
Chapter 4

Pulmonary Endothelial Cell Apoptosis
in Emphysema and Acute Lung Injury

Eboni Chambers, Sharon Rounds, and Qing Lu

Abstract Apoptosis plays an essential role in homeostasis and pathogenesis of a

variety of human diseases. Endothelial cells are exposed to various environmental

and internal stress and endothelial apoptosis is a pathophysiological consequence of

these stimuli. Pulmonary endothelial cell apoptosis initiates or contributes to

progression of a number of lung diseases. This chapter will focus on the current

understanding of the role of pulmonary endothelial cell apoptosis in the develop-

ment of emphysema and acute lung injury (ALI) and the factors controlling

pulmonary endothelial life and death.
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AAT Alpha1-anti-trypsin

ADA Adenosine deaminase

ADP Adenosine-50-diphosphate
APC Activated protein C

ARDS Acute respiratory distress syndrome

ARs Adenosine receptors

ATF6 Transcription factor 6

ATGs Autophagy-related genes

ATP Adenosine-50-triphosphate
BALF Broncheoalveolar lavage fluid

CD39 ecto-50-nucleotidase
CD73 ecto-50-nucleotidase
CHOP C/EBP homologous protein

COPD Chronic obstructive pulmonary disease

CS Cigarette smoke

CSE Cigarette smoke extract
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DAMPs Damage associated molecular patterns

EC Endothelial cells

ECM Extracellular matrix

eIF2α Eukaryotic initiation factor 2α
ENT1/2 Equilibrative nucleoside transporter 1/2

ER Endoplasmic reticulum

FAC Focal adhesion complexes

FAK Focal adhesion kinase

GSH Glutathione

ICMT Isoprenylcysteine-O-carboxyl methyltransferase

IRAK-1 Interleukin (IL)-1 receptor associated kinase

IRE1 Inositol-requiring enzyme 1

JNK c-Jun N-terminal kinase

LPS Lipopolysaccharide

MLKL Mixed lineage kinase domain-like protein

mTOR Mammalian target of rapamycin

MyD88 Myeloid differentiation factor 88

PERK Pancreatic ER kinase like ER kinase

RBC Red blood cells

RIPK1/3 Receptor-interacting protein kinase 1 and 3

ROS Reactive oxygen species

S1P Sphingosine 1-phosphate

SAH S-adenosyl-L-homocysteine

SAHH S-adenosyl-L-homocysteine hydrolase

SAM S-Adenosyl-L-Methionine

TLRs Toll-like receptors

TNF-α Tumor necrosis factor-alpha

TRAF-6 TNF receptor associated factor-6

UPR Unfolded protein response

VEGF Vascular endothelial growth factor

VEGFR2 VEGF receptor type 2

4.1 Overview of Cell Death

4.1.1 Apoptosis

Apoptosis is a term first used by Kerr et al. in 1972 to describe a genetically

determined energy-dependent active form of programmed cellular suicide. Apoptosis

is characterized by well-ordered morphologic and molecular features including: cell

surface exposure of phosphatidylserine, plasma membrane blebbing, cell shrinkage,

cytoskeletal rearrangement, collapse of nuclear membrane, chromatin condensation,

DNA fragmentation, and formation of membrane bound fragments known as “apo-

ptotic bodies” (Kerr et al. 1972). Cell surface-exposed phosphatidylserine acts as a

chemoattractant for phagocytes to engulf and clear apoptotic bodies (Henson and

Tuder 2008). Apoptosis serves to eliminate unwanted, aged, harmful, injured, or

infected cells. Due to limited release of intracellular contents, minimal inflammation

occurs (Savill et al. 2002). However, if ingestion of apoptotic bodies by monocytes,

macrophages, and dendritic cells (efferocytosis) is impaired, inflammation and
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autoimmunity may be enhanced (Gaipl et al. 2006). Apoptosis plays an essential role

in the maintenance of tissue homeostasis and embryonic development. Further,

during embryonic development, the timing of apoptosis is genetically determined.

Excessive or inadequate apoptosis can, however, contribute to the pathogenesis of a

variety of human diseases. Apoptosis is triggered by external stressors (e.g., death

ligands, ultraviolet, and γ radiation) and/or internal stimuli (e.g., oxidants, DNA

damage, increased Ca2+). Apoptosis is processed by two fundamental signaling

pathways: the death receptor-mediated extrinsic pathway and the mitochondria-

dependent intrinsic pathway (Olson and Kornbluth 2001; Thorburn 2004). Extrinsic

pathway-activated caspase-8 can truncate and activate BID, thus activating the

intrinsic pathway (Li et al. 1998). The details on regulation of apoptosis have been

reviewed (Harrington et al. 2007; Subramanian and Steer 2010; Ola et al. 2011).

Therapies targeting regulators of apoptosis have been used in preclinical and clinical

trials for a variety of diseases including the treatment of cancers (Goldar et al. 2015).

4.1.2 Necrosis

Necrosis is a passive and caspase-independent cell death, characterized by cell

swelling, mitochondrial degeneration, impaired ATP generation, lysosomal leak-

age, early rupture of plasma membranes, random fragmentation/degradation of

DNA, and leakage of cellular contents into the surrounding environment (Henriquez

et al. 2008). Necrosis is usually induced by nonspecific and non-physiological stress.

Further, inhibition of caspases leads to necrosis (Henriquez et al. 2008). Due to

release of potentially pro-inflammatory and pro-immunogenic cellular contents into

surrounding tissues, necrosis often induces inflammation, autoimmune responses,

and is often seen concomitant with apoptosis.

4.1.3 Necroptosis

Necroptosis describes a type of active, regulated, and programmed necrosis depen-

dent upon the serine/threonine kinase activity of receptor-interacting protein kinase

1 and 3 (RIPK1/3) (Linkermann and Green 2014). Necroptosis and apoptosis share

several upstream signaling elements including death receptors caspase 8 and FLIP.

When caspase-8 is inhibited, RIPK1 is activated and forms an intracellular complex

with RIPK3 to assemble the necrosome, leading to phosphorylation of mixed

lineage kinase domain-like protein (MLKL) and ultimately cell death. Unlike

apoptosis, necroptosis promotes harmful innate and adaptive immunologic

responses by releasing damage associated molecular patterns (DAMPs). Thus, the

reduction of necroptosis might be beneficial by minimizing the release of DAMPs
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and proinflammatory responses. Necroptosis is, however, a defense mechanism

against invading microbes, including viral infections, and promotes the death and

removal of virally infected cells. Therefore, blockade of necroptosis may increase

susceptibility to viral infections particularly in patients with suppressed immunity.

A number of inhibitors of necroptosis, such as necrostatin (specific inhibitor for

RIPK1) and necrosulfonamide (specific inhibitor for human MLKL), have been

described, providing potential therapeutic tools for treatment. Given the complex

role of necroptosis, tissue and cell-specific targeting therapy is needed.

4.1.4 Endoplasmic Reticulum Stress-Induced Apoptosis

The endoplasmic reticulum (ER) is the site of posttranslational modifications and

folding of secreted and membrane proteins. A variety of insults, such as ER Ca2+

chelators, reducing agents, glucose starvation, glycosylation antagonists, and pro-

tein mutations, can disrupt ER protein folding and lead to an accumulation of

unfolded or misfolded proteins in the ER, thus initiating ER stress (Schroder and

Kaufman 2005). Cells respond to ER stress by the unfolded protein response (UPR).

The UPR includes three arms: pancreatic ER kinase (PKR)-like ER kinase (PERK)/

eukaryotic initiation factor 2α (eIF2α), transcription factor 6 (ATF6), and inositol-

requiring enzyme 1 (IRE1) (Schroder and Kaufman 2005). Through the UPR, cells

attempt to restore ER homeostasis in order to maintain cell survival by inhibiting

global protein synthesis (to reduce the loading of client protein to the ER for

folding), enhancing ER protein folding capacity, and promoting ER-associated

degradation of misfolded or unfolded proteins (Schroder and Kaufman 2005).

Prolonged ER stress causes cell death due to simultaneous activation of multiple

apoptotic pathways by the UPR (Szegezdi et al. 2006). PERK-induced phosphoryla-

tion of eIF2α can lead to apoptosis by induction of pro-apoptotic transcription factor,

C/EBP homologous protein (CHOP), which suppresses expression of anti-apoptotic

protein, Bcl-2. Activated IRE1 activates c-Jun N-terminal kinase (JNK), which causes

apoptosis by phosphorylation and thus inactivation of Bcl-2 and by phosphorylation

and thus activation of pro-apoptotic protein, Bim. In addition, increased Ca2+ in the

ER activates the death effector, Bax/Bak in the ER membrane, causing movement of

Ca2+ from the ER to the mitochondria leading to mitochondrial-dependent apoptosis.

ER membrane-localized caspase-12 (rodent) and caspase-4 (human) have also been

implicated in ER-stress-induced apoptosis (Szegezdi et al. 2003; Kim et al. 2006).

Caspase-12/-4 are cleaved and thus activated by the Ca2+-dependent protease,

m-calpain, by ER stress (Groenendyk and Michalak 2005). However, other studies

have suggested that ER stress-induced apoptosis depends upon the apoptosome and

not caspase-12/-4 (Obeng and Boise 2005; Di Sano et al. 2006).

Cell fate determination is not well understood when both survival (adaptive) and

apoptotic pathways are simultaneously activated. It has been proposed that persis-

tent ER stress causes apoptosis due to sustained induction of CHOP and instability

of the adaptive pathway (Lin et al. 2007). It has also been suggested that cells
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survive mild ER stress because of the short half-life of pro-apoptotic proteins,

compared to pro-survival proteins (Rutkowski et al. 2006). Robust prolonged ER

stress causes apoptosis due to the induction of CHOP excessive to its degradation

(Rutkowski et al. 2006).

4.1.5 Autophagy-Associated Cell Death

Autophagy is a dynamic and continuous process by which cells dispose of

damaged or unneeded cellular proteins or organelles (mitochondria) by self-

digestion to generate intracellular nutrients. During physiological conditions,

autophagy is suppressed by mammalian target of rapamycin (mTOR), thus

inhibiting the expression of autophagy-related genes (ATGs). Upon external or

internal stress: including nutrient starvation, growth factor deprivation, hypoxia,

ischemia, or mitochondrial aging, mTOR is inhibited thus initiating autophagy.

Autophagy is a multistep sequential process, consisting of the formation of

double-membrane vesicles that sequester unwanted cargo (proteins or mitochon-

dria) in autophagosomes, fusion of autophagosomes with endosomes or lysosomes

to form amphisomes or autolysosomes, and digestion of cargo by proteases

(Hotchkiss et al. 2009; Choi et al. 2013). Autophagy is an evolutionarily conserved

housekeeping process that allows recycling of damaged proteins and organelles in

order to maintain homeostasis. Impairment in any step of autophagy causes

cellular nutrient deficiency and/or accumulation of damaged proteins and organ-

elles leading to cell death (Hotchkiss et al. 2009). Whether autophagy promotes

cell survival or death may depend on cell type and setting (Gustafsson and

Gottlieb 2008).

4.1.6 Assessments of Cell Death

Based on the unique characteristics of different types of cell death, a variety of

assays have been developed to assess the specific types of cell death in vivo and

in vitro. Different types of cell death may share common characteristics at different

stages of cell death; therefore, it is often necessary to use multiple assays to confirm

cell death. The details on the assessments of cell death have been extensively

reviewed (Harrington et al. 2007; Henson and Tuder 2008; Lu and Rounds 2009;

Klionsky et al. 2016) and will not be discussed in this review.
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4.2 Pulmonary Endothelial Cell Apoptosis

Balance of endothelial cell survival and death is crucial for angiogenesis, vessel

regression, and barrier function. Due to the unique position of endothelial cells

(EC) at the interface of circulating blood and surrounding tissues, EC may be

exposed to various environmental stress including: hypoxia, hyperoxia, oxidants,

lipopolysaccharide (LPS), and cigarette smoke (CS), or internal stress including:

adenosine, ceramide, tumor necrosis factor (TNF)-α, and angiotensin II. Apoptosis

is a pathophysiological consequence of these stimuli. However, a variety of bio-

mechanical and biochemical factors are involved in the anti-apoptotic processes.

For example, physiological levels of shear stress and cyclic strain, vascular endo-

thelial growth factor (VEGF), focal adhesion kinase (FAK), activated protein C

(APC), and sphingosine 1-phosphate (S1P) protect EC against apoptosis. The pro-

and anti-apoptotic effects of these mediators have been reviewed (Harrington et al.

2007; Lu and Rounds 2009); therefore, this review will focus on the current

understanding of endothelial pro-survival factors (VEGF and FAK) and

apoptosis-inducing stress (adenosine, cigarette smoke, and LPS) in the lungs.

4.2.1 Vascular Endothelial Growth Factor

EC express abundant VEGF, which promotes EC survival and maintains normal

alveolar structure (Voelkel et al. 2006). Expression of both VEGF and VEGF

receptor type 2 (VEGFR2) are decreased in lung tissue of patients with chronic

obstructive pulmonary disease (COPD) (Kasahara et al. 2001). This diminished

VEGF/VEGFR2 signaling is inversely associated with increased lung EC apoptosis

(Kasahara et al. 2001). Lung-targeted inhibition of VEGF or VEGFR2 causes

alveolar septal cell apoptosis in mice (Kasahara et al. 2000; Tang et al. 2004).

Our group has also shown that blockade of VEGFR2 causes cultured pulmonary

artery EC apoptosis in vitro (Lu 2008). These results indicate that VEGF signaling

is essential for lung EC survival.

4.2.2 Focal Adhesion Kinase

EC are linked to the basement membrane through binding of cell surface expressed

integrins to extracellular matrix (ECM) proteins at focal adhesion complexes (FAC)

(Hynes 1992). As anchorage-dependent cells, EC undergo detachment-initiated

apoptosis, referred to as anoikis, upon loss of adhesion to underlying basement

membrane. FAK, a non-receptor tyrosine kinase and an essential component of

FAC, is activated upon integrin engagement of ECM (Guan et al. 1991; Guan and

Shalloway 1992; Parsons 2003). FAK provides survival signaling for anchorage-

dependent cells such as cultured fibroblasts (Hungerford et al. 1996). Similarly, EC
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isolated from FAK-null embryos undergo apoptosis (Ilic et al. 1995, 2003).

Endothelium-specific deletion of FAK (Cre/FAKflox) is embryonic lethal and causes

EC apoptosis (Shen et al. 2005; Braren et al. 2006). Guan and colleagues (Guan et al.

1991; Guan and Shalloway 1992) have demonstrated that FAK tyrosine kinase

activity is essential for FAK activity. FAK promotes cell survival by recruiting

proteins containing SH2 domain including Src and phosphatidylinositol-3-kinase

(PI3K) (Schaller et al. 1994). The activated PI3K recruits and activates Akt (Khwaja

et al. 1997), which promotes cell survival via phosphorylation and thus inhibition of

pro-apoptotic protein, Bad (Kennedy et al. 1997). FAK also promotes survival by

activation of NF-κB and ERK signaling pathways (Huang et al. 2007). Additionally,

FAK can translocate to the nucleus and inhibit p53 transcriptional activation and

enhance p53 degradation, leading to protection against apoptosis (Ilic et al. 1998).

4.2.3 Adenosine

Adenosine is generated from adenosine-50-triphosphate (ATP) and adenosine-

50-diphosphate (ADP) by extracellular ecto-50-nucleotidases, CD39 and CD73,

and is metabolized by adenosine deaminase (ADA). Extracellular adenosine exists

in low concentrations (40–600 nM) under physiological conditions and is increased

due to platelet degranulation, cell necrosis, activation of CD39 and/or CD73, or

inhibition of ADA (Thompson et al. 2004; Eltzschig et al. 2006; Volmer et al. 2006;

Eckle et al. 2007). Increased extracellular adenosine can interact with cell surface

G-protein coupled adenosine receptors (ARs) (Feoktistov et al. 2002; Wyatt et al.

2002; Umapathy et al. 2010). Activation of adenosine receptors, specifically

A3-mediated signaling, has been shown to protect against apoptosis and tissue

injury (Rivo et al. 2004; Chen et al. 2006; Matot et al. 2006).

However, sustained increased adenosine in ADA-deficient mice enhances

alveolar cell apoptosis (Zhou et al. 2009). We have also shown that prolonged

exposure to adenosine causes apoptosis of cultured lung EC (Lu et al. 2013). The

injurious effect of adenosine is mediated by equilibriative nucleoside transporters.

EC predominantly express equilibriative nucleoside transporter 1 (ENT1) and ENT2

(Archer et al. 2004). Upon sustained exposure, adenosine may be taken up into cells

by ENTs. Further, similar to other G-protein coupled receptors, prolonged engage-

ment of ARs causes receptor desensitization and internalization (Fredholm et al.

2001). This concept is supported by findings that sustained increased adenosine in

ADA-deficient mice enhances alveolar cell apoptosis via a mechanism independent

of adenosine receptor, A2BR (Zhou et al. 2009). In addition, sustained exposure to

adenosine causes endothelial cell apoptosis; this effect is prevented by inhibition of

ENT1/2 however exacerbated by inhibition of either A2AR or A2BR (Lu et al. 2013).

These results are consistent with the concept that ENT1/2-facilitated intracellular

adenosine uptake and subsequent metabolism mediates adenosine-induced EC

apoptosis, whereas AR-mediated signaling limits apoptosis (Simonis et al. 2009).

Once intracellular, adenosine reacts with homocysteine and generates

S-adenosyl-L-homocysteine (SAH) by inhibition of SAH hydrolase (SAHH). SAH
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induces endothelial cell apoptosis independent of homocysteine (Sipkens et al.

2012). SAH is also a product of carboxyl methylation with S-adenosyl-L-methionine

(SAM) as a methyl donor. We have demonstrated that exogenous adenosine causes

lung EC apoptosis via increased ratio of intracellular SAH to SAM (Rounds et al.

1998). The increased ratio of SAH to SAM suppresses carboxyl methyltransferase

activity. Isoprenylcysteine-O-carboxyl methyltransferase (ICMT) is a major

methyltransferase for carboxyl methylation of small GTPase, Ras (Clarke 1992),

which is a posttranslational modification essential for membrane localization and

activation of Ras (Boivin and Beliveau 1995; Fleming et al. 1996; Kranenburg et al.

1997; Michaelson et al. 2001). We have shown that exogenous adenosine causes

lung EC apoptosis in part by ICMT inhibition-mediated inhibition of Ras carboxyl

methylation and activation (Kramer et al. 2003).

SAM is a precursor to glutathione (GSH) and is synthesized exclusively in the

cytosol (Reytor et al. 2009) and also transported into mitochondria (Agrimi et al.

2004). Exogenous SAM has been shown to elevate GSH levels in vivo and prevent

alcohol-induced mitochondrial oxidative stress and dysfunction as well as liver and

lung injury in animal models (Holguin et al. 1998; Bailey et al. 2006; Cederbaum

2011). p38 is a redox-sensitive protein (Matsuzawa and Ichijo 2008). Reactive

oxygen species (ROS)-mediated p38 activation has been implicated in extracellular

ATP-induced macrophage apoptosis (Noguchi et al. 2008) and H2O2-induced EC

apoptosis (Machino et al. 2003). Activation of p38 has also been implicated in

homocysteine-induced apoptosis of endothelial progenitor cells (Bao et al. 2010)

and cardiomyocytes (Wang et al. 2011). We have shown that sustained exposure to

exogenous adenosine causes mitochondrial defects and endothelial apoptosis via

mitochondrial oxidative stress-induced activation of p38 (Lu et al. 2012, 2013).

Active p38 causes apoptosis by direct phosphorylation, and thus inhibition of Bcl-2

(De Chiara et al. 2006; Farley et al. 2006) and by increasing mitochondrial translo-

cation of Bax (Capano and Crompton 2006). Future studies are needed to address

whether sustained adenosine exposure reduces mitochondrial SAM, thus leading to

mitochondrial oxidative stress via increased ratio of SAH to SAM in the cytosol.

In summary, adenosine displays seemingly paradoxical effects on lung EC life and

death. Acute exposure protects EC against apoptosis via AR-mediated signaling,

whereas prolonged exposure causes EC apoptosis via ENT1/2-mediated intracellular

adenosine uptake and subsequent metabolism and mitochondrial oxidative stress.

4.2.4 Cigarette Smoke

Lung EC apoptosis is significantly elevated in human smokers with emphysema

(Kasahara et al. 2001) and mice with mild emphysema caused by CS exposure

(Sakhatskyy et al. 2014). We (Sakhatskyy et al. 2014) and others (Tuder et al.

2000; Damico et al. 2011) have shown that CS extract (CSE) causes cultured lung

macro- and microvascular EC apoptosis in vitro. The mechanisms underlying

CS-induced lung EC apoptosis are rather complicated and involve FAK, p53,

UPR, and autophagy.
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FAK is a survival signal for anchorage-dependent cells (Hungerford et al. 1996).

Tyrosine 397 phosphorylation of FAK is essential for its activation (Schaller et al.

1994). CSE decreases FAK phosphorylation at tyrosine-397 in an oxidative stress-

dependent manner (Lu et al. 2011)—essential in CSE-induced EC apoptosis

(Sakhatskyy et al. 2014). FAK also promotes cell survival via suppression of p53

(Ilic et al. 1998). Further, activation of p53 has contributed to CSE-induced

pulmonary EC apoptosis (Damico et al. 2011). Thus, we speculate that CSE causes

lung EC apoptosis via oxidative stress-mediated inhibition of FAK and subsequent

activation of p53.

The UPR is an important mechanism of the elimination of ER stress and

enhanced cell survival (Schroder and Kaufman 2005). The UPR is activated in

lung tissue of smokers who do not have emphysema (Kelsen et al. 2008). The UPR

is also activated by CSE in cultured human bronchial epithelial cells and 3T3

fibroblasts (Hengstermann and Müller 2008; Jorgensen et al. 2008) and cultured

pulmonary EC (Sakhatskyy et al. 2014). Using mouse models of CS exposure, we

have demonstrated a strong link between impairment of eIF2α signaling with lung

EC apoptosis (Sakhatskyy et al. 2014). Future studies are necessary to determine if

impaired eIF2α signaling contributes to lung EC apoptosis.

Autophagy is increased in response to deficiencies in extracellular and intracel-

lular nutrients. Enhanced autophagy is observed in the lung tissue of smokers with

emphysema (Chen et al. 2008). Autophagy is also activated by CSE exposure in

lung epithelial cells and fibroblasts (Kim et al. 2008) as well as lung EC

(Sakhatskyy et al. 2014). Increased autophagy has contributed to CS-induced

alveolar epithelial cell apoptosis in mice (Chen et al. 2010). In contrast, increased

autophagy has also been shown to protect against pulmonary endothelial cell

apoptosis induced by cadmium, a component of cigarette smoke (Surolia et al.

2015). We have reported that autophagy was not altered in the lung tissue of a

mouse strain susceptible to CS-induced lung EC apoptosis and emphysema

(Sakhatskyy et al. 2014). The role of autophagy in CS-induced apoptosis may be

dependent on cell types and stimuli.

Due to open structure and limited repair capacity, mitochondrial DNA is

50 times more sensitive to oxidative damage than nuclear DNA (Yakes and Van

Houten 1997). Oxidative stress-induced mitochondrial DNA damage triggers mito-

chondrial dysfunction and apoptosis of lung EC (Ruchko et al. 2005). The role of

mitochondrial DNA damage in CS-induced lung EC apoptosis remains to be

studied.

4.2.5 Lipopolysaccharide

LPS, also known as lipoglycans or endotoxin, is a component of the outer envelope of

gram-negative bacteria and elicits pro-inflammatory responses. It is well established

that LPS-induced EC activation, dysfunction, and apoptosis play an important role in

bacterial sepsis and endotoxemia. In the blood circulation, LPS binds to soluble

CD14 via LPS-binding protein (LBP), followed by engagement of toll-like receptor
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(TLR)-4. This engagement results in the recruitment of adaptor, myeloid differenti-

ation factor 88 (MyD88), and subsequent activation of interleukin (IL)-1 receptor

associated kinase (IRAK)-1, TNF receptor associated (TRAF)-6, NF-kB, and MAPK

pathways (Desch et al. 1989; Wang et al. 2001; Bannerman and Goldblum 2003).

NF-kB has been shown to transcriptionally upregulate anti-apoptotic genes such

as IAP-1, IAP-2, and FLIP (LaCasse et al. 1998; Bannerman et al. 2004). However,

suppression of NF-kB has minimal effect on LPS-induced EC apoptosis (Zen et al.

1999). This is due to FADD/MyD88-dependent negative regulation of LPS-induced

NF-kB activation (Martin et al. 2005; Zhande et al. 2007); Fas is no longer able to

activate MyD88, thus stimulating LPS/TLR4/NF-kB signaling (Martin et al. 2005).

LPS also stimulates MyD88-independent signaling of endothelial apoptosis

(Dauphinee and Karsan 2006). Heterotrimeric Gi/Go proteins play a role in

LPS-induced TLR signaling independent of the MyD88-dependent pathway, lead-

ing to MAPK, Akt, and IFN activation of endothelial cells (Dauphinee et al. 2011).

Whether LPS-induced stimulation of heterotrimeric G coupled proteins plays a role

in EC apoptosis is unknown. LPS can activate the BID-dependent intrinsic pathway

of apoptosis in lung EC (Wang et al. 2007). Conversely, LPS has been shown to

upregulate mRNA of anti-apoptotic molecules, thus preventing EC apoptosis

(Hu et al. 1998). LPS-induced intrinsic apoptosis and cytoprotection in disease

states are not well understood and require further study.

4.3 Pulmonary EC Apoptosis in Lung Diseases

Apoptosis has been shown to ameliorate or exacerbate lung injury. Pulmonary EC

apoptosis plays an important role in physiological processes including vasculogenesis

and angiogenesis during lung development. Pulmonary EC apoptosis may also

initiate or contribute to the progression of a number of lung diseases, as reviewed

elsewhere (Harrington et al. 2007; Lu and Rounds 2009). In this review, we will focus

on the role of pulmonary EC apoptosis in development of emphysema and Acute

Lung Injury (ALI).

4.3.1 Emphysema

Chronic obstructive pulmonary disease (COPD), a progressive respiratory condi-

tion consisting of emphysema and chronic bronchitis, is the fourth leading cause of

death worldwide and may become the third leading cause of death by 2030 based on

prediction by the World Health Organization (Khaltaev 2005). The prevalence of

COPD in the United States in 2013 was estimated to be 6.4% (15.7 million adults)

(Wheaton et al. 2015). COPD is also an important contributor of mortality and

disability in the United States (Murray et al. 2013). Further, COPD-related medical

costs were estimated at $32 billion in the USA in 2010 with an additional $4 billion
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in costs due to absence from work (Ford et al. 2015). α1-antitrypsin (AAT)

deficiency and other genetic predispositions contribute to the development of

COPD (Sandford et al. 1997). However, tobacco smoke remains the leading

cause of this devastating disease. Indoor air pollution (such as biomass fuel used

for cooking and heating), outdoor air pollution, and occupational dusts and

chemicals also increase the risk of COPD (Diette et al. 2012). Although the

pathology of COPD has been well defined, the pathogenesis of the disease initiation

and progression is not understood. Currently, there is no specific treatment avail-

able to reverse COPD.

Emphysema, a common and debilitating manifestation of COPD, is character-

ized by alveolar airspace enlargement, loss of alveolar capillary septa, and resultant

impaired gas exchange. Several hypotheses have been proposed to explain alveolar

wall damage in emphysema. Protease/anti-protease imbalance has been accepted as

a major mechanism for emphysematous lung destruction (Shapiro 1995, 1999;

Shapiro et al. 2003; Taraseviciene-Stewart and Voelkel 2008). It is believed that

neutrophil elastase and macrophage matrix metalloproteinases enzymatically

degrade elastin in alveolar septa, leading to emphysema (Taraseviciene-Stewart

and Voelkel 2008). This notion is supported by findings that patients with genetic

deficiency of the anti-protease, AAT, develop emphysema (No Authors 1997).

Additionally, intra-tracheal instillation of proteases causes an emphysema pheno-

type in rats (Pastor et al. 2006). However, less than 5% of emphysema patients have

AAT deficiency. Inflammatory cell infiltration is also seen in human emphysema.

However, lung inflammation in pneumonia or acute lung injury does not usually

result in emphysema. This suggests that inflammation may not be sufficient by itself

for the development of emphysema. Oxidant stress and immunological injury also

play a role in the pathogenesis of emphysema (Taraseviciene-Stewart and Voelkel

2008). Emerging evidence has highlighted a role of apoptosis, particularly EC

apoptosis, in the initiation and progression of emphysema (Kasahara et al. 2000,

2001; Giordano et al. 2008).

Lung tissue from patients with emphysema displays increased apoptosis of both

epithelial and endothelial cells in the alveolar septa (Kasahara et al. 2001; Imai et al.

2005). Bcl-2 single-nucleotide polymorphisms have been associated with severity

of human emphysema (Sata et al. 2007). We have shown that lung EC apoptosis is

elevated in a mouse model of emphysema induced by CS exposure (Sakhatskyy

et al. 2014). Interestingly, induction of alveolar cell apoptosis by intratracheal

instillation of the active caspase-3 causes emphysema in rats (Aoshiba et al.

2003). Additionally, inhibition of VEGF signaling causes alveolar septal cell

apoptosis and emphysema in mice (Kasahara et al. 2000; Tang et al. 2004).

Similarly, intra-tracheal instillation of C12 ceramide triggers alveolar endothelial

and epithelial cell apoptosis and emphysema-like changes in mice (Petrache et al.

2005). Further, lung EC-targeted induction of apoptosis led to emphysema and

enhanced oxidative stress and lung inflammation (Giordano et al. 2008). More

importantly, inhibition of apoptosis using pan-caspase inhibitors prevented the

emphysematous changes induced by either ceramide (Petrache et al. 2005) or

blockage of VEGF signaling (Kasahara et al. 2000; Tang et al. 2004). These results
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support a central role of lung EC apoptosis in the development of emphysema. Anti-

protease, AAT, inhibits CSE-induced pulmonary EC apoptosis in vitro by direct

interaction with caspase-3 (Aldonyte et al. 2008). Overexpression of AAT also

inhibits lung endothelial apoptosis and attenuates emphysema caused by either

active caspase-3 or blockade of VEGF signaling (Petrache et al. 2006). These

studies suggest that lung EC apoptosis is a critical step in the pathogenesis of

emphysema.

Inhibition of FAK causes emphysema-like change in rat lungs (Mizuno et al.

2012). We have shown that CS exposure for 3 weeks enhanced pulmonary EC

apoptosis and decreased FAK activity in mice susceptible to CS-induced emphysema

(Sakhatskyy et al. 2014). Further studies are necessary to address whether reduced

FAK activity contributes to CS-induced lung EC apoptosis and emphysema in

humans in vivo. We have shown that CS exposure increases lung tissue adenosine

levels in mice, an effect associated with lung EC apoptosis and early emphysema

(Lu et al. 2013). Sustained increased adenosine in ADA-deficient mice also enhances

alveolar cell apoptosis and causes emphysema in mice (Zhou et al. 2009). ADA

expression and activity are reduced in the lung of smokers with COPD (Zhou et al.

2010). Whether chronically elevated adenosine contributes to CS-induced lung

endothelial cell apoptosis and development of emphysema remains to be

investigated.

Ceramide is upregulated in emphysematous lungs of patients and animal models,

as well as in cultured pulmonary EC exposed to CSE (Petrache et al. 2005). This

increase in ceramide is associated with enhanced alveolar cell apoptosis (Petrache

et al. 2005). Interestingly, intratracheal instillation of C12 ceramide triggers air-

space enlargement and apoptosis of alveolar EC and type II epithelial cells

(Petrache et al. 2005). Further, inhibition of de novo ceramide synthesis signifi-

cantly attenuated lung cell apoptosis and emphysema induced by VEGFR2 block-

ade (Petrache et al. 2005). These results suggest that ceramide is also an important

mediator of alveolar cell apoptosis and emphysema (Petrache et al. 2005).

Only 10–15% of smokers develop emphysema. The mechanism underlying

increased susceptibility to emphysema remains unclear. The UPR is elevated in

the lungs of smokers without evidence of emphysema (Kelsen et al. 2008). Nrf2, a

redox-sensitive, antioxidant transcription factor, is activated by eIF2α, a branch of

UPR (Digaleh et al. 2013). Nrf2 knockout mice demonstrate enhanced susceptibil-

ity to cigarette smoke-induced emphysema in comparison to wild-type mice (Iizuka

et al. 2005). We have shown that active eIF2αwas significantly reduced in the lungs

of AKRmice with mild emphysema induced by CS (Sakhatskyy et al. 2014). Future

studies are needed to address whether Nrf2 is reduced in the lungs and whether

inadequate induction of Nrf2 contributes to development of emphysema.

Autophagy is significantly increased in lung tissue of patients with COPD; the

degree of autophagy positively correlates with the clinical severity of disease

(Chen et al. 2008). Increased autophagy has contributed to CS-induced alveolar

epithelial cell apoptosis and emphysema in mice (Chen et al. 2010; Mizumura et al.

2014). In contrast, increased autophagy protects against pulmonary endothelial cell

apoptosis and emphysema induced by cadmium, a component of cigarette smoke
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(Surolia et al. 2015). We have reported that autophagy was not altered in lung

tissue of a mouse strain with increased lung EC apoptosis and mild emphysema

induced by CS (Sakhatskyy et al. 2014). Thus, the role of autophagy in regulating

lung EC apoptosis and early onset of CS-induced emphysema needs further study.

4.3.2 Acute Lung Injury

ALI and its more severe form, acute respiratory distress syndrome (ARDS), are life-

threatening disorders clinically characterized by severe hypoxemia and pulmonary

bilateral infiltrates. In the United States, ARDS affects approximately 190,000

patients annually (Rubenfeld et al. 2005). ARDS accounts for 3.6 million associated

hospital days (Rubenfeld et al. 2005; Adhikari et al. 2010). The global impact of

ARDS has been difficult to assess due to varying definitions of the broad clinical

phenotypes and limited data. Thus, ARDS remains an underreported disease of

treated incidence, as opposed to actual incidence, in the undeveloped world

(Buregeya et al. 2014). Although the mortality rate of ARDS has decreased to

around 30–40% due to lung protective ventilation strategies (Amato et al. 1998;

Villar et al. 2006), ARDS remains a deadly syndrome without a specific cure.

Currently, there are no pharmacological interventions available to reduce the

mortality of ARDS.

Sepsis, bacterial and viral pneumonia, and trauma remain the leading risk factors

for the development of ARDS. Emerging evidence from epidemiologic studies,

animal models, and cultured cell models have suggested that both active and

passive cigarette smoke exposure modifies the susceptibility for development of

ALI and ARDS (Iribarren et al. 2000; Calfee et al. 2011; Lu et al. 2011, 2013; Hsieh

et al. 2014; Borgas et al. 2016).

The pathophysiology of ARDS is characterized by increased permeability of the

alveolar-capillary barrier, influx of protein and inflammatory cell-rich fluid into the

alveolar space, attenuated gas exchange between alveolar-capillary barrier, and

dysregulated inflammation. Increased permeability of the microvascular endothe-

lium and alveolar epithelium promotes edema formation, and this concept has been

accepted as an important mechanism for the initiation of ARDS (Matthay et al.

2012). It is well established that polymorphonuclear cells (PMN) and immunolog-

ical injury also play a significant role in the pathogenesis of ARDS (Perl et al.

2011). PMN accumulation is observed in the broncheoalveolar lavage fluid (BALF)

(Pittet et al. 1997) and lung biopsies of early ARDS patients (Bachofen and Weibel

1977, 1982). Further, neutrophilia has been correlated with exacerbation of sepsis-

induced ALI (Steinberg et al. 1994). However, ARDS may also develop in neutro-

penic patients, and neutrophil activation and migration may be observed in human

lungs without injury (Martin et al. 1989; Downey et al. 1999). This suggests that

inflammation may not be sufficient by itself for the development of ARDS.

Emerging evidence has suggested a role of pulmonary cell apoptosis in the

initiation and progression of ARDS. The death receptor, Fas, and its ligand, FasL
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system, is an important death receptor-mediated extrinsic pathway of apoptosis.

FasL is expressed and released by inflammatory cells, including neutrophils and

lymphocytes, whereas Fas is expressed on the surface of lung EC, alveolar and

bronchial epithelial cells, Clara cells, and alveolar macrophages. Fas and FasL are

increased in pulmonary edema fluid and in lung tissue of patients with ARDS

(Albertine et al. 2002). Silencing of Fas/FasL reduces lung cell apoptosis and

ALI in a mouse model of sepsis (Perl et al. 2005, 2007). Soluble FasL (sFasL) is

a cleaved form of FasL by metalloproteinases and is increased in BAL fluid of

patients with ARDS (Matute-Bello et al. 1999). sFasL released from inflammatory

cells is capable of inducing lung epithelial cell apoptosis (Matute-Bello et al. 1999).

The role of Fas/FasL in lung EC apoptosis is not yet clear. Robust pulmonary

endothelial cell apoptosis has been observed in patients with severe ARDS (Abadie

et al. 2005) and in mice with ALI induced by LPS (Fujita et al. 1998). Sepsis-

induced ARDS in mice indicates evidence for pulmonary microvascular endothelial

cell death as a cause of barrier dysfunction and edema (Gill et al. 2014, 2015).

Inhibition of apoptosis using a broad-spectrum caspase inhibitor prolonged survival

of mice exposed to LPS (Kawasaki et al. 2000). Since apoptosis of alveolar

endothelial, epithelial, and interstitial inflammatory cells occurs during ALI, future

studies are needed to address the role of apoptosis of specific cells in initiation of

ALI/ARDS.

Apoptosis has been thought of to be a non-inflammatory means of removing

injurious cells, thus facilitating lung repair. However, there is increasing evidence

indicating that Fas/FasL-mediated lung epithelial apoptosis results in release of

pro-inflammatory cytokines (such as TNF-α and TGF-β1), leading to inflammation

and progression from ARDS to fibrosis (Chapman 1999). Whether pulmonary

endothelial cell apoptosis occurs during initiation or progression of pulmonary

fibrosis is unknown.

The role of necroptosis in development of ARDS is yet to be determined. Of

interest, a recent study of blood transfusion-related acute lung injury indicates that

banked red blood cell (RBC) transfusion enhances susceptibility to lung inflamma-

tion and ARDS in critically ill transfused patients and mice through necroptosis of

lung EC and subsequent release of DAMPs (Qing et al. 2014).

4.4 Conclusions and Perspectives

Cell life and death are tightly regulated by survival signaling and death inducing

programs. Pulmonary EC apoptosis significantly contributes to the development of

emphysema and ALI/ARDS, as depicted in Fig. 4.1. Pan-caspase inhibitors have

been used to inhibit lung cell apoptosis and prevent emphysema and ALI in animal

models. However, use of such drugs to treat apoptosis-associated lung diseases may

be problematic due to breakdown of tissue homeostasis and activation of

necroptosis (Linkermann and Green 2014). The therapeutic potential of drugs that

modulate cell death is dependent upon cell type-specific, tissue-specific, and
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vascular bed-specific actions. Thus, drugs acting locally and with cell type speci-

ficity are needed. Areas where research is needed include: (1) apoptosis suscepti-

bility of different EC (conduit artery versus microvascular versus progenitor);

(2) role of apoptosis of specific lung cells in initiation and/or progression of lung

diseases; (3) role of necrosis and necroptosis in development of lung diseases, such

as emphysema and ALI.
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Fig. 4.1 Signaling pathways to CS-induced pulmonary endothelial cell apoptosis. Multiple

signaling pathways are involved in CS-induced pulmonary endothelial cell apoptosis. (1) CS

reduces VEGF/VEGFR2 signaling, leading to induction of ceramide and consequent apoptosis;

(2) CS reduces FAK activation, leading to activation of p53 and inhibition of PI3K/Akt signaling,

which results in apoptosis; (3) CS causes mitochondrial oxidative stress and mitochondrial

dysfunction, leading to apoptosis; (4) CS elevates adenosine levels, leading to inactivation of

Ras and mitochondrial oxidative stress, resulting in apoptosis; (5) CS impairs unfolded protein

response, leading to apoptosis
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