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Abstract. We present algorithms that learn to segment words in mor-
phologically rich languages, in an unsupervised fashion. Morphology of
many languages can be modeled by finite state machines (FSMs). We
start with a baseline MDL-based learning algorithm. We then formu-
late well-motivated and general linguistic principles about morphology,
and incorporate them into the algorithm as heuristics, to constrain the
search space. We evaluate the algorithm on two highly-inflecting lan-
guages. Evaluation of segmentation shows gains in performance com-
pared to the state of the art. We conclude with a discussion about how
the learned model relates to a morphological FSM, which is the ultimate
goal.

Keywords: Unsupervised morphology induction · Minimum descrip-
tion length principle · MDL · Finite-state automata

1 Introduction

We present work on unsupervised segmentation for languages with complex mor-
phology. Our ultimate research question is to explore to what extent morpholog-
ical structure can be induced without supervision, from a large body of unanno-
tated text (a corpus). This has implications for the question whether the mor-
phological system is somehow “inherently encoded” in language, as represented
by the corpus.

The paper is organized as follows: we state the morphology induction problem
(Sect. 2), review prior work (Sect. 3), present our models (Sects. 4 and 5), present
the evaluation and experiments (Sect. 6), and finally discuss future work.

2 Morphological Description

We focus on highly-inflecting languages. In the experiments, we use Finnish and
Turkish, which belong to different language families (Uralic and Turkic) and
exhibit different morphological phenomena.

Finnish is considered to be agglutinative, although it has some fusional
phenomena—morpho-phonological alternation. It has complex derivation and
inflection, and productive compounding. Derivation and inflection are achieved
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via suffixation; prefixes do not exist. Multiple stems in the compound may be
inflected, e.g., kunnossapidon = “of keeping (smth.) in usable condition”:

kunno + ssa # pido + n

condition + Iness. # keeping + Gen.

where # is a compound boundary, + is a morpheme boundary, Iness. marks
inessive case (presence in a location, or being in a state), and Gen. marks the
genitive. The morph kunno is a “weak” allomorph of the stem kunto; the weak-
ening is conditioned by the closed syllable environment, i.e., the following double
consonant -ss-.

Turkish is similar to Finnish: agglutination, no prefixation, minimal
compounding.

The ultimate goal in the future is to model aspects of morphology, includ-
ing classification of morphemes into morphological categories, and capturing
allomorphy—morpho-phonological alternation.1 However, at present, as in most
prior work, we address the problem of segmentation only, to try to establish a
solid baseline. Once we have a good way of segmenting words into morphs, we
plan to move to modeling the more complex morphological phenomena.2

3 Prior Work

Interest in unsupervised morphology induction has surged since 2000. Detailed
surveys are found, e.g., in [15,19], and in proceedings from a series of “Morpho-
Challenge” workshops between 2005 and 2010 [17,18,20]. Our approach is
founded on the Minimum Description Length principle (MDL) as a measure
of model quality, see e.g., [14]. Linguistica, [11], also uses MDL, combined with
the idea of a signature—set of affixes that belong to a morphological paradigm;
e.g., suffixes for a certain class of nouns form one signature, etc. Our models
also group morphs into different morphological classes, though using a different
approach (Sect. 4).

Finite state machines (FSMs) are used in [12], which are similar to our FSMs;
however, the approach there is less general, since it uses heuristics unsuitable for
languages with very rich morphology.

The MDL-based Morfessor and its variants, e.g., [3,5], are closely related
to our work. Unlike [4], we do not posit morphological classes a priori, but
allow the model to learn the classes and distributions of morphs automatically.
Word embedding, modeling semantic relations between words, have been used
with orthographic features of words to learn the morphology of languages as
“morphological chains” in [21].

1 In the example above, the morph kunno- is an allomorph of kunto; which allomorph
appears in a given word is determined by its phonological environment.

2 Note, we do not claim that the problem must be sub-divided this way. As others
before us, we begin with segmentation because it is more tractable.
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Evaluation of morphological learning is a complex challenge in itself [23,26];
prior work on this topic is described in detail in Sect. 6.

The Morpho-Challenges have seen attempts to model aspects of morphol-
ogy which we do not address: using analogical reasoning, handling ablaut-type
morphology (as in German, and Semitic languages), etc. Beyond segmentation,
modeling allomorphy has been attempted, e.g., by [24], but the performance of
the proposed algorithms on segmentation so far falls short of those that do not
model allomorphy. Research on induction of morphological structure is driven in
part by the observation that children learn it at a very early age,3 which makes
acquisition by machine a fascinating challenge.

4 The Learning Algorithm: SMorph

Morphological systems for many languages are modeled by a finite-state machine
(FSM), where each state corresponds to a morphological class. The seminal app-
roach of Two-Level Morphology, [16], represents morphological grammar by a
FSM. We can associate a state with, e.g., a set of verb stems that belong to
a certain inflectional paradigm; or the set of suffixes in a certain noun para-
digm, etc. The edges in the FSM define the morphotactics of the language—the
permissible ordering among the states.

The data D (the corpus) is a large list of words in the given language. For
every word w ∈ D, SMorph tries to learn the most probable sequence of states
that generates w: it treats the problem as finding a model that produces the most
probable segmentation for each word w into “morphs”—fragments of w—and
the classification—assignment of the morphs to classes (classes are identified
with the states).4

The learning algorithm searches for the best model in a certain model class.
Thus, the full description of the algorithm must specify a. the model class
(Sect. 4.1), b. the objective function: a way of assigning a score—the cost—to
each model (Sect. 4.3), and c. a search strategy for optimizing the objective across
the model class (Sect. 4.2).

4.1 Morphology Models

We begin with a hidden Markov model (HMM), with a set of hidden
states/classes {Ci}. States emit morphs with certain emission probabilities, and
transition probabilities between states. To code each word w, the model starts
at the initial state C0. From state Ci, it can transition to another state Cj with
a certain probability Ptr(Cj |Ci) and emit a morph—a segment of w from Cj .
The probability of emitting a morph μ from state Cj is denoted by Pem(μ|Cj).
Once the entire w is emitted, the model transitions to the final state CF and
emits a special end-of-word symbol #.
3 This relates to the poverty of stimulus claim, [2], about human ability to learn com-

plex systems from very limited data.
4 Note that we evaluate only the segmentation, (Sect. 6).
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Ideally, the states will correspond to “true” morphological classes; for exam-
ple, nouns may fall into different declension paradigms and each paradigm would
be assigned its own class/state in the model.

Probabilities Ptr and Pem are determined by counting how words are seg-
mented into morphs, and which states emit which morphs. Many segmentations
are possible for the given corpus. We need a way to choose the best segmenta-
tion for D—the best parameters for the model. To approach this model selection
problem via MDL we define a code-length for the data D, which is the number
of bits required to encode it.

4.2 Search

Algorithm 1. Baseline search algorithm, using Expectation-Maximization [10]

Input: Data: a large list D of words in the language
Initialize: create a random segmentation and classification—split all words in D into1

morphs randomly, and assign morphs to classes randomly;
repeat2

Compute Parameters: (E-step) based on the current segmentation and3

classification, compute all emission and transition costs;
Re-segment: (M-step) given the newly computed parameter values find the best4

segmentation for all words in the corpus (using Dynamic Programming, Sect. 4.6)
until convergence in cost ;5

Convergence is determined by the MDL code-length of the complete model (cost),
defined in Sect. 4.3. We fix the number of classes K,5 and begin with a ran-
dom segmentation and classification (assignment of morphs to classes). We then
greedily re-segment each word w ∈ D, minimizing the MDL code-length of the
model plus the data.

4.3 The Objective: Two-Part MDL Cost

Finding the best segmentation and classification can be viewed as the problem
of compressing D. In MDL 2-part coding, we try to minimize the cost of the
complete data: the cost of the model plus the cost of the data given the model.
In our case, this means summing the costs of coding the Lexicon, the transitions
and the emissions:

L(D) = L(M) + L(D|M) = L(Lex) + L(Tr) + L(Em)

The cost of the Lexicon: L(Lex), is the number of bits needed to encode each
class, morph by morph, irrespective of the order of the morphs in the class:

L(Lex) =
K∑

i=1

[
∑

µ∈Ci

L(μ) − log |Ci|!
]

(1)

5 Ideally, K should be large, to give the model sufficient expressiveness.
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where K is the number of classes, μ ranges over all morphs in class Ci, L(μ) is
the code length of a morph μ (Eq. 2), and |Ci| is the number of morphs in class
Ci. The term − log |Ci|! accounts for the fact Ci is a set, and we do not need to
code the morphs in Ci in any particular order.

The code length L(μ) of morph μ is computed similarly to [5], as the number
of bits needed to encode μ:

L(μ) = (|μ| + 1) · log(|Σ| + 1) (2)

where |μ| is the number of symbols in μ, and |Σ| is the size of the alphabet; one
is added to |Σ| to account for one special morph-boundary symbol.6

Transitions: Given the lexicon, we code the paths of class transitions from C0

to CF , from word start to word finish, using Bayesian Marginal Likelihood (ML),
as introduced in [9]. In ML, we treat each transition (CiCj) in the data as an
“event” to be coded. If in a set of events E = {Ej}, each Ej has a corresponding
“prior” count αj and count of observed occurrences Oj , the cost of coding E is:

L(E) = −
∑

j

log Γ (Oj + αj) +
∑

j

log Γ (αj) + log Γ
∑

j

(Oj + αj) − log Γ
∑

j

αj

(3)
where the summations range over the set E .7 We use uniform priors, αj = 1,∀j.
Thus log Γ (αj) = 0, and the second term is always zero in this equation.

To compute the cost of all transitions L(Tr), we apply Eq. 3 to each class Ci,
as i ranges from 0 to K; the set of “events” E is the set of all classes Cj , which
are the targets of transitions from Ci:

K∑

i=0

[
−

K+1∑

j=1

log Γ
(
f(CiCj) + 1

)
+ log Γ

⎛

⎝
K+1∑

j=1

[
f(CiCj) + 1

]
⎞

⎠ − log Γ (K)

]

Emissions: We code the emissions L(Em) analogously:

K∑

i=1

[
−

∑

µ∈Ci

log Γ
(
f(μ,Ci) + 1

)
+ log Γ

⎛

⎝
∑

µ∈Ci

[
f(μ,Ci) + 1

]
⎞

⎠ − log Γ (|Ci|)
]

where f(Ci, Cj) is the count of transitions from Ci to Cj , and f(μ,C) is the
number of times morph μ was emitted from class C. The cost L(Em) is computed
by applying Eq. 3, where the set of “events” E is now the set of emissions (μ,Ci)
of all morphs μ from Ci.

6 Another way to code L(μ) is to account for the frequencies of the symbols of the
alphabet.

7 For additional explanation about this coding scheme please refer to the original
paper.
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4.4 Input

For each language, we pre-process a large text by collecting distinct words from
the text. We do not model the text—i.e., the distribution of words in the text—
but the language, i.e., the observed distinct words, as is done in recent prior
work. In this paper, corpus refers to the list of distinct words.8

4.5 Initialization

The initial segmentation and classification is obtained by randomly placing
morph boundaries in each input word w, independently, according to a Bernoulli
distribution,9 and by randomly assigning the morphs to one of the classes in the
Lexicon.

4.6 Dynamic Programming Re-segmentation

We compute the most probable segmentation of every word w in the corpus into
morphs, at iteration t, given a set of transitions and emissions from iteration
t − 1.

We apply a Viterbi-like dynamic programming (DP) search for every word w,
to compute the most probable path through the HMM, given w, without using
the segmentation of w at iteration t − 1. Standard Viterbi would only give us
the best class assignment given a segmentation. Here, the search algorithm fills
in the DP matrix starting from the leftmost column toward the right.

Notation: σb
a is a substring of w, from position a to position b, inclusive. We

number positions starting from 1. The shorthand σb ≡ σb
1 is a prefix of w up to b,

and σa ≡ σn
a is a suffix, when |w| = n. A single morph μb

a lies between positions
a and b in w. Note that σb

a is just a sub-string, and may contain several morphs,
or cut across morph boundaries. In the cell (i, j), marked X, in the DP matrix,
we compute the cost of the HMM being in state Ci and having emitted the prefix
up to the j-th symbol of w, L(Ci|σj). This cost is computed as the minimum
over the following expressions, using values computed previously and already
available in columns to the left of σj :

L(Ci|σj) = min
q,b

(
L(Cq|σb) + L(Ci|Cq) + L(μj

b+1|Ci)
)

(4)

This says that the best way of getting to state Ci and emitting w up to σj is to
come from some state Cq having emitted w up to σb, then jump from Cq to Ci,
8 This is different from some of the earlier work, e.g., [3,5], and agrees with [25], who

observe “that training on word types...give similar scores, while...training on word
tokens, is significantly worse.” We do not claim that there is no useful information
in the distribution of words for learning morphology; however, the current models
do not utilize it.

9 With parameter ρ. In the current experiments we used ρ = 0.20 and 0.25. This is
similar to the approach in [6], where they used a Poisson distribution with a fixed
parameter.
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and emit μj
b+1 as a single morph from Ci. L(Ci|Cq) is the cost of transition from

state Cq to Ci. This can be calculated using the Bayesian Marginal Likelihood
code-length formula as:

L(Ci|Cq) = ΔL = L(Tr ∪ t) − L(Tr) = − log
f(CqCi) + 1

∑K−1
k=0

∑K
j=1

(
f(CkCj) + 1

)

where t is the transition Cq → Ci. The cost of emitting morph μ from class Ci is:

L(μ|Ci) =

⎧
⎨

⎩
− log f(µ,Ci)+1

f(Ci)+|Ci| if μ ∈ Ci

− log |Ci|(
f(Ci)+|Ci|

)(
f(Ci)+|Ci|+1

) + L(μ) if μ �∈ Ci

The second case is for when μ is not emitted from Ci yet and does not exist
in its lexicon and L(μ) is the cost of adding μ to the lexicon.

In Eq. 4, the minimum is taken over all states q = 0, 1, . . . ,K, including the
initial state C0, and over all columns b that precede column j: b = j − 1, . . . , 0.
Here L(μj

b+1|Ci) is the cost of emitting the μj
b+1 from Ci, for some b < j. For the

empty string, σ0 ≡ ε, we set L(C0|σ0) ≡ 0 for the initial state, and L(Cq|σ0) ≡ ∞
for q �= 0.

The transition to the final state CF is computed in the rightmost column of
the matrix, marked #, using the transition from the last morph-emitting state—
in column σn—to CF . (State CF always emits the word boundary #). Thus, the
cost of the best path to generate w is:

L(w) = min
q=1,...,K

L(Cq|σn) + L(CF |Cq) + L(#|CF )

where the last factor L(#|CF ) is always 0. In addition to storing L(Ci|σj) in cell
(i, j) of the matrix, we store also the “best” (least expensive) state q and the
column b from which we arrived at this cell. These values, the previous row and
column, allow us to backtrack through the matrix at the end, to reconstruct the
lowest-cost—most probable—path through the HMM.

5 Enhancements to Baseline Model

We next present enhancements to the baseline algorithm described in Sect. 4,
which yield improvements in performance.

Simulated Annealing: The greedy search for the best segmentation for all
words in the corpus quickly converges to local—far from global—optima. To
avoid local optima, we use simulated annealing, with temperature T varying
between fixed starting and ending values, T0 and TF , and a geometric cooling
schedule, α. In Eq. 4, rather than using min to determine the best cell (q, b) from
which to jump to X in the DP matrix, we select a candidate cell at random,
depending on its cost, from a gradually narrowing window.10

10 We use a standard approach to simulated annealing, for details please see [1].
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This ensures that the model does not always greedily choose the best solution,
and enables it to initially make random jumps to avoid local optima.

Next, as mentioned in the abstract, we introduce heuristics that constrain
the search, based on simple yet general linguistic principles.

1. Directionality of the FSM: The FSM must be directional: the mor-
photactics of any language specify exactly the order in which morphological
classes may follow one another. In many Indo-European languages, e.g., a
word can have some prefixes, then a stem, then suffixes—always in a fixed
order. Further, different kinds of suffixes have strict ordering among them—
e.g., derivation precedes inflection.11

To enforce directionality, in Sect. 4.6, we constrain the DP matrix so that the
preceding state q in Eq. 4 ranges only from 0 up to i − 1, rather than up to
K. Since the states are ordered, this blocks transitions from a later state to
an earlier one.
2. Natural Classes of Morphs: As a general principle, morph classes fall
into two principal kinds: stems vs. affixes. We arbitrarily fix some range of
states in the beginning to be prefix states, followed by a range of stem states,
followed by suffix states.12 A simple heuristic based on this is that the HMM
must pass through at least one stem state during the DP search.
3. Bulk Re-segmentation: An important linguistic principle is that stems
and affixes have very different properties. First, stem classes are usually
open—i.e., potentially very large, whereas all affix classes are necessarily
closed—very limited. This is reflected, e.g., in borrowing: one language may
borrow any number of stems from another freely, but it is extremely unlikely
to borrow a suffix.

Second, in general a randomly chosen affix is typically expected to occur
much more frequently in the corpus than a random stem.13

Based on this principle, we introduce another heuristic to guide the search:
after the normal re-segmentation step, we check all classes for “bad” morphs
that violate this principle: very frequent morphs in stem classes, and very rare
morphs in affix classes.14 With a certain probability π(T ) which depends only
on the simulated annealing temperature,15 all words that contain a bad morph
11 A problem for the directionality heuristic is compounding, where, e.g., in Finnish,

the FSM can jump back to a stem class, even after some suffix classes, as seen in the
examples in Sect. 2. We will model compounding in the future via a special “restart”
state in the grammar. Despite this, even for Finnish, with its heavy compounding,
the directional models still perform better than non-directional ones.

12 Here we divide 15 available states as: 2 classes for prefixes, 6 for stems, and 7 for
suffixes.

13 This is true in general (though a language may have some exceptionally rarely used
affix, which might happen to be less frequent than a very frequent stem).

14 We model this via two hyper-parameters: smax for maximum tolerated count of a
stem, and amin for minimum frequency of an affix. In the experiments, we set both
to 100.

15 For example, π(T ) can be e−T .
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are removed from the model in bulk (from the lexicon, and their transition and
emission counts), and re-segmented afresh. When T is high, π(T ) is small; as T
cools, π(T ) → 1.

6 Evaluation

Evaluation of morphology discovery is challenging, specifically since morpholog-
ical analysis is limited to segmentation—here, as well as in most prior work—
because in general it is not possible to posit definitively “correct” segmentation
boundaries, which by definition ignore allomorphy.

An evaluation based on probabilistic sampling is suggested in [23]. Another
scheme is suggested in the papers about the HUTMEGS “Gold-standard” eval-
uation corpus for Finnish, [6,7]. However, these approaches to evaluation are
problematic, in that they ignore the issue of consistency of the segmentation.

[7] observe correctly that positing a single “proper” morphological analysis for
a word w is not possible, in general. A motivating example is English w = tries:
it can be analyzed as tri+es or trie+s. In actuality, w has two morphemes, which
can have more than one allomorph—a stem {try-/tri-} or {try-/trie-}, and 3rd
person suffix {-s/-es} or {-s}. Restricting morphological analysis to segmentation
makes the problem ill-defined: it is not possible to posit a “proper” way to place
the morpheme boundary and then to expect an automatic system to discover that
particular way. HUTMEGS proposes “fuzzy” morpheme boundaries, to allow
the system free choice within the bounds of the fuzzy boundary—as long as the
system splits the word somewhere inside the boundary, it is not penalized.

Recent work has called into question the validity of evaluation schemes that
disregard the consistency of segmentations across the data, considering such
schemes as too permissive: the system should commit to one way of segmenting
similar words—its chosen “theory”—and then consistently segment according to
its theory—and should be penalized for violating its own theory by placing the
boundaries differently in similar words. We follow the evaluation scheme in [22],
which provides for gold-standard segmentations and an evaluation algorithm so
as to enforce consistency while giving the learning algorithm maximal benefit of
the doubt.

Consider again the example of tries. In the suggested gold standard, one
annotates the segmentation neither as tri-es nor as trie-s, but as tri

X· e
X· s—

the special markers (dots) indicate that this segmentation is “ambiguous”—can
be handled in more than one way. The label X identifies this particular kind of
ambiguity. (The gold-standard defines a separate set of labels for each language.)
In this case, the definition of X states that it accepts two “theories”: {10, 01}
as valid—i.e., a morpheme boundary in the first position (10), or in the second
(01), but not both (not 11; also not 00). Similar words: cries, dries, flies are then
annotated similarly in the gold-standard.

Suppose the words tries, flies, and applies are in the gold standard, annotated
with X as above, and the model segments them as: trie-s, flie-s, but appli-es.
We conclude that A. its preferred theory for handling X is to put the boundary
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in the second position (2 out of 3), and B. when it segmented appli-es it placed
the boundary incorrectly: it violated its own preferred theory (defined by the
majority of its choices). Thus its accuracy will be 2/3. The label X is used to
co-index possible “ambiguous” boundaries in the gold standard, for a particular
type of ambiguity. Annotators use these labels consistently across the evaluation
corpus.

6.1 Experiments

We test on data from Finnish and Turkish. For each language, the corpus con-
sists of about 100,000 distinct word forms, from texts of novels. Approximately
1000 words extracted at random from the data were annotated for the gold-
standard by at least two annotators with knowledge of morphology and native
proficiency.16

Ablation Studies: Shown in Table 1, confirm the gains in performance yielded
by the heuristics. The enhancements to the basic algorithm are simulated anneal-
ing (SA), directionality (Dir), natural classes (NC) and bulk re-segmentation
(Bu). Without SA, performance drops substantially. With SA, the table shows
the gain obtained from adding all possible combinations of the heuristics. It
might seem that adding directionality reduces the scores of the model, however,
adding heuristics built upon directionality help the model achieve better results
compared to the non-directional model.17

Comparison Studies: Are shown in Fig. 1, for Finnish and Turkish. Each point
in the plots represents a single run of an algorithm. The coordinates of each point
are its recall and precision; the accuracy of each run is in its label.

For comparison, we ran Morfessor CatMAP [8], on the same data, since it
currently obtains the best performance over all Morfessor variants, as explained
in [13]. FlatCat performs better than CatMAP with semi-supervised learning,
but falls short of CatMAP performance in the unsupervised setting. CatMAP
has a perplexity threshold parameter, b, “which indicates the point where a

Table 1. Ablation studies—Finnish

SA Dir NC Bu Recall Precis. F-1 Accuracy

− − − − 30.83 70.79 42.96 75.94

+ − − − 34.30 79.48 47.92 78.06

+ + − − 33.93 77.80 47.25 77.70

+ + + − 34.77 73.32 47.17 77.65

+ + + + 36.37 83.83 50.73 79.80

16 Disagreements between annotators were resolved. All annotated gold-standard data,
for Finnish and Turkish, will be made publicly available with this paper on-line.

17 To save space, we show results for Finnish only; other languages follow similar pat-
terns (included in final paper).
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Fig. 1. Precision vs. recall: A—Finnish data, B—Turkish data (Color figure online)

morph is as likely to be a prefix as a non-prefix” [8]. This parameter trades off
recall for precision; the more data there is, the higher b should be. As b grows,
words are split less, giving higher precision but lower recall. Running Morfessor
with varying 5 ≤ b ≤ 800, yields the red line in the plots. SMorph also has
hyper-parameters, which we test in the experiments. Probability ρ of a morph
boundary between two adjacent symbols during the initial random segmentation,
0.20–0.25; the number of classes K, 15; assignment of classes to prefix, stem and
suffix kinds, smax and amin.

The blue points in the plots correspond to runs of SMorph, with different
settings of the hyper-parameters,18 which can be optimized further, e.g., on a
development corpus.

The runs of SMorph show an improvement in terms of recall and precision
over Morfessor CatMAP: the blue points lie above the red curve. For example,
at a given level of recall, SMorph reaches higher precision. For Finnish, the gain
in precision is 2–8%; for Turkish, 2–7%. Conversely, at a given level of precision,
SMorph reaches higher recall; for very large b, Morfessor reaches higher recall,
but generally at a loss in precision. SMorph and Morfessor obtain similar accu-
racy values, though at a fixed level of recall SMorph has higher accuracy. More
fine-grained effects of the hyper-parameters on performance are to be explored
and investigated in future work.

Qualitative Evaluation of Classification: An important feature of SMorph

is that the morph classes it learns are of a high quality. Manual inspection
confirms that the classes group together morphs of a similar nature: noun-stem
classes separate from verb stems, classes of affixes of similar kinds, etc.; hence
the high precision.

As is natural in MDL, if some affixes appear frequently together, they will
eventually be learned as a single affix; this explains lower recall. However,

18 The parameters have not been tuned jointly; we started with values for the parame-
ters as above, and checked the effect of varying them independently. Choice of the
parameter values is driven by the observed total MDL cost (i.e., with no reference
to the gold-standard evaluations).
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this problem may be addressable as a post-processing step, after learning is
complete.19 (To be explored in future work.) Of course, evaluating the
classes quantitatively is difficult, hence we evaluate quantitatively only the
segmentations.

6.2 Error Analysis

A non-directional model trained on Finnish is shown in Fig. 2—with only 5
classes for clearer visualization. Each node shows the 8 most frequent morphs
emitted from it, as well as the number of distinct morphs (|Lex|) and emission
frequency (freq). Probabilities of transition between states are shown on the
edges. (Edges with probability <0.02 are omitted for clarity.) The model has
learned to often emit stems from states S1 and S5, and suffixes from S2, S3 and
S4. As expected, stem states are much larger than suffix states. They exhibit
different properties: S1 and S5 have much flatter distribution, while S3 and S4

have spiked distributions: a few morphs with very high frequencies, and many
with very low frequencies.

Further, S1 has mostly verbal stems, whereas S5 mostly nominal ones; S4 is
heavy on nominal suffixes, while S2 has mostly verbal ones.20

Fig. 2. Visualization of a model trained on Finnish data (with only 5 states)

7 Conclusions and Current Work

We have presented an algorithm for segmentation of a large corpus of words,
which improves upon the state of the art. There are several important differ-
ences between SMorph and Morfessor models. SMorph tries to approach the
19 Hence it is easier to recover from recall errors (false negatives) than from precision

errors (false positives), and thus they are not equally important in this setting. Note
that we do not consider F-score in the evaluation, but rather follow both recall and
precision. F-score favors points where recall and precision are as near as possible.
For example, whereas Morfessor trades off precision for recall to achieve a higher
F-score, we do not consider it a benefit.

20 This shows that the model indeed begins to resemble a FSM that we hope to achieve.
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problem in a systematic way by grouping the discovered morphs into classes that
respect general linguistic principles: directionality of morphotactics and natural
differences between stems vs. affixes. It starts from a random initial model with
no prior assumptions about the language, and learns to segment the data by
optimizing a two-part cost function and Bayesian Marginal Likelihood, different
from coding schemes used in prior work. The model is evaluated using a scheme,
which avoids some of the problems in earlier evaluations.

To assure replicability, all gold-standard segmentations and code are made
publicly available. Future improvements include those mentioned above, learning
the optimal number of classes automatically, which should be reflected in the
code-length, modeling compounding and allomorphy.
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