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Abstract. In order to accelerate efficiency of similarity search, com-
pact bit-strings compared by the Hamming distance, so called sketches,
have been proposed as a form of dimensionality reduction. To maximize
the data compression and, at the same time, minimize the loss of infor-
mation, sketches typically have the following two properties: (1) each
bit divides datasets approximately in halves, i.e. bits are balanced, and
(2) individual bits have low pairwise correlations, preferably zero. It has
been shown that sketches with such properties are minimal with respect
to the retained information. However, they are very difficult to index due
to the dimensionality curse – the range of distances is rather narrow and
the distance to the nearest neighbour is high. We suggest to use sketches
with unbalanced bits and we analyse their properties both analytically
and experimentally. We show that such sketches can achieve practically
the same quality of similarity search and they are much easier to index
thanks to the decrease of distances to the nearest neighbours.

1 Introduction

Treating data objects according to their pairwise similarity closely corresponds
to the human perception of reality, thus it represents an important field of data
processing. Features of complex objects are typically characterized by descrip-
tors, which are often high dimensional vectors. These descriptors can be bulky
and evaluation of their pairwise similarity may be computationally demand-
ing [16,21]. Thus techniques to process them efficiently are needed. In this paper
we consider one to one mapping between objects and descriptors, thus we do
not distinguish these terms and we use just term object. One of the state-of-
the-art approaches allowing to search big datasets efficiently is based on object
transformation to short binary strings – sketches. The objective of a sketching
technique is to construct the binary strings so that they, together with Hamming
distance h, preserve pairwise similarity relations between objects as much as pos-
sible. Thanks to their compact size and computational efficiency of the Hamming
distance, sketches have been used by several authors who report promising results
for different data types, dimensions, and similarity functions [5,7,15,19].

Many sketching techniques were proposed and majority of them produce
sketches sk(o) with balanced bits with low correlations [12,13,15,19], because
these properties are reported to support the quality of similarity approximation:
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– Bit i is balanced (with respect to dataset X) iff it is set to 1 in one half of all
sketches sk(o), o ∈ X.

– Bit correlations are investigated in pairwise manner over all pairs of bits of
sketches sk(o), o ∈ X.

To the best of our knowledge, there is no prior work discussing disadvantages
arising from these properties. In this paper, we analyse their pros and cons and
we further focus on sketches with bits balanced to a given ratio b:

– Bit i is balanced to ratio b (with respect to dataset X) iff it is set to 1 in b · |X|
sketches sk(o), o ∈ X. Without loss of generality, we assume 0.5 ≤ b ≤ 1, since
the opposite case is symmetric.

We denote Sb the set of all sketches sk(o), o ∈ X with bits balanced to b.
We show that the Hamming distance distribution on sketches S0.5 (i.e. with

balanced bits) with low pairwise bit correlations makes an efficient indexing
practically impossible. The main contribution of this paper is analytical and
experimental investigation of sketches with unbalanced bits, which shows that
they can achieve practically the same quality of the similarity search but they
are significantly easier to index.

2 Background

To formalize the concept of similarity, we adopt the model of metric space
M = (D, d), where D is a domain of objects and d : D × D �→ R is a dis-
tance function which determines the dissimilarity of objects [21]. Further we
consider a finite dataset X ⊆ D. The goal of this section is to provide basic
observations about the sketches, which influence their indexability and ability
to preserve similarity relationships of objects. First, let us focus on Hamming
distance density of sketches Sb with length λ.

Lemma 1 (Mean value of Hamming distance). Let us have set Sb of
sketches sk(o), o ∈ X with length λ. The mean value of Hamming distance on
Sb is 2λ · b · (1 − b) regardless of pairwise bit correlations.

Proof. Let us consider one bit i of the sketches. The Hamming distance h of
sketches sk(o1), sk(o2) on bit i is 1 iff sk(o1), sk(o2) have different values in bit i.
Considering all |X| sketches, it happens in 2b|X| · (1 − b)|X| cases. Thus sum of
all Hamming distances over λ bits is 2λb|X| · (1 − b)|X|, and the mean Hamming
distance is 2λb(1 − b) as we summed |X|2 distances in the previous step.

The mean of Hamming distance is maximized for b = 0.5, i.e. for the balanced
bits.

Next, we focus on the bit correlation, which we express with the Pear-
son correlation coefficient. According to Theorem 2 in [12], the variance of
Hamming distance on sketches S0.5 decreases with decreasing absolute value
of the average pairwise bit correlation; it is minimized for uncorrelated bits.
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In case of uncorrelated bits, the Hamming distance density of sketches Sb

has binomial distribution, thus for variance σ2 of Hamming distances holds:
σ2 = λb(1 − b). In other words, (1) sketches with balanced bits have maximum
mean distance and, (2) for these sketches, minimization of the pairwise bit cor-
relations means minimization of the variance of the Hamming distance, which is
maximization of all distances lower than the mean distance. Clearly, maximizing
values of the smallest inter-object distances violates the key objective of the data
transformation for the similarity indexing: distances h(sk(o1), sk(o2)), o1, o2 ∈ X
for very similar objects o1, o2 are desired to be small [5]. Moreover these conse-
quences imply a problem known as the dimensionality curse [18].

A formalised view is provided by the intrinsic dimensionality of sketches.
Intrinsic dimensionality (iDim) expresses “the minimum number of parameters
needed to account for the observed properties of the data” [6]. We use the formula
proposed by Chavez and Navarro [2] for the estimation of iDim:

iDim ≈ μ2

2 · σ2
, (1)

where μ is the mean of distance density, and σ2 is its variance. In compliance
with the previous paragraph, it has been proven that:

– for uncorrelated bits, iDim is maximized iff they are balanced [18],
– for balanced bits, iDim is maximized iff they are uncorrelated [12].

In the field of similarity search, iDim expresses “the difficulty” of data index-
ing [17]. Thus techniques which produce sketches S0.5 with bit correlations close
to zero produce hard-to-index sketches. Moreover indexing techniques typically
assume at least a few objects in small distances from the query object [14,16].

2.1 Observations on GHP Sketches

We illustrate our findings on a sketching technique based on the generalized
hyperplane partitioning (GHP) [21]. Bit i of all sketches sk(o), o ∈ X is deter-
mined using a pair of pivoting objects pi0, pi1, which splits objects o ∈ X by
comparing distances d(o, pi0), d(o, pi1); value of bit ski(o) expresses which pivot
is closer to o. This technique is described in detail e.g. in [12].

Let us consider query object q ∈ D and its most similar object oq1 ∈ X,
oq1 �= q. As we have explained, the Hamming distance h(sk(q), sk(oq1)) is high
on average on sketches S0.5 with low pairwise bit correlations. It means that
many hyperplanes separate q and oq1. On the contrary, in case of sketches with
unbalanced bits, e.g. S0.8, the distance h(sk(q), sk(oq1)) should be lower.

For motivation, consider the situation in 2D Euclidean space shown in Fig. 1.
In case of hyperplanes dividing dataset into halves (Fig. 1a), the Hamming dis-
tances between originally close objects are high which suggests that many hyper-
planes split dense subspaces of dataset X. On the other hand, in case of sketches
with unbalanced bits (Fig. 1b), the Hamming distances are smaller not only for



56 V. Mic et al.

(a) b = 0.5 (b) b = 0.8

Fig. 1. Hyperplanes producing sketches with bits balanced to different balance b

originally close objects, but also for more distant ones; as shown later, this draw-
back can be compensated by using longer sketches. Please, note that this is only
an artificial example in 2D, but these properties are implied by values of mean
and variance of the Hamming distance and thus hold even for real-life, high
dimensional data.

Figure 1b suggests, that unbalanced bits may lead to many objects with all
bits set to 1 (the “center” of the figure). However, our practical experience with
sketches in high dimensional space show that there is just a few such objects.
In particular, we conducted experiments with b ∈ {0.85, 0.9} and λ = 205 (see
Sect. 4 for details on the dataset). We realized that there was no sketch with
all bits set to 1 in case of b = 0.85, and only eight out of one million in case of
b = 0.9.

2.2 Related Work

Charikar has introduced in his pioneering work [1] the idea of using random
hyperplanes to summarize objects in a multi-dimensional vector spaces in such a
way that the resulting bit strings respect the cosine distance. Lv et al. [11] have
proposed a sketching technique for spaces of vectors compared by (weighted) L1

distance function. Their method is based on thresholding ; a threshold is deter-
mined for each dimension of the original space. Individual bits of the sketches are
set according to values in corresponding dimensions and compressed. Pagh et al.
propose odd sketches [14] – short binary strings created as a transformation of
original vector space, based on min-hashing [9,10]. Odd sketches are compared
by the Hamming distance, and they suffer a lot from the curse of dimensionality.
Daugman [3] uses bit strings to describe human irises to identify people. His
method is based on encoding shades of grey colour shown in images of irises
in UV light, and it constitutes the most widely used approach of human irises
recognition.

3 Analysis of Bits Balanced to b

The objective of this section is to quantify all trends mentioned above. More
specifically, we analytically derive the influence of the ratio b on bit correlations,
Hamming distance distribution, and iDim of sketches.
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Consider sketches Sb and their two arbitrarily selected bits i, j, 0 ≤ i < λ,
0 ≤ j < λ. Set Sb can be split into four parts according to combination of
values in bits i, j. Let us denote #11,#10,#01,#00 the relative numbers of the
sketches in these four parts. It holds that #10 = #01 regardless of correlation of
bits i and j. Denoting ski(o) the ith bit of sketch sk(o), the Pearson correlation
coefficient of bits i, j can be simplified:

Corr(i, j) =

∑

o∈X

(ski(o) − b)(skj(o) − b)
√ ∑

o∈X

(ski(o) − b)2
∑

o∈X

(skj(o) − b)2
=

#11 − b2

b(1 − b)
. (2)

Let us point out one difference between balanced and unbalanced bits: if we
switch all values in arbitrary bit i in case of balanced bits, only the sign of
correlations Corr(i, j) (with all other bits j) changes. Thus only the absolute
values of pairwise bit correlations matter [12]. On the other hand, in case of
unbalanced bits (b �= 0.5), the sign of correlation matters, as opposite correlations
express different space partitioning. For example for b = 0.8, correlation −0.25
means object distribution #11 = 60%, #10 = #01 = 20%, #00 = 0% while
correlation +0.25 means distribution #11 = 68%, #10 = #01 = 12%, #00 =
8%. Therefore, we keep the same bit orientation for all bits (specifically, 1 in
b · |X| sketches).

It has been shown [12], that high intrinsic dimensionality iDim increases
potential of sketches with balanced bits to well approximate similarity relation-
ships of objects. So, let us analyse the iDim of sketches with bits balanced
to b. We denote Hi the list of all |X|2 Hamming distances measured just on
bit i of sketches sk(o), o ∈ X. Then Corr(Hi,Hj) is the Pearson correlation
of lists Hi,Hj , and CorrAvg is the average pairwise correlation over all lists
Hi,Hj , 0 ≤ i < j < λ. We have derived in [12] the variance σ2 of Hamming dis-
tance on sketches S0.5. Using Lemma 7 from that paper and analogous approach,
it is possible to derive σ2 for sketches Sb:

σ2 = 2b(1 − b) · [1 − 2b(1 − b)] · [λ + (λ2 − λ) · CorrAvg]. (3)

Using Lemma 1 and Eq. 3, the iDim of sketches with bits balanced to b is:

iDim ≈ μ2

2σ2
=

b · (1 − b) · λ

(2b2 − 2b + 1) · [1 + (λ − 1)CorrAvg]
. (4)

Therefore iDim of sketches increases with decreasing CorrAvg. In the following,
we lower bound average correlation CorrAvg, which implies the upper bound for
iDim of sketches with bits balanced to b.

Minimum average correlation CorrAvg occurs iff all pairwise correlations of
lists Hi,Hj are minimal. Thus, we focus on Corr(Hi,Hj):

Corr(Hi,Hj) =
2(#11 · #00 + #2

10) − [2b(1 − b)]2

2b(1 − b) − [2b(1 − b)]2
. (5)
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Using this equation, it is possible to express values #11,#10 and #00 implying
minimum value of Corr(Hi,Hj). Please, notice that all fractions #11,#10 and
#00 must be non-negative.

Theorem 1. Maximum iDim of sketches Sb with bits balanced to b occurs iff for
all pairs of bits 0 ≤ i < j < λ holds: #00 = max(0, 3/4−b), #10 = min(1/4, 1−b)
and #11 = max(2b − 1, b − 1/4).

Proof. Theorem holds as a consequence of Eqs. 2, 4 and 5.

Values #00,#10 and #11 implying maximum iDim of sketches, imply negative
pairwise correlations Corr(i, j) for b > 0.5, which bring a problem: it is not
possible to create meaningful sketches for similarity search with significantly
negative pairwise bit correlations. Considering a given ratio b > 0.5 and negative
bit correlations, each zero in an arbitrary bit i of any sketch ski(o1) pushes other
values ski(o2), o2 ∈ X ∧ o2 �= o1 to be 1. However the number of ones is given by
ratio b.

In case of b ≥ 0.75, maximum iDim occurs iff ∀0 ≤ i < j ≤ λ : #00 = 0. In
this case, each sketch contains exactly one or none bit set to 0, and therefore at
most λ + 1 different sketches of length λ exist (including one with all bits set
to 1). In the other words, an effort to minimize ratio #00 leads to extremely long
sketches.

In practice when a realistic sketch length λ is preserved, higher iDim of
sketches Sb may be achieved with an effort to produce uncorrelated bits rather
than negatively correlated. The reason is, that few significant negative correla-
tions usually cause higher increase of other correlations which leads to an increase
of average pairwise correlation above zero. We illustrate these statements in an
experiment in Sect. 4.

As a result of provided analysis and experiments, we propose to search for
uncorrelated unbalanced bits, i.e. for sketches with binomial distance distribu-
tion, but with lower mean value than in case of balanced bits, which is favourable
for indexing of sketches.

4 Evaluation

At first, we run an experiment to confirm the suitability of producing sketches
with uncorrelated rather than negatively correlated bits. Then we focus on the
quality of similarity search with unbalanced sketches and their indexability. Let
us briefly describe the testing data and sketching technique:

Testing Data

The experiments are conducted on a real-life data collection consisting of visual
descriptors extracted from images. More specifically, we use DeCAF descrip-
tors [4] – 4096-dimensional vectors taken as an output from the last hidden layer
of a deep convolutional neural network [8]. These descriptors were extracted from
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a 1M subset of the Profiset collection1. The DeCAF descriptors are compared
by the Euclidean distance to form a metric space.

Sketching Technique

In order to create sketches, we randomly select a set of 512 pivots and we inves-
tigate all

(
512
2

)
pivot pairs. We use a random subset of 100,000 data objects and

analyse the balance b of generalized hyperplane partitioning (GHP) defined by
each pair of pivots (see Sect. 2.1 for examples of GHP). From pivot pairs implying
a proper balance b (which is about 8,000–15,000 pairs) we further select those,
producing sketches with low correlated bits using our heuristic. Description of
this heuristic is available online2.

4.1 Searching for Negatively Correlated Bits

Table 1 contains evaluated properties of sketches created by the sketching tech-
nique, which tried to (1) find sketches with uncorrelated bits, and (2) find as
negatively correlated bits as possible. Ratio b was 0.8 in these experiments, and
results for four sketch lengths λ are presented. The average pairwise bit corre-
lation is lower in case of searching for uncorrelated bits, rather then negatively
correlated, in three cases. The numbers of negative and positive pairwise bit
correlations confirms these results as well. There is an exception in Table 1, the
sketch length λ = 205 for which average bit correlation is lower when searched
for negatively correlated bits. However, observed difference is tiny in this case.

Table 1. Sketching technique: searching for uncorrelated and negatively correlated
unbalanced bits, b = 0.8

Searching for uncorrelated Searching for negative correlations

λ Average corr # positive # negative Average corr # positive # negative

64 +0.0019 1,000 1,016 +0.0024 1,032 984

128 +0.0046 4,066 4,062 +0.0053 4,106 4,022

205 +0.0064 10,494 10,416 +0.0063 10,469 10,441

256 +0.0072 16,406 16,234 +0.0077 16,436 16,204

The reasons of observed tendencies are discussed in theoretical Sect. 3.

1 http://disa.fi.muni.cz/profiset/.
2 http://www.fi.muni.cz/∼xmic/sketches/AlgSelectLowCorBits.pdf.

http://disa.fi.muni.cz/profiset/
http://www.fi.muni.cz/~xmic/sketches/AlgSelectLowCorBits.pdf
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4.2 Quality of Sketches

The most important requirement for sketches with unbalanced bits is that they
have to provide acceptable quality of the similarity search in comparison to
sketches with balanced bits. In the following experiments, we use k-recall@k′

of approximate kNN search using sketches. More specifically, for each query
object q, we compare the set of k most similar objects from X found by the
sequential scan of X (denoted as Prec(q)) with k objects found by the filter
and refine approach based on sketches: First, in the filtering phase, we select
k′ objects o ∈ X, k′ ≥ k with smallest Hamming distances h(sk(q), sk(o)).
Then these k′ objects o are refined by evaluating distances d(q, o) in order to
identify approximate kNN answer denoted as Ans(q, k’ ). The ability of sketches
to approximate similarity relationships of objects o ∈ X is expressed by measure
k-recall@k′:

k-recall@k′ =
Prec(q) ∩ Ans(q, k′)

k
. (6)

In the following, we present results only for k = 10, because trends observed in
these experiments are the same even for other values of k. Size of dataset X in
the following experiments is |X| = 1,000,000. All results are averages over 1,000
randomly selected queries q.

(a) b ∈ {0.5, 0.8}, λ ∈ {64, 128, 256} (b) b ∈ {0.5, 0.75, 0.8, 0.85, 0.9}, λ = 256

Fig. 2. Quality of approx. similarity search with sketches balanced to different b

We demonstrate by Fig. 2a that the difference in 10-recall@k′ using sketches
S0.5 and S0.8 is relatively high in case of short sketches, however with increasing
length λ it is becoming negligible (in our case, this happens approximately for
λ ≥ 200). Figure 2b depicts 10-recall@k′ for sketch length λ = 256 and different
ratio b. Using b ∈ {0.5, 0.75, 0.8}, the results are practically the same; decrease
is noticeable in case of b = 0.85: for example about 2.3 percentage points for k’
= 5,000 (i.e. 0.5 % of |X|) and it is significant for b = 0.9: e.q. 9.2 percentage
points for k’ = 5,000.
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Table 2. Sketches with λ = 256: 10-recall@k′,
iDim and avg. Hamming distances to k′th closest
sketch

b 10-recall@k’ iDim h(sk(q), sk(oqk′ ))

k’=2,500 k’=10,000 k′=1 k′=100 k′=10,000

0.50 93.20% 98.41% 29.4 43.1 58.9 83,6

0.75 93.43% 98.66% 24.1 32.0 44.3 63.2

0.80 92.79% 98.52% 19.6 27.4 38.0 54.0

0.85 89.19% 97.30% 13.5 21.1 29.7 42.2

0.90 80.31% 92.46% 9.0 13.8 19.9 28.3 Fig. 3. Ham. distance densities for
λ = 256

4.3 Indexability of Sketches

The indexability of sketches is illustrated by their iDim and by the average
Hamming distances h(sk(q), sk(oqk′)) between sk(q) and its k′th nearest sketch
for k′ ∈ {1; 100; 10,000}. We show results for b ∈ {0.5, 0.75, 0.8, 0.85, 0.9} in
Table 2. These results make possible to utilize techniques for bit-strings indexing
and other processing [16,20]

As expected, the iDim of sketches decreases as ratio b grows (for b ≥ 0.5). For
instance the iDim of sketches S0.5 and S0.8 differs about one third for λ = 256.
In order to remind results from Sect. 4.2, we show 10-recall@k′ for two selected
k′: the difference of 10-recall@k′ for b ∈ [0.5, 0.8] is negligible. It confirms, that
properly unbalanced sketches can be used as a full-fledged but easily indexable
alternative to sketches with balanced bits. Better indexability is confirmed by the
decrease of distances to the k′ nearest sketches (shown in last three columns of
Table 2), and by distribution of Hamming distance densities presented in Fig. 3.
All these measurements confirm the analytic results from Sects. 2 and 3.

5 Conclusions

We have investigated sketches – bit strings created by such transformation of
data objects, which should preserve the similarity relationships between the
objects. Sketching techniques proposed so far usually aim at producing bit strings
with balanced and low correlated bits. Sketches with these properties have been
reported to provide the best trade-off between their length and ability to approx-
imate similarity relationships between objects. In this paper, we studied one
drawback of such sketches: these properties lead to maximization of the intrin-
sic dimensionality of the set of sketches making them hard-to-index (because
of the dimensionality curse). We thus focus on sketches with bits balanced to
some given ratio b and we derive various theoretical properties of such sketches.
Further, we show on a real life dataset that the proposed approach can achieve
practically the same quality of the similarity search, but with sketches having
iDim about one third lower than sketches with balanced bits.
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