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Abstract. Researchers have long considered the analysis of similarity
applications in terms of the intrinsic dimensionality (ID) of the data.
This theory paper is concerned with a generalization of a discrete mea-
sure of ID, the expansion dimension, to the case of smooth functions in
general, and distance distributions in particular. A local model of the
ID of smooth functions is first proposed and then explained within the
well-established statistical framework of extreme value theory (EVT).
Moreover, it is shown that under appropriate smoothness conditions, the
cumulative distribution function of a distance distribution can be com-
pletely characterized by an equivalent notion of data discriminability. As
the local ID model makes no assumptions on the nature of the function
(or distribution) other than continuous differentiability, its extreme gen-
erality makes it ideally suited for the non-parametric or unsupervised
learning tasks that often arise in similarity applications. An extension
of the local ID model is also provided that allows the local assessment
of the rate of change of function growth, which is then shown to have
potential implications for the detection of inliers and outliers.

1 Introduction

In an attempt to alleviate the effects of high dimensionality, and thereby improve
the discriminability of data, simpler representations of data are often sought by
means of a number of supervised or unsupervised learning techniques. One of the
earliest and most well-established simplification strategies is dimensional reduc-
tion, which seeks a projection to a lower-dimensional subspace that minimizes
the distortion of the data according to a given criterion. In general, dimen-
sional reduction requires that an appropriate dimension for the reduced space
(or approximating manifold) be either supplied or learned, ideally so as to mini-
mize the error or loss of information incurred. The dimension of the surface that
best approximates the data can be regarded as an indication of the intrinsic
dimensionality (ID) of the data set, or of the minimum number of latent vari-
ables needed to represent the data. Intrinsic dimensionality thus serves as an
important natural measure of the complexity of data.
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1.1 Characterizations of Intrinsic Dimensionality

Over the past decades, many characterizations of ID have been proposed. The
earliest theoretical measures of ID such as the classical Hausdorff dimension,
Minkowski-Bouligand or ‘box counting’ dimension, and packing dimension, all
associate a non-negative real number to metric spaces in terms of their covering
or packing properties (for a general reference, see [1]). Although they are of
significant theoretical importance, they are impractical for direct use in similarity
applications, as the value of such measures is zero for any finite set. However,
these theoretical measures have served as the foundation of practical methods for
finite data samples, including the correlation dimension [2], and ‘fractal’ methods
which estimate ID from the space-filling capacity or self-similarity properties of
the data [3,4]. Other practical techniques for the estimation of ID include the
topological approaches, which estimate the basis dimension of the tangent space
of a data manifold from local samples (see for example [5]). In their attempt to
determine lower-dimensional projective spaces or surfaces that approximate the
data with minimum error, projection-based learning methods such as PCA can
produce as a byproduct an estimate of the ID of the data. Parametric modeling
and estimation of distribution often allow for estimators of ID to be derived [6].

An important family of dimensional models, including the minimum neigh-
bor distance (MiND) models [5], the expansion dimension (ED) [7], generalized
expansion dimension (GED) [8], and the local intrinsic dimension (LID) [9],
quantify the ID in the vicinity of a point of interest in the data domain. More
precisely, expansion models of dimensionality assess the rate of growth in the
number of data objects encountered as the distance from the point increases. For
example, in Euclidean spaces the volume of an m-dimensional set grows propor-
tionally to rm when its size is scaled by a factor of r — from this rate of volume
growth with distance, the dimension m can be deduced. Expansion models of
dimensionality provide a local view of the dimensional structure of the data, as
their estimation is restricted to a neighborhood of the point of interest. They
hold an advantage over parametric models in that they require no explicit knowl-
edge of the underlying global data distribution. Expansion models also have the
advantage of computational efficiency: as they require only an ordered list of
the neighborhood distance values, no expensive vector or matrix operations are
required for the computation of estimates. Expansion models have seen applica-
tions in the design and analysis of index structures for similarity search [7,10–14],
and heuristics for anomaly detection [15], as well as in manifold learning.

1.2 Local Intrinsic Dimensionality and Extreme Value Theory

With one exception, the aforementioned expansion models assign a measure of
intrinsic dimensionality to specific sets of data points. The exception is the local
intrinsic dimension (‘local ID’, or ‘LID’), which extends the GED model to a
statistical setting that assumes an underlying (but unknown) distribution of dis-
tances from a given reference point [9]. Here, each object of the data set induces
a distance to the reference point; together, these distances can be regarded as
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samples from the distribution. The only assumptions made on the nature of the
distribution are those of smoothness.

In [9], the local intrinsic dimension is shown to be equivalent to a notion
of discriminability of the distance measure, as reflected by the growth rate of
the cumulative distribution function. For a random distance variable X, with
a continuous cumulative distribution function FX, the k-nearest neighbor dis-
tance within a sample of n points is an estimate of the distance value r for
which FX(r) = k/n. If k is fixed, and n is allowed to tend to infinity, the indis-
criminability of FX at the k-nearest neighbor distance tends to the local intrin-
sic dimension. The local intrinsic dimension can thus serve to characterize the
degree of difficulty in performing similarity-based operations within query neigh-
borhoods using the underlying distance measure, asymptotically as the sample
size (that is, the data set size) scales to infinity.

From the perspective of a given query point, the smallest distances encoun-
tered in a query result could be regarded as ‘extreme events’ associated with the
lower tail of the underlying distance distribution [16]. The modeling of neigh-
borhood distance values can thus be investigated from the viewpoint of extreme
value theory (EVT), a statistical discipline concerned with the extreme behav-
ior of stochastic processes. One of the pillars of EVT, a theorem independently
proven by Balkema and de Haans [17] and by Pickands [18], states that under
very reasonable assumptions, the tails of continuous probability distributions
converge to a form of power-law distribution, the Generalized Pareto Distribu-
tion (GPD) [19]. In an equivalent (and much earlier) formulation of EVT due
to Karamata [20], the cumulative distribution function of a tail distribution can
be represented in terms of a ‘regularly varying’ function whose dominant factor
is a polynomial in the distance [19]; the degree (or ‘index’) of this polynomial
factor determines the shape parameter of the associated GPD. The index has
been interpreted as a form of dimension within statistical contexts [19]. Many
practical methods have been developed for the estimation of the index, including
the well-known Hill estimator and its variants (for a survey, see [21]).

In a recent paper, Amsaleg et al. [22] developed estimators of local ID through
a heuristic approximation of the true underlying distance distribution by a trans-
formed GPD. The scale parameter of the GPD was shown to determine the local
ID value. Estimators of the scale parameter of the GPD were then considered as
candidates for the heuristic estimation of the local ID of the true distance distrib-
ution. Of these, the Hill estimator [23] has recently been used for ID estimation
in the context of reverse k-NN search [14] and the analysis of non-functional
dependencies among data features [24].

1.3 Contributions

In this paper, we revisit the intrinsic dimensionality model proposed in [9] so as
to establish a firm theoretical connection between LID and EVT. The specific
contributions of the paper include the following:
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1. In Sect. 2.2, an overview of the LID model, extended so as to cover not only
the cumulative distribution functions of distance distributions, but also a
more general class of functions satisfying certain smoothness conditions.

2. In Sect. 3, a theoretical result demonstrating that any smooth functions can
be fully represented in terms of an associated LID discriminability function.
When applied to distance distributions, the result implies that the cumulative
distribution function can be characterized entirely in terms of its discrim-
inability, with no explicit knowledge of probability densities.

3. In Sect. 4, the development of a second-order theory of local intrinsic dimen-
sionality that captures the growth rates within the discriminability measure
itself. In the context of distance distributions, the second-order LID is shown
to be a natural measure of the inlierness or outlierness of the underlying data
distribution.

4. In Sect. 5, the theory developed in Sect. 3 is revealed to be a reworking of
extreme value theory from first principles, for the growth rate of smooth
functions from the origin. Rather than relying on the heuristic asymptotic
connection to the generalized Pareto distribution that was identified in [22],
we show that the LID characterization theorem is a more precise statement of
the Karamata representation for the case of short-tailed distributions, with
all elements of the Karamata representation being given an interpretation
in terms of LID. A well-studied second-order EVT parameter governing the
convergence rate of extreme values is also given an interpretation in terms of
higher-order LID.

2 Background and Preliminaries

In this section, we give an overview of the LID model of [9], extended to account
for a more general class of smooth functions (and not just cumulative distribution
functions over the non-negative real domain). We begin the discussion with an
overview of the expansion dimension and its applications.

2.1 Expansion Dimension

For the Euclidean distance metric in R
m, increasing the radius of a ball by a

factor of Δ would increase its volume by a factor of Δm. Were we inclined to
measure the volumes V1 and V2 of two balls of radii r1 and r2, with r2 > r1 > 0,
taking the logarithm of their ratios would reveal the dimension m:

V2

V1
=

(
r2
r1

)m

=⇒ m =
ln(V2/V1)
ln(r2/r1)

. (1)

The generalized expansion dimension (GED) can be regarded as the smallest
upper bound on the values of m that would be produced over a set of allow-
able ball placements and ball radii [8]; Karger and Ruhl’s original expansion
dimension (ED) further constrained r2 to be double the value of r1 [7].
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The ED and GED have also appeared in the complexity analyses of several
other similarity search structures [10,12,25]. The GED has also been success-
fully applied to guide algorithmic decisions at runtime for a form of adaptive
search, the so-called multi-step similarity search problem [11,13,14,26]. In [15],
a heuristic for outlier detection was presented in which approximations of the
well-known local outlier factor (LOF) score [27] were calculated after projection
to a lower-dimensional space. The quality of the approximation was shown to
depend on a measure of expansion dimension, in which the ratio of the ball radii
relates to a targeted error bound.

2.2 Intrinsic Dimensionality of Distance Distributions

If one accepts the observed data set as indicative of an underlying generation
process, the generalized expansion dimension can be regarded as an attempt to
model the worst-case growth characteristics of the distribution of distances to
generated objects, as measured from a reference object drawn from U . When the
reference object q ∈ U is fixed, a supplied data set S thus gives rise to a sample
of values drawn from the distance distribution associated with q.

For finite data sets, GED formulations are obtained by estimating the volume
of balls by the numbers of points they enclose [8]. In contrast, for continuous real-
valued random distance variables, the notion of volume is naturally analogous to
that of probability measure. As shown in [9], the generalized expansion dimension
can thus be adapted for distance distributions by replacing the notion of ball
set size by that of the probability measure of lower tails of the distribution. As
in Eq. 1, intrinsic dimensionality can then be modeled as a function of distance
X = x, by letting the radii of the two balls be r1 = x and r2 = (1 + ε)x, and
letting ε → 0. The following definition (adapted from [9]) generalizes this notion
even further, to any real-valued function that is non-zero in the vicinity of x �= 0.

Definition 1. Let F be a real-valued function that is non-zero over some open
interval containing x ∈ R, x �= 0. The intrinsic dimensionality of F at x is
defined as

IntrDimF (x) � lim
ε→0

ln (F ((1 + ε)x)/F (x))
ln ((1 + ε)x/x)

= lim
ε→0

ln (F ((1 + ε)x)/F (x))
ln(1 + ε)

,

whenever the limit exists.

Using the same assumptions on the distance distribution, [9] also proposed a
natural measure of the discriminability of a random distance variable X, in terms
of the relative rate at which its cumulative distance function FX increases as the
distance increases. If X is discriminative at a given distance r, then expanding
the distance by some small factor should incur a small increase in probability
measure as a proportion of the value of FX(r) (or, expressed in terms of a data
sample, the proportional expansion in the expected number of data points in
the neighborhood of the reference point q). Conversely, if the distance variable
X is indiscriminative at distance r, then the proportional increase in probability
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measure would be large. Accordingly, [9] defined the indiscriminability of the
distance variable as the limit of the ratio of two quantities: the proportional
rate of increase of probability measure, and the proportional rate of increase in
distance. As with the intrinsic dimensionality formulation of Definition 1, we
generalize the notion of a cumulative distribution function to any real-valued
function F (x) that is non-zero in the vicinity of x.

Definition 2. Let F be a real-valued function that is non-zero over some open
interval containing x ∈ R, x �= 0. The indiscriminability of F at x is defined as

InDiscrF (x) � lim
ε→0

[
(F ((1 + ε)x) − F (x))

F (x)

/
(1 + ε)x − x

x

]

= lim
ε→0

F ((1 + ε)x) − F (x)
ε · F (x)

,

whenever the limit exists.

When F satisfies certain smoothness conditions in the vicinity of x > 0,
the intrinsic dimensionality and the indiscriminability of F both exist at x,
and are equivalent. Once again, we generalize the original statement appearing
in [9] so as to apply not only to distance distributions, but also to any general
function F : R → R at values for which F is both non-zero and continuously
differentiable. The proof follows from applying l’Hôpital’s rule to the numerator
and denominator in the limits of IntrDimF and InDiscrF ; since it is essentially
the same as the version in [9], we omit it here.

Theorem 1. Let F be a real-valued function that is non-zero over some open
interval containing x ∈ R, x �= 0. If F is continuously differentiable at x, then

IntrDimF (x) = InDiscrF (x) =
x · F ′(x)

F (x)
.

This equivalence can be extended to those cases where x = 0 or F (x) = 0
by taking the limit of IntrDimF (t) = InDiscrF (t) as t → x, wherever the limit
exists.

Corollary 1. Let F be a real-valued function that is non-zero and continuously
differentiable over some open interval containing x ∈ R, except perhaps at x
itself. Then

IDF (x) � lim
t→x

t · F ′(t)
F (t)

= lim
t→x

IntrDimF (t) = lim
t→x

InDiscrF (t),

whenever the limits exist.

For values of x at which IDF (x) exists, we observe that IDF (x) = ID−F (x);
the LID model therefore expresses the local growth rate relative to the magnitude
of F , regardless of its sign. Although in general IDF is negative whenever |F | is
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decreasing, if F is a cumulative distribution function, IDF must be non-negative
whenever it exists.

IDF can be viewed interchangeably as both the intrinsic dimensionality and
the indiscriminability of F at x. However, we will henceforth refer to IDF (x) as
the indiscriminability of F at x whenever x �= 0, and to ID∗

F � IDF (0) as the
local intrinsic dimension of F.

3 ID-Based Representation of Smooth Functions

The LID formula IDF (x) = x · F ′(x)/F (x) established in Corollary 1 simultane-
ously expresses the notions of local intrinsic dimensionality and indiscriminabil-
ity. In general, the formula measures the instantaneous rate of change F ′(x)
normalized by the cumulative rate of change F(x)/x. When F is the cumulative
distribution function of a distance distribution, the formula can be interpreted
as a normalization of the probability density F ′(x) with respect to the cumu-
lative density F (x)/x. The following theorem states conditions for which the
indiscriminability IDF fully characterizes F .

Theorem 2 (Local ID Representation). Let F : R → R be a real-valued
function, and let v ∈ R be a value for which IDF (v) exists. Let x and w be values
for which x/w and F (x)/F (w) are both positive. If F is non-zero and continu-
ously differentiable everywhere in the interval [min{x,w},max{x,w}], then

F (x)
F (w)

=
( x

w

)IDF (v)

· GF,v,w(x), where

GF,v,w(x) � exp
(∫ w

x

IDF (v) − IDF (t)
t

dt

)
,

whenever the integral exists.

Proof. For any x and w for which x/w and F (x)/F (w) are both positive,

F (x) = F (w) · exp (ln(F (x)/F (w)))
= F (w) · exp (IDF (v) ln(x/w) + IDF (v) ln(w/x) + ln(F (x)/F (w)))

= F (w) ·
( x

w

)IDF (v)

· exp (IDF (v) ln(w/x) − ln(F (w)/F (x)))

= F (w) ·
( x

w

)IDF (v)

· exp
(

IDF (v)
∫ w

x

1
t

dt −
∫ w

x

F ′(t)
F (t)

dt

)
,

since F is differentiable within the range of integration. Furthermore, since F
is also non-zero over the range, and since F ′ is continuous, Corollary 1 implies
that F ′(t)/F (t) can be substituted by IDF (t)/t. Combining the two integrals,
the result follows. ��

The representation formula in Theorem 2 can be used to characterize
the behavior of the function F in the vicinity of a given reference value v.



Local Intrinsic Dimensionality I 71

To see why, let us consider the value of the function at a point w that is tend-
ing towards v. The following theorem shows that when x is restricted to lie
not too far from w, the exponential factor GF,v,w(x) eventually vanishes: in
other words, the relationship stated in Theorem 2 tends asymptotically towards
F (x)/F (w) = (x/w)IDF (v). This asymptotic relationship fits the intuition pre-
sented in Eq. 1 of Sect. 2.1, where the dimension is revealed by the ratios of the
volumes and the radii of two balls. Here, as per the definitions of local intrinsic
dimensionality and indiscriminability in Sect. 2, the role of volume is played by
probability measure, and the dimension is the local ID. The asymptotic relation-
ship is formalized in the following theorem.

Theorem 3. Let F : R → R be a real-valued function, and let v ∈ R be a value
for which IDF (v) exists. Assume that there exists an open interval containing
v for which F is non-zero and continuously differentiable, except perhaps at v
itself. For any fixed c > 1, if v �= 0, then

lim
w→v

|x−v| ≤ c|w−v|
GF,v,w(x) = 1 ;

otherwise, if v = 0, then

lim
w→0+

0< 1/c ≤ x/w ≤ c

GF,0,w(x) = lim
w→0−

0< 1/c ≤ x/w ≤ c

GF,0,w(x) = 1 .

Proof. For each case, it suffices to show that
∫ w

x
(IDF (v) − IDF (t))/t dt → 0.

First we consider the case where v = 0. Since IDF (v) is assumed to exist, for
any real value ε > 0 there must exist a value 0 < δ < 1 such that |t − v| < δ
implies that |IDF (t) − IDF (v)| < ε. Therefore, when |w − v| < δ,

∣∣∣∣
∫ w

x

IDF (v) − IDF (t)
t

dt

∣∣∣∣ ≤ ε ·
∣∣∣∣
∫ w

x

1
t

dt

∣∣∣∣ = ε ln
w

x
. (2)

Since we have that 0 < 1/c ≤ w/x ≤ c, ln(w/x) is bounded from above and
below by constants. Therefore, since ε can be made arbitrarily small, the limit
is indeed 0, and the result follows for the case v = 0.

Next, we consider the case where v �= 0. The argument is the same as when
v = 0, except that δ is chosen such that 0 < δ < |v|/c. Again, when |w − v| < δ,
Inequality 2 holds. Moreover, since by assumption |x − v| ≤ c|w − v| < cδ < |v|,
we have ||v| − |x|| < cδ and ||w| − |v|| < δ. Together, these inequalities imply
that

0 <
δ(c − 1)

2|v| <
|v| − δ

|v| + cδ
<

w

x
=

|w|
|x| <

|v| + δ

|v| − cδ
.

Since ln(w/x) is once again bounded from above and below by positive constants,
the limits in this case exist and are 0, and the result follows. ��

For the case when v = 0, x can be allowed to range over an arbitrarily large
range relative to the magnitude of w, by choosing c sufficiently large. However,
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x and w must be of the same sign (either both strictly positive or both strictly
negative). When v �= 0, the separation between x and v can be much greater than
that between w and v, provided that the ratio of the two separations remains
bounded by a constant — the constant can be chosen to be arbitrarily large, but
once fixed, it cannot be changed.

Given a random distance variable X, its cumulative distribution function
satisfies the conditions of Theorem 2 with v = 0, provided that it is strictly pos-
itive and continuously differentiable within some open interval of distances with
lower endpoint 0. The ID representation expresses the behavior of the entire dis-
tribution in terms of the local intrinsic dimensionality and the indiscriminability
function, without the explicit involvement of a probability density function. In
this sense, the indiscriminability function holds all the information necessary to
reconstruct the distribution.

Taken together, Theorems 2 and 3 show that within the extreme lower tail of a
smooth distance distribution, ratios of probability measure tend to a polynomial
function of the corresponding ratios in distance, with degree equal to the local
ID of the cumulative distribution function. If the distances were generated from
a reference point in the relative interior of a local manifold to points selected
uniformly at random within the manifold, the polynomial growth rate would
simply be the dimension of the manifold. However, it should be noted that in
general, data distributions may not be perfectly modelled by a manifold, in which
case the growth rate (and intrinsic dimensionality) may not necessarily be an
integer.

4 Second-Order Local ID

In the previous section, we saw that a smooth function F can be represented in
terms of its indiscriminability function IDF . Here, we show that a representation
formula for IDF can be obtained for the second-order LID function IDIDF

(x)
from the first-order representation formulae for F and F ′.

4.1 Second-Order ID Representation

For the proof of the representation formula for IDF , we require two technical
lemmas. The first of the two lemmas shows that the second-order LID function
IDIDF

(x) can be expressed in terms of the difference between the indiscriminabil-
ities of F and F ′. The proof is omitted due to space limitations.

Lemma 1. Let F be a real-valued function over the interval I = (0, z), for some
choice of z > 0 (possibly infinite). If F is twice differentiable at some distance
x ∈ I for which F (x) �= 0 and F ′(x) �= 0, then IDF (x), IDF ′(x) and ID′

F (x) all
exist, and

IDIDF
(x) =

x · ID′
F (x)

IDF (x)
= IDF ′(x) + 1 − IDF (x).
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The next technical lemma shows that the second-order LID converges to 0
as x → 0. Again, the proof is omitted due to space limitations.

Lemma 2. Let F be a real-valued function over the interval I = (0, z), for some
choice of z > 0 (possibly infinite). If F and F ′ are twice-differentiable and either
positive everywhere or negative everywhere on I, if F (x) → 0 as x → 0, and if
ID∗

F exists, then ID∗
F ′ also exists, and

ID∗
IDF

= ID∗
F ′ + 1 − ID∗

F = 0.

We are now in a position to state and prove a characterization of the first-
order LID function in terms of the second-order LID function.

Theorem 4 (Second-Order ID Representation). Let F be a real-valued
function over the interval I = (0, z), for some choice of z > 0 (possibly infi-
nite). Also, assume that F and F ′ are twice-differentiable and either positive
everywhere or negative everywhere on I. Given any distance values x,w ∈ (0, z),
IDF (x) admits the following representation:

IDF (x) = IDF (w) · exp
(

−
∫ w

x

IDIDF
(t)

t
dt

)
.

Furthermore, if F (x) → 0 as x → 0, and if ID∗
F exists and is non-zero, then the

representation is also valid for x = 0.

Proof. The assumptions on F and F ′, together with Lemma 1, imply that IDF ,
IDF ′ , ID′

F and IDIDF
exist everywhere, and that IDF (x) and IDF (w) are non-

zero and share the same sign. We can therefore establish the result for the case
where x > 0, as follows:

IDF (x)/IDF (w) = exp ln (IDF (x)/IDF (w))

= exp
(

−
∫ w

x

ID′
F (t)

IDF (t)
dt

)
= exp

(
−

∫ w

x

IDIDF
(t)

t
dt

)
,

where the last step follows from Theorem 1. If F (x) → 0 as x → 0, and if ID∗
F

exists and is non-zero, by Lemma 2 we have that ID∗
F ′ exists, and that ID∗

IDF
= 0.

Since IDF (w) is also non-zero, the integral in the representation formula must
converge, and therefore the representation is valid for x = 0 as well. ��

4.2 Inlierness, Outlierness and LID

Local manifold learning techniques such as Locally-Linear Embedding [28] typi-
cally model data dimensionality as the dimension of a manifold that well approxi-
mates the data within a region of interest. Under these assumptions, with respect
to given reference point q on the manifold, the model assumes that the data dis-
tribution within a neighborhood of q tends to uniformity as the radius of the
neighborhood tends to zero. The local ID of the manifold at q is simply the
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value of ID∗
F , where F is the cumulative distribution function for the induced

distance distribution from q. In addition, the indiscriminability function IDF

can indicate whether q should be regarded as an inlier or as an outlier relative
to its locality within the manifold, as the following argument shows.

If IDF (x) < ID∗
F throughout a neighborhood of q of radius 0 < x < ε (where

ε > 0 is chosen to be sufficiently small), then from the local ID representation
formula of Theorem 2, we observe that GF,0,ε(x) is greater than 1, and that
F (ε)/F (x) < (ε/x)ID

∗
F . Consequently, the growth rate in probability measure

within distance x from q is less than would be expected for a locally-uniform
distribution of points within a manifold of dimension ID∗

F . The drop in indiscrim-
inability (or rise in discriminability) indicates a decrease in local density as the
distance from q increases. Under this interpretation, the relationship between q
and its neighborhood can be deemed to be that of an inlier.

By similar arguments, if instead IDF (x) > ID∗
F , then a rise in indiscrim-

inability (or drop in discriminability) would indicate an increase in local density
as the distance from x increases, in which case q would be an outlier with respect
to its neighborhood.

Within a small local neighborhood 0 < x < ε, the condition IDF (x) < ID∗
F

is equivalent to that of ID′
F (x) < 0, and the condition IDF (x) > ID∗

F is equiv-
alent to that of ID′

F (x) > 0. The strength of the inlierness or outlierness of q
can be judged according to the magnitude |ID′

F (x)|. However, for ease of com-
parison across manifolds of different intrinsic dimensions, and across different
distances x, |ID′

F (x)| should be normalized with respect to these two quantities.
The second-order LID function IDIDF

(x) = x·ID′
F (x)/IDF (x) can thus be viewed

as a natural measure of the inlierness (when negative) or outlierness (when pos-
itive) of q, one that normalizes the relative rate of change of the LID function
with respect to the average (radial) rate of change of LID within distance x of q,
namely IDF (x)/x.

As an illustration of the ability of second-order LID to naturally determine
the inlierness or outlierness of a point with respect to a data distribution, let
us consider a Gaussian distribution in R

m generated as a vector of normally
distributed random variables with means μi and variances σ2

i , for 1 ≤ i ≤ m.
Then the normalized distance from the origin to a point X = (X1,X2, . . . , Xm),
defined as Z =

√∑m
i=1(X

2
i /σ2

i ), follows a noncentral chi distribution. Although
the details are omitted due to the complexity of the derivations, Theorem 1 can
be applied to the probability density function for Z to show that

ID∗
FZ

= m , and ID∗
IDIDFZ

= 2

where λ =
√∑m

i=1(μ
2
i /σ2

i ) is a distributional parameter representing the nor-
malized distance between the Gaussian mean and the origin. Moreover, as z
tends to 0, the sign of IDIDFZ

(z) is positive when λ >
√

m, and negative when
0 ≤ λ <

√
m, indicating ‘outlierness’ of the tail region of the Gaussian beyond

the inflection boundary λ =
√

m, and ‘inlierness’ of the central region. It is
worth noting that the strength of outlierness or inlierness is a constant value,
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Inlier Region λ <
√

m

μμ−σ μ+σ

Fig. 1. The inlier region of a 1-dimensional Gaussian distribution. The boundary
between the inlier (central) region and the outlier (tail) regions is at normalized dis-
tance λ =

√
m = 1, or equivalently at |x − μ| = σ.

regardless of the actual dimension m, or of the (normalized) distance λ to the
Gaussian center. The 1-dimensional case is illustrated in Fig. 1.

5 Local ID and Extreme Value Theory

The characterization of continuous distance distributions established from first
principles in Sect. 3 can be regarded as an elucidation of extreme value theory
(EVT) in the setting of short-tailed distributions. Several mutually-equivalent
formulations of EVT exist; here, the formulation with which we will concern
ourselves is that of regularly varying functions, pioneered by Karamata in the
1930s. There is a vast literature on EVT and its applications, the majority of
which involve the upper tails of distributions. For a detailed account of regular
variation and EVT, see (for example) [29].

5.1 First-Order EVT

Let F be a function that is continuously differentiable and strictly positive over
the open interval I = (0, z) for some z > 0. Although Karamata’s original
representation theorem [20] deals with the behavior of smooth functions as they
diverge to (positive) infinity, the theorem can be reformulated by applying a
reciprocal transformation of the function domain (1/z,∞) into the interval I;
this yields the result that the function F restricted to I can be expressed in the
form F (x) = xγ�(1/x) for some constant γ, where � is differentiable and slowly
varying (at infinity); that is, for all c > 0, � satisfies

lim
u→∞

�(cu)
�(u)

= 1.

The function F restricted to I is itself said to be regularly varying with index γ.
Note that the slowly-varying component �(u) is not necessarily constant as

u → ∞. However, the slowly-varying condition ensures that the derivative �′(u)
is bounded, and that the following auxiliary function tends to 0:

ε(u) � u�′(u)
�(u)

, lim
u→∞ ε(u) → 0 .
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Slowly varying functions are also known to be representable in terms of their
auxiliary function. More specifically, �(1/x) can be shown to be slowly varying
as 1/x → ∞ if and only if there exists some w > 0 such that

�(1/x) = exp

(
η(1/x) +

∫ 1/x

1/w

ε(u)
u

du

)
,

where η and ε are measurable and bounded functions such that η(1/x) tends
to a constant, and ε(1/t) tends to 0, as x and t tend to 0. Note that under the
substitution t = 1/u, the slowly-varying component can be expressed as

�(1/x) = exp
(

η(1/x) +
∫ w

x

ε(1/t)
t

dt

)
.

Thus the formula F (x) = xγ�(1/x) can easily be verified to fit the form of the
representation given in Theorem 2, with the following choices:

γ = ID∗
F ; η(1/x) = lnF (w) − ID∗

F ln w ; ε(1/t) = ID∗
F − IDF (t) .

5.2 Second-Order EVT

An issue of great importance and interest in the design and performance of
semi-parametric EVT estimators is the speed of convergence of extreme values
to their limit [30]. As is the case with first-order EVT, many approaches to the
estimation of second-order parameters have been developed [21].

Here, we will follow the formulation appearing in [31] using second-order
regular variation. In their paper, de Haan and Resnick proved the equivalence
of two conditions regarding the derivatives of regularly varying functions, which
can be stated as follows. Let φ : (0,∞) → R be twice differentiable, with φ′(t)
eventually positive as t → ∞, and let γ ∈ R. Consider a function A(t) whose
absolute value is regularly varying with index ρ ≤ 0, such that A(t) → 0 as
t → ∞ with A(t) either eventually positive or eventually negative. Then the
condition

A(t) � t · φ′′(t)
φ′(t)

− γ + 1

is equivalent to φ′ having the following representation for some non-zero con-
stant k:

φ′(t) = k · tγ−1 · exp
(∫ t

1

A(u)
u

du

)
.

As in the discussion of first-order EVT in Sect. 5.1, we apply a reciprocal
transform of the domain to an interval of the form I = (0, w), by setting t = 1/x
and φ′(t) = F ′(x). Noting that F ′′(x) = −t2φ′′(t), and defining B(x) � A(t),
the first condition can be shown to be

B(x) � 1 − γ − x · F ′′(x)
F ′(x)

= 1 − γ − IDF ′(x),
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and, under the substitution u = 1/y, the second condition can be shown to be

F ′(x) = k · x1−γ · exp
(∫ 1

x

B(y)
y

dy

)
.

Thus these equivalent conditions can be verified to fit the form of the repre-
sentation given in Theorem 2, with w = 1, v = 0, and

k = F ′(1);
γ = 1 − ID∗

F ′ = 2 − ID∗
F ;

B(x) = 1 − γ − IDF ′(x) = ID∗
F − 1 − IDF ′(x) .

Second-order EVT is largely concerned with the estimation of the para-
meter ρ. The following theorem establishes that the two functions B(x) and
IDIDF ′ (x) both have as their index of regular variation the non-negative
value −ρ.

Theorem 5. Let F be a function that is twice differentiable over the interval
I = (0, z), for some choice of z > 0 (possibly infinite). Furthermore, assume that
F ′ and F ′′ are positive everywhere or negative everywhere over I, that F ′(x) → 0
as x → 0, and that ID∗

F exists. Let B(x) = ID∗
F − 1 − IDF ′(x). Then B(x) and

B∗(x) � IDIDF ′ (x) are both regularly varying with index −ρ. Furthermore, if B∗
is continuously differentiable, then −ρ = ID∗

B∗ .

The proof relies heavily on Lemma 2 and Theorem 4. However, due to space
limitations, the details are omitted in this version of the paper.

6 Conclusion

Among the implications of the extreme-value-theoretic foundation introduced
in this paper, perhaps the one with the greatest potential impact for similar-
ity applications is that intrinsic dimensionality reveals the interchangeability
between probability and distance. For distance distributions, the ID representa-
tion formula of Theorem 2 essentially states that the ratio of the expected num-
bers of points in neighborhoods of different radii asymptotically tends to the ratio
of the neighborhood radii themselves, raised to the power of the intrinsic dimen-
sion. Knowledge of any 4 of these 5 quantities would help to determine the value
of the unknown quantity. Indeed, this relationship among probability, distance
and ID has already been successfully exploited to improve the accuracy/time
tradeoff of certain similarity search tasks, via dimensional testing [11–14].

To realize the full potential of the theory of local intrinsic dimensionality
for similarity applications, it is essential that accurate and efficient estima-
tors be available. Estimators for the first-order EVT scale parameter have been
developed within the EVT community; generally, they require on the order of
100 neighborhood distance samples in order to converge [22]. However, second-
order EVT estimators generally require many thousands of neighbors for conver-
gence [32]. Reducing the sample size for both first- and second-order LID/EVT
estimation would be a worthwhile target.
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Another important future research direction is that of feature selection and
metric learning. The LID model provides a natural measure of data discrim-
inability that could in principle be used to guide the selection of features, or the
learning of similarity measures. Towards this goal, in a companion paper [33], a
theoretical investigation is made into how the local IDs of distance distributions
can change as their cumulative distribution functions are combined.
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