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Abstract. The k-nearest neighbor (k-NN) graph is an important data
structure for many data mining and machine learning applications. The
accuracy of k-NN graphs depends on the object feature vectors, which
are usually represented in high-dimensional spaces. Selecting the most
important features is essential for providing compact object representa-
tions and for improving the graph accuracy. Having a compact feature
vector can reduce the storage space and the computational complexity
of search and learning tasks. In this paper, we propose NNWID-Descent,
a similarity graph construction method that utilizes the NNF-Descent
framework while integrating a new feature selection criterion, Support-
Weighted Intrinsic Dimensionality, that estimates the contribution of
each feature to the overall intrinsic dimensionality. Through extensive
experiments on various datasets, we show that NNWID-Descent allows
a significant amount of local feature vector sparsification while still pre-
serving a reasonable level of graph accuracy.

Keywords: Intrinsic dimensionality · k-nearest neighbor graph · Fea-
ture selection · Vector sparsification

1 Introduction

The k-nearest neighbor (k-NN) graph is a key data structure used in
many applications, including machine learning, data mining, and information
retrieval. Some prominent examples for k-NN graph utilization include object
retrieval [21], data clustering [3], outlier detection [8], manifold ranking [9], and
content-based filtering methods for recommender systems [22]. In applications
such as multimedia and recommender systems where data objects are represented
by high-dimensional vectors, the so-called ‘curse of dimensionality’ poses a sig-
nificant challenge to k-NN graph construction: as the dimensionality increases,
the discriminative ability of similarity measures diminishes to the point where
methods such as k-NN graph search that depend on them lose their effectiveness.

The construction of k-NN graphs using brute-force techniques requires
quadratic time, and is practical only for small datasets [4]. One recent tech-
nique that efficiently constructs an approximate k-NN graph in a generic metric
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space is NN-Descent [4]. NN-Descent is an iterative algorithm that follows a
simple transitivity principle: two neighbors of a given data object have a higher
chance of being neighbors of each other. When ground truth class information
is available, the accuracy of a k-NN graph can be measured in terms of the
proportion of edges that connect nodes sharing the same class label. A common
approach for maximizing k-NN graph accuracy is to incorporate dimensionality
reduction techniques in the graph construction process. This can be done either
independently as a preprocessing step using techniques such as Sparse Principal
Component Analysis (Sparse PCA) [25], or integrated within the graph con-
struction process itself, such as feature weighting [7] or other supervised feature
selection approaches [23]. However, supervised feature selection would depend
on ground truth information, which may not be always available.

In [15], an unsupervised method is presented, NNF-Descent, that iteratively
and efficiently improves k-NN graph construction using the Local Laplacian
Score (LLS) as a feature selection criterion. LLS favors those features that have
high global variance among all objects, but less variance among the neighbor-
hood of a given target object. The NNF-Descent method identifies locally noisy
features relative to each object in the dataset — that is, those features hav-
ing larger LLS scores. The noisy features are then gradually modified using
a local sparsification process so as to decrease the distances between related
objects, and thereby increase k-NN graph accuracy. NNF-Descent has already
shown significant improvement in the semantic quality of the graphs produced,
and superior performance over its competitors on several image databases [15].
However, NNF-Descent is a conservative method in that only a fixed small num-
ber of noisy features are sparsified in each iteration. With greater rates of fea-
ture sparsification, the k-NN graph accuracy tends to decrease. This also occurs
when increasing the neighborhood size k beyond (roughly) 10. NNF-Descent is
designed for datasets with dense feature vectors. In sparse datasets, vectors may
contain very few non-zero features, in which case the sparsification process may
incorrectly remove valuable features [15].

In this paper, we address the problem of improving the tradeoff between
k-NN graph accuracy and the degree of data sparsification. We present the
NNWID-Descent similarity graph construction method, which utilizes the NNF-
Descent framework with a new feature selection criterion, Support-Weighted
Intrinsic Dimensionality (support-weighted ID, or wID) [14]. Support-weighted
ID is an extension of the Local Intrinsic Dimensionality (LID) measure intro-
duced in [1,12], and is used within NNWID-Descent to identify and retain rel-
evant features of each object. Unlike LLS, which is a variance-based measure,
support-weighted ID penalizes those features that have lower locally discrimina-
tive power as well as higher density. In fact, support-weighted ID measures the
ability of each feature to locally discriminate between objects in the dataset.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on the relevant feature selection research literature, and on unsupervised
approaches in particular. An overview of the NNF-Descent framework is pre-
sented in Sect. 3. We outline the proposed NNWID-Descent method in Sect. 4.
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In Sect. 5, the performance of our method — with experimental results and
analysis on several real datasets — is compared to NNF-Descent and other com-
peting methods from the literature. Finally, we conclude in Sect. 6 with a dis-
cussion of future research directions.

2 Related Work

A brief review of feature selection techniques is provided in this section, with a
particular emphasis on unsupervised methods.

2.1 Supervised Feature Selection and k-NN Graph Construction

Feature selections methods are commonly used in supervised learning methods
to maximize their predictive accuracy. For example, Han et al. [7] proposed
a Weight Adjusted k-Nearest Neighbor (WAKNN) classification scheme where
the weights of the features are learned using an iterative algorithm. In [23], a
supervised feature selection method is presented that uses an improved k-NN
graph-based text representation model to reduce the number of features and
predict the category of the text in the test set.

2.2 Unsupervised Feature Selection

In unsupervised feature selection methods, class information is not available, and
thus it is difficult to decide the importance of a feature — especially when many
of the features may be redundant or irrelevant [5]. Most existing unsupervised
feature selection approaches are customized to a particular search or clustering
algorithm.

Unsupervised feature selection methods can be further classified into global
feature selection methods and local feature selection methods. In global feature
selection methods, the features are selected based on their relevancy that has
been computed globally using the entire dataset. The Laplacian Score (LS) [10]
is one of the most popular unsupervised filter-based methods for generic data. LS
selects the features to be used for all objects in the dataset based on their ability
to discriminate among object classes. LS favors features that have high vari-
ance on the entire datasets and low variance within local neighborhoods. Local
feature selection methods are based on the idea that the discriminative power
and the importance of a feature may vary from one neighborhood to another;
they aim to select features based on their relevancy to a given neighborhood.
For example, Li et al. [18] introduced a localized feature selection algorithm for
clustering that is able to reduce noisy features within individual clusters. Their
algorithm computes, adjusts, and normalizes the scatter separability for indi-
vidual clusters before applying a backward search technique to find the optimal
(local) feature subsets for each cluster. Mitra et al. [20] introduced an algorithm
that partitions the original feature set into clusters based on a k-NN graph prin-
ciple. To detect and remove redundant features, their algorithm uses a pairwise
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feature similarity measure, the Maximum Information Compression index, that
find the linear correlation between features in the clusters. This algorithm has
a low computational complexity, since it does not involve any search for feature
subsets [20]. However, their model may be too restrictive for real datasets, since
correlations among features within clusters may not exist, or may be non-linear
when they do exist [24].

3 Overview of NNF-Descent

As the basis for the work presented in this paper, in this section we provide
an overview of the NNF-Descent algorithm [15]. We also describe its feature
selection criterion, the Local Laplacian score LLS, and discuss its utilization in
feature ranking and sparsification processes.

3.1 Local Laplacian Score, Feature Ranking, and Sparsification

Local Laplacian Score LLS is used for feature ranking with respect to individual
data objects. Assume we have a dataset X with n data objects, each represented
by a D-dimensional feature vector f = (f1, f2, . . . , fD). We further assume that
the vectors are normalized. Then, for an object xi ∈ X, the LLS score for each
of its feature fi can be computed using the following formula:

LLS(fi) =
∑

j

(fi − fj)2Sij

var(f)
(1)

where var(f) is the variance of feature f, and Sij is the (Gaussian) RBF kernel
similarity between two object vectors xi and xj defined as:

Sij =

{
exp(−‖xi−xj‖2

2σ2 ), if i and j are connected;
0, otherwise.

(2)

Here, σ is a bandwidth parameter. Sij favors neighboring objects xi and xj that
are likely to share the same class label. A smaller value for LLS(fi) indicates
that the feature is stable among the neighbors of object xi. The features are
ranked for each object in decreasing order of their LLS values, and the top-
ranked proportion Z of the ranked list is deemed to be noise. In the sparsification
process, the impact of noisy features is minimized by changing their values in
the feature vectors to the global mean, which is zero due to normalization.

3.2 NNF-Descent

The NNF-Descent framework interleaves k-NN graph construction using NN-
Descent [4] with a feature ranking and sparsification process. Algorithm 1 gives
the complete algorithm for NNF-Descent. After normalizing the original vectors
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of the dataset X, the algorithm starts by computing the initial approximate k-
NN graph using NN-Descent [4] (lines 1–2). The NN-Descent procedure depends
on the so-called local join operation. Given a target point p, the local join oper-
ation checks whether any neighbor of p’s neighbors is closer to p than any points
currently in its neighbor list, and also whether pairs of neighbors of p can like-
wise improve each other’s tentative neighbor list. Noisy features are gradually
identified using LLS, ranked, and then sparsified.

Algorithm 1. NNF-Descent
Input : Dataset X, distance function dist, neighborhood size K, sparsification

rate Z, number of iterations T
Output: k-NN graph G

1 Normalize the original feature vectors of X;
2 Run NN-Descent(X, dist,K) to convergence to obtain an initial k-NN graph G;
3 repeat
4 Generate a list L of all data points of X in random order;
5 foreach data point p ∈ L do
6 Rank the features of p in descending order of their LLS scores, as

computed over the current k-NN list of p;
7 Change the value of the top-ranked Z-proportion of features to 0;
8 Recompute the distances from p to its k-NN and RNN points;
9 Re-sort the k-NN lists of p and its RNNs;

10 For each pair (q, r) of points from the k-NN list and RNN list of p,
compute dist(q, r);

11 Use (q, dist(q, r)) to update the k-NN list of r, and use (r,dist(q, r)) to
update the k-NN list of q;

12 end

13 until maximum number of iterations T is reached ;
14 Return G

4 Improving NN-Descent Graph with Weighted ID

The NNF-Descent framework, which integrates feature ranking and sparsifica-
tion with k-NN graph construction, serves as the basis for the method presented
in this paper, NNWID-Descent. In NNWID-Descent, instead of feature variance,
a measure of the discriminability of features is used for feature ranking. In this
section, we first provide a brief overview of this measure of discriminability,
the Support-Weighted Local Intrinsic Dimensionality or support-weighted ID
(Sect. 4.1). The utilization of support-weighted ID as a feature selection crite-
rion is then presented in Sect. 4.2. Finally, the details of the proposed NNWID-
Descent algorithm is given in Sect. 4.3.
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4.1 Support-Weighted Local Intrinsic Dimensionality

As an alternative to the Local Laplacian Score, we propose in this paper a new
feature evaluation strategy based on the Local Intrinsic Dimension (‘Local ID’,
or ‘LID’) model originally appearing [12]. Given a distribution of distances with
a univariate cumulative distribution function F that is positive and continuously
differentiable in the vicinity of distance value x, the indiscriminability of F at x
is given by

IDF (x) � x · F ′(x)
F (x)

. (3)

The indiscriminability reflects the growth rate of the cumulative distance func-
tion at x; it can be regarded as a probability density associated with the neigh-
borhood of radius x (that is, F ′(x)), normalized by the cumulative density of the
neighborhood (that is, F (x)/x). The local intrinsic dimension has been shown to
be equivalent to a notion of local intrinsic dimensionality, which can be defined
as the limit ID∗

F = limx→0+ IDF (x). However, the notion of local ID as proposed
in [13,14] is considerably more general, in that the original model of [12] has been
extended to handle multivariate real-valued functions that are not necessarily
the cumulative distribution functions of distance distributions.

When considering a distance distribution on a space of many features, it is
natural to ask which variables or features are contributing most to the overall
discriminability of the function or cumulative distribution function (as the case
may be). Two variables or features with the same local ID value may not neces-
sarily have the same impact on the overall ID value. To illustrate this, let Φ and
Ψ be the respective cumulative distribution functions of two univariate distance
distributions on distance variable x.

The indiscriminability IDΦ(x) can be thought of as having a ‘support’ equal
to the probability measure associated with distance x — namely, Φ(x); similarly,
the support for IDΨ (x) would be Ψ(x). Even when the indiscriminabilities IDΦ(x)
and IDΨ (x) are equal, if (say) the support Φ(x) greatly exceeded Ψ(x), one would
be forced to conclude that the features associated with IDΦ are more significant
than those of IDΨ , at least within the neighborhood of radius x.

For the comparison of the discriminabilities of different features in our pro-
posed adaptation of NNF-Descent, we will adopt the following Support-Weighted
ID complexity measure. This measure has the highly desirable theoretical advan-
tage of being additive across features (for more details we refer the reader to [14]).

Definition 1 (Support-Weighted ID [14]). Let F be a real-valued multivari-
ate function over a normed vector space (Rm, ‖ · ‖), and let x �= 0 ∈ R

m be a
vector of positive norm. The support-weighted indiscriminability of F at x is
defined as

wIDF (x) � F (x) IDF (x) = x · ∇F (x) . (4)

Estimating support-weighted ID for the purpose of assessing indiscriminabil-
ity can be complicated by the need to standardize the distance within which
the indiscriminabilities are measured — in a k-NN graph, each neighborhood is



116 M.E. Houle et al.

associated with its own potentially-unique k-NN distance. If each feature were
to assessed at widely-varying distances, there would be no basis for the fair
comparison of feature performance.

In practice, however, estimation of ID requires samples that are the result
of a k-nearest neighbor query on the underlying dataset. Across such samples,
standardization can be achieved using the local ID representation theorem:

Theorem 1 (Local ID Representation Theorem [13]). Let Φ : R → R be a
real-valued function, and let v ∈ R be a value for which IDΦ(v) exists. Let x and
w be values for which x/w and Φ(x)/Φ(w) are both positive. If Φ is non-zero and
continuously differentiable everywhere in the interval [min{x,w},max{x,w}],
then

Φ(x)
Φ(w)

=
( x

w

)IDΦ(v)

· GΦ,v,w(x), where (5)

GΦ,v,w(x) � exp
(∫ w

x

IDΦ(v) − IDΦ(t)
t

dt

)
, (6)

whenever the integral exists.

For a univariate cumulative distribution function Φ at distance x, we can use
Theorem 1 with v = 0 to relate the support Φ(x) with the support at another
desired distance w. If n is the size of the dataset that we are given, we choose the
distance at which over n selection trials one would expect k samples to fall within
the neighborhood — that is, w would satisfy Φ(w) = k/n. The support-weighted
ID would thus be:

wIDΦ(x) = Φ(x) IDΦ(x) =
k IDΦ(x)

n
·
( x

w

)ID∗
Φ · GΦ,0,w(x) . (7)

In [13] it is shown that (under certain mild assumptions) the function GΦ,0,w(x)
tends to 1 as x,w → 0 (or equivalently, as n → ∞); also, IDΦ(x) would tend to
ID∗

Φ, for which reliable estimators are known [1,11]. Thus, for reasonably large
dataset sizes, we could use the following approximation:

wIDΦ(x) ≈ k ID∗
Φ

n
·
( x

w

)ID∗
Φ

. (8)

4.2 Defining Support-weighted ID (wID) for each Feature

Let X = {x1, x2, x3, . . . , xn} be a dataset consisting of n objects such that
each object xi is represented as a feature vector in R

D. The set of features is
denoted as F = {1, 2, . . . ,D} such that j ∈ F is the j-th feature in the vector
representation. Since the factor k/n in Eq. 8 can be regarded as constant, the
support-weighted ID criterion for feature fj of object xi can be simplified:

wIDi(fj) = IDfj
·
(

af

wfj

)IDfj

(9)
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where IDfj
is the local intrinsic dimensional estimate for the neighborhood, and

wfj
is the distance to the k-th nearest neighbor with respect to feature fj ,

respectively. af is any positive constant representing the distance value x. For
simplicity, af can be set as an average of a sample of k-NN distances across
many objects for feature fj . Equation (9) helps to find the most discriminative
features by considering both the density of neighborhood around each object
and the complexity of local ID with respect to a particular feature fj .

For feature ranking, a straightforward method is used for selecting the most
local discriminative features for each object using wIDi, in which the D features
are ranked in descending order of wIDi(fj), and a proportion Z of the top-
ranked features are determined as candidates for sparsification. Assuming that
the feature vectors have been normalized, the sparsification process (described
in Sect. 3.1) will set the values of the least important features to 0.

4.3 NNWID-Descent

Algorithm 2 shows how NNWID-Descent proceeds. The input parameters are K,
Z, and T , where K ≥ k is the working neighborhood size during the construction
of the output k-NN graph, Z is a fixed proportion of features that are sparsified
in each iteration, and T is the total number of desired iterations. The feature
sparsification rate Z should be relatively small.

The algorithm has two phases: an initialization phase, and a sparsification
and refinement phase. In the initialization phase, the algorithm computes a K-
NN graph using NN-Descent after normalizing the original vectors of the dataset
X (lines 2–4). This step is crucial, since a neighborhood of reasonably high
quality is needed for the subsequent refinement phase to be effective.

In line 4, the value of af for each feature is precomputed for use in calculating
wID values, during the sparsification and refinement phase. As will be described
in Sect. 5.4, the value af can be computed as the average of the K-NN distances
using the feature f alone, over a sample of the data objects. The K-NN graph
entries are then improved using the sparsification and refinement phase (Lines
6–16). This phase includes three steps: feature ranking, sparsfication, and graph
updating. In lines 9–10, the features are ranked in decreasing order according
to the wID values obtained from the set of K-NN distances determined by each
feature alone. For each object p, the top Z-proportion of features are then spar-
sified (line 11). As will be described in Sect. 5.4, the value Z is chosen depending
on the density of the dataset X. As in [15], only non-zero features are candi-
dates for sparsification, since features with value 0 do not provide discriminative
information in the vicinity of p, and thus do not affect the quality of the K-NN
graph. Ignoring zero features will ensure that once sparsified, a feature will not
be evaluated again in subsequent iterations. Sparsifying a feature vector for p
in one iteration will more likely change the nearest neighbors for each feature of
p; for this reason, to determine the correct wID value in subsequent iterations,
recomputation of the K-NN distances is required for each feature.

Lines 12–14 correspond to Lines 8–11 in NNF-Descent (Algorithm 1) which
identify the local join operation and graph update step to improve the graph
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Algorithm 2. NNWID-Descent
Input : Dataset X, distance function dist, neighborhood size K, sparsification

rate Z, number of iterations T
Output: k-NN graph G

1 {Initialization Phase}
2 Normalize the original feature vectors of X;
3 Run NN-Descent(X, dist,K) to convergence to obtain an initial K-NN graph G;
4 For each feature f , set the value of af to the average of K-NN distances

computed for the feature over a sample of objects.
5 {Sparsification and Refinement Phase}
6 repeat
7 Generate a list L of all data points of X in random order;
8 foreach data point p ∈ L do
9 For each feature, compute the K-NN distances from p with respect to X;

10 Rank the features of p in descending order of their wID scores (Eq. 9),
as computed over the current K-NN list of p;

11 Change the value of the top-ranked Z-proportion of features to 0;
12 Recompute the distances from p to its K-NN and RNN points;
13 Re-sort the K-NN lists of p and its RNNs;
14 For each pair (q, r) of points from the K-NN list and RNN list of p,

compute dist(q, r);
15 Use (q, dist(q, r)) to update the K-NN list of r, and use (r, dist(q, r)) to

update the K-NN list of q;
16 end

17 until maximum number of iterations T is reached ;
18 Return G

accuracy. In the implementation, we set K ≥ k to be the length for both RNN
and NN lists used in computing wID.

The time complexity of NNWID-Descent can be divided according to its
phases as follows: For the initialization phase, data normalization and NN-
Descent —in terms of distance computation until convergence— take O(Dn)
and O(K2Dn) time, respectively. Computing the values of af for all features
using average k-NN distances takes O(Dn2). For each iteration of the sparsi-
fication and refinement phase, feature ranking and selection using wID takes
O(KDn + D log D) time per object, with total time in O(KDn2 + Dn log D)
over all objects. As with NN-Descent, assuming that the lengths of the RNN
lists are in O(K), each iteration of NNWID-Descent takes O(K2Dn) time for
the neighbor list update step. However, the optimizations that have been defined
for NN-Descent in [4] can also applied for NNWID-Descent to speed up the local
join operation and update steps.
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5 Experiments

For the comparison of NNWID-Descent with competing methods, we conducted
experiments to study the influence on performance of varying the feature spar-
sification rate Z and the working neighbor list size K.

5.1 Datasets

Six real datasets of varying sizes and densities were considered, of which five are
image sets:

– The Amsterdam Library of Object Images (ALOI) [6] contains 110,250 images
of 1000 small objects. Each image is described by a 641-dimensional feature
vector based on color and texture histograms.

– The MNIST dataset [17] contains 70,000 images of handwritten digits. Each
image is represented by 784 gray-scale texture values.

– Google-23 [16] contains 6,686 faces extracted from images of 23 celebrities.
The dimension of the face descriptors is 1,937.

– The Isolated Letter Speech Recognition dataset (ISOLET) [19] contains 7797
objects generated by having 150 subjects speak the name of each letter of the
alphabet twice. Each object is described by 617 features, and were scaled so
that all values lie in the interval [−1.0, 1.0].

– The Human Activity Recognition Using Smartphones dataset (HAR) [2] con-
tains 10,299 instances of accelerometer and gyroscope data from 30 subjects
performing 6 different activities. Each instance is represented by a feature
vector of 561 time and frequency domain variables.

– The Relative Location of CT dataset (RLCT) [19] contains 53500 axial CT
slice images from 74 different patients. Each CT slice is described by two
histograms in polar space. The feature vectors of the images are of 385
dimensions.

5.2 Competing Methods

The performance of NNWID-Descent is contrasted with that of 3 competitors:

– NNF-Descent: uses LLS criterion for feature ranking and sparsification (as
described in Sect. 3).

– Random: as per NNF-Descent, except that for each object the features to be
sparsified are selected randomly. The rationale for the comparison with this
method is to establish a baseline for the performance of the feature ranking
and sparsification criterion.

– Sparse PCA: is similar to wID in such that it takes into account the dataset
sparsity. In this method, the feature extraction and graph construction are
conducted as two separate processes. To allow a fair comparison with other
methods, after choosing the highest principal components, an exact k-NN
graph is computed (at a computation cost of O(Dn2)).



120 M.E. Houle et al.

5.3 Performance Measure

We use the graph accuracy as a performance measure. The class labels of data
objects were used to measure the quality of the resulting k-NN graph at every
iteration. The accuracy of the resulting k-NN graph is evaluated, as in [15], using
the following formula:

graph accuracy =
#correct neighbors

#data × K
, (10)

where the ‘correct’ neighbors share the same label as the query object.

5.4 Default Parameters

Except for the case of Sparse PCA, the feature vectors were normalized within
each dataset in each experiment performed, and the Euclidean (L2) distance was
employed. In NNWID-Descent, for the datasets Google-23, HAR, and ISOLET,
the value of af in the weight parameter of Equation (9) is set to be the average
of distances (using feature f) computed from the neighbors of all objects in
the dataset; for ALOI, MNIST, and RLCT, the average was computed over
a random sample of 100 objects. Furthermore, for all features, the value af is
precomputed in advance using the original feature vectors without sparsification.
For simplicity, the number of neighbors used for computing wID and LLS is set
to be equal to the input parameter K.

5.5 Effects of Varying the Sparsification Rate Z

Parameter Setting. In this experiment, we tested the effect on performance of
varying Z while keeping K fixed. The choices of Z is varied with different datasets
as it depends heavily on the density of the feature vectors. For example, in each
iteration, smaller choice of Z (= 0.0025%) for the sparse datasets (MNIST,
ALOI, ISOLET, and RLCT) was required to produce gradual changes in graph
accuracy with acceptable performance. On the other hand, the dense datasets
(Google-23 and HAR) require a larger starting point for Z (= 0.1%)to produce
perceptible changes in performance from iteration to iteration. For Sparse PCA,
the parameter controlling sparsity was set to Z, and the number of principle
components selected were set to ZD. The total number of iterations T is set to
70 for all datasets except ALOI, for which T is set to 40. For all methods in the
comparison, the value of K is fixed at 100. Figure 1 shows plots of the graph
accuracy in each iteration for all the methods, across a range of Z values.

Results and Analysis. On five of the six datasets, compared with its competi-
tors, NNWID-Descent achieves consistent improvements for graph accuracy and
resistance to performance degradation as sparsification increases — for ISOLET,
it is outperformed only by Random. For the MNIST dataset, Sparse PCA has
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Fig. 1. Performance of NNWID-Descent with varying values of Z, and K = 100.

a performance comparable to that of NNWID-Descent for small sparsification
rates.

It is important to realize that obtaining accurate estimates of wID requires
that the neighborhood be of generally good quality. In NNWID-Descent, the
recomputation of neighborhoods after sparsification at each iteration is essential
to the quality of wID estimation. However, using distance values computed from
the current k-NN graph may lead to less accurate ID estimation, if the initial
graph is of low quality.

Execution Time. The cost of sparsification and refinement dominates the
overall computational performance of the three methods that employ this strat-
egy. For these methods, the execution time for the sparsification and refinement
phase is displayed in Table 1. The displayed times account for the operations of
feature ranking, sparsification, and updating of neighbor lists. The table shows
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Table 1. Average time in seconds per iteration.

NNF-Descent Random NNWID-Descent

Google-23 320.96 70.77 1431.56

ISOLET 204.92 73.34 1152.43

HAR 248.75 141.46 1275.44

MNIST 5274.55 4429.77 8281.03

ALOI 13053.55 11183.65 55363.56

RLCT 3125.64 2853.78 9549.33

the average running time in seconds per iteration for all datasets under consid-
eration.

Since the time for sparsification and neighbor list updating is expected to
be the same for all three methods, the observed differences in execution time
related to differences in the costs of the feature ranking step. As can be observed
from Table 1, NNWID-Descent has the highest execution cost. This is due to the
necessity of computing neighborhood distances for each object per feature in each
iteration. Despite its larger running time relative to its competitors, NNWID-
Descent shows a better potential for the improvement of graph accuracy, and
better resistance to performance degradation as sparsification increases.

5.6 Effects of Varying the Neighbor List Size K

Parameter Setting. In this experiment, we compare the performance of
NNWID-Descent against NNF-Descent and Sparse PCA as the neighbor list
size increases beyond K = 100. We show the results only for the largest datasets
(ALOI, MNIST and RLCT), as the values of K are too large relative to the
size of the other datasets. Concretely, K is set to 100, 200, 400, and 800, and
Z is fixed at 4% for MNIST and RLCT, and at 2% for ALOI. These Z val-
ues represent approximately the peak graph accuracy achieved in Fig. 1. The
performances across these choices of K are plotted in Fig. 2.

Results and Analysis. We note that for ALOI and RLCT, NNWID-Descent
still provides better accuracy than other methods as the neighborhood list size
K is increased. With MNIST, Sparse PCA outperforms other methods as K
increases, which indicates that this method can lead to a reasonable graph accu-
racy for a sparse dataset when Z is small. For all methods, the performance
degrades as K increases. In addition, we observe that the relative performances
of all methods shown when varying K (Fig. 2) is still consistent with the perfor-
mances observed when varying Z (Fig. 1).
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Fig. 2. Performance of NNWID-Descent with different values of K and fixed Z (Z =
4% for RLCT, MNIST, and 2% for ALOI).

6 Conclusion and Future Work

In this paper, we presented the NNWID-Descent similarity graph construction
method, which utilizes the NNF-Descent framework with a new unsupervised
feature selection criterion. This method aimed to improve or maintain k-NN
graph accuracy while achieving a significant amount of sparsification of object
feature vectors. We proposed the use of support-weighted ID (wID) to identify
relevant features with higher discriminative power local to each object. NNWID-
Descent ranks the features according to their wID values, then sparsifies those
features achieving the smallest values.

With respect to the correctness of k-NN graph produced using six real
datasets, NNWID-Descent has been shown to generally outperform its closest
competitors, NNF-Descent and Sparse PCA. NNWID-Descent can be applied to
obtain more compact representations for high-dimensional features vectors, which
is important to reduce the storage and computational complexity for many appli-
cations. However, the ID estimator used in NNWID-Descent generally requires
relatively large dataset sizes to provide a reasonable accuracy. Of the six datasets
used in our experiments, three are considered too small for the extreme-value-
theoretic LID model to be applicable. Further improvement of NNWID-Descent
could be achieved through the development of ID estimators that can more accu-
rately handle smaller dataset sizes and smaller neighborhood sample sizes.
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