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Abstract Endothelium plays an important role in maintaining the vascular barrier

and physiological homeostasis. Endothelium also is fundamental to the initiation

and regulation of inflammation. Endothelium demonstrates phenotypic and func-

tional heterogeneity not only among various organs but also within an organ. One of

the striking examples would be the pulmonary endothelium that participates in

creating blood–air barrier. Endothelium in large pulmonary blood vessels is distinct

in structure and function from that lining of the pulmonary capillaries. This chapter

focuses on the comparative aspects of pulmonary endothelium and highlight unique

differences such as the presence of pulmonary intravascular macrophages among

select species.

2.1 Introduction

The pulmonary endothelium is a dynamic and metabolically active layer of squamous

endothelial cells that is ideally placed to mediate lung homoeostasis (Millar et al. 2016).

The pulmonary capillary is made up of a few (usually 2–3) thin, squamous endothelial

cells (Dornan and Meban 1985; King et al. 2004), and capillary endothelial cells

constitute 30–50% and 46–50% of the total cell population in the alveolar septal wall
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in human (Crapo et al. 1982) and nonhuman primate (Crapo et al. 1983), respectively.

Horse lung showed an average of 252.4 capillaries per centimeter of lung alveolar wall

with endothelial cells constituting 49.5% of total tissue cells in the alveolar septal wall

(Gillespie and Tyler 1967). Endothelium is the gatekeeper of the tissues and regulates

traffic of circulating cells and molecules into the tissues (Cotran 1989).

Endothelial cells of the lung can be easily split into two subgroups, one com-

prising the lining of larger blood vessels such as arteries and veins and another

population that constitutes capillary endothelial cells of the microvasculature, each

with distinct functions. Both subsets of endothelial cells contain rough endoplasmic

reticulum, numerous vesicles such as caveolae, a low number of mitochondria, and

filaments around the basal cell surface amongst other common cellular features

(King et al. 2004). Filaments are more common in arterial cells which also exhibit

projections from the apical surface, particularly near cellular junctions (King et al.

2004). As there is transition from arterial to microvascular endothelial cells, there is

a flattening and elongation of the cells, with a greater restriction of cytoplasm near

the flattened periphery. Many of the organelles are excluded from the flattened parts

and concentrated around the nucleus. While apical projections were present, they

were not as pronounced in this population (King et al. 2004; Ochoa et al. 2010).

A key intracellular feature of endothelial cells are dark bodies in the cytoplasm

referred to as Weibel–Palade bodies (WPb) which contain a variety of secretable

products such as vonWillebrand Factor (vWF), interleukin (IL)-8, factor XIIIa, and

P-selectin. While these bodies are present in arterial endothelial cells they are not

present in the capillary endothelial cells, though these factors are still secreted by

these cells as well (Fuchs and Weibel 1966; Lowenstein et al. 2005). Upon injury or

another activating stimulus, these bodies fuse with the cellular membrane and

degranulate, releasing their contents into circulation and on the surface of the

endothelial cells. vWF, a substrate of XIIIa, plays a role in adhesion of platelets

to the endothelium and also serves as a carrier for coagulation factor VIII (functions

reviewed in Wang and Eikenboom 2010). IL-8 on the other hand is a strong

neutrophil chemoattractant and activator, which is likely to cause damage to the

endothelium (discussed later; Fig. 2.1). vWF can bind to platelets and initiate

clot formation (Ochoa et al. 2010). While this is one of the most obvious and

recognizable difference between both endothelial cell populations, a host of other

differences exist.

Another function of the endothelium is the active regulation of vascular permeabil-

ity and relaxation of arterial vessels. Relaxation is controlled by nitric oxide

(NO) release from arterial endothelial cells (Furchgott and Vanhoutte 1989; Furchgott

and Zawadzki 1980) which in turn prompts smooth muscle to release guanylate

cyclase, increasing cGMP and vasodilation (Furchgott and Vanhoutte 1989). This

mechanism is observed during exercise (Pelletier and Leith 1993), even at rest (Rees

et al. 1989), and can be prompted by shear force of circulating blood (Kaiser and Sparks

1986; Koller et al. 1994). In hypoxia, removal of endothelial cells from vessels

significantly reduces arterial NO production and the resulting vasoconstriction (around

65–70%), indicating a role for these cells in this phenomenon as well (MacEachern

et al. 2004). However, such removal in human and sheep completely abrogated this

response (Demiryurek et al. 1991, 1993), suggesting that this function is somewhat less
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important in horses and cattle than in other species (MacEachern et al. 2004). The role

of NO in this phenomenon may be more complex though as in exercise models of lung

injury, inhibition of NO production in horses increased damage seen in the lungs,

suggesting mechanisms other than just vessel relaxation (pressure) likely play a role in

endothelial damage (Kindig et al. 2000).

Fig. 2.1 (a) IL-8 expression (arrows) is seen in the alveolar septa of normal and (b) inflamed

lungs. (c and e) The airway epithelium (double arrows) and vascular endothelium (arrowheads)

of the normal lungs reacts weakly for IL-8 compared with (d) the intense expression in the

airway epithelium (double arrows) and (f) the vascular endothelium (arrowheads) of the inflamed

lungs. IHC. Reprinted with permission from J Comp Pathol. 2011 Feb–Apr;144(2–3):135–44. doi:

https://doi.org/10.1016/j.jcpa.2010.08.003

2 Comparative View of Lung Vascular Endothelium of Cattle, Horses, and Water. . . 23

https://doi.org/10.1016/j.jcpa.2010.08.003


2.2 Circulation Constraints in the Lung

Maintenance of vascular integrity is an important function of endothelial cells in the

lung. They can however often fail during exertion (Pascoe et al. 1981). Several

studies have focused on exercise induced pulmonary hemorrhage in the lungs of

race horses, where blood pressure can become very high (Pascoe et al. 1981; West

et al. 1993). Arterial pressures can reach up to 120 mmHg in exercising horses

(West et al. 1993), and capillary threshold pressure can reach between 75 and

100 mmHg in thoroughbreds (Birks et al. 1997). By comparison, the capillary

threshold in rabbits is below 40 mmHg, and 70 mmHg in dogs (Fu et al. 1992;

Tsukimoto et al. 1991). While we do not know of any study that examines

molecular structural differences between rabbit and horse lung that can account

for these differences, it seems likely that such differences must exist to allow for

such increased pressures in the capillaries. A study estimating canine and equine

capillary strength based on morphology, while accurately predicting increased

strength over rabbits, also underestimated actual strength in equines (Birks et al.

1994), suggesting such molecular differences should be present.

Response to pressure in endothelial cells is carried out by the calcium channel

TRPV4 (Jian et al. 2008; Yin et al. 2008). Increased pressure elevates cellular

calcium, but blockage of TRPV can abrogate most of this change (Jian et al. 2008;

Yin et al. 2008). Activation of the channel can also increase lung endothelial

permeability (Alvarez et al. 2006). Increase in pressure is also shown to induce

exocytosis of endothelial vesicles such as WPb (Kuebler et al. 1999). As these

bodies include proteins such as vWF, P-selectin, and IL-8, pressure and calcium

control could also be considered mechanisms of inflammation in these cells. Even

eNOS production in these cells is controlled partially by calcium and can act as a

negative feedback on TRPV4 induced calcium influx (Yin et al. 2008).

Finally, endothelial cells are constrained by the competing requirements of gas

diffusion and blood pressure. Thus, it is no surprise that their capillary cell

morphology takes on a more flattened structure compared to arterial endothelial

cells to improve gas exchange. Increased ability to handle pressure will come at a

cost of increased thickness, which will also trade off gas exchange efficiency.

Thoroughbred horses in particular fall into this conundrum. While bred for work

and speed, cardiac output has been increased, but the lungs often cannot handle this

output pressure, such that alveolar bleeding is a common occurrence (West 2000).

In the end, selection pressure may remain on improving endothelial cell thinness to

maintain gas diffusion efficiency, and increase of extracelluar matrix toughness to

improve strength of the alveoli (West 2000). While improvement of endothelial cell

junctions would be expected, disruptions when they happen are observed frequently

in the cells and not at junctions (Costello et al. 1992), and often seal quickly upon

relief of pressure (Elliott et al. 1992).

Capillary endothelium is surrounded by mainly alveolar type I epithelial cells

and occasional type II cell (Townsley 2012). Further, capillary endothelium is

connected to other cellular constituents of the alveolar septal wall via fibroblasts
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by intercellular junctions (Sirianni et al. 2003) and pericytes by myoendothelial

junctions (Michel et al. 1995). Most of these cell junctions are not random but

strategically placed at the interface between the thick and the thin sides of the septal

wall to provide structural stability and minimize the distensibility, especially during

the increase in the mass of surrounding tissue (Walker et al. 1995).

Capillary endothelium lacks large gap junctions unlike endothelial junctions in

extra-alveolar arteries and veins, but contains occasional small gaps in capillary

inter-endothelial cell junctional complexes (Schneeberger 1982). Further, a third

adjoining endothelial cell forms a flap overlaying the borders of these cells and this

flap has specific organization of junctional strands (Walker et al. 1994). These

strands run parallel instead of perpendicular to the plane of the overlying cell to

provide some protection against transendothelial fluid movement during increased

intravascular pressure as the increased hydrostatic force results in “sealing” of this

junctional complex (Walker et al. 1994).

Endothelial cells are capable of allowing diffusion of a number of molecules

across the cellular barrier, but studies in several species have shown a general

resistance to diffusion, particularly in lung capillary endothelial cells. Capillary

endothelial cells of the lung show lower permeability to water and solutes compared

to vascular endothelial cells (Kelly et al. 1998; Parker and Yoshikawa 2002; Parker

et al. 2006). Studies of hydraulic conductance also show values much lower for

microvascular endothelial cells suggesting tighter junctions and lower diffusion

(Kelly et al. 1998; Parker et al. 2006; Ofori-Acquah et al. 2008). This makes sense

when considering the need to maximize diffusion of oxygen across the cell mem-

brane and minimize solute and fluid transport, the last of which could cause tissue

or alveolar edema problems if not closely controlled. Both arterial and microvas-

cular endothelial cells have about the same amount of intracellular actin. However,

the chemical disruption of actin wtih cytochalasin D is much harder in microvas-

cular endothelial cells (Ofori-Acquah et al. 2008).

A reason for this more restrictive permeability is alterations in localized cAMP

expression in endothelial cells. High levels of cAMP are generated at the membrane

of microvascular endothelial cells by adenylate cyclase 6 which enhances barrier

function (Ludwig and Seuwen 2002). This adenylate cyclase is calcium regulated

and thus permeability can be increased by increased intracellular (cytosolic) cal-

cium (Cioffi et al. 2002; Stevens et al. 1995; Sayner and Stevens 2006; Sayner et al.

2006), though a specific cAMP effector of barrier strength is not fully resolved

(Prasain and Stevens 2009). One such example is endothelial response to thrombin.

Thrombin is a pro-inflammatory molecule that binds to PAR receptors (PAR-1 and

PAR-3) and activates endothelial cells (reviewed in Minami et al. 2004). Amongst

these cellular changes is Gq activation, which leads to calcium release from the

endoplasmic reticulum resulting in calcium depletion which is replenished by

opening calcium channels (TRPC1 and TRPC4 subunits). This increase in free

cytosolic calcium thus disrupts the endothelial cell barrier (Cioffi et al. 2009).

Another ion channel, TVRP4, is selectively expressed in lung microvasculature

but not the arterial endothelial cells (Alvarez et al. 2006). Activation of this channel
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leads to leakage into the alveoli, but in this case leakage is due to sloughing of cells

and/or loss of attachment to cell matrix (Alvarez et al. 2006).

Neuropeptides play important roles in the regulation of respiratory function and

topographical inflammation and are localized in both motor and sensory neurons in

the mammalian respiratory tract (Lundberg et al. 1988). Substance P (SP) and

calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers are present

around pulmonary blood vessels throughout the respiratory tract of calves and cows

(Nishi et al. 2000). These fibers are few in number in the lung compared to nasal and

laryngeal mucosae and tracheal bronchus, and are more numerous in calves than in

cows (Nishi et al. 2000). Co-localization of SP and CGRP in most of the nerve

fibers suggests that these nerve fibers are involved in the regulation of the bovine

respiratory tract.

2.3 Inflammation and Immunity

Endothelial cells are located at the interface between blood and tissues not only to

gate the traffic of molecules and cells across the vessel wall but also contribute to

hemostasis, inflammatory reactions, and immunity (Mantovani et al. 1992). When

not activated, endothelial cells can secrete a variety of products that can aid in

inhibiting clotting and inappropriate activation of innate immune functions

(reviewed in Pober and Sessa 2007). Amongst these is NO, which can inhibit

platelet aggregation and adhesion in addition to being a vasorelaxant as mentioned

earlier (Sessa 2004). In this state, P-selectin is sequestered within the cell (Bonfanti

et al. 1989), and other leukocytes adherence molecules such as E-selectin, VCAM,

and ICAM-1 are suppressed to a greater degree (Pober and Sessa 2007).

During inflammation, there is binding to cell-surface receptors by one of a

number of potential molecules (e.g., histamine, thrombin, LPS, etc.). For those

that bind to G-protein receptors, there is a release of cytosolic Ca2+ that will result

in increased endothelial permeability as discussed earlier (Pober and Cotran 1990;

Pober and Sessa 2007) causing release of WPb (Birch et al. 1992, 1994). Calcium

also activates phospholipase A2 which catalyzes arachidonic acid formation

and subsequently its conversion to COX1 resulting in increased blood flow

(Egan and FitzGerald 2006). A by-product of arachidonic acid formation,

lysophosphatidylcholine, at the same time acts as a platelet activating factor. When

this is combined with the released P-selectin it leads to neutrophil attachment,

integrin activation, and the extravasation of said neutrophils across the endothelial

barrier (Prescott et al. 1984; Lorant et al. 1991; Pober and Sessa 2007).

Another activated protein, RHO, also aids in contraction of cellular actin fila-

ments, resulting in creation of gaps between endothelial cells, especially post-capillary

venules (Heltianu et al. 1982). Passage of most cells through the endothelial barrier

appears to be between such endothelial cells and supported by increased expression

in these intercellular gaps of PECAM1 and CD99 (Marchesi 1961; Schenkel et al.

2002). Cytokines such as TNF-α and IL-1 can also induce a similar response
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(reviewed in Pober and Sessa 2007), but leading to transcriptional activation of

NF-kB and AP-1, which activates a number of the same effector pathways already

mentioned (Pober and Sessa 2007). Secretion of IL-8 will lead to activation, firm

attachment, and diapedesis of neutrophils to the endothelial cells, but still requires

E-selectin to tether such cells (Pan et al. 1998).

Specific to pulmonary microvascular capillary endothelial cells is a 1G T-type

calcium channel. Activated by thrombin, the channel causes membrane depolari-

zation, but in this case does not increase permeability but instead promotes

P-selectin expression for neutrophil recruitment (Wu et al. 2003, 2009). Thus,

calcium again appears to play a very important role in induction of inflammatory

responses in endothelial cells, particularly with regard to P-selectin expression

(Kuebler et al. 1999; Parthasarathi et al. 2006).

2.4 Toll-Like Receptors

Toll-like receptors (TLRs), the mammalian homologues of the Drosophila Toll

family, are critical for recognition of conserved pathogen-associated molecular

patterns in bacteria and viruses by immune cells (Aderem 2001). TLRs are expressed

in the endothelium to activate the immune systemwhen encountering specific antigen

(Xu et al. 2011). TLR4 recognizes lipopolysaccharides (LPS) and plays important

roles in host defense against bacterial infections (Lymboussaki et al. 1998; Takeda

et al. 2003). We reported the presence of weak TLR4 immunoreactivity in the

vascular endothelium in normal lung of cattle (Wassef et al. 2004) and buffalo

(Sethi et al. 2011), which is consistent to what is observed in humans (Faure et al.

2000). Some TLR4 staining was reported in peribronchiolar blood vessels and

alveolar septal endothelial cells in horse lungs (Singh Suri et al. 2006). TLR4

activates endothelium and induces recruitment of leukocytes in lung along with

expression of adhesion molecules such as P-selectin and vascular cell adhesion

molecule-1 (Andonegui et al. 2002, 2003). Interestingly, TLR4 appeared unchanged

or reduced in the vascular endothelium of inflamed lungs from calves and Water

buffalo infected with Mannheimia haemolytica and Pasteurella multocida, respec-
tively (Wassef et al. 2004; Sethi et al. 2011). Lack of TLR4 in vascular endothelium

during Mannheimia haemolytica and Pasteurella multocida infection may be a

protective mechanism against unwanted inflammation.

Similarly, early studies with LPS treatment of horse lungs showed endothelial

cells to be fairly unaffected by the exposure. This was, however, in the absence of

immune cells such as neutrophils. While this study primarily looked at electron

microscopic examination of endothelial cells, it does suggest that endothelial cells

maintain morphology through exposure. By contrast, cell death was common in the

presence of neutrophils, suggesting that when other immune cells are present

endothelial cells are sensitive to products of these cells in the horse (Turek et al.

1987). Later experiments have also suggested TNF-α and IL-1b secretion by these

cells to LPS in a whole animal exposure system (Parbhakar et al. 2005).
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TLR9 identifies bacterial DNA and is a key player in bacterial DNA induced cell

signaling (Bauer and Wagner 2002). TLR9 is not only activated by unmethylated

CpG motifs within ssDNA, but also by CpG motifs in nucleic acids released during

vascular apoptosis and necrosis (Krogmann et al. 2016). We observed that pulmo-

nary vascular endothelium of water buffalo did not show any TLR9

immunopositive reactivity which is similar to expression of TLR4 (Sethi et al.

2011) (Fig. 2.2). However, unlike TLR4, TLR9 expression was increased in the

vascular endothelium during P. multocida induced lung inflammation in water

buffalo (Sethi et al. 2011). The data suggest that increased TLR9 expression may

handle the DNA released either from the phagocytosed bacteria or from the dying

extracellular bacteria at the later stages of infection. However, the contradictory

finding of TLR9 agonism in vascular biology remains the potential area of research.

In horse and cattle, expression of TLR9 was clearly shown in vascular endothelial

cells (Fig. 2.3), with some possible capillary staining, though if present it was much

lighter in comparison (Schneberger et al. 2009, 2011).

Recently, TLR10 mRNA upregulation in THP-1 cell line has been linked with

reactive oxygen species induced during hypoxia (Kim et al. 2010). TLR10 is

expressed in lungs of human although at very low levels and immune cells viz

neutrophils, macrophages, and dendritic cells (Chuang and Ulevitch 2001). We

recently reported immuno-histochemical and immuno-electron microscopic data

indicating expression of TLR10 in the pulmonary vascular endothelium of cattle

along with other veterinary species (Balachandran et al. 2015). However, TLR10

immunohistological expression was much reduced in the M. haemolytica infected

animals compared to the controls (Balachandran et al. 2015). The data suggest

implications of TLR10 duringM. haemolytica infection in terms of entry of bacteria

to establish infection in cattle lung.

2.5 Pulmonary Intravascular Macrophages

One of the most striking differences between species in the lung capillaries is the

presence of pulmonary intravascular macrophages (PIMs) attached to the micro-

vascular endothelial cells of the lung. This population of macrophages colonizes the

lung shortly after birth and are maintained through life in animals such as in horses,

Artiodactyla, odontoceti, and cats, while in other species they may be induced

under certain circumstances (reviewed in Schneberger et al. 2012). They are

attached strongly to the endothelial cell layer through a number of darkly staining

structures, which may complicate creating primary cell cultures. These attachments

to the endothelial cells are unknown but are thought to be a glycosyl-phosphatidyl

inositol anchor (Atwal et al. 1992; Singh et al. 1995; Singh and Atwal 1997).

Attachment is seen on the thicker side of the endothelial cell, possibly to reduce

interference with gas exchange, (Winkler 1988) and the cells range from 20 to

80 μM in size, with horse PIMs being the largest. While similar to other macro-

phages, PIMs possess a unique decoration of lipid/lipoprotein vesicles at or near the

28 D. Schneberger et al.



Fig. 2.2 (a) Normal lung section shows weak expression of TLR9 in alveolar septa (arrows) and

(b) airway epithelium (double arrows), (c) but not in the endothelium of large blood vessels

(arrowheads). (d) TLR9 expression was increased in the alveolar septa (arrows), (e) airway

epithelium (double arrows) and (f) the endothelium of large blood vessels (arrowheads) in

inflamed lungs. The blood cells (double arrowheads) in the control (c) and the infected lung (f)

were also positive for TLR9 expression. IHC. Reprinted with permission from J Comp Pathol.

2011 Feb–Apr;144(2–3):135-44. doi: https://doi.org/10.1016/j.jcpa.2010.08.003
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cell surface membrane which are believed to help in phagocytosis (Atwal et al.

1992; Singh and Atwal 1997). Recently, PIMs were also identified in Water buffalo

(Sethi et al. 2011; Fig. 2.4). Like other macrophage populations, PIMs are deco-

rated with a number of TLR receptors (Wassef et al. 2004; Singh Suri et al. 2006;

Schneberger et al. 2009, 2011; Sethi et al. 2011) (Fig. 2.5) and play a role in lung

inflammation (Singh and de la Concha-Bermejillo 1998; Singh et al. 2004;

Parbhakar et al. 2005), and phagocytosis (Atwal and Saldanha 1985). In disease,

abrogation of PIMs can greatly reduce symptoms in recurrent airway obstruction in

horses (Aharonson-Raz et al. 2012). Recently, we have reported the recruitment of

PIMs in dogs that died due to acute necrotizing pancreatitis (Vrolyk et al. 2017).

These data raise the intriguing possibility of PIM recruitment in domestic animal

species that may not have constitutive PIMs and that the recruited PIMs may

predispose these to higher susceptibility for lung inflammation and disease.

2.6 Culture of Endothelial Cells

Isolation and culture of equine endothelial cells has been described in detail (Lamar

et al. 1986; MacEachern et al. 1997). Arterial endothelial cells are obtained by

surgical removal of vessels and flushing them with PBS supplemented with antibi-

otics to remove any residual blood and potential bacterial contamination. Warmed

DMEM with collagenase added is instilled in vessels which are clamped shut and

Fig. 2.3 TLR9 immunostaining of vascular endothelium in lungs of control (A) and LPS-treated

horses (B) (noted by arrows). Immuno-electron microscopy (C) showed TLR9 staining in nucleus

(N) of capillary endothelial cells in the lung (arrows). Original magnification A-B:�400, C:�10,000.

Reprinted with permission from Anat Rec (Hoboken). 2009 Jul;292(7):1068–77. doi: https://doi.org/

10.1002/ar.20927
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incubated for 30–40 min at 37 �C. After incubation, vessels are rinsed emptied,

media saved, and further washed with PBS and antibiotics. This wash is added to

growth media and centrifuged to remove fluid, replacing it with final culture media

of DMEM plus fetal calf serum and antibiotics. This is then cultured on 1% gelatin

Fig. 2.4 (a) Lung section stained without primary antibody does not show any colour develop-

ment in airways (double arrows) or bloodvessels (arrowheads). (b) Antibody specific for Factor

VIII-related antigen labels vascular endothelium (arrowheads), but not the airways (double

arrows). Macrophage antibody reacts with septal cells (arrows) in the normal lungs (c) and the

infected lungs (d). (e) High magnification shows intravascular location of labelled macrophages

(arrows) in the normal and (f) the infected lungs. An alveolar macrophage (arrowhead) is seen in

(e). (g) The number of septal macrophages was significantly increased (P ¼ 0.001) in the inflamed

lungs compared with the normal lungs. Reprinted with permission from J Comp Pathol. 2011 Feb–

Apr;144(2–3):135–44. doi: https://doi.org/10.1016/j.jcpa.2010.08.003
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coated plates, washing cells with PBS and replacing with fresh media until cells

reach required density (MacEachern et al. 1997 for more details; Lamar et al. 1986).

This method yields primarily epithelial cells, but some smooth muscle cells will

also be harvested in the process. Use of plasma-derived fetal bovine serum in media

(10–20%) was able to inhibit growth of these smooth muscle cells, however, as

opposed to equine-derived serum which stimulated this population as well as

endothelial epithelium. It is believed that a lack of platelet-derived growth factors

caused this inhibition of smooth muscle cells (Lamar et al. 1986). Cell type is

verified by staining for vWF (Lamar et al. 1986).

Isolation procedures for lung microvascular endothelial cells will follow harvest

and isolation techniques seen with capillaries in other tissues. Tissue is aseptically

Fig. 2.5 TLR9 staining observed in a PIM and endothelium (E: arrows). L: Lysosomes; Ep:

Epithelium; AS: Alveolar Space. Original magnification �10,000. Anat Rec (Hoboken). 2009

Jul;292(7):1068–77. doi: https://doi.org/10.1002/ar.20927
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obtained and minced or otherwise mechanically disrupted in Hank’s balanced salt

solution, often with addition of antibiotics similar to arterial methods to ensure

sterility. This suspension is then treated with collagenase to digest connective tissue

and heated for 30 min at 37 �C before passing through a nylon mesh. Filtrate is

combined with equal an equal volume of DMEM with 10% fetal bovine serum.

After 10 min, cells are centrifuged at low speed, resuspended in DMEMþFBS, and

passed through a 30 μM filter. The filter is washed for clumps of endothelial cells

which are saved, while flow through is discarded (containing erythrocytes and

stromal cells). Harvested cells are washed, re-centrifuged, re-suspended in HBSS

and 10 ml gently layered onto 35 ml HBSS þ 5% BSA in centrifuged and left stand

at room temperature for 15 min. The bottom 20–25 ml containing enriched endo-

thelial cells is saved while the upper layer containing stromal cells is discarded.

Cells are centrifuged, resuspended in DMEM þ 10% FBS plus antibiotics and

endothelial cell growth supplement and plated into dishes coated with fibronectin

(Bochsler et al. 1989).

While some microvascular cultures methods will suggest vWF as a method of

detection of these cells, expression in microvascular endothelial cells is less robust,

and there are no signs of WPb in these cells. Some other suggested markers include

uptake of low density lipopeptide and angiotensin converting enzyme in bovine

models (Chung-Welch et al. 1988). While not specifically tested in equine, CD34

has also been proven effective at labeling endothelial cells (Muller et al. 2002), and

unlike vWF, it appears to be more strongly expressed in microvascular endothelial

cells. Similarly, discrimination of different lung endothelial cells has been done

using lectins that selectively bind to each endothelial population in several species

including cattle (Schnitzer et al. 1994; Magee et al. 1994; Abdi et al. 1995), though

these can vary between species, and to our knowledge no screening study of these

has yet been done for the horse.

2.7 Conclusions

There are good amounts of data on the morphology and function of lung vascular

endothelium in domestic animals. However, there are significant gaps in the

molecular phenotyping of lung vascular endothelium in domestic animals. This

will always remain the case because of the challenge of creating knock-outs or

abilities to functionally block a molecule for precise functional phenotyping. The

strength of the data obtained from domestic animal species is their closer physio-

logical relevance to human’s pulmonary physiology. There are, however, instances

where the data on cells such as PIMs is opening new areas to investigate mecha-

nisms of lung inflammation in rodent models and humans. Therefore, an increased

focus on the comparative physiology of domestic animal species and less reliance

on rodent models may provide more translational data to understand human lung

vascular physiology. The increased use of methods such as electron microscopy

especially the correlative light and electron microscopy will yield more precise

localization of molecules of functional interest in lung capillary endothelium.
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