← false
5 foreach (k ∈ Δ) do
6 if (IDCH(X, k) = true) then
7 Δ ← Δ\{k}
8 insert ← true
9 break

10 else if (LinKernighan(X, k) = true) then
11 Δ ← Δ\{k}
12 insert ← true
13 break

14 Δ ← Δ\{k}
15 return X

4.6 Beam search

When the number of clusters becomes large, computational time dramatically
increases. To cope with this problem, we propose to limit the number of nodes
generated during the search process. The main idea is to explore the search tree
using a breath-first search (BFS) and impose a limit on the number of nodes
expanded in each level of the tree. Consequently, this scheme does not guarantee
that the solution found is optimal. It is important to select in each level the
most promising nodes to be expanded, so that a good-quality solution could be
found. To this end, we use the knapsack upper bound described in Section (4.3)
as a selection criteria. Another important aspect is the number of nodes selected
at each level. This parameter was fixed after experimentation at K nodes per
level.

Algorithm 4 describes the whole split procedure. We use in Algorithm 4 two
ordered lists, one is the active list, and the second is temporary. The lower bound
LB is initialized by the best objective value obtained by the global heuristic.

5 Computational results

Our heuristic is coded in C++ using the Standard Template Library (STL) for
data structures. Experiments were conducted on a computer with Intel Xeon
X7542 CPU@2.66 GHz and a Linux OS 64 bits.

In order to verify the efficiency of our approach, we used benchmark instances
designed in [1]. The benchmark is derived from 57 instances of TSPLIB with the
number of vertices ranging from 42 to 532. For each base instance of TSPLIB, a

28 A-E. Yahiaoui et al.



Algorithm 4: SPLIT

Input: giant tour GT , Lower bound LB
Output: best solution Xbest

Data: Ordered lists of size K: actList, tmpList
1 Initialization: ordered list of the clusters Order used as branching strategy,

current level L ← 0, current node e ← 0, actList ← e, tmpList ← ∅
2 while (actList �= ∅ and L < K) do
3 Select the best node e in actList based on Knapsack UB (See Section 4.3)
4 Expand e to two nodes e1 and e2 based on Order(L) (See Section 4.2)
5 foreach (e ∈ {e1, e2}) do
6 if (e is infeasible) then continue (See Section 4.4)
7 if (Knapsack UB of (e) ≤ LB) then continue (See Section 4.3)
8 tmpList ← tmpList ∪ {e}
9 Extract solution X from e

10 Apply Local Search on X (See Section 4.5)
11 if (Eval(X) > Eval(Xbest)) then
12 Xbest ← X
13 if (Eval(X) > LB) then LB ← Eval(X)

14 if (actList = ∅) then
15 actList ← tmpList
16 tmpList ← ∅
17 L++

18 Select the best node e in actList based on Knapsack UB (See Section 4.3)
19 Extract solution X from e
20 if (Eval(X) > Eval(Xbest)) then Xbest ← X
21 return Xbest

set of derived instances for the COP is constructed according to different values
assigned to the following parameters:

1. Number of clusters: It varies between the values 10, 15, 20 and 25.

2. Profits of clusters: Two models are used, the first is deterministic while the
second is random.

3. Tmax: Given TSP ∗ the optimal value of TSP over all vertices of the base
instance, Tmax is set to the values 1

2TSP
∗ and 3

4TSP
∗.

As a result, 16 different instances are derived from each TSP instance. Further-
more, 12 other instances are added to the biggest class with 532 vertices. These
instances have a larger number of clusters (50, 75 and 100). Thus, the total
number of instances is 924. The instances can be found at the following URL:
http://or-brescia.unibs.it/. For detailed description of instance generation, the
reader can refer to Angelelli et al. [1].

Hybrid Heuristic for the Clustered Orienteering Problem 29



5.1 Parameter setting

The execution of the LS procedure inside the branch and bound algorithm seems
to be expensive in terms of computational time. In order to reach the best per-
formance of our algorithm in terms of solution quality and computational time,
we propose to tune the number of calls of the LS procedure inside the branch
and bound algorithm. We call this parameter NLS . In our experiments, NLS

takes different values of k × Cavg where (k = 1, 10, 20, 30, 40). Cavg represents
the average number of customers per cluster. We carried out these experiments
on a representative sample composed of 22 instances. These instances are cho-
sen between the most difficult ones for which high values of NLS are needed to
obtain solutions with good quality.

To measure the performance of each configuration, we used the relative gap
to the best solution found in the literature, denoted by RPE and the average
CPU time. To calculate the RPE, we recorded the Best Known Solution for each
instance (Zbest), and also we recorded the maximal score (Zmax) realized by our
heuristic. The relative percentage error RPE of a given instance using (4).

RPE =
Zbest − Zmax

Zbest
× 100 (4)

According to Fig. 2, the value 20× Cavg gives the best compromise in terms of
RPE and CPU time. In fact, the RPE tends to stabilize at a value near to zero
when the NLS exceeds 20×Cavg, whereas the CPU time continues to increase.
As a result, we set NLS at 20× Cavg.g

Fig. 2: Performance of our heuristic with different values of NLS
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5.2 Performance comparison

Results achieved by our algorithm are compared to the different versions of tabu
heuristics proposed in [1]. Three versions of tabu were presented: COP-TABU-
Basic, COP-TABU-Multistart and COP-TABU-Reactive.

Table 1. shows the results organized per class of instances. As described
earlier, each class is composed of 16 instances, except the last one (att532), which
is composed of 28 instances. We run our algorithm 10 times per instance as in
[1]. For each method, we provide the number of instances per class for which the
Best Known Solution was found (BKS). We report also the relative percentage
error per class (CRPE) which is the average RPE per class of instances. The
average CPU time (CPU) for each class is compared to the best results of each
heuristic.

The results show clearly that our algorithm outperforms existing methods in
the literature. It succeeds to reduce the CRPE to less than 0.011 against 1.498
for COP-TABU-Basic, 0.841 for COP-TABU-Multistart and 0.327 for COP-
TABU-Reactive. Our heuristic found up to 916 BKS against 656, 720 and 816
for the three tabu versions. Furthermore, new BKS were found for 82 instances.
In terms of CPU time, our heuristic consumes lower computational time than the
three tabu versions. In fact, our heuristic has an average CPU time of 136.33s,
against 153.71s for COP-TABU-Basic, 174.37s for COP-TABU-Multistart and
223.88s for COP-TABU-Reactive.

Table 1: Performance of our heuristic

Class
COP-TABU-Basic COP-TABU-Multistart COP-TABU-Reactive Our Contribution

BKS CRPE CPU BKS CRPE CPU BKS CRPE CPU BKS CRPE CPU

dantzig42 16 0 13.27 16 0 17.77 16 0 38.95 16 0 0.55
swiss42 13 0.719 15.38 14 0.281 23.09 15 0.013 31.93 16 0 0.56
att48 16 0 18.24 16 0 26.08 15 0.062 38.76 16 0 1.51
gr48 11 5.709 13.74 12 3.184 26.02 16 0 37.96 16 0 0.78
hk48 15 1.250 20.58 16 0 30.76 15 0.315 37.68 16 0 1.05
eil51 11 2.181 15.92 11 2.181 24.46 15 0.242 36.83 14 0.228 1.11
berlin52 15 0.548 38.88 15 0.120 53.39 15 0.120 60.41 16 0 2.42
brazil58 13 0.573 58.99 14 0.115 75.72 16 0 83.97 16 0 4.51
st70 11 1.303 23.18 11 1.012 38.95 12 0.639 48.01 16 0 2.44
eil76 9 6.407 24.50 10 4.050 33.74 15 0.125 45.84 16 0 2.41
pr76 11 1.014 21.40 13 0.105 30.88 15 0.009 54.76 16 0 4.79
gr96 12 0.612 44.07 13 0.116 51.35 14 0.025 68.19 16 0 5.49
rat99 12 1.752 32.99 12 0.127 52.03 15 0.034 63.65 15 0.079 7.03
kroA100 11 6.013 44.65 14 0.123 50.98 14 0.429 52.62 16 0 3.92
kroB100 15 0.714 47.96 16 0 58.94 16 0 62.20 16 0 3.87
kroC100 10 3.687 37.55 15 0.269 48.74 14 0.452 59.42 16 0 3.73
kroD100 10 1.879 36.85 11 1.247 56.70 13 0.520 69.57 16 0 4.94
kroE100 12 2.889 46.59 12 1.374 48.83 14 0.270 62.77 16 0 3.69
rd100 12 1.431 36.51 13 1.030 47.81 15 0.568 82.29 16 0 4.89
eil101 7 2.495 32.97 12 0.729 44.62 16 0 79 16 0 5.87
lin105 11 1.393 36.06 13 0.461 52.48 14 0.348 105.21 16 0 11.42
pr107 13 6.350 72.19 15 0.203 86.35 15 0.160 135.39 16 0 36.10
gr120 10 2.917 50.87 11 2.856 66.36 14 0.185 105.25 16 0 10.43
pr124 14 1.180 80.33 16 0 88.26 16 0 150.15 16 0 18.7
bier127 12 0.873 63.05 14 0.108 94.57 15 0.005 149.64 16 0 14.65
ch130 7 4.016 49.79 9 2.949 64.58 12 1.376 106.57 16 0 10.91
pr136 12 1.588 59.86 14 0.949 71.37 15 0.694 121.5 16 0 14.83
gr137 15 0.156 82.07 16 0 104.45 16 0 181.54 16 0 14.25
pr144 16 0 168.25 16 0 175.28 16 0 247.29 16 0 29.07

continued on next page
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Table 1 – continued from previous page

Class
COP-TABU-Basic COP-TABU-Multistart COP-TABU-Reactive Our Contribution

BKS CRPE CPU BKS CRPE CPU BKS CRPE CPU BKS CRPE CPU

ch150 8 2.684 34.19 8 2.543 53.97 14 0.554 101.37 16 0 13.87
kroA150 9 1.002 36.84 13 0.228 50.6 14 0.074 102.11 16 0 13.13
kroB150 8 2.456 40.06 10 2.127 56.69 14 0.621 107.93 16 0 12.31
pr152 15 0.545 120.08 16 0 164.81 16 0 248.1 16 0 26.30
u159 6 3.300 113.36 9 2.373 125.51 8 1.447 184.68 16 0 48.45
si175 16 0 47.69 16 0 63.36 16 0 126.80 16 0 227.71
brg180 12 0.656 54.29 13 0.578 72.18 15 0.091 127.74 16 0 166.41
rat195 12 0.531 68.18 10 0.209 78.52 14 0.401 172 16 0 48.04
d198 15 0.062 172.56 16 0 217.29 16 0 368.98 16 0 40.15
kroA200 11 1.130 55.09 12 1.093 76.17 14 1.052 139.43 15 0.035 30.45
kroB200 8 2.610 71.45 10 1.978 87.73 13 0.129 142.43 16 0 29.4
gr202 11 1.256 88.17 12 1.001 121.27 16 0 236.24 16 0 56.19
ts225 12 0.259 162.94 12 0.158 189.13 15 0.019 234.81 16 0 65.60
tsp225 9 1.583 87.78 9 0.495 102.99 11 0.142 180.26 16 0 64.19
pr226 12 0.872 244.84 12 0.787 268.33 15 0.042 331.10 16 0 84.61
gr229 15 0.023 109.99 15 0.023 121.07 15 0.023 170.85 16 0 34.08
gil262 7 8.107 57.09 6 4.296 84.20 10 2.441 135.48 15 0.032 70.85
pr264 11 4.230 151.96 10 4.243 208.51 14 0.323 304.70 16 0 100.79
a280 11 0.159 99.98 12 0.156 150.54 10 0.255 191.39 15 0.003 249.43
pr299 10 1.097 105.14 10 1.089 125.98 12 0.614 205.23 16 0 221.36
lin318 8 1.009 247.01 9 0.870 260.81 11 0.492 311.25 16 0 309.03
rd400 10 2.014 100.44 11 1.435 147.13 12 1.413 203.08 16 0 322.72
fl417 11 1.055 518.97 12 0.397 577.53 13 0.079 708.57 16 0 362.65
gr431 12 0.788 236.75 15 0.009 252.35 16 0 280.53 16 0 251.45
pr439 11 0.685 180.16 13 0.074 221.23 14 0.058 324.17 16 0 316.19
pcb442 11 0.390 151.28 11 0.610 199.82 13 0.593 274.18 16 0 499.62
d493 7 1.157 418.35 9 1.208 419.66 12 1.051 515.84 16 0 638.77
att532 16 3.218 3815.65 19 2.684 3927.68 24 1.769 4082.2 26 0.275 3343.6
Total 656 1.498 153.719 720 0.841 174.37 816 0.327 223.88 916 0.011 136.338

6 Conclusion and future work

In this paper, we proposed a hybrid heuristic for the Clustered Orienteering
Problem. This heuristic is composed of a split procedure that evaluates efficiently
giant tours and an Adaptive Large Neighborhood Search heuristic. The split
procedure is based on a branch and bound scheme, in which an efficient upper
bound based on the Knapsack Problem is used. A Local Search procedure is
also incorporated inside the split procedure. The LS is applied each time on a
subset of clusters in order to find better combination of clusters quickly. The
computational results show clearly the efficiency of our method compared to the
existing heuristic methods. Many improvements have been achieved as well as
new Best Known Solutions.

As future work, our aim is to propose different extensions for the COP,
including the case of multiple vehicles. Also, additional constraints like time
windows or vehicle capacity should be considered.
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Abstract. In this paper, an Adaptive Large Neighborhood Search (ALNS)
is proposed for the Periodic Vehicle Routing Problem (PVRP). Each cus-
tomer requires service on one or more days on a pre-defined time hori-
zon. They must be assigned to feasible visit options and Vehicle Routing
Problems (VRP) need to be solved for each day. In the proposed ALNS,
destroy and repair operators work on the two levels of the problem. Those
heuristics are rewarded which explore the search space in the beginning
of the algorithm. A concept to measure if a heuristic contributes to ex-
ploring or exploiting the search space based on the dissimilarity between
solution alternatives is proposed. It is investigated whether following
this strategy is beneficial in terms of performance on selected instances
of the PVRP. Moreover, the impact of the chosen dissimilarity measure
is studied. The results show that the proposed algorithm is a promis-
ing approach for the PVRP. It pays off to reward the exploration of the
search space but it is not worthwhile to use dissimilarity measures of a
higher level of detail due to the increased computational effort.

1 Introduction and problem description

Vehicle routing problems have been intensively studied in both theoretical re-
search and real world applications as the associated costs are significant. The
periodic vehicle routing problem is a natural extension of the classical VRP and
occurs e.g. in raw material supply [1] or waste collection [13]. In the PVRP, a
planning period of several days is considered in which each customer i = 1, . . . , n
requires a certain number of visits but the exact service days are to some extent
flexible. A non-negative cost proportional to the travel time from customer i to
customer j is given by ci,j . The objective is to assign customers to a feasible visit
day combination (to a so-called pattern) and determine a routing for each day of
the planning horizon so that the sum of costs ci,j is minimized and constraints
are met. Each customer i needs to be assigned to one of its patterns p ∈ Pi

with Pi as the set of patterns for customer i. This results in different subsets
of customers to be routed on each day l = 1, . . . , t for which a VRP needs to
be solved. Each customer is associated with a service duration di as well as a
demand qi. For each day, the served customers need to be assigned to a vehicle
k = 1, . . . , m which starts and ends at the depot at vertex 0. The vehicle capacity
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Q needs to be respected. A sequence is to be determined so that each route’s
total duration (sum of driven distances and required service duration) does not
exceed the time duration limit D.

Due to the complexity of the problem, exact methods are limited in the size
of the instance they can solve in an adequate time. Noteworthy is the exact
approach of [2] which provides optimal solutions for both the PVRP and the
multi-depot vehicle routing problem (MDVRP). These two problems are strongly
related as is shown by [5]: The MDVRP can be viewed as a special case of the
PVRP by considering each of the t depots to be a day on a t-day planning
horizon, and each customer to require a delivery on exactly one day over that
horizon. Several successful heuristics have been developed for the PVRP. A tabu
search heuristic is presented by [5]. In [6] a parallel evolutionary method is
developed while in [18] a hybrid genetic algorithm is proposed that uses a couple
of mechanisms to enhance diversity during the search to avoid being stuck in
a local optimum. Dissimilarity is measured by comparing pattern assignments
of the customers. A scatter search procedure is presented in [1] for solving a
problem of periodic pick-up of raw materials for a manufacturer of auto parts.
The method is especially designed for PVRPs with a large number of periods.
A variable neighborhood search was suggested by [9]. [8] propose a record-to-
record travel approach which combines local search and integer-programming
based large neighborhood search. The interested reader is referred to [3, 7] for a
more detailed overview on the PVRP.

Despite some promising approaches in literature, the PVRP remains a com-
plex problem which needs to be further studied. In particular, data sets with a
high number of customers, number of days and/ or time duration constraints
are still difficult to solve. Developing an ALNS for the practical PVRP is a
natural choice as a solution alternative can be destroyed and repaired in various
ways. Moreover, the basic solution concept is easily understandable by a decision
maker. We contribute to this research area as follows: First, an adaptive large
neighborhood search is presented for the PVRP which includes local search.
It shows first promising results on selected instances. Second, an approach to
classify a move to a neighboring solution into “exploring” or “exploiting” the
search space is suggested and is taken into account during the ALNS. For this, a
dissimilarity measure needs to be defined. We suggest several ones with various
levels of detail for the PVRP and study the impact the chosen measure has on
the performance of the approach. Lastly, it is shown how the split procedure
introduced in [11] can be reinterpreted as a local search neighborhood.

2 Solution approach

The adaptive large neighborhood search was proposed in [12] and tested for sev-
eral variants of the vehicle routing problem in [10]. A set of destroy and repair
operators is defined. Each destroy/ repair heuristic is assigned a weight that con-
trols how often a method is applied during the search. The weights are adjusted
dynamically during the execution of the algorithm so that the heuristic adapts
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to the instance at hand. As a result, a number of simple algorithms compete
to modify the current solution. A pseudo-code for the developed ALNS for the
PVRP is shown in Algorithm 1. The ALNS is embedded in a simulated anneal-
ing framework and is enhanced with a local search procedure to improve the
solution quality of promising candidates. It additionally makes use of a concept
of exploration, for which an archive Ω is maintained.

The developed algorithm starts with a randomly constructed solution alter-
native s to which the best found solution alternative sbest is set (line 1). While
a stop criterion is not met, lines 2–18 repeat and finally return sbest. The tem-
porary alternative s′ is copied from the incumbent one s (line 3), destroyed and
repaired again (line 4). In line 5, the move from s to s′ is classified into either exploring
or exploiting the search space S. The idea is to promote the usage of exploring
operators towards the beginning of the algorithm. S is defined as a set of feasible
and infeasible solutions s ∈ S. A solution alternative may only be infeasible with
respect to the number of vehicles ml operating on day l, the load qk,l transported
by a vehicle k on day l and the total travel time durk,l in a route. These infea-
sibilites are taken into account when evaluating an alternative. Let χm, χq and
χdur represent the penalties for exceeding the number of available vehicles on a
day, the route vehicle capacity and the route maximum duration, respectively.
A solution s is evaluated by the penalized function Ψ(s):

Ψ(s) =
t∑

l=1

m∑
k=1

n∑
i=0

n∑
j=0

cijxijkl +
t∑

l=1
χm · max{0, ml − m}

+
t∑

l=1

m∑
k=1

(
χq · max{0, qk,l − Q} + χdur · max{0, durk,l − D}) (1)

Here, xijkl is 1 if there is a direct connection between customer i and j of
vehicle k during day l, 0 otherwise. The relative quality Ψ ′(s) of a solution s
is then given by setting it into relation to the function value of sbest, that is
Ψ ′(s) = Ψ(s)−Ψ(sbest)

Ψ(sbest) . If s′ is feasible, the penalization factors are divided by
1.001, otherwise, they are multiplied by it (line 6). This applies provided that
lower and upper bounds are not violated [9]. While χdur and χq can alternate
between 10 and 1,000, χm varies between 100 and 10,000. The penalties are ini-
tialized to their respective upper bounds to quickly determine feasible solution
alternatives in the beginning. In case of infeasibility, procedures to restore feasi-
bility are applied with a probability of 50% (lines 7– 8). If successful and s′ not
yet included, the archive Ω is updated. A local search procedure is applied on a
feasible solution alternative if either s′ is promising (indicated by Ψ ′(s′) ≤ α1) or
the move was exploring and s′ reveals a sufficiently good solution quality (that is
Ψ ′(s′) ≤ α2). The archive is updated with the improved s′ and sbest is replaced
by s′ if applicable (lines 9–13). s′ is accepted as the new incumbent alternative s
with probability e−(Ψ(s′)−Ψ(s))/T where T > 0 is the temperature and initialized
to T start (line 14). It is decreased every 10 seconds so that it reaches zero in the
end (line 15). In the next line, the scores σ1, σ2 σ3 are added to the total
scores of the used destroy and repair operator if applicable. An exploration score
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Algorithm 1: Adaptive large neighborhood search for the PVRP
input: temperature T = T start; archive Ω ← ∅; initialize penalization parameters;

1 get random solution s; sbest = s
2 while stop criterion not met do
3 s′ = s
4 destroy and repair s′

5 if Ω updated with s′ then classify move from s to s′ in search space S
6 update penalty parameters according to feasibility of s′ and evaluate s′

7 if s′ infeasible then
8 restore feasibility with a probability of 50% and update archive Ω if restored
9 if s′ feasible then

10 if Ψ ′(s′) ≤ α1 or else (move was exploring and also Ψ ′(s′) ≤ α2) then
11 improve s′ with local search
12 update Ω with s′

13 if Ψ(s′) < Ψ(sbest) then sbest = s′

14 if s′ is accepted considering s and temperature T then s = s′

15 if 10 seconds passed then cool down temperature T
16 assign scores σ1, σ2 or σ3 as well as σ4 (if applicable)
17 if 100 iterations passed then update ALNS weights and statistic of Ω
18 if maximum archive size is reached then reduce archive size
19 return sbest

σ4 is additionally attributed if the move was classified as exploring. The appli-
cation weights of the individual operators are updated every 100 iterations and
a statistic of the archive Ω used within the exploration concept is recomputed
(line 17). Finally, the archive is reduced to 300 solution alternatives whenever a
maximum archive size of 500 is reached in line 18. Here, solutions with a high
number of neighbors are preferably deleted.

The following subsections go into detail of the described ALNS. Subsection
2.1 shows how a random alternative is constructed for the PVRP with help
of the Split procedure [18] (line 1). The used destroy and repair operators are
explained in the following subsection (line 4). A concept of exploration (line 5)
as well as the assignment of scores and update of the operator weights (line 17)
are presented in Subsection 2.3. The last subsection illustrates the local search
as well as the thereon resting procedure to regain feasibility (lines 7 and 11).

2.1 Constructing a random alternative for the PVRP

An initial solution for the PVRP is generated by first randomly choosing a pat-
tern for each customer. For each day, a giant tour is constructed by serving all
customers to be visited on this day in a random order. Then, routes are ob-
tained by the Split procedure introduced in [11]. Vidal illustrated in [17] how
the Split algorithm can be performed in linear time. This dynamic programming
algorithm determines an optimal routing sequence given the customers are ap-
proached in the order the giant tour specifies. An optimal segmentation of the
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giant tour into routes consists in identifying a minimum-cost path from 0 to n in
an auxiliary graph. It only possesses the edges between the depot and the customers
in the giant tour as well as the edges of the giant tour. In each iteration, the next
customer of the giant tour is included optimally in the routing by keeping track
of non-dominated predecessors and the associated costs of the shortest routes
containing the customers included so far. Note that in our implementation, Split
tries to construct feasible routes by taking into consideration maximum m vehi-
cles, capacity and time duration constraints. If this is not possible, the m-th+1
route includes the remaining customers and the solution alternative is infeasible
with respect to driven routes. For further details on how to adapt the Split al-
gorithm to a limited fleet with a total complexity of O(nm) see [17]. However,
note that the pseudo code does not consider time duration constraints and there-
fore slightly was adapted. The procedure repeats until either a feasible solution
alternative was found or 60 seconds have passed.

2.2 Obtaining a new solution alternative by destroy and repair

A set of destroy and repair operators is implemented to move to neighboring so-
lution alternatives. Some operators modify the subset of customers to be visited
on each day (by using a “complete removal”) while others focus on the routes of
a given subset (in “partial removal”). In that way, the operators are able to both
slightly and strongly modify an alternative. Figure 1 illustrates this procedure.

The destroy operator is selected by applying a roulette wheel selection. With
Φ heuristics and weights wϕ, ϕ = 1, . . . , Φ, heuristic ϕ′ is selected with probability

wϕ′∑Φ
ϕ=1 wϕ

(2)

If the corresponding operator invokes a complete removal, all customers of the
instance are candidates for elimination. The selected ones are removed from
all days of their current pattern. The randomly determined parameter ε with
5 ≤ ε ≤ min(100; 0.4 · n) indicates how many customers will be removed from
the current solution alternative. In case of partial removal, a subset of days
is randomly selected. Each chosen day is treated separately and all customers
served on that day represent the candidates. With nl as the number of customers
served on the chosen day l, εl candidates with 5 ≤ εl ≤ min(100; 0.4 · nl) are
removed. In each case, the candidates are sorted with respect to a criterion
dictated by the destroy operator. Candidates in the beginning of this sorted
list are preferably eliminated but some variation is introduced. The destroyed
solution is fixed with a repair operator which is again chosen by roulette wheel
selection within the heuristics for complete and partial removal. Note that in the
last case, the removed customers are reinserted on the same days and no pattern
change takes place. The solution is fixed by again sorting the removed customers
according to the criterion of the chosen repair operator, i.e. by some sort of costs.
To prevent the algorithm to repeatedly generate the same alternatives, these
costs are modified by adding a random noise in the interval −0.025 · distmax ≤
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noise ≤ 0.025 · distmax with a probability of 50%. Here, distmax represents the
maximum distance between two vertices in the data set. The ALNS keeps track
of the success of using noise and also adapts this application probability.

Choose destroy operator 

Start 

Complete removal? 

Select a random subset of days

yes no

Sort all customers by destroy operator criterion

Get random number ε

Select ε customers, favor those towards the beginning of
the list

Get random number ε

Select ε customers served on that day, favor those
towards the beginning of the list

Sort all customers of that day by destroy operator criterion

For each selected day

Remove selected customers from all days Remove selected customers on that day

Choose repair operator for complete removal Choose repair operator for partial removal 

Apply noise? Apply noise? 

Compute noise, modify repair operator criterion  

yes 

Reinsert removed customers on that day in obtained order

Sort removed customers by repair operator criterion  

no

Compute noise, modify repair operator criterion  

Reinsert removed customers on all days in gained order

Sort removed customers by repair operator criterion  

End 

yes 
no

Fig. 1. Schematic illustration of applying a destroy and a repair operator

The depicted destroy operators appear in both complete and partial removal
if not stated otherwise and are based on [10, 12]. The most simple operator is
the which randomly selects the customers to be eliminated. The
aim of the Shaw Removal is to choose “similar customers” as those are easier
to interchange in a solution with regard to satisfying the load and time dura-
tion constraints of the respective routes [14, 15]. For that, a relatedness matrix
R(i, j, s) is computed for all candidates i and j with i �= j in solution s. Their
similarity in s is measured as a weighted sum of various measures. The distance
similarity simc

i,j takes the geographical distance between i and j into account
and sets it in relation to the highest distance between two customers in the data
set. The temporal similarity siml

i,j,s is measured by counting the number of dif-
ferent day assignments of the candidates i and j in solution s and divide the value
by the total number of days. Lastly, the demand similarity simq

i,j is computed as
the ratio between the absolute demand difference of i and j and the highest de-
mand of a customer in the instance. Following literature, R(i, j, s) is obtained by
applying the weighted sum function R(i, j, s) = 9 ·simc

i,j +3 ·siml
i,j,s +3 ·simq

i,j .
The Shaw Removal randomly selects a seed candidate and sorts the remaining
ones according to their relatedness to it. The destroy operators Location Oriented
Removal and Time Oriented Removal work analogously to the Shaw Removal
except that only simc

i,j and siml
i,j,s are used for determining R(i, j, s), respec-
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tively. The Worst Removal computes the cost savings achieved when removing
the candidate i from s and sort the candidates accordingly. Those customers are
removed which will result in high cost savings as they seem to be badly posi-
tioned. Lastly, Small Removal chooses customers which reveal a small demand
as those are easier to move around. The next destroy operators use historical
information. The Historical Same Day Removal strategically tracks the success
of visiting two customers jointly on the considered day. It aims to find the best
customer partitioning in the instance and thus is only defined for complete re-
moval. If historically the average distance of the best found solution which served
customer i and j on day l was long, at least one of those customers should be
reassigned to a distinct day. The operator Historical Same Day Removal (B best)
works instead with the number of times customers i and j were served together
on day l in the B best solution alternatives found so far. If this value is high, the
customers are considered related and easy interchangeable. On a tactical level,
the Historical Same Tour Removal saves the costs of servicing two customers
together in the same tour on day l. The operator evaluates the historical costs
of visiting candidate i with candidate j with i �= j. If this cost is high, it can be
beneficial to reassign customer i to a different tour. Again, Historical Same Tour
Removal (B best) counts the number of times i was visited jointly with j, i �= j
in the B best solution alternatives. Finally, the Historical Same Edge Removal
works on an operational level and looks at the success of visiting customer j
immediately after customer i or vice versa on day l. Badly sequenced customers
are then deleted from the solution alternative.

There are several ways to repair a destroyed solution. In the Parallel Best
Insertion, the least-cost pattern over all removed customers and their feasible
patterns is identified. The corresponding customer is inserted on the least-cost
position on the associated days of the pattern. The procedure repeats until all
deleted customers are reassigned. In the Sequential Best Insertion, the least-cost
pattern is determined for a randomly selected customer instead. Again, the cus-
tomers are inserted on their best position on each day of the chosen pattern.
The repair operators Random Patterns as well as Regret Heuristic Pattern (β)
are solely used in case of complete removal. Random Patterns both randomly
selects a customer and one of its patterns. It is then reinserted on its best posi-
tion. Thus, it can be seen as a counterpart to Random Removal. In the PVRP,
multiple regret heuristics can be defined which incorporate some kind of look-
ahead in the insertion procedure. Regret Heuristic Pattern (β) computes for
each customer the cost difference – that is the regret – of selecting the β-th best
pattern instead of the best pattern for customer i. If this cost is high, customer i
should be assigned to its best pattern. If a partial removal took place, the repair
operators Regret Heuristic Routes(β) and Regret Heuristic Position(β) may be
applied. In the first case, the regret consists of putting the considered customer
on the best position of its β-th best route instead of being visited by its best
route. A finer approach is taken in the latter case which computes the regrets of
not choosing the best but the β-th best position over all routes on the considered
day. Note that this position may be in the same or in a different route.
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2.3 Adaptive weight adjustment and the concept of exploration

In the ALNS, the destroy and repair heuristics are evaluated after each appli-
cation and scores are assigned. The score of a heuristic is increased by either
σ1, σ2 or σ3. The highest score σ1 is given if s′ improves sbest. Two cases are
distinguished if s′ is accepted by the ALNS considering the current tempera-
ture T . If s′ is (currently) not in the archive Ω, the score is increased by σ2,
otherwise σ3 applies. Note that it is also possible to compare s′ to all solutions
found until this point which is however computationally demanding. Naturally,
σ1 > σ2 > σ3 holds. Additionally, a score is attributed for following the cur-
rently desired search space strategy. In literature, it is typically distinguished
between exploration and exploitation. However, it is not clear how to measure
which search space strategy is currently pursued. Let 1 (cond) be a valuation
function that returns 1 if the condition cond is true, 0, otherwise. In this paper,
s′ is exploring the search space S given s if the following two conditions hold:

δ(s, s′) ≥ δTh (3)∑
s′′∈Ω,s′ �=s′′

1
[
δ(s′, s′′) ≤ δT h

] ≤ 1
|Ω|

∑
s′′∈Ω

∑
s′′′∈Ω,s′′ �=s′′′

1
[
δ(s′′, s′′′) ≤ δT h

]
(4)

The Inequality (3) requires that s′ is at least δTh dissimilar to s using the dis-
similarity measure δ, i.e. s′ is not “in the vicinity” of s. Additionally, Inequality
(4) demands that the search space of s′ is “sparsely covered”. The left term
counts the solutions inside the archive Ω which are less than δTh dissimilar to
s′ (so-called “neighbors”). This value is compared with the average number of
neighbors of the solutions in Ω (right term). This statistic of Ω is updated every
100 iterations. If the two inequalities are true, the search space in the vicinity of
s′ has been explored little so far and therefore the move of the operators can be
classified as exploring. Otherwise, the search space has been exploited. Note that,
due to the lacking information of the true distribution of all possible solutions in
the instance at hand, it is assumed that the distribution is fairly even over the
search space. An adaptation to the actual landscape of the search space could
be topic of future research. Figure 2.3 illustrates the concept of exploration on a
simplified example. Assume that the search space is put together by determining
the values for the x and y coordinate with x, y ≥ 0. All solutions s′′ inside the
radius of a solution (represented as a circle) are its neighbors. In the left case,
for instance, s has two neighbors and s′ one. The average number of neighbors
given the illustrated solution alternatives is ∼ 1.67. Since s′ is outside the radius
of s and has one neighbor, s′ has explored the search space. In the right case,
exploitation occurred since s′ is inside the radius of s and the number of its
neighbors exceeds the average number of neighbors in Ω (2 > 1.67).

Inequalities (3) and (4) require the definition of a dissimilarity measure. We
suggest the four measures δ1, δ2, δ3 and δ4 for the PVRP which increase by the
level of detail and by needed computation time. First, the solutions s1 and s2
can differ in the pattern assignments of the customers [18]. With yip assuming
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Fig. 2. Left: s′ explores the search space given s. Right: s′ exploits it given s.

1 if customer i is served following pattern p and 0 otherwise, δ1 is defined as:

δ1(s1, s2) = 1
n

n∑
i=1

∑
p∈Pi

1(yip(s1) �= yip(s2)) (5)

Second, the subset of customers served on each day can be compared, i.e. the
number of different day assignments of the customers in s1 and s2 is studied for
each day. With apl being equal to 1 if and only if day l belongs to pattern p,
δ2(s1, s2) is computed by:

δ2(s1, s2) = 1
n · t

n∑
i=1

t∑
l=1

∑
p∈Pi

1(aplyip(s1) �= aplyip(s2)) (6)

Third, δ3(s1, s2) checks on each day whether the customers i and j are served by
the same vehicle k. That is, the dissimilarity increases if customer i and j were
served in the same route in s1 but in different ones in s2 or vice versa. Let zijl

take 1 if both customers i and j are served by the same vehicle on day l and 0
otherwise. Then, δ3(s1, s2) is defined as:

δ3(s1, s2) = 1
n(n−1)

2 · t

n−1∑
i=1

n∑
j=i+1

t∑
l=1

1(zijl(s1) �= zijl(s2)) (7)

Finally, δ4 compares the driven customer order in the routes:

δ4(s1, s2) = 1
n(n−1)

2 · t

n−1∑
i=1

n∑
j=i+1

m∑
k=1

t∑
l=1

1(xijkl(s1) �= xijkl(s2)) (8)

By intuition, it is more important in an early stage of the algorithm to
explore the search space while exploiting it towards the end. Note, however, that
exploitation is not desired per se, but only in the vicinity of promising solution
alternatives. Let ϑ increase by one after each 10 seconds and let Θmax be the
maximum time an exploration score is awarded. Then, the following weighted
exploration score σ4 is given:

σ4 ·
(

1 − ϑ · 10
Θmax

)
(9)
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So, the given score is gradually decreasing until Θmax is reached. Let ι be the
current segment where each segment comprises 100 iterations. The weight wϕ,ι+1
of heuristic ϕ for segment ι + 1 is computed by:

wϕ,ι+1 = wϕ,ι(1 − r) + r
πϕ

θϕ
(10)

πϕ is the score of heuristic ϕ obtained during the current segment ι and θϕ is the
number of times ϕ has been applied in it weighted by its needed computation
time. r ∈ [0, 1] denotes the reaction factor and controls how much the weight of
the current segment influences the weight in the next one. Following [12], r = 0.1
was used in the computational experiments.

2.4 The local search procedure

Promising solution alternatives are further investigated by applying a local
search procedure based on [18]. It consists of a split improvement procedure
(SI), a route improvement procedure (RI) and a pattern improvement procedure
(PI). The procedures are called in the sequence SI-RI-PI-SI-RI. Both SI and RI
dedicate to optimize the VRP subproblem for each day of the planning horizon.
SI reinterprets the Split procedure introduced in [11] as a neighborhood. After
shuffling the sequence of the routes and inverting some routes at random, a gi-
ant tour representation is extracted. SI returns an optimally split list of routes
with respect to the given giant tour as well as fleet, load and time duration
constraints. The procedure terminates after 5 unsuccessful repetitions.

Seven classical neighborhoods are used within RI which are investigated in
a random order following a first-improvement strategy. The neighborhoods are
restricted by applying the granular approach suggested in [16] in which only
“promising” moves are evaluated, i.e. those moves which add at least one “good”
edge. Such an edge either connects to the depot or has a length lower than the
granularity threshold value λ · ΨSav

n+mSav with ΨSav and mSav as the length and the
number of routes of a routing alternative generated by the Savings approach [4]
and λ as the sparsification parameter. In the computational experiment, λ = 2.5
was chosen. The neighborhood Relocate(1) removes a customer i from its route
and tries to reinsert it before or after j, that is the edge connecting i to j is either
“short” or includes the depot. In the related neighborhood Relocate(2), two suc-
ceeding customers i and i + 1 are relocated together accordingly. Exchange(1,2)
switches a single customer i with two customers j and j + 1. The neighbor-
hoods Exchange(1,1) and Exchange(2,2) are defined analogously. All described
route improvement neighborhoods are investigated both inter- and intra-route.
Finally, the classical TwoOptInter and TwoOptIntra exchange two edges with
two different ones inter-route and intra-route, respectively.

PI improves the visit assignments of customers. It iterates on routes and
customers in random order and computes for each customer i the costs of all its
patterns p ∈ Pi. The customer i is first removed from the solution. The pattern
costs emerge by putting customer i in its best route and best position on all
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days apl of pattern p. The customer is then reinserted on the least-cost position
on the days of the least-cost pattern. Note that it is possible that i is assigned
to the same pattern as before but to different routes or positions.

The local search procedure is also used to restore an infeasible solution al-
ternative with a probability of 50%. The procedure Reduce first checks if the
total load of the customers visited on each day exceeds the total available vehi-
cle capacity. If so, PI is applied. If the solution remains infeasible and the total
load to be transported by the limited fleet is still too high, the procedure exits
without success. Otherwise, on each day two routes are randomly selected and
merged until the number of used vehicles is smaller m. The least-cost position
is chosen. Note that the merge may result in infeasible routes with respect to
load or time duration. If this is the case, a further investigation is excecuted in
the procedure Intensify. As in [18], the penalization factors χm, χdur and χk are
increased by factor 10 and the described local search is applied. The procedure
repeats with a further multiplication by factor 100 if the solution alternative
remains infeasible. In a last attempt, Reduce is applied and the procedure ter-
minates. In summary, the sequence Reduce-Intensify(factor 10)-Intensify(factor
100)-Reduce is implemented and the procedure is exited whenever a feasible
solution is obtained.

3 Computational study

The proposed algorithm was tested on the PVRP benchmark instances of [5]
which contain between 50 and 417 customers to be routed on 2 to 10 days by 1
to 12 vehicles. Note that the data sets pr01–pr10 (the “new” data set) impose
time duration constraints while instances p01–p32 (the “old” data set) do not.
The solution approach has been coded in Visual Basic .NET and was tested
on a machine with an Intel Xeon processor E5-2690. The 8 gigabytes RAM
were shared by eight parallel single threads. To obtain insight into the average
behavior of the algorithm, 10 runs were conducted.

First, it is investigated if the chosen dissimilarity measure has an impact on
the performance of the algorithm. As a stop criterion, a run time of maximum
10 minutes and 10,000 iterations without improving sbest was chosen (“short
run”). The parameters were calibrated for a test set of instances comprising the
data sets p05, p08, p23, pr02, pr05 and pr08. For all experiments, (σ1, σ2, σ3, α1,
α2) = (30, 9, 3, 0.05, 0.1) were set. For each regret repair heuristic, β = 2, β = 3
and β = 4 were applied. According to [9], an initial temperature T start = 125 is
appropriate for instances with a high average distance (i.e. instances p27–p32)
while T start = 7 was chosen for the remaining ones. Table 1 shows which values
have been selected within a full-factorial experiment for the dissimilarity thresh-
old δT h, the exploration score σ4 and Θmax (the maximum time exploration is
rewarded) in the short run. Table 2 presents the average results over all instances
with various dissimilarity measures. The first row clearly demonstrates that the
chosen dissimilarity measure indeed has an impact on the performance of the
algorithm. The measure δ1 with the lowest level of detail (that is measuring dis-
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Table 1. Best parameter configuration for all dissimilarity measures in the short run

best configuration
parameter tested values δ1 δ2 δ3 δ4

δT h 0.001, 0.005, 0.01, 0.05, 0.1 0.01 0.05 0.05 0.001
σ4 3, 9, 30 3 3 3 9
Θmax (in mins) 3, 7, 10 3 10 7 3

Table 2. Results for various dissimilarity measures (short run)

δ1 δ2 δ3 δ4

gap overall (in %) 1.38 1.55 2.11 1.90
# iterations range [1139, 40870] [1081, 38795] [442, 23074] [567, 29619]
# iterations avg. 13861 11898 6961 9316
explored range (in %) [1.6, 67.4] [2.5, 31.0] [0, 34.5] [0, 71.8]
explored avg. (in %) 23.4 15.2 5.1 26.4
avg. dissim. range [0.0173, 0.1019] [0.0067, 0.0628] [0.0016, 0.103] [0.0003, 0.029]
avg. dissim. 0.0461 0.0238 0.0225 0.0043
gap old data set (in %) 1.01 1.19 1.67 1.47
gap new data set (in %) 2.59 2.68 3.54 3.30
gap n ≤ 150 (in %) 0.54 0.67 0.88 0.72
gap n > 150 (in %) 3.50 3.75 5.2 4.85

similarity via common pattern assignments) obtained the lowest gap overall. The
gap is determined by taking into account the best known solutions (BKS) of the
respective PVRP data sets reported in [18] and is computed by Ψ(sbest)−Ψ(BKS)

Ψ(BKS) .
A possible explanation for these significant differences is the increased running
time associated with a higher level of detail. The rows “# iterations range” and
“# iterations avg.” present the total number of iterations of the outer loop con-
ducted in the experiments (see Algorithm 1). On average, the highest number
of iterations was obtained using δ1 while the smallest one was achieved applying
δ3. Note that for both δ3 and δ4, the number of used iterations on average was
smaller than the stopping criterion 10,000. Therefore, the run time using δ3 or
δ4 is potentially higher than the one applying δ1 or δ2.

The next two lines show the range as well as the average of how often an
exploration was detected. A significant gap can be noticed between the respective
minimum and maximum values. For δ3 and δ4 there were even instances in which
no single move from s to s′ was classified as exploring in one run. Taking δ4 and
data set p13 as an example, s′ was on average 0.003 dissimilar to s so that
Inequality (3) was never satisfied. This can be attributed to the fact that in
p13 417 customers need to be served over a planning horizon of 7 days and the
number ε of to be removed customers in one move is maximum 100. For δ3, the
smallest number of moves was qualified as exploring and thus potentially local
search was executed to a lesser extent. The rows “avg. dissim. range” and “avg.
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dissim.” show that on average the dissimilarity of s′ to s was higher than the
respectively set dissimilarity threshold for δ2, δ3 and δ4. Therefore, many moves
were not classified as exploring as the vicinity of the search space of s has been
exploited. The results suggest that it is vital to select δTh wisely. An adaptation
to specific instance characteristics seems reasonable. The last lines present the
results for specific subsets of instances. For each measure, a significant gap can
be noticed comparing the performance of the algorithm on the old data set
(without time duration constraints) and on the new one (including them). An
even stronger difference can be observed comparing the gaps of instances with
lower than 150 customers with those serving more than 150 ones.

Table 3. Impact of exploration on performance using δ1

short run long run
w/ exploration w/o exploration w/ exploration w/o exploration

gap rt rtbest gap rt rtbest gap rt rtbest gap rt rtbest

overall 1.38% 6.8 4.8 1.43% 6.7 4.6 1.15% 12.8 9.5 1.17% 12.8 9.5
old data set 1.01% 6.2 4.0 1.07% 6.1 3.8 0.85% 9.7 6.4 0.86% 9.6 6.5
new data set 2.59% 9.0 7.5 2.57% 8.9 7.4 2.09% 22.7 19.6 2.14% 22.8 19.3
n ≤ 150 0.54% 5.6 3.4 0.60% 5.4 3.2 0.56% 7.0 4.1 0.55% 6.8 3.7
n > 150 3.50% 10.0 8.2 3.51% 10.0 8.3 2.61% 27.1 23.2 2.69% 27.6 24.1

Proceeding with the dissimilarity measure δ1 which yielded the best results
on average, the algorithm was rerun with no exploration consideration. In par-
ticular, no exploration score was given and therefore the local search was only
applied if the considered solution s′ was short enough (Ψ ′(s′) ≤ α1). In total 21
instances revealed a run time which was 8 minutes or longer. Those were rerun
for maximum 30 minutes as well as maximum 10,000 unsuccessful repetitions
(“long run”). Using a smaller test set comprising data sets p08, pr02, pr08 and
pr05, the best parameter configuration for the long run was determined. For
δT h and σ4, the tested values presented in Table 1 were used while for Θmax,
the values 9, 21 and 30 were inspected. The best parameter configuration was
determined as (δT h, σ4, Θmax) = (0.005, 9, 30). Table 3 shows that for the short
run, explicitly considering the exploration of the search space (indicated by “w/
exploration”) is advantageous for both short and long run. In the short run, this
is particularly true for the old data set and instances with a smaller number of
customers. The columns “rt” indicate the actual running time of the algorithm
while “rtbest” shows when the reported sbest has been obtained. It is evident that
around 2 minutes were spent on average to either conduct 10000 unsuccessful
iterations or reach the time limit in the short run. In the long run, this figure
even amounts to around 3.3 minutes. Thus the maximum number of unsuccess-
ful iterations has a significant impact on the reported run time of the algorithm
and should be carefully chosen. However, note that the PVRP can be considered
a tactical problem as a planning horizon including several days is part of the
problem definition. As a result, the run time of an algorithm is of secondary
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priority. In the long run, the results have been further improved. In the version
with exploration consideration, the overall gap decreased by 0.23% while both rt
and rtbest nearly doubled. It is up to the decision maker to evaluate this trade-off
between run time and solution quality.

Finally, Table 4 compares the obtained results with δ1 in the short run to
state-of-the-art heuristics presented in literature, that is with the tabu search
heuristic of [5] (CGL), the scatter search of [1] (ALP), the variable neighborhood
search of [9] (HDH), the record-to-record approach of [8] (GGW) as well as
the hybrid genetic algorithm of [18] (VCGLR). The presented run times are
taken from [18]. While VCGLR outperforms our proposed approach, it is clearly
competitive to the other state-of-the-art solution methods for the PVRP. With
the best alternative determined after around 4.8 minutes on average the run
times are comparable. The suggested ALNS obtained lower gaps compared to
CGL, ALP and GGW in every category, while HDH outperformed it in the new
data set as well as on instances with a high number of customers. Concretely,
the ALNS outperformed CGL in 74% of the data sets by 1.07% on average, ALP
in 50% of the cases by 1.06%, HDH in 64% of the data sets by 0.86% and GGW
in 38% of the instances by around 0.77%.

Table 4. Results of the short run in comparison to literature

CGL ALP HDH GGW VCGLR ALNS

avg. time (in mins) 4.28 3.64 3.34 10.36 5.56 4.8
gap overall (in %) +2.04 – +1.66 – +0.41 +1.38
gap old data set (in %) +1.80 +1.57 +1.60 +1.11 +0.31 +1.01
gap new data set (in %) +2.82 – +1.86 – +0.71 +2.59
gap n > 150 (in %) +3.63 – +3.34 – +1.02 +3.50

4 Conclusions

This paper developed an adaptive large neighborhood search for the periodic
vehicle routing problem that rewards exploring movements of the algorithm in
the search space. We propose a novel concept of exploration as well as four dis-
similarity measures for the PVRP. A heuristic contributed to exploration if the
newly generated solution alternative is sufficiently dissimilar to the incumbent
one and its close search space is sparsely covered. A computational study showed
that dissimilarity measures with a lower level of detail yield better results, possi-
bly because of the interconnected saving in run time. The results indicated that
it is beneficial to take into account the currently followed search space strategy.
In general, the first computational results are promising and proved competitive
with state-of-the-art solution approaches for the PVRP. Future research should
investigate in more detail under which circumstances and until which point it is
promising to further promote the exploration of the search space.
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Abstract. Technological advances, such as smart phones and mobile
internet, allow for new and innovative solutions for transportation of
goods to customers. We consider a setting where a company not only
uses its own fleet of vehicles to deliver products, but may also make use
of ordinary people who are already on the road. This may include people
who visit the store, who are willing to take a detour on their way home
for a small compensation. The availability of these occasional drivers is
naturally highly uncertain, and we assume that some stochastic informa-
tion is known about their appearance. This leads to a stochastic vehicle
routing problem, with dynamic appearance of vehicles. The contribution
of this paper is a mixed-integer programming formulation, and insights
into how routes for the company vehicles could be planned in such a set-
ting. The results of the stochastic model are compared with deterministic
strategies with reoptimization.

Keywords: Vehicle Routing, Occasional Drivers, Stochastic Program-
ming

1 Introduction and Literature

Transportation can be a significant cost for last-mile and same-day delivery,
which has prompted many companies to seek creative and innovative solutions
to lower their costs. One such solution, considered by among others Walmart
and Amazon, is crowdshipping, i.e. getting ordinary people who are already en
route to pick up and deliver packages [5, 6]. Better utilization of vehicles that are
already on the road can be profitable both for the company and the occasional
drivers, and help lower emissions.

Walmarts vision of having in-store customers to help deliver goods ordered
by online customers, gives rise to new variants of the dynamic vehicle routing
problem (DVRP). In a recent survey and taxonomy of the DVRP [11], the au-
thors state that “some 80% of the problems in the taxonomy involve the dynamic
appearance of customers, some 10% involve dynamic travel times and some 3%
consider vehicle breakdowns. In our search we were not able to find papers han-
dling other types of dynamic events (...)”. Since then, some research has been
done on the effects of occasional drivers [3, 4], where [3] introduces crowdship-
ping and study a static version of the problem, and [4] looks at a deterministic
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approach of matching dynamically appearing customers and drivers. A crowd-
shipping platform would naturally contain a lot of uncertainty with respect to
the availability of drivers. Our problem is similar to [3, 4], but extends these
works by introducing stochasticity and studying how this uncertainty affects the
problem.

The related body of literature for this paper can be split into two parts.
Firstly, the work done on dynamic vehicle routing problems (see, for instance,
the surveys in [10, 11]) is relevant for models and solution methods for the
DVRP. Secondly, the various innovative variants of urban logistic problems, such
as ride-sharing [1, 7], transporting people and parcels simultaneously through
taxi networks [8] or public buses [9], together with the aforementioned papers
on crowdshipping, are relevant to put this paper into a larger frame of the
environmental direction of our research community.

Here we study a setting in which a company not only uses its own vehicles to
deliver a set of small parcels from a warehouse to customers, but may also use
dynamically appearing occasional drivers (ODs) that arrive at some point in time
during the day. This is a new variant of the DVRP, with one central depot, a set
of customers, one set of company vehicles, and a set of stochastically appearing
occasional drivers, see Fig. 1 for an illustration. We assume that some stochastic
information related to the ODs are known, and exploitable. The objective of the
problem is to generate routes for the regular vehicles that minimize the total
expected cost throughout the day, with the knowledge that ODs may appear
later in the day.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Fig. 1. Example of a stochastic vehicle routing problem with dynamic occasional
drivers. The square located in the center of the graph is the warehouse, which also
is the origin and destination of the company vehicles, and the origin of the ODs. Cus-
tomers are circles, and the destinations of ODs are depicted as triangles in the upper
right corner. The availability of the ODs is revealed while the routes for regular vehicles
are executed.
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To model this problem, a two stage stochastic problem is proposed. The first
stage models decisions that must be made before information about the ODs
become available, and the second stage models decisions after. Customer delivery
locations are known in advance, together with a planning horizon starting in T0

and ending in T4. At a point in time T1, information related to ODs arrive, and
they may be used between T2 and T3. The company vehicles may start to deliver
goods before T1, or wait until the information is revealed. See Fig. 2 for the flow
of a day of planning.

T0

Start of day.
Plan route
for regular
vehicles
until T1.

T1

OD infor-
mation is
revealed.

New routes
are planned.

T2

ODs can
start driving.

T3

Latest
time at

destination
for ODs.

T4

End of day.

Fig. 2. Structure of the problem for one day of planning. Note that new information
is revealed at T1, so decisions are made at T0 and T1.

The purpose of this paper is to study the effects of uncertainty in planning
of routes when ODs can appear later in the day. The contribution is a pre-
sentation of a new vehicle routing problem, the vehicle routing problem with
dynamic occasional drivers. A mathematical formulation is proposed, together
with an extended formulation, symmetry breaking constraints and valid inequal-
ities. This allows us to solve large enough instances such that we can show how
the uncertainty of this problem affects the routes. The results are compared with
the solutions from deterministic models with different risk profiles, showing the
strength of a stochastic model.

The remainder of the paper is organized as follows. In Sect. 2, we formally
define the stochastic vehicle routing problem with occasional drivers and present
a mixed-integer programming formulation. The formulation is strengthened with
an extended formulation, valid inequalities and symmetry breaking constraints
in Sect. 3, and a computational study is presented in Sect. 4. Finally, in Sect. 5,
we present some final remarks and discuss future research directions.

2 Mathematical Formulation

The stochastic vehicle routing problem with dynamic occasional drivers consists
of a set of nodes N = {1, . . . , n}. A homogeneous fleet of regular vehicles KR,
and a fleet of occasional drivers KO, are available to service these nodes. Vehicle
k ∈ K = KR ∪ KO has an origin o(k) at the depot and a destination d(k).
For all regular vehicles, the destination is at the depot, while for the ODs, the
destination is at a different location. Let Nk ⊆ N ∪ {o(k), d(k)} be the set of
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nodes a vehicle k can visit, and Ak ⊂ Nk × Nk be the set of possible arcs for
vehicle k, and denote the arc from node i to node j as (i, j).

All vehicles have time windows for their origin node [T o(k), T o(k)] and desti-

nation node [T d(k), T d(k)]. For the regular vehicles this spans the entire planning
horizon, while the ODs are only available for parts of the day. There is a cost of
Cijk and travel time of Tijk to travel from node i to node j with vehicle k.

Let W be the set of all scenarios and let pω be the probability of scenario ω.
The binary variables xijk and zωijk denote if vehicle k uses arc (i, j), in respec-
tively the first or second stage in scenario ω. The variable tik denotes the time
when vehicle k starts service at node i in the first stage, if a node is visited in a
scenario in the second stage then uω

ik denotes start of service. The parameter αω
k

is 1 if occasional driver k is available in scenario ω and 0 otherwise; for regular
vehicle k, αω

k = 1.
The ODs can be used to serve one or more of the customers. Customers can

be assigned to OD k and a compensation fk(z
ω) is given to this OD in scenario

ω, where zω denotes the arcs used in scenario ω. The binary variable yωi is 1
if customer i is not served in scenario ω, and 0 otherwise. If customer i is not
served, a penalty γi is given. The objective is to design a set of routes, one
for each vehicle, such that the average cost, consisting of the routing cost plus
the compensation to the ODs and the penalties of not serving a customer, is
minimized.

min
∑

k∈KR

∑

(i,j)∈Ak

Cijkxijk +
∑

ω∈W
pω(

∑

k∈KR

∑

(i,j)∈Ak

Cijkz
ω
ijk

+
∑

k∈KO

αω
k fk(z

ω) +
∑

i∈N
γiy

ω
i ) (1)

subject to

∑

j∈N∪{d(k)}
(xo(k)jk + zωo(k)jk) = αω

k ω ∈ W, k ∈ K (2)

∑

i∈N∪{o(k)}
(xijk + zωijk)

−
∑

i∈N∪{d(k)}
(xjik + zωjik) = 0

ω ∈ W, k ∈ K, j ∈ N (3)

∑

i∈N∪{o(k)}
(xid(k)k + zωid(k)k) = αω

k ω ∈ W, k ∈ K (4)

∑

k∈K

∑

j∈N∪{d(k)}
(xijk + zωijk) + yωi = 1 ω ∈ W, i ∈ N (5)

(tjk − tik − Tijk)xijk ≥ 0 ω ∈ W, k ∈ KR, (i, j) ∈ Ak (6)

(uω
jk − uω

ik − Tijk)z
ω
ijk ≥ 0 ω ∈ W, k ∈ K, (i, j) ∈ Ak (7)

zωijk + xjlk + yωj ≤ 1 ω ∈ W, k ∈ KR, (i, j), (j, l) ∈ Ak (8)
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uω
ik − tik ≥ 0 ω ∈ W, k ∈ KR, i ∈ Nk (9)

uω
ik ≥ T1 ω ∈ W, k ∈ K, i ∈ Nk (10)

T i ≤ tik ≤ T i k ∈ KR, i ∈ {o(k), d(k)} (11)

T i ≤ uω
ik ≤ T i ω ∈ W, k ∈ K, i ∈ {o(k), d(k)} (12)

zωijk ∈ {0, 1} ω ∈ W, k ∈ K, (i, j) ∈ Ak|αω
k = 1 (13)

xijk ∈ {0, 1} k ∈ KR, (i, j) ∈ Ak . (14)

The objective function (1) minimizes the here-and-now routing costs in the
first stage, plus the expected costs of the second stage, namely routing costs,
compensations offered to ODs and penalties. The compensation is set to make
up for the detour of the occasional driver, times a compensation parameter P ,
such that fk(z

ω) = P (
∑

(i,j)∈Ak
Cijkz

ω
ijk − Co(k),d(k),k). To increase readability,

the sums in constraints (2)-(5) are made over both xijk and zωijk for all vehicles,
even though the first stage variables xijk do not exist for the ODs. Constraints (2)
and (4) make sure that a vehicle exits its origin and enters its destination, and for
the company vehicles this may happen in the first or second stage. Constraints
(3) ensure that the flow is balanced from origin to destination. Further, (5) force
every delivery to be performed either by a regular vehicle in stage one, or any
vehicle in stage two, or a penalty is paid if the customer is not served. Constraints
(6) and (7) are scheduling constraints, and ensure that time passes when an arc
is traversed, and waiting is allowed. Constraints (8) ensure that the first stage
arc variables are no longer used, after a second stage arc variable has been used.
The term yωj in (8) is added to strengthen the constraints. Constraints (9) and
(10) couple the first and second stage time variables. Constraints (10) require
that the second stage variables cannot be used before T1, while (9) enforce that
the second stage variables cannot be used for a regular vehicle k that is on its
way to a customer i at T1, before it has visited that customer at tik > T1.
Constraints (11) and (12) set time windows on origin and destination nodes.
Finally, the binary restrictions for the arc variables are given in (13) and (14).
To increase readability, we have not included that several of the constraints are
only necessary when αω

k = 1.

3 Strengthening Formulation

In the following we show an extended formulation, symmetry breaking con-
straints for the homogeneous vehicles and when to shift from first to second
stage variables, and valid inequalities. Additionally, as there are time windows
on the origin and destination of each vehicle, there are implicitly time windows
on all deliveries, which we strengthen to the earliest possible arrival and latest
possible departure. This is not further explained.

3.1 Extended Formulation

To exploit the structure of the problem, we extend the formulation. Extended
formulations may create tighter relaxations, at the cost of adding more variables
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and constraints [2]. The flow variable fω
ijdk is equal to 1 only if vehicle k traverses

arc (i, j) on the way to d in scenario ω. Let Fk ⊂ N ×N ×N be the set of all
possible flows (i, j, d) on arc (i, j) on its way to node d for vehicle k. Then we
add the following constraints to obtain an extended formulation,

fω
ijdk ≤ 1− yωd ω ∈ W, k ∈ K, (i, j, d) ∈ Fk (15)
∑

k∈K

∑

j∈N
fω
o(k)jdk = 1− yωd ω ∈ W, d ∈ N (16)

∑

i∈N∪{o(k)}
fω
ijdk −

∑

i∈N∪{d(k)}
fω
jidk = 0 ω ∈ W, k ∈ K, j, d ∈ N|j �= d (17)

∑

k∈K

∑

i∈N
fω
iddk = 1− yωd ω ∈ W, d ∈ N (18)

fω
ijdk ≤ xijk + zωijk ω ∈ W, k ∈ K, (i, j, d) ∈ Fk (19)

fω
ijdk ≥ 0 ω ∈ W, k ∈ K, (i, j, d) ∈ Fk . (20)

Constraints (15) ensure that no flow for delivery d occurs if d is not serviced.
Constraints (16) and (18) ensure that if the delivery is serviced, then the flow
of delivery d is one out of the depot and one into the delivery. Constraints (17)
make sure that the flow is balanced through all nodes, except the depot and the
delivery node. Constraints (19) ensure that there is no flow on arcs that are not
used. Constraints (20) define the variables. Note that due to the time windows,
several of these variables and constraints may in some instances be excluded
from the problem.

3.2 Symmetry Breaking Constraints

As the regular vehicles are homogeneous, the symmetry caused by any permu-
tation of their routes can be broken, and hopefully decrease solution time. This
is done by requiring that the lowest indexed delivery that is served by a regular
vehicle, is served by the lowest indexed regular vehicle in either the first stage or
in the second stage in a chosen scenario ω1. The following constraints are added,

xijk = 0, zω1

ijk = 0, k ∈ {2 . . . |KR|}, i ∈ {1 . . . k − 1}, (i, j) ∈ Ak (21)

∑

j∈Nk

(xijk + zω1

ijk) ≤
i−1∑

p=k−1

min {p,|KR|}∑

s=k−1

∑

j∈Ns

(xpjs + zω1
pjs),

i ∈ N\{1}, k ∈ {2 . . .min {i, |KR|}},
(22)

where ω1 can be any scenario. We set ω1 to be the scenario with no ODs in
the computational study. Constraints (21) enforce that the i-th delivery is not
done by a higher indexed regular vehicle in the first stage or second stage in ω1.
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Constraints (22) force the set of regular vehicles that can deliver to node i, to
be equal to the set of regular vehicles that can deliver to node i − 1, plus one
extra regular vehicle if available. In effect, the set of possible regular vehicles for
a delivery gets smaller if a lower indexed delivery is served by an OD, a lower
indexed regular vehicle or not delivered at all.

Different constraints can be used to decide when the first stage variables xijk

and tik should no longer be used, and the second stage variables zwijk and uω
ik

should take over. The following constraints make the change directly based on
T1, such that a first stage arc variable xijk can only be used if tik ≤ T1,

tik ≤ T1 + (T4 − T1)(1−
∑

j∈Nk

xijk) i ∈ Nk, k ∈ KR . (23)

Note that this does not enforce that tjk ≤ T1. If arc (i, j) is part of an optimal
solution, where i is serviced before T1 and j is serviced after T1, then (6) together
with tjk ≤ T1 would make that solution infeasible. Thus we need to allow tjk to
be greater than T1 when there are no first stage arcs out of node j.

An alternative way of changing between stages is to make the change when
decisions become different for a vehicle, i.e. if the same arc is traversed in all
scenarios with the same vehicle just after the first stage, then this can be forced
to be stated with the first stage variables instead. This leads to an alternative
way of breaking symmetry,

∑

w∈W
zωijk ≤ |W| −

∑

l∈Nk

xlik (i, j) ∈ Ak, k ∈ KR . (24)

These constraints enforce that if a first stage arc variable is used into a node i,
then all second stage arc variables for (i, j) out of that node cannot be used. This
causes xijk to be one, instead of letting zωijk be one for all scenarios ω. In effect
this can cause the first stage variables to be used, even after T1, as long as all
scenarios lead to the use of the same arcs by the same vehicles. This makes (23)
and (24) incompatible. Constraints (24) do not apply to the occasional drivers,
as they are not modelled with first stage variables.

3.3 Valid Inequalities

To further exploit the structure of the problem, valid inequalities have been
developed to strengthen the LP relaxation and in turn reduce the solution time.

Firstly, the total amount of time used in the second stage for each vehicle
and scenario can be limited. By studying Figure 2, we see that these limits are
different for the regular and occasional drivers, and valid inequalities may be
expressed as,

∑

(i,j)∈Ak

Tijkz
ω
ijk ≤ T4 − T1 ω ∈ W, k ∈ KR

∑

(i,j)∈Ak

Tijkz
ω
ijk ≤ T3 − T2 ω ∈ W, k ∈ KO .

(25)
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Secondly, as the flow balance constraints (3) include both first and second
stage variables, the flow is not necessarily balanced in the first and second stage
variables separately. Except for through the node where we change from first
to second stage, the flow should be balanced in both the first and second stage
variables over all nodes in N . As the node where this shift is done is not known
in advance, these valid inequalities instead state that the flow of the second stage
variables increase through every node, and that the first stage flow through nodes
decrease. This is stated as,

∑

j∈Nk

zωjik ≤
∑

j∈Nk

zωijk ω ∈ W, k ∈ K, i ∈ N
∑

j∈Nk

xijk ≤
∑

j∈Nk

xjik k ∈ KR, i ∈ N .
(26)

Thirdly, the time windows of the vehicles can lead them to be able to visit
two nodes separately, but not in the same route. If this is the case for node i
and j, then the following holds,

∑

l∈Nk

(xilk + zωilk + xjlk + zωjlk) ≤ 1 ω ∈ W, k ∈ K, i, j ∈ Nk . (27)

Lastly, subtour elimination constraints between two nodes are written as,

xijk + zωijk + xjik + zωjik + yωi ≤ 1 ω ∈ W, k ∈ K, (i, j) ∈ Ak . (28)

4 Computational Study

All instances of our mathematical programming models are solved using Mosel
Xpress in Windows 7 Enterprise, on a Dell Precision M4800 with Intel(R) Core(TM)
i7-4940MX CPU @ 3.10GHz, 3.30GHz and 32 GB RAM. Note that Xpress solves
LP problems integrated with the IP solution procedure. Due to the use of Pre-
solve in Xpress, the LP bounds that are reported in this section may be higher
than if the LP relaxation of the IP problem was solved explicitly. All figures
of routes in this section break the symmetry between stages by (24), such that
equal decisions in all scenarios are assigned to first stage variables.

4.1 Instance Generation

Four main instances with 20 delivery locations each were randomly generated on
a square of 50× 50, and named A, B, C and D. These are each divided into four
sizes of the first 5, 10, 15 and 20 deliveries (S, M, L and XL). A concatenation
of these are used as reference, such that AL refers to the instance with the first
15 destinations in A.

The instances have either two or three ODs, with destinations at (40, 50)
and (50, 40) for two ODs, and (30, 50), (50, 50), and (50, 30) for three. To show
the effect of the location of the destinations of the ODs, these are in some of
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the examples rotated 90, 180 and 270 degrees around the center of the 50 × 50
square.

From preliminary tests we have chosen several parameters of the problem
that seems to be suitable to demonstrate the effects of ODs and the uncertainty
of the ODs. The planning horizon starts at T0 = 0 and ends at T3 = T4 = 100,
and ODs can be used as soon as the information is revealed at T1 = T2 = 50.
The ODs are compensated P = 1.3 times the cost of their detour. The penalty
of not serving a customer is set to 50, and two regular vehicles are available in
all instances. All possible realizations of ODs are used in the scenarios, giving

|W| = 2|K
O| number of scenarios, with equal probability pω = 1

|W| for each
scenario.

4.2 Effect of Strengthening the Formulation

In this section, the results from the testing of the model, the valid inequalities
and symmetry breaking constraints are presented. We have tested the valid in-
equalities and symmetry breaking constraints independently, as well as in some
promising combinations. Table 1 shows results from these tests for a subset of
the instances. The compact formulation (1)-(14) is noted by C, and the extended
formulation (1)-(20) is noted by E. The columns of the table show these formula-
tions with different symmetry breaking constraints and valid inequalities. C+X
and E+X give respectively C and E with (21), (24) and all valid inequalities. A
maximum of 2 hours CPU time is allowed, and the linear relaxation bound, best
bound, best integer solution and used CPU time is reported.

E provides tighter LP bounds than C, but due to the added complexity it
struggles to improve the lower bound for larger instances. Even though C has a
weaker LP bound, it manages to improve the lower bound more than E during
the solution process. Due to this, C outperforms E in solution time for several of
the instances, while for the XL instances the bound of C never reaches the LP
bound of E. The symmetry breaking constraints and valid inequalities improve
the bounds and solution time for most instances, both separately and together,
for both C and E. We note that adding constraints (22) to C+(21) did not
improve the performance significantly, neither did adding constraints (27) and
(28) to the compact formulation. Both formulation C+X and E+X solve up to
15 customers with 2 and 3 ODs, with C+X being slightly faster on the M and L
instances. For all instances, we see that E+X gives an LP bound that is at most
12% from the best known integer solution. Thus, E+X may be useful to get a
dual bound for larger instances together with heuristics for primal bounds.

4.3 Routes under Uncertainty

In this section two figures are included to show the effect of uncertainty on the
routes of the regular vehicles. In Fig. 3, the destinations of the ODs are rotated
clockwise to clearly illustrate the effect of uncertainty on the first stage routes
of the regular vehicles. The trend is that the regular vehicles wait to serve the
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Table 1. Results for a subset of the instances with different methods of strengthening
the formulation. zLP , z and z give objective value of the LP bound, and the best bound
and integer solution after two hours, respectively. A - indicates no integer solution was
found. Bold font is used to indicate the quickest formulation, or the best bounds for
those instances that were not solved to optimality.

Inst. Info C C+(21) C+(23) C+(24) C+(25) C+(26) C+X E E+X

AS zLP 60.8 60.8 60.8 60.8 60.8 60.8 79.9 85.6 87.7
2OD z 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2

z 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2
t 1.4 1.0 1.1 0.5 1.7 1.0 0.6 1.1 0.6

BM zLP 113.3 114.4 115.4 114.4 113.2 114.7 120.0 124.5 128.7
2OD z 134.5 134.5 134.5 134.5 134.5 134.5 134.5 134.5 134.5

z 134.5 134.5 134.5 134.5 134.5 134.5 134.5 134.5 134.5
t 3643.7 52.3 283.0 112.6 71.1 21.1 8.8 54.4 26.7

CL zLP 160.1 160.1 160.1 160.1 160.1 160.1 163.0 198.1 199.1
2OD z 197.7 211.4 211.4 211.4 211.4 211.4 211.4 199.9 211.4

z 211.4 211.4 211.4 211.4 211.4 211.4 211.4 211.4 211.4
t 7200.0 1361.0 359.7 2184.4 766.8 100.1 19.4 7200.0 185.2

DXL zLP 104.1 104.8 104.1 104.1 104.1 104.1 105.8 159.6 162.5
2OD z 119.3 126.7 119.5 120.3 134.2 121.5 139.4 160.1 163.8

z 273.7 185.9 220.2 - 173.5 256.8 176.4 602.8 182.9
t 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

AS zLP 56.8 57.3 56.8 56.8 56.8 56.8 70.5 76.5 78.4
3OD z 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0

z 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0
t 3.5 4.7 5.1 16.3 5.4 6.2 4.4 3.2 1.3

BM zLP 106.7 107.6 105.9 109.9 106.0 107.3 106.8 118.3 121.7
3OD z 117.6 128.1 114.6 122.4 128.1 118.1 128.1 128.1 128.1

z 128.1 128.1 128.1 128.1 128.1 128.1 128.1 128.1 128.1
t 7200.0 673.8 7200.0 7200.0 765.0 7200.0 39.7 6319.2 62.4

CL zLP 155.1 155.2 155.1 155.1 155.1 155.1 157.6 197.2 197.6
3OD z 209.5 209.5 192.9 209.5 209.5 209.5 209.5 197.9 209.5

z 209.5 209.5 209.5 209.5 209.5 209.5 209.5 211.1 209.5
t 3376.6 2933.5 7200.0 3959.7 3460.9 1015.9 340.9 7200.0 4985.9

DXL zLP 102.4 103.1 102.4 102.4 102.4 102.4 104.0 157.0 158.9
3OD z 112.0 111.8 112.0 112.3 114.2 113.0 115.7 157.7 161.0

z 299.2 390.9 340.1 - 175.3 175.7 278.1 - 180.5
t 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

deliveries that can be taken by ODs, until this information gets revealed. We also
see that at the end of the first stage, the vehicles tend to position themselves to
make good second stage decisions possible. This is especially obvious in the two
graphs to the left and the upper right graph. In the upper right graph, only one
of the company vehicles is used in the first stage, but this vehicle is well
positioned to serve the cluster of customers to the right of the depot if necessary.
Finally, in the lower right, we see one of the regular vehicles moving close to the
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destination of the ODs, which might seem like a bad decision at first glance, but
the second stage solutions that follow show this to be a good decision.
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Fig. 3. Four examples of how the first stage routes for the company vehicles change
when only the destinations of the ODs are altered, for the instance CL. Notice that the
customers are the same in all graphs. Starting in the first graph with the destinations
of the two ODs in the upper right corner, and rotating the destinations 90 degrees
around the center for each graph.

Second stage solutions for the lower right graph from Fig. 3 is shown in Fig.
4. This shows how the behaviour of the regular vehicles in the first stage fits
well with the different scenarios. The route of the regular vehicle that served a
delivery close to the destination of the ODs in the first stage now seems more
reasonable. All the deliveries in this area are served in all scenarios, with ODs
when they are available and through rerouting of the company vehicles when no
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ODs appear. Notice also how the route crosses itself when no ODs are available.
This would obviously be suboptimal if we knew beforehand that no ODs occur,
but this is part of the repositioning that happens due to the information flow of
the problem.
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Fig. 4. Comparison of second stage solutions of different scenarios. Notice that the first
stage solution is the same in all graphs, and allows for good second stage solutions in
all the scenarios.

4.4 Comparison to Deterministic Strategies

To test the quality of the stochastic solutions, we compare them to the solutions
of three strategies where deterministic planning and reoptimization are used. The
strategies differ in their risk profiles, where the no risk, medium risk and high
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risk profile relate to planning with respectively zero, one or all ODs available. A
plan is created at T0 for the entire day, with the assumption that either zero, one
or all ODs are available. All decisions from the plan that are taken before T1 are
considered fixed, and reoptimization is done at T1 for each scenario. An average
over all scenarios is considered the expected actual cost of the strategy for a
given instance, while the cost of the initial plan is referred to as the objective
value.

Table 2 shows that the objective value from the deterministic planning with
high risk gives an optimistic value when we compare with the actual cost of that
solution, and that the no risk solution gives a pessimistic objective value. The
deterministic models never give a better actual cost than the solution from the
stochastic model.

The objective values of the no risk profile corresponds to solving the VRP
without ODs, and thus give us results for the potential savings by using crowd-
shipping in these instances. In a paper with only deterministic models, the ob-
jective value of the no risk profile is often compared to the objective values that
are found in the medium or high risk profiles. This could for our instances show
savings of up to almost 50 %. A more realistic comparison is however to com-
pare the no risk objective value to the objective value of the stochastic models.
These savings are on average 13% for our instances and up to 23%. Further, a
comparison of the actual costs of the deterministic strategies to the costs of the
stochastic solution, gives us the value of solving a stochastic model over a deter-
ministic model. This shows that the stochastic model gives 2-3% better solutions
than the medium and high risk deterministic profiles, and 12% better solutions
than the no risk profile.

Deterministic planning gives optimal solutions for the scenarios that match
their risk profile, while the stochastic solution plans for the uncertainty and thus
performs better on average. The table does however also show the problem of
the stochastic model, where the XL instances are not solved in reasonable time
and therefore omitted. The deterministic models are faster to solve, and can be
used as heuristics to solve the stochastic model.

5 Final Remarks

In this paper, we develop a stochastic mixed-integer programming formulation
for a new vehicle routing problem, where occasional drivers appear dynamically.
Symmetry breaking constraints and valid inequalities are proposed, and some
of them are shown to decrease solution time substantially. The LP bounds are
strengthened by an extended formulation, while the compact formulation slightly
outperforms it with respect to solution time. Several figures are included to
show the effects of the uncertainty in the problem. This shows that the company
vehicles focus on first delivering to the customers that are unlikely to be served
by the ODs. The solutions from the stochastic model are compared to solutions
from deterministic models, showing that the stochastic model performs 2-3%
better than planning with some ODs and reoptimizing when information became
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Table 2. Planned deterministic objective function value for different risk profiles, com-
pared to actual expected cost of implementing the solutions from these profiles. The
rightmost column gives the stochastic optimal value. The avg. ratio gives the average
ratio between the stochastic solution and the solutions in that column. Italics are used
for best integer solution when the optimal solution is not found in 2 hours.

Objective value Actual cost Stoch

Instance \ Risk No Medium High No Medium High

AS 113.9 78.9 70.0 105.9 102.1 100.2 96.2
AM 169.7 140.5 119.3 169.7 163.7 158.9 158.9
AL 223.1 170.0 163.1 223.1 200.0 195.9 194.8
BS 107.3 96.4 82.4 107.3 93.3 101.6 93.3
BM 160.4 142.8 102.0 159.2 143.4 153.1 134.5

2OD BL 172.6 155.1 123.7 172.6 170.3 180.0 165.5
CS 81.9 68.3 52.0 81.9 68.9 68.9 68.9
CM 134.3 113.7 96.7 134.3 112.7 112.7 112.7
CL 219.3 215.0 204.1 219.3 212.0 212.9 211.4
DS 133.3 112.2 112.0 133.3 118.2 132.0 118.2
DM 171.7 149.1 149.1 171.7 160.5 161.9 156.5
DL 176.5 151.8 151.8 176.5 163.2 163.2 160.1

AS 113.9 73.5 42.7 107.9 94.5 89.0 89.0
AM 169.7 135.1 106.7 169.7 156.2 148.8 148.8
AL 223.1 164.8 152.2 220.1 191.0 196.3 188.1
BS 107.3 90.2 70.5 107.3 85.1 89.7 85.1
BM 160.4 112.4 89.5 160.4 132.7 134.8 128.1

3OD BL 172.6 144.0 104.0 170.8 164.2 157.2 157.2
CS 81.9 62.9 45.8 81.9 64.0 63.1 63.1
CM 134.3 108.3 92.6 134.3 107.0 107.0 107.0
CL 219.3 209.6 199.7 219.3 214.7 215.5 209.5
DS 133.3 110.6 100.7 133.3 121.1 131.1 118.4
DM 171.7 147.5 147.5 171.7 158.0 158.0 156.8
DL 176.5 150.3 149.7 160.0 160.8 160.7 160.0

Avg. ratio 0.87 1.06 1.26 0.88 0.98 0.97

available, and 12% better than planning without ODs and reoptimizing. For
our instances, the average cost savings of using ODs are 13%. Creating better
solution methods, e.g. through scenario generation, heuristics and decomposition
algorithms, together with testing on real data, is future research.
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Abstract. The Dial-a-Ride Problem (DARP) consists in serving a set
of users who specify their departure or arrival locations using a single
vehicle. The aim of DARP is to design vehicle routes satisfying requests
of users and minimizing the total traveled distance. In this work, we con-
sider a real case of dynamic DARP service operated by Padam3 in Paris
and Bristol. Padam offers a high quality transportation service in which
users ask for a service either in real time or in advance, and get an im-
mediate answer about whether their requests are accepted or not. The
transport activity is outsourced in Padam’s service, and contracts are
negotiated with third parties firms. Then each day, a fixed set of drivers
is available during a working period of time to provide a transportation
service of Padam. The main goal then becomes to maximize the num-
ber of accepted requests during the service. In this work, we develop a
two-phase procedure to achieve it. In the first phase an insertion heuris-
tic is used to quickly find out whether a request of a customer can be
inserted, then, in the second phase, we run an ALNS algorithm between
the occurrence of requests to improve the quality of the solution. The
procedure was extensively tested on real data provided by Padam with
up to 2000 requests and very tight side constraints and time-windows.

Keywords: Dynamic DARP, Insertion Heuristic, Computational exper-
iments, Online heuristic

1 Introduction

The new mobility services are growing with the development of Information and
Communications Technology (ICT) and the extension of the Smartphone usage
that involves the embedded geolocation devices (Global Positioning System -
GPS). For instance, the car-sharing system (Autolib) implemented in Paris shows
how the ICT technologies combined with a new service of mobility is enabling

�� corresponding author: sven.vallee@loria.fr, sven@padam.io
3 www.padam.io

© Springer International Publishing AG 2017
et al. (Eds.), ICCL 2017, LNCS 10572, pp. 64–78, 2017.

https://doi.org/10.1007/978-3-319-68496-3_5

Maximizing the Number of Served Requests in
an Online Shared Transport System by

Solving Dynamic DARP

T. Bektaş



new business models. In this growing of services, ICT are at the core of the
change from traditional mobility of using private car or public transport to
new mobility service in which end-users do not need to own a car to drive one,
example of car-sharing, ride-sharing, on-demand transportation, etc. The change
is also operated in business model of these services, in which a revenue and cost
structure are distributed diversely, where end-users pay a subscription fee that
includes all ancillary costs such as insurance, maintenance, and refueling, while
the service company bears all of the upstream and downstream risks.

This paper was motivated by the mobility service offered by Padam4 in
Paris and Bristol. Padam develops a B2B transportation service using a mobile
platform on Smartphone. The main purpose of the service is to create dynamic
bus lines according to the customer demands. In Padam’s system, customers
send a demand of transportation via a mobile application either in advance, i.e.
booking few days before the service, or in real-time for an immediate service.
Customers specify when they wish to be picked up or when the they have to be at
their destination and the number of passengers. Such a transportation demand
is denoted a request. Furthermore, the transportation service is operated with
mini-bus by creating dynamic lines, in which all potential stop locations of buses
are predefined. Pickup and destination addresses of customer are then associated
to their nearest nodes among predefined locations covering the geographical area,
and the customer will be serviced at these nodes. Once a customer has submitted
its request, the optimization engine decides whether the request can be accepted
or not, i.e. the request can be inserted in the existing rides or not. When solutions
exist, several offers are then proposed to the customer around its requested time-
window, among he/she will choose the most convenient for himself.

The transport activity is outsourced in Padam’s service, and contracts are
negotiated with third parties firms. In these contracts are specified, for each day,
the number of drivers and mini-bus available as well as the shift of working hours.
The number of mini-bus for each day is determined by Padam as the result
of forecasting calculation based on historical data of transportation demands.
Every day, the starting location of each ride is a decision variable fixed by the
optimization engine, depending on the number and the localization of requests.
Furthermore, as the transport activity corresponds to a fixed cost (i.e. cost of
outsourcing), the main objective of Padam’s service is to serve as many requests
as possible during the service shift.

In this work, we develop methods implemented in optimization engine of
mobility service of Padam. More precisely, we consider a variant of dynamic dial-
a-ride problem with online requests of transportation. Since a solution should be
proposed for a user in real time, i.e. in few seconds for each request, a heuristic
approach is proposed to dynamic DARP problem. The proposed method is based
on fast insertion algorithm to obtain a feasible solution then a metaheuristic-like
algorithm based on ALNS to improve the current solution before the appearance
of the next request in the system.

4 www.padam.io
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The remainder of this paper is structured as follows. In section 2 we provide
a selective review on problems related to DARP problem. In Section 3 we give
more details on the constraints and characteristics of our problem. In section 4
we describe our two solving algorithms and the way they interact. Experimental
results are presented in section 5. The paper concludes with a short summary
and an outlook on future research in Section 6.

2 Related work

DARP problems have been investigated in the literature for over 30 years. The
basic problem consists of serving a set of users who specify their departure or
arrival locations using a single vehicle [17], namely, the static DARP and the
dynamic DARP. In the static case, all user requests are known before the start
of the route calculation. Therefore the route to be taken by each vehicle is fixed
in advance and can not be changed even when a user cancels his reservation or
if another user has just requested the service ([5]). In the dynamic case the user
requests arrive in real time, or on a sufficiently short time scale, while the routes
of vehicles have already been scheduled and their routing have started ([1]).

Several characteristics can be used to classify DARP, such as the number
of used vehicles [13]. The problem with multiple vehicles is called multi-vehicle
DARP (m-DARP) ([12]). Another characteristic of DARP is related to depar-
ture or arrival time, specified as time-window constraints. The presence of time
window constraints increases the complexity of the problem and influences the
order of visits of the users which implies an increase in the cost of transport.
In practice, other constraints may be encountered, namely a fleet of heteroge-
neous vehicles, medical constraints etc. [6] provides a review on existing models
of DARP and solving methods. Given the context of our problem, we will con-
centrate our review on the dynamic DARP.

Several solving procedures have been proposed in the literature for the dy-
namic DARP and which can be gathered into two categories : fast heuristics to
insert new requests and solving approaches focused on a meta-heuristic search
running between the appearance of consecutive requests ([7], [1]). Hybrid meth-
ods are proposed in which meta-heuristics is stopped each time a new request
appears and treats the new request with fast insertion heuristic ([2]). Others
approaches rather periodically check if news requests have appeared, and if so
try to insert it in the current solution via a meta-heuristic ([15]).

[1] uses a parallel tabu search to solve a dynamic DARP with the objective of
minimizing the total routing cost. Their algorithm runs between the appearance
of consecutive requests. When a new request arises, they perform a feasibility
check (limited to 30s) with a tabu search method until a feasible solution is
found. In [7] authors consider only one vehicle with the objective of service
quality for already planned customers. Authors insert unexpected request, i.e.,
request which appears when the vehicle is at a stop. A fast heuristic is used
to quickly answer unexpected customer, then a local search is performed in
the neighborhood of the current solution until the bus reaches it’s next stop.
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In [2] authors model a German hospital transportation system as a dynamic
DARP, with additional constraints to take into account specificities of their
medical context. Their objective is to minimize the weighted sum of total travel
time, earliness and tardiness. Requests of users are subject to soft time windows
and violation of these time windows are penalized in the objective function.
An insertion heuristic is run whenever a request needs to be scheduled and an
improvement phase using tabu search is performed between the occurrence of
two events. [16] adapts 4 meta-heuristics to cope with a dynamic stochastic
DARP by using stochastic information on demands of transport to improve
solution quality. The objective is a lexicographic function whose first goal is the
minimization of total tardiness. In their settings, requests are subject to soft
time windows and they never reject any request. They regularly check for the
appearance of new requests and incorporate them in their search procedure.

3 Problem description

A road network is represented by a weighted directed graph G = (V,E), where V
is the set of nodes, E the set of edges. Nodes model pickup or drop-off locations
and edges depict paths between these locations. With each edge (i, j) a weight
tij is associated which depicts the shortest traveling time between nodes i and
j. The set of nodes V is partitioned into three subsets: the subset of pickup
nodes P = {1, . . . , n}, the subset of drop-off nodes D = {n + 1, . . . , 2n} and the
subset of departure nodes DN = {2n + 1, . . . 2n + K} at which vehicles start
their routes. We denote by K the set of vehicles available during the service.
To each vehicle is associated a capacity Qk, i.e. the number of users that can
be transported at the same time. A transportation request is a couple (i, n + i),
where i ∈ P and n + i ∈ D. Each request i is characterized by the service
duration ui at a node i, a load qi, which represents the number of persons
associated with this request (qn+i = −qi). Request i specifies if the demand
is pickup (resp. drop-off) oriented PO (resp. DO), and the target time h of
service, i.e., desired pickup time (drop-off) if the demand is PO (DO). A time
window [ei, li] is associated with the pickup and drop-off node of each request of
customers. This time window depends on several parameters and on the business
model of Padam. In the rest of the paper we consider it as a data associated to
each request.

Our objective is serving the maximum number of requests during an entire
service, and a solution is feasible if all accepted requests are serviced within their
time windows. Since requests arrive in real time, only a partial set of requests is
known at each time. Thus, we define two objective functions, namely, duration,
and max slack.

– duration is the total duration of all rides, and the duration of a ride being
the sum of the travel time between its consecutive stops.

– max slack is the sum of the max slack time of all stops of all rides. For a given
stop, a max slack time is defined as the difference between the maximum
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arrival time of the stop, (i.e., endpoint li of the time window associated to
that stop) and its effective arrival time.

duration must be minimized whereas max slack have to be maximized. Min-
imizing the duration is equivalent to serve all requests in the shortest time.
Conversely, maximizing max slack ensures that the future insertions will not be
limited by the time window constraints, since each stop has a bigger flexibility
to be postponed.

4 Solving approaches

In this section, we develop a two-phase heuristic to solve our dynamic DARP.
Each time a new request appears, we launch a fast insertion heuristic to get
a quick answer for the customer (less than 2 seconds). We call this phase the
online insertion algorithm. If feasible insertions are found, the heuristic output
several proposals to the customer, each one at a different time, as timetable in
public transportation system. The idea is to take into account the wishes of the
customer while keeping in the foreground the concept of shared transportation.
The customer is free to choose one of them or to refuse proposals. In order to
improve the feasible solution, we run in phase two an ALNS search algorithm
until the next event appears. The next event can be either the appearance of a
new request or the arrival of a bus at a stop node. We call this improvement
phase the offline improvement algorithm. Details about these two phases are
given in the following sections.

4.1 Online Insertion Algorithm

The online insertion algorithm is a greedy heuristic which try to insert pickup
and drop-off nodes at every possible position of each ride. To take into account
the target time h of the customer, we impose a constraint on the tested insertion
position, i.e., for each insertion position pair (pickup, drop-off), and if the cus-
tomer is PO (resp. DO) the resulting pickup time (resp. drop-off time), called
the critical time, must be within time interval [max(h − DB, t), h + DA] where
DB (delay before) and DA (delay after) are adjustable parameters and t is the
current time (important for real time request). To be feasible, an insertion must
also respect constraints imposed on others clients (i.e. the the detour generated
by the insertion can’t violate time window of other clients) and by the vehicle
constraints (max capacity, and service end time). In the case where no feasible
insertion is found, the demand is rejected. Otherwise, we get several insertion
positions with associated arrival times to pickup and drop-off, among which only
the best insertions will be kept to be proposed to the client.

4.2 Offline Improvement Algorithm

As described in section 4, the offline improvement algorithm runs between the
occurrence of two events, where an event is either the arrival of a vehicle at its
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next stop or the appearance of new request. The offline improvement algorithm
is based on the Adaptative Large Neighborhood Search (ALNS) method, which
has been successfully used in vehicle routing problem ([14], [10]) and in static
DARP problem [9]. To the best of our knowledge, it has no yet been used to
solve instances of dynamic DARP.

ALNS begins with an initial solution and improves the objective value grad-
ually, by applying a pair of destroy and repair operators randomly chosen from
a collection of operators. A reward function is used to promote more efficient
pairs of operators. The method is adaptive since the pair of operators chosen at
each iteration depends on its previous performance. We now briefly present the
characteristics of our ALNS method.

4.2.1 Initial conditions and simulated annealing

Due to the dynamic aspect of our problem, our ALNS works on a set of already
existing rides which corresponds to the initial solution. We use a classical simu-
lated annealing framework where c is the cooling rate. The initial temperature
is set to T0 = C0×0.1

log(2) with C0 the objective value of the initial solution [3].

4.2.2 Adaptive weight procedure

A roulette-wheel mechanism is used to control the selection of the neighborhood
operators. Destroy and repair operators are independently chosen at each iter-
ation according to the current probability distribution. At the beginning, the
probability of destroy and repair operators are uniformly assigned. The search
strategy is divided in segments of size seg of iterations. At each iteration of a
segment, the score of each operator (destroy and repair) is increased according
to three parameters, namely, σ1 which rewards operators when a new best so-
lution is obtained, σ2 which rewards operators when newly generated solution
is better than the current one and σ3 which rewards operator when a newly
generated solution is worse but accepted. In the next segment, the probability
of each operator i is updated as follow:

ps+1
i = ps

i (1 − r) + r
πi

ni

where πi is the cumulated weight of operator i during the previous segment
s and ni the number of times the operator is used. r is a parameter called the
reaction factor.

4.2.3 Destruction Operators

At each iteration, we choose a number k of requests to remove. Only requests
whose pickup has not yet been serviced by its ride can be removed. k is randomly
sampled between 1 and maxr ∗ Trequest where Trequest is the total number of
unserved requests and maxr ∈ ]0; 1] is a free parameter. We use 5 different
destruction operators inspired from [14].
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Random operator: Select k requests randomly.
Worst operator: Select the k requests with the biggest saving, i.e., the differ-

ence between the objective value of the current solution and the objective
value of solution once the request is removed. In order to increase the di-
versification, this operator is randomized as follow: all unserved requests are
sorted in decreasing order of saving values in a list L. A random number y is
sampled between 0 and 1 and the request at the position �ypr |L|� where |L|
is the size of L and pr a parameter. This is repeated until k requests have
been chosen.

Relatedness operator: Choose a request randomly and select k − 1 related
requests. The relatedness measure between request i and j is defined as
follow:

1
2
(
tpi,pj

+ tdi,dj

)
+

1
2
(|upi

− upj
| + |udi

− udj
|)

where pi and di are the pickup and drop-off nodes, respectively, and upi

and udi
the service time of pickup and drop-off of request i. This operator

is also randomized as in the previous case. The parameter controlling the
randomness is called pw.

Strong Overlap Relatedness operator: Choose a request randomly and re-
move all the related requests. Given a request i, a request j is related to i if
their overlapping ratio exceeds a given ratio rs. If Tpi =

[
p

i
, pi

]
is the time

window at the pickup of a request i and Tdi =
[
di, di

]
the time window of

its delivery, the overlapping ratio is computed as follows:

rij =

{
0 if Tpi

∩ Tpj
= ∅ OR Tdi

∩ Tdj
= ∅

inter(Tpi
,Tpj

)+inter(Tdi
,Tdj

)

(pi−p
i
)+(di−di)

otherwise

where the inter(a, b) is the length of the intersection of the intervals a and b.
This operator selects requests which are similar, and so can be exchanged or
inserted on the same ride. This operator is motivated by the fact that time
window is the most restrictive constraint in our problem.

Random Ride operator: Select all the requests of kr randomly chosen rides.

4.2.4 Repair Operators

After selecting the requests to be removed, repair operators are used to reinsert
removed requests. Our operators can remove all the selected requests at once and
reinsert them one by one or remove them one by one and reinsert each removed
request immediately. Our operators are inspired from [14]. Let L be the list of
removed requests.

Deep Greedy operator: Remove all requests at once and perform the best
insertion among all feasible insertions of all requests still to reinsert. The
best insertion is defined as the insertion with the minimal increase in the
objective function.

70 S. Vallée et al.



Regret operator: Remove all requests at once and sequentially insert from
list L the request with the large regret. The regret computation follows the
classic scheme presented in [14].

Modified Regret operator: This operator uses a modified version of regret
operators as presented in [8].

Basic Greedy operator: Remove requests of L one by one and reinsert each
removed request at its best position.

Since existing requests are already accepted by the system, it is not possible
to reject them. When repair operators fail to reinsert all requests, the move
is then refused, i.e. the method does not accept infeasible solutions during the
search.

4.2.5 Shifting procedure

After each move (destruction & repair operations) we perform, on each ride, a
shifting operation that insures the feasibility of time window, i.e., the left side
of time windows are not violated. Indeed, due to tight time windows, a violation
of left-side of time window could happens after the destruction phase, and not
be corrected by repair phase. In such case correcting procedure called shifting
procedure is used to avoid the left-side violation of time window. It consists in
shifting on the right the starting processing times of a block of requests in each
ride till all left-side time windows become feasible. If shifting procedure is not
able to correct the violation, the solution will be considered infeasible and the
move refused.

5 Experiments

In this section we compare our proposed ALNS method with online insertion
heuristic by considering several objective functions. All tests in our experiments
have been performed on real data provided by Padam. For confidentiality issues,
we are not able to get into too much details on these instances but we will
nevertheless present their main features.

5.1 Instance type

The data presented here concern 4 real cases coming from partnerships between
Padam and transport agencies. Each case models a real transport context in a
given geographical area including the following information:

– Service data: set of scattered nodes across the territory, matrix of traveling
times between nodes, service time span and parameters defining the quality
of the service.

– Customer data : stochastic distribution generating customer requests ap-
pearance and behavior.
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These informations define what we call an ’Instance-type’ and allow us to
perform real-world simulations to test our algorithms. We have 4 Instance-type:
F95 1, F95 2, F93 77 and TH. The 2 following subsections provide more details
on their service and requests data.

5.1.1 Service data

Table 1 presents global characteristics of Instance types. Column ’Nodes’ indi-
cates the number of nodes in the territory, column ’Service duration’ shows the
number of hour during the service, column ’Non zero OD’ indicates the number
of possible pairs of origin-destination based on real data and column ’Vehicle
number’ denotes the number of vehicles decided with transport agencies. In our
experiments we will change the number of vehicles to see the behavior of our
algorithms when the number of vehicle decreases. For each Instance-type, the
capacity of each vehicle is 8. Finally, for each Instance-type we calculate matrices
of distances and traveling times between nodes using the Google API.

Name Nodes Service duration Non zero OD Vehicle number

F95 1 286 12 339 (0.42 %) 10
F95 2 286 10 273 (0.33 %) 5
F93 77 286 11 375 (0.45 %) 11

TH 213 4 213 (12.9 %) 75

Table 1: Main service features for each Instance-type

5.1.2 Requests data

Another important part of data is the requests generation context. It determines
the temporal and spatial repartition of the requests and the customer’s behavior
regarding various proposals.Our simulator allows us to use different laws to gen-
erate requests. The 4 Instance-type use the same generation law with different
values for parameters. Here are the main steps of the customers’s generation:

1. Sample the arrival times of requests during the service period using a poisson-
level distribution

2. Fix a proportion of the sampled requests to be in advance, and the rest as
real time requests.

3. Sample for each request the origin and destination nodes according to origin-
destination matrix.

4. Generate the behavior of each client regarding our various trip proposals.
In our Instance type the behavior of clients is as follows: a client selects the
proposal which is the nearest to its request time. If the gap between the
request time and the nearest proposal is greater than MWTA for advance
requests or MWTR for real time requests, the customer reject the proposal.
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In Instance types the values of parameters MWTA and MWTR are fixed to
45 mn and 30 mn respectively, except for TH where MWTA = MWTR =
30 mn.

Table 2 presents temporal characteristics of the Instance-types. Instance types
F95 1, F95 2 and F93 77 are very similar and contain mainly requests in ad-
vance. Instance type TH contains more than 2000 requests and has a service
duration of 4 hours. 75% of request are in real time which make this instance
harder.

Table 2: Temporal density of instances

Name Mean Number Requests % of Real Time requests

F95 1 486 25 %
F95 2 148 25 %
F93 77 373 25 %

TH 2200 75 %

5.2 Tuning the ALNS parameters

Our ALNS method includes several parameters whose values must be determined
(4.2). To fix these parameters, we use an iterated racing algorithm implemented
in the R package ”irace” [11]. irace is based on statistical concepts and inspired
from Machine Learning algorithms. See [4] for more details on technical aspects
of racing algorithm for meta-heuristic tuning. The idea of irace is to run several
races to discard bad configurations and sample new one similar to the best
configurations seen up to now. The best configurations found are then returned
at the end of the process. For more details on technical aspects (number of
configurations sampled at each iteration, similarity measure etc...) see [11].

In our case, we ran irace for each Instance type presented in 5.1 separately
because each one corresponds to a different probability distribution and so can
potentially have a different set of optimal parameters. For each Instance type, we
generated a set of 30 instances, and for each instance, all in advance requests are
booked with the online algorithm to create what can be seen as an initial solution
for the ALNS method. The number of vehicles used is the default number of the
Instance type. These instances will then be used by irace during the training
phase to run ALNS when testing the different parameters configurations. Table
3 exposes the final range for each parameter.

Table 4 gives the best set of parameters found by irace. We will use these
values for the experiments.

5.3 Results

For each Instance type (F95 1, F95 2, F93 77 and TH), we generated 10 in-
stances that will be used in the experiments. This allows us to capture the
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Table 3: Interval of variation of each parameter for the training phase

c σ1 σ2 σ3 r

[0.95, 0.99975] �1, 20� �1, 20� �1, 20� [0.15, 0.7]

pr pw seg rs maxr

�1, 10� �1, 10� �10, 100� [0.3, 0.9] [0.2, 0.5]

Table 4: Best values found by irace for each Instance

Instance type
Parameter

c σ1 σ2 σ3 r pr pw seg rs maxr

F95 1 0.9854 20 23 11 0.25 10 6 63 0.42 0.38
F95 2 0.9922 8 11 11 0.36 9 4 41 0.38 0.26
F93 77 0.9837 21 14 4 0.48 8 2 71 0.38 0.28
TH 0.9519 24 13 11 0.58 7 3 16 0.88 0.40

stochasticity of the problem while keeping the results reproducible. Integrated
in the backend of the solution of Padam, the code of the simulator and the al-
gorithms were implemented in python/cython 5. The simulations were executed
on a server with 16 Intel Processor Core cadenced to 3 GHZ. The purpose of
this section is to compare the performance of the insertion heuristic with and
without the offline improvement phase using two different objectives described
in section 3.

5.3.1 Impact of the objective function on insertion process

For each Instance type, the default number of vehicle was used. Table 5 provides
results of simulations. The duration objective is taken as reference for comparison
with the max slack objective. Columns psr and tk represent the percentage of
accepted requests and the total number of kilometers, respectively, and columns
diff psr and %tk represent the variation of accepted requests and the number of
kilometers in comparison with psr and tk, respectively.

We observe that the duration objective always outperforms the max slack
objective, especially in terms of number of kilometers. We also observe that the
larger the instance, the better duration performs. It shows that the best objective
for the online insertion algorithm is the duration.

5.4 Comparison online-offline

In this section we study the impact of the two objectives when online insertion
heuristic is combined with the off-line improvement algorithm. We ran simula-
tions with and without offline improvement for the 10 sampled instances of each

5 http://cython.org/
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Table 5: Impact of each objective on the online insertion algorithm

Instance
duration max slack
psr tk diff psr % tk

F95 1 77.5 % 3082 - 1.96 % 11.62 %
F95 2 85.69 % 1210 - 1.6% 6.94 %
F93 77 87.14 % 3805 - 3.34 % 8.14 %

TH 72.98 % 5759 - 6.33 % 10.52 %

Instance type. The purpose is to have a global trend on each Instance type. To
speed up simulations, we allowed the offline algorithm to run only between the
appearance of 2 requests and not after each vehicle arrival to a stop. Table 6
reports the results of experiments. Column V e represents the number of vehi-
cles. For both objective, 3 results are reported: %psr is the percentage of served
requests with offline improvement minus percentage of served requests without

improvement. %tk is defined as toff
k −ton

k

ton
k

× 100 where toff
k and ton

k represent
the total number of kilometers of all rides with offline and without offline im-
provement, respectively. %obj is defined in a similar manner, for example, %obj

in duration is defined as toff
d −ton

d

ton
d

× 100 where toff
d and ton

d represent the total
duration of the obtained solution with offline and without offline improvement,
respectively. For each Instance type and each vehicle number, the percentage
of served requests, total kilometers and the final objective value are mean of
simulations on the 10 instances.

Table 6: Comparison with and without offline improvement

Instance Ve
duration max slack

% psr % tk % obj % psr % tk % obj

F95 1

4 3.66 - 5.10 -3.93 3.59 -2.41 17.59
6 4.30 - 9.60 -7.12 6.23 - 2.68 17.48
8 5.18 - 9.84 -8.40 5.14 2.52 10.08
10 4.30 - 9.79 -8.76 4.69 5.67 4.03

F95 2

2 5.36 - 0.79 - 1.01 2.91 0.75 28.22
3 5.30 - 4.31 - 4.08 3.86 0.36 20.26
4 4.00 - 9.92 - 8.76 3.39 0.82 10.59
5 3.58 - 10.00 - 9.24 2.66 4.03 2.43

F93 77

5 4.21 - 6.68 -4.65 6.47 - 2.70 15.65
7 5.14 - 7.38 -5.47 6.93 - 2.84 21.41
9 5.45 - 10.48 -8.02 5.44 0.30 8.80
11 4.97 - 12.22 -9.76 3.78 1.38 6.43

TH

50 8.54 - 5.47 -3.44 5.65 1.76 20.14
60 8.65 - 4.56 -2.80 5.06 2.00 17.91
70 7.38 - 4.35 -3.39 4.73 2.07 15.81
80 6.66 - 5.39 -4.42 3.96 4.56 15.56
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In table 6, we observe that simulations with offline improvement always ob-
tain a higher percentage of served requests (PSR) than simulations with only
the online insertion algorithm. If we restrict to PSR, we observe that duration
is the best objective on F95 2 and TH whereas max slack performs better on
the 2 others Instances. The best global improvement on the percentage of served
requests is on TH, which is the larger and more complex Instance type. This is
probably due to the fact that this is the instance with the smallest geograph-
ical area and so ride sharing is easier. For max slack, we observe that TK is
improved when few vehicles are used, however the solution is deteriorated when
additional vehicles are used. On the other hand, duration always decreases TK
and the decrease becomes larger when more vehicles are used. This is coherent
with the %obj column which shows that the improvement on TK increases when
the number of vehicles increases.

To summarize this section, we can conclude that the best objective is the
duration, which provides significant improvements for the company both on PSR
and on TK. Indeed, when considering the default number of vehicles, the gain
on TK is 10% and the gain on PSR is 5%. Moreover, we show that our 2 phases
procedure can cope with highly dynamic and very large Instance type as TH,
which have 75% of dynamic requests. In any case, the percentage of served
requests always decreases with the size of the fleet, even for duration. We could
at first glance conclude that the improvement on served requests percentage and
on the duration are negatively correlated. However, the last section tends to
indicate that this is not the case.

5.5 Comparison with pure offline

In this section, we evaluate the quality of solutions obtained by ALNS in dy-
namic environment by comparing them with solutions that will be obtained
when applying ALNS method on our problem assuming that all data are known
in advance.

Table 7 shows the results. Column %on depicts the results of %obj of table 6
for each objective and represents the improvement obtained by the ALNS while
running during the service. Column %off indicates the mean of improvement
over the 10 generated solutions, where each solution is obtained with ALNS lim-
ited to 10 minutes. The discrepancy between %on and %off for TH is explained
by the fact that TH is a very difficult instance and that 10 minutes of pure offline
optimization (%off) are not enough to perform as well as continuous optimiza-
tion during the service (%on). Data in column duration shows that increasing
the number of vehicles prevents the improvement of the ALNS during service
and it seems to be far from its possible best performance. On the other hand,
the improvement are similar when fewer vehicles are used so it means that we
cannot expect a bigger improvement on PSR and TK while using the duration
objective with few vehicles. It confirms that the duration is a good objective but
more effort should be done to get a better improvement during the service.
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Table 7: Comparison with pure offline mode

Instance Ve
duration max slack

% on % off % on % off

F95 1

4 -3.93 - 4.11 17.59 23.13
6 -7.12 - 8.19 17.48 26.76
8 -8.40 - 13.57 10.08 35.02
10 -8.76 - 17.30 4.03 37.25

F95 2

2 - 1.01 - 1.94 28.22 29.25
3 - 4.08 - 7.32 20.26 28.18
4 - 8.76 - 11.08 10.59 34.98
5 - 9.24 - 15.08 2.43 45.82

F93 77

5 - 4.65 - 4.46 15.65 27.18
7 - 5.47 - 9.22 21.41 31.83
9 - 8.02 - 13.64 8.80 40
11 - 9.76 - 15.97 6.43 47.94

TH

50 -3.44 - 1.70 20.14 1.99
60 -2.80 - 2.75 17.91 2.34
70 -3.39 - 4.11 15.81 4.34
80 -4.42 - 6.34 15.56 7.96

6 Conclusion

In this paper, we have studied hard instances of dynamic Dial-a-Ride Problem
(DARP) proposed by Padam. We proposed a two phases optimization procedure.
We showed with intense experiments that this procedure offers a real improve-
ment in term of percentage of accepted requests and total traveled kilometers
over a simple insertion heuristics. Our algorithms are thus able to cope with
highly dynamic and large instances with more than 2000 requests. Among the
two objective functions, the duration objective is the best which is able to in-
sert the maximum of requests. Also, our analysis showed that the improvement
over the insertion algorithm is limited when the number of vehicle increases and
we proposed a valid justification of this fact. Future work will focus on the im-
provement of insertion heuristic by re-ordering existing requests or temporarily
allowing infeasible solutions which might be repaired in offline phase.
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Abstract. The elementary shortest path problems with resource con-
straints (ESPPRC) in graphs with negative cycles appear as subprob-
lems in column-generation solution approaches for the well-known vehicle
routing problem with time windows (VRPTW). ESPPRC is NP-hard
in the strong sense [8]. Most previous approaches alternatively address
a relaxed version of the problem where the path does not have to be
elementary, and pseudo-polynomial time algorithms based on dynamic
programming are successfully applied. However, this method has a sig-
nificant disadvantage which is a weakening of the lower bound and may
induce a malfunction of the algorithm in some applications [9]. Addi-
tionally, previous computational studies on variants of VRPs show that
labeling algorithms do not outperform polyhedral approaches when the
time windows are wide [13] and may not even be applied in some situa-
tions [7]. Furthermore, an integer programming approach is more flexible
that allows one to easily incorporate general branching decisions or valid
inequalities that would change the structure of the pricing subproblem.
In this paper we introduce an ILP formulation of the ESPPRC problem
where the capacity and time window constraints are modeled using path
inequalities. Path inequalities have been used by Ascheuer et al. [1] and
Kallehauge et al. [13], respectively, in solving the asymmetric traveling
salesman problem with time windows and the VRPTW. We study the
ESPPRC polytope and determine the polytope dimension. We present
a new class of strengthened inequalities lifted from the general cutset
inequalities and show that they are facet-defining. Computational ex-
periments are performed on the same ESPPRC instances derived from
the Solomon’s data sets [9]. Results compared with previous formulations
prove the effectiveness of our approach.

Keywords: Elementary shortest path with resource constraints, Vehicle
routing problem with time windows, integer programming, Polyhedral
study

1 Introduction

The elementary shortest path path problem with resource constraints considered
in this paper can be described as follows: for a given directed graph G = (V,A),
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where V = {0, . . . , n + 1} is the set of nodes, |V | = n + 2, and A is the set of
arcs. Node 0 represents the start node and node n+1 represents the target node.
The other n nodes represent the set of intermediate nodes N = V \{0, n + 1}.
With each arc (i, j) ∈ A, we associate an arc cost cij ∈ R and an arc travel
time tij ∈ Z+. We assume that the triangle inequality on the travel times is
satisfied, i.e. tik ≤ tij + tjk, for all (i, k) ∈ A. With each node i ∈ N we associate
a demand di ∈ Z+, di ≤ q, a release date ai ∈ Z+, a processing time pi ∈ Z+,
and a deadline bi ∈ Z+. The parameter q often represents a vehicle capacity in a
vehicle routing scenario, and the release date ai and the deadline bi, respectively,
represent the earliest possible and the latest possible starting time for servicing
node i ∈ N . The interval [ai, bi] is called the time window for node i. The time
window is called active if ai > 0 or bi < ∞; a time window of the type [0,∞]
is called relaxed. In cases where servicing may start before ai, one need to wait
until the node is released. We assume that d0 = dn+1 = 0, a0 = an+1 = 0,
and {(0, n + 1)} /∈ A. The problem is to find a min-cost elementary path from
node 0 to node n + 1 such that, for every node i on the path, the start time
for processing (visiting) node i lies within the given time window [ai, bi], and
the overall demand from the nodes on the path does not exceed q. A path is
elementary if it does not visit any node more than once, i.e., if it does not
contain subtours.

Since the ESPPRC is NP-hard in the strong sense, general approaches in
addressing the problem as a subproblem in a vehicle routing or crew scheduling
scenario often look at a relaxed version of the problem where the path does not
have to be elementary, called shortest path problem with resource constraints
(SPPRC). In a column generation procedure where the master problem is formu-
lated as a set covering problem, this approach is able to generate valid optimal
solutions for a VRPTW provided that the triangle inequality is satisfied. An im-
portant group of these approaches is based on dynamic programming (DP) and
has pseudo-polynomial complexity. This approach has been successfully applied
by Desrochers et al. [6] for the VRPTW and by Graves et al. [10] for the flight
crew scheduling problems to mention only a few examples. However, such relax-
ation leads to weak lower bounds and large branch and bound trees [11]. For a
number of other problems, e.g. the Vehicle Routing Problems with Profits, the
elementary path restriction has too much impact on the solution to be relaxed
or might even be necessary [9].

Feillet et al. [9] evaluate firstly an exact approach for the ESPPRC extended
from the labeling algorithm by Desrochers et al. [6]. In their approach, a cus-
tomer resource is included to indicate if a given customer can be visited or not
by extending the current partial path. The algorithm reduces the duality gap
compared to the usual approaches that are based on the SPPRC bound and
enables the use of a column generation solution methodology for some special
problems or with some special branching schemes that cannot rely on SPPRC
solutions. More recently, Righini and Salani [16] propose a bidirectional labeling
algorithm for the ESPPRC that relies on a state-space relaxation. A similar DP
algorithm proposed by Boland et al. [4] achieves good performance on randomly

80 J. Da et al.



generated instances. Rousseau et al. [17] solve the VRPTW using a branch-and-
price approach that handles the ESPPRC subproblem with constraint program-
ming (CP). Although the CP component proved to be flexible, their approach is
somewhat slow in comparison with traditional branch-and-price strategies. Bal-
dacci et al. [3] extend the exact algorithm of Righini and Salani by including
bounding functions based on state-space relaxation. They introduce the concept
of ng-route relaxation that is used to calculate completion bounds for partial
paths, thus accelerating the DP algorithm by means of label fathoming. Very
recently, Lozano et al. [14] present an exact algorithm based on implicit enumer-
ation with a new bounding scheme that remarkably reduces the search space. For
a comprehensive review on resource constrained shortest paths, see the survey
paper by Di Puglia Pugliese and Guerriero [15].

Different to the traveling salesman problem, polyhedral studies on the el-
ementary shortest path problems and vehicle routing problems are quite lim-
ited. Kallehauge et al. [13] present a formulation for the VRPTW based on the
infeasible path inequalities from a study of the ATSP-TW polytope [1]. The
authors analyze the dimension of the VRPTW polytope and show that, under
certain conditions, a class of infeasible path inequalities is facet-defining. For
the elementary shortest path problem without any resource constraints (ESPP),
Taccari [19] analyze several integer programming formulations and present some
polyhedral results to show the equivalence between polytopes based on two dif-
ferent models. To the best of our knowledge, polyhedral studies of the ESPPRC
polytope have not been addressed in the literature.

From a general engineering point of view, integer programming approaches
are more flexible to incorporate general branching decisions or valid inequalities
that would change the structure of the pricing subproblem and allow a direct
use of general-purpose MIP solvers. In this paper, we present a polyhedral study
on the ESPPRC polytope and derive valid inequalities useful to the effectiveness
of a branch-and-cut based method. Section 2 introduces notation, the standard
MIP model for ESPPRC and some new formulations based on infeasible path
inequalities. Section 3 investigates the ESPPRC polytope dimension and intro-
duce a set of facet-defining inequalities. Several classes of novel valid inequalities
are introduced in Section 4. Section 5 reports computational results where we
are in particular aiming at showing the effectiveness of the presented inequalities
in improving LP relaxation bounds and reducing the sizes of branch-and-bound
search trees. Finally, in Section 6, we give some concluding remarks and discuss
further research topics.

2 Notation and Modeling

To make a polyhedral study on this problem, we need to further configure the
structure of the directed graph G = (V,A). We assume that for any i ∈ N,
max{t0i, ai} + tin+1 ≤ bn+1, otherwise, node i can be removed from G without
impacting the optimal solution. Given a node set W ⊆ V , let

A(W ) := {(i, j) ∈ A|i, j ∈ W}
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denote the set of all arcs with tail and head inW. For any two node sets U,W ⊆ V
let,

(U : W ) := {(i, j) ∈ A|i ∈ U, j ∈ W}
denote the set of arcs with tail in U and head in W . To simplify notation, we
use (W : j) and (j : W ) instead of (W : {j}) and ({j} : W ), respectively. Given
a node set W ⊂ V , W �= ∅, we also define

δ−(W ) := {(i, j) ∈ A|i ∈ V \W, j ∈ W},

δ+(W ) := {(i, j) ∈ A|i ∈ W, j ∈ V \W},
δ(W ) := δ−(W ) ∪ δ+(W ).

The arc set δ(W ) is called a cut. For simplicity, we use δ−(v), δ+(v), and δ(v)
instead of δ−({v}), δ+({v}), and δ({v}), respectively. The number of |δ−(v)|,
|δ+(v)|, and |δ(v)| are called the indegree, outdegree and degree of node v. In this
study, we assume δ−(0) = δ+(n+1) = ∅, and A(N) = {(i, j) ∈ A|ai+pi+tij ≤ bj
and di+dj ≤ q}, otherwise, arc (i, j) can be removed from G without impacting
the optimal solution. Let m = |A(N)|, we have A = δ+(0) ∪ A(N) ∪ δ−(n + 1)
and |A| = 2n+m.

There are a few ways in the literature to model the ESPPRC as integer linear
programs. The most comprehensively used one involves binary arc variables xij

as well as node variable τi, indicating the time when node i is visited. A standard
integer programming formulation to determine an elementary shortest path from
node 0 to node n+1 satisfying capacity and time window constraints is as follows:

z = min
∑

(i,j)∈A

cijxij (1)

∑

(0,j)∈δ+(0)

x0j −
∑

(j,0)∈δ−(0)

xj0 = 1 (2)

∑

(n+1,j)∈δ+(n+1)

xn+1j −
∑

(j,n+1)∈δ−(n+1)

xjn+1 = −1 (3)

∑

(i,j)∈δ+(i)

xij −
∑

(j,i)∈δ−(i)

xji = 0 (∀i ∈ N) (4)

xij(τi + pi + tij − τj) ≤ 0 (∀ (i, j) ∈ A) (5)

ai
∑

j∈δ+(i)

xij ≤ τi ≤ bi
∑

j∈δ+(i)

xij (∀i ∈ V ) (6)

∑

i∈V

di
∑

j∈δ+(i)

xij ≤ C (7)

xij ∈ {0, 1} (∀ (i, j) ∈ A) (8)

The binary arc variables xij take value 1 if the arc (i, j) belongs to the path.
Constraints (2), (3) and (4) are flow conservation constraints that ensure the
path start from node 0 and end at node n + 1. Note that, these constraints
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alone are not sufficient to guarantee a solution without subtours. And if a sub-
tour disjoint from the elementary path from 0 to n + 1 has a negative cost,
the elementary path may not be the true minimum cost path as desired. Con-
straints (5), (6) and (7) guarantee path feasibility with respect to time window
and capacity constraints. Additionally, the variable set τ generates a precedence
order among the nodes on the path such that subtours can be prevented. The
binary condition (8) allow the nonlinear constraints (5) linking between the x
and τ variables to be linearized via a generalization of the Miller-Tucker-Zemlin
inequalities, namely:

τi + pi + tij − τj ≤ (1− xij)Mij ∀ (i, j) ∈ A (9)

where Mij is a sufficiently large positive value and can be replaced by max{bi+
pi + tij − aj , 0}, (i, j) ∈ A, and constraints (5) or (9) need only be enforced for
arc (i, j) ∈ A such that Mij > 0; otherwise, these constraints are satisfied for all
variables of τi, τj and xij . However, these constraints involve a “big M” term that
is known to cause computational problems. In the computational experiment of
this study, we also introduce a set of valid inequalities to strengthen the time
window constraints.

To avoid the disadvantage caused by the additional time indicating variables
and linking constraints which may lead to poor linear relaxation performance,
Ascheuer et al. [1] introduce a set of infeasible path constraints to model the
time window constraints implicitly when addressing the asymmetric traveling
salesman problem with time windows (ATSP-TW). Kallehauge et al. [13] fur-
ther extend the formulation to solve the VRPTW instances. In this study, our
polyhedral analysis of ESPPRC is based on this type of formulation.

A path P consisting of the arc set {(vi, vi+1)|i = 1, . . . , k − 1} is sometimes
denoted by P = (v1, v2, . . . , vk). If not stated differently, the path P is always
intended to be open and simple, that is, |P | = k − 1 and vi �= vj for i �= j. A
path P is infeasible if it does not occur as a subproblem in any feasible route,

i.e. if either
k∑

i=1

di > q or τvi
> bvi

, for some i ∈ {1, . . . , k}. An infeasible path

P = {vi, vi+1 ∈ A|i = 1, . . . , k − 1} is said to be minimal infeasible if the
truncated subpaths P\{(v1, v2)} and P\{(vk−1, vk)} are feasible. We denote the
set of all minimal infeasible paths in G as PG. For any Q ⊆ A, we write x(Q)
for

∑
(i,j)∈Q xij . With this notation, the feasible set of solutions in ESPPRC is

the set of those x ∈ R
A satisfying the flow conservation constraints (2)–(4) and

constraints (8), together with, the subtour inequalities

x(A(W )) ≤ |W | − 1 ∀∅ �= W ⊆ N, (10)

and the path inequalities

x(P ) ≤ |P | − 1 ∀P ∈ PG. (11)

We can therefore define the ESPPRC polytope as

PESPPRC := conv{x ∈ R
A|x satisfies (2)–(4), (10)–(11), and (8)} (12)

A Polyhedral Study of the Elementary Shortest Path Problem 83



the characteristic vectors of all feasible elementary shortest paths from node 0
to node n+ 1 on the directed graph G = (V,A). In the next section, we present
some results from a polyhedral study of the ESPPRC polytope. To proceed with
the theoretical analysis, we need some more notations.

Because of the time windows associated with each node, one can derive prece-
dences among the nodes. For any two vertices i and j, if aj + pj + tji > bi,
then vertex i must be visited before vertex j if they are all included in the
shortest path. Let i ≺ j denote the precedence relationship between i and j
and let GP = (V,R) denote the precedence digraph where each arc (i, j) ∈ R
represents a precedence relationship i ≺ j. In the context of ATSP-TW, the
precedence digraph is acyclic and transitive closed. Balas et al. [2] presented
the so-called (π, σ)-inequalities and Ascheuer et al. [1] presented strengthened
(π, σ)-inequalities by taking time windows into account explicitly. In the context
of VRPTW, the graph GP may contain cycles, e.g. if a 2-cycle exists (i− j − i)
it means that the node pair i and j cannot belong to the same path. Also, the
precedence relationship is not transitive, i.e., if i ≺ j and j ≺ k it does not mean
that i ≺ k because j may not be on the path and therefore, k may precede i.
Kallehauge et al. [13] considered two strengthenings of the precedence inequali-
ties, called weak π-inequality and weak σ-inequality. However, in the context of
the ESPPRC, none of the above inequalities is applicable since a node i may or
may not be included in any path in a final solution. Therefore, to make use of the
precedence information, we put a more restricted definition on the precedence
relationship among nodes. Let

π(i) := {j ∈ V |ai +min(tij + pi, bi − ai) > bj}, (13)

σ(i) := {k ∈ V |ak > bi}, (14)

represent the set of the predecessors and successors of a node i ∈ V , respectively.
Note that, this definition may narrow down the precedence relationship among
nodes, but it ensures that a predecessor of a node i must also be a predecessor
of the successors of i, which validates the precedence inequalities for ESPPRC
introduced later in section 4.

Moreover, for any feasible path P = (v1, . . . , vk), denote

δ+P (k) := {(k, l) ∈ δ+(k)|P ′ = (v1, . . . , vk, vl) is feasible} (15)

the set of edges extendable from path P .

3 Polyhedral Analysis

In this section, we aim at analyzing the ESPPRC polytope defined in (12). We
first determine the dimension of the polytope and then present a set of facet-
defining inequalities.

Proposition 1. dim(PESPPRC) = n+m− 1

84 J. Da et al.



Proof. Clearly, The equation system (2)–(4) has rank |V | − 1 = n + 1. Since
PESPPRC ⊂ R

A, dim(PESPPRC) ≤ |A| − (n+ 1) = n+m− 1. On the other hand,
we show PESPPRC contains n+m affinely independent shortest paths connecting
node 0 and node n+ 1. First, consider the set of n paths

Pn := {(0, i, n+ 1)|i ∈ N}

and then consider the set of m paths

Pm := {(0, i, j, n+ 1)|(i, j) ∈ A}.

Observe that incidence vectors of paths from Pn and Pm are linearly independent,
and we are done. �

The classical Dantzig-Fulkerson-Johnson subtour elimination constraints (10) [5]
can be equivalently written as a set of generalized cutset inequalities(GCS).

∑

(i,j)∈A(S)

xij ≤
∑

i∈S\{k}

∑

(i,j)∈δ+(i)

xij ∀k ∈ S, ∀S ⊆ N, |S| ≥ 2. (16)

This approach is used for a symmetric version of the elementary shortest path
problem with capacity constraints by Jepsen et al. [12] and applied to the asym-
metric elementary shortest path problem by Drexl and Irnich [7] and Taccari [19].

Proposition 2. The generalized cutset inequalities (16) are valid for the ESP-
PRC polytope.

Proof. Consider any subset S ⊆ N , |S| ≥ 2, for any k ∈ S, x(δ+(k)) ≤ x(δ+(S)),
and x(δ+(S)) =

∑
i∈S x(δ+(i))− x(A(S)). This proves the claim. �

Theorem 1. For any trivial path p in the set P := {(0, i)|i ∈ V }, the enhanced
GCS inequality in the minimum case where S = {i, j},

xij ≤ x(δ+p (j)\{(j, i)}) ∀(i, j) ∈ A(N) (17)

defines a facet for the ESPPRC polytope.

Proof. In the minimum case, the GCS inequality looks like

xij + xji ≤ x(δ+(j)) ⇒ xij ≤ x(δ+(j)\{(j, i)})

Consider any feasible solution of the ESPPRC, if xij = 0, the right hand side of
inequality (17) is 0 (restricted by the flow conservation constraints); if xij = 1,
clearly x(δ+(j)\δ+p (j)) = 0. Therefore, inequality (17) is valid for the ESPPRC
polytope.

It is easily observed that there are feasible solutions whose incidence vectors
do not satisfy (17) with equality. We are only left to show that there are n+m−1
linearly independent solutions of ESPPRC satisfying (17) with equality.
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First, consider the set of n− 1 paths

Pn := {(0, i, n+ 1)|i ∈ N\{j}}
Second, for any arc (k, l) ∈ A(N)\δ+p (j), consider the set of m− |δ+p (j)| paths

Pm1 := {(0, k, l, n+ 1)|(k, l) ∈ A(N)\δ+p (j)}
Last, consider the set of |δ+p (j)| paths

Pm2 := {(0, i, j, l, n+ 1)|(j, l) ∈ δ+p (j)}
Paths from Pn ∪ Pm1 ∪ Pm2 are linearly independent, and |Pn ∪ Pm1 ∪ Pm2| =
m+ n− 1. �

4 Classes of Valid Inequalities

In this section, we present several other sets of valid inequalities applied within
a branch and cut procedure in the computational tests.

4.1 Strengthened time window constraints

Through the computational analysis, we observe that there exists a large amount
of cases where for an arc (i, j), the linear relaxation has xij > 0 but τi ≥ τj . We
call xij a reverse flow on the path which may cause many infeasible solutions
satisfying the linear relaxation constraints. Moreover, we observe that the exis-
tence of reverse flows may lower the effectiveness of some subtour elimination
constraints. In this situation, we introduce a new set of time window constraints
to avoid reverse flows.

Proposition 3. For ∀j ∈ π(i), if it is satisfied that ai − bj − pj − tji ≤ 0, the
strengthened time window constraint

(1− x(δ+(i)))(bj − ai + pi + tij) + τi ≥
τj + pj + tji + (1− x(δ+(j)))(ai − bj − pj − tji) ∀i ∈ N

(18)

is valid for the ESPPRC polytope.

Proof. To prove proposition (3), we consider the following four cases:

– If both i and j are on the path, then constraint (18) is converted to τi ≥
τj + pj + tji which ensures that i is visited after j, valid;

– If i is on the path, and j is not, then the constraint is τi ≥ τj +ai− bj , valid;
– If j is on the path, and i is not, then the constraint is τi ≥ τj +ai− bj , valid;
– If both i and j are not on the path, then the constraint is (bj − ai + pi +

tij) + τi ≥ τj + pj + tji + (ai − bj − pj − tji), since ai − bj − pj − tji ≤ 0, the
constraint is valid.

This proves the claim. �
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4.2 Precedence constraints

As introduced in section 2, time windows introduce precedences among nodes.
For any node i ∈ V , if there is a path connecting a node k ∈ π(i) and a node
l ∈ σ(i), and i is on the path, then there is only one possibility as shown in
Figure 1. Therefore, we have the following results.

Fig. 1. An example of precedence relationship in the ESPPRC context

Proposition 4. The precedence constraint

x(π(i) : σ(i)) ≤ 1− x(δ+(i)) ∀i ∈ V (19)

is valid for the ESPPRC polytope.

Proof. Obvious from the statement. �

5 Computational Results

In order to evaluate the effectiveness of the facet-defining inequalities through our
polyhedral analysis, as well as the new valid strengthened inequalities derived
particularly for the ESPPRC polytope, we perform extensive experiments. In
this section, we report the results and compare them to the standard integer
programming formulation testing with the same data sets used by Feillet et
al. [9].

These instances are generated from the Solomon’s data sets [18]. These data
sets are classified into three categories:

– The r-instances where the customers are located randomly;
– The c-instances where the customers are located in clusters;
– The rc-instances with some random and some clustered structures.

Each instance is represented by a directed graph G = (V,A) where arcs not
satisfying the primal time window and capacity constraints as described in sec-
tion 2 are removed in a preprocessing procedure. In the context of ESPPRC,
each arc is associated with a cost cij = distij − α(i), where distij is calculated
as the Euclidean distance between customer nodes and α(i) is a random integer
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variable, uniformly distributed in {0,. . . ,20}. The limit value 20 has been cho-
sen to generate a reasonable number of arcs having a negative cost. The reason
to include arcs with negative costs is because in the context of column gener-
ation, the ESPPRC, as a subproblem, often contains negative costs. The same
approach was used in [9] to generate test instances for the ESPPRC.

In our experiments, we compare the behavior of a state-of-the-art MIP solver
using two formulations, namely:

– standard - the standard MIP formulation of constraints (2)-(8)

– new - the standard MIP formulation together with constraints (17), (18) and
(19)

For the polynomial–size enhanced time window inequalities (18) and precedence
inequalities (19), the full model is built. While for the facet-defining general
cutset inequalities, as the size is proportional to the number of edges, the MIP
solver spent too much time in solving an LP relaxation, if all of the inequalities
are included in the model. Therefore, we randomly selected a proportion of the
inequalities to add in the model. And our experiments showed that the algorithm
has the best performance when the proportion is close to 50%.

Computational experiments were carried out on a PC with an Intel dual
core processor running at 2.50GHz, with 12GB of RAM and 64-bit Windows
operating system. Algorithms were implemented in Java (compiler version 1.7)
with IBM Ilog Cplex/Concert 12.6, using default settings for the branch-and-cut.
The time limit to find a solution was set to 500 seconds.

The MIP model with the newly added valid and facet-defining inequalities is
able to find optimal solutions for 70 instances out of 87 in less than 500 seconds,
while the standard model permits only to solve 57 instances. Table 1 highlights
the significant reduction of computing times resulting from this improvement.
Note that, for the r-instances which show high complex due to the randomness
on time windows, the strengthened time window constraints are very effective
that the new running time is 20 times faster. Details of the computational results
for the three sets of instances are reported in table 3, 4 and 2 respectively in
the appendix. It is observed that, for some median size instances, namely, the
50 nodes random and random clustered instances, the linear relaxation gaps are
largely closed, and the problem is even solved at the root node.

Table 1. Summary of average computation times (on the 57 instances solved by both
models)

Instance type Standard New

r-instances 24.399 1.216

c-instances 11.141 1.441

rc-instances 9.431 0.752
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6 Conclusion and Future Work

The elementary shortest path problem with resource constraints (ESPPRC) is
a very important basic network optimization model for scheduling and routing
applications. When solving as a subproblem in a column-generation procedure
for the VRPTW, the ESPPRC reduces the duality gap compared to the usual
approaches that are based on the SPPRC bound. It also enables the use of a
column generation methodology for some special problems or with some special
branching schemes that cannot rely on SPPRC solutions. Previous computa-
tional studies show that standard labelling algorithms based on dynamic pro-
gramming approaches are not at all competitive if resource constraints required
to limit the state space are absent in some situations. These all motivate the
study.

In this paper, we performed a polyhedral analysis of the ESPPRC polytope,
and determined the polytope dimension. We presented enhanced generalized
cutset inequalities for |S| = 2 and showed that the new set of inequalities is
facet defining. To our knowledge, these are the first polyhedral results for the
ESPPRC. We next presented a set of strengthened time window constraints as
well as a set of precedence constraints in the context of ESPPRC and proved their
validity. It is also important to understand how effective the formulations are
from a computational point of view. In this regard, we report a set of extensive
computational experiments, suggesting that the newly added inequalities are
effective in closing linear relaxation gaps and fasten running times.

Future research is stimulated in a few directions. From the polyhedral study,
more facet-defining inequalities might be derived from strong inequalities with re-
spect to the resource and path-structural constraints, e.g. the 0–1 knapsack cover
inequalities, the GCS inequalities, and the infeasible path inequalities. Following
similar ideas, a thorough polyhedral study of the ESPP without any resource
constraints might be possible. From the computational study, the facet-defining
inequalities presented in this paper worth a further study within a branch-and-
cut routine. And to prove the effectiveness of polyhedral approaches, more sets of
effective inequalities, like subtour elimination inequalities inherited from ASTP
should be implemented within an advanced branch-and-cut framework and com-
pared with the state-of-art dynamic programming approaches. Furthermore, all
approaches should be utilized to tackle the solution of VRPTW instances within
a column generation procedure.
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A Computational Results

The key evaluation factors are as follows:

– rt: root relaxation solution time, we round the number down to 0 if it is less
than 0.005 seconds;

– gap: is measured as (zincumbent − zlowerbound)/zincumbent

– node: the number of nodes in a branch-and-bound tree explored in obtaining
an optimal solution;

– CPU: total running time in seconds if an optimal solution can be found
within the time limit.

Table 2. Solution of the ESPPRC for rc-instances

Problem Standard New

rt gap node CPU rt gap node CPU

rc101.25 0 0.00% 0 0.072 0 0.00% 0 0.066
rc101.50 0 126.74% 0 0.331 0.02 0.00% 0 0.176
rc101.100 0.02 84.39% 71 1.734 0.23 0.00% 0 2.009

rc102.25 0 107.15% 9022 0.983 0 0.00% 0 0.164
rc102.50 0.02 192.77% 54472 10.024 0 0.00% 0 0.68
rc102.100 0.02 – – – 0.17 187.36% 54649 269.956

rc103.25 0 120.32% 66990 8.932 0 0.00% 0 0.724
rc103.50 0 221.93% – – 0.03 436.84% 10254 6.003
rc103.100 0.03 – – – 0.14 – – –

rc104.25 0 140.26% 92754 8.663 0 135.67% 1646 0.716
rc104.50 0.02 246.78% – – 0.02 540.27% – –
rc104.100 0.03 – – – 0.11 – – –

rc105.25 0.02 121.10% 6106 0.503 0 0.00% 0 0.149
rc105.50 0 496.55% 51224 8.038 0.03 0.00% 0 0.623
rc105.100 0.03 – – – 0.11 136.41% 15093 62.188

rc106.25 0 106.86% 2000 0.565 0 0.00% 0 0.149
rc106.50 0 445.56% 50275 10.394 0.02 – 434 1.664
rc106.100 0.02 – – – 0.19 204.45% 34642 151.795

rc107.25 0 157.02% 125156 12.005 0 0.00% 0 0.144
rc107.50 0 335.38% – – 0.03 466% 423663 294.043
rc107.100 0.02 – – – 0.16 330.25% – –

rc108.25 0 160.38% 483791 60.354 0 195% 21275 2.508
rc108.50 0.02 247.47% – – 0.01 289.82% – –
rc108.100 0.05 – – – 0.11 – – –
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Table 3. Solution of the ESPPRC for r-instances

Problem Standard New

rt gap node CPU rt gap node CPU

r101.25 0 0.00% 0 0.021 0 0.00% 0 0.009
r101.50 0 0.00% 0 0.041 0 0.00% 0 0.135
r101.100 0 0.00% 0 0.146 0.03 0.00% 0 0.807

r102.25 0 0.00% 0 0.038 0 0.00% 0 0.014
r102.50 0 0.00% 0 0.191 0 0.00% 0 0.135
r102.100 0.02 150.84% – – 0.08 74.79% 39620 71.892

r103.25 0 0.00% 0 0.098 0 0.00% 0 0.041
r103.50 0.02 419.32% 27623 10.791 0 0.00% 0 0.381
r103.100 0.03 – – – 0.09 42.84% – –

r104.25 0 0.00% 0 0.108 0 0.00% 0 0.081
r104.50 0.02 845.07% – – 0.02 177.40% 8811 4.519
r104.100 0.03 – – – 0.09 97.99% – –

r105.25 0 0.00% 0 0.023 0 0.00% 0 0.009
r105.50 0 0.00% 0 0.069 0.02 0.00% 0 0.104
r105.100 0.02 40.85% 201 2.029 0 0.00% 0 2.522

r106.25 0 0.00% 0 0.108 0 0.00% 0 0.031
r106.50 0.02 133.51% 0 0.93 0.02 0.00% 0 0.376
r106.100 0.02 182.52% – – 0.13 90.00% – –

r107.25 0 0.00% 0 0.089 0 0.00% 0 0.046
r107.50 0 576.08% 69764 320.96 0.02 127.59% 445 1.376
r107.100 0.03 – – – 0.13 249% – –

r108.25 0 0.00% 0 0.094 0 0.00% 0 0.049
r108.50 0.02 812.59% – – 0.01 553.62% 90068 62.137
r108.100 0.03 – – – 0.11 – – –

r109.25 0 0.00% 0 0.06 0 0.00% 0 0.032
r109.50 0.02 242.16% 1738 1.792 0.02 0.00% 0 0.413
r109.100 0.02 89.43% – – 0.13 33.71% 54544 208.631

r110.25 0 0.00% 0 0.132 0 0.00% 0 0.051
r110.50 0.02 750.82% 231016 92.664 0.02 598.86% 11947 6.585
r110.100 0.03 314.95% – – 0.17 156.76% – –

r111.25 0 0.00% 0 0.083 0 0.00% 0 0.046
r111.50 0.02 578.40% 106461 40.941 0.02 184.79% 588 1.551
r111.100 0.02 – – – 0.17 76.09% 82356 490.401

r112.25 0 128.29% 211 0.153 0 0.00% 0 0.098
r112.50 0.02 846.29% 257762 114.003 0.02 747.43% 22996 14.297
r112.100 0.05 – – – 0.09 – – –
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Table 4. Solution of the ESPPRC for c-instances

Problem Standard New

rt gap node CPU rt gap node CPU

c101.25 0.02 0% 0 0.076 0 0.00% 0 0.034
c101.50 0 0.00% 0 0.048 0 0.00% 0 0.118
c101.100 0.02 0.00% 0 0.134 0.05 0.00% 0 0.95

c102.25 0 92.11% 21296 2.567 0 0.00% 0 0.038
c102.50 0 190.90% 497282 108.925 0.02 55.33% 425 1.049
c102.100 0.03 827.18% – – 0.06 57.58% 91023 92.37

c103.25 0 – 100327 14.005 0 55.51% 9195 1.863
c103.50 0.02 938.79% – – 0.02 148.01% – –
c103.100 0.03 – – – 0.11 196.39% – –

c104.25 0 652.33% 405889 60.402 0 100.64% 19962 3.766
c104.50 0.02 975.51% – – 0.02 929.28% – –
c104.100 0.03 – – – 0.13 – – –

c105.25 0.02 0.00% 0 0.03 0 0.00% 0 0.038
c105.50 0 0.00% 0 0.064 0.02 0.00% 0 0.231
c105.100 0 0.00% 0 0.251 0.09 0.00% 0 1.613

c106.25 0 0.00% 0 0.019 0 0.00% 0 0.033
c106.50 0.02 0.00% 0 0.071 0 0.00% 0 0.208
c106.100 0 134.07% 3944 4.489 0.02 0.00% 0 2.957

c107.25 0 0.00% 0 0.059 0 0.00% 0 0.055
c107.50 0 0.00% 0 0.072 0 0.00% 0 0.233
c107.100 0 0.00% 0 0.338 0.11 0.00% 0 1.511

c108.25 0 40.08% 0 0.384 0.02 0.00% 0 0.163
c108.50 0 70.58% 6626 5.115 0.02 33.85% 328 1.968
c108.100 0.03 44.06% 30320 24.794 0.09 35.15% 1341 11.517

c109.25 0 93.98% 3459 0.975 0 15.62% 3 0.475
c109.50 0 254.00% – – 0.02 135.47% 90609 44.107
c109.100 0.03 119.22% – – 0.11 86.27% 107928 301.095
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Abstract. This paper compares energy minimization with minimizing
distance and travel time in vehicle routing. The focus is on the influ-
ence of the objective chosen when deploying homogeneous and heteroge-
neous vehicle fleets. To achieve that, vehicles with different capacities and
ranges as well with combustion engines as with battery-powered electric
engines are taken into consideration. Results show that when deploying
homogeneous fleets there are no significant differences between the opti-
mal solutions when using energy minimization instead of distance or time
minimization. Hence, the potential for reducing energy consumption of
distance or time optimal solutions is very small with homogeneous fleets.
By contrast, when deploying a heterogeneous fleet, a significant reduc-
tion of energy consumption in the double-digit percentage order can be
achieved. On the other hand the total travel distance as well as total
travel time increases. Comprehensive computational experiments show
that certain fleets can be identified that consume only small amounts of
additional energy compared to an idealized fleet consisting of an arbitrar-
ily large number of vehicles of all different types. Furthermore, numerical
experiments show that minimizing both the energy consumption as well
as the distance, only a small number of Pareto-optimal solutions exist.
The most attractive of those can be chosen easily according to practical
preferences.

Keywords: Vehicle routing, Heterogeneous vehicle fleet, Electric versus
combustion engine, Pareto optimization, Ecological objective

1 Introduction

In addition to traditional objectives that are typically used in vehicle routing,
in recent years more work relating to ecological objectives in vehicle routing has
been published in the literature on transport logistics. Most of the ecological
criteria of “green vehicle routing” [6] are based on the energy consumption re-
quired to fulfill a given set of transportation requests [3]. The immediate CO2

emission and the total global warming potential (i.e. the CO2 equivalents, mea-
sured in CO2e) depend on the amount of energy consumed for a transportation
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process and can be determined solely based on this amount of energy. Other
external effects of transportation processes are not considered in this paper (see
e.g. [4]). The global warming effects of energy consumption are assessed using
different methods [13]. The WTW (Well-to-Wheel) analysis method takes into
consideration the total energy chain required to instantiate a locomotion, i.e.
from energy generation to provision of energy at the point of consumption on
to transformation into kinetic energy. By contrast, the TTW (Tank-to-Wheel)
analysis method focuses only on the greenhouse gas emitted locally through
transformation of stored energy (in a fuel tank or battery) into kinetic energy.

In the literature, several articles are dedicated to a comparison of energy-
minimizing objectives and distance-minimizing objectives in vehicle routing
(e.g. [7, 10]). [14] consider energy minimization for homogeneous fleets and con-
clude that different types of VRPs should be remodeled by considering fuel
consumption.

[5] consider a time- and load-dependent problem of minimizing CO2 emissions
in the routing of vehicles in urban areas. In their paper [5] present experiments
on using different objective functions like minimizing distance, minimizing time-
dependent travel times, minimizing time-dependent emissions based on the gross
weight of a vehicle, and minimizing time-dependent emissions based on the actual
weight (i.e. empty weight plus weight of the cargo) of a vehicle. In contrast to
our paper, only vehicles with combustion engines and no battery-powered electric
vehicles are considered by [5]. Moreover, most of the experiments are performed
on TSP instances with one single vehicle which is able to serve all customers,
while only a very small part of [5] refers to results obtained for fleets with
multiple vehicles. Two homogeneous fleets and only one single configuration of
a mixed fleet are considered. The pickup quantities are adjusted to the specific
fleet capacity so that always three vehicles are required. Consequently, the test
instances used in [5] vary for different fleet compositions. That is why, in contrast
to our paper, a direct comparison of the solutions generated for different fleets
is not possible in [5].

Results shown in [7] and [10] demonstrate that in the case of homogeneous
vehicle fleets energy minimization compared to distance minimization results in
very small energy savings of only a few percentage points (1% - 2%). However,
in the case of heterogeneous fleets the potential to save energy is much larger.
The deployment of suitably composed heterogeneous fleets can result in energy
savings in the order of double-digit percentages [12]. Due to the fact that time,
distance and energy are the main contributing factors to the variable cost of
transport processes, the existing literature does not treat time and distance
minimization as alternatives to energy minimization but as components of more
comprehensive objective functions that comprise time and distance as well as
energy consumption [1, 9].

This paper addresses WTW-energy-oriented criteria and the traditional cri-
teria of time and distance in vehicle routing relating to different types of vehicles.
An interesting insight derived from the study of [11] is that using a heteroge-
neous fleet without speed optimization allows for a further reduction in total
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cost than using a homogeneous fleet with speed optimization. As opposed to
the paper of [12], not only vehicles with a combustion engine but also vehicles
equipped with a battery-powered electrical engine will be taken into considera-
tion. Battery-powered electric vehicles are more energy-efficient but they have a
reduced driving range and a reduced payload compared to combustion-powered
vehicles with the same gross weight. Particularly the following research questions
will be addressed:

1. How large is the difference between energy-optimal solutions compared to
time- and distance-optimal solutions concerning the following criteria: energy
consumed, total travel time and total travel distance needed to perform all
transportation requests?

2. Are the impressive energy savings by deploying idealized heterogeneous fleets
with a flexible number of vehicles [12] instead of homogeneous fleets only
achieved by exploiting the degrees of freedom given by the choice of vehicles
from an unlimited vehicle pool; in other words: can fixed fleet configura-
tions be identified that yield high energy savings for all instances of a given
planning scenario?

3. How can an efficient heterogeneous fleet with a small number of available
vehicles be determined and how large is the loss of efficiency compared to
an idealized fleet with an arbitrarily large number of vehicles of each type?

4. What are the properties of the Pareto set in multi objective optimization,
particularly in Pareto optimization concerning the two objectives energy and
distance minimization?

2 Planning Scenarios and Vehicle Properties

As a basis for the specification of planning scenarios used to conduct an analysis
to answer the above research questions the well-known CVRP is chosen [2]. The
CVRP has a distance-oriented objective that minimizes the total travel distance
of all vehicles dispatched. In addition to the capacity restrictions concerning the
maximum payload, the planning scenarios analyzed in this paper take into con-
sideration the range of the vehicles. The maximal length of a tour is limited by
a given parameter. The CVRP with additional range limitations shall be called
distance-based vehicle routing problem TP-D. The TP-D is transformed into a
time-based vehicle routing problem TP-T by using the objective of minimizing
total time needed for all tours instead of total distance. The constant vehicle
specific average speed vk of vehicle k converts travel distance into travel time.
For the energy-oriented vehicle routing problem TP-E the energy consumption
for the execution of tours is estimated as a function of the mass moved and the
distance the mass is moved. It is generally accepted that the following equa-
tion (1) is a suitable approximation for a simplified estimation of the energy
consumption Fk(i, j) of vehicle k, that transports goods of the mass qij from
location i to location j (see e.g. [14]).

Fk(i, j) = (ak + bk · qij) · dij (1)
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The symbol dij denotes the distance between location i and location j, while ak
and bk denote vehicle specific parameters for energy consumption. As a result,
the objective criterion of the optimization problem TP-E consists of the total
estimated energy consumption for all tours.

This paper considers four different types of vehicles: two smaller types with
a gross weight of 7.5 metric tons each and two larger types with a gross weight
of 18 tons each. Two vehicle types are equipped with a conventional combustion
engine, one of them with 7.5 tons (sCV) and the other with 18 tons (lCV)
gross weight. The other two vehicle types are equipped with a battery-powered
electrical engine, one with 7.5 tons (sEV) and the other with 18 tons (lEV)
gross weight. Those types of vehicles are available on the commercial vehicle
market and are typically used for local pickup or delivery. The characteristic
parameters for payload and energy consumption shown in Table 1 can be found
in technical specifications of vehicle manufacturers or derived from descriptions
provided by manufacturers. The maximal daily tour length of 600 km limits the
range of all vehicles; for vehicles equipped with an electrical engine, the maximal
energy available (i.e. the battery capacity) additionally limits the range. Smaller
vehicles of type sEV have a battery capacity of 601 MJ and larger vehicles of
type lEV have a battery capacity of 2,425 MJ. The actual range of those vehicles
depends on the load while en route. Table 1 shows a lower and an upper value,
where the lower value corresponds to a vehicle fully loaded and the upper value
corresponds to an empty vehicle. For all vehicles with more than 3.5 tons gross
weight, the legal speed limit on German highways (i.e. BAB or Kraftfahrstraßen)
is 80 km/h; on all other ordinary non-urban roads the speed limit is 60 km/h
for vehicles of more than 7.5 tons gross weight. Assuming that this difference in
speed limits is incurred for one third of any tour, the smaller vehicles (sCV und
sEV) are approximately 10% faster than the larger vehicles (lCV und lEV).

Table 1. Characteristics of the vehicle types considered

Vehicle Payload Range ak bk vk
type [t] [km] [MJ/km] [MJ/km] [km/h]

sCV 4.0 600 5.77 0.36 55
sEV 3.5 98 – 140 4.27 0.53 55
lCV 9.0 600 7.99 0.29 50
lEV 6.0 253 – 300 7.80 0.24 50

3 Model

The mathematical model for the energy-oriented vehicle routing problem TP-E
is an extension of the CVRP [2]. The important extensions address on the one
hand the objective function of the model in order to introduce and minimize
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vehicle specific values concerning the load-based energy consumption. On the
other hand, the constraints have to ensure the maximal tour length, concerning
the electric vehicles caused by the limited battery capacity.

Indices:
i,j Nodes: i,j ∈ N = {0, 1, ..., n, n + 1}, where 0 and n + 1 represent the

depot and C = {1, ..., n} represents the customers
k Vehicle k ∈ K = {1, ...,m}
Parameters:
dij Distance between nodes i and j
ttijk Travel time of vehicle k on the arc from i to j
πj Customer’s demand in node j = 1, ..., n
sj Service time at customer j = 1, ..., n

Constants:
ak Energy consumption of the empty vehicle k per kilometer
bk Energy consumption for the load of vehicle k per ton and kilometer
Ek Energy supply of vehicle k when leaving the depot
Tk Maximal tour length of vehicle k
Qk Maximal payload capacity of vehicle k

Variables:
eijk Energy content available for vehicle k traversing the arc from i to j
qijk Weight of load in vehicle k on the arc from i to j
xijk 1, if vehicle k uses the arc from i to j

0, else
yjk 1, if customer j is serviced by vehicle k

0, else

min
n+1∑

i=0

n+1∑

j=0

m∑

k=1

dij · (ak · xijk + bk · qijk) (2)

subject to

n+1∑

j=1

x0jk = 1 ∀k ∈ K (3)

n∑

i=0

xin+1k = 1 ∀k ∈ K (4)

n+1∑

j=0

xn+1jk = 0 ∀k ∈ K (5)

n∑

i=0

xijk −
n+1∑

i=1

xjik = 0 ∀j ∈ C, ∀k ∈ K (6)
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m∑

k=1

yjk = 1 ∀j ∈ C (7)

n∑

i=0

xijk = yjk ∀j ∈ C, ∀k ∈ K (8)

n+1∑

j=0

πj · yjk ≤ Qk ∀k ∈ K (9)

xiik = 0 ∀i ∈ N, ∀k ∈ K (10)

n+1∑

i=0

qijk −
n+1∑

i=0

qjik = πj · yjk ∀j ∈ C, ∀k ∈ K (11)

qijk ≤ Qk · xijk ∀i, j ∈ N, ∀k ∈ K (12)

n+1∑

i=0

n+1∑

j=0

dij · xijk ≤ Tk ∀k ∈ K (13)

n+1∑

i=0

dij · (ak · xijk + bk · qijk) =
n+1∑

i=0

eijk −
n+1∑

i=1

ejik ∀j ∈ C, ∀k ∈ K (14)

dij · (ak · xijk + bk · qijk) ≤ eijk ∀i, j ∈ N, ∀k ∈ K (15)

Ek · x0jk = e0jk ∀j ∈ N, ∀k ∈ K (16)

eijk ≤ Ek · xijk ∀i, j ∈ N, ∀k ∈ K (17)

qijk ≥ 0 ∀i, j ∈ N, ∀k ∈ K (18)

xijk ∈ {0, 1} ∀i, j ∈ N, ∀k ∈ K (19)

yik ∈ {0, 1} ∀i ∈ N, ∀k ∈ K (20)

The objective function (2) minimizes the total energy required for all tours.
The equations / inequalities (3) through (10) represent the usual constraints for
modeling the CVRP. Equations (11) guarantee that the required demand πj is
unloaded at customer j and the load of the vehicle k is reduced accordingly.
Inequalities (12) ensure that the loads qijk are zero if vehicle k does not use
arc (i,j). Inequalities (13) limit the maximal tour length for each vehicle k.
Equalities (14) determine the remaining energy supply at customer j in vehicle
k. Equalities / inequalities (15), (16), and (17) ensure that the remaining energy
supply in vehicle k to cover the arc from i to j is between the maximal possible
and the minimal required energy supply. Relations (18), (19), and (20) define
the domains of variables qijk, xijk and yjk.

min
n+1∑

i=0

n+1∑

j=0

m∑

k=1

dij · xijk (21)
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min
n+1∑

i=0

n+1∑

j=0

m∑

k=1

(ttijk + sj) · xijk (22)

The MIP formulation of TP-E above aims at minimizing the total energy con-
sumption. In order to minimize total travel distance in the model of the distance-
based vehicle routing problem TP-D objective function (21) replaces objective
function (2). To minimize total travel time in the time-based vehicle routing
problem TP-T the objective function (22) replaces (2).

4 Generating Test Instances

The analysis regarding the research questions listed above is conducted using
specific problem instances with short travel distances corresponding to inner city
transportation or pickup / delivery tours in rural areas. To solve the problem
instances of the vehicle routing problems TP-D, TP-T and TP-E, the commercial
solver IBM ILOG CPLEX 12.6.1 is used. To obtain reliable results for the further
analysis, only small instances are generated that can be expected to be solved
to optimality using CPLEX on a PC. Initially, generic problem instances with
eight customers are generated. Customers’ demands are measured in tons and
evenly distributed over the interval [1, 3]; i.e., the values for customers 1 through
8 are: 1.0 / 1.3 / 1.6 / 1.9 / 2.1 / 2.4 / 2.7 / 3.0. Altogether, 50 different generic
problem instances with the above-mentioned eight customers are generated. The
coordinates of the eight customer locations are determined randomly for each
generic instance. Coordinates are within a geographic area of 30 km × 30 km;
i.e. they are randomly located within a grid square of [0, 30]× [0, 30]. The depot
of the vehicle routing problem is located in the middle of the grid square, i.e. at
coordinates (15, 15).

Based on the previously generated 50 generic random problem instances,
concrete test instances are generated by the following two additional problem
specifications:

(a) First of all, the available vehicle fleet is specified. Five different fleet con-
figurations will be considered: one homogeneous fleet sC-HOM with eight
vehicles of type sCV, one homogeneous fleet sE-HOM with eight vehicles
of type sEV, one homogeneous fleet lC-HOM with eight vehicles of type
lCV, one homogeneous fleet lE-HOM with eight vehicles of type lEV and
one heterogeneous fleet HET, that consists of all of the above-mentioned
homogeneous fleet configurations, i.e. eight vehicles of type sCV, sEV, lCV,
lEV each.

(b) Secondly, a gauge factor g is introduced that varies the distances between
all relevant locations of the test instances. The factor g has the values 1, 2,
3, and 4, which are used to scale the original grid square. By scaling, the
grid square is enlarged and all distances between relevant locations (depot,
customers) are multiplied with the gauge factor. The depot remains in the
original location in the middle of the grid square in all instances.
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The size of the vehicle fleets in (a) was chosen such that the total available pay-
load is definitely sufficient to service all customers. The accumulated weight of
all eight customer demands is 16 tons; when deploying eight vehicles of a homo-
geneous fleet, a maximal demand between 28 and 72 tons can be transported,
depending on the vehicle type. More than eight vehicles will never be dispatched
because all test instances feature exactly eight customers. The heterogeneous
fleet HET is an idealized fleet composed in such a way that the solution space
when using HET is larger than with any of the homogeneous fleets. The values of
the gauge factor g in (b) are chosen in such a way that the range of the vehicles
in fleet sE-HOM is sufficient to reach all customers in the grid square in a pen-
dulum tour for g ≤ 2. If g > 2 it is to be expected that some test instances are
infeasible due to the limited range of the vehicles in fleet sE-HOM. The range of
the vehicles in fleet lE-HOM is sufficiently large to ensure feasibility of all test
instances with 1 ≤ g ≤ 4. For instances with g > 4 that are not considered in this
paper, the range of vehicles of type lEV may not be sufficient in all instances. In
this case, the deployment of vehicles with combustion engine cannot be avoided.

Service times for all scenarios and instances are chosen to be s0 = 0 (depot)
and sj = 15 min (each customer).

5 Analysis of Optimal Transportation Plans

In this section, research questions (1) through (3) are investigated. All 3,000 test
instances (50 generic problem instances, 3 planning scenarios, i.e. objectives, 4
values of the gauge factor, 5 different vehicle fleets) can be solved to optimality
using CPLEX. As was to be expected, deploying fleet sE-HOM optimal solutions
for all test instances with g ≤ 2 can be found. For g = 3 feasible solutions exist
for 47 out of 50 instances. Due to the limited range of vehicles of type sEV,
experiments show that only 10 out of 50 test instances with g = 4 are feasible.
Let oTP-E, oTP-D and oTP-T denote an attribute (#Tours, Time, Distance,
Energy) of the optimal solution of TP-E, TP-D and TP-T, respectively. Table 2
lists the relative differences ((oTP-E − oTP-T) / oTP-E, and (oTP-E − oTP-
D) / oTP-E), respectively, that can be achieved by energy minimization instead
of time respectively distance minimization concerning the number of vehicles

Table 2. Energy minimization versus time and distance minimization

Fleet
Time minimization Distance minimization

Δ#Tours ΔTime ΔEnergy Δ#Tours ΔDistance ΔEnergy

sC-HOM 2.0% 0.0% -0.1% 2.0% 0.03% -0.1%
sE-HOM 2.7% 0.1% -0.3% 2.3% 0.1% -0.2%
lC-HOM 8.9% 0.3% -0.4% 8.9% 0.4% -0.4%
lE-HOM 5.9% 0.1% -0.2% 5.9% 0.1% -0.2%
HET 51.5% 21.3% -13.3% 54.2% 21.4% -14.7%
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deployed, total travel time, total distance traveled, and energy consumed. As a
matter of course, the values in Table 2 for the fleet sE-HOM only include test
instances, that are guaranteed to be feasible, i.e. test instances with g = 1 or
g = 2.

The results in Table 2 provide an answer to research question (1). They show
that significant differences between optimal solutions that are found minimiz-
ing on the one hand distance or time and on the other hand energy can only
be observed with a heterogeneous vehicle fleet. The differences between time
and distance minimization caused by the differing average speed of the vehi-
cles are very small. In detail, the differences when using the fleet HET are the
following: Independent of the value of the gauge factor g distance-minimizing
solutions to TP-D need on average 0.1% more travel time than corresponding
time-minimized solutions to TP-T. Reciprocally, optimal solutions to TP-T in-
dependent of the value of g result on average in 0.16% longer tours compared to
TP-D. Furthermore, results show that distance-minimized solutions compared
to time-minimized solutions consume on average 1.2% more energy but require a
5.9% smaller number of vehicles, independent of the value of g. For homogeneous
fleets no differences between time-oriented and distance-based optimization can
be observed concerning distance traveled, time needed and energy consumed.
Larger differences concerning required energy, time and distance are only to be
expected in extended scenarios where electric vehicles can recharge batteries en
route at external charging stations.

A detailed analysis of the optimal solutions to the test instances generated
for HET will contribute to answering research question (2). The analysis will
focus on the use of different vehicle types in the solutions. This will provide
insight into the question whether certain vehicle configurations are optimal for
a larger number of test instances. Among the 200 test instances solved under
energy optimization, 34 instances have an optimal solution that deploys a ho-
mogeneous vehicle fleet. Furthermore, a great variety of different fleets yields
optimal solutions. For each value of g each vehicle type is deployed in at least
one of the 50 test instances, i.e. none of the vehicle types is dispensable when
generating optimal solutions. A cursory analysis does not provide any indication
that for a certain value of g a specific fleet configuration or specific proper-
ties of fleets deployed are advantageous to yield optimal solutions. However, an
in-depth analysis shows that in some cases certain fleet configurations are op-
timal for all values of g for some of the generic test instances. This indicates
that the properties of an optimal heterogeneous fleet are mainly dependent on
the customers’ locations and on their demands, but little on the distances be-
tween the customers, as long as the distances vary only within a given spectrum
of factor 4.

The idealized fleet HET comprises eight vehicles per vehicle type, thus 32
vehicles. Optimal solutions to the planning scenario TP-E require maximal 3, 6,
2, 1 vehicles of the types sCV, sEV, lCV and lEV, respectively. Consequently, a
fleet configured accordingly with 12 vehicles would be sufficient to find the same
optimal solutions as to the idealized fleet.
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To address research question (3): Optimal solutions to the planning sce-
nario TP-E using the idealized fleet HET require in the test sets on average
(0.6/3.1/0.6/0.1) vehicles of types (sCV/sEV/lCV/lEV). Rounding the average
number of vehicles to the next integer and using at least one vehicle of each type,
the result is a heterogeneous fleet of six vehicles (HET6), comprising (1/3/1/1)
of the vehicle types specified above. Promising fleets of five vehicles can be de-
veloped by either surrendering the vehicle lEV or the vehicle sCV contained in
HET6. Hence, the fleets HET5-A = (1/3/1/0) and HET5-B = (0/3/1/1) with
five vehicles each are derived. The relative differences ((oTP-E −
and (oTP-E −
mization instead of distance minimization concerning the energy consumption
are -9.0% (for HET6), -5.7% (for HET5-A), and -8.5% (for HET5-B). For a com-
parison of these values with the relative differences that have been computed for
the other fleets, Table 2 can be consulted. Table 3 compares the energy consump-
tion of different fleets. The reference value is the energy consumed by HET; i.e.
the table lists the relative differences in energy consumption (on average over all
values of g) of the homogeneous and heterogeneous fleets considered in relation
to the energy consumption of the idealized fleet HET (i.e. the additional energy
consumption of these fleets compared to HET). For sE-HOM the comparison is
only performed for g ≤ 2, because for test instances with g = 3 and g = 4 not
all of the instances are feasible. Therefore, the value for sE-HOM in Table 3 is
displayed in parenthesis. A comparison of sE-HOM with HET6, HET5-A, and
HET5-B, respectively, shows that sE-HOM (on average over all values of g ≤ 2)
consumes on average 3.36%, 3.14%, and 2.38%, respectively, more energy than
the respective heterogeneous fleets.

Table 3. Increase of energy consumption compared to HET

sC-HOM sE-HOM lC-HOM lE-HOM HET6 HET5-A HET5-B

17.98% (4.92%) 13.73% 23.14% 1.13% 1.60% 3.22%

6 Energy-Efficient Fleets and Multi Criteria Analysis

This section is dedicated to an intensified investigation of research question (3);
and research question (4) will be investigated in-depth. Based on the outcomes
of Section 5 concerning research question (3), it suggests itself to investigate test
instances using fleets consisting of exactly five vehicles when trying to identify
efficient fleets and Pareto-optimal solutions. F(5) denotes the set of all five-
element vehicle fleets that consist of the four vehicle types defined in Section
2. To determine energy-efficient fleets and to perform multi criteria analysis
concerning energy and distance-efficient solutions, the test instances of Section
4 will be used. The test instances of Section 4 represent a transportation scenario
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for less-than-truckload shipments with weights between one and three tons in a
distribution area characterized by distances of up to 21 km for g = 1 (length of
half the diagonal of the grid square). For greater values of the gauge factor g, the
maximum distances within the distribution area are increased correspondingly.
To determine the most efficient fleets consisting of five vehicles (research question
(3)) and to determine the properties of Pareto sets under multi criteria vehicle
routing for heterogeneous fleets, a brute-force approach is chosen. Systematically,
all eligible fleets consisting of five vehicles are tested and the corresponding
vehicle routing problems are solved.

When generating a fleet out of the set F(5), five elements have to be chosen
out of a basic set of four vehicle types. The elements (vehicle types) may be cho-
sen multiple times and the sequence is irrelevant. Hence, there are
((5 + 4 − 1)/5) = 56 different possibilities to configure a fleet out of the set
F(5). Using the brute-force approach to determine the energy efficiency of all
possible five-element fleets out of F(5) for all 200 test instances (50 generic
problem instances, 4 values for the gauge factor), the energy-optimized solutions
to the vehicle routing problem TP-E have been computed for each of the 56 dif-
ferent fleets. Consequently, applying the brute-force approach 11,200 (56 x 200)
vehicle routing problems were solved. Numerical experiments show that the fleet
(1/3/1/0) actually is the most energy-efficient fleet out of all 56 fleets in F(5).
The fleet (1/3/1/0) was already considered in Section 5 and denoted by HET5-A
(see also Table 3). Concerning the energy efficiency on average over all gauge
factors g, HET5-A is the only fleet that is only less than 2% worse than the ide-
alized fleet HET. Only three other fleets ((1/2/0/2), (1/2/1/1), and (2/2/1/0),
respectively) show differences of less than 3% compared to HET with 2.19%,
2.19%, and 2.35%, respectively. The above-mentioned fleet (1/2/0/2) consists of
four electric vehicles and one conventional vehicle with a diesel engine. In the
fleet configurations (1/3/1/0) and (1/2/1/1) three electric vehicles and two con-
ventional vehicles with a combustion engine are deployed, and the fleet (2/2/1/0)
uses two electric vehicles and three conventional vehicles. Half of all the fleets
in F(5) result in a relatively poor energy consumption with a difference above
8% compared to HET. The average difference over all fleets in F(5) where all
instances with all gauge factors could be solved is 8.96%. Poorest performance
of all heterogeneous fleets could be observed at fleet (1/0/0/4) with a difference
of 18.44%. Homogeneous fleets result in particularly large differences. They are
23.15% for (0/0/0/5), 13.73% for (0/0/5/0), and 18.1% for (5/0/0/0). Compar-
ing homogeneous fleets, the performance of conventional vehicles is superior to
electric vehicles. Hence, the homogeneous fleet of vehicles of type lCV consumes
considerably less energy than the homogeneous fleet with small conventional
vehicles, which again consumes considerably less energy than the homogeneous
fleet consisting of large electric vehicles. For the homogeneous fleet (0/5/0/0)
with small electric vehicles a comparison of energy consumption with HET is
not possible, because feasible solutions do not exist for all test instances using
such a homogeneous fleet. The variation of the gauge factor g has only a small
influence on the energy efficiency of the best fleets. HET5-A is the best fleet for
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the values g = 1, g = 2, and g = 3. For g = 4 the fleet (1/2/2/0) yields slightly
better results. Note that this fleet is very similar to HET5-A, because it evolves
by exchanging one vehicle of type sEV by type lCV.

A detailed analysis of the optimal solutions obtained with HET5-A shows
that only 16.5% of all 200 test instances have solutions actually using all five
vehicles in HET5-A. All the other test instances yield better solutions deploying
only four and in one case even only three vehicles than any five-element fleet
configuration. For 46% of all test instances, the fleet (0/3/1/0) can be identified
as the best possible fleet to obtain optimal vehicle routes, i.e. the vehicle of type
sCV is not used. For 29.5% of all instances the third vehicle of type sEV is
not used (fleet (1/2/1/0)), and for another 8% of all instances only one of the
three vehicles of type sEV is actually deployed (fleet (1/1/1/0)). It is remarkable
that the fleet yielding the best results for nearly half of all test instances (i.e.
(0/3/1/0)) deploys as well electric as combustion engine vehicles, namely three
small electric vehicles and one large combustion engine vehicle.

The analysis of the solutions obtained with the idealized fleet HET shows
that for after all 38 out of 200 test instances the best results could be found
with fleets consisting of six vehicles. Insofar it is remarkable that HET5-A with
only five vehicles yields results that are only 1.6% inferior to HET. The reason
may be that for 56 out of 200 test instances the fleet (0/3/1/0) and for 28 out
of 200 instances the fleet (1/2/1/0) is the most energy-efficient one. Both fleets
are included in HET5-A.

By means of the brute-force approach, it could be achieved to identify partic-
ularly energy-efficient heterogeneous fleets for the planning scenario introduced
in Section 2, extended to an application scenario in Section 4 (research question
(3)). It could be shown that heterogeneous fleets with a small number of vehicles
exist that are nearly as energy-efficient as the idealized fleet HET. Hence, the
large potential for energy savings through heterogeneous instead of homogeneous
fleets is not caused by the large variety and flexibility of an idealized fleet (re-
search question (2)), but can also be put into effect using a specific small vehicle
fleet with an appropriate number of vehicles. To investigate research question
(4), all elements of the Pareto set in a bicriteria optimization for three selected
fleets shall be determined, again using a brute-force approach. Whether this is
possible at all depends on the cardinality of the Pareto sets.

Due to the fact shown in Section 5 that the differences between objective func-
tion values comparing optimal solutions to distance minimization with time min-
imization are very small, it can be assumed that a Pareto optimization comparing
energy- and time-optimal solutions on the one hand and comparing energy- and
distance-optimal solutions on the other hand will result in similar values. Hence,
the analysis conducted in this section in the framework of a multi criteria opti-
mization will be limited to the comparison of energy minimization and distance
minimization; i.e. the comparison of the optimization criteria energy minimiza-
tion and time minimization will not be undertaken. In order to determine the
Pareto sets to be investigated, for the idealized fleet HET, for the best known
heterogeneous fleet with five vehicles HET-5A, and for the most energy-efficient
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homogeneous fleet (0/0/5/0) all 200 test instances (with 50 generic problem in-
stances and 4 different gauge factors) are considered. Altogether 600 Pareto sets
will be determined.

To determine the Pareto set of a test instance, at first the energy-optimal
solution P1 is computed by solving the vehicle routing problem TP-E for this
test instance. Thus, the first element of the Pareto set is found. Subsequently,
an additional constraint R1 is inserted into TP-E that ensures that the sum of
all distances traveled has to be by 0.01 km smaller than in solution P1, and,
if it exists, a second element P2 of the Pareto set can be found by solving the
problem that has been extended with R1. All other Pareto-optimal solutions
are determined iteratively by requiring that any additional solution has a total
travel distance that is at least 0.01 km shorter than the immediately preceding
solution. This is repeated until the optimization problem to be solved does not
have a feasible solution due to the latest of the inserted constraints.

Among the 200 Pareto sets that have been determined for the idealized fleet
HET, there are two sets consisting of 17 Pareto-optimal solutions. All other
Pareto sets have a smaller number of Pareto-optimal solutions, and some Pareto
sets consist of only one element. On average, the 200 Pareto sets of the fleet
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HET possess a cardinality of 6, 6, 6, and 5, for g = 1, g = 2, g = 3, and g = 4,
respectively. Thus to determine the Pareto sets of HET, approximately 1,200
vehicle routing problems were solved. The Pareto sets computed for the fleet
HET-5A possess a maximal cardinality of 8 and a minimal cardinality of 1. The
average values of cardinality are 3, 3, 3, and 2, for g = 1, 2, 3, and 4, respectively.
For the most energy-efficient homogeneous fleet (0/0/5/0) the maximal, average,
and minimal cardinality is 3, 1, and 1, respectively.

Overall, it can be observed that the Pareto sets are relatively small. Due to
the small cardinality of the Pareto sets, it is entirely reasonable and easily pos-
sible to utilize the Pareto sets for a subsequent selection process where the most
attractive Pareto-optimal solution is chosen to match specific decision criteria
according to a given purpose. Figures 1 and 2 display the Pareto frontiers of
fleets HET and HET5-A at different values of the gauge factor g for one selected
generic problem instance. In order to obtain as large a distance as possible be-
tween the extreme values in the Pareto sets, the particular instance out of all 50
generic problem instances that shows the largest differences of all instances be-
tween solutions to TP-E and TP-D for HET-5A is selected for display in Figures
1 and 2.
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7 Results and Future Research

The numerical experiments were deliberately performed using small instances in
order to be able to obtain optimal solutions as a basis for the analysis. Because
generating suboptimal solutions, as they will typically be found when applying
heuristics to larger instances, and then using those to perform comparisons and
draw conclusions carries the considerable risk of false conclusions (see already
[8]). This particularly holds when no knowledge is available about the average-
or worst-case behavior of the heuristics applied, which is frequently the case.
Hence, the results used for answering the questions (1) to (4) are based solely
on the above mentioned small test instances. Since the tests do not exploit any
specific attributes of small CVRP test instances, we believe that experiments
on large instances would yield similar answers to our questions. In order to
prove whether the found answers are not restricted to small CVRP instances,
algorithms capable of handling larger instances will be developed in future work.

The experiments show that there are significant differences concerning energy
consumption of heterogeneous vehicle fleets between energy-optimal solutions on
the one hand and distance-optimal or time-optimal solutions on the other hand
(see Table 1). In an idealized heterogeneous fleet with a sufficiently large number
of vehicles, all types are used; and the degrees of freedom that exist due to the
plenitude of available vehicles when configuring a fleet is actually exploited in
order to generate flexibly energy-efficient fleets adapted to the specific trans-
portation requests. Nevertheless, in the numerical experiments heterogeneous
fleets with a small number of fixed vehicles could be identified that show an
energy efficiency that is only a few percentage points worse than that of the
idealized fleet (see Table 3). Furthermore, a systematical search evaluating all
conceivable fleets with only five vehicles succeeds in identifying within the ana-
lyzed application scenario the most energy-efficient fleet among all five-element
fleets and succeeds to show that this fleet is nearly as efficient as the idealized
heterogeneous fleet. Additionally, it is shown that the Pareto sets in multi cri-
teria optimization with energy and distance minimization are manageably small
and well suitable as a starting point for a subsequent selection of customized
solutions.

When utilizing heterogeneous fleets, the resulting optimal solution frequently
consists of a large number of tours, particularly when many small vehicles are
used that execute especially short tours. A large number of tours does not nec-
essarily imply that the same number of vehicles/drivers are required, because
multiple use of vehicles is not considered in this paper. Consequently, the mod-
els introduced in this paper shall be amended in order to be able to take into
consideration multiple use of the vehicles.

To entirely exploit the potential of electric vehicles, scenarios will be eval-
uated where recharging of batteries en route at external charging stations or
exchange of batteries at the vehicle depot is possible. This will obviously have a
considerable impact on the time electric vehicles need to execute a tour and fur-
thermore, this may require detours to charging stations. With respect to a cost
analysis it should be noted that energy consumption, time needed to execute
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tours and total distance traveled are the dominating factors when minimizing
the variable cost in vehicle routing.
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Abstract. We study the problem of computing time-dependent shortest
routes for truck drivers. In contrast to conventional route planning, truck
drivers have to obey government regulations that impose limits on non-
stop driving times. Therefore, route planners must plan break periods in
advance and select suitable parking lots. To ensure that maximum driving
times are not exceeded, predictable congestion due to, e. g., peak hours
should also be taken into account. Therefore, we introduce the truck
driver routing problem in time-dependent road networks. It turns out
that the combination of time-dependent driving times with constraints
imposed by drivers’ working hours requires computation of multiple time-
dependent profiles for optimal solutions. Although conceptually simple,
profile search is expensive. We greatly reduce (empirical) running times
by calculating bounds on arrival and departure times during additional
search phases to only query partial profiles and only to a fraction of
the parking lots. Carefully integrating this approach with a one-to-many
extension of time-dependent contraction hierarchies makes our approach
practical. For even faster queries, we also propose a heuristic variant that
works very well in practice. Excellent performance of our algorithms is
demonstrated on a recent real-world instance of Germany that is much
harder than time-dependent instances considered in previous works.

Keywords: Time-dependent shortest paths · Drivers’ working hours · Truck
driver scheduling · Parking locations

1 Introduction

In many countries of the world, truck drivers are legally obligated to take breaks
on a regular basis to obviate drivers’ fatigue and hence increase road safety. For
instance, Regulation (EC) No. 561/2006 of the European Union [15] demands a
break of at least 45 minutes after at most 4.5 hours of driving. And according to
the hours-of-service regulation in the United States [16], a 30-minutes-break is
mandatory after at most eight hours have elapsed. Truck drivers must park their
vehicle at a suitable location before taking such a “lunch break”. Due to the size
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of their trucks, the drivers are severely limited compared to car drivers when
in search of a parking space. For assistance in finding appropriate and available
parking lots, truck drivers use mobile apps like Truck Parking Europe [1] that
maintain databases of parking lots and display nearby lots to users. In this work,
we investigate the following optimization problem: En route from one customer
to another, when and where should the driver take a break (if at all) to conform
to the provisions on breaks and arrive at the destination earliest possible?

We only consider one drive from a source to a destination. In general, a
truck driver may visit multiple customers per day. In this case, the customers’
time windows also have to be regarded. Moreover, if a trip takes more than one
day, not only lunch breaks have to be scheduled but also longer rest breaks for
the driver to sleep. The problem of scheduling breaks in order to comply with
regulations while also taking customer time windows into account is known as
the truck driver scheduling problem [21]. However, the locations of the parking
lots remain disregarded in this setting. In this work, we take a major first step
towards combining time-dependent route planning and truck driver scheduling.
We determine not only when but also where to take a break.

We consider time-dependent driving times to model predictable congestion.
In this scenario, it might be beneficial to not depart from source right away, or to
prolong a break, or to wait at a parking lot for a time that is too short to count
as break. As an example of short-term waiting, imagine the following: At the
time of arrival at a parking lot, the driving time to the destination would be two
minutes longer than the remaining allowed driving time. Luckily, the driver just
has to wait ten minutes for the congestion to disperse and for the driving time
to drop by these two minutes. In contrast to the European Union, short-term
waiting does not pay off in the United States because the lunch break becomes
mandatory after eight hours have elapsed, and not after a certain accumulated
driving time. In the following, we focus on the EU regulation.

Time-dependency makes the problem particularly challenging, and the ques-
tion arises whether it can be solved efficiently in practice. We are interested
both in optimal and in heuristic approaches. There are a couple of parameters to
reduce the run-time, and we seek to shed light on their impact on the solution
quality. For our experimental analysis, it is sufficient to assume that the driver
stops at only one parking lot (if at all). For a planning horizon of one day, this
is no substantial limitation in practice as a daily driving time of 9h (US: 11h)
should not be exceeded, even though it may be extended to 10h twice a week. For
the sake of completeness, we discuss the implications regarding multiple stops.

Related Work. Route planning algorithms have received a large amount of
attention in recent years, resulting in a multitude of speedup techniques [2]. In
the time-dependent scenario, driving time functions associated with the edges
map the time of the day to a driving time [7]. Dijkstra’s algorithm [12] can be
generalized [14] to answer earliest arrival (EA) queries. However, profile queries
asking for the driving time function between two vertices are not feasible for large
road networks [11], as such functions may have superpolynomial complexity [17]
and maintaining them for all vertices makes Dijkstra’s algorithm impractical.
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Several classic speedup techniques have been generalized to the time-dependent
scenario [6, 9, 10], typically focusing on fast EA queries. Efficient EA and profile
queries at continental scale are provided by TCH [3], a generalization of Con-
traction Hierarchies (CH) [20]. Batched shorted paths in the time-dependent
scenario are studied in [19]. Recently, Strasser [30] introduced a simple heuristic
for time-dependent routing that is cheap in time and space, but drops optimality
and provides no approximation guarantees.

As far as the truck driver scheduling problem is concerned, the interested
reader can find descriptions of optimal algorithms for the EU variant of this
problem in [21, 13, 26] and for the US variant in [22, 24, 25]. Of these, [26] and [24]
propose a mixed-integer linear programming formulation. The former even takes
time-dependent driving times into account, the latter is the only one to include
real-world data of parking lots (here: interstate rest areas) into their experimental
analysis. However, in both cases not only the sequence of customers is fixed but
also the path in the road graph. So in the former case the path cannot change over
time, and in the latter case truck stops aside the path are disregarded. In [27], time-
dependent routes for truck drivers subject to government regulations and time
windows are solved heuristically. Finally, other lines of research have considered
problems that resemble our setting but are NP-hard, such as crew scheduling [29],
routing of electric vehicles [5], or time-dependent pollution-routing [18].

Contribution and Outline. We introduce the truck driver routing problem that asks
for the fastest route between two customers that complies with legal provisions for
truck drivers (Section 2). To the best of our knowledge, we are the first to integrate
the choice of routes, breaks and parking lots in one query – unlike previous works
that first fix the route and then schedule breaks, possibly missing the optimal
solution. Since rush hours severely affect driving times, we consider the time-
dependent scenario. We propose a naive approach (Section 3) that would be far
too expensive in time and space without at least one of two described acceleration
techniques (Sections 3.1 and 3.2): An implementation based on TCHs achieves
query times in the order of minutes on the German road network. Sophisticated
bounds computations on top of that speed queries up by a factor of 25, yielding
running times well below 10 seconds. Finally, a heuristic approach (Section 3.3)
enables queries below a second and less. Most of our experiments (Section 4) are
performed on a new instance of the German road network, currently used by
PTV in production systems. It turns out to be much harder than the ten-year-old
instance used in most publications so far. Before we conclude (Section 6), we
discuss the implications of allowing multiple stops (Section 5).

2 Problem Statement and Preliminaries

The basic input for every variant of the truck driver routing problem is the
following: Let a road network be given, modeled as a directed graph G = (V,E)
with n = |V | vertices and m = |E| edges, where vertices v ∈ V typically
correspond to intersections and edges (u, v) ∈ E to road segments. The subset
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P ⊂ V of the vertices contains exactly the parking locations that represent the
parking lots (or even parking spaces) where the driver may take a break. The
minimum break period and the maximum driving time until such a break is
mandatory are denoted by break and limit respectively. These two parameters
are sufficient to handle the Regulation (EC) No. 561/2006 of the European Union
[15] for a planning horizon of one day.

We are also given a sequence of exactly two customers to be visited, source
s ∈ V \ P and destination d ∈ V \ P . An s–d-path Paths,d (in G) is a sequence
[v1 = s, v2, . . . , vk = d] of vertices such that (vi, vi+1) ∈ E and vi �= vj for
all 1 ≤ i < j ≤ k. A (truck driver) route Routes,d from s to d in turn is a
sequence [Pathui,vi ]1≤i≤k of paths such that u1 = s and ui ∈ P for 1 < i ≤ k,
vk = d and vi ∈ P for 1 ≤ i < k, and vi−1 = ui for 1 < i ≤ k. In this paper, we
will only deal with routes with a sequence length |Routes,d| := k of at most two.

In the time-independent case, the weights on the edges are constants and
indicate the driving time along the edge. A path is feasible iff the accumulated
driving time along the path is no longer than limit , and a route is feasible iff
all its paths are. The duration of a truck driver route Routes,d is the sum of
the accumulated driving times of its paths plus (|Routes,d| − 1) · break . In time-
independent truck driver routing, we are interested in a shortest feasible route
from s to d if such a feasible route exists.

In time-dependent truck driver routing, we are given time-dependent driving
time functions for every edge instead of constant driving times. That is, for every
edge (u, v) there is a function Ψu,v : R → R

+ that maps the time of departure
from u to the driving time to v. In this work, all functions are supposed to be
piecewise-linear. The driver is not allowed to wait at any vertex other than the
parking locations or s. In this scenario, it is common to demand that the functions
fulfill the FIFO property because the shortest-path problem would become NP-
hard if it was not satisfied for all edges [28, 8]. We even presume that functions
are continuous and fulfill the strict FIFO property, i. e., for arbitrary t < t′ ∈ R,
the condition t+ Ψ(t) < t′ + Ψ(t′) holds for every edge (later departure leads to
later arrival). This way, the arrival time function id+Ψ is bijective (id being the
identity function) and we can build the inverse (id+Ψ)−1 that maps an arrival
time to the appropriate departure time.

To check feasibility of a route Routes,d = [Pathui,vi ]1≤i≤k , we also ask for

departure and arrival times dep(ui) and arr(vi) for all i. This way, the duration
of a path Pathu,v can easily be computed by arr(v)− dep(u) (must be positive)
and the waiting time at a parking location by dep(ui) − arr(vi−1) (must be
non-negative). To be feasible, no single path is allowed to be longer than limit . In
addition, a route [Paths,p, Pathp,d] is feasible only if either the sum of the paths’
durations does not exceed limit or there is a waiting time that counts as break at
the parking location p in between. Among all feasible truck driver routes we look
for one with the earliest arrival at d. To this end, we are also given a lower bound
on the earliest departure lbED(s) from s, i.e., we demand dep(s) ≥ lbED(s). It
is only a lower bound because a feasible route with dep(s) = lbED(s) may not
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exist. In this paper, we call a vertex v reachable from u at time t if there is a
feasible route Routeu,v with dep(u) = t.

A (driving time) profile between u and v is a time-dependent function
ψu,v : R → R

+ that maps every departure time at u to the shortest driving
time to v. If (u, v) ∈ E, the profile is identical to the given driving time func-
tion Ψu,v. If not, we can compute the profile ψu,v recursively either forward or
backward using the link operation � and the merge operation ⊕:

ψu,v :=
⊕

w : (w,v)∈E

ψu,w �Ψw,v or ψu,v :=
⊕

w : (u,w)∈E

Ψu,w �ψw,v (1)

where ψ�ϕ is defined to be ψ + ϕ ◦ (id+ψ) and ψ⊕ϕ defined to be min(ψ,ϕ).
A profile search can be implemented as described in [11].

3 Solution Approach

We first describe a basic and rather naive approach to compute the earliest
arrival at destination d. There are three ways in which d may be reachable from
s: Either without passing a parking location at all, or by taking a break at a
parking location, or by short-term waiting at a parking location. Accordingly, we
will now compute three values optnone , optbreak , and optshort . The minimum of
these is then the overall optimal solution.

At first, we investigate whether d can be reached from s without passing a
parking location. To do this, we compute the driving time profile ψs,d from s to d
and then look up the earliest feasible departure time deps,d from s in this respect:
deps,d := min{t : ψs,d(t) ≤ limit ∧ t ≥ lbED(s)}. With this, we can conclude:
optnone := deps,d + ψs,d(deps,d).

To consider the parking locations, we have to search forward and backward in
order to compute the driving time profiles ψs,p and ψp,d for all p ∈ P . In the case
with a break at a parking location, the next step is, similarly as before and for
every parking location p ∈ P , to determine the earliest feasible departure time
deps,p from s when going to p as deps,p := min{t : ψs,p(t) ≤ limit ∧ t ≥ lbED(s)},
and then to look up the earliest feasible departure time depp,d from p when going
to d after a break as depp,d := min{t : ψp,d(t) ≤ limit ∧ t ≥ deps,p+ψs,p(deps,p)+
break}. In turn, we can conclude: optbreak := minp∈P {depp,d + ψp,d(depp,d)}.

But maybe the optimal solution consists in just waiting at a parking location
for a short time that does not necessarily count as break. To take this case into
account, we determine the earliest feasible departure time deps,p,d from p when
going from s to d for every parking location p ∈ P as follows: deps,p,d := min{t :
∃t′ : ψs,p(t

′) + ψp,d(t) ≤ limit ∧ lbED(s) ≤ t′ ≤ t− ψs,p(t
′)}. Again, we conclude:

optshort := minp∈P {deps,p,d + ψp,d(deps,p,d)}.
This description is only a sketch. It is meant to give an overview. A naive

implementation would certainly be far too slow for any practical use. This
motivates the following three acceleration approaches: by narrowing down profile
searches, by time-dependent contraction hierarchies, and heuristically.
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3.1 Acceleration by Narrowing Down Searches

Some computations can be performed faster than others. The idea is to spend
little extra time on quick computations in order to gain bounds that help us
speed up the expensive calculations such as the profile search.

We define ubMax (ψ) as an upper bound on the maximum value of the profile
ψ, i.e., ubMax (ψ) ≥ maxt∈R ψ(t). Analogously, lbMin(ψ) is a lower bound on
the minimum value of ψ. A query for these bounds, called a profile bounds
query here, can be answered by applying Dijkstra’s algorithm [14] on a graph
where the constant edge weights are the minimum (maximum) values of the
respective driving time functions. Given a departure time t in addition, an earliest
arrival (EA) query asks for the earliest arrival at d when departing at time t.
Both queries can be processed rapidly and are described in greater detail in [3].
In our context, a usual EA query only gives a lower bound lbEA(d) on the earliest
arrival if lbEA(d) > t+ limit . To highlight this, we call it an lbEA query.

Computing Partial Profiles. One of the key acceleration techniques in this paper
is to only compute a partial profile. A partial profile maps a departure time t ∈ R

to a driving time in R
+ ∪ {⊥}, where ⊥ can be read as undefined. We have to

distinguish a partial forward profile from a partial backward profile. More precisely,
the following holds for a partial forward profile ψf given a departure time range
[tbegin, tend] ⊂ R: ψf (t) ∈ R

+ for tbegin ≤ t ≤ tend and ψf (t) = ⊥ otherwise. An
analog statement holds for a partial backward profile ψb given an arrival time
range [tbegin, tend] ⊂ R: ψb(t) ∈ R

+ for (id+ψb)−1(tbegin) ≤ t ≤ (id+ψb)−1(tend)
and ψb(t) = ⊥ otherwise.

A partial (forward or backward) profile for a given (departure or arrival time)
range can be computed similar to before. If (u, v) ∈ E, we set

ψf
u,v(t) :=

{
Ψu,v(t), if t in range

⊥, otherwise
ψb
u,v(t) :=

{
Ψu,v(t), if t+ Ψu,v(t) in range

⊥, otherwise

If not, we use the same (forward or backward) recursion formula as before in
(1). But we have to adjust the definitions of the link and merge operations and
distinguish the forward from the backward case. The forward and backward link
operations for a partial profile and a driving-time function of some edge are now
defined as follows:

(ψf
u,v �f Ψv,w)(t) :=

{
ψf
u,v(t) + Ψv,w(t+ ψf

u,v(t)), if ψf
u,v(t) �= ⊥

⊥, otherwise

(Ψu,v �b ψb
v,w)(t) :=

{
Ψu,v(t) + ψb

v,w(t+ Ψu,v(t)), if ψb
v,w(t+ Ψu,v(t)) �= ⊥

⊥, otherwise

The forward and backward merge operations for two partial profiles for the
same vertex pair and range are now defined as follows:

(ψf ⊕f ϕf )(t) :=

{
min{ψf (t), ϕf (t)}, if ψf (t) �= ⊥ ∧ ϕf (t) �= ⊥
⊥, otherwise
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(ψb ⊕b ϕb)(t) :=

⎧⎪⎨
⎪⎩
ψb(t), if ψb(t) �= ⊥ ∧ (id+ϕb)−1(t+ ψb(t)) ≤ t

ϕb(t), if ϕb(t) �= ⊥ ∧ (id+ψb)−1(t+ ϕb(t)) < t

⊥, otherwise

Given a source, a destination, and a range, we call a query for a partial profile
a profile range query.

One-to-one queries. At first, we perform a one-to-one lbEA query for s and d
and departure time lbED(s), that is, we compute the earliest arrival at d as if
there was no break to take when leaving s earliest possible. If this lower bound
lbEA(d) on the earliest arrival is no later than lbED(s) + limit , it is tight, and
we have found the requested earliest arrival at d.

The second step is to compute a lower bound lbMin(ψs,d) on the driving time
from s to d. If this bound is already greater than 2 · limit , we stop here because d
is considered to be not reachable from s as we only take one break into account.

If lbMin(ψs,d) ≤ limit , then an optimal solution may incorporate short-term
waiting at a parking location. We store this information by setting lbWaiting := 0.
Otherwise we set lbWaiting := break because it is certain that the driver will
have to take a break at one of the parking locations.

One-to-many-to-one queries. We perform both an lbEA search and a profile
bounds search from s to all potentially reachable parking locations, that is, we
compute lbMin(ψs,p), ubMax (ψs,p) and lbEA(p) for all p ∈ P with lbMin(ψs,p) ≤
limit . We insert all those parking locations p with lbEA(p) ≤ lbED(s)+ limit into
a set Blue1. So for all p ∈ Blue1, the lower bound lbEA(p) is tight and equals
the earliest arrival EA(p) at p. We add the other potentially reachable parking
locations p, i.e. with lbEA(p) > lbED(s) + limit (and also lbMin(ψs,p) ≤ limit
by construction), to a set Red1. These are the ones for which the lower bound
is known to be not tight. The set Red1 may remain empty, especially if waiting
at s was not allowed. An empty set Red1 helps to speed up computation as we
can omit the forward profile range query later. If both sets are empty, there is
no feasible solution. Blue1 and Red1 are each the first element of a sequence of
subsets of P that we will construct in the following. An illustration is shown in
figure 1.

The next step is to conduct a profile bounds search from d backwards to
all potentially reachable parking locations in Blue1 ∪ Red1, i.e., we compute
lbMin(ψp,d) and ubMax (ψp,d) for all p ∈ Blue1 ∪ Red1 with lbMin(ψp,d) ≤ limit .
Let Blue2 (resp. Red2) be the subset of parking locations in Blue1 (resp. Red1)
that are also potentially reachable backwards. Again, if Blue2 ∪ Red2 is empty,
there is no feasible solution. With the bounds on the driving time we get (better)
bounds on the earliest arrival at d. We can set the upper bound ubEA(d) to
min{EA(p) + break + ubMax (ψp,d) : p ∈ Blue2 ∧ ubMax (ψp,d) ≤ limit}, where
the minimum over the empty set is considered to be infinite. If lbWaiting = break
and improving, we can update the lower bound lbEA(d) to min{lbEA(p)+break +
lbMin(ψp,d) : p ∈ Blue2 ∪ Red2}.
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s d

Blue1 Blue2 Blue3

Red1 Red2 Red3 Red4

Fig. 1. The set sequences Blue1 ⊃ Blue2 ⊃ Blue3 and Red1 ⊃ Red2 ⊃ Red3 ⊃ Red4.
The two sets Blue1 and Red1 are disjoint.

A profile range search backwards from d in the range [lbEA(d), ubEA(d)] to all
p ∈ Blue2∪Red2 yields a partial profile ψp,d for all these p. It is defined for exactly
those departure times t from p for which t+ ψp,d(t) ∈ [lbEA(d), ubEA(d)] holds.
For all p ∈ Blue2 we can now determine an upper bound ubED(p) on the earliest
departure from p as the earliest point in time t such that t ≥ EA(p) + break
and ψp,d(t) ≤ limit . In case lbWaiting = break , this bound is tight. In the other
case, we may be able to improve it by the earliest point in time t for which
t ≥ EA(p) and ψp,d(t) ≤ limit − (EA(p) − lbED(s)) holds. However, we might
not be able to find such an upper bound because neither of the conditions are
met. So let Blue3 ⊂ Blue2 be the set of parking locations for which ubED(p) can
be determined. Then, we may improve the upper bound ubEA(d) on the earliest
arrival at d by min{ubED(p) + ψp,d(ubED(p)) : p ∈ Blue3}.

On the other hand, we calculate a lower bound lbED(p) on the earliest
departure from p for all p ∈ Red2 as the earliest point in time t with t ≥ lbEA(p)+
break and ψp,d(t) ≤ limit . If lbWaiting = 0, we may have to lower this bound to
the earliest point in time t with t ≥ lbEA(p) and ψp,d(t) ≤ limit − lbMin(ψs,p).
And, again, let Red3 ⊂ Red2 be the set of parking locations for which lbED(p)
can be determined.

Let Red4 ⊂ Red3 be the set of parking locations p for which lbED(p) +
ψp,d(lbED(p)) < ubEA(d) holds. So Red4 contains those parking locations for
which a forward profile range search is inevitable. If this set is empty and
lbWaiting = break , then ubEA(d) is tight, so we are done. If not, we need to
compute an upper bound ubED(p) on the departure time from p for all p ∈ Red4

(and p ∈ Blue2 if lbWaiting = 0): It is the point in time t with t + ψp,d(t) =
ubEA(d). With the upper bound for all p, we can obtain an upper bound ubED(s)
on the departure from s: It is max{ubED(p)− lbWaiting − lbMin(ψs,p)} over all
p ∈ Red4 (and p ∈ Blue2 if lbWaiting = 0).
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Finally, we conduct a forward profile range search from s to all p ∈ Red4 (and
p ∈ Blue2 if lbWaiting = 0) for the departure time range [lbED(s), ubED(s)].
Now we have everything we need together: In case lbWaiting = break , we compute
optbreak similar to before, except that the earliest arrival at d via the parking
locations in Blue3 is already known and has to be determined only for Red4.
In case lbWaiting = 0, we have to compute optshort in addition, but only for
Blue2 ∪ Red4, and also optnone (provided that waiting at s is allowed). To speed
up the computation of optnone , we only perform a forward profile range search
from s to d for the range [lbED(s), ubEA(d)− lbMin(ψs,d)].

3.2 Acceleration by Contraction Hierarchies

In the previous section, we proposed techniques to reduce the number of profile
searches and restrict the remaining profile searches to smaller ranges. We accel-
erate our approach even further by speeding up the profile searches (and EA
queries) themselves using time-dependent contraction hierarchies [3]. (T)CHs were
originally proposed for point-to-point queries, whereas we also need to compute
a variant of one-to-many queries (from a source vertex to all parking lots). In
this section we recap the (time-dependent) contraction hierarchies algorithm and
describe our modifications of it.

A contraction hierarchy (CH) [20] is built by contracting the vertices of a
graph in increasing order of importance. Intuitively, vertices that lie on many
shortest paths (such as vertices on highways) are considered important. To
contract a vertex v, it is (temporarily) removed from the graph, and shortcuts are
added between its neighbors in order to preserve distances in the remaining graph.
Witness searches are performed to determine whether a shortcut is necessary or
can be discarded. For each pair of neighbors u,w with (u, v) ∈ E, (v, w) ∈ E, we
run a Dijkstra search from u to w. Only if the path via v is the unique shortest
u–w-path, we add the shortcut between u and w. In the time-dependent case,
we need to run a profile search from u to w. A shortcut can only be omitted if it
is not needed at any point in time.

CH queries are a modified variant of bidirectional Dijkstra, where both
forward and reverse search relax only upward edges, i. e., edges going from less
to more important vertices. In the time-dependent scenario, the reverse search is
particularly difficult, because the time of arrival at the target is unknown. In a
basic query variant, the reverse search only marks all edges in the reverse search
space from d, and the forward search is allowed to additionally relax all marked
arcs. More sophisticated query variants compute bounds during the reverse search
that guide the forward search into the direction of d.

The obvious approach to compute EA queries or profiles from a source to
all parking lots P runs |P | point-to-point TCH queries. However, we can do
better with the following modification. During the contraction process, we block
all vertices representing parking lots, i. e., we disallow to contract them. After
contraction, there remains a core graph at the top of the hierarchy, consisting of
all parking lots and (shortcut) arcs between them. Queries from a source s to
all parking lots now boil down to a forward search from s that relaxes no edges
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to less important vertices. As long as the query has not yet reached the core, it
behaves like a normal forward CH search. On the core graph, it behaves like a
standard Dijkstra search. We can accelerate the search using the stall-on-demand
optimization [20] and stop it as soon as all parking lot vertices are settled, or
a certain time limit is reached. Since blocking arbitrary vertices can lead to
suboptimal contraction orders, we do not contract all vertices but the parking
lots, but rather stop contraction as soon as the remaining graph becomes too
dense.

3.3 Heuristic Acceleration

In our study, we schedule waiting times on the assumption that the time-dependent
driving times are deterministic. This is not the case in real-life. So it is questionable
whether a route with, for instance, scheduled short-term waiting would be
acceptable in practice. This is the motivation for the restricted waiting policy
that disallows waiting at s, short-term waiting at any parking location, and
the prolongation of a break. To conform to this policy, the driver must depart
immediately at time lbED(s) and may take a break of exactly 45 minutes if
inevitable. In this scenario, it is not necessary to query any profiles, even if d
cannot be reached directly without break. Then, the Red sets are ignored, and
instead of computing partial profiles backwards from d to Blue2, we conduct
multiple lbEA searches forward from the parking locations in Blue2, getting a
better and better upper bound on the earliest arrival at d.

4 Experiments

In this section, we first describe the data and the test setup and then analyze
run-time and solution quality of the described approaches. Our experiments are
based on two versions of the road network of Germany with time-dependent
driving time functions, see Table 1. The older network from the year 2006 has been
used by several other studies related to time-dependent routing (see Section 1)
and contains car driving times based on a traffic model. The very recent data
from 2017 is quite different: The new data is more detailed with respect to
time dependency, there are more edges with driving time functions that are not
constant, and the total number of breakpoints representing the functions is larger.
The driving times are based on historic data provided by TomTom which is
post-processed by PTV such that it models truck driving times.

We use the database of PTV Group’s Truck Parking Europe app [1]. It
contains currently more than 25 000 parking lots all over Europe. Some parking
lots cannot be linked to the old road network of 2006. Therefore, the number of
parking locations is a bit lower than in the road network of 2017. The database
does not only contain rest areas with fuel stations, restrooms, and restaurants
but also parking areas without any facilities. It is not clear if or under what
circumstances the choice of a parking area without facilities would be acceptable
in practice. We will take this into account by also testing our algorithm with a
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Table 1. Key figures of the input data used for the experiments. TD Edges denotes the
relative number of edges with a time-dependent and not constant driving time function.

Road network Vertices Edges TD Edges Breakpoints Parking set Parking subset

Germany 2017 7.2 M 15.7 M 28.6 % 136.9 M 6 596 759
Germany 2006 5.1 M 12.6 M 3.7 % 20.9 M 6 447 731

Fig. 2. The left image shows all available parking lots in Germany, the right image
shows the reduced set with only big parking lots.

smaller subset of parking lots that offer 30 parking bays or more each. Figure 2
shows these two sets of parking lots.

Test Setup. We run our experiments on a VMware ESX cluster. Our machine
has four cores of a 2.2 GHz Intel Xeon E5-2698 v4, 64 GB main memory, and
runs Ubuntu 16.04. Besides the construction of the contraction hierarchies the
algorithms use only one core. Our code is written in C++ and compiled with
gcc 5.4, optimization level -O3. Our CH implementation is based on the code by
Batz [3, 4] and has been extended as described in Section 3. We set the size of
the CH cores to 0.2 % of the vertices in case of the whole parking set and 0.02%
in case of the subset. This results in a CH search graph size of 38.90 GB in the
former and 37.28 GB in the latter case (and 2.03 GB in the case of the 2006 road
network).

Since our test data is the road network of Germany, we consider the EU
regulation, i.e., break=45 min and limit=4.5 h. We generate 10 000 truck driver
route queries for both versions of the road network. To this end, we randomly
select vertices s and d and (a lower bound on) the earliest departure from s
between 6 am and 9 am. Since the run-time of these queries can differ a lot, we
assign each of them to one of five categories: Category C1 comprises the queries
for which the lbEA query suffices, i. e., lbEA(d) ≤ lbED(s) + limit . Category
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Table 2. Number of truck driver route queries per category.

C1 C2 C3 C4 C5 Over all

Query set 2017 4278 210 4943 165 404 10000
Query subset 2017 877 36 980 31 76 2000
Query set 2006 7109 126 2754 1 10 10000

Table 3. Mean run-time per category in seconds for different scenarios.

Scenario C1 C2 C3 C4 C5 Over all

Default scenario 0.0038 18.1756 5.9549 121.9516 0.0053 5.3392
Restricted waiting 0.0033 0.2925 0.2187 0.1163 0.0910 0.1212
Parking subset 0.0041 5.8109 1.0646 7.8424 0.0057 0.7796

Naive approach 2.8018 287.1991 227.5335 228.4150 195.4254 128.8562
Query subset 2017 0.0039 18.5811 5.8160 121.5858 0.0056 5.0708

Germany 2006 0.0013 0.9829 0.3932 23.8170 0.0021 0.1239

C2 contains the ones with lbEA(d) > lbED(s) + limit and lbMin(ψs,d) ≤ limit ,
category C3 the ones with lbMin(ψs,d) > limit and ubMax (ψs,d) ≤ 2 · limit , and
category C4 the ones with ubMax (ψs,d) > 2 · limit and lbMin(ψs,d) ≤ 2 · limit .
Finally, category C5 holds the instances with lbMin(ψs,d) > 2 · limit that cannot
be solved.

Table 2 lists how these queries are distributed among the five categories. In
case of the query set 2006, there are far more queries in C1 because with car
driving times the vehicle’s range is larger. Also in this list is the query subset
2017. We need this smaller subset of queries to measure the run-time of the long
running naive approach.

Results on Run-Time. Table 3 shows the mean run-time for different scenarios,
broken down into the five categories. The categories themselves are not part of
the input of the algorithm. For the default scenario, we use the 2017 road graph,
all described acceleration techniques, all parking locations, and allow waiting
of any duration. The other scenarios deviate from this in one aspect each. In
the default scenario, the run-time varies a lot with the category. A query from
category C4 takes more than 30 000 times longer than one from C1. Since there
are far more queries in C1 than in C4, the mean run-time over all 10 000 queries
is still less than 6 seconds. Queries from C4 take so long because in 106 cases no
upper bound on the earliest arrival at d can be determined, so a full backward
profile search is necessary. Figure 3 illustrates the run-time distribution among
the 10 000 queries.

In case of the restricted waiting policy, waiting at s is not allowed and waiting
at any parking location is only allowed if the waiting time equals exactly the
time for a break. This speeds the calculation up by a factor of 40 over all queries.
In the parking subset scenario, we allow waiting only at larger parking lots. We
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Fig. 3. Run-time of each s-d-query in the default scenario (left) and according to
restricted waiting policy (right), lbMin(ψs,d) on abscissa and run-time in seconds on
ordinate (on a logarithmic scale). Points are colored by category. Scales differ.

run the algorithm on the Germany 2017 network but the search graphs differ.
Compared to the default setting, the smaller size of the core graph leads to
faster one-to-many profile range queries (approx. by a factor of 7.5) but slower
one-to-one profile range queries (approx. by a factor of 1.2). In both of these
scenarios, not all queries can be solved. Solution quality is discussed later.

The naive approach does not make use of the acceleration based on partial
profiles as described in Section 3.1 but still CH as in Section 3.2. Because of the
long run-time of the naive approach, the run-times are based on the reduced query
subset 2017 (see Table 2). For better comparability, we also give the run-times of
the default scenario for the reduced query subset. An achieved speed-up of 25
over all queries proves the effectiveness of our described acceleration in general.
The main aspect of it is the computation of only partial profiles that concerns
category C3 primarily. Here, we even achieve a speed-up of almost 40.

In case of the Germany 2006, we run the accelerated approach on the 2006
road graph that was used in the original TCH publication [3]. The run-time is
smaller by an order of magnitude compared to our recent data.

Some more numbers are of interest. A crucial issue of our bounds-based
acceleration is to find a (good) upper bound ubEA(d). In the default scenario,
there are 113 cases in which such a bound cannot be determined and so a complete
profile needs to be searched for backwards. A complete profile search backwards
takes 138.7 s on average. In contrast, a profile range search is performed in
5168 cases and takes 5.8 s on average. The mean length of these ranges, i. e.
ubEA(d)− lbEA(d), is 604 s. A second important aspect of the acceleration is to
avoid the profile (range) search forward if the set Red4 is empty. This set contains
elements only in 50 cases and then only a few, most often just one. Figure 4
shows a sample query with empty set Red4.
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Fig. 4. Sample query from Hamburg to Dresden in the default scenario (left) and in
the parking subset scenario (right). Different parking lots (P) are selected. The largest
squares represent the sets Blue3 and Red3.

Results on Quality. Table 4 compares the solution quality of the default scenario
to the restricted waiting and the parking subset scenario. The results of the naive
approach are identical to the default, and the results of Germany 2006 are hardly
comparable, particularly since the driving times in this setting are based on a
car model.

In the default setting, 9558 of 10 000 queries can be solved. We observe that
the travel time, i. e., the driving time plus all waiting time (at s and at parking),
exceeds 15 hours in some cases, presumably to exploit the short driving times
during the night. Such a solution is feasible according to our problem statement
but most likely it would neither be acceptable in practice nor legal as truck
drivers have to take a sleep rest daily. In the following, we call a solved query
legal if the travel time does not exceed 15 hours. In case of the restricted waiting
policy, a solved query is always legal.

We also state how many queries are solved (legally and) optimally, i. e., how
often is the calculated earliest arrival at d identical to the default scenario. In
the parking subset scenario, this happens in 58% of the cases, even though there
are less than 12% of the parking lots in the subset. Parking lots with more than
30 parking bays are most often located right next to a freeway (Autobahn in

Table 4. Comparison of solution quality for different scenarios. Mean and maximum
deviation is in seconds over all queries that are legal but not optimal.

Scenario solved legal optimal & legal mean dev max dev

Default scenario 9558 9512 9512 0 0
Restricted waiting 9474 9474 9453 1211 2265
Parking subset 9518 9470 5518 127 17559
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Germany), whereas many of the small parking lots are further away from it.
In the restricted waiting scenario, only 21 of the solved queries are not solved
optimally. So in the vast majority of the cases, the computational effort spent
on taking waiting of any duration into account does not pay off. For instance,
short-term waiting is scheduled only 11 times in the default scenario.

5 Enhancement to Multiple Stops

Our algorithm is tailored to the one-stop case. What are the implications if we
allow more than one stop? For instance, if there were two drivers on board, they
could take turns and stop three times for a change before they must take a rest
and sleep. From a conceptual perspective, the multi-stop case is not too difficult.
Let Ps be the parking locations that are reachable from s at some point in time
without taking a break along the path, and let Pd be the parking locations that
are potentially reachable backwards from d, i. e., lbMin(ψpd,d) ≤ limit for all
pd ∈ Pd. Moreover, suppose we had precomputed a |P | × |P | matrix M of travel
time profiles such that for two parking locations ps and pd, M [ps, pd] maps the
departure time from ps (where the driver is expected to have taken a break) to
the shortest travel time to pd, including as many breaks as needed and also one
at pd (unless ps = pd). With this, a truck driver route query boils down to three
steps: First, we compute the earliest arrival at every ps ∈ Ps. Then, we determine
the earliest departure from every pd ∈ Pd with the help of M as follows:

ED(pd) = min
ps∈Ps

EA(ps) + break +M [ps, pd](EA(ps) + break)

Having done that, we can finally calculate the earliest arrival at d, also checking
if d could be reached without any break.

We could easily adapt the restricted waiting policy heuristic to this general
case. It is short-term waiting that makes the computation of the earliest arrival at
every ps ∈ Ps challenging. In order to do so, we could propagate a time-dependent
function forward (here: mapping an arrival time to the minimum accumulated
driving time). But as we have seen, propagating a time-dependent function is
expensive. So from a practical point of view, it would be important to again find
ways of narrowing down the search, like finding good bounds and only propagating
partial functions as we have demonstrated before. In addition to this challenge,
our assumption that we have a matrix M in memory is not realistic. Due to
the superpolynomial complexity of the travel time profiles, we would most likely
need hundreds of GB of main memory for the parking lots in Germany. So the
question is raised what a good trade-off would be between memory consumption
and computational effort (and solution quality).

6 Conclusion and Outlook

We have introduced the truck driver routing problem and described an exact
algorithm for it. While a naive approach would be far too costly in time and
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space, it can be made feasible using our two proposed acceleration methods.
One is a modification of TCH. Additionally narrowing down TCH searches by
several fast bounds computations and queries of only partial profiles results in an
extra speed-up of 25 and practical run-times. We have also suggested a heuristic
based on the policy of restricted waiting and analyzed its effect. In this setting,
truck driver route queries take well below one second without losing too much
solution quality. Similarly effective is the restriction of the parking set to the
more relevant parking locations.

In this paper, we have left out our experiments with approximated driving time
functions. Using the algorithm of Imai and Iri [23] to approximate the functions of
both original and shortcut edges further reduces the run-time, especially of profile
(range) queries. In doing so, we only sacrifice a precision that is not justified in
practice. Future work includes a solution to the combined truck driver routing
and scheduling problem for a given sequence of customers by using the results of
this paper as a building block. Moreover, it would be interesting to reevaluate
the existing work on algorithms for time-dependent route planning on the new
benchmark instance. We conjecture that other shortcut-based methods such as
TD-CRP [6] also suffer significantly from the new instance. It could be promising
to further investigate shortcut-free approaches like the ALT algorithm [10].

Our algorithm will also be evaluated in the EU research projects AEOLIX
and Clusters 2.0.
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Abstract. This paper considers the problem of matching multiple ship-
pers and multi-transporters for pickups and drop-offs, where the goal is to
select a subset of group jobs (shipper bids) that maximizes profit. This is
the underlying winner determination problem in an online auction-based
vehicle sharing platform that matches transportation demand and sup-
ply, particularly in a B2B last-mile setting. Each shipper bid contains
multiple jobs, and each job has a weight, volume, pickup location, deliv-
ery location and time window. On the other hand, each transporter bid
specifies the vehicle capacity, available time periods, and a cost struc-
ture. This double-sided auction will be cleared by the platform to find
a profit-maximizing match and corresponding routes while respecting
shipper and transporter constraints. Compared to the classical pickup-
and-delivery problem, a key challenge is the dependency among jobs,
more precisely, all jobs within a shipper bid must either be accepted or
rejected together and jobs within a bid may be assigned to different trans-
porters. We formulate the mathematical model and propose an Adaptive
Large Neighborhood Search approach to solve the problem heuristically.
We also derive management insights obtained from our computational
experiments.

Keywords: Pickup-and-Delivery Problem with Jobs Dependency, Win-
ner Determination Problem, Logistics

1 Introduction

In this paper, we study the winner determination problem (WDP) for an on-
line auction platform for B2B less-than-truckload transport matching. In such
platforms, we have multiple shippers with job bundles and multiple transporters
with a heterogeneous fleet participating in an auction market, and the platform
operator (auctioneer) is to perform a match of jobs with vehicles that maximizes
profits at periodic (say hourly) intervals. Such platforms are rapidly emerging
in a sharing economy with the rise of Uber-like business models.

The problem we present in this paper arises from a real-world implementa-
tion for a large urban logistics platform operator. It is a variant of the standard
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pickup-and-delivery problem with time windows (PDPTW), with additional de-
pendencies among jobs and a number of side constraints between cargo, locations
and vehicle types, as well as profitability as the objective function. Each ship-
per’s delivery request may include a group of pickup-and-delivery jobs, and such
grouping is called a shipper bid, which must either be accepted or rejected to-
gether. There are three reasons for the grouping of delivery jobs as a shipper
bid: firstly, some jobs may be unprofitable and very difficult to find a matching
transporter (due to low profit margins). But if such low-profit jobs would com-
bine with high-profit jobs as a bundle, then the bid could be more ready to find
matching transporters; secondly, some shipper companies may like to bundle
delivery jobs themselves based on their own consideration (e.g., reverse logis-
tics); thirdly, some shippers may prefer a one-stop solution rather than having
to manage separate delivery requests.

In addition, arising from grouped jobs, a shipper bid may be split in terms
of deliveries; that is, the different jobs in the shipper bid can be served by more
than one transporter bid (assuming one transporter bid includes one vehicle in
this paper). Our goal is to maximize the profit, which is calculated as total rev-
enues associated with served bids minus the total transportation costs incurred
correspondingly.

2 Literature Review

Transportation auctions are considered in the context where shippers compete
with each other in order to purchase transport services at the lowest possible
price from transporters aiming to sell their service at the highest possible price
(see [5]). [1] first proposed a transportation auction to reduce logistics costs.
Subsequently, a good number of transportation auction papers were published,
which mainly considered full truckload (FTL, i.e. one bid uses all available space
in a vehicle auction), e.g., [13]. However, not all pickup/delivery jobs could be
formed as FTL bids, and under such case, FTL auction cannot fulfill both ship-
per and transporter requirements. During the last decade, practitioners started
to test the more challenging settings of less-than-truckload (LTL) auction plat-
forms. [7] for example proposed an LTL transportation auction, where auction-
eers generate bundles of shipper requests and offers them to the transporters,
and transporters place their bids for the offered bundles.

The research topics for transportation auctions mainly focus on two aspects:
the bundle generation problem and WDP. For example, [9] formulated the bundle
generation problem as a PDPTW in an iterative bid generation auction problem.
On winner determination, the interesting aspect is in coping with uncertainty.
[8] presented a double auction model for transportation service procurement in
a spot market with stochastic demand and supply. [12] proposed a tractable
two-stage robust optimization approach to solve the WDP under shipment vol-
ume uncertainty. In addition to the standard desirable properties for auctions,
transport logistics auction designers must deal with the specific challenge on
the economic sustainability of the auction platform. [15] for instance discussed
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a bi-criteria auction mechanism to achieve environmental sustainability while
ensuring economic sustainability.

The above-mentioned papers focus on improving the service quality of the
auction, whether from the strategic viewpoint (e.g., [5]) or operational view-
point (e.g., [9]). From the computational perspective, [6] addressed the concerns
of transporters bidding on an exponentially large set of bundles, and solving
the corresponding exponentially large WDP. In this paper, we focus on a com-
putationally efficient solution for an online auction platform for LTL matching.
Unlike past research, we allow multiple vehicles to serve one bundle (consisting
of multiple jobs) and each vehicle may serve jobs from different bundles (i.e.
many-to-many matching). Moreover, to avoid too many rounds of bidding (e.g.,
[10]), we propose a simple single-shot auction where each shipper submits the
bundles, each transporter submits the truck availability and cost structure; and
the auctioneer will decide the winning shippers and transporters.

3 Mathematical model

The G-PDPTW integrates the pickup and delivery problem (PDP) and the
group bundle constraints, aims to select a subset of bundled shipper jobs (bids)
and design service itineraries, and maximize the profit obtained from shipper
revenue minus transporter cost, at same time respecting shipper and transporter
constraints. We formulate the problem as a mixed-integer programming (MIP)
model in this section. First, we present notations used throughout the paper as
shown in Table 1. Jobs within a bid are defined by a set of nodes.

G-PDPTW can be defined on a complete undirected graph G = (V,E) where
V = V p ∪ V d ∪ {0} ∪ {2n + 1}. Subsets V p and V d correspond to pickup and
delivery nodes, respectively, while nodes 0 and 2n + 1 represent the dummy de-
pots (distance to other nodes, service time, and weight/volume are all equal to
0). While in the real-life auction platform there is no tracking for each vehi-
cle’s/carrier’s origin, and each vehicle/carrier needs to start serving the shipper
jobs within the jobs time window. For ease of reference, we arrange all nodes in
V in such a way that all origins precede all destinations, and the destination of
each job can be obtained as its origin offset by a fixed constant n.

Let K be the set of transporter vehicles. Each vehicle k ∈ K has a weight
capacity Qk and volume capacity Hk. The hourly cost of vehicle k is pk. Let O
be the set of shipper bids. The revenue (i.e. bid price) for delivering a shipper bid
o is represented by ro, while zo is a binary decision variable indicating whether
shipper bid o is served or not. Each shipper bid includes one or more jobs, each
job is defined by two nodes (a pickup node and a delivery node). A time window
[ei, li] is associated with node i ∈ V , where ei and li represent the earliest and
latest arrival time, respectively. Each edge (i, j) ∈ E has a travel time tij . In
addition, let λi be the loading/unloading time, wi be the weight, and ci be
the volume of node i (for a given pickup and delivery pair, wi = −wi+n, and
ci = −ci+n).
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For each arc (i, j) ∈ A and each vehicle k ∈ K, xk
ij = 1 if vehicle k travels

from node i directly to node j. For each node i ∈ V and each vehicle k ∈ K,
let τk

i be the time for which vehicle k begins to serve node i, and W k
i /Ck

i be
the weight/volume load of vehicle k after visiting node i. The integer variable
yk indicates the hours traveled by vehicle k.

Table 1: Parameters and variables for the G-PDPTW model
n Number of jobs, one job includes two nodes (one origin and one destination)
K Set of vehicles, K = {1, 2, . . . , |K|}, and k ∈ K
V p Set of origins V p = {1, 2, . . . , n}
V d Set of destinations V d = {n + 1, n + 2, . . . , 2n}
V Set of nodes V = V p ∪ V d ∪ {0} ∪ {2n + 1}

{0} and {2n+1} represent the vehicle dummy origin and destination points, and i ∈ V
O Set of bids (each bid includes a group of jobs), O = {1, 2, . . . , |O|}, and o ∈ O
|Oo| Number of jobs inside bid o
ro Revenue obtained from serving bid o
wi Weight of node i
ci Volume of node i
[ei, li] Time window for node i
λi Service time at node i
tij Travel time between nodes i and j
Qk Weight capacity of vehicle k
Hk Volume capacity of vehicle k
[ιk, �k]Time window associated with dummy depot for vehicle k
pk Hourly cost of vehicle k

xk
ij Binary decision variables indicating if vehicle k goes directly from node i to node j,

it is equal to 0 if vehicle k does not travel from node i to node j direct
yk Integer variables indicating the number of hours traveled by vehicle k
zo Binary decision variables indicating if bid o is served; it is 0 if bid o is not served

τk
i Time point when vehicle k leaves node i

W k
i Weight load of vehicle k after visiting node i

Ck
i Volume load of vehicle k after visiting node i

Given these notations, the formulation of the G-PDPTW is as follows:

max
∑

o∈O

rozo −
∑

k∈K

pkyk (1)

Subject to:
∑

i∈Oo

∑

j∈V

∑

k∈K

xk
ij = |Oo|zo, ∀ o ∈ O (2)

∑

j∈V

∑

k∈K

xk
ij ≤ 1, ∀ i ∈ V P (3)

∑

i∈V

xk
0,i =

∑

i∈V

xk
i,2n+1 = 1, ∀ k ∈ K (4)

∑

i∈V

xk
i,0 =

∑

i∈V

xk
2n+1,i = 0, ∀ k ∈ K (5)

∑

j∈V

xk
ij =

∑

j∈V

xk
ji, ∀ i ∈ V p ∪ V d, k ∈ K (6)

∑

i∈V

xk
i,j+n =

∑

i∈V

xk
ij , ∀ j ∈ V P , k ∈ K (7)
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τk
j + tj,j+n + λj ≤ τk

j+n, ∀ j ∈ V P , k ∈ K (8)

(τk
i + tij + λi)xk

ij ≤ τk
j , ∀ i, j ∈ V, k ∈ K (9)

(W k
i + wj)xk

ij ≤ W k
j , ∀ i, j ∈ V, k ∈ K (10)

(Ck
i + cj)xk

ij ≤ Ck
j , ∀ i, j ∈ V, k ∈ K (11)

ei ≤ τk
i ≤ li, ∀ i ∈ V p ∪ V d, k ∈ K (12)

0 ≤ W k
i ≤ Qk, ∀ i ∈ V p ∪ V d, k ∈ K (13)

0 ≤ Ck
i ≤ Hk, ∀ i ∈ V p ∪ V d, k ∈ K (14)

τk
0 ≥ ιk, ∀ k ∈ K (15)

τk
2n+1 ≤ �k, ∀ k ∈ K (16)

(τk
2n+1 − τk

0 )/60 ≤ yk, ∀ k ∈ K (17)

xk
ij , τ

k
i , W k

i ∈ R+, ∀ i, j ∈ V, k ∈ K (18)
zo ∈ {0, 1}, ∀ o ∈ O (19)

yk,∈ Z+ ∀ k ∈ K (20)

The objective function (1) maximizes the total profit that corresponds to the
revenue obtained from bids minus the transporter costs. The cost is calculated
based on travel time (with hourly unit) and is calculated as the difference be-
tween the departure time and return time at the dummy depot. The objective
function is set for the auction platform operator, and the profit will be rebated
to the platform owner, shipper and transporter after delivery based on various
performance indicators.

Constraints (2) show that the nodes belong to the same bid o is considered to
be a bundle, i.e., they must be served or reject together. Constraints (3) indicate
that every node can be served at most once by one vehicle. Constraints (4)
and (5) are imposed to fix the origin and destination points (which are dummy
nodes, with distance to all nodes equal to 0) of vehicles. Note that an empty
route will be represented by a path with 2 stops, which starts at 0 and ends
at (2n+1). Every node except the origin and the destination of a vehicle must
have same number of preceding and one succeeding node, which is defined in
Constraints (6). Constraints (7) and (8) ensure that the job origin is visited
before the destination. Constraints (9), (10) and (11) compute the travel times
and loads of vehicles (both weight and volume dimension). The shipper node
time window constraints are defined in (12). Constraints (13) and (14) represent
the vehicle capacity constraint in both weight and volume dimension. The time
window associated with dummy depot for each vehicle is defined in Constraints
(15) and (16). Moreover, Constraints (17) define the vehicle travel time in hours
(translate from minutes based to hourly based). Finally, Constraints (19)-(20)
specify the domains of the variables.
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4 ALNS Approach

4.1 The ALNS Framework

Our heuristic is based on the ALNS described in [4,14] with simulated annealing
as the local search framework, and the pseudo-code is presented in Algorithm
1. In the algorithm, each iteration includes two subroutines: job selection and
perturbation. In particular, the request in the ALNS are treated independently
and not as a bundle in most of the job selection and perturbation operators.

Algorithm 1: Adaptive Large Neighborhood Search
Input: Initial solution s, solution sbest := s, initial probabilities

associated with the operators
1 while stopping criteria not reached do
2 s′ := s
3 Apply operator P1 for pre-process of neighborhood search
4 Apply selection operator (R1-R3) to select jobs for removal
5 Apply perturbation operator (I1-I5) to remove selected jobs from s′

and reinsert as many unserved jobs as we can into s′

6 if f(s′) > f(sbest) then
7 s := s′, sbest := s′

8 else
9 if f(s′) > f(s) then

10 s := s′

11 else
12 s := s′ with probability p(s′, s) defined in Equation (21)

13 end while
14 Remove the bids that are partly served in sbest

Output: sbest;

Let s be the current solution, s′ be the new solution, and f(s), f(s′) – the
corresponding objective values. If f(s′) is worse than f(s), we accept the solution
s with probability p(s′, s):

p(s′, s) = min{1, e(f(s′)−f(s))/T }, (21)

where T ≥ 0 is the “temperature” that starts at T0 and decreases every iteration
using the expression T := 0.9999 · T , T0 is defined in such a way that objective
value of the first iteration is accepted with a probability 0.5. The simulated
annealing structure is the same as in [4]. The search continues until the stopping
criteria is met (20000 iterations or no improvement for the last 2000 iterations).
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4.2 Solution Evaluation

Two solution evaluation approaches are used for the ALNS:
(1) ALNSF : only feasible solutions are allowed during the search;
(2) ALNSI : infeasible solutions are considered and a penalty of the violated
constraints is added to the objective.

Let c(s) be the routing profit, The solution is evaluated by c(s) plus the
penalty of timw window violation t̄(s) and load violation q̄(s):

f(s) = c(s) + αtt̄(s) + αq q̄(s) (22)

For the ALNSF , f(s) = c(s) holds, because all constraints must be satisfied and
t̄(s) and q̄(s) are equal to zero.

At the end of each iteration, the values of the parameters αt, and αq are
modified by a factor 1+δ, with 0 < δ ≤ 1. If the current solution is feasible with
respect to load constraints, the value of αq is divided by 1 + δ. Otherwise, it is
multiplied by 1 + δ.

To compute the profit of each route, we need to compute the revenue minus
the cost of the route. However, since a shipper bid may be assigned to multiple
vehicles, it is impossible to precisely calculate the revenue of a single route during
search. As a heuristic, we break the bundles and split the price of a bid to the
jobs according to their weights/volumes. For the route cost, which is a function of
the route duration in hours, we first set the vehicle k to depart from the depot
at ιk, and compute the total waiting time W along the route. If no violation
of time window can be found, we postpone the departure time by adding W .
After that, we check the feasibility of the route, once an upper time window
violation is found, the departure time is adjusted by deducting the upper time
window violation value. The algorithm iterates until no time window violations
can be found. Finally, we recalculate the route duration. For details we refer to
Algorithm 2.

Algorithm 2: Travel time duration calculation
Input: Route R := (0, 1, . . . , 2n + 1), departure time τ0 := ιk, whole route

waiting time W , index m ← 1, and postponed time
u0 ← W + 1, u1 ← W

1 while um < um−1 do
2 τ0 ← ιk + um

3 for each i ∈ R do
4 τi ← max (τi−1 + λi−1 + t(i−1,i), ei)
5 Until τi > min(li, �k), um+1 ← (um − τi + min(li, �k))
6 m ← m + 1

7 end while
Output: τ2n+1 − τ0;
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4.3 Initial Solution

An initial solution is constructed by a basic greedy insertion heuristic. The
heuristic randomly chooses a job, and inserts it to the best position in the routes
(with the highest profit added). Afterwards, the ALNS heuristic is implemented
to improve the initial solution. Simulated annealing is applied during the ALNS
update process.

4.4 Adaptive weight adjustment procedure

The choice of the selection and perturbation heuristics is governed by a roulette
wheel mechanism. We have three selection operators and six perturbation opera-
tors. On the one hand, we diversify the search by combining different operators.
On the other hand, a good balance between the quality of the solution and the
running time can be reached by choosing a suitable operator at every iteration.

We define P t
d as the probabilities of choosing operator d at iteration t. Starting

from a predefined value, they are updated as P t+1
d := P t

d(1−ρ)+ρχi/ζi, where ρ
is the roulette wheel parameter, χi is the score of operator i, and ζi is the number
of times it was used during the last 200 iterations. The score of an operator is
updated as follows. If the current iteration finds a new best solution, the scores
related to the used operators are increased by π1; if it finds a solution better than
the previous one, their scores are increased by π2; if it finds a non-improving yet
accepted solution, their scores are increased by π3. Every 200 iterations, new
weights are calculated using the scores obtained, and all scores are reset to zero.

4.5 Pre-process for neighborhood search (P1)

Once a new best solution been found and without partly served bid, we optimize
the route (sbest and f(sbest)) by sequentially removing job from the route and
reinserted in the best position so as to maximize the profit.

For some instances, there always exist some bids may never be fully served
during all the iterations, remain them in the selection sets seldom lead to better
served solution. Therefore, from the 100 iterations of the ALNS, there is a 50%
of chance for low win probability bids involved for the next iteration search, the
low win probability criteria is set as below: shipper bid that has been served less
than 45 times in the last 100 iterations, and transporter bid (vehicle) that serve
less than 2 jobs on average in the last 100 iterations.

4.6 Jobs Selection

At each iteration, jobs are selected and added to a perturbation set C (set C
initially includes the unserved jobs). Three selection operators are used, details
shown as follows:

– Random job based (R1): This operator randomly selects a number of
jobs.
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– Random bid based (R2): This operator random selects a number of bids.
– Partly served bid based (R3): Let U be the set of all partly served bid

jobs (only part of jobs in a bid been served by vehicles), then, this operator
randomly selects 50% − 70% jobs from set U .

4.7 Jobs Perturbation

After the procedure of jobs selection, five perturbation heuristics have been im-
plemented.

– 1-by-1 (I1): The selected jobs are sequentially removed one by one and
reinserted into the best position (the highest improvement for the current
objective value).

– Global all-at-once (I2): The operator repeatedly inserts jobs in the best
position of all the routes. The difference with I1 is that all jobs are removed
at once, then inserted again one by one.

– Balanced all-at-once (I3): All jobs are removed out from the route at
once. Then, for every job, we choose a route with the lowest profit value to
insert. It tends to generate a relatively balanced solution.

– Tabu 1-by-1 (I4): This operator implements a diversification strategy sim-
ilar to the tabu search. Suppose that job i is removed from some route k,
the job is then prohibited to be reinserted into route k. The ban can only be
canceled if insertion into route k leads to a better routing profit compared to
the best-known routing profit of route k with i inside. For the job that has
never been served before, skip the removal step and only do the insertion.

– Local all-at-once (I5): Suppose, job i is removed from some route k, it
tries to insert the job i into the same route k again but in a better position.

5 Computational Experiments

In this section, we first test our algorithm on benchmark instances, and then
analyse the result for instances of moderate size. Our ALNS approach is imple-
mented in Java, and executed on an Intel Xeon E5-2667v4 8C/16T (3.2GHz) 16
core CPU 32 GB RAM machine. The parameters used in the ALNS are shown
in Table 2, chosen by the tuning strategy proposed by [4]. Each time only one
single parameter is adjusted, while the rest are fixed. The setting with the best
average behavior (in terms of average deviation from the best-known solutions)
is chosen. This process iterates through all parameters once.

5.1 Performance Comparison on PDPTW Benchmark instances

To evaluate the effectiveness of the proposed ALNS approach, we first apply it to
solve the PDPTW benchmark instances.1 For detailed descriptions, we refer the
reader to [3]. Due to the difference between G-PDPTW and PDPTW, essential
1 See https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark.
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changes must made to the ALNS and instances: 1) we assume every job stands
for a bid in the benchmark instances; 2) we change the objective to minimize
the travel distances and the number of used vehicles; 3) ALNSI is used, penalty
is added to the objective value to ensure all the jobs must be served. The overall
performance of the ALNS shows as Table 3, the results show 0.55-7.85% gap
(best results of 16 runs) to the best benchmark results. Main reason is that the
ALNS is tailored for G-PDPTW, and slight changes of the model may lead to
quite different solution, e.g., if we only minimize the travel distance (without
minimizing the number of vehicles as benchmark instance settings), we observe
149 improved solutions.

Table 2: Parameters used in the ALNS

Description values

Number of selection jobs 5%-25%
Roulette wheel parameter, ρ 0.50

Score of a global better solution, π1 6.00
Score of a better solution, π2 1.00

Score of a worse solution but accept, π3 2.00
P 0

dR
used for selection operators 0.33

P 0
dI

used for perturbation operators 0.17

Table 3: Results comparison against the benchmark instances in [3]

# Nodes Gaps Running times (minutes)
100 0.55% 1
200 0.82% 3
400 3.09% 17
600 5.86% 42
800 6.87% 79

1000 7.85% 106

5.2 Relationship between bid features and win probability

Moving from computational performance, we next present our insights that
give shippers and transporters some indication of the factors that may affect
their probability of winning a bid. For this purpose, we run three groups of
auctions. Each group includes 1000 instances. In the first group, one vehicle
can serve 22 nodes on average. While in the second group, each vehicle may
visit 11 nodes on average, and the ratio reduces to 7 for the third group. Bids
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with different prices, time windows, sizes, weights, and volumes are generated;
for more details, we refer the reader to Table 4. All the test instances can be
found at https://unicen.smu.edu.sg/pickup-and-delivery-problem-time-window-
g-pdptw. Moreover, for the sake of notational consistency, we use “SBid”/“TBid”
to represent shipper bid and transport “bid” (which is simply the capacity, avail-
ability and cost associated with a vehicle) respectively.
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Fig. 1: Histogram for weight (kg) and volume (m3)

Table 4: Design of experimental instances
Number of instances 3000, 3 groups, each group includes 1000 instances, in the

first group instances, the ratio between number of nodes and
vehicles equals to 22, while the ratio equals to 11 and 7 for
the second and third group instances, respectively

Shipper jobs time windows Randomly choose from 1, 2, 3 and 9 hours
SBid size (number of jobs Randomly choose from (1-6)

inside a SBid)
Base price per SBid, ζ Randomly chosen from $15, $30, $45, $60
SBid weight&volume Weight value randomly choose from (0-1000) kg, then, find the

corresponding volume, histogram graphs show as Figure 1a and 1b
Shipper job service time 15 minutes
Number of vehicles Randomly choose a number from (2-21)
Vehicles capacity 2500 kg, 7 m3

Vehicles available time period 9:00-18:00
Vehicles unit cost Randomly choose from $10, $20, $30, $40 per hour

Additionally, we calculate the bid price using equation (23), which is mainly
based on the number of jobs, and adjusted according to the weight/volume of
the cargo. Let ζ and α be the per job price and number of jobs within a shipper
bid, respectively. β, χ, and δ denote the number of small size (with cargo lighter
than 10 kg), medium size (with cargo lighter than 100 kg but heavier than 10
kg), and large size (with cargo heavier than 100 kg) jobs inside a bid. In addition,
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the total weights of medium and large size cargo are represented as φ and ϕ.

price = ζα − 1.71β − 4χ + 4.7δ + 0.09φ + 0.007ϕ (23)

Considering that running 3000 instances is time-consuming, we only apply
the ALNS once with 5000 iterations for each instance, and ALNSF is applied. We
analyze the effect of the shipper bid size (the number of jobs inside a bid), ship-
per bid unit price, shipper job time window, and transporter bid unit (hourly)
cost on the win probability. By checking the win bids features, we calculate the
relationship of the bid win probability and corresponding feature X by applying
Bayes theorem:

P (win|X) = P (X|win)P (win)/P (X) (24)

where P (win|X) is the probability of a winning bid characterized by feature
X, P (win) is the prior probability of observing a win, and P (X) represents the
prior probability of observing X as a winning outcome. For a specific bid, we
calculate its win probability based on a naive Bayes network, as shown in Figure
2.

Win Probability

Sbid Time 
Window

Sbid 
Weight&Volume

Sbid Size

Sbid Per Job 
Price

Ratio of Sbid 
and Tbid

Tbid 
Avalibility 

Tbid Cost 

Sbid Spatial 
Distribution

Fig. 2: Naive Bayes network

One can observe from Figure 3 that the SBid median win probability ranges
from 25% to 87%, depends on the total number of SBid involved in an auction,
the lower the ratio, the higher the win probability. On the contrary, the TBid
median win probability varies from 56% to 100%, the higher the ratio, the higher
the win probability.

In Figure 4a, we check the SBid win probability versus bid size, it addresses
that the SBid include 1 or 2 jobs tend to win regardless other factors (e.g., price,
time window, cost). However, if the ratio between SBid and TBid is high, the
win probability is always low due to high demand and low supply. Assuming
that the number of shipper bids is fixed, an unassigned SBid may win with an
increasing the number of transporter bids.

Figure 4b shows the SBid win probability against the per job price of SBid
(named “SBid Unit Price”), it indicates that the SBid win probability is not
sensitive to per job price. Take “Nodes/Vehicles = 11” as an example, even if
the price increases from 15 to 60, the SBid win probability only increases from
50% to 59%. The reason is that the SBid win probability is a determining by
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multiple factors, and the price is not a main factor. However, in real-life context,
high bid price may attract more TBid to involve in the platform, subsequently,
the SBid win probability will improve.

Figure 4c depicts the shipper job win probability against the time win-
dow. Suppose that the shipper submit a job with one hour time window for
“Nodes/Vehicles = 7” group, the result is not so promising. However, if the
time window width increases to 9 hours, the shipper bid win probability in-
creases from 30% to around 40%. Moreover, the win probability of groups that
“Nodes/Vehicles = 11” and “Nodes/Vehicles = 22” seems not affected by the
time window. The reason is that different shipper jobs with different time win-
dows are randomly bundled together, so the win probability not only depends on
single job time window, but also relies on the groups time window. For instance,
if the time window of all jobs in a given bid are 3 hours, then, the results are
totally different from the situation that the half jobs time window equal to 1
hour and another half jobs time window equal to 5 hours.

(a) SBid win probability (b) TBid win probability

Fig. 3: Overall win probability

From Figure 4d, one can see the vehicles win probability seems not affected by
unit cost under the case of “Nodes/Vehicles = 22”. However, with the increasing
of the vehicles number, the cheap vehicles (with low unit cost) have higher win
probability compare to expensive vehicles (with high per unit cost). At the same
time, even if the vehicles number is much lower than the shipper jobs number,
the vehicle win probability does not reach to 100%, an explanation is that some
vehicles cost is too high comparing to the shipper bid price, it is better to fail
those bids as unprofitable to serve them.

As the objective function is based on profit, we cannot use the win probability
as criteria to evaluate the performance the algorithm. However, the win prob-
ability can be used to provide suggestions for both shippers and transporters,
which is one means to improve the auction platform financial sustainability. For
instance, a shipper bid with one job (time window equals 2 hours, unit price
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equals to 15) win probability is approximately 50% (obtained from naive Bayes
network). In contrast, by increasing the tight time window to 9 hours, and in-
crease the price to $45 per job, the win probability can reach almost 100%.

In summary, the win probability depends on multiple factors drawn from both
demands and supplies. Generally, most factors are independent of one another.
Where some factor may depend on others, advanced machine learning techniques
should be applied to predict the win probability.

6 Conclusion

In this paper, we investigate the winner determination problem with bundled
jobs, which is an variant of the PDPTW. From the academic perspective, this
work raises many new challenges. From a data analytics point of view, we find
that the win probability may not be high when shippers/transporters randomly
submit bids. Therefore, mechanisms should be properly designed to improve the
win probability, such as moving from single-shot to multi-round iterative auc-
tions, allowing the failed bid owner increase/decrease their bid price or relax some
constraints. Besides that, we see the following broad areas for future research: 1)
extending the current model by addressing heterogeneous vehicle routing with
a mixture of cost structures (e.g., some traditional logistic companies prefer
cost structure based on weight, volume, number of visited locations, or travel
distance); 2) extending the current model to multi-objective, for example, the
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platform may need to achieve high match rate in addition to maximizing profit;
3) evaluating the impact of relaxing some constraints; for example, imposing a
penalty cost for violating some rules instead of rejecting an order completely
may benefit all stakeholders (shipper, transporter, and sharing platform owner);
4) profit sharing with the stakeholders in the form of rebates post-auction, which
may incentivise more users to participate in the platform. In this regard, a fair
and stable profit sharing mechanism was proposed in [11] that encourages coali-
tion formation among multiple logistics providers for vehicle routing.
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Abstract. This paper addresses a novel capacitated vehicle routing
problem with time-dependent demands (CVRP-TDD) arising in a relief
distribution situation in a region struck by the disaster. The locations
closest to the epicenter are the ones hit hardest and the natural reac-
tion of survivors is to flee from these points, called critical nodes. Lacks
or delays in relief distribution amplify this behavior. To reduce this phe-
nomenon, we aim to maximize the demand satisfied at the critical nodes.
We present an optimal splitting procedure and a metaheuristic frame-
work that can execute four different methods, by changing only three
parameters. The results shows the good performance of two methods
and highlight the efficiency of the splitting procedure.

1 Introduction

Natural and man-made disasters have enormous consequences on the popula-
tion. In 2015, 376 disasters occurred leaving about 20 thousand dead, 110 mil-
lion victims worldwide and US$ 70 billion of economic damages [9]. Disaster
Management (DM) appears from the efforts of individuals and societies trying
to decrease these consequences, developing measures to address initial impact as
well as post-disaster response and recovery needs [5].

DM is composed by four phases. Mitigation phase refers to plans or mech-
anisms such as training to reduce people vulnerability, where the government
and associations play an important role. Preparation phase refers to operations
or strategies that must be planned before a disaster occurs. Response phase
begins immediately after a disaster strikes, all the operations planned in pre-
vious phases must be carried on in order to reduce the casualties. Finally, the
Reconstruction phase refers to the rehabilitation process of infrastructure and
the impact generated to the population. The last three phases constitute the
humanitarian logistics (HL) stream [6].

Thomas and Kopczak [24] defines HL as a process of planning, implementing
and controlling efficiently the flow and storage of goods, materials and infor-
mation from the point of origin to the point of consumption for the purpose
of alleviating the suffering of vulnerable people. The above shows that HL is
interested in social more than economical benefits.
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This work is focused on Response phase. The CVRP-TDD considers a set of
shelters that must be visited after a disaster strikes an area. The affected people
go directly to shelters and wait for first aid. If they do not receive them as quickly
as expected, they flee away from the shelters seeking necessary resources. This
increases the chaos already generated by the catastrophe and makes more diffi-
cult to the humanitarian organizations to assist all the victims. So, the objective
is to arrive as quickly as possible at shelters to maximize the satisfied demand.

To our best knowledge CVRP-TDD is not studied before except in [26] where,
a column generation based heuristic method is used to solve small - medium size
instances.

The paper is organized as follows: in the next section we present a literature
review, in section 3 we give a formal definition of CVRP-TDD and the solu-
tion framework which includes the local search and the split procedure that are
tailored for our problem. Computational experiments are presented in section 4
and, followed by some conclusions in section 5.

2 Literature review

Literature is classified taking into account the phases that constitute the HL
stream. Gutjahr and Dzubur [10], and Pillac et al. [17] are interested in the
preparation phase. The first determine the best location of relief distribution
centers (DCs) and the last work in evacuation plans. Gutjahr and Dzubur [10]
propose a bi-level optimization and an exact algorithm to minimize the opening
cost of DCs and the uncovered demand. Pillac et al. [17] considers the number
of evacuees solving a sub-problem that generates evacuation paths and a master
problem that optimizes the flow of evacuees maximizing the number of evacuees.

The response phase has attracted more researchers than other phases. Lu et
al. [13] minimize the total time to deliver relief goods to satisfy the demand.
They present a rolling horizon-based framework for real-time relief distribution
in the aftermath of the disasters. Moshref-Javadi and Lee [15] solve a multi-
commodity VRP with split deliveries to minimize the total waiting time at the
affected nodes. They propose two mixed-integer linear programs (MILPs) and a
hybridization of a variable neighborhood search (VNS) and a simulated annealing
(SA) to solve the problem. Ngueveu et al. [16] solve the cumulative capacitated
vehicle routing problem (CCVRP) using a memetic algorithm. The CCVRP
seeks to minimize the average arrival time to nodes. Lysgaard and Wøhlk [14] also
solve the CCVRP, but they implement a branch-and-cut-and-price algorithm.
Rivera et al. [22] solve a multi-trip cumulative VRP. This problem is quite similar
to the CCVRP, but instead of a homogenous fleet, a single vehicle performs
more than one trip to serve all nodes. They propose two MILPs and dynamic
programming is used to solve the large instances.

The CCVRP is similar to our problem because both implicitly seek to min-
imize the arrival times at each node, but the trade-off between the arrival time
and the flee rate is only taken into account in the CVRP-TDD. The fairness be-

144 J. Victoria et al.



tween the nodes is reinforced by requiring all nodes to be visited so that nobody
sacrificed to improve the overall performance.

The most common objectives functions in the response phase are the max-
imization of the satisfied demand, the minimization of the total waiting time
and the minimization of the average arrival time. None of the reviewed arti-
cles consider a time-dependent demand due to population displacement after a
disaster.

In the reconstruction phase, Maya et al. [7] address the scheduling and rout-
ing of a repair crew, while the accessibility to the towns are optimized. They
develop a dynamic programming algorithm and an iterated greedy-randomized
constructive procedure to solve the problem. The objective is the minimization
of the weighted sum of the moments at which each demand node becomes acces-
sible. Akbari et al. [1] propose an exact MILP and a matheuristic to minimize
the maximum time of the walks for the synchronized work schedule for the road
clearing teams. A walk is composed by the edge-traversing time, road clearance
time and waiting time.

3 Problem definition and solution framework

The CVRP-TDD can be formally defined on a complete undirected graph G =
(N, E), where N = {0, ...n} is the node set and E is the edge set. Node 0
correspond to the depot while N ′ = N \{0} is the set of critical nodes (shelters).
Each node i ∈ N ′ has a demand ai at time zero and a demand variation bi. This
variation corresponds to the number of people per time unit who flee from this
node before the arrival of the humanitarian aids. Each arc (i, j) has a travel time
cij .

The objective is to identify a set of feasible routes so that every node is visited
exactly once and the number of people attended is maximized. A feasible route
begins and ends at node 0. A homogeneous fleet of k vehicles is available and the
total tour length of each vehicle should be less than Tmax. The satisfied demand
at node i has a decreasing behavior equal to satisfiedDemandi = ai−biti where
ti is the arrival time at node i. The total demand serviced by a route should not
exceed the vehicle capacity Q.

The mathematical model can be found in Victoria et al. [26]; they prove
the importance to develop a method capable to solve larger instances. Thus,
we propose a general framework that explores the solution space using a local
improvement procedure and different strategies of exploration that can be exe-
cuted changing a set of three parameters. Among the strategies of exploration,
we develop an optimal splitting procedure that allows to alternate between the
VRP solution space and the traveling salesman problem (TSP) solution space.

The different combinations of three parameters give as results some of the
well-known metaheuristics on the literature: Greedy Randomized Adaptive Search
Procedure (GRASP), Iterated Local Search (ILS) [12], Evolutionary Local Search
(ELS) [28] and their multi-start versions. The general framework can be seen in
Algorithm 1.
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Algorithm 1 Metaheuristic Framework
1: Z(S∗) ← 0 (S∗ is the global best solution)
2: Z(bestChild) ← 0 (bestChild is the local best solution)
3: for i = 1 to nbOfRestarts do
4: S ← initialSol()
5: localSearch(S)
6: for j = 1 to nbOfIter do
7: for k = 1 to nbOfChildren do
8: child ← perturbate(S)
9: localSearch(child)

10: if (Z(child) > Z(bestChild) and isFeasible(child)) then
11: bestChild ← child
12: end if
13: end for
14: if Z(bestChild) > Z(S) then
15: S ← bestChild
16: end if
17: if (Z(S) > Z(S∗) and isFeasible(S)) then
18: S∗ ← S
19: end if
20: end for
21: end for
22: return S∗

The ILS starts with an initial solution S obtained by a randomized con-
structive heuristic explained in subsection 2.1. At each iteration, a local search
to improve the solution and a perturbation procedure to escape the local op-
tima are applied successively. The perturbation procedure generates a different
solution from S. It is known as a child of S.

The number of iterations is denoted by the parameter nbOfIter. In one iter-
ation of ELS algorithm, nbOfChildren solutions are generated by the perturba-
tion and each solution is improved by local search. If nbOfChildren=1, then the
ELS becomes an ILS procedure. Each method can be restarted nbOfRestarts
times. If nbOfRestarts > 0 and nbOfIter = 1, the algorithm is equivalent to a
GRASP.

The GRASP, ILS, ELS or their multi start versions can be selected by as-
signing the parameters nbOfRestarts, nbOfIter and nbOfChildren.

Additionally, when S∗ is updated during the execution of the algorithm, each
route that belongs to it is transformed into a zero-one column of size |N ′|. Each
position takes the value 1 if node is visited in the route and 0 otherwise. These
columns are added to a columns pool and a set partitioning problem is solved
at the end of the framework. It tries to improve the solution (S∗) already found.

3.1 Constructive Heuristic

A parallel randomized best insertion procedure initialSol() is used to find one
initial solution of the problem. Iteratively, the procedure randomly chooses one
of the unassigned nodes. All positions to insert are evaluated and the three best
ones are saved. Then, one of three best positions is randomly selected and the
node is assigned to this position. The next unassigned node is randomly chosen
and the process continues until all nodes are inserted. If no feasible solution
can be obtained, the procedure is aborted and restarted. At the end of a given
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number of restarts, if a feasible solution is not yet reached, then an infeasible
solution with a penalty is accepted (penalty × δ(S)) where δ(S) is the difference
between the tour length and Tmax. In addition, it is possible that when a posi-
tion is evaluated, the demand of the selected node and/or some of the following
nodes already in the route becomes zero due to delayed visits. The humanitarian
context of the problem does not allow leaving a node unattended, because the
solution must ensure fairness in the distribution of first aid. Then, the nodes
with zero demand are allowed in the initial solution, but a solution with positive
demands is sought at the end.

3.2 Pre-Computations

The time-dependence between the arrival time at nodes and demand variations
complicates the calculations when a sequence of nodes is inserted, removed or
inverted by the local search. Silva et al. [23] show for the CCVRP that any
move can be expressed by concatenations of node sequences. By pre-computing
and updating some relevant information, we can evaluate concatenation and
reversing operators in constant time. Therefore, any move using a fixed number
of concatenation and reversing operators can be evaluated in constant time as
well. For any sequence of nodes σx, indexed from 0 to v, define:

– σxi the node in position i.
– T (σx) =

∑v−1
i=0 cσxi

,σxi+1
the duration of the sequence σx.

– β(σx) is the total demand change per time unit (delay) in sequence σx. It
can be calculated as β(σx) =

∑v
i=1 bσxi

, where bσxi
is the demand change

per time unit for node at position i. If a node at position i has a demand to
satisfy equal to zero due to its position in σx, then bσxi

= 0.
– D(σx) is the total demand to satisfy in sequence σx. It is calculated as

D(σx) = aσx0
+

∑v
i=1 dσxi

, where aσx0
is the initial demand of node at

position 0 and dσxi
is the satisfied demand of each other node at position i

in sequence σx, assuming that the sequence begins at σx0 at time 0.
– Y (σx) is the maximum time slack that sequence σx can be shifted while guar-

anteeing positive demand for each node. Y (σx) = min(yσxi
) ∀i = 0, . . . , v,

where yσxi
is calculated as yσxi

= max((aσxi
/bσxi

) − tσxi
, 0). tσxi

is the ar-
rival time at node σxi , assuming a departure at time 0 from σx0 . This time
slack is checked and it helps to define the feasibility of the moves.

Consider any two sequences of nodes σ1 = (σ10 , ..., σ1v
) and σ2 = (σ20 , ..., σ2w

)
in a solution and their concatenation σ1 ⊕ σ2 = (σ10 , ..., σ1v

, σ20 , ..., σ2w
). The

information for the new sequence can be derived in O(1) as follows:

T (σ1 ⊕ σ2) = T (σ1) + cσ1v ,σ20
+ T (σ2) (1)

β(σ1 ⊕ σ2) = β(σ1) + β(σ2) (2)

D(σ1 ⊕ σ2) = D(σ1) + D(σ2) + β(σ2)(T (σ1) + cσ1v
,σ20

) (3)

Y (σ1 ⊕ σ2) = min(Y (σ1), (max((Y (σ2) − cσ1v
,σ20

), 0))) (4)
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Equation (1) was proposed by Rivera et al. for the multitrip CCVRP [21]. Equa-
tion (2) is the demand variation for σ⊕σ′, equal to the sum of demand variations
for σ and σ′. Equation (3) is the total demand of σ ⊕ σ′, equal to the sum of
the demands of σ and σ′ and the demand variation induced by the shift of the
starting time in sequence σ′. Equation (4) is the maximum time that σ ⊕ σ′ can
be shifted ensuring that all nodes will have positive demand. As the problem is
highly asymmetrical, these values must be also pre-computed for the reversal of
each sequence, ←−σ .

3.3 Local Search

After a solution is found, some moves are used to find a local optimum in the
solution space. Time dependent behavior of the demand require a careful mech-
anism to evaluate the objective function as well as to verify of the capacity
constraint violations in constant time, during the local search. This mechanism
is only possible with the help of some preliminary information, obtained as ex-
plained in the previous sub-section. Therefore it is possible to execute the moves
: node relocation, swap 1-1, swap 2-2 and 2-opt. All these moves are applied to
a single route (intra-routes) and a pair of routes (inter-routes) looking for the
best improvement. The infeasible solutions are penalized as in the constructive
heuristic.

Node relocation neighborhood: it takes each node of a route and eval-
uates all possible positions to relocate it. Fig. 1 illustrates the intra-route case
using the pre-computations mentioned above. A node sequence (σ2) is relocated
between two others sequences (σ3 and σ4) at the same route. The concatenations
(σ1 ⊕ σ3 ⊕ σ2 ⊕ σ4) must be evaluated. The evaluation of the satisfied demand
is shown in Equation (5).

D(σ1 ⊕ σ3 ⊕ σ2 ⊕ σ4) = D[D(σ1 ⊕ σ3) ⊕ D(σ2 ⊕ σ4)]
D(σ1 ⊕ σ3) = D(σ1) + D(σ3) + β(σ3)(T (σ1) + cσ12 ,σ30

)

D(σ2 ⊕ σ4)) = D(σ2) + D(σ4) + β(σ4)(T (σ2) + cσ20 ,σ40
)

D[D(σ1 ⊕ σ3) ⊕ D(σ2 ⊕ σ4)] = D(σ1 ⊕ σ3) + D(σ2 ⊕ σ4)+
β(σ2 ⊕ σ4)(T (σ1 ⊕ σ3) + cσ(σ1⊕σ3)2

,σ(σ2⊕σ4)0
)

(5)

Swap 1-1 neighborhood: two distinct nodes are exchanged. An example
of the inter-route move is represented in Fig. 2 where nodes σ2 and σ5 are ex-
changed. The node σ2 is placed between the node sequences σ4 and σ6. The
node σ5 is positioned at the position released by node σ2. The tour length of
each route is calculated as the sum of T (σi) for all σi that belongs to the con-
catenation. Equation (6) evaluates the satisfied demand of the example in Fig.
2.

Route i
D(σ1 ⊕ σ5 ⊕ σ3) = D[D(σ1 ⊕ σ5) ⊕ σ3]
D(σ1 ⊕ σ5) = D(σ1) + D(σ5) + β(σ5)(T (σ1) + cσ12 ,σ50

)

D[D(σ1 ⊕ σ5) ⊕ σ3] = D(σ1 ⊕ σ5) + D(σ3)+
β(σ3)(T (σ1 ⊕ σ5) + cσ(σ1⊕σ5)3

,σσ30
)

Route j
D(σ4 ⊕ σ2 ⊕ σ6) = D[D(σ4 ⊕ σ2) ⊕ σ6]
D(σ4 ⊕ σ2) = D(σ4) + D(σ2) + β(σ2)(T (σ4) + cσ42 ,σ20

)

D[D(σ4 ⊕ σ2) ⊕ σ6] = D(σ4 ⊕ σ2) + D(σ6)+
β(σ6)(T (σ4 ⊕ σ2) + cσ(σ4⊕σ2)3

,σσ60
)

(6)
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Depot Node Original arc Inserted arc

Fig. 1. Intra-route node relocation

Depot Node Original arc Inserted arc

Fig. 2. Inter-route swap 1-1

Depot Node Original arc Inserted arc

Fig. 3. Inter-route swap 2-2

Depot Node Original arc Inserted arc

Fig. 4. Intra-route 2-Opt

Swap 2-2 neighborhood: it is quite similar to the previous one. Two dis-
tinct pairs of consecutive nodes are exchanged. An example of the inter-route
move is presented in Fig. 3 and how the satisfied demand is evaluated is shown
in Equation (7). The Fig. 3 shows as the pair-nodes sequence σ2 is positioned
between the nodes sequence σ4 and σ6 and the pair-nodes sequence σ5 between
the σ1 and σ3.

Route i
D(σ1 ⊕ σ5 ⊕ σ3) = D[D(σ1 ⊕ σ5) ⊕ σ3]
D(σ1 ⊕ σ5) = D(σ1) + D(σ5) + β(σ5)(T (σ1) + cσ12 ,σ50

)

D[D(σ1 ⊕ σ5) ⊕ σ3] = D(σ1 ⊕ σ5) + D(σ3)+
β(σ3)(T (σ1 ⊕ σ5) + cσ(σ1⊕σ5)4

,σσ30
)

Route j
D(σ4 ⊕ σ2 ⊕ σ6) = D[D(σ4 ⊕ σ2) ⊕ σ6]
D(σ4 ⊕ σ2) = D(σ4) + D(σ2) + β(σ2)(T (σ4) + cσ41 ,σ20

)

D[D(σ4 ⊕ σ2) ⊕ σ6] = D(σ4 ⊕ σ2) + D(σ6)+
β(σ6)(T (σ4 ⊕ σ2) + cσ(σ4⊕σ2)3

,σσ60
)

(7)

2-Opt neighborhood: two distinct and non-consecutive arcs are deleted
and the route or routes are reconnected. Fig. 4 shows the intra-route move where
the arcs between σ1 and σ2 as well as the arcs between σ2 and σ3 are deleted.
The node sequence σ2 is reversed (←−σ2) and reconnected with σ1 and σ3. The
satisfied demand for this example is evaluated using Equation (8).

D(σ1 ⊕ ←−σ2 ⊕ σ3) = D[D(σ1 ⊕ ←−σ2) ⊕ σ3]
D(σ1 ⊕ ←−σ2) = D(σ1) + D(←−σ2) + β(←−σ2)(T (σ1) + cσ11 ,←−σ 20

)

D[D(σ1 ⊕ ←−σ2) ⊕ σ3] = D(σ1 ⊕ ←−σ2) + D(σ3)+
β(σ3)(T (σ1 ⊕ ←−σ2) + cσ(σ1⊕←−σ2)5

,σ30
)

(8)

Additionally, two inter-route moves are used: the inter-route 2-Opt (Fig. 5) and
the inter-route 2-Opt* (Fig. 6). In Fig. 5, the concatenation of the node sequence
σ1 with the node sequence σ4 and node sequence σ3 with the node sequence σ2.
Equation (9) shows how to evaluate the satisfied demand for this move.
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Route i
D(σ1 ⊕ σ4) = D(σ1) + D(σ4) + β(σ4)(T (σ1) + cσ12 ,σ40

)

Route j
D(σ3 ⊕ σ2) = D(σ3) + D(σ2) + β(σ2)(T (σ3) + cσ31 ,σ20

)

(9)

Fig. 6 corresponds to the concatenation of σ1 with the reversed node sequence ←−σ4

and the concatenation of the reversed node sequence ←−σ5 with the node sequence
σ2. Equation (10) evaluates this move that is represented in Fig. 6.

Route i :
D(σ1 ⊕ ←−σ4) = D(σ1) + D(←−σ4) + β(←−σ4)(T (σ1) + cσ13 ,←−σ 40

)

Route j :
D(σ3 ⊕ ←−σ5 ⊕ σ2)

(10)

Depot Node Original arc Inserted arc

Fig. 5. Inter-route 2-Opt

Depot Node Original arc Inserted arc

Fig. 6. Inter-route 2-Opt*

3.4 Split Procedure

This procedure is based on the second phase of the route-first cluster-second
principle of the VRP introduced by Beasley [2]. In the first phase, a giant tour
covering all nodes is built, by eliminating the time limit and capacity constraint.
The second phase is to divide the giant tour considering all constraints to find
a solution for the original problem. The split procedure divides the giant tour
finding the optimal solution for the given sequence.

Prins [18] introduced a memetic algorithm (MA) which incorporates the split
procedure to solve the distance-constrained CVRP where the number of vehicles
is a decision variable and the objective is to minimize the total cost of the
trips. He shows the flexibility of this procedure mentioning three extensions to
other objective functions as the minimization of the total cost and the number of
vehicles, the minimization of the operating cost plus the fleet cost considering an
unlimited and limited fleet size. The last two extensions refer to the vehicle fleet
mix problem (VFMP) and the heterogeneous fleet VRP (HFVRP), respectively.
The extension to these problems is treated by Prins [19].

Recently, other authors continue to use this procedure in their methods.
Among them are Cattaruzza et al. [3] and Lacomme et al. [11]. The Multitrip
VRP (MTVRP) is solved by Cattaruzza et al. [3] and the multi-objective VRP
with route balancing is presented by Lacomme et al.[11] where the total routing
cost and the difference between the largest and smallest route cost are minimized
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simultaneously. Vidal [27] presents a technical note where the complexity of
the procedure for the CVRP is reduced from O(nB) to O(n). The number of
customers is given by n and B is the average number of feasible routes that start
with a given customer in the giant tour.

The works cited above prove the good performance and the adaptability of
the split procedure into different routing problems. These are the reasons to
integrate the split procedure in the general framework.

For the classical CVRP, the split procedure starts by constructing an aux-
iliary directed acyclic graph H = (V,A) where V is a set of numbered nodes
from 0 (dummy node) to n. The set of arcs A contains all the feasible arcs such
than an arc (i, j), i < j, represents a route sequence starting from depot, visiting
v(i + 1) to v(j) and coming back to the depot. The arc weight Dij is the cost of
the route in the real network. Bellman’s algorithm is used to find the shortest
path from 0 to n in H. This gives as result a set of feasible routes for the original
problem and the optimal solution of the given giant tour.

It should be noted that the CVRP-TDD seeks to maximize the satisfied
demand with a homogeneous limited fleet. Therefore, a maximum cost path from
0 to n in H should be found. Hence, Dij corresponds to the satisfied demand
in the route sequence. dl

i is the satisfied demand of the longest path from 0 to i
with vehicle l and P l

i store the predecessor of node i on the longest path leading
to i with vehicle l.

The split procedure is included to the general framework in Algorithm 1 as
follows. A giant tour GT is built, instead of execute the perturbation procedure
to S (line 8). The GT is the concatenation of routes in S in a given order seq.
Then, a copy of GT is shaken and the split procedure is executed. If after the
split procedure, a solution is not found, another copy of GT is shaken and the
split procedure is executed again. This is repeated until a solution is found or a
number of iterations is fulfilled. If the latter occurs, the order seq changes and a
different GT is generated. Additionally, a percentage xTmax that relax the tour
length constraint is increased by 0.1. This allows routes that exceed tMax until
tMax×xTmax in H. The process is restarted with the new GT and the updated
xTmax. All of the above is done until a feasible or relaxed solution (child) is
found, then the general framework continues at line 9. A feasible solution found
is the optimal solution for the given order seq.

Algorithm 2 shows the adapted split procedure. It is based on a compact
version of Bellman’s algorithm presented by Prins et al. [20]. The complexity of
the algorithm is proportional to O(n2k), but if γ denotes the average number
of nodes of feasible subsequences, H has n · γ · k arcs and we get a more precise
complexity in O(nγk).

3.5 Perturbation procedure

A perturbation is applied to escape from local optima and to try to explore a
different area of the solution space. To escape the local optima, a perturbation
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Algorithm 2 Split Procedure
1: copyGT = {v(0), v(1), ..., v(n)} v(x) is the node at position x in the copy of GT
2: T (σ1) is the tour length of node sequence σ1
3: P 0

0 ← {0}
4: for i = 0 to n do d0

i ← 0 end for
5: for i = 0 to n do
6: j ← i + 1; Dij ← 0; time ← 0; σ1 ← v(i + 1)
7: repeat
8: σ1 = σ1 ∪ v(j)
9: time = c(0,v(i+1)) + T (σ1)

10: Dij = Dij + max[(av(j) − (bv(j) · time), 0]
11: time = time + t(v(j),0)
12: l ← 1
13: repeat
14: if (Dij ≤ Q) and (time ≤ (tMax · xTmax)) and (dl

i + Dij > dl
j) then

15: if (time > tMax) then Dij is penalized end if

16: dl
j ← dl

i + Dij

17: P l
j ← i

18: end if
19: l ← l + 1
20: until (l > k) or (Dij > Q) or (time > (tMax · xTmax))
21: j ← j + 1
22: until (j > n) or (Dij > Q) or (time > (tMax · xTmax))
23: end for

operator is used as a diversification mechanism. The perturbation operator can-
not be one of the moves used during the local search, otherwise it can be easily
undone (repaired).

We propose two perturbation operators, one for the giant tour and the other
for the complete solution. The complete solution is perturbed by the node ejec-
tion chain procedure, introduced by Glover[8]. In each route, a node is randomly
selected and relocated in the best position in another route. The node removed
from the last route is inserted in the first one. A solution that exceeds the max-
imum tour length is allowed with a penalization factor.

A dynamic swap procedure is applied as perturbation to the giant tour. Given
a giant tour, two subsets S1 and S2 are chosen. Each subset contains |S1| and
|S2| distinct and consecutive nodes (|S1| = |S2|). The size of subsets is increased
by one if a feasible or relaxed solution is not found by the split procedure. The
nodes in S1 are swapped with nodes in S2 generating a different giant tour.

4 Computational Experiments

The algorithm is coded in JAVA and run on an Intel(R) Core(TM) i7-4800MQ
2.70GHz with 16 GB of RAM running Windows 7 Professional. The set par-
titioning problem is solved using CPLEX 12.6. To the best of our knowledge,
Victoria et al. [26] are the first to propose a MILP and a column generation
based heuristic method to solve small - medium size instances for CVRP-TDD.
They used adapted Solomon’s instances, but as we want to test our framework in
larger instances. Then, the 14 instances for the CVRP proposed by Christofides
et al. [4] are adapted. These instances can be divided into two groups: those
that include the maximum tour length and service time and those that do not
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Table 1. Detailed results of ILS and MS-ILS without and with the split procedure

ILS (1-500-1)
Without split Split

Satisfied Demand CPU Time (s.)
SSP

Satisfied Demand CPU Time (s.)
SSP

Inst. n k Best Avg. Worst Min. Avg. Max. Best Avg. Worst Min. Avg. Max.

Set 1 1 50 6 592.62 591.28 590.19 4.43 4.94 6.17 0 592.62 589.86 587.87 3.83 5.43 6.57 0
2 75 11 1006.07 1000.67 993.56 21.70 36.13 61.71 3 1006.03 1002.08 993.63 20.17 49.40 88.41 0
3 100 9 1101.87 1098.11 1094.19 25.90 28.22 30.86 3 1101.78 1098.29 1089.69 31.00 44.47 49.73 0
4 150 14 - - - - - - - - - - - - - -
5 199 18 - - - - - - - - - - - - - -
6 120 11 1027.86 1023.80 1020.67 75.31 84.71 131.23 4 1027.37 1020.95 1015.96 40.10 62.88 101.11 0
7 100 11 1434.21 1433.74 1433.38 31.95 34.12 35.80 0 1434.21 1433.76 1433.38 12.87 14.18 16.41 0

Set 2 1 50 7 615.66 615.66 615.66 4.70 4.94 6.26 0 615.66 615.54 614.46 2.71 3.09 4.34 0
2 75 12 1037.04 1036.16 1032.12 15.09 16.03 17.24 2 1037.04 1034.79 1031.66 10.25 12.76 14.79 0
3 100 10 1133.77 1133.23 1130.22 30.20 32.09 33.56 1 1133.98 1132.95 1129.88 20.36 22.66 27.10 0
4 150 15 1743.21 1741.17 1738.07 102.18 105.95 111.97 3 1742.96 1739.92 1736.52 112.18 117.72 126.75 0
5 199 19 2447.86 2444.13 2438.19 252.66 269.71 313.23 4 2449.82 2444.71 2440.95 229.35 259.41 306.51 0
6 120 12 1056.2 1056.14 1056.02 49.38 54.38 57.70 0 1056.20 1055.70 1054.72 20.70 23.77 25.38 0
7 100 12 1467.36 1467.36 1467.36 28.63 30.14 32.00 0 1467.36 1466.88 1465.40 10.30 11.10 12.81 0

Set 3 1 50 8 632.00 631.97 631.75 4.66 5.07 6.40 0 632.00 631.95 631.75 2.59 2.96 4.56 0
2 75 13 1056.39 1056.03 1055.51 16.64 17.73 19.86 0 1056.39 1055.67 1055.03 7.92 8.72 9.84 0
3 100 11 1157.56 1157.06 1155.59 30.75 33.53 35.79 0 1157.56 1157.15 1156.12 14.31 15.50 18.22 0
4 150 16 1769.86 1768.63 1767.38 108.87 116.59 131.61 3 1768.69 1767.69 1766.46 52.36 69.74 88.48 1
5 199 20 2482.97 2479.97 2476.10 285.60 326.63 395.72 1 2481.52 2477.92 2473.94 131.36 169.10 188.92 0
6 120 13 1077.40 1077.23 1077.01 49.00 51.96 55.54 0 1077.53 1077.27 1077.02 21.92 26.16 31.80 0
7 100 13 1494.77 1494.74 1494.73 31.43 33.42 36.04 0 1494.77 1494.27 1492.47 10.06 10.66 12.98 0

MS-ILS (5-100-1)
Without split Split

Satisfied Demand CPU Time (s.)
SSP

Satisfied Demand CPU Time (s.)
SSP

Inst. n k Best Avg. Worst Min. Avg. Max. Best Avg. Worst Min. Avg. Max.

Set 1 1 50 6 592.62 591.72 590.19 4.59 4.87 6.06 0 591.76 590.66 589.39 5.60 6.03 7.88 0
2 75 11 1007.54 1003.05 996.99 45.97 100.72 147.02 5 1006.91 1004.83 1001.08 38.06 112.53 166.08 3
3 100 9 1100.05 1096.90 1093.86 28.56 31.61 34.34 2 1099.05 1097.24 1094.24 46.68 50.81 56.27 0
4 150 14 - - - - - - - - - - - - - -
5 199 18 - - - - - - - - - - - - - -
6 120 11 1026.80 1024.84 1021.98 155.53 225.24 286.53 1 1024.38 1021.71 1017.30 194.39 251.33 329.61 0
7 100 11 1434.21 1434.08 1433.7 33.37 33.90 35.38 1 1434.11 1433.74 1433.14 13.64 15.36 16.83 0

Set 2 1 50 7 615.66 615.66 615.66 6.24 6.72 8.53 0 615.66 615.66 615.66 3.96 4.32 5.90 0
2 75 12 1037.04 1036.61 1036.2 21.10 22.32 23.61 2 1036.89 1035.83 1033.23 15.36 18.05 21.58 1
3 100 10 1134.03 1133.71 1133.36 44.86 46.48 50.85 2 1133.77 1132.76 1131.62 29.08 32.77 37.10 0
4 150 15 1742.15 1739.62 1736.8 114.10 119.36 123.24 2 1740.68 1737.64 1733.15 123.57 130.23 137.37 0
5 199 19 2446.53 2442.68 2439.42 283.31 316.65 372.14 3 2445.71 2441.85 2437.73 285.79 316.56 398.77 0
6 120 12 1056.16 1056.11 1055.96 57.02 59.19 61.67 1 1056.13 1055.89 1055.29 23.77 25.63 27.71 0
7 100 12 1467.36 1467.36 1467.33 30.12 31.49 33.66 0 1467.36 1467.18 1466.39 11.36 12.03 13.20 2

Set 3 1 50 8 632.00 632.00 632.00 4.91 5.15 6.24 0 632.00 631.99 631.93 2.68 3.05 4.56 0
2 75 13 1056.39 1056.32 1056.20 16.99 17.75 19.14 0 1056.39 1056.04 1055.36 8.33 9.00 10.70 1
3 100 11 1157.56 1157.39 1157.23 33.68 34.50 35.29 1 1157.56 1157.37 1157.22 16.32 17.43 19.66 0
4 150 16 1769.80 1769.11 1768.11 115.14 117.06 120.10 2 1768.95 1767.41 1764.85 72.70 75.90 78.28 2
5 199 20 2482.43 2480.83 2479.78 285.18 293.31 301.11 3 2480.83 2477.81 2475.14 164.08 179.95 191.24 0
6 120 13 1077.53 1077.36 1077.14 51.48 52.72 53.91 0 1077.52 1077.28 1077.02 24.91 27.73 30.33 1
7 100 13 1494.77 1494.76 1494.74 31.87 32.79 34.40 1 1494.72 1494.54 1494.24 10.67 11.29 13.43 0

include them. We use the seven instances which include them because they are
more similar to our problem.

The used instances are known in the CVRP literature as CMT6, CMT7,
CMT8, CMT9, CMT10, CMT13 and CMT14 (denoted from 1 to 7 in the fol-
lowing). The customers of the first five instances are randomly distributed, while
customers in the other two are grouped by clusters. These instances are adapted
including a random β value to each node (”shelter”) and adding the given service
time to the travel distance between shelter-shelter and shelter-depot pairs.

The number of vehicles is not fixed in Christofides et al. instances, but the
minimum number of vehicles in the best-known solutions (BKS) for the CVRP
reported in the Uchoa et al. [25] is used for each instance. Based on this in-
formation, we generate three different sets of instances and each set has seven
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Table 2. Detailed results of ELS and MS-ELS without and with the split procedure

ELS (1-50-10)
Without split Split

Satisfied Demand CPU Time (s.)
SSP

Satisfied Demand CPU Time (s.)
SSP

Inst. n k Best Avg. Worst Min. Avg. Max. Best Avg. Worst Min. Avg. Max.

Set 1 1 50 6 592.62 591.02 588.15 4.16 4.84 6.63 0 592.62 589.26 584.53 3.18 5.60 7.08 0
2 75 11 1005.66 1000.86 993.56 22.09 37.13 64.20 3 1005.87 1001.15 993.63 22.98 48.69 88.45 0
3 100 9 1100.40 1096.55 1092.20 26.28 28.12 29.11 2 1101.64 1098.20 1093.13 39.79 45.79 54.73 0
4 150 14 - - - - - - - - - - - - - -
5 199 18 - - - - - - - - - - - - - -
6 120 11 1028.12 1025.25 1020.67 91.07 129.12 158.76 2 1027.87 1022.34 1017.93 52.57 95.22 156.81 0
7 100 11 1434.21 1433.78 1433.41 39.91 43.97 47.36 1 1434.16 1433.52 1432.99 17.24 18.89 20.91 0

Set 2 1 50 7 615.66 615.66 615.66 4.68 4.97 6.07 0 615.66 615.66 615.66 2.78 3.17 4.52 0
2 75 12 1037.04 1036.02 1032.02 14.90 16.05 17.58 0 1037.04 1035.38 1030.76 9.03 11.93 15.16 0
3 100 10 1134.12 1133.68 1132.93 31.09 32.16 34.79 0 1133.73 1132.88 1131.83 18.91 23.96 30.78 0
4 150 15 1743.66 1740.70 1738.73 100.73 106.32 111.21 2 1743.84 1738.75 1730.28 106.42 117.81 130.60 1
5 199 19 2448.28 2443.09 2439.60 259.48 274.42 315.79 2 2448.36 2444.24 2438.50 243.28 263.92 286.24 0
6 120 12 1056.17 1056.12 1055.90 52.52 54.79 57.58 0 1056.16 1055.47 1054.31 21.18 24.65 30.39 0
7 100 12 1467.36 1467.36 1467.36 29.81 30.62 31.87 0 1467.36 1466.80 1465.63 10.37 11.21 12.90 0

Set 3 1 50 8 632.00 631.99 631.92 4.54 5.01 6.13 0 632.00 631.95 631.75 2.62 2.96 4.24 0
2 75 13 1056.39 1056.07 1055.61 16.40 17.66 18.61 0 1056.39 1055.80 1053.72 7.47 8.58 10.33 0
3 100 11 1157.59 1157.15 1156.12 32.31 33.60 35.74 0 1157.45 1157.10 1155.71 14.70 16.59 19.11 0
4 150 16 1770.20 1768.56 1766.92 122.04 124.75 129.06 0 1769.53 1768.01 1766.36 50.83 67.80 83.62 0
5 199 20 2482.60 2480.58 2477.57 297.37 309.95 324.28 2 2480.00 2477.16 2470.83 137.42 161.56 179.93 1
6 120 13 1077.44 1077.25 1077.07 48.33 53.57 58.20 0 1077.53 1077.35 1077.15 21.23 27.49 32.48 0
7 100 13 1494.77 1494.68 1494.39 32.34 33.24 34.59 0 1494.77 1494.59 1494.37 10.05 10.80 13.04 0

MS-ELS (5-20-5)
Without split Split

Satisfied Demand CPU Time (s.)
SSP

Satisfied Demand CPU Time (s.)
SSP

Inst. n k Best Avg. Worst Min. Avg. Max. Best Avg. Worst Min. Avg. Max.

Set 1 1 50 6 592.62 591.78 590.19 5.90 6.29 8.29 2 591.51 590.56 589.53 6.79 8.03 9.06 0
2 75 11 1006.44 1003.43 997.43 60.09 130.98 177.16 4 1007.90 1004.00 999.11 114.72 145.01 181.59 1
3 100 9 1100.10 1097.92 1095.26 39.13 42.52 47.13 1 1099.28 1097.11 1094.59 62.96 66.54 74.09 0
4 150 14 - - - - - - - - - - - - - -
5 199 18 - - - - - - - - - - - - - -
6 120 11 1026.25 1024.72 1022.24 144.97 202.18 279.84 0 1024.89 1021.90 1018.95 150.74 205.26 248.86 0
7 100 11 1434.21 1433.89 1433.50 33.29 34.25 36.77 0 1434.17 1433.87 1433.38 14.01 15.12 17.39 0

Set 2 1 50 7 615.66 615.66 615.66 4.79 5.13 6.52 0 615.66 615.66 615.66 3.05 3.37 5.00 0
2 75 12 1037.04 1036.60 1036.17 16.06 16.92 17.63 2 1037.04 1035.28 1032.04 12.17 13.50 14.96 1
3 100 10 1133.98 1133.75 1133.57 32.58 33.81 36.53 3 1133.98 1133.06 1132.18 20.92 23.82 26.92 0
4 150 15 1742.15 1739.15 1736.19 115.33 120.20 125.99 1 1741.66 1738.70 1736.38 122.85 130.95 140.76 0
5 199 19 2445.39 2442.09 2439.55 297.10 328.51 381.14 2 2443.27 2440.11 2436.25 278.96 313.96 372.93 0
6 120 12 1056.16 1056.09 1055.98 55.93 57.66 59.33 2 1056.16 1055.86 1054.51 23.73 25.60 27.55 1
7 100 12 1467.36 1467.36 1467.35 30.90 31.48 33.77 0 1467.36 1466.96 1466.20 11.39 11.97 13.54 0

Set 3 1 50 8 632.00 632.00 632.00 4.85 5.11 6.18 0 632.00 632.00 632.00 2.76 3.02 4.37 0
2 75 13 1056.39 1056.35 1056.27 17.11 17.67 19.28 0 1056.36 1055.89 1055.40 8.28 9.15 10.70 0
3 100 11 1157.51 1157.35 1157.13 34.40 34.91 36.57 0 1157.46 1157.02 1156.46 16.44 17.99 19.48 0
4 150 16 1769.71 1768.76 1767.78 124.20 128.39 134.15 1 1768.19 1766.75 1764.23 73.74 81.44 90.09 0
5 199 20 2480.76 2479.38 2476.07 308.54 315.44 320.87 2 2480.53 2477.71 2474.53 175.26 187.71 204.02 0
6 120 13 1077.53 1077.37 1077.11 56.65 58.61 60.39 0 1077.53 1077.31 1077.15 27.38 29.02 31.42 1
7 100 13 1494.77 1494.76 1494.73 33.97 34.80 36.31 0 1494.74 1494.48 1494.08 11.31 11.99 14.05 0

adapted instances for a total of 21. The set 1 use the same number of vehicles
reported in the BKSs for the CVRP, the set 2 and set 3 increase by one and
two the number of vehicles, respectively.

Each of four methods with (‘Split’) and without (‘-’) the split procedure are
executed. Each method runs the local search 500 times and each instance was
solved ten times.

Table 1 and 2 present the number of nodes (n) and the number of used ve-
hicles (k) by instance as well as the detailed results of each method with its
respective set of assigned parameters in parenthesis (nbOfRestarts-nbOfIter-
nbOfChildren). The best, average and worst satisfied demand and the mini-
mum, average and maximum CPU time in seconds per run are reported for each
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Table 3. Summary of results by set and in total

ILS (1-500-1) MS-ILS (5-100-1) ELS (1-50-10) MS-ELS (5-20-5)
- Split - Split - Split - Split

Set 1 (5 instances)
Average GAP 0.04% 0.05% 0.07% 0.17% 0.07% 0.05% 0.10% 0.15%
# of BFS 3 2 2 0 3 1 2 1
Avg. CPU Time (s.) 37.62 35.27 79.27 71.41 48.64 42.84 83.24 87.99

Set 2 (5 instances)
Average GAP 0.01% 0.00% 0.00% 0.01% 0.00% 0.01% 0.00% 0.00%
# of BFS 4 4 3 2 4 3 3 3
Avg. CPU Time (s.) 27.52 14.68 33.24 18.56 27.72 14.98 29.00 15.65

Set 3 (5 instances)
Average GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
# of BFS 3 4 4 2 4 4 4 2
Avg. CPU Time (s.) 28.34 12.80 28.58 13.70 28.62 13.28 30.22 14.23

Set 2 (7 instances)
Average GAP 0.02% 0.01% 0.03% 0.06% 0.01% 0.01% 0.04% 0.06%
# of BFS 4 5 3 2 4 4 3 3
Avg. CPU Time (s.) 73.32 64.36 86.03 77.08 74.19 65.24 84.82 74.74

Set 3 (7 instances)
Average GAP 0.00% 0.02% 0.01% 0.02% 0.00% 0.02% 0.02% 0.03%
# of BFS 4 4 4 2 5 4 4 2
Avg. CPU Time (s.) 83.56 43.26 79.04 46.34 82.54 42.25 84.99 48.62

TOTAL (19 instances)
Average GAP 0.02% 0.03% 0.03% 0.08% 0.02% 0.03% 0.05% 0.07%
# of BFS 11 11 9 4 12 9 9 6
Avg. CPU Time (s.) 67.7 48.93 81.68 64.26 70.54 50.87 84.47 68.6

method. The column ’SSP’ represents the number of times that solution of the
set partitioning problem improves the solution obtained by the framework.

No feasible solution was found in instances 4 and 5 of the set 1. So, these are
not considered for the following analyzes. The best found solution (BFS) and
the minimum average CPU time for each instance are indicated in boldface. The
ELS without split and the ILS with and without split found the BFS in 12 and
11 out of 19 instances, respectively. The ILS with split in 12 out of 19 instances
obtained the minimum average CPU time. This means that ILS with split gives
the best results in terms of quality and execution time.
The maximum number of times that the solution of the set partitioning improves
the results obtained by the framework is four and it happens only once. In most
cases, this procedure did not improve the results.

In this problem, the number of vehicles plays an important role because the
number of vehicles increases or decreases the number of attended people. The
best scenario is to have a vehicle to attend each shelter, but this is not possible
due to the limited quantity of resources in this context.

The GAP of each instance is calculated as GAP = ((BFS−bestSatisfiedDemand
BFS )×

100) for all methods. Then, the average GAP by set and in total is computed
and it is shown in Table 3. This table also summarizes the number of BFS
found by each method and each set as well as the Avg. CPU time. It should be
note that Table 3 is divided by three. The first part is to compare the three sets
of instances. It only computes the results of the five instances which a feasible
solution is found in set 1. The second part computes the seven instances for set
2 and set 3 and the last part consider the 19 instances. The best value on each
row is indicated in boldface.
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The average GAP differences between all methods is less than 0.2%. Nev-
ertheless, the differences of methods that include the split procedure converge
much faster than those that do not include it. This difference can be up to 50%.

In general, the ILS and ELS without split give the best solutions, but the
ILS with split is faster than other methods. The percentage difference with the
methods that report the best solutions is only 0.01%.

5 Conclusion

This article addresses the CVRP-TDD in the humanitarian context. A meta-
heuristic framework able to execute four metaheuristics using or not the split
procedure only changing a set of three parameters is proposed. Numerical exper-
iments show that the ILS and ELS give better results than multi-start versions
and the faster convergence using the split procedure highlights the efficiency
and good performance of this procedure. This procedure converges faster and
the number of attended people increases each time that the number of vehicles
is greater.
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Abstract. When a petroleum well no longer serves its purpose, the
operator is required to plug and abandon (P&A) the well to avoid con-
tamination of reservoir fluids. An increasing number of offshore wells
needs to be P&A’d in the near future, and the costs of these opera-
tions are substantial. Research on planning methods in order to allocate
vessels that are required to perform these operations in a cost-efficient
manner is therefore essential. We use an optimization approach and pro-
pose a mixed-integer linear programming model based on a variant of
the uncapacitated vehicle routing problem that includes precedence and
non-concurrence constraints to plan a plugging campaign. P&A costs are
minimized by creating optimal routes for a set of vessels, such that all op-
erations that are needed to P&A a set of development wells are executed.
In a case study, we show that our proposed optimization approach may
lead to significant cost savings compared to traditional planning meth-
ods and is well suited for P&A planning purposes on a tactical level.

Keywords: Routing, Plug and Abandonment, Plugging Campaign

1 Introduction

An active petroleum well goes through different phases: exploration, production,
and injection. After the well has served its purpose, and is no longer profitable,
it must be plugged and abandoned. According to [13, Chapter 9], Plug and
Abandonment (P&A) is the process of securing a well by installing required well
barriers (plugs) such that the well will be permanently abandoned and cannot
be used or re-entered again. We refer to P&A as the permanent abandonment
of the well, as opposed to temporary P&A, where the well may be re-entered.
Permanently plugged wells shall be abandoned with an eternal perspective taking
into account the effects of any foreseeable chemical and geological processes. This
definition holds for offshore and onshore wells, but in this paper we consider
solely the former. Moreover, we only focus on development wells (consisting of
production and injection wells), as exploration wells are P&A’d immediately
after drilling.

To give an impression of the magnitude of future P&A work, [12] forecast a
total of 1, 800 development wells to be P&A’d the next decade on the United
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Kingdom and Norwegian Continental Shelf. The average P&A cost per well in
the same period and regions is estimated to be around £5−15 million. Currently,
approximately 50% of the costs of decommissioning, which also takes into ac-
count removal of installations, is related to P&A. On the United States Outer
Continental Shelf, which most notably consists of the Gulf of Mexico, there are
at present 5, 082 production wells and 3, 220 temporarily plugged wells, that are
in need of permanent plugging [3].

The high costs related to these operations and opportunity costs of the ves-
sels required to perform these operations (e.g. exploration or drilling activities),
makes this topic highly relevant for research on efficient resource allocation and
scheduling of P&A operations.

In this paper, we look at a tactical time horizon for the planning and schedul-
ing of P&A operations for a number of subsea wells in which the production sys-
tems are located on the seabed. In this respect, a P&A campaign is an allocation
of vessels (ships and rigs) to perform plugging operations on a set of wells.

As P&A costs derive mainly from renting vessels, cost savings can be achieved
by, e.g., developing new or improving existing techniques such that the durations
of the operations are reduced. When taking a system perspective, savings may
also be obtained by optimizing routing of vessels and scheduling of operations.
These cost savings might result from, for example, decreased sailing time or
more use of vessels with a low day-rate. Here lies the basis for developing and
demonstrating how an optimization approach based on vehicle routing theory
may be used to reap these rewards.

In view of this, we propose an optimization model for the tactical planning
problem concerned with P&A campaigns. We refer to this problem as the P&A
Campaign Problem (PACP).

Even though optimization has been extensively applied to the petroleum
industry (e.g. [10, 6]), literature on the use of optimization in P&A planning is,
to the best of our knowledge, scarce. The only application of optimization to
P&A that we are aware of is [1].

The planning of a P&A Campaign can be considered to be a vehicle routing
problem (VRP). In this context, ”routing” can be defined as the assignment of
sequences of operations to be performed by vessels. The term ”scheduling” is
then used when the timing aspect is brought into routing. Therefore, scheduling
includes the timing of the various events along a vessel’s route. [4] give a review
of ship routing and scheduling problems within maritime transportation, cat-
egorized on the basis of strategic, tactical and operational planning levels. An
optimization model for maintenance routing and scheduling for offshore wind
farms, based on a VRP with pick-up and delivery, is proposed in [7]. This model
has similar features as the PACP. However, just like most maritime transporta-
tion problems, it involves cargo or inventory considerations.

The PACP can be represented as an extension of the Uncapacitated Vehicle
Routing Problem (u-VRP) or Multiple Traveling Salesman Problem (m-TSP)
with precedence and non-concurrence constraints, a heterogeneous fleet of vessels
and the possibility of multiple routes, see [14]. Related work is done in [5] and
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[2]. The former paper considers an extension of the traveling salesman problem
(TSP) with precedence constraints applied to ship scheduling and presents other
related work on TSPs, whereas the latter contains a review of literature on the
m-TSP and practical applications.

There are several ways in which the PACP problem can be formulated. We
have investigated using a time-indexed mixed-integer programming formulation.
However, as P&A campaigns are characterized by both a long time horizon
(1-2 years) and a fine time resolution for individual operations (hours/days),
this formulation leads to a large number of binary variables. As a result, the
model quickly becomes intractable, even for toy-sized problems. Therefore, we
formulate the model using an arc-flow formulation, treating time as continuous.
This formulation requires significantly less binary variables and is capable of
solving larger instances of the problem.

We extend current literature on vehicle routing problems by introducing a
new practical application of an u-VRP, besides proposing ’non-concurrence’ con-
straints, which are required when considering multilateral wells.

The remainder of this paper is structured as follows. We start by giving a
problem description in Section 2 and provide a model formulation in Section 3.
A case study consisting of three wells is then described in Section 4, of which
the computational as well as economical results are presented in Section 5. The
results are compared with other realistic routing alternatives. The paper con-
cludes with Section 6, which summarizes the main findings from this work as
well as suggesting the direction future research could take.

2 Problem Description

Offshore petroleum wells can be distinguished by being connected to either a sub-
sea or platform installation, where the wells are usually clustered in templates.
In order to P&A an offshore well, several operations have to be performed in a
strictly ordered sequence. These operations consist of amongst others prepara-
tory work, the setting of plugs and removal of the wellhead. Subsea wells need
vessels to perform these operations. There are several classes of vessels that are
able to carry out these operations. In general, Mobile Offshore Drilling Units
(MODUs), also called rigs, can conduct all types of operations. This class of ves-
sels includes jackup rigs, semi-submersible rigs (SSRs) and drillships. Another
class consisting of lighter vessels such as light well intervention vessels (LWIVs)
and light construction vessels (LCVs) can only perform a subset of operations,
but have a cheaper day-rate compared to rigs.

A categorization of these different operations into phases is given by [11],
which is also extensively used by the industry. Based on this categorization, we
define four operation types, or phases, which will be used more explicitly in the
case study in Section 4. Phase 0 consists of preparatory work, which can, in
general, be executed by all vessels. Phase 1 comprises the cutting and pulling of
casing and tubing and setting of primary and secondary barriers, which requires
a rig. Phase 2 again requires a rig and includes the setting of a surface plug.
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Finally, phase 3, removal of the conductor and well head, might be performed
from some lighter vessels. An overview of compatibilities between phases and
vessel classes is given in Table 1.

Table 1. Compatibility of phases
and vessel classes

Phase SSR LWIV LCV

0 X X X
1 X - -
2 X - -
3 X X -

Note that this categorization is con-
structed for wells in the North Sea, and need
not necessarily hold for wells under different
regulatory regimes. Still, it is a good repre-
sentation that is useful in showing the traits
of the model.

Besides traditional wells with a single
wellbore, there also exist wells with multiple
wellbores connected to a common wellhead.
These wells are known as multilateral wells.
To give an example, Figure 1 shows a multi-
lateral well with three lateral wellbores and a
mainbore. The nodes represent operations in
the wellbores that have to be performed to P&A the well. Multilateral wells are
designed to reduce construction costs and increase production from a reservoir.
Operations in different lateral wellbores cannot be performed simultaneously, as
these wellbores must be entered through the same mainbore.

Fig. 1. Diagram of a multilateral
well

P&A operations are in general not time-
critical, which means that wells can be left
temporarily or partially plugged, as long
as the wells are continuously monitored.
Nonetheless, there might be reasons to in-
clude time windows for the operations. This
might be due to legal issues, such as the ex-
piry of a lease contract, or plans made by the
operators. Vessel-use can also be limited due
to contractual issues, alternative usage such
as exploration or drilling, or other conditions
like harsh weather.

Based on these different aspects of the
P&A process we are able to formulate a gen-
eral optimization model that minimizes the
total costs related to a P&A campaign. The
decision variables consist of binary variables
determining the routes of the vessels and con-
tinuous variables specifying start times of operations. The constraints in the
model are related to timing, precedence, non-concurrence and legal routes for
vessels. The objective of the model is to minimize total rental costs, which is
constructed based on time usage and day-rates of the different vessels.
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3 Mathematical Formulation

In this section, we present the Mixed-Integer Linear Programming (MILP) Model
for the PACP. We explain the notation (sets, indices, parameters and variables)
used in the model and we provide the mathematical formulation of the con-
straints and objective functions.

3.1 Sets and Indices

To P&A a well, a certain number of operations have to be executed. These oper-
ations might be represented by the previously defined phases, but can be more or
less detailed. We therefore define the setN =

{
1, ..., NOPS

}
, which consists of all

the operations required to be executed on all wells. The set K = {k1, ..., kNV ES}
consists of NV ES heterogeneous vessel that are available to perform these P&A
operations. For every vessel k ∈ K, we define Nk ⊆ N to be the set of operations
that vessel k can perform. We define origin and destination vertices o(k) and d(k),
which represent locations such as harbours, where the vessels are situated at the
start and end of the planning period, respectively. We model routing options as
arcs, and P&A operations as vertices. Let Ak = {(i, j) : i, j ∈ Vk} represent the
arc set corresponding to vessel k ∈ K, where Vk = Nk∪{o(k), d(k)} is the vertex
set of vessel k. The precedence set P, consists of pairs (i, j) with i, j ∈ N , for
which operation i should precede operation j. This set is included to ensure cor-
rect sequencing of operations. Some operations are prevented, due to technical
reasons, from being executed simultaneously. Therefore, we let S consist of pairs
of operations (i, j) with i, j ∈ N that cannot be executed simultaneously.

Moreover, given vertex i, δ+k (i) is defined as the set of vertices j such that
arc (i, j) ∈ Ak. That is, the set of possible vertices j that vessel k can visit after
visiting vertex i. Similarly, given vertex i, δ−k (i) is defined as the set of vertices
j such that (j, i) ∈ Ak, i.e. the set of possible vertices j that a vessel k may have
visited before visiting vertex i. The term ”visit” is used to include operations as
well as leaving the origin or entering the destination.

The PACP is now defined on the directed graphs Gk = (Vk,Ak) for all k ∈ K.

3.2 Parameters

For each vessel k ∈ K, non-negative durations TS
ijk and TEX

ik representing sailing
and execution times, are associated with each arc (i, j) ∈ Ak and vertex i ∈
Vk, respectively. Sailing times equal zero for arcs between operations in the
same well and otherwise consist of (de-)mobilization time and actual sailing
time between wells. For every vertex i ∈ ∪

k∈K
Vk we associate a time window

[
T i, T i

]
, where T i and T i represent earliest start time and latest completion

time of the corresponding operation in vertex i, respectively.
Non-negative day-rates Ck are defined for each vessel k ∈ K. When using

an alternative objective function which depends on vessel usage, we make use
of varying day-rates CEX

k , CS
k , C

SB
k , for execution, sailing, and stand-by time,

respectively.
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3.3 Variables

The aim of the PACP is to find a collection of feasible vessel routes that min-
imizes total cost. We present this problem using an arc-flow formulation. We
define a binary flow variable xijk for each vessel k ∈ K and arc (i, j) ∈ Ak;
equaling 1 if vessel k traverses arc (i, j) in the optimal solution, and 0 otherwise.
Moreover, we define the continuous time variables tik, for each k ∈ K, i ∈ Vk,
specifying the start-time of operation i by vessel k. We also introduce auxiliary
variables, yij , for all (i, j) ∈ S, taking the value 1 if operation i is executed before
operation j, to deal with non-concurrence in multilateral wells.

3.4 Constraints

The constraints defining the MILP are treated below.

Operations. To P&A all wells under consideration, all corresponding operations
have to be executed. This is ensured by the following constraints:

∑

k∈K

∑

j∈δ+k (i)

xijk = 1, i ∈ N . (1)

These constraints also restrict the assignment of each operation to exactly one
vessel.

Routing. The following sets of constraints define the possible routes that the
vessels are allowed to take. First, we make sure that a vessel’s route starts at its
origin, and performs only one route:

∑

j∈δ+k (o(k))

xo(k)jk = 1, k ∈ K. (2)

The inclusion of an arc between the origin and destination with zero cost gives
the option not to make use of a vessel. Then, we assure that each vessel ends its
route in its destination:

∑

i∈δ−k (d(k))

xid(k)k = 1, k ∈ K. (3)

Finally, we have flow balance constraints ensuring feasible routing, stating that if
a vessel is used to perform a P&A operation, it must move to another operation
(in the same or any other well), or to the destination:

∑

i∈δ−k (j)

xijk −
∑

i∈δ+k (j)

xjik = 0, k ∈ K, j ∈ Nk. (4)
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Multiple Routes. The previous constraints force the number of times a vessel
can be used to one, assuming that when a vessel has left its origin to perform
P&A operations, it must perform all its planned operations on that one route.
This is a reasonable assumption if vessels are committed to a project for a longer
time and vessel rent has to be payed throughout this whole period, independent
on whether it is executing an operation or remains idle. However, if a vessel is
allowed to return to a harbour where rental costs are not incurred, the possibility
of multiple trips should be taken into account. This can be done by redefining the
set K. We include copies of the vessels if multiple routes are allowed. Formally,
this leads to the following. First, we define Rk :=

{
1, .., NR

k

}
, k ∈ K, where

NR
k equals the maximum allowed number of routes for vessel k. Now, let K̃ ={
k̃kr : k ∈ K, r ∈ Rk

}
. To make sure that the routes are then planned in correct

order we define the following constraints:

td(k̃kr)k̃kr
≤ to(k̃kr′ )k̃kr′

, k ∈ K, r, r′ ∈ Rk | r′ − r = 1. (5)

That is, if we have two subsequent routes for a vessel, then the former route
should be finished before the latter can start. The model now allows for multiple
routes by replacing K with K̃.

Timing. The time constraints ensure schedule feasibility with respect to start
times of the operations. If a vessel performs an operation on a well (or enters its
destination), it must have completed its previous operation (or left its origin)
and travelled to the current location:

xijk

(
tik + TEX

ik + TS
ijk − tjk

) ≤ 0, k ∈ K, (i, j) ∈ Ak. (6a)

This can be linearized as

tik + TEX
ik + TS

ijk − tjk ≤ Mijk(1− xijk) k ∈ K, (i, j) ∈ Ak, (6b)

where Mijk = T i + TS
ijk − T j .

Time windows for operations are defined by the following constraints:

T i

∑

j∈δ+k (i)

xijk ≤ tik ≤ (T i − TEX
ik )

∑

j∈δ+k (i)

xijk, k ∈ K, i ∈ Nk. (7)

If a vessel does not perform a certain operation, then these constraints force the
corresponding time variable to zero.

We also impose time windows for the origin and destination vertices, repre-
senting limitations in vessel use:

T i ≤ tik ≤ T i, k ∈ K, i ∈ ∪
k∈K

{o(k), d(k)} . (8)
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Precedence. As explained in Section 2, there exists a strict ordering in the
sequence in which operations have to be performed within a well. This ordering
is guaranteed to hold by the following precedence constraints:

∑

k∈K
tik +

∑

k∈K

∑

l∈δ+k (i)

TEX
ik · xilk −

∑

k∈K
tjk ≤ 0, (i, j) ∈ P. (9)

Non-concurrence. The precedence constraints control the order in which op-
erations in the same wellbore are being executed, but they cannot deal with the
fact that operations from different lateral wellbores cannot be performed simul-
taneously. This phenomenon arises when considering multilateral wells. We refer
to the constraints that arise in this situation as non-concurrence constraints.
The following constraints enforce that for all non-concurrence pairs (i, j) ∈ S we
have that either operation i is performed before operation j (yij = 1), or vice
versa (yij = 0).:

∑

k∈K
tik +

∑

k∈K

∑

l∈δ+k (i)

TEX
ik · xilk −

∑

k∈K
tjk ≤ Mji(1− yij), (i, j) ∈ S, (10a)

∑

k∈K
tjk +

∑

k∈K

∑

l∈δ+k (j)

TEX
jk · xjlk −

∑

k∈K
tik ≤ Mijyij , (i, j) ∈ S, (10b)

where Mij = T j − T i.

Alternatively, one can represent multilateral wells in a more restricted way,
such that constraints (10) are not necessary. We can obtain this by either
bundling operations that have the same phase but are in different wellbores
or imposing an order for the execution of operations in the different lateral
wellbores. This approach leads to a reduction in the number of constraints and
integer variables, but might lead to sub-optimality.

3.5 Objective Functions

Differences in the construction of P&A contracts leads to the need to model
different types of objective functions. To illustrate this, we present two exem-
plifying objective functions. When service companies perform P&A operations
for operators, contracts are usually written on a day rate or turnkey basis [8].
Day rates are made up of, amongst others, vessel rent and personnel and equip-
ment costs. Specification of turnkey contracts needs a precise breakdown of P&A
costs, which leads to an analysis of the same cost factors. Therefore, we formulate
the objective function in its most basic form as the sum of individual day-rates
multiplied by total time the vessels are used offshore:

min
∑

k∈K
Ck(td(k)k − to(k)k). (11)
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Some contracts specify varying day rates, such as operating, sailing and stand-by
rates (CEX

k , CS
k , C

SB , respectively), which can easily be taken into account by
the following objective function:

min
∑

k∈K

(
CEX

k tEX
k + CS

k t
S
k + CSB

k tSB
k

)
, (12)

with:

tEX
k =

∑

i∈Nk

TEX
ik

∑

j∈δ+k (i)

xijk, k ∈ K, (13)

tSk =
∑

(i,j)∈Ak

TS
ijkxijk, k ∈ K, (14)

tSB
k = td(k)k − to(k)k − tSk − tEX

k , k ∈ K, (15)

where tEX
k , tSk and tSB

k denote the execution, sailing, and stand-by time, respec-
tively.
In some cases, large operating companies perform the P&A operations them-
selves. They usually have entered into long-term contracts with ship companies
to rent vessels, which are used for multiple purposes. In this situation, the ob-
jective function might reflect opportunity costs arising from alternative uses of
the vessel, such as exploration or well development.

3.6 Variable Domains

The domains of the variables used in the aforementioned constraints and objec-
tive functions are declared below:

xijk ∈ {0, 1} , k ∈ K, (i, j) ∈ Ak, (16)

tik ∈ R
+
0 , k ∈ K, i ∈ Nk, (17)

yij ∈ {0, 1} , (i, j) ∈ S. (18)

Thus, the PACP model used in the case study in this paper consist of constraints
(1) - (10b), variables (16) - (18), and objective function (11).

4 Case Study

To test the functioning and show possible benefits of the model, we run the
model under several scenarios. We then compare these results with the results
resulting from the use of simple plugging strategies, reflecting different ways in
which plugging campaigns currently are, or could be, executed. The scenarios
consist of one base case scenario, and five alternative scenarios that are derived
by changing some parameters of the base case scenario. In the base case, we
consider three subsea wells (denoted by W1, W2 and W3) on which operations
have to be performed such that all wells will be permanently P&A’d. We assume
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that the vessels under consideration are located at the same harbour at the
beginning of the planning period, and that this harbour is also the destination.
The wells have a single wellbore and are located on the same field, of which
W2 and W3 are located on the same template. We assume that all wells are
at a distance of 150 kilometers from the harbour and W1 is 5 kilometers apart
from W2 and W3. The locations and distances between wells are taken from
existing wells on the Alvheim field in the North Sea. We use the four phases as
described in Section 2 as a categorization of the P&A operations for each well.
We assume that two different vessels are available to carry out the operations: a
Semi-Submersible Rig (SSR), that can perform operations in all phases, and a
Light Well Intervention Vessel (LWIV), that can perform operations in phase 0
and 3. Both vessels have a fixed day-rate, independent of the activity (executing
P&A operations, sailing, or stand-by). Input data to the model, retrieved from
the P&A database as described in [9], is given in Table 2. Note that the execution

Table 2. Summary of input data for SSR and LWIV.

Execution time (days) Day Rate Speed (de-) Mobilization

Phase: 0 1 2 3 (k$) (knots) (days)

SSR 11.9 8.85 5.63 0.75 700 5 2.5
LWIV 11.9 - - 0.75 450 15 0.2

times are the same for all wells, as we assume that all wells are similar. However,
the model allows for unique values for execution times in the case where well
specific duration estimates are available. Sailing times consist of actual sailing
times (calculated based on distances between the wells and speeds of the different
vessels), as well as mobilization and de-mobilization time. As opposed to LWIVs,
some SSRs require anchor handling, which leads to a significant difference in (de-
)mobilization time. We note that when a vessel moves between wells on the same
template, no anchor handling is required.

4.1 Scenarios

We perform a sensitivity analysis in which we, ceteris parabus, change some of
the parameters of the base case as defined above (SCEN1 ). As an LWIV is more
sensitive to bad weather than a SSR, we look at the scenarios where we increase
the execution times for the LWIV. To investigate this effect we multiply the
duration of phase 0, when using a LWIV, by arbitrary factors 1.5 and 2 given
in scenarios SCEN2 and SCEN3 respectively. In the fourth and fifth scenario
(SCEN4 and SCEN5 ), we multiply the duration of phase 3 by factors 1.5 and 2
as well, when executed by a LWIV.

Finally, in the sixth scenario (SCEN6 ) the execution time of phase 3 for both
LWIV and SSR is multiplied by a factor of 2. This scenario is chosen to reflect a
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case where it is optimal to perform all possible operations using a LWIV in two
separate trips.

4.2 Strategies

We now define five different strategies that might be employed to perform a plug-
ging campaign. The first strategy is simply the optimal outcome suggested by
the model (OPT ), whereas the last four strategies are examples of how different
P&A campaigns can be planned manually. Traditionally, P&A operations are
performed by a single rig, which is characterised by STRAT1. The optimal solu-
tion in this case is to execute all operations in a well consecutively and find the
optimal sequence of wells to visit for the rig. More recently, cheaper light vessels
are being used to perform light P&A operations that do not require a drilling
rig. This might be optimal from a well perspective, but not necessarily from
a system perspective. Different variations of vessel use are given in STRAT2,
STRAT3 and STRAT4. We refer to these strategies as manual strategies, even
though we solve restricted versions of the optimization model. The five strategies
are now given by:

– OPT : In this case, we allow the model to find the optimal allocation of vessels
to P&A operations. The SSR may perform all operations in all phases (but
must perform all operations in phases 1 and 2. The LWIV may perform any
operations in phases 0 and 3. Finally, the LWIV is allowed to perform two
routes. That is, it can return to the harbour once, where it does not incur
rental costs.

– STRAT1: We restrict the model only to make use of the SSR to perform all
the P&A operations on the wells.

– STRAT2: We require that all phase 0 operations are performed by the LWIV,
and that the remaining operations are done by the SSR. The LWIV is only
allowed to perform one route.

– STRAT3: Same as STRAT2, but we also require that all operations in phase
3 are performed by the LWIV.

– STRAT4: Same as STRAT3, however this strategy allows the LWIV to per-
form two routes. This reflects the possibility to do all preparatory work with
a light vessel (after which the vessel goes back to the harbour), then use a rig
to perform the cutting and pulling operations in phase 1 and 2, and finally
use the light vessel to perform phase 3.

5 Results

In this section, we present results from running the model for the different strate-
gies and scenarios set out in Section 4. The model has been implemented in
the Mosel programming language, and solved with FICO Xpress version 8.0.4.
The analyses have been carried out on a HP dl165 G5 computer with an AMD
Opteron 2431, 2,4 GHz processor, 24Gb RAM running Red Hat Linux v4.4.
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Table 3. Cost increase (in percentage) for the different strategies compared to the
optimal cost (in million dollars) and start- and end-times for the routes in the optimal
strategy (second route in parenthesis).

Scenario

1 2 3 4 5 6

Cost (M$) Optimal 55.32 63.16 63.65 55.41 55.42 56.55

Strategy

1 15.06 0.77 0.00 14.87 14.86 15.34

Cost
increase
(%)

2 0.17 0.44 12.30 0.00 0.00 0.77
3 15.79 8.80 20.59 15.90 16.20 13.87
4 0.39 0.64 12.49 1.14 2.06 0.00

Start- and
end-times
(days)

SSR
start 9.1 19.4 0 9.1 9.1 9.1
end 63.5 73.2 90.9 64.3 64.3 62.0

LWIV
start 0 0 - 0 0 0 (54.7)
end 38.2 56.8 - 37.2 37.2 37.2 (60.7)

Table 3 shows numerical results for the different strategies and scenarios,
whereas Figure 2 illustrates the optimal routes for each of the five scenarios.

There are several observations we can make based on these figures. To begin
with, we see from Figure 2 that each scenario results in a different optimal
routing (except for SCEN4 and SCEN5 ), despite the differences between the
scenarios being small. As the LWIV cannot perform operations in phases 1 and
2, the main differences between the optimal routing strategies become apparent
in the choice of vessel to perform phased 0 and 3. Looking at Table 3, in the
first two scenarios, none of the defined manual strategies is optimal (even though
strategies 2 and 4 result in objective function values that are close to the optimal
value). For each of the last four scenarios, one of the manually defined strategies
is optimal, however none of these strategies performs well under all scenarios.
Based upon the data input, the performance might even get arbitrarily bad.
STRAT3 performs worst under all scenarios. In this strategy we commit the
LWIV to perform the operations in phases 0 and 4. But, since the LWIV cannot
start operations in phase 4 before the SSR is done with phase 3, this strategy
leads to an increase in costs due to idle time of the LWIV.

The dynamics in scenarios 1 to 3 are also worth mentioning. In the base case,
the LWIV only performs phase 3 on one well. When it takes more time (factor
1.5, scenario 2) to perform phase 0, the LWIV no longer has to wait to perform
an additional phase 3 operation. However, when the duration of phase 0 doubles
(scenario 3), using the LWIV is no longer optimal at all.

The differences between scenario 4 and 5 are small as phase 3 has a relatively
short duration

We conclude that the optimal routes depend heavily on differences in travel
distance, execution times and day rates for the different vessels. Based on our
inputs, assumptions, and choice of case study, we see that the optimal solution
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(a) SCEN1 (b) SCEN2 (c) SCEN3

(d) SCEN4 and SCEN5 (e) SCEN6

Fig. 2. Optimal vessel routes for the six different scenarios. The solid and dashed routes
correspond to the SSR and LWIV respectively.

might represent cost savings in the order of magnitude of US$ million compared
to other and more conventional planning methods, represented by the manually
defined strategies. This shows the strength of the application of an optimization
model in planning of a P&A campaign.

Considering that the scenario in question consists of three wells, it is reason-
able to assume that cost savings will be significant when including more wells.

The case study we considered consisted of three wells that needed to be
P&A’d, which is a realistic sized problem. However, depending on the case,
P&A campaigns on larger sets of wells can be planned, and might result in other
system effects. We therefore perform a computational study, to investigate the
scalability of the model. We take the previously defined case study with two
vessels (SSR and LWIV) and three wells as base case. We then add wells that
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are located on the same field and are in need of P&A, and try to solve the model
to optimality. The results are given in Table 4. The maximum run time is set
to 24 hours, which is reached in the case with 7 wells. Since the addition of one
extra well implies adding four different operations or vertices, we clearly see an
exponential increase in the solution time. Moreover, we observe very slow con-
vergence of the lower bound.

Non-concurrence in Multilateral Wells. In the following example we show
the importance of including the non-concurrence constraints (10) as opposed to
using a simplification. We consider a multilateral well that needs to be P&A’d.
The well has one mainbore and three lateral wellbores, as represented in Fig-
ure 1. We assume that the well is located on the same field as in the case study,
and we make use of the same vessels (i.e. a LWIV and SSR). Now assume that
the LWIV is only available in the first month. Embracing the formulation with
non-concurrence constraints, this leads to an optimal solution where the LWIV
performs phase 0 operations in two lateral wellbores, after which the SSR per-
forms the remaining operations. This results in an objective value of 47.806
million dollars. In a more restricted version of the model with an imposed order
for the execution of operations in the different lateral wellbores, in the optimal
solution, the SSR performs all operations and the LWIV is not being used. This
leads to an objective function value of 53.116 million dollars. So, in this exam-
ple, not including the non-concurrence constraints leads to an additional cost
of approximately 5 million dollars. The simplified model consists of 61 binary
variables and 124 constraints. Inclusion of non-concurrence constraints leads to
an additional number of binary variables equal to the cardinality of the set S
(denoted by |S|) and 2 · |S| extra constraints. In the example above we have
|S| = 12, which does not lead to a significant increase in solution time.

6 Conclusions

Table 4. Computational results

Wells Time (sec) MIP-Gap (%)

3 0.51 0
4 2.52 0
5 46.14 0
6 900.74 0
7 86401.50 0.48

The main contribution in this paper is
a novel formulation of an optimization
model for a P&A campaign. This is a
field where, to the extent of our knowl-
edge, optimization techniques so far have
not been applied. In the case study, we
show that there might be significant ben-
efits from using this optimization model
in monetary terms. Small changes in the
data basis may lead to highly differing op-
timal routes. The manually defined plan-
ning strategies are therefore not robust to
such changes in the data. Moreover, we
show that the inclusion of non-concurrence constraints is preferred over a sim-
plified representation of multilateral wells. As a result, the model may serve as
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decision support to decision makers. Nonetheless, we recommend to run more
extensive case analyses, to evaluate alternative campaigns and discover general
rules that can be used when planning P&A campaigns. The model can then also
be used to run different scenario analyses to evaluate the effect of changes in
parameters or definition of phases due to, for example, new technology.

The major challenge is related to scalability of the model. In order to solve
more realistic cases, future research might therefor be conducted into several di-
rections. To begin with, the literature suggests the implementation of decompo-
sition techniques, such as column-generation, and inclusion of valid inequalities.
Alternatively, when taking a non-exact approach, heuristics mights be developed
for the problem, which however cannot guarantee that the obtained solution is
optimal. Still, routes obtained from a heuristic approach might perform signifi-
cantly better than existing planning approaches. Moreover, the case study in this
paper did not define specific start and completion times for the individual oper-
ations and vessels. Inclusion of such time-windows might decrease computation
time as well.

Another aspect worth looking at is the possible inclusion of a learning ef-
fect. Industry actors have observed that dedicated vessels performing operations
during a P&A campaign have a significant reduction in execution times. The
inclusion of such an effect is however challenging, and would lead to endogenous
execution times.

Finally, there is a lot of uncertainty in the execution times of operations,
due to unknown well conditions. Schedules and routes resulting from the deter-
ministic model formulated in this paper might therefore be non-optimal when
uncertainty is taken into account. Future work might therefore also focus on the
application of stochastic programming to this problem.

References

1. Aarlott, M.M.: Cost Analysis of Plug and Abandonment Operations on the Norwe-
gian Continental Shelf Mats Mathisen Aarlott. Master thesis, Norwegian University
of Science and Technology (2016)

2. Bektas, T.: The multiple traveling salesman problem: An overview of formulations
and solution procedures. Omega 34(3), 209–219 (2006)

3. Bureau of Safety and Environmental Enforcement: BSEE Well Database (2017),
https://www.data.bsee.gov/homepg/data center/well/borehole/master.asp

4. Christiansen, M., Fagerholt, K., Ronen, D.: Ship Routing and Scheduling: Status
and Perspectives. Transportation Science 38(1), 1–18 (2004)

5. Fagerholt, K., Christiansen, M.: A travelling salesman problem with allocation,
time window and precedence constraints an application to ship scheduling. Inter-
national Transactions in Operational Research 7(3), 231–244 (2000)

6. van den Heever, S.A., Grossmann, I.E., Vasantharajan, S., Edwards, K.: A
Lagrangean Decomposition Heuristic for the Design and Planning of Off-
shore Hydrocarbon Field Infrastructures with Complex Economic Objec-
tives. Industrial & Engineering Chemistry Research 40(13), 2857–2875 (2001),
http://pubs.acs.org/doi/abs/10.1021/ie000755e

172 S. Bakker et al.



7. Irawan, C., Ouelhadj, D., Jones, D., St̊alhane, M., Sperstad, I.: Optimisation of
maintenance routing and scheduling for offshore wind farms. European Journal of
Operational Research 39(1), 15–30 (2015)

8. Kaiser, M.J.: Offshore Decommissioning Cost Estimation in the Gulf of Mexico.
Journal of Construction Engineering and Management 132(March), 249–258 (2006)

9. Myrseth, V., Perez-Valdes, G.A., Bakker, S.J., Midthun, K.T., Torsæter, M.: Nor-
wegian Open Source P&A Database. In: SPE Bergen One Day Seminar, 20 April,
Grieghallen, Bergen, Norway. Society of Petroleum Engineers (2016)

10. Nygreen, B., Christiansen, M., Haugen, K., Bjørkvoll, T., Kristiansen, Ø.: Mod-
eling Norwegian petroleum production and transportation. Annals of Operations
Research 82, 251–268 (1998)

11. Oil & Gas UK: Guidelines for the Abandonment of Wells. Tech. rep. (2015)
12. Oil & Gas UK: Decommissioning Insight 2016. Tech. rep. (2016)
13. Standards Norway: NORSOK Standard D-010: Well integrity in drilling and well

operations (2013)
14. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Society for Industrial and

Applied Mathematics (2002)

Planning of an Offshore Well Plugging Campaign: A Vehicle Routing Approach 173



Anders H. Gundersen1, Magnus Johansen1, Benjamin S. Kjær1, Henrik
Andersson1, and Magnus St̊alhane1

1) Norwegian University of Science and Technology,
Department of Industrial Economics and Technology Management

Alfred Getz veg 3, Trondheim, Norway

Abstract. In this paper we present an arc routing problem with prece-
dence constraints, with a focus on its application to snow plowing opera-
tions in Norway. The problem studied considers the clearing of snow from
a network of roads, where there exists precedence relations between the
driving lanes and the sidewalks. The goal is to minimize the total time it
takes for a heterogeneous fleet of vehicles to clear all the snow from the
road network. We describe a mathematical model of the problem and
present symmetry breaking constraints to improve the computational
performance. We present a computational study where the performance
of the model is tested. Further, we study the effect of forbidding or pe-
nalizing U-turns along the route, something the snow plowing vehicles
struggle to do. The computational experiments show that it is possible
to generate solutions without U-turns with only a marginal increase in
the objective value.

Keywords: Arc routing; Snow plowing; vehicle routing;

1 Introduction

In this paper we study an extension of the capacitated arc routing problem ([3]),
where there exist precedence constraints on the traversal of given pairs of arcs,
and where U-turns are undesirable. The problem is inspired by the planning of
snow plowing operations in urban areas of Norway, during, or immediately after,
a snowfall.

The problem under consideration can be described as clearing all the snow
from a network of roads. This network consists of a set of road segments, where
each segment consists of one or more lanes, in one or two directions, and/or one
or more sidewalks. Whenever the characteristics of the road changes, such as
at intersections, places where two lanes merge into one, or one splits into two,
ramps on or off a highway, and so on, we assume that one road segment ends
and another begins. We define the term lane for each driving lane on a road
segment, and sidewalk for a sidewalk associated with the road segment. A map
showing a small area of downtown Trondheim together with the corresponding
road network is shown in Figure 1.
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Fig. 1: Map and the corresponding road network from a small part of downtown
Trondheim. Arrows and numbers indicate the driving direction and the number
of lanes in each direction, respectively. Sidewalks and pedestrian pathways are
not included.

To service the road network, two types of vehicles are available: heavy trucks
for plowing the lanes, and smaller vehicles for clearing the sidewalks. All vehicles
are associated with one depot where they begin and end their route. Each heavy
truck has a large plow attached to the front, capable of clearing one lane at a
time. However, when clearing a lane, the snow is pushed to the right hand side
of the vehicle, pushing it from the middle toward the side of the road segment.
Therefore, if there are multiple lanes in the same direction, a general require-
ment is the need to service the innermost lane first. Where there is a sidewalk
beside a lane, some, or all, of the snow may be shoved on to it, and therefore the
sidewalk must be serviced after the corresponding lane(s). This creates a prece-
dence relation, all lanes must be cleared before the sidewalk can be cleared. The
vehicles plowing the sidewalks are smaller and cannot be used to plow the lanes.
However, the smaller vehicles can traverse the lanes without plowing. This is
often a necessity, as the network of sidewalks may not be connected. Sometimes
the only way to make sure that the sidewalks are serviced after the lanes, is for
the vehicles to wait for the truck to plow the specific lane. It is therefore allowed
for vehicles to wait at intersections.

Due to the large size of the heavy trucks plowing the lanes, U-turns is a rather
problematic, time consuming, and often impossible maneuver for them in urban
areas. For the smaller vehicles clearings the sidewalk, U-turns are possible, but
time consuming since it has to cross all the driving lanes to reach the sidewalk
on the opposite side of the road. Information regarding extra time spent at an
intersection when taking a U-turn, and which intersections where U-turns are
prohibited, is assumed to be known to the planner.
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The goal is to determine one route for each vehicle so that the total time
it takes to clear the snow from the entire road network is minimized, i.e. mini-
mizing the makespan, while adhering to the precedence constraints between the
sidewalks and the lanes, and trying to avoid U-turns. A route for a given vehicle
is a sequence of road segments, and information of whether the road segment
is plowed or deadheaded (driving a road segment without plowing). Note that
since the vehicles clearing the lanes cannot clear the sidewalks and vice versa,
the route only needs to keep track of which road segments are traversed for each
vehicle. In addition, we need to know the time each lane and sidewalk is plowed,
to ensure that the precedence constrains are respected at each road segment.

A similar problem to the one studied in this paper was introduced in [11]
which studies an arc routing problem for snow plowing operations, where mul-
tiple lanes going in the same direction have to be serviced at the same time.
The problem consists set of homogeneous vehicles, where each vehicle has a
maximum number of arcs it can traverse, and the objective is to minimize the
makespan. The problem is solved by a two-phase Adaptive Large Neighborhood
Search heuristic (ALNS). Another similar snow plowing problem is studied in
[2], where the time it takes to deadhead an arc before plowing it is longer than
after it has been serviced. The problem is defined for a single vehicle, and the
objective is to minimize costs associated with the route. To solve the problem
they introduce a local search heuristic. In contrast to the problem studied in this
paper, [11] and [2] consider a homogeneous fleet of vehicles, and a single vehicle,
respectively.

In [4] a vehicle routing problem for snow plowing operations that considers
heterogeneous vehicle fleets is introduced. The presented model is designed to
consider both plowing and salt-spreading operations. The problem is defined on
a mixed multigraph representing unidirectional and bidirectional plow jobs. Un-
like the problem studied in this paper they consider replenishment of consumed
resources such as fuel and salt along a route. However, they do not consider
any type of temporal dependencies, such as precedence, between the different
vehicles. They compare a MIP model, a constraint programming model, and a
two-phase heuristic procedure for solving the problem.

Another paper that considers a heterogeneous fleet for snow plowing opera-
tions is [6], which studies a problem where the set of arcs is divided into non-
overlapping subsets called priority classes, and each class can only be serviced
by a subset of the available vehicles. The vehicles can vary both with respect
to size, and service- and deadheading speed. The problem includes penalties on
U-turns, and synchronization of plowing operations. A mathematical model, and
two constructive methods are presented to solve the problems. A difference be-
tween [6] and this paper is that the model in [6] assumes that all arcs in one
priority set is serviced before the first arc in a lowered priority set (though the
model allows arcs to be upgraded to a higher priority class), while the problem
studied in this paper has precedence relations between pairs of arcs. Thus, the
mathematical formulation presented below explicitly models the service time of
each arc, and allows waiting times before an arc is serviced, while in [6] they
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compare the completion time of the last arc in one priority set to the first arc in
another set.

For a complete overview of earlier papers studying optimization of the routing
of snow plowing vehicles, we refer to the survey presented in [10], while for a
thorough review of other winter road maintenance operations we refer to [7, 8, 9].
For a comprehensive discussion of the capacitated arc routing problem and its
variants, we refer to [1].

The purpose of this paper is to study a new variant of the capacitated arc
routing problem, where there is precedence between when pairs of arcs may
be serviced. We present a new mathematical formulation of the problem, and
several ways in which the computational efficiency of the model may be improved.
Further, we conduct a computational study to inspect the effect of the suggested
improvements to the model, and to study the effect of U-turns on the solution
quality of the problem.

The remainder of the paper is organized as follows: In Section 2 we present
a mathematical model of the problem, before conducting a computational study
of this model in Section 3. Finally, we give some concluding remarks in Section
4.

2 Mathematical Model

The most intuitive way of formulating the arc routing problem with precedence
relations is to extend the capacitated arc routing problem presented by [3], with
the necessary sets and constraints needed for plowing operations. The formula-
tion is a mixed-integer program (MIP).

Let G = (V,A) be a directed multigraph where the vertex set V represents
the nodes in the road network (geographic locations with changes in service
criteria), and the arc set A represents the lanes and sidewalks. If there is a lane
and a sidewalk between the same two nodes, this is represented with two separate
arcs. If there are two lanes in one direction, this is represented by just one arc.
Figure 2 illustrates an example of such a directed multigraph.

We have a set of vehicles K, which is separated into two fleets. Let KL ⊂ K
be the set of plowing trucks for the lanes, and KS ⊂ K be the set of vehicles that
service the sidewalks. The trucks can only drive on and service lanes, while the
vehicles for sidewalks can drive on both lanes and sidewalks, but only service
the sidewalks. Let AS ⊆ A represent the arcs that the vehicles for sidewalks can
traverse, and ÂS ⊆ AS be the set of arcs that have sidewalks with service needs.
Similarly, let AL ⊆ AS represent the arcs that can be traversed by the plowing
trucks, and ÂL ⊆ AL be the set of lanes which have to be serviced.

To fulfill the service demands on different arcs, each vehicle k ∈ K has to
drive a defined route. Each route starts and ends at the depot, and each traversal
of an arc corresponds to a leg, numbered by n, in a route. Since a route can pass
through the depot, D, several times, we define the vertices o(k) and d(k) as the
artificial origin and destination of vehicle k, which are only connected to the
original depot D. An upper bound on the number of legs included in a route
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Fig. 2: An illustration of a directed multigraph. The black dots represent the
nodes, while the blue and green arrows represent the lanes and sidewalks, re-
spectively. The number on each arrow indicates how many lanes and sidewalks
there are on that arc.

is given by n, and we define the set of possible legs, N = {1, ..., n}. As seen in
Figure 2 an arc can have a number of lanes or sidewalks in the same direction.
Let RL

ij and RS
ij be the number of lanes and sidewalks on arc (i, j), respectively.

Further, let Tkij be the time vehicle k uses to service arc (i, j), and TD
kij be

the time vehicle k uses to deadhead arc (i, j). In general, the plowing trucks
use shorter time to service an arc (i, j), compared with the smaller vehicles for
service the corresponding sidewalk, therefore Tkij ≤ Tk̂ij , given k ∈ KL and

k̂ ∈ KS . This means that we only need to consider the start of service a lane and
the corresponding sidewalk in the precedence relation. Let TMax be an upper
bound on the maximum time a vehicle can use on its route.

To penalize U-turns, TU
kij is the time it takes to do a U-turn from arc (j, i)

to arc (i, j) for vehicle k, and ukijn is a binary variable that states whether
vehicle k made a U-turn before it traversed arc (i, j) as leg n, or not. Let the
binary variable xkijn be 1 if vehicle k service arc (i, j) as the nth of its route,
and 0 otherwise. Similarly, let ykijn be 1 if arc (i, j) is traversed by vehicle k
and appears as the nth leg of the route while deadheading, and 0 otherwise.
The variable τkn tracks the end time of service or traversal of leg n in the route
of vehicle k, while tLij and tSij tracks the end time of service of the lanes and

sidewalks on arc (i, j), respectively. Finally, the variable tMS defines the total
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makespan of the solution. For shorthand notation, we denoteAk as the set of arcs
vehicle k can traverse, and for a given vehicle k the sets δ+k (i) = {j|(i, j) ∈ Ak},
and δ−k (i) = {j|(j, i) ∈ Ak}. Using this notation the mathematical model of the
problem can be described as follows:

min tMS (1)

s.t.

xko(k)D1 + yko(k)D1 = 1 k ∈ K (2)
∑

n∈N

(
xkDd(k)n + ykDd(k)n

)
= 1 k ∈ K (3)

∑

k∈KL

∑

n∈N
xkijn = RL

ij (i, j) ∈ ÂL (4)

∑

k∈KS

∑

n∈N
xkijn = RS

ij (i, j) ∈ ÂS (5)

∑

i∈δ−k (j)

(
xkijn + ykijn

)
−

∑

i∈δ+k (j)

(
xkji(n+1) + ykji(n+1)

)
= 0

k ∈ K, j ∈ V\{o(k), d(k)},
n ∈ N ∣∣n < n

(6)

∑

(i,j)∈Ak

(
xkijn + ykijn

)
≤ 1 k ∈ K, n ∈ N (7)

xkij(n−1) + ykij(n−1)+

xkjin + ykjin ≤ ukjin + 1
k ∈ K, (i, j) ∈ Ak,

n ∈ N ∣∣(j, i) ∈ Ak, n > 1 (8)

τkn − τk(n−1) ≥
∑

(i,j)∈Ak

(
Tkijxkijn + TD

kijykijn + TU
kijukijn

)
k ∈ K, n ∈ N|n > 1 (9)

τkn − TMax
(
1− xkijn

)
≤ tLij k ∈ K, (i, j) ∈ ÂL, n ∈ N

(10)

τkn − TMax
(
1− xkijn

)
≤ tSij k ∈ K, (i, j) ∈ ÂS , n ∈ N (11)

τkn ≤ TMax k ∈ K, n ∈ N (12)

tLij − Tkij ≤ tSij − Tk̂ij k ∈ KL, k̂ ∈ KS , (13)

(i, j) ∈ ÂL|(i, j) ∈ ÂS

τkn ≤ tMS k ∈ K, n ∈ N (14)

xkijn ∈ {0, 1} k ∈ K, (i, j) ∈ Ak, n ∈ N (15)

ykijn ∈ {0, 1} k ∈ K, (i, j) ∈ Ak, n ∈ N (16)
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ukijn ∈ {0, 1} k ∈ K, (i, j) ∈ Ak, n ∈ N (17)

τkn ≥ 0 k ∈ K, n ∈ N (18)

tLij ≥ 0 (i, j) ∈ ÂL (19)

tSij ≥ 0 (i, j) ∈ ÂS (20)

The objective function (1) is to minimize the total makespan of the solution.
Constraints (2) and (3) state that each route starts and ends in each vehicle’s
depot, while constraints (4) and (5) ensure that all arcs with demands are ser-
viced. Further, constraints (6) make sure that the plowing routes are connected.
Each vehicle can only traverse one arc in each leg of its route; this is taken
care of by constraints (7). Constraints (8) ensure the U-turn variable to be 1 if a
vehicle take a U-turn, while constraints (9) provide that the vehicles behave con-
sistent according to time. Constraints (10) and (11) connect the time variables,
and constraints (12) ensure that the time of a route does not exceed the upper
bound. Constraints (13) assure that the precedence requirements between the
corresponding lanes and sidewalks hold. Finally, constraints (14) ensure that no
traversal time of a given leg for a given vehicle can be larger than the makespan
of the solution, while constraints (15)–(20) define the domain of the variables in
the model.

2.1 Improvements to the model

As the MIP model described has two homogeneous vehicle fleets, the model can
produce several mathematically different solutions which are practically equiva-
lent by altering which vehicle drives which route in a solution. E.g. given a fleet
of three homogeneous vehicles, and a solution of three vehicle routes, there exist
six ways to assign routes to vehicles which are all practically equivalent (since the
vehicles are identical). To reduce the number of symmetric solutions we intro-
duce two sets of symmetry breaking constraints based on lexicographic ordering
of the vehicle routes based on the consumption of some resource accumulated
along the route. Given that the resource consumption along each route is unique,
this will remove all permutations except for one, while in the case where the re-
source consumption along two or more routes are equal, the lexicographic order
is arbitrary, and some (or all) symmetry may remain in the problem. However,
ffor both sets of constraints there exist (at least one) lexicographic ordering of
the routes, and thus we are ensured that all practically different routing solu-
tions are still present in the model. For more details on lexicographic symmetry
breaking constraints we refer to [5].

The first set of symmetry breaking constraints proposed are based on the
number of arcs traversed by each vehicle along its route. We here formulate
constraints to force the vehicle with the lowest index number to service at least as
many arcs as the vehicle with the second lowest index and so on. The constraints
are given in constraints (21) and (22).
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∑

n∈N

∑

(i,j)∈ÂL

xkijn ≥
∑

n∈N

∑

(i,j)∈ÂL

x(k+1)ijn k ∈ KL
∣∣k < |KL| (21)

∑

n∈N

∑

(i,j)∈ÂS

xkijn ≥
∑

n∈N

∑

(i,j)∈ÂS

x(k+1)ijn k ∈ KS
∣∣k < |KS | (22)

The second set of symmetry breaking constraints proposed are based on the
total duration of the route of each vehicle. We here formulate constraints to force
the vehicle with the lowest index number to drive a route with at least the same
duration as the vehicle with the second lowest index and so on. The constraints
are given in constraints (23) and (24).

∑

n∈N

∑

(i,j)∈ÂL

(
Tkijxkijn − T(k+1)ijx(k+1)ijn

) ≥ 0 k ∈ KL
∣∣k < |KL| (23)

∑

n∈N

∑

(i,j)∈ÂS

(
Tkijxkijn − T(k+1)ijx(k+1)ijn

) ≥ 0 k ∈ KS
∣∣k < |KS | (24)

Note that these two sets of lexicographic ordered constraints cannot be im-
plemented at the same time in the model, and still guarantee optimality. It is
hard to say which symmetry breaking constraints are the best and how well they
will perform. This is further studied in Section 3.

To reduce the solution time when the MIP model is solved by a commercial
software, we may tighten the range of the variables, thus improving the lower
bound - and thereby decrease the solution space for the relaxed formulation.
We know that the earliest time an arc is serviced is the shortest time it takes
to travel from the depot to the start of the arc, plus the service time of the
arc. We therefore introduce the parameters αL

j and αS
j , which state the shortest

travel time from the depot to node j for vehicles in KL and KS , and obtain the
following constraints:

tLij ≥ mink∈KL{αL
i + Tkij} (i, j) ∈ AL (25)

tSij ≥ mink∈KS{αS
i + Tkij} (i, j) ∈ AS (26)

Constraints (19) and (20) in the initial formulation can now be replaced with
constraints (25) and (26), which improves the lower bound of the time variables,
and likely reduce the solution time.

3 Computational Study

In this section we present a computational study of the mathematical model de-
scribed in Section 2. We first present the set of test instances used, before testing
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the computational effect of adding the different improvements of the model sug-
gested in Section 2.1. Finally, we study the impact of adding U-turn penalties or
forbidding U-turns in the model, both when it comes to computational efficiency
and solution quality.

The model has been implemented in the commercial optimization software
Xpress Optimization Suite and run on a computer with a 3.4 GHz Intel Core i7
processor and 32 GB of RAM, running Windows 10 Education. Version 1.24.08 of
Xpress IVE was used, with version 3.10.0 of Xpress Mosel, and version 28.01.04
of Xpress Optimizer.

3.1 Test instances

The test instances are based on fictitious road networks that are set to mimic
those found in urban areas. These generally involve road segments with one lane
in each direction, and 4-way intersections where two perpendicular roads meet.
Additionally, there often exists a sidewalk on one or both sides of the traffic
lanes. The numerical values of the traversing times are based on proportionality,
such that there is a difference between road segments, while they all lie in the
same order of magnitude. All instances have an average traversal time of 5 − 6
time units per arc. Equally, the service time for a sidewalk is longer than that
of the associated lane, if such a lane exist.

A set of 25 test instances have been generated to test the model. These are
grouped into test instances 1 – 10, presented in Table 1, and 11 – 25, presented
in Table 2. For each instance, Table 1 and 2 presents the number of trucks (|KL|)
and smaller vehicles (|KS |) in each instance, as well as the number of nodes (#
Nodes), lanes (# Lanes) and sidewalks (# SW) in the graph representing the
road network. All arcs need to be serviced only once. Further, the number of
arcs with precedence constraints (# Prec), the upper bound on the number of
legs used (# Legs) and the maximum time a vehicle can use on its route (TMax)
is given. Test set 1 is smaller and only used to test the symmetry breaking
constraints and improved bounds, while test set 2 is larger, and used to test the
capabilities of the model.

3.2 Testing the effect of the suggested improvements to the model

To compare the different variations of the models, we have run each of the test
instances in Table 1, without considering U-turn penalties, for a maximum of
1, 000 seconds. The results can be found in Table 3. The column Original model is
the mathematical model with none of the suggested improvements from Section
2.1. In Symmetry Breaking 1 (SB1) we have included constraints (21) and (22)
to the model, while Symmetry Breaking 2 (SB2) includes constraints (23) and
(24). In Increased Bound (IB), the lower bound of the time variables have been
increased. That is, we have replaced constraints (19) – (20) with (25) – (26). In
addition we have tested combining each of the symmetry breaking constraints
with the increased bound. For each variant of the model we report the computing
time (Time) in seconds and the optimality gap (Gap) in percent.
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Table 1: Characteristics of the test instances in Test set 1.

Instance |KL| |KS | # Nodes # Lanes # SW # Prec # Legs TMax

1 1 1 6 10 3 3 17 50
2 2 1 6 10 3 3 17 50
3 2 1 8 18 5 5 17 50
4 3 2 13 32 16 14 17 90
5 2 2 17 42 24 18 28 150
6 3 2 17 42 24 18 28 150
7 3 2 20 48 29 21 35 150
8 4 2 20 48 29 21 35 150
9 3 3 30 78 42 30 45 250
10 4 3 30 78 42 30 45 250

Table 2: Characteristics of the test instances in Test set 2.

Instance |KL| |KS | # Nodes # Lanes # SW # Prec # Legs TMax

11 1 1 7 14 3 3 17 50
12 2 1 7 14 3 3 17 50
13 2 1 11 24 8 6 17 90
14 2 2 11 24 8 6 17 90
15 2 2 15 36 24 18 22 90
16 3 2 15 36 24 18 22 90
17 2 2 20 48 29 21 35 150
18 3 3 20 48 29 21 35 150
19 2 2 30 78 42 30 45 250
20 3 2 30 78 42 30 45 250
21 4 2 30 78 42 30 45 250
22 3 2 40 112 60 46 65 350
23 3 3 40 112 60 46 65 350
24 4 2 40 112 60 46 65 350
25 4 3 40 112 60 46 65 350
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On average, Symmetry Breaking 1 yields the best results, with respect to
computational time, and the second best with respect to the optimality gap. It
is also the only improved model that solves 8 out of 10 instances to optimality
within 1, 000 seconds. The Increased Bound model has the lowest gap on average
and although not performing better than the original model in all test instances,
we conclude that the initial bound on the time variables in general contribute
positively to better bounds on the obtained solutions. It shall be noted, that
when merging Increased Bound and Symmetry Breaking 1, this constitutes a
model that, on average, perform worse than each of them applied separately.
The original model, which, on average, perform among the worst models with
respect to solution time, was the only model to prove optimality on instance 9
within the 1, 000 seconds limit.

We conclude that the Symmetry Breaking 1 model is the best performing, and
have chosen to continue with these lexicographically ordered symmetry breaking
constraints. In the analysis that follows we refer to the Symmetry Breaking 1
model as the Basic model. try to minimize the fleet size, it is not clever to say
that we have an infinite fleet size in the initiate state. It is better to start with
a realistic amount of vehicles, and increase iterative if it should not exist any
feasible solution for the given size within the maximum time for a schedule.

3.3 Effect of penalizing or forbidding U-turns

We now study how forbidding or penalizing U-turns affect the computational
performance and the solution quality of the test instances. When penalizing a
U-turn the cost is given in time units, which in this case is set to 2, a bit less
than half of the average service time for a lane. In the case where U-turns are
forbidden, they are only forbidden for the plowing trucks. Since the vehicles
plowing the sidewalks are smaller, they are allowed to make U-turns, which
corresponds to crossing a lane after plowing a sidewalk, to reach the sidewalk on
the other side. Although allowed, a penalty cost of 2 time units is given for this
maneuver. The results, and a comparison with the Basic model are presented in
Table 4 where all instances have been run for 1, 000 seconds. For each version of
the model, the computational time (Time) in seconds as well as the optimality
gap (Gap) in percent, is given. For the instances with an n/a in the Gap column,
no feasible solution was found within the time limit.

The results show that the computational time is roughly the same for all
three versions of the problem. However, while the Basic model is able to provide
a feasible solution within the time limit on all but one instance (24), penalizing
and forbidding U-turns do not provide a feasible solution within the time limit on
3 and 4 instances, respectively. Forbidding U-turns reduce the number of feasible
solutions to the problem which may explain why Xpress struggles more to find
feasible solutions in this case. In case of U-turn penalties the explanation may
be related to increased fractionality in the solutions, since the u-variables now
indirectly affect the objective value. It is also interesting to note that for instance
24, Xpress is able to find a feasible solution when adding U-turn penalties to the
model, while no feasible solution is found for the two other versions.
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Table 4: Comparison of the computational performance of forbidding U-turns
and penalizing U-turns to the Basic model.

Basic model With U-turn penalty U-turns forbidden

Instance Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%)

11 0 0.00 0 0.00 0 0.00
12 0 0.00 1 0.00 1 0.00
13 1 0.00 2 0.00 1 0.00
14 3 0.00 11 0.00 9 0.00
15 10 0.00 32 0.00 102 0.00
16 13 0.00 102 0.00 43 0.00
17 397 0.00 1000 3.00 219 0.00
18 1000 3.48 1000 11.42 1000 34.01
19 1000 0.29 1000 4.14 1000 10.62
20 1000 4.55 1000 19.36 1000 22.50
21 1000 1.09 1000 25.40 1000 1.76
22 1000 21.89 1000 n/a 1000 n/a
23 1000 49.12 1000 n/a 1000 n/a
24 1000 n/a 1000 42.08 1000 n/a
25 1000 55.13 1000 n/a 1000 n/a

Average 562 9.68 610 8.78 558 6.26

Table 5 compares the optimal solution of the Basic model on instance 11–21
to the optimal solutions of the model when forbidding and penalizing U-turns,
respectively. For each instance and version of the model we give the change in
the number of U-turns performed by trucks (Δ lanes), by small vehicles (Δ SW),
and the change in the makespan (Δ Makespan). The optimal solutions to each
instance was obtained by running the model for several days, however, for the
instances marked with a * and **, we only managed to obtain results within 2
% and 6 % of optimum, respectively.

As shown in Table 5, on average, the number of U-turns performed by the two
vehicle fleets is reduced quite significantly both when penalizing and forbidding
U-turns. This comes at an average increase in the total makespan of less than
three time units. Even in the worst case, the increase in the makespan is only six
time units (instance 18), equal to the maximum traversal time of a single arc. An
interesting anomaly in the results in the case of penalizing U-turns is instance 16,
where the number of U-turns performed by the larger trucks increase. This may
be explained by the fact that any vehicle that drives a route that is significantly
shorter than the route defining the makespan, may perform U-turns without
it affecting the objective value. However, the total makespan of the instance is
increased by 5, indicating that the route defining the makespan has changed
from the Basic model.

The results presented in Table 5 indicate that it is possible to design vehi-
cle routes for the plowing trucks that does not perform any U-turns, without
significantly increasing the total time it takes to clear the road network of snow.
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Table 5: Comparing how the U-turn constraints influence the makespan and the
number and U-turns in the different models.

Time penalty for U-turns U-turns forbidden

Instance Δ lanes Δ SW Δ Makespan Δ lanes Δ SW Δ Makespan

11 -2 0 0 -2 -2 0
12 -1 0 2 -4 0 2
13 -2 0 4 -6 0 4
14 -7 0 0 -7 2 0
15 3 -7 5 -8 -7 5
16 1 -4 5 -11 -4 5
17 -7 -1 0 -7 -3 0
18 -3 0 4** -5 -1 6**
19 -16 -10 1 -16 -3 1
20 -14 0 3 -28 0 4*
21 -13 -2 3* -27 -2 3*

Average -5.55 -2.18 2.45 -11.00 -1.82 2.73

4 Concluding remarks

In this paper we have studied an arc routing problem inspired by a snow plowing
problem faced by planners in Norway. The objective is to minimize the total
time of clearing a road network of snow, but it is complicated by the fact that
there is precedence between pairs of arcs in the network. To solve the problem
we have introduced a mathematical model, and suggested symmetry breaking
constraints to improve the computational performance when solving the model
using commercial software. In addition, we have tested the effect of penalizing
or forbidding U-turns in the model, something which is difficult for the snow
plowing vehicles to do in many urban areas. The results of these tests show that
we can eliminate the need for U-turns in the vehicle routes, with only a marginal
increase in the total time it takes to clear the road network.

Since the mathematical model presented in this paper is unable to solve real-
istic instances of the problem, future research should look into heuristic solution
methods for the problem. In addition, it would be interesting to test the model
presented in this paper on graphs generated from real road networks to cor-
roborate the findings regarding the influence of U-turns on the makespan of a
solution.

187Arc Routing with Precedence Constraints
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Abstract. Besides network design and defining objectives, successful horizon-
tal collaboration among shippers requires another important strategic decision: 
identifying compatible partners. To focus on the problem of coalition forma-
tion, we exploit a bi-objective mathematical model for a two echelon location 
routing problem (2E-LRP) to test if partners fit for the collaboration or not and 
if opportunity for each partner to make economic and environmental benefits 
exists. Extended known instances reflecting the real distribution in urban area 
are regenerated to evaluate several goods’ delivery strategies. Shapley value 
method, belonging to the field of cooperative game theory, is used to allocate 
cost and CO2 emissions to partners of the coalition. This approach proposes a 
coalition formation mechanism allowing the decision makers to measure the 
sustainability performance of partners during the design phase of the coalition. 

Keywords. Horizontal collaboration. Coalition formation problem. Sustainable 
urban road transport. Two-echelon Location Routing problem. Multi-objective 
optimization. Cost allocation 

1 Motivation and description of the problem 

Experts estimate that urban goods movements account for 20 % to 30% of total ve-
hicle kilometers driven [1]. Accordingly, the urban road transport sector can play a 
considerable role in reducing emissions. Today, environmental concerns oblige every 
city to think in how it will be able to meet the increased demand for urban road trans-
portation without underestimating the impact on the environment or even the quality 
of life. To ensure that environmental, social, and economic considerations are fac-
tored into decisions affecting urban transportation activity is the goal of sustainable 
urban transportation [2]. Several strategies with the aim of improving efficiency and 
sustainability from urban road transport have been suggested both in practice and in 
the academic literature. Logistics collaboration is gaining traction as a one of the key 
policies to assure this mission  [3] [4]. 

We talk about collaborative supply chain when two players (or more) of the 
"Supply Chain" seek to optimize together the logistics of the distribution circuit in 
which they are linked [5]. Logistics collaboration was studied in two main areas: Ver-
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tical and horizontal collaboration. The vertical  collaboration  occurs between  mem-
bers  of  the  same  chain  value  (industrial  and distributor) while the horizontal col-
laboration occurs  between  companies (may be competitors or not)  that can  provide  
goods  or  complementary  services [6]. Vertical cooperation has already led to an 
abundant literature. Nevertheless, less attention has given to research on horizontal 
logistics collaboration [7], [8], [9],[10]. Horizontal cooperation can be a means to 
share risk, save costs, increase investments, pool know-how, enhance product quality 
and variety, and launch innovation faster [11]. Also, this type of collaboration contri-
butes in the reduction of environmental impact of distribution activities [12] [13]. 

From the literature of supply chain management, horizontal cooperation was ap-
plied to logistics for the first time in Cruijssen & Salamon  [14] who used a case study 
of flower transport in the Netherland [15]. A good recent reviews on horizontal colla-
boration can be found in [8],[16], and  [17]. 

The importance of the potential economic and environmental benefits of horizontal 
collaboration has been acknowledged in several collaborative projects. In 2014, the 
horizontal collaboration community between shippers (Nestlé & PepsiCo) has won 
the price of “Best European Horizontal Collaboration Project “ as part of The EU-
funded project ‘Collaboration Concepts for Co-modality’, or ‘CO3’ in short1. In this 
project, Nestlé and PepsiCo have bundled the warehousing, co-packing and outbound 
distribution of their fresh and chilled food products to retail customers in Belgium and 
Luxembourg. This coalition can generate 10-15% transport cost savings and even 
more significant CO2 reductions. 

There are several ways for horizontal cooperation: carriers can collaborate with 
each other and  shippers can collaborate among themselves [18]. In existing literature, 
there are few studies on the problem of collaboration between shippers in comparison 
with carriers [16] [19]. 

 From transportation management view, few works studying the environmental 
impact in horizontal collaboration between shippers was found in literature. Ballot & 
Fontane [13] used logistical data from real firms on the retail industry to demonstrate 
the potential saving of CO2 emissions in horizontal collaboration supply chain. Pan 
[20] optimized separately the total transportation cost and the CO2 emission by de-
veloping transportation problem models based on a mixed linear integer programming 
(MILP). Pérez-Bernabeu et al. [18] adapted a set of well-known benchmarks for the 
Multi-depot Vehicle Routing Problem (MDVRP) to illustrate an example of horizon-
tal cooperation between shippers owning the vehicle fleet and to quantify routing 
costs savings both in terms of distance-based costs as well as in terms of environmen-
tal costs due to greenhouse gas emissions. Juan et al. [12] studied the same example 
as [18] but discussed backhaul horizontal collaboration to evaluate the relevance of 
this way in saving routing and environmental costs. Danloup et al. [21] analyzed the 
potential for improving sustainability performance in collaborative distribution by 
measuring the potential improvements regarding the reduced total number of running 
by delivery trucks and also regarding the reduced amount of CO2 emissions. 

 Recently, Montoya-torres et al. [3] used the multi-depot vehicle routing problem 
(MDVRP) for horizontal collaborative delivery between firms and a variant of the 
location–allocation problem to design the transport infrastructure and to quantify the 

                                                           
1 http://www.co3-project.eu/ 
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benefits that can be achieved when collaborative logistics operations are imple-
mented, represented in transportation costs and CO2 reduction. Soysal et al. [10] were 
interested in analyzing the benefits of horizontal collaboration related to perishability, 
energy use (CO2 emissions) from transportation operations and logistics costs in the 
Inventory Routing Problem (IRP) with multiple suppliers. Muñoz-villamizar et al. 
[22] studied the implementation of an electric fleet of vehicles in collaborative urban 
distribution of goods, in order to reduce environmental impacts while maintaining a 
level of service. They proposed an approach using mathematical modeling with mul-
tiple objectives, for tactical and operational decision-making to explore the relation-
ship between the delivery cost and the sustainability impact.  

In existing literature, the optimization of supply chain under horizontal collabora-
tion between shippers was mainly stand on single objective mathematical modeling 
approach dealing with economic concern and the integration of sustainability is ac-
cordingly in his infancy. Thereby, very few papers discussed horizontal cooperation 
using multi-objective decision- making models. Also, the majorities of papers were 
consisting of vehicle routing problem and its variants assuming that strategic facility 
location decisions have met in a prior step and cannot be modified. Daskin et al. [23] 
affirmed that for the location/routing problem, the facility location decisions that 
would be made in isolation are different from this that would be made taking into 
account routing. The overall system cost may be excessive if the two decisions are 
tackled separately [24].  

To overcome this drawback, we quantified in our previous work [25]  the aggre-
gated economic benefit of horizontal collaboration basing on a single-objective two 
echelons Location Routing problem (2E-LRP) model and we performed a posterior 
evaluation of the impact of collaboration in CO2 emissions based on travelled dis-
tances. In [26] and [27] we investigated the potential economic, environmental and 
social effects of combining depot location and vehicle routing decisions in urban road 
freight transportation under horizontal collaboration. We adopted a quantitative ap-
proach based on multi-objective mathematical modeling as a two echelon location 
routing problem (2E-LRP). We have shown that this combination provides significant 
gains on studied metrics than separate decisions. Also decision making about the loca-
tion of depots and the routes of distribution is of great importance and can affect the 
collaborative supply chain.  For interested readers, Drexl & Schneider [28] and Prod-
hon & Prins 2014 [29] published two exhaustive literature reviews of LRP and these 
variants. In particular, Cuda et al. [30] provides an overview of 2E-LRP. 

 Besides network design and defining objectives of collaboration, successful hori-
zontal collaboration requires another important strategic decision: identifying compat-
ible partners. Several methodologies for logistics partner selection were proposed in 
the literature: multi-criteria decision making (MCDM) approaches, optimization ap-
proaches, empirical studies, simulation and/or clustering based approaches, and hybr-
id approaches combining two or more of above [31]. As stated by Amer & Eltawil 
[8], the Analytic Hierarchy Process (AHP), examples of MCDM methods approach, is 
often used for partner selection problem in horizontal collaboration.  

To focus on the problem of partner selection, we exploit the mathematical model 
developed in our previous works, cited above, to test if partners fit for the collabora-
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tion or not and if opportunity for each partner to make economic and environmental 
benefits exists. These conflicting interests of stakeholders drive to a multi-objective 
decision-making problem. 

We are interested to the case of horizontal cooperation between several suppliers 
(shippers) who decide to joint deliveries to their customers located in urban area sub-
contracting the truck service to a private transportation company. We assume that 
authorities prohibit large vehicle to entry to congested areas in the aim of reducing the 
GHG emissions of freight distribution, congestion and accidents. Goods are delivered 
to customers via intermediate depots (e.g Urban Consolidation Centre (UCC)) rather 
than direct shipments. Large trucks are used to transport directly goods to interme-
diate depots where consolidation takes place. After that, products are transferred to 
customers using small vehicles. Delivery to different clients is done in multi-drop. 
The partners’ objective is to minimize, simultaneously, the transportation cost and the 
amount of CO2 emissions of upstream and downstream transportation in a two-
echelon distribution system.  

The main decisions involved in problem described above are: (1) which de-
pots/satellites out of a finite set of potential ones should be used (2) How to assign 
each customer to one open depot (3) How to determine routes to perform distribution. 
The goal is to identify the best coalition to form so that profit and sustainability of 
each collaborating partner are increased. Both collaborative and non-collaborative 
scenarios are compared by the adaptation of known instances of the 2E-LRP reflect-
ing real distribution urban area.  

This is a problem of City Logistics network design. According to Crainic et al. [4], 
this problem focuses in most case on decisions on the number, characteristics, layout, 
and location of facilities such as CDCs and also the vehicle fleets composition and 
size. Fleischmann  [32] was the first to consider multi-trip VRP (vehicle routing prob-
lem) for delivering goods in urban areas [33]. Sterle  [34], Boccia et al. [35] and Crai-
nic et al.[36]  were the first to study the proper two echelon location routing problem 
on two-tier City Logistics systems [4]. Implementing a two-echelon distribution sys-
tem could be an effective response to nuisances associated to freight transportation in 
urban areas [30]. Consolidation is the fundamental concepts of City Logistics [37]. 
Traditional consolidation strategies are becoming limited in providing significant 
improvements as supply chains are independently designed for an industry or a retail-
er. Therefore, new logistics organizations like horizontal collaboration are necessary. 
This strategy aims at medium/long-term strategic collaboration, compared with the 
various opportunistic, local approaches of consolidation [15] [13].  

The proposed mechanism facilitates analysis in that only a single model needs to 
be developed and can then be run for various coalitions. Also, this model has the ad-
vantage in showing explicitly how a change in partners also changes the generated 
gains as well the configuration of the collaborative network. The goal is to present to 
decision makers a preliminary mechanism to gain general insights into beneficial 
coalitions and to determine for each company which coalition to joint.  

As in any collaboration, dividing the coalition gains in a fair manner between the 
participants constitutes a key issue [38]. We investigate  the well-known Shapley 
value, commonly considered as a possible best practice by the industry [39], especial-
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ly, after that the method is gaining popularity as it was put forward by the European 
CO3-project [40] [41]. 

The logistics network studied in this paper is a multistage logistics network includ-
ing factories (F), depots or possible satellites (W) and customers (S). Our modeling 
approach consist of a bi-objective mathematical model for a two echelon location 
routing problem (2E-LRP). The first objective function is the minimization of the 
transportation cost consisting of the sum of satellites opening cost, the handling cost 
in the satellites, the fixed costs of trucks and vehicles and the traversal costs of the 
arcs in the two distribution levels. The second objective function minimizes CO2 
emissions of transportation induced by the heavy trucks in the first echelon and light 
vehicles in the second echelon. The estimation of CO2 emissions was referring to 
European studies as  [42] , [43] and [44]. These  emissions depend  on  the  weight  
carried  by  the  vehicle , on the capacity of the vehicle that is used , on the distance 
traveled  and  the  average  speed  of  the  vehicle. The full mathematical program 
formulation is detailed in [26].  

We solve the presented bi-objective model by the  -constraint method by optimiz-
ing one of the most preferred objective functions (cost), and considering the other 
objective (CO2 emissions) as constraints. Mavrotas [45] provide the basic definitions 
to better understand this method. We will discuss the problem by establishing an ex-
ample in the next section. 

The remainder of this paper is organized as follows. The second Section discusses 
the results of numerical experiments, whereas the last Section deals with our conclu-
sions for the sake of providing a new perspective. 

2 Numerical Experiments  

2.1   Instances Description 
 

In order to make the problem as close to real life as possible, we reused Sterle’s 
instances [34] which reproduce  a reel schematic representation of a multi-level 
urban area. The performance of the developed model is addressed using 6 data sets 
ranging from small-scale instances to large ones. The constructed sets have the fol-
lowing features: number of customers {15,25,40,75,100,200}, number of factories 
{2,3,4,5} ,number of satellites {3,4,5,8,10,20}, demands in the range [1,100], capac-
ities of satellites in the range [550; 950] , opening costs are in the range [45; 75] and 
transshipment costs are in the range [0.02; 0.07], the costs are the Euclidean dis-
tances and they are doubled in the first level. Origin-destination matrixes are regene-
rated according to the specifications of instances I1 explained in [35] (see Figure 1 ). 
For interested readers, these instances are available in 
http://claudio.contardo.org/instances/). The  model  is  implemented  by using com-
mercial solver (MATLAB 2014 ) and tested on  a  2.67 GHz  Core  i5  with  4  GB  
RAM  under Windows 7 environment. In order to replicate the experiments, full 
origin-destination matrices, demand sets and the other parameters are available upon 
request to the corresponding author of this paper. 
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Fig. 1. Satellite distribution in the I1 instances (from [35]) 

2.2   Optimization Approach 
 
In order to provide a useful tool for decision-makers addressing such issues, we 
present two decision-making scenarios: (i) Non collaborative scenario NCS in which 
horizontal collaboration does not exist between the suppliers, (ii) collaborative sce-
nario CS in which horizontal collaboration exists between the suppliers. The 2E-
LRP models can be implemented to analyze both scenarios. 

In the NCS scenario, each manufacturer must define its own distribution scheme 
and solve the model separately. The CS scenario is modeled as a multi-source LRP-
2E (F= {2,3,4,5}).The anticipation of a profitable coalition implies that partners 
share some logistical information (demands, delivery dates, locations of all the cus-
tomers) to develop common distribution patterns. The two scenarios are evaluated 
under single-objective and multi-objective approach. 
 
       Single-objective Approach 
 
First, we opt for a single objective approach to discuss the partner selection problem. 
Two cases are analyzed. Cost minimizing case (C_min) in which the model is 
solved considering only the objective function that minimizes cost and emissions 
minimizing case (Em_min) where the model is solved for optimal levels of CO2 
emissions. The proposed evaluation process consists of a comparison between the 
performance of the non-collaborative scenario and the collaborative one. The per-
formance of the considered coalitions in terms of generated gains is shown in Table 
1 and Fig. 2 
Computational results show that the collaborative cost and CO2 emissions are al-
ways smaller than stand-alone values (see Figure 2).Therefore, the gaps between 
collaborative and non collaborative scenarios are positive ranged in 
[10,10%;39,98%]  for cost in C_min case and in [33,88%; 78,45%] for CO2 emis-
sions in Em_min case. These gains are mainly realized by the reduction in the ship-
ments distances and the number of used vehicles due to the new allocation of cus-
tomers to satellites and the increase of the load rates of vehicles. Results confirm 
that jointly and optimally deciding on the location of depot and route of distribution 
can reduces total logistics costs and have a positive environmental impact under the 
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scenario of collaboration. Numerical examples also show that gains improve as the 
number of partner’s coalition increase meaning that more partners create more sav-
ings. 
     We note that solving larger-sized instances requires much computation time. As 
the LRP-2E is an NP-hard problem combining location and routing decisions, spe-
cific heuristic and  meta-heuristics  approach  must  be  used  in  order  to  tackle  the  
problem  on  large  size instances. 

Table 1. Generated gains in different sets after collaboration  

 Coalitions Non           
collaboration 

Collaboration Gap 

    Cost  
(€)  
 

CO2 
(g/km) 

Cost      
(€)  

CO2 
(g/km)    

Cost     
(€)  

CO2 
(g/km)    

Set F W S C_min Em_min C_min Em_min C_min Em_min 

1 2 3 15 517 5576 465 3687 10.10% 33.88% 

2 3 4 25 1383 48740 1143 25803 17.37% 47.06% 

3 3 5 40 2245 66714 1726 31422 23.12% 52.90% 

4 4 8 75 5319 190213 3735 73118 29.78% 61.56% 

5 5 10 100 9088 359401 5846 109725 35.67% 69.47% 

6 5 20 200 22934 1740580 13765 375095 39.98% 78.45% 

 

  

Fig. 2.  Gap values for collaborative and non collaborative scenarios 

In practice, the majority of horizontal coalitions are formed with two or three 
partner [46]. So, we focus on the case of a network of 3 possible partners, 5 satellites  
and 40 costumers. As firms aim to select the appropriate partners who can sustain 
their competitive advantage [38], It will be interesting  to decisions makers to eva-
luate the sustainability performance of all possible coalitions that can be formed by
the three partners.  

We assume that suppliers have different sizes in terms of the volume of shipped 
products and number of customers: F1(big size/20 customers), F2(medium size/12 
customers) and F3(small size/8 customers). 
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The studied set includes 10 instances generated according to the specifications 
described in Section 2.1. We simulate any possible coalition that can be formed by 
three suppliers from de network: F1 and F2, F2 and F3,F1 and F3 in addition to the 
grand coalition F1,F2 and F3.  An extract of the obtained results for coalition F1 and 
F2 is reported in Table 2 for each instance .The average of generated gains after 
collaboration for all possible coalition are illustrated in Fig. 3. 

Table 2. Comparison between collaborative and non collaborative scenarios in coalition         
F1 & F2 

 
Results confirm the profitability of cooperation in all cases and for all possible coali-
tions. When considering an objective of minimizing transportation cost (C_min 
case), the number of coalition partners affects the total amount of collaborative in a 

    Non Collaboration  Collaboration F1 & F2 Gap 

 Inst  Case Cost(€) CO2(g/km) Cost(€) CO2(g/km) Cost(€) CO2(g/km)

R1 

C_min 1695 114497 1450 111021 14.46% 3.04% 

Em_min 2372 56548 1888 30616 20.40% 45.86% 

R2 

C_min 2016 139077 1794 134688 11.00% 3.16% 

Em_min 2315 57056 1842 30850 20.43% 45.93% 

R3 

C_min 1894 128066 1615 124083 14.75% 3.11% 

Em_min 2134 52083 1660 28440 22.21% 45.39% 

R4 

C_min 1759 118935 1502 112344 14.63% 5.54% 

Em_min 2434 60040 1929 32300 20.75% 46.20% 

R5 

C_min 1911 129946 1668 124841 12.72% 3.93% 

Em_min 2152 53082 1704 28562 20.82% 46.19% 

R6 

C_min 1970 135143 1708 129937 13.30% 3.85% 

Em_min 2018 49502 1590 26700 21.21% 46.06% 

R7 

C_min 1952 131947 1658 127841 15.05% 3.11% 

Em_min 2467 61033 1960 32004 20.55% 47.56% 

R8 

C_min 1800 121674 1537 117988 14.60% 3.03% 

Em_min 2247 55567 1787 29860 20.47% 46.26% 

R9 

C_min 2003 130110 1726 129333 13.83% 0.60% 

Em_min 2080 51720 1650 27724 20.67% 46.40% 

R10 

C_min 1807 122131 1513 119922 16.25% 1.81% 

Em_min 2305 57056 1840 30400 20.17% 46.72% 

AVR

C_min 1881 127153 1617 123196 14.02% 3.11% 

Em_min 2251 55369 1785 29747 20.70% 46.28% 
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positive way for both cost and carbon emissions. When considering an objective of 
minimizing CO2 emissions (Em_min case), the grand coalition generates the greater 
emissions gain and coalition (F3 & F2) generates the greater cost gain. 

 

Fig. 3. Comparison between the aggregated gains generated by all possible coalitions 

The partners are not, generally, interested in the profits generated by the entire al-
liance, but in the impact of the cooperation on their own P&L (profit and lost) in-
stead. Then, before the companies agree to participate in a horizontal cooperation 
scheme, both an estimation of the individual cost and CO2 emissions savings must 
be available. According to (Cruijssen & BV 2013) [41], one of the main challenges 
in horizontal collaboration is to ensure a fair allocation of synergy estimated to all 
partners. Many cost allocation mechanisms were proposed in the literature. Recent-
ly, Guajardo [47] provided a survey on cost allocation methods found in the litera-
ture on collaborative transportation and also described the theoretical basis for the 
main methods as well as the cases where they are used. Several of these methods 
come from previous work on cooperative game theory. Defryn et al. [48] stated that 
no single cost allocation method works best in all situations and many researchers 
acknowledge the need for a case-specific approach. In this work, we use the well-
known Shapley value, belonging to the field of cooperative game theory. The Shap-
ley value method [49] takes into account the partners’ contribution to all possible 
(sub)coalitions. Vanovermeire et al.  [50] explained the calculation method. The 
allocation methods are primarily formulated to distribute gains (cost) among mem-
bers in collaborative scenarios but they are in principle useful for allocating emis-
sions [51]. So, the Shapley value can be used to divide CO2 emissions. 

To be able to divide the two metrics according to the Shapley value, we created 
lists that contain orders of these sub-coalitions and repeating precedent calculation 
for the two cases C_min and Em_min. Results are presented in Fig. 4. 
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 Results show the profitability of cooperation in all cases for all partners. In 
C_min case, the best gains generated by individual partners range in [8,84% ; 
36,99% ] for cost and in [26,74% ; 74,04%] for CO2 emissions. In Em_min case, 
these gains range  in [4,24% ; 51,57% ] for cost and in [23,93% ; 89,31%] for CO2 
emissions. In both cases, we can observe that gains related to cost and CO2 emis-
sions change based on the partner size. When the partner size decreases, these gains 
increase .This can be explained by the fact that the big size partner (F1) has more 
customers and delivered freight and then, more cost and CO2 emissions were allo-
cated to this supplier. Referring to last results, the third and fourth columns of Table 
3 indicates the best partners for each supplier under the minimizing cost and mini-
mizing CO2 emissions approaches. 

Table 3. Best partner for each company in different cases 

  Cases 

suppliers gains C_min Em_min C_st_Em 

F1 
  

Cost Grand coalition F3 F3 

CO2 emissions F2 Grand coalition Grand coalition 

F2 
  

Cost Grand coalition F1 F1 

CO2 emissions F1 F1 F1 

F3 Cost Grand coalition F1 F1 

CO2 emissions F1 F1 F1 

 
In C_min case, the grand coalition is the most profitable for all suppliers in term 

of cost but in term of CO2 emissions and collaborating with F2 maximize generated 
gains for F1 and collaborating with big size supplier F1 maximize generated gains 
for F2 and F3. In Em_min case, F1 prefers F3 to maximize cost gains and the grand 
coalition to maximize CO2 emissions ones. F2 and F3 prefer to collaborate with F1 
to maximize the two metrics. 

 
Multi-objective Approach 
 
Conflicting interests of stakeholders drive to a multi-objective decision-making 
problem. In our problem, decision makers don’t completely known the importance 
of each objective and want to study the sensitivity of the total transportation cost 
versus CO2 emissions reduction (C_St_Em case ). Thereby, a set of efficient solu-
tions can be generated. The goal is giving to decision makers a tool for evaluating 
the solutions provided by the model and choosing the appropriate one to their objec-
tives in terms of the CO2 emissions and transportation cost. We used -constraint 
method to solve this problem. In this method, one objective is selected for optimisa-
tion and the others are reformulated as constraints [52]. By progressively changing 
the constraint values , which represent the limit on CO2 emissions in our case, 
different points on the Pareto-front could be sampled. By calculating the extremes of 
the Pareto-front, the range of different objective functions could be calculated and 
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constraint values selected accordingly. Efficient solutions and the Pareto frontier are 
presented in [53]. The multi-objective optimization helps decision makers to decide 
about the best trade-off by determining the cost of being sustainable from the point 
of reducing transportation emissions. Then, one of the generated solutions can be 
selected. We select the solution  corresponding to the  constraint value   is  slightly  
higher  than  the  optimum  emission level obtained  in Em_min case which seems to 
be an ambitious sustainable solution.  

  

 

 

Fig. 4. Comparison between gains allocated to each supplier in all possible coalitions under  
single-objective approach 

For the members of coalitions, it’s also important to estimate the impact of solu-
tion selected on their cost and emissions in the case of multi-objective approach 
(C_st_Em). As the same way, like single-objective approach, for each instance, we 
simulate any possible coalition that can be formed by the three suppliers from de 
network. Averages of generated gains are summarized in Fig. 5. 
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Fig. 5. Comparison between the total gains generated by all possible coalition in C_st_Em 

 

 

 

 

Fig. 6. Comparison between gains allocated to each supplier in all possible coalitions under the 
multi-objective approach 
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When considering an objective of minimizing cost under environment constraint 
(C_St_Em case), coalition that including more partners increases the total savings 
achieved for carbon emissions but affects the total amount of collaborative cost gains 
in a negative way. As such, a two-partner coalition make economic gains that are on 
average between 3% and 10,5%  higher than those of a coalition with three partners.  

Analyzing the gains allocated to each partner in all possible coalitions (see Fig. 6 
and Table 3), we remark that the benefits of collaboration are not uniform but depend 
on the participating partners. Cooperation with supplier F1 was the most advanta-
geous for suppliers F2 and F3. For F1, Supplier F3 and the grand coalition were, re-
spectively, more beneficial in term of cost and emissions reduction.  

3 Conclusions and Future Work 

Horizontal collaboration between shippers is an important research area given the 
highly competitive environment in which shippers need to operate. This paper 
presents to decision makers a coalition formation mechanism to preliminary evaluate 
the economic and environmental effects of collaborative freight delivery in urban 
areas before that companies agree to participate in a horizontal cooperation scheme. 
This quantitative analysis is based on multi-objective mathematical model for a two 
echelon location routing problem (2E-LRP) to test if partners fit for the collaboration 
or not and if opportunity for each partner to make economic and environmental bene-
fits exists. Extended known instances reflecting the real distribution in urban area are 
regenerated to evaluate several goods’ delivery strategies. Shapley value method, 
belonging to the field of cooperative game theory, is used to allocate cost and CO2 
emissions to partners of the coalition. The obtained results confirm that horizontal 
collaboration leads to a reduction in transport costs and enhances the ecologic per-
formance of partners in such coalitions. Also firms tend to further collaborate when 
the size of the coalitions formed are larger. Shippers differing in average order size 
leads to important results in terms of collaborative profit and smallest companies can 
increase the performance of the network, achieving improvements for generated gains 
in the horizontal collaboration. 
     We highlight that the evaluation of a profitable coalition imply to share some in-
formation about demands, delivery dates and customers’ locations. To guarantee the 
neutrality and confidentiality of the information sharing, an external logistics service 
provider can pilot this process. Sensitive information including customer payments 
and cost structures is unexposed during the collaboration. 
      These conclusions underline the value of using operational research models such 
as the 2E LRP to help shippers investigate the value of careful partner selection. 
Eventually, evaluation and selection of partners for horizontal collaboration is a com-
plex process related to other different factor than profit. 
    We acknowledge the limitations of our experimental study in terms of general va-
lidity of these findings. Reviewing current literature reveals that the results presented 
in this article display clear similarities with the conclusions drawn in other logistics 
horizontal collaboration contexts.  
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As an extension of this work, we can opt for other allocation mechanism to extend 
the analysis and consider additional objectives besides cost and CO2 emissions mini-
mization as customer service level or preference of each partner. Also, to address 
uncertainty in decision makers’ preferences and the lack of information we can com-
bine our mathematical approach with fuzzy set theory. 
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Abstract. In this paper, we study the optimization and mechanism
design for the disaster emergency unit (DEU) scheduling problem mo-
tivated by the 2017 Chile wildfires, which is described as the worst in
Chile’s modern history. We consider a DEU to control wildfires and n
forestry companies. Each forestry company j is located in town j. We
assume these companies do not satisfy all safety conditions in order to
reduce the wildfires impact and then, an emergency induces a damage
function Dj(�j) to the town j, with �j the working time of DEU to con-
trol wildfires in town j. Each forestry company j has private information
about the forest density, which in addition to the feedrate of wildfires
determines its marginal waiting cost pj due to forest working area to
be recovered. In practice, it generates a waiting cost for each forestry
company j, pj

∑
σ(i)≤σ(j) �i, where σ(j) is the position of forestry com-

pany j in the sequence σ. The goal is to determine a schedule defined
by a sequence σ and the working time of DEU � = (�1, . . . , �n) for min-
imizing of the sum of the total damage and the total waiting cost of
the forestry companies subject to constraints on the damage and use of
the working time of DEU. We show that the centralized problem can
be solve Karush-Kuhn-Tucker (KKT) conditions and design an easy-to-
implement truthful mechanism for decentralized problem, charging in
some way the damage to the forestry companies based on the optimal
solution properties obtained from the centralized problem. A numerical
example to illustrate the problem and the usefulness of our contributions
is described.

Keywords: scheduling, disaster emergency unit, mechanism design, truth-
fulness

1 Introduction

The scheduling problems in the disaster operation management (DOM) are high-
lighted as an important factor into policies of national security [9] and considered
as the opportunity to re-visit and re-define operation research, being a likely
and worthwhile growing area in the next 50 years [22]. Indeed, there is increas-
ing recognition of the need for applying centralized and decentralized resolution
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methods in DOM, because it develops a scientific approach to help decision
making before, during and after a disaster [1,7].

In this paper, we are focused on the disaster emergency unit scheduling prob-
lem from both centralized and decentralized perspectives. The goal is to deter-
mine a schedule defined by a sequence of the emergency points to be visited and
the working time on these points aiming at minimizing the total damage [26].
We are motivated by the 2017 Chile wildfires, which is described as the worst in
Chile’s modern history as it destroyed many towns in the central Maule Region,
displacing thousands of people.

Specifically, we consider n forestry companies and a single disaster emergency
unit (DEU) to control wildfires, which supposes a scenario with a limited number
of personnel and specialized equipment. Each forestry company j is located in
town j. We assume these companies do not satisfy all safety conditions in order
to reduce the wildfires impact and then, an emergency induces a damage to the
town j defined by the isoelastic function Dj(�j) := 4dj/(π�

γj

j ), 1 < γj < 2, with
�j the working time of DEU to control wildfires in town j, dj the damage cost
associated to the inhabited area in town j affected by wildfires and, π�

γj

j /4 the
area controlled by DEU in town j. Notice that an isoelastic damage function
makes sense as the percentage change of DEU working time by increasing of
area control implies a decreasing percentage change in the town area where the
damage is induced. Formally, we consider π�

γj

j /4 := εjπ�2j/4 with εj ∈ (0, 1)
decreasing in �j .

Each forestry company j has private information about its forest density,
which in addition to the feedrate of wildfires determines its marginal waiting cost
pj due to forest working area to be recovered. The DEU requests the marginal
waiting costs p̂j from each forestry company j and chooses an arbitrary sequence
σ that indicates the order to visit the towns by DEU, with σ(j) being the position
of town j in the sequence σ.

For convenience, we denote τ(k) the town in the position k in the sequence
σ. Given sequence σ, we have a transfer time rτ(σ(j)−1),j between the town
τ(σ(j) − 1) and town j. We assume an initial point from DEU arrives to the
towns, which could determine a set of towns to be visited in the first position in
sequence σ.

The total cost damage and damage cost of each town j are constrained by D
and Dj , respectively. Similarly, the total and the particular DEU working time
in each town j are constraint by L and �j . These constraints aim to state (i)
lower bounds on total damage and the particular damage of town communities;
and (ii) upper bounds on the total and particular waiting times for DEU of
towns, whose values could be estimated according to the operative constraints
of the DEU (e.g. equipment capacity, working shift, geographic, whether and
environmental conditions, among others) and/or a potential maximum collateral
damage of town communities in this emergency setting. Note that for a working
time �j ≤ a, a constant, Dj(�j) ≥ Dj(a).
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We want to compute the optimal social cost given a sequence σ for working
time of DEU, which is given by

∑
j

Dj(�j) +
∑

j

p̂j

⎛
⎝ ∑

σ(i)≤σ(j)

�σ(i) + rτ(σ(j)−1),j

⎞
⎠ , (1)

subject to ∑
j

�j ≤ L (2)

�j + rτ(σ(j)−1),j ≤ �j ∀j (3)∑
j

Dj(�j) ≤ D (4)

Dj(�j) ≤ Dj ∀j (5)

In this social cost, we consider the conversion of damage and waiting cost
into monetary values and assume for simplification that the conversion factors
are hidden in the damage function.

In this situation, the assumption of centralized problem that the DEU would
know the real waiting cost from the forestry companies, i.e., p̂ = p, would
compute the optimal social cost and consequently, charge directly the damage
generates by each forestry company j may not be feasible. In fact, the implemen-
tation of the optimal allocation could be not possible because the DEU knows
only the announced values p̂, which are not necessary the real values p, and then
a truthful mechanism for the decentralized problem would of interest.

Our Contribution. We show that the centralized problem can be solved by
Karush-Kuhn-Tucker (KKT) conditions and design an easy-to-implement truth-
ful mechanism for the decentralized problem, charging in some way the damage
to the forestry companies based on the optimal solution properties obtained from
centralized problem. A numerical example to illustrative the problem and the
usefulness of our contributions is described.

Related work. In literature, an important problem of fire management is to
decide when and where to suppress wildfires and when and where to light pre-
scribed fires or allow wildfires to burn [11]. This problem has been studied by sev-
eral authors from a centralized perspective, considering various assumptions in
its formulation and different resolution methods for solving, such as: simulation
and stochastic integer programming approach to wildfire initial attack planning
[19], mixed-integer programming model for spatially explicit multi-period land-
scape level fuel management to mitigate wildfire impacts [15], survival analysis
methods to model the control time of forest fires [16], chance-constrained pro-
gramming model to allocate wildfire initial attack resources for a fire season [25],
among others. However, few have tackled the complex social, economic and eco-
logical issues that complicate modern forest fire management [20]. In particular,
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our work addresses both centralized and decentralized perspectives in a scenario
with a limited number of personnel and specialized equipment, which implies
the sequential work of the single DEU available in this emergency situation.

2 Optimizing social cost

We consider the centralized problem consisting in minimizing the sum of the
damage functions and the waiting costs, under the assumption that the DEU
knows the real waiting cost from the forestry companies. Theorem 1 defines the
unique optimal working time of DEU for the town j in the sequence σ.

Theorem 1. Fix a sequence σ and consider the minimization of the social cost
(1) subject to constraints on the working time of DEU (2)- (3), and the damage
(4)- (5). The unique optimal working time of DEU for the town j in the sequence
σ satisfies

�∗j =

⎛
⎝ γjdj4 (1 + λ2 + λ2j)

π
(∑

σ(i)≥σ(j) p̂i + λ1 + λ1j

)
⎞
⎠

1
1+γj

,

where λ1, λ1j , λ2 and λ2j are the KKT multiplier associated to the (2), (3),(4)
and (5), respectively.

Proof. First, we show that the minimization of the social cost subject to the
damage and working time of DEU constraints for a given sequence σ is a convex
programming problem.

We fix a sequence σ. We claim that the minimization of social cost subject
to the constraints on the damage and working time of DEU has convex and
affine constraints and a convex objective function (1). The former statement is
trivial and follows the working time of DEU and damage function definition, i.e.,
D′′

j (�j) = 4(1+γj)γjdj

π(�j)
γj > 0, for 1 < γj < 2 and the latter statement follows from

the first derivative of the objective function (1) in �j

D′
j(�

∗
j ) +

∑
σ(i)≥σ(j)

p̂i,

which is independent of �i for any i �= j, and so its Hessian has zero non-
diagonal terms, whereas the second derivative of the objective function (1) in �j

is D′′
j (�j) > 0. Thus, we have that the diagonal terms of the Hessian are positive,

the Hessian is positive definite and the objective function (1) is convex.
Second, we have that for the above problem the Karush-Kuhn-Tucker (KKT)

conditions give necessary and sufficient conditions on an optimal solution [3]. We
write the Lagrangian associated to the problem, apply the KKT conditions and
have:

D′
j(�j) = −

∑
σ(i)≥σ(j) p̂i + λ1 + λ1j

1 + λ2 + λ2j
= − 4γjdj

π (�j)
1+γj

,
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where λ1, λ1j , λ2 and λ2j are the KKT multiplier associated to the (2), (3),(4)
and (5), respectively.

Third, we obtain the optimal working time of DEU for the town j in the
sequence σ from the above equalities and have

�∗j =

⎛
⎝ γjdj4 (1 + λ2 + λ2j)

π
(∑

σ(i)≥σ(j) p̂i + λ1 + λ1j

)
⎞
⎠

1
1+γj

,

Finally, the uniqueness of �∗j , ∀j follows from the strict monotonicity of D′
j(�j),

concluding the proof.

Note that the minimization of the social cost subject to the damage and use of
working time of DEU constraints for a given sequence σ is a convex programming
problem, which can be solved in polynomial time up to an arbitrary precision
with the Ellipsoid method [17].

3 The mechanism

We study the decentralized problem, in which the DEU knows only the an-
nounced marginal waiting costs p̂ by the forestry companies, which are not
necessarily the real values p.

We introduce our mechanism for the decentralized problem, which charges
aj to every forestry company j depending on the announced marginal waiting
cost p̂ and the use of the optimal working time of DEU �∗ minimizing the social
cost for a given sequence σ from Theorem 1 by applying Karush-Kuhn-Tucker
(KKT) conditions [3].

We consider that every player j wants to minimize the sum of the waiting
cost and the cost share defined by the mechanism pj

∑
σ(i)≤σ(j) �∗i (p̂j , p̂−j) + aj ,

where aj is defined as follows∑
σ(i)≤σ(j)

(1 + γi)(1 + λ2 + λ2i) (Di(�∗i (p̂j , p̂−j)) − Di(�∗i (0, p̂−j)) − p̂j�
∗
i (p̂j , p̂−j)

or equivalently

∑
σ(i)≤σ(j)

(1 + γi)(1 + λ2 + λ2i)
(

di4
π

) 1
1+γi

⎛
⎝
(∑

σ(k)≥σ(i) p̂k + λ1 + λ1i

)
γi (1 + λ2 + λ2i)

⎞
⎠

γi
1+γi

−
∑

σ(i)≤σ(j)

(1 + γj)(1 + λ2 + λ2j)
(

dj4
π

) 1
1+γj

⎛
⎝
(∑

σ(k)≥σ(i) p̂k − p̂j + λ1 + λ1i

)
γi (1 + λ2 + λ2i)

⎞
⎠

γi
1+γi

−
∑

σ(i)≤σ(j)

p̂i

⎛
⎝ γidi4 (1 + λ2 + λ2i)

π
(∑

σ(k)≥σ(i) p̂k + λ1 + λ1i

)
⎞
⎠

1
1+γi
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This mechanism is truthful, which is a desirable property, meaning that every
firm j minimizes its total cost defined as the sum of the waiting cost and the
established cost share by announcing his true value, i.e., p̂j = pj , as shown in
Theorem 2, and then the strategy profile p̂ is an unique pure Nash equilibrium.

Theorem 2. The mechanism is truthful.

Proof. We derive the objective function of player j, which is to minimize the
sum of waiting cost and the defined cost share and have

∂(pj

∑
σ(i)≤σ(j) �∗i (p̂j , p̂−j) + aj)

∂p̂j
=pj

∑
σ(i)≤σ(j)

∂�∗i (p̂j , p̂−j)
∂p̂j

+
∑

σ(i)≤σ(j)

�∗i (p̂j , p̂−j) −
∑

σ(i)≤σ(j)

�∗i (p̂j , p̂−j)

− p̂j

∑
σ(i)≤σ(j)

∂�∗i (p̂j , p̂−j)
∂p̂j

=(pj − p̂j)
∑

σ(i)≤σ(j)

∂�∗i (p̂j , p̂−j)
∂p̂j

We have

∂�∗i (p̂j , p̂−j)
∂p̂j

= − γjdj4 (1 + λ2 + λ2j)
1 + γj

⎛
⎝π

(∑
σ(i)≥σ(j) p̂i + λ1 + λ1j

)
γjdj4 (1 + λ2 + λ2j)

⎞
⎠

γj
1+γj

< 0,

which implies that p̂j = pj minimizes the firm’s total cost, concluding the proof.

4 A numerical example

We perform a numerical example based on 2017 Chile wildfires, which destroyed
many towns in the central Maule Region, displacing thousands of people. We
consider n = 4 towns called Aquelarre (j = 1), Culenmapu (j = 2), Llico
(j = 3) and Tilicura (j = 4), which are located in the affected zone around
the Vichuquén Lake. The route access to these towns is from the freeway J-820,
which constrained to Aquelarre and Tilicura as the first town to visit by DEU in
any sequence. Figure 1 shows the zone of central Maule Region, Chile, in where
the towns are located.

The parameters values and time between towns are estimated from [10,4,5,8]
such as shown Table 1 and 2, respectively.

Later, we compute the optimal solution of the centralized problem by using
the Optimization Tool provided by MATLAB, with a unitary vector initial so-
lution and the following general configuration: (i) Solver: fmincon-Constrained
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Fig. 1: Map of Central Maule Region, Chile, in where the towns are located.

j 1 2 3 4

γj 1.99 1.95 1.80 1.90

dj (USD$ · km2) 4,535,497 4,069,315 73,991,611 7,346,182

pj (USD$/h) 23,292 76,575 187,961 94,716

�j(h) 9.99 11.47 16.45 12.27

Dj (USD$) 60,152 45,114 615,059 80,905

L (h) 24

D (USD$) 12,000,000

Table 1: Parameters of problem

ri,j(h) 1 2 3 4

0 (Freeway J-820) 0.15 - - 0.08

1 - 0.42 0.75 0.22

2 0.42 - 0.15 0.37

3 0.75 0.15 - 0.35

4 0.22 0.37 0.35 -

Table 2: Time between towns

nonlinear minimization; (ii) Algorithm: Interior point; (iii) Derivatives: Approx-
imated by solver; (iv) Function tolerance: 1e-20; (v) Constraint tolerance: 1e-20;
(vi) Max iterations: 50000; (vii) Max function evaluations: 10e6.

Table 3 provides the obtained results from MATLAB for all sequences in a
total execution time less than 60 seconds. The values reported are: the working
time of DEU in each town (�j), the total working time of DEU (

∑
i �i), the dam-

age cost associated to each town (Dj), the ratio between cost share and damage
cost of each town (aj/Dj), the waiting time cost of each forestry company (Cj),
the total cost associated to each forestry company and town (Dj +Cj), the ratio
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between the total costs of forestry company j from the optimal social solution
and the mechanism ((aj + Cj)/(Dj + Cj), the sum of waiting costs (C), the
sum of damage costs (D), the sum of share costs (A), the ratio between the
sum of share costs and the sum of damage costs (D/A), the optimal social cost
(D +C) and the ratio between social cost obtained by using the mechanism and
the optimal social cost ((A + C)/(D + C)).

We highlight that the constraints of the problem are satisfied in strict inequal-
ity, except the constraints on the total working time of DEU equal to 24 hours
for the sequence 4-3-2-1 and the sequence 4-3-1-2. Consequently, the value of
KKT multipliers are zero, except λ1 = 38, 295 and λ1 = 25, 984 for the sequence
4-3-2-1 and the sequence 4-3-1-2, respectively.

For each forestry company j and each sequence, the results in Table 3 show
that the ratio between costs obtained from the optimal social cost and obtained
from the mechanism is small and decreasing in the sequence position of the
forestry company.

While the ratio between the optimal social cost and the mechanism solution
value is bounded by a factor less than 1.5 for all sequences, the ratio between
the total damage cost and the total cost shares is small in comparison to the
upper bound associated to the maximum elasticity value of damage functions.

We highlight that the sequence with the minimum damage and the minimum
social cost could not necessarily have the minimum ratios. Indeed, the sequence
with the minimum social cost is 4-3-1-2, but its ratios D/A=2.21 and (A +
C)/(D + C)=1.46 are third and fourth value in decreasing order, respectively.

5 Final remarks

The minimization of the social cost subject to the damage and use of a type
of resource constraints by finding an optimal sequence could be very difficult
to computed. An interesting approach is the reformulation of the sequencing
problem in another equivalent scheduling problem, for which some computa-
tional complexity results and resolution methods are known from the literature.
For instance, Dürr et al. [6] and Megow and Verschae [13] showed an equiv-

alence between the single machine scheduling problem 1||∑j wjC
γ

γ+1
j and the

minimization of the social cost for a damage function Dj(�j) = w1+γ
j �−γ

j with
γ ∈ [1, 2]. For the above problem, no polynomial algorithm for finding an opti-
mal schedule is known. However, a PTAS in [13] and dominance properties in
[2] for solving this problem have been established.

We highlighted that our mechanism address to a new emergence challenge in
fire management, improving the analytic solutions to predict and sometimes eval-
uate the consequences of implementing alternatives courses the action from a de-
centralized perspective [12]. In practice, our approach could be easily integrated
in a fire management decision support system, giving an easy-to-implement al-
ternative to the classical axiomatic and hard to compute approach of the co-
operative games in generalized characteristic function form to model situations
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sequence 1-3-2-4 1-3-4-2 4-3-2-1 4-3-1-2

�1 (h) 3.12 3.12 5.75 4.53

�2 (h) 3.98 5.24 4.28 4.74

�3 (h) 9.02 9.02 9.33 9.46

�4 (h) 6.09 4.96 3.63 3.67
∑

i �i (h) 23.63 23.95 24.00 24.00

D1 (USD$) 599,327 599,853 177,883 286,220

D2 (USD$) 349,621 205,506 303,560 249,287

D3 (USD$) 1,797,524 1,799,345 1,690,842 1,649,528

D4 (USD$) 302,848 446,838 805,225 789,713

a1/D1 2.87 2.87 2.22 2.47

a2/D2 2.19 2.25 2.01 1.69

a3/D3 1.90 1.89 2.18 2.13

a4/D3 1.36 1.98 2.47 2.46

C1 (USD$) 76,207 76,175 351,910 355,453

C2 (USD$) 2,451,453 2,450,241 2,518,272 2,549,577

C3 (USD$) 1,315,355 1,737,313 415,349 1,442,688

C4 (USD$) 2,238,118 1,833,634 1,837,800 559,008

D1 + C1 (USD$) 675,534 676,028 2,015,683 1,728,908

D2 + C2 (USD$) 1,664,976 2,039,140 718,909 808,295

D3 + C3 (USD$) 4,248,977 4,249,586 4,209,114 4,199,105

D4 + C4 (USD$) 2,540,966 2,184,151 1,157,135 1,145,167

(a1 + C1) /(D1 + C1) 2.66 2.66 1.11 1.24

(a2 + C2) /(D2 + C2) 1.25 1.13 1.43 1.21

(a3 + C3) /(D3 + C3) 1.38 1.38 1.47 1.44

(a4 + C4) /(D4 + C4) 1.04 1.20 2.02 2.01

C (USD$) 6,081,134 6,097,363 5,123,330 4,906,726

D (USD$) 3,049,320 3,051,542 2,977,510 2,974,748

A/D 2.07 2.12 2.25 2.21

D + C (USD$) 9,130,454 9,148,905 8,100,841 7,881,475

(A + C)/(D + C) 1.36 1.37 1.46 1.46

Table 3: Results for illustrative case grouped by sequence. The values reported
are: the working time of DEU in each town (�j), the total working time of DEU
(
∑

i �i), the damage cost associated to each town (Dj), the ratio between cost
share and damage cost of each town (aj/Dj), the waiting time cost of each
forestry company (Cj), the total cost associated to each forestry company and
town (Dj + Cj), the ratio between the total costs of forestry company j from
the optimal social solution and the mechanism ((aj + Cj)/(Dj + Cj), the sum
of waiting costs (C), the sum of damage costs (D), the sum of share costs (A),
the ratio between the sum of share costs and the sum of damage costs (D/A),
the optimal social cost (D + C), the ratio between social cost obtained by using
the mechanism and the optimal social cost ((A + C)/(D + C)).

where the total cost/utility can be distributed among firms, which depend not
only on its members but also on the order/sequence of formation [18,21,24,14].

For future research, we propose to study this problem with uncertainty where
the input data is initially not known precisely. In particular, we refer to take into
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account the inherent stochastic nature of wildfire phenomena [23]; for example,
considering the constant elasticity coefficient of the damage functions into a
bounded interval or defined by a probability distribution.

Finally, we leave open the question about an truthfulness and bound for the
overcharging in our mechanism for an arbitrary damage function into a general
setting where the use sequential of a resource is assumed. Here, two interesting
insights for exploring are: (1) the study of a possible bound for the overcharging
of mechanism by the constant elasticity coefficient of this type damage functions
based on the obtained results in this work; and (2) the definition of the good
features for the damage functions in order to preserve the truthfulness of the
mechanism.
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Abstract. Autonomous Surface Vessels (ASVs) have been involved in
numerous projects since the 1990s. Many ASV projects have been suc-
cessfully realized, and as many are still under development. Together with
the development of those new autonomous vessels, the research on clas-
sification about ASVs has become important. The classifications provide
clarity to researchers, designers, shipbuilders, equipment manufacturers,
ship owners and operators, enabling accurate specification of the desired
level of autonomy in design and operations. Moreover, the involved re-
search paves the way to a clearer understanding of the opportunity and
challenges of research on autonomous vehicles.

In this paper, we introduce the emerging concept of autonomous vessels.
A multi-layer multi-agent control architecture of cooperative transport
systems from the perspective of ASVs is proposed. Moreover, we pro-
vide an overview of existing research on the classification of autonomy.
Based on the analysis, a detailed definition and categorization of au-
tonomy levels for ASVs is proposed starting from the characteristics of
ASVs and existing classification of autonomy. The proposed autonomy
levels categorization assesses the overall autonomy level of a vessel by an-
alyzing the automated sub-systems: Decision, Actions, Exceptions, and
Cooperation. This categorization can be used to analyze existing ASV
prototypes to gain insight into the status and trend of ASV research.

Keywords: Autonomous Surface Vessels; Autonomy level; ASV; Coop-
erative transport systems

1 Introduction

Autonomous Surface Vessels (ASVs) have been involved in numerous projects
since the 1990s. Typically, the goal is to achieve fully autonomous navigation.
The concept of ASV has been well known at an academic level for a while. Re-
cently, industry has began developing full scale vessels for the container and bulk
sectors [3, 15, 27, 26]. Together with the development of those new autonomous
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vessels, the research on classification about ASVs becomes important. The classi-
fications provide clarity to researchers, designers, shipbuilders, equipment man-
ufacturers, ship owners and operators, enabling accurate specification of the de-
sired level of autonomy in design and operations. Moreover, the relative research
paves the way to a clearer understanding of the opportunity and challenges of
research on autonomous vehicles. Lloyd’s Register [13], has published a cate-
gorization of vessels based on the level of autonomy. This is a step forward in
the process to make ASVs a common means of transportation. Other types of
categorization have been adopted by different autonomous applications, like the
one proposed by SAE International, about the level of autonomy in vehicles [2].
However, above mentioned categorizations are not considering all the aspects
subject to automation and the characteristics of vessels.

This paper is organized as follows. An introduction to the concept of ASV and
their role in transport systems is given in Section 2. Following this, three existing
autonomy level categorizations are explained in Section 3. A new autonomy
level categorization is proposed, together with the additional sub-categories in
Section 4. The conclusions of this paper are presented in Section 5

2 Autonomous Surface Vessels

An ASV is a vessel that has achieved a level of autonomy in its employment.

on board or at a remote location.
ASVs have started being developed at an academic level in 1993, when MIT

presented its first vessel called ARTEMIS [18]. The goal of this ship was to
collect bathysphere data along a river. Following this first vessel, many more
institutes have started researching the field of autonomy on board of increasingly
big vessels, up to the more recent proposal by Rolls-Royce and Man Diesel, to
automate cargo and bulk ships [15, 26].

In order to clearly understand the main concept of ASVs, the following part
presents the role of ASVs in a multi-agent, multi-layer cooperative transport sys-
tem. Subsequently, the architecture of an ASV is introduced and the subsystems
found on board are explained.

2.1 Cooperative transport system

The existing vessels are currently used to transport any kind of cargo, from bulk
material, to containers, to people. Being part of a transportation system means
the vessels are not the only actors in the transport environment. The components
in the transport systems are controlled by agents. It is therefore interesting to
analyze the control architecture with extensive communication and cooperation
between the involved agents. Based on the three level planning and control archi-
tecture for transport over water proposed by Zheng et al. [29], we design a four
level multi-layer multi-agent control architecture. Figure 1 shows those levels,
from the point of view of a single agent ASV:
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Figure 1. Multilayer environment for autonomous ASVs

1. Operational level. This is the single agent level. The autonomy of the vessel
is directly related to the dynamics of the vessel. Additionally, it can exchange
information, measurements and actions with the agents found in the same
layer or in the layers above. There must be an enhanced communications
capability.

2. Tactical level. This level comprehends a single layer, considering all the
agents active in a direct connection. For example, as in Figure 1, information
is exchanged between ASVs and infrastructures (locks, bridges, sluices, etc.).
The decision control level of the single ASVs can receive important data
about future disturbances or incoming conditions, adopting different control
strategies based on this information.

3. Strategic level. The ASVs fleet control strategy in the second layer is
connected to all the ASVs and infrastructures found in the first layer. The
entire fleet must be considered and extensive planning must be achieved
analyzing the multiple actions of every agent.

4. Inter-fleet level. The last level in Figure 1 connects the different coordina-
tors found in the shipping environment. The goal of this level is to actively
exchange information, cooperating in order to achieve the optimum controls
of every agent involved in the shipping of goods. The first layers are not
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considered anymore, so the data exchanged will not directly influence the
actions taken on a single ASV. Because the single ASV is not considered
explicitly anymore, this last layer is out of scope for the current research.

In this cooperative transport system, the vessels are equipped with sensors in
order to autonomously navigate or take decisions. The data from those sensors
can easily be shared with the other agents in the same layer or from the layer
above. Furthermore, the control inputs from fleet controller or terminal coordi-
nator must not be communicated to humans but can directly be set as input in
the autonomous control system.

2.2 ASV vessel architecture

To realize autonomous navigation, an ASV needs different parts that are respon-
sible for different functions. These parts are all supported by the hull, the main
element of the vessel. As discussed by [5], [29], and [6], the following subsystems
are found in an ASV (see Figure 2):

– Hull. The task of the hull is to give stability to the vessel and hold necessary
subsystems. The shape of the hull can be different; from simple kayaks [8]
to huge cargo vessels [15, 26], moving through many catamarans [7, 10, 4, 28,
11], sailing boats [21, 24, 14, 9, 20] and an unusual “flying saucer” [12].

– Engine system. Main component of the vessel, gives the ability to move.
Combined with the propeller and the rudder gives direction. The automation
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Figure 2. Subsystems in an ASV [6]
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of this component is related to navigation, control and guidance system.
Further engine monitoring systems can be implemented.

– Communications system. The connection between ship and shore or other
ships. Key point in the automation of the vessel, gives the ability to re-
motely control the current situation and act on future states of the vessel.
Autonomous exchange of data can be implemented.

– Sensors. Sensors are important to retrieve data from environment and the
vessel itself. This inputs are elaborated and transformed in following con-
trols of the actuators. Standard sensor found on board of many vessels are
the GPS, together with the Inertia Measurement Unit (IMU). Further ex-
periments have been performed using stereo vision cameras, laser vision,
LiDARS and Automatic Identification Systems (AIS).

– Navigation, Guidance and Control system. The Navigation, Guidance
and Control system is mainly software based. The task of the system is to
obtain data from the sensors, calculate the desired output that comply with
the optimal solution of the algorithm, and send the outputs
or to another module.

3 Existing autonomy level categorizations

In the previous section, the different components of an ASV have been presented.
In this section, the systems and sub-systems will be related to the autonomy
levels. The existing categorization of ASVs, introduced by Lloyd’s Register [13],
is discussed. The solution adopted by autonomous vehicles [1] is then introduced,
building on longer development. Finally, the influence of the the interaction
between human and machine is discussed, as described by Sheridan [23, 16].

3.1 Lloyd’s Register autonomous ship guidance document

According to Lloyd’s Register [13], an Autonomy level can be assigned to cyber-
enabled ships. Three main tasks have been identified in the levels description:
decisions making, actions taking, exceptions handling. The categorization is fo-
cused on the cyber safety of the vessel, where the hacking of the communication
system is the worst risk. The summary of autonomy levels is given in Table 1.

3.2 SAE International automated driving levels

The SAE Level for autonomous vehicles have been redacted by the Society of
Automotive Engineering to define clear boundaries for autonomous drive. The
levels have been issued for vehicles on wheels, but the solution can easily be
compared with the marine environment. The 6 autonomy levels are characterized
by four tasks, each task is performed either by human or by system or by a
collaboration of both. The summary is found in Table 2.
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Decision Actions Exceptions

AL 0 I. Manual I. Manual I. Manual

AL 1
II. Human in the loop
(On-board data)

I. Manual I. Manual

AL 2
III. Human in the loop
(On- and off-board data)

I. Manual I. Manual

AL 3
IV. Human supervision
(Ship level)

IV. Human supervision
(Ship level)

IV. Human supervision
(Ship level)

AL 4
V. Human supervision
(Broad level)

V. Human supervision
(Broad level)

V. Human supervision
(Broad level)

AL 5 VI. Rarely supervised VI. Rarely supervised VI. Rarely supervised
AL 6 VII. Unsupervised VII. Unsupervised VII. Unsupervised

Table 1. Autonomy Level illustrated as in Lloyd’s Register document [13]

Execution of
Steering and
Acceleration/
Deceleration

Monitoring
of Driving
Environment

Fallback
Performance
of Dynamic
Driving Task

System Capability
(Driving Modes)

SAE 0 I. Human Driver I. Human Driver I. Human Driver n/a

SAE 1
II. Human driver
and system

I. Human Driver I. Human Driver Some driving modes

SAE 2 III. System I. Human driver I. Human driver Some driving modes
SAE 3 III. System III. System I. Human driver Some driving modes
SAE 4 III. System III. System III. System Some driving modes
SAE 5 III. System III. System III. System All driving modes

Table 2. SAE Level for autonomous vehicles [1]

HIGH X. The computer decides everything, acts autonomously, ignoring the human.

IX. Informs the human only if it, the computer, decides to.

VIII. Informs the human only if asked.

VII. Executes automatically, then necessarily informs the human.

VI. Allows the human a restricted time to veto before automatic execution.

V. Execute a suggestion if the human approve.

IV. Suggests one alternative.

III. Narrows the selection down to a few.

II. The computer offers a complete set of decision/action alternatives.

LOW I. The computer offers no assistance: human must take all decisions and actions.

Table 3. Different levels of autonomy as suggested by [23] and [16]
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3.3 Sheridan types and levels of human interaction with automation

Sheridan and Parasuraman [23, 16] have defined a set of 10 levels of interaction
between human and autonomous system, from the computer decides everything
to the computer offers no assistance (see Table 3). The levels are based on the
classic four control concepts:

– Information acquisition: sensing and acquiring input data through the
continuous monitoring of the environment around, or through a communi-
cation channel.

– Information analysis: elaborating received data, trying to create predic-
tive algorithms or integrating different input variables together.

– Decision selection: evaluating different proposals, selecting decision and
action.

– Action implementation: receiving the inputs from the decision made and
has the goal to execute the actions.

3.4 Comparison of existing autonomy level categorizations

In the categorizations proposed by Lloyd’s Register, SAE International and
Sheridan, a system is subdivide in smaller functions or subsystems. Each of
these subsystems is analyzed and labeled with a specific autonomy level. SAE
International and Lloyd’s Register propose an overall classification, based on
the smaller subsystems. However, a overall classification can not give an explicit
insight into subsystems. For example, Lloyd’s register considers the possibility
that a vessel has an autonomous decision making system and all the actions
are human driven (AL 1 and AL 2). On the opposite side, SAE 1 and SAE 2
leave the decision task mainly to the human driver while taking care of the path
following function as most important autonomy parameter. With these catego-
rizations, the existing autonomous vessels usually fall in the SAE 1 or SAE 2
category, having autonomous actions implemented. The current cargo ships are
within the AL 1 or AL 2 from Lloyd’s Register, since decision making support
can already be found on board.

Furthermore, as mentioned in Section 2.2, vessels are not the only actors in
the transport environment. The communication and cooperation between agents
are important functions that should be realized. The previous classifications are
all lacking the explicit concept of cooperation between different agents. Lloyd’s
Register categorization is the only proposal that considers communications and
data coming from the vessel only, or shared by a remote location. This seems like
an hint to a collaboration with the central coordinator, but no explicit reference
is made. If the communication and cooperation is implemented in the current
ASV domain, then information could flow between ships, shore and infrastruc-
tures. Connecting those three data sources can lead to the creation of smart
collaborating multi-agent networks, where information is exchanged to achieve
an overall, more efficient, environment, instead of only optimizing the individual
agent [17].
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Additionally, the categorization proposed by [23] and [16] is quite flexible,
but not directly useful for an overall ASV division.

A key component has been found to contrast between Lloyd’s Register so-
lution and SAE International division. The main topic of the former is the de-
cision making task, which must be addressed before being able to rely on an
autonomous action subsystem. On the other side, the latter, proposes an auton-
omy level that only considers the driving part (equivalent to the actions taking)
of the autonomous vehicle. Furthermore, [23] and [16] seems to support the choice
used in Lloyd’s Register document [13]. The scale defined in the two research is
considering first the achievement in autonomy at a decision making level, and
then further considers the possibility to expand the autonomy by automatically
actuating the physical components.

4 Definition and classification of autonomy levels for
ASVs

Comparing the previous categorizations proposed by Lloyd’s Register, SAE In-
ternational and Sheridan, when defining the autonomy level for ASVs, we can
look in both the subsystems and overall functions. In this section, we propose a
new autonomy level categorization that considers both subsystems and overall
systems.

Our new categorization system considers four main subsystems: decision
making, actions taking, exceptions handling and cooperation. The levels assessed
in each subsystem are going from a lack of interaction between human and com-
puter to a full control of the computer that ignores the human actions. The levels
of first three subsystems scale from 1 to 10. This scale is taken from [23]. For the
newly introduced concept of cooperation in the autonomy scale, the levels are
made by giving an increasing level of cooperation based on the number of agents
the system is able to communicate with. For example, a vessel that is able to
share data (not cooperate) with other agents will have a cooperation level of 2.
A vessel that is better interfaced and can cooperate with vessels and a remote
coordinator will have a cooperation level of 4. The level of cooperation ranges
from 1 to 5. Detailed descriptions are presented in Tables 4 and 5.

The decision making subsystem is the first and easiest to automate; routing
and planning tasks can be autonomously optimized, together with the mainte-
nance schedule. The actions taking subsystem is more complex than the deci-
sion making subsystem, since physically actuated mechanical components are
involved in the control loop. The exceptions handling system is a key part to
obtain an overall high autonomy level, different solutions are being studied to
detect and avoid obstacles. Finally, the cooperation subsystem considers the co-
operation between the vessel and the surrounding environment. Information is
exchanged with other vessels, infrastructures or remote control locations.

Once autonomy levels of the subsystems have been determined, the next
move is to create a general autonomy level classification for the overall system
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of the ASVs. The overall autonomy level is determined by the autonomy levels
of the subsystems.

Many different subsystem autonomy combinations are found in prototypes
and even more could be defined by combining existing technology and working
models. To create a general ASV scale that is able to cover all the possible com-
binations, we adopt sub-levels to consider different variations. However, some
ASVs may have high level autonomy on the decision making system, but a low
level on the action taking. Consequently, a priority is given to a certain sub-
system. By analyzing the existing ASV prototypes, we find that not all ASVs
consider all the four subsystems. For example, the cooperation subsystems have
not been considered in most prototypes. Among the four subsystems, decision
making or actions taking subsystems can be found in almost all the existing.
Therefore, the autonomy level of decision making or actions taking are consid-
ered as the candidates of the priority. As seen in [23] and [13], the decision
making subsystem can easily be integrated in the existing and future vessels.
Hence, the automation of decision making system is considered less important
than the one of the action subsystem. For the same reason, the capability of
autonomous exception handling and cooperation are also regarded as the sign of
higher autonomy.

Besides, many projects and prototypes are considering a variable level of
autonomy, depending on the situation or task being executed by the vessel. This
concept is called “Dynamic autonomy” in [19]. In the our categorization, the
maximum level of autonomy reachable on the vessel will be classified.

In addition, the combination of the autonomy level of the four subsystems
is not randomly. The four subsystems are closely linked. Observed from existing
ASV prototypes, when one of the subsystems has a high autonomy level, the
autonomy level of the other subsystems will not be very low. For example, when
the autonomy level of decision making and action taking is 5, the lowest level
of cooperation is 1; when the autonomy level of decision making and action
taking increase to 6, the lowest level of cooperation is 2. Therefore, when design
the sub-levels, we take the possible combinations of subsystems in existing ASV
projects.

Table 6 defines the main levels. The name of the levels describes their func-
tion. In each levels, there are several sub-levels. The relation between main levels
and sub-level of the overall system and autonomy scales of the subsystems are
explained in Table 7. With these two tables, the overall autonomy level of an
ASV and the autonomy level of its subsystems can be determined. Here, we
use an ASV developed by TU Delft, Delfia-1 [25], as an example. It is able to
make decisions, take acts and handle exceptions autonomously, and inform hu-
man when it is requested. It has the capability to cooperate with other ASVs
and infrastructures. Correspondingly, the Delfia-1 reaches decision making level
8, action taking level 8, exception handling level 8, and cooperation level 5.
Therefore, it has an overall autonomy level 9, sub-level 2.
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Autonomy Level Name
0. Human is alone
1. Human is helped by systems
2. Human is helped by the systems and other agents
3. Autonomous path following vessel
4. Autonomous trajectory tracking vessel
5. Human in the loop
6. Human supervise the decisions making system
7. Human supervise the actions making system
8. Human supervise the exceptions handling system
9. Human supervise actions, decision and exceptions
10. Fully autonomous

Table 6. Main autonomy level classes for ASVs

5 Conclusion and further research

ASVs have seen an increasing development in recent years. The rising number
of projects leads to an increasingly higher autonomy level. To have a better un-
derstanding of autonomy of ASVs, the existing autonomy level categorizations
related to the ASV domain have been presented and analyzed. The solutions
proposed by Lloyd’s Register [13] and by SAE International (related to the Au-
tonomous Surface Vehicles) [2] assess the autonomy level of a specific sub-system
of the ASV only. Even more, the solution proposed by Sheridan [23], which de-
scribe 10 levels of autonomy based on the amount of interactions required to the
human operator, can be a viable alternative to describe the autonomy. However,
an overall level to categorize the future vessels is lacking. Additionally, none of
existing classifications considers the communication and cooperation between
different agents in the transport system.

In this paper, a detailed definition and categorization of autonomy levels for
ASVs are proposed based on the characteristics of ASVs and existing classifica-
tion of autonomy. This new scale uses three subsystems proposed by Lloyd’s Reg-
ister and SAE International: Decision Making, Actions Taking and Exceptions
Handling; a fourth newly added system takes care of the Cooperative Communi-
cation. This last aspect of the autonomy of a vessel has been actively researched
through projects but only a few prototypes have implemented the solution. The
integration of the cooperative sub-system in the new autonomy categorization
wants to be an hint for the future development. The Decision, Actions and Ex-
ceptions subsystems are assessed by means of a scale from 1 to 10, where 1 is
completely human operated and 10 is fully autonomous. The last subsystem,
Cooperative, is evaluated from 1 to 5 based on the number of agents it is able to
communicate with. After evaluating the subsystems, an overall autonomy level
of the entire system can be determined. the overall autonomy level ranged from
0-10. In each autonomy level, sub-levels are designed consider different combina-
tions of the four subsystems. In [22], we provide an extensive overview of existing
ASV prototypes according to this innovative categorization. The tendency and
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Auto-
nomy
Level

Sub
level

Deci-
sion

Ac-
tion

Ex-
cep-
tion

Co-
opera-
tion

Auto-
nomy
Level

Sub
level

Deci-
sion

Ac-
tion

Ex-
cep-
tion

Co-
opera-
tion

0 1 1 1 1 1 6 1 7-8 5 1 1
1 1 1 1 1 2 6 2 7-8 5 2 2
1 2 2-4 1 1 1 6 3 7-8 5 2 3-5
1 3 1 2-4 1 1 6 4 7-8 5 3 2
1 4 1 1 2 1 6 5 7-8 5 3 3-5
2 1 2-4 1 1 3-5 6 6 7-8 5 4 2
2 2 1 2-4 1 3-5 6 7 7-8 5 4 3-5
2 3 1 1 2 3-5 6 8 7-8 5 5-6 2
2 4 1 1 1 3-5 6 9 7-8 5 5-6 3-5
3 1 1 5 1 1 6 10 7-8 6 1 1
3 2 1 5 1 2 6 11 7-8 6 2 2
3 3 2-4 5 1 1 6 12 7-8 6 2 3-5
3 4 2-4 5 1 2 6 13 7-8 6 3 2
3 5 2-4 5 1 3-5 6 14 7-8 6 3 3-5
3 6 2-4 5 2 2 6 15 7-8 6 4 2
3 7 2-4 5 2 3-5 6 16 7-8 6 4 3-5
4 1 1 6 1 1-2 6 17 7-8 6 5-6 2
4 2 1 6 1 3-5 6 18 7-8 6 5-6 3-5
4 3 2-4 6 1 1 7 1 5-6 7-8 1 1
4 4 2-4 6 1 2 7 2 5-6 7-8 1 2
4 5 2-4 6 1 3-5 7 3 5-6 7-8 1 3-5
4 6 2-4 6 2 2 7 4 5-6 7-8 2 2
4 7 2-4 6 2 3-5 7 5 5-6 7-8 2 3-5
5 1 5-6 5 1 1 7 6 5-6 7-8 3 2
5 2 5-6 5 2 2 7 7 5-6 7-8 3 3-5
5 3 5-6 5 2 3-5 7 8 5-6 7-8 4 2
5 4 5-6 5 3 2 7 9 5-6 7-8 4 3-5
5 5 5-6 5 3 3-5 7 10 5-6 7-8 5-6 2
5 6 5-6 5 4 2 7 11 5-6 7-8 5-6 3-5
5 7 5-6 5 4 3-5 8 1 5-6 5 7-8 2
5 8 5-6 5 5-6 2 8 2 5-6 5 7-8 3-5
5 9 5-6 5 5-6 3-5 8 3 5-6 6 7-8 2
5 10 5-6 6 1 1 8 4 5-6 6 7-8 3-5
5 11 5-6 6 2 2 9 1 7-8 7-8 7-8 2
5 12 5-6 6 2 3-5 9 2 7-8 7-8 7-8 3-5
5 13 5-6 6 3 2 10 1 9-10 9-10 9-10 2
5 14 5-6 6 3 3-5 10 2 9-10 9-10 9-10 3-5
5 15 5-6 6 4 2
5 16 5-6 6 4 3-5
5 17 5-6 6 5-6 2
5 18 5-6 6 5-6 3-5

Table 7. Main autonomy level classes and corresponding sub-level
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possible future developments of ASVs are analyzed according to the divisions
obtained.
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Abstract. Autonomous Surface Vessels (ASVs) have been developed for
more than 20 years. Many ASV projects have been successfully realized,
and as many are still under development. In literature there is a lack of
research on the different applications and suitable environments for the
deployment of ASV.
Recently, a detailed definition and categorization of autonomy levels for
ASVs has been proposed based on the characteristics of ASVs and ex-
isting classifications of autonomy. With this innovative autonomy level
classification, this paper presents an extensive overview of existing ASV
prototypes. The tendency and possible future developments of ASVs are
analyzed according to the divisions obtained.

Keywords: Autonomous Surface Vessels; Autonomy level; ASV projects;
ASV prototypes

1 Introduction

Autonomous Surface Vessels (ASVs) have been involved in numerous projects
since the 1990s. The goal is typically to achieve fully autonomous navigation.
The concept of autonomous surface vessel is well known at an academic level, and
is now gaining attention also in full scale vessel development for the container
and bulk sectors [8, 51, 67, 68].

In literature, a lack of research about current development of ASVs has been
observed. Therefore, in this paper, we present an overview of existing projects
to gain knowledge about the emerging concepts and techniques that have been
applied in ASV research. The tendency and possible future developments of
ASVs are analyzed according to the overview.

The remainder of this paper is organized as follows. An overview of existing
ASVs found in literature is presented in Section 2. Detail informations about
the ASV prototypes are introduced in Section 3 according to their autonomy
levels. The tendency and unknown future developments of ASVs are analyzed
according to the divisions in Section 4. Conclusions are discussed in Section 5.
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2 Overview of existing ASV projects

To gain insight into the ASVs prototypes, the existing projects are analyzed in
this section. Different components of the ASVs are compared to obtain a full
picture of the current technologies used in ASV research.

Existing ASV prototypes (includes those under development) that have been
mentioned in literature are presented in Table 1, Table 2 and Table 3. We review
the ASV prototypes based on the components as discussed in [61]. An ASV is
divided in four control subsystems: engine system, communication system, sen-
sors and navigation, guidance and control (NGC) system. The common element
that supports all the those components is the hull. The dimensions, scope and
the deployment year of the ASVs are also presented in the tables.

Most existing ASVs are scaled models. Mainly two types of hull are used,
i.e., single hull and double hull (as catamaran). The main solution in the engine
compartment is the adoption of electric motors together with batteries. If the
vessel should endure in the operations, solar panels or methanol fuel cells are
implied. Another common option, which requires higher level of navigation con-
trol, is using sails as a propulsion system (Project 11, 17, 18, 19, etc.). Several
projects also considered heavy fuel treatment systems, such as Project 51.

Focusing on the NGC system, almost all the prototypes rely on a path fol-
lowing control, coupled with compass, IMU and GPS. The most advanced pro-
totypes are able to detect obstacles, with stereo cameras, LiDAR or ARPA, and
recompute the route in order to avoid them. Some vessels have the function of
dynamic positioning, such as as Project 3, 20, 21, etc.

The communication system in the prototypes is arranged for the information
exchange between vessel and controllers, or to take remote control of the vessels
or with other agents. Wi-Fi and Radio are two main methods.

Detailed descriptions regarding the projects can be found in Section 3, struc-
tured according to the autonomy level they achieved.

3 Autonomy levels of ASV prototypes

3.1 Autonomy level categorization for ASVs

In [61], we proposed an innovative autonomy levels categorization based on the
characteristics of ASVs and existing classification of autonomy. As shown in Ta-
ble 4, the categorization gives an overall autonomy level of a vessel by analyzing
the automated sub-systems: Decision, Actions, Exceptions, and Cooperation.
The Decision, Actions and Exceptions subsystems are assessed by means of a
scale from 1 to 10, where 1 is completely human operated and 10 is fully au-
tonomous. The last subsystem, Cooperative, is evaluated from 1 to 5 based on
the number of agents it is able to communicate with. After evaluating the sub-
systems, an overall autonomy level of the entire system can be determined. the
overall autonomy level ranged from 0-10. In each autonomy level, sub-levels are
designed consider different combinations of the four subsystems. Subsequently,
these existing prototypes are classified based on the autonomy level.
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Table 4. Autonomy levels for ASVs [61]

Auto-
nomy
Level

Sub
level

Deci-
sion

Ac-
tion

Ex-
cep-
tion

Co-
ope-
ration

Auto-
nomy
Level

Sub
level

Deci-
sion

Ac-
tion

Ex-
cep-
tion

Co-
ope-
ration

Human is alone 0 1 1 1 1 1

Human
supervise
the
decisions
making
system

6 1 7-8 5 1 1

Human is
helped by
systems

1 1 1 1 1 2 6 2 7-8 5 2 2
1 2 2-4 1 1 1 6 3 7-8 5 2 3-5
1 3 1 2-4 1 1 6 4 7-8 5 3 2
1 4 1 1 2 1 6 5 7-8 5 3 3-5

Human is
helped by the
systems and
other agents

2 1 2-4 1 1 3-5 6 6 7-8 5 4 2
2 2 1 2-4 1 3-5 6 7 7-8 5 4 3-5
2 3 1 1 2 3-5 6 8 7-8 5 5-6 2
2 4 1 1 1 3-5 6 9 7-8 5 5-6 3-5

Autonomous
path following
vessel

3 1 1 5 1 1 6 10 7-8 6 1 1
3 2 1 5 1 2 6 11 7-8 6 2 2
3 3 2-4 5 1 1 6 12 7-8 6 2 3-5
3 4 2-4 5 1 2 6 13 7-8 6 3 2
3 5 2-4 5 1 3-5 6 14 7-8 6 3 3-5
3 6 2-4 5 2 2 6 15 7-8 6 4 2
3 7 2-4 5 2 3-5 6 16 7-8 6 4 3-5

Autonomous
trajectory
tracking vessel

4 1 1 6 1 1-2 6 17 7-8 6 5-6 2
4 2 1 6 1 3-5 6 18 7-8 6 5-6 3-5
4 3 2-4 6 1 1

Human
supervise
the actions
making
system

7 1 5-6 7-8 1 1
4 4 2-4 6 1 2 7 2 5-6 7-8 1 2
4 5 2-4 6 1 3-5 7 3 5-6 7-8 1 3-5
4 6 2-4 6 2 2 7 4 5-6 7-8 2 2
4 7 2-4 6 2 3-5 7 5 5-6 7-8 2 3-5

Human in the
loop

5 1 5-6 5 1 1 7 6 5-6 7-8 3 2
5 2 5-6 5 2 2 7 7 5-6 7-8 3 3-5
5 3 5-6 5 2 3-5 7 8 5-6 7-8 4 2
5 4 5-6 5 3 2 7 9 5-6 7-8 4 3-5
5 5 5-6 5 3 3-5 7 10 5-6 7-8 5-6 2
5 6 5-6 5 4 2 7 11 5-6 7-8 5-6 3-5
5 7 5-6 5 4 3-5 Human

supervise
the
exceptions

8 1 5-6 5 7-8 2
5 8 5-6 5 5-6 2 8 2 5-6 5 7-8 3-5
5 9 5-6 5 5-6 3-5 8 3 5-6 6 7-8 2
5 10 5-6 6 1 1 8 4 5-6 6 7-8 3-5
5 11 5-6 6 2 2 Human

supervise
actions,
decision
and
exceptions

5 12 5-6 6 2 3-5 9 1 7-8 7-8 7-8 2
5 13 5-6 6 3 2
5 14 5-6 6 3 3-5
5 15 5-6 6 4 2 9 2 7-8 7-8 7-8 3-5
5 16 5-6 6 4 3-5
5 17 5-6 6 5-6 2 Fully

autonomous
10 1 9-10 9-10 9-10 2

5 18 5-6 6 5-6 3-5 10 2 9-10 9-10 9-10 3-5
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3.2 Autonomy levels of ASV prototypes

Table 5 shows the score of each subsystem found on board and the overall auton-
omy level of each prototype. In the last column, the number before the decimal
point is the main autonomy level the ASV belongs to, while the number after the
decimal point is the sub-level. For example, Level 3.2 means the ASV prototype
belongs to sub-level 2 in autonomy level 3.

The most populated main autonomy level is Level 3, which represent an
autonomous path following vessel. The first step is to set up an ASV able to follow
a predefined path, established using coordinates as the keypoints. The sublevel
3.1 represent the ability to only engage an autopilot, sublevel 3.2 implement
the ability to communicate with a remote control, sublevel 3.5 has an updated
decision making system and is able to communicate with other vessels, while
sublevel 3.6 is an improvement in the exceptions handling system. Level 9 is the
highest level that existing prototypes achieve. The sublevel 9.1 has 4 prototypes
able to autonomously set up a route, follow it and avoid the obstacles on the way.
The limitation is the ability to communicate only with a remote control. This
problem is overcome in sublevel 9.2, where the ASVs are able to communicate
with additional means of transportation.

Following are the introduction of prototypes at each level:

Level 0 is the lowest achievable autonomy level. PROTEUS [1] is a twin-hull
innovative concept, the vessel floats on two articulated inflatables. The command
cabin is hanging in between, attached to a dumped structure. The concept has
given birth to smaller ASVs like the WAM-V ASV.

Level 1.1 has three remote-controlled vessels, which is regarded as the first
step toward an autonomous prototype. In [43] and [72], studies about the hulls,
controllers, actuators and dynamic data are accomplished. The Seabax [22, 53]
recognizes QR-codes and will be able to respond accordingly. These binary mark-
ers can be used for several purposes: they could represent a waypoint, a traffic
redirection signal or a building ashore.

Level 1.2 includes a new project sponsored by Rolls Royce [42, 58]. The time-
line plans a first deployment of remote controlled ASV with decision making
support in 2020.

Level 1.3 is found in the ASV proposed by [19] and Circe from [38]. The
controllers onboard are able to store and send time dependent commands to the
actuators. The sets of actions are given in an open loop control, which is not
autonomous given the limited prediction in a highly disturbed environment.

Level 3.1 refers to the vessels which have path following controllers. ALA-
NIS [11] uses a Line-of-sight guidance technique, combined with a Proportional-
Differential (PD) controller. ERON [25] navigate through waypoints with a
Proportional-Integral-Differential controller. These prototypes are not able to
communicate with remote computers.

Level 3.2 is the level which the largest number of ASVs achieve. Those pro-
totypes have path following controllers and remote connection with computers,
but do not have any decision making support system or obstacle detection sys-
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Table 5. Autonomy level of ASV prototypes

No.
Proto-
type

Subsystems Auto-
nomy
Level

No.
Proto-
type

Subsystems Auto-
nomy
Level

De Act Ex Co De Act Ex Co

1 Proteus 1 1 1 1 0 33 CRW 2 5 1 4 3.5
2 ASV MUN 1 1 1 2 1.1 34 USNA 2 5 2 2 3.6
3 ASV SMU 1 1 1 2 1.1 35 IMOCA 60 2 5 2 2 3.6
4 Seabax 1 1 1 2 1.1 36 Tito Neri 1 6 1 3 4.2

5
Rolls Royce

ASV
3 1 1 1 1.2 37 SeaWASP 1 6 1 2 4.4

6
ASV

Prototype
1 2 1 1 1.3 38 Charlie USV 4 6 1 3 4.5

7 Circe 1 2 1 1 1.3 39 Electric boat 5 5 5 2 5.8

8 ALANIS 1 5 1 1 3.1 40
Rolls Royce

ASV 2
5 6 6 2 5.17

9 ERON 1 5 1 1 3.1 41 iNav-1 6 8 1 4 7.3
10 CaRoLIME 1 5 1 1 3.1 42 AVALON 6 8 2 2 7.4
11 ENSIETA 1 5 1 2 3.2 43 MAINAMI 6 8 2 3 7.5
12 DELFIM 1 5 1 2 3.2 44 ROAZ 6 8 2 3 7.5
13 MARV 1 5 1 2 3.2 45 ROAZ II 6 8 2 3 7.5
14 WAM-V 1 5 1 2 3.2 46 SCOUT 5 5 8 3 8.2

15 SCOAP 1 5 1 2 3.2 47
Challenger

2000
5 6 8 2 8.3

16 Zarco 1 5 1 2 3.2 48 WUT-1 6 6 8 2 8.3

17
A-TIRMA

G2
1 5 1 2 3.2 49 ReVOLT 7 8 8 2 9.1

18
A-TIRMA

G1
1 5 1 2 3.2 50 CS Saucer 8 8 8 2 9.1

19 SailBuoy 1 5 1 2 3.2 51 MUNIN 8 8 8 2 9.1
20 OASIS 1 5 1 2 3.2 52 ASAROME 8 8 8 2 9.1

21 WaveGlider 1 5 1 2 3.2 53
PROPAGATOR

2
8 8 8 3 9.2

22 Lizhbeth 1 5 1 2 3.2 54
PROPAGATOR

1
8 8 8 3 9.2

23 Artemis 1 5 1 2 3.2 55
Rolls Royce

ASV 3
8 8 8 4 9.2

24 ACES 1 5 1 2 3.2 56 Delfia-1 8 8 8 5 9.2
25 Swordfish 1 5 1 2 3.2 57 Delfia-1 Star 8 8 8 5 9.2
26 ASV 1 5 1 2 3.2
27 N-Boat 1 5 1 2 3.2
28 Proto 1 1 5 1 2 3.2
29 Proto 2 1 5 1 2 3.2

Project 58, 59, 60 cannot be properly
classified since key data is missing.

30
ASV

ROBOAT
1 5 1 2 3.2

31
WAM-V
USV16

1 5 1 2 3.2

32 VAIMOS 1 5 1 2 3.2
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tem. Moreover, the communication is not cooperative, so the vessel only sends
real-time data and receives information which is needed for navigation.

Sailing boats are found in this autonomy level. Those boats can control the
direction, but they can not manage the speed. The sail position must be adjusted
and the boat can not navigate against wind direction. Tracking algorithms are
used to reach the designated point. [60], [63] and [40, 59] (N-Boat) have presented
solutions. However, they are not able to navigate in complicated paths. The
autonomy devices are implemented, but controllers need to be better arranged.
A-Tirma version 1 [10] and 2 [26] manage the position of the sails through a
fuzzy logic controller.

Sailing boats are especially chosen for the endurance. The power they use
is the wind, which is always available at the sea. The energy required to drive
controllers and actuators can be taken from a solar panel or a wind turbine.
VAIMOS [6] sailed continuously for 19 hours, completing the whole task, which
was expecting to achieve complicated maneuvering. During the test, the lack of
obstacle avoidance capability brought VAIMOS close to a collision for two times.
ASV Roboat [65] navigated for 27 hours in the Baltic sea before a malfunction to
the sail trimmer interrupted the mission. The SailBuoy is able to survive up to
6 months only using the batteries. The SailBuoy has a path following controller,
which gives the possibility to follow certain streams or animals.

However, the power the sailing bosts use is unpredictable, and the shape
makes the vessel limited in the scope. This is why more electric or gasoline fueled
vessels are found in level 3.2. The first documented ASV developed is ARTEMIS
[57]. Developed in 1996, it was already capable of waypoint navigation through
a fuzzy-logic controller of the rudder. The successive ASV, ACES [46], proposed
the same functions with a different hull shape. In the following years, many
others ASV with same capabilities have been developed: DELFIM [3], Zarco
[20], Swordfish [29], Lizbeth [37], the ASV in [56] and WAM-V USV16 [71].

Alternative solutions in terms of fuel have been proposed by OASIS [35] and
Waveglider [36]. The first vessel is entirely covered in solar panels, designed to
withstand the harsh ocean environment. The Waveglider integrate a solar panel,
which powers the sensors and control system, and a submerged unit, which
supply the forward motion through fins and wave motion.

Among those ASVs which achieve Level 3.2, MARV [5] is a fully capable
research vessel assembled using only off-the-shelf components. This technology
is available to everybody, to successfully create ASVs and experiment new con-
troller techniques. In the military scope, the ASVs are being deployed to patrol,
following predefined paths, such as the WAM-V [54]. An attempt to avoid colli-
sion has been made by SCOAP [18], integrating a passive AIS signal emitter to
alert other vessels of the presence of an uncontrolled vessel.

Level 3.5 has a project called CRW [70]. It is a set of identical ASVs, with
an original air propeller, which can be deployed in calm waters (canals, lakes).
The swarm is able to cooperate by exchange information. The core of the control
system is an Android smart phone.
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Level 3.6 of autonomy is achieved by integrating a simple obstacle detectors.
USNA sailing boat [50] has the simple waypoint navigation system, but uses an
ultrasonic range finder to detect obstacles. However, no reaction has yet been
implemented. A similar solution is found on board of the IMOCA 60 sailing
boat [62]. The vessel are made to navigate non-stop around the world. The
sailor on board must take care of his own needs, this is why a robust autopilot is
always integrated. Besides, the AIS system is used to communicate and receive
information about the presence of other vessels in the close proximity [16].

Level 4.2 includes the ASVs which has the function of dynamic positioning.
Tito Neri [23] is a scaled model (1:30) of a real tugboat. It developed to study the
dynamic and platooning\leader following behavior of autonomous ships. Now, it
is mainly used for educational purposes.

Level 4.4 is the ASV which has a trajectory controller, such as SeaWASP
[7, 45]. Her twin-hull is submerged with the use of ballast water to improve
the stability. The controller uses a proportional linear controller to correct the
heading and velocity and minimize the tracking error.

Level 4.5 involves the function of cooperation. The Charlie USV is a cata-
maran which is able to cooperate with a leader vessel. The leader sends GPS
reading to the ASV which uses her trajectory tracking controllers to follow. The
speed is managed to keep a fixed distance respect to the front vessel.

Level 5.8 has the electric vessel developed by Northrop Grumman [64]. The
vessel is able to autonomously navigate and react to obstacles. The stereo vision
is used to define the side of the river or the acceptable limits in the harbor.
Furthermore, the fixed obstacles are discovered with a color blob technique,
while the moving one with motion blobs. The vessel is able to navigate without
any prior map and detect obstacles with the array of cameras.

Level 5.17 refers to a updated version of ASV planned by Rolls Royce project
[58, 42]. By 2030, an autonomous cargo vessel will be presented. She is able to
autonomously navigate, but still requiring full time human remote supervision
of the actions and decision making.

Level 7.3 is achieved by iNav-1 [74]. iNav-1 has the capability of path fol-
lowing and heading control. A pod propulsion USV heading control system is
designed for it based bipolar fuzzy controller. One thing worth to note is that it
is able to cooperate with UAVs for synergetic cruises in maritime supervision.

Level 7.4 is achieved by smart sailing boats, AVALON [33] and MAINAMI
[52]. AVALON uses weather data and a digital nautical chart to plan routes
with a grid-based A* algorithm. The decisions are then passed to the action
subsystem, which translates in actual rudder and sail set up, considering the wind
direction. However, the obstacles are not considered. In AVALON, a passive AIS
system is applied to send information. MAINAMI communicate with underwater
vehicles by means of an acoustic device.

Level 7.5 includes the ROAZ and the follow up ROAZ II [49]. These vessel
navigates with a GPS waypoint controller. The surrounding are explored by two
cameras, which are able to process the images and define the target position.
Once the target is locked, the vessel follows the object at a fixed distance [48].
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Level 8.2 includes the project SCOUT, a set of kayaks [21]. The goal is to
monitor wide shallow areas and cooperate toward this achievement. The common
protocol used to communicate with the remote location gives the ability to these
vessels to avoid collisions with each other. This is not a robust approach as of
now, since exchange of data between vessels is limited. In the future, if rules
change and make mandatory the use of AIS, the simple exchange of information
between vessels could avoid the collision.

Level 8.3 is achieved by SEADOO Challenger 2000 [41] and WUT-1 [17, 44].
Cameras, ARPA radar and AIS, together with detailed nautical charts, give the
vessel the ability to compute long term path. WUT-1 is able to automatically
plan routes according to the navigation objectives and track the preplanned
routes. Moreover, WUT-1 can sense the obstacles and determine an anti-collision
route with A* algorithm and Artificial Potential Field.

Level 9.1 is a quiet high level. Almost all the vessels which have reached this
level are limited to a remote connection, without considering the cooperative
communication with other vessels. It is interesting to notice that all the projects
or prototypes in this level have been published in recent two years.

The sailing boat ASAROME [55] uses a PD controller for tracking. A 360
camera is applied to detect obstacles. This data is combined with the reading
from the underwater sonar and the inertial measurement unit to create a 3D
map for a potential-based reactive path-planning.

The CS Saucer is a small circular autonomous vessel [39]. It is equipped with
a 2D Lidar to explore and maneuver in unknown terrains. Based on the map
made by Lidar, the decision making system can find the path to follow. One
drawback of this highly autonomous experiment is the limited usage in agitated
sea waters. The prototype has only been tested inside a water basin. For this
reason, the vessel is not equipped with a GPS, but relies on IMU for moving.

ReVolt cargo vessel [67, 8] and MUNIN [51] focus on the autonomous vessel
which can be aware of the situation around it, and navigate with an occasional
supervision. In both cases, the remote control is chosen as a fallback option.
Both ReVolt and MUNIN are now ship concepts. For the purpose of testing, the
autonomous capabilities of ReVolt, a 1:20 scaled model has been built.

Level 9.2 is achieved by some on-going projects. PropaGator [31, 30, 34] has
managed to achieve a really high level of autonomy, by using Lidars, camera
vision and cooperation with other autonomous vehicles. PropaGator is able to
recognize and avoid obstacles, recognize signs, and communicate with a quad-
copter to deploy it and recover it once completed the mission. The only lacking is
long term route planning. As of now, the planning is limited to the area explored
by the cameras and LiDAR.

Delfia-1 [66] and the follow up Delfia-1 Star [53] , also reach Level 9.2. Their
shape is designed to make maneuvering applications in crowded environments
easier than actual solutions allowing at the same time the possibility to combine
multiple Delfia ships in one bigger platform. They have already pass the test
of path following, collision avoidance and dynamic positioning. Moreover, they
are capable to communicate and cooperate with not only vessels, but also other
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agents, such as infrastructure operators. The ASVs have a remote controlled
option.

Rolls Royce is aiming to achieve the same level by 2035 with a cargo vessel
[58, 42]. Their goal is to have an autonomous ocean going vessel, which are
able to make decision, take actions and handle exceptions autonomously. The
cooperation can be extended to ports and other vessels in the fleet, in order to
optimize the overall operations.

4 Trends in ASV research

The information summarized in the previous sections have been combined in
order to understand the status and future trends of ASVs in this section. As the
development time of those USV usually lasts more than 3 years, in this section,
we use 3 years as the class interval.

The first focus is on the number of prototypes developed. Fig. 1 shows a large
increase on the number of ASV projects.

As analysis in former section, the autonomy level that most ASVs reached
is Level 3 (Figure 2). However, many on-going projects are aiming at high level
autonomy vessels which are able to make decision, take actions and handle ex-
ceptions autonomously. So far, no ASVs have achieved Level 10 automation.
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The automation of the vessels has been increasing through the years. In
Figure 3, the range of autonomy levels that the projects achieve become larger
because the number increase. The highest level of autonomy that ASVs can
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achieve increase year by year. The realization of vessels with lower autonomy
levels are the basis to develop autonomous vessels with higher autonomy levels.
Moreover, vessels with different level of autonomy have different applications.

Looking into the autonomy level of subsystems (Figure 4), the highest auton-
omy level that the decision making, action taking and exception handling is 8.
Thanks to the development of searching algorithms and autopilot, many vessels
achieve high autonomy level of the decision making and action taking subsystem.
The action taking systems owns the highest level of autonomy with an average
5.4. Then, the decision making system has an average 3.0. The autonomy for the
exception handling system are relatively low. Many prototypes with high overall
autonomy levels still needs human assistances. For the newly introduced coop-
erative subsystem, some research groups have already realized the importance.
Because the concept of cooperation between agents is a new field to explore,
only a limited number of vessels is above Level 2 is found. However, we can still
find a rising trend in Figure 5.

From the perspective of dimensions, most of existing ASVs prototypes are
scaled models whose length are less than 10 m. Some models are serve as test
bench in researching sensor fusion, collision avoidance and other relative software
for the full scale autonomous vessels. Moreover, some small dimension prototypes
are used for scientific purposes, such as maritime monitoring and oceanographic
observation.

5 Conclusions and further research

ASVs have been developed for more than 20 years. In the latest years, it seems
that the technology has reached a point where the usage of those vessel could
become more extended and integrated in the current environment. Small and big
stakeholders are investing on the development of increasingly big autonomous
ships. In the literature, many ASV projects have been successfully realized, and
as many are still under development. Just a few ASV have reached mass pro-
duction, since only a niche market is using those devices. In the literature there
is a lack on research about different applications and suitable environments for
the deployment of ASV.

In this paper, we provide an overview of the existing projects considering
their main components, dimensions, scope and deployment year. The automation
level that each prototypes achieved are elaborated according to an innovative
categorization proposed in our previous work [61]. The analysis about existing
research helps to gain knowledge about the emerging concepts and techniques
that have been applied in ASV research.

Further comparisons between the existing projects has lead to the agreement
that the research on ASVs is rapidly increasing. The autonomy level is following
the same trend, proposing new intelligent solutions. The scope of the newly
designed autonomous vessels is shifting from small ASVs for scientific researches
to bigger cargo crafts. The research of cooperation in ASVs is still at beginning
but shows great potential.
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Abstract. Fuzzy Logic has found significant interest in the context of
global shipping networks due to its applicability to uncertain decision
making environments. Its use has been particularly important when solv-
ing location and equipment selection problems. While being applicable as
a stand-alone technique, Fuzzy Logic has become increasingly interesting
as an added feature within classic Operational Research techniques. This
paper gives an outline of the methodological relevance of Fuzzy Logic at
a strategic, tactical and operational level for maritime operations. In ad-
dition, a general classification of decision problems in maritime logistics
is presented, extending previous classifications in the literature to the
wider context of multiple port networks.

Keywords: Fuzzy Logic, Hybrid techniques, Maritime shipping, Container ter-
minals.

1 Introduction

While the literature on solving decision problems in maritime operations spans
over the diverse field of operational research (Steenken et al. 2004, Stahlbock and
Voß 2008, Böse 2011), Multi-Critieria Decision Making (MCDM) forms an in-
tegral part by enabling the simultaneous or sequential consideration of multiple
objectives or a range of criteria. According to Hwang and Yoon (1981), MCDM
techniques can be classified into two main sets, multi-objective decision making
(MODM) and multi-attribute decision making (MADM). The latter are applied
to the ranking, selection or sorting of multi-dimensional alternatives. In mar-
itime shipping, relevant MADM approaches found in the literature are Analytic
Hierarchy Process (AHP) introduced by Saaty (1977), Elimination and Choice
Expressing Reality (ELECTRE), (Benayoun et al., 1966), Techniques for Pref-
erence by Similarity to the Ideal Solution (TOPSIS), (Hwang and Yoon, 1981),
and Evidential Reasoning and Fuzzy Logic (Zadeh, 1965). The latter has been
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specifically designed to address imprecision and uncertainty in decision prob-
lems. It is based on the use of fuzzy set theory which considers the association of
linguistic terms with crisp numerical input. In combination with a rule base, it
is referred to as a fuzzy inference system (FIS). In contrast to Fuzzy Logic, tra-
ditional MCDM techniques are generally challenged by the inability to address
uncertainty with respect to imprecise information which has led to an increasing
interest in applying Fuzzy Logic across multiple disciplines.

One of the key reasons for applying Fuzzy Logic in decision making are the
existence of fuzziness in the information, rather than randomness in the problem
context (Riedewald, 2011). Moreover, the author states that the non-existence
of a suitable probability distribution or difficulties in obtaining one, as well as
the availability of vague expert information are underpinning the suitability of
Fuzzy Logic.

An increasing interest is observed, particularly, in embedding or combining
fuzzy set theory into traditional strategies to address real-life uncertainty, e.g.
in the problem context of maritime shipping. Hereby, the integration of Fuzzy
Logic is distinguished into three concepts, namely classic stand-alone Fuzzy Logic
approaches, embedded techniques and hybrid strategies. While stand-alone ap-
proaches are predominantly using fuzzy inference systems, embedded fuzzy tech-
niques extend classic operational research strategies by featuring a fuzzy aspect
within the problem formulation or the solution approach. Hybrid approaches use
the combination of an FIS or embedded fuzzy techniques in combination with
traditional non-fuzzy stand-alone approaches.

The goal of this paper is to provide a comprehensive review of decision mak-
ing stages incorporating Fuzzy Logic to address maritime operations. To our
best knowledge, this is the first review of its kind in this sector. The remainder
of the paper is organized as follows. A classification of decision problems in mar-

are investigated using a fuzzy philosophy in the context of a single port and a
multiple port network are presented in Sections 3 and 4, respectively. Section 5
outlines a classification of proposed solution approaches using Fuzzy Logic and
Section 6 outlines concluding remarks.

2 Decision Making in Maritime Operations

Over the years, international trade has significantly increased its volumes sup-
ported by national and international efforts from governments and private or-
ganizations. Investments in transport infrastructure and technology have also
facilitated the exchange of goods in this global environment. However, a signifi-
cant effort in ensuring competitiveness to allow for ongoing economic growth is
required. International trade involves a great number of stakeholders both pub-
lic and private interacting in global supply chains. The different interactions of
stakeholders and the different procedures that need to be undertaken imply very
complex procedures and operations at the different echelons of the port supply
chain network. This also implies higher levels of uncertainty and variability.
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Maritime transport accounts for the highest participation of worldwide for-
eign trade requiring an efficient maritime shipping network configuration as well
as efficient cargo handling at each node of the network. Moreover, maritime ports
form strategic nodes within global supply chain networks providing intermodal
facilities and hence taking a more active role with respect to transshipments as
well as the integration of their hinterland and foreland.

The decision making problems that arise in maritime operations have been
classified into two main categories: problems that arise within a single container
port and problems that arise within a network of muliple ports and other related
terminals (e.g. depots, warehouses, etc.). Furthermore, decisions are also classi-
fied based on the decision level and the layout functions of the terminal (seaside,
yard, gate). Bierwirth and Meisel (2010) provide a classification of problems at a
container terminal focussing on strategic and operational aspects. Figure 1 uses
an extended categorisation for the decision level by extending the set of strategic
and operational decision problems to tactial ones. The key feature to differentiate
between the individual sets of problems is the underlying time horizon. While no
integrating links have been identified in the presented problem classification as
done by Bierwirth and Meisel (2010), a broader view has been undertaken with
the assumption that all problems are somewhat interlinked within a system that
operates as integrated as a port. Furthermore, port networks have been consid-
ered with regards to decision making within the shipping network (seaside) and
the hinterland network (landside).

Fig. 1. Multiple Port Network (MPN) structure

Figure 2 illustrates the classification of decision making problems within a
single container port or a network of container ports. Management evaluation
and assessment tools have been considered in the review. Figure 3 outlines rele-
vant assessment strategies, including maritime-specific considerations.
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Fig. 2. Decision Making Classification - adapted from Bierwirth and Meisel (2010)

Fig. 3. Economic Assessment techniques
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3 Fuzzy Decision Making Within a Container Port

This section reviews existing studies in the context of decision making within
container ports that use Fuzzy Logic to aid the modelling or solving strategy.
The aim is to underpin the diverse applicability of Fuzzy Logic and to iden-
tify patterns with regards to the technique being suitable to particular problem
structures.

3.1 Seaside Decision Making

At the seaside, fuzzy decision making has been predominantly considered for
berth allocation and quay crane management. Hereby, the use of fuzzy tech-
niques was introduced in studies for the berth allocation problem, see Lokuge
et al. (2004), Lokuge and Alahakoon (2007), and Zhou et al. (2006). Further-
more, Vukadinov́ıc and Teodorov́ıc (1994) address berth allocation problems in
the context of river ports introducing a fuzzy strategy to decide the number
of operated barges at river ports. In the context of quay crane assignment and
scheduling problems, Fuzzy Logic has been applied in selecting suitable equip-
ment (Chao and Lin, 2011), automating quay crane operations (Yasunobu and
Hasegawa, 1986; Liu et al., 2005) and the classic quay crane scheduling problem
(Chung and Chan, 2013).

Taking an integrating approach, Exposito-Izquierdo et al. (2016) proposed
fuzzy optimization models to take interdependencies of seaside decisions such as
quay crane scheduling and the berth allocation problem into consideration.

3.2 Yard and Gate Decision Making

Similarly to the seaside operations, decisions in the yard have been addressed in
the context of yard equipment and truck scheduling (Ng and Ge, 2006). More-
over, Fuzzy Logic has been applied to container handling (Jin et al., 2004 and
Seyed-Hosseini et al., 2009), the management of handling and storage equipment
(Homayouni and Tang, 2015), and truck or railyard dispatching (Yu and Zhang
2010, He et al. 2000). Kim et al. (2007) and Ries et al. (2014) apply Fuzzy Logic
in the context of real-time decision making for container stacking policies, while
Zheng et al. (2015) discuss the container loading problem from a multi-objective
point of view. Valdés-González et al. (2014) propose an intelligent system for
container stacking based on a Fuzzy Logic model, considering the case of the
Port of Valparaiso in Chile.

On a strategic level, Fuzzy Logic has been applied to the selection of the
most suitable equipment, i.e. yard cranes (Nooramin et al., 2012) at the gate.

3.3 Economic Assessment

Within a single port, economic assessment studies that employ Fuzzy Logic
methodologies can be distinguished into the following General Management ar-
eas:
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Port Performance and Forecasting

Park and Yeo (2012) and Chiu et al. (2014) propose a framework of evaluation
for environmental sustainability. Duru et al. (2010) propose a bivariate long
term fuzzy inference system to forecasting dry cargo freight rates. The service
requirements of a dedicated container terminal are evaluated by a fuzzy analytic
hierarchy process model by Hsu et al. (2015). The performance of container
handling operations in the BIK container terminal has been analyzed by Jafari
et al. (2013). They employ a Fuzzy TOPSIS approach. Gaonkar et al. (2011)
model the decisive factors that affect transportation systems in the form of
linguistic variables and perform a subjective operational reliability assessment.
The authors extend their work by further proposing two fuzzy reliability models
to model the uncertainty in estimating vessel’s travel time (Gaonkar et al., 2013).

Risk Assessment
Risk assessment studies in the literature mainly investigate the well-known

high level of uncertainty in the context of maritime shipping and its impact on
container yard operations (Yang et al., 2009; Ding and Chou, 2012; Gaonkar et
al., 2013; John et al., 2014; Mabrouki et al., 2014). However, some studies show
a focus on the aspect of safety including terror threats (Yang et al., 2014) and
the operational risk of a ship at sea due to, e.g., weather conditions (Balmat et
al. 2009, Balmat et al. 2011). Saeidi et al. (2013) propose the application of a
fuzzy TOPSIS approach for container terminal risk assessment.

Information Systems and Technology Evaluations
The business intelligence competencies of a port community system (PCS)

in the organizations is evaluated by a fuzzy TOPSIS technique that employ
fuzzy weights of the criteria and fuzzy judgements of the PCS to compute the
evaluation scores and rankings by Ghazanfari et al. (2014). This framework can
be used by ports to support decisions related to the selection of the requirements
and attributes for implementing a PCS.

Knowledge and Human Resource Management

A different perspective is presented by Ung et al. (2006) who assess the impact
of human error in the context of cargo handling in ports. Liang et al. (2012) have
studied the integration of knowledge management into port operations.

4 Fuzzy Decision Making in Port Networks

Following up on the overview of studies using Fuzzy Logic for a single port, this
section reviews existing literature for port networks that have applied Fuzzy
Logic. Fuzzy contributions for decision making at the seaside are mainly asso-
ciated with tactical and operational decision levels, while fuzzy contributions
related to the hinterland are predominantly of strategic nature.

4.1 Seaside Decision Making

The main class of problems that has been addressed using Fuzzy Logic at the
strategic level is port selection. Chou (2007, 2010), Onut et al. (2011), Yeo et al.
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(2014), Wang et al. (2014), Ergin et al. (2015), Zavadskas et al. (2015) address
the port selection problem for a set of existing transshipment port locations, con-
tainer ports, deep water ports and bunkering ports. In an extension to analysing
relevant economic criteria, Chou et al. (2010b) demonstrate the flexibility of
Fuzzy Logic in a multi-criteria context such as selection problems by considering
other criteria such as port facility conditions and volume of containers when
evaluating the suitability of a port in an extension to their initial work.

The tactical and operational decisions in which fuzzy methodologies have
been employed at the seaside for a MPN can be distinguished into the following
key areas:

Empty Container Logistics

Chou (2009), Chou et al. (2010a) and Wang (2007) address the empty con-
tainer location problem aiming to determine optimal numbers of empty con-
tainers at a port or between ports, focussing on the repositioning operations of
containers. Tuljak-Suban and Twrdy (2015) propose a fuzzy multicriteria algo-
rithm to evaluate the impact that the global crisis has on the number of excess
empty containers at the terminals.

Network Design

Network design has been addressed by Chou (2010) whereby an evaluation
of existing transshipment port locations is used to decide upon the planned set-
up of a new transshipment port. Wibowo and Deng (2011) propose a decision
support system for the ship selection problem, in which cargo shipping tasks
are allocated to ships. They propose a rule based approach and the weighting
process is modelled as a fuzzy knowledge base.

Ship Fleet Routing

With regards to shipping management, Chuang et al. (2010) investigate ship
routing taking into consideration economic and operational parameters, while
Wibowo and Deng (2010) consider the case of ship selection studying in partic-
ular the setting of criteria weights.

4.2 Hinterland Decision Making

On a strategic level, various decisions have been addressed using the concept of
Fuzzy Logic, affecting the hinterland from a MPN perspective. Similarly to the
location studies in the context of MPN seaside decisions, the literature shows the
relevance of Fuzzy Logic in the selection of dry port and intermodal hub locations
by Ka (2011) and Kayikci (2011), respectively. With regards to layout design, the
work by Mi and Cheng (2013) investigates the layout of a container centre station
by determining the number of lanes at the gate of a railway container centre.
Finally, cargo allocation to ports has been investigated by Wanke and Bastos
Falcão (2017) who provide an assessment of the cargo allocation patterns to the
ports of Brazil. This has several policy implications such as, e.g., investments in
the development of logistics corridors.
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4.3 Port Performance and Efficiency

The majority of assessment studies take a maritime specific view, including com-
petitiveness analyses of ports and shipping companies, and port development
studies in combination with port performance evaluations. Ha et al., (2017)
provide a hybrid multi-stakeholder framework for modelling port performance
indicators. They define port performance indicators based on the interests and
evaluations of several stakeholders of the port using a fuzzy rule-based algorithm
and a utility technique. Another topic of interest in the literature is related to
the efficiency of a port as discussed by Chao (2017) who provide a multi-stage
data envelopment analysis model to evaluate the efficiency of global liner ship-
ping companies. A fuzzy analytical hierarchical process is employed to prioritize
the stages. Cho et al. (2007) propose the design of benchmarks for improving
container port performance and analyse best practices in this matter. Liu et al.
(2009) focus specifically on the aspect of agility in container terminal operations
and maritime shipping companies.

In analysing competitiveness and using an evaluative strategy, Ran et al.
(2008) and Denisis (2009) investigate the economic strength of container sea
shipping, while Yeo and Song (2006) and Celik et al. (2009) investigate the
competitiveness of a set of container ports. Within a more generall scope, the
competitiveness of Taiwan’s free trade ports is analysed by Chen et al. (2016).

Considering a supply chain perspective, Shao et al., (2016) propose a perfor-
mance evaluation index system for the port supply chain. Their proposal is based
on a balanced scorecard framework, and the evaluation model is constructed us-
ing a fuzzy-matter-element analysis.

Overall, Fuzzy Logic is shown to be of relevance in particular with regards to
context-specific location and selection problems, as well as economic assessment
studies.

5 Fuzzy Strategy Classification

In contrast to the previous section, the following classification distinguishes the
fuzzy techniques in decision making for maritime shipping into stand-alone ap-
proaches, embedded and hybrid designs. The latter two groups make use of a
range of operational research methods including meta-heuristics, mathematical
programming, queueing theory and statistical techniques.

5.1 Stand-Alone Fuzzy Logic Approaches

In maritime shipping, Fuzzy Logic has been applied in different ways depend-
ing on the problem at hand. Vukadinovi and Teodori (1994) introduce a fuzzy
strategy to decide on the number of operated barges at river ports. Wibowo and
Deng (2011) consider the decision of the type of cargo ship given a particular
operational task, while Liu et al. (2005) propose an adaptive control strategy
that supports the selection of most suitable quay crane technology. Similarly,

260 J. Ries et al.



Chou (2007) addresses the selection of transshipment ports from an economic
perspective, while Chou (2010) considers the hub location selection problem for
shipping liners. All the aforementioned studies focus on selection problems de-
signed to handle equipment and develop strategies based on solving the port
selection problem.

5.2 Embedded Fuzzy Logic Strategies

The main driver of AHP is the comparison between two criteria instead of as-
sessing an overall set of criteria combined (Saaty 2000). Analytical Network
Processing (ANP) can be seen as an extension of AHP utilizing a network for
the consideration of critera, alternatives and goals instead of a hierarchy to inte-
grate dependencies. Drawbacks of AHP include the occurrence of rank reversal,
the potential extensive lengths of comparisons needed and the potential limi-
tations of the used preference scale. The latter aspect is partially addressed by
Fuzzy AHP (FAHP) which embeds the concept of fuzzy numbers into the assess-
ment of decision maker comparisons, see e.g. Torfi et al. (2010). FAHP has been
addressed by various performance evaluation studies including the modelling of
green operation performance for ports by Chiu et al. (2014). A comparison of
AHP and FAHP is found in Nooramin et al. (2012) on the equipment selection
problem for yard cranes. The study showed that given the data provided by
decision makers and experts, both approaches did not contradict each other and
result in similar conclusions. Onut et al. (2011) apply FANP to the port selec-
tion problem based on a range of quantitative and qualitative criteria with the
latter being modeled using Fuzzy sets. Ko (2009) applies FAHP to the selection
of intermodal transport routes across countries with respect to, for example,
interconnections, interoperability and legal frameworks.

TOPSIS belongs to the set of MCDA techniques which aims to identify the
best alternative by means of evaluating the (Euclidean) distance to the positive-
ideal (or ideal solution) and negative-ideal solutions, also referred to as Nadir
point. While the required subjective input is limited, the main required infor-
mation needed is the set of criteria-specific weights. Similar to FAHP, Fuzzy
TOPSIS uses fuzzy numbers to transform performance rankings with the aim to
overcome imprecise information. Ghazanfari et al. (2014) use the fuzzy TOPSIS
technique to evaluate the business intelligence competencies of PCSs. Saeidi et
al. (2013) proposed the application of a fuzzy TOPSIS approach for container
terminal risk assessment. The performance of container handling operations in
the BIK container terminal by a fuzzy TOPSIS approach is proposed by Jafari
et al. (2013).

Heuristic and meta-heuristic strategies are popular concepts when address-
ing combinatorial optimization problems providing good solutions in reasonable
time. In the problem-specific context of maritime shipping, Genetic Algorithms
(GA) were found to be a prominent choice. Fuzzy Logic can be incorporated
into a GA framework in different ways. Fuzzy control is one approach to the
reactive strategy of parameter control during a run of a GA (Chung and Chan,

Review of Fuzzy Techniques in Maritime Shipping Operations 261



2013, Homayouni and Tang, 2015). Alternatively, Fuzzy Logic may be incorpo-
rated by applying fuzzy set theory to model input parameters dealing with any
associated imprecision (Chuang et al., 2010).

Mathematical programming is a set of optimization techniques that are based
on the structure of the model. It has been applied to the port allocation prob-
lem in combination with fuzzy set theory in a two-stage model addressing the
demand split and final port destination (Chou et al. 2010b). The authors further
address the empty container allocation problem using a fuzzy inventory model
by applying fuzzy set theory to the input parameters, and solving it by means
of the Kuhn Tucker conditions (Chou 2009, Chou et al., 2010a). Wang (2006)
approaches the empty container allocation problem considering a mathematical
programming approach incorporating dynamic, stochastic and fuzzy features.
Seyed-Hosseini et al. (2009) propose a fuzzy mathematical programming model
for the yard allocation problem. Valdés-González et al. (2014) propose a non-
linear optimization problem in combination with a Fuzzy Logic system for the
container stacking problem.

Agent-based models apply simulation to a network of interacting entities. In
the context of maritime shipping BDI (Beliefs, Desires and Intention) agents
have been applied in combination with fuzzy set theory to model fuzzy beliefs.
For example, Lokuge et al. (2004) introduce a Adaptive Neuro Fuzzy Inference
System (ANFIS) in the context of berth allocation. In an approach to solve the
truck dispatching problem, an agent-based model is proposed in combination
with a Fuzzy Contract Net Protocol (Fuzzy CNP) by Yu and Zhang (2010).

Mi and Cheng (2013) incorporate fuzzy set theory into the development of a
queuing model to address the search for the number of lanes at the door of the
domestic railway container centre station.

DELPHI provides a set of techniques to organize the communication process
within a group in order to comprehend a complex problem. Wang et al. (2014)
apply a combination of Delphi in combination with a fuzzy component that is
used for the understanding of key performance indicators (KPI) within ports
and Fuzzy TOPSIS to address the selection of bunkering ports for liner shipping
companies. Cho et al. (2007) apply DELPHI in combination with FAHP to
conduct a performance assessment of ports on the case of the Busan container
terminal.

5.3 Hybrid Fuzzy Logic Strategies

Kayikci (2010) apply the combination of Artificial Neural Networks (ANN) to-
gether with FAHP to the facility location problem for intermodal freight logistics
centres.

Other MCDA techniques that are applied in maritime shipping decision mak-
ing are ELECTRE and Evidential Reasoning. ELECTRE is a family of MCDA
techniques and was first mentioned in Benayoun et al. (1966) although Bernard
Ron is widely known as the ”father” of ELECTRE. It consists of two main stages,
namely the development of outranking relations and an exploitation procedure.
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Both stages depend on the problem at hand; sorting, ranking or choosing. Sim-
ilarly to TOPSIS, ELECTRE requires less subjective information which given
the non-required pairwise comparisons enables the consideration of a more ex-
tensive set of criteria. In the literature, ELECTRE frameworks incorporating
fuzzy set theory can be found. However, this combination has not been applied
in maritime shipping. Instead Ka (2011) applied the combination of ELECTRE
and FAHP to the dry port location selection.

Factor analysis aims to understand the structure of multiple variables. This
has been applied in the evaluation of green operations in a selection of a set
of Korean ports together with a FIS in order to identify significant evaluating
factors and identify a corresponding ranking of the considered ports, respectively
(Park and Yeo, 2012). Similarly, Chao and Lin (2011) develop a decision support
system to select quay crane technology by identifying relevant criteria using
exploratory factor analysis followed by a FIS to initiate the selection.

A SWOT analysis is used to outline and analyse the Strengths, Weaknesses,
Opportunities and Threats for an entity, concept or process. The economic fea-
sibility of short sea shipping is investigated on the basis of a SWOT analysis
together with the design of a fuzzy inference system to estimate site-specific
costing by Denisis (2009). Liang et al. (2012) apply Fuzzy Logic in combination
with Quality Function Deployment to prioritize knowledge management solu-
tions.

6 Concluding Remarks

Fuzzy Logic has received substantial attention in addressing decision making in
maritime shipping on the strategic, tactical and operational level. Its use has
found particular importance in addressing location or equipment selection prob-
lems as well as suitable space selection for yard operations. In addition, it is
possible to observe that Fuzzy Logic methodologies have been widely applied
in economic assessment contributions such as port performance and efficiency,
as well as risk management. From the perspective of a MPN, few contributions
are found in which the port supply chain have been analysed under a more sys-
temic vision. Neither inter-terminal transportation problems and truck drayage
operations, nor the design and assessment of coordination mechanisms such as
Truck appointment systems have been addressed in the literature using fuzzy
techniques. Given the dynamic operations and the fact that huge numbers of
stakeholders are employed, port performance indicators for landside productiv-
ity analysis can be developed using a Fuzzy Logic approach, such as the Fuzzy
AHP and agent-based models to capture the interactions of the different stake-
holders.

The key emerging research direction that has found increasing interest with
the research community in maritime decision making is the increase of inte-
gration by developing solving strategies to address problems simultaneously. In
practice, container terminal managers do not solve each problem individually
and there are important trade-offs and interactions that have to be considered
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by the decision makers. Based on the papers reviewed, only Exposito-Izquierdo
et al. (2016) address an integrated problem of berth allocation and quay crane
scheduling implementing a fuzzy element. From the perspective of shipping line
companies, some contributions can be found in terms of evaluating the efficiency
of operations and empty container repositioning problems. However, in terms of
fleet deployment and ship routing and scheduling, no contributions using Fuzzy
Logic techniques are found in the literature.

The movement of containers between terminals and typically drayage oper-
ations is referred as the inter-terminal transportation problem (Tierney et al.,
2014). None of the contributions in the literature has applied Fuzzy Logic tech-
niques, representing a potential area for research as some of the decisions related
to assignment of equipment and priorities may have fuzzy components. Other
related problems focused on the coordination of truck arrivals at the gate of
the port terminals have been also studied in the literature but none has applied
Fuzzy Logic techniques in their analysis (Giuliano and Obrien, 2007; Zehendner
and Feillet, 2014).

Another research gap that could be identified is related to the container stack-
ing problems which is characterised by a high level of uncertainty which leads
to a trade-off between the planning horizon and the risk of disruptions. Import
containers, for example, may be assigned variable dwell times which makes it
hard to determine the best location to reduce rehandles. Few contributions are
found in the literature dealing with this type of problems using Fuzzy Logic.

In the same line of new technologies and the era of digitalization, further
analysis can be studied in terms of evaluating the impacts of information systems
such as PCS for the electronic data interchange. Furthermore, protocols such as
blockchain and the use of sensors and IoT to support the business processes of
ports and the exchange of information can be evaluated to estimate benefits and
derive recommendations. In this regard, the use of Fuzzy Logic techniques to
account for different factors and perspectives can be very useful.

In summary, the literature has shown that while Fuzzy Logic can address a
problem in form of a stand-alone approach, it was shown that Fuzzy Logic has
gained more importance when being integrated into well-performing operational
research techniques within a highly dynamic environment such as port networks.

Being provocative, one can conclude that mainstream combinatorial opti-
mization problem solving and Fuzzy Logic have not yet really found each other.
Both sides seem not to utilise the other with appropriate recognition in turn. To
overcome this situation is the most important future issue in this realm.
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22. Ayfer Ergin, İpek Eker, and Güler Alkan. Selection of container port using electre
technique. Management, 4(4):268–275, 2015.

23. C. Expósito-Izquiero, E. Lalla-Ruiz, T. Lamata, B. Melián-Batista, and J. M.
Moreno-Vega. Fuzzy optimization models for seaside port logistics: berthing and
quay crane scheduling. In Computational Intelligence, pages 323–343. Springer,
2016.

24. R.S.P. Gaonkar, M. Xie, K.M. Ng and M.S. Habibullah. Subjective operational

25. R.S.P. Gaonkar, M. Xie, and X. Fu. Reliability estimation of maritime transporta-
tion: A study of two fuzzy reliability models. Ocean Engineering, 72:1–10, 2013.

26. M. Ghazanfari, S. Rouhani, and M. Jafari. A fuzzy topsis model to evaluate the
business intelligence competencies of port community systems. Polish Maritime
Research, 21(2):86–96, 2014.

27. G. Giuliano and T. O’Brien. Reducing port-related truck emissions: The terminal
gate appointment system at the ports of Los Angeles and Long Beach. Transportation
Research Part D: Transport and Environment, 12:460–473, 2007.

28. M.-H. Ha, Z. Yang, T. Notteboom, A.K.Y Ng, and M.-W. Heo. Revisiting port
performance measurement: A hybrid multi-stakeholder framework for the mod-
elling of port performance indicators. Transportation Research Part E: Logistics
and Transportation Review, 103:1–16, 2017.

29. S. He, R. Song, and S.S. Chaudhry. Fuzzy dispatching model and genetic algorithms
for railyards operations. European Journal of Operational Research, 124:307–331,
2000.

30. S. M. Homayouni and S. Hong. A fuzzy genetic algorithm for scheduling of han-
dling/storage equipment in automated container terminals. International Journal
of Engineering and Technology, 7(6):497–501, 2015.

31. W.-K.K. Hsu, H.-F. Yu, and S.-H.S. Huang. Evaluating the service requirements
of dedicated container terminals: a revised ipa model with fuzzy ahp. Maritime
Policy & Management, 42(8):789–805, 2015.

32. C.L. Hwang and K. Yoon. Multiple Attribute Decision Making: Methods and Ap-
plications. Springer, New York, 1981.

33. H. Jafari, N. Saeidi, A. Kaabi, E. Noshadi, and H. R. Hallafi. Analysis of perfor-
mance in container handling operation by using fuzzy TOPSIS method. International
Review of Basic and Applied Sciences, 1(6):148–155, 2013.

34. C. Jin, X. Liu, and P. Gao. An intelligent simulation method based on artificial
neural network for container yard operation. In Advances in Neural Networks -
ISNN 2004, Lecture Notes in Computer Science 3174, pages 904 – 911, 2004.

35. A. John, D. Paraskevadakis, A. Bury, Z. Yang, R. Riahi, and J. Wang. An
integrated fuzzy risk assessment for seaport operations. Safety Science, 68:180–194,
2014.

266 J. Ries et al.

reliability assessment of maritime transportation system. Expert Systems with Appli-
cations, 38:13835–13846, 2011.

19. A. Denisis. An economic feasibility study of short sea shipping including the esti-
mation of externalities with fuzzy logic. PhD thesis, University of Michigan, 2009.



36. B. Ka. Application of fuzzy AHP and ELECTRE to China Dry port location
selection. The Asian Journal of Shipping and Logistics, 27:331–335, 2011.

37. Y. Kayikci. A conceptual model for intermodal freight logistics centre location
decisions. Procedia-Social and Behavioral Sciences, 2:6297–6311, 2010.

38. Y.H. Kim, T. Park, and K.R. Ryu. Dynamic weight adjustment for developing
a stacking policy for automated container terminals. In International Conference
on Intelligent Manufacturing and Logistics Systems (IML 2007), pages 26–28, Ki-
takyushu, Japan, 2007.

transportation network. KMI International Journal of Maritime Affairs and Fish-
eries, 1:51–70, 2009.

40. G.S. Liang, J.-F. Ding, and C.-K. Wang. Applying fuzzy quality function deploy-
ment to prioritize solutions of knowledge management for an international port in
Taiwan. Knowledge-Based Systems, 33:83–91, 2012.

41. D. Liu, J. Yi, D. Zhao, and W. Wang. Adaptive sliding mode fuzzy control for a
two-dimensional overhead crane. Mechatronics, 15(5):505–522, 2005.

42. W. Liu, H. Xu, and X. Zhao. Agile service oriented shipping companies in the
container terminal. Transport, 24(2):143–153, 2009.

43. P. Lokuge and D. Alahakoon. Improving the adaptability in automated vessel
scheduling in container ports using intelligent software agents. European Journal
of Operational Research, 177:1985–2015, 2007.

44. P. Lokuge, D. Alahakoon, and P. Dissanayake. Collaborative neuro-BDI agents in
container terminals. In 18th International Conference on Advanced Information
Networking and Application, AINA, pages 155–158, 2004.

45. C. Mabrouki, F. Bentaleb, and A. Mousrij. A decision support methodology for
risk management within a port terminal. Safety Science, 63:124–132, 2014.

46. X.-Y. Mi and G. Cheng. Railway container center door lane analysis based on -cut
theory. Procedia - Social and Behavioral Sciences, 96(6):2425–2430, 2013.

47. W.C. Ng and Y. Ge. Scheduling landside operations of a container terminal using
a fuzzy heuristic. IEEE Industrial Conference on Industrial Informatics, 2006.

48. A. S. Nooramin, M. Kiani, M. Mansoor, A. R. Jahromi, and J. Sayareh. Compari-
son of ahp and fahp for selecting yard gantry cranes in marine container terminals.
Journal of the Persian Gulf (Marine Science), 3(7):50–70, 2012.

based approach: A case study in the Marmara region, Turkey. Transport Policy,
18:181–193, 2010.

50. J.-Y. Park and G.-T Yeo. An evaluation of greenness of major Korean ports: A
fuzzy set approach. The Asian Journal of Shipping and Logistics, 28:67–82, 2012.

51. W. Ran, Z. Xu, and Z. Weihong. Analysis on comprehensive strength of Chinese
coastal container shipping company based on genetic fuzzy clustering. In Proceed-
ings of the IEEE International Conference on Automation and Logistics, pages
2214–2219, Qingdao, China, 2008.

52. F. Riedewald. Comparison of deterministic, stochastic and fuzzy logic uncertainty
modelling for capacity extension projects of DI/WFI pharmaceutical plant utilities
with variable/dynamic demand. PhD thesis, University College Cork, Ireland, 2011.
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Abstract. This work presents a relax-and-fix algorithm for solving a
class of single product Maritime Inventory Routing Problem. The prob-
lem consists in routing and scheduling a heterogeneous fleet of vessels to
supply a set of ports, keeping inventory at production and consumption
ports between lower and upper limits. Two sets of constraints are pro-
posed both for tightening the problem relaxation and for obtaining better
integer solutions. Four MIP-based local searches to improve the solution
provided by the relax-and-fix approach are presented. Computational ex-
periments were carried out on instances of the MIRPLIB, showing that
our approach is able to solve most instances in a reasonable amount of
time, and to find new best-known solutions for two instances. A new
dataset has been created by removing the clustered characteristics of
ports from the original instances, and the effectiveness of our method
was tested in these more general instances.

Keywords: Maritime Inventory Routing Problem, Relax-and-Fix, MIP-Based
Local Search

1 Introduction

Maritime transportation is the major mode of transportation used when consid-
ering large quantities of goods, mainly bulk products. The Maritime Inventory
Routing Problem (MIRP) arises when one has to manage both the scheduling
of vessels and the inventories at ports. It can be considered a variant of the
Inventory Routing Problem, which combines vehicle routing and inventory man-
agement. However, MIRP deals with special features of maritime transportation.

This work considers the single product MIRP model proposed by [12]. Given
a finite planning horizon, a fleet of heterogeneous vessels, and a set of ports, one
must decide for each vessel which ports will be visited, when they will be visited,
and the amount of product that should be loaded or discharged when a vessel
operates at each port. In this problem variant, ports are grouped in geographi-
cal regions, such that each region has only production (loading) or consumption
(discharging) ports. Each port has fixed storage and operating capacities, while
production/consumption rates may vary along the planning horizon. The in-
ventory of ports is supplied by vessels, and by simplified spot markets when
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necessary. Vessels can differ by capacity, speed, and cost per sailed kilometer.
The problem is classified as deep-sea, the case in which vessels spend most of the
time traveling than operating at ports. The objective is to maximize the revenue
of delivered products at consumption ports, subtracting travelling, operating,
and spot market costs, and respecting inventory bounds of vessels and ports.

There are many opportunities for optimization considering maritime trans-
portation. The reviews [6, 5] present a good overview of works involving opti-
mization of maritime transportation. In [12] a good review on MIRPs models
and solution methods is presented, besides proposing a core model with addi-
tional features and side constraints. They also proposed a benchmark library for
the problem, called MIRPLIB [1].

The work of [4] was one of the pioneers in combining inventory managing and
routing of vessels. Besides presenting an arc-flow formulation for the problem of
transporting ammonia. For this problem, a path-flow formulation with coupling
constraints embedded in a Branch-and-Price algorithm was proposed.

Next, we present some works that deal with deterministic and single product
MIRPs. [2] proposed a discrete time fixed-charge network flow model (FCNF)
for a short-sea MIRP, with variable consumption and production rates at ports.
New valid inequalities generalized from the lot-sizing literature were proposed.
Also, branching priorities were used for improving the search on the branch-and-
bound algorithm. The FCNF model was capable of providing tight bounds and
obtaining optimal solutions faster than the original formulation. [8] proposed a
branch-and-price guided search for solving an extended MIRP formulation. The
approach has the advantage that its components are not problem-dependent. Six
local search schemes were proposed for improving the solution. Experiments have
shown that the method can produce high-quality solutions quickly, even being
generic. [14] proposed a framework for the inventory routing problem, which can
accommodate practical features. A case study on a MIRP was done consider-
ing draft limits and minimum transport cargo for each vessel. Cuts, branching
strategies, and a large neighborhood search were presented for finding optimal so-
lutions. [9] studied MIRP models with continuous and discrete time formulations,
with one or parallel docks. Experiments thereof demonstrated that continuous-
time formulations can be more efficient than a discrete time model. [3] worked
on a MIRP for transporting feed produced at a factory to salmon farmings in the
Norwegian cost. The proposed mathematical model was reformulated for improv-
ing branch-and-bound efficiency and tightening the bounds by valid inequalities.
Additionally, two matheuristics based on practical aspects of the problem were
proposed for obtaining feasible solutions and for improving the current solution.
[11] proposed a two-stage algorithm based on Benders decomposition for solving
the deep-sea MIRP proposed in [12]. An extended time-space network was used
for accommodating practical assumptions on the problem. Improvements on so-
lutions were obtained by MIP-based local searches, branching strategies, valid
inequalities, and lazy constraints. The proposed approach provided tight lower
bounds and high-quality solutions in a reasonable computational time. [10] pre-
sented different matheuristics and hybrid approaches for solving a long-horizon
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MIRP. Several computational experiments were performed on a set of MIRPLIB
instances, and results provided new best-known values for 26 instances.

We solve a MIRP making use of a Relax-and-Fix (R&F) algorithm. R&F is a
matheuristic that splits the problem into intervals or subproblems, solving them
sequentially. In the first iteration, only integer variables of the first interval keep
the integrality constraints. The remaining variables are relaxed. The model is
then solved by a MIP solver for obtaining a partial solution. After solved, all or

constraints are reintroduced to the variables of the next interval, resulting in a
new subproblem to be solved. The algorithm iterates until there is no relaxed
interval left. This technique can decompose the problem in different manners.
When considering a time decomposition, the R&F has similarities with
ing horizon heuristic. An overview of R&F can be found in [13].

The work of [15] applies an extended R&F algorithm on a MIRP variant,
known as LNG inventory routing problem. The authors consider a structure called
end-block, that initially simplifies or ignores part of the model for reducing the
number of linear variables to be solved repeatedly.

This work presents a R&F algorithm based on the work of [15] for solving
the MIRP variant presented in [12]. A set of constraints is built based on assu-
mptions of [11], while we have proposed another set of constraints based on a
assumption. They are used for tightening relaxation bounds and improving the
efficiency of the algorithm. Also, four MIP-based local searches are proposed
either for improving feasible solutions or removing infeasibilities. Our objective
is to provide a more general method for solving MIRP instances with planning
horizons up to 60 days. Although not outperforming the results of [11], our
method provided new best-known values for two instances. Also, we modified
the original instances in order to show that the solution approach remains effec-
tive when ports are not grouped in regions.

The remainder of this work is organized as follows. Section 2 presents the
MIRP formulation and the additional constraints. In Section 3 we describe the
solution method used in our computational experiments, which are presented in
Section 4. Finally, Section 5 presents conclusions and future works.

2 Problem Formulation

We use the arc-flow MIRP model from [11], which is presented here for the sake
of completeness. Let V be the set of vessels, J the set of ports, and T the set
of time periods, where T = |T |. Ports are split in subsets J P for production or
loading ports (Δj = 1), and J C for consuming or discharging ports (Δj = −1),
where J = J P ∪ J C, and J P ∩ J C = ∅. Ports are grouped in production
regions RP and discharging regions RC, such that R = RP ∪ RC. The discrete
time model is built under a port-time structure, composed of a set of nodes
and a set of directed arcs. Each vessel v ∈ V has its own arc set Av, while
the nodes set is shared by all vessels. Regular port-time nodes n = (j, t) ∈ N
represent a possible operation (loading or discharging) by a vessel at port j ∈ J

272 M. Friske and L. Buriol

a part of the integer variables are fixed to their current values, and the integrality

the roll-



at time t ∈ T . Node set N0,T+1 is composed by set N , a source node n0, and a
sink node nT+1, which represent the starting and ending positions of each vessel
in the system, respectively. Each arc set Av is composed by five arc types. A
source arc a = (n0, (j, t)) links the source node to the initial vessel position,
arriving at port j at time period t. Traveling arcs a = ((j1, t1), (j2, t2)) represent
a voyage that departs from port j1 at time t1 and arrives at port j2 at time t2,
such that j1 �= j2. Waiting arcs a = ((j, t), (j, t + 1)) represent that the vessel
remains at the same port j at times t and t+1. Sink arcs a = ((j, t), nT+1) link
a regular node to a sink node, for vessels that exit the system at port j at time t.
Arc a = (n0, nT+1) links source and sink nodes for unused vessels. We ignore
this arc as the instances proposed in [12] consider that all vessels are used.

Binary variable xv
a is set to 1 if vessel v travels along arc a ∈ Av, and binary

variable zvjt is 1 if vessel v operates (discharge or load product) at port j in time
t. Continuous variables sjt and svt represent the inventory of port j and vessel
v at the end of time period t, respectively. Variables fv

jt represent the amount
loaded or discharged at port j in time period t by vessel v. Variable αjt is the
amount of product sold to or bought from a spot market by port j at time period
t. The single product MIRP can be modeled as follows:

max
∑

j∈JC

∑

t∈T

∑

v∈V
Rjtf

v
jt −

∑

v∈V

∑

a∈Av

Cv
ax

v
a −

∑

j∈J

∑

t∈T

∑

v∈V
(tεz)z

v
jt −

∑

j∈J

∑

t∈T
Pjtαjt(1)

s.t.
∑

a∈FSv
n

xv
a −

∑

a∈RSv
n

xv
a =

⎧
⎨

⎩

+1 if n = n0,
−1 if n = nT+1, ∀ n ∈ N0,T+1, v ∈ V
0 if n ∈ N ,

(2)

sjt = sj,t−1 +Δj

(
djt −

∑

v∈V
fv
jt − αjt

)
, ∀ n = (j, t) ∈ N (3)

svt = svt−1 +
∑

{n=(j,t)∈N}
Δjf

v
jt, ∀ t ∈ T , v ∈ V (4)

∑

v∈V
zvjt ≤ Bj , ∀ n = (j, t) ∈ N (5)

zvjt ≤
∑

a∈RSv
n

xv
a, ∀ n = (j, t) ∈ N , v ∈ V (6)

svt ≥ Qvxv
a, ∀ v ∈ V, a ∈ Av

PC, (7)

svt ≤ Qv(1− xv
a), ∀ v ∈ V, a ∈ Av

CP, (8)
∑

t∈T
αjt ≤ αmax

j , ∀ j ∈ J (9)

0 ≤ αjt ≤ αmax
jt , ∀ j ∈ J , t ∈ T (10)

Fmin
jt zvjt ≤ fv

jt ≤ Fmax
jt zvjt, ∀ n = (j, t) ∈ N , v ∈ V (11)

Smin
j ≤ sjt ≤ Smax

j , ∀ n = (j, t) ∈ N (12)

0 ≤ svt ≤ Qv, ∀ v ∈ V, t ∈ T (13)

xv
a ∈ {0, 1}, ∀ v ∈ V, a ∈ Av; zvjt ∈ {0, 1}, ∀n = (j, t) ∈ N , v ∈ V . (14)

Objective function (1) maximizes the revenue Rjt of the unloaded product
at discharging ports, subtracting arc costs Cv

a used by each vessel. The third
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term is an additional value that induces vessels to operate as soon and as few
times as possible. The penalization value Pjt for using spot markets is accounted
in the last term of the equation. Constraints (2) refer to the flow balance of
vessels along the nodes, where FSv

n and RSv
n refer to the set of outgoing and

incoming arcs associated with node n ∈ N0,T+1 and vessel v ∈ V, respectively.
Constraints (3) define ports inventory balance at the end of each time period,
where djt represents the production/consumption rate of port j in time period t.
Constraints (4) refer to the vessels inventory balance at the end of each time
period. Constraints (5) limit to Bj (berth limit) the number of vessels that
can operate simultaneously at a node. Constraints (6) require that a vessel can
only operate at a node if it is actually at that node. Constraints (7) require
that the vessels must travel at the maximum capacity when traveling from a
loading port to a discharging port or to the sink node, where Av

PC = {a =
((j1, t), (j2, t

′)) ∈ Av : j1 ∈ J P, j2 ∈ J C ∪ {nT+1}}. Constraints (8) require
that a vessel must be empty when traveling from a discharging port to a loading
port or to a sink node, where Av

CP = {a = ((j1, t), (j2, t
′)) ∈ Av : j1 ∈ J C, j2 ∈

J P ∪ {nT+1}}. Constraints (10) limit to αmax
jt the amount of products sold to or

bought from spot markets by a port in each time period, and (9) limit to αmax
j

the cumulative amount for using spot markets. Constraints (11) impose that
the amount loaded/discharged by a vessel at a port must lie between Fmin

jt and

Fmin
jt in each time period. Constraints (12) assure that ports inventory must lie

between lower Smin
j and upper Smax

j limits in each time period. Constraints (13)
limit the vessel inventory to its capacity Qv. Finally, (14) restricts the variables
xv
a and zvjt to be binaries.

2.1 Additional Constraints

In this section we consider simplifying assumptions that lead to two sets of
constraints for the presented MIRP. They are useful for tightening the lower
bound and for accelerating the relax-and-fix approach. We proposed the first set
based on the following assumption: considering a small vessel, which capacity
Qv is less or equal to Fmax

jt for some j ∈ J and t ∈ T , then it can fully load
or discharge in just one time period at port j. Equation (15) imposes that if a
vessel operates at a port in a time period, it must leave the port in the same
time period. This assumption allows a vessel to be available for more voyages,
avoiding that it waits at a port after finishing its operation.

∑

a∈FSv
n′

xv
a = ∀j ∈ J , t ∈ T , v ∈ V : Qv < Fmax

jt . (15)

In Eq. (15), FSv
n′ ⊆ FSv

n is the set of outgoing arcs from node n = (j, t) for
vessel v which arrives at a port of different type, or arrives at the sink node.

One may ask if constraints (15) do not cut a possible optimal solution in
which a small vessel may split its inventory, operating consecutively at two ports
of the same region. However, fractioning a vessel inventory between two or more
ports in a region means that a smaller amount will be discharged or loaded
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at these ports. Therefore, the stocks at ports will reach their lower/upper limits
sooner, requiring that another vessel operates at these ports sooner, too. This
“premature” visit incurs additional costs and may be avoided by forbidding
split inventory of small vessels.

The second set of constraints is based on the “Two-port-with-no-revisit”
assumption of [11]. It assumes that if a vessel arrives at a port in some region,
then: i) it will visit at most one more port before leaving the region; ii) once it
leaves the port, this port will not be revisited by the vessel before leaving the
region. [11] developed an augmented time-space network that easily implements
this assumption. However, implementing the assumption directly on model (1)
requires additional sets of binary variables and side constraints that increase
substantially the size of the model, making it more difficult to solve. We then
propose the constraints below:

∑

j∈Jr

∑

t∈T

∑

a∈FSv
nintra

xv
a ≤

∑

j∈J r

∑

t∈T

∑

a∈RSv
ninter

xv
a, ∀v ∈ V, r ∈ R . (16)

In Eq. (16), J r is the set of ports of a region r ∈ R, FSv
nintra is the set of

intra-regional arcs of vessel v that depart from node n, and RSv
ninter is the set of

inter-regional arcs of vessel v that arrives at node n. Constraints (16) ensure that
the number of selected intra-regional arcs will be less or equal to the number of
entering arcs for each region and each vessel. The constraint is partially effective
when considering more than one visit to region r of vessel v. This occurs because
there may exist a visit that uses no intra-regional arcs (a vessel arrives at some
port in the region, operates, and departs to another region), and a second visit
that uses more than one intra-regional arc, violating the assumption but not the
constraints (16). This occurs because the constraints do not consider each visit
of a vessel to a region but the entire time horizon.

3 The Proposed Relax-and-Fix Approach

In the R&F, the planning horizon T is divided in p intervals, where I =
{1, . . . , p} is the set of all intervals. Each interval i ∈ I corresponds to all vari-
ables and constraints that have a time index t ∈ {T

p (i − 1), . . . , T
p i}, such that

T mod p = 0.
Figure 1 illustrates the first, second, and last iterations of the R&F, consider-

ing a network structure for a single vessel, divided in p = 4 intervals. At the first
iteration (it = 1, Fig. 1-(a)), binary variables xv

a and zvjt of the interval i = it
are restricted to be integer. This interval belongs to the “integer block”. The re-
maining intervals have their integer variables relaxed, belonging to the “relaxed
block”. The last two intervals (e = 2) are omitted from the problem. These in-
tervals belong to the called “end-block” [15], subject to e ≤ p− 2. A MIP solver
is then used for solving the current problem. At iteration it = 2 (Fig. 1-(b)),
binary variables of interval i = it − 1 are fixed with the values obtained in the
previous iteration, now belonging to the “fixed block”. Original continuous vari-
ables of model (1)-(14) are kept unfixed in all iterations. Integrality constraints

A Relax-and-Fix Algorithm for a Maritime Inventory Routing Problem 275



are reintroduced into the variables of the interval i = it. Also, one interval from
the end-block turns to belong to the relaxed block. Then, the problem is solved
again by the MIP solver. The algorithm continues iterating until it = p, i.e. all
intervals have been removed from the end-block and integrality constraints are
reintroduced to the variables of all intervals (Fig. 1-(c)). At this point, a solution
for the original problem is then returned.

According to Fig. 1, arc variables xv
a have a special treatment in the R&F

when they cross two different blocks. For example, let a = ((j1, t1), (j2, t2)) be
a travel arc crossing two different blocks. We consider that the block in which
time t2 belongs has dominance over the block in which t1 belongs. This rule does
not apply to the source arcs (that are originally fixed) and sink arcs. Sink arcs
are never fixed in the R&F. This occurs because if a sink arc variable is set to 1
and fixed for some vessel, it will not be available in the remaining time horizon,
which can lead to an infeasible solution. On the other hand, if sink arcs are fixed
to 0, this implies that the vessel remains available in the system when maybe it
is no longer necessary, impacting on the objective function value.

In the relax-and-fix strategy, solving each interval up to optimality does not
necessarily lead to an optimal solution for the original problem. In this case,
we use MIP relative GAP and time limit as stopping criteria in each iteration,
as suggested in [15]. Initially, the MIP relative GAP is set to a positive value,
which is linearly decreased along the iterations such that in the last iteration
the MIP relative GAP is set to 0.0%.

During the R&F iterations, it is possible that the problem becomes infeasible
when an interval is fixed and integrality constraints are reintroduced into the
next interval. A common approach for avoiding infeasibility is to use an overlap
which does not fix part of the integer interval at each iteration [13]. In our
case the overlap just reduces the size of the fixed block, leading to more integer
variables to be solved along the iterations.

Even using overlap, port-time inventory bounds can be violated. It occurs
when no vessel can reach a port at specific times due to the previously fixed
routing decisions and the spot market variables are not sufficient to avoid lack
or surplus of inventory. To handle this issue, we introduce auxiliary variables
βjt ≥ 0, j ∈ J , t ∈ T . These variables work as an unlimited spot market and are
highly penalized in the objective function. Eq. (3) is reformulated:

sjt = sj,t−1 +Δj

(
djt −

∑

v∈V

fv
jt − αjt − βjt

)
, ∀n = (j, t) ∈ N . (17)

Note that the use of auxiliary variables avoids the solver to stop prematurely,
but if a variable βjt, j ∈ J , t ∈ T is positive at the end of R&F, the solution for
the original problem remains infeasible.

3.1 Improvement Phase

MIP-based local searches are applied on the solution returned by the R&F algo-
rithm for improving the solution quality, removing possible infeasibilities. MIP-
based local search is an effective method which has been used in several works,
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Fig. 1. First, second, and last iteration of relax-and-fix for a network of a single vessel



including MIRPs [14, 7, 8, 11, 3]. We describe four MIP-based local search pro-
cedures. They fix all integer variables from the solution obtained by R&F and
iteratively allow a set of these variables to be optimized. Continuous variables
are always free to be optimized in all approaches.

1. Improving Time Intervals. This procedure consists of dividing the time
horizon intom intervals, such that k = {1, . . . ,m} is the number of iterations,
one for each interval. At each iteration, the integer variables of interval k
are unfixed, following the same rules adopted for the R&F. After being
optimized, theses variables are fixed to the newly obtained values. This pro-
cedure repeats iteratively until no improvement is achieved by optimizing at
least one interval in the m iterations.

2. Improving Vessels Pairs. Following the idea of [7] which explores the
neighborhood between two vessels, this procedure consists in iteratively se-
lecting a pair of vessels to be optimized. Let v1 and v2 be the vessels se-
lected to be optimized in an iteration. Then, variables xv

a and zvjt, such that
a ∈ Av, j ∈ J , t ∈ T , v ∈ V : v = {v1, v2} are unfixed. Vessels are selected
at random with no repetitions. The algorithm runs until no improvement
is achieved for

(|V|
2

)
iterations. As the number of pairs grows considerable

in large instances, after all pairs were tested once, the stopping criteria is
changed to |V| iterations without improvement.

3. Improving Vessels and Time Intervals. This improvement approach can
be viewed as a combination of the two previous methods. The time horizon is
divided intom intervals, allowing one interval to be optimized at a time. Also,
all integer variables corresponding to a vessel are allowed to be optimized per
iteration. After optimizing a solution, all integer variables of this vessel are
fixed to the new values, except those belonging to the interval which is being
optimized. Then, the next vessel and the same time interval is optimized.
The algorithm iterates between all time intervals and all vessels, m|V| steps
in each iteration. The search stops when no improvement is achieved in one
complete iteration.

4. Improving Port Types. This procedure is suggested by [11] as an ex-
tension of the “Fix Supply” and “Fix Demand” proposed in [8]. First, all
integer variables associated with the loading ports are fixed, while integer
variables associated with discharging ports are optimized. Then, variables of
discharging ports are fixed to the new values, and the variables of loading
ports are optimized. Variables that correspond to arcs that connect ports of
different types are kept unfixed in the whole procedure for allowing a vessel
to depart from a region earlier if possible. According to [11], optimizing first
discharging ports is justified due to the fact that the instances usually have
more discharging ports than loading ports. This procedure repeats until no
improvement is achieved in solving the two ports type consecutively.

Besides the stopping criteria of each improvement approach, each itera-
tion/step has a time limit and MIP relative GAP as stopping criteria.
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4 Computational Results

This section presents computational results obtained by solving the MIRP model
with the algorithms described in Sect. 3 As in [11], we solved the model as a
minimization problem, turning the objective function (1) negative. The algo-
rithms were implemented using CPLEX 12.5 C++ API and compiled with the
optimization parameter −O3. Experiments were carried out on a AMD-FX-8150
computer running at 3.6 GHz on a single core, with 32 GB RAM.

4.1 Benchmark Instances

Computational results were performed on “Group 1” instances available in the
MIRPLIB [1]. The instances name present their characteristics. For example, in-
stance “LR2 11 DR2 22 VC3 V6a” means that there exists 2 loading regions (LR),
and in each region there is one loading port, two discharging regions (DR), each
of them with 2 ports, three vessel classes (VC), and a total of six available ves-
sels (V), at least one for each vessel class. The letter at the end of the name is
used for differentiating instances with the same size. Each instance was tested
with time horizons of 45 and 60 days, with time periods of one day.

Modified Instances For removing the clustered characteristic of ports, we
modified the MIRPLIB instances concerning port coordinates and if necessary,
production/consumption rates. Usually, ports are grouped in regions, especially
in deep-sea configuration. However, it seems natural that there may exist cases
where each region has just one port, or ports in the same region are not necessar-
ily of the same type (loading or discharging). Let xj and yj be the coordinates of
each port in the original instance. Also, let x = maxj∈J {xj}, y = maxj∈J {yj},
x = minj∈J {xj}, and y = minj∈J {yj} be the extreme coordinates of the in-
stance. Then, for each port j ∈ J we define the new coordinates at random
as follows: xj = rand(x, x) and yj = rand(y, y). The seed value used for each
instance was x. The distances between ports and cost of arcs are recalculated
according to [12]. Instance “LR2 22 DR2 22 VC3 V10a” turns infeasible due to the
new ports positions. For this case, the values of djt, j ∈ J , t ∈ T were reduced

1

4.2 Parameters and Methodology

From initial experiments with parameters that seemed to be promising, we built
a methodology for the computational experiments. First, the instances were di-
vided into two sets according to the number of loading regions. Set-1 corresponds
to the instances with one loading region (LR1), while set-2 corresponds to the
instances with two loading regions (LR2). The difficulty of solving the instances
can be evaluated by other characteristics (number of variables/constraints, av-

erage port capacity-to-rate ratio
Smax
jt

djt
[12], among others), but we prefer a first

1 http://inf.ufrgs.br/∼mwfriske
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simple classification to consider different parameters for each set. Also, we do not
distinguish the difficulty considering the time horizon of the same instance, i.e.
the parameter for an instance with T = 45 will be the same for the correspon-
dent instance with T = 60. The exception occurs with the number of intervals p
that the time horizon is divided in the R&F. Parameters and possible values
tested for each set are described in Table 1.

Table 1. Parameter values used in the computational experiments

Name Acronym
Value

set-1 set-2

Relax-and-Fix Number of intervals p
{5,9} Case T = 45
{6,10} Case T = 60

Overlap (%) o {15,30,50}
Time limit for solving each interval (s) titrf {50,100,200} {100,200,400}

Local search
Time limit for iteration (s) titls

25 50 Not using βjt

35 75
Using βjt70 150

140 300
Time limit for the entire local search (s) tmax

ls 7200 10800

According to Table 1, each instance set can have more than one value for
each parameter. We first test the smallest value for each parameter, and when
necessary they are increased. For example, consider an instance from set-1 with
T = 45, the first test uses p = 5, o = 15, titrf = 50. If the solution turns infeasible
during a R&F iteration, the overlap is increased from 15 to 30 and the test is
restarted. On the other hand, if R&F cannot find an integer solution in some
iteration due to the time limit per iteration titrf , it is increased from 50 to 100.
Even with the maximum values of o and titrf , if no integer solution was found, or
solutions remained infeasible, we change the value of p from 5 to 9, and reset
the other parameters to the minimum values, increasing them if necessary. If no
solution has been found by varying the previous parameters, we added to the
model the auxiliary variables βjt, again resetting p, o and titrf to its minimum
values. When using auxiliary variables, titls is also increased. If a solution remains
infeasible during R&F or at the end of the local search, o, titrf and titls are increased
together. At this point, we stopped the tests, even if no feasible solution was
found.

The number of intervals in the end-block at starting the R&F algorithm is
always set to p− 2 in order to solve a minimum number of continuous variables
per iteration, saving computational time. The initial optimality GAP is set to
50%. For the local search procedures which divide the planning horizon in m
intervals (see items 1 and 3 of Sect. 3.1), we set m = 3. For all local search
procedures, the optimality GAP is set to 0.1%.

4.3 Lower Bounds

For evaluating the effectiveness of the proposed additional constraints, the lower
bounds were computed solving the relaxation of model (1) with and without the
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additional constraints. We consider the values that were obtained after the solver
performed the cuts in the first node of the branch-and-cut tree. Considering the
MIRPLIB instances, lower bounds improved on average 46.5% and 6.4% for
instances of sets 1 and 2, respectively. This improvement is solely due to the
first set of constraints. A reason for improving the bounds is that forcing some
vessels to depart from the port to another type of port after the operations avoids the
use of waiting arcs, which have no cost. The major effectiveness of the constraints
on instances of set-1 may occur because the vessels will be forced to depart in
direction to just one region. Then, if a vessel uses fractions of arcs when traveling
to another region, as these arcs have similar costs, the relaxation value can be
better. On the other hand, since in set-2 one must decide between ports grouped
in at least two separated regions, consequently, a fractional solution may use
arcs with a large cost difference. When considering the modified instances, the
constraints improved the lower bounds in 15.3% for set-1 and 11.3% for set-2.
The minor improvement on lower bounds considering instances of set-1 occurs
because the ports of the same type are not grouped into regions.

4.4 Relax-and-Fix and Improvement Phase Results

This section presents the results obtained using the relax-and-fix algorithm and
the MIP-based local searches. Two combinations of local searches were tested.
Combination A uses procedures 1, 2 and 4 from Section 3.1, respectively, while
combination B uses procedures 3 and 4, respectively. We present only the results
considering the combination B, as it performed better in most of the instances
than the combination A. The time limit tmax

ls of the improvement phase is equally
divided between the local searches used in each test. If some local search finishes
before reaching the time limit, the remaining time is available for the next local
search(es).

Table 2 presents the results of the MIRPLIB and modified instances. Col-
umn “Parameters” presents the parameter values, columns “R&F” present the
results considering only the R&F algorithm, while columns “LS” present the
results concerning the performed local search in the R&F solution. Columns
“BKV” present the best-known values of MIRPLIB instances obtained by [11].
Column “Obj” corresponds to the objective value, and column “Time” corre-
sponds to the total processing time in seconds. The processing time of [11] was
normalized using the PassMark Software 2. Column “GAPBKV” presents the rel-
ative deviation (Obj−BKV

−BKV ) ∗ 100, where Obj corresponds to the objective value
of our algorithm, while BKV corresponds to the objective value of [11]. Column
“GAPLB” corresponds to the relative deviation Obj−LB

−LB from the lower bound
LB. The average values do not include instances where the relative deviation is
labeled as “-”, meaning that no feasible solution was found.

MIRPLIB Instances Results. According to Table 2, the average time for
obtaining the corresponding solutions is shorter than the time reported by [11].

2 http://www.cpubenchmark.net/
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The relative gap to the BKV was on average 2.2% for set-1 and 9.2% for set-2
when T = 45, and considering instances in which a feasible solution was found.
Considering a time horizon of 60 days, the average gap for set-1 was 5.8%, while no
feasible solutions were found for set-2. Our algorithm was able to find the same
value of BKV for three instances (marked in bold). The local searches improved
the objective function on average 11.4% considering only the results that did not
use βjt variables in the solutions obtained by the R&F. Moreover, they were
able to remove the infeasibilities in five solutions found by the R&F. On the
other hand, on average 85.4% of the total time was spent in the improvement
phase. The average gap in relation to the lower bound was 37.2% for set-1 and
55.1% for set-2 (only considering feasible results).

Preliminary tests obtained new best-known values for two instances with
T = 45, presented in Table 3. Column “CPU” presents the computer where
the experiments were carried out, where “AMD” corresponds to the previously
described computer, while “Intel” corresponds to an Intel Core i5-2300 running
at 2.8 GHz, with 16 GB. Both experiments used the combination B of local
search procedures. Also, they did not use auxiliary variables βjt.

Table 3. New best-known-values found in preliminary experiments.

Instance
Parameters R&F + LS BKV

CPU p o titrf titls Time (s) Obj GAPBKV Time(s) Obj

LR1 1 DR1 4 VC3 V11a Core i5 5 20 50 50 1,578 -11,243 -0.03% 12,009 -11,239
LR1 1 DR1 4 VC3 V12b AMD 5 15 50 20 1,942 -9,085 -0.17% 1,742 -9,069

Modified Instances Results. Considering the modified instances, the relative
gap GAPLB was on average 10.1% for set-1 and 32.5% for set-2, being smaller
than the gap in the tests with MIRPLIB instances. This does not necessarily
mean that our algorithm is better considering these instances, but the linear
relaxations can be better in randomly distributed ports. Also, our algorithm was
able to find more feasible solutions for the modified instances than the MIRPLIB
instances. But, there are still instances that no feasible solution was found. The
average improvement of the objective function with the improvement phase was
9.7%, while the time spent in this phase was on average 87.6%.

5 Conclusion and Future Works

This work presented an extension of a relax-and-fix algorithm for solving a class
of Maritime Inventory Routing Problem. Two sets of additional constraints were
proposed, either for improving the bounds and for obtaining solutions faster.
MIP-based local search procedures were used for improving the solutions and
removing infeasibilities. Computational experiments were performed on MIR-
PLIB and modified instances. Although it did not obtain feasible solutions for
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all instances, our algorithm found good solutions in reasonable time, including
two best-known values for MIRPLIB instances. As future work, we intend to
model MIRP as a fixed charge network flow as in [2], using valid inequalities for
improving lower bounds, and using the relax-and-fix as the solution method.
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Abstract. This work describes logistical planning of offshore wind farm
(OWF) installation through linear programming. A mixed-integer linear
programming (MILP) model is developed to analyze cost-effective port
and vessel strategies for offshore installation operations. The model seeks
to minimize total costs through strategic decisions, that is decisions on
port and vessel fleet and mix. Different vessels, ports and weather re-
strictions over a fixed time horizon are considered in the model. Several
deterministic test cases with historic weather data are implemented in
AMPL, and run with the CPLEX solver. The results provide valuable
insight into economic impact of strategic decisions. Numerical experi-
ments on instances indicate that decision aid could be more reliable if
large OWFs are considered in fractionated parts, alternatively by devel-
oping heuristics.

Keywords: offshore wind installation, mixed-integer linear program-
ming, fleet optimization

1 Introduction

Renewable energy is a growing industry within the energy sector. The growth
is motivated by issues like the challenge of global climate change, the increasing
need for energy, and new market opportunities. Harvesting energy from the
wind is becoming a developed renewable energy technology. Operating offshore
involves greater challenges than onshore, and electricity production from offshore
wind farms (OWFs) is today considered expensive.

Offshore construction of a wind farm requires a lot of logistical planning. Ves-
sels and/or barges must transport and install large components in a demanding
environment. The challenges include restrictive weather conditions contribut-
ing to delays on very costly operations. Farm sites and turbine components are
expected to keep growing in size, and wind farm locations are expected to be
placed further away from shore. In addition, an increasing number of specialized
installation vessels are becoming available on the market. Crucial decisions in
planning the installation process include choosing the most cost-effective vessels,
figuring out how components should be loaded and installed, and choosing which
port to operate from to minimize expenses and delays.
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Operational research models for OWFs are focused on operation and main-
tenance (O&M) of fully commissioned farms. Some work is also done to support
vessel scheduling of OWF installation [6, 7]. To the authors’ knowledge, limited
published research is focusing on the installation fleet size and mix problem
through linear programming. This work seeks to aid decisions for installation
fleet size and mix, by means of a mixed-integer linear programming (MILP)
model.

Section 2 describes the framework of the model in detail, and its mathe-
matical formulation is given in Section 3. Section 4 presents realistic numerical
experiments run with the model, and the paper is concluded in Section 5.

2 Problem Description

The model, to be detailed in the next section, considers the offshore installation
stage of a given number of wind turbines.

Each turbine consists of components that can mainly be split into three cat-
egories: sub-structures, cables and top-structures. In addition, OWFs consist of
one or more sub-stations collecting all the energy generated by the turbines. The
options are few on how to perform installation of sub-structures, cables and sub-
stations, thus the problem considered concerns installations of top-structures.
These structures mainly consist of tower, nacelle, hub and blades. Top-structures
for a complete turbine can be partly assembled onshore, and will usually be in-
stalled by the same vessel.

All components must be loaded and transported by some vessel to the OWF.
Next, the transported components are installed at turbine locations. Before each
installation, vessels commonly lower pillars into the seabed (jack-up) to raise
their deck above the sea, creating stable platforms where lifting operations can
be performed safely given satisfactory weather conditions. After installation is
complete, the vessel performs jack-down, and transits to the next turbine or back
to port. Depending on the possible onshore assembly of certain components, a
number of loading and installation lifts will take place for each turbine.

Vessels can differ in effectiveness and costs, and usually perform several cycles
of loading, transportation and installation. The same vessel may load different
numbers of turbines on different cycles. Any vessel transit, jack-up/jack-down
and installation is restricted by weather conditions.

Chartering vessels is expensive, and there are thus high costs of weather
delays. The main decisions we want to support are which vessels and ports to
use, how many cycles each vessel performs and how many turbines each vessel
loads on each cycle. These decisions will depend on vessel and port costs, transit
distances, vessel specifications and weather realizations causing potential delays.

Upon planning the installation of an OWF, the goal is to perform the com-
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3 Model Formulation

The current section presents the mathematical formulation of the MILP model
dealing with the problem presented in Section 2.

Section 3.1 introduces the model framework in terms of input data, and
Section 3.2 presents variables representing decisions supported by the model. The
objective function is defined in Section 3.3, and Section 3.4 introduces constraints
ensuring operation assignment and time tracking. Finally, weather windows are
introduced in Section 3.5.

3.1 Model Framework

The model supports decisions on which vessel(s) to use, and which port vessel(s)
are to operate from. Vessels are contained in the set V , and ports are contained
in the set K.

Offshore operations can be categorized into four tasks: jack-up, installation,
jack-down and turbine transit, and they will henceforth be referred to as O1,
O2, O3 and O4, respectively.

Input data in the model represent the following operation durations, which
are dependent on vessel and port:

tLv : Time needed to load one turbine on vessel v ∈ V ,

tKkv: Time needed for vessel v ∈ V to transit between port k ∈ K and farm,

tiv: Time to perform operation Oi with vessel v ∈ V , i = 1, ..., 4.

The model considers each turbine to be completely installed by exactly one
vessel, which means the model does not have to consider each component ex-
plicitly. Vessels also represent a defined way of assembling components of one
complete turbine, e.g. assemble nacelle, hub and two blades together in one
piece. Time consumption for loading and installation is mainly dependent on
the number of lifts needed. The assembly of components is therefore reflected
through the input data identifying loading time (tLv ) and installation time (t2v).
All components are assumed available at potential ports, so the model does not
consider possible inventory delays. There are no restrictions on the number of
vessels loading at the same port simultaneously.

The transit durations (tKkv, t
4
v) are not dependent on turbine locations. This

is because the model considers transit time to a turbine from port k ∈ K,
and transit time from a turbine to its neighbouring turbine, to be equal for all
turbines for vessel v ∈ V . Simplifications on the transit times can be defended
with arguments that the distance from port to farm is significantly greater than
the distance across the farm, and that the turbines installed on one cycle is likely
to be neighboring.

Vessel v ∈ V is limited to carry Yv turbines per cycle, and limited to perform
at most Uv cycles.

The entire OWF must be installed within a given time horizon. The model
considers continuous time. This means that the length of the time horizon is
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given as a parameter, which we denote P . The total number of turbines in the
OWF is denoted R.

3.2 Decision Variables

Because time is modelled continuously, all variables representing the time at
which operations take place are defined separately from the variables concern-
ing operation assignment. The dimensions of the variable vectors are therefore
smaller than what is likely to be the case in a discrete-time model.

The following assignment variables are binary:

δk =

{
1, if port k ∈ K is in use,

0, otherwise,

γv =

{
1, if vessel v ∈ V is used,

0, otherwise,

xkvu =

⎧⎪⎨
⎪⎩
1, if vessel v ∈ V operates from port k ∈ K

on cycle u = 1, ..., Uv,

0, otherwise,

θvuy =

⎧⎪⎨
⎪⎩
1, if vessel v ∈ V installs y = 1, ..., Yv or more turbines

on cycle u = 1, ..., Uv,

0, otherwise.

The variables θvuy and xkvu are represented in terms of special ordered sets
of type 2 (SOS2) [3]. This means that if vessel v ∈ V installs y′ ≤ Yv turbines
on cycle u′ = 1, ..., Uv, that is if θvu′y′ = 1, we have that θvu′y = 1 for all
y = 1, ..., y′, and for some k ∈ K, we have that xkvu = 1 for all u = 1, ..., u′.

Continuous variables are defined to keep track of time:

qvu ∈ R+: Time when vessel v ∈ V starts cycle u = 1, ..., Uv,

evu ∈ R+: Time when vessel v ∈ V ends cycle u = 0, ..., Uv,

sivuy ∈ R+: Time when vessel v ∈ V starts operation Oi at the yth turbine

on cycle u = 1, ..., Uv, y = 1, ..., Yv, i = 1, ..., 4,

Ev ∈ R+: Total time vessel v ∈ V is chartered.

Note that the variables evu are defined for u = 0, where ev0 represents the
charter start of vessel v ∈ V .

The variables s4vuy are defined as the time when vessel v ∈ V leaves turbine y
on the uth cycle, which may be a transit to a turbine (if y < Yv and θvu,y+1 = 1)
or to port (if y = Yv or θvu,y+1 = 0).
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3.3 Costs and Objective Function

The following costs relate to ports and vessels:

cKk : Cost incurred if port k ∈ K is used,

cTC
v : Time charter cost per time unit for vessel v ∈ V ,

cMv : Mobilization cost for starting chartering of vessel v ∈ V .

The goal of the model is to minimize the costs introduced above. Conse-
quently, the objective function is defined in the following way:

min
∑
k∈K

cKk δk +
∑
v∈V

(
cMv γv + cTC

v Ev

)
. (1)

The first sum in (1) measures total port operation costs, while the last sum
measures total costs of chartering and mobilizing vessels.

It can be argued that there are more costs related to OWF installation, e.g.
fuel and crew costs. However, the charter cost of a jack-up vessel may include
several operational costs depending on the contract [4]. The total jack-up vessel
charter cost can also be identified as the dominant cost related to jack-up vessels
for OWF O&M activities [5]. The terms in (1) are therefore assumed to be
sufficient in the context of optimization, where the aim is to support strategic
decisions.

3.4 Constraints

The following constraints ensure that all installation operations are assigned to
a vessel and a cycle. Further, they make the assignment variables introduced in
Section 3.2 consistent with each other:

∑
v∈V

Uv∑
u=1

Yv∑
y=1

θvuy = R, (2)

θvuy ≤ γv, v ∈ V, u = 1, ..., Uv, y = 1, ..., Yv, (3)

xkvu ≤ δk, k ∈ K, v ∈ V, u = 1, ..., Uv, (4)∑
k∈K

xkvu ≤ 1, v ∈ V, u = 1, ..., Uv, (5)

xkvu ≤ xkv,u−1, k ∈ K, v ∈ V, u = 2, ..., Uv, (6)

θvu1 ≤
∑
k∈K

xkvu, v ∈ V, u = 1, ..., Uv, (7)

θvuy ≤ θvu,y−1, v ∈ V, u = 1, ..., Uv, y = 2, ..., Yv, (8)

θvuy ≤ θv,u−1,1, v ∈ V, u = 2, ..., Uv, y = 1, ..., Yv. (9)

Constraint (2) ensures all turbines are installed by some vessel v ∈ V on
some cycle u.
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Constraints (3) make sure that vessels are assigned operations only if they are
mobilized, and constraints (4) ensure ports are open if a vessel cycle is initiated
there.

Ensuring that each vessel operates from at most one port, constraints (5)
and (6) state, respectively, that a vessel cycle can start from at most one port,
and that the succeeding cycle, if any, starts from the same port. Constraints (7)
say that if vessel v ∈ V installs at least one turbine on its uth cycle, then it also
leaves some port.

Consistently with the SOS2-representation of θvuy, constraints (8) say that
vessel v ∈ V installs at least y − 1 turbines if it installs y turbines or more on
a cycle. Likewise, constraints (9) state that if vessel v installs y turbines on its
uth cycle, it also installs at least one turbine on cycle u− 1.

The next constraints ensure correct time tracking:

ev,u−1 + tLv

Yv∑
y=1

θvuy ≤ qvu, v ∈ V, u = 1, ..., Uv, (10)

qvu +
∑
k∈K

tKkvxkvu ≤ s1vu1, v ∈ V, u = 1, ..., Uv, (11)

si−1
vuy + ti−1

v θvuy ≤ sivuy, v ∈ V, u = 1, ..., Uv,

y = 1, ..., Yv, i = 2, ..., 4, (12)

s4vu,y−1 + t4vθvuy ≤ s1vuy, v ∈ V, u = 1, ..., Uv, y = 2, ..., Yv, (13)

s4vuYv
+

∑
k∈K

tKkvxkvu ≤ evu, v ∈ V, u = 1, ..., Uv, (14)

evu ≤ P, v ∈ V, u = 0, ..., Uv, (15)

evu − ev0 ≤ Ev, v ∈ V, u = 1, ..., Uv. (16)

Recall that evu is defined for all v ∈ V and u = 0, ..., Uv, where ev0 represents
the charter start of vessel v.

Constraints (10) ensure that vessel v ∈ V finishes loading before leaving port
and starting its uth cycle, and constraints (11) make sure vessel v arrives at the
first turbine after the transit from port is complete.

Constraints (12) ensure that vessel v ∈ V performs operation Oi−1 before the
successive operation Oi at the yth turbine. To connect the time tracking between
turbines, constraints (13) make sure vessel v arrives at the yth turbine after the
transit from the preceding turbine is complete. All operations are repeated until
all loaded turbines are installed on a cycle.

Constraints (14) make sure vessel v ∈ V returns to port before ending its
uth cycle. Constraints (15) ensure all cycles end within the time horizon, and
constraints (16) ensure the continuous time variable Ev is no less than the total
charter length of vessel v.
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3.5 Weather Windows

The model deals with weather restrictions through time intervals, referred to as
weather windows, in which certain operations are feasible.

The model considers transit, jack-up, jack-down and installation to be weather-
restricted, and these operations must be performed within some weather window.
The following input data are defined:

W i
v: Number of weather windows for operation Oi with vessel v ∈ V , i = 1, ..., 4,

aivn: Start of weather window n = 1, ...,W i
v for operation Oi with vessel v ∈ V ,

i = 1, ..., 4,

bivn: End of weather window n = 1, ...,W i
v for operation Oi with vessel v ∈ V ,

i = 1, ..., 4.

Note that the weather windows are only dependent on vessel and operation.
Recall from Section 3.1 that vessels also represent a way of assembling compo-
nents.

Binary decision variables are introduced to identify in which weather window
which operation is performed:

N i
vuyn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if vessel v ∈ V performs operation Oi at the yth turbine

on cycle u in weather window n = 1, ...,W i
v, u = 1, ..., Uv,

y = 1, ..., Yv, i = 1, ..., 3,

0, otherwise,

N4
vuyn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if vessel v ∈ V transits to the yth turbine on cycle u

in weather window n = 1, ...,W 4
v , u = 1, ..., Uv,

y = 1, .., Yv + 1,

0, otherwise.

Note that the binary variables N4
vuyn represent the weather windows in which

transit to the yth turbine for y = 1, ..., Yv + 1 is performed. Thus, the transit
to the first turbine to be installed on a cycle is a transit from port to farm.
Analogously, the transit to the (Yv + 1)th turbine represents a transit to port.

The binary decision variables above are dependent on the assignment vari-
ables introduced in Section 3.2:

W 4
v∑

n=1

N4
vuyn = θvuy, v ∈ V, u = 1, ..., Uv, y = 1, ..., Yv, (17)

W i
v∑

n=1

N i
vuyn = θvuy, v ∈ V, u = 1, ..., Uv, y = 1, ..., Yv, i = 1, ..., 3, (18)

W 4
v∑

n=1

N4
vu,Yv+1,n = θvu1, v ∈ V, u = 1, ..., Uv. (19)
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Constraints (17)-(19) make sure assigned operations must happen within
exactly one weather window. In particular, constraints (19) state that if vessel
v ∈ V installs at least one turbine on cycle u, then it transits back to port in
exactly one weather window.

Transits can be from port to farm, in between turbines or from farm to port,
and all transits are subject to the same weather restrictions:

W 4
v∑

n=1

N4
vu1na

4
vn ≤ qvu, v ∈ V, u = 1, ..., Uv,

(20)

qvu +
∑
k∈K

tKkvxkvu − P (1− θvu1) ≤
W 4

v∑
n=1

N4
vu1nb

4
vn, v ∈ V, u = 1, ..., Uv,

(21)

W 4
v∑

n=1

N4
vu,y+1,na

4
vn ≤ s4vuy, v ∈ V, u = 1, ..., Uv,

y = 1, ..., Yv, (22)

s4vu,y−1 + t4v − P (1− θvuy) ≤
W 4

v∑
n=1

N4
vuynb

4
vn, v ∈ V, u = 1, ..., Uv,

y = 2, ..., Yv, (23)

s4vuYv
+

∑
k∈K

tKkvxkvu − P (1− θvu1) ≤
W 4

v∑
n=1

N4
vu,Yv+1,nb

4
vn, v ∈ V, u = 1, ..., Uv.

(24)

Constraints (20)-(21) make sure all transits from port to farm are scheduled
within the chosen weather window, and constraints (22)-(23) have an analogous
function for transits between turbines.

Constraints (24), together with (22) for y = Yv, make sure all transits from
farm to port are scheduled within their chosen weather window. Note that con-
straints (22) for y = Yv and (24) restrict the transit back to port through the
time variable s4vuYv

, because s4vuYv
equals the time at which vessel v ∈ V starts

its transit back to port on its uth cycle. This is accomplished by constraints
(12)-(13).
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Constraints concerning operation Oi for i = 1, .., 3 are defined in a similar
way:

W i
v∑

n=1

N i
vuyna

i
vn ≤ sivuy, v ∈ V, u = 1, ..., Uv,

y = 1, ..., Yv, i = 1, ..., 3 (25)

sivuy + tiv − P (1− θvuy) ≤
W i

v∑
n=1

N i
vuynb

i
vn, v ∈ V, u = 1, ..., Uv,

y = 1, ..., Yv, i = 1, ..., 3 (26)

Constraints (25)-(26) ensure vessel v ∈ V executes operation Oi on cycle u
within the weather window chosen for the operation.

Note that some constraints, e.g. (26), are only constraining if an operation
is assigned to vessel v ∈ V , that is if θvuy = 1.

4 Numerical Experiments

Several test instances with the model introduced in Section 3 are presented
in this section. Instances are inspired by realistic data gathered from relevant
literature [1, 8], and the main purpose of these numerical experiments is to test
how large instances the model can handle.

The model is implemented in AMPL, and the solver used is CPLEX version
12.5.1. Default values [10] on all the parameters of the solver is used to solve the
MILP instances. All experiments where run on a computer with 2 Intel Core2
6600 Duo E6550 processors with a frequency of 2.33 GHz and 3.7 GB memory.

4.1 Test Instances

Cost data for charter rates are mainly inspired by [1], and vessel mobilization
cost is assumed to be 5 times the charter cost.

The physical reality behind some vessel v ∈ V , is that transportation and
installation operations are performed by two different barges. Involvement of
more than one barge in such a collaboration is, however, irrelevant to the model,
and consequently, we refer to their combined use as one vessel contained in V .

Henceforth, each vessel under consideration is of either of the following types:

1. The ”feed” strategy (FS)
2. The ”bunny transit” strategy (BTS)
3. The ”unmounted transit” strategy (UTS)

The ”feed” strategy (FS) represents two barges that need two towing tugs to
be mobilized. One barge only transports (feeds) components from port to farm,
and the other barge, located in the wind farm, only performs installations. The
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FS can carry up to 10 turbines in 5 parts on each cycle. The FS is vulnerable to
wave conditions [1].

The ”bunny transit” strategy (BTS) consists of one self-propelled installation
vessel performing all operations. The BTS can load up to 4 turbines in 3 parts
(in a ”bunny-ear” configuration [1, 8]) on each cycle. The BTS is sensitive to
installation lifts and transits due to wind forces acting on the partly assembled
rotor.

The ”unmounted transit” strategy (UTS) is identical to the BTS, except that
each turbine is loaded and installed in 5 parts. Therefore, the UTS can carry up
to 8 turbines on each cycle. Charter rate is assumed lower than the BTS since
each lift requires less crane capacity, and wind restrictions are less strict because
of the unmounted components.

Specifications of the three vessels are given in Tab. 1. Time is scaled to
working days, where one working day is 12 hours. Loading/installation duration
is dependent on the number of lifts, i.e., how components are assembled.

Three ports are defined with increasing distance to farm site and decreasing
costs in Tab. 2.

Table 1. Input data for the considered strategies.

Strategy FS BTS UTS

Charter rate [$/day] 144,000 200,000 180,000
Mobilization cost [$] 720,000 1,000,000 900,000
Time, load [day] 0.83 0.5 0.83
Time, setup [day] 0.125 0.083 0.083
Time, install [day] 1.00 0.67 1.00
Time, turbine transit [day] 0.011 0.004 0.004
Turbines per cycle [pcs] 10 4 8
Wind restriction, transit [m/s] 20 15 20
Wind restriction, jack-up/down [m/s] 20 15 20
Wind restriction, install [m/s] 10 8 12
Wave restriction, transit [m] 1.5 3.0 3.0
Wave restriction, jack-up/down [m] 1.5 2.0 2.0
Wave restriction, install [m] 5.0 5.0 5.0

Table 2. Input data for the considered ports.

Port Fixed cost cKk [$] Transit FS [day] Transit BTS [day] Transit UTS [day]

Port 1 1,000,000 2.67 1.08 1.08
Port 2 2,000,000 1.58 0.67 0.67
Port 3 3,000,000 0.42 0.25 0.25

The resolution of weather data is one working day, i.e. vessel v ∈ V either can
or cannot perform a given operation during one entire working day. A weather

294 S. Backe and D. Haugland



window for an operation is implemented as a closed time interval, in which wind
speed and significant wave height are below their respective maximum values (see
Tab. 1), during one or more working days. In all the current instances, historical
wind and wave data for an offshore site from the year 2000 are supplied by Metno
[9] from the NORA10 reanalysis with a 10 km horizontal resolution.

We assume that the weather restrictions that apply to jack-up operations are
identical to those applying to jack-down (see Tab. 1). Hence, W 1

v = W 3
v , and

also a1vn = a3vn and b1vn = b3vn.
We consider three hypothetical OWFs: 20 turbines to be installed in 1 month

(OWF 1), 40 turbines to be installed in 3 months (OWF 2), and 100 turbines to
be installed in 5 months (OWF 3).

In the first set of experiments, we let V consist of one vessel of each of the
types specified in Tab. 1-2 (|V | = 3). In the second set, V consists of two vessels
of each type (|V | = 6).

4.2 Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FS

Cycle 1

Turbine

1 2 3 4 5 6

BTS

Cycle 1 2 3 4 5

Turbine

1 1 2 3 1 2 12 34 1 23 4

Fig. 1. Gantt chart presenting an optimal installation schedule (Sol. 1.1 in Tab. 3)

Results from the first set of experiments, with |V | = 3, are summarized in
Tab. 3.

For OWF 1, with 20 turbines and 1 month time horizon, the CPLEX solver
finds the optimal solution in 4 seconds with a total cost of $ 11, 106, 600 (see
Sol. 1.1 in Tab. 3). The optimal vessel choice is a combination of the BTS and
the FS operating from Port 3.
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The timing for turbine installations is presented in a Gantt chart (see Fig.
1). The top of the chart represents time, and the duration of each vessel charter
period is represented by the black lines. The white boxes with numbers repre-
sent cycle durations, and the black milestones, along with the numbers above,
represent the start of installation of turbines on a given cycle. Note that most
cycles are completed without fully loading the vessels, which is also the case in
larger instances.

In OWF 2, we consider 40 turbines and a 3 months time horizon. The CPLEX
solver has a harder time finding and/or proving an optimal solution, compared
to OWF 1. A feasible solution is obtained within seconds.

After running for 20, 000 seconds, an optimal solution is not proven. The
best feasible solution obtained is an upper bound to our minimization problem.
Because the CPLEX solver is a branch-and-bound algorithm, we also obtain a
lower bound to the problem. The difference between these two bounds compared
to the best feasible solution is referred to as the optimality gap: The maximum
potential improvement in the objective function value in the optimal solution.
The best upper bound may very well be the optimal solution even though an
optimality gap exists, because the potential reduction in costs may not be feasi-
ble.

An optimality gap of 12.4 % is obtained in OWF 2 with a combination of
the BTS and the UTS operating from Port 3, and the objective cost measures $
19, 639, 480 (see Sol. 2.1 in Tab. 3).

For OWF 3, with 100 turbines and 5 months time horizon, no optimal solu-
tion is proven within a time frame of 30, 000 seconds. After 30, 000 seconds, an
optimality gap of 30.5 % is realized, and the total costs measure $ 47, 858, 700
(see Sol. 3.1 in Tab. 3). In this solution, all strategies are mobilized operating
from Port 3. The FS is chartered longest and assigned most turbine installations.

Table 3. Results from OWF 1,2 and 3. The fourth column represents the total number
of turbines installed with vessel v ∈ V .

OWF Sol. Objective Turbines Port CPU time/Gap
FS BTS UTS

1 1.1 $ 11,106,600 6 14 0 3 4 s/0.0 %

2 2.1 $ 19,639,480 0 10 30 3 20,000 s/12.4 %

3 3.1 $ 47,858,700 38 36 26 3 30,000 s/30.5 %

Results from the second set of experiments, where |V | = 6, are summarized
in Tab. 4.

The optimal solution for OWF 1 is found after 76 seconds, and total costs are
reduced to $ 10, 958, 000 (see Sol. 1.2 in Tab. 4). The FS is no longer optimal,
and the BTS is duplicated, still operating from Port 3. All vessel operations in
the duplicated solution happen within the same weather windows.

If we shorten all weather windows for installation operations for the BTS by
one working day, the optimal solution is found after 103 seconds (see Sol. 1.3 in
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Tab. 4). The UTS is duplicated with a total project cost increase of 5.4 % from
Sol. 1.2. In this case, it proves optimal to operate from Port 1.

If we decrease the charter rate of the UTS to $ 160, 000 /day (−11 %) and the
mobilisation cost to $ 800, 000, the optimal solution is found after 13 seconds,
and the total costs are reduced by 5.2 % from Sol. 1.2 (see Sol. 1.4 in Tab. 4).
The UTS is duplicated with the same schedule as Sol. 1.3 operating from Port
1.

With the possibility of duplications of identical vessels in OWF 2, the opti-
mality gap reaches 7.2 % after 20, 000 seconds, and the total costs sum up to
$ 19, 204, 740 (see Sol. 2.2 in Tab. 4). Note that Sol. 2.2 has a lower objective
and a lower optimality gap compared to Sol. 2.1 (see Tab. 3), even though the
instance is larger.

Since the FS is not mobilized in OWF 2, we try to simplify the instance
by eliminating the FS entirely (we impose γFS = 0). In this case, optimality is
proven for OWF 2 after 6, 000 seconds, and the objective is reduced by 1.0 %
compared to Sol. 2.2 (see Sol. 2.3 in Tab. 4).

For OWF 3, a feasible solution is found after 2, 200 seconds. After 30, 000
seconds, this solution is improved by 4.5 % and has a cost of $ 51, 216, 768 with
an optimality gap of 34.4 % (see Sol. 3.2 in Tab. 4).

In OWF 3, no feasible solution is found after 30, 000 seconds for only the FS
(γBTS = γUTS = 0). By using only the BTS (γFS = γUTS = 0 is imposed), the
total costs measure $ 55, 045, 400 with an optimality gap of 39.0 % after 30, 000
seconds (see Sol. 3.3 in Tab. 4). For only the UTS (γFS = γBTS = 0), the total
costs drop below Sol. 3.1 (see Tab. 3) with an objective of $ 44, 673, 060, and an
optimality gap of 6.0 % after 30, 000 seconds (see Sol. 3.4 in Tab. 4).

Table 4. Results from OWF 1,2 and 3 with possibility of duplication. The fourth
column represents the total number of turbines installed with vessel v ∈ V .

OWF Sol. Objective Turbines Port CPU time/Gap
FS1 FS2 BTS1 BTS2 UTS1 UTS2

1
1.2 $ 10,958,000 0 0 10 10 0 0 3 76 s/0.0 %
1.3 $ 11,555,200 0 0 0 0 10 10 1 103 s/0.0 %
1.4 $ 10,382,400 0 0 0 0 10 10 1 13 s/0.0 %

2
2.2 $ 19,204,740 0 0 14 13 13 0 3 20,000 s/7.2 %
2.3 $ 19,019,520 - - 13 13 14 0 3 6,000 s/0.0 %

3
3.2 $ 51,216,768 25 29 5 11 29 0 3 30,000 s/34.4 %
3.3 $ 55,045,400 - - 45 55 - - 3 30,000 s/39.0 %
3.4 $ 44,673,060 - - - - 54 46 3 30,000 s/6.0 %

4.3 Discussion

Because the model is deterministic, uncertainty is not considered in each in-
stance. The trait of not dealing with uncertainty explicitly is demonstrated to
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be unfortunate through OWF 1 (see Sol. 1.2-1.4 in Tab. 4). With a small change
in uncertain input data concerning weather and costs, the solution output is al-
tered completely in terms of both port and vessel decisions. Conclusions drawn
to aid strategic decisions from a single instance are thus rather speculative, even
with optimality proven.

The seemingly nice benefit of being able to carry many wind turbines per trip
turns out to be of small significance, since most cycles are performed without
fully loading the vessels. This may be a consequence of the weather-sensitive
installation lifts being the bottlenecks of the process, as concluded by [2].

The suggested port choice for most instances is Port 3 with highest fixed
costs and shortest travel distance to the wind farm. The port decision changes

The UTS, with the benefit of long weather windows, seems to be a good
option for large farms in OWF 3 (see Sol. 3.4 in Tab. 4). However, OWF 3 also
show that including more vessel possibilities for the same wind farm does not
necessarily produce better solutions (compare Sol. 3.1 in Tab. 3 and Sol. 3.2 in
Tab. 4). Thus, our ability to draw conclusions from solutions obtained without
proving optimality might be limited, although in some cases (see Sol. 2.2-2.3 in
Tab. 4), the proven optimal solution (Sol. 2.3) has the same port and vessel fleet
as the solution obtained without proving optimality (Sol. 2.2).

5 Conclusions

The instances in Section 4 can be used to support arguments for which factors
are the most critical during the installation of OWFs, and which vessel and port
strategy is the preferable choice for a specific OWF. Several instances ought to
be implemented for the same OWF to somehow deal with uncertainty.

The framework of the problem in this model calls for drastic simplifications if
large instances are to be tackled with an exact solver in a reasonable time frame.
Further work can be done on developing heuristic methods to solve instances
of the current model, however, proving optimality might still be challenging.
Stochastic extensions will further complicate the model, so on a strategic and
aggregated level, several scenario analyses may be a better alternative to aid the
project decisions considered in this work.

Considering smaller fractions of a large wind farm can be a way of proving
optimality with the CPLEX solver. Whether the strategic choices are altered
when considering large wind farms in an aggregated versus fractionated manner,
depends on how the different input data scale for growing instances, especially
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from Port 3 to Port 1 in OWF 1 for instances where the UTS is proven the
optimal strategy. This is probably due to longer weather windows for the UTS for
installation operations, which makes longer transits and lower port handling
costs a preferable choice. Potential growth of port handling costs with OWF size
is not considered.

the port handling costs.
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Abstract. Traditionally, the maritime sector follows a very conservative approach
towards sharing information and adopting information technology (IT) to stream-
line logistic activities. Late arrivals of ships create problems especially with the
trend to build large ships leading to peak loads of process steps and increased
container lead times. Proposed solutions to fight congestion range from extend-
ing port capacities to process optimization of parts of the maritime supply chain.
The potential that lies in information sharing and integrated planning using IT has
received some attention, but mainly on the operational level concerning timely
information sharing. Collaborative planning approaches for the maritime supply
chain are scarce. The production industry already implemented planning and in-
formation concepts. Problems related to the maritime supply chain have great
similarities with those encountered in production. Inspired by supply chain plan-
ning systems, we analyze the current state of (collaborative) planning in the mar-
itime transport chain with focus on containers. Regarding the problem of conges-
tion, we particularly emphasize on load dependent lead times (LDLT) which are
well studied in production.

1 Introduction

Timely transportation at least possible costs is one of the main objectives according to
which all actors of the maritime supply chain are measured by the customer. In order to
fulfill this goal, an efficient information exchange used for planning and scheduling is
required. The industrial production sector has been subject to intensive analysis regard-
ing interacting factors influencing lead times. It is recognized and empirically proven
that lead times are dependent on the resource utilization and exponentially increase
when utilization passes a certain level (see [11] and the references therein). This can
also be measured by work in process (WIP) building up in front of workstations. When
considering the maritime supply chain, we can see the same dependency which be-
comes evident in ports with high workloads due to uncertain arrival times of containers
and congestion effects of subsequent resources.

Recently, a large amount of work has been attributed to information sharing and
related supporting systems (see, e.g., [5]). However, information sharing of maritime
supply chain partners is reported to be very conservative and limited to data exchange
on cargo and related documentation required by country-specific legislation [6]. Ad-
ditionally, it focuses on the operative and real-time horizon. Aggregate planning and
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scheduling is rare and has only recently been addressed by researchers and practition-
ers [1, 2].

As the trend of increased ship sizes will continue, new solutions need to be devel-
oped that help to plan and coordinate processes and capacities along the maritime sup-
ply chain. Special focus should be on capacity utilization smoothing to ensure reliable
lead times and robust transport schedules for customers. Costly capacity expansions re-
quiring space are not always feasible due to restrictions of ports in the vicinity of cities
as, e.g., in Europe, so that other solutions should be exploited first.

In this paper, we review the literature in maritime logistics regarding congestion and
approaches for advanced (lead time) planning. We focus on container transport due to
its discrete features and natural analogies to production.

2 Advanced Planning Approaches in the Maritime Supply Chain

Supply chain management (SCM) emerged from logistics and has been a major man-
agement issue in the last decades. It has been stimulated by the developments in infor-
mation and communication technology (see, e.g., [12]. Despite the fact that the shipping
industry is quite conservative, their optimization endeavors lead to more and more tight
planning and scheduling, so that disturbances have considerably larger impact at heavy
system loads (where systems may relate to terminals, access infrastructure to and from
the hinterland etc.). Surprisingly, while SCM in maritime transportation and related
concepts to enhance supply chain visibility and orientation are becoming an issue (see
also [1]), collaborative planning still seems almost nonexistent (see also [3]). This might
be due to its history as a sector with complex networks of fragmented, independent trade
partners [7] with different business models. Fierce competition as well as a lack of mu-
tual trust in the maritime sector are frequently stated reasons [14]. This situation seems
changing at least on the operational time level with IT pilots aiming at improving in-
formation provision. For instance, port community systems have been developed in the
1980s, but are subject to continuous improvement (see, e.g., [5]). However, they do not
provide planning functionality, but could serve as a data basis for advanced collabora-
tive planning.

In Figure 1, we adapted the planning modules of the supply chain planning (SCP)
matrix (see [4] and the references therein) to the maritime case further aligning them
to the different phases of transport, i.e., pre-, ocean, and on-carriage [15] extending
them to more details on departure and arrival port handling phases. This gives an idea
of the areas and modules for maritime collaborative planning systems (MCPS). The
modules in the SCP matrix underlie a hierarchical planning approach and are linked
by vertical and horizontal information flows updated in a rolling horizon fashion and
require coordination of planning activities [4].

2.1 Congestion Phenomena and Information Sharing

Maritime supply chain partners depend on reliable information about estimated times
of arrival (ETAs) of containers handled by their direct up- and downstream partners in
order to efficiently plan their capacities, processes, and services. Reasons for congestion
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Fig. 1. Analogies in maritime container transport and production planning - process steps and
planning functions; own illustration

start with 1) uncertainty of ship and import container ETAs, 2) uncertainty of truck and
export container ETAs, and 3) uncertainty of service times of handling equipment and
customs.

Innovative IT approaches exist in the form of mobile apps aiming at avoiding con-
gestion on the roads to the port by providing truckers with estimated information on
harbor “turn times” (pick-up and delivery) as well as waiting times at the terminal gates
(see, e.g., [16]); for more examples see [10]. Apps can also match drivers with empty
containers with those needing to pick one up, so that the exchange can be conducted
outside the port area.

Especially in the light of increasing ship sizes and related demand peaks, delays of
ship arrivals, but also of export containers lead to increases of waiting times. The situ-
ation can be improved by short-term provision of sufficient handling equipment and/or
long-term capacity extension and related land-side costs [8]. Additionally, the handling
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of delayed import and transshipment containers becomes more difficult due to export
containers congesting the yard and increasing the need for reordering. This decreases
port efficiency and increases LDLT as well as costs. Besides, berthing windows for
unloading and loading of large vessels extend from 24 to 72 hours not prioritizing un-
loading [2]. As a result, export containers may loose their hinterland connections or
lead to congestion at the port gate due to waiting trucks. Related transport modes depart
with unused spaces wasting expensive capacity.

2.2 Collaborative Planning Approaches

There is one reference that directly accounts for MCPS: [1] propose a collaborative
SCM system for the maritime logistic chain focusing on three main business processes,
i.e., management of 1) orders, 2) demand, and 3) vehicles. These three business pro-
cesses can be taken into account on a tactical and operational level where demand man-
agement contains forecasting and generation of information regarding workloads. Order
management is related to coordination, execution, and control of physical and informa-
tion flows. This is similar to the supply chain processes being one dimension of the
SCP matrix (see Figure 1 for the modified version), but differs in the differentiation on
orders and demand.

In compliance with other researchers and practitioners, [1] discuss the problem of
uncertainty caused by variability on ETAs of supply chain partners as well as related
service times also stated in Section 2. The port river information system project (PRISE)
aims at improving ETA information by providing an IT platform that merges informa-
tion regarding ship arrivals as well as departures of all partners involved in the dis-
patching process of ships.3 Similarly, [2] consider the connection between the arrival
of the container and the transport by rail. They reveal that the container-specific ETA is
necessary in order to correctly plan a high utilization rate of trains.

The Port of Hamburg recently announced its project “Smart Port Logistics” with
several aims, among them optimizing the information flow to manage trade flows in an
efficient manner [13]. Related to this, they aim at developing an intelligent IT infras-
tructure including sensors and (cloud) services.

A major bottleneck of container handling is customs; see Figure 1. Export contain-
ers need clearances and release permits to leave the port area [9]. Information on them
is given in the ship’s manifest before entering the port, but information is not sufficient
for risk assessment at customs. Moreover, multiple manual entering of information in
related systems increase processing times. Single Window Systems speed up customs
processes by providing correct information on cargo [6]; see also [5] for a framework
of a port-centric information management system built as a single window system.

3 Conclusions

Information sharing in supply chains is mandatory for the efficient flow of goods. In
case of delays, anticipated information can avoid or reduce LDLT and smooth capacity

3Internet source: https://hhla.de/en/2014/03/it-platform-optimises-harbour-processes.html;
Last call: 07.07.2016
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utilization if collaborative planning is in place. Industrial production has a long tradi-
tion in developing and implementing IT systems for information sharing and process
planning. The adoption and/or customization of such systems and related planning ap-
proaches can be promising to improve the maritime supply chain. LDLT are due to
information distortion in planning and control of the supply chain. We review the mar-
itime supply chain for WIP and related congestion in order to highlight bottlenecks and
approaches of collaborative planning. Innovative trends exist to improve its overall
efficiency on an operational level. Aggregate planning remains a critical issue. Future
research will provide an in-depth-discussion on the applicability of SCP solutions.
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Abstract Liner carriers change their network on a regular basis, and
they are therefore interested in a practical evaluation of the impact these
changes have on the cargo flows in their networks. Despite great advance-
ments in the practical applicability of network evaluators in recent years,
vessel deployment continues to be considered as an input into the prob-
lem, rather than a decision. In this paper, we propose an extension of a
state-of-the-art mixed-integer programming model for the LSCAP that
incorporates the optimization of vessel count and vessel classes for each
service. We perform a computational analysis on liner shipping networks
of different sizes and compare our optimized results to fixed deployment
scenarios. By integrating fleet deployment decisions into the cargo alloca-
tion problem, liner carriers can increase the profitability of their networks
by at least 2.8 to 16.9% and greatly enhance their decision making.

Keywords: liner shipping, cargo allocation, fleet deployment

1 Introduction

Seaborne trade plays a critical role in global markets, and is responsible for
transporting more than 10 billion tons of goods per year [15]. Furthermore,
since the year 2000 the number of containers transported each year has almost
tripled [15]. The challenge of designing, adjusting and operating liner shipping
networks is thus becoming increasingly difficult to solve with current tools.

Containerized goods are transported in liner shipping networks on cyclical
routes called services. Liner shipping companies operate a number of these ser-
vices to connect different trade regions within their network. Services are gener-
ally operated with a certain periodicity (usually weekly or biweekly) such that
ports of a service are visited at a fixed time each period. At each port of the
service, cargo is loaded, unloaded or transshipped. Furthermore, cargo is trans-
ported in varying container types and sizes (equipment types).

Liner carriers must regularly make changes to their network, such as adding
new services, changing the ports visited on a service, or removing services that
are no longer profitable. These network modifications can have far-reaching and
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non-obvious effects on the network, such as changing the capacity or connec-
tion time between ports that are not part of the subset of the network being
changed. Liner carriers are therefore interested in examining the impact of net-
work changes on the cargo flows of their networks, which has been formulated
by the operations research community as the liner shipping cargo allocation
problem (LSCAP) (see, e.g., [7]).

The LSCAP targets the strategic and tactical planning horizon of a carrier.
It computes the profit-maximal cargo flows on a predefined service network to
provide carriers with a holistic view of their network, under the assumption that
the cargo flows are deterministic. Models in the literature consider a number of
detailed aspects, such as transit time requirements and variable vessel speeds.

Another tactical planning problem in the liner shipping industry is the fleet
deployment problem. This problem is solved to determine the number of vessels
and the type of vessel (vessel class) on a service. The assignment of vessels to
services has a direct influence on the capacity of the services and the possible
vessel speeds. Currently, these problems are solved independently of each other,
with the output of the fleet deployment problem being fed into the LSCAP as
fixed numbers of vessels and vessel types. However, the allocation of cargo is
dependent on the capacity of the service vessels and the schedule of the services,
meaning adjusting the deployment could yield higher profit in the LSCAP for
the carrier. Simultaneously optimizing the cargo allocation and deployment offers
tactical level guidance to carriers for which types of vessels should go where, and
could even be used in a strategic context to determine how many vessels of a
particular type should be built or chartered.

We extend the LSCAP model in [7]. The complete model contains the follow-
ing components: path restricted multicommodity flow, transshipments, complex
routes, transit time requirements, leg-based speed optimization and empty con-
tainer repositioning. We add the assignment of vessel classes to services and the
determination of the number of vessels of each service to the model.

With the help of our model, liner carriers can, for example, evaluate whether
“upgrading” a service to a bigger vessel class is profitable or not. Furthermore,
carriers can evaluate the effects of selecting different vessel classes and numbers of
vessels for their services. These decisions influence individual leg speeds and the
overall schedule of the service. This, in turn, changes how many containers can be
transported, as faster ships can better meet customers’ transit time requirements.
We show in our computational experiments that considering fleet deployment leads
to an increase in profit of several million dollars.

This paper is organized as follows. First, we review the related literature
in Section 2. Then, Section 3 presents the cargo allocation problem with fleet
deployment and vessel class selection. In Section 4, the model is presented. Sec-
tion 5 contains the results of our computational experiments. Finally, Section 6
concludes and offers an outlook on future work.

2 Literature Review
There is a wealth of work considering cargo allocation/cargo routing and fleet
deployment, however very little that addresses the intersection between these
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Table 1. Overview of relevant publications about the fleet deployment problem and
the cargo allocation problem1.

Paper MCF TS TT TSD LBSO ER VC VCL

Akyuz and Lee (2014) [1] � � � � - - - -
Karsten et al. (2015) [8] � � � � - - - -
Guericke and Tierney (2015) [7] � � � (�) � � - -
Branchini et al. (2015) [2] - - - - - - (�) �
Wang et al. (2016) [16] � � - (�) - � - -

Gelareh and Meng (2010) [6] (�) - � - (�) (�) � �
Meng and Wang (2010) [9] - - - - - - � �
Wang and Meng (2012) [17] � � - - - - � �
Meng et al. (2013) [10] � � - (�) - - � �
This article � � � (�) � � � �

problems. Table 1 presents a summary of relevant work. For details, we refer
to [7]. The upper half of the table contains publications about cargo allocation,
while the lower half contains fleet deployment publications. The table only refers
to publications that consider complex service types. For an extensive overview
of other optimization problems in liner shipping, we refer to [4].

2.1 Cargo Allocation

In the work of [1], a column generation approach is used to solve the cargo
allocation problem with service levels, which are defined as combinations of vessel
capacity and vessel speed. Although in [8] speed optimization is not considered,
they extend the previous mentioned literature by including transit times and
transshipment durations.

The publication of [7] integrates transit times and transshipment durations as
well as speed optimization on individual legs and empty container repositioning.
By integrating these requirements and aspects into a single model, [7] provide
a high level of realism, making it valuable for liner carriers. Since varying vessel
speed results in a non-linear optimization problem, the bunker consumption func-
tions need to be linearized. We refer to [12] for a taxonomy of speed optimization
publications, and various formulations of the fuel consumption function.

The integration of contractual cargo and spot cargo is considered in [2]. A
mixed-integer programming model is presented that optimizes cargo assignments
as well as the deployment and scheduling of vessels. Speed optimization and
empty container repositioning are not included in this model.

In the work of [16], a chance-constrained optimization model is presented
that considers deterministic and stochastic demand as well as various shipping
activities like container loading/unloading, transshipments and waiting times.
The model does not include any kind of speed optimization, but it does consider
selecting the best vessel class for a specific service.
1 MCF = Multiple cargo flows, TS = Transshipment, TT = Transit times, TSD =
Transshipment duration, LBSO = Leg based speed optimization, ER = Empty repo-
sitioning, VC = Vessel count, VCL = Vessel class

308 D. Müller et al.



2.2 Fleet Deployment

The fleet deployment problem is integrated with the optimization of vessel speed
and service frequency in [6]. A mixed-integer model considers transit time re-
strictions and is evaluated on a set of randomly generated instances.

Another chance constrained model to solve the fleet deployment problem is
presented by [9]. This model assumes a normal distribution for the cargo de-
mand of each service. Without considering leg-based speed optimization, empty
container repositioning or transit times, the mixed-integer programming model
is solved on nearly realistic instances.

The model of [17] considers transshipment operations combined with the fleet
deployment problem. For this, transshipments are allowed to be carried out mul-
tiple times without restrictions. Vessels can either be used from the carrier’s fleet
or chartered to be deployed on services. The authors assume predetermined ves-
sel speeds for each service leg. In [10], a two-stage stochastic programming model
that considers uncertainties in container demand and transshipment options is
used to solve the fleet deployment problem.

3 Problem description

Before we describe the details of our mixed-integer programming model we dis-
cuss the aspects of the integrated cargo allocation and fleet deployment problem
addressed in this paper.

3.1 Cargo allocation problem

Cargo allocation models are used for a strategic or tactical evaluation of a given
liner shipping network. By considering possible cargo flows as well as fixed and
variable costs, it can determine the profitability of an entire network. Further-
more, liner carriers are able to use the results of this model to refine their service
schedules and improve coordination with container terminals.

The solution of the cargo allocation model determines how much cargo from
each demand is carried and how that cargo is routed from its origin to its des-
tination. When a single service contains both the origin and destination of a
cargo demand, only loading and unloading operations along with the routing
within the service need to be determined. For other cargo in which the origin
and destination ports are distributed over separate services, both services need
to be connected by transshipping the cargo at a shared port. If there is no port
present in both services, multiple transshipments will occur until the cargo ar-
rives at its destination port. We allow split cargo flows, but restrict the maximum
number of paths the cargo may take.

Figure 1 shows a simple liner shipping network with two services. Both ser-
vices are connected by the transshipment port Hamburg, such that cargo can be
transported from Stavanger to Antwerp or Tillbury.

Cargo demands are associated with a maximum transit time between the de-
mand’s origin and destination. The transit time consists of the time cargo spends
traveling by ship added to the time it spends in port during transshipment. We
take into account the movement time of the containers on and off the ship, but
use a constant transshipment time due to the complexity of allowing this to vary.
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Figure 1. A simple liner shipping network in Northern Europe with two services con-
necting ports in Germany, Belgium, Denmark and Norway, from [7].

Depending on the overall frequency of the service and the total call time
in ports, the remaining time can be spent for sailing between ports. The speed
of the vessels is adjusted such that this remaining total sailing time is enough
to maintain the periodicity of the service. Since the duration at sea is closely
connected to the available time for vessels to move cargo in ports, including
speed optimization in the cargo allocation problem is necessary. Additionally,
speed optimization reduces bunker fuel consumption, one of the main costs of
operating a seagoing vessel [14].

Vessels have a minimum and maximum speed in which the vessel can be
operated. Buffer can be added between port visits on a schedule if the sailing time
between the ports is longer than the vessel would require even at its minimum
speed. Buffer can be used to hedge against uncertainty, although we do not
directly consider this in our model.

3.2 Fleet deployment

The assignment of vessels to services is a tactical planning problem in which,
typically, an entire shipping season is planned [5]. An assignment consists of the
selection of a vessel class for a service as well as the determination of the total
number of vessels for a service. Liner carriers use the fleet deployment problem
to regularly assess the cost-efficiency of their network structure based on current
rates of the charter-market. Dependent on the charter and bunker market, new
vessels can be hired or existing off-hired, or own vessels chartered out.

In our model, we integrate the selection of vessel classes for the services and
the determination of the number of vessels with the cargo allocation decisions.
The goal is to benefit from the close connection between these fleet deployment
decisions, the possible leg speeds and cargo moves. This integration also provides
a more precise estimation of possible profits [16].

By optimizing the vessel class for each service, we take advantage of the
specifications of these classes. In our case, vessel classes are defined by different
minimum and maximum speeds as well as differing capacities (called resource
groups), port call costs and charter costs. Resource groups can be, for example,
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the maximum weight the vessel can transport, the maximum number of container
slots or the maximum number of reefer container plugs. We assume that only a
single vessel class can be assigned to a service, which is a reasonable assumption
in practice.

4 A mixed-integer programming model

In this section we provide the formal definition of the mixed-integer program-
ming model for the cargo allocation problem with speed optimization and fleet
deployment. This model is based on the formulation of [7], which uses a directed
graph as a representation of the problem. Nodes represent port calls and arcs
represent the legs between ports of a service. The graph includes a layered struc-
ture to model multiple visits to the same port in a single service. For more details
about the graph formulation we refer to [7]. In addition to adding fleet deploy-
ment to the model, we also change the piece-wise linearization of the bunker
consumption costs to the more efficient approach of [13].

In the following, we define the relevant index sets of the model. It should be
noted that the majority of the index sets are equal to the original formulation.
We added two sets to define Cartesian products of other index sets.

Sets

Q Set of vessel classes
P Set of ports
S Set of services
Ls Set of layers for service s
Ps ⊆ P × Ls Set of ports for service s
Ls ⊆ Ps × Ps Set of legs for service s

R Set of resources
G Set of resource groups
Rg ⊆ G Set of resources in resource group g

N Set of cargo flows
NOD

p Set of cargo flows whose origin or destination is port p, NOD
p =

{n ∈ N |on = p ∨ dn = p}
E Set of equipment types for empty container balancing
Π = {0, 1, ...} Set of container paths
Ne Set of cargo flows and container paths of equipment type e ∈ E,

Ne = {(n, π) ∈ N ×Π|en = e}
HN = S × P ×Q Set of the Cartesian product of services, ports and vessel classes
HF = N ×Π Set of the Cartesian product of cargo flows and container paths

We now introduce the parameters of the model. We add parameters for the
secant based linearization of the model. It is necessary to determine these secants
for each vessel class as the classes have different bunker cost functions.
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Parameters

fs ∈ N+ Frequency in days of service s
δ+(s, p, l) ∈ Ls Incoming leg of service s to port p, l
δ−(s, p, l) ∈ Ls Outgoing leg of service s from port p, l
Cgq ∈ N+ Capacity of vessel type q of resource group g
kMin
q ∈ R+ Minimum speed in knots of vessel type q

kMax
q ∈ R+ Maximum speed in knots of vessel type q

arc ∈ R+ Utilization of resource r of container c
on ∈ P Origin of cargo flow n
dn ∈ P Destination of cargo flow n
qMax
n ∈ R+ Maximum quantity of cargo flow n in the planning horizon
en ∈ E Equipment type of cargo flow n
rn ∈ R+ Revenue in US$ of cargo flow n
θn ∈ R+ Maximum transit time of cargo flow n in days

tEpq ∈ R+ Duration in hours to move one container at port p with vessel
type q. A move is a loaded or unloaded container

tAdd
p ∈ R+ Additional constant duration (for pilotage, bunkering etc.) re-

quired at port p in hours
t ∈ N+ Length of the planning horizon in days

ws Weekly volume adjustment parameter, ws = fs
t

tFp ∈ R+ Fixed container storage duration in port p in days

φPC
pq ∈ R+ Port call cost in US$ per call of vessel type q at port p

φD
q ∈ R+ Depreciation/time charter cost of vessel type q

φCH
p ∈ R+ Container handling cost at port p per unit in US$

φTS
p ∈ R+ Transshipment cost at port p per unit in US$

φC
e ∈ R+ Depreciation cost for one unit of equipment type e ∈ E

φP ∈ R+ Penalty cost for services that have too few vessels deployed

gvlq Gradient of secant for bunker consumption approximation of leg
l ∈ LS for vessel type q ∈ Q

ivlq y-intercept of secant for bunker consumption approximation of
leg l ∈ LS for vessel type q ∈ Q

M
Max
q Max. amount of vessels of vessel type q ∈ Q

M
SMax
kq Max. costs to sail leg k ∈ Ls with vessel type q ∈ Q

M
P
spl Maxiumum port duration for service s, port p, l

M
S
sk Maximum sailing duration for service s, leg k

M
C
n Maximum duration for all container paths of cargo n ∈ N

ε Small value for adjusting the transshipment indicator variables

Finally, we present the variables of the model. To support vessel class and
count decisions, several sets of new variables are required. As discussed previ-
ously, the different vessel classes have different consumption functions, leading
to different secant sets. Consequently, the variables for leg durations and bunker
costs per leg also need a dependency on the vessel class. The main variables that
are introduced to reflect the new possible decisions of vessel class selection and
setting the vessel count are yVsq and γsq. Previously, γsq was a parameter that
was set by the planner beforehand. Now, it can freely range on an integer scale
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larger than zero. The binary variable yVsq, however, describes whether a specific
vessel is assigned to a service or not.

Variables

yV
sq Indicates whether vessel type q ∈ Q is used on service s ∈ S

γsq ∈ N+ Vessel count of service s ∈ S of vessel type q ∈ Q
bskq ∈ R+ Bunker cost of leg k of service s for vessel type q
φF Fixed cost of all services in the planning horizon

αnπ ∈ R+ The quantity of cargo flow n on container path π over the
entire planning horizon

xsknπ ∈ R+ The quantity of cargo flow n ∈ N for path π on leg k =
(i, l, j, l′) ∈ Ls of service s

xske ∈ R+ The amount of flow of equipment type e ∈ E on leg k =
(i, l, j, l′) ∈ Ls of service s

lsplnπq,
usplnπq ∈ R+

The amount of laden containers loaded and unloaded of flow
n ∈ N to and from liner service s at port (p, l) ∈ Ps on
container path π for vessel type q ∈ Q

lspleq,
uspleq ∈ R+

The amount of empty equipment loaded and unloaded of
empty flow e ∈ E to and from liner service s at port (p, l) ∈
Ps for vessel type q ∈ Q

yCPL
sknπ ∈ {0, 1} Indicates whether leg k of service s is used to route cargo n

on path π
yCP
nπ Indicates whether cargo flow is n ∈ N is routed on container

path π ∈ Π
yT
splnπ ∈ {0, 1} Indicates whether cargo n on path π is transshipped at port

(p, l) on service s

τTT
splnπ ∈ R+ The time in days per visit to unload a cargo n on path π at

service s port (p, l) for transshipment operations
τTF
splnπ ∈ R+ The time in days per visit to forward cargo flow n from

service s lth call of port p to the succeeding port (and no
cargo transshipment is performed)

τCP
sknπ ∈ R+ The total duration in days to route cargo flow n on path π

on service s leg k
τs Round trip time in days of service s
τV
s Total relevant duration of all vessels of service s (number of

vessels times the planning duration)
τL
skq ∈ R+ Duration in days to travel leg k in service s for vessel type q
τS
sk ∈ R+ Auxiliary variable specifying the duration in days it takes

service s to steam leg k ∈ Ls over the whole planning hori-
zon. τS

s,k ≤ tSMax
s,k

τP
spl ∈ R+ Auxiliary variable giving the duration in days that service s

calls port (p, l)
τB
spl ∈ R+ The additional buffer for service s at port (p, l) in days to

hold the round trip time
ρVS
s ∈ R+ Slack variable allowing vessels in service s to steam above

maximum speed

We now introduce the objective and constraints of the model.
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max =
∑

n∈N

∑

π∈Π

(
rn − φC

en

)
αnπ − φF −

∑

s∈S

φP ρVS
s (1)

−
∑

s∈S,(p,l)∈Ps

∑

n∈NOD
p

∑

π∈Π

∑

q∈Q

φCH
p (usplnπq + lsplnπq) (2)

−
∑

s∈S,(p,l)∈Ps

∑

n∈N\NOD
p

∑

π∈Π

∑

q∈Q

φTS
p (usplnπq + lsplnπq) (3)

−
∑

s∈S,(p,l)∈Ps

∑

e∈E

∑

q∈Q

φTS
p (uspleq + lspleq) (4)

−
∑

s∈S

∑

k∈Ls

∑

q∈Q

bskq (5)

The objective function contains terms for revenue (1), container handling
costs (2), transshipment costs for laden (3) and empty containers (4) as well as
for bunker consumption costs (5). Furthermore, term (1) considers depreciation
costs for containers and adds fixed and penalty costs to the objective function. In
comparison to the objective function of [7], the dependency on the selected vessel
class was added to the terms (2) through (5). The fixed costs term φF contains
costs that are dependent on the selected vessel class, making it a variable in our
model. The bunker cost calculation in this model is simplified to the sum of all
bskq variables. The constraints of the model are as follows.

∑

π∈Π

αnπ ≤ qMax
n ∀n ∈ N (6)

∑

p∈Ps

∑

l∈Ls

τPspl +
∑

k∈Ls

τSsk − ρVS
s = τVs ∀s ∈ S (7)

τSsk ≤ tSMax
sk ∀s ∈ S k ∈ Ls (8)

τTT
splnπ ≥ ws

2
τPspl + tFp −M

P
spl(1− yTsplnπ)

∀s ∈ S, (p, l) ∈ Ps,
n ∈ N, π ∈ Π

(9)

τTF
splnπ ≥ wsτ

P
spl −M

P
sply

T
splnπ

∀s ∈ S, (p, l) ∈ Ps,
n ∈ N, π ∈ Π

(10)

xsknπ ≤ qMax
n yCPL

sknπ
∀s ∈ S, k ∈ Ls,
n ∈ N, π ∈ Π

(11)

τCP
sknπ ≥ τSskws −M

S
sky

CPL
sknπ

+

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τTT
silnπ, if i �= on ∧ i �= dn

τTT
sjl′nπ + τTF

sjl′nπ, if j �= on ∧ j �= dn
ws

2 τPsilnπ, if i = on
ws

2 τPsjl′nπ, if j = dn

0, otherwise

∀s ∈ S,
k = (i, l, j, l′) ∈ Ls,
n ∈ N, π ∈ Π

(12)

αnπ ≤ qMax
n yCP

nπ ∀n ∈ N, π ∈ Π (13)
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∑

s∈S,k∈Ls

τCP
sknπ ≤ θn +M

C
n (1− yCP

nπ ) ∀n ∈ N, π ∈ Π (14)

αnπ ≤ αnπ+1 ∀n ∈ N, π ∈ {0, ..., |Π| − 1} (15)

Constraints (6) to (15) are unchanged compared to [7] as there are no di-
rect dependencies on the vessel class selection or the determination of the vessel
count. Constraints (6) constrain the maximum volume on all container paths
of a single cargo flow. The period structure of the services is modeled in the
Constraints (7), including the durations at sea and the durations at the ports
and an upper bound for the total leg duration is given in Constraints (8). Con-
straints (9) and (10) are used to calculate the time it takes to transship a con-
tainer to another service or to simply forward the cargo to the next port of the
service. In Constraints (11), cargo flows are allowed if a particular leg is used
and restrict the leg capacity to the maximum cargo flow in the planning horizon.
Constraints (12) compute the transport duration for cargo flows for all service
legs, considering transshipment, forwarding and sea durations as well as port
durations. Constraints (13) are used to set the variable yCP

nπ to one if a cargo
flow is routed on a container path. In Constraints (14), the maximum transit
time is used to bound the sum of all single leg durations. Constraints (15) are
symmetry breaking constraints for k-splittable flow problems (see [11]).

xsδ+(s,k)nπ +
∑

q∈Q

lsknπq = xsδ−(s,k)nπ +
∑

q∈Q

usknπq
∀s ∈ S, k ∈ Ps,
π ∈ Π,n ∈ N

(16)

xsδ+(s,p,l)e +
∑

q∈Q

lseplq = xsδ−(s,p,l)e +
∑

q∈Q

useplq
∀s ∈ S, (p, l) ∈ Ps,
e ∈ E

(17)

∑

z∈HN

(lznπ − uznπ) =

⎧
⎪⎨

⎪⎩

αnπ, if p = on

−αnπ, if p = dn

0, otherwise

∀p ∈ P,
n ∈ N,
π ∈ Π

(18)

∑

z∈HN

(lze − uze) =

⎧
⎪⎨

⎪⎩

−∑
(n,π)∈Ne

αnπ, if p = on∑
(n,π)∈Ne

αnπ, if p = dn

0, otherwise

∀p ∈ P,
e ∈ E

(19)

∑

r∈Rg

∑

l,n∈HF

arnxskl +
∑

e∈E

∑

r∈Rg

arexske ≤
∑

q∈Q

Cgqy
V
sq

∀s ∈ S,
k ∈ Ls,
g ∈ G

(20)

τPr =
∑

q∈Q

[[
∑

l∈HF

(urlq + lrlq) +
∑

e∈E

(ureq + lreq)

]
tEpq

]
+ tAdd

p + τBr

∀s ∈ S,
(p, l) ∈ Ps,
r ∈ S × Ps

(21)

εyTsplnπ ≤
∑

q∈Q

usplnπq ≤ qMax
n yTsplnπ

∀s ∈ S, (p, l) ∈ Ps,
n ∈ N, π ∈ Π

(22)
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εyTsplnπ ≤
∑

q∈Q

lsplnπq ≤ qMax
n yTsplnπ

∀s ∈ S, (p, l) ∈ Ps,
n ∈ N, π ∈ Π

(23)

gvkqτ
L
skq + ivkqy

V
sq ≤ bskq

∀s ∈ S, k ∈ Ls,
q ∈ Q, 0 ≤ v ≤ λ

(24)

bskq ≤ M
SMax
kq ∀s ∈ S, k ∈ Ls, q ∈ Q (25)

τLskq ≤ M
S
sky

V
sq ∀s ∈ S, k ∈ Ls, q ∈ Q (26)

φF =
∑

s∈S

⎛

⎝
∑

(p,l)∈Ps

∑

q∈Q

φPC
pq

t

fs
yVsq +

∑

q∈Q

φD
q γsq

⎞

⎠ (27)

τs =
∑

q∈Q

γsqfs ∀s ∈ S (28)

τVs =
∑

q∈Q

γsqt ∀s ∈ S (29)

∑

q∈Q

yVsq = 1 ∀s ∈ S (30)

γsq ≤ M
Max
q yVsq ∀s ∈ S, q ∈ Q (31)

tSMax
sk = (lij

t

fs
)/(

∑

q∈Q

24kMin
q yVsq) ∀s ∈ S, k ∈ Ls (32)

Constraints (16) through (23) are adjusted to mirror the extension of de-
ployment and duration variables. Constraints (16) and (17) are used to balance
the flows of laden and empty containers. Constraints (18) and (19) compute the
loading and unloading of laden and empty containers. The capacity limitation
on service legs is defined in Constraints (20). It should be noted that the ca-
pacity strongly depends on the selected vessel class and therefore needs to be
considered for the calculation of the maximum capacity. Constraints (21) com-
putes the port call duration. The indicator variable for transshipments is set in
Constraints (22) and (23).

Constraints (24) to (32) are added to the model to include the new lin-
earization approach as well as the fleet deployment decisions. Constraints (27)
perform the fixed cost calculation while Constraints (28) compute the round-trip
time. Constraints (29) determine the total relevant duration and Constraints (32)
the maximum duration of a service. Constraints (24) and (25) are used for the
calculation of the bunker costs. The linearization with secants can be seen in
Constraints (24) for a given number of secants λ. Constraints (25) are used
to restrict the bunker consumption costs for vessel classes that are not used.
There are two additional constraints that handle fleet deployment decisions.
First, Constraints (30) only allow a single vessel class per service to be selected,
and Constraints (31) restrict the number of vessels of a specific class to zero
if the class is not selected for a service. If a vessel class is not selected for a
particular service, the duration to travel a leg with that specific vessel class is
set to zero in Constraints (26).
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5 Computational results

Our computational analysis is based on the same instance sets that are used in
[7], which consists of data from the public LINER-LIB database. They represent
small to medium-sized service networks in three different regions. For each region,
there are 30 different network variations. Table 2 provides detailed information
about the size of these regions regarding the number of ports, number of legs,
cargo flows and available vessel types. While the Baltic and WAF instances
represent small feeder networks, the Mediterranean instances portray a medium-
sized network. Furthermore, we fixed the number of available container paths
for our experiments to one. The analysis of [7] provides more details of the
consequences if the number of container paths is increased.

The goal of our analysis is to determine to what extent integrating fleet
deployment with cargo allocation can improve the overall profit of a network.
For this, we evaluate our instances with dual six-core Intel Xeon X5650 2.67GHz
CPUs and 32GB of RAM per instance. We use Gurobi 7.0 with a time limit of
24 hours to solve our model. To evaluate the effects of the proposed model,
we fix the fleet deployment to the originally planned vessel assignments. In the
following analysis, we refer to these fixed assignments using the term “fixed
deployment”. The results from our newly proposed model are referred to as
“optimized deployment”.

Table 3 shows the average runtime in seconds, the average MIP gaps to the
optimal solution in percent, and the number of solved instances for optimized
and fixed runs over all instance regions.

For the WAF region, there is a single instance for the optimized deployment
that was not solved within the timelimit of 24 hours, having a gap of 13.7% to
the optimal solution. The last feasible solution in this case was found about 14.5
hours before termination. In the given time frame, none of the Mediterranean
instances could be solved to optimality, and only three instances had a gap of
less than 20% at the time of termination.

In the fixed deployment, the same WAF instance that could not be solved
in the optimized case was solved in less than 13 minutes. Also, only 7 of the 30
Mediterranean instances have an optimality gap of more than 10%.

Although feasible instances have been found in some of the Mediterranean
instances, in most cases the MIP gap is too big such that a further analysis
of these feasible solutions would not benefit this work. Therefore, the following
analysis will only evaluate the results of the Baltic and the WAF instances.

Figure 2 shows scatter plots of performance indicators for fixed and optimized
deployments with Baltic instances. Each point represents an instance. The left-

Table 2. LINER-LIB instance information (see [3]).

Instance Ports Cargo flows Legs Vessel types min/max services

Baltic 12 22 132 2 1/3
WAF 20 37 380 2 5/10
Mediterranean 39 365 1482 3 1/3
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Table 3. Average runtime in seconds, average MIP gaps and number of solved instances
for free and fixed runs.

Optimized Fixed

Avg. time Gap Solved Avg. time Gap Solved

Baltic 0.67 0.00 30/30 0.10 0.00 30/30
WAF 3618.06 0.46 29/30 44.92 0.00 30/30
Mediterranean 86400.00 356.81 0/30 58978.33 14.14 10/30

Figure 2. Performance of fixed and optimized deployments with Baltic instances.

most scatter plot shows the average utilization of the vessels as a percentage, the
other three display financial indicators in tens of million USD. The performance
of the optimized deployments is plotted on the x-axis and the performance of
the fixed deployments is plotted on the y-axis. The diagonal line illustrates data
points in which the performance of the fixed deployment is equal to the per-
formance of the optimized deployment, while points below the line mean the
optimized solution had a higher value than the fixed deployment (and a lower
solution value for points above the line).

In the scatter plot showing the average utilization, only three instances have
a better utilization in the optimized case for the Baltic region. By repositioning
more empty containers, these instances increase the amount of used capacity of
the vessels. It can be observed that some instances have a different strategy when
to unload cargo, resulting in higher container path durations for their cargo. In
these cases, cargo is transported on additional legs compared to the optimized
case, increasing the usage of vessel capacity on these legs. In five of all the 53
services of the Baltic region (about 9.4%), the vessel class has been changed to
increase the capacity of the service. In most of these cases, the utilization of
these services decreased, although the total amount of transported cargo was
increased in these instances, leading to higher revenues. The overall additional
profit in the Baltic instances is on average about 150,000 USD and ranges from
no difference at all to an increase of 1 million USD.

The scatter plots of the fixed and optimized deployment performance with
WAF instances are displayed in Figure 3. The structure of this figure is the same
as for the Baltic instances, except that the financial indicators are represented
in units of 100 million USD.

About 45% of all the services (108 out of 238 services in total) show an adjust-
ment to the deployment. Due to these deployment changes, all WAF instances
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Figure 3. Performance of fixed and optimized deployments with WAF instances.

are able to carry more cargo and generate higher revenues. In many cases, vessel
classes with higher capacity are assigned to the services, resulting in less uti-
lization. There are also cases in which smaller vessel classes are selected, which
usually leads to higher utilization of the vessels. It can also be observed that
in some instances, the number of vessels is increased to take advantage of slow
steaming. Despite raising costs by assigning more vessels and transporting more
cargo, the overall additional profit is on average about 21 million USD, ranging
from 9 million to 46 million USD.

The evaluation of the selected performance indicators (average vessel uti-
lization, profit, total costs and revenue), shows that by optimizing the fleet de-
ployment the profit of a service network can be increased in many cases. Our
proposed model allows for increases in the overall capacity of a service network
by adding more vessels to a service or by switching vessel classes. Due to the
higher capacity, more cargo can be transported.

6 Conclusion and future research

In this paper we integrated fleet deployment decisions into a state-of-the-art
cargo allocation model. This extension combines two closely connected problems
into a single model, giving liner carriers a decision support tool that enables a
practically relevant analysis of their liner shipping service network. By providing
the flexibility of optimizing vessel classes of a service as well as the vessel count of
a service, services can be further improved regarding the profitability. To demon-
strate this, we evaluated instances of two LINER-LIB regions by comparing the
previously planned deployment with the results of our optimized deployment.
We showed that the integrated optimization of cargo allocation and fleet deploy-
ment leads to higher numbers of transported cargo, therefore resulting in overall
increases of profits of an average of 150,000 USD in the Baltic instances and an
average of 21 million USD for the WAF instances.

Future research can be performed on improving the solution time of this
model, as even the relatively small WAF instances take a long time to solve.
For this, a column generation approach or a heuristic approach could be im-
plemented. Furthermore, the current model includes assumptions about cargo
handling and piloting times that could be relaxed in a stochastic model.
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Abstract. This paper addresses the fleet deployment problem and in
particular the treatment of inventory in the maritime case. A new model
based on time-continuous formulation for the combined maritime fleet
deployment and inventory management problem in Roll-on Roll-off ship-
ping is presented. Tests based on realistic data from the Ro-Ro business
show that the model yields good solutions to the combined problem
within reasonable time.

Keywords: Fleet deployment, Maritime inventory routing, Ro-Ro ship-
ping

1 Introduction

In maritime transportation, ships typically operate in one of the three modes:
industrial, tramp or liner shipping. In industrial shipping, a shipping company
manages the ships and the cargoes to be transported, with the aim of minimizing
the transportation costs. In tramp shipping, the ships are assigned to the cargoes
(some of which may not be obligatory) under contracts between the shipping
company and the cargo owners, with the aim of maximizing profits, similar to a
taxi service. In liner shipping, the ships follow a predefined itinerary with given
port calls along routes according to a published schedule, similar to a bus service.
Christiansen et al. [7] provide a detailed review on ship routing and scheduling
for the various operational modes.

Roll-on Roll-off (Ro-Ro) shipping, a segment within liner shipping, is the
major mode for the long distance international transportation of automobiles
and other types of rolling equipment, as well as cargoes that can be placed
on trolleys for loading and unloading. Meanwhile, the involvement of container
shipping companies in automobile transportation business provide tough com-
petition to Ro-Ro shipping companies. To improve profitability and strengthen
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the ties with its customers, some Ro-Ro shipping companies may consider to
provide vertically integrated logistics services to automobile companies, where a
Ro-Ro shipping company is responsible for inventory management at the ports
and transportation at sea [5]. The automobile companies share the production
and consumption information with the shipping companies, while the shipping
companies share the ship schedules with automobile companies on a regular
basis.

Fleet deployment can be considered as a tactical planning problem of as-
signing ships in the fleet to voyages that must be serviced regularly on given
geographical routes. The fleet deployment gives which ship will perform which
voyage, as well as sailing routes for each ship in the fleet, i.e. each ship is as-
signed a sequence of voyages to service, probably with ballast sailing between
the last port of one voyage and the first port of the next voyage. In most litera-
ture, fleet deployment problems were first encountered in container shipping, the
largest segment within liner shipping. The models for fleet deployment problems
in container shipping usually assume:

1. Each ship is assigned a single route and loop during the planning horizon.

2. Individual ships of the same type are not distinguished.

Perakis and Jaramillo [10, 12] have contributed to develop mathematical
models for liner shipping fleet deployment problems. They proposed a linear pro-
gramming (LP) model for a liner ship fleet deployment problem. The LP model
minimizes the total operating costs for a fleet of liner ships over a given planning
horizon. The model assigns ships across the routes, determines the number, type
and duration of chartering-in ships and owned ships that are laid-up during the
planning horizon. In their approach, the ship speed is considered as a parameter
in the LP model. Their work was extended by Powell and Perakis [13]. They
proposed an integer programming (IP) formulation to optimally assign a fleet of
ships for a real liner shipping company. Computational results show substantial
savings in total costs in comparison with the manual planning.

In Ro-Ro shipping, ship route planning works under more flexible assump-
tions. Fagerholt et al. [8] present a mixed-integer programming (MIP) model for
fleet deployment in Ro-Ro shipping, and Andersson et al. [3] extend this model
for a real fleet deployment problem by including speed as a decision variable.

Inventory management deals with deciding the quantities to transport be-
tween the ports along the routes so that the port inventory level of products are
kept within given limits. There are a few examples in the literature for maritime
inventory routing problems, though mostly in the industrial and tramp shipping
(see for example [1, 6, 9, 11, 14–17]). These literature contributions suggest subs-

In this paper, we propose a new time-continuous formulation for the combined
Maritime Fleet Deployment and Inventory Management Problem (MFDIMP),
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tantial financial savings by combining ship routing and scheduling planning
with inventory management in industrial and tramp shipping. Therefore, it can
be inferred that the fleet deployment planning in Ro-Ro shipping can achieve
better results by integrating inventory management of cargoes at associated pro-
duction and consumption ports.



along with computational testings on realistically generated test instances from
the Ro-Ro shipping companies. The fleet deployment combined with inventory
management in Ro-Ro shipping is rarely dealt with in the literature, but a
few studies exist. Chandra et al. [4, 5] propose a time-discrete model for the
combined MFDIMP. In deep-sea shipping where the planning horizons can be
long, the time-continuous formulation is preferred as it is impractical to use time
discretization with large numbers of time periods in a time-discrete model.

The remainder of this paper is organized as follows: In the next section we
give a thorough description of the combined MFDIMP. Section 3 presents the
mathematical formulation for the problem with a special focus on the modeling
of the inventories at ports. A computational study is performed in Section 4,
while concluding remarks are given in the final section.

2 Problem Description

We consider a liner shipping company that operates a heterogeneous fleet of
ships with different capacities, service speeds and bunker consumption. At the
beginning of the planning horizon, all ships in the fleet have unique initial posi-
tions, either in a port or somewhere at sea. Moreover, the ships can have different
preparation times before they are able to commence new voyages because they
must continue their on-going voyages or dry dock (for example, repair) first.

Fig. 1. A three route problem: America to Asia, Asia to Europe, Europe to America,
with associated ballast sailings

A route (also called service) is defined as a logistical network used to trans-
port all cargo from their loading ports in one geographical region to unloading
ports in another. In general, the shipping company serves several routes. In Fig.
1, three routes are illustrated by solid lines and the ports are shown as dots.
Route 1 sails from America to Asia while route 2 connects four Asian ports with
five European ports. Similarly, route 3 starts from Europe and sails to America.
To maintain regular service, each route must be serviced according to a given
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frequency, e.g. weekly or bi-weekly. Each sailing along a route is called a voyage.
Even though each route should be serviced according to the given frequency,
there is some flexibility when each voyage along a route must start, given by a
time window. Each voyage (for example voyage number 1 on route 1) must be
sailed by a ship and is often called a mandatory voyage. After a ship has com-
pleted one voyage on a route, it may serve another voyage on the same route or
another route or end its service. To start the next voyage, the ship sails without
load (i.e. ballast sailing) to the first port of the next voyage. As an example,
a ship may first serve a voyage on route 2 from Yokohama in Asia. This
route ends at Gothenburg in Europe. The ship may then continue to serve
a voyage on route 3 from Bremerhaven in Europe. In this case, there would
be a ballast sailing from Gothenburg to Bremerhaven between the two voyages.
The ballast sailing between the two routes in Fig. 1 is illustrated by a dotted
line. Different contract terms and product types transported along the various
routes may restrict which ships can be assigned to voyages on a particular route,
regarding capacity and compatibility.

We assume deterministic sailing times for all ships between successive ports
along a route. We also consider deterministic sailing times for each ship between
the last port of one route and the first port of another route. It is assumed that
the time spent at each port is given regardless of quantities loaded/unloaded as
the most important part of the processing time at a port is to enter/leave the
port and berth. Waiting at the first port of a voyage is allowed, but waiting times
at successive ports along the voyage are not allowed. A time window associated
with each voyage, defined by an earliest and latest start time, defines within
what time interval the service in the first port of the voyage must start.

Servicing a voyage incurs costs such as port and fuel consumption costs,
depending on the ship type. It is common in this service that the automobile
company has responsibility for the storage of the cargo at both the produc-
tion and consumption ports. Therefore, the inventory costs can be considered
as disregarded. This assumption is consistent with most research on maritime
inventory routing, where inventory management is still a nontrivial part of the
problem even though inventory costs are not considered.

We assume that the shipping company has an option to charter spot ships
at a given cost from the market to service a voyage. The spot ships are assumed
to be ready to service any voyage during the whole planning horizon, and they
can start any time within its time window.

We use the term product for the same type of product transported along the
same route. Each product has given production rates at its associated loading
ports and given consumption rates at its associated unloading ports, which is
assumed constant during the planning horizon. Each port has a different pro-
duction and consumption rate for specified products. At a production port of a
product, the shipping company must determine how many units to load of each
product transported to its corresponding unloading ports. Each ship is able to
carry a number of different products at the same time, and the products need to
be carried in dedicated compartments because some of these products cannot be
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stored together. Similarly, each port has a storage capacity in terms of the max-
imum number of product it can hold. The size of spot ships for a given product
is assumed as the size of the largest ship in the fleet for that product. Cargoes
are rarely transshipped in Ro-Ro shipping, so transshipment is disregarded. The
aim of this combined MFDIMP is to determine: (a) the ship routes and schedules
(i.e. which ship should perform which voyages and in what sequence), (b) the
start time of each voyage, (c) which voyages should be serviced by spot ships,
and (d) the number of units of each product to be loaded/unloaded at associated
ports during each voyage. The problem is to be solved subject to the following
constraints: (a) all voyages are serviced within their given time windows, either
by a ship in the fleet or by a spot ship, (b) the aggregate inventory limit of all
products in a particular port should not exceed the maximum storage limit, and
(c) there is no backlogging of demand for any product in any of the ports. The
objective is to minimize total costs, which consist of the sailing costs for ships in
the fleet and the time charter costs for spot ships, over a given planning horizon.

3 Model Formulation

The number of visits to each route during a given horizon is assumed fixed in
Ro-Ro shipping. Thus, we use a time-continuous formulation which considers an
ordering of the route visits according to the time of the visit, and introduce an
index indicating the visit number to a particular route (i.e., voyage). The ship
paths are defined on a network where the nodes correspond to route visits. As far
as we know, there exist no studies in the literature which use a similar modeling
approach as the one proposed in this paper.

Fig. 2. Illustration of nodes and arcs with three ships: a ship services voyage 1 on route
1, voyage 2 on route 2, voyage 2 on route 3, voyage 5 on route 1 and voyage 5 on route
2; a ship services voyage 2 on route 1, voyage 3 on route 2; a ship services voyage 4 on
route 2, voyage 3 on route 3.

We need to explain how nodes and arcs should be interpreted before we
start with the modeling. In this model a node represents a given voyage along a
route as illustrated in Fig.2. Thus, the pair denoted by (i,m) corresponds to a
node in the model, i.e. voyage number m on route number i. Inside each node,
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Fig. 3. Illustration of structure inside nodes: set of ports along the two routes. In (2,2),
a ship loads product 1 and 2 at Yokohama, sails and loads product 1 at Kobe, sails and
loads product 2 at Shanghai and Singapore, sails and unloads product 2 at Alexandria
and Piracus, sails and unloads product 1 at Southampton, sails and unloads product 1
and 2 at Zeebrugge, finally arrives at Bremerhaven and unloads product 2. Similarly,
a ship carries two types of products from their associated loading ports to unloading
ports in (3,2).

all the ports along the route are visited by the ship in sequence as shown in
Fig.3. The arc between the nodes is represented by dotted line and denote the
ballast sailing. For example in Fig.2 and Fig.3, the arc {(2, 2)(3, 2)} represents
the ballast sailing from the last port of voyage number 2 on route 2 to the first
port of voyage number 2 on route 3. For a given route of a ship v in Fig.3, the
decision variable x2232v is a binary variable that is equal to 1 if the ship performs
voyages (2, 2) and (3, 2) in sequence, and 0 otherwise.

Section 3.1 describes the notations used in the model, while the mathematical
model for the problem in Section 2 is presented in Section 3.2. Finally, the non-
linear constraints in the model are linearized in Section 3.3.

3.1 Notation

The notation used in the model is presented in this section for easy reference.

Sets
I set of routes, i ∈ I
M set of voyages, m ∈ M
N set of nodes, i.e. a voyage m along a route i, (i,m) ∈ N
Nv set of nodes visited by ship v, Nv ⊆ N
Av set of arcs (i,m)(j, n) that can be serviced by ship v
VR set of ships in the fleet, v ∈ VR

VA set of spot ships, v ∈ VA

V set of ships, VA ∪ VR = V
Pi set of ports along route i, p ∈ Pi

Ki set of products transported along route i, k ∈ Ki
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Parameters
Mi the number of voyages along route i during the planning horizon
Pi the number of ports along route i
Ki the number of products transported along route i
CO

iv cost for ship v sailing from its initial position to the start position
of route i

Cijv cost of performing a voyage along route i and sailing ballast from
the last port of route i to the first port of route j with ship v

CR
iv cost of performing a voyage along route i with ship v

TO
iv sailing time for ship v from its initial position to the start position

of route i
Tijv sailing time of performing a voyage along route i and sailing ballast

from the last port of route i to the first port of route j with ship
v

TP
ip time spent at port p along route i

TR
ip sailing time on route i from the start position of route i to port p

T im the earliest start time of servicing node (i,m)
T̄im the latest start time of servicing node (i,m)
T the length of the planning horizon
SO
ipk the initial inventory level of product k at port p along route i at

the beginning of the planning horizon
Ripk production rate of product k at port p along route i, positive if port

p is producing the product, and negative if port p is consuming
the product

Iipk 1 if port p is a loading port, −1 if port p is a unloading port, and
0 otherwise

Sip the minimum inventory level at port p on route i
S̄ip the maximum inventory level at port p on route i
Qikv the capacity of the compartment of ship v dedicated for product

k along route i
QC

v the total capacity onboard ship v

Variables
xO
imv 1 if ship v sails directly from its initial position to the start position

of node (i,m), 0 otherwise
zOv 1 if ship v is not used, 0 otherwise
ximjnv 1 if ship v sails directly from node (i,m) to node (j, n) (ship v

sails node (i,m) and then ballast sailing to node (j, n) directly
afterwards), 0 otherwise

zimv 1 if ship v sails node (i,m) as its last voyage, 0 otherwise
wimv 1 if ship v visits node (i,m), 0 otherwise
tim the time at which service starts at node (i,m)

A New Formulation for the Combined MFDIMP 327



simpk inventory level of product k at port p at the start of service for
node (i,m)

sEimpk inventory level of product k at port p at the end of service for
node (i,m)

limpkv the amount of product k onboard ship v when leaving port p on
node (i,m)

qimpkv the amount of product k loaded/unloaded to/from ship v at port
p on arrival of node (i,m)

3.2 Mathematical Model

Objective Function. The objective function (1) is to minimize the total trans-
portation costs. It consists of the sailing costs for ships in the fleet (i.e. initial
ballast sailing costs, voyage costs and ballast sailing costs between successive
voyages) and the time charter costs for spot ships.

Minimize
∑

v∈V

∑

(i,m)∈Nv

CO
ivx

O
imv +

∑

v∈VR

∑

((i,m),(j,n))∈Av

Cijvximjnv+

∑

v∈V

∑

(i,m)∈Nv

CR
ivzimv

(1)

Routing Constraints. Constraints (2) ensure that ship v either departs from
its initial position and sails towards node (i,m) , i.e. to serve a voyage, or it is
not used. ∑

(i,m)∈Nv

xO
imv + zOv = 1, v ∈ V (2)

Constraints (3) and (4) are the flow conservation constraints, ensuring that a
ship arriving at a node also leaves that node by either visiting another node or
ending its route.

∑

(j,n)∈Nv

xjnimv + xO
imv − wimv = 0, v ∈ V, (i,m) ∈ Nv (3)

wimv −
∑

(j,n)∈Nv

ximjnv − zimv = 0, v ∈ V, (i,m) ∈ Nv (4)

Constraints (5) ensure that ship v either ends after servicing some node or it is
not used. ∑

(i,m)∈Nv

zimv + zOv = 1, v ∈ V (5)

Voyage Completing Constraints. Constraints (6) ensure that each node is
serviced once by either a spot ship or a ship in the fleet.

∑

v∈V
wimv = 1, (i,m) ∈ N (6)
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Load Management Constraints. Constraints (7) and (8) relate the quantity
on board a ship to the quantity (un)loaded from the ship. Constraints (7) ensure
that if ship v sails from port p− 1 to port p, then the quantity of product k on
board at the departure from port p should be equal to the quantity on board
at departure from port p− 1 plus (or minus) the quantity loaded (or unloaded)
from p.

wimv(lim(p−1)kv + Iipkqimpkv − limpkv) = 0,

v ∈ V, (i,m) ∈ Nv, p ∈ Pi \ {1}, k ∈ Ki

(7)

We assume that all ships in the fleet start their voyages empty. Constraints (8)
relate the quantity on board with the quantity loaded or unloaded at the start
position of node (i,m).

wimv(Ii1kqim1kv − lim1kv) = 0,

v ∈ V, (i,m) ∈ Nv, k ∈ Ki

(8)

Similarly, all ships in the fleet are assumed ending their voyages empty.

limPikv = 0, v ∈ V, (i,m) ∈ Nv, k ∈ Ki (9)

The ship capacity constraints are given by (10) and (11) imposing an upper
bound on the quantity on board for a single product and all the products re-
spectively. Constraints (10) also impose a lower bound on the the quantity on
board.

0 ≤ limpkv ≤ Qikvwimv, v ∈ V, (i,m) ∈ Nv, p ∈ Pi, k ∈ Ki (10)
∑

k∈Ki

limpkv ≤ QC
v wimv, v ∈ V, (i,m) ∈ Nv, p ∈ Pi (11)

Constraints (12) impose lower and upper bounds on the quantity loaded or
unloaded.

0 ≤ qimpkv ≤ Qikvwimv, v ∈ V, (i,m) ∈ Nv, p ∈ Pi, k ∈ Ki (12)

Time Constraints. Constraints (13) ensure that if ship v travels from its initial
position to node (i,m) to start a voyage at time t, then the service at node (i,m)
can only occur after the ship has arrived.

tim ≥
∑

v∈V
TO
ivx

O
imv, (i,m) ∈ N (13)

Constraints (14) ensure that if ship v sails directly from node (i,m) to node
(j, n), then the service at node (j, n) can only start after the start time of service
at previous node (i,m) plus the time required to travel from route i to route j.

ximjnv(tim + Tijv − tjn) ≤ 0, v ∈ VR, ((i,m), (j, n)) ∈ Av (14)

Constraints (15) define the time windows for each node.

T im ≤ tim ≤ T̄im, (i,m) ∈ Nv (15)
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Inventory Constraints. The inventory constraints are necessary to ensure
that the inventory levels are kept within the corresponding bounds and to link
the inventory levels to the (un)loading quantities.

Constraints (16) and (17) define the inventory level upon arrival at each port
on route i for the first time. Constraints (17) calculate the inventory level of
each product at the first port on route i for the first time the route is visited,
i.e. first voyage on the route.

si1pk = SO
ipk +Ripk(ti1 + TR

ip +

p−1∑

p′=1

TP
ip′), (i, 1) ∈ N , p ∈ Pi \ {1}, k ∈ Ki (16)

si11k = SO
i1k +Ri1kti1, (i, 1) ∈ N , k ∈ Ki (17)

The inventory level when service finishes at any port call (i,m, p) can be cal-
culated from the inventory level upon arrival at the port in the call (i,m, p),
adjusted for the loaded/unloaded quantity at the port call and the quantity
produced/consumed when ships operate at ports as in constraints (18).

sEimpk = simpk − Iipk
∑

v∈V
qimpkv + TP

ipRipk,

(i,m) ∈ N , p ∈ Pi, k ∈ Ki

(18)

The inventory level upon arrival at any port call (i,m, p) can be calculated from
the inventory level when the service finishes at the port in the call (i,m− 1, p),
adjusted for the quantity produced/consumed in-between as in constraints (19).

simpk = sEi(m−1)pk +Ripk(tim − ti(m−1) − TP
ip),

(i,m) ∈ N \ {(i, 1)}, p ∈ Pi, k ∈ Ki

(19)

The upper and lower bounds on the inventory levels are ensured by constraints
(20) – (22). For a loading port, the inventory level increase monotonously before
the start of any port operation. Therefore the possible maximum inventory level
immediately before any loading port operation cannot exceed the upper bounds
on the inventory level. Then the inventory level at the end of any port opera-
tion decreases due to the operation at the loading port. Therefore, the possible
minimum inventory level immediately after any loading port operation cannot

∑

k∈Ki

simpk ≤ S̄ip,
∑

k∈Ki

sEimpk ≥ Sip, (i,m) ∈ N , p ∈ PL
i (20)

∑

k∈Ki

simpk ≥ Sip,
∑

k∈Ki

sEimpk ≤ S̄ip, (i,m) ∈ N , p ∈ PU
i (21)
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be less than the lower bounds on the inventory level as in (20). (21) describe
the similar requirements for unloading ports.



Constraints (22) ensure that the inventory level at the end of the planning
horizon is within the limits.

Sip ≤
∑

k∈Ki

(sEimpk +Ripk(T − tim − TR
ip −

p∑

p′=1

TP
ip′) ≤ S̄ip,

(i,m) ∈ N|m = Mi, p ∈ Pi

(22)

Binary and Non-negativity Constraints. Constraints (23) – (25) define
the variables as binary. The nonnegativity requirements (26) are given for the
variables representing the inventory level.

ximjnv ∈ {0, 1}, v ∈ VR, ((i,m), (j, n)) ∈ Av (23)

xO
imv, zimv, wimv ∈ {0, 1}, v ∈ V, (i,m) ∈ Nv (24)

zOv ∈ {0, 1}, v ∈ V (25)

simpk, s
E
impk ≥ 0, (i,m) ∈ N , p ∈ Pi, k ∈ Ki (26)

3.3 Linearization

Since constraints (7) are non-linear and cannot be solved by a linear solver, we
linearize the constraints (7) by replacing them with the following two sets of
constraints (27) and (28), which forces lim(p−1)kv + Iipkqimpkv = limpkv when
wimv = 1.

lim(p−1)kv + Iipkqimpkv − limpkv ≤ Qikv(1− wimv),

v ∈ V, (i,m) ∈ Nv, p ∈ Pi \ {1}, k ∈ Ki

(27)

lim(p−1)kv + Iipkqimpkv − limpkv ≥ Qikv(wimv − 1),

v ∈ V, (i,m) ∈ Nv, p ∈ Pi \ {1}, k ∈ Ki

(28)

Similarly, non-linear constraints (8) can be linearized in (29) and (30).

Ii1kqim1kv − lim1kv ≤ Qikv(1− wimv), v ∈ V, (i,m) ∈ Nv, k ∈ Ki (29)

Ii1kqim1kv − lim1kv ≥ Qikv(wimv − 1), v ∈ V, (i,m) ∈ Nv, k ∈ Ki (30)

Constraints (14) are linearized as constraints (31), following [2].

tim − tjn +max{T̄im+
∑

v∈VR

Tijv − T jn, 0}
∑

v∈VR

ximjnv ≤ T̄im − T jn,

((i,m), (j, n)) ∈ A
(31)
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4 Computational Study

The mathematical model described in Section 3 has been implemented in Mosel
using Xpress IVE and solved using Xpress 27.01.02. All computational tests are
performed on a Windows 8 computer with an Intel i5 core, 2.2 GHz processor and
8 GB RAM. Section 4.1 describes the test instances used, while the performance
of the tests using Xpress is presented and discussed in Section 4.2.

4.1 Test Instances

Four sets of test instances have been generated and used in the computational
study. The first two sets consist of 6 instances, and the other two sets consist
of 8 instances. These test instances are based on reduced versions of a real-sized
problem faced by a Ro-Ro shipping company, the first set of instances based
on the Asia to Europe route, the second and third set of instances based on the
three routes shown in Fig. 1, and the fourth set of instances based on five routes.
Table 1 summarizes the test instances developed for the computational study.

Table 1. Test instances. For the number of ships, the number on the left denotes the
number of ships in the fleet, while the number on the right is the number of available
spot ships.

Instance Nships Nroutes Nports Nvoyages NportCalls Nproduct Time (days)

9v1r3p2k90d 9/0 1 3 9 27 2 90
9v1r6p2k90d 9/0 1 6 9 54 2 90
9v1r9p2k90d 9/0 1 9 9 81 2 90

7v3r9p6k90d 7/3 3 9 27 81 6 90
10v3r17p6k90d 10/3 3 17 27 162 6 90
10v3r28p6k90d 10/3 3 28 27 225 6 90

10v3r28p11k90d 10/3 3 28 27 225 11 90
10v3r28p11k120d 10/3 3 28 36 300 11 120
10v3r28p11k150d 10/3 3 28 45 375 11 150
10v3r28p11k180d 10/3 3 28 54 450 11 180

18v5r47p17k90d 18/3 5 47 40 341 17 90
18v5r47p17k120d 18/3 5 47 53 451 17 120
18v5r47p17k150d 18/3 5 47 67 572 17 150
18v5r47p17k180d 18/3 5 47 80 682 17 180

The information on routes and ports with respective sailing distances and
corresponding costs and sailing times are based on real data. Two ship types
are considered, large and small, with capacities of approximately 7100 and 5800
Car Equivalent Units (CEUs), respectively. The cost associated with assigning
a voyage to a spot ship is assumed almost three times the variable (i.e. fuel and
port) cost of serving the voyage with a large ship from the company’s own fleet.
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The cost of serving the voyage with a small ship is set to be 20% lower than the
cost of serving the voyage with a large ship from the company’s own fleet.

The number of voyages on each route during the planning horizon, time
windows for starting the voyages, products produced/consumed on a route and
production/consumption rate of respective products at each port are estimated
by the authors. Inventory management is taken into consideration at both the
production and the consumption ports of each product.The number of products
to be transported along each route ranges between 2 and 5. The daily production
or consumption rates of a product at the respective ports are estimated as a
random number between 10 and 100 units of the product.

The typical planning horizon varies from months to a year. Here we con-
sider planning horizons of 90, 120, 150 and 180 days, respectively. The in-
stances are named according to the number of ships in the fleet (v), routes (r),
ports (p), products (k) and length of planning horizon (d), for example instance
9v1r3p2k90d represent test instance with nine ships, one route, three ports, two
products and planning horizon of 90 days. For each test instance, the number of
ships, routes, ports, voyages, port calls, products and length of planning horizon
(in days) are given.

4.2 Computational Performance

Table 2. Computational results from the MIP model for the test instances.

Instance ProblemSize Best Sol.Value Gap(%) Spot Ship Time(s)
# Constraint # Variable (M$)

9v1r3p2k90d 2831 1341 5.09 0.00 0 0.5
9v1r6p2k90d 5240 2421 5.29 0.00 0 1.0
9v1r9p2k90d 7649 3501 5.49 0.00 0 1.9

7v3r9p6k90d 10358 10261 22.21 0.00 3 12.6
10v3r17p6k90d 21516 17098 24.51 0.00 3 12.4
10v3r28p6k90d 30913 21298 30.70 0.00 3 39.3

10v3r28p11k90d 52642 32302 30.70 0.00 3 73.9
10v3r28p11k120d 70695 46523 39.09 0.00 3 165.6
10v3r28p11k150d 89014 62473 42.98 0.00 3 1599.3
10v3r28p11k180d 107599 80152 50.21 0.00 3 1636.2

18v5r47p17k90d 118536 84406 40.09 0.00 2 40.2
18v5r47p17k120d 158126 124587 52.27 0.00 3 193.9
18v5r47p17k150d 201789 175209 68.05 0.50 3 3600.0
18v5r47p17k180d 242625 228473 79.70 1.31 3 3600.0

The computational results for solving the MIP model are presented in Table
2. The size of the model for each of the instances is presented in terms of number
of constraints and variables. Moreover, Table 2 gives details related to the best
MIP solution value (in M$) obtained, and the optimality gap (in %), Gap =
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BestIntegerSolutionV alue−BestBound
BestIntegerSolutionV alue × 100, is reported if the model could not be

solved to optimality within the time limit which is set to one hour. The actual
number of spot ships used is also reported.

The MIP model could be solved to optimality for most small instances
within reasonable times except for the two largest ones, 18v5r47p17k150d and
18v5r47p17k180d, for which the feasible integer solutions are found and the gaps
are reported are 0.5% and 1.3%, respectively.

Even for the two largest instances, 18v5r47p17k150d and 18v5r47p17k180d,
good solutions are obtained within the time limit. It is, however, clear that the
computational time increases rapidly with the increase of the number of ships,
routes, ports and products. The real problem that can involve up to 19 routes
and 60 ships, as well as a larger number of products would result in much longer
computational time. Moreover, the computational results also show that the size
of the instances as well as the computational time increases dramatically with
the increased length of the planning horizon. For budgeting reasons, some Ro-Ro
shipping companies could be interested in solving problems with up to one year
planning horizons, which would be impossible using only a commercial solver
(like Xpress).

5 Concluding Remarks

In this paper, we have presented a planning problem faced by Ro-Ro shipping
companies providing integrated logistic services to its customers. We have pro-
posed a new mathematical model, combining inventory management at the ports
with the planning of ship routes. This planning problem is called a combined
Maritime Fleet Deployment and Inventory Management Problem (MFDIMP).

Test instances are created based on reduced version of a real Ro-Ro shipping
company. Out of the 14 test instances, only the two largest instances with 18
ships, 5 routes and planning horizons of 150 and 180 days could not be solved to
optimality. The computational results suggest that the time-continuous formu-
lation is likely to perform better than the time-discrete model in [4], particularly
for instances with a long planning horizon.

It should be emphasized that even though the results are promising for our
test instances, the combined MFDIMP is a very complex problem and instances
of realistic size with more ships, routes and longer planning horizon could be
even harder or impossible to solve within reasonable computational times by
only using a commercial mixed-integer programming solver. Therefore, there are
many possible directions for future research. In order to find optimal solutions
within reasonable computational times, it would be interesting to study exact
solution techniques, for example decomposition approaches. Moreover, the pos-
sibility of tightening the formulation and including suitable valid inequalities
for the inventory management part of the problem could also be explored. In
addition, advanced heuristics could also be developed to obtain near optimal
solutions for large realistic instances of the problem.
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Abstract. This paper deals with the Liner Shipping Routing and Schedul-
ing Problem (LSRSP), which consists of designing the time schedule for
a vessel to visit a fixed set of ports while minimizing costs. We extend the
classical problem to include the external cost of ship air emissions and
we present some results of our work investigating the impact of Emission
Control Areas in the routing and scheduling of liner vessels.

Keywords: liner shipping, emissions, emission control areas

1 Introduction

Maritime transportation is essential for the global trade of today. In 2015 the
total seaborne trade was almost 10.047 billion tonnes, a remarkable 68 percent
increase since 2000. Containerized freight, in particular, has gotten an increased
importance on the international seaborne trade market. In addition, the con-
tainer fleet grew by 240 percent between 2000 and 2014, from 64 millions to 216
millions, measured in deadweight tonnage (UNCTAD 2016, [28]).

Although one would assume that this growth in container shipping has left
liner shipping companies in full glory, the recent economic developments have
impacted the business significantly and left many industry players struggling.
The latest economical crisis hit the liner shipping industry in 2008 and 2009,
as reflected by the negative growth of TEUs traded in 2009. Not only did the
decreasing demand hit shipping companies on the top line but several other sig-
nificant complications suddenly hit the industry. Over the recent years shipping
companies have been exposed to increased market capacity, declining freight
rates and increasing bunker prices, which led shipping operators to focus on
cutting costs and improving the efficiency of their operations.

Besides overcapacity, another perilous development for the liner shipping
industry has been the fluctuation and, in particular, the step increase of bunker
prices. Bunker prices have a huge effect on the overall transportation costs (Stop-
ford (2009, [27]) and Notteboom (2006 and 2009, [16], [17]). Notteboom 2006
argues that the fuel cost can be as much as 50% of total costs. Hence the price

© Springer International Publishing AG 2017
et al. (Eds.), ICCL 2017, LNCS 10572, pp. 336–350, 2017.

https://doi.org/10.1007/978-3-319-68496-3_23

The Liner Shipping Routing and Scheduling
Problem Under Environmental Considerations:

The Case of Emission Control Areas

T. Bektaş



of bunker fuel is of great concern to the industry. Liner shipping companies have
fought to keep bunker consumption down due to the rigorous prices. In 2007
Maersk Line introduced slow steaming as a concept to decrease bunker usage. In
all its simplicity slow steaming is a question of reducing the speed of the vessels.
Maersk Line (2010, [13]) claims that reducing speed by 20% leads to a bunker us-
age reduction of 40%. Hence slow steaming is seen as a very competitive strategy
which is here to stay as indicated by Maersk Line (2010, [13]).

Besides the economic performance, the environmental effects from shipping
activities and, especially air pollution, are getting increasing focus in the mar-
itime Operations Research (OR) community (Kontovas 2014, [12]). According
to the latest study by the International Maritime Organization (IMO) (IMO,
2014) shipping emitted 796 million tonnes in 2012, which corresponds to around
2.2% of global CO2 emissions. CO2 emissions are not the only air pollution
front. In areas of dense population pollutants such as SOx and NOx can have a
high effect on local air quality. For this reason a set of Emission Control Areas,
hereafter ECAs, has been introduced. In ECAs vessels are only allowed to use
the bunker fuel with lower sulphur content (0.1 % from year 2015). Moreover,
a global limit on sulphur in bunker at 3.5 % has been applied in 2015 in order
to reduce pollution. In some ECAs the emission of NOx is also restricted. The
bunker with 0.1% sulphur has a significantly higher price than the bunker with
3.5%. Shipping companies have, thus, a desire to decrease the usage of this type
of bunker in order to decrease total cost. Discussions on a taxation system on
SOx pollution is considered as a possibility by authorities in the industry.

To that extent, this paper deals with the use of OR tools to design liner shipping
routes and schedules in order to minimize the total cost for the ship operator.
In particular, we present some results of our work investigating the impact of
emission control areas in the routing and scheduling of liner vessels. We here
present a model to investigate how the ECAs and the usage of different fuels
will impact the sailing speeds and resulting over all emissions and a model to
investigate the impact of including the external costs of emissions in order to
compare the fuel costs and the emission cost of the two optimization models.

1.1 Literature Review

In the early 1980s Ronen presented the first review of operations research pa-
pers on ship routing and scheduling (Ronen, 1983 [25]). Several reviews of the
literature available have been published since, Christiansen et al. (2007, [4]) and
Christiansen et al. (2013, [5]). The latter points out the increased focus of the
literature on bunker consumption optimization and emission minimization. This
is due to the increasing bunker prices since 2000 and an extensive focus on the
environmental impact. Kjeldsen (2011, [10]) develops an extensive classification
method for models and literature for ship routing and scheduling problems in
liner shipping. Finally, Meng et al. (2014, [14]) evaluate a significant amount of
literature on OR within Liner shipping and conclude that there is a gap between
the academic studies and industry practices. Brouer et al. (2014, [2]) present a
benchmark suite consisting of relevant data on several important factors in the
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liner shipping industry. Data on an extensive list of ports is included as well as
specifications for different types of vessels.

Network design is a problem that is widely approached in literature. Agarwal
and Ergun (2008, [1]) provide a mixed-integer LP that solves the ship scheduling
and cargo routing problems with weekly frequency constraints simultaneously.
To solve the problem three different algorithms; greedy heuristic, column gen-
eration, and two-phase Bender decomposition, are used. This model is slightly
updated by Christiansen et al. (2013, [5]). Brouer et el. (2014, [2]) present an in-
teger programming model to solve the Liner Shipping Network Design Problem
(LSNDP) and prove that it is NP-hard. Routing and scheduling in liner ship-
ping has attracted much attention from researchers. The routing part, mainly
consisting of determining the sequence of port visits, is among others treated
by Chu et al. (2003, [6]), who develop a mixed-integer programming model for
routing container ships and present numerical examples for some Trans-Pacific
routes. Plum et al. [19] have solved the problem of optimizing the route of a sin-
gle service considering flow and transt time. Hsu and Hsieh (2007, [9]) present a
two-objective model with the purpose of minimizing costs by choosing optimal
route, ship size and sailing frequency. Scheduling of liner shipping services is seen
in many different varieties. Wang and Meng (2011, [29]) seek to optimize cost
and service level by solving the scheduling and container routing problem simul-
taneously. The outcome is a nonlinear model which minimizes transshipment
and other penalty costs. In 2012, Wang and Meng introduce a mixed-integer
nonlinear stochastic model that determines arrival time of a vessel at each port
and the sailing speed, somewhat like it is done in this study but with a fixed
sequence of port visits (Wang and Meng 2012, [31]). Wang and Meng (2012,
[31]) include uncertainties at sea and in ports. Finally, Wang et al. (2014, [33])
design a model that can solve the scheduling problem with port time windows.
The authors formulate the problem as a mixed-integer nonlinear nonconvex op-
timization model and suggest a holistic solution approach. The order of which
the ports are visited is fixed and thus further differentiates the model from the
investigations made in the report at hand. Yan et al. also give an example of a
scheduling with fixed port call sequence (Yan et al. 2009, [34]).

Lowering bunker consumption by optimizing speed and routing has been a
popular topic over the past years. Notteboom and Vernimmen (2009, [17]) state
that managing bunker consumption gives incentive to reduce speed, but high-
light that this incentive is dependent on the bunker price. While reducing speed
improves bunker performance it also comes at a cost in terms of transit time and
thus also service level as mentioned by Notteboom (2006, [16]). As mentioned
above Wang and Meng (2011, [29]) use speed optimization to optimize costs. In
another paper from 2011, Wang and Meng optimize sailing speed while consider-
ing transshipment and container routing (Wang and Meng 2011, [30]). Addition-
ally, the bunker consumption is calibrated and an outer-approximation method
is proposed to model the usage. Psaraftis and Kontovas (2014, [22]) clarify im-
portant issues regarding ship speed modeling and incorporate some fundamental
parameters that are essential in ship owners’ speed decisions. Bunker consump-
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tion optimization methods are reviewed by Wang et al. (2013, [32]). The authors
discuss different methods of modeling bunker consumption and suggest among
others a linear static secant-approximation method closely related to that used
in this study.

Emission of CO2 and SOx is a topic that has gotten more and more inter-
est from scientists and researchers in the OR field of maritime transportation
(Christiansen 2013, [5]). This statement is further supported by Wang et al.
(2013, [32]). Psaraftis and Kontovas (2010, [20]) investigates how emission reduc-
tion policies can have negative implications due to economic desires. Kontovas
(2011, [11]) investigates the reduction of emissions by reducing speed and looking
into how the lost time can be made up for by reducing service time in ports
and waiting time before berthing. Recent papers include minimization of cost
implied by emission regulations, such as the implementation of emission control
areas. Kontovas (2014, [12]) conceptualizes the formulation of the ”Green Ship
Routing and Scheduling Problem” and introduces among others the relationship
between bunker consumption and emissions. Moreover, Kontovas presents two
ways of incorporating emission minimization in existing formulations of routing
and scheduling problems. The method of internalizing external costs of emissions
is applied in this study. Fagerholt et al. (2010, [7]) apply speed optimization
to reduce emissions using discritized arrival times. Fagerholt et al. (2015, [8])
present a model that minimizes cost for shipping companies by being able to
select between different legs between ports that have varying interaction with
ECAs. Thus, costs are minimized by determining sailings paths and speeds for
vessels along a sequence of ports. This is, to the best of our knowledge, one of the
first modeling approaches where ECAs are an actual part of the model, and the
paper is furthermore also the most recent in this field.

In this paper we introduce a model that minimizes costs by optimizing the
port visit sequence and the time schedule, and hence also speed. In addition, this
model will also minimize the external cost of pollution from bunker consumption.
Since the cost of emissions is directly proportional to the amount of bunker
consumed, emissions are also reduced.

2 Problem definition and mathematical model

The Liner Shipping Routing and Scheduling Problem (LSRSP) consists of design-
ing the time schedule for a vessel to visit a fixed set of ports while minimizing
costs. A subproblem of the LSRSP is additionally to define the sequence of which
the vessel must visit the ports.

The key decisions in an LSRSP model are the following:

1. The order in which the vessel should visit the given set of ports.
2. The vessel’s arrival time at each port and the appurtenant speed of the

vessel.
3. The roundtrip time and thus the number of vessels needed to ensure a weekly

frequency.
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Liner shipping operates with a weekly frequency, i.e. each port must be visited
once every week. Thus, a set of homogeneous vessels must be assigned to the
service to achieve this, however, there exists an upper limit to the number of
vessels deployed.

In our model we introduce emission control areas to the LSRSP by mini-
mizing the total cost for the liner shipping company when servicing areas under
emission control regulations. The impact of emissions is introduced as described
in Kontovas (2014, [12]) by internalizing the external costs of emissions in the
model. This means that the impact from emissions will be monetized and, thus,
the external cost of emissions will be included in the objective function. The
term external cost refers to the total societal cost, i.e. this is not necessarily
the actual cost that liner shipping companies would be paying if a tax system
is implemented. However, in a similar way, by using the tax price instead of
the external cost in the model, the results can also reflect how the routing and
scheduling of the services will be impacted by a future taxation scheme.

2.1 Model

The model is formulated as a compact model and the emission and bunker costs
are combined in an objective optimizing both using the estimated value of the
external costs of emissions. The model optimizes the routes and also includes
functionality to consider transit time requirement between two ports.

In order to ensure a weekly frequency the number of vessels sailing a ser-
vice must be the number of weeks it takes to complete a round trip. Moreover,
the service duration must be equal to a whole number of weeks. The duration
of a service in weeks is indicated by the integer variable Ψ where ΨUP is the
upper limit. Each vessel has a weekly charter rate which is the parameter Tr.

Bunker Consumption and Cost
The cost of bunker is a scalar of the bunker consumption divided into the different
bunker types. The consumption of bunker fuel depends on several factors; speed
being the most important one.

Let Z be the set of emission control areas. For tests in later sections the set
contains ECA0 and ECA1 meaning outside ECA and inside ECA, respectively.
The price of bunker is varying with the bunker type required in the different
zones.

The consumption of bunker fuel when idle at port is linear, depending mainly
on the time spent in port, and thus simple to include in a mathematical model.
We assume that any vessel type has an individual constant fuel consumption cz.
For any given time period azi , at port i ∈ P , where P is the set of ports to be
visited, the bunker cost is czazi . Note that azi may be larger than si as it includes
any idle time for the vessel used at port i.

The relationship between speed and bunker consumption when the vessel is
sailing is nonlinear. There are many different analytic formulations presented in
the literature, but the most commonly used is the cubic one. With F (s) as the
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hourly consumption, s∗ as the design speed of the vessel, and f∗ as the hourly
fuel consumption at design speed the cubic law of the speed s is given as

F z
s =

f∗
s3∗

· s3 =

(
s

s∗

)3

· f∗ (1)

Equation (1) is clearly not linear. The method used in our model to linearize
this term is an inner approximation with secants. As the speed is distance divided

s. Let
θzij be the time used on sailing from port i ∈ P to port j in emission zone z ∈ Z
and let N be the set of secants then the bunker consumption is

F z
ij = wnz

ij θ
z
ij + δnzij (2)

For some n ∈ N where wnz
ij and δn,zij is, respectively the slope and intersection

of secant n ∈ N for sailing from port i to port j using bunker type z ∈ Z. For
the cost let fz be the cost of a ton of bunker of type z.

The reader could refer to Vial (2014, [23]) and Wang et al. (2013, [32] for
more on the linearization of the fuel consumption formula.

In the objective function we also include the external cost of emissions as
described above. The set E consists of the two emission types considered in this
study, SOx and CO2. To include costs of the emitted pollutant, the factor λz,e is
introduced. This factor determines how much of each pollutant e ∈ E is emitted
per ton of each fuel type in z ∈ Z. Moreover, let μz,e be the external cost for
emission e ∈ E when using bunker type z ∈ Z. Thus, the model is constructed
in such a way that other emission types, e.g. NOx can be easily included.

Note that the distance between two ports i, j ∈ P may now both be inside
and outside ECA zones. Therefore the distance parameter d is split such that it
describes how long the distance from port i to j is in ECA z. Thus,

∑
z∈Z dzij is

equal to the total distance sailed between i and j.

Objective
In this work, we study and compare two different objectives: In the one objective
function we minimize the company costs and in the other we also include the
external costs of emissions. We then compare both the emissions produced in
these two cases.

The bunker cost objective (without the cost of emissions) can be written
using the above notation as follows:

OB1 : Minimize
∑

i,j∈P

∑

z∈Z

fz(F z
ij + czazi ) + TrΨ (3)

The other model where we minimize the overall costs, including the exter-
nalities of the emissions, can be formulated as follows:

OB2 : Minimize
∑

i,j∈P

∑

z∈Z

(fz(F z
ij + czazi ) +

∑

e∈E

μz
eλ

z
e(F

z
ij + czazi )) + TrΨ (4)
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The model is formulated as follows:

OB1 or OB2 (5)

Subject to:

∑

i∈P

xij +
∑

k∈P

xjk = 2, ∀j ∈ P (6)

F
z
i,j ≥ w

n,z
i,j · θz

i,j + δ
n,z
i,j − M2 (1 − xi,j) ∀i, j ∈ P, n ∈ N, z ∈ Z (7)

θ
z
i,j ≥ θ̂

z
ijxi,j ∀i, j ∈ P, z ∈ Z (8)

θ
z
i,j ≤ θ̄

z
ijxi,j ∀i, j ∈ P, z ∈ Z (9)

tj + M3 (1 − xi,j + qj) ≥ ti + a
z
i + si +

∑

z∈Z

θ
z
i,j ∀i, j ∈ P, z ∈ Z (10)

tj + M3 (2 − xi,j − qj) ≥ ti + a
z
i + si +

∑

z∈Z

θ
z
i,j − IwΨ ∀i, j ∈ P, z ∈ Z (11)

IwΨ =
∑

z∈Z

(
∑

i,j∈P

θ
z
i,j +

∑

i∈P

(a
z
i + si)) (12)

IwΨ ≥ ti, ∀i ∈ P (13)

xi,i = 0 ∀i ∈ P (14)

pj + Iwbj − tj = 0, ∀j ∈ L (15)

τij ≤ rij , ∀(i, j) ∈ R (16)

τij ≥ tj − ti − si, ∀(i, j) ∈ R (17)

τij ≥ tj − ti − si + IwΨ − M3uij , ∀(i, j) ∈ R (18)

ti − tj ≥ −M3uij , ∀(i, j) ∈ R (19)

ti − tj ≥ M3(1 − uij) ∀(i, j) ∈ R (20)

Ψ, bj ≤ ΨUP (21)

Ψ, bj ∈ Z0 (22)

uij , xij ∈ {0, 1} (23)

F
z
ij , θ

z
ij , a

z
i , ti ≥ 0 (24)

Route selection, speed and bunker requirements
To find the route for the service we introduce the binary variable xij which is 1
if the vessel sails directly from port i to port j and zero otherwise. Moreover, let
the parameter qi be one for the first port visited on a service and zero otherwise
and let M2 be a large number greater than the fuel needed to sail the longest leg
at maximum speed. The parameter θ̂zij is the time needed to sail the distance dzij
at max speed and the parameter θ̄zij is the time used on traversing the distance
dzij at minimum speed. Note that these parameters can be calculated in
preprocessing. The parameter Iw is the number of hours in a week (168) and M2

and M3 are Big-M parameters. Note that
∑

z∈Z θzij + azj is the total time used
on sailing from i to j. Since the problem deals with liner shipping, some of the
berth times may be locked in order to satisfy locked berth times at ports. A
variable ti is introduced to represent the time the port i ∈ P is visited and it also
can be used to model subtour elimination. The variable ti is also used to ensure
that the transit times are satisfied. Let si be a fixed parameter indicating the
time needed for loading and unloading in port i ∈ P . The constraints ensuring
route selection and round trip are (6), (10), (11), (12) and (13) in the model.
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Noe that constraints (10) is active when xij is selected and pj is zero while (11)
is active when both xij and pj are one thus (11) is active for the trip entering
the first port on the route. The constraints (8), (9) and (7) are related to bunker
consumption and speed limits.

Berth time and transit time restrictions
A berth time may already be booked at a port and in case of a busy port this
berth time might be impossible to change. Thus, the company may want to lock
the time of the visit at selected ports. Let L be the set of port visits with locked
berthing times. Then for a port i ∈ L there is a parameter pi which indicates
the time the port visit is locked to. Since this time is a time within a week, an
integer variable bi is introduced which indicates the number of whole weeks the
vessel has sailed before visiting the port i. To include transit time requirements
we let the set R contain the port pairs i to j for which a transit time requirement
exists. For each pair (i, j) ∈ R we have a parameter rij representing the transit
time limit from port i to port j. A variable τij is introduced to represent the
transit time from i to j in the solution in the model. The constraints ensuring
a locked berth time are the constraints (15). The constraints ensuring transit
time satisfaction are the constraints (16), (17), (18), (19) and (20) where the
variables uij are used to indicate if port i is visited before j on a roundtrip.

3 Computational Results

The testing of the models OB1 and OB2 is done on the service illustrated in
Figure 1. The visited ports are the following: Antwerp (Belgium), Bremerhaven
(Germany), Agadir (Morocco), Casablanca (Morocco), Rotterdam (Netherlands),
Gdansk (Poland), Skt. Petersburg (Russia), and Gothenburg (Sweden.) On this
service the two ports in Morroco are placed outside the ECA while the remaining
ports are located inside an ECA zone.

Fig. 1. Illustration of service used for testing the models. Note that the sequence of

We utilize our model to investigate two interesting aspects. First, how the
ECAs and the usage of different fuels will impact the results. Second, the impact
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port visits is not fixed in the problem (Seago Line, [26]).
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of including the external costs of emissions which is an interesting topic mainly
due to the recent discussions on policies to reduce emissions. In the test instance
we have only one call in Bremerhaven, however, several port calls to a port can

3.1 Data

The data used for this test are mostly extracted from LINERLIB, see Brouer et
al. (2014, [2]), but also modified to include emission control areas. The legs are
split into two, one within the ECAs and the other outside them. Distances are
taken from Linerlib and partly from the virtual map and geographical informa-
tion program Google Earth c©.

The vessel type used for testing is the Panamax 240 vessel from LINERLIB
[2]. The specs of the test are as seen in Table 3. As an example we use the instance
8.4.5.10 where the first number is the number of ports in the test instance, in
the example it is 8, the second number is the number of locked berth times, in
the example it is 4, the third number is the number of transit times between
ports on the instance, in the example it is 4 and the last number is the number
of secants used in the approximation, in the example it is 10. Transit times can
be seen in Table 5 and all transit times are a subset of this set. The transit times
have been selected to represent trades origin and destination. The locked berth
windows are a fixed weekly arrival time requirement for a port call. Clearly the
results for test instances with only one locked berth time will be the same as for
the instance with no locked berth time as the schedule can be shifted according
to the berth time preserving the same speeds.

Bunker prices are one of the most important parameters as they greatly
fluctuate over time. At the beginning of June 2017, the average world price
for BW380 fuel was around 336 $/ton and for BW0.1%, the fuel used within
the ECAs, was around 580 $/ton (see Bunkerworld [18]). In our runs we use
mid-range fuel prices of 370 and 620 for BW380 and BW0.1% respectively.

Regarding the external costs of emissions, although there is no single accept-
able figure for that, there exists a number of works on the estimation of the
social costs of emissions; see for example Miola and Cuiffo [15], which presents
a methodological approach to estimate the external costs of maritime transport.
This is also related to the on-going discussions at the IMO regarding the so-
called Market Based Measures (MBM); see [21] for more. Placing a price on
GHG emissions through an MBM (this could be for instance a tax on emissions
or fuel consumption or the inclusion of shipping in an emissions trading scheme
which would force owners to buy allowances that will essentially give them the
right to pollute, or actually offset for the damage cause) is still a hot topic at the
IMO, and also the European Commission. Given that such an MBM is not in
place right now, the values we assume are taken from the Handbook of External
Costs of Transport, a report for the DG-MOVE of the European Commission

344 P. Dithmer et al.

be handled by inserting an additional port visit thus increasing the number of
port visits to 9. Here we will not consider the case of several port calls to the
same port even though the presented model can handle this as long as the
transit times and berth times are attached to a specific port visit.



(Ricardo-AEA (2014), [24]). The external costs of emissions used are presented
in Table 1.

Pollutant τe [$/ton]

CO2 37
SOx 12,700

Table 1. External cost τe used for testing.

The actual emitted amount of pollutant is given by the parameter λz,e. Air
emissions are proportional to the fuel consumption of the main and auxiliary en-
gines. To estimate CO2 emissions one should multiply total bunker consumption
by an appropriate empirical emissions factor that depends on the fuel time. SOx
emissions depend also on the type of fuel used and in particular on the amount
of sulfur present in the fuel. One has to multiply total bunker consumption by
the percentage of sulphur present in the fuel and subsequently by the exact fac-
tor of 0.02, which is derived from the chemical reaction of sulphur with oxygen.
The values for this parameter are presented in Kontovas (2014, [12]) and can be
found in Table 2. The reader is also referred to the paper for more information
on how to estimate emissions from shipping and the emission factors used.

Bunker type (ECA) CO2 SOx

BW380 (outside) 3.114 0.07
BW0.1% (inside) 3.206 0.002

Table 2. Values of emission factor λz,e used for testing. The unit is [ton].

3.2 Comparison of the Results

OB1 - Without including the emission costs Test results for objective
OB1 are shown in Table 3. We present the operational cost for the sea leg,
i.e. the bunker cost and operational running costs. In addition, for illustrative
purposes only, the emission costs for CO2 and SOx are listed although they
are not taken into account in the objective function. For each emission control
area the average speed and the distance traveled are stated. Finally, the two final
columns show the total active sailing time (not including idling) and the number
of vessels deployed for the service. Note that in the following tables, the legs
inside the ECA areas are denoted as ECA1, and that outside the ECA as ECA0.

Sailing Emissions Total Avg. Distance Sailing #
ID Specs Cost [$] Cost [$] Cost [$] speed [nmi/h] [nmi] Time [hours] vessels

CO2 SOx Total ECA0 ECA1 ECA0 ECA1 Total

(8.1) 8.0.0.10 832,486 91,012 333,005 424,017 1,256,478 16.0 13.7 2,434 3,790 6,224 429.0 3
(8.2) 8.0.5.10 1,257,941 178,450 469,101 647,551 1,905,492 18.1 17.3 2,434 5,082 7,516 429.0 3
(8.3) 8.0.8.10 838,815 92,580 340,194 432,774 1,271,559 16.1 13.7 2,434 3,808 6,242 429.0 3
(8.4) 8.4.0.10 881,138 67,165 229,943 297,107 1,178,245 12.8 12.0 2,434 3,790 6,224 505.4 4
(8.5) 8.4.5.10 1,539,336 173,258 413,900 587,158 2,126,494 15.5 15.8 2,434 5,407 7,841 500.4 5
(8.6) 8.4.8.10 1,378,470 180,164 601,350 781,515 2,159,985 20.2 16.6 2,434 4,509 6,943 391.8 4

Table 3. Test results for OB1. The emission costs are not included in the objective
function for this model.

One important finding is that the average speed, in all cases but for (8.5), is
higher outside the ECA (see ECA0) compared to the one inside the ECA (see
ECA1), which is in line with Psaraftis and Kontovas (2010, [20]). The reason
for this is the higher bunker price inside the ECA which induces operators to
speed up outside the ECA in order to maintain the schedules. The speed increase
inside the ECA for example in cases (8.5) is attributed to the berth and transit
time restrictions of the particular cases.
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Moreover, the distance traveled outside the ECA stays the same in all cases.
This is expected as the vessel will only sail to/from Morocco only once during
the service, as sailing back and forth between the continent twice will increase
costs tremendously. Interestingly enough, the active sailing time stays the same
or increases in all cases as we add more restrictions to the model, see for instance
case (8.1) that is without any berth or transit time restrictions. For case (8.6),
where both berth and transit time restrictions are applied, the number of vessels
increases from three to four, meaning that the round trip time will increase
significantly. As the sailing time is low in this case, the vessel must be idling
for a long time. Both the sailing and emission costs are very high compared
to the other cases. Case (8.5) also has a high sailing cost but here five vessels
are deployed and the total actual sailing time is long, meaning that the average
speed and emission costs are lower.

Finally, we should note that for case (8.2) and (8.5) the round-trips are very
long in terms of distance sailed. This is most likely due to restrictions and this
means that the vessel will sail along a complex route.

OB2 - The cost of emission is included In OB2 the external emission costs
are included in the objective function, meaning that the vessel will sail in such
a way that the sum of both the cost of emissions and the sailing costs will be
minimized.

The test results of OB2 are listed in Table 4. The columns of this table are
the same as described for 3.

Sailing Emissions Total Avg. Distance Sailing #
ID Specs Cost [$] Cost [$] Cost [$] speed [nmi/h] [nmi] Time [hours] vessels

CO2 SOx Total ECA0 ECA1 ECA0 ECA1 Total

(8.10) 8.0.0.10 871,833 63,391 190,340 253,731 1,125,564 12.0 12.0 2,434 3,790 6,224 518.667 4
(8.11) 8.0.5.10 1,281,900 179,499 400,560 580,059 1,861,959 15.5 18.7 2,434 5,082 7,516 429.0 3
(8.12) 8.0.8.10 876,078 93,937 228,196 322,133 1,198,211 13.0 15.8 2,434 3,808 6,242 429.0 3
(8.13) 8.4.0.10 890,706 67,321 197,401 264,722 1,155,428 12.0 12.5 2,434 3,790 6,224 507.1 4
(8.14) 8.4.5.10 1,545,079 173,444 396,169 569,613 2,114,692 14.7 16.1 2,434 5,407 7,841 500.4 5
(8.15) 8.4.8.10 1,392,332 180,353 553,467 733,820 2,126,151 19.3 17.0 2,434 4,509 6,943 391.8 4

Table 4. Test results using OB2 where external emission costs are included in the
objective function.

For all cases, the total costs using objective OB2 are lower than those for
OB1, since in this case we also take into account the monetized social cost of
emissions. This is further reflected to the average speed of the vessel. Outside the
ECA (see leg ECA0) the vessels in all cases under objective OB2 sail slower than
compared to the scenario where the emission costs are not included i.e. under
OB1. This shows the tremendous impact of the SOx costs. The optimal solution
to the model decreases the speed outside the ECAs to reduce SOx emissions. It
is currently debated in the academic community that the ECAs give incentive to
increase speed outside of ECAs and thus emit more emisions outside them. This
model also shows that the increased emissions could be reduced by implementing
some sort of taxation/monetary cost on the amount of pollutants emitted.

Under OB2, in all six cases, the vessels sail the same distance as under OB1.
This implies that most of the optimization is in terms of speed optimization.
The model can also make some changes to the sequence of port visits but the
purpose of this will more likely be to shift the arrival times slightly to comply
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with restrictions rather than changing the distance sailed or the routing. For the
actual sailing time one can also notice that just one of the six cases is longer under
objective OB2. This further supports our assumption that the optimization is
mainly tied to speed adjustments rather than routing. Moreover, it is clear that
Objective OB2 decreases speed outside the ECA and increases it inside.

Regarding the computational time, in general the model solves the problem
fairly fast. For the instances tested, using OB2 the solver used between ten and
30 seconds to solve the problem. Running times of this magnitude are acceptable
and could be used in practice. This is also a sign that the introduction of the
extra sets, parameters, and variables do not add significant complexity to this
model compared to the OB1 model.

4 Discussion

For discussion purposes, we will further analyze the results in instances (8.3)
and (8.12) with specifications 8.0.8.10, which are some scenarios without berth
time restrictions but with transit time restrictions which are shown in Table 5.

Port Pair Transit time

DEBRV - MAAGA 200
DEBRV - MACAS 200
DEBRV - NLRTM 83
MAAGA - BEANR 240
MAAGA - RULED 240
MACAS - BEANR 240
MACAS - RULED 240
RULED - SEGOT 80

Table 5. Transit time restrictions for cases (8.3) and (8.12).

The order in which the ports are visited and the arrival time of the vessel at
each port are listed in Table 6 under the two objective functions OB1 and OB2.

Model [5] Model [6]
Port Arrival time Port Arrival time

Order UN/LO Port name tj [hours] UN/LO Port name tj [hours]

1 DEBRV Bremerhaven 475.074 DEBRV Bremerhaven 472.430
2 NLRTM Rotterdam 0.000 NLRTM Rotterdam 0.00
3 MAAGA Agadir 128.736 MAAGA Agadir 113.694
4 MACAS Casablanca 159.497 MACAS Casablanca 140.916
5 BEANR Antwerp 271.683 BEANR Antwerp 241.986
6 PLGDN Gdansk 337.135 PLGDN Gdansk 317.459
7 RULED St. Petersburg 380.736 RULED St. Petersburg 365.694
8 SEGOT Gothenburg 443.140 SEGOT Gothenburg 436.746

Table 6. Arrival time at each port for test with ID 8.0.2.10 for OB1 and OB2.

The total cost of the service is the sum of sailing and emissions cost, that
are $838,815 and $432,774, respectively for OB1, which totals to $1,271,559. For
OB2 these costs are reduced to the sum of $876,078 and $322,133, this is a total
of $1,198,211. There is therefore a cost reduction of $73,348 or 5.8 %. In addition,
the sailing cost of the latter model is actually increased by roughly $37,000. On
the other hand, the emission costs have decreased by a total of $110,642 or
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25.6%. This is a significant reduction of emissions cost for the shipping company
and shows the environmental benefit of taking the externalities into account.

The distance traveled in both cases is 6,242 nautical miles. The active sailing
time is the same, 429 hours, and the number of vessels is also the same as 3
vessels are used in both cases, leading to a total round-trip time of 504 hours.
This implies that the reduction in cost comes entirely from speed optimization.
It is also clear that the average speed is shifted from being highest outside the
ECA for OB1 to being higher inside the ECA for OB2.

The results are good for the shipping company that seems to reduce the oper-
ating expenses, but what effect does it actually have on the amount of pollutants
emitted and, thus, to the environment? The actual amount of pollutants emitted
in each area is listed in Table 7.

OB1 OB2
ECA CO2 [ton] SOx [ton] CO2 [ton] SOx [ton]

outside 1,154 25.946 750 16.852
inside 1,348 0.841 1,789 1.116

Total 2,502 26.787 2,539 17.968
Table 7. Amount of emitted CO2 and SOx for OB1 and OB2 on test 8.0.8.10.

Based on the results, there is an increase of CO2 emissions by 1.5%. Although
the increase is very small, it is definitely not desired. On the other hand, the SOx

emissions have been reduced from 26.8 tonnes to 18 tonnes, which is a significant
reduction of roughly 33%. This means that the implementation of external costs
has the desired effect, as SOx emissions are reduced and speed is decreased
outside ECAs. What speaks against it, is the increase of CO2 emission that
we see in the case above. CO2 emission is not affected by the sulphur content
of bunker fuel. Therefore the emission of CO2 is more reflected by the bunker
consumption, and thus the speed of the vessel. Since the distance sailed and
the total active sailing time is the same for OB1 and OB2 in this case, the
speed adjustments have been conducted such that the average speed between the

consumed bunker fuel must be more or less the same between the two models in
this case. For this reason the CO2 emission does not change significantly.

The decrease of SOx emission is a result of the decreased average speed
outside the ECA. In this area the cheaper bunker with a high content of sulphur
is used, and the lower consumption here has a natural impact on the emitted
SOx. A consideration not considered here is that the most cost-efficient direct
sail route between two points may change depending on the difference in
the bunker price inside and outside an ECA zone and the location of the border
of the ECA zones. Finding the most cost-efficient routes depending on bunker
prices is discussed in Fagerholt et al. [8]; however, we assume that the routes used
are the cost-optimal routes.

5 Conclusion

In this paper we have presented a model for optimizing routes and speeds both
with respect to bunker costs and the external costs of emission. We have showed
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two ECAs has been equalized more. This also means that the total amount of



that the emission costs can be reduced significantly by including the emission
costs in the routing model, while the bunker cost is only increased slightly. Thus,
we conclude that considering the costs of emissions along with bunker cost when
planning and scheduling a route is desirable in order to ensure lower emission.
This work might be also relevant in the near future with the possible introduction
of regulations that will take into account the externalities from ship air emissions,
in the form of either a tax or a pollution permit.
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Abstract. Roll-on Roll-off shipping companies transport rolling cargo,
such as cars, trucks and large construction machines. When sailing, this
type of cargo must be attached to the deck using chains, to prevent
damaging the cargo. For each voyage including multiple port calls where
the cargo is loaded/unloaded, an important decision is to decide where
to place each vehicle (or unit), such that the time used on shifting is
minimized. Shifting means temporarily moving some vehicles to make
an entry/exit route for the vehicles that are to be loaded/unloaded at
a given port. As the vehicles are securely fastened to the deck, shifting
is a time-consuming procedure. We present the stowage plan evaluation
problem which is to determine the optimal vehicles to shift at each port
call, such that the time spent on shifting is minimized. Given a set of
alternative stowage plans for a voyage, the results from the stowage plan
evaluation problems are used to determine the best among these stowage
plans. We present a shortest path-based heuristic for solving the problem.
Computational results show that the solution method is a powerful tool
for comparing stowage plans, due to its fast computing times and high
success rate, i.e. its ability to determine the better of two stowage plans.

Keywords: Maritime transportation, Stowage, Roll-on Roll-off

1 Introduction

Major improvements to the efficiency of maritime transportation have been made
during the last decades due to operations research. However, compared to other
segments in maritime transportation, the Roll-on Roll-off (RoRo) shipping seg-
ment has received little attention. RoRo vessels transport vehicles and other
types of rolling material between different regions of the world according to
predefined plans. Lower freight rates provide a challenging reality for the RoRo
shipping companies, due to a surplus of tonnage in the world’s deep sea fleet. We
seek to improve the profitability of the RoRo segment, by introducing a method
for evaluating different stowage plans. Better stowage plans may reduce the time
used to load and unload vehicles, and hence, the time spent in port.
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The problem addressed in this paper is the stowage plan evaluation problem
(SPEP). In RoRo transportation, a feasible stowage plan is not as good as any
other feasible stowage plan. A good stowage plan enables seamless loading and
unloading of the carried rolling units (hereinafter referred to as vehicles) by using
the least amount of time on moving vehicles unnecessarily, which is known as
shifting. Shifting means temporarily moving some vehicles to make an entry/exit
route for the vehicles that are to be loaded/unloaded at the given port. Given
a stowage plan for a voyage, the objective of the SPEP is to minimize the time
used on shifting at each port, by identifying the optimal vehicles to shift. The
time use for shifting a vehicle is treated as a cost, such that the quality of a
stowage plan is determined by its shifting cost, relatively to other stowage plans
carrying the same vehicles.

Figure 1 shows the placement of vehicles on a deck, during the deep sea leg
between Asia and Europe for a given voyage. Both stowage plans look structured,
but there is a major difference in the shifting cost. At the first port call in Europe,
all vehicles marked in blue are to be unloaded. In the upper stowage plan in
Figure 1, all blue vehicles are placed in the bow of the ship. When arriving at
the first port in Europe, two green and several yellow vehicles must be shifted in
order to unload all the blue ones. The second stowage plan has all blue vehicles
placed close to the ramp, and no shifts are required when unloading the vehicles.

Stowage planning has been widely studied in the context of container ship-
ping, see for example [1, 5, 6]. Minimizing the number of shifts is an important
objective, both in container shipping and RoRo transportation. In container
shipping, the containers are stacked on top of one another. When dispatching
a given container, containers stacked on top of it must be removed, i.e. shifted.
Here, which containers to shift at each port call are implicitly given by the
stowage plan. In RoRo transportation, which vehicles to shift to enable load-

Fig. 1: Two different stowage plans for a given deck and cargo list. The exit ramp
is marked with an arrow. Each colored square represents a vehicle and all vehicles
with the same color are unloaded at the same port. Unloading sequence: Blue,
green, yellow, orange. Thus, the blue vehicles are unloaded at the first unloading
port and the orange ones at the last port on the voyage.
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ing/unloading of the desired vehicles at each port call, must be determined. The
problem of deciding which vehicles to shift at each port (SPEP) is, to the au-
thors’ knowledge, new to the OR literature. There are, however, publications
dealing with the operational problem of creating stowage plans. Øvstebø et al.
[4] consider the RoRo ship stowage problem (RSSP). For a ship set to sail on a
given voyage, the problem is to decide which cargoes to carry, how many vehicles
to carry from each cargo, and how to stow the vehicles carried during the voyage.
They formulate the problem as a mixed-integer programming (MIP) model and
present a specially designed heuristic method to solve the problem. For modeling
purposes, they divide each deck into several logical lanes, into which the vehicles
are lined. The vehicles enter the each deck at stern and are unloaded according
to the last in-first out (LIFO) principle. We argue that basing the shifting cost
calculations on a LIFO principle is too crude. In practice, vehicles enter the decks
using ramps placed somewhere on the deck and take the least inconvenient path
from its placement to the ramp when unloaded.

Recently, Hansen et al. [3] presented a mathematical model for the two-
dimensional RSSP, a simplification of the RSSP which arises if only one deck is
considered. They argue that dividing the decks into lanes, as done in [4], may be
too restricting, especially when the cargoes stowed are heterogeneous, i.e. they
have different sizes and shapes. The authors propose different objective functions
to influence the placement of the vehicles. While promising placement strategies
are provided, the shifting cost of the stowage plans is not calculated. Hence, based
on the reviewed literature, we identify the need for a method for evaluating and
comparing different stowage plans carrying the same cargoes along a voyage.

The purpose of this paper is to present the stowage plan evaluation problem
in RoRo transportation. We present a mathematical formulation of the problem
and propose a shortest path-based heuristic for solving the problem. Even though
a solution to this problem may indicate which vehicles to shift at each port in
a practical case, this is not the purpose of this contribution. The problem of
deciding which vehicles to shift at each port is easily solved by the port workers,
who drive the vehicles on and off the ship. However, the problem is crucial when
deciding upon a stowage plan when planning a voyage. The SPEP is then solved
for each proposed stowage plan, where the shifting cost is used to determine the
best one. The stowage plans could both be provided by planners or a stowage
plan generator/heuristic.

The remainder of the paper is structured as follows: We present the problem
in Section 2. Section 3 presents a mathematical formulation of the problem.
Then, in Section 4, we explain our solution approach. Computational results are
presented in Section 5 and concluding remarks are given in Section 6.

2 Problem description

The SPEP considers a RoRo ship carrying a given set of cargoes along a voyage
with a predefined set of loading and unloading ports to visit. We take as input
a given stowage plan for the voyage, which states the number of cargoes, where
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to load and unload the cargo, the number of vehicles in each cargo, dimensions
of the vehicles, and where each vehicle is placed on the ship. Given this stowage
plan, the SPEP is to determine which vehicles to shift at each port call, to enable
all vehicles that are to be loaded/unloaded to reach their destination on the deck
(if loading) or to exit the ship (if unloading). Thus, the problem is to determine
an entry and exit route for each vehicle placed on the deck. An entry route for a
given vehicle is defined as the path from the entry/exit ramp to the location it
is to be placed on the deck, and vice versa for an exit route. Each possible route
is associated with a shifting cost, which depends on both the number of vehicles
placed along the route and the vehicle’s size. This cost is not necessarily a real
cost, but it reflects the cost of time used to move the vehicle. The cost of shifting
a vehicle varies, as larger vehicles usually require more effort to move. Objects,
such as pillars and ramps, and weight restrictions on the deck limit the possible
paths a vehicle can use when entering or exiting the deck. The shifting cost of
a stowage plan is given by the cost of shifting all blocking vehicles at each port
call, and the objective is to minimize this shifting cost.

Figure 2 presents an example of how the shifting cost is evaluated for different
vehicles in different settings, and two loading ports are considered. For the first
loading port, the entry route for one vehicle from cargo 2 is shown. The vehicle
passes through two vehicles from cargo 1, but the vehicles are not shifted. As
these vehicles are loaded in the same port, there always exists a loading sequence
where the loaded vehicles do not block each other. In this example, this can be
achieved by loading cargo 2 first, and then cargo 1. Thus, the shifting cost should
only be accounted for if the blocking vehicle is loaded at a previous port call, or
unloaded at a later port call. Note that as each deck is empty at the first loading

Fig. 2: Possible loading routes for some vehicles at different ports. Entry point
is marked with an E. The X’s indicate unusable space. Vehicles marked with
vertical lines must be shifted.
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port, the shifting cost for the first port will always be zero. This also applies to
the last port call, as all remaining vehicles are unloaded at this port.

Another important aspect is that each shift is only accounted for once at
each port. At the second loading port in Figure 2, two vehicles from cargo 3
use partly the same route, indicated by the arrows. Both vehicles’ entry route
requires that a vehicle from cargo 1 is shifted, as it is loaded at a previous port.
As the vehicle already is shifted to make way for one of the vehicles from cargo
3, e.g. the one furthest to the left, there is no reason to place it back on the deck
before the other vehicle from cargo 3 has been placed on the deck. Thus, the
shifting cost from the two routes add up to 4, and not 8, which is the sum of the
shifting cost for each of the two vehicles.

So to summarize, the SPEP deals with evaluating given stowage plans by
determining which vehicles to shift at each port call to minimize the shifting
cost of the plan. We consider the stowage plan for a single deck, as we assume
that there exists an open path from the entry point of the ship to each deck.
Then, when solving for several decks, the total shifting cost is then given by the
sum of shifting costs for each deck.

3 Mathematical formulation

Building on the previous work in [3], the SPEP is based on a grid representation
of the given deck, where I is the set of rows and J the set of columns over a
deck, indexed by i and j, respectively. A square (i, j) represents a physical area
on the deck where the vehicles may be placed, where square (1,1) is defined as
the square located at the stern of the ship’s port side. We define the parameter
Eij to be 1 if square (i, j) is the entry/exit point on the deck. Let C, indexed
by c, be the set of cargoes carried along the voyage. Each cargo c consists of Nc

identical vehicles (or units). The set of vehicles Vc includes all vehicles v from
cargo c. The length and width of each vehicle in cargo c, in squares, are given
by SL

c and SW
c , respectively. Let P be the set of ports visited along the voyage,

indexed by p. Each cargo c ∈ C is to be loaded at port PL
c and unloaded at

port PU
c . We assume a given stowage plan for the voyage is provided, and define

parameter Pijcvp to be 1 if vehicle v from cargo c occupies square (i, j) when
departing from port p. Further, let PC

ijcvp be 1 if the lower left corner of vehicle
v from cargo c is placed in square (i, j) when departing port p. The feasible
stowage plan is now given by the parameters Pijcvp and PC

ijcvp.
To represent the SPEP, we present a fixed-charge multicommodity network

flow formulation of the problem and define the following additional notation.
Let N be the set of all squares (i, j) and Nc ⊆ N\Uc be the set of squares (i, j)
a vehicle from cargo c may use on its entry/exit route. The set Uc includes all
squares that cannot be used by vehicles from cargo c, which typically are squares
where pillars and other blocking objects are placed and squares where the weight
restrictions are violated. Each cargo c has a graph Gc = (Nc,Ac) associated with
it. The set of squares Nc and the set of arcs Ac ⊂ Nc × Nc define the feasible
movements for the vehicles in cargo c. Further, the set Cp includes all cargoes
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placed on the deck at port p. This set can further be divided into two disjoint
sets: CR

p includes all cargoes placed on the deck at port p, given that the port is

either the loading port or the unloading port of cargo c, i.e. p = PL
c or p = PU

c .
Thus, this set includes all cargoes that are to be routed on or off the ship in
the given port p. Next, the set CN

p includes all cargoes placed on the deck at
port p, given that the port is neither the loading port nor the unloading port of
cargo c, i.e. p �= PL

c and p �= PU
c . If any of these cargoes is shifted at port p, a

shifting cost CS
c is imposed. The shifting cost is based on the vehicle’s area, i.e.

CM
c = SL

c S
W
c , as it is usually more time-consuming to move larger vehicles than

smaller ones. It is assumed that a shifted vehicle is moved off the deck during
the port call and returned to the same location after the loading/unloading.

Let Bij be the set of all neighboring squares to square (i, j), i.e. Bij = {(i+
1, j), (i−1, j), (i, j+1), (i, j−1)}. A vehicle is allowed to move one square forward,
backward, left or right from each square (i, j). By allowing sideways movement,
some of the proposed entry and exit routes may be infeasible in practice, as most
vehicles have a given turning radius and are unable to move sideways. However,
it should be emphasized that the stowage plan evaluation is mainly conducted
to compare alternative stowage plans and not to actually determine the optimal
loading and unloading routes for each vehicle. Hence, it can be argued that this
modeling choice is reasonable and sufficient.

We associate with each square (i, j) ∈ N , cargo c, and port p, an integer
number Dijcp representing its supply/demand. If Dijcp > 0, square (i, j) is a
supply square for cargo c at port p; if Dijcp < 0 square (i, j) is a demand square
for cargo c at port p with a demand of −Dijcp; and if Dijcp = 0, square (i, j) is
a transshipment square for cargo c at port p. If we are to load four vehicles from
cargo 3 at port 4 and the entry point is square (1,1), then we have a supply of
four, represented by D1123 = 4. Further, we have a demand of -1 at the squares
where the vehicles are to be stowed, given by the parameter PC

ijcvp for each of

the vehicles, i.e. Dijcp =
∑

v∈Vc
−PC

ijcvp. Similarly, for a cargo’s unloading port,
the exit square gets a demand of −Nc, and Dijcp = 1 for all squares where the
lower left corner of a vehicle from cargo c is stowed. We define the parameter
Aijcdvp to be 1 if a vehicle from cargo c, placed in square (i, j), uses a square
where vehicle v from cargo d is placed at port p. If a 2×2 sized vehicle from
cargo c temporarily uses square (1,1) for its entry route, this vehicle also uses
the squares (1,2), (2,1) and (2,2). If a vehicle v from cargo d is placed in any of
these four squares, then A11cdvp = 1, which imply that the vehicle v from cargo
d must be shifted, if a vehicle from cargo c uses square (1,1).

The arc flow variable fijklcp represents the flow sent from square (i, j) to a
neighboring square (k, l) of cargo c at port p. Finally, binary variables ycvp take
value 1 if vehicle v from cargo c is shifted at port p.

The model is solved for every port except the first and the last port along the
voyage, since no vehicles are shifted in these ports. Let PS = P\{first port, last port}
be the set of ports where shifting may occur. The resulting shifting cost for a
voyage is the sum of the shifting costs for each port. We can now formulate the
SPEP problem for each p ∈ PS as the following mathematical program:
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SPEP(p ∈ PS): min zp =
∑

c∈CN
p

∑

v∈Vc

CM
c ycvp (1)

subject to
∑

(k,l)∈Bij

fijklcp −
∑

(k,l)∈Bij

fklijcp = Dijcp c ∈ CR
p , (i, j) ∈ Nc (2)

Aklcdvp

∑

(i,j)∈Bkl

fijklcp ≤ Mcydvp c ∈ CR
p , (k, l) ∈ Nc, d ∈ CN

p , v ∈ Vd (3)

fijklcp ≥ 0 c ∈ CR
p , ((i, j), (k, l)) ∈ Ac (4)

ycvp ∈ {0, 1} c ∈ CN
p , v ∈ Vc (5)

The objective function (1) is to minimize the cost of shifting vehicles at port p.
The flow balance constraints (2) state that the outflow minus inflow must equal
the supply/demand of the square i for each cargo c. Constraints (3) are the
capacity constraints. If a given vehicle v from cargo d blocks the flow of vehicles
from cargo c into square (k, l) at port p, given by Aklcdvp, then the blocking
vehicle v from cargo d must be shifted to enable flow into the square, i.e. the
shifting variable ydvp = 1. An upper bound on Mc is given by Nc, i.e. the number
of vehicles in cargo c. Constraints (4) and (5) define each variable’s domain.

Figure 3a illustrates an optimal solution to the SPEP, obtained by solving
model (1)-(5), for an example instance. Here, exit routes for the two vehicles of
cargo 1 are to be decided, for a given unloading port. Vehicles from cargoes 2
and 3 must be shifted if routes passing through them are used, as they are to be
unloaded at a later port call. The cheapest way to unload the two vehicles from
cargo 1 is to shift the marked vehicle from cargo 3. This vehicle has a shifting
cost of 9, i.e. the vehicle’s area, resulting in a shifting cost of 9 for this port.

4 Shortest path solution method

When determining a stowage plan by using either an exact or a heuristic solution
method, the SPEP becomes an important sub-problem that may have to be
solved a large number of times to evaluate and compare the shifting costs of
alternative stowage plans. Therefore, it can be important to solve the SPEP
very quickly. The SPEP model, defined in Section 3, consists of a large number
of the continuous flow variables, but relatively few binary variables (one for each
vehicle that may be shifted). Due to this, small instances are easily solved by
a commercial solver. However, for the large grid resolutions required for solving
realistically sized problems, even solving the LP-relaxation of the SPEP model
can be too time-consuming for practical use. Thus, we propose a heuristic method
based on solving shortest path problems, which can be solved efficiently.

The SPEP deals with deciding which vehicles to shift, considering all cargoes
that are to be loaded or unloaded at a given port. Instead of considering all
cargoes that are to be loaded/unloaded at a port simultaneously, we consider
one vehicle at the time. Thus, for a given vehicle in both its loading and unloading

A Shortest Path Heuristic for Evaluating the Quality of Stowage Plans 357



(a) Optimal solution from the
SPEP model

(b) Feasible routes, proposed
by the heuristic in Section 4

Fig. 3: Exit routes for the two vehicles in cargo 1 (C1) are to be decided, for a
given unloading port. Vehicles marked with vertical lines are shifted.

port, the problem is to decide which vehicles to shift, such that this vehicle may
be loaded/unloaded. The objective is to minimize the shifting cost. This problem
is equivalent to finding the cheapest entry/exit path, where the cost of moving
from one square to another is dependent on whether we need to shift any vehicles
due to the move, i.e. a shortest path problem (SPP).

When using the shortest path approach to solve the example instance in
Figure 3b, we evaluate the exit routes for each vehicle individually. This results
in a total shifting cost of 12, i.e. three shifted vehicles with an area of four squares.
The solution to the left has a shifting cost of 9, as explained in the previous section.
It can be shown that the shortest path approach gives an upper bound on the
shifting cost for a given port.

The remainder of this section is structured as follows. Section 4.1 describes
the procedure of creating the graphs on which the SPPs are solved. Then, in
Section 4.2, the procedure of solving a shortest path problem on the graphs are
discussed and we present some additional strategies for improving the upper
bound on the shifting cost.

4.1 Creating the graphs

For this SPP heuristic, we are not concerned with finding the shortest path
in distance, but rather the cheapest path, i.e. the entry/exit route that gives
the lowest contribution to the shifting cost. The cheapest paths can be found
by solving a one-to-one shortest path problem for each vehicle’s loading and
unloading port. It is not possible to solve a single one-to-many SPP for each
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port, where the cheapest path for each entering or exiting vehicle is calculated,
as edge costs are dependent on the size of the vehicle traversing the edge. We
explain this using a 2×2 sized vehicle and a 4×4 sized vehicle, both initially
placed with their lower left corner in square (1, 3), as illustrated in Figure 4.
Then, we evaluate the edge cost associated with moving one square to the left
for both vehicles. For the smallest vehicle, the edge cost is zero, as moving from
square (1, 3) to (1, 2) does not impose any shifts. However, the largest vehicle
uses a square where another vehicle is placed. The edge cost equals the cost of
shifting the blocking vehicle, which in this case is six, i.e. the vehicle’s area.

Since the edge costs depend on the size of the cargo, a graph Gcp = (Nc,Ac)
must be created for every cargo, for their loading and unloading port PLU

c =
{PL

c , PU
c }. We do not need to create a graph for each vehicle, as all vehicles

within a cargo have the same dimensions. Let Nc be the set of squares (i, j) a
vehicle from cargo c may use on its entry/exit route. The set of edges Ac defines
the feasible movements for the vehicles, i.e. maximum four directed outgoing
edges per square. We add the edge ((i, j), (k, l)) to the set of edges Ac, for all
(i, j) ∈ Nc and (k, l) ∈ Bij .

Each time an edge is added to the set Ac, the corresponding edge cost CE
ijklcp

is calculated. For this edge ((i, j), (k, l)), let VI be the set of vehicles that may be
shifted and occupy any of the squares (̄i, j̄), ī = i..i+ SL

c − 1, j̄ = j..j + SW
c − 1.

Similarly, let VN be the set of vehicles that may be shifted and occupies any of
the squares (k̄, l̄), k̄ = k..k+SL

c −1, l̄ = l..l+SW
c −1. Then, all vehicles that must

be shifted due to the move from (i, j) to (k, l) are given by the set VS = VN\VI ,
i.e. all vehicles that occupy some of the squares in the new position which was
not occupying any of the squares in the initial position. The edge cost CE

ijklcp

equals the cost of shifting all vehicles in the set VS .
Evaluating the move shown in Figure 4 for the large 4×4 vehicle, the cost

of using edge ((1, 3), (1, 2)) is six. The use of edge ((1, 3), (1, 2)) implies that the
lower left corner of the vehicle is moved from square (1,3) to (1,2), as shown
in Figure 4. Initially, no vehicles that may be shifted are placed in the squares
occupied by the vehicle, and the set VI is therefore empty. After the move to
square (1,2), square (4,2) is used by the moving vehicle. The blue 3×2 vehicle
is placed in this square and must be shifted due to the move. Thus, the blue
vehicle is added to the set VN . The set of vehicles to shift due to the move from

Fig. 4: The cost of moving a vehicle from a square to a neighbor square depends
with the size of the moving vehicle.
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square (1,3) to (1,2) are now given by the vehicles in the set VS = VN\VI , which
includes the blue vehicle with a shifting cost of six, giving a edge cost of six.
Continuing the example, we now state that a new move from square (1,2) to
square (1,1) is free, as the cost of shifting the blue vehicle is already accounted
for by the move from square (1,3) to (1,2). For this new move, the blue vehicle
initially occupies one of the squares used by the 4×4 vehicle and is added to
the set VI . The blue vehicle is also added to the set VN , as it uses one or
more of the same squares as the 4×4 vehicle after the move to square (1,1). As
both sets include the blocking vehicle, the set VS = VN\VI is empty. Thus, no
shifting cost is imposed due to this move. One final note regarding this procedure
is that vehicles that are to be loaded or unloaded in the same port are never
added to the sets VI and VN . As mentioned in Section 2, there always exists a
loading/unloading sequence, where none of the loading/unloading vehicles block
the other loading/unloading vehicles.

4.2 Shifting cost calculations

Given the graphs created in the previous section, we can now calculate an upper
bound on the shifting cost. For each vehicle at its corresponding loading and
unloading port, a one-to-one SPP can be solved on the graph created for the
cargo the vehicle belongs to. For a given vehicle at its loading port, the loading
cost is given by the value of the vehicle’s corresponding target node from the SPP
solution, where the entry square is the start node. For the vehicle’s unloading
port, the unloading cost is given by the vehicle’s target node, which is the exit
square. The sum of the loading and unloading cost for all vehicles in all cargoes
gives an upper bound on the shifting cost of the stowage plan. However, this
upper bound can be poor, as several of the shifted vehicles may be accounted
for more than once. This section presents three strategies which improve both
the computational time and the solution quality of the shifting cost evaluation.
The Dijkstra-NoDec procedure given in [2] is used for solving the SPPs.

4.2.1 Reducing the number of SPPs

In order to speed up the solution procedure, we propose to solve a one-to-many
SPP for each cargo’s loading and unloading port, instead of many one-to-one
SPPs for each vehicle’s loading and unloading port. This is possible, as all vehi-
cles in a cargo have the same dimensions, and thus, the same edge costs. When
solving for a loading port, the start node is set to entry square on the deck.
The target nodes are the nodes where the lower left corner of the vehicles in the
cargo are to be placed, provided by the stowage plan. The shortest path for each
vehicle in the cargo is now given by the shortest path between the start node and
the vehicles target node. When solving for an unloading port, the exact same
procedure is used. We use the fact that the shortest path from the exit to a vehi-
cle’s location is always the same as the shortest path from the vehicle’s location
to the exit. So, for an unloading port, we also seek the shortest path from the
exit square to each vehicle’s location, which can be solved as a one-to-many SPP.
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Even though each SPP takes more time to solve, as we now solve one-to-many
SPPs, we have reduced the number of SPPs needed to be solved from two times
the number of vehicles to two times the number of cargoes, which improves the
overall computational time.

4.2.2 Route backtracking

We know that the vehicle’s target node gives the cost of loading/unloading a
vehicle. However, two or more vehicles may use a loading or unloading route
which shifts the same vehicles. If the loading cost of both vehicles A and B are
six, this could for example imply that a given vehicle C, with a shifting cost of
six, is shifted for both vehicles A and B. We use the fact that each vehicle is
only shifted once at each port and backtrack the loading/unloading routes for
all vehicles loaded/unloaded in at a port, recording the unique shifted vehicles
at each port. A better bound is then given by the sum of the cost of shifting
each of the recorded vehicles. In the example above, the bound now becomes six,
and not 12, where the latter is the sum of vehicle A and B’s loading cost.

4.2.3 Dynamically updating the edge costs

At each port, there are usually several cargoes that are to be loaded or unloaded,
and we solve an SPP for each of these, one at the time. By continuously sharing
information about which vehicles that are shifted, we can improve the upper
bound of the shifting cost. As an example, assume two cargoes are to be loaded
at a port. An SPP is solved for the first cargo, and three vehicles must be shifted.
When solving the SPP for the second cargo, we can now set the edge costs where
these three vehicles are placed to 0, as they must be shifted regardless of the
solution for the second cargo. Now, the SPP solution for the second cargo may
utilize this and choose alternate routes for the vehicles. The routes may be more
expensive when considering only this cargo, but as these vehicles are shifted
anyway, the routes contribute less to the overall shifting cost. When imposing
this strategy, the order in which we solve the SPPs becomes important. Based on
preliminary testing, the cargoes should be ordered based on the area of the
vehicles they consist of. Consider a large truck driving from A to B. If we shift
the vehicles blocking the truck’s route, both the truck and a small car can use this
route. This does not apply the other way around. Thus, evaluating the cargoes
with the largest vehicles first is both logical and computationally promising.

Dynamically updating the edge costs can also be used to improve the shifting
cost estimation within each cargo. We know that as soon as a vehicle has found
its shortest path to the entry square, all other vehicles in the cargo could also use
this path as part of their route, with no additional cost, as the vehicles have the
same size. Thus, each time the shortest path between the start node and a target
node has been found during the one-to-many SPP procedure, we force this path
to be used by the vehicle placed in the corresponding target node. Then, an edge
is added between this target node and the start node, with an edge cost of zero.
This means that the vehicles placed at the remaining target nodes could either
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find the shortest path to the entry square or the shortest path to one of the fixed
vehicle’s target nodes. This strategy is especially valuable when several vehicles
within the same cargo are placed together. Once the shortest path for one of
these vehicles to the exit is found, e.g. vehicle A, the other vehicles may move
to vehicle A’s location, and the shortest path is found. Note that if a vehicle is
not placed nearby vehicle A, it can still use the path from vehicle A to the exit
as a partial path of its route at no additional cost.

5 Computational study

The mathematical model presented in Section 3 is implemented in Mosel and
solved using Xpress-IVE 1.28.12. The SPP heuristic described in Section 5 is
coded in Java. All computational experiments have been run on a PC with Intel
Core i7-6500U processor and 16 GB of RAM running Windows 10.

5.1 Test instances

Each instance represents a feasible stowage plan for a given deck, cargo list,
and grid resolution, where the placement of each vehicle is given. The deck
information gives the layout of the deck, location of entry/exit square, and gives
the unusable spaces. Four decks are used in this computational study, where
decks A and B are fictional, and decks C and D are real deck layouts. Four
different grid resolutions are used, i.e. 50×19, 100×38, 150×56, and 200×75.
The ratio between the number of rows and columns is based on the length and
width of a car equivalent unit (CEU), which has an approximate length-width
ratio of 4:1.5. Each stowage plan has a space utilization factor (SUF), i.e. the
total area of all vehicles divided by the deck’s area. The SUFs used are 0.8 and
>0.9. When creating an instance, the vehicles are either randomly placed on the
deck (R) or placed in a logical manner (L) according to objective function (3)
in [3]. Finally, the cargo list contains information about the number of cargoes,
loading and unloading port of each cargo, and each vehicle’s size and weight. Two
cargo lists are tested for each possible combination of the mentioned aspects.

We identify a test instance by its name Rows-Columns-Deck-SUF-Placing-
Cargo List. 150-56-D->0.9-R-2 means an instance with a grid resolution of
150×56 on the real deck D with cargo list number 2, where more than 90%
of the deck’s area is occupied by vehicles and the vehicles are randomly placed.

For the test instances, we have set the upper limit on computing time to
7,200 seconds for both the solution methods. As a SPEP problem is solved for
each port except the first and last port, the computing time is distributed evenly
among these ports. Thus, for an instance with six ports, the maximum computing
time for each of the ports 2-5 are 1,800 seconds.

5.2 Comparison of SPEP model and SPP heuristic

To compare the performance of SPEP and the SPP heuristic, we have tested
both methods on 64 instances. Table 1 presents a summary of the results, where
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the average results from cargo lists 1 and 2 for each instance are presented. As
the SPEP model is solved for every port for each instance, a positive gap may be
reported even though the solution time is less than the maximum computation
time. The percentage of the gap closed is calculated as (zu − zb)/zb where zu is
the best solution and zb is the best bound.

In Table 1, we have reported the SPP results from the SPP heuristic using
all improvement strategies, denoted SPP A. To evaluate the effect of the im-
provement strategies discussed in Section 4.2, we have tested the base heuristic
(SPP B), i.e. without any of the strategies, where the average gap and solu-
tion time are 488% and 0.55 seconds, respectively. These results are significantly
worse than SPP A’s results and are therefore not reported in the table. For the
instances solved to optimality by Xpress, SPP A found solutions with an average
gap of 8.5%. 37 of the 64 instances were solved to optimality by Xpress, using
the SPEP model. The SPP heuristic found a solution proved optimal by the
SPEP model in two of the 37 instances.

Even for the smallest grid resolution, the SPEP model’s computing times
are too long for practical use. The SPP heuristic performs significantly better,
reducing the average solution times to less than 0.1 seconds, which is acceptable
in its intended context, i.e. as a sub-problem when determining a stowage plan.
For both methods, grid resolution has the highest impact on solution time.

Table 1: Average gaps and solution times per group of instances. Each group
consists of two instances with different cargo lists.

Vehicles logically placed Vehicles randomly placed
SPEP SPP A SPEP SPP A

Group of instances
Avg.
gap(%)

Avg.
CPU (s)

Avg.
gap(%)

Avg.
CPU (s)

Avg.
gap(%)

Avg.
CPU (s)

Avg.
gap(%)

Avg.
CPU (s)

50-19-A->90 0.0 12.72 16.4 0.01 0.0 229.82 12.4 0.01
50-19-A-80 0.0 6.22 2.3 0.01 0.0 22.66 5.6 0.01
50-19-B->90 0.0 20.67 9.2 0.01 0.0 408.17 4.6 0.01
50-19-B-80 0.0 46.40 7.7 0.01 0.0 365.21 6.5 0.01
100-38-C->90 3.2 1050.93 6.6 0.03 0.0 397.58 7.7 0.03
100-38-C-80 0.0 299.22 8.1 0.03 0.0 391.90 8.1 0.04
100-38-D->90 8.5 840.57 13.0 0.04 23.6 3077.87 30.1 0.05
100-38-D-80 0.0 341.50 8.2 0.03 13.2 1763.38 17.8 0.05
150-56-C->90 0.0 116.74 8.8 0.08 0.0 877.34 8.5 0.09
150-56-C-80 0.0 95.81 1.8 0.07 4.5 1350.81 9.5 0.10
150-56-D->90 7.4 1224.54 28.3 0.08 75.2 4315.77 97.8 0.12
150-56-D-80 16.0 933.72 29.9 0.09 57.4 4240.85 79.6 0.12
200-75-C->90 15.8 4819.01 25.6 0.18 29.3 3457.04 39.9 0.16
200-75-C-80 6.8 3072.33 6.9 0.16 34.1 3451.87 38.8 0.17
200-75-D->90 58.3 5117.53 54.7 0.20 82.4 4629.67 75.3 0.23
200-75-D-80 22.7 2317.14 29.1 0.22 99.7 4882.36 85.9 0.22

Avg. 8.7 1269.69 16.0 0.08 26.2 2116.39 33.0 0.09
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The columns to the left in Table 1 present the results for the instances where
the vehicles are placed logically. Considering the SPEP model’s results, we see
that both the average solution time and the gap are lower when the vehicles are
logically placed, than for the randomly generated stowage plans. For the SPP
heuristic, we see that the solution times are approximately the same for both
placement methods, while the gap is higher when vehicles are randomly placed.

5.3 Comparing stowage plans

We stress that the intended use of the SPP heuristic is to compare stowage plans,
not determine the actual shifting cost of a stowage plan. Even though the gaps
reported in the previous section were relatively high, this is acceptable as long
as they are consistently low/high for all the stowage plans. Thus, the important
aspect is that the solutions from the SPP heuristic follow the same trend as the
SPEP model’s solutions, with respect to the shifting cost evaluated. The quality
of the SPP heuristic should be, and is here, determined by its ability to decide
which is the better stowage plan, given a set of stowage plans.

To test the quality of the SPP heuristic, the following decision problem is
used: Given two stowage plans A and B, which is better? The two stowage
plans are evaluated by both the SPEP model and the SPP heuristic, where the
better stowage plan is the one with the lowest shifting cost. The SPP heuristic
succeeds if it reports the same best stowage plan as the SPEP model. Ten groups
of instances are used to test the SPP heuristic’s quality. All instances within each
group have the same grid resolution, deck, SUF, and cargo list, but the vehicles’
placement differs. Each group consists of 50 randomly generated stowage plans.
The decision problem is asked for every unique pair of stowage plans out of the
50 plans, resulting in C(50, 2) = 1225 decision problems. The success rate equals
the number of successful evaluations divided by the number of combinations.

Table 2: SPP heuristic’s success rate (SR) per group of instances.
SPP B SPP A

Group of instances
SR (%),
t = 0.0

SR (%),
t = 0.0

SR (%),
t = 0.025

SR (%),
t = 0.05

50-19-A-80-R-1 62.0 88.9 94.4 97.3
50-19-A-80-R-2 64.5 87.4 92.3 95.7
50-19-A->90-R-1 70.7 91.1 95.7 98.4
50-19-A->90-R-2 78.6 93.8 96.9 98.8
100-38-C-80-R-1 71.5 91.1 96.5 99.2
100-38-C-80-R-2 67.1 86.4 93.7 97.0
100-38-C->90-R-1 53.7 88.3 94.1 97.2
100-38-C->90-R-2 64.8 90.4 95.8 99.0
150-56-C-80-R-1 68.1 91.7 95.0 97.9
150-56-C->90-R-1 64.3 86.5 92.9 96.3

Avg. 66.5 89.6 94.7 97.7
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Table 2 presents a summary of the test results. Without any improvement
strategies, i.e. SPP B, we see that the average success rate is 66.5%, which is
not much better than random guessing (50%). However, with the improvement
strategies (SPP A), the average success rate improves to 89.6%. The two right-
most columns in Table 2, show the success rate when both answers to the decision
problem are accepted if relative difference in shifting cost below a certain tol-
erance value t. The relative difference in shifting cost between stowage plans A
and B is given by |z(A)− z(B)|/min{z(A), z(B)}. Based on the results, SPP A
will successfully identify the better stowage plan 97.7% of the times on average,
given that the two stowage plans have a relative difference in shifting cost greater
than 5%. This is certainly an acceptable result for the method’s intended use,
i.e. as a subroutine in a solution method for generating stowage plans.

6 Concluding remarks

This paper has introduced the stowage plan evaluation problem, which is solved
to compare different stowage solutions for a voyage in Roll-on Roll-off liner ship-
ping. We have presented a mathematical formulation describing the problem. To
efficiently solve the problem we proposed a shortest path based heuristic.

Our computational tests indicate that the shortest path-based heuristic is
a promising method for comparing different stowage plans. The problem of de-
termining the better of two stowage plans was on average successfully solved 9
out of 10 times by the heuristic. In the case where stowage plans with less than
5% difference in shifting cost were considered equally good, the average success
rate increased to 98%. In addition to a high average success rate, short compu-
tation times were reported for the proposed solution method. These promising
results enable the solution method to be used as a subroutine in a stowage plan
generator, which is an interesting venue for future research.
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Abstract. In logistic delivery chains time windows are common. An ar-
rival has to be in a certain time interval, at the expense of waiting time or
penalties if the time limits are exceeded. This paper looks at the optimal
placement of those time intervals in a specific case of a barge visiting two
ports in sequence. For the second port a possible delay or penalty should
be incorporated. Next, recognising these penalty structures in data is
analysed to if see certain patterns in public travel data indicate that a
certain dependency exists.

Keywords: Logistics, Computation Models, 2-Stage Delivery, Data analysis

1 Introduction

Delivery windows are a known phenomenon in time window constrained models
for production scheduling and vehicle routing. In [5] an overview can be found of
recent literature on the use in production logistics. In the context of a delivery
performance model, a delivery window is defined as the difference between the
earliest acceptable delivery date and the latest acceptable delivery date. In sup-
ply chain management and home delivery in e-commerce the problem of interest
is the optimal positioning of the delivery time window to minimise the expected
cost of untimely delivery, such as inventory costs and penalties or the estimation
of accumulated delivery times with uncertainty [1,5,6,7,8,9,10,12,13].

Delivery windows are also used in Vehicle Routing Problems (VRP). A VRP
involves finding a set of routes, starting and ending at a depot, that together
cover a set of customers. Each customer has a given demand, and no vehicle can
service more customers than its capacity permits. The objective is to minimise
the total distance travelled or the number of vehicles used, or a combination
of these. A special case of the VRP is when the service at a customer’s place
must start within a given time window. There are two types of time windows.
Time windows are called soft when they can be violated for a penalty cost. They
are hard when they cannot be violated, i.e., if a vehicle arrives too early at a
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customer, it must wait until the time window opens; and it is not allowed to
arrive late. In all the cases these time windows are given in advance [11,3,2].

In this work a delivery chain is studied where a barge has to visit two ports.
In each port a number of containers is handled. For the planning of the port, the
planner of the barge should indicate a time slot in which the barge will arrive. If
the barge is too early, it has to wait until the beginning of the slot. If the barge
is too late, it has to wait some penalty time. If the barge arrives within the time
slot, the handling starts immediately. This means that we introduce a penalty
which occurrence is dependent on the arrival time, which duration is dependent
on the arrival time in case of early arrival, in combination with a two-stage time
window. Within this study, first the optimisation of the choice of the time slots
is elaborated in Section 2. The main question here is what the optimal time
slots are to be communicated to minimise the total of the penalties. Secondly, in
Section 3 the way to recognise the existence of such time slots with penalties in
travel data is studied. In practice often not all data and/or the precise process
is known. There the question is if we only see the arrival and departure times
of a barge (for example from GPS or AIS data) can we predict the underlying
process, to be able to predict the arrival time of the barges at some (final) stop.

2 Optimisation

The central case in this paper is a delivery chain where a barge has to visit two
ports. In each port a number of containers should be handled. For the planning
of the port, the planner of the barge should indicate a time slot in which the
barge will arrive. If the barge is too early, it has to wait until the beginning of
the slot. If the barge is too late, it has to wait some penalty time. If the barge
arrives within the time slot, the handling starts immediately. In this section the
optimal choice of the time window is determined.

2.1 Problem description

To formulate the problem, first some notation is defined:

I = Set of ports;
Ti = Transportation time to port i ∈ I, starting at the former location;
Hi = Handling time at port i ∈ I;
Wi = Waiting time at port i ∈ I;
Si = Start time slot at port i ∈ I;
L = Length time slot;
K, k = Penalty wait time, fixed, stochastic or function depending on context.

The question that arises is what would be the optimal start times S1 and
S2 of both slots to minimise the sum of the waiting times (W1 +W2)? Different
probability distribution functions are used for the transportation and handling
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A ≤x < S W = S − x

S ≤x ≤ S + L W = 0

S + L <x ≤ B W = K

Fig. 1. Process

2.2 First stage

Now the optimal choice for the starting time of the time slots can be derived,
by minimising the expected waiting time as a function of S1. We assume three
different options for the penalty: a fixed time, a function of the delay and a
random value. At the first port the arrival time X is equal to the transportation
time T1. For various probability distribution functions for T1 we obtain the
optimal value (S) for S1, the start of the first time slot.

Fixed penalty Given a fixed penalty K, the expected waiting time is given by:

E[W ] = E[W X<S ] + E[W S≤X<S+L] + E[W S+L≤X ]

= E[(S −X) X<S ] + E[0 S≤X<S+L] + E[K S+L≤X ]

= SE[ X<S ]− E[X X<S ] + 0 +KE[ S+L≤X ]

= SF (S)−
∫ ∞

−∞
x x<Sf(x)dx+K(1− F (S + L))

= SF (S)−
∫ S

−∞
xf(x)dx+K(1− F (S + L)).
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times and, as a consequence, for the arrival time (X) at the port under consid-
eration. The arrival, in each of the ports will
therefore we skip the indices here. We assume
S ≥ A and B ≥ S + L, while losing a part of the time slot will not be smart.
Only if L ≥ (B−A) this will not hold, but then we have no problem. The arrival
will be in one of the three intervals a = [A,S], b = [S, S + L] or c = [S + L,B].
For each realisation of the arrival time x we can calculate the waiting time:

that, for each of the two stages,
be in the interval (A,B) (see Fig. 1);



The expected waiting time is minimised by:

d

dS
E[W ] = 0

resulting in

d

dS
E[W ] =

d

dS
SF (S)− d

dS

∫ S

−∞
xf(x)dx+

d

dS
K(1− F (S + L))

= Sf(S) + F (S)− Sf(S)−Kf(S + L) = F (S)−Kf(S + L)

So:

d

dS
E[W ] = 0 ⇐⇒ F (S) = K · f(S + L)

Now any distribution for X can be used. For three examples this will be elabo-
rated.

Uniform distribution If the transportation time and consequently the arrival
time X is uniform (A,B): F (S) = S−A

B−A and f(S) = 1
B−A , so we obtain:

d

dS
E[W ] = 0 ⇐⇒ S −A

B −A
= K · 1

B −A
⇐⇒ S −A = K ⇐⇒ S = A+K.

Recall that S has a maximum value of B − L, thus S = min (A+K,B − L).

Exponential distribution
arrival time X is exponentially distributed (λ) the expected waiting time equals:
Exponential: F (S) = 1− exp−λS and f(S) = λ exp−λS . So we obtain:

d

dS
E[W ] = 0 ⇐⇒ 1− exp−λS = Kλ exp−λ(S+L)

⇐⇒ 1 = (Kλ exp−λL +1) exp−λS

⇐⇒ −λS = log(
1

Kλ exp−λL +1
)

⇐⇒ S =
1

λ
log(Kλ exp−λL +1)

Normal distribution μ, σ) distributed, where
φ(.) denotes the normal probability density function and Φ(.) the cumulative
probability density, the waiting time is minimised by solving for S in:

Φ(S) = Kφ(S + L),

which has to be solved numerically.
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Penalty as function of delay
the barge is. Again, E[W ] is calculated, since the only term that changes com-
pared to the situation above is E[W�S+L≤X ]. The penalty equals k(X − S −L)
for some function k : [0,∞) → [0,∞).

E[W�S+L≤X ] = E[k(X − S − L)�S+L≤X ] =

∫ ∞

S+L

k(x− S − L)f(x)dx

The derivative follows from:3

d

dS
E[W�S+L≤X ] =

d

dS

∫ ∞

S+L

k(x− S − L)f(x)dx

=

∫ ∞

S+L

−k′(x− S − L)f(x)dx− k(x− S − L)f(x)|x=S+L

= −
∫ ∞

S+L

k′(x− S − L)f(x)dx− k(0)f(S + L)

= −
∫ ∞

0

k′(x)f(x+ S + L)dx− k(0)f(S + L)

Combining with the steps above results in:

d

dS
E(W ) = F (S)−

∫ ∞

0

k′(x)f(x+ S + L)dx− k(0)f(S + L)

So

d

dS
E(W ) = 0 ⇐⇒ F (S) =

∫ ∞

0

k′(x)f(x+ S + L)dx+ k(0)f(S + L)

Note that if k is a constant, this expression reduces to what was found earlier.

Penalty is a random variable, independent of X
a random penalty K, independent of X. Then the last term becomes:

E[W�S+L≤X ] = E[K�S+L≤X ]

Since K and X are independent, so are K and �S+L≤X , the expectations can
be multiplied to obtain:

E[W�S+L≤X ] = E[K]E[�S+L≤X ] = E[K](1− F (S + L))

d

dS
E(W ) = 0 ⇐⇒ F (S) = E[K]f(S + L)

In the case that K is constant this expression reduces to the first case again.

3 Under some regularity assumptions, for instance k must be differentiable on (0,∞)
and continuous on [0,∞)
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2.3 Second stage

The first stage resulted in a general formulation that can be used for the second
stage, given that the probability distribution of the arrival time at the second
port is known. However, the probability distribution function of the arrival time
(X) is more complicated, namely the sum of two transportation times, a handling
time and possibly a penalty. First the penalty is neglected, later, the propagation
of the penalty is studied.

Second time slot without penalty in the first time slot For the second
time slot without penalty, the same approach can be taken as in the first stage.
First note that here it is assumed that there is no penalty in the first time slot,
but obviously there is one in the second (since otherwise nothing would have
to be optimised). Now again for the three probability distributions (of each of
the stochastic variables, adding up to the arrival time at the second stage) the
solution can be derived.

Uniform distribution If the two transportation times and the handling time
all follow a uniform distribution, the arrival time has an Irwin-Hall distribu-
tion [4]. This distribution converges quickly to the normal distribution. From
our experience, even in the case of only three underlying uniform distribu-
tions, a normal approximation is usable in practice. If T1 ∼ uniform(U1, U2),
T2 ∼ uniform(U3, U4) and H1 ∼ uniform(U5, U6), then by approximation
X ∼ Normal(μ, σ) where

μ =
1

2
(U2 − U1) +

1

2
(U4 − U3) +

1

2
(U6 − U5),

σ =

√
(U2 − U1)2

12
+

(U4 − U3)2

12
+

(U6 − U5)2

12
.

Now the method for the normal distribution of the previous stage can be used.

Exponential distribution In the case of exponential handling and transporting
times (and assuming independence) the second arrival time has an Erlang(3,λ)
distribution. This means:

F (x) = 1−
2∑

n=0

1

n!
exp−λx(λx)n

f(x) =
1

2
λ3x2 exp−λx

The formula above reduces the problem to finding S such that:

1− exp−λS −λS exp−λS −1

2
λ2S2 exp−λS =

1

2
Kλ3S2 exp−λ(S+L)

⇐⇒ expλS −1− λS − 1

2
λ2S2 =

1

2
Kλ3S2 exp−λL

⇐⇒ expλS =
1

2
(Kλ3 exp−λL +λ2)S2 + λS + 1.
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The latter expression can be solved for S numerically.

Normal distribution If the two transportation times and the handling time
are all normally distributed and independent, the arrival time has again a nor-
mal distribution. If T1 ∼ Normal(μ1, σ1), T2 ∼ Normal(μ2, σ2) and H1 ∼
Normal(μ3, σ3) then X ∼ Normal(μ, σ) where

μ = μ1 + μ2 + μ3,

σ =
√
σ2
1 + σ2

2 + σ2
3 .

Now the method for the normal distribution of the previous section can be used.

Propagation of penalty: Second time slot with penalty The challenge
now is to derive an expression for the arrival time at the second port, including
the fact that there may have been a penalty at the first port. Then the formula
presented earlier can be applied to find the expression that has to be solved.
We assume T1, T2 and H1 to be independent. The time that is added to this due
to not arriving within the time frame, is the penalty P . So P is not only due to
arriving late. We see then:

P =

⎧
⎨

⎩

S − T1 if T1 ≤ S
0 if S < T1 ≤ S + L
k if T1 > S + L

Now we are interested in the second arrival time X = T1 + P +H + T2. Since
P and T1 are dependent of each other and the rest is independent, we will call
X1 = T1 + P and X2 = H + T2. The interesting part here is X1:

X1 =

⎧
⎨

⎩

T1 + S − T1 = S if T1 ≤ S
T1 + 0 = T1 if S < T1 ≤ S + L
T1 + k if T1 > S + L

Now the cumulative distribution function of X1 equals:

FX1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < S
FT1

(x) if S ≤ x ≤ S + L
FT1(S + L) if S + L < x ≤ S + L+ k
FT1(x− k) if x > S + L+ k

This is visualised in Fig. 2. The jump in the point S means that the random
variable is not absolutely continuous. This is what we expect, since the proba-
bility of starting the handling at point S equals P(T1 ≤ S) = FT1(S), which is
strictly positive. We can describe the ’density’ in this way:

fX1
(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if x < S
mass FT1

(S) if x = S
fT1(x) if S ≤ x ≤ S + L
0 if S + L < x ≤ S + L+ k
fT1

(x− k) if x > S + L+ k
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Fig. 2. CDF of time that handling begins

Now we would like to obtain the cumulative density function and the density of
the sum of X1 and X2.

4

FX(x) = P(X1 +X2 ≤ x) =

∫ ∞

b=−∞

∫ x−b

a=−∞
fX1,X2(b, a)dadb

=

∫ ∞

b=−∞

∫ x−b

a=−∞
fX1

(b)fX2
(a)dadb =

∫ ∞

b=−∞

∫ x−b

a=−∞
fX2

(a)dafX1
(b)db

=

∫ ∞

−∞
FX2

(x− b)fX1
(b)db

Now, using the description that we found of fX1
, we obtain:

FX(x) =

∫ ∞

−∞
FX2A(x− b)fX1(b)db

= FT1
(S)FX2

(x− S) +

∫ S+L

S

FX2
(x− b)fT1

(b)db

+

∫ ∞

S+L+k

FX2
(x− b)fT1

(b− k)db

4 Note that the following computations are strictly speaking ill-defined, since f is not
a continuous function. However, it is correct and this way a more intuitive derivation
is given. To be precise, one would have to use the Lebesgue-Stieltjes integral to avoid
speaking of f . Also note that we use independence of X1 and X2 when their joint
probability distribution function is written as the product of the marginals.
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Differentiating this with respect to x yields (under some regularity conditions):

fX(x) = FT1
(S)fX2

(x− S) +

∫ S+L

S

fX2
(x− b)fT1

(b)db

+

∫ ∞

S+L+k

fX2
(x− b)fT1

(b− k)db

Note that X2 ≥ 0, so fX2
(x− b) will be 0 for b > x. So in practice, a part of the

integral will drop out.

To find the optimal time, we need to use the formula of the first stage opti-
misation again: FX(S2) = k2fX(S2 + L2). We obtain as the equation that has
to be solved for S2:

FT1(S)FX2(S2 − S) +

∫ S+L

S

FX2(S2 − b)fT1(b)db

+

∫ ∞

S+L+k

FX2
(S2 − b)fT1

(b− k)db = k2FT1
(S)fX2

(S2 + L2 − S)

+k2

∫ S+L

S

fX2
(S2 + L2 − b)fT1

(b)db+ k2

∫ ∞

S+L+k

fX2
(S2 + L2 − b)fT1

(b− k)db

By rearranging a bit, we get:

(k2fX2
(S2 + L2 − S)− FX2

(S2 − S))FT1
(S)

=

∫ S+L

S

(FX2(S2 − b)− k2fX−2(S2 + L2 − b))fT1(b)db

+

∫ ∞

S+L+k

(FX2
(S2 − b)− k2fX2

(S2 + L2 − b))fT1
(b− k)db

Note that in any situation with a sum of random variables, the convolution
integral appears. This usually cannot be simplified, except for nice situations
such as some known sums of random variables. This is the reason for the integrals
with two densities in them. The penalty P is of different nature in different cases,
this accounts for the multiple integrals. This suggests that there is not much hope
of finding nicer expressions.

2.4 Case

As example we look at the following case. As input data we use:
T1 = U(180; 234)
H1 = U(50; 150)
T2 = U(120; 156)
H2 = U(50; 150)
L = 30 minutes
K = 45 minutes
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Now the optimal value of S1 can be calculated by S∗
1 = min (A+ P,B − L) =

min (180 + 45; 234− 30) = 204 resulting in E(W1) = 5.33. The same holds for
S2. First for the case neglecting the penalty at the first port. Minimum value for
S2 can be derived easily S2 = 180+50+120 = 350, and also the maximum value
S2 = 234+150+156 = 540. The arrival time on port 2 is a sum of three uniform
distributed variables. If we assume that the sum of three uniform variables has
a normal distribution, then the arrival time on port 2 is normally distributed with

μ = 350 + 0.5 ∗ (190) = 445 and σ =
√

(54)2

12 + (100)2

12 + (36)2

12 = 34.4. Solving the

formula of the first stage for a normal distribution gives S∗
2 = 438.

These results can be checked by a numerical simulation of 70,000 realisations
of trips with these parameters. Figure 3 shows that the minimum delay is reached
(indeed) around 204. Furthermore, it can be seen how sensitive the outcome is
for a choice of S1: 10 minutes off, gives 5 minutes extra delay.

Simulating the second stage without penalty results in the outcome as shown
in Fig. 4. The optimal value of 438 is confirmed; however, the graph is rather flat
around the optimum, and the sensitivity of the delay on the window is low.

From the simulation of the second stage with penalty at the first stage also
comes that taking the penalty into account, the optimal S2∗ becomes 441, as
depicted in Fig. 5.

Fig. 3. Simulated optimum S1.
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Fig. 4. Simulated optimum S2 without penalty.

3 Recognizing time windows in data

In practice often not all data and/or the precise process is known. For example
only GPS-data is available and this information is used in planning. Then it
would be nice to understand where the interactions and (possible) correlations
in data come from. In this section we look at the data in the case were we
only see the arrival and departure times of a barge (for example from GPS or
AIS data) and want to understand the underlying process better by analysing
this data. We want, for example, to be able to predict the arrival time of the
barges at some (final) stop. For this we can try to predict the separate steps
in the chain, here for example the transportation times and the handling times.
But what if there are dependencies, for example caused by waiting times that
are depending on whether some time slot is met by arrival, as explained in the
previous section.

3.1 Analysis

To get some idea on this, we simulated the process as defined in the previous
section for four cases:

1. No time slot; a barge is handled on arrival at each port;
2. Optimal time slots chosen; as defined in the previous section;
3. Time slots are chosen around the expected arrival time; the planner puts the

time slot symmetrically around the expected arrival time;
4. No optimisation; the planner places the start of the time slot at the earliest

arrival time.
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Fig. 5. Simulated optimum S2 with penalty.

As numerical input we take (in minutes):
T1 = U(180; 234)
H1 = U(50; 150)
T2 = U(120; 156)
H2 = U(50; 150)
L = 30
K = 30

This gives a minimal lead time of 400 minutes and a maximum lead time of
690 (plus 60 minutes of penalties) minutes. For each of the four cases we simu-
lated 5,000 realisations, were only the arrival and departure times were reported.
From these times the two transportation and two handling times were calculated,
as depicted in Fig. 6. Again for each of the four cases, the correlation between
the four arrival/departure times and the average total lead time were derived.
For each correlation value also the p-value was calculated to test whether the
correlation is significantly different from zero. The results are presented in Table
1 until Table 5.

Table 1. Correlation in the case ’No time slot’; p-value between brackets.

T1 H1 T2

H1 0.028 (0.052)
T2 -0.018 (0.201) 0.001 (0.961)
H2 0.022 (0.122) -0.005 (0.750) -0.001 (0.952)
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Fig. 6. Process

Table 2. Correlation in the case ’Optimal time slot’; p-value between brackets.

T1 H1 T2

H1 -0.210 (0.000)
T2 0.004 (0.787) 0.003 (0.850)
H2 -0.008 (0.559) -0.056 (0.000) -0.005 (0.741)

Table 3. Correlation in the case ’Time slots around the expected arrival time’; p-value
between brackets.

T1 H1 T2

H1 0.216 (0.000)
T2 0.008 (0.562) -0.012 (0.406)
H2 0.047 (0.000) 0.063 (0.000) -0.009 (0.518)

Table 4. Correlation in the case ’Not optimised’; p-value between brackets.

T1 H1 T2

H1 0.382 (0.000)
T2 -0.007 (0.635) -0.011 (0.431)
H2 0.171 (0.000) 0.232 (0.000) 0.031 (0.0278)

Table 5. Total process time of the four cases.

Case Total time

1 545
2 567
3 572
4 581

There are some observations we can make:

1. In the case ’No time slots’ there is no correlation between the transportation
and handling times.
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2. In the case ’No optimisation’ there exist: positive correlation between (T1,
H1), positive correlation between (T1, H2) and positive correlation between
(H1,H2), all by the penalty. There also is a (small but significant) correlation
between (T2,H2).

3. In the case ’Time slots are chosen around the expected arrival time’, the
correlations become lower; the effect of the penalty is less than in the not
optimised case.

4. In the case ’Optimal time slots chosen’, the correlation between (T1, H2)
disappear (no delay propagation anymore), the two other relations that had
a positive correlation (T1,H1) and (H1,H2) become negative. This means
that longer delays do not cause the big penalty anymore, but being early
(lower arrival time) leads to small waiting times.

3.2 Limitations

Up to here we assumed that the planning and realisations are independent.
However, in practice people are going to react on realisations. For example:

– If a barge is early, the captain can decide to slow down and save fuel. This
could lead to a shift in the transportation time distribution and from the
optimised case to the ‘time slots around expected arrival time’ case.

– If a barge had delay in the first part (transportation, penalty and/or han-
dling) the captain could decide to go faster. This again leads to a shift in the
transportation time distribution and potentially a decrease in the correlation
between (T1, T2) and (H1, T2).

4 Conclusions

This paper investigated a delivery chain in logistics, where a barge has to visit
two ports and was faced by delivery time slots in which the barge has to arrive.
We looked at two issues: first, how can the time slot be chosen optimally and
secondly, how can time slots with penalty for untimely arrival be recognised in
travel data. For the former an optimisation framework was given to derive the
optimal time slots at the first and second stage with various options for penalty
functions in case of a not timely arrival. For certain distribution functions of the
handling and transportation times an explicit expression was derived. Also for
the most complicated case, the second stage with propagation of the penalty of
the first stage, an expression was derived. For the latter some insight was given
to recognise these time slot constructions from correlation values of travel and
handling times. Four cases were distinguished where each case showed specific
characteristics in the correlation values. The characteristics could, in practice,
be compensated by the interaction of humans.
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Abstract. Problem statements and solution methods in mathematical
synchromodal transportation problems depend greatly on a set of model
choices for which no rule of thumb exists. In this paper, a framework is
introduced with which the model choices in synchromodal transportation
problems can be classified, based on literature. This framework should
help researchers and developers to find solution methodologies that are
commonly used in their problem instance and to grasp characteristics
of the models and cases in a compact way, enabling easy classification,
comparison and insight in complexity. It is shown that this classification
can help steer a modeller towards appropriate solution methods.

Keywords: Synchromodal, Classification, Logistics, Computation Models

1 Introduction

Synchromodal freight transport is a relatively new concept within the logistics
sector. Older concepts of logistics are multimodal and intermodal. A transporta-
tion network is called a multimodal transport network if the transportation of
goods can be made via different modes, where a mode is understood as a means
of transportation, such as a barge. In an intermodal transportation network, the
goods are transported through a standardised unit of transportation, which we
call freight, and in practice is usually a container. Synchromodal freight trans-
port is viewed in this paper as intermodal freight transport with an increased
focus on at least one of the following two aspects:

1. Transport planning is done using real-time data, allowing for on-line changes
in the planning; [27, 32, 40, 37]

2. Different parties share their real-time information, transportation resources
or transportation demands and may even entrust decisions to a central op-
erator or logistics service provider (LSP). In some cases, clients may make
an a-modal booking, agreeing with an LSP that their goods will be delivered
at a set time and place against a set price and leaving it up to the LSP by
what modes this is done. [27, 35, 51, 32, 40]
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Though other important developments exist within intermodal transport [47],
synchromodality only concerns synchronising real-time data collection with real-
time planning and synchronising the transportation flows and requirements among
different parties. The goal of aspect 1 is to increase flexibility and reliability, that
is to say, to become able to deal with disturbances in the system more effectively
and to more effectively optimise against unknowns. The goal of aspect 2 is to
increase efficiency and sustainability, by facilitating full truck load-consolidation
(FTL-consolidation), in other words, letting one small order wait at a terminal so
it can be combined with some other order [49]. Aspect 2 also facilitates smarter
equipment repositioning, for example, by moving leftover empty containers di-
rectly to a nearby terminal where they are needed instead of through a depot
[2].
Interest in synchromodality has increased, due to improvements in data technol-
ogy, an increased focus on the more complicated hinterland transport and the
ever-growing need for efficiency. However, synchromodality faces several chal-
lenges that keep it from being adopted in practice. The challenges come from
several sources. In [32], seven critical success factors of synchromodality are dis-
cussed:

1. Network, collaboration and trust
2. Awareness and mental shift
3. Legal and political framework
4. Pricing/cost/service
5. ICT/ITS technologies
6. Sophisticated planning
7. Physical infrastructure

Roughly, it can be argued that the first and second factor are mainly social prob-
lems, the third is a political problem, the fourth is a mathematical, social and
political problem, the fifth is a technological problem, the sixth is a mathematical
problem, and the seventh is a technological and constructional problem.
Each of these factors is currently being addressed by different initiatives. Also in
mathematics (applied in logistics) a lot of work has been done that can be used in
synchromodality. Mathematical planning problems are often divided into three
main categories: strategical, tactical, and operational, so is the case with mathe-
matical synchromodal problems. These problems are related in a pyramidal-like
structure in the following sense: tactical problems are usually engaged where
a specific strategical instance is given, and operational problems are frequently
solved where a strategical and tactical structure are fixed, although sometimes
problems in two consecutive levels are solved simultaneously: for instance, in [8],
the frequency of a resource is determined along with the flow of freight (that is,
part of the schedules to resource and the freight to resources are solved at once).
Mathematical synchromodal transportation problems on a tactical or operational
level are usually represented via tools from graph theory and optimisation [39].
However, more often than not, the similarities end there: most of the models used
to analyse a synchromodal transportation network are targeted to a specific real
problem of interest [39], and knowledge and methods of other branches such as
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statistics, stochastic processes, or systems and control are often used. The models
emphasise on what is most important for the given circumstances. Consequently,
mathematical synchromodal transportation problems on a tactical or operational
level have been engaged with approaches that may differ in many aspects:

– The exhaustiveness of the elements considered varies, e.g. weather or traffic
conditions are considered in some models (such as the one presented in [23])
but not all.

– The elements that can be manipulated and controlled may vary, e.g. the
departure time of some transportation means may be altered if suitable (as
it happens in the model of [8]) or it may be that all transportation schedules
are fixed.

– The amount of information relevant to the behaviour of the network may
vary, and if a lack of information is considered, the way to model this situa-
tion may also vary [31].

– Whether some other stakeholders with authority in the network are in the
model, and if so, how their behaviour is modelled.

A model is not necessarily improved by making it increasingly exhaustive. As
it happens with most model-making, accuracy comes with a trade-off, in this
case, computational power. This computational burden is an intrinsic property
of operational synchromodal problems [48] and one that is of the utmost im-
portance given the real-time nature of operational problems: new information is
constantly fed and it should be processed on time.

There is no rule of thumb for making the decisions above; also, each of the deci-
sions mentioned above will shape the model, and likely stir its solution methods
to a specific direction. Though literature reviews of synchromodal transporta-
tion exist [48, 39], no generalised mathematical model for synchromodal trans-
portation problems has been found yet, nor a way of categorising the existing
literature by their modelling approaches. The framework for mathematical syn-
chromodal transportation problems on a tactical or operational level presented
in this paper aims to capture the essential model-making decisions done in the
model built to represent the problem. When no such model is specified, it shows
the model-making decisions likely to be done in that case, which makes classifi-
cation partly subjective. This is done in an attempt to grasp the characteristics
of the model/case in a compact way, enabling easy classification and comparison
between models and cases, as well as a way to see the complexity of a spe-
cific case at a glance. Also, it provides perspective to better relate new problems
with previous ones, thus identifying used methodologies for the problem at hand.

In the remainder of this paper, Section 2 gives an overview of the relevant litera-
ture. Section 3 introduces the classification framework and Section 4 two short-
hand notations for this framework. In Section 5, some examples are provided.
Based on these examples, common solution methods are mapped in Section 6
and the relationship with VRP terminology is discussed in Section 7. In Section
8 the examples are used to discuss strengths and weaknesses of the framework.
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2 Literature

Synchromodal planning problems exist both in the tactical and operational area.
The tactical planning problem is quite extensive. One needs to select and sched-
ule the services to operate, allocate the capacity and equipment, and look at the
routing of the goods. Together this is also called Service Network Design. The
review paper of Crainic [13] gives an extensive review of these problems, their
formulations and their solution frameworks. They also give a classification of
these problems. In the literature these problems are mostly modelled as Fixed-
Cost Capacitated Multicommodity Network Design Problems. The paper by Min
[29] develops a chance-constrained goal programming model that has multiple
aspects in the objective function.
Papers in this area that explicitly deal with synchromodality are [36, 11, 8]. The
paper by Puettmann and Stadtler [36] mentions the importance of coordination
of plans and operation of independent service providers in an intermodal trans-
portation chain. They present a coordination scheme that will lead to reductions
in overall transportation costs. They include stochastic demand in their calcu-
lation of the overall costs. Another paper by Caris, Macharis and Janssens [11]
also looks at cooperation between inland terminals. In the paper they develop a
service network design model for intermodal barge transport and apply it to the
hinterland network of the port of Antwerp. They simulate cooperation schemes
to attain economies of scale. The paper by Behdani et al. [8] develops a mathe-
matical model for a synchromodal service schedule on a single origin-destination
corridor. Taking into account the frequency and capacity of different modali-
ties, it determines the optimal schedule and timing of services for all transport
modes. The assignment of containers to services is also determined by the model.

In operational planning problems, problems are regarded that deal with the
day-to-day problems in a logistic network. This means that all these problems
deal with uncertainty and stochasticity, which makes these problems complex.
The decisions depend on the current information and an estimation of the future
events. Issues here are:

– reliability of a network: dealing with disruptions [19, 12, 28, 33] and resilience
measures [12, 28];

– resource management: empty unit repositioning problems [14, 16, 15] and
allocation and positioning of the operating fleet [42–46, 7, 38];

– replanning and online allocation [10, 17, 21].

Papers in the operational area within the synchromodal context are [51, 27, 31].
Zhang and Pel [51] developed a model that captures relevant dynamics in freight
transport demand and supply, flexible multimodal routing with transfers and
transhipments. It consists of a demand generator (random sampling from his-
toric data), an infrastructure and service network processor (which generates
the resource schedule), a schedule-based assignment module (which assigns the
demand to resources) and a performance evaluator. The model can be used to
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compare intermodal and synchromodal transportation from different perspec-
tives: economic, social and environmental. The authors use their model for a
case study regarding the Rotterdam hinterland container transport and they
show that synchromodality will likely improve service level, capacity utilisation
and modal shift, but not reduce delivery cost.
The paper by Mes and Iacob [27] searches for the k-shortest paths through an
intermodal network. They present a synchromodal planning algorithm that takes
into account time-windows, schedules for trains and barges and closing times of
hubs and minimises costs, delays and CO2 emissions. The k-shortest paths are
then presented to a human planner, which can choose the best fitting path for
an order by filtering these paths. Their approach consists of offline steps and
online steps. In the offline steps, the network is reduced by eliminating paths
that are too far from the route. In the online steps an order is assigned to paths,
by iterating over the number of main legs. A main leg in this paper is a certain
train or barge. The assumption they make is that a cost efficient route consists
of as few legs as possible. The online steps can be done after a disruption to
make a new planning.
The paper by Rivera and Mes [31] looks at the problem of selecting services and
transfers in a synchromodal network over a multi-period horizon. They take into
account the fact that an order can be rerouted at any given moment. The orders
become known gradually, but the planner has probabilistic knowledge about
their arrival. The objective is to minimise expected costs over the entire horizon.
They propose a Markov Decision Process model and a heuristic approach based
on approximate dynamic programming.

3 Framework identifiers and elements

In this section the framework is introduced. Within the framework demand and
resources are considered. In synchromodal transportation models, demand will
likely be containers that need to be shipped from a certain origin to a desti-
nation. Resources can for example be: trucks, train and barges. However, the
framework allows for a broader interpretation of these terms. In repositioning
problems, empty containers can be regarded as resources, where the demand
items are bulks of cargo that need to be put in a container.

The framework has two main parts. The first part consists of the identifiers;
these are specific questions one can answer about the model that depict the
general structure of the model. The other is a list of elements; these elements
are used to depict in more detail what the nature is of the different entities of
the synchromodal transportation problem. Note that the notation presented does
not include the optimisation objective. Within a specific model there is of course
an option to look at different optimisation objectives. This framework is devel-
oped in collaboration with multiple parties that study synchromodal systems.
However, for certain specific problems one might want to extend the framework.
We think this is easily done in the same way as we set up the framework.
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3.1 Identifiers

First we will elaborate on the identifiers of the framework. These identifiers are
questions about the model. They identify the number of authorities, i.e. how
many agents are in control of elements within the model. They will also identify
the nature of different elements within the model. The list of elements will be
discussed in detail in Section 3.2, but they are used to determine which com-
ponents in the model are under control, which are fixed, which are dynamic
and which are stochastic. For instance, the departure time of a barge may be
a control element, but it could also be fixed upfront, or modelled as stochastic.
Some of the questions address how the information is shared between different
agents and if the optimisation objective is aimed at global optimisation or local
optimisation. All the answers on these questions together present an overview
of the model, which can then be easily interpreted by others or compared to
models from the literature.

The identifiers that describe the behaviour of the model in more detail are
discussed below. Note that ‘resources’ most often refer to transport vehicles
and ‘demand items’ most often refer to freight containers: however, demand
items could also be empty containers with no specific destination in equipment
repositioning problems. Therefore, a degree of generality is necessary in these
identifiers.

1. Are there other authorities (i.e. agents that make decisions)?
Here it is identified if there is one global controller that steers all agents in
the network or that there are multiple agents that make decisions on their
own.
– If there are other authorities, how is their behaviour modelled: One turn

only, Equilibrium or Isolated?
If the previous question is answered with yes, i.e., there are multiple
agents that make decisions, one needs to specify how these authorities
react to each other. Three different ways for modelling the behaviour of
multiple authorities in a synchromodal network are distinguished:
• One turn only : this means that each agent gets a turn to make a
decision. After the decision is made, the agent will not switch again.
For instance, in the case of three agents A,B and C, agent A will
first make a decision, then agent B and then agent C. The modelling
ends here, since agent A will not differ from its first decision.

• Equilibrium: the difference between “one turn only” and “equilib-
rium” is that after each agent has decided, agents can alter their
decision with this new knowledge. In the same example: agents A,B
and C make a decision, but then agent A changes its decision based
on the decisions of B and C. If nobody wants to alter their decision
anymore the modelling ends and an equilibrium is reached between
the specific agents.

• Isolated : if the behaviour of the multiple authorities is isolated, it
means that from the perspective of one of the authorities only limited
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information is available about the decisions of the other agents. For
instance: agent C needs to make a decision. It is not known what
agents A and B have chosen or will choose, but agent C knows
historic data on the decisions of agents A and B. Agent C can then
use this information to make an educated guess on the behaviour of
agents A and B.

2. Is information within the network: global or local?
This identifies if the information within the network is available globally or
locally. If the information is locally available, it means that only the agents
themselves know for example where they are or what their status is at a
certain time. If the information is global, the network operator and/or all
other agents know all this information as well.

3. Is the optimisation objective: global or local?
The same can hold for the optimisation objective. If all agents need to be
individually optimised, the optimisation objective is local. If the optimisation
objective is global, we want the best alternative for the entire network.

4. Which elements do you control?
Since we want to model a decision problem, at least one element of the sys-
tem must be in control and must take decisions. For example: if one wants
to model which containers will be transported by a certain mode in a syn-
chromodal network, we have control over the demand-to-resource allocation.
If we want to model which trains will depart on which time at certain lo-
cations, we have control of the resource departure time. An extensive list of
elements is given in Section 3.2.
Of course the controllable element can have constraints: for instance, we
can influence the departure times of trains, but they cannot depart before
a certain time in the morning. This is still a controllable element. We thus
consider an element a controllable element if a certain part of it can be
controlled.

5. What is the nature of the other elements (fixed, dynamic, stochastic or ir-
relevant)?
The other elements within the network can also have different behaviour.
We distinguish four:

– Fixed : a fixed element does not change within the scope of the problem.

– Dynamic: a dynamic element might change over time or due to a change
in the state of the system (e.g. the amount of containers changes the
travel time), but this change is known or computable beforehand.

– Stochastic: a stochastic element is not necessarily known beforehand.
For instance, it is not known when orders will arrive, but it is a Poisson
process. It might also occur that the time the order is placed is known,
but the amount of containers for a certain order follows a normal distri-
bution.

– Irrelevant : the list we propose in Section 3.2 is quite extensive. It might
occur that for certain problems not all elements are taken into consider-
ation to model the system. Then these elements are irrelevant.
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6. What is the optimisation objective?
This identifier is for the optimisation objective. One can look at the exact
same system but still want to minimise a different function. One could think
of travel times and CO2 emissions. It is also possible to identify a much more
specific optimisation objective. Examples of optimisation objectives are in
Section 5.

3.2 Elements

Having defined the identifiers of the framework, now a list of elements is pre-
sented, that are expected to exist in most synchromodal transportation prob-
lems. They are divided in two parts: resource elements and demand elements.
The resource elements are all elements related to the resources, which are mostly
barges, trains and trucks. However, for compactness we also view a terminal as a
resource. In the demand elements are all elements related to the demand, which
are most of the time freight or empty containers. Most elements mentioned in
this list are straightforward, small clarifications are mentioned where necessary.

– Resource elements:
• Resource Type: Different modalities can be modelled as different resource
types. Another way to use this element is for owned and subcontracted
resources.

• Resource Features: These features can be appointed to the different re-
source types or can have the same nature for the different types. For
instance, it may be that there are barges and trains in the problem, but
their schedules are both fixed, thus making the nature of the resource
features fixed for both resource types.
∗ Resource Origin (RO);
∗ Resource Destination (RD);
∗ Resource Capacity (RC): Indication of how much demand the differ-

ent resources can handle;
∗ Resource Departure Time (RDT );
∗ Resource Travel Time (RTT ): Time it takes to travel from the origin

to the destination (in the case of a moving resource);
∗ Resource Price (RP ): This can be per barge/train/truck/. . . or per
container.

• Terminal Handling time (TH): Time it takes to handle the different
types of modes at the terminal. This can again be per barge/train/truck/. . .
or per container.

– Demand elements:
• Demand Type: One can also think of different types of demand. For
instance, larger and smaller containers or bulk.

• Demand-to-Resource allocation (D2R): The assignment of the demand
to the resources.

• Demand Features:
∗ Demand Origin (DO);
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∗ Demand Destination (DD);
∗ Demand Volume (DV ): It might be that different customers have

different amount of containers that is being transported. (Note that
the demand element in this case will always be 1 container, since
each container can have its own assignment.);

∗ Demand Release Date (DRD): The release date is the date at which
the container is available for transportation;

∗ Demand Due Date (DDD): Latest date that the container should
be at its destination, which is not necessarily a hard deadline;

∗ Demand Penalty (DP ): Costs that are incurred when the due date is
not met or when the container is transported before the release date
(this is sometimes possible with coordination with the customers).

4 Notation

In this section, two types of notation are introduced, which will make it easier
to quickly compare different models. Obviously, it is hard to make a compact
notation and still incorporate all aspects of a synchromodal system. Therefore,
the notation was made as compact as possible and some of the details are left
out. When comparing models in detail, it is easier to look at all answers to the
identifiers mentioned in Section 3.1. Our six-field notation was built to resemble
Kendall’s notation for classification of queue types [20] and the notation of the-
oretic scheduling problems proposed by Graham, Lawler, Lenstra and Rinnooy
Kan [18].

4.1 Six-field notation

A synchromodal transportation model can be described by the notation:

C|S|D|I|Y |B

The letters denote the following things:

– C: controlled elements,
– S: stochastic elements,
– D: dynamic elements,
– I: irrelevant elements,
– Y : system characteristics,
– B: behaviour of other authorities, if any.

The first four entries in the notation can be filled with all elements mentioned in
the list in Section 3.2. If any of the elements is not mentioned in these four fields,
it is assumed to be fixed. If all unmentioned resource elements should default to
stochastic instead, an R can be written in the second field: the same goes for
defaulting to controlled, dynamic or irrelevant elements. Analogously, a D can
be written in any of the first four fields to set a default for the demand elements.
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For the system characteristics, a notation is proposed that gives an answer to
questions 1, 2 and 3 of the identifiers. Thus: are there other authorities, is the
information global or local and is optimisation global or local? The notation is
based on Figure 1 [34]. In a similar way to this figure, the four options for the
field system characteristics in the notation are:

– selfish: information global and optimisation local,
– social : information global and optimisation global,
– cooperative: information local and optimisation global,
– limited : information local and optimisation local.

Fig. 1. Different models of a synchromodal network.

The four options for the final field are one turn only, equilibrium, isolated and
1 : the first three are explained in Section 3.1, and the final option denotes that
there are no other decision-making authorities in the system.

4.2 Two-column notation

Though the proposed six-field notation is a relatively compact way to describe
a complex system, it comes with two downsides: it requires a degree of memo-
risation, and if new natures other than controlled, fixed, stochastic, dynamic or
irrelevant are distinguished, there is no place for this in the current notation.
These problems are solved by using the two-column notation described in this
section, at the cost of compactness.

A synchromodal transportation model can also be described by the notation:
Text

Controlled elements C, written out

Fixed elements fixed elements, written out

Stochastic elements S, written out

Dynamic elements D, written out

Irrelevant elements I, written out

System characteristics Y

Behaviour of other authorities B
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If there are no stochastic elements in a problem, that row can be left out: the
same goes for the other natures. If a new nature is distinguished, a row can be
easily added for this. In the six-field notation, any unmentioned element was
considered fixed, unless an R or D was placed in one of the fields to set the
default to that nature. This is again possible here: an R and a D should always
be placed in one of the rows to set the default nature of the resource elements
and demand elements, respectively.

4.3 On the two notations

In neither notation, the optimisation objective is included: these are considered
to be too distinct among different problems to merit classification. As discussed
earlier, the two-column notation is much less compact than the six-field nota-
tion, but requires less memorisation and lends itself better to change when new
natures are distinguished. Our advice is to employ the two-column notation at
first, but to switch to the six-field notation when the framework starts gaining
familiarity: this familiarity should make the memorisation easier, and this adop-
tion time should suffice to discover any truly important new natures. This paper
will largely use the six-field notation for the sake of compactness, seeing how
reminders are readily available within this paper.

5 Examples

As discussed earlier, one of the ideas of the framework is that, when starting
work on a new problem, one can first classify the assumptions this model would
need, then investigate papers that have similar classification. Therefore, a num-
ber of classification examples are presented for both existing models and new
problems. First, we answer the framework questions for the Kooiman pick-up
case [21] in Table 2, and show how this can be written in our compressed no-
tation. Afterwards, Table 3 shows compressed notation of some other problems
described in papers, such that the interested reader can study more examples
of our framework classification. Then, using Table 4, we examine some real-life
cases and classify how we would choose to model these problems. To clarify:
these problems do not yet have an explicitly described model, so this classifica-
tion is based on how we would approach and model these practical problems, but
other modellers may make other modelling decisions. Finally, the given examples
will be used as input for discussion. In the Kooiman pick-up case [21], a barge
makes a round trip along terminals in a fixed schedule to pick up containers to
bring back to the main terminal; however, the arrival times of the containers at
the terminals are stochastic. At each terminal, a decision has to be made of how
many containers to load onto the barge, and a guess has to be made of how much
capacity will be needed for later terminals, all while minimising the amount of
late containers. The actual time of residing at the terminal is disregarded. We
refer to Table 2 for the answering of the framework questions. We refer to Table
1 for a reminder of the framework element abbreviations.
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R: unmentioned resource elements D: unmentioned demand elements
RO: resource origin DO: demand origin
RD: resource destination DD: demand destination
RC: resource capacity DV : demand volume
RDT : resource departure time DRD: demand release date
RTT : resource travel time DDD: demand due date
RP : resource price DP : demand penalty
TH: terminal handling time D2R: demand-to-resource allocation

Table 1. Abbreviations of the framework elements used in the compressed notation.

Other authorities No

Information global/local Global

Optimisation global/local Global

Resource elements Resource type: barges
Controlled resource elements: none
Resource features: fixed, except TH (irrelevant)

Demand elements Demand type: freight containers
Controlled demand elements: D2R
Demand features: fixed, except DRD (stochastic)

Optimisation objective Maximal percentage of containers that travel by
barge instead of truck

Table 2. The framework applied on the Kooiman pick-up case [21].

Note that only barges are taken into consideration as resources, not trucks.
It would have been possible to describe trucks as resources as well, but we
have chosen to classify these as part of the lateness penalty, because there is
no decision-making in how the trucks are used. Also, it may seem strange to
speak of global or local information and optimisation when there are no other
decision-making authorities. The information is considered global, because the
only decision-making authority knows ‘everything’ that happens in the network;
the optimisation is considered global, because the decision-maker wants to op-
timise the performance over all demand in the network put together, not over
some individual piece or pieces of freight.

Using the six-field notation, most of Table 2 can be summarised as follows:

D2R|DRD| · |TH|social|1
It could also be represented in the two-column notation, as follows: Text

Controlled elements Demand-to-resource allocation

Fixed elements R, D

Stochastic elements Demand release date

Irrelevant elements Terminal handling time

System characteristics social

Behaviour of other authorities 1

Here, the row for dynamic elements can be left out because the problem has no
dynamic elements, and R and D are written in the row for fixed elements to
indicate that any unmentioned resource element and any unmentioned demand
element is fixed by default.
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Only the optimisation objective and type specifications are lost in this process.
In Table 3, we apply the framework to more problems from academic papers.
In this table, we include the optimisation objective to illustrate the wide range
of optimisation possibilities. It is not actually necessary to describe the optimi-
sation objective when using the compressed problem notation. In some cases,
especially practical problem descriptions, optimisation objectives may not yet
be explicitly known. Therefore, Table 4 leaves them out. In that table we review
some practical problem descriptions and apply the framework to them.

Behdani [8]: D2R,RDT | · | · | · |social|1
Objective: minimal transportation costs and waiting penalties

Kooiman [21]: D2R|DRD| · |TH|social|1
Objective: maximal percentage of containers by barge instead of truck

Le Li [24]: D2R| · |DV |RDT,DRD,DDD|cooperative|equilibrium
Objective: with self-optimising subnetworks, total minimal cost in union

Lin [26]: D2R| · |RC|RP |social|1
Objective: minimal total quality loss of perishable goods

Mes [27]: D2R| · |RP |RC|social|1
Objective: best modality paths against different balances of objectives

Nabais [30]: D2R| · |RC,RTT,RP,DV,DP |TH|social|1
Objective: sustainable transport modality split that retains client satisfaction

van Riessen [37]: D2R,RDT | · |RC,RTT,RP, TH,DP | · |social|1
Objective: minimise transport and transfer cost, penalty for late delivery and cost of
use of owned transportation

Rivera [31]: D2R|D|R| · |social|1
Objective: minimal expected transportation costs

Theys [41]: RP,D2R,DP | · | · |RDT,DRD,DDD|selfish|equilibrium
Objective: fairest allocation of individual costs

Xu [50]: D2R,RC|RP,DV,DP | · |RDT,RTT, TH,DRD,DDD|social|1
Objective: maximised expected profit during tactical planning

Zhang [51]: D2R|D| · | · |social|1
Objective: maximised balance of governmental goals

Table 3. Selected papers in the synchromodal framework.

Lean and Green Synchromodal [1]: D2R| · | · | · |selfish|1
Rotterdam – Moerdijk – Tilburg [3]: D2R|RTT, TH| · | · |social|1
Synchromodaily [4]: D2R,RDT |D| · | · |social|1
Synchromodal Control Tower [5]: D2R,RC,DV |RP,RTT, TH| · | · |social|1
Synchromodale Cool Port control [6]: D2R,RDT |RTT |DDD,DP | · |social|1

Table 4. Selected use cases in the synchromodal framework.

Another example we reviewed is the modelling of an agent-centric synchromodal
network. Here all agents want to be at their destination as fast as possible, but
everyone does share the information about where they are and where they are
going with everybody else in the network. Table 5 shows the answer on the
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questions of the framework. In the short notation this problem is:

D2R|D| · |DP |selfish|equilibrium

Other authorities Yes

Information global/local Global

Optimisation global/local Local

Resource elements Resource type: barges, trains and trucks
Controlled resource elements: none
Resource features: fixed

Demand elements Demand type: containers
Controlled demand elements: D2R
Demand features: stochastic, except DP (irrelevant)

Optimisation objective Minimise travel times
Table 5. The framework for an agent-centric synchromodal network.

6 Solution method mapping

In the previous section, a number of papers on synchromodal transport problems
and solution methods were studied. Some of the choices in solution methods are
similar between papers and can be partially recognised from their framework
notation. Here, we group the papers on solution method with remarks on com-
plexity issues and insightful framework similarities:

– Shortest path algorithms: In [27], D2R is to be performed under the absence
of capacity constraints. Mes et al. rightfully note that, in the absence of
capacity constraints, the best modality paths can be found simply by using
shortest path algorithms, which are known to run in polynomial time in
the input size. Whenever capacity is included, this brings computational
difficulties, as dividing flow over capacitated arcs is related to the NP-hard
multi-knapsack problem. In [51], this is handled by a sequential shortest
path algorithm: whenever a demand item comes in, assign it to the cheapest
path with remaining capacity and repeat this until everything is assigned.
Though this, too, is an efficient method, one can imagine it yielding sub-
optimal results, especially under the stochastic release dates. However, if
D2R is the only control element, a sequential shortest path algorithm is a
recognised as a computationally efficient option: in the absence of capacity
constraints, stochastic elements and control-based dynamic elements, it is
likely to yield the optimal solution.

– Two-stage stochastic programming : In [50], D2R must again be performed.
RC is technically a control element as well, but the challenge lies mainly in
the D2R control. Now, the stochasticity is dealt with by means of two-stage
stochastic programming. The studied model may lend itself well to stochastic
programming because no intermediary nodes are recognised between the one
origin and the set of destinations. Even so, Xu et al. propose a meta-heuristic
to deal with the computational intensity incurred by large sets of freight
types, destinations, transportation modes or scenarios.
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– Approximate dynamic programming : In [21] and [31], Markov Decision Pro-
cess models are presented but argued to be too computationally expensive.
Instead, they solve D2R with stochastic elements by making tentative de-
cisions, simulating the potential results of this decision and their incurred
costs, then taking the tentative decision with the lowest simulated expected
cost. This is recognised as a computationally reasonable alternative to solv-
ing D2R with stochastic elements.

– Systems and control theory : In [24], a cooperative D2R equilibrium problem
is studied rather than a social problem without other authorities. In [26]
and [30], D2R is performed while dynamic elements play an important role.
Finding a good equilibrium with the other authorities, or settling on a good
equilibrium between the control elements and the dynamic parameters that
depend on control, is understandably modelled using systems and control
theory. In two out of these three papers, Model Predictive Control is em-
ployed. However, the similarities between these three papers could also be
explained by their shared authors.

– Multi-control integer linear programming : In both [8] and [37], not only D2R
is controlled, but RDT as well, as a form of partial resource schedule con-
trol. Both papers resort to using integer linear programs to find an optimal
solution. As many of the variables in these programs are indexed on three
sets, these methods are expected to scale poorly to larger instances. Effi-
cient solution methods to problems where not only D2R is controlled but
the resource schedules as well, appears to be an open problem: though the
Vehicle Routing Problem (VRP) comes to mind, Section 7 will address the
challenges that synchromodality introduce to the VRP.

– Game theory : In [41], fair pricing must be determined in a system with selfish
decision-makers. Understandably, steering this selfish behaviour is attempted
by using game theory. Theys et al. note that the proposed techniques work
for limited systems, but that moderately advanced synchromodal systems
require advanced game-theoretical techniques.

One could put this the other way round and wonder, given a problem classifica-
tion, what solution methods could be suitable and what complexity issues arise.
To this, we give the following answer. Selfish problems have been investigated
with game theory, but only moderately advanced synchromodal systems already
seem to require advanced game theory. Cooperative problems have been studied
using Model Predictive Control, for which commercial solvers exist. Social D2R
problems could be solved using sequential shortest path algorithms. These are
efficient methods, but only optimal under the absence of capacity constraints,
stochasticity and control-based dynamic elements. Under the presence of capac-
ity constraints, D2R problems are likely to be NP-hard due to their similarity to
the multi-knapsack problem. To solve D2R with stochastic elements, two-stage
stochastic programming and Markov Decision Processes have been examined,
but proposed to be computationally too expensive. Approximate Dynamic Pro-
gramming and Xu’s meta-heuristic are proposed as efficient alternatives. To solve
D2R with dynamic elements, Model Predictive Control and other systems and
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control theory techniques are proposed. To solve social D2R and RDT simul-
taneously, only large-scale integer linear programs have been proposed in the
examined literature.

This is far from a complete mapping from framework classification to solution
method. Components that are not described by the framework may be critical
to the viability of a solution method, like the absence of intermediary locations
in [50] facilitating two-stage stochastic programming. However, we believe that
worthwhile relationships have been and can be drawn between framework clas-
sifications and potential solution methods.

7 Relationship to VRP terminology

When optimising the transport of freight using several vehicles, thus simulta-
neously determining D2R and resource schedules, the Vehicle Routing Problem
(VRP) immediately comes to mind. The VRP is a widely studied transport prob-
lem. In a sense, a framework for the classification of different VRP variants exists
in the form of consensus: the Capacitated Vehicle Routing Problem (CVRP), the
Vehicle Routing Problem with Pickup and Delivery (VRPPD), the Vehicle Rout-
ing Problem with Time Windows (VRPTW), subvariants and combinations of
these variants are well-known and their definitions largely agreed upon [22, 25].
However, none of the papers investigated in Section 5 seem to involve themselves
explicitly with VRP models. This can be explained and recognised by applying
the developed framework on VRP variants.

The VRP, in its most classical sense, is the problem of minimising transport
costs when dispatching m vehicles from some depot node to service all other
nodes exactly once. A synchromodal version of this is quite imaginable. The
real-time flexibility aspect of synchromodality would mean that re-evaluations
may occur where the vehicles ‘start’ at their current destination, but must still
return to the depot, and the already visited nodes are taken out of the problem.
The information sharing aspect of synchromodality can be assumed to already
be part of the problem: the resources and demands can be assumed to be pooled
from several parties and put under the control of a central operator. Under
these minor assumptions, the synchromodal VRP lends itself to the following
classification:

D2R,RD| · | · |RC,RDT,RTT, TH,DV,DRD,DDD,DP |social|1

The decision-maker must simultaneously decide which service nodes are visited
by which vehicle and in which order. Time and capacity constraints are not
present and all related elements are irrelevant. Only the total ‘price’ of these
routes is minimised: though this price may equal the travel time, the actual
element of time does not influence the decision space, as long as release time,
due times and time windows are absent. When adding vehicle capacities, the
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RC and DV become fixed rather than irrelevant, so the synchromodal CVRP is
denoted by

D2R,RD| · | · |RDT,RTT, TH,DRD,DDD,DP |social|1
When time windows are added, the RDT becomes a control element and the
RTT , DRD, DDD, DP and sometimes the TH becomes relevant. Note that
soft and hard time windows are not necessarily classified differently: the demand
penalty could be an arbitrarily high constant to simulate hard deadlines, but soft
due dates may also come with fixed penalties that are not arbitrarily high. As
such, the synchromodal Capacitated Vehicle Routing Problem with Time Win-
dows (CVRPTW) could be classified as, depending on whether or not terminal
handling times are observed,

D2R,RD,RDT | · | · |TH|social|1 or D2R,RD,RDT | · | · | · |social|1
If separate pickup and delivery locations are specified, this would still mean that
each demand item has a fixed DO and DD, so the Capacitated Vehicle Routing
Problem with Time Windows and Pickup and Delivery (CVRPTWPD) would
be classified the same way as the CVRPTW.

One of the most important differences between synchromodal VRP variants and
the problems examined in Section 5 are laid bare by the framework notation: all
synchromodal VRP variants have the resource destination as a control element,
while none of the studied papers do. In fact, having the RD as a control element
is largely synonymous with having the responsibility of routing.

While this definitely helps in recognising the absence of vehicle routing in the
studied papers, it does not yet explain it. The following explanations for the
absence of vehicle routing in the studied papers are proposed:

– Papers with more control elements than just D2R tend to resort to using
large ILP’s, making inclusion of the RD as a control element computationally
challenging;

– In many of the papers, the routes were already predetermined in a strategi-
cal/tactical phase, and only the day-by-day assignment remained as a prob-
lem on the operational level, possibly due to this computational intensity
and the real-world implications of planning vehicles routes;

– Most Multiple Travelling Salesman Problem (mTSP)-based models, includ-
ing most VRP variants, do not lend themselves to the concept of inter-
modality, thus synchromodality: while intermodal transport encourages that
different vehicles take care of different parts of a container’s journey, most
mTSP-based models encourage that the entire voyage of one container is
taken care of by one vehicle only [9].

We conclude that the class of synchromodal transport problems differs signif-
icantly from the classical VRP variants: as such, they require a classification
scheme of their own.
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8 Discussion

The examples in Section 5 show some strengths and limitations of the classifi-
cation framework, which are discussed in this section.

One of the goals of this framework was to offer guidance when tackling a new
problem: as an example, if the problem from the Synchromodaily [4] case is mod-
elled in a non-stochastic way, we can now see that it may be worthwhile to study
the solution method presented by Behdani [8], because they then have a very
similar compressed framework classification: in particular, the Synchromodaily
case involves the same control elements. If such a record is kept of papers and
models, this could greatly improve the efficiency of developments in synchro-
modal transport. This would fulfil the second goal of the framework: to collect
literature on synchromodal transportation within a meaningful order.

The final goal of this framework was to expose and compare relationships be-
tween seemingly different problems: for example, we can now see that the prob-
lems described by Le Li [24] and Theys [41] have similarities, in that they inves-
tigate negotiation between parties and do not focus on timeliness of deliveries.
Similarly, we can see that the model assumption Mes [27] makes in disregarding
resource capacity, is an uncommon decision. In Section 6, it was argued that
such similarities and dissimilarities can help explain the effectiveness of certain
solution methods.

In the Synchromodaily case [4], our interpretation of the problem implies that
the demand features are stochastic. However, the problem could also be ap-
proached in a deterministic way, depending on choices that the modeller and
contractor make based on the scope of the problem, the requirements on the
solution and the available information. This shows the most important limita-
tion of the classification framework: what classification to assign to a problem or
model remains dependent on modelling choices, as well as interpretation of prob-
lem descriptions. Even without the framework, however, modelling choices will
always introduce subjective elements into how a real-world problem is solved.
This framework can be used to consistently communicate these underlying model
assumptions.

A second limitation of the framework is that, because of the large amount of
elements described in it, two similar problems are relatively unlikely to fall in
the exact same space in the framework because of their minor differences. There-
fore, one should not only look for problems with the exact same classification,
but also problems with a classification that is only slightly different. In a more
general sense, solution methods may apply to far more than one of these very
specific framework classes. If two problems have the exact same controlled ele-
ments, it is imaginable that their models and solution methodologies may largely
apply to the other. As a point of future research, it could be interesting to further
investigate which classification similarities are likely to imply solution similari-
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ties, which may also be a stepping stone towards a general solution methodology.

As a final limitation, the compressed notation does not reveal that the paper by
Lin [26] and the ‘Synchromodale Cool Port control’ [6] case both focus on perish-
able goods. This shared focus is not only cosmetic: mathematically, it may imply
objective functions and constraints not focused on in other cases. To combat this
limitation, we advise anyone using the framework to offer both a compressed and
an extended description of their problem or model.
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Abstract. We study the problem of scheduling drayage operations in
synchromodal transport. Besides the usual decisions to time the pick-up
and delivery of containers, and to route the vehicles that transport them,
synchromodal transport includes the assignment of terminals for empty
and loaded containers. The challenge consists of simultaneously decid-
ing on these three aspects while considering various resource and timing
restrictions. We model the problem using mixed integer linear program-
ming (MILP) and design a matheuristic to solve it. Our algorithm itera-
tively confines the solution space of the MILP using several adaptations,
and based on the incumbent solutions, guides the subsequent iterations
and solutions. We test our algorithm under different problem configu-
rations and provide insights into their relation to the three aspects of
scheduling drayage operations in synchromodal transport.

Keywords: Drayage operations, synchromodal transport, matheuristic

1 Introduction

During the last years, intermodal transport has received increased attention from
academic, industrial, and governmental stakeholders due to potential reductions
in cost and environmental impact [10]. To achieve such benefits, these stakehold-
ers have proposed new forms of organizing intermodal transport. One of these
new initiatives is synchromodality, which aims to improve the efficiency and sus-
tainability of intermodal transport through flexibility in the choice of mode and
in the design of transport plans [12]. However, the potential benefits of any new
form of intermodal transport depend to a great extent on the proper planning
of drayage operations, also known as pre- and end-haulage or first and last-mile
trucking. Drayage operations, which account for 40% of the total transport costs
in an intermodal transport chain [5], are the first step where the synchromodal
flexibility in transport mode can be taken advantage of. In this paper, we study
the scheduling of drayage operations of intermodal transport considering termi-
nal assignment (i.e., long-haul mode) decisions.

Drayage operations in intermodal transport include delivery and pick-up re-
quests of either empty or loaded containers, to and from a terminal where long-
haul modes arrive and depart. These operations occur, for example, at a Logistic

-
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Service Provider (LSP) handling both import and export containers. The planner
scheduling drayage operations must decide upon the time to fulfill each request
and the route of the vehicles that will carry out all requests. In synchromodality,
the planner must also decide to which terminal to bring a loaded container and
to which terminal or customer to bring an empty container. All these decisions
must be made simultaneously, considering constraints such as time-windows for
requests, terminals, containers, trucks, and decoupling of requests for the de-
livery of an empty container and the subsequent pickup of a loaded one (and
vice versa). Furthermore, re-scheduling the requests is allowed as new informa-
tion becomes known (e.g., real-time information about requests, delays, etc.). In
such a dynamic environment, making assignment, timing, and routing decisions
together is difficult [5, 15]. Nonetheless, scheduling drayage operations with an
integrated approach can bring significant savings [1].

In this paper, we develop an integrated approach to make assignment, tim-
ing, and routing decisions of drayage operations dynamically. First, we categorize
the drayage requests in synchromodality and analyze their relations. With our
categorization, we identify challenges and opportunities for scheduling meth-
ods. Second, we formulate the problem as a Mixed-Integer Linear Programming
(MILP) model based on our categorization of requests. Third, we present several
adaptations to the MILP model and design a heuristic algorithm around them
to schedule drayage operations and update the schedule as new requests arrive.

2 Literature Review

We briefly review the literature about scheduling drayage operations in inter-
modal transport. We examine the characteristics of the proposed models and
study their applicability to our problem. We finalize by stating our contribution.

Most studies about scheduling drayage operations use mathematical pro-
gramming. This technique allows researchers to model various problem char-
acteristics at the price of high computational complexity. For this reason, re-
searchers consider one problem characteristic at a time. For example, studies that
consider more than one terminal, such as [11] and [1], assume a homogenous fleet.
Studies that consider a flexible origin or destination for some requests, such as [2]
and [6], consider only one terminal. Studies that do not assume a homogenous
fleet, such as [8], avoid other constraints such as request time-windows. All in
all, mathematical programming can relate various problem attributes to optimal
decisions but requires further developments to handle the actual scheduling.

There is a variety of approaches available to solve the actual scheduling of
drayage operations. There are sequential approaches, such as [2] and [11], that
pair delivery and pickup customers before the routing. There are also integrated
approaches, such as [1,6,13,16], which handle paring (i.e, scheduling) and routing
decisions simultaneously. Particularly, these integrated approaches show that a
combination of parts of the mathematical problems with other heuristics perform
well in solving the problem. Finally, the majority of approaches focuses on “one
plan” per day with no re-planning, except for [5], which re-schedules when the
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problem conditions change, and for [7], which re-schedules when new orders
arrive, or when real-time information regarding traffic or position of trucks gives
rise to this. Naturally, dynamic re-scheduling is another attribute of drayage
operations that increases the complexity of the problem.

Although drayage operations contribute significantly to the total costs of in-
termodal transport [9], research on these operations has been limited in model-
ing considerations and solution approaches [3]. The need for dynamic scheduling
methods for intermodal routing that take into account multiple attributes of
the problem has been recognized [3]. For these reasons, our contribution to the
literature is two-fold: (i) we model many attributes of the scheduling of drayage
operations in synchromodal transport as an integrated MILP with various adap-
tations, and (ii) we develop a dynamic matheuristic to solve the model.

3 Problem Description

We study the problem of scheduling drayage requests in a synchromodal network
with the objective of minimizing routing and terminal (i.e., long-haul mode) as-
signment costs. There are three simultaneous decisions: (i) timing the execution
of requests, (ii) routing the vehicles that carry out the requests, and (iii) as-
signing long-haul terminals (or customers) to the requests. These decisions are
subject to the characteristics of the requests, available trucks, available con-
tainers, and terminals. Requests are characterized by customer location, type
of truck (e.g., driver clearance, chasis, trailer, etc.), type of container (e.g., size,
security, refrigeration, etc.), time-window, service (i.e., loading, unloading) time,
and decoupling allowance. Trucks are characterized by start and end location,
type, maximum working time, setup cost, and variable cost. Containers are char-
acterized by location, type, and amount. Terminals are characterized by location,
time-window, and an assignment cost that represents costs for using a certain
long-haul mode, container storage, etc.

The terminal assignment cost and the various request attributes in synchro-
modality enrich the common drayage operations in intermodal transport. To an-
alyze this enrichment, we classify the requests into pre-haulage and end-haulage.
In a pre-haulage request, an empty container is brought to a customer location
and subsequently (after loading) brought to one of the long-haul terminals. In
an end-haulage request, a loaded container is brought to a customer location
and subsequently (after unloading) brought to a terminal for storage or to an-
other customer who has a container-compatible pre-haulage request. Some of
these requests allow decoupling, which means that a truck delivering an empty
(or loaded) container does not need to wait for it to be loaded (or unloaded)
and that another truck can pick up the loaded (empty) container later on. We
refer to all possible pre- and end-haulage requests as jobs in the remainder of
the paper. We now elaborate on the job configurations.

In drayage operations, there are various job configurations as seen in Fig. 1.
These configurations arise due to different contractual agreements, types of
freight, types of resources, etc. In the complete job configurations of the end-
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Fig. 1. Possible job configurations in synchromodal transport

haulage, the origin is a fixed terminal, but the destination can be either a given
terminal (or customer) or one of multiple terminals (or customers), as seen in
Types 1 and 2, respectively. If decoupling is allowed, one can divide the end-
haulage job configurations into first- and second-half, as seen in Types 3, 4, and
5. In the complete job configurations of the pre-haulage, the origin can be a given
terminal (or customer) and the destination a given terminal, or the origin can
be one of multiple terminals (or customers) and the destination one of multiple
terminals, as seen in Types 6 and 7, respectively. Once more, if decoupling is al-
lowed, the pre-haulage configurations can be divided into first- and second-half,
as seen in Types 8, 9, 10, and 11. Due to the full-truckload and multi-resource
nature of the job configurations, some challenges and opportunities arise. For
example, executing some job configurations after each other (e.g., Type 3 fol-
lowed by Type 10) will require an empty movement of a truck, i.e., truck moving
without a container. In another example, executing some job configurations after
each other (e.g., Type 1 followed by Type 6) can allow the truck to skip the visit
to a terminal (e.g., supersede the use of an empty container at a terminal). In
such opportunities, some job configurations can be merged to reduce the decision
complexity as also proposed by [8]. Using this job categorization, we formulate
an MILP model that captures the challenges and opportunities in drayage op-
erations in the following section. In the remainder of this paper, when we talk
about job types, we refer to the configurations seen in Fig. 1.

4 MILP formulation

Using the previous categorization of jobs, we construct two directed graphs G =
(V,A) and G′ = (V,A′), which have the same nodes V but different arcs A and
A′. Nodes V represent all locations related to jobs and trucks: V = VR ∪ VD ∪
VB ∪ VF. Specifically, VR contains all job locations (i.e., request locations), VD

all terminal locations, VB all beginning location of trucks and VF their finishing
location. All nodes in V are indexed with i and j. Arcs A and A′ are built to
distinguish the assignment and the routing decisions, respectively. Arcs in A
include all job-arcs between two nodes (connections as in Fig. 1). Job-arcs are
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connections between nodes that comply with all resource and long-haul mode
constraints. We define δ−(r) = {j : (j, r) ∈ A} and δ+(r) = {j : (r, j) ∈ A} as
the sets of nodes that form job-arcs that are incoming to, and outgoing from,
node r ∈ VR, respectively. Arcs in A′ include all routing-arcs. These arcs follow
a similar logic as in the VRP with time-windows formulation of [4].

In VR, each job is represented as a single node. We index nodes in VR with
r. In VD, each terminal d ∈ UD is represented as Nd identical nodes, in order
to keep track of arrival times in the model. The set UD is the set with unique
terminal nodes. We index both sets with d. Each node i ∈ VR∪VD has a service
time Si (i.e., time for loading, unloading, coupling, or decoupling a container),
as well as a time-window described by an earliest arrival time Ei and a latest
arrival time Li. For nodes r ∈ VR, which represent jobs, Dr gets a value of one
if decoupling is allowed and zero otherwise. Traveling time between nodes i and
j is denoted with Ti,j . Note that, for the identical nodes of each terminal, all
time parameters are the same and traveling times between them are zero. Note
also that two jobs can be at the same location, and thus traveling time between
them is also zero. However, service times and time-windows can be different,
depending on the job type.

To carry out all jobs, there is a fleet of heterogeneous trucks K. The trucks
that can carry out job r ∈ VR are represented with K̃(r) ⊆ K. Each truck begins
its route in node Bk ∈ VB and finishes its route in node Fk ∈ VF. All trucks have
a maximum working time TK

k . Truck movements are modeled using the binary
variable xi,j,k, which gets a value of 1 if node j is visited immediately after node
i by truck k, and 0 otherwise. Note that truck movements can either be to carry
out a request (i.e., truck has an empty or loaded container) or to reposition the
truck (i.e., no container). To model time in the movements of trucks, we use
the auxiliary variable wi, which represents the time at which the chosen truck
arrives at node i. Note that wi does not depend on k since each job can be done
by only one truck and we duplicate the terminal nodes such that each node is
again visited by only one truck.

The goal is to perform all jobs, within their time-window, while minimizing
routing and terminal assignment costs. To model the routing costs, we introduce
(i) a fixed cost CF

k for using truck k ∈ K and (ii) a variable cost CV
i,j,k for

its movement over arc (i, j) ∈ A′. To model the terminal assignment costs, we
introduce a cost CD

r,d for assigning terminal d ∈ VD to job r ∈ VC. Using the
parameters and variables above, the optimization goal can be achieved solving
the mathematical program shown in (1).

min z =
∑

k∈K

⎛

⎝CF
k ·

∑

j∈δ
′+(Bk)

xBk,j,k

⎞

⎠+
∑

k∈K

∑

(i,j)∈A′
CV

i,j,k · xi,j,k

+
∑

k∈K

∑

r∈VR

∑

d∈δ+(r)∪VD

CD
i,j · xr,d,k

(1a)

s.t.
∑

k∈K̃(r)

∑

j∈δ+(r)

xr,j,k = 1, ∀ r ∈ VR
∣∣δ+(r) �= ∅ (1b)
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∑

k∈K̃(r)

∑

j∈δ−(r)

xj,r,k = 1, ∀ r ∈ VR
∣∣δ−(r) �= ∅ (1c)

(1−Dr)

⎛

⎝
∑

j∈δ+(r)

xr,j,k −
∑

j∈δ−(r)

xj,r,k

⎞

⎠ = 0,

∀ r ∈ VR
∣∣∣δ+(r) �= ∅ and δ−(r) �= ∅, k ∈ K̃(r)

(1d)

∑

k∈K

∑

j∈δ
′+(r)

xr,j,k = 1, ∀ r ∈ VR (1e)

∑

k∈K

∑

j∈δ
′+(d)

xd,j,k ≤ 1, ∀ d ∈ VD (1f)

∑

j∈δ
′+(i)

xi,j,k −
∑

j∈δ
′−(i)

xj,i,k = 0, ∀ i ∈ VC ∪ VD, k ∈ K (1g)

Ei ≤ wi ≤ Li, ∀ i ∈ V (1h)
∑

k∈K
(xi,j,k · (wi + Si + Ti,j − wj)) ≤ 0, ∀ i, j ∈ V (1i)

∑

k∈K
(xBk,j,k · TBk,j) ≤ wj , ∀ j ∈ V (1j)

xi,Fk,k ·
(
wi + Si + Ti,Fk − TK

k

)
≤ 0, ∀ i ∈ δ

′−(Fk), k ∈ K (1k)
∑

(i,j)∈A′
xi,j,k −MA

k ·
∑

j∈δ
′+(Bk)

xBk,j,k ≤ 0, ∀ k ∈ K (1l)

∑

j∈δ
′+(Bk)

xBk,j,k ≤ MK
k , ∀ k ∈ K (1m)

∑

i∈δ
′−(Fk)

xi,Fk,k −
∑

j∈δ
′+(Bk)

xBk,j,k = 0, ∀ k ∈ K (1n)

xi,j,k = 0, ∀ i ∈ VB \ {Bk} , j ∈ VR ∪ VD, k ∈ K (1o)

xi,j,k = 0, ∀ i ∈ VR ∪ VD, j ∈ VF \ {Fk} , k ∈ K (1p)

wi ∈ R, ∀ i ∈ V (1q)

xi,j,k ∈ {0, 1} , ∀ i, j ∈ V, k ∈ K (1r)

The objective is to minimize the total costs z as shown in (1a). Constraints (1b)
state that only one incoming job-arc can be used for job r. Note that it is possible
that job r does not require incoming job-arcs (e.g., Type 10), and thus δ+(r) = ∅.
Similarly, (1c) ensure that only one outgoing job-arc can be used for job r. For
jobs that have both incoming and outgoing job-arcs (i.e., Types 1, 2, 6, and 7),
(1d) ensure that the same vehicle does both the incoming and outgoing job-arc if
decoupling is not allowed for job r. Constraints (1e) ensure that all jobs r ∈ VR

are carried out by one truck only. Constraints (1f) ensure that all terminal nodes
d ∈ VD are visited at most once. Remind that a terminal has duplicate nodes
for keeping track of time, meaning that the same terminal might be visited
multiple times (e.g., for different jobs) but each time to a different duplicated
node. Constraints (1g) ensure flow conservation, meaning that all nodes that
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are exited must be entered as well. The time-windows of jobs, terminals, and
truck locations are enforced in (1h). Constraints (1i) and (1j) keep track of the
time variables. The maximum working time of trucks is guaranteed by (1k).
Constraints (1l) and (1m) establish that each truck can only depart once from
its starting location if it is used for doing jobs. In (1l), MA

k works as a “big-M”
parameter that can be initialized, for example, with MA

k = |VR| + |VD| + 1.
However, it can also be used to restrict the number of routing-arcs that vehicle
k can traverse, as we will explain in Section 5. In a similar way, the auxiliary
parameter MK

k can be used to restrict the use of vehicle k by setting MK
k = 0.

Initially, we set MK
k = 1, ∀k ∈ K. Constraints (1n) state that each truck must

end at its ending location if it has departed from its beginning location. Since
the nodes VB and VF are used for modeling beginning and ending locations of
trucks (i.e., not for carrying out jobs), we have to ensure that trucks do not visit
them in any case, as shown in (1o) and (1p). Finally, Constraints (1q) and (1r)
establish the domains of the variables.

Although the formulation above is not linear due to (1i) and (1k), we can
linearize it by substituting these two with (2a) and (2b). An explanation on the
logic behind these constraints can be found in [2].

wi + Si + TT
i,j − (Li + Si + Ti,j − Ej) ·

(
1−

∑

k∈K
xi,j,k

)
≤ wj ∀ i, j ∈ V (2a)

wi + Si + Ti,Fk − (Li + Si + Ti,Fk ) · (1− xi,Fk,k) ≤ LFk , ∀ i ∈ δ
′−(Fk), k ∈ K (2b)

Our MILP formulation models the jobs as arcs that need to be traversed by
the trucks. Another option to represent jobs in drayage operations is to model
them as nodes. Modeling jobs as nodes reduces the size of the graph if some of
the nodes are fixed beforehand [1]. However, flexible jobs (such as ours with the
terminal assignment) cannot be collapsed into a single-node [13] and the gains
of an integrated approach are harder to obtain when modeling jobs as nodes [1].
Although modeling jobs as arcs come with the price of a larger graph, there are
other opportunities to improve the formulation through valid inequalities and
pre-processing, as we describe in the following section.

4.1 Valid Inequalities and Pre-Processing

Due to the full-truckload nature of our problem, all jobs deal with at most one
terminal either as the origin or the destination of a container. This means that
a truck carrying out jobs will never visit more than two terminals consecutively.
Since we model the requests and terminals as separate nodes, this means that not
all arcs between terminal nodes will be traversed. An arc between two terminal
nodes will only be traversed when delivering a container to the first one, and
picking up a container from the second one. Thus, we can use a bound MDE on
them as shown in (3).

∑

k∈K

∑

i∈VD

∑

j∈VD

xi,j,k ≤ MDE (3a)

MDE =
∑

r∈VR

∑

d∈UD

Br,d

∣∣∣∣∣Br,d =

{
1 if d ∈ δ−(r)

0 otherwise
(3b)
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In addition to the bound on the number of arcs between all terminal nodes VD,
we can bound the traversed arcs between replicated nodes of a terminal using a
similar logic. We define the set VDR

d ⊆ VD as the set containing all duplicated
nodes of terminal d ∈ UD. We put a bound MDI

d for each unique terminal node
d ∈ UD as shown in (4).

∑

k∈K

∑

i∈VDR
d

∑

j∈VDR
d

xi,j,k ≤ MDI
d , ∀ d ∈ UD (4a)

MDI
d =

∑

r∈VR

∑

i∈VDR
d

Br,i

∣∣∣∣∣Br,i =

{
1 if i ∈ δ−(r)

0 otherwise
, ∀ d ∈ UD (4b)

Taking advantage that our problem deals with jobs that have at most one origin
and at most one destination, we can compute a minimum traveling distance and
traveling time to fulfill all jobs by choosing the origin and destination with the
shortest distance and time, respectively. Using this information, we can calculate
the minimum number MLK of trucks needed (since trucks have a maximum
working time) and a lower bound on the routing costs MLC. Furthermore, using
a constructive heuristic (e.g., the one we benchmark to in Sect. 6), we can find
upper bounds MUK and MUC for the number of trucks needed and the routing
costs, respectively. Thus, we can limit the number of trucks as shown in (5) and
the routing costs as shown in (6).

MLK ≤
∑

k∈K

∑

j∈δ
′+(Bk)

xBk,j,k ≤ MUK (5)

MLC ≤
∑

k∈K

⎛

⎝CF
k ·

∑

j∈δ
′+(Bk)

xBk,j,k

⎞

⎠+
∑

k∈K

∑

(i,j)∈A′
CV

i,j,k · xi,j,k ≤ MUC (6)

The last adaptation we introduce is the pre-processing of time-windows. In
our model, there are duplicated nodes (i.e., same location, service time, and time-
window) for each terminal to keep track of time. However, each duplicated termi-
nal node can only be used for one job. Since we duplicate a terminal for each job
that might use that terminal, we can use the time-window of the job to reduce the
time-window of the duplicated node for that terminal. As an example, consider
Fig. 2. In this figure, we see a job of Type 1 that requires a full container from ter-
minal d and delivers an empty container to terminal d′. In order to carry out this
job within its time-window [Er, Lr], the full container must be put on a truck and

Fig. 2. Example of pre-processing of time-windows for a job Type 1
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travel from terminal d anywhere between [Er − (Sd + Td,r), Lr − (Sd + Td,r)].
Similarly, after unloading the container, the empty container can arrive to ter-
minal d′ anywhere between [Er + (Sr + Tr,d′), Lr + (Sr + Tr,d′)]. We can repeat
this logic with all jobs, their associated (possible) terminals, and the duplicated
nodes for those terminals.

The benefit of the aforementioned enhancements of the MILP is twofold.
First, the valid inequalities tighten the feasible solution. Second, the time-window
pre-processing breaks the symmetry in MILP solutions introduced by the dupli-
cated terminal nodes. However, these modifications are sufficient to solve only
small problems. In the following section, we elaborate on further adaptations of
the MILP that can allow it to be applied to larger problems.

5 Matheuristics

In our problem, MILP solvers are able to find a good feasible solution fast, but
struggle on improving it further or in proving its optimality. In this section, we
design three adaptations to the MILP that are aimed to help a solver find good
feasible solutions faster. Furthermore, we design two matheuristics: (i) a static
matheuristic to solve a single instance of the problem using Math-Heuristic Op-
erators (MHOs), and (ii) a dynamic matheuristic to solve a re-planning instance
of the problem using Fixing Criteria (FCs), as shown in the pseudo-code of Al-
gorithms 1 and 2, respectively. We now elaborate on the MHOs, FCs, and parts
of each algorithm.

Algorithm 1 Static Matheuristic

Require: Graph G and associated pa-
rameters

1: Initialize best solution
2: while Stopping criterion not met do
3: Get MHOs (7), (8), and (9)
4: Build adapted MILP
5: Solve adapted MILP
6: if Current solution ≤ Best solution

then
7: Best solution = Current Solution
8: end if
9: end while
10: return Best solution

Algorithm 2 Dynamic Matheuristic

Require: Re-planning trigger and cur-
rent schedule

1: Determine current state
2: Fix trucks with FCs (10) and (11)
3: Determine re-planning jobs
4: Build G and associated parameters
5: Run Algorithm 1
6: return Solution

5.1 Static Matheuristic

Our static matheuristic uses three adaptations to the MILP, iteratively and in
a local-search fashion. These adaptations, denoted by MHOs, are basically ad-
ditional constraints in the MILP that can be seen as cutting planes that reduce
the feasible space. Since our formulation results in a lot of arcs, our MHOs focus
on fixing those arcs in an intuitive way. We now explain each MHO in more detail.

MHO 1: For NM1 random jobs r ∈ VR, we limit the number of feasible job-arcs
to at most two, i.e., |δ−(r)| ≤ 2 and |δ+(r)| ≤ 2. These arcs are from (or to) the
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two closest locations (i.e., shortest traveling time). In other words, all remaining
job-arcs are cut out, as shown in (7).

xj,r,k = 0, ∀k ∈ K, j ∈ δ−(r) \ {i, i′}
∣∣∣∣∣i = argmin

j∈δ−(r)

Tj,r and i′ = argmin
j∈δ−(r)\{i}

Tj,r (7a)

xr,j,k = 0, ∀k ∈ K, j ∈ δ+(r) \ {i, i′}
∣∣∣∣∣i = argmin

j∈δ+(r)

Tr,j and i′ = argmin
j∈δ+(r)\{i}

Tr,j (7b)

MHO 2: For NM2 times, the arc between a job r of Type 2 and a job r′ of Type
7 with the minimum traveling time is fixed. Remind that the arc is feasible when
r ∈ δ−(r′) and r′ ∈ δ+(r), and thus the fixing of a pair of jobs r and r′ can be
done as shown in (8).

∑

k∈K
xr,r′,k = 1

∣∣∣∣∣r = argmin
j∈δ−(r′)

Tj,r′ (8)

MHO 3: For NM3 random jobs r ∈ VR, we fix the feasible job-arcs from (or to)
the closest location (i.e., shortest traveling time), as shown in (9).

∑

k∈K
xi,r,k = 1

∣∣∣∣∣i = argmin
j∈δ−(r)

Tj,r and
∑

k∈K
xr,i,k = 1

∣∣∣∣∣i = argmin
j∈δ+(r)

Tr,j (9)

Assigning a value to the parameters NM* requires tuning (see Sect. 6.2). In
general, the larger the value of NM* the smaller the problem becomes for the
solver, but the higher the chance of ruling out the global optimum.

5.2 Dynamic Matheuristic

Our dynamic matheuristic builds upon the static and is used for re-planning
situations (e.g., new jobs arrived, delays, etc.). Jobs sequences that are being
executed during the re-planning trigger are completed (i.e., no preemption). For
jobs that have not been started yet, we have the option to use the previous
plan or to re-plan them. In the first option, we fix jobs in current truck routes
using two Fixing Criteria (FC). The idea of these criteria is to identify good
routes from the current schedule that can be kept in the new plan. In the second
option, we use the static matheuristic to build a new schedule. The fixing of a
route means that the routes (i.e., job sequences) will be preserved, but the time
at which and the truck by which they are executed is left flexible. This time
flexibility allows new jobs to be added to the trucks already being used and also
to handle delays.

FC 1: We fix NF1 routes kC from the current schedule xC with the largest
number of jobs. We define F1(kC) as the set of arcs (i, j) that fulfill this criteria,
as shown in (10), and fix the routes by

∑
k∈K xi,j,k = 1, ∀(i, j) ∈ F1(kC).

F1(kC) =

⎧
⎨

⎩(i, j) ∈ A : xC
i,j,kC = 1,kC = argmax

k′∈K|∑j∈V xC
Bk,j,k

=1

∑

i∈VR

xC
i,j,k

⎫
⎬

⎭ (10)
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FC 2: We fix NF2 routes with the shortest traveling time, similar to FC 1. We
define F2(kC) as the set of arcs (i, j) that fulfill this criteria, as shown in (11).

F2(kC) =

⎧
⎨

⎩(i, j) ∈ A : xC
i,j,kC = 1,kC = argmin

k′∈K|∑j∈V xC
Bk,j,k

=1

∑

(i,j)∈A′
xC
i,j,kTi,j

⎫
⎬

⎭ (11)

Just as in the static matheuristic, the best value of the parameters NF* de-
pends on circumstances such as the current schedule, the instance G, and the
re-planning trigger. In the following, we present a brief proof-of-concept of the
algorithms just described.

6 Numerical Experiments

We test our solution approach in two numerical experiments. First, we examine
the benefits that our adaptations have in solving the MILP. Second, we test the
gains of using our dynamic matheuristic compared to a benchmark heuristic.
Our goal is to explore our approach and gain insights for further research.

6.1 Experimental Setup

We design 32 problem instances containing 25 jobs each. The location, time-
window, and service time for each job is obtained from the first 25 customers
of the Solomon instances for the VRPTW [14]. We use the first eight instances
of four categories in [14]: C1, C2, R1, and R2, where C stands for clustered
locations, R for random locations, 1 for short time-windows, and 2 for long-time
windows. For each instance, there are 25 homogeneous trucks to guarantee there
is a feasible solution. For each truck, the fixed cost is 1000 and the traveling time
and variable cost is equal to the Euclidean distance between two locations.

The job configurations for all instances are shown in Table 1. These job
configurations are based on the average drayage operations of a Dutch LSP in
the Eastern part of The Netherlands. This LSP has three terminals that we
use as follows. Terminal 1 is located in the same location as the Depot in the
corresponding Solomon instance and has a terminal assignment cost of 500.
Terminal 2 and Terminal 3 are located at (60,60) and (10,10), which are points
along the diagonal in the Euclidean space that are close to the most distant
customers from the geographical center of each of the Solomon instances. The
assignment costs vary per instance, and are defined as 500− 2β, where β is the
length of the diagonal formed by the extremes of the corresponding Solomon
instance. The rationale is to make the distant terminals worth “assigning” if a
job is within half of the diagonal. The time-window of each terminal is twice the
time-window of the depot in the corresponding Solomon instance. The maximum
working time for each truck is equal to the length of the time-window of each
terminal. Terminal 1 is the beginning and finishing location of nine trucks, and
Terminals 2 and 3 of eight trucks each.
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Table 1. Job configuration for all instances

Characteristic
Job Type

1 2 3 4 5 6 7 8 9 10 11

Number of jobs 2 3 2 2 2 2 4 3 3 1 1
Jobs decoupling Dr 1 1 - - - 1 1 1 - - -

In both the static and dynamic experiments, we compare to the use of a
benchmark heuristic that follows the logic from [2]. First, each job of Type 2 is
paired with a job of Type 7 that incurs the minimum variable cost considering
all constraints. Note that the origin of the full container of Type 2 is known,
thus the pairing occurs in the destination of the empty container of Type 2
with the source of the empty container of Type 7. Subsequently, the closest
terminal is assigned to the full container of Type 7. The paired jobs are sorted in
non-decreasing route distance and scheduled using a cheapest insertion method.
This method schedules the paired jobs in the position of the route that yields
the lowest routing cost. All remaining jobs are then scheduled with a similar
cheapest insertion method. For the jobs that have a flexible source or destination
of a container, all combinations of sources and destinations are examined and the
position with the cheapest routing and terminal assignment cost is chosen. To use
this heuristic dynamically, the job sequences that are being executed during the
re-planning trigger are fixed (i.e., no preemption of the current schedule). Jobs
that have not been started and that are not in a non-preemptive sequence are
re-scheduled with the steps described before. We now describe each experiment
in detail and present their results.

6.2 Static Experiments

In the static experiments, we test the effect that the Valid Inequalities (VIs),
Time-Window Pre-Processing (TWPP), and the three Math-Heuristic Operators
(MHOs) have on the total costs. For each of the eight instances in categories C1,
C2, R1, and R2, we test the MILP without any modification, the MILP with
the VIs, the MILP with the TWPP, and the MILP with the VIs, TWPP, and
each of the MHOs. We use CPLEX 12.6.3 (via the C API) with a limit of 300
seconds and a warm-start given by the solution of the Benchmark Heuristic
(BH). For MHO 1 and 3, we perform nine iterations; and at each iteration, we
choose seven random jobs in MHO 1 and one random job in MHO 3. MHO 2
has no randomness, so we perform only three iterations and we fix 1, 2, and 3
jobs respectively. The “random” settings are arbitrary, since we just test their
usefulness rather than tuning them. We show the aggregated results in Table 2.

In Table 2, four interesting observations arise. First, the VIs do not improve
the solution of the MILP but the TWPP does. Second, the best solutions in the
clustered (C) instances are achieved by MHO 3, and in the random (R) instances
by MHO 1. It is reasonable that MHO 1 achieves better solutions in R instances
than C ones because this operator increases the chance of assigning the closest
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Table 2. Total costs for various MILP adaptations

Instances BH MILP VIs TWPP MHO 1 MHO 2 MHO 3

C1 77,960 77,926 77,960 76,924 76,829 77,926 75,189
C2 52,904 52,882 52,904 52,049 51,841 52,078 50,802
R1 111,087 111,078 110,904 107,649 107,254 107,647 107,736
R2 50,500 50,435 50,500 50,497 50,255 50,500 50,378

origin and destination to each job in a network with more disperse locations.
Third, MHO 2 has worse solutions than the other MHOs. It seems that choosing
a job as the origin/destination of an empty container (i.e., logic of the BH) is not
better than allowing a job or a terminal to be origin and destination, as MHO 1
and 3 allow. Fourth, in instances C1, C2, and R1, our adaptations to the MILP
result in savings (from the BH) between 3-4%, but in instances R2 there are no
noticeable savings. It seems that in R2, which has long time-windows and longer
traveling times, the cheapest insertion and job-pairing nature of the BH results
in good solutions.

6.3 Dynamic Experiments

In the dynamic experiments, we test the effect of the Fixing Criteria FC 1
and FC 2. In addition, we test a no-fixing criteria FC 0 meaning that all non-
preemptive jobs can be re-scheduled. The problem instances are similar to the
static experiments. We consider five stages for re-scheduling after the initial
planning of the first 25 jobs of each Solomon instance (i.e., the static setup).
These five stages are uniformly distributed within the first half of the trucks
and terminals maximum working time (i.e., half a day). At each stage, five
new jobs are revealed, which correspond to the next five jobs in each Solomon
instance, and whose time-window is increased proportionally to the stage to
guarantee they occur after they are revealed. Non-preemptiveness applies to all
jobs scheduled in a truck before the next stop at a terminal. For the static
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matheuristic within the dynamic matheuristic, we use MHO 3 for C instances
and MHO 1 for R instances. We define the number of truck routes to fix for FC1
and FC2 as a percentage of the available truck routes: NF* = (0.1, 0.5). The
results are shown in Fig. 3 and 4.

In Fig. 3, we observe that in the last re-planning stage (i.e., costs over the
entire day), our dynamic matheuristic achieves significant savings compared to
the BH in instances C1, C2 and R1 (around 8%, 3%, and 3% respectively).
The winning FC, however, seems to vary per instance type. It is reasonable that
fixing routes with the largest number of jobs (i.e., FC 1) is good in C1 since these
instances contain closely located jobs with tight time-windows. Furthermore, it
seems also reasonable that in instances with disperse located jobs such as R1,
fixing routes with good traveling times (i.e., FC 2) is better. We focus on these
two instance categories in Fig. 4. For R1 we observe that FCs 0 and 1 have
similar performance and that FC 2 starts differentiating more from the other
FCs and the BH towards the last stages. For C1 we observe similarly that FCs 0
and 1 have comparable performance, and that the gap to the BH seems to widen
towards the last stages.

6.4 Discussion

In the static experiments, we observe that the MHOs help obtaining a better
MILP solution than the VIs and the TWPP. We observe also that the perfor-
mance of the MHO depends on the problem settings. In the dynamic experi-
ments, we observe that the dynamic matheuristic outperforms the BH but the
performance of the FCs therein depends again on the problem settings. Although
these experiments serve as a proof-of-concept and give an indication of the gains
to be expected, they have three limitations. First, we do not tune the parame-
ters with respect to the problem setting. As described in the results, our MHOs
and FCs have implicit distance and time effects on the solution and thus require
tuning. Second, we do not adapt the algorithms towards previous iterations or
stages. Our MHOs and FCs are analogous to neighborhood operators in local
search heuristics, and thus mechanisms that adapt them can be beneficial to fur-
ther guide the algorithm to better solutions. Third, we limit the computational
time of the matheuristics and use a heuristic for the warm-start. The interaction
of these two methods and the solver has a larger effect on some problems than
others. We observed that for some instance categories, the solver was able to
find improvements at every stage, but in some others failed to find a different
solution than the heuristic within the allowed time. These limitations in our
study, however, give rise to new research questions, specially in the combination
of exact and heuristic approaches, i.e., matheuristics: how to tune the parame-
ters, how to adapt the algorithm that uses the parameters after each iteration,
and how to handle the interaction between solver and solution are examples of
promising research lines.

Even though we analyze one trigger for re-scheduling, i.e., fixed intervals, it
is important to note there can be other triggers such as change in the status of
trucks, traffic data, or cancellation of customer requests [7,15]. Different triggers
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for re-scheduling may require different FCs. For example, fixing routes with the
shortest traveling time from the previous schedule may not be the best option
if the trigger for disruption was a delay due to increased traffic. Furthermore,
the interaction between the real-time aspect of synchromodality and the re-
scheduling trigger needs to be considered. When the time required for re-planning
(e.g., computation time of the matheuristic) is larger than the effect of a trigger
(e.g., delay) it can be that re-planning is not even necessary. Overall, these re-
scheduling aspects in synchromodality need to be investigated and tackled within
a dynamic solution approach.

7 Conclusion

We developed a MILP and a matheuristic to schedule drayage operations in
synchromodal transport. Timing, routing, and long-haul terminal assignment
decisions are integrated and simultaneously considered. Dynamic scheduling is
done as new information is revealed throughout the day.

Through numerical experiments, we studied the performance of our adapta-
tions to the MILP model and fixing criteria in the matheuristic. Overall, we ob-
served that the gains of our approach are dependent on problem attributes such
as customer dispersion, time-window lengths, and dynamic re-planning. Further
research in the relation between these characteristics and our matheuristics is
needed. The proper handling of such relations is essential for scheduling drayage
operations in synchromodal transport.
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stitute for Advanced Logistics, DINALOG, under the project SynchromodalIT.
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Abstract. Transportation of perishables such as fruits and vegetables with short 
shelf life in international, long distance and cooled condition, plays a key role in 
global cold chains. Compared with truck transportation, intermodal transporta-
tion largely reduces logistics cost and emissions, however, has less flexibility 
for disturbances. Another aspect is that truck transportation occupies the largest 
share in inland transportation, which causes traffic congestion and environmen-
tal pollutions. Synchromodal transportation is a known method to study the ef-
fectiveness, efficiency and sustainability of transportation by using real-time in-
formation. However, limited articles can be found about the cold chain perspec-
tive, an integral analysis is missing. Our objective is to thoroughly analyze the 
characteristics and challenges of synchromodal transportation in global cold 
chains. The critical successful factors are analyzed at first. After that, we survey 
on planning problems in strategic, tactical and operational level, respectively. 
Finally, we conclude by suggesting further research directions. 

Keywords: Global cold chains, Flexibility, Environmental impact, 
Synchromodal transportation, Real-time switching 

1 Introduction 

In this paper, we define global cold chains in perishable products with short shelf life, 
such as fruits and vegetables, either fresh produces or processed products. It consists 
of farmers, wholesalers, processors, exporters, transporters, importers, retailers and 
consumers [3,13,34]. As perishable products show continuous quality changes 
throughout the global chain, international, long distance and temperature controlled 
transportation is essential [4,38]. 

With the increasing volume of containers in global trade, intermodal transportation 
has been developed for integrated transport in the last decades [35]. The International 
Transport Forum defined intermodal transportation as: Multimodal transport of goods, 
in one and the same intermodal transport unit by successive modes of transport with-
out handling of goods themselves when changing modes [14]. Compared with truck 
transportation, intermodal transportation can largely reduce logistics cost and emis-
sions, however, has less flexibility for disturbances [37]. The capacity sharing of ser-
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vices among different shippers contributes to cost reduction, and the utilization of 
barge and train brings about less emissions. However, in global cold chains, outside 
temperature might vary widely during the transportation from origin to destination. In 
order to maintain certain temperature, flexible energy consumption is required [4]. In 
addition, even under optimal temperature, the quality of perishable products is still 
degrading with time [34,38,39]. The impact of disturbances (such as service delay and 
traffic congestion) for perishable products in intermodal transportation, is therefore, 
more critical than truck transportation. Dynamic and real-time intermodal transporta-
tion plan is needed. However, current intermodal transportation planning models tend 
to be static and offline, resulting in less flexibility for disturbances [6,10,11,37]. 

Another aspect is that truck transportation still occupies the largest share in inland 
transportation, which causes transportation congestion and environment pollutions. 
The main reason is that truck exhausts more emissions than barge and train. Accord-
ing to the statistics, in 2014 about 75.4% of total freight transportation in European 
union countries were transported via road, around 18% via rail, and 6.6% via inland 
waterways. The Netherlands has better performance, with 56.1%, 4.9%, and 39% 
respectively [15]. Recently, global cold chains are confronted with increasing con-
sumer demands on sustainability [8,34]. Sustainability commonly refers to how the 
needs of the present human generation can be met without compromising the ability 
of future generations to meet their needs [9]. In terms of sustainable transportation, it 
generally relates to less emissions. Increasing the utilization of barge and train in 
inland transportation can reduce emissions on one side. On the other side, the 
transport models become more complex due to the increasing number of transfers. 

Synchromodal transportation is a potential method for global cold chains to reach 
better performance in long distance transportation [17], first proposed by Tavasszy in 
2010 [24]. It refers to creating the effective, efficient and sustainable transportation 
plan for all orders by using real-time information [35]. Under synchromodality, the 
mode combinations for orders can be changed before or during the transportation in 
case of disturbances. The capacity of barge and train will be better used in inland 
transportation for reducing logistics cost and emissions. The main objectives of 
synchromodal transportation focus on reducing logistics cost, emissions and improv-
ing reliability [19]. Therefore, this new transport concept has benefits on both econo-
my, society and environment aspect. Compared with intermodal transportation, 
synchromodal transportation has several advantages, as shown in Figure 1. Firstly, it 
aims at horizontal collaboration as well as vertical collaboration. Horizontal collabo-
ration can promote information sharing among different carriers, avoiding vicious 
competition. Secondly, the mode booking pattern is mode-free booking rather than 
mode booking in advance. The shippers only specify origin and destination position, 
time window, volume and lead time, leaving the choice of mode combinations to 
logistics service providers. Thirdly, instead of one OD pair planning, synchromodal 
transportation refers to network-wide planning, which includes all the orders and 
services arrived before planning horizon. Most importantly, it focuses on real-time 
switching in case of disturbances to guarantee service efficiency, operational effec-
tiveness and less environmental impact [30,35,40]. 
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Fig. 1. Synchromodal transportation versus intermodal transportation 

Fig. 2. Publication trends of synchromodal transportation 

However, as a new concept, limited articles have been published about synchromodal 
transportation, especially for global cold chains. By 2016, totally 77 articles of 
synchromodal transportation are found using research databases, such as Web of Sci-
ence, Science direct, and Emerald. Nevertheless, this research area has an increasing 
trend, as illustrated in Figure 2. Due to the perishability of agri-food, the transporta-
tion models are more complex than non-perishables [2,38], and only 3 papers re-
searched synchromodal transportation involving perishable products [17,31,32]. And 
none of them provide an integral analysis about the characteristics and challenges of 
synchromodal transportation in global cold chains. The objective of this paper, is 
therefore, to thoroughly analyze it. 

The structure of this paper is shown as follows. In Section 2, the critical successful 
factors are illustrated. After that, we analyze the planning problems in strategic, tacti-
cal and operational level respectively. Strategic infrastructure network design problem 
is described in Section 3, while Section 4 analyzes the tactical service network design 
problem. Operational intermodal routing choice problem is discussed in Section 5. At 
each level, the characteristics and challenges are discussed. We conclude our work by 
suggesting further research in Section 6. 
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2 Critical Successful Factors 

Although synchromodal transportation is an interested idea, it is hard to realize in 
practice. Until now, only several successful pilot studies are known in the Nether-
lands. Almost all the case studies exist in literatures are based on the European Gate-
way Services network, which includes Rotterdam port and at least 20 hinterland ter-
minals in Europe [35]. Critical successful factors analysis is an effective method to 
identify the key enablers of synchromodality [21]. In order to achieve an integral 
analysis of synchromodal transportation in global cold chains, the critical successful 
factors are analyzed at first. 

According to the literature review, we find that synchromodal transportation in-
cludes eight factors, as shown in Table 1. Legal and political issues and physical in-
frastructure investment are decided by governments, such as tax incentives for sus-
tainable logistics and new hub construction. In terms of shippers’ mode booking pat-
tern, the benefits of synchromodality, like cost receiving and environmental friendly, 
can promote customers’ mind shift. Advanced information technology and horizontal 
collaboration are foundation, while service-based pricing strategy plays as an incen-
tive. Integrated planning is the core of synchromodal transportation, which will be 
further discussed in strategic, tactical and operational level respectively. Real-time 
switching is the highest requirement which responses to dynamic demands and vary-
ing disturbances. As the first three factors are determined by government or high level 
organizations, next, we further analyze the last five factors. 

Table 1. Critical successful factors of synchromodal transportation 

Reference
Behdani
(2014)

Tavasszy 
(2015)

Putz 
(2015)

Riessen 
(2015)

Singh 
(2016)

Pfoser
(2016)

Legal and polit-
ical issues

Physical infra-
structure

Mind shift

Information
technology
Horizontal 

collaboration

Service-based 
pricing strategy

Integrated plan-
ning

Real-time 
switching
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2.1 Information Technology 

Information technology mainly refers to information sharing, track and trace, and 
communication technology [27]. Regarding global cold chains, radio frequency iden-
tification is a critical technology for monitoring environment data of reefer containers, 
such as temperature and moisture. Real-time position of services and reefer containers 
can be attained by using global positioning systems. Information and communications 
technology can promote information sharing and communication among different 
operators. In summary, advanced information technology is the foundation of 
synchromodal transportation in global cold chains. 

2.2 Horizontal Collaboration 

Horizontal collaboration is another basic factor in realizing synchromodal transporta-
tion. It refers to the collaboration relationship between actors in the same level, 
whereas vertical collaboration refers to different level. For example, the relationship 
among different carriers belongs to horizontal collaboration, while carriers and ship-
pers build vertical collaboration. For switching flexibility among different services, 
horizontal collaboration among carriers turns out to be essential. Shippers also estab-
lish horizontal cooperation to achieve lower cost by the capacity sharing of services. 
The collaboration contract between them used to be long term, static and offline. 
However, due to the dynamic characteristic of global agri-food market, dynamic and 
online contract become more suitable. What is more, considering the private safety of 
different actors, totally information sharing is unpractical. Real-time decisions based 
on limited information are still challenging. Agent-based modelling is an effective 
method for analyzing dynamic collaboration owing to its real-time, adaptive features 
[12]. 

2.3 Pricing Strategy 

In terms of pricing strategy, synchromodal transportation shows distinct characteris-
tics with intermodal transportation [35]. Intermodal transportation adopts mode-based 
pricing strategy, the price is determined by the mode used. Mode combination is de-
cided before the transportation, thus the price is fixed. With respect to synchromodal 
transportation, the mode booking pattern is mode-free booking. The mode combina-
tions would be changed before or during transport in case of disturbances, such as 
service delay. The mode-based pricing strategy is thus unsuitable for synchromodal 
transportation. The pricing strategy in synchromodal transportation should be differ-
entiate with respect to different mode combinations. Even for the identical mode 
combination, the price can be different according to the spare capacity of services. 
Considering the credits of customers, different price for different credits is an effec-
tive motivation. With regard to agri-food, received quality can further influence prod-
uct’s price. Based on the above analysis, we can predict that the pricing strategy of 
synchromodal transportation is still challenging and thus deserves further research.
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2.4 Integrated Planning 

An effective planning model is the core of synchromodal transportation. While inter-
modal transportation focus on one OD pair planning, synchromodal transportation 
aims at integrated planning at a network level. Under synchromodality, all the ser-
vices belong to different carriers are assumed to be a large resource pool and all the 
arriving orders will be allocated simultaneously. Due to the complexity of planning 
models, most researches focus on centralized planning of synchromodal transporta-
tion. However, the entities in global cold chains are often geographically distributed. 
It is thus very difficult to apply a central coordinator to manage the whole system 
[12]. Moreover, when the computation size becomes large enough, distributed system 
promotes better computation performance. In order to improve operational efficiency, 
service effectiveness and reduce environmental impact, the key performance indica-
tors of synchromodal transportation are logistics cost, agri-food quality and emis-
sions. Therefore, an integrated model combining the logistics model with the agri-
food quality decay model and the emission model is required for transport planning. 

2.5 Real-Time Switching 

With the development of information technology, real-time information becomes 
available for intermodal operators. Due to the occurrences of variety disturbances 
during transportation, such as service delay, real-time switching is essential for im-
proving the service reliability. An integrated planning model is the prerequisite of 
real-time switching [36]. With respect to agri-food, the characteristics of perishable 
and short shelf life also requires real-time switching in case of disturbances [17]. Oth-
erwise, the quality may decay to an unacceptable level for customers. In order to real-
ize real-time switching, researchers have proposed different methods, like rolling 
horizon strategy, model predictive control, decision tree and decomposition algo-
rithm. In rolling horizon strategy [1], orders arrive continuously in different planning 
horizons. The planning horizon is rolled forward to include more known information. 
Decisions are made at the deadline of the orders. Regarding model predictive control 
approach [17], it is an effective method to obtain an ideal output by controlling the 
inputs. For instance, in order to keep banana’s shelf life, both the container’s tempera-
ture and mode choice will be controlled by the system operators in real-time. As for 
decision tree [36], it can be used in a decision support system for instantaneously 
allocating incoming orders to suitable services, without the requirement of continuous 
planning updates. Decomposition algorithm attempts to solve the original problem by 
solving a number of smaller problems [18]. As real-time switching requires short 
response of disturbances, the computation efficiency indicates significant means.  

2.6 Discussion 

According to the discussions above, we know that under government support, based 
on advanced information technology and horizontal collaboration as well as attracted 
pricing strategy, the synchromodal transportation can be realized in global cold chains 
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by combining real-time switching with effective planning models. However, 
synchromodal transportation planning models are more complex than intermodal 
transportation. Considering the perishability of agri-food, both the objectives and 
constraints will be different. Next, we will further analyze the characteristics and 
challenges of synchromodal transportation in global cold chains in strategic, tactical 
and operational level respectively. 

3 Strategic Infrastructure Network Design 

Strategic level focuses on long term decisions. The infrastructure network design 
problem in synchromodal transportation refers to investment decisions on hub loca-
tions [6,29]. Under synchromodal transportation, different shippers’ containers are 
bundled together in hubs for large container flow. To reduce total transport cost, the 
allocation of hubs depends on the service demands in different areas. The connection 
between hubs can be road, rail or inland waterway. Under the same OD pair, different 
corridors refers to different modes. Regarding global cold chains, due to the short 
shelf life and low temperature requirements of perishable products, the location of 
processing factory is also an important strategic decision. Considering the logistics 
performance of global cold chains, different locations of processing factory will result 
in different transport mode combinations choice. For example, the pineapples from 
Ghana to the Netherlands can be cutting in Ghana and then transport to the Nether-
lands by aircraft, or transport to the Netherlands by barge at first and then cutting in 
the Netherlands, as shown in Figure 3 [34]. 

The infrastructure network design problem mainly depends on the availability of 
infrastructure, transport assets, the adequacy of cargo flow in a specific corridor and 
the shelf life of perishable agri-food [6,34]. Typically, this problem can be described 
by using mixed-integer linear programming models which include both binary deci-
sion variables and continuous decision variables. Binary decision variables is related 
to that whether the hub or processing factory is used or not, while continuous decision 
variables illustrate bundled flow [4]. 

The objective of the network design used to be simply focus on cost. As agri-food 
quality deeply affects customers satisfaction degree, it should be considered as anoth-
er important objective. With respect to environmental impact, proper network design 
maximizes the utilization of green modes which produce less emissions. Thus, for 
global cold chains, the objectives of infrastructure network design should include both 
logistics cost, products’ quality and emissions.

Fig. 3. Transportation of Pineapples from Ghana to the Netherlands
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4 Tactical Service Network Design 

Tactical level focuses on middle term decisions. It optimally utilizes the given infra-
structure by choosing services and associated transportation modes, allocating their 
capacities to orders, and planning their itineraries and frequency. Service network 
design (SND) is the major problem in tactical level. It mainly gives decisions on 
choosing the transportation services and modes for forecasted customer demands, and 
the frequency and capacity of each mode on certain corridor [29]. Here, a service is 
characterized by its origin, destination and intermediate terminals, its transportation 
mode, route and its service capacity. Likewise, a mode is characterized by its loading 
capacity, speed and price [29], which means that different services may have a same 
mode. As synchromodal transportation aims at integrated planning, both self-operated 
or outsourced transportation need to be considered to minimize transport cost [25]. 

In order to improve operational efficiency, service effectiveness and sustainability, 
the objectives of SND problem of synchromodal transportation for perishables in-
clude logistics cost, products quality and emissions. The availability and capacity of 
infrastructure networks or inland terminals are the primary resource constraints [6]. In 
intermodal transport planning, dynamic service network design problem is closest to 
the synchromodal planning problems. It involves the selection of transportation ser-
vices and modes for freights, where at least one feature of the network varies over 
time [26]. Except time-varying network, the demands of synchromodal transportation 
is also dynamic. Orders arrive in sequence rather than in advance before the planning 
horizon. According to the perishable and dynamic characteristics of global cold 
chains, we analyze the challenges exist in six aspects of SND problem given in Table 
2.

Table 2. Service network design problem 

Reference Riessen et al.
(2015)

Rivera et al. 
(2016)

Li et al.
(2016)

Mode Rail, Truck, 
Barge

Rail, Truck, 
Barge

Rail, Truck, 
Barge

Objectives Cost Cost Cost

Centralised /Distributed Centralised Centralised Distributed

Transfer cost Yes No Yes

Self-operation/
Outsource Both Self-operation Both

Static/Dynamic Static Dynamic Dynamic
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4.1 Distinct aspects 

For global cold chain, transportation distance tends to be very long. As agri-food is 
distinct from other products, temperature controlled transportation is essential. Com-
pared with sea transport, rail transport is more faster than sea transport. Compared 
with air transport, the cost of rail transport is 50% less than air transport. This means 
that the rail transport is optimally suited for perishable products which need to be at 
the final destination as quick as possible, but not at any cost. However, for perishable 
products with high value and short lead time, air transport is a better choice. Both 
Riessen [25], Rivera [26] and Li [16] only consider mode combinations of truck, 
barge and train.

As agri-food is perishable and reefer containers exhaust extra emissions, the objec-
tives of transportation should include the reduction of cost, emissions, and improving 
service reliability. Both Riessen [25], Rivera [26] and Li [16] only view cost as objec-
tive. 

Compared with centralized planning systems, decentralized systems are more prac-
tical. Farms, processing factories and retail stores tend to be generically distributed. 
Information sharing is crucial for centralized planning. However, it is difficult to real-
ize among different entities, especially for stakeholders with competitive relationship. 
Li [16] proposed a distributed service network design approach, however, this ap-
proach is applied in general supply chain. 

4.2 General aspects 

Transfers brings more chance to the utilization of barge and train, which result in less 
emissions and cost. However, it also takes additional cost and time in terminals. Thus, 
transfer cost should be calculated in transport cost, like Riessen [25] and Li [16]. 

Outsourced logistics refers to horizontal collaboration between different carriers. 
Self-operated logistics is calculated on fixed cost. In contrast, outsourced logistics is 
based on container volumes. In terms of service capacity, the capacity of self-operated 
logistics can be completely used, while the capacity of outsourced logistics depends 
on spare capacity [25]. 

SND problem can be further divided in static and dynamic groups [29]. Riessen 
[25] proposed a static SND model, temperature and travel time are assumed as static 
parameters, and all the orders arrived before the planning horizon. However, time-
varying network is more practical, because transport conditions normally change with 
time, and orders tends to be arriving in sequence. In addition, Li [16] proposed a dy-
namic SND model in synchromodal transportation based on a model predictive con-
trol approach.  

4.3 Discussion 

Synchromodal transportation service network design problem in global cold chains is 
a challenging problem owing to its dynamic, long distance, multi-objective and dis-
tributed features. To our best knowledge, only Riessen [25], Rivera [26] and Li [16] 
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proposed SND model for synchromodal transportation. But none of them considered 
the characteristics of  global cold chain. Therefore, there still have lots of chances for 
further research of dynamic SND problem for global cold chains. 

5 Operational Intermodal Routing Choice Problem 

Operational level deals with dynamical problems that are not explicitly addressed at 
strategic and tactical levels [29]. In the operational level, the mainly issue is the de-
termination of the best choice of services and the associated transportation modes, 
best itineraries and allocation of resources to demands [29]. Nevertheless, the inter-
modal routing choice decision is designed for orders in this level, while for services in 
tactical level. The demand is the actual demand rather than the forecasted demand, 
and the resource constraints are the time windows rather than availability and capacity 
of infrastructure and services. Within the constraints of tactical service design (which 
determines the routes, frequency, and capacity of each modality), the operational level 
considers the details of transport orders and resources, then the orders to different 
intermodal transport services are assigned. 

The operational intermodal routing choice (OIRC) problem refers to the selection 
of mode combinations for arriving orders. Based on different characteristics, re-
searchers proposed different titles for the OIRC problem, such as international inter-
modal choices [20], intermodal route selection [28], international intermodal routing 
[5,10], intermodal freight routing problem [11], container transportation planning 
problem [37], operational service schedules [6], and selection of transport mode com-
bination [19]. Although this problem has been investigated so many years, limited 
publications can be found in literatures. The mainly reasons are the complexity of 
computation, and the dynamic feature of both demand and supply. Other reasons in-
clude the unattainable of information, the competition relationship instead of coopera-
tion relationship among operators.  

Compared with intermodal transportation, the operational intermodal routing 
choice problem in synchromodal transportation has several new characteristics. First-
ly, the routing choice decisions are made at network level and in real-time. Secondly, 
the inland transportation modes are mainly barge and train. Truck is only used for the 
first and last mile transportation or for urgent demands.  

For global cold chain, operation routing choice problem faces several new chal-
lenges. According to the perishable and dynamic characteristics of global cold chains, 
we analyze the challenges exist in eight aspects of operational intermodal routing 
choice problem, as shown in Table 3. 
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Table 3. Operational intermodal routing choice problem 

Reference
International/

Inland
Multi-

objective
Time 

window

Time-
varying
network

Centralized/
Distributed

Multi-
pattern

Transfer
Real-time/
Dynamic

Mes 
(2016)

Inland

Cost, 
Time, 
Emis-
sions

Yes No Centralized No Yes
Real-time,
Dynamic

Riessen 
(2016)

Inland Cost Yes No Centralized Yes Yes
Real-time,
Dynamic

Riessen 
(2015)

Inland Cost Yes No Centralized Yes Yes
Offline,
Static

Behdani 
(2014)

Inland
Cost, 
Time

Yes No Centralized No No
Offline,
Static

Cho 
(2012)

International
Cost, 
Time

No No Centralized No Yes
Offline,
Static

Chang 
(2008)

International
Cost, 
Time

Yes No Centralized Yes Yes
Offline,
Static

Ziliaskopo
ulos 

(2000)
- Time No Yes Centralized No Yes

Offline,
Static

Bookbind-
er (1998)

International
Cost, 
Time

No No Centralized No Yes
Offline,
Static

Barnhart 
(1993)

National Cost No No Centralized Yes Yes
Offline, 
Static

Min 
(1991)

International
Cost, 
Time,
Risk

No No Centralized No Yes
Offline
Static
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5.1 Distinct aspects

Typically, global transportation can be divided into international and national/inland 
transport [35]. The literatures that researched on international transportation normally 
regard truck as the only transport mode in inland transportation [7,10,11,20]. With the 
development of hinterland terminal, researchers begin to focus on the combinations of  
truck, train and barge in inland transportation [6,19,37].  

Due to the perishable and dynamic characteristics of agri-food, the objectives of 
OIRC problem consists of reducing logistics cost, preserving product quality and 
reducing emissions. This problem thus belongs to multi-objective planning problem. 
Multi-objective planning is more complex than single objective planning. One method 
is to assign different weights for different objectives, and then summarizes these ob-
jectives as a single objective [10]. Another method is to solve all the single objective 
respectively while others are assigned as constrains. Pareto optimum solutions can be 
attained by optimisation and composition method[11].

Time constraints can be described either implicitly or explicitly. Time window [6] 
explicitly represents time constrains, while total transport time limitation [7] is im-
plicitly. The time windows of terminals, services and orders both have important in-
fluences on route decision. For agri-food, total transport time limitation is critical 
because of the perishable characteristic.  

Time-varying network has developed fast recently. Transport cost, transport time 
and environment temperature normally change with time [41]. Time expanded net-
work is an extended graph based on time and space information. Under time expand-
ed network, the shortest path with time windows is easy to find [18]. 

According to Table 3, we can find that both of these literatures proposed central-
ized model. As computation size increases, distributed model promotes better perfor-
mance than centralized model [12,16]. Furthermore, the stakeholders of global cold 
chain tends be to distributed worldwide, distributed model is more practical. 

5.2 General aspects 

As for the multi-pattern aspect, it refers to the demand patterns of customer. Different 
patterns correspond to different information about origination, destination, container 
volume and time windows. Only Riessen [37], Chang [10] and Barnhart [5] consid-
ered multiple demand patterns in the intermodal routing choice model.

With the increasing of transfer number, the OIRC model becomes NP-hard prob-
lem [19]. An effective algorithm is significant for computational efficiency. Re-
searchers proposed different algorithms recently, like decision tree [36], k-shortest 
algorithm [19], rolling horizon [18] and decomposition algorithm [10].  

Typically, intermodal routing choice problem is static and offline [5,7,10,11,20]. 
The planning horizon used to be one day. The intermodal planning system assume all 
the information of shippers and carriers are accessed before the planning horizon [5]. 
However, in practice, it is difficult to achieve or predict all the information before 
planning [6]. Thus, dynamic/real-time routing choice is critical in synchromodal 
transportation [36].  
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5.3 Discussion 

Based on above analysis, we conclude that OIRC problem for global cold chains is 
still challenging. To our best knowledge, none of these literatures consider both the 
aspects of dynamic/real-time, distributed/peer-to peer, transfer and time-varying net-
work. What’s more, none of them consider the characteristics of global cold chain. As 
OIRC problem in synchormodal transportation is NP-hard problem, only sub-optimal 
algorithm can obtained by using heuristic algorithms. As a result, how to improve the 
computation efficiency and effectiveness simultaneously deserve further research. 

6 Conclusion 

Temperature controlled transportation of perishables plays a key role in global cold 
chains. Synchromodal transportation is an effective method, which characterized by 
flexibility, reliability and sustainability. However, limited articles have published 
about the cold chain perspective, an integral analysis is missing.  

In order to analyze the characteristic and challenges of synchromodal transporta-
tion in global cold chains, we have discussed the critical successful factors at first. We 
found that information technology and horizontal collaboration are the foundation 
factors, while service-based pricing strategy plays as an incentive. Integrated planning 
model is essential, and real-time switching is the most challenging factor. 

After that, we have further discussed the planning problems in three different lev-
els. Strategic infrastructure network design problem refers to hub location and pro-
cessing factories location. Tactical service network design problem decides mode 
routes and the frequency of services. Operational intermodal routing choice problem 
aims at real-time matching different orders with different mode combinations. While 
infrastructure network design problem and service network design problem focus on 
infrastructures and services, respectively, operation intermodal routing choice prob-
lem researches on the decision of orders.

In our future work, we will focus on the operational intermodal routing choice 
problem under synchromodality. We call it mode matching problem in our project. 
First, we will research on dynamic/real-time mode matching problem. Rolling horizon 
framework and decision tree are potential tools. Second, the multi-hop transfer will be 
considered to improve matching rate. Since the problem is NP-hard problem, heuris-
tics algorithm will be used. After that, we prefer to focus on distributed/peer-to-peer 
mode matching. Agent-based modelling tends to be an effective method. Finally, 
considering the practical factors, time-vary travel time and temperature deserve fur-
ther research. Time-expanded network will be used based on time, temperature and 
location information. 
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Abstract. When supply chain networks become more complex through
the application of modern trends such as outsourcing and global market-
ing, supply chains become more uncertain. Supply chain planning under
uncertainty is a challenge for decision makers. Without considering un-
certainties in supply chain planning, global supply chains may suffer
enormous economic costs. When probability distributions for uncertain
parameters can be estimated, stochastic programming can be used for
capturing the characteristics of uncertainties and generating flexible pro-
duction and transportation plans for global supply chains. This paper
presents an outline on how to use stochastic programming for decision
support under uncertainty. This includes a high level exposition of how to
quantify uncertainties, develop stochastic programming models, generate
representative scenarios, apply algorithms for model solving, undertake
experimental design and present computational results. Through exem-
plifying supply chain planning and decision making under uncertainty
by using stochastic programming, this paper aims to provide a valuable
reference for future research in this area.

Keywords: stochastic programming, supply chain planning, decision
making, uncertainty

1 Introduction

With larger and more complex networks, global supply chains (SCs) become
more uncertain and unpredictable. Without effective risk mitigation strategies,
SCs are vulnerable in uncertain environments. In this paper, uncertainty means
that some of the problem data can be represented as random variables. When
supply chain (SC) uncertainties can be quantified by random variables, stochas-
tic programming can be used for providing flexible SC plans which helps to
mitigate negative impacts from uncertainties in environments with stochastic
disruption risks. For a SC where decisions are made or plans are revised pe-
riodically with updated information, stochastic programming can be used for
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SC decision support in a rolling horizon approach. The aim of stochastic pro-
gramming is to find an optimal decision in problems involving uncertain data.
The treatment of uncertainties depends on the moment when the information
becomes available (Birge and Louveaux, 1997).

Although research in the area of SC management is increasing, there is a
clear research gap in quantitative analyses for global SC uncertainties, espe-
cially for SC disruption risks. In order to boost research in this domain, based
on the authors’ recent research (Fan et al., 2016, 2017a,b), this paper reviews
how to use stochastic programming for supply chain planning under uncertain
environments. This introduction addresses the issues:

– how to build stochastic programming models for global SCs under uncer-
tainties,

– how to solve a related model,

– how to design computational experiments, and

– how to analyze and present computational results.

SC uncertainties may include, e.g., customer demand fluctuations, disruption
risks at SC partner companies as well as transportation delays. In order to
include uncertainties in the process of SC plan generation, these uncertainties
should be quantified in advance. Based on historical records analytics, customer
demand can be expressed with probability distribution functions. For disruption
risks and transportation delays, the lasting time of negative impacts and the
point in time of occurrence can be characterized according to historical records
as well as real time information. With quantified SC risks, a mathematical model
can be developed for a global SC.

The rest of this paper is organized as follows: Stochastic programming and
other methods for decision support in uncertain environments are reviewed and
compared in Section 2. A two-stage stochastic programming model can be de-
veloped by incorporating uncertainties in the second stage. The basic model
and the principles for setting up stages are introduced in Section 3. PySP, an
open-source framework for modeling and solving stochastic programs with a
Progressive Hedging Algorithm (PHA), can be used for solving the model. Both
the algorithm as well as user-defined parameters of the algorithm are explained
in Section 4. When the number of possible realizations for uncertainties (sce-
narios) of a model is large, only a limited number of realizations and therefore
only a subset of all possible scenarios is taken into consideration in the com-
putational analyses. These scenarios are called representative scenarios. In this
case, a representative scenario generation method is needed. Different scenario
generation methods and their applicable scales are presented in Section 5. In
computational experiments, benchmark solutions can be calculated for compar-
ison. Different benchmarks are provided in Section 6. After solving a stochastic
programming model, a solution can be evaluated through simulating the solution
with a large number of scenarios generated with Monte Carlo sampling for sim-
ulating possible realizations. A flowchart is presented to illustrate how to design
computational experiments. This paper ends with the conclusions in Section 7.
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2 Literature Review

Usually most natural and man-made catastrophes cannot be precisely and accu-
rately predicted, especially with a comparatively long prediction lead time. How-
ever, by utilizing big data analytics and other advanced prediction techniques,
the probability distribution of occurrence and/or the severity can be predicted
for an increasing number of catastrophes, e.g., extreme weathers (Fan et al.,
2015). A range of approaches is available for making use of imperfect prediction
information for decision support, (e.g., stochastic programming, robust optimiza-
tion, metaheuristics and simulation-optimization approaches. These approaches
are briefly sketched in this section.

When uncertainties can be quantified by random variables, stochastic pro-
gramming can be used for capturing the essence of uncertainties. PHA proposed
by Rockafellar and Wets (1991) is a scenario-based decomposition technique for
solving stochastic programming problems. In a stochastic programming model,
random variables can take on numerous values. It may not be possible and rea-
sonable to take all those values into consideration for solving the model. In many
cases, characteristics of uncertainties can be captured by specifying a reasonable
number of representative scenarios (Løkketangen and Woodruff, 1996). Out-of-
sample simulation is used for evaluating the quality of solutions generated from
representative scenarios.

When the prediction information is only known in the form of interval values
without the probability distribution of random data, a robust optimization can
be implemented. A robustness approach aims at finding solutions that hedge
against the worst contingency that may arise (Goren and Sabuncuoglu, 2008;
Yu, 1997). The minmax criterion can be used for quantifying robustness of a
decision.

Approximate solutions of optimization problems can be efficiently produced
by using metaheuristics. Metaheuristics benefit from different random-search
and parallel paradigms, but they frequently assume that the problem inputs,
the objective function, and the set of constraints are deterministic (Caserta and
Voß, 2010; Juan et al., 2015).

The computing time for solving large-scale models for real-world problems,
such as transportation, production, finance and telecommunication problems,
is comparatively long. In order to obtain high-quality solutions for large-scale
stochastic problems with a short computing time, simulation-optimization ap-
proaches have attracted an increasing number of researchers’ attentions (Gosavi,
2015; Juan et al., 2015). Although an optimal solution might not be produced in
this way, obtaining an approximate solution for an accurate model of a real sys-
tem is more meaningful than obtaining the optimal solution for an oversimplified
model.

In Fan et al. 2016, 2017a,b), stochastic programming is used for global
SCs in environments with stochastic disruption risks. Medium-scale stochastic
programming models are investigated in the first two papers and a large-scale
stochastic programming model is developed in the latter. The large-scale model
is solved by running PySP on a High-Performance Computing (HPC) cluster.
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Stochastic programming is also used by Haugen et al. (2001), Veliz et al. (2015)
and Gade et al. (2016) for lot-sizing and forest planning problems.

In the sequel we explain how to use stochastic programming for SC planning
in environments with stochastic disruption risks. A PHA according to Rockafellar
and Wets (1991) is employed for solving stochastic programming models. Monte
Carlo simulation is applied for generating out-of-sample scenarios for evaluating
the quality of solutions.

3 A Basic Two-Stage Stochastic Programming Model

Two-stage stochastic programming models are widely applied for decision sup-
port in uncertain environments. The decision maker takes some action in the
first stage in the presence of uncertainties about future realizations. Recourse
decisions can then be made in the second stage after uncertainties are disclosed.

For a SC, plans for the coming time period (the first-stage decision) are
made without perfect information for future realizations. The first-stage deci-
sion should be ideal for all those possible realizations. When uncertainties are
revealed, additional decisions (recourse decisions) can be taken. A recourse de-
cision may concern SC plans for the subsequent time period with the knowledge
of uncertainties for the coming time period or emergency plans when disruptive
events arise. A recourse decision depends on the realization of the uncertainty.
For a two-stage stochastic programming model for a SC, the overall objective is
to minimize the cost of the first-stage decision plus the expected costs over the
uncertain scenarios.

Let us focus on two-stage stochastic programming models for global SCs. In
order to explain the basic model, the following notation is used:

S : The set of possible scenarios
s : An individual scenario, s ∈ S
x : The first-stage decision variable
ys : The second-stage decision variable in scenario s ∈ S
c : The first-stage cost coefficient
fs : The second-stage cost coefficient in scenario s ∈ S
Rs : The probability of occurrence of scenario s ∈ S, ∑s∈S Rs = 1
Qs : The set of constraints in scenario s ∈ S
T bang
s : The point in time of occurrence of a disruptive event in scenario

s ∈ S
T dur
s : The duration of negative impacts once a disruption arises in

scenario s ∈ S
Note that x, ys, c and fs are vectors. The basic model can be mathematically

described as follows (Birge and Louveaux, 1997; Kall and Wallace, 1994):

min
x,ys

c · x+
∑

s∈S
(Rs · fs · ys) (1)

subject to: (x, ys) ∈ Qs ∀s ∈ S
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Each scenario represents a possible realization in the future. The first-stage
decision variable, x, is unified for all scenarios. The second-stage variable, ys,
is scenario-specific with the associated cost coefficient fs. Problem (1) is the
well-known extensive form of a two-stage stochastic program.

In order to develop a quantitative analysis of catastrophic disruptions as a
stochastic programming problem, each scenario s can be characterized by three
parameters: the probability of occurrence (Rs), the point in time of occurrence
(T bang

s ) and the duration of negative impacts (T dur
s ). Parameters for each sce-

nario s ∈ S of our investigation are included both in the cost coefficient vector
and in the constraints (see (2) and (3)). In this paper, a scenario with a disrup-
tion is called a disruptive scenario. A scenario without a disruption is called a
non-disruptive scenario.

fs ←
(
T bang
s , T dur

s

)
(2)

Qs ←
(
T bang
s , T dur

s

)
(3)

The overall probability of all disruptive scenarios for a time-span is assumed
to be predictable according to the historical records. The point in time of occur-
rence (T bang

s ) can be assumed to be uniformly distributed within a time-span.
The duration of negative impacts (T dur

s ) depends on the severity of a disruption
and the flexibility of a SC and is assumed to be exponentially distributed.

When specifying the stages, according to the statements above, the first-
stage decision is identical for all future realizations and the second-stage de-
cisions depend on the particular realizations. For a two-stage stochastic pro-
gramming model, the principle of setting up stages is that the first stage is
scenario-independent and the second stage is scenario-dependent. Based on this
principle, two approaches of setting up stages for our stochastic programming
models are introduced:

1. According to the time line
This approach fits for predictable disasters. According to the description
in Fan et al. (2017b), probability predictions for predictable disasters are
available a certain period of time in advance. Updated predictions become
available before the occurrence of a disaster. With periodically updated pre-
dictions for disruptions, stages for stochastic programming models can be set
up according to the time line. In this case, decisions are periodically updated
according to a rolling horizon scheme.

2. According to uncertainty related and unrelated costs
This approach fits for disasters which we call half-predictable disasters.
In Fan et al. (2017b), half-predictable disasters are those for which a prob-
ability of occurrence can be estimated a proper period of time in advance.
The point in time of occurrence of a half-predictable disaster cannot be pre-
dicted in advance. In this situation, stages should be set up in a way that
uncertainty related costs are assigned to the second stage and costs that are
not related to uncertainty are assigned to the first stage.
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Algorithm 1: Progressive Hedging Algorithm (PHA)

1 k ← 0
2 for s ∈ S do

3 x
(k)
s ← argminx,ys

(c · x+ fs · ys) : (x, ys) ∈ Qs

4 x̄(k) ← ∑
s∈S Rs · x(k)

s

5 for s ∈ S do

6 w
(k)
s ← ρ

(
x
(k)
s − x̄(k)

)

7 k ← k + 1
8 for s ∈ S do

9 x
(k)
s ← argminx,ys

(
c · x+ w

(k−1)
s x+ ρ/2

∥∥∥x− x̄(k−1)
∥∥∥
2

+ fs · ys
)

: (x, ys) ∈
Qs

10 x̄(k) ← ∑
s∈S Rs · x(k)

s

11 for s ∈ S do

12 w
(k)
s ← w

(k−1)
s + ρ

(
x
(k)
s − x̄(k)

)

13 g(k) ← ∑
x∈S Rs ·

∥∥∥x(k)
s − x̄(k)

∥∥∥
14 if g(k) ≤ ε then
15 terminate.

16 else
17 if k = K then
18 terminate and implement a local search to find an identical feasible

solution for x.

19 else
20 go to 7

4 Progressive Hedging Algorithm and PySP

In this section, the PHA proposed by Rockafellar and Wets (1991) as well as
PySP are introduced. PHA is implemented for solving stochastic problems in
different areas, i.e., Haugen et al. (2001), Watson and Woodruff (2011), Veliz
et al. (2015) and Gade et al. (2016). In these papers, PHA is proven to be an
effective method for solving stochastic programming models.

For the optimization problem in Section 3, the basic PHA can be stated in
Algorithm 1, taking a penalty factor ρ > 0, a termination threshold ε, and a
maximum number of iterations K as input parameters.

PHA is embedded in PySP, an open-source framework for modeling and solv-
ing stochastic programs in Python. In this framework, the runph script provides
a command-line interface to solve stochastic programming models with PHA.

When PySP is implemented for solving stochastic programming models, the
maximum number of iterationsK and the value of ρ are user-defined parameters.
Effective methods for determining element-specific ρ (i) values based on problem-
specific data are developed in Watson and Woodruff (2011). For independent
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integer variables, we have:

ρ (i) ← c (i)

xmax + xmin + 1
(4)

For independent continuous variables, ρ(i) is calculated by:

ρ (i) ← c (i)

max
((∑

s∈S Rs · |x(0)
s − x̄(0)|

)
, 1
) (5)

Element-specific ρ (i) values are implemented for stochastic programming
models in Fan et al. (2016, 2017a,b).

The intention of solving a stochastic programming model with PySP is to
find a good quality feasible solution, rather than obtaining a provably optimal
solution. In particular, it may not be possible to find an optimal solution and
prove optimality for a stochastic programming model for a global SC. For SC
planning problems, feasible and good quality solutions generated within a rea-
sonable time frame are meaningful and valuable in practice.

5 Scenario Generation

For two-stage stochastic programming models with a small number of possible
realizations, the list of all possible realizations can be incorporated in the solu-
tion process for stochastic programming problems. For problem instances with a
large number of possible realizations for the second stage, it is more efficient to
include a certain number of representative possible realizations (in-sample sce-
narios) than to incorporate all possible realizations in the solution process. When
different representative scenarios are used, the solutions are probably different.
In this section, methods for generating representative scenarios for capturing
characteristics of uncertainties are investigated.

For a stochastic programming model with multiple uncertain parameters,
representative scenarios are composed by uncertain parameters’ representative
values. The probability for each scenario is deduced from probabilities of rep-
resentative values. Three methods for generating representative values for un-
certain parameters are presented in this section. In order to exemplify these
methods, the duration T dur in Fan et al. (2016) is taken as an example. T dur is
the duration of negative impacts for a global SC in case of a disruption which is
assumed to be exponentially distributed and uncorrelated with other uncertain
parameters (see Fig. 1). Uncertainties are assumed to be uncorrelated for low
frequency and high impact SC disruptions because the probability for the occur-
rence of more than one disruption at the same time period is extremely low. It is
possible to explore SCs with complicated multiple intercorrelated uncertainties
with Monte Carlo sampling which will be introduced in this section.

Different methods are implemented for generating representative values for
the uncertain parameter T dur. For scenario s, the value of T dur is indicated by
T dur
s . In Fig. 2–5, the values of T dur

s (s ∈ S) generated with different methods
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Fig. 1. Probability distribution

are presented. T bang
s (s ∈ S) in the basic model in Section 3 can be calculated

with the same methods.

1. Selecting equal probability values
By splitting the probability distribution of an uncertain parameter into a
number of equal probability segments, the medians of these segments can
be selected as representative values. The median is the value that splits the
probability distribution into two portions whose areas are identical. Repre-
sentative values selected in this way have the same probability.
Fig. 2 shows 5 and 10 representative values, which are generated with

this method for T dur. The probabilities for representative values, in case of
T dur
Num = 5 and T dur

Num = 10, are 20% and 10%, respectively. However, this
method need not work for generating discrete representative values.

2. Selecting representative values and calculating probabilities
For a discrete parameter, representative values can be selected at first. In or-
der to calculate the probability of these representative values, the probability
distribution is split into segments in a way that each representative value is
the median or close to the median of a segment. The overall probability of
a segment is the probability of the representative value in this segment.
Fig. 3 gives examples of representative values and probabilities generated

with this method when T dur
Num is 5 and 10. In order to assure that each

representative value is the median of a segment, in Fig. 3 representative
values and segments are alternately selected from the left side to the right
side one by one. The right frontier of the previous segment is the left frontier
of the next segment. This method is implemented in Fan et al. (2016).

3. Monte Carlo sampling
An easy way for generating representative values for uncertain parameters
is to use Monte Carlo sampling. With an uncertain parameter’s probability
distribution function as the input, representative values can be generated by
using statistical functions of SciPy, which is a collection of mathematical al-
gorithms and functions built in Python. Representative values generated with
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Fig. 2. Representative values with equal probability

Fig. 3. Discrete representative values and their probabilities

Monte Carlo sampling have equal probability. With probability distribution
functions, Monte Carlo sampling can also be used for generating representa-
tive values for multi-dimensional correlated random variables which makes
it possible to explore SC planning problems with intercorrelated and real
world uncertainties (Joy et al., 1996; Touran and Wiser, 1992).
Representative values and their frequencies generated with Monte Carlo

sampling for uncertain parameters are shown in Fig. 4 and Fig. 5. Monte
Carlo sampling also fits for uncertain parameters with a large number of
dimensions, e.g., the customer demand for each production at each seller in
each time period (Fan et al., 2017b).

In order to test the quality of a solution for a stochastic programming model,
a number of out-of-sample scenarios is required for simulating possible realiza-
tions. When Monte Carlo sampling is adopted, it is more accurate to simulate
the reality with a larger number of out-of-sample scenarios (see Fig. 6). For in-
stance, 500 or 1000 scenarios may be generated with Monte Carlo sampling for
simulating possible realizations.

6 Benchmarks

As mentioned in Section 4, the intention of solving stochastic programming mod-
els for global SCs is to obtain high quality feasible solutions. Instead of proving
optimality, we demonstrate the quality of solutions from stochastic programming
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Fig. 4. Monte Carlo methods for generating discrete representative values

Fig. 5. Monte Carlo methods for generating representative values

through comparing with different benchmark solutions. In our previous research,
solutions for stochastic programming models generated with PySP based on rep-
resentative scenarios are always superior to benchmark solutions. In this section,
we describe decision makers with four different attitudes to deal with risk, which
are pessimistic, moderate, optimistic and rational attitudes. In the following, the
assumptions for these attitudes are introduced (Fan et al., 2017b):

1. Pessimistic (pess)
Decision makers with pessimistic attitudes prepare for the worst possible
catastrophe, which is characterized by the longest duration and the earli-

Fig. 6. Monte Carlo methods for generating a large set of out-of-sample values
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est time of occurrence. fpess and Qpess indicate the parameter set and the
constraints set for the worst possible catastrophe.

2. Moderate (mod)
Decision makers with moderate attitudes believe that a moderate catastro-
phe will happen. The moderate catastrophe has the mean duration and the
mean occurrence time. fmod and Qmod indicate the parameter set and the
constraints set for the moderate catastrophe.

3. Optimistic (opt)
Decision makers with optimistic attitudes believe that catastrophes will
never happen. They anticipate catastrophes in no way. For this type of deci-
sion makers, disruptions appear to be totally unpredictable in the first stage.
fopt and Qopt indicate the parameter set and the constraints set for a case
without the occurrence of any catastrophe.

4. Rational (sp)
Decision makers with rational attitudes are aware of the fact that catastro-
phes may be of different severities. Probability distributions of their time
of occurrence and duration are incorporated in a stochastic programming
model for decision support.

In addition, the expected value of wait-and-see (ws) solutions for each prob-
lem instance represents a lower bound. The ws solution represents an ideal situ-
ation that all uncertainty will be resolved before decisions have to be made. For
the sake of a compact presentation, we treat ws as an additional element for the
set of attitudes. We use a set U = {pess, mod, opt, sp, ws} to indicate solutions
introduced above.

A large set of out-of-sample scenarios is generated with Monte Carlo sam-
pling for simulating possible realizations (see Section 5). Solutions by solving a
stochastic programming model (SP solutions) and solutions for decision makers
with different attitudes are tested with these scenarios. Ω indicates the set of
out-of-sample scenarios. gω indicates the parameter set for each scenario ω ∈ Ω.
The size of Ω is N . The expected value of ws solutions is calculated by (6).
The expected values of solutions for decision makers with different attitudes are
deduced from (8).

1. Expected value of wait-and-see solutions
A ws solution is generated until an observation of the uncertainty is made (Madan-
sky, 1960). The expected value of ws solutions for representative scenarios
can be obtained by:

EVws =
1

N

∑

ω∈Ω

[
min
x,yω

(c · x+ gω · yω)
]

(6)

As mentioned in Section 5, scenarios generated with Monte Carlo sampling
have the same probability. Thus, the probability for each scenario is 1

N .
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2. Expected value of solutions for decision makers with different at-
titudes
The pess, mod and opt solutions are obtained by solving the model in (1) with
a single scenario. fpess, fmod and fopt are the secon stage parameters. Then
the stochastic programming model in (1) is transformed into a deterministic
model in (7). x∗

u indicates the first-stage optimal solution for a decision maker
with an attitude u ∈ {pess,mod, opt}.

x∗
u ← min

x,y
(c · x+ fu · y)

s.t. (x, y) ∈ Qu, ∀u ∈ {pess,mod, opt}
(7)

Note that the SP solution, which is indicated by x∗
sp, is not included in (7).

x∗
sp is deduced by solving the stochastic programming model in (1). The

expected value of a solution for a decision maker with an attitude u ∈
{pess,mod, opt, sp} is calculated by:

EVu = c · x∗
u +

1

N
min
yω

∑

ω∈Ω

(gω · yω)

s.t. (x∗
u, yω) ∈ Qω, ∀u ∈ {pess,mod, opt, sp} , ω ∈ Ω.

(8)

GAPu indicates the gap between the expected value of a solution x∗
u and the

expected value of ws solutions. It shows the quality of a solution: The smaller
GAPu, the better the solution. GAPu is calculated by:

GAPu =
EVu − EVws

EVws
(9)

In Fig. 7, a flowchart is presented for explaining processes of computational
experiments. The following abbreviations are used:

Param(s) : Parameter(s)
Probs : Probability distribution functions
SimScen : Scenarios for simulating possible realizations (out-of-

sample)
RepScen : Representative scenarios for the stochastic programming

model (in-sample)
DET
Model

: Deterministic model, which is the SP model with a single
scenario

Incorporating probability distribution functions of uncertain parameters as
input, representative scenarios (s ∈ S) and scenarios for simulating possible
realizations (ω ∈ Ω) can be generated with a RepScen Generator and a SimScen
Generator, respectively. Scenario generation methods for RepScen Generators
depend on the characteristics of uncertain parameters (see Section 5). Monte
Carlo sampling can be used for SimScen Generators. For problem instances with
a medium-scale of possible realizations, the full list of all possible realizations
can be included in set Ω (Fan et al., 2014).
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Set S
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Generator

Probs for
Uncertain
Params
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{pess,mod,opt}

SimScen
Set Ω
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Generator

x∗
u

EVws Model

EVws

EVu Model
u ∈ {pess,mod, opt, sp}

Fig. 7. A flowchart for computational experiments

With representative scenarios and the first-stage parameter set c as input,
a solution x∗

sp for the stochastic programming model can be obtained by using
PySP. With parameter set fu and c as input, the first-stage optimal solutions x∗

u

for decision makers with attitude u ∈ {pess,mod, opt} are obtained by solving
deterministic models (see (7)).

To evaluate the quality of a solution, each solution x∗
u | u ∈ {pess,mod, opt, sp}

is tested with a large number of scenarios (ω ∈ Ω) through an evaluation model.
EVu | u ∈ {pess,mod, opt, sp} is calculated according to (8). EVws is calculated
by solving (6). An identical first-stage solution for ws solutions is not required.
In order to compare the quality of different solutions, final results can be pre-
sented with box plots (see Fig. 8). Another way is calculating GAPu according
to (9) and presenting the obtained values in a table.
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Fig. 8. Presenting results; see Fan et al. (2017a)

7 Conclusion

When we try to realize automated business processes, Industry 4.0, the 5G era
or autonomous logistics, autonomous decision making under uncertainty is an
essential problem. This paper introduced how to generate and evaluate flexi-
ble supply chain plans under uncertainty by using stochastic programming. The
framework for supply chain planning problems presented here is a general frame-
work for decision making regarding problems under uncertainty. This paper is
meaningful as it provides a valuable reference for the research in the domain of
supply chain planning and decision making under uncertainty. For the next step,
it is important to develop an autonomous decision making system by combining
the framework for supply chain planning with a framework for big data analytics
for demand and risk prediction.
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1 Introduction

The current logistic system is affected by numerous inefficiencies by disconnect-
ing flows, creating empty movements and producing unuseful storage of goods.
[1], [2] and [3] list several symptoms of inefficiency and unsustainability of the
current logistic and transportation system, among which we can report the fol-
lowing ones:

- logistic networks are highly fragmented and mostly dedicated to specific
organizations or supply chains, which translates in a disconnection of flows.

- Even if transport means share the same road infrastructure, they are dedi-
cated to specific logistics networks and they often travel partially full.

- Empty trips (i.e. travelling without a payload) are not an exception but the
norm. Vehicles and containers often travel empty or have to travel additional
distances to reach the load to be transported on their way back.
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Abstract. The Physical Internet paradigm is redsigning the logic of 
moving goods around the planet, with the goal of making logistics more 
effective, sustainable and efficient. In this paper a road transportation-
network devoted to the PI paradigm is designed, modeled and imple-
mented. The problem deals with groupage transportation, including 
consolidation and deconsolidation centers in the network nodes where 
goods are loaded/unloaded in/out from containers. The goal is to serve 
the demand of some shipment orders belonging to different areas with 
the final goal of minimizing total costs, exploiting trucks capacity and 
reducing empty trips. A mixed-integer linear programming (MILP) 
model is presented and an experimental analysis is provided. The results 
obtained have shown the effectiveness of the approach proposed.
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- Working conditions of truckers are difficult. Being the road transport still
highly used to cover long distances, many drivers are forced to spend many
hours and days on roads, thus sacrifying their family and social life, and
undergoing more easily health and road accidents (in the United States, more
than 50 % of truck incidents in the last years are attributable to tiredness
and lack of sleep). The serious and chronic problem of high driver turnover
rate, with enormous associated costs encountered by the trucking industry,
is also pointed out in [6], where the authors consider the strategic design
of a relay network that may potentially help to alleviate this problem by
providing a network that facilitates an assignment of drivers to their home
bases. In such a network, a certain number of relay point locations (i.e. road-
road transit points) are determined, as well as the route for each truckload
on the network.

- Goods often remain unused, stored where there is no need and not available
where they should be.

To improve the way things are travelling and stored around the world, a new
way of making logistics has been proposed: the Physical Internet (PI) ([1] - [5]).

The idea of Physical Internet is envisioned to completely change the way of
producing and transporting goods around the planet. PI would mimic the way
information is packaged, distributed and stored in the virtual world to improve
real world logistics ([1]-[4]). Accordingly, representing the virtual data transmis-
sion, freight travels from hub to hub in an open network rather than from origin
to destination directly. Cargo is routed automatically and, at each segment, is
bundled for gaining efficiency.

The literature regarding PI is still scarce. Yang et al. [5] proposed a nonlinear
optimization model and a simulated annealing heuristic to investigate inventory
management problems for fast-moving consumer goods in the PI, where goods
are stored and distributed in an interconnected and open network of hubs. In
[7], Sallez et al. focused on the informational context of modular, reusable and
smart containers, called PI-containers, specifically dedicated to the PI network.
PI can also help enhancing the way things are transported in local areas and
cities, as properly highlighted in [8].

Moreover, PI can help reducing the number of empty trips performed by
vehicles; in the literature, some interesting contribution on empty transport re-
sources in road transportation are provided, for instance, by Dejax and Cranic
[9], Caballini et al. [10], and Schulte et al. [11].

In this paper, groupage activities are considered to exploit truck capacities. In
[12], a distributed architecture planning of transportation activities is presented
with the goal of better utilizing transport resources by grouping several orders
of transport. Wasner and Zapfel [13] tackles the problem of optimally design a
depot and hub transportation networks for parcel service providers. For enhanc-
ing groupage and collaborative transportation, Vanovermeire and Sorensen [14]
proposed a model that integrates a cost allocation method into the optimization
of the synchronized consolidation of transportation orders.
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The goal of the present paper is to define and model a road network where
groupage is encouraged and different road alternatives are permitted, with the
final goal of minimizing total costs, exploting truck capacities and minimizing
empty return trips.

In this way, negative externalities related to driver conditions are reduced,
in terms of better social impacts and exploitation of driving hour rules (which
also translates in a better optimization of mandatory breaks).

The remaining of the paper is organized as follows. Section 2 provides a
detailed description of the problem, whereas in section 3 the mathematical model
is formalized. Section 4 shows the results obtained by running an experimental
analysis, and, finally, section 5 discloses some conclusions and presents future
research ideas.

2 Problem Description

In the present section, the problem under study is described. The aim is to
satisfy some order demands by utilizing groupage technique and providing
different road mode alternatives with the final goal of minimizing total costs
and total penalty incurred for late order deliver. Moreover, empty trips are also
minimized and truck capacity exploited at best.

Figure 1 provides a general sketch of the problem considered: a certain
number of orders has to be delivered and each order refers to a transporta-
tion demand betweend different areas (for instance, as shown in Figure 1, the
origin and destination nodes of order i are located respectively in area 1 and
area 2). Moreover, each order is characterized by a feasible topological path,
that represents the path formed by an acceptable sequence of nodes: from the
source node to the consolidation/deconsolidation node of the source area, to
eventually some road-road transit nodes - if the mid-distance road mode is
chosen-, to the consolidation/deconsolidation node of the destination area, up
to the final destination node. This means, for instance, that the path from
a consolidation/deconsolidation node of a certain area to another consolida-
tion/deconsolidation node of the same area is not allowed.

As shown in Figure 1, three different types of nodes are considered: (i)Origin-
Destination (OD) nodes represent the nodes where boxes/parcels have to be col-
lected or delivered (indicated with blue circles in Fig. 1. Note that each node can
be at the same time origin and destination of different orders); (ii)Consolidation/
Deconsolidation (CD) nodes, where containers are staffed or stripped with boxes;
and (iii) Road-Road (RR) transit nodes, in which trailers bringing containers
changes their tractor/driver on the different segments of the mid-road transport
route (note that each transport route has been assumed to be around 250 km
to allow a driver to go back to its origin in a working day of 8 hours).

Moreover, three types of transport modes are considered: (i) Long-distance
road transport, which refers to long travelling roads that connect one area with
another one; (ii) Mid-distance rode transport that considers the distance covered
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by trucks between road-road transit centers and (iii) Short-distance road trans-
port, which refers to local transportation carried out by vans in local areas to
pick up and deliver boxes.

The first and last mile transport to/from consolidation/deconsolidation cen-
ters is performed with the short-distance road transport, while the distance
between consolidation centers may be covered by using long-distance or mid-
distance road transport.

Long and mid-distance road transports are modeled with resources (i.e.
trucks) flowing into the network (so allowing minimizing empty trips), while
the short-distance road transport is managed with a daily aggregated capacity,
in terms of number of vans per each node CD, as it will be better explained in
in the next section.

Fig. 1: General representation of the problem

3 Mathematical Formulation

In this section, the problem described above is detailed and stated as a mathe-
matical program.

The problem can be described considering a transportation network whose
topology is represented by a directed graph G = (N,A), where N is the set
of nodes associated with different locations (i.e., customers, road-road exchange
points, consolidation/deconsolidation centers), andA is the set of arcs connecting
such locations. The problem consists in serving a set O of transportation orders
exploiting the different transportation means available on such network, with the
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aim of minimizing the overall transportation cost and the total penalty incurred
for late order delivery.

In order to formalize the model, the following notation is introduced:

– NO ⊂ N and ND ⊂ N are respectively the set of origin and destination
nodes associated with transportation demand; note that in general NO ∩
DD �= ∅ as a same location can be both origin and destination of orders;

– L the set of local areas where the origins and destinations of orders are
located;

– N I is the set of intermediate nodes defined as N I = N \ (NO ∪ND), where
N I = NC ∪NG, being NC the set of consolidation/deconsolidation centres
and NG the set of road-road interchange points;

– A = ∪l∈ACA
l, with AC = {(O,C), (C,G), (G,G)}, where O,C,G denotes

respectively the classes of origins/destinations of orders, consolidation cen-
tres and road-road transit nodes, so that A(a,b) represents the set of arcs
connecting the two classes of nodes a and b. Let δ+n and δ−n represent respec-
tively the forward and backward star of a generic node n.

– Cnm, (n,m) ∈ A, the unitary transportation cost associated with arc (n,m)
and computed taking into account the transportation kilometre cost and the
type of transport mode;

– CE , the unitary cost for unused transportation capacity that is introduced
to penalize the long- and mid-distance road transportation associated with

– ∀i ∈ O are defined:
• Qi, the quantity of goods to be transported expressed in terms of weight
or volume;

• Si, the release date, that is the earliest date at which the order can be
picked up at the order node;

• Di, the due date, that is the time at which the order should be delivered
at the destination without incurring in penalty costs;

• DDi, the deadline that is the latest date within which the order must
be delivered at its destination;

• CD
i , the unitary tardiness cost for delivering the order i late respect to

its due date;
• oi ∈ NO, di ∈ ND, respectively the origin and destination nodes for
order i;

• lOi , l
D
i ∈ L, the local areas to which the origin and destination of order i

respectively belong.
• ATR

r = {((n, t), (m, t+T r
n,m)

)
,
(
(m, t), (n, t+T r

n,m)
)
: t = 1, ..., H−T r

n,m},
the set of transportation arcs between node n and m in the planning
horizon;

• AI
r = {((n, t), (n, t + 1)

)
,
(
(m, t), (m, t + 1)

)
: t = 1, ..., H − 1}, the set

of arcs modeling inactivity of the transportation resource, and fr a final
fictitious flow sink node.
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for short-distance road transportation, i.e., for arcs (n,m) ∈ A(O,C), whereas
associated with specific resources for road long-distance and mid-distance trans-
portation, i.e., (n,m) ∈ A \A(O,C). Then, the overall set of road transportation
resources that are explicitly considered is denoted by R, and the subset of re-
sources of a given mode available for the transport on arc (n,m) ∈ A is denoted
as Rn,m ⊆ R. Each resource r ∈ R is hence assumed associated with a single
pair of nodes n and m, i.e., it can be used to perform transportation activities
between such two nodes.

For each resource r, a maximum transportation capacity Cmax
r is set. For

r ∈ R a fixed cost CR
r is paid if the resource is used for transport activities.

The travel time needed by a resource r ∈ R to cover an arc (n,m) ∈ A is denoted
as T r

n,m. It is also assumed that the time T r
n,m includes the service time in nodem

needed for loading and unloading boxes in consolidation/deconsolidation centers
(i.e., stuffing and stripping containers) and for changing tractors in road-road
transit points.

For each order i ∈ O, a transportation sub-network can be defined as Gi =
(Ni, Ai), consisting of the set of feasible paths in G from oi to di.

The planning considers a time horizon H subdivided into a set P of time
periods, with P = {1 . . . H}. Therefore, associated with each order, a time-space
flow network GT

i = (NT
i , AT

i ) is defined. The set NT
i includes time-space nodes

denoted with the pair (n, t) where n ∈ Ni and t ∈ P ; in particular, the flow from
a node (n, t) represents a part of the quantity of goods of an order departing on
period t from location n. Then, NT

i = {(n, t) : n ∈ Ni, t ∈ P, t ≥ Tmin(oi, n)}
where Tmin(oi, n) is the minimum time for reaching n from the origin oi in graph
Gi. Note that for n = oi, T

min(oi, oi) = Si. For each order i ∈ O, a set of nodes
NTO

i ⊆ NT
i is defined as NTO

i = {(oi, t) : Si ≤ t ≤ LSi}, where LSi is the latest
start of order i, i.e., LSi = DDi − Tmin(oi, di). A positive flow contribution
equal to Qi enters the time-space flow network GT

i at node (oi, Si).

The set AT
i includes directed arcs between pairs of time-space nodes, which in

particular model either transportation between different locations or inventory
at the same location. More specifically, if an arc (n,m) ∈ Ai is included in
the space network and if r ∈ Rn,m is a resource available for that arc, then
an arc

(
(n, t), (m, t + T r

n,m)
) ∈ AT

i . Note that the duration of the considered
time periods must be determined in order to allow a consistent circulation of
the resources whose capacity is explicitly modeled, i.e., the resources of medium
and long-distance road transportation. Differently, the local collection/delivery
of goods within an area is modeled as a daily activity. The set AT

i also includes
the set of inventory arcs AI

i = {((n, t), (n, t+ 1)
)
, ∀(n, t) ∈ NT

i } connecting the
same physical location for a succession of time periods. A unitary inventory cost
CI

n is associated with each inventory arc in AI
i related to node n.
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The space-time flow network for an order i is completed introducing a ficti-
tious final sink node fi that is connected with all the space-time nodes (di, t), t =
Si+Tmin(oi, di), · · · , DDi, associated with the destination for i. Finally, an out-
going flow equal to Qi leaves the fictitious node fi.

Each transportation arc in the networks

r, t, n,m) specifying that a trans-
r, departs at time t from location n directed to

location m. The availability of a transportation resource in a location may dep-

of transportation arcs of a network GT
i can be denoted as ATR

i = AT
i \AI

i ,
also being ATR

i = ∪r∈RA
T
ir, where for each r ∈ R, AT

ir is the subset of arcs(
(n, t), (m, t+T r

n,m)
) ∈ ATR

i . Note that when a set AT
ir is specified, then also the

related arc (n,m) ∈ Ai is univocally determined, since a resource is assigned to
a single arc in the networks associated with an order. The overall set of trans-
portation arcs for a resource r associated with the shipments for all the orders
in O, i.e., included in any space-time flow network GT

i , i ∈ O, is denoted as
ATO

r = ∪i∈OA
TR
i .

Figure 2 shows a generic scheme of the space-time network above outlined.

Fig. 2: The space-time network.

In the network GT
i the following decision variables are defined:

– xira ≥ 0, ∀i ∈ O, r ∈ Rn,m, a = ((n, t), (m, t + T r
n,m)

) ∈ AT
ir, is a trans-

portation flow variable specifying the positive quantity of order i
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a shipment. A shipment represents a transportation activity executed with a
specific transportation resource between a pair of locations, characterized by a
starting time from the location of origin and by an arrival time at the location
of destination. Each transportation resource provides a transportation capacity
to an arc. A shipment is identified by a tuple (
portation, performed by resource

end on the routing of the resource in the transportation network. In general, the
set

GT
i , ∀i ∈ O, is associated with

transported



by resource r departing at time t from location n and reaching location
at t+ T r

n,m.

– sia ≥ 0, ∀i ∈ O, a =
(
(n, t), (n, t + 1)

) ∈ AI
i , is an inventory flow variable

variable specifying the positive quantity of order i in inventory at location
n from time t to time t+ 1.

– wit ≥ 0, ∀i ∈ O, t = Si + Tmin(oi, di), · · · , DDi, is a flow variable specify-
ing the positive quantity of order i arrived at destination di at time t
flow to the fictitious final sink node

– yra, r ∈ Rn,m, a = ((n, t), (m, t + T r
n,m)

) ∈ ATO
r , is a binary variable such

that yra = 1 if a shipment using resource r departs at time t from location
n directed to location m.

– ynr ≥ 0, ymr ≥ 0, r ∈ Rn,m, are two flow variables associated with the final
location of the resource r in the network GR

r .
– ura ≥ 0, r ∈ Rn,m, a = ((n, t), (m, t + T r

n,m)
) ∈ ATO

r , is a real variable
representing the unused transportation capacity of resource r during the
shipment between nodes n and m departing at time t.

– zr, ∀r ∈ R, is a binary variable such that zr = 1 if resource r is used in a
transportation activity.

The availability of a transportation resource in R is managed as follows:

– the short-distance road transportation between the demand origins and the
consolidation centers, as well as the deliveries between the consolidation
centers and the order destinations, is assumed to be provided by fleets of
small trucks (i.e. vans or similar vehicles) that, at the planning level, are
modeled considering a daily transport capacity disregarding their detailed
routing.

– differently from the short distance road resources, the mid and long-distance
ones are modeled taking into account the dynamics of resources during
time. In particular, the availability of the resources for such a road transpor-
tation is modeled through the binary variables yra, whose value is ruled by
the flow in a space-time resource network defined to represent the
(flow) of the resource r. In particular, for each r ∈ R a resource
GR

r = (NR
r , AR

r ) is introduced. The set of arcs of GR
r is defined as:

AR
r = ATR

r ∪AI
r ∪ {((n,H), fr

)
,
(
(m,H), fr

)} (1)

The set of nodes of GR
r is given by:

NR
r = {(n, t) : (n, t) ∈ ∪i∈ON

T
i , δ(n,t) ∩ATO

r �= ∅} ∪ {fr} (2)

i.e., they correspond to the nodes in the space-time networks for the orders
that are incident to a transportation arc associated with resource r, plus the
fictitious sink node fr.

The planning of the transportation activities in order to serve the orders in
O over the network G can be formulated as a set of network flow problems on
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m

which
fi.

vi∀i ∈ O is a flow variables representing the boxes
for order i which are not served.

routing
network



the networks GT
i , i ∈ O with capacity coupling constraints on the transportation

resource r ∈ R, whose availability is in turn modeled as a flow in the resource
networks GR

r , r ∈ R.
The mathematical problem formulation follows.
Problem.

min Z =
∑

i∈O

∑

(n,m)∈Ai

∑

r∈Rnm

∑

a∈AT
ir

Cnmxira+

∑

i∈O

∑

r∈AI
i

CI
asia +

∑

r∈RG

CG
r zGr +

∑

i∈O

∑

t=Di+1··· ,DDi

CD
i (t−Di)wit + CE

∑

r∈R

∑

a∈ATO
r

ura (3)

subject to

∑

(oi,m)∈Ai

∑

a∈δ+
(oi,Si)

∩AT
ir

xi0a +
∑

a∈δ+
(oi,Si)

∩AI
i

sia + vi = Qi ∀i ∈ O (4)

∑

(n,m)∈Ai

∑

r∈Rn,m

∑

a∈δ+
(n,t)

∩AT
ir

xira +
∑

a∈δ+
(n,t)

∩AI
i

sia

−
∑

(k,n)∈Ai

∑

r∈Rk,n

∑

a∈δ−
(n,t)

∩AT
ir

xira −
∑

a∈δ−
(n,t)

∩AI
i

sia = 0

∀i ∈ O ∀n ∈ Ni \ {oi, di}, (n, t) ∈ NT
i (5)

wit −
∑

(k,di)∈Ai

∑

r∈Rkdi

∑

a∈δ−
(di,t)

∩AT
ir

xira = 0 ∀i ∈ O ∀(di, t) ∈ NT
i (6)

∑

i=Si+Tmin(oi,di),··· ,DDi

wit + vi = Qi ∀i ∈ O (7)

∑

i∈Ol(n)

∑

a∈AT
i :dep(a)=(oi,t)

xi0a ≤ Cmax
n ∀n ∈ NC ∀t ∈ P (8)

∑

i:a∈AT
ir

xira + ura = Cmax
r yra ∀r ∈ R ∀a ∈ ATO

r (9)

∑

a∈δ+
(n,t0)

yra = zr ∀r ∈ R (10)
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+
∑

i∈O

mvi



∑

a∈δ+n

yra −
∑

a∈δ−n

yra = 0 ∀r ∈ R ∀n ∈ NR
r \ {(n, t0)} (11)

ynr −
∑

a∈δ−
(n,T

f
r )

yar = 0 ∀r ∈ R (12)

ymr −
∑

a∈δ−
(m,T

f
r )

yar = 0 ∀r ∈ R (13)

ynr + ymr = 1 ∀r ∈ R (14)

xira ≥ 0 ∀i ∈ O ∀r ∈ Rn,m ∀a = ((n, t), (m, t+ T r
n,m)

) ∈ AT
ir (15)

sia ≥ 0 ∀i ∈ O ∀a =
(
(n, t), (n, t+ 1)

) ∈ AI
i (16)

wit ≥ 0 ∀i ∈ O ∀t = Si + Tmin(oi, di), · · · , DDi (17)

yra ∈ (0, 1) ∀r ∈ Rn,m ∀a = ((n, t), (m, t+ T r
n,m)

) ∈ ATO
r (18)

ynr ≥ 0 ∀r ∈ Rn,m (19)

ymr ≥ 0 ∀r ∈ Rn,m (20)

ura ≥ 0 ∀r ∈ Rn,m ∀a = ((n, t), (m, t+ T r
n,m)

) ∈ ATO
r (21)

zr ∈ (0, 1) ∀r ∈ R (22)

The resulting problem is a Mixed Integer Linear Program (MILP) in which
the objective function (3) is the sum of six different terms: the transportation
cost (associated with the flow in transportation arcs of the GT

i networks) re-
lated to the whole demand, the inventory cost (associated with the flow in the
inventory arcs of the GT

i networks) due when goods have to remain in the same
location for one or more time periods, the fixed cost related to the use of trans-
portation resources, the tardiness cost paid for the orders whose final delivery
exceeds the related deadlines, the sum of the penalties due to not full truck trips

The flow conservation in the networks GT
i is guaranteed by constraints (4)-

(7). Constraints (4) state that, for each order i ∈ O, the forward flow from
the origin node ii at the release time Si has to be equal to the quantity of
goods to be transported. Constraints (5) guarantee the flow conservation for a
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is a large penalization parameter.



generic node in different both from the origin and the destination of the
order. Constraints (6) model the flow conservation for the destination nodes,
whereas (7) impose that the flow exiting from the final fictitious sink nodes for
each networks GT

i equals the quantity of goods for the orders. In order not to
violate the transportation capacity, constraints (8) and (9) are introduced. Such
constraints, in particular, link the flow on the transportation arcs of the GT

i

networks with the availability of the long-distance road resources for such arcs,
defining also the value of the unused capacity as slack variables ura.

Constraints (10)-(14) model the flow conservation for each resource net-
work GR

r . Constraints (10) define the entering flow in each resource network, so
modeling the initial availability of the related resources in the node v0 = (n, t0),
where (n, t0) ∈ NR

r , being t0 the fist time period in the planning horizon in
which r can depart from a node for transporting an order in any network GT

i .
Hence, (10) also define the forward flow from nodes (n, t0) in each networks GR

r .
Constraints (11) are the flow conservation for the generic nodes in the networks
GR

r . Constraints (12) and (13) give the flow conservation for the nodes associ-
ated with the two locations n and m, between which the resource r can travel, in
correspondence with the last time period, denoted as T f

r , in which a transport
can end in the networks GT

i , i ∈ O. Then these two sets of constraints define
the flows on the arcs linking such final nodes (n, T f

r ) and (m,T f
r ) with the final

fictitious node fr in each network GR
r , i.e., the value of the variables y

n
r and ymr .

Constraints (14) impose the flow conservation for the fictitious node fr. Finally,
Constraints (15)- (22) define the decision variables of the problem.

4 Experimental Analysis

An experimental analysis has been carried out to validate the efficacy of the
mathematical problem here proposed. The model has been implemented in Vi-
sual Studio 2015 C � using Cplex 12.7 as MILP solver. All the computations
have been executed using a laptop with the following features: Intel R core TM
i7 CPU M430 2,7 GHz with 16 GB of RAM.

An instance generator has been implemented to randomly generate instance
features. In the following, an instance having the following features is analyzed:
30 orders over 3 areas; between 20 and 160 boxes per each order; 16 origin-
destination nodes (OD); 3 consolidation/deconsolidation nodes (CD), one per
each area; 25 road-road transit exchange nodes (RR).

The capacity of each container (for mid- and long-distance transport) and van
(for local transport) has been set equal to 440 and 320 boxes, respectively. The
number of resources for mid and long-distance road transport has been set to
122. Besides, the planning horizon has been fixed to 30 days and the time step
to half a day (morning and afternoon).

Figure 3 displays the nodes distribution over the three areas generated.

The characteristics related to orders and parameters used in the experimental
analysis are shown in Tables 1 and 2, respectively.
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Fig. 3: The space-time network for a transportation resource.

Table 1: Data related to orders

Order Quantity Release Duedate Deadline Origin Origin Destination Destination
ID node area node area

0 119 5 9 18 8 0 18 2
1 144 2 7 14 20 2 6 0
2 90 5 8 16 4 0 11 1
3 140 7 11 22 17 2 7 0
4 124 7 9 18 11 1 8 0
5 52 2 7 14 7 0 19 2
6 123 2 5 10 16 2 13 1
7 94 7 9 18 10 0 12 1
8 154 8 10 20 5 0 14 1
9 24 6 8 16 16 2 14 1
10 53 6 10 20 20 2 6 0
11 45 5 8 16 19 2 12 1
12 29 7 9 18 13 1 5 0
13 63 5 8 16 16 2 11 1
14 77 4 8 16 18 2 4 0
15 38 6 8 16 8 0 15 1
16 156 0 5 10 18 2 8 0
17 128 10 12 24 13 1 5 0
18 86 10 12 24 12 1 5 0
19 50 6 8 16 17 2 15 1
20 148 6 8 16 13 1 18 2
21 53 3 8 16 4 0 19 2
22 98 3 6 12 10 0 13 1
23 89 3 6 11 19 2 13 1
24 91 5 8 16 14 1 19 2
25 66 1 4 8 5 0 13 1
26 152 3 6 12 7 0 14 1
27 132 8 10 20 15 1 6 0
28 125 5 8 16 19 2 11 1
29 26 6 8 16 14 1 20 2

Table 3 provides the objective function value and its composition. It can be
noticed that, in this case, each order is fully served.
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Table 2: Problem parameters

Parameter Value

Long-Distance Truck Speed (km/h) 70
Long-Distance Truck Speed (km/h) 30

Planning Horizon (days) 21
Long-Distance Capacity (boxes) 440
Short-Distance Capacity (boxes) 320

Maximum Number of Long-Distance Trucks 2
Unitary Long-Distance Road Cost (/km x box) 1,2
Unitary Mid-Distance Road Cost (/km x box) 0,8
Unitary Short-Distance Road Cost (/km x box) 1,4
Inventory cost at Node type OD (/day x box) 0,1
Inventory cost at Node type CD (/day x box) 0,08
Inventory cost at Node type GG (/day x box) 0,08

Tardiness Cost (/day x box) 0,2
Mid Road Fixed Cost (/truck) 30
Long Road Fixed Cost (/truck) 15

Cost of Not Full Transport (/box) 50

Table 3: Global instance results obtained

Objective function value 6034716.12
Total transportation cost 5271924.64

Total inventory cost 41051.48
Total tardiness cost 1940

Cost for not full trucks 719800

Total quantity not served 0
Number of not served orders 0

Tables 4 and 5 show the results obtained, respectively, for order � 2 and order
� 16; in both tables the following data are provided: arc type, starting node ID
and type, starting time both in terms of day and period of the day (i.e. morning
if the value is equal to 0 and afternoon if it is 1), travel time, ending node ID
and type, ending time both in terms of day and period of the day (i.e. morning
if the value is equal to 0 and afternoon if it is 1), resource used and quantity
transported.

In case of order � 2, the mid-distance road transport is used (as a matter
of fact, RR nodes are encountered), whereas in the latter, i.e. for order � 16,
long-distance road mode is chosen as the optimal way of transport between the
consolidation and deconsolidation nodes.
column, a value equal to −1
aggregate level.

Table 6 provides a detailed picture of the path covered, in each half day, by
resource (i.e., truck) � 50, which is used -for instance- to serve order � 2. It can
be observed that, as it should be, this truck goes back and forth between RR
node � 21 and RR node � 22 (written in red color in Figure 6).

Besides, in order to provide the evidence that groupage transportation is
executed and promoted by the model, Table 7 shows that orders � 2, 7 and 8
are transported on the same truck (i.e. resource � 50) in day � 12.
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Moreover, in the ”Resource” column,
indicates local resources that are managed at an



Table 4: Results obtained for order � 2

Order Arc Start Start Start Start Travel End End End End Res. Quant.
ID type node node time time time node node time time transp.

ID type (day) 0=morn (days) ID type (day) 0=morn
1=after 1=after

2 RoadLocal 4 OD 11 0 0.104 0 CD 11 0 -1 90
2 RoadMid 0 CD 11 1 0.443 21 RR 12 0 6 90
2 RoadMid 21 RR 12 0 0.434 22 RR 12 1 50 90
2 RoadMid 22 RR 12 1 0.434 23 RR 13 0 55 90
2 RoadMid 23 RR 13 0 0.434 24 RR 13 1 58 90
2 RoadMid 24 RR 13 1 0.434 25 RR 14 0 63 90
2 RoadMid 25 RR 14 0 0.434 26 RR 14 1 68 90
2 RoadMid 26 RR 14 1 0.434 27 RR 15 0 71 90
2 RoadMid 27 RR 15 0 0.420 1 CD 15 0 14 90
2 RoadLocal 1 CD 15 1 0.057 11 OD 15 0 -1 90

Table 5: Results obtained for order � 16

Order Arc Start Start Start Start Travel End End End End Res. Quant.
ID type node node time time time node node time time transp.

ID type (day) 0=morn (days) ID type (day) 0=morn
1=after 1=after

16 RoadLocal 18 OD 0 0 0.03773 2 CD 0 0 -1 156
16 RoadLong 2 CD 0 0 5.51080 0 CD 6 0 2 156
16 RoadLocal 0 CD 6 0 0.11219 8 OD 6 -1 -1 156

Finally, from a computational viewpoint, the above described instance has
been solved in a computational time equal to 30 minute, reaching a gap of 5%
from the optimum value. The number of variables and linear constraints that
have been generated are respectively 56715 (of which 24154 are binary variables)
and 53863.

5 Conclusion

In the present paper, a model devoted to represent a road transportation network
in a Physical Internet environment has been provided. The aim is to minimize
total costs, exploiting trucks capacity and reducing empty truck trips, by using
groupage transportation and including consolidation and deconsolidation centers
in the network nodes, as well as road-road transit exchange points where trucks
can exchange containers. A MILP model has been designed, formulated and
implemented and preliminary results obtained on an instance of 30 orders have
shown the effectiveness of the proposed approach.

Future research will be devoted to make a more extensive experimental and
computational analysis, to develop a proper heuristic in order to manage bigger
problem instances and to extend the problem formulation to the intermodal case,
considering also rail transportation as an alternative mode.
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Table 6: Results obtained for mid-distance road resource � 50 at day � 12 -
groupage transportation

Table 7: Results obtained for mid-distance road resource � 50 at day � 12 -
groupage transportation
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esource
ID

Start
Node
Type

Start
Time
(Day)

Start
Time
(M/A)

End
Node
Type

Time
(Day)

End
Time
(M/A)

End

50 21 0 0 21 0 1
50 21 0 1 21 1 0
50 21 1 0 21 1 1
50 21 1 1 21 2 0
50 21 2 0 21 2 1
50 21 2 1 21 3 0
50 21 3 0 21 3 1
50 21 3 1 21 4 0
50 21 4 0 21 4 1
50 21 4 1 21 5 0
50 21 5 0 21 5 1
50 21 5 1 21 6 0
50 21 6 0 21 6 1
50 21 6 1 21 7 0
50 21 7 0 21 7 1
50 21 7 1 21 8 0
50 21 8 0 21 8 1
50 21 8 1 21 9 0
50 21 9 0 21 9 1
50 21 9 1 21 10 0
50 21 10 0 21 10 1
50 21 10 1 21 11 0
50 21 11 0 21 11 1
50 21 11 1 21 12 0
50 21 12 0 22 12 1
50 22 12 1 22 13 0
50 22 13 0 22 13 1
50 22 13 1 22 14 0
50 22 14 0 22 14 1
50 22 14 1 21 15 0
50 21 15 0 21 15 1
50 21 15 1 21 16 0
50 21 16 0 21 16 1
50 21 16 1 21 17 0
50 21 17 0 21 17 1
50 21 17 1 21 18 0
50 21 18 0 21 18 1
50 21 18 1 21 19 0
50 21 19 0 21 19 1
50 21 19 1 21 20 0
50 21 20 0 21 20 1
50 21 20 1 21 21 0
50 21 21 0 21 21 1
50 21 21 1 21 22 0
50 21 22 0 21 22 1
50 21 22 1 21 23 0
50 21 23 0 21 23 1
50 21 23 1 21 24 0
50 21 24 0 21 24 1

R

Order Arc Start Start Start Start Travel End End End End Res. Quant.
ID type node node time time time node node time time transp.

ID type (day) 0=morn (days) ID type (day) 0=morn
1=after 1=after

2 RoadMid 21 RR 12 0 0.43431 22 RR 12 1 50 90
7 RoadMid 21 RR 12 0 0.43431 22 RR 12 1 50 62
8 RoadMid 21 RR 12 0 0.43431 22 RR 12 1 50 154
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Abstract Robotic fulfillment systems are becoming commonplace at
warehouses across the world. High-density, grid-based storage systems
in particular, such as the AutoStore system, are being used in a variety
of contexts, but very little literature exists to guide decision makers in
picking the right policies for operating such a system. Storage policies
can have a large effect on the efficiency and storage capacity of robotic
fulfillment systems. We therefore introduce a discrete event simulation
for grid-based storage and examine input storage policies under a couple
of storage scenarios. Our simulation provides decision makers with an
easy way of testing policies before implementing them in a real system,
and shows that selecting the correct policy can lead to up to a 7% input
performance improvement, and 60% better box utilization.

Keywords: robotic fulfillment, grid-based storage, simulation

1 Introduction

Warehouses are becoming increasingly automated. Several types of automation
have been present in warehouses for several decades or more, such as conveyor
belts, sorting units and specialized vehicles. However, more complex forms of
automation are steadily taking hold. In particular, automated picking systems
are becoming more and more common, as these systems can increase warehouse
efficiency, lower costs, and make the working environment more comfortable for
human employees.

In its more basic form, manual, or pickers-to-parts, order fulfillment in a
warehouse involves several steps1. First, one or more orders are selected for ful-
fillment. Second, the products required to fulfill the order are picked from the
warehouse; in a manual system, this involves an employee walking or driving
through the warehouse and locating the necessary products. Third, customiza-
tion may be performed on some products. Fourth, the employee consolidates the
products for each order into one or more boxes and sends them to be stored until
they can be shipped to customers.

1 We limit the scope of this paper to systems that retrieve goods in small quantities
(i.e., not pallets).
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Automated picking systems generally replace the second step in the above
process, and is called parts-to-pickers. Instead of a person gathering the items
necessary for an order, robots do it instead. A variety of options exist to do
this, including rack carrying robots from Amazon Robotics (formerly Kiva Sys-
tems) [1], the “shuttle-based” conveyor system CycloneCarrier [5] from Swisslog,
the Tornado [22] “case storage system” also from Swisslog, and the grid-based
robotic retrieval system AutoStore [2]. While rack carrying and automated con-
veyor systems place an emphasis on retrieval efficiency, grid-based systems focus
on maximizing the use of available warehouse space for storing goods.

The operations research (OR) literature explores a number of aspects of ful-
fillment systems, including some automated ones (see [6] for an overview). While
some automated systems share similar optimization and decision support chal-
lenges, the different types of systems for the most part form unique ecosystems,
requiring customized algorithms for effective use. Grid-based storage in partic-
ular has seen little attention in the literature, despite containing a number of
interesting OR problems.

In this paper, we create a simulation of an automated grid-based storage
system similar to AutoStore and evaluate different policies for storing goods in
the system. The novel components of this paper are as follows:

1. A discrete event simulation for an automated grid-based storage system2

2. Two heuristics for placing products into the storage grid
3. An experimental evaluation of the strategies with business insights.

We examine two simple policies for storing goods in the system in two cases.
In the first, bins can only be used for a single type of product, whereas in the
second a divider can be placed in a bin and two types of products can be stored.
Our results show that dividers do not provide significant productivity gains
unless there is a very high likelihood that the products will be ordered together,
and that the choosing a good input policy can provide up to 5% higher output
efficiency.

This paper is structured as follows. We first describe the setting of automated
grid-based storage in Section 2, followed by an overview of the related literature
in Section 3. We formalize our simulation in Section 4 and show computational
results in Section 5. Finally, we conclude and discuss future work in Section 6.

2 Automated Grid-based Storage

In grid-based storage systems, products are stored in bins that are stacked on
top of each other and laid out into a grid of rows and columns. Figure 1 shows
a sample system with four robots. In existing systems, such as the AutoStore
system, bins in a system are homogeneous, but they can be divided to store
different products in one bin (see Figure 2). Robots store and retrieve bins by

2 We note that the AutoStore system has a simulation available for certain users of
the system, but the simulation is not public and its capabilities are unknown.
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.

Figure 1: A visualization of the grid-based stor-
age system AutoStore.

Figure 2: A bin with
a single separator, and
locations for additional
separators.

traveling on top of the grid. The robots lift and transport bins to work stations,
located to the sides of the grid (or, in special cases, in a tunnel through the grid).
Ports are visible in Figure 1 as empty stacks on the sides of the grid. In principle,
ports can be used for either input or output, however, in practice, they are often
either used exclusively for one or the other. When workers are done processing
a box, the robots bring it from the work station back to a free location. Work
stations are the places where pickers can store the products in the bins. When
the system receives an order, the robots start working. The robots in a system
are all based on the same hardware, however systems generally partition robots
into sorting and transport robots. If a requested bin is not on the top level,
the sorting robots must re-sort the bins. They lift all bins that are blocking the
requested bin and move them to nearby locations. After sorting, the transport
robots can grab the bin and bring it to the work station where pickers can take
a product out of the bin to satisfy an order.

The layout of the warehouse is block storage, but the system still deals with
dynamic storage in contrast to other systems using block storage [13]. Pickers
do not have to walk through the warehouse because the robots transport the
bins with the products to them. This leads to a more efficient process of picking
because the travel time in a manual picking system takes about 50% of the entire
picking time [21]. The ports can have a queue for bins so that pickers do not
have to wait for the next bin.

Grid-based storage systems can be tuned with policies or optimization models
in a number of ways. Multiple robots can coordinate to retrieve or store bins
faster, more ports can be added for faster picking, and even the grid can be
extended after a system is already built. Therefore, it is possible for a company
to start with a small warehouse and extend it iteratively. The layout is flexible
and the grid can be built around pillars and other static obstacles.

A technical implementation of the robot-based warehouse system is the pro-
duct AutoStore. This system is space efficient and cost-saving [2]. Aisles are not
necessary and the system uses 40-60% less space than conventional systems [2].
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3 Literature Review

Automated warehouse systems have been the focus of much research in the
past, however grid-based storage systems are nearly completely missing from the
operations research literature. We provide an overview of various approaches for
storage systems which are discussed in the literature, followed by a subjective
comparison of grid-based storage to other robotic fulfillment systems.

3.1 Previous research

There are several surveys in the area of warehouse systems. A literature re-
view on typical decision problems in design and control of manual order-picking
processes is given in [6]. The authors focus on optimal layout design, storage as-
signment methods, routing methods, order batching and zoning. The papers [10]
and [11] present an overview on warehouse operations and provide a bridge be-
tween academic and practical contexts. They include warehouse design, perfor-
mance evaluation, practical case studies and computational support tools. The
authors of [18] focus on static scheduling and design problems, and [9] includes
simulation- and travel-time-based models. An up-to-date overview of robotized
handling systems is provided by [3], in which it is noted that there is currently
only one paper that discusses operations research topics in grid-based storage.

Grid-based storage Storage policies were first evaluated for grid-based storage
in [26]. The authors introduce a semi-open queuing model for estimating the
performance of such a system. The provided models optimize the length to width
ratio of the storage area and the stack height relating to the storage strategy.
The authors investigate whether storing only a single type of product in a stack
can provide performance gains versus multiple products in the same stack.

Rack-carrying storage systems In rack-carrying storage systems, robots
bring shelves with bins to a work station where employees fulfill orders. This
warehouse system is especially suitable for companies that distribute a large
amount of small products. The system allows for the sorting of inventory and
adapting the warehouse layout in a short period of time. The authors of [14]
tackle the performance of such systems. They develop four queuing network
models to estimate performance and robot utilization under various system pa-
rameters.

Compact systems without storage and retrieval machines A system
with no usage of cranes or storage and retrieval machines is described in [25].
The system works with shuttles that move in x and y direction. A lift is used
for the movement in z direction. Each product is on a shuttle and is accessible
individually. In [25], a mixed-integer nonlinear model is provided to optimize
the dimensions of the system. Furthermore, they compare several values of the
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cube compact storage system with traditional systems. The authors of [17] give
approaches for considering multiple retrieval loads simultaneously. They develop
an optimal method for two loads and a heuristic solution for three or more loads.

Compact systems with storage and retrieval machines Another approach
for cube compact storage system is using a crane or a storage and retrieval ma-
chine. The storage and retrieval machine is for horizontal and vertical move-
ments and a conveying mechanism for depth movements. In [24], optimal rack
dimensions are determined by minimizing the expected cycle time using differ-
ent storage policies. An analysis of the system performance and the optimal
dimensions of the systems are discussed in [7]. The authors minimize the travel
time for a random storage strategy by calculating the optimal ratio between the
three dimensions. Similar research is presented in [8]. The authors introduce a
methodology which minimizes the service response time by developing two sepa-
rate models, one that minimizes the expected travel time and one that minimizes
the maximum travel time between points.

The authors of [4] develop a travel-time model for storage and retrieval ma-
chines with respect to the speed profiles of real-world applications. The paper [23]
extends the travel-time model of [4] by adding acceleration and deceleration
rates. The paper [19] focuses on a flow-rack automated storage and retrieval sys-
tem. In this warehouse system, there are two machines used: one for storage and
the other for retrieval. The authors develop closed form travel-time expressions
and compare them with exact models.

3.2 Comparison of existing storage systems

We provide a subjective overview of the previously discussed storage systems in
Table 1. In manual storage systems, the racks need lots of space because they
cannot be as high as in the automated systems, unless aisles are made wider so
that pickers can use ladders or forklifts. Case storage systems also need lots of
space because of the cranes. Rack-carrying and shuttle-based storage systems
need less space because the aisles can be small when using robots. In grid-based
storage systems aisles are not necessary and thus the warehouse is very compact.

The access time for one or more products in manual storage systems is very
high. The reason for this is that pickers must walk through the warehouse to
collect products and then walk back to their work stations. In grid-based storage
systems, the bin with the requested product could be in the bottom level of the
grid and this leads to very long access times as well. However, the throughput for
most products is higher because different robots can work simultaneously. Sort-
ing robots re-sort the bins to retrieve a bin in the bottom level while transport
robots deliver bins with other products to work stations. The access time for the
three remaining systems is short because robots or cranes can easily reach the
requested products or shelves.

In the four automated storage systems the physical activity of pickers is low.
In contrast to manual storage systems, pickers do not have to walk through the
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Table 1: Comparison of different storage systems

Systems
Criteria

Required space Access time Physical activity Search area

Manual storage systems - - - -
Rack-carrying storage systems o + + o
Shuttle-based storage systems o + + +
Case storage systems o + + +
Grid-based storage systems + o + +

warehouse because robots or cranes transport the products between the work
stations and the storage yards.

The criterion “search area” describes the size of the area in which pickers
have to find the products. The search area in manual storage systems is huge
because pickers first have to find the right shelf and then extract the requested
product from it. When using rack-carrying storage systems, robots transport
the shelves to the work stations and pickers only have to find the product in the
shelf. The other three systems are superior regarding the search area because
robots or cranes transports the bins, boxes or products to work stations. One
bin or box often contains just one or two different products, which leads to a
shorter duration for finding the requested product.

4 Discrete event simulation framework

In this section we specify the structure and the behavior of our simulation frame-
work. Moreover, we give an overview of the operating principles of the developed
storage policies for a grid-based warehouse system.

Simulation overview Discrete event simulation (DES) is a well-established
modelling technique in operations research and has been successfully applied
as a decision support tool in the field for various logistics applications, such as
transportation planning and inventory planning [20]. Grid-based storage systems
can be modeled in several ways. Using a mathematical model would allow us to
identify optimal settings for the system, however the multitude of path finding
and storage strategy decisions would result in an enormously sized model even
for a small system. Second, queuing networks, such as in [14], require simplifying
assumptions that a DES does not require, especially in regards to the movement
of the robots. Hence, we have identified DES as an appropriate modelling tech-
nique for simulating and analyzing a grid-based warehouse system. The main
purpose of our simulation model is to support decision makers in terms of iden-
tifying viable storage policies according to several key performance indicators,
such as the number of products input/output and the overall storage utilization.

Due to the complexity of warehouse operations, we focus our simulation
on a single 8-hour shift of storage operations. This allows us to avoid having to
create heuristics or policies for, e.g., inventory ordering/stocking strategies, order
fulfillment prioritization, etc. This limited simulation time naturally results in
some challenges, such as the lack of a “burn-in” period.
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Figure 3: Architecture of the simulation framework

We propose a discrete event simulation framework based on common design
patterns. In Figure 3 we present a conceptual architecture of our simulation
framework3. An instance file contains warehouse layout data, the sequence of
input and output orders, and the initial assignment of products to bins. The
instance builder initializes the simulation model at time 0 (i.e., start of the
planning horizon). Next, the simulator provides a main routine to execute the
simulation and communicates with the coordinator that controls the process of
performing events and synchronizes the activities of the main entities (i.e., ports,
transport robots and sorting robots). Lastly, a result generator consolidates sta-
tistical information about the system and generates a result file.

Formalization In the following, we specify the simulation’s behavior in more
detail. Typically, a DES comprises a system state, a simulation clock, an event
list as well as a termination condition [15]. Changes to the system state occur
at discrete points in time and are handled by the simulation clock. In our case,
the system state S represents (i) the remaining orders, (ii) the positions of
all bins in the system, (iii) the types and quantities of products stored in each
bin, (iv) the buffer/working space available at each input/output port, (v) the
position of all robots, and (vi) which bin, if any, a robot is currently carrying.
Since we only intend to simulate a single working shift, we do not consider the
battery charge of robots and instead simply assume that they are all charged
and available for the entire planning horizon. The event list handles all pending
events (i.e., activities that are performed by an entity and modify the system
state) and schedules the execution of the next event. An overview of our events
is given in Table 2.

Algorithm 1 provides the main loop of the simulation that drives all further
activity using the parameters given in Table 3. The loop checks if input and
output ports are busy, meaning that the port is currently servicing a particular
order. If the port is not busy, an order is pulled from the queue. We assume the
orders are sorted before they are passed into the system. The sorting could be
determined based on any number of business criteria. Bins are then requested
for each product, ensuring that a specified amount of product is located in the
grid, or, in the case of an input order, enough capacity for the product is found.

3 To guarantee high adaptability of the simulation, we do not use a commercial sim-
ulation package. We instead create a custom implementation of the DES in C#.
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Table 2: Overview of events in the DES.

Entity Event Description

Port

Select-bin(p, o,←−π )
This method determines which bin should be retrieved from port p
according to the order o and the request policy ←−π .

Request-bin(p, b, o) Requests that bin b be brought to port p to (partially) fulfill order o.

Process-bin(p, b, o)
All products from order o are removed from bin b; assumes the bin is
in the buffer of port p.

Replace-bin(p, b,−→π ) Puts bin b from port p back into the warehouse according to replace-
ment policy −→π .

Robot

Transport-bin(r, b, t)
Assign a new transportation task to an available transport robot r to
transport bin b to target position t.

Move(r, x, y)
Moves a robot up, down, left or right one unit on the grid if the desti-
nation is not blocked.

Take-bin(r, b) A bin b is lifted from the top of a stack into robot r’s transport unit.
Release-bin(r, b) Places a bin b on top of robot r’s current stack if the stack is not full.
Sort-to-top(r, b) Requests that a sort robot r moves the bin b to the top of its stack.

Table 3: Simulation input parameters.

Parameter Description

B Set of bins
I, O Sequence of input and output orders, respectively, consisting of (u, k) of product

type u with amount k

RT , RS Set of sorting and transport robots, respectively

P I , PO Set of input and output ports, respectively←−π ,−→π Bin retrieval and replacement policies, respectively
tx, ty Time required for a robot to travel in the x and y directions, respectively

tl Time required to lift a bin a single unit in the z direction
T Maximum time of the planning horizon

The Select-Bin (line 9) method uses a policy to determine which bin should
be retrieved, such as the closest empty bin or closest bin with the same product
type in it. The Request-bin(p, b, o) event is carried out if the buffer of port p
is not yet full. If bin b is not at the top of its stack, a Sort-To-Top(b) event
is generated and the next available sorting robot will move bin b to the highest
position in the stack. Once the bin is in this position a Transport-Bin(r, b, t)
event is created. This event waits for a transport robot r to be available and
then sends it to bring bin b to the target position t using the Take-Bin(r, b),
Move, and Release-Bin(r, b) primitives. Finally, on line 12, if a bin contains
other products relevant to the current order the amount of needed product is
updated.

When a bin b arrives in a port’s buffer, it is processed by an employee. We
model this with the Process-bin(b) event. For an output order, this event re-
moves the specified product from the bin, and in the case of an input order,
places the specified amount of product into the bin. If the order o is now com-
pleted, the port marks itself as no longer busy. The Replace-bin(b,−→π ) event
is then immediately placed into the event list. The event calls for a transport
robot to take the bin back to a location determined using the output policy −→π .
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Algorithm 1 Event generation for input and output ports.

1: function Port-IO(S, PO, P I , I, O, T,←−π )

2: for (P ′, L) ∈ {(PO, O), (P I , I)} do
3: for p ∈ P ′ do
4: if ¬Busy(p) then
5: o ← Dequeue(L)
6: Set-Busy(p, o)
7: for (u, k) ∈ o do
8: while k > 0 do
9: b ← Select-Bin(p, u, k,←−π )
10: Request-Bin(p, b, o)
11: k ← k − Capacity(b, u)
12: for (u′, k′) ∈ o where u′ ∈ Bin-Products(b) do
13: k′ ← k′ − Capacity(b, u′)
14: if Time() > T then end simulation

4.1 Robot navigation and coordination

In a busy warehouse, the robots are all operating at the same time traveling
around the grid and placing bins in the way of other robots. The simulation thus
requires a path finding mechanism for robots to plan their routes through the
grid. We note that our case is normally somewhat simpler than other automated
robot settings, such as in [16], as robot movement does not block entire aisles.

On the basis of a start and a target position for a given robot, our path
finding procedure calculates a route through the grid for the robot. We allow
each robot to individually plan its path using the A* algorithm [12]. If positions
are not blocked by obstacles (i.e., other robots or bins on top of the grid), robots
can move horizontally or vertically but not diagonally. Without going into detail,
when a path is planned, the grid spaces along the path must be reserved at the
times that the robot will traverse them to avoid collisions. A sequence of Move
events is then generated and added to the event list.

4.2 Avoiding deadlock

Due to the block layout, the majority of bins are buried within the grid’s stacks.
When a bin beneath the top layer is requested, a Sort-to-top event is generated
and serviced by a sorting robot. A sequence of Move events are first scheduled
to move the sorting robot to the stack that should be sorted. Then, the sorting
robot needs to burrow into the stack and find the requested bin. Since each robot
can only store one bin in its transportation unit at a time, all removed bins must
be placed on top of other stacks. Thus, bins may be placed on top of the grid,
which could result in robots being walled-in or one part of the grid becoming
disconnected from another. To avoid deadlocks, we constrain the stacks that can
be used for sorting (see Figure 4). The basic idea is to create a corridor of size two
around the stack being sorted. Then, every four bins a row in the “wall” must
be left free for robots to pass through. Once a requested box has been placed
on top of another stack, it is authorized for transportation to the corresponding
output station. The sorting process terminates as soon as all removed bins are
put back in the original stack.
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Figure 4: Example of the bin placement constraint when sorting a stack. The
stack marked with an “x” is to be re-sorted. Bins may only be placed on the
gray cells, an example placement sequence is given by the numbered cells, and
a sorting robot with its lifting unit is shown in red.

4.3 Storage policies

The efficient operation of the storage system hinges on the choices for the storage
policies ←−π and −→π . Our focus in this paper is on the insertion of goods into the
system, meaning we suggest several alternatives for ←−π for input orders. For −→π ,
we use the following simple heuristic. Whenever a bin must be placed back in
the grid from a port, place it in the nearest available location. For this, we define
a weighted Manhattan distance metric

Distance(x, y, z, x′, y′) := |x− x′|+ |y − y′|+ αz,

where x and y indicate the position of the bin to be retrieved, and z the number
of bins on top of the bin to be retrieved. The position of the port is given by x′, y′,
and α is a penalty factor for having to dig down into a stack. Note that since
ports do not have a z component, we leave that out of the distance calculation.

We assume that either all bins have a divider in them or none of them do,
and simulate both cases to see if dividing bins is beneficial to any of the policies
we propose. We assume that input orders are associated with a single product
type, or that they are associated with product types that have been randomly
selected. The reason for this is that input orders of multiple items would have
to be first sorted by humans in a buffer, and we do not simulate this aspect of
the problem. It is therefore possible that in an actual system with a marshalling
area higher input rates could be achieved, especially for systems with dividers
in the bins.

Empty retrieval (ER) policy Given an input order, this policy selects the
next available bin that is completely empty, or has a completely empty half.
The main advantage of this policy is that it distributes goods widely across
the grid. This can be beneficial in an AutoStore-like system, as output ports are
usually distributed across the grid, and with multiple bins containing a particular
product it is less likely that a product is completely stored deep down in a stack.
A drawback, however, is that in systems with many different types of products,
there might not be any available empty bins.
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Adding retrieval (AR) policy The adding retrieval policy seeks a bin with
the same product type as in a given order. The policy searches for a bin with
enough capacity to hold all of the product in the order. We arbitrarily take one
of the boxes with enough capacity for the order. Should no box be found with
enough spare capacity for the product, we pick the one with the most capacity
available and keep searching for such boxes until all product has been placed in
the grid. If all boxes with the given product type are full, the nearest empty box
(or empty box half) is chosen as in the empty retrieval policy. If we fill a box
half completely and there is still product available, we request a new box rather
than put the same product in the other half.

5 Computational Evaluation

We carry out computational experiments to demonstrate that our simulation
framework effectively supports a decision maker regarding the planning of a
storage policy. In our investigations we compare an empty retrieval policy (ER)
with an adding retrieval policy (AR). Moreover, we consider adding and empty
retrieval policies in which all bins contain a single separator (AR2 and ER2, re-
spectively). First, we specify our test scenarios. Afterwards, we give an overview
of the design of the computational experiments and present the results of our
investigation.

Settings of test scenarios We base the parameters of the simulation on the
AutoStore system and use data from an industrial collaborator to generate input
and output orders. We generate four test scenarios to evaluate the presented
storage policies. We run each scenario five times, varying the order list, giving
us a total of 20 instances. Table 4 represents the key properties of our scenarios.
The storage utilization (i.e., 50%), the number of ports (i.e., 2 input and 6 output
ports) and the height of the system (i.e., 13 bins) are the same for all scenarios.
To get different sized scenarios, the number of bins and product types, as well
as the number of sorting and transport robots are varied. We set the parameter
α to 5 for all experiments.

Table 4: Test scenarios for the compu-
tational experiments.

Properties Tiny Small Medium Large
Size (LxW) 20x20 30x30 40x40 60x60
Bins 4987 11481 20571 46545

Sorting
robots

6 8 10 12

Transport
robots

4 5 6 8

Product
types

1000 1500 2000 4000 Figure 5: Visualization of a simulation
state of the tiny scenario.
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Figure 5 displays the system state of an example warehouse observed from a
bird’s-eye view. Ports are located on the top and bottom edge of the grid. Ports
for handling input orders are colored green, whereas ports for handling output
orders are colored red. If a bin is positioned on top of the grid, it is colored black
and the ID of the bin is displayed. Sorting robots are colored blue and transport
robots are colored red. The white portion of a robot shows the transportation
unit. As can be seen, equal numbers of robots are available in both orientations
(Left-Right and Right-Left). Since robots cannot turn around, this is important
for ensuring all parts of the grid can be accessed.

Analysis We address the following research questions:

1. How do different storage policies influence the overall input and output per-
formance of the warehouse system as well as the average utilization of the
bins?

2. How does varying the level of product types impact the performance of the
system?

3. How does varying the number of product types per input order influence the
performance of the system?

In Figure 6, we present the input and output performance as well as the average
utilization of the bins for different storage policies for each test scenario. The
results reveal that the relative differences for the input and output performance
between all policies hold relatively constant for varying scenario sizes. On aver-
age, the input performance of the ER2 policy performs best while the AR2 policy
leads to the lowest input performance. This effect occurs because empty boxes
can be acquired more quickly by the input ports than boxes that are partially
filled. Moreover, ER policies obviously require less boxes than AR policies and
so lead to significantly higher input performance.

In terms of output performance, the results show that the ER1 strategy
outperforms the other strategies. In the case of the large scenario, applying the
ER1 policy leads to an average performance improvement of ca. 7%, which could
have a significant impact on the revenue of a company over the course of a fiscal
year. We believe the reason behind this to be that orders are satisfied without
requiring multiple bins when multiple units of a product are requested. In the
AR2 case, the amount of products stored in each bin is lower than in the AR1
case, leading to reduced performance, even though the retrieval time of individual
bins is potentially lowered.

Figure 7 shows the output performance of the policies when we vary the
number of product types on the large scenario. When the number of product
types is low, all policies perform better because the distance of bins to the
output ports is lower and the bin utilization is higher. Especially the policies
ER2 and AR2 show better performance with low numbers of product types
because less bins have to be transported to the stations. However, the probability
that products are ordered together (at random) decreases with rising number
of product types. This can be seen in Figure 8, in which the number of bins
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Figure 6: Input and output performance (number of items) and box utilization
(%) over the entire 8-hour planning horizon for all four scenario sizes.
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Figure 7: Output performance
when varying the number of
product types for the large
scenario.
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Figure 8: Number of bins satisfying one/two
products in a single order (1-pick/2-pick)
for the AR2 policy for varying numbers of
product types for the large scenario.

satisfying two products from the same order declines drastically for AR2. This
shows that for the ER2 and AR2 strategies to work, the products must be very
likely to be ordered together. Alternatively, the products could be different pieces
of a single product that can be ordered separately or together, for example a
car part and the matching screws for mounting the component. We intend to
investigate this further in future work.

Moreover, we investigate how different policies perform if the number of
product types per input order varies. Figure 9 represents the input and output
performance for the ER2 policy in case of only one product type per input order
(ER2-1) and six product types per input order (ER2-6). The results reveal that
the input performance of ER2 can be significantly increased if the number of
products per order is raised. This effect occurs because empty boxes can be filled
more quickly. However, the output performance remains relatively constant.

480 M. Beckschäfer et al.



ER2-1 ER2-6
3500

4000

4500

5000

5500

6000

(a) Input

ER2-1 ER2-6
5500

6000

6500

7000

7500

8000

(b) Output

Figure 9: Input and output performance (in number of products) for input orders
with one or with six product types for the ER2 strategy.

6 Conclusion

We presented a novel discrete event simulation for automated grid-based storage
systems and evaluated simple policies for inputting products into the system.
Although our simulation period is relatively short, an encouraging result is that
relatively simple strategies are sufficient for raising the input efficiency of the
system. This raises hope that more advanced policies could have an even larger
effect. However, somewhat disconcertingly, storing products together is difficult
to do unless there is significant domain knowledge available about which items
are often ordered together. For future work, we intend to try to match items
based on past orders. A challenge is that for businesses with a high product
turnover rate, sufficient historical data may not be directly available. Another
open question is how grid-based storage compares to other robotic fulfillment
systems, such as rack-carrying systems, when given a similar set of products and
input/output orders.
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Abstract. Modern technologies have enabled approaches to estimate
freshness of perishable products during production and distribution. Nev-
ertheless, the loss of perishable goods is still high due to the deteriorat-
ing nature and inefficiencies in supply chains. This research focuses on
improving the scheduling of banana logistics using real-time quality in-
formation. Bananas are typically shipped from tropical production sites
to other places in the world. With temperature controlled reefer contain-
ers and sensor technologies, bananas can be monitored during transport
and situations like early ripening can be predicted. In order to mini-
mize spoilage, we propose a mathematical model for scheduling logistics
activities with the consideration of both the biological process and the
logistics procedure of bananas. Results of simulation experiments indi-
cate that the method could reduce spoilage using real-time monitoring
and scheduling.

Keywords: Perishable goods logistics, banana supply chain, green-life, ripeness,
quality-aware modeling.

1 Introduction

Each year, approximately 45% of fruits and vegetables produced for human
consumption are lost worldwide according to Food & Agriculture Organiza-
tion [3]. The wastage happens at all stages of supply chains, namely farming,
post-harvest, processing, distribution, and consumption, due to the perishing
nature of fresh products and inefficiencies in supply chains.

The advancing of modern technologies such as sensing and communication
provides new insights on perishable goods supply chain planning and potential
solutions to reduce the wastage due to perishing feature of agricultural products
and inefficiencies of logistics activities [5]. For example, Jedermann et al. [4] study
the impact of banana quality change on an international banana supply chain.
They conclude that remote quality monitoring has high potential in improving
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supervision of transport processes to reduce losses in a banana supply chain.
Furthermore, techniques of ripening bananas in reefer containers can be made
available with remote monitoring and supervision.

Transport and logistics planning for perishable goods has received growing
attention from research. By considering quality information along supply chains,
decision makers can have better control over the influence of perishability. Nev-
ertheless, limited research explicitly considers perishability matters in planning
and decision making processes [2]. For example, Rong et al. [11] study a multi-
echelon supply chain using a network flow model. Their approach reflects the
impacts of quality information on logistics planning decisions by showing a clear
relationship between an increased cooling cost and prolonged shelf life. They
incorporate product deterioration by duplicating nodes for products of differ-
ent quality levels at each location. Similarly, Yu and Nagurney [13] develop a
food supply chain model based on network flow. They capture quality decay
by assigning multipliers to arcs in the network. However, since network models
aggregate products as flows in their formulations, they limit the complexity of
the quality models considered. This is because quality decreasing and decisions
in distribution of products are two different events in a perishable goods supply
chain. Although quality aspect and logistics aspect can affect each other, they
should not be considered in such way that one is dependent on the other [6].

The aforementioned approaches may have limited potential in addressing
quality attributes in a more realistic way, which could be one of the reasons why
Ahumada and Villalobos [1] observe a lack of planning models addressing realistic
shelf life features in the different echelons of supply chains. In reality, perishable
goods differ in their depreciation natures. Pahl and Voss [9] observed 3 basic
types of product quality depreciation in general: perishability, by which perish-
able goods lose all the value after a certain time period; discrete/continuous
deterioration, describing a decreasing of value in stages or continuously. In our
previous work, we have proposed a quality-aware modeling method in [6] and ap-
plied this method for starch potato post-harvest scheduling [7]. In that research,
starch content in potatoes, considered as product quality, follows a continuous
deterioration described by a kinetic model. It is demonstrated that the quality-
aware modeling method has the potential of incorporating more realistic quality
features, which can better assist decision making processes in supply chain plan-
ing.

In this paper, we take a first step to consider real-time quality information
made available in logistics activities of a banana supply chain. As one of the
most traded fruit in the world (18.7 million tons exported worldwide in 2011 [10]),
bananas suffer from spoilage due to the perishing nature [12]. In order to increase
the efficiency of logistics activities in banana supply chains and reduce loss,
we propose a scheduling method based on an extension of the quality-aware
modeling approach. We focus on a part of an international banana supply chain,
from a warehouse at a port to distribution centers: supply chain planners need
to make decisions on which container of bananas to be moved to which location
at what time, and which bananas to go through a ripening process for how much
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Fig. 1: A banana distribution network (adapted from [8]).

time. Different from the previous study on potato post-harvest scheduling in [7],
in a banana supply chain, the logistics activities need to be considered in more
detail. For instance, supply chain planners need to make schedules to fulfill the
demand from retailers, and bananas’ quality changing process is more complex
and has a direct impact on acceptance of retailers.

The remainder of this paper is organized as follows. Section 2 analyzes the
logistics process of banana supply chains as well as the physiological features of
bananas. A scheduling method based on a quality-aware model is then proposed.
Subsequently, simulation experiments are conducted in Section 3. We compare
results with the proposed method with a current one. Section 4 concludes the
paper and provides directions for future research.

2 Scheduling with quality information for a banana
logistics system

In this section, we firstly formalize our problem. Then assumptions considered in
this study are listed. Next, the quality-aware model is developed for scheduling
in a banana logistics system.

2.1 Problem statement and assumptions

Figure 1 shows a banana distribution network in Europe. Bananas grown in trop-
ical countries are shipped to several ports in Europe. They are then transported
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by truck to local ripening facilities and afterwards to wholesalers and retailers.
In a ripening facility, bananas stay 4-8 days to get ethylene treatment to be
ripened. In today’s banana supply chain, the latest quality information is only
available when bananas reach certain check points. If bananas are found with bad
quality at a check point, they should be discarded, or a secondary customer who
is willing to receive them should be contacted. If real-time information would be
available, adjustments could be made in time to avoid such situations.

The quality change of bananas can be divided into two periods: the green-life
period and the ripe period. The relationship between the length of the green-life
period tGP and temperature T is derived from [4] as follows:

tGP(T ) = 159.86e−0.124T . (1)

When T = 13.5°C, tGP = 30 days. This temperature can be used as a reference
temperature T0, so that a reduction of green-life ΔgT0 is 1 day. When T has
other values, ΔgT varies based on the following rate:

ΔgT =
tGP(T0)

tGP(T )
. (2)

For instance, when T = 16.8°C, tGP = 20 days, meaning that the bananas have
their green-life decreasing 1.5 times as fast as when considering T0. Therefore,
Δg16.8 = 1.5ΔgT0 . For bananas in the ripe period, we consider an indicator of
ripeness r, which increases after bananas have gone through the ripening process.
The ripeness is checked at retailers when making the decision of whether to
accept the bananas.

The objective of this paper is to propose a scheduling method for banana
supply chains, based on the quality-aware modeling approach. The scheduling
method makes decisions on distribution and ripening of bananas with the con-
sideration of quality information, aiming at reducing losses in banana supply
chains, which could be useful for banana trading companies or logistics service
providers. We state the following general assumptions in the modeling:

– Bananas have homogeneous quality within each container.
– The time bananas can remain green does not affect the time needed for

ripening.
– Information regarding the quality of bananas is predictable and available.
– Demand from retailers is known in advance.
– Bananas that ripen early are considered spoiled and thus discarded.

Next, we present the quality-aware model for the banana logistics.

2.2 Quality-aware modeling for banana logistics

We consider a container of bananas as a minimum controllable unitm ∈ M, with
M being the collection of considered containers. Each container goes through
different stages i ∈ N as it is transported in the supply chain over a discrete
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Fig. 2: A typical example of the logistics representation. Each node represents a
stage that a container could be at; each arc represents a possible transition

from one stage to another.

time horizon K = {1, 2, . . . }. Container m can be at a certain stage i (e.g., at
a port) at time step k ∈ K (denoted by lmi(k) = 1, otherwise lmi(k) = 0); and
if a decision at time step k is made to move this container to another stage j
(e.g., loaded on a truck), umij(k) = 1 and lmj(k + 1) = 1. The collections of
stages (nodes) and transitions (arcs) form a graph G = {N , E}, as shown in
Figure 2. Note that a unit m can stay at a stage i over multiple time steps
(umij(k) = 1, i = j). The collections of origin stages (where containers start
from) and destination stages (where containers should end up) are denoted by
O and D, respectively. Variables related to each unit m are linked by three types
of constraints, namely logistics, demand from retailers, and quality constraints.
Using the introduced notation, we next provide all the constraints of the model
followed by their motivations:

∑

j∈S(i)∪{i}
umij(k) = lmi(k), ∀m ∈ M, i ∈ N , k ∈ K (3)

∑

i∈P (j)∪{j}
umij(k) = lmj(k + 1), ∀m ∈ M, j ∈ N , k ∈ K (4)

∑

i∈N
lmi(k) = 1, ∀m ∈ M, k ∈ K (5)

∑

j∈S(i)∪{i}

(
tleadmi umij(k)

)− amj(k)−Qumjj(k + 1) ≤ 0,

∀m ∈ M, i ∈ N , k ∈ K
(6)

amj(k) =

k∑

τ=1

∑

i∈P (j)∪{j}
umij(τ), ∀m ∈ M, j ∈ N , k ∈ K (7)

∑

m∈M

∑

j∈P (i)∪{i}
umji(k) ≤ Cnode

i (k + 1), ∀i ∈ N , k ∈ K (8)

∑

m∈M

∑

j∈S(i)

umij(k) ≤ Carc
i (k), ∀i ∈ N , k ∈ K (9)
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si(k) =
∑

m∈M

∑

j∈P (i)

umij(k), ∀i ∈ D, k ∈ K

(10)

lw−1∑

τ=0

fτ
i (k) + fC

i (k) = di(k), ∀i ∈ D, k ∈ K

(11)

si(k) =

min(lw−1,k−1)∑

τ=0

fτ
i (k − τ), ∀i ∈ D, k ∈ K

(12)

gm(k + 1) = gm(k)−ΔgTm(k), ∀m ∈ M, k ∈ K
(13)

rm(k + 1) = rm(k) +Δrm(k), ∀m ∈ M, k ∈ K
(14)

Δrm(k) ≤ Qdripem (k), ∀m ∈ M, k ∈ K
(15)

QΔrm(k) ≥ dripem (k), ∀m ∈ M, k ∈ K
(16)

Δrm(k) ≤ 1 +Q
∑

j∈NRF

∑

i∈P (i)

umij(k), ∀m ∈ M, k ∈ K

(17)
∑

i=P (j)

umij(k) ≤ Qgm(k), ∀m ∈ M, j ∈ NRF, k ∈ K

(18)
∑

k∈K
dethym (k) ≤ 1, ∀m ∈ M

(19)
∑

j∈NRF

∑

i∈P (j)

umij(k) ≥ dethym (k + 1), ∀m ∈ M, k ∈ K

(20)

Q(dethym (k)− 1) ≤ gm(k + 1), ∀m ∈ M, k ∈ K
(21)

dripem (k + 1) = dripem (k) + dethym (k), ∀m ∈ M, k ∈ K
(22)

Q(1−
∑

j∈D

∑

i∈P (j)

umij(k)) ≥ rm(k + 1)− rhigh, ∀m ∈ M, k ∈ K

(23)

Q(1−
∑

j∈D

∑

i∈P (j)

umij(k)) ≥ rlow − rm(k + 1), ∀m ∈ M, k ∈ K.

(24)
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Logistics. Constraints (3)-(9) belong to the aspects related to the logistics. Con-
straints (3) and (4) denote that when changing stages, containers follow the
directed arcs. In the constraints, P (i) and S(i) are the collections of predecessor
and successor nodes of node i excluding i itself. Constraint (5) ensures that each
container can only be at one of the stages for each time step. Constraint (6)
ensures that a lead time tleadmi is given to container m when it enters a node i and
can only move out after the lead time is reached. Here (also for the rest of the
constraints) Q is a big number. In (7), amj(k) is a counter that calculates the
number of time steps for which container m has stayed in node j up to time step
k. Constraint (8) limits the number of containers at node i at time step k, and
(9) limits the number of containers moving from node i to any other successive
nodes.

Demand from retailers. Constraints (10)-(12) belong to this aspect. Logistics
planners need to fulfill retailers’ demand by sending them ripe bananas from
ripening facilities. Constraint (10) explains the relation between number of con-
tainers received by wholesaler i ∈ D and decisions of the logistics planners.
Constraint (11) specifies how demand from retailer i ∈ D at time step k can
be responded in different ways: fτ

i (k) represents the number of containers that
fulfills the demand with a τ days’ delay (0 ≤ τ ≤ lw − 1), and fC

i (k) denotes
the number of containers in the demand di(k) that cannot be fulfilled. Con-
straint (12) links fulfillments of demand fτ

i to supply si(k). Note that a supply
of container on day k can respond to the demand from day k − lw+1 to day k.

Quality. Constraints (13)-(24) belong to the aspect of quality. Constraint (13)
describes the decreasing of green-life period gm(k) of bananas in container m in
days, with ΔgTm(k) derived from (2). Constraint (14) describes quality change of
bananas after ripening. Variable rm(k) represents ripeness of bananas. Integer
decision variable Δrm(k) represents the increasing of ripeness, which can be
one of the values from {0, 1, 2} for each day, each container. When bananas are
not ripe, Δrm(k) = 0, which is described by (15). When bananas are in ripening
facilities,Δrm(k) can be 1 or 2 depending on how fast they need to be ripened but
cannot be 0, limited by (16). After moving out of ripening facilities Δrm(k) = 1
in a static environment, ensured by (17). Constraint (18) enforces that only
containers with unripe bananas (gm(k) ≥ 0) can be moved to a ripening facility
j ∈ NRF. Constraint (19) makes sure that each container m can go through
ripening process no more than once. Constraint (20) indicates that the decisions
to start ripening can only be made when container m is in a ripening facility.
Constraint (21) ensures that containers holding ripe bananas cannot go through
ripening process. In Constraint (22), an indicator dripem becomes 1 from 0 at time
step k when bananas in container m go through an ethylene treatment at time
step k (dripem (k) = 1). Wholesalers need bananas within a certain ripeness range,
which is ensured by (23) and (24) with a maximum and minimum acceptable
range of ripeness rhigh and rlow.

Quality-Aware Modeling and Optimal Scheduling 489



Fig. 3: Considered supply chain.

2.3 Scheduling objective

We consider an objective function over a finite time period (K = {1, . . . , Ns}) as
follows:

J =

Ns∑

k=1

∑

i∈D
si(k)α−

Ns∑

k=1

∑

m∈M

∑

(i,j)∈E
umij(k)βij

−
Ns∑

k=1

∑

i∈D

min(lw−1,k−1)∑

τ=0

(fτ
i (k − τ)γτ)−

Ns∑

k=1

∑

i∈D
fC
i (k)δ,

(25)

in which α is the price for delivering a container to a wholesaler; βij is the cost
for a container to transit from stage i to stage j (e.g., cost for transport); γ is
the penalty for delaying an order of a container by 1 day; δ is the penalty for
not fulfilling a demand of a container.

In summary, the quality-aware model considers three aspects. First, it con-
siders the decisions in logistics activities including movements of the containers
(3)–(9). Secondly, demand-supply coupling is considered in Constraints (10)–
(12). Thirdly, we consider bananas’ two-period quality changing process (13)–
(14), and how quality affects decision making in logistics (18)–(24). The objective
function considers income for selling bananas to retailers, transition costs, and
penalties for delays and lost sales. The combination of the objective function
and the constraints forms a mixed-integer linear programming (MILP) prob-
lem: max J , subject to Constraints (3)-(24). The decision variables are umij(k),
fτ
i (k), f

C
i (k), Δrm(k), and dethym (k), for all k ∈ {1, 2, . . . , Ns}.

3 Simulation experiments

In this section, simulation experiments are carried out to illustrate the potential
of the proposed scheduling method. In the experiments, we consider a typical
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Table 1: Scenario settings

Variable Value

M 5
N 7
Np 16
lw 3

tlead tlead3 = 4, tlead6 = 2

Cnode
3 2

di(k)
d5(7) = 3, d5(10) = 3, d5(14) = 1
d7(1) = 1, d7(8) = 1

Δgm(k), Δrm(k) 1
gm(1) [7, 3, 2, 8, 10]

rhigh5 , rhigh7 12, 11

rlow5 , rlow7 8, 7
α 10
β 0
γ 1
δ 5

supply chain shown in Figure 3. There are seven stages that each container with
bananas could be located in. Stage 1 represents the container being stored in
the warehouse at the port of destination. Stage 2 represents the transportation
from the port to a ripening facility by truck. Stage 3 is when the container being
at the ripening facility. Stage 4 and 6 are the container being transported to
different retailers (denoted by stage 5 and 7).

In order to illustrate the performance of the proposed scheduling method, we
perform two experiments: one inspired by the current handling procedures, the
other based on our proposed future scheduling method. In the current case exper-
iment, quality information is only available at certain check points. The ripening
facilities identify early ripened bananas upon their arrival and discard the con-
tainers that do not meet the requirement; the retailers examine the ripeness
of bananas upon arrival and make decisions on accepting or rejecting bananas;
reefer containers are moved according to a pre-defined sequence.

3.1 Scenario setup

The details of a typical scenario setting are shown in Table 1. We assume that
five of the reefer containers are assigned to a particular ripening facility. The
lead times for the transport from the port to the ripening facility (Stage 2) and
from the ripening facility to the two retailers (Stage 4 and 6) are 1, 1, and 2,
respectively. The capacity of the ripening facility is two containers. The demand
of retailer 1 and retailer 2 falls on different days given in the table. We consider
the temperature in containers to be static, but the initial remaining green-life
can vary among containers, and quality requirements of the retailers can also

Quality-Aware Modeling and Optimal Scheduling 491



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time step

1

2

3

4

5

6

7

S
ta

ge

Container 1
Container 2
Container 3
Container 4
Container 5

Fig. 4: Movements of each container over time in the current case experiment.
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Fig. 5: Quality of each container over time in the current case experiment.
(Only positive green-life is shown.)

differ as shown in the table. Fulfilling a container of bananas with the right
quality brings 10,000 EUR, while each day’s delay of an order costs the supply
chain planner 1,000 EUR. Canceling the order results in a penalty of 5,000 EUR.
We assume that the ripening facilities and transport companies are contracted,
so that transporting and ripening costs are fixed. The experiments are carried
out using Matlab 2015b, on a desktop with Intel Core 2 CPU Q8400, 4GB RAM,
and Windows 7-64bit. The optimization problems are solved using the CPLEX
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Fig. 6: Movements of each container over time by the proposed method.
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Fig. 7: Quality of each container over time with the proposed method. (Only
positive green-life is shown.)

(v12.5.1) MILP solver. Next, we compare the results given by the current case
experiment and the experiment with the proposed method.

3.2 Results and discussion

Solving the MILP problem takes only a few seconds. The results are shown in
Figures 4-11. Figure 4 shows the scheduled container movements over time for
the current case experiment. From the figure we can see that container 1 and
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Fig. 8: Fulfillments of Retailer 1 in the current case experiment.
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Fig. 9: Fulfillments of Retailer 2 in the current case experiment.

2 are given priority to move to the ripening facility while container 3, 4, and 5
await for the call. Note that container 3 (overlaps with Container 4) no longer
moves forward after reaching the ripening facility (stage 3) at time step 6. The
reason is shown in Figure 5: the green-life of bananas in container 3 is the lowest
amongst the five containers. However, the ripening facility only becomes aware
of this on time step 6 and has to discard the bananas.

For the future case experiment, using the proposed method, Figure 6 shows
the scheduled movements according to the optimization. Considering the qual-
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Fig. 10: Fulfillments of Retailer 1 with the proposed method.
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Fig. 11: Fulfillments of Retailer 2 with the proposed method.

ity conditions, container 2 and 3 receive the priority to be transported to the
ripening facility before early ripening takes place (see Figure 7). This method
saves the bananas in container 3 from being discarded.

Figure 8 and Figure 9 show how demands from the two retailers are fulfilled
(or discarded) in the current case experiment. In this experiment, two orders are
fulfilled on time, two orders delayed for a day, and three orders are not fulfilled,
resulting in a total profit of 23,000 EUR.
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Figure 10 and Figure 11 show how demands from the two retailers are fulfilled
(or discarded) in the future case experiment. In this experiment, two orders are
fulfilled on time, three orders delayed for two days and two orders discarded,
resulting in a total profit of 34,000 EUR.

From the comparison of the two experiments, we conclude that the efficiency
of logistics activities could be improved by considering quality information in
the optimization of logistics activities. Especially in a banana supply chain, the
potential wastage due to early ripening could be reduced.

4 Conclusions and future research

Although technologies advance in improving the efficiency of logistics systems,
the wastage of perishable products during supply chains is still concerning. Par-
ticularly, in a supply chain for fresh fruit like bananas, due to the high perishing
nature, customers have even higher requirements of the effectiveness of logistics.
Therefore, it could be beneficial to take perishability into consideration when
making plans for logistics activities. This research focuses on a banana supply
chain. Based on descriptions of remaining green-life and ripeness, we propose a
quality-aware model to describe the logistics process of a banana supply chain
from a port to retailers. The model includes three parts: movements of reefer
containers that carry bananas, demand and fulfillments of retailers, and quality
of bananas in each container. To optimize the decisions made by supply chain
planners, we consider quality requirements and demands from retailers as objec-
tives, forming an MILP problem. Simulation experiments illustrate that decisions
can be made to take better care of bananas and their quality, and could reduce
wastage during the supply chain.

Further extensions of the model could consider heterogeneous banana quality
in a container. Future research also includes further investigations on adopting
real-time control strategies and coordinations among stakeholders within the
banana supply chain with up-to-date information of quality change and logistics
disturbances. Applications in a larger logistics network and complexity analysis
can be investigated. Outlook on more business insights could be gained from
real-world case studies. An interesting future topic could be controlled ripening
in containers during shipping with increased flexibility in banana supply chains.
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Abstract. In Bike Sharing Systems, spatio-temporal variation of rentals leads to 
imbalances in the distribution of bikes causing full or empty stations in the course 
of a day. Providing a sufficient number of bikes and bike racks is crucial for the 
viability of these systems. Introducing the notion of service network design, we 
aim to show the usefulness of tactical planning for bike sharing systems. We de-
sign a bike sharing service network considering the suitable aggregation of oper-
ational data as well as the anticipation of operational decisions. In particular, we 
present a mixed-integer programming formulation aiming at cost-efficient allo-
cation of bikes to stations given a predefined service level for different scenarios 
of bike demand. The scenarios are considered as realizations of typical bike flows 
between stations in terms of time-dependent origin / destination matrices. Oper-
ational relocation decisions are anticipated by a dynamic transportation model. 
The proposed methodology is exemplified based on two years of operational data 
from Vienna’s “Citybike Wien”. Computational experiments show how target 
fill levels vary according to the different scenarios of bike demand. Furthermore, 
spatio-temporal characteristics of relocation services are derived, which can sup-
port operators of bike sharing systems in the planning of relocation services. 

Keywords: Service Network Design, Shared Mobility, Relocation. 

1 Bike Sharing Systems 

Emerging metropolitan areas need efficient and sustainable mobility services in order 
to ensure their attractiveness, quality of life, and economic power. Municipalities have 
begun to implement innovative shared mobility systems in order to accommodate the 
mobility needs of their citizens. The number of implemented Bike Sharing Systems 
(BSS) is impressive; in Europe, about 400 BSS have been introduced in the last ten 
years (Büttner and Petersen 2011), and markets in America and Asia are catching up 
(Shaheen et al. 2010).  

BSS provide an individual but likewise public means of transportation for inner city 
trips (Midgley 2011). They are characterized by a high density of service facilities in 
heavily populated areas, e.g., with an average distance of 300 meters between bike sta-
tions (Büttner and Petersen 2011). Short bike rentals are often free of charge, and rev-
enue is indirectly generated from a license to advertise on street furniture. Rental, return 
and maintenance processes are automated, enabling fast and easy access as well as one-
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way use and short rental times through unattended stations. Every trip is recorded for 
tracking and billing purposes.  

Efficient and reliable design, management and operation of BSS is challenging. De-
mand for bike rentals varies strongly, following typical traffic patterns in the course of 
day and week caused by commuter, leisure or tourist trips. Furthermore, one-way rent-
als can intensify imbalances in the distribution of bikes. Due to limited capacity at sta-
tions, rentals are impossible at empty stations, and returns are impossible at full stations. 
Hence, BSS operators aim to ensure a service level which is self-stipulated or stipulated 
by municipalities. For instance, a tendering for the Arlington BSS requests that “sta-
tions shall not be full of bicycles for more than 60 minutes during the hours of 8am –  
6pm and 180 minutes during the hours of 6pm – 8am” (Metrobike 2009). 

Bike imbalances can be handled by means of strategic, tactical or operational plan-
ning. On the strategic level, decisions on the number, location and size of stations have 
to be made. Acquiring a high number of bike racks at stations increases the probability 
of successful returns. On the tactical level, bike fill levels at stations need to be deter-
mined in order to compensate varying bike demand in the course of day. High fill levels 
can increase the probability of successful rentals and can decrease the probability of 
successful returns at particular stations, for example. On the operational level, reloca-
tion of bikes from commonly full to commonly empty stations can help maintaining the 
service level. Planning levels are interdependent: reasonable sizing of stations and fill 
levels of bikes may reduce relocation efforts, whereas high relocation efforts may com-
pensate insufficient sizing and fill levels.  

In this paper, we propose an integrated approach of intelligent data analysis and 
mathematical optimization supporting service network design (SND) in BSS. The pre-
sented mathematical mixed-integer program (MIP) determines optimal target fill levels 
at bike sharing stations by minimizing the expected costs of relocation. The MIP guar-
antees a given service level for different scenarios of bike demand for a mid-term plan-
ning horizon. Scenarios are defined through bike flows that are represented by time-
dependent origin / destination (OD) matrices. The required information is derived from 
the aggregation of recorded customer trips in combination with well-known traffic 
modeling approaches.  

A brief literature overview is presented in Sect. 2. We discuss our approach and pre-
sent the MIP in Sect. 3. A case study including two years of trip data from Vienna’s 
BSS “Citybike Wien” is shown in Sect. 4, and the paper is concluded in Sect. 5.

2 Recent Literature 

Compared to work on strategic and operational planning, literature on tactical planning 
of shared mobility systems is rather scarce. The following studies differ in whether they 
include anticipation of operational decisions, especially the relocation operations. We 
begin with the work that does not anticipate operational decisions.  

George and Xia (2011) model shared mobility systems by means of a closed queuing 
network. Their objective is to maximize profit and to determine the optimal fleet size 
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and allocation of rental vehicles. Cepolina and Farina (2012) determine the fleet size 
and vehicle allocation for a car sharing system with electric vehicles. Costs for user 
waiting times and system operation (vehicle purchasing and running costs) are mini-
mized by an algorithm based on Simulated Annealing. Dynamic user-based relocation 
is assumed to be achieved at no additional cost. Raviv and Kolka (2013) also use queu-
ing models. With the help of a user dissatisfaction function, the optimal fill level at bike 
sharing stations is determined. Schuijbroek et al. (2013) minimize the costs of reloca-
tion and incorporate service level requirements at stations by means of a cluster-first 
route-second heuristic. They focus on the static case ignoring varying user demand. The 
service level is precalculated for each station without anticipation of the routing deci-
sions. Finally, Shu et al. (2013) use a network flow model to determine the initial allo-
cation of bikes at stations in order to maximize bike flows and successful trips within 
the network on a weekly basis. In a separate optimization model, they assess the impact 
of relocations on the number of required bikes in the system. 

To the best of the authors’ knowledge, only the following studies anticipate reloca-
tion operations in tactical planning. Correia and Antunes (2012) present multi-periodic 
MIP formulations to maximize the profit of a car sharing system considering the reve-
nue of trips, costs of depot and vehicle maintenance as well as costs of vehicle reloca-
tion. They determine the number and the location of stations as well as the number of 
vehicles at each station in each period of daily operation. They consider static relocation 
at the end of the day to reset the system to the initial fill level. The validity of the MIP 
approach is investigated by a simulation model (Jorge et al. 2012). Sayarshad et 
al. (2012) introduce a dynamic LP formulation to maximize profit in BSS. Relocation, 
maintenance, capital and holding costs of bikes as well as penalty costs for lost demand 
are deducted from the revenue generated by trips. Unutilized bikes can be relocated in 
every period of daily operation. Boyaci et al. (2015) present a MIP formulation for 
tactical planning of car sharing systems. Here, the revenue of the system is maximized 
considering station sizes, fill levels and dynamic relocation. Due to the large number of 
relocation variables, an imaginary hub station is introduced. Relocation is considered 
only between bike stations and the hub station. This simplification significantly reduces 
the number of relocation variables. 

In the following, we adapt existing optimization approaches of SND and focus on 
the adequate anticipation of relocation tours. We also present a new approach to aggre-
gate operational data as input for SND. 

3 Service Network Design Model 

SND requires the aggregation of operational data and the anticipation of operational 
decisions. In this section, for data aggregation, an information model is proposed, which 
represents typical bike flows for different scenarios of bike demand by time-dependent 
OD matrices (Sect. 3.1). In Sect. 3.2, an MIP formulation is presented, aiming at cost-
efficient allocation of bikes to stations while maintaining a predefined service level for 
different scenarios of bike demand. We determine the total number of bikes in the sys-
tem, optimal target fill levels of stations, and expected relocation operations. Target fill 
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levels ensure the provision of service depending on the time of the day for a given 
scenario, e.g., high bike demand on a working day in the main season. The anticipation 
of relocation operations yields the expected costs of relocation services to compensate 
insufficient fill levels. 

3.1 An Information Model for Generation of Typical Bike Flows

BSS automatically record extensive amounts of trip data. Recorded trip data represent
individual observations of customer behavior and are therefore not suited as input for 
tactical planning. Thus, we propose a combined approach of traffic modeling and intel-
ligent data analysis to derive an information model that represents trip purposes and 
typical bike flows. We detail how this information model can be used to generate bike 
flows for SND.

Generation of Typical Bike Flows. To fully explore spatio-temporal characteristics of 
bike trips, we apply the Urban Transportation Planning Systems (UTPS) process (John-
ston 2004). The UTPS process is a common approach to model trips in urban areas. 
Extending this idea with approaches from intelligent data analysis, we derive trip pur-
poses from an extensive amount of trip data recorded by BSS. Then, with the temporal 
distribution at hand, the spatial distribution of trips between groups of stations with 
similar temporal activity are determined.

We construct temporal activity clusters by cluster analysis as detailed in Vogel et 
al. (2011). A temporal activity cluster yields the typical proportion of rentals and re-
turns for each hour of the day. As a result of cluster analysis, each station is character-
ized by its assigned temporal activity cluster. Then, the spatial distribution of trips be-
tween stations can be derived from the associated temporal activity clusters as follows:

The inter-cluster distribution describes trip distribution patterns between stations of 
individual activity clusters. They are specified by the proportion of trips between 
individual temporal activity clusters for a given hour of the day. For instance, in the 
morning, the majority of trips is directed from “residential” to “working” clusters, 
whereas the opposite is true for afternoon hours. 
The intra-cluster distribution specifies how trips are distributed from a particular 
station to all stations contained within a cluster. We approximate this distribution 
based on the distance between stations and the resulting trip duration. The distribu-
tion of trip durations can be derived empirically from recorded trip data. 

With the temporal and spatial distributions at hand, the information model can be for-
malized as follows:

The BSS consists of a set bike stations .
The planning horizon comprises periods, e.g., 24 hourly periods 
representing a typical working day. 
The total activity of a station is denoted by the absolute number of daily rentals 

and daily returns .
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The set of temporal activity clusters is .

The clustering  assigns each station  to a temporal activity cluster 
 defining the trip purposes at the station. Trip purposes are represented by the temporal 

rental activity . The temporal activity expresses the relative 
hourly activity and thus summarizes to 1 over the course of the day for each cluster, 
i.e., . The same holds for returns 
with .

The spatial trip distribution is given according to the inter-cluster distribution 
 and intra-cluster distribution : 

The inter-cluster distribution expresses the fraction of flows between clusters per 
time period. The fraction of inter-cluster flows summarizes to 1 from a particular 
cluster  in a specific time period  to all clusters  by means of 

. 
The intra-cluster distribution expresses the fraction of flows from station  to station 

 depending on the assigned cluster. The fraction of intra-cluster flows summarizes 
to 1 based on flows  to all stations  of the particular cluster by means of 

. 

With these notation in mind, we can describe the temporal and spatial distribution of 
bike rentals as follows: 

1. Temporal distribution: We determine the hourly activity at stations  by distrib-
uting the number of rentals at stations to the time periods provided by the temporal 
rental activity: . 

2. Spatial distribution:  
a. Inter-cluster distribution: We determine the bike flows 

from each station to each cluster by distributing the hourly rentals to the clusters: 
. 

b. Intra-cluster distribution: We determine the bike flows 
from each station  to each station  by distributing the bike flows to the clusters 
among the stations belonging to the clusters: 

. 

The distribution of bike returns can be modeled analogously. In the end, rental and 
return flows are averaged. Output of the information model are time-dependent, real-
valued bike flows , which represent the expected bike flow between origin station 

 and destination station  in hour .
The above information model provides typical bike flows for each pair of stations in 

each time period in terms of real-valued metrics. However, realistic anticipation of re-
location operations requires integer-valued bike flows. We transform the real-valued 
bike flows into integer bike flows by scaling and transformation as follows:  
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In the scaling step, the real valued bike flows  are multiplied such that they 
equal the desired number of bike flows  in relation to the total number of observed 
bike flows  with , . 
In the transformation step, the flows are rounded according to a threshold  for 
rounding up and down such that the total number of rounded flows amounts to the 
desired number of flows:  with 

. 

A binary search is applied to determine  yielding the desired number of bike flows. 
Finally, the information model can generate integer-valued, time-dependent OD matri-
ces of bike flows as required for SND optimization. 

3.2  MIP Formulation for Service Network Design 

The following optimization model is based on the work of Crainic (2000) on SND in 
freight transportation. We propose a MIP formulation which determines optimal target 
fill levels at stations in the course of the day, ensuring the fulfillment of demand sce-
narios according to a predefined service level. The objective is to obtain fill levels at 
minimal expected costs of system operation. Resulting target fill levels and relocation 
services may serve as input for the optimization of relocation tours on the operational 
level. 

Within the scope of tactical planning, anticipation of operational decisions is re-
quired to avoid suboptimal decisions on fill levels. Our optimization model is based on 
a relaxation of relocation operations. We refrain from a detailed modeling of routing as 
known from traditional computationally challenging SND models (Crainic 2000) or 
inventory routing models (Campbell et al. 1998), but we anticipate relocation opera-
tions by means of a dynamic transportation model (Bookbinder and Sethi 1980) yield-
ing the required demand for relocation services. To this end, we use a binary variable 
allowing constraints on the frequency and the capacity of relocation services by con-
solidating relocations.  

A relocation service is described by pickup and return station, time period, and the 
number of relocated bikes. Relocation services represent the design decision for imple-
menting a service between two stations in each period at each day of system operation.
They are modeled by binary variables . The number of relocated bikes for a 
particular service is modeled by continuous variables . Note that this is an ap-
proximation of relocation operations, which cannot replace detailed optimization from 
an operational perspective by means of vehicle routing procedures.  

Let  be a set of rental stations and  the set of time periods in a day. The total 
number of bikes in the system is given by . The number of bikes can be adjusted if 
needed. The typical demand for bikes and bike racks is depicted by bike flows 
between stations  and  in time period . The fulfillment of demand at stations de-
pends on the given design and configuration of system infrastructure, i.e., the number 
of bike racks for returns (“size” of a station) and the number of allocated bikes at 
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each station and period for rentals. The objective is to minimize the total costs for 
relocation services, whereas denotes the average handling costs of one relocated 
bike in time period and the average transportation costs of one relocated bike 
between stations and . While optimizing, the availability of rental and return re-
sources for time-dependent “safety buffers” of bikes and bike racks is 
maintained. Based on time-dependent OD matrices, the information model provides a 
scenario of bike flows that serve as input for the following optimization model:

subject to

(2)

In the objective function (1), the costs for anticipated relocation services are minimized, 
comprising handling costs for each individual bike and setup costs for operating
the particular relocation service between two stations. Handling costs can vary 
depending on the time of the day, e.g., there are higher costs at night due to surcharges 
for the staff. Transportation costs are assumed to be constant. Depending on the given 
infrastructure configuration, potentially missing bikes or bike racks are compensated 
by relocation of bikes between stations for each period of the day. Constraint (2) 
ensures that a relocation service does not exceed a predefined capacity given by the lot 
size . Equation (3) ensures flow conservation, i.e., the number of bikes at a station in 
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the next period is a result of the current number of bikes plus returns from customers 
and relocation services minus customer rentals and relocation pickups. We 

assume that a particular relocation service is realized within one time period, but if 
relocation services take longer, (2) has to be adjusted by setting as well as the 
range of the index .

The availability of resources is maintained by constraints (4) and (5). On the one 
hand, it is guaranteed that a sufficient number of bikes (4) is present at every station 
and period, i.e., the number of bikes minus customer rentals plus costumer returns and 
relocation pickups is always larger than a given bike safety buffer . On the other 
hand, the number of free bike racks (bikes racks minus allocated bikes, customer and 
relocation returns plus customer rentals) is always larger than the bike rack safety buffer 

(5). These two constraints ensure that rented bikes and used bike racks are not 
available for relocation in the particular period, and all demand is satisfied. Relocation 
services are not allowed in the first period (6), and the initial fill level is restored at the 
end of the day (7). Equation (8) ensures that all existing bikes need to be allocated. 
Decision variables must be non-negative (9). The above constraints enable particular 
safety buffers for bike and bike racks depending on the time of day. For instance, in 
periods with a high rental activity and a low return activity at a station, the bike safety 
buffer can be set to a high value while the safety buffer can be kept low for bike racks. 
Reasonable values for safety buffers can be determined by analyzing the demand vari-
ation based on observed trip data. 

Modeling the availability of resources as shown in constraints (4) and (5) is a rather 
optimistic approach, since customer rentals and returns are interchanged simultane-
ously. An alternative approach would handle bikes and bike racks as separate resources.
However, this could result in a too pessimistic modeling, since recently returned bikes 
could not be used by the next customer in the same time period any more.

4 Service Network Design for “Citybike Wien”

In the following case study, the presented models are applied to an existing BSS in 
order to demonstrate the usefulness of SND and the interplay of information and opti-
mization models. The information model is parameterized with trip data recorded by 
Vienna’s “Citybike Wien”. Two demand scenarios are generated (Sect. 4.1). For each 
scenario, results of SND are discussed along spatio-temporal dimensions (Sect. 4.2).

4.1 Generation of Typical Bike Flows for Service Network Design

Citybike Wien provided trip data for the years 2008 and 2009. The operational dataset 
comprises approx. 750’000 data records for a BSS of 59 stations with a total of 1253 
bike racks and 627 bikes. In order to employ a tactical planning perspective and to 
reflect the typical usage of the system, we restrict our analysis to summer trips only 
(April to October), accounting for 72% of all trips. In the summer season, 1569 trips 
occur per day or 2.5 trips per bike and day on average, respectively. The data analysis 
tool RAPIDMINER (http://rapid-i.com/) has been used for generation, documentation 
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and implementation of the information model. The transformation and the scaling of 
flows has been implemented in JAVA.

Fig. 1. Rental and return activity clusters (a) and geographical distribution of clusters (b)

Temporal Distribution of Trips. In order to determine temporal activity clusters of 
stations, the hourly rental and return activity for each station is calculated, i.e., the frac-
tion of daily rentals and returns, respectively. This leads to a data set of 59 stations with 
48 attributes representing the temporal activity. Cluster analysis groups the 59 stations 
to five activity clusters. Cluster centroids represent the main trip purposes at stations 
that were assigned to the particular cluster. Figure 1 shows the obtained rental activities 

and return activities as well as the geographical distribution of clusters in the 
city of Vienna:

Stations within the working cluster are characterized by commuter trips showing a 
return activity peak in the morning and a rental activity peak in the late afternoon. 
These stations are located in the city center, having a high number of working places 
and points of interest as well as a low proportion of residents. 
The residential cluster shows the opposite activity of commuter trips with dominat-
ing rental activity in the morning and return activity in the afternoon. These stations 
are located at the periphery, which has more residential buildings.
The leisure cluster shows activities similar to the residential cluster, but stands out 
due to different nighttime activities likely resulting from leisure trips. These activi-
ties are probably caused by popular nightlife districts.
The tourist cluster is distinguished by a significant proportion of daytime rental and 
return activity, but almost no nighttime activity. Stations are close to popular tourist 
attractions in the west (castle Schoenbrunn), east (Prater carnival) and the city center 
(St. Stephan’s Cathedral). Note that Citybike Wien’s “tourist card” is also handed 
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out next to the city center station, which may explain the distinguished activity of 
this particular station.
The mixed cluster represents stations that cannot be distinguished according to their 
main trip purposes and thus reflects a more average rental and return activity on 
working days. This observation is also underlined by the location of these stations, 
which is often between stations of other clusters. 

Fig. 2. Inter-cluster distribution between the residential cluster and other clusters

Spatial Distribution of Trips. Based on the temporal activity clusters, the spatial dis-
tribution of trips between temporal activity clusters is computed considering the differ-
ent trip purposes (working, residential, leisure, tourist, mixed). We exemplify the re-
sults for the time-dependent inter-cluster distribution for stations of the residential 
cluster (cf. Fig. 2). In the morning hours, more than 40% of trips starting at the residen-
tial cluster terminate at the working cluster reflecting commuter trips. Note that the 
peak in hour 5 with of proportion of 70% commuter trips might be overrepresented, 
since this is the hour with the lowest overall usage. In the afternoon hours, the propor-
tion of trips from the residential cluster to working cluster declines. In contrast, the 
proportion of trips to the residential and leisure cluster increases. Trips to the leisure 
cluster dominate during night time. In sum, the inter-cluster distribution follows the 
general mobility behavior in Citybike Wien.

Generation and Validation of Bike Flows. Bike flows are generated providing 24 
time-dependent OD matrices for all 59 stations. The OD matrices contain a total of 
1569 daily trips performed with 627 bikes. The information model distributes these 
trips to 59 59 24 = 83544 OD pairs. By scaling and transformation, different de-
mand scenarios can be generated. We use the original data set (1569 trips, 2.5 trips per 
bike) as the basic demand scenario and create a second scenario, the high demand sce-
nario, with twice the demand (3138 trips, 5 trips per bike).
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4.2 Service Network Design for Different Demand Scenarios

We first describe the experimental setup with particular focus on the parameters and 
the computational solution environment. Then, we optimize the SND for the basic de-
mand scenario and compare the results to SND for the high demand scenario.

Experimental Setup. The experimental setup for SND is as follows:

Two demand scenarios: basic demand (1569 trips) and high demand (3135 trips)
The network of Citybike Wien comprises bike stations with a total number 
of 1253 bike racks and a total of bikes (~50% average fill level). 
Time is discretized in terms of (hourly) time periods.
We assume that relocation services take one hour on average (approx. 15-20 minutes 
for loading and unloading plus travel times between stations). 
According to the system operator, handling costs depend on the time of the day. 
Daytime handling costs are set to Euro (in effect for time periods 8 to 
17), while night time handling costs are more expensive ( Euro). 
Transportation costs are assumed to be independent of the time of day and amount 
to Euro per kilometer. 
The lot size of relocation services is .
Bike and bike rack safety buffers are set to zero for each station and time period, 
ensuring that fill levels are non-negative and do not exceed station capacities. 

The MIP model described in Section 3 is implemented in IBM ILOG OPL and solved 
with CPLEX 12.5 on an INTEL Core i5 processor at 3.2 GHz and 8 GB RAM running 
Windows 7 64 Bit. Both demand scenarios are given 30 minutes run time. CPLEX 
returns solutions with a gap of 1-2%. Although these gaps are very small, the optimal 
solution could still not be obtained after an increased run time of 24 hours. Note that 
this instance, compared to other BSS, is a small instance with a total of 59 59 24
= 83544 binary relocation service variables. For bigger instances, a heuristic approach 
would be needed due to the sheer number of binary variables.

Key Figures of the Service Network. In order to demonstrate the benefit of optimized 
fill levels, we compare the costs of relocation required for the “optimal” fill levels to 
manually preset “naïve” fill levels. As often suggested by practitioners, we set the naïve 
fill levels for all stations to 50% in the hour of the lowest demand (hour 5). Table 1
summarizes these figures in terms of the number of relocated bikes, the number of re-
location services, average number of relocated bikes per service as well as total and 
relative costs of relocation. The relative costs of relocation can be interpreted as the 
“usage fee” per trip required to compensate relocation costs.

For the basic demand scenario, naïve fill levels result in 130 relocated bikes with 42 
relocation services. Each relocation service carries 3.09 bikes on average. Total costs 
for relocation services amount to 584 Euros. A “usage fee” of 0.37 Euros per trip would 
thus be required to compensate relocation costs. In contrast to the naïve fill levels, op-
timal fill levels result in significantly lower relocation costs (17%), namely 496 Euros 
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(119 relocated bikes with 32 relocation services). For the high demand scenario, the 
benefit of optimal fill levels becomes even more significant. Naïve fill levels result in 
1345 Euros relocation cost (282 relocated bikes with 70 relocation services), whereas
a saving of 44% is achieved with optimal fill levels. It is of note that doubling the de-
mand does not result in doubled relocation services and costs. With doubled demand, 
the relative costs of relocation decrease slightly. Due to consolidation of relocation ser-
vices, service capacities can be utilized better, and only few additional relocation ser-
vices are required. Furthermore, adapted fill levels compensate increased demand to a 
certain extent. 

Table 1. Key Figures of Relocation Services

Demand
scenario

Relocated 
bikes

Relocation 
services

Relocated 
bikes per 
service

Total reloca-
tion costs

Relative relo-
cation costs 

basic (naïve) 130 42 3.09 584 0.37
basic (optimal) 119 32 3.71 496 0.32
high (naïve) 282 70 4.02 1345 0.42
high (optimal) 215 46 4.67 932 0.30

Characteristics of Fill Levels. We present and evaluate the optimized fill levels for 
the two demand scenarios and the morning and afternoon peak hours. They are depicted 
in Fig. 3 by means of box plots of fill levels per cluster and hour of day.

The basic demand scenario reflects the demand for a typical working day. In the 
morning peak hour, stations belonging to the working cluster require a low fill level of 
about 18% on average, and stations of the other clusters require a high fill level of about 
60% and 70% on average. In the afternoon peak hour, stations of the working cluster 
require higher fill levels than stations of the residential clusters. Fill levels at working 
cluster stations are almost 50% on average and almost 40% at residential cluster sta-
tions. Striking is the high variance of fill levels of the working and residential cluster 
compared to the morning peak. For the working, residential and leisure cluster stations,
capacity is sufficient to reserve bikes or bike racks for the demand of the upcoming 
time periods. Regarding mixed cluster stations, the high variance occurs due to diverse 
trip purposes. Tourist stations seem to serve as “buffer” stations being (almost) full or 
(almost) empty because the demand in general is rather low.

For the high demand scenario, average fill levels are more distinct, and the variance 
within individual clusters is lower. Generally, the system seems to be more used to 
capacity which is reflected by the more distinct fill levels with smaller variance. In the 
morning peak hour, the higher demand induces more returns at working cluster stations 
and more rentals at residential cluster stations. Thus, more bike rack capacity is required 
at working cluster stations and more bike capacity is needed at residential cluster sta-
tions. As a result, fill levels at working cluster stations are 8% on average and 95% at 
residential cluster stations. In the afternoon peak hour, fill levels at stations of the work-
ing and residential clusters are more distinct than in the basic demand scenario for the 
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same reason. Missing bike capacity is compensated by means of the leisure cluster sta-
tions, which show lower fill levels in the morning and afternoon.

Fig. 3. Boxplots of fill levels per cluster for peak hours in two demand scenarios

Characteristics of Relocation Services. Characteristics of relocation services can aid 
the system operator in preparing and implementing relocation services. We present spa-
tio-temporal characteristics of relocation services resulting from SND. In particular, 
Fig. 4 shows the total number of bikes that are expected to be picked up and returned 
by relocation services at each station, arranged by cluster assignment for the basic and 
high demand scenarios. We can clearly identify stations that require relocation pickups 
and relocation returns, respectively, or stations that can compensate demand without 
relocation. For the basic demand scenario, relocation demand ranges between 20 relo-
cation pickups and 14 relocation returns, i.e., the first station in the working cluster 
requires 14 bikes to be returned by relocation services, whereas the last station in the 
residential cluster expects 20 bikes to be picked up by relocation services. Stations that 
require relocation returns mainly belong to the working cluster, and stations requiring 
relocation pickups mainly belong to the residential cluster. Stations of the leisure and 
mixed clusters need both relocation pickups and relocation returns, but they are also 
often able to balance pickups and returns properly without relocation services.
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Fig. 4. Total number of returned (positive) and picked up (negative) bikes by relocation for the 
basic demand scenario (left) and high demand scenario (right) 

Regarding the high demand scenario, the presented order of stations is the same as 
in the low demand scenario. Higher demand causes increasing relocation demand, rang-
ing from 32 relocation pickups to 21 relocation returns. A comparison of the two de-
mand scenarios shows that the tendency of a station requiring either relocation returns, 
relocation pickups or no relocation remains the same for 66% of the stations when de-
mand increases. For 7% of the stations, the required relocation efforts decrease, and for 
22%, the type of relocation service changes from pickups to returns or vice versa. 

Optimization with SND shows that stations either require relocation pickups or re-
turns. Especially the “direction” of relocation may support the planning of relocation 
operations. Furthermore, SND can give indications on the priority of relocation opera-
tions at stations. Stations requiring a high number of relocation pickups or returns may 
be visited once a day. Stations with a medium number of relocation pickups or returns 
may need relocation only on certain days of the week. The remaining stations may be 
serviced occasionally. For this case study, SND highlights that there are three stations 
in the high demand scenario that require both relocation pickups and relocation returns. 
This implies insufficient capacity, because these stations cannot compensate demand 
variation throughout the day. Implications for the operational level are that these sta-
tions require relocation services more than once a day. Implications for the strategic 
level are that the size of the station should be extended, if possible. 

Overall, our tactical approach can provide target fill levels for operational planning. 
Characteristics of relocation services can aid the operator in the planning of relocation 
tours. SND provides information on the expected relocation demand at stations and 
shows which stations might play a crucial role in operations. 

5 Conclusions and Future Research 

In this paper, we have proposed an integrated approach of intelligent data analysis and 
mathematical optimization for SND in BSS. The optimization model determines the 
optimal fill level at stations minimizing the expected costs of relocation services while 
ensuring a predefined service level. Computational experiments show that SND helps 
determining reasonable fill levels and relocation services. The benefit of this tactical 
approach is that determined fill levels may serve as target fill levels for operational 
planning. Furthermore, characteristics of relocation services can aid the operator in the 
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planning of relocation tours. SND provides information on the expected relocation de-
mand at stations and shows which stations might play a crucial role in operations. In-
formation on the expected flows of relocations can help reducing the complexity of 
operational planning tasks such as routing of service vehicles. Future research could 
investigate improved ways of modeling relocation services for BSS and the develop-
ment of heuristics to solve larger instances of the SND model.
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Abstract. In globally integrated supply chain networks, initially local disruptions 
can quickly escalate to major problems due to complex interdependencies and 
cascading failure. This paper is particularly concerned with the role of infrastruc-
ture failure causing or exacerbating such cascading effects in supply chain net-
works. To improve the understanding of infrastructure and supply chain interde-
pendency, we propose a novel modelling approach that captures the dynamics of 
both asset operability and network flows. The method uses a Markov process to 
generate operability scenarios and a multistage stochastic linear program to as-
sign dynamic flows and optimise network capacities. The model takes into ac-
count different mechanisms of cascading failure, namely failure propagation, de-
lay of recovery and unavailability of production inputs. A numeric example 
demonstrates how the method can be used to assess and optimises the resilience 
of a global supply chain against multiple hazards and infrastructure failure. 

Keywords: supply chain resilience, interdependency, network flow modelling 

1 Introduction 

The problem of managing disruptions in supply chains and ensuring business continuity 
is growing in complexity as supply chains are becoming ever more global and inte-
grated. Numerous incidents in recent years have demonstrated the vulnerability of sup-
ply chains to cascading failure. In many cases, the disruptions were either caused or 
exacerbated by the failure of infrastructure systems. For example, in 2000 power fluc-
tuations in the electricity grid caused a fire in the plant of a sub-supplier of the mobile 
phone manufacturer Ericsson. The fire was quickly extinguished, but it affected a clean 
room for the production of radio frequency chips and, eventually, resulted in a business 
interruption for Ericsson that lasted for months and cost $200 million [1]. After the 
2011 earthquake in Japan, production at all of Toyota’s assembly plants stopped com-
pletely for two weeks even though most of these plants did not suffer direct damage 
from the earthquake. The problem was the unavailability of parts sourced from the af-
fected Tohoku region [2]. When Hurricane Sandy hit the US East Coast in 2012, the 
liquid fuel supply chain broke down due to a combination of extensive power outages 
and direct damage to terminals, pipelines, refineries and other infrastructure assets [3]. 
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In future, the risk of supply chain disruptions due to infrastructure failure is bound to 
become even more problematic as climate change is expected to put more stress on 
many critical infrastructure networks [4, 5]. 

Simulation and optimisation tools, such as network flow models, can support the plan-
ning of strategies to improve the resilience of supply chains. However, existing network 
flow models do not fully capture the uncertainty associated with the reliance on infra-
structure systems and the risk of cascading failure. This paper proposes a novel sto-
chastic programming approach for modelling supply chains and their dependencies on 
infrastructure systems. The model optimises the capacities of a supply chain network 
based on operability scenarios generated with a Markov model for individual assets in 
the supply chain and interdependent infrastructure networks. The novelty of the pro-
posed method lies in the modelling of dependency relations both on the asset operability 
level and on the network flow level.  

The paper is structured as follows. Section 2 reviews the most relevant existing models 
for disruption management in supply chains. Section 3 gives an overview of the pro-
posed modelling approach. Section 4 describes the scenario tree generation algorithm.
Section 5 presents the stochastic programming model. Finally, Section 6 demonstrates 
the practical application of the method with a numerical example. 

2 Literature review 

Various modelling methods have been developed to improve the analytical understand-
ing of what makes a supply chain resilient, including network optimisation models [6],
system dynamics models [7], agent-based simulation models [8], queuing models [9] 
and game theory models [10]. Comprehensive reviews of such models are provided by 
[11–13]. Regarding future research priorities, these reviews highlight the importance 
of addressing time-related aspects in more detail [11], and state that models based on 
stochastic modelling and optimisation theory are most likely to make significant 
contributions to the methodology [13].  

Network flow theory [14] provides the methods to analyse infrastructure and supply 
chain networks with respect to the nature of their core purpose, the transportation of 
people, goods, energy, and information. Numerous network flow models have been 
developed for the specific purpose of minimising the risk of disruptions in supply 
chains [15]. Many models use stochastic programming methods to capture uncertainty 
aspects, for example, capacity uncertainty [16], demand uncertainty [17], unreliable 
suppliers [18], and the random failure of various elements of the logistics network [19].  

The network flow model proposed by Glockner and Nemhauser [16] is of particular 
relevance to this paper because it addresses both dynamic and uncertainty aspects. It 
uses a linear multi-stage stochastic programming method that captures the evolution of 
capacity uncertainty over time with a scenario tree. Each node in the scenario tree has 
a separate set of flow variables. The leaves of the scenario tree correspond to the 
scenarios, and the optimal flow assignment is found by minimising the expected costs 
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over all scenarios. The method is capable of modelling flows that span over more than 
one time step, thereby allowing a certain degree of anticipation. 

The method developed in this paper builds upon the model formulated by Glockner and 
Nemhauser and extends it in several ways. First, we add inventory holding to the model, 
because inventory optimisation is an important way of improving the resilience of a 
supply chain. Second, we add a network design aspect to the model by also optimising 
network capacities. Third, we add interdependency to the model. Interdependency can 
affect both the scenario tree generation and the flow assignment. We refer to the former 
with operability interdependency and to the later with flow interdependency. The fol-
lowing sections will review techniques to model these interdependencies.   

2.1 Scenario tree generation with operability interdependency 

A widely used approach to generate scenario trees for multi-stage stochastic programs 
is to sample from a stochastic process. A difficulty when using sampling methods to 
generate scenario trees for stochastic programs is to achieve a good representation of 
the underlying probability distribution while keeping the number of scenarios small 
enough to solve the optimisation problem. Clustering and moment matching are useful 
methods for efficient scenario tree generation [20]. Stability testing can be used to en-
sure the quality of the scenario tree generation method [21]. 

For reliability engineering applications, a standard method to model failure and repair 
processes are discrete-time Markov chains [22]. The flexibility of Markov chain mod-
elling allows capturing dependencies in many different ways, according to the require-
ments of the modelling task. For example, Rahnamay-Naeini and Hayat [23] use binary 
variables to express the susceptibility of a system to further failures. However, this 
method only models the total number of failures in a system, not where they occur. Son 
et al. [24] propose a decomposition approach that can model the availability of individ-
ual sub-systems and expresses dependencies in terms of voting logics. A limitation of 
this method is that only deterministic dependencies can be modelled. 

2.2 Network flow assignment with flow interdependency 

The literature on interdependent infrastructure systems contains several methods for 
modelling coupled flows in different networks. For example, Lee II et al. [25] model 
the flows in the public transport, power and telecommunication networks in New York 
City in a disruption scenario similar to the attacks on 11 September 2001. The model 
uses a minimum cost flow assignment method. Dependencies between the different 
networks are modelled with binary coupling variables. These coupling variables reduce 
the capacity of a dependent network component if the demand at the connected node 
cannot be fully met. 

Holden et al. [26] also use minimum cost flow assignment but propose an alternative 
method for the coupling of flows across networks. The model constraints the production 
rates at supply nodes to be proportional to the consumption rates at nodes that deliver 
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the required input resources. Whether this proportional coupling or the binary coupling 
proposed by Lee II et al. is more realistic depends on the nature of the dependency 
relation. The most flexible model would arguably be a combination of both coupling 
methods. However, the use of binary coupling variables comes with a higher computa-
tional cost. 

Another key difference between the various flow assignment models is how they cap-
ture the dynamics of flows. Lee II et al. [25] use a static model that optimises the net-
work configuration at one point in time after the disruption occurs. Holden et al. [26] 
analyse the dynamics of network flows over ten days by carrying out a minimum cost 
flow assignment separately for each day. Glockner and Nemhauser [16] integrate the 
flow assignment for all time steps into one single optimisation problem. The advantage 
of integrating the flow assignment for the entire simulation period is that flows can be 
modelled which span over more than one time step. However, the disadvantage is that 
the integrated flow assignment tends to allow too much anticipation, which can only be 
mitigated by a suitable branching structure of the scenario tree. In terms of computa-
tional requirements, the step-wise dynamic flow assignment leads to more manageable 
problem sizes that scale linearly with the length of the simulation period and the number 
of scenarios. 

3 Model overview 

We model an interdependent infrastructure and supply chain network as a directed 
graph . The node set  contains production plants, suppliers, ware-
houses, transhipment hubs, infrastructure systems and demand nodes. The node set 
contains hazard nodes, for example the risk that a specific flooding event occurs. The 
link set  contains links over which goods are transported and services are delivered. 
The link set  contains dependency links. 

In contrast to Glockner and Nemhauser, we do not consider the network capacities 
themselves as random but instead the operability of each network component over time. 
The operability expresses how much of a component’s nominal capacity is available at 
a given time. This separation between nominal and available capacity allows us to add 
the nominal capacities as decision variables to the optimisation problem. 

The two main steps in our methodology are scenario tree generation and network flow 
assignment, as depicted in Fig. 1. In the first step, scenarios for the operability of net-
work components are created using a Markov process. In the second step, a linear sto-
chastic program is solved to calculate the optimal flow assignment for each scenario as 
well as the optimal component capacities considering all scenarios. 
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Fig. 1. Overview of model inputs and outputs 

Interdependency effects play a role both in the generation of operability scenarios and 
in the flow assignment. Hence, we define two types of dependency links: 

Operability dependencies: An operability dependency ,
where  and , means that an operability loss at 
 can affect the operability of , for example due to co-location. 

Flow dependencies: A flow dependency , where  and 
, means that the production of a certain commodity at  requires 

the input of a commodity provided by . 

The following two sections present the two steps of the proposed method in detail and 
explain how the two types of dependency are formulated in mathematical terms. 

4 Scenario tree generation 

The primary sources of uncertainty in our model are the hazard nodes, which represent 
specific hazard events that may occur at a given time with a given probability. Further-
more, there is uncertainty about the direct impact of these hazard events on the supply 
chain and infrastructure components, the propagation of failure due to dependencies 
and the speed of recovery. A scenario in our model is a unique realisation of the oper-
ability variables  for all network components  over time steps 

. The following sections describe how a Markov process is used to generate op-
erability scenarios and how these scenarios are then combined to form a scenario tree. 

4.1 Markov process modelling failure and repair of a single component 

Let  be a Markov process describing the operability of an individual 
supply chain component . The state space of this Markov process is 

, where  is the normal state,  is the failure state, and the rest are 
intermediate recovery states. The transition probabilities are given in terms of failure 
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rate and recovery rate parameters. The failure rate  is the probability of a transition 
from state  to state 0. The recovery rates  for  are the probability of a 
transition from state  to state . Failures can only occur when the component is in 
state  and all recovery states must be completed in sequential order. Thus, the state 
transition diagram takes a cyclic form as depicted in Fig. 2. 

Fig. 2. Stochastic process for an individual component with failure rate  and  recovery steps 
with recovery rates 

The duration of each individual recovery stage follows a geometric distribution. The 
total recovery time  until component  reaches recovery state  is the sum of  inde-
pendent geometric random variables [27]: 

 

  (1)

Fig. 3 depicts the probability distributions of the recovery times for an example with 
three recovery stages. The distribution for full recovery exhibits the skewness charac-
teristics typical for the recovery times of many repairable systems [28–30]. 

Fig. 3. Probability mass function for the recovery times of a three-stage recovery process with 
expected individual durations of 1, 5 and 10 days 
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The expected recovery time is the sum of the mean durations of each recovery stage:  
 

  (2)

The operability function  maps the Markov state  to the operability 
value . The average operability of a component can be calculated as the weighted 
mean of the operability levels: 

 

  (3)

4.2 Operability dependencies 

Introducing operability dependencies to the model means coupling the Markov pro-
cesses for the individual supply chain components. In the previous section, the failure 
rates  and the recovery rates  were fixed. In this section, each component’s failure 
and recovery rates are affected by the inoperability of other components that it depends 
on. In other words, the failure and recovery rates are now defined as functions of the 
operability vector  for the entire supply chain. 

Let  and  denote the intrinsic (or independent) failure and recovery rates of com-
ponent . The effect of an operability dependency  is quantified by four pa-
rameters: the failure propagation slope parameter  and intercept parameter , and 
the recovery delay slope parameter  and intercept parameter . The effective fail-
ure and recovery rates are calculated as follows: 

 
   (4)

 
  

  
(5)

Equations (4) and (5) mean that the effect of a dependency from  to  is zero if the 
operability of  is one. Otherwise, the dependency increases the failure rate of  by 

 and the recovery rate by . 

In the case that a dependency link originates at a hazard node, the hazard node is treated 
as a component with operability  if the hazard event is currently active and with oper-
ability 1 otherwise. 

Rahnamay-Naeini and Hayat [23] point out that the coupling of individual Markov 
chains does not necessarily result in a process that fulfils the Markov property. In our 
case, however, we can show that the coupling of Markov chains does create a new 
Markov process. The state space of this process is the Cartesian product of the states of 
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all individual Markov chains  and is therefore very large. We can cal-
culate the transition probabilities for this overall Markov process and show that it de-
pends on the state in the previous time step but not on earlier time steps: 

  
 

(6)

  
 

  
 

The function  in equation (6) is the operability function for the entire system,
which maps the vector of Markov states to a vector of operability values. 

4.3 Components with deterministic operability 

A limitation of modelling interdependency by changing the transition probabilities in 
the Markov process is that it takes one time step to transmit the dependency effect via 
a dependency link. In reality, some interdependency effects are more immediate. For 
example, a component could depend on a number of sub-components and become 
inoperable as soon as any sub-component fails. To take this into account, we introduce 
components with deterministic operability to the model. The operability of these 
components is a function of the operability of components that they depend upon. For 
example, to model a component  as a series or parallel systems the following 
deterministic operability functions can be used:

 
Parallel system:  (7)

 
Series system:  (8)

The deterministic operability functions are included in the system operability function 
. Components with deterministic operability can depend on components 

with stochastic operability and vice versa, as long as there are no cycles in the depend-
ency links connecting components with deterministic operability. 

4.4 Sampling and scenario tree generation 

With the model of stochastic failure and recovery for some components and determin-
istic operability functions for others, we can now sample the operability for all compo-
nents of the entire infrastructure and supply chain network for a simulation period 

. For each hazard node , we create  samples with  set as active. Addi-
tionally, we create  samples with no hazard event set as active. This results in a set of 
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 samples. The probability of each sample is  times the probability of the 
active hazard event. If necessary, the sampling could be extended to include the simul-
taneous occurrence of different hazard events. For simplicity, we assume here that the 
probability of joint occurrence is negligible and that the probability of no hazard event 
occurring is one minus the sum of the probabilities of all hazard events. 

The scenario tree is created from the operability samples by grouping together for each 
time step  the samples with identical operability values for  and all previous 
time steps. Each of these groups represents a node in the scenario tree indexed by 

. A scenario tree node is uniquely identified by the tuple  and this will be 
used to index the scenario-specific variables, e.g.  is the operability of component 

 at time  and scenario node . 

For , the scenario tree only contains the root node, so . The number of 
scenario tree nodes at the last step  is equal to the number of unique operability sam-
ples. The probability  of each scenario tree node is the sum of the respective sample 
probabilities and  for . 

5 Dynamic network flow model with uncertain capacity 

In this section, we present the multistage stochastic linear program that is used to cal-
culate the optimal nominal capacities and network flows. This step takes the scenario 
tree generated in the previous section as an input. 

There are two types of decision variables in the optimisation problem. First, the nominal 
link flow capacities , production capacities , and storage capacities . Second, the 
scenario-specific variables  for link flows,  for production rates,  for inven-
tory levels,  for consumption rates, and  for unmet demand. 

The commodity demand is denoted with . The parameters , , and  specify 
upper limits for the component capacities. Furthermore, each of the decision variables 
(with the exception of consumption rates) has a cost parameter. The cost parameters 

, , and  are the fixed costs of providing the flow, production and holding 
capacities for the entire duration of the simulation period. The cost parameters , ,
and  are the variable costs that occur for the usage of flow, production and holding 
capacities. The parameters  are the penalty cost for not meeting the demand. 

The multistage stochastic linear program is then formulated as follows: 
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subject to  

   (10)

   (11)

   (12)

   (13)

   (14)

   (15)

   (16)

   (17)

 

 

 

 

 (18)

The objective function (9) comprises the cost of providing the capacities, and for each 
scenario, the scenario probability multiplied with the respective transportation costs, 
production costs, inventory costs and the penalties for unmet demand. The constraints 
(11) - (13) set upper bounds for the capacity decision variables. For each scenario, the 
constraints (14) - (16) ensure that the actual flows, production rates and inventory levels 
do not exceed the capacity multiplied by the scenario-specific operability of the respec-
tive component. Constraint (17) sets the slack variable for unmet demand equal to the 
difference between demand and supply. 

Equation (18) expresses the conservation of flow constraints for each node. It comprises 
net flow, inventory change, production, consumption, and supply to a dependent node. 
The parameter  is the duration for the transit of link . To take into account this 
flow over time, the function  is defined. For time step , sce-
nario tree node  and time step ,  returns the tuple  that is the 
scenario tree node at time  which belongs to the path to scenario tree node . 

The last term of the conservation of flow constraint (18) models the interdependency 
of network flows. The parameter  of a flow dependency  defines how many 
units of a commodity at node  have to be provided for each unit of a commodity pro-
duced at the dependent node . Thus, the model assumes a linear production function. 
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6 Numerical example 

To demonstrate the modelling method proposed in this paper, we use an example supply 
chain from the dataset published by Willems [31]. The dataset contains 38 real-world 
examples of multi-echelon supply chains from different industries. For each supply 
chain, the data provided includes the topology of the supply chain, the cost and duration 
of each stage, and demand data. 

6.1 Problem configuration 

The supply chain number 3 from the dataset was chosen to test our model because the 
size of this example will allow the demonstration of various interesting aspects of the 
methodology. The supply chain consists of 4 distribution or demand nodes, 4 manufac-
turing plants, 5 component suppliers and 4 transportation links.  

The dataset is primarily intended to provide a testbed for models that optimise inventory 
under demand uncertainty. Since the aim of our study is to analyse the resilience of 
supply chains under the uncertainty of disruptive events and interdependencies with 
infrastructure networks, we extend the example with some hypothetical hazard nodes, 
infrastructure nodes and dependency relations. This is for demonstration purposes only 
and was not validated with real-world data. 

Considering the topology of the supply chain (Fig. 4), we can assume that it stretches 
over three separate geographic regions. For each region, we add one hazard node: an 
earthquake occurs with probability 0.001 in region A, a flood event occurs with proba-
bility 0.033 in region B, and a storm occurs with probability 0.050 in region C. 

We assume that the transport links connecting these regions are air freight links and we 
add three airports to the model as examples of critical transportation infrastructure. Fur-
thermore, we add one node that represents the electricity supply and another node that 
represents the telecommunication services in region A. 

The flow dependencies in Fig. 4 show the combination of parts and intermediate prod-
ucts in the manufacturing processes. For example, the node Manuf_1 (prod) has three 
incoming flow dependencies, meaning that it requires parts 1, 2 and 3 as production 
inputs. All flows are normalised to a common unit measure, and we set the  param-
eter to 1 for each flow dependency. 

The operability dependencies determine the magnitude and impact of the hazard events, 
as well as the probabilities of failure propagation. The parameters for these dependen-
cies are given in Table 2 in the appendix. 

The time step length given in the original dataset is one business day. The average 
length of the entire supply chain is 77 business days. The duration of the simulation is 
set to 210 time steps. The first 80 time steps are the warm-up phase, in which the de-
mand is zero. For the remaining 130 days (or half a year) the demand is set by sampling 
from a normal distribution with the parameters taken from the original dataset. The time 
of occurrence for the hazard modes is normalised to . The operability levels 
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and recovery rates for the simulation of component failure and repair are presented in
Table 3 in the appendix. The cost parameters in Willems [31] are not disaggregated
into fixed and variable cost. Thus, we assume here a fix cost ratio of 0.5.

Fig. 4. Example supply chain and infrastructure network

6.2 Results

For each of the three hazard events, 300 operability scenarios were sampled. The inte-
rior-point method of the Gurobi optimisation software was used to solve the linear pro-
gram. After presolving, the linear program had about nonzeros and the computation 
time was about 40 minutes.

Fig. 5 shows a clear correlation between the average inoperability and the total unmet 
demand. However, the correlation is different for each hazard mode. Fig. 6 depicts the 
performance of the supply chain network over time in terms of the proportion of de-
mand that can be satisfied. This plot shows that the final consumers will experience the 
most severe disruptions between 15 and 45 days after the trigger event. While on aver-
age over all scenarios the supply chain can always satisfy more than 70 % of demand, 
the performance can drop to around 10 % in the most extreme cases. After about 85 
days the supply chain has fully recovered in most scenarios, although some repercus-
sions are possible up to 100 days after the trigger event.
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Fig. 5. Average inoperability and unmet de-
mand for 901 scenarios

Fig. 6. Loss of supply chain performance 
over time

Fig. 7. Cumulative distribution function for
unmet demand (expected value: 11.7)

Fig. 8. Sensitivity of optimal storage
capacity at Part_5 (out)

While in some scenarios the total unmet demand can amount to nearly 5,000 units, the 
expected value over all scenarios is only 11.7 units. This is largely due to the full-
operability scenario that has a probability of 94 % and in which the demand is fully 
met. Further insights into the probability distribution of the supply chain performance 
can be gained from plotting the cumulative distribution function for unmet demand 
(Fig. 7). The analysis suggests that with a probability of 99 % unmet demand will be 
less than 350 units. On the other hand, the plot also shows the long tail of the distribu-
tions with a probability of 0.04 % that the unmet demand will be greater than 2,000 
units.

The optimal network capacities are presented in Table 1. For comparison, the optimal 
values for a separate simulation run with no hazard events are included. The largest 
differences between the two simulation runs are the optimal storage capacities. The 
simulation suggests that if no hazard events were considered, the supply chain should 
operate in a just-in-time configuration with storage only at the distribution centres to 
provide for the fluctuations in demand. On the other hand, when the three hazard events 
and the interdependencies with infrastructure systems are taken into account the model 
suggests that storage capacity should be provided at various parts throughout the supply 
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chain. Furthermore, the model results suggest that the production capacity at the plants
Manuf_1 and Manuf_3 should be increased by 13 % in order to improve the resilience 
of the supply chain.

The results were tested for sensitivity by varying the probabilities of the three hazard 
events. The sensitivity was generally very low. Doubling or halving any of the event 
probabilities changed the optimal capacities by less than 10 units. For example, Fig. 8
plots the sensitivity of the optimal storage capacity at node Part_5 (out).

Table 1. Optimal network capacities

Node Op. prod. cap. Node Op. stor. cap. Link Op. flow cap.
Without 
hazards

With
hazards

Without 
hazards

With
hazards

Without 
hazards

With
hazards

Manuf_1 (prod) 152 173 Part_1 (out) 0 2216 Trans_1 155 176
Part_2 (out) 0 2719 Trans_2 152 173

Manuf_2 (prod) 195 207 Part_3 (out) 0 2719 Tarns_3 144 139
Part_4 (out) 0 2360 Trans_4 198 303

Manuf_3 (prod) 152 173 Part_5 (out) 0 1259 Dist_1 76 79
Manuf_4 (prod) 144 140 Part_5 (dist. B) 0 6 Dist_2 152 173

Part_5 (dist. C) 0 159 Dist_3 85 77
Dist_1 221 812 Dist_4 59 62
Dist_2 744 1643
Dist_3 203 687
Dist_4 165 610

7 Conclusion

The main contributions of this paper can be summarised as follows. Firstly, the pro-
posed method extends an existing network flow model to include inventory holding,
the coupling of flows across interdependent networks, and capacity optimisation. Sec-
ondly, we combine the network flow model with a novel stochastic simulation method
for the generation of operability scenarios for interdependent network assets. Key fea-
tures of this methodology are that it considers interdependency both at the level of asset 
operability and at the level of network flows, that it captures dynamic aspects of net-
work flows and supply chain performance in greater detail than previously existing 
models, and that it addresses the issues of uncertainty and anticipation.

It has to be noted, however, that the model depends on the assumption that the 
uncertainty can be captured by a finite scenario tree and that all decisions are taken
based on full knowledge of that scenario tree. The maximal size of the scenario tree is 
limited by the computational memory requirements for solving the resulting linear pro-
gram. Thus, for large problem instances, a trade-off exists between reducing the number 
of scenarios or reducing the number of time steps. An opportunity for further research 
is to develop a clustering method that reduces the number of operability scenarios while 
maintaining representativeness.
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Appendix 

Table 2. Operability dependency parameters 

From To Failure 
propagation

Recovery 
delay

            
Earthquake Power supply 0.50 - - -
Earthquake TelCom 0.10 - - -
Earthquake Airport_A, Part_1, Part_2, Part_3, 

Part_4, Part_5, Manuf_1, 
Manuf_2

0.25 - - -

Flooding Airport_B 0.50 - - -
Flooding Manuf_3 0.25 - - -
Storm Airport_C 0.75 - - -
Storm Manuf_4 0.10 - - -
Power supply TelCom 0.75 - - -
Power supply Airport_A, Part_1, Part_2, Part_3, 

Part_4, Part_5, Manuf_1, Ma-
nuf_2

0.50 - - -

TelCom Power supply, Airport_A - - 0.50 -

Table 3. Operability level and recovery time parameters 

Component Operability levels Recovery rates
Manuf_1, Manuf_2, Manuf_3, Manuf_4 [0.00, 0.25, 0.90, 1.00] [0.50, 0.25, 0.33]
Parts_1, Parts_2, Parts_3, Parts_4, Parts_5 [0.00, 0.50, 1.00] [0.50, 0.33]
Airport A, Airport B, Airport C [0.00, 0.67, 1.00] [1.00, 0.50]
Electricity network [0.00, 0.50, 1.00] [1.00, 0.50]
TelCom [0.00, 0.25, 1.00] [1.00, 0.67]
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Abstract. In prefabricated construction projects, unlike onsite assembly 
construction projects, structural components are produced in a factory 
environment. Thus, similarly to the manufacturing industries, the productivity of 
building components can fluctuate owing to human errors and machine 
malfunctions. Since the site demand must always be met, manufacturing is at 
times outsourced to supplement uncertainties in production. Furthermore, a 
storage facility between the factory and the construction site becomes 
indispensable to deal with components that are large in size, yielding a three-tier 
supply chain that is absent in traditional construction. The objective of this 
research is to determine the most appropriate production plan and the optimal 
outsourcing quantities for multi-prefabricated components produced in a 
manufacturing environment subject to uncertainties in productivity. A workflow 
including a two-stage stochastic programming model and a mixed
programming model is established to resolve the above issues. The most 
favourable schemes for dispatching components and the variation of inventory 
are also determined. A large infrastructure built through the prefabrication 
method was selected as a case study to validate the models. 

Keywords: Logistic, Manufactured construction, Outsourcing manufacturing.  

1 Introduction  
 

In conventional onsite assembly construction projects, raw materials are dispatched by 
suppliers to construction sites following the orders placed by contractors [33]. In this 
context, the supply-demand relationship is straightforward, as there are only two 
decisions to be made: when to purchase new materials and how many materials to 
purchase. It should also be noted that orders are typically based on a predetermined 
construction schedule [35], and raw materials on the supply end are always ready to be 
sent over to the site [5]. 
  In recent years, the construction sector is undergoing a shift from the onsite assembly 
to the prefabricated construction method. In prefabricated construction projects, 
building materials are initially shipped to the manufacturing facility, where they are 
transformed into structural components following a rigorous production sequence [23]. 
The completed components are then transported to sites for assembling. Moreover, the 
logistics of prefabricated construction includes aspects that distinguish it from generic 
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supply chains [13]. For instance, prefabricated structural components are usually tailor-
made and project-specific, so their total production quantity usually matches exactly 
the demand from the construction site. Consequently, the inventory will reach zero 
when a project ends. Also, these components are often large and cumbersome, 
necessitating extra caution when carrying them across public road networks [27]. Since 
many construction sites are located in urban settings with limited storage space, 
inventory management within warehouse becomes more prominent. However, previous 
studies to establish optimal supply chain configurations can only be partially used to 
inform the definition of a new logistics model for prefabricated construction projects 
as additional features have to be considered. 
  Since prefabricated construction has the characteristics of both manufacturing and 
traditional construction, the production rate of structural components can be affected 
by factors such as workers' productivity fluctuation and machine or equipment 
downtime [6]. Hence, manufacturing is at times outsourced to overcome production 
insufficiencies brought about by productivity uncertainty [32]. However, to meet the 
demand from a construction site and minimise the total cost, a favourable scheme for 
self-production and outsourcing should be identified well before the start of 
construction works. To the best of our knowledge, the optimal production plan for 
prefabricated construction projects under uncertain productivity has never been 
proposed. 
  This research has two main aims. The first is to define a production scheme including 
the best outsourcing quantities for multi-prefabricated components and the most 
appropriate duration of self-production when facing uncertain productivity. The second 
aim is to identify the most favourable schemes for dispatching components 
manufactured by self-production and outsourcing, while disclosing the variation of 
inventory in the three tiers of the supply chain: prefabrication factory, warehouse and 
construction site. 
  In this research the above issues are addressed by defining a workflow composed of 
a two-stage stochastic programming model and a mixed-integer linear programming 
(MILP) model. The results of the workflow could serve as the basis to support decision 
making by managers of prefabricated construction projects who require to make a 
holistic plan encompassing self-production, outsourcing, inventory and transportation. 

 

2 Background 
 

This section provides an overview of current research to quantify productivity 
fluctuation and the strategies to outsource manufacturing. Furthermore, methods to 
determine the optimal configuration for a multiple-tier supply chain are also reviewed. 
 

2.1 Productivity uncertainty in manufacturing facilities 
 

In a manufacturing factory, the productivity within a finite time horizon can generally 
be expressed as a bell-shaped curve indicating how frequently a production level can 
be reached [7,8]. If the target productivity is located on the right side of the curve, which 
can be fairly common, in most situations the production rate would fall below 
expectations. Under this context, if the demand is to be met, outsourcing of production 
is often inevitable. 
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2.2 Identifying the optimal outsourcing scheme  
 

In manufacturing research, many studies have been conducted to identify and 
understand outsourcing strategies. Ross and Westerman [34], for example, stated that a 
firm should establish a holistic outsourcing plan to minimise the total investment cost 
at the preparation stage. Outsourcing a proportion of production can lower the total 
operational cost as a result of the efficiency improvement due to parallel manufacturing 
[1,9]. Alvarez and Stenbacka [3] also identified that partial outsourcing is the most 
profitable strategy to take under high market uncertainty. Real option theory has been 
extensively adopted to establish an executable plan for outsourcing. For example, it has 
been employed to determine whether or not to use outsourcing and revealing the most 
favourable timing for initiating the outsourcing when a market demand is uncertain 
[3,22,30,32]. Construction companies engaging in prefabricated construction often 
need time before a factory is fully equipped and its personnel sufficiently experienced. 
Thus, the uncertainty lies in the self-productivity of structural components, rather than 
in the demands at the planning stage. Under this context, the point of an outsourcing 
plan is to determine the best quantity to order from an outsourcing manufacturer under 
fluctuating self-production.  

 

2.3 Solving production planning problems 
  

Many previous production planning studies focused on determining the best production 
quantity and schedule under demand uncertainty [18]. The methods applied for solving 
the problems were mathematical programming models which can give optimal or near 
optimal solutions [19,31].  
  Different types of modelling techniques have been proposed such as stochastic 
programming, fuzzy set theory, robust optimisation and dynamic stochastic 
programming [16]. Among them, the two-stage stochastic programming has been 
commonly adopted, because it can capture different types of uncertainties effectively 
[17]. Ierapetritou and Pistikopoulos [20] sought the optimal production quantities under 
fluctuating customer demands by a two-stage stochastic programming with an objective 
function for minimising the total operational cost and the expected penalty cost incurred 
by unmet customer demand. Two-stage stochastic programming has also been 
employed to deal with production planning problems of multi-products, in multi-
periods and multi-sites under demand uncertainty [26,27]. Mirzapour Al-e-Hashem et 
al. [29] implemented a multi-objective stochastic programming model for minimising 
the total operational cost and its variance while maximising the labour productivity. In 
their research the demand and labour productivity are both fluctuating and presented as 
pre-defined distributions. Because of the computational complexity, the model was 
solved by a hybrid algorithm that is a combination of several mathematical methods, 
and numerical examples were implemented to demonstrate the validity of the model. 
  Thus, it is feasible to apply a two-stage stochastic programming model to solve the 
problem of outsourcing with fixed demand and uncertain self-productivity. This is 
because they share a common objective: pursuing the most economical production, 
either pulling by uncertain demand as in previous studies or pushing by uncertain 
productivity as in the case of this research.  
 
 
 
 
 

Establishing Outsourcing and Supply Chain Plans 531



2.4 Integrating supply chains across the organisational boundary 
  

Construction components manufactured through self-production and outsourcing need 
to be delivered to the site following an appropriate scheme for minimising the 
transportation and inventory costs while fulfilling the site demand. Under this 
circumstance, an integrated supply chain configuration between the factory, the 
warehouse, the construction site and the outsourcing manufacturer needs to be proposed. 
Chandra and Fisher [11] pointed out that in supply chain design, the activities in 
different echelons should be considered simultaneously to achieve high overall 
efficiency. Coelho and Laporte [12] suggested that decisions in production planning, 
shipment and inventory management should be modelled in a single problem statement. 
Under this context, a model and its optimal solution can serve as the foundation for 
tactical decision making. 
  The idea of a supply chain integrating all stakeholders has been realised by many 
researchers. Lei et al. [24], for example, developed a model which considered 
production, inventory, and distribution synchronously. In their study, the most 
appropriate operation schedule pursued is the one that is capable of satisfying all the 
customers’ demands. Elimam and Dodin [15] combined the production and distribution 
chains into one integrated supply chain, and identified the optimal supply chain 
configuration.  
  A recent review by Díaz-Madroñero et al. [14] summarised the research trends in 
studying supply chain integration. A common assumption adopted in previous studies 
is that the customer demand must be satisfied at all times. Another tendency is that most 
of the integrated supply chain design problems are modelled using mixed-integer linear 
programming (MILP), which has also been adopted in this research. At this point it is 
worth noting that prefabricated construction supply chains have certain unique features 
that set them apart from conventional construction and generic logistic operations. 
These are reflected in the design of the model presented in this paper.  

 

3 Methodology 
 

This section introduces the assumptions behind the mathematical models, the structure 
of the models and the background to the case study used to test the models. 

 

3.1 Assumptions 
 

The assumptions applied in the model to represent the logistics operations in the case 
studied are outlined below. A complete list of indices, parameters and variables is 
provided in the Appendix. According to the data collected from the cooperating 
construction company, the schedule engineers organised a detailed weekly assembly 
plan for the whole construction period (TW weeks) before the manufacturing process 
started. The exact weekly demand quantities  (  where  is the set of 
component types;  where T=1…TW) for each type of structural components are 
known. Thus, the total quantity ( ) needed for each type of structural component in 
the whole project is also revealed at the design stage and is used as the basis for cost 
estimation.  
  The manufacturing factory for producing prefabricated concrete components is 
owned by the construction company. Nevertheless, the weekly production level is 
uncertain owing to factors such workers' productivity fluctuation and machine or 
equipment downtime. Thus, there exists different scenarios of total self-production 
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quantity SPsi (  where S is the set of scenarios) for each type of component . This 
research assumes that all the self-production scenarios are independent and their 
probabilities of happening are denoted as Ps. The scenario generation process is 
explained in the next section. 

Since the productivity in the factory is uncertain, there exists a possibility that the 
demand cannot be met by self-production. Thus, two types of outsourcing 
manufacturing are adopted. The first type is the planned outsourcing which places 
orders to another prefabrication company in advance, and the total quantity of planned 
outsourcing (qi) is estimated based on the most likely inadequacy of self-production.  
The cost of adopting planned outsourcing for each type of structural component is 

, where  represents the price for purchasing one unit of component  from the 
outsourcing company in advance. The second type is the emergency outsourcing. Since 
the self-production rate is fluctuating, there exists certain extreme occasions in which, 
even with backup from planned-outsourcing, the site demand still cannot be satisfied. 
Under these circumstances, emergency orders are sent to the outsourcing manufacturer 
and the price of adopting such measure would be higher than the planned outsourcing 
one. The emergency outsourcing cost is scenario specific and it is expressed as 

, where  is the price for buying one unit of 
component  from the outsourcing company in an urgent situation. On the other hand, 
if the sum of self-production and planned-outsourcing exceeds the site demand, an extra 
cost is needed to dispose of redundant components. The redundancy disposing cost is 
illustrated as , where  is the cost to dispose of one 
unit of redundant product . It should be emphasised that in each self-production 
scenario, the occurrence of component insufficiency and redundancy are mutually 
exclusive. 
  This research also includes inventory management considerations. The inventory 
levels for each type of component i at the factory, warehouse and site in week t are 
denoted as ,  and , respectively. The weekly inventory cost of each type of 
component is composed of the inventory costs within the factory , 
warehouse (  and site FIC, WIC and SIC 
are the weekly unitary storage costs in the factory, warehouse and site, respectively, 
and  is the volume of prefabricated component i. The sum of the weekly 
inventory cost of each component in all places gives the total inventory cost ( ). It is 
worth noting that, since most modular products are tailor-made for a project with exact 
quantity, ,  and  are expected to be exhausted by the end of the project. 
Moreover, assumptions have been made that the total volumes of inventory cannot 
exceed their respective storage capacities in factory (FCAP), warehouse (WCAP) and 
site (SCAP) at all time.  
  As for the transportation process, there are two sector of transportation; one is from 
the factory to the warehouse, while the other one is from the warehouse to the site. The 
overall transportation cost (TC) is the sum of the costs for moving components in these 
two sectors. In this research, we assumed that all prefabricated components are 
transported from the warehouse to the construction site according to the weekly demand 
on a just-in-time basis. The number of trucks needed for moving one type of component 
from the warehouse to the site is calculated by dividing the weekly transportation 
quantity ) by the quantity of product that can be loaded onto a single truck  
running on this route. The weekly transportation cost from the warehouse to the site for 
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a certain type of component then is determined as: / ) , where 
DWS is the distance in between and CWS the unitary transportation cost. The 
transportation cost for moving components from the factory to the warehouse is 
calculated in the same manner using the corresponding variables and parameters: the 
weekly transporting quantities of one type of components , truck loading 
quantity , moving distance (DFW) and unitary transportation cost (CFW). 
Another assumption is that, all the finished outsourcing components are delivered to 
the site directly and the weekly delivery quantities  where P and E stand 
for planned and emergency, respectively) of each type of components are decided based 
on both the fluctuating self-production rate and the demand on site.  

 

3.2 Two-stage stochastic programming model for pursuing the optimal outsourcing 
 

This research uses a two-stage stochastic programming model to define the most 
favourable planned outsourcing quantity for each type of prefabricated component 
under uncertain productivity. In the first stage of the model, an optimal planned-
outsourcing quantity is decided, and in the second stage, the difference between the 
demand on site and the sum of planned-outsourcing and self-production quantity is 
taken as the cause of penalty.  

 

Objective function: 
 

  The goal of the model is to minimise the objective function (1), which is the sum of 
the planned outsourcing cost and the expected value of the penalty cost, i.e., the 
expected cost of using emergency outsourcing or disposing of the redundant 
components when all possible self-production scenarios are considered. 

 

Minimise:  
 (1) 

 
 

 Subject to: 
 

 
 

(2) 

  Constraint (2) states that the planned outsourcing quantity for all types of product 
must not be negative. The output of the model, the optimaly planned outsourcing 
quantity ( ), will be used as a parameter ( ) in the mixed-integer linear 
programming (MILP) model described in the next section.  

 

3.3 MILP model for establishing the transportation and inventory scheme 
 

A MILP model was developed to determine the following items:  
1. The most favourable weekly transportation quantities of each type of self-production 

components between factory, warehouse and construction site. 
2. The variation of inventory levels in the factory, warehouse and site.
3. The time and quantities of outsourcing components that should be sent to the site by 

the outsourcing company.
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Objective function: 
 

  The goal is to minimise the objective function (3), which is the sum of the costs to 
store (IC) and transport (TC) all types of components.  
 

Minimise:  
 (3) 

 (3.1) 

 (3.2) 

   

  Equation (3.1) calculates IC, which includes the costs of the inventories within the 
factory, warehouse and construction sites. Equations (3.2) calculates TC for moving the 
products from the factory to the warehouse and from the warehouse to the construction 
site in two terms, respectively. 

 

Subject to:    
  

(4.1) 

  
(4.2) 

 
 

(4.3) 

 
 

(4.4) 

 
 

(4.5) 

 
 

(4.6) 
 

 
 

(4.7) 

  
(4.8) 

 (4.9) 

 (4.10) 

 (4.11) 
 

  Constraint (4.1) ensures that the total quantity of planned outsourcing delivered does 
not exceed its limit. Constraint (4.2) represents the balance of inventory in the factory, 
constraint (4.3) is the balance in the warehouse, while constraints (4.4) handles the 
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balance in the construction site. Constraint (4.5) states that there is nothing in storage 
in the beginning at the factory, warehouse and site. Constraint (4.6) makes sure that the 
sums of the volumes of all the stored components in factory, warehouse and site do not 
exceed their respective storage capacities at all times. Constraint (4.7) assures that the 
demand on site must be met. Constraint (4.8) ensures that all the components produced 
in the factory will be shipped to the warehouse and all the above components will also 
be transported to the construction sites. Constraints (4.9), (4.10) and (4.11) assure the 
non-negativity of the quantities of planned and emergency outsourcing delivered 
weekly, the inventory at the factory, warehouse and construction site, as well as the 
quantities of components transported weekly from the factory to warehouse and from 
the warehouse to the site, respectively, for every type of product and at all times.  

 

3.4 Background to the case study 
 

This research used the case of a wastewater treatment facility, built in northern England, 
to test the models. The facility involved use of two types of prefabricated concrete 
components: walkways and beams. The values of the manufacturing, transportation, 
inventory and construction parameters used in the models were obtained from the 
cooperating construction company. The cost data were estimated based on information 
obtained from civil engineering websites (e.g. http://decastltd.com/ products/ and 
http://www.anchorconcrete.com/price_list.html) and the literature [13,23]. 

 

4 Results and discussion 
 

Using a wastewater treatment facility case study, this section presents the outputs of the 
two programming models, which were implemented in IBM ILOG CPLEX Studio 
(version 12.6), an optimisation software package employing the OPL mathematical 
modelling language. The CPLEX Optimizer is used to solve the problems studied. The 
models were executed on a personal computer (i7-4790, 8G RAM) with the 
computational time of 5 minutes for the two-stage stochastic model and 2 minutes for 
the MILP model. Exact solutions were outputted by both models.  

 

4.1 The workflow  
 

Figure 1 presents a flow chart which, employing the two models described above, aims 
at obtaining the following information:  
1. The optimal duration for self-production in a construction project, i.e., the best 

time, prior to assembly at the construction site, to start the production of 
prefabricated components.

2. The best planned and emergency outsourcing quantities for each type of 
components.

3. The most favourable transportation and inventory schemes for self-produced 
components.

4. The most favourable dispatch plan for outsourced components that can match up 
with the above schemes.

  As shown in Figure 1, the process starts by representing uncertainty in productivity 
through a bell-shaped probability distribution [7], which is discretised using a 3-point 
estimation [21]. Based on this, possible self-production scenarios at the factory over a 
finite time horizon are generated. Then the two-stage stochastic programming model is 
implemented to find out the best planned-outsourcing quantity by considering all the 
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possible self-production scenarios simultaneously. Afterwards, the MILP model is 
adopted to reveal the optimal transportation scheme and inventory variations, along 
with the dispatch plan for outsourcing. This whole process can be individually carried 
out for each possible option of self-production duration. For each option, the total cost, 
which includes the costs of factory overhead, self-production, transportation, inventory, 
planned outsourcing, and the penalty for emergency outsourcing or disposal of 
redundant components, is calculated. The optimal self-production duration is 
determined as the one with the lowest total cost.  
 

 
Fig. 1. The workflow.  

 

4.2 Generation of the production scenarios in the factory 
 

In the case study, the detailed design of the prefabricated components was handed over 
to the construction company 7 weeks before the construction start date, and the duration 
of the construction work was fixed at 17 weeks. Thus, the construction company had at 
most 24 weeks for producing all the components demanded by the project. But it also 
had the opportunity to opt for a shorter self-production duration while increasing the 
outsourcing quantity. In this context, 8 distinct options for self-production duration are 
established, each with a different manufacturing period before the construction starts 
(see Table 1). 
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Table 1. Options for self-production duration. 

   

The productivity of a manufacturing facility varies from time to time, and generally, 
can be expressed as a bell-shaped probability distribution [7]. However, prefabricated 
components are produced in discrete integer numbers making it more appropriate to 
present the productivity distribution in a discrete form. For simplicity, the three-point 
estimation technique [21,28] was employed, i.e., the productivity for the prefabricated 
components was assumed to have three different levels: high, normal and low. The 
weekly productivity at each level and their probability of happening were established 
based on the data obtained from the cooperating construction company (Table 2). 

 

Table 2. The weekly production quantities and their probabilities of happening for the 3 
levels of productivity. 

 Levels Walkway Beam Probability 
High 15 10 0.25 

Normal 12 8 0.5 
Low 9 6 0.25 

   

When walkway and beam components are considered simultaneously there are 32=9 
possible scenarios of productivity in one week. Thus, for option I with a total self-
production duration of 24 weeks, there should be 924 kinds of production scenarios. 
This research is trying to determine the optimal outsourcing quantity for components 
under uncertain productivity. Thus, only the total production quantity that can be 
realised after 24 weeks is considered (i.e., the scenarios having the same total 
production quantity are combined as one scenario), and there are only 2401 kinds of 
production quantity scenarios in this option. The production quantity scenarios for each 
of the 8 options are listed in Table 3. 

 

Table 3. Production quantity scenarios for the 8 self-production duration options. 
Option No. Duration Number of Scenarios 

I 24 Week 2401 
II 23 Week 2209 
III 22 Week 2025 
IV 21 Week 1849 
V 20 Week 1681 
VI 19 Week 1521 
VII 18 Week 1369 
VIII 17 Week 1225 

 
 
 
 

Option No. Length of in-advance 
preparation Total self-production duration 

I 7 week 24 week 
II 6 week 23 week 
III 5 week 22 week 
IV 4 week 21 week 
V 3 week 20 week 
VI 2 week 19 week 
VII 1 week 18 week 
VIII 0 week 17 week 
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4.3 Output of the two-stage stochastic programming model 
 

Following the flow chart shown in Figure 1, the total production scenarios generated in 
section 4.2 were used as input to the two-stage stochastic programming model, which 
was executed for each of the 8 options of self-production duration while taking all the 
self-production quantity scenarios in that option into consideration simultaneously. The 
outputs are the optimal planned outsourcing quantities for both the walkway and the 
beam along with the costs of planned outsourcing and the lowest expected penalties 
incurred by the emergency outsourcing and the disposal of redundant components, see 
Table 4.  
 

Table 4. The planned outsourcing quantities, costs and the penalty for the 8 options. 

   
4.4 Output of the MILP model 
 

The planned-outsourcing quantities were used as input to the MILP model established 
in section 3.3 to determine a holistic distribution scheme and reveal the variation of 
inventory that would yield the lowest transportation and inventory costs while taking 
both self-production and outsourcing into consideration. It is noteworthy that here the 
three level weekly productivity (see Table 2) was turned into an expected value to 
represent the most likely weekly productivity of the self-production.  
  The outputs included the optimal weekly transportation quantity between the factory, 
the warehouse and the site, as well as the weekly variations of the inventories at these 
three locations. Moreover, a dispatch plan for delivering outsourcing components to the 
site was outlined. For illustration purpose, all the schemes recommended by the model 
for option IV (4 weeks in-advance preparation plus 17 weeks of construction works) 
are presented in Table 5. 
 

Table 5. Detailed distribution schemes for option IV. 

 
 

Option 
No. 

Optimal 
planned outsourcing quantity 

Planned 
outsourcing 

cost (£) 

Expected 
total penalty 

(£) Walkway Beam 
I 72 46 246,000 46,750 
II 84 54 288,000 45,883 
III 96 62 330,000 44,997 
IV 108 70 372,000 44,092 
V 120 78 414,000 43,165 
VI 132 86 456,000 42,216 
VII 144 94 498,000 41,243 
VIII 156 102 540,000 40,243 
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  The model also yielded the various costs for transportation and inventory. The 
results for the 8 options are listed in Table 6. It should be noted that the model 
suggested not to have inventory on the site for all options. 
 

Table 6. Various costs (in £) for transportation and inventory for 8 self-production options 

Option 
No. 

Inventory costs Transportation costs 
Total Factory Warehouse Site Factory to 

warehouse 
Warehouse to 

site 
I 297 1696 0 23,520 21,504 47,017 
II 249 1182 0 22,540 20,608 44,579 
III 203 764 0 21,560 19,712 42,239 
IV 157 436 0 20,580 18,816 39,989 
V 109 202 0 19,600 17,920 37,831 
VI 63 64 0 18,620 17,024 35,771 
VII 21 8 0 17,640 16,128 33,797 
VIII 0 0 0 16,660 15,232 31,892 

 

4.5 Determining the best self-production duration 
 

The total cost for performing each of the 8 options had to be estimated to select an 
optimal self-production duration. The cost of self-production can be calculated as the 
expected weekly productivity times the unit production cost. The factory fix cost is 
obtained by timing the weekly factory overhead with the total self-production duration. 
The costs for transportation and storage are given by the MILP model. The cost for 
outsourcing and penalty (including emergency outsourcing and disposal of redundant 
components) is revealed by the two-stage stochastic programming model. The results 
are given in Table 7, which shows that option IV has the lowest total cost (highlighted 
with a framed box). Table 7 also reveals that if the self-production duration is too long 
(e.g. Option I), the factory fix cost and inventory cost would be relatively higher. On 
the other hand, if the duration is too short such as in option VIII, the cost of using 
outsourcing becomes more expensive. Thus, there exists a balance point between self-
production and outsourcing, at which the total cost is the lowest. 

 

Table 7. The costs (in £) of the eight options of self-production duration 
Costs 

 
Options 

Self-
production 

Factory  
fix cost 

Transp
.  cost 

Inv. 
cost 

Planned-
outsourcing Penalty Total 

I 672,000 261,600 45,024 1993 246,000 46,750 1,273,367 
II 644,000 250,700 43,148 1431 288,000 45,883 1,273,162 
III 616,000 239,800 41,272 967 330,000 44,997 1,273,036 
IV 588,000 228,900 39,396 593 372,000 44,092 1,272,981 
V 560,000 218,000 37,520 311 414,000 43,165 1,272,996 
VI 532,000 207,100 35,644 127 456,000 42,216 1,273,087 
VII 504,000 196,200 33,768 29 498,000 41,243 1,273,240 
VIII 476,000 185,300 31,892 0 540,000 40,243 1,273,435 

 

4.4 Discussion 
 

Prefabricated construction projects have several features that distinguish their logistic 
operations from those of onsite assembly projects. In prefabricated construction, 
building materials are sent to a factory and turned into structural components following 
a rigorous production sequence. To match the assembly schedule on site, the production 
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of components in the factory has to start prior to the construction work and continue till 
the end of the project. 
  For this reason, the detailed design of components must be finished at a much earlier 
stage than that required in onsite assembly projects, making accuracy and timeliness 
the two most critical requirements for the design of components in prefabricated 
construction projects. This situation has become one of the major reasons to constrain 
many projects from adopting the prefabricated method [2,10]. However, late design 
release is very frequent in the construction industry [4]. In our case study, the design 
team handed in the design 7 weeks before the start of construction rather than the 24 
weeks initially agreed making the outsourcing of manufacturing unavoidable. To make 
things more complicated, the productivity in the factory was uncertain due to factors 
such as human errors and equipment failure. Hence, the actual production quantity 
could not be precisely determined. The fluctuating productivity could result in 
insufficiency or redundancy of components after an order is sent off to the outsourcing 
company, and further incurring the penalties like the arrangement of emergency 
outsourcing or disposition of redundancy. The managers of prefabricated projects thus 
face two major questions: 1) when should the production in a factory start? and 2) what 
quantity of components should be acquired from an outsourcing company, so that the 
total cost can be minimised? These questions are absent in conventional construction 
projects but are believed to be critical to the growing field of prefabricated construction. 
  In this study, the optimal quantity of planned outsourcing is calculated using a two-
stage stochastic programming model, which takes into account the uncertainty of 
productivity. The best schemes for dispatching components produced by self-
production and outsourcing along with the variation of inventory are disclosed by a 
MILP model. As an optimisation strategy for inventory management, the MILP model, 
implemented in this study, suggests not to have any inventory on the site anytime. Not 
to store finished components on the site is conceivable due to the higher inventory cost 
at the site, e.g. extra precaution must be taken to protect finished components from the 
harsh open environment. By adopting this configuration, components need to be 
delivered to the site on a just-in-time basis, which can be regarded as a realisation of 
the lean concept in the construction industry. Additionally, the MILP model adopts a 
three-tier logistic structure, which includes two sectors of transportation and three 
locations for storage. The three-tier logistic structure is usually missing in conventional 
onsite assembly projects. Finally, the total costs for different options of self-production 
duration are calculated, and the optimal duration is determined as the one with the 
lowest total cost. It is worth noting that there exists a balance point in the self-
production duration as revealed in Table 7. This balance is incurred because long self-
production duration would incur high factory overhead and inventory costs. On the one 
hand, high outsourcing cost would arise from short duration. 

The model outputs could serve as the basis for decision-making by managers 
of prefabricated construction projects who are required to make a holistic plan 
encompassing self-production, outsourcing, inventory and transportation. Future 
research can use real options theory to calculate the optimal option price for reserving 
the right to use emergency outsourcing.  
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Appendix  

 
 
 
 
 
 
 
 
 

 (Mixed-integer linear programming model) Indices
Working weeks for the project;  t
Product types; ,  is the set of product types

Parameters
The total working duration for the project in weeks
The demand for product  in week t 
The total quantity of planned outsourcing of product 
Volume of product  in m3 
The expected self-production quantity for product  in week t
Inventory cost per m3 per day in factory
Inventory cost per m3 per day in warehouse
Inventory cost per m3 per day at construction site
Maximum inventory capacity in factory in m3

Maximum inventory capacity in warehouse in m3

Maximum inventory capacity at construction site  m3

Distance between factory and warehouse in km
Distance between warehouse and site in km
Transportation cost from factory to warehouse per truck per km
Transportation cost from warehouse to site per truck per km
Quantity of product  that can be loaded onto a truck from factory to warehouse
Quantity of product  that can be loaded onto a truck from warehouse to site

Decision variables
Transportation quantity of product  from factory to warehouse on week
Transportation quantity of product  from warehouse to site on week 
Quantity of inventory of product  in factory on week
Quantity of inventory of product  in warehouse on week
Quantity of inventory of product  at site on week 
The planned outsourcing product  be delivered to site on week 
The emergency outsourcing for product  be delivered to site on week 

 

 ( Two-stage stochastic programming model) Indices:
Product types; ,  is the set of product types
Self-production scenarios ; ,   in the set of scenarios

 Parameters
The probability that scenario  occurs
The total self-production quantity for product  in scenario
The total demand quantity for product  for the whole construction project
The planned outsourcing cost for one unit of product 
The emergency outsourcing cost for one unit of product 
The cost of disposing of one unit of redundant product 

 Decision variables
The planned outsourcing quantity for product 
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Abstract. Solving traffic congestion problems in intersections is a complex 
logistic problem that usually consists in building infrastructures, such as bridges, 
tunnels, or roundabouts, which represent the costliest solutions. Concerning the 
case of roundabouts, many parameters influence its performance, e.g. geometry 
and size. Thus, other less costlier solutions should be pondered. This paper 
introduces a low-cost approach to traffic intersections, by using pre-signals; and 
conducts simulation experiments to verify if this approach could be used to 
improve the performance of traffic intersections. In this sense, an agent-based 
traffic simulation model was developed that applies the object modelling 
paradigm of Simio to model the individual behaviour of vehicles. The simulation 
experiments results indicate that the flow of vehicles can be increased up to 20%, 
reducing the average queue sizes and crossing time per vehicle and saving the 
fuel consumed up to 64%. 

1   Introduction 

Since the motor vehicle became the main means of transport, many traffic congestion 
problems can be witnessed. To overcome them, usually two types of solutions are used: 
optimization approaches for the duration of traffic light phases, or physical-changes 
(Heng and Perugu, 2009), such as the expansion of the intersection, or the construction 
of tunnels, bridges or roundabouts, representing a more onerous type of solution 
(Treiber and Helbing, 2001). 
In a previous work, Vieira et al. (2014b) presented the pre-signals concept as a low-
cost technique to improve the performance of an intersection and compared an 
intersection implementing this concept with a regular intersection. The concept consists 
on implementing an additional traffic-light on each lane, located prior to the main 
traffic-light of each lane. To implement them, it is necessary to provide some dozens 
of meters on the approaches of the intersection, working as "launch pads". The achieved 
results indicated that the best values to use for the green signal on intersections with 
pre-signals (different from the best green signal duration on normal intersections) and 
the best distance to keep between a pre-signals and its main traffic-light: 20 seconds of 
green signal, at about 40 meters of distance to the pre-signals, are enough to allow 
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maximum flow and minimize queue sizes and waiting time per vehicle. These values 
will be used in the work presented in this paper. 
This paper presents a discrete-event simulation model, developed to compare the 
performance of intersection with pre-signals and roundabouts. It was developed in 
Simio, a recently developed object oriented discrete simulation tool that also supports 
the agent modelling approach and other approaches, such as processes and events. 
Simulation enables the visualization of the results from modifications made to a system, 
without making experiments in the real world. To address this kind of traffic-related 
problems, usually traffic simulation packages, such as VISSIM are used. However, to 
the best of the knowledge of the authors, these traffic simulation packages lack the 
ability of modelling concepts not standardized, such as the one here proposed. As such, 
discrete-event simulation was used for this work. 
Next section reviews the literature on this topic. Section 3 is dedicated to the data 
gathering and validation processes. In section 4, the main tasks conducted to develop 
the simulation model will be covered and section 5 is related to the simulation 
experiments conducted. Conclusions are discussed in the last section. 

2   Literature Review 

Despite only having been first documented in 1991 in the UK (Oakes et al., 1994), pre-
signals were already in use in several European cities (Wu and Hounsell, 1998). Its 
implementation is becoming significant in some cities of the United Kingdom and, in 
fact, until 1993, only in London, 14 pre-signals were implemented and a further 20 to 
25 pre-signals were planned for the coming years (Wu and Hounsell, 1998). 
The implementation of pre-signals can have many goals. One of these is “to give buses 
priority access into a bus advance area of the main junction stop line so as to avoid the 
traffic queue and reduce bus delay at the signal controlled junction” (Wu and Hounsell, 
1998). Conversely, in Xie and Ma (2012) pre-signals were used to avoid losses of 
capacity on the lanes that cannot discharge completely during its green phases, due to 
the existence of turning lanes. More recently, Xuan et al. (2011) were pioneers on the 
utilization of pre-signals to increase the capacity of a traffic intersection. In their study 
the approaches receives “2 green sub-phases: one for protected left turns only, and the 
other exclusively for through movements and right turns” (Xuan et al., 2011). In Zhou 
and Zhuang (2013), this idea was seized and the authors proposed “an integrated model 
for lane assignment and signal timing optimization at tandem intersections”. The model 
aimed to minimize the average delay that vehicles experienced in the pre-signal and 
main signal. 
Currently there are not many studies that use Simio for modelling traffic related 
problems. A possible justification for this is that most of the studies that use simulation 
in problems related to traffic, use packages of micro simulation tools like VISSIM or 
AIMSUN. However, to test the applicability of new proposed concepts such as the one 
proposed in this paper, to the best of the knowledge of the authors, these simulation 
packages reveal to be inadequate, since they are prepared to model only certain 
infrastructures types. Therefore, for this study, a discrete event simulation software was 
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used. The number of commercial tool options can be very high, thus simulation tool 
comparison becomes a very important task. 
In Hlupic and Paul (1999), a set of simulation tools were compared, distinguishing 
between users of software for educational purposes and users in industry. In his turn, 
Hlupic (2000) developed a survey of academic and industrial users on the use of 
simulation software, to discover how the users are satisfied with the simulation software 
they use and how this software could be further improved. In Dias et al. (2007), Pereira 
et al. (2011) and Dias et al. (2016) a comparison of tools based on popularity on the 
internet, scientific publications, WSC (Winter Simulation Conference), social networks 
and other sources, was established. According to the authors, popularity should not be 
used as the only comparison indicator, otherwise new tools, better than existing ones, 
would never get market place. However, a positive correlation may exist between 
popularity and quality, since the best tools have a higher chance of being more popular. 
According to this ranking, the most popular tool is Arena, whilst the classification of 
the “newcomer” Simio is noteworthy. Vieira et al. (2014a) and Oueida et al. (2016) 
compared both tools taking into consideration several factors. 
Simio was created in 2007 from the same developers of Arena and is based on 
intelligent objects (Sturrock and Pegden, 2010, Pegden, 2007, Pegden and Sturrock, 
2008). In this tool, a vehicle, a costumer or any other agent of a system are examples 
of possible objects and, combining several of these, one can represent the components 
of the system in analysis. In other words, the user can use realistic representations of 
the objects that compose the real system being modelled and, thereafter, at a lower 
level, define additional logic to the model, through the development of processes for 
instance. Thus, in Simio the model logic and animation are built in a single step (Pegden 
and Sturrock, 2008, Pegden, 2007), making the modelling process very intuitive with 
the addition of a full built-in 3D animation. 

3   Data Collection and Validation 

In this section, some of the data that was gathered and entered into the developed model 
will be presented and explained. It should be noted that, some of these data had already 
been explained in Vieira et al. (2014b), namely those related to the intersection with 
pre-signals. To build a model capable of representing the real system, the following 
data related traffic situations was gathered through literature collected and analysed: 

Cycle times of the traffic lights: Pan et al. (2010) stated that when the signal cycle 
length is around 100 seconds, the waiting time of vehicles is minimal. 
Safety distances kept while driving: Drivers that travel at a speed next to 50 km/h 
maintain a safety distance of about 16 meters (Luo et al., 2011). 
Space occupied by a vehicle in a queue: The analysed studies indicate that a stopped 
vehicle occupies a distance between 7.6 meters and 7.9 meters (Bonneson, 1992, 
Messer and Fambro, 1997, Zhu, 2008, Herman et al., 1971) 
Start-up acceleration: Zhu (2008) analysed several studies regarding this matter. 
The author developed a polynomial acceleration model characterized by expression 
(1). Since in Simio it is not possible to implement the acceleration of entities, it was 
necessary to use the correspondent velocity expression (2). 
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 (1) 

 (2) 

Time the drivers on the first position of a queue take to react to a traffic light signal 
change to green: Some authors considered that the first vehicle of a queue normally 
wastes 2 seconds to initiate the start-up acceleration process after the traffic light 
changes to green (Bonneson, 1992, Messer and Fambro, 1997); others, considered 
the wasted time lies between 1.5 and 2 seconds (Bonneson, 1992, George and 
Heroy, 1966). 
Time spent, by the drivers on the remaining positions of a queue, to react to a traffic 
light signal change to green: According to Bonneson (1992), these values 
correspond to 1 second per vehicle, 1.22 seconds or 1.3 seconds. 
Reaction time of drivers on roundabouts: It is difficult to find in the literature and 
to measure in the filed the reaction time that drivers take to start accelerating, from 
a resting position, in a roundabout queue. This is because drivers are constantly 
trying to access a gap in the roundabout and many times they do not completely 
stop, which influences their start-up accelerating process. This does not happen, for 
instance, in signalized intersection, since drivers must wait for a red light that they 
do not know when it is going to change. Thus, the reaction time of drivers in the 
queues of signalized intersection was used. As already stated, these values can go 
from 1 to 1.3 seconds for the vehicles in the first position of the queue, to 1.5 to 2 
seconds for the remaining positions. These values were incorporated in Simio, 
adjusting them to have the reaction time of drivers being dependent on their distance 
to the one on the first position of the queue, as authors agree. Moreover, since the 
reaction time of drivers in roundabouts is lower than on signalized intersections, 
these values were calibrated. Thus, in this model, the first vehicle of the queue on 
the signalized intersection took considerable more time than the vehicle on the same 
position of the queue of the roundabout. Concerning the reaction time of the 
vehicles on the remaining positions, their values decrease until an average of 1 
second. After that, the average value is maintained. 
Velocity while circulating inside the roundabout: Skrodenis et al. (2011) stated that 
speeds of vehicles, circulating inside roundabouts, of diameter varying between 16 
to 45 meters, should be around 16-30 km/h. Furthermore,  the speed of vehicles 
entering and circulating roundabouts tends to be higher for bigger roundabouts 
(Brilon, 2005). Based on this and on numerous calibrations to the simulation model, 
it was considered that the vehicles could accelerate to a maximum speed of 30 km/h 
in roundabouts of similar size. For smaller roundabouts, the vehicles will only be 
able to speed up until 25 km/h. While circulating on roundabouts of 60 meters of 
diameter the vehicles will be able to speed up until 35 km/h and on roundabouts of 
80 meters the vehicles will be able to speed up until 40 km/h. Thus, these speed 
differences also have an influence on the space gap required by the drivers to access 
the roundabouts of different sizes. 
Space gap to access the roundabout: While circulating a roundabout, the velocity of 
a vehicle affects the required space, or time, for a second vehicle to access the same 
roundabout. Since these values were modelled based on data collected from the 
literature, the authors empirically calibrated the required space gap, in order to 
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minimize the occasions on which a vehicle decides to access a roundabout and, 
because of that, another vehicle, circulating on the roundabout, had to slowdown, 
since the available gap was too small for the other vehicle to access the roundabout. 
Thus, the space required for a vehicle, to access the roundabout was 17 meters for 
the roundabout of around 10 meters of radius, 22 meters for the roundabout with 
around 20 meters of radius, 33 meters for the roundabout of a radius of around 30 
meters and 47 meters for the roundabout with around 40 meters of radius. 
Discharge rate of a queue: Bonneson (1992) concluded that this takes place at a rate 
of approximately 1 vehicle per 2 seconds. Other authors considered lower values 
like 1.97 (Lee and Chen, 1986) or 1.92 seconds (Zegeer, 1986). 
Instant speed when crossing the stop line of an intersection: Bonneson (1992) stated 
that the velocity of each vehicle increases until the fourth or fifth vehicle. From that 
number, the velocity of the vehicles tends to stabilize. 
Fuel consumption and emission rates: Some of the models that estimate 
consumption rates and emissions include those based on the instant velocity of 
vehicles. Tong et al. (2000) established a formula for the fuel consumption of diesel 
vehicles in order of the instantaneous vehicle speed, whilst Chan et al. (2004) used 
a formula to estimate “the fuel consumption of petrol vehicles as a function of the 
instantaneous vehicle speed”. Notwithstanding, there are models that consider other 
factors, such as the model proposed by Akçelik and Besley (2003), which considers 
the acceleration of the vehicle, its mass, instant speed, among other parameters. 
Akçelik (1983) also provided a model that expresses fuel consumption as a function 
of cruising, idling and stop-start manoeuvers. In its turn, Guo and Zhang (2014) 
indicated the formula currently being used by some traffic micro simulation tools 
(c.f. VISSIM, TRANSYT, and SYNCHRO). 

Apart from formulas that estimate the consumption and emission rates, Coelho et al. 
presented the emission factor of HC, NOx, CO2 and CO for several vehicle speed 
powers (2006). In its turn, Tong et al. collected data related to vehicle speed, emission, 
and fuel consumption from four types of vehicles while they travel on different driving 
modes (i.e., idle, acceleration, cruise and deceleration) (2000). The authors presented 
the results in g/km, g/sec and g/kg fuel. Even though, there are more recent works that 
provide similar data, like the one Lau et al. (2011) conducted. These authors studied 
the CO, NO and HC emission rates, as well as the fuel consumption rates from four 
LPG taxis of different years, driven under urban traffic conditions. Notwithstanding, 
the data used in this study was the one collected by Tong et al. (2000), since it considers 
the time the drivers spend on each of the four driving modes. Thus, is consists on a 
simple, yet efficient, way to model the main consume patterns. The data provided by 
the authors and used on this study is presented in Table 1. Despite its age, to the best of 
the knowledge of the authors, this reference was the only one we could find meeting 
the previously stated established requirements. Nowadays, all these values should be 
inferior, albeit at the same proportion. 
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Table 1.  Modal emission and fuel consumption rates (Tong et al., 2000) 

Driving mode Modal emission rate (mg/sec) Fuel Consumption 
 CO HC NOx  

Passenger Car 

Acceleration 9.54 0.69 0.62 62.62 
Cruising 9.15 0.49 0.77 39.1 
Deceleration 9.96 0.58 0.69 28.11 
Idling 2.99 0.36 0.14 18.11 

Petrol Van 

Acceleration 15.14 1.85 1.96 67.29 
Cruising 14.52 1.70 1.81 52.14 
Deceleration 17.30 1.91 2.33 52.16 
Idling 8.39 1.88 0.81 12.71 

Diesel Van 

Acceleration 2.71 0.65 0.91 62.02 
Cruising 2.64 0.54 0.79 52.47 
Deceleration 2.67 0.65 0.89 56.01 
Idling 1.33 0.22 0.44 18.52 

4   Model Development 

To provide greater realism to the model, 3D models of road segments, traffic lights, 
vehicles and safety cancels were downloaded from Google Warehouse. Some sample 
videos of the model in execution were recorded and can be watched online at the 
following address: http://pessoais.dps.uminho.pt/lsd/pre_semaforos/. Fig. 1 illustrates 
the developed simulation model modelling a roundabout. In signalized intersection, 
signal cycles are processed on a counter clockwise direction, through the regular 
repetition of green, yellow and red lights. 

 
Fig. 1. 3D view of the modelled roundabout 

The main processes of the model of the signalized intersection were already described 
in a previous paper (Vieira et al., 2014b). To access the roundabouts, each vehicle is 
dynamically executing several processes. In one of those processes, each entity is 
actively deciding – agent modelling - if it can enter or not the roundabout, by analysing 
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the distance to the closest cars at his left, on the roundabout. This decision depends on 
the size of the roundabout, since for smaller roundabouts the vehicle may have to 
analyse the number of vehicles traveling the roundabout and approaching its entry lane 
and even the two previous entry lanes; conversely, for bigger roundabouts, each vehicle 
may only need to evaluate part of the roundabout between its entry lane and the previous 
one. Apart from this, the characteristics of the drivers also influences the decision of 
entering the roundabout, since more cautious drivers require a bigger gap than less 
cautious do. This process is also responsible for modelling these and other decisions 
related to the entry of in the roundabout, as well as the acceleration of vehicles that 
decide to enter the roundabout. Moreover, this process is also responsible for adjusting 
the speed of vehicles circulating inside the roundabout, depending on the size of the 
roundabout. 
To model the behaviour of the vehicles, both on an intersection with traffic lights or on 
roundabouts, it was necessary to create many processes, functions, states among others, 
on the Simio software, to model all the traffic situations, e.g. to maintain a safety 
distance between vehicles. Nonetheless, in this paper, only some of the processes will 
be illustrated. Fig. 2 shows the process responsible for updating the fuel and emissions 
rates of the vehicles. To accurately calculate these rates, the 4 distinct operating modes 
of the vehicles (i.e. idle, acceleration, cruise and deceleration) had to be correctly 
defined. 

 
Fig. 2. Process to update consumption and emissions 

5   Simulation Experiments 

In this section, a comparison between the results obtained by modelling an intersection 
with pre-signals and roundabouts will be established. For the present work, the authors 
considered the following properties, or parameters, for the conducted simulation 
experiments: 

the frequency with which the vehicles arrive to the system, 
the radius of the roundabout, 
the balancing of the roundabout, 
the different driving behaviour pattern; 
and the type of intersection, i.e., roundabout or intersection with pre-signals. 

As KPI (Key Performance Indicators), the following were defined: 
KPI1: The average flow of vehicles in vehicles/hour. This KPI is the inverse of the 
time interval between passages of vehicles through the intersection; 
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KPI2: Average crossing time per vehicle in seconds. This KPI is calculated 
considering the elapsed time when a vehicle is created and when it travels an 
additional distance of 150 meters after having crossed the intersection; 
KPI3: The average number of vehicles on the queues. This KPI is measured every 
minute; 
KPI4 to KPI7: The average total fuel consumed per vehicle in milligrams and the 
average total emissions of vehicles in milligrams (CO, HC and NOx). KPI 4 to KPI 
7 respectively refer to fuel consumed, CO, HC and NOx emissions. These KPI start 
being accounted when vehicles are created and they are updated every minute. 
When a vehicle crosses the intersection, these KPI are recorded; 
KPI8: the average number of stops per vehicle. 

Moreover, the values 4, 8, 13 and 50 seconds were considered, respectively, for the 
time interval that defines the creation of vehicles, i.e., the intensities very high, high, 
medium and low. Based on previous results (Vieira et al., 2014b), a warm-period of 
360 seconds was used, along with a simulation time of 2 hours and 6 replications. 
Regarding the roundabouts that were modelled, it was considered that only 50% of the 
drivers that are trying to access a roundabout, do it, when they notice a vehicle, 
circulating in the roundabout signalizes its exit in the next lane. This also covers 
situation in which the driver circulating inside the roundabout does not signalize its 
intention to leave in the next exit, forcing the vehicle that is trying to access the 
roundabout to wait. It should be noted that this percentage can be adjusted. In addition, 
vehicles do not choose the exit of a roundabout in equal proportions, i.e., these exit 
lanes have different weights on the overall capacity of the roundabout. Considering this, 
different weights were assigned to the 4 lanes of the modelled roundabouts – 
respectively 40%, 30%, 20% and 10%. 

Fig. 3 shows the values obtained for the flow of vehicles of 2 types of roundabouts, 
under very high traffic conditions. The 2 compared roundabouts consist on an 
optimistic one and the one that was modelled with the purpose of conducting the 
simulation experiments for this study. The difference between these types of 
roundabouts is that the former does not consider what was exposed, regarding the 
weights of the exits of roundabouts and the different driving behaviour, and the latter 
considers. 

 
Fig. 3. Flow rates of roundabouts modelled with different sizes 
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As can be seen, regardless of the type of roundabout the best size to be used would 
be around 40 meters of diameter, which was also found by Oketch et al. (2004). It can 
also be noted that the different weights assigned to the roundabout and the different 
driving behaviour impact the overall performance of the system. Table 2 summarizes 
the results to be discussed. 

Table 2. Comparing all the modelled intersections 

Traffic 
intensities 

Intersection 
type 

KPI1 KPI2 KPI3 KPI4 KPI5 KPI6 KPI7 KPI8 

Very high Roundabout 1 686 9,19 63,63 16,71 2,72 0,25 0,16 32,63 
Pre-signals 2 106 7,15 67,89 8,97 1,68 0,17 0,09 5,12 

High Roundabout 1 650 4,5 26,57 8,62 1,51 0,12 0,1 14,91 
Pre-signals 1 801 1,49 9,35 3,01 0,62 0,04 0,05 0,9 

Medium Roundabout 1 108 1,1 0,15 2,69 0,61 0,03 0,05 0,39 
Pre-signals 1 109 1,44 5,61 2,9 0,61 0,04 0,05 0,82 

Low Roundabout 289 1,07 0,01 2,63 0,6 0,03 0,05 0,19 
Pre-signals 288 1,42 1,5 2,84 0,6 0,04 0,05 0,75 

 
As the simulation experiments results illustrate, for low and medium traffic intensities, 
both modelled roundabouts obtained the best results for all the KPI, aside from the 
average flow of vehicles, when compared to the remaining three modelled intersections. 
Thus, on these traffic intensities, roundabouts achieved a better performance than the 
modelled intersection with pre-signals, as has been previously observed (Fouladvand 
et al., 2003, Skrodenis et al., 2011). These observations can be explained by the fact 
that, on a roundabout, the vehicles only wait for a gap to access the roundabout, while 
on an intersection the vehicles must wait for the traffic-light to turn to green. Thus, the 
vehicles on the roundabout could stop less times and consequently form shorter queues, 
consume less fuel and emit less polluting gases. Conversely, as the traffic conditions 
become more saturated, the available gaps on the roundabout become less frequent. 
Focusing the analysis on the high and very high intensities, it is possible to note that 
what was observed in the low and medium intensities no longer applies. The only KPI 
that still got better results in these traffic conditions was the queue size. In fact, it is 
possible to verify that the realistic roundabout achieved the worse performance in these 
traffic conditions, for all the KPI, except for the queues size in the very high traffic 
intensity. In its turn, for the highest traffic intensity, the intersection with pre-signals 
achieved the best performance for all KPI, except for the queues size and the average 
number of stops. Thus, on more saturated traffic conditions, the intersection with pre-
signals presented better simulation results than the modelled roundabouts, which is in 
accordance to previous studies (Fouladvand et al., 2003, Skrodenis et al., 2011). 
Focusing the comparison between the realistic roundabout and the intersection with 
pre-signals, it can be observed that, once again, their performance is not differentiated 
in low and medium traffic intensities. Regarding the remaining intensities, significative 
differences can be observed in all KPI. Considering this flow of vehicles KPI, it could 
be increased from 8 to 20%, representing a difference of roughly 150 to 420 
vehicles/hour. Therefore, the intersection with pre-signals could have more vehicles 
crossing it at the same time, which culminated in significative reduced queues and 
crossing time per vehicle. In its turn, vehicles stop considerably less times to cross the 
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intersection. This is explained by the fact that in most situations vehicles can cross the 
intersection with just one stop, rather than having to repeatedly stop and start while 
trying to reach the roundabout and attempting to access it. This culminates with 
significative differences in the fuel and emissions per vehicle. In fact, vehicles modelled 
in the intersection with pre-signals spent less 54 to 65% of fuel than the ones modelled 
in the roundabout. 

6   Conclusions 

The resolution of traffic congestion problems usually implies the construction of 
expensive infrastructures such as bridges, tunnels and roundabouts. This paper 
presented a low-cost solution for this problem that consists on using an additional set 
of traffic-lights situated some meters away from these, working as pre-signals and 
acting as “launch-pads” for vehicles in intersection lanes. Thus, a simulation model was 
developed to evaluate the proposed alternative. In a previous study, this new concept 
had already been compared to regular signalized intersection with good results (Vieira 
et al., 2014b). Thus, the second objective of this paper was to compare this new concept 
to the performance of roundabouts, one of the more expensive type of solutions that is 
usually adopted, since it involves the construction of an infrastructure and usually much 
space available. 
The first set of conducted simulation experiments focused on evaluating the size of the 
roundabouts in its performance. It was found that the best size is a diameter of 40 
meters. Thereafter, the human factor in the driving behaviour and the unbalancing of 
the roundabout were considered in its performance. Thus, a realistic roundabout – 
considering its unbalancing and the driving behaviour – and an optimistic roundabout 
were compared. The main conclusions from this analysis were that the human factor 
had more negative impact in the performance than the balancing did. In addition, in the 
highest traffic intensities, the flow of vehicles decreased 8 to 15% when the optimistic 
roundabout was compared to the realistic one. It was also found that the unbalancing 
of roundabouts and the human driving style can decrease the waiting time per vehicle 
in 3 minutes, the queue size in up to 90% and the number of stops per vehicle in up to 
88%, culminating in an increase in the fuel consumption in up to 63%. 
The second set of experiments focused the analysis on the roundabouts and on the 
intersection with pre-signals. The results were accordingly to previous studies, stating 
that on low traffic volumes the modelled roundabouts presented better results, while on 
high intensities the signalized intersection presented better results (Fouladvand et al., 
2003, Skrodenis et al., 2011). Focusing the comparison on the highest traffic intensities 
and comparing the realistic roundabout to the intersection with pre-signals, it was 
possible to note an increase in the flow of vehicles from 8 to 20%, representing a 
difference of roughly 150 to 420 vehicles/hour. This was accomplished while still 
reducing the queues and crossing time per vehicle, which culminated in the vehicles 
modelled in the intersection with pre-signals spending less 54 to 65% of fuel than the 
ones modelled in the roundabout. 
Regardless of the positive simulation results achieved, it is still imperial to evaluate the 
safety of this kind of solution. For future development: (1) it would be interesting to 
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adapt the developed traffic model to handle intersections and roundabouts with multi 
lanes on the approaches, as well as inside the roundabout; (2) illustrate the behaviour 
of intersections with pre-signals in a context of proximity with other intersections; (3) 
since agents are being modelled, it would be interesting to model different types of 
drivers – accelerate more or less, needs more or less space to enter the roundabout, 
among others; (4) compare the proposed solution to other types of infrastructures, such 
as bridges and tunnels. 
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Abstract. In this paper we proposed a local search heuristic and a ge-
netic algorithm to solve the two-dimensional irregular multiple bin-size
bin packing problem. The problem consists of placing a set of pieces rep-
resented as 2D polygons in rectangular bins with different dimensions
such that the total area of bins used is minimized. Most packing algo-
rithms available in the literature for 2D irregular bin packing consider
single size bins only. However, for many industries the material can be
supplied in a number of standard size sheets, for example, metal, foam,
plastic and timber sheets. For this problem, the cut plans must decide
the set of standard size stock sheets as well as which pieces to cut from
each bin and how to arrange them in order to minimise waste material.
Moreover, the literature constrains the orientation of pieces to a single
or finite set of angles. This is often an artificial constraint that makes
the solution space easier to navigate. In this paper we do not restrict
the orientation of the pieces. We show that the local search heuristic and
the genetic algorithm can address all of these decisions and obtain good
solutions, with the local search performing better. We also discuss the
affect of different groups of stock sheet sizes.

Keywords: Irregular shapes, Multiple bin size bin packing, Jostle Al-
gorithm

1 Introduction

The two dimensional bin packing problem consists of placing a set of pieces,
usually represented as rectangles or polygons, in one or several stock sheets
(bins) in such a way the total waste generated is minimized. This problem arises
in several industries where metal, foam, wood, plastic, paper or leather need to
be cut. Depending on the industrial application this problem has several variants
described by the properties of both the pieces to be placed and the bins. In this
paper we address the problem where the pieces to be cut are irregular and may
have concavities. Pieces can be placed in any orientation within rectangular bins
that have a variety of different dimensions (heterogeneous bin sizes). We assume
that there are a limited number of bin types and there are enough bins of each
type to place all the demanded pieces in any set of bins. In this paper we denote
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this problem as the two-dimensional irregular shape multiple bin size bin packing
problem (2D-IMBSBPP) and propose a local search heuristic, called jostle, and
a genetic algorithm to find efficient solutions.

Most of the publications in the literature that consider heterogeneous bins
are focused on packing rectangular pieces. Pisinger and Sigurad [19] consider a
variable bin cost when solving this problem. They propose a MILP model which
is then solved by column generation. The model is intractable for large instances
and difficult to solve even for small instances. Ortmann et al. [18] propose a
two-phase approach. During the first phase they use first-fit decreasing with the
largest bins first. A second phase repacks bins into smaller bins. The two phase
algorithm is implemented with different bin sizes and aims to minimise the total
area of the occupied bins. Wei et al. [21] propose a tabu search that uses a
sequential packing heuristic, a local search, and a post-improvement procedure
to reduce the total area of used bins in a feasible solution. Alvarez-Valdes et
al. [2] implement meta-heuristic algorithms with variable bin costs which are
not proportional to the size of the bin. The objective is to minimize the cost of
the occupied bins, and the authors employ a greedy randomized adaptive search
procedure with path re-linking strategies to combine the best solutions obtained
in the iterative process. In order to compare their results with Ortmann et al.
[18]’s, they modify the objective function to maximize the overall utilization of
the occupied bins.

The vast majority of research publications considering the packing of 2D
irregular shapes address the 2D strip packing problem, also known as the nesting
problem. Instead of placing pieces into bins the aim is to place all the pieces into
a strip with fixed width and infinite length in such a way the total required length
is minimized. However, recent publications of packing algorithms for irregular
pieces consider the bin packing problem with homogeneous bins, see [14], [20],
[16] and [1]. However, in many situations bins are readily available to purchase
as rectangular sheets in different standard sizes. In these industries companies
usually handle several bin sizes in order to satisfy customer demand. The aim of
the companies is not only to reduce the waste generated in the cutting process,
but also charge a competitive price to the customers, which usually depends on
the area of material needed to meet the demand. There are several publications
considering heterogeneous irregular bins, see [4] and [5], who solve an applied
problem which arises in the leather industry. In these publications the pieces
are approximated by grid squares or pixels rather than polygons. While this
simplifies the geometry, solutions suffer from inaccuracy in shape representation.

It is important to highlight that in this paper we use the direct representa-
tions of the pieces as polygons and do not restrict the rotation of pieces to a
predefined set of angles. Han et al. [13] and Martinez-Sykora et al. [15] considered
free rotation for the 2D irregular bin packing problem with guillotine cuts, solving
an application derived from the glass industry. More recently, Martinez-Sykora
et al. [16] and Abeysooriya et al. [1] considered free rotation for the problem with
homogeneous bins and also report results with restricted and fixed rotations. For
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comparison purposes, we also address the problem where a finite set of rotations
are allowed.

The main contribution of this paper is to efficiently solve the 2D-IMBSBPP
considering continuous rotation of pieces by using an adaptation of the jostle
procedure. Jostle was first proposed by Dowsland et al. [10] for the strip packing
problem and then used in [1] in bin packing problems with homogeneous bins.
One of the most important properties of the jostle procedure is that it explores
efficient solutions with a relatively low computational effort, compared with other
available algorithms. The jostle procedure works over the sequence of pieces that
represents the order pieces are inserted in the layout. The constructive heuristic
iterates between packing from one end of the strip and then the other end taking
the sequence from the last iteration. The results presented in this paper show
a considerable improvement when using a heterogeneous set of bin sizes, which
demonstrates the efficiency of the algorithms presented.

The paper is organized as follows. In Section 2 we describe the problem and
we discuss the measure of performance used to evaluate the quality of feasible
solutions. Section 3 explains the jostle algorithms and the genetic algorithm to
solve 2D-IMBSBPP. Computational tests are presented in Section 4. Finally, in
Section 5 we present the conclusions of the paper.

2 Problem Description

Let N ′ be the number of rectangular bin types (stock sheets) and let Lk and
Wk be, respectively, the length and the width of bin type k ∈ {1, . . . , N ′}. Let
P = {p1, . . . , pn} be the set of pieces to be cut from the bins, where n is the
number of pieces. We assume that all the pieces may have a different shape.

A solution s = {Bs
k| k = 1, . . . , N ′} is represented by a set of bins of each

type used in the solution, where each single bin bsjk(Pjk, Ojk, Xjk, Yjk) ∈ Bs
k is

determined by the subset of pieces placed in the bin (Pjk), the set of orientations
used for each piece (Ojk) and the X and Y coordinates of the reference point
of each piece. A solution s is a feasible solution if all the pieces are placed, i.e,⋃N ′

k=1

⋃
j| bjk∈Bs

k
P jk = P , there is no overlapping between each pair of pieces

placed in the same bin and no piece exceeds the bins dimensions.

Initially we consider an unlimited number of bins of each type k. We denote
by Ns

k the number of occupied bins of type k in solution s.

The position of the pieces into the bins is given by the coordinates of the ref-
erence point, which we assume it is the bottom-left corner point of the enclosing
rectangle whose edges are orthogonal to the edges of the bin.

The aim is to minimize the waste generated when placing all the demand
pieces. However, this measure could lead to many ties. In order to guide the
search, we propose a second measure, which is the standard deviation of absolute
bin waste, where a larger standard deviation indicates the potential to empty
poorly packed bins.
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2.1 Evaluation function of a solution

We use two measurements to evaluate the quality of a complete solution s.
1) The overall utilization Us is defined as;

Us =
∑n

i=1 Area(pi)
∑N

′
k=1 WkLkNs

k

where Area(pi) denote the area of the ith piece. Since
∑n

i=1 Area(pi) is constant
then maximizing the utilization is equivalent to minimize to total area of bins
used in s. In this paper the aim is to maximize Us.

2) The standard deviation of absolute bin waste of the occupied bins (σs).
This measurement is used during the algorithm to break ties when two solutions
have the same overall utilization. A low σs value shares the waste among the
bins with low variance and balances individual bin utility. A higher σs leads to
a higher variation in bin space utilization. We encourage this type of solution
during the search process of the algorithm to move the few pieces packed inside
a large bin (i.e, a lower utilized bin) to another occupied bin.

3 Packing procedure

In this section we introduce two heuristic algorithms to solve 2D-IMBSBPP.
The first algorithm is an iterated jostle approach with random assignment of
bins (IJRAB), and the second is a hybrid genetic algorithm with iterated jostle
(HGAIJ). Jostle iteratively applies a fast constructive procedure and searches
over the sequence of pieces. Jostle was first used to solve strip packing problems
in [10]. In [1], this idea was extended to the bin packing problem by placing bins
consecutively simulating a strip, and adding the constraint that no piece can be
placed across the boundary of two bins. However, with heterogeneous bin sizes
the available width depends on the bin type and, therefore, may change from
one part of the strip to another.

Most of the state of the art algorithms to solve the strip packing problem with
irregular pieces works with infeasible solutions. The main idea, first proposed in
[6], is to fix the strip length, randomly place the pieces within the strip and then
solve the overlapping problem. Once a feasible solution is found, the strip length
is reduced and the search starts again. While effective at finding good solutions,
it is slow. The heterogeneous bin packing problem, requires finding feasible so-
lutions for different bin combinations. Hence, fast constructive approaches like
jostle that work with feasible solutions are a more reasonable option.

3.1 Iterated Jostling approach with Random Assignment of Bins
(IJRAB)

IJRAB is an iterative procedure that uses a constructive algorithm (CA) within
a local search. The fast constructive procedure allows us to build a feasible
solution given a permutation of bins and pieces. The local search works over the
sequence of pieces and bins.
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Layout construction The constructive algorithm (CA) is based on placing
the pieces sequentially, according to a given placement rule. We first select a
set of bins which are placed concurrently in a given order, in such a way the
bottom edge of a bins are aligned, as is depicted in Figure 1. Given the different
bin dimensions, the strip width is set to be the same as the widest bin. Note
that there will be areas of the strip where pieces cannot be placed, shown by
shaded areas in Figure 1. Finally, the strategy to place the pieces is inspired
by the TOPOS algorithm proposed in [17] and improved by Bennell and Song
[9]. Therefore, for a given order of bins and a given order of pieces with a given
orientation we use this fast CA to build a solution.

Fig. 1. Packing Layout

In the following description of the CA we assume we have a given ordered
combination of bin types and a given permutation of all the pieces.

First we setup the strip of bins. Let τ (t) ∈ N
n×N ′

be a vector with values
corresponding to the bin types used in the solution in the given order. This
vector represents n × N ′ bins in order to guarantee that all the pieces can be
placed. Since jostle packs from both ends of the strip alternately, we arrange the
n ×N ′ bins on the strip and arrange another n ×N ′ bins following the mirror
order as illustrated in Figure 1.

Then, for each piece, we determine the placement position and orientation.
Assuming a given orientation, the CA generates non-overlapping placement po-
sitions following the improved TOPOS approach that was adapted for bin pack-
ing by Abeysooriya et al. [1]. This approach uses the no-fit polygon (NFP) and
inner-fit polygon (IFP), see [8], to identify all feasible touching positions be-
tween pieces. New pieces are inserted in the layout in a touching position with
pieces already placed. Once a position and orientation is selected, the new piece
is merged with the already placed pieces. Any space between pieces that could
be used to place another piece is a hole and is recorded into a list of holes. At
each piece insertion, the partial solution is represented by a merged polygon, for
each occupied bin, and a list of holes. When placing the next piece, we first try
the holes, sorted by non-increasing area. If the piece does not fit in any of the
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holes, then we try placing the piece on the boundary of the merged polygons
starting with the first bin. If this fails, the new piece is placed in a new bin.

The above assumes a fixed orientation, whereas we are permitted to use any
orientation. The placement angle of a piece is determined by an angle tuning
strategy. First we identify the candidate placements by finding the best place-
ment position for each of the pre-assigned angles, which are oi = 0, 90, 180, 270.
Then we pick the position and orientation angle from these candidates according
to the Maximum Utilization (MU) placement policy described below. Note that
up to this point, this is also the method CA applies if the rotation of pieces is
restricted to a predefined set of angles. When the rotation is not restricted, we
try alternative angles by rotating the piece so that one of its edges are concurrent
to the edge of the merged piece. These are determined by the touching points
between the new piece and the merged polygon or edges of the bin. Figure 2,
illustrates where new angles θ and ϕ are obtained and highlights all the possi-
ble edge-vertex, vertex-vertex and edge-edge combinations which can occur. In
each case, piece p is rotated in a counter-clockwise direction by angle θ and in
a clockwise direction by angle φ. If none of these new angles provide a better
placement position then the algorithm takes the best corresponding predefined
angle position and angle as the placement of the piece. If the next piece touches
the boundary of a bin, then the same procedure is followed considering the angles
created by considering the edges of the bin.

Fig. 2. Angle Tuning

The algorithm uses the Maximum Utilization (MU) placement policy as pro-
posed in [1] since their results show it is more efficient than the bottom-left and
minimum length placement rules. The MU rule places the next piece in the po-
sition that maximises the area utilisation of the convex hull of the layout in the
first bin the piece fits. Let ml be the merged polygon of the placed pieces in the
lth bin in the order. For each feasible position, the area utilisation is calculated as
(CHull(ml)+Area(pi))/CHull(ml + pi), where CHull(ml) denotes the convex
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hull area of the placed pieces ml, Area(pi) denotes area of the new piece and
CHull(ml + pi) denotes area of the convex hull of both ml and pi once placed
in a feasible position. The placement position corresponds to the maximum area
utilisation is selected as the placement position for the new piece.

Solution improvement phase - Jostle The improvement mechanism works
over the sequence of bins and pieces. IJRAB starts with a solution generated
by the CA using an arbitrary order of pieces and an arbitrary order of bins and
packs the pieces from the left end of the bin strip towards the right along the
strip. Given this solution, all the pieces are re-ordered according to the right-most
x-coordinates position of the pieces continuing to the left-most. Following this
order, pieces are packed starting at the right-most position of the strip building
the packing layout from right to left. The idea is to shake pieces from left to
right and right to left along the bin order, so that each jostle iteration generates
a new sequence of the pieces. This approach has been proven to be more efficient
than a multi-start approach randomizing over the sequence of pieces (see [1]).

Abeysooriya et al. [1] points out that jostle gets stuck in local optima and sug-
gests an iterated jostle approach where they apply a kick, analogous to iterated
local search. We design two types of kick, which are applied after a predefined
number of jostle cycles with no improvement. The first kick is called piece kick,
applied to the current locally optimal solution, where a random piece is removed
and reinserted in a random position in the sequence (used in [7] and [1]). The
second kick is the Bin kick, applied to the best solution found so far, where a
random bin is selected from the occupied bins of this solution and is replaced
with a random bin selected from the other bin types. The corresponding change
is applied to the mirror bin position of the bin order as well, so that the same bin
configuration is retained at both ends of the strip. We denote Kp as the number
of jostle cycles with no improvement before performing a piece kick, and Kb as
the number of piece kicks performed with no improvement before performing a
bin kick.

Algorithm 1 provides the steps of the IJRAB algorithm. We use P (L,t) to
denote the piece order used at the tth iteration of the algorithm, which packs
pieces from left to right. Similarly, P (R,t) denotes the piece order, which packs
pieces from right to left at the tth iteration. We use τ (L,t) to denote bin order
at tth iteration where the bin arrangement is considered from left to right when
placing pieces. The bin arrangement τ (R,t) is the mirror arrangement of τ (L,t).
As explained before, a certain bin order is considered at a time. Depending on
the best solution found so far (see Algorithm 1), the leading bin order τ∗ is
updated.

The algorithm terminates after a given maximum computation time. At each
local optima leading to a bin kick, we apply post processing to improve the
best solution found within each bin configuration (see line 25). We propose the
following post processing strategies.

– Strategy 1 (S1): Attempt to repack pieces in the least utilized bin into the
smallest possible bin.
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Algorithm 1: IJRAB

1 Set number of iterations t = 1;

2 Set P (L,t) as a random permutation of the pieces;

3 Set τ (L,t) as a random order of bins;
4 Initialize best utilization and best standard deviation U∗ = 0, σ∗ = 0;
5 Initialize counters for piece kicks and bin kicks qp = 0; qb = 0;
6 while termination condition is not met do

7 Generate solution layout, sL, from P (L,t) and τ (L,t);
8 Evaluate UsL and σsL ;

9 Derive P (R,t) from the solution;

10 Generate solution layout, sR, from P (R,t) and τ (R,t);
11 Evaluate UsR and σsR ;
12 Set s the best solution between sL and sR taking into account utilization

(U) and breaking ties with the standard deviation (σ);
13 if Us > U∗ OR (Us = U∗ AND σs > σ∗) then
14 Set U∗ = Us, σ∗ = σs; Reset qp = 0;
15 else
16 qp = qp + 1;
17 end
18 if qb < Kb then
19 if qp > Kp then
20 Apply piece kick. Change the position of one piece in the current

solution piece sequence;
21 qb = qb + 1;
22 Reset qp = 0;

23 end

24 else
25 Apply post processing to the best solution;
26 Apply bin kick. Return to the best solution found so far and change one

bin type;
27 Reset qb = 0, qp = 0;

28 end
29 t = t+ 1;

30 end

– Strategy 2 (S2): Attempt to repack pieces in each of occupied bins into the
smallest possible bin.

For the experimental investigation we compare the effectiveness of each post
processing strategy based on the solution quality and computational time. Specif-
ically we run the following three variants:

– IJRAB : Implement Algorithm 1 with no post processing.
– IJRAB-A2 : Implement Algorithm 1 applying S1 for the best solution found

at each bin configuration.
– IJRAB-A3 : Implement Algorithm 1 applying S2 for the best solution found

at each bin configuration.
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3.2 GA/Jostle approach (HGAIJ)

Our second computational method combines a Genetic Algorithm (GA) and the
Iterated Jostle (IJ). GAs have been successfully implemented for the single bin
size bin packing problem with rectangular pieces (SBSBPP) in [12], multiple bin
size bin packing problem (MBSBPP) with rectangular pieces in [3], and irregular
pieces packing problems with irregular bins in [4].

A solution is encoded as a chromosome by a permutation of bins followed by
a permutation of pieces. This is decoded using the CA to produce the packing
layout and evaluate the fitness, Us. The coding structure of HGAIJ is illustrated
in Figure 3 along with the decoded solution, which packs 16 pieces into four
types (sizes) of input bins. In order to guarantee all the pieces can be packed,
the length of bin permutation is n × N

′
. Note that when we use the jostle

operation the strip is twice as long to include the mirror bin order.

Fig. 3. Representation of solutions

The initial population contains S solutions generated by applying the CA
to S random permutations of bins and pieces. Each piece permutation contains
all the pieces to be packed. For each generation, we execute the main loop in
Algorithm 2. A pool of solutions is populated at each iteration of the main-loop.
This contains solutions of the current population (parents) as well as the new
solutions (offspring) created by the crossover and mutation operators. The se-
lection mechanism selects S solutions from the pool to enter the next generation.

Crossover: Crossover creates two offspring from two parent chromosomes using
two type of crossover operator. We use the uniform crossover, see [11] for the bin
part of the chromosome. The operator first constructs a random binary mask.
Using the mask, the first child inherits the genes (in the bin order) of the first
parent if there is a “1”in the mask and from the second parent if there is a “0”in
the mask. The second child is formed in a similar way by reversing the role of
mask. Step 1 in figure 4 shows an example of the crossover operator for the bin
part of the chromosome.

The second crossover operator changes the piece permutation. Given a ran-
domly selected point in the permutation the genes before this point are copied
from the first parent to the first offspring as illustrated in step 2 of figure 4. The
second parent’s piece permutation is then scanned and the missing genes in the
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Algorithm 2: General structure of HGAIJ

1 Initialization;
2 Main loop: Generations;
3 GenN = 1;
4 while GenN < MaxGen do
5 Populate the pool;
6 - crossover;
7 - mutation;
8 - generate offspring solutions using the constructive algorithm CA;
9 - improve offspring solutions by jostling with piece kicks;

10 Sort the pool according to solution quality;
11 Select solutions for nest population;
12 GenN = GenN + 1;

13 end

offspring are inserted in the order they appear in the second parent. The same
procedure is used to generate the second offspring, where each parent has the
opposite role. All parents are selected without replacement for crossover gener-
ating an equal number of offspring to parents.

Fig. 4. Crossover operation

Mutation: The purpose of mutation is to provide greater diversity within the
population and inhibit premature convergence. Each offspring will be mutated
with probability Pmu. If an offspring is selected for mutation, then randomly
select two points in the part of the bin permutation that contains pieces and
reverse the order of bins between these two points. Note that this mutation gen-
erates a major change in the corresponding solution as bin spaces of the layout
change dramatically.

Improving offspring solutions by jostling with piece kicks: In this step, the child
chromosomes are improved with the help of the iterated jostle procedure (with
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piece kicks) discussed in Section 3.1. Initially, we applied IJ to all offspring, how-
ever the computation time was too long. In our final experiments we only apply
IJ to the fittest solution.

Selection for the next population: The next population is selected from the pool
that currently contains both the parent and offspring solutions. The selection
strategy aims to ensure both quality and diversity of the next population using
elitist and tournament selection methods. Solution quality is measured by utili-
sation, Us. For diversity we define the distance (dist) of a solution, x, from the
best solution in the population, y, where the best solution has the largest Us:

dist(x) = |x1 − y1|+ |x2 − y2|+ ......+ |xNx − yNx|

where xi denotes the area of the ith bin located in the bin permutation of the
chromosome for solution x, yi denotes the area of the ith bin located in the bin
permutation of the chromosome with best U . In the case that chromosomes x
and y have a different number of used bins (Nx �= Ny), then the distance is
calculated up to min{Nx, Ny}.

The selection process sorts the chromosomes in the pool in descending order
of their Us value. We compare the bin permutation of chromosomes that have the
same Us value. Those with identical occupied bin permutations are compared by
their dist value. Since we wish to maintain diversity in the population, we retain
only one of these chromosomes, keeping the one with the largest value of dist.
Given the sorted list of offspring and parents, the elitist selection scheme copies γ
of the best chromosomes in pool to the new population. The population is made
up to S by tournament selection, where it randomly selects two chromosomes
and selects the best by Us breaking ties by σs.

Based on different computational test we performed we found the following
best set of parameters. For the GA, S is set to 16, γ = 2 and Pmu = 0.025. For
IJ within the GA, Kp = 4 and the search terminates after 12 cycles. Similarly,
for IJRAB approach we found that Kp = 4 and Kb = 3 produce better results.

4 Computational Experiments

The algorithms described above were coded in Visual C++ 2012 as a sequential
program. All experiments were carried out using an Intel 2.60 GHz processor
and 4GB RAM. The algorithms do not contain parallel processing and therefore
can be run using a single processor.

The data instances are taken from the benchmark nesting instances published
on ESICUP (EURO Special Interest Group on Cutting and Packing) website.
We used 14 irregular shape instances representing both convex and non-convex
polygons. Since these are defined for strip packing problems, we define a set
of bin sizes. In this case, for each instance, we identify parameter dmax as the
maximum length or width among the pieces in their initial orientation. Using
dmax we generate nine different bin sizes and define four subsets of bin sizes;
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Table 1. Instances

Instance No.of Pieces Instance No.of Pieces
Shapes2 28 2×Jakobs2 50
3×Dighe1 48 Poly3a 45
3×Dighe2 30 Poly3b 45
Poly4a 60 Poly4b 60
3×Fu 36 Poly5a 75
2×Han 46 Poly5b 75

2×Jakobs1 50 Shapes 43

Table 2. Bin Configurations

Configuration No. of Bin types Input bin sizes Bin type ID

SB 5 0.5dmax, 0.75dmax, 1.0dmax, 1.25dmax,1.5dmax 1,2,3,4,5
MB 5 1.0dmax, 1.25dmax, 1.5dmax, 1.75dmax,2.0dmax 3,4,5,6,7
LB 5 1.5dmax, 1.75dmax, 2.0dmax, 2.25dmax,2.5dmax 5,6,7,8,9
Mix 9 0.5dmax, 0.75dmax, 1.0dmax, 1.25dmax,1.5dmax 1,2,3,4,5

1.75dmax, 2.0dmax, 2.25dmax, 2.5dmax 6,7,8,9

small (SB), medium (MB), large (LB) and mixed, which contains all nine bin
sizes, as illustrated in tables 1 and 2.

We test IJRAB and HGAIJ using the 14 data instances combined with each
set of bin sizes and run our experiments for variants where we restrict the allowed
rotation angles (RR) and also allow unrestricted rotation (UR) of the pieces. For
RR the permitted angles of orientation are 0, 90, 180, 270 degrees. Since there are
random elements in the algorithm, we run each algorithm test for 10 trials and
report the average. Previous research into the irregular bin packing problem have
only used homogeneous bins, hence there are no benchmark results. In order to
validate our search mechanism, we compare with the best result from repeated
runs of the constructive algorithm with random permutations of bins and pieces
(CA (Rnd)). The termination condition for all algorithms is 800 seconds.

In Table 3 we compare the different implementations of IJRAB for RR and
UR. For each bin configuration report the average Us, percentage improvement
over IJRAB-A1, and the average number of jostle cycles performed in the 800
seconds (Avg. cycles). We can observe that IJRAB-A3 performs better, although
the difference between IJRAB-A2 and IJRAB-A3 for Mix, LB and MB bin size
configurations is small. For SB, since bins will contain very few pieces the bin
allocation is more critical, hence there being greater value in trying to reduce
the size of all bins.

In Table 4 we compare the two algorithms, IJRAB-A3 and HGAIJ along
with CA (Rnd). CA (Rnd) performs least well, as expected. Although the per-
formance gap is less than 5% showing that the CA is optimising well. IJRAB
performs better than HGAIJ. This may be because a change in the bin or piece
permutation can lead to a significant change in the decoded solution, hence the
crossover operators are not able to retain good parts of the solution.
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Table 3. Performance comparison of IJRAB algorithms for different bin configurations

Restricted Rotation of pieces Unrestricted Rotation of pieces
Bin Config. IJRAB-A1 IJRAB-A2 IJRAB-A3 IJRAB-A1 IJRAB-A2 IJRAB-A3

Mix Avg. U 0.692 0.700 0.703 0.699 0.706 0.708
Impv % 0% 1.16% 1.59% 0% 1.00% 1.29%
Avg. cycles 1202.2 1156.5 1123.4 802.0 764.9 744.1

LB Avg. U 0.667 0.687 0.689 0.680 0.695 0.696
Impv % 0% 3.00% 3.30% 0% 2.21% 2.35%
Avg. cycles 1117.3 1072.4 1041.7 717.4 695.6 660.7

MB Avg. U 0.671 0.684 0.686 0.684 0.692 0.693
Impv % 0% 1.94% 2.24% 0% 1.17% 1.32%
Avg. cycles 1275.9 1215.8 1176.4 814.7 789.8 776.7

SB Avg. U 0.656 0.662 0.677 0.668 0.675 0.685
Impv % 0% 0.91% 3.20% 0% 1.05% 2.54%
Avg. cycles 1584.2 1506.6 1365.2 956.9 909.1 862.1

Table 4. Performance comparison of IJRAB and HGAIJ methods

Bins Config.
Restricted Rot. Avg. U Unrestricted Rot. Avg. U

CA (Rand) IJRAB HGAIJ CA(Rand) IJRAB HGAIJ

Mix. 0.678 0.703 0.693 0.682 0.708 0.699
Impr. % - 3.69% 2.21% - 3.81% 2.49%

LB 0.665 0.689 0.686 0.675 0.696 0.690
Impr. % - 3.61% 3.16% - 3.11% 2.22%

MB 0.663 0.686 0.681 0.671 0.693 0.687
Impr. % - 3.47% 2.71% - 3.28% 2.38%

SB 0.650 0.677 0.659 0.657 0.685 0.666
Impr. % - 4.15% 1.38% - 4.26% 1.37%

5 Concluding Remarks and future work

In this paper, we develop solutions methods for the two dimensional bin pack-
ing problem with irregular pieces and multiple bins sizes, also known as 2D-
IMBSBPP, where the objective is to maximize the overall utilisation of bins.
This problem is practical in several material cutting industries yet new to the
research literature.

We demonstrate that the iterated jostle algorithm outperforms an adapted
genetic algorithm and simple repeated random construction. Our results also
show that a greater selection of bins provides more efficient packing and, when
restricting the subset of bins, large bins are more useful. Moreover, for smaller
bins, the bin selection is more important than with larger bins.

Our algorithms support the objectives of efficient material use and material
procurement decisions. Being able to solve bin packing over heterogeneous bins
means that retaining and re-using residual material becomes possible within
the cutting planning system. We note that other costs in addition to material
waste affect production cost. Our method is also robust to implement different
objective functions such as including set-up and inventory costs.
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Abstract. Empirical research has shown that airside ground operations
imply a significant percentage of overall airport-related emissions. Among
those operations, taxiing is one of the most emission-intensive processes,
directly related to the initial pushback process that has a significant im-
pact on the taxiing duration of departing flights. Possible approaches
for an effective management of pushbacks at an airport are simulation
and optimization models. Airside operations at major airports involve
a complex interplay of many operations and parties and therefore need
to be planned in a coordinated fashion. Yet, existing approaches have
not been applied in a comprehensive planning environment for airside
operations. In this work, we develop an algorithm-based relocation ap-
proach for pushback vehicles that enables an effective minimization of
delays and emissions during the taxiing process. As a result alternative
sequences of departing flights are evaluated against each other to find
the ones with least total emissions and delay. These algorithms are ap-
plied in a simulation environment and evaluated against real-world cases.
Preliminary results demonstrate that we are able to solve the underly-
ing pushback routing problem in appropriate computational times for
dynamic decision support needed at airports.

1 Introduction

Airport emissions have recently received plenty of attention by regulators, airport
operators, and researchers aiming to foster environmental sustainability that is
threatened by emissions and delays caused in the aviation industry. Apart from
the reduction of noise and gaseous emissions like carbon dioxide (CO2), other
emissions like, e.g., oxides of nitrogen (NOx) need to be considered as well. Cur-
rently, the (German) automobile industry is troubled by intense public debates.
This industry failed to reduce NOx emitted by diesel motors according to the
permitted threshold values. Regarding airports, empirical research has shown
that airside ground operations form the biggest share of overall airport-related
emissions [2,6,22]. Among those ground operations, aircraft that are taxiing, i.e.,
traveling to the runways from the aircraft parking position or vice versa, are the
largest contributors to pollution. At some airports, over 40% of ground-based
aircraft emissions are related to taxiing [2]. Therefore, various approaches to
reduce taxiing times and emissions have recently been introduced [18,23]. These
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Fig. 1. Relation of pushback and taxiing process

studies have focused on the development of alternative engine power settings
or pushback frequencies to control the taxiing duration, but did not consider
approaches to grant the availability of pushback vehicles in a holistic planning
model for airside operations. The taxiing time of departing flights is directly re-
lated to the initiating pushback processes [19]. Possible approaches to tackle this
problem are simulation and optimization models for an effective management of
pushbacks as a resource at the airport. Promising relocation models and adop-
tions of the vehicle routing problem (VRP) [17] have been proposed for related
problems in different domains [16]. Airside operations at major airports involve
a complex interplay of many operations and parties [20] and thus need to be
planned and optimized in a coordinated fashion, especially as air traffic growth
will lead to increasing demand, quicker aircraft turnarounds and requests for
available pushback vehicles in higher frequencies. Yet, existing approaches have
not been applied in a comprehensive planning environment for airside opera-
tions. They rather take pushback availability for granted in taxiing planning
[18]. However, we regard this view as too narrow.

With the constant increase in air traffic, airports are facing capacity prob-
lems. This can be due to bottlenecks on each and every level of airport operations.
Optimization methods for specific airport processes are increasingly utilized by
many large airports. However, many processes occur in parallel and make more
complex optimization models necessary, which can consider multiple parallel pro-
cesses simultaneously [21]. This general observation also holds in the regarded
case of the pushback control problem considering taxiing emissions as Fig. 1 il-
lustrates. A pushback vehicle pushes an aircraft into a taxiway and initiates the
taxiing process. Hence, the pushback defines when an aircraft starts the taxi-out
phase and enters the departure queue. However, with an increasing amount of
aircraft in queue the taxiing time and delay of an aircraft grows non-linearly—
an effect that is explained in the general theory of load-dependent lead times
[14] and has been confirmed for the taxiing process in aviation [19]. In line with
the increased delay, evitable costs for fuel burn and emissions result from a too
large departure queue of aircraft. To address the issue of bad timing in pushback
control, we propose to plan taxiing in order to minimize delay and emissions and
to schedule pushbacks on that basis. For this approach pushback vehicles need
to be relocated according to the position of aircraft scheduled for taxiing. In this
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work, we develop an algorithm-based relocation approach for pushback vehicles
that enables an effective minimization of delays, due to waiting for an available
truck, and emissions during the taxiing process. These algorithms are applied in
a realistic simulation environment for airside operations and evaluated for the
real-world case of Oslo Airport, Norway, which is operated by public airport op-
erator AVINOR. The subsequent Section 2 reviews related work and highlights
current challenges in the domain. In Section 3 we introduce the simulation used
for the emission evaluation. Section 4 proposes several vehicle routing models
for the pushback relocation, a metaheuristic for quick solutions within the dy-
namic airport environment, and quantitative results for instances available in
literature [17]. Section 5 elaborates on the promising conceptual integration of
the simulation and the routing model, before Section 6 draws conclusions and
discusses future work.

2 Related Work

Research related to this study falls into three basic categories: (I.) Estimation
of airport ground emissions, especially taxiing emissions, (II.) general work on
airside operations including taxiing and pushback processes as well as (III.) rout-
ing of airport vehicles. In describing the System for assessing Aviations Global
Emissions (SAGE), Kim et al. [10] lay the fundamentals for modeling emission
inventories related to aircraft fuel burn. Setting the focus on take-off activities,
Zhu et al. [25] demonstrate the local air quality impacts at the Los Angeles In-
ternational Airport. Following these studies, Koudis et al. [11] show that reduced
thrust takeoff operations can reduce fuel consumption and pollutant emissions
in the studied case of London Heathrow airport. Moreover, several authors ex-
amine taxiing emissions in detail. Nikoleries et al. [13] as well as Khadilkar and
Balakrishnan [9] apply different approaches to estimate taxiing emissions. Yang
et al. [24] extend these findings by predicting the market potential and environ-
mental benefits of deploying electric taxis in Nanjing, China. With a focus on
airside operations, Atkin et al. [1] address the pushback time allocation problem
at London Heathrow airport. Stergianos et al. [21] follow up in this direction by
analyzing the effect of pushback delays on the routing and scheduling problem
of aircraft, while Mori [12] applies a reinforcement learning approach to obtain
optimal pushback times facing uncertainties at busy airports. Similarly, Bal-
akrishna et al. [3] use reinforcement learning algorithms for predicting aircraft
taxi-out times. Related to routing problems at an airport, Guépet et al. [7] pro-
vide a mixed-integer programming formulation for the aircraft ground routing
problem. Summarizing, the literature review reveals promising approaches in all
three categories mentioned initially. Nevertheless, the integration of various in-
terconnected problems at an airport appears to remain an important challenge
for future research, and that applies also for the considered problems of pushback
routing and taxiing.
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3 Simulation Model

In order to analyze the dependencies between pushback control and aircraft taxi-
ing, we have built a simulation model for the practical case of Oslo airport. The
simulation model captures the queuing behavior of aircraft during the taxiing
process and thus allows us to analyze different schedules of pushback control
with respect to taxiing delay, i.e. lead times, fuel burn (costs), and emissions.
We have constructed the simulation model based on real-world input data. The
link-and-node network model is a representation of Oslo airport and its termi-
nal maneuvering airspace (TMA) on a design peak day in the year 2017. This
means, all arrival and departure routes within the terminal area, and all run-
ways, taxiways, and parking stands which are expected to be installed by 2017
are included in the model, even infrastructure that was still under construction
during the preparation of this study. For our taxiing times and delay calculations
we made use of the Airport & Airspace Simulation Model (SIMMOD) version
4.7.9 that is developed by the U.S. Federal Aviation Administration. We have
run the simulation engine on a 64-bit Windows 10 machine with 8 GB RAM and
an Intel Core i5-3337U 1.8 GHz processor. A run of 100 iterations took less than
seven minutes, of which pure calculation time (without additional time required
for user input in cases when gridlocks occur in the simulation) is estimated at
less than three minutes.

Based on documents from the airport, we were able to build a model which
behaves sufficiently realistic and which shows similar characteristics as the
real airport. We included the flight schedule, the aircraft type mix, the air and
ground movements into our model which was continuously approved by feedback
talks and discussion with local experts. Arrivals in the schedule are linked to the
respective departure in the schedule to model the full aircraft turnaround. The
taxiing of aircraft on the apron is modeled by the SIMMOD logic, which directs
aircraft to take the quickest path from the runway exits to the gates after landing
or from the gates to the runway departure queues prior departure. An important
prerequisite in the simulation is the programming of traffic rules at taxiway
crossings and largers tarmac areas to prevent collision conflicts. When aircraft
share certain single lane taxiways in both directions this could lead to head-on
situations, where the simulation needs rules of how to prioritize aircraft to pass
such bottlenecks. Otherwise it could happen that aircraft around bottlenecks
and hotspots gridlock, i.e., they indefinitely block each other. The simulation
is unable to solve gridlock situations automatically, it is only able to predict
potential conflict situations and let aircraft wait at predefined nodes until they
can pass one or many taxiway segments unhindered. We solved many gridlock
problems by including additional traffic rules at intersections and at certain
taxiways, but we stopped, when more than 50% of all iterations were gridlock
free.

Oslo airport operates two independent parallel runways. The runways are
operated under mixed mode, which means departures and arrivals are served in
sequence on both runways during the same hours of day. This type of operation
offers more capacity for the airport, as long as air traffic control (ATC) permits
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Fig. 2. A simulation model for Oslo airport

departures to be put between two consecutive arrivals or vice versa. If the gaps
between two flights are becoming narrow, long queues can form at the departure
queues, where aircraft wait for approval to enter the runway to start the take-off
roll.

In our model we defined six different concourses, i.e., groups of gates which
are located near to each other at different terminals. We have defined concourses
for gates and parking stands around taxiway Kilo and taxiway Lima, one East
and oneWest of the new North pier, one remote concourse for mail flights and one
concourse with a few stands for heavy cargo aircraft as shown in Figure 2. The
main purpose why we run simulations is its output in form of taxiing durations
and delays for each flight when traveling from the gates to the runways, while
crossing the airfield and paths of other aircraft. From the SIMMOD output
we can extract an extensive amount of useful data for further computational
experiments. The taxiing phase from and to the runways can be broken down
in segments, by pushback, taxi-out, taxi-in, departure queue arrival, departure
queue departure, runway exit times, etc.

In order to calculate emissions, such as hydrocarbon (HC), carbon monox-
ide (CO), NOx and CO2 for each aircraft for a particular airport, we need
the amount of burned fuel as a basis for further emission estimations [22]. The
process to calculate emissions for this study was conducted as follows:

1. Step: We take the time records (e.g., pushback times and departure ground
delay) from SIMMOD.
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2. Step: Calculate fuel burn during the taxiing (in kilograms per second) from
off-block time at the gate to the time (point) of brakes release at the runway
departure queue, before the aircraft turns into the runway and starts its
take-off run.

3. Step: Calculate HC, CO and NOx from fuel flow quantity (in grams per
kilogram fuel).

4. Step: Multiply emission by the number of engines per aircraft.
5. Step: Calculate CO2 emissions from fuel flow by applying factor 3.157 (kilo-

gram CO2 per kilogram fuel) [8].

This sequence of calculation steps is repeated after each iteration. We have run
first 20, later up to 100, iterations. Due to the complex interactions of aircraft on
the modeled airfield of Oslo airport we experienced several gridlock problems,
where aircraft block each other on the apron and the situation could not be
solved by the SIMMOD logic. In such cases queuing aircraft accumulate quickly
and block other aircraft on taxiways in the area. When threshold values for
very long waiting times of blocked aircraft are reached, the simulation will stop.
We analyzed only simulation runs that were gridlock-free, which means that all
scheduled flights during the day were simulated. The design peak day schedule
from June 14, 2013 had 776 flights. To make the model and its results more
realistic and robust, we included random factors in form of probability distribu-
tions into the model, mainly for actual departures occurring within a 15-minute
time window after the scheduled departure time, for landing and take-off roll
distance and for arriving aircraft choosing a particular gate at a defined con-
course. In this study, growth above the amount of traffic in the design peak day
schedule is neglected.

We intentionally include aircraft delay experienced along the taxiway path
from the beginning of the pushback process at the gate until the exiting of the
departure queue at the runway. Thus, we want to increase traffic and minimize
total taxiing time (by changing the pushback sequence). In this study, we only
examine the effect of randomly re-sequencing flights within a 15-minute time
window. This gives us an indication of the minimal and maximal externalities
(delay and emissions) and their respective flight and pushback sequence. The
pushback begins at the scheduled departure time plus a random time between
0 and 15 minutes, assuming a uniform distribution. In this study the pushback
duration has been set at 180 seconds for all gates, except for self maneuvering
aircraft stands, where a pushback truck is not needed. In subsequent studies we
want to model the pushback procedures more gate specific.

We take the taxiing times from the simulation and apply the factors shown in
Table 1. At first, we calculate the amount of burned fuel during the taxiing out
phase for different aircraft types. We observe that more than 60% of the aircraft
flying into OSL are Boeing 737 type aircrafts. Table 1 gives us the factors for fuel
flow in kilograms per second at idle engine conditions, which means the engine
thrust is set between 0% and 7% (in case of turbo prop aircaft, e.g. DHC8,
DHC6 or SF340) of the maximum. This number must then be multiplied by the
number of engines. The amounts of gaseous emissions (in grams) correspond to
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the amount of fuel burned (in kilograms), thus we can now apply the factors
for HC, CO, or NOx from Table 1. The last emission type we want to quantify
is CO2. As presented in Step 5, we derive the amount of CO2 (in kilograms)
by multiplying the total fuel burned during taxi-out (in kilograms) times 3.157
[8]. Table 2 gives us an overview of the calculated quantities for nine different

Table 1. Oslo airport aircraft mix and engine emission factors

Aircraft
type

Percen-
tage of
flights

Engine
identifica-
tion

Number
of engines

HC
emission
index
(g/kg) at
idle
condition

CO
emission
index
(g/kg) at
idle
condition

NOx

emission
index
(g/kg) at
idle
condition

Fuel burn
(kg/sec)
at idle
condition

% - - g/kg g/kg g/kg kg/sec

737 38,4% JT8D-9 2 3,12 14,1 2,9 0,132
737300 25,8% CFM56-

3-B1
2 2,28 34,4 3,9 0,114

A320 9,6% CFM56-
5-A1

2 1,40 17,6 4,0 0,101

DHC8 8,0% PW123 2 3,10 48,3 3,1 0,043
737500 6,8% CFM56-

3-B1
2 2,28 34,4 3,9 0,114

SF340 4,0% CT7-9B 2 3,52 27,7 1,7 0,019
F10062 2,4% TAY

Mk620-15
2 3,40 24,1 2,5 0,110

720 1,4% JT3D-3B 4 112,00 98,0 2,5 0,135
757PW 1,0% PW2037 2 1,92 22,4 4,1 0,152
DHC6 0,9% PT6A-67 2 3,10 48,3 1,8 0,019
747400 0,4% PW4056 4 1,92 21,9 4,8 0,208
747SP 0,4% JT9D-7 4 36,50 84,1 3,1 0,210
767300 0,3% PW4060 2 1,66 20,3 4,9 0,213
MD82 0,3% JT8D-217 2 3,33 12,3 3,7 0,137
A300 0,1% CF6-5C2 2 2,72 24,0 3,4 0,163

iterations. The taxiing out durations vary between 2937 and 3048 minutes (or
around 50 hours) per day, of which about 7% are waiting times (delay). This
results directly in between 40.12 and 42.01 tons of burned fuel for all daily
departures. Not surprisingly CO2 emissions have the highest amounts of all
emissions, with between 126.7 and 132.6 tons for all 382 daily departing flights.
Amounts of HC are calculated between 252.2 and 327.1 kilograms, amounts of
CO between 1032.3 and 1119.6 kilograms and amounts of NOx between 134.3
and 140.99 kilograms. We have ranked the iterations by total externalities, delay
and emissions (Table 2). Our results seem to be of the same order of magnitude
compared to similar studies, such as [22]. From all run iterations, iteration 13
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performs best with regard to total externalities. We ranked the iterations by
each category, and then by overall performance. Iteration 13 reveals 382 daily
departures, which need 2938 minutes of taxi-out time. On average aircraft taxi-
out to one of the two parallel runways approximately 8 minutes, of which around
3 minutes are pushback time. It should be noted that the simulation represents
a “perfect” environment, i.e., weather effects were not taken into account and
we assume that aircraft always travel the maximum allowed speed limit, which
may be 5, 10 or 15 knots etc., depending on the type and location of the taxiway.
Aircraft are usually placed at a gate close to the landing runway or directed to
a runway close to the parking stand in case of arrivals. This procedure, that is
administered by ATC, shall minimize the number of aircraft traveling around
the whole airfield. We followed the same approach when the simulation was
programmed, particularly in such cases, when the information was not given in
the original schedule from Oslo airport.

Table 2. Results from the computations ranked by lowest to highest total emissions

Rank Iter-
ation

Taxi
time

Taxi
fuel
burn

HC CO NOx CO2 Ground
delay

Depar-
tures

min. tons kg kg kg tons min. -

1 13 2937,8 40,1 252,1 1032,3 134,3 126,6 209 382
2 1 2937,4 40,3 284,2 1079,8 135,1 127,2 280 381
3 17 2964,3 40,4 294,0 1082,5 134,3 127,5 277 381
4 14 2943,7 40,9 287,8 1088,5 137,6 129,1 311 382
5 18 2981,4 40,9 323,4 1100,7 135,7 129,2 357 382
6 5 3033,1 41,0 284,0 1062,3 136,6 129,5 304 382
7 2 2999 41,0 301,7 1090,9 136,4 129,5 337 382
8 12 2978,3 41,3 327,1 1119,6 138,4 130,6 245 382
9 9 3048,3 42,0 279,4 1108,6 140,9 132,6 293 381

4 Dynamic Vehicle Routing Model

The pusback relocation problem described in the introduction has been modeled
as skill vehicle routing problem (skill VRP) to reflect different qualifications of
pushback vehicles to serve aircraft types. Next, we introduce two ways to model
a skill pushback routing problem (Section 4.1) and present a large neighborhood
search (LNS) metaheuristic for the dynamic application (Section 4.2) as well as
results for benchmark instances from literature (Section 4.3).

4.1 A Skill VRP Formulation for Pushback Vehicles

This skill VRP is a variant of the site-dependent VRP; see, e.g., Cordeau and
Laporte [4]. Following Schwarze and Voß [17], we adopt the skill VRP formulation
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to the pushback routing and control introduced in the beginning. Assuming
G = (N,A) as a directed graph, with |N | = n and |A| = m. Let each node
j, j �= 1, represent a service requirement by an aircraft, and sj denote the skill
level required by node j for the associated pushback service by a specific aircraft.
On the other hand, node 1 denotes the depot. We assume a set P of available
pushback vehicles, each one operating at a certain skill level, were sp denotes the
skill level of pushback vehicle p ∈ P . Furthermore, we suppose that the service
requirement at node j can be operated by any pusback vehicle having a skill
level of at least sj , for j ∈ N \ {1}, and S denotes the set of skills given by the
union of the skill requirements sets at the nodes and the skill sets associated
with the pushback vehicles, i.e., S = si : i ∈ N ∪ sp : p ∈ P . Given non-negative
skill-dependent traveling costs cpij for each (i, j) ∈ A and pushback vehicle p ∈ P ,
we study the problem of defining the tour vehicles, each one starting and ending
at node 1, in such a way that each service requirement of the considered aircraft
is fulfilled by exactly one pushback vehicle, and the skill level constraints are
satisfied. Moreover, we define cpij as the time needed by p to traverse edge (i, j)
and ai, bi ≥ 0 as the lower and upper bounds of the time window for node
i. Finally, let the operation time oi ≥ 0 be the time needed to carry out the
service at i and M be a large number. For each (i, j) ∈ A and p ∈ P with
sp ≥ max {si, sj} denote

xp
ij =

{
1 if (i, j) ∈ A is in the tour of vehicle p,

0 otherwise

and

zpk =

{
1 if k ∈ N \ {1} is served by vehicle p,

0 otherwise.

Moreover, let yij be a non-negative flow variable for each (i, j) ∈ A and wp
i ≥ 0

the time when the vehicle starts a service at node i ∈ N \ {1}. The problem is
then given as

min
∑

(i,j)∈A

∑
p:sp≥max{si,sj}

cpijx
p
ij (1)

∑
i∈N

∑
p:sp≥max{si,sj}

xp
ij = 1 ∀j �= 1 (2)

∑
i∈N :sp≥si

xp
ij =

∑
i∈N :sp≥si

xp
ji ∀j �= 1, p : sp ≥ sj (3)

∑
i∈N

y1i = n− 1 (4)

∑
i∈N

yij −
∑
i∈N

yji = 1 ∀j �= 1 (5)
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yij ≤ (n− 1)
∑

p:sp≥max{si,sj}
xp
ij (i, j) ∈ A (6)

wp
i + oi + cij − wp

j ≤ M(1− xp
ij) ∀(i, j) ∈ A : �= 1; p : sp ≥ max {si, sj} (7)

aiz
p
k ≤ wp

k ≤ bkz
p
k ∀k �= 1, p : sp ≥ sj (8)

wp
k ≥ 0 ∀k �= 1, p : sp ≥ sj (9)

xp
ij ∈ {0, 1} (i, j) ∈ A, p : sp ≥ max {si, sj} (10)

yij ≥ 0 (i, j) ∈ A (11)

zpk ∈ {0, 1} ∀k �= 1, p : sp ≥ sj (12)

The objective function (1) minimizes the total routing costs for the pushback
vehicles. Constraints (2) and (3) grant that each node is served by an appropriate
vehicle and establish tours for the vehicles. The flow constraints (4) and (5) in
combination with constraints (6), linking the decision variables, break potential
subtours. Constraints (7) and (8) enforce time windows, while constraints (9) –
(12) are standard restrictions on the decision variables.

4.2 A Large Neighborhood Search Algorithm

An initial CPLEX implementation of the introduced mathematical program for
the problem lead to impractical computational times, even for small instances.
For planning in the dynamic environment of an airport computationally efficient
algorithms for the defined pushback routing problem are desirable. We have
therefore developed a LNS algorithm for the problem. LNS algorithms have
been successfully applied to VRPs with time windows [15]. The core idea of an
LNS heuristic is a large neighborhood that enables the algorithm to explore the
solution space easily, even if the instance is tightly constrained. This is usually
much harder with small neighborhoods [15]. Let U be the set of feasible solutions
for the pushback routing problem, then u ∈ U is a single solution and N(u) be
the neighborhood of solution u, defined as the set of solutions that can be reached
by applying the destroy and repair methods typical for LNS. The function d(·) is
the destroy method, while r(·) is the repair method. That means, d(u) returns a
modified version of u that is partly destroyed. In the case skill VRP for pushback
vehicles, the destroy method removes a percentage of random gates, i.e., nodes
of the VRP. The method r(·) repairs partly destroyed solutions, i.e., it returns a
feasible solution constructed of the destroyed one. In our case, the repair method
applies a greedy heuristic that gradually selects gates with the lowest cost and
adds them to the solution.
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Algorithm 1 An LNS algorithm for the pushback routing problem

1: u ← feasible solution
2: ub ← initialize(u)
3: repeat
4: ut ← r(d(u))
5: if accept(ut, u) then
6: u ← ut

7: end if
8: if c(ut) < c(ub) then
9: ub ← ut

10: end if
11: until stop criterion
12: return ub

The LNS procedure is illustrated in Algorithm 1. The algorithm uses three
variables. ub is the best solution, u is the current solution, and ut is a temporary
solution that can either become the current solution or get discarded. The algo-
rithm starts by initializing the global best solution ub using a feasible solution
u. This solution enters a loop in which the destroy method (d(·)) and then the
repair method (r(·)) are repeatedly applied to obtain new solutions ut. Then
this solution is evaluated based on some criterion; we have used cost-improving
solutions as a default criterion. If it is accepted, the current solution is updated.
The accept function can be implemented in different ways. Next xt is evaluated,
comparing its costs c(ut) to the costs of the best solution c(ub). The value c(u)
obviously corresponds to the objective function value of the model. If costs can
be reduced, ub is updated. After that, the termination condition—a time limit
in our case—is verified. Finally, the best solution found is returned.

4.3 Computational Results

The numerical experiments have been executed on a computer equipped with
an AMD Opteron Processor 6272 2,1 GHz and 128 GB of RAM under Windows
Server 2012. We use the instances introduced by Schwarze and Voß [17] that
assume an airport with 17 gates and 6 pushback vehicles. The skills of the
vehicles are s1 = s2 = s3 = s4 = 2 and s5 = s6 = 3. At each node (gate)
there is a single aircraft that requires a pushback service with a certain skill
level. We have three aircraft that require skill 1, seven requiring skill 2 and
another seven requiring skill 3. The time windows start between time units 0
and 100 and have a constant length of 25 time units.

We have conducted the scenarios assuming skill levels and skill sets for the
pushback vehicles. That means, vehicles with skill levels have downwards com-
patible skills and can serve all aircraft with skill levels less than or equal to their
own skill, and vehicles with skill sets have to exactly match the skill requirements.
Table 3 and Table 4 display the results for both scenarios. The preliminary re-
sults demonstrate that we are able to solve all considered instances under three
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seconds with the implemented LNS. Though the instances are relatively small,
this confirms that the LNS provides solutions in adequate computational time
for the dynamic application. Instances of the described problem reflect a de-
centralized organization at airports where different companies operate different
fleets of of pushback vehicles. Moreover, the implementation of skill sets or skill
levels has no significant impact on the computational times, and computational
times are consistently low for different initial solutions.

Table 3. Results for skill levels

# Routes Jobs Time Costs

1 9 17 2,65 328,44
2 9 17 2,61 512,64
3 8 17 2,58 873,69
4 9 17 2,59 382,47
5 8 17 2,49 719,19

Table 4. Results for skill sets

# Routes Jobs Time Costs

1 9 17 2,69 480,71
2 9 17 2,76 567,23
3 8 17 2,33 1297,27
4 10 17 2,48 590,23
5 8 17 2,34 982,21

5 Conceptual Integration

In order to leverage the fuel, cost, and emission saving potential in taxiing,
the pushback routing and control model has to be linked to the queuing model
for the taxiing process. Fig. 3 sketches the integration of the respective mod-
els presented in Section 3 and Section 4. First, the simulation model built in
Simmod is used to determine load-dependent emission curves. These curves ba-
sically model aircraft taxiing times based on the number of aircraft in the taxiing
process—a concept known as load-dependent lead times in production planning
[14]. With the information from the simulation model, this model is extended
to capture emissions as well. Next, the flight schedule is iteratively improved to
minimize costs and emissions based on the queuing situation modeled using the
load-dependent performance curves. This schedule is then given to the pushback
routing and control model (skill VRP) in order to implement the flight schedule
for the pushback processes, i.e., define the time windows for the routing problem.
In the case of dynamic changes, this process is repeated. Finally, the simulation
model evaluates how the plan is actually conducted, again considering costs,
emissions, and delays. The implicit management strategies used are changes in
the flight sequence and thresholds for the taxiing queue. The final evaluation
step considers costs and emissions, while emissions are weighted using various
emission price levels discussed in literature [5]. This means that delays or waiting
times are implicitly considered in terms costs caused by them.
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Fig. 3. Conceptual integration flow chart

6 Conclusion

Current research has emphasized the importance of the taxiing process for the
overall aircraft emissions. Several studies appeared to capture and mitigate taxi-
ing emissions. However, most approaches have not taken into account the inter-
connection of airport processes such as the pushback process. In this work, we
have developed a simulation model for taxiing lead times and related costs as well
as emissions. Furthermore, we have presented a pushback control and routing
model based on skill VRP formulation, and implemented a LNS algorithm for
fast solutions in the dynamic airport environment. We have also shown how the
simulation model and the routing model can be integrated to fully leverage the
cost and emission saving potential. Nevertheless, the presented results only refer
to small benchmark results available in literature. Future work will therefore
cover extensive numerical experiments with real-world data and comprehensive
quantitative analysis of the integration of both the simulation and the routing
model.
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