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Abstract. Factored neural machine translation (FNMT) is founded on
the idea of using the morphological and grammatical decomposition of
the words (factors) at the output side of the neural network. This archi-
tecture addresses two well-known problems occurring in MT, namely the
size of target language vocabulary and the number of unknown tokens
produced in the translation. FNMT system is designed to manage larger
vocabulary and reduce the training time (for systems with equivalent tar-
get language vocabulary size). Moreover, we can produce grammatically
correct words that are not part of the vocabulary. FNMT model is evalu-
ated on IWSLT’15 English to French task and compared to the baseline
word-based and BPE-based NMT systems. Promising qualitative and
quantitative results (in terms of BLEU and METEOR) are reported.
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1 Introduction and Related Works

In contrast to the traditional phrased-based statistical machine translation [12]
that automatically translates subparts of the sentences, standard Neural
Machine Translation (NMT) systems use the sequence to sequence approach at
word level and consider the entire input sentence as a unit for translation [2,5,25].

Recently, NMT showed better accuracy than existing phrase-based systems
for several language pairs. Despite these positive results, NMT systems still face
several challenges. These challenges include the high computational complex-
ity of the softmax function which is linear to the target language vocabulary
size (Eq. 1).

pi = eoi/

N∑

r=1

eor for i ∈ {1, . . . , N} (1)

where oi are the outputs, pi their softmax normalization and N the total number
of outputs.

In order to solve this issue, a standard technique is to define a short-list
limited to the s most frequent words where s << N . The major drawback
of this technique is the growing rate of unknown tokens generated at the out-
put. Another work around has been proposed in [11] by carefully organising the
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batches so that only a subset K of the target vocabulary is possibly generated
at training time. This allows the system to train a model with much larger tar-
get vocabulary without substantially increasing the computational complexity.
Another possibility is to define a structured output layer (SOUL) to handle the
words not appearing in the shortlist. This allows the system to always apply
the softmax normalization on a layer with reduced size [14]. The problem of
unknown words was addressed making use of the alignments produced by an
unsupervised aligner [16]. The unknown generated words are substituted in a
post-process step by the translation of their corresponding aligned source word
or copying the source word if no translation is found. The translation of the
source word is made by means of a dictionary.

Other recent work have used subword units instead of words. In [24], some
unknown and rare words are encoded as subword units with the Byte Pair Encod-
ing (BPE) method. Authors show that this can also generates words unseen at
training time. As an extreme case, the character-level neural machine transla-
tion has been presented in several works [6,7,15] and showed very promising
results. The character-level NMT architectures are composed of many layers, to
deal with the long distance dependencies, increasing aggressively the computa-
tional complexity of the training process. In [22] has been shown that character-
level decoders outperform subwords units using BPE method when processing
unknown words, but they perform worse when extracting morphosyntactic infor-
mation about the sentences, due to the long distances.

Among other previous works, our work can be seen as a continuation of [9].
Several works have used factors as additional information for the input words
in neural language modelling with interesting results [1,18,26]. More recently,
factors have also been integrated into a word-level NMT system as additional
linguistic input features [23]. Unlike these previous works, we are considering
factors as translation unit. We refer to factors as some linguistic annotations
at word level, e.g. the Part of Speech (POS) tag, number, gender, etc. The
advantages of using factors as translation unit are two-fold: reducing the output
vocabulary size and allowing to generate surface forms which are never seen in
the training data.

Factors were first introduced for NMT at output side in [9] where two fac-
tored synchronous symbols are simultaneously generated. Authors presented an
investigation of the architecture of their factored NMT system to show that
better results are obtained using a feedback of the two generated outputs con-
catenation.

Our work is different from previous efforts in that we consider only the best
type of feedback for the network. We also introduce an additional factor about
the case information (lowercase, uppercase or in capitals) and evaluate using a
different translation test. Moreover, we apply an unknown words (unk) replace-
ment technique using the alignments of the attention mechanism to replace the
generated unknown words in target side. For that, we make use of an unigram
dictionary to find the translation of the source word corresponding to the gen-
erated unk.
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We compare this architecture to the state of the art BPE approach and
the classic word-level NMT approach on the English to French dataset from
IWSLT’15 evaluation campaign. We provide, in addition a quantitative and qual-
itative study about the obtained results.

The remainder of this paper is organized as follows: Sect. 2 describes the
attention-based NMT system and Sect. 3 its extension using the factored app-
roach. In Sect. 4, we describe the experiments and the obtained results. Finally,
Sect. 5 concludes the paper and presents the future work.

2 Neural Machine Translation

The standard NMT model consists of a sequence to sequence encoder-decoder
of two recurrent neural networks (RNN), one used by the encoder and the other
by the decoder. The source language sequence is mapped into an embedded
dimension in the encoder and the decoder maps the representation back to a
target language sequence.

DECODERENCODER

Attention 
Mechanism

x1 x2 xN· · ·

x1x2xN ···
· · ·

AnnotationsBidirectional RNN

GRU1 GRU2

∑
αijai
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LR

LOSoftmax

Φ
∑

Word

Fig. 1. Attention-based NMT system (Color figure online)

The architecture includes a bidirectional RNN encoder (see left part of
Fig. 1) equipped with an attention mechanism [2]. Each input sentence word xi

(i ∈ 1 . . . N with N the source sequence length) is encoded into an annotation ai

by concatenating the hidden states of a forward and a backward RNN provided
by a gated recurrent unit (GRU) [5] to control the flow of information. These
annotations a1 . . . aN represents the whole sentence with a focus on the word
being processed. One difference from the architecture of [2] is that the decoder
contains a conditional GRU [8] which consists of two GRUs interspersed with the
attention mechanism (see right top part of the Fig. 1). The first GRU combines
the embedding of the previous decoded token and the previous hidden state in
order to generate an intermediate representation which is an input of the atten-
tion mechanism and the second GRU. The attention mechanism (bottom yellow
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part of the Fig. 1) computes a source context vector Cj as a convex combina-
tion of annotation vectors, where the weights of each annotation are computed
locally using a feed-forward network. These weights can be used to align the
target words with the source positions. The second GRU generates the hidden
state of the conditional GRU by looking at the output of the first GRU and the
context vector Cj . The decoder RNN takes as input the embedding of the previ-
ous output word (feedback of the network) in the first GRU, the context vector
Cj in the second GRU and its hidden state. The output layer LO is connected to
the network through a hyperbolic tangent sum operation Φ(

∑
) which takes as

input the embedding of the previous output word as well as the context vector
and the output of the decoder from the second GRU (both adapted with a linear
transformation, respectively, LC and LR). Finally, the output probabilities for
each word in the target vocabulary are computed with a softmax function. The
word with the highest probability is the translation output at each timestep.
The encoder and the decoder are trained jointly to maximize the conditional
probability of the reference translation.

3 Factored Neural Machine Translation

The Factored Neural Machine Translation (FNMT) [9] is an extension of the
standard NMT architecture which allows the system to generate several output
symbols at the same time.

For the sake of simplicity, only two symbols are generated: the lemma and
the concatenation of the different factors (verb, tense, person, gender, number
and case information). The target words are then represented by a factored
output: lemmas and factors. Factors may help the translation process providing
grammatical information to enrich the output. The task of this work is English to
French translation, English is a grammatically poor language and factors do not
help for its translation, this has been tested in previous experiments. Therefore,
we apply the factors only in the target side when translating to French which is
a grammatically rich language. In the example shown in Fig. 3, from the verbal
form in French devient, we obtain the lemma devenir and its factors VP3#SL
(Verb, in Present, 3rd person, no gender (#), Singular and Lowercased form).
Moreover, we can see the word interéssant with the lemma interéssant and
factors Adj##MSL (Adjective, no tense (#) and no person (#), Masculine
gender, Singular number and Lowercased form). The morphological analyser
MACAON toolkit [17] is used to obtain the lemma and factors for each word
taking into account its context with nearly 100% accuracy. The first entry is
used in the few cases that MACAON proposes multiple words (e.g. same word
written in two forms).

The FNMT architecture is presented in Fig. 2. The encoder and attention
mechanism of Fig. 1 remain unchanged. However, the decoder has been modified
to get multiple outputs. The hidden state of the conditional GRU (cGRU) is
shared to produce simultaneously several outputs. The output from the layer
LO has been diversified to two softmax layers, one to generate the lemma and
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Fig. 2. Detailed view of the decoder of the Factored NMT system

Fig. 3. Examples of NMT and FNMT outputs aligned against the source sentence

the other to generate the factors. An additional design decision is related to
the decoder feedback. Contrary to the word based model, where the feedback is
naturally the previous word (see Fig. 1), we have multiple choices where multi-
ple outputs are generated for each decoding time-step. We have decided to use
the concatenation of the embeddings of both generated symbols based on the
work [9].

The FNMT model may lead to sequences with a different length, since lem-
mas and factors are generated simultaneously but separately (each sequence
ends after the generation of the end of sequence <eos> token). To avoid this,
the sequences length is decided based on the lemmas stream length (i.e. the
length of the factors sequence is constrained to be equal to the length of the
lemma sequence). This is motivated by the fact that the lemmas contain most
of the information of the final surface form (word).

Once we obtain the factored outputs from the neural network, we need to
combine them to obtain the surface form (word representation). This operation
is also performed with the MACAON tool, which, given a lemma and some
factors, provides the word. Word forms given by MACAON toolkit have a 99%
success rate. In the cases (e.g. name entities) that the word corresponding to the
lemma and factors is not found, the system outputs the lemma itself.
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4 Experiments

We performed a set of experiments for Factored NMT (FNMT) and compared
them with the word-based NMT and BPE-based NMT systems.

4.1 Data Processing and Selection

The systems are trained on the English to French (EN-FR) Spoken Language
Translation task from IWSLT 2015 evaluation campaign1. We applied data selec-
tion using modified Moore-Lewis filtered by XenC [21] to obtain a sub part
of the available parallel corpora (news-commentary, united-nations, europarl,
wikipedia, and two crawled corpora). The Technology Entertainment Design
(TED) [4] corpus has been used as in-domain corpus.

We preprocess the data to convert html entities and filter out the sentences
with more than 50 words for both source and target languages. Finally, we obtain
a corpus of 2M sentences with 147k unique words for the English side and 266k
unique words for the French side. French vocabulary is bigger than English since
French is more highly inflected language. Table 1 shows training, development
and testing sets statistics.

Table 1. Datasets statistics

Data Corpus name Datasets # Sents # Words EN-FR

Training train15 data selection 2M 147–266k

Development dev15 dev10 + test10 + test13 3.6k 7.3–8.9k

Testing test15 test11 + test12 1.9k 4.5–5.4k

4.2 Training

Models are trained using NMTPY [3], an NMT toolkit in Python based on
Theano2. The following hyperparameters have been chosen to train the systems.
The embedding and recurrent layers have the dimensions 620 and 1000, respec-
tively. The batch size is set to 80 sentences and the parameters are trained
using the Adadelta [27] optimizer. We clipped the norm of the gradient to be
no more than 1 [20] and initialize the weights using Xavier [10]. The systems
are validated on dev15 dataset using early stopping based on BLEU [19]. The
vocabulary size of the source language is set to 30K. The output layer size of the
baseline NMT system is set to 30K. For the sake of comparability and consis-
tency, the same value (30k) is used for the lemma output of the FNMT system.
This 30K FNMT vocabulary includes 17k lemmas obtained from the original
NMT vocabulary (30k word level gives 17k lemmas when all the derived forms

1 https://sites.google.com/site/iwsltevaluation2015.
2 https://github.com/lium-lst/nmtpy.

https://sites.google.com/site/iwsltevaluation2015
https://github.com/lium-lst/nmtpy
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of the verbs, nouns, adjectives, etc. are discarded) increased with additional new
lemmas to fit the 30K desired value. The factors have 142 different units in their
vocabulary. When it comes to combining the lemmas and the factors vocabulary,
the system is able to generate 172K different words, using the external linguistic
resources, which is 6 times bigger than a standard word-based NMT vocabulary.

For BPE systems, bilingual vocabulary has been built using source and tar-
get language applying the joint vocabulary BPE approach. In order to create
comparable BPE systems, we set the number of merge operations for the BPE
algorithm (the only hyperparameter of the method) as 30K minus the number
of character according to the paper [24]. Then, we apply a total of 29388 merge
operations to learn the BPE models on the training and validation sets. During
the decoding process, we use a beam size of 12 as used in [2].

4.3 Quantitative Results

The Factored NMT system aims at integrating linguistic knowledge into the
decoder in order to overcome the restriction of having a large vocabulary at
target side. We first compare our system with the standard word-level NMT
system. For the sake of comparison with state of the art systems, we have built
a subword system using the BPE method. Subwords were calculated at the input
and the output side of the neural network as described in [24]. The results are
measured with two automatic metrics, the most common metric for machine
translation BLEU and METEOR [13]. We evaluate on test15 dataset from the
IWSLT 2015 campaign and results are presented in Table 2.

Table 2. Results on IWSLT test15. %BLEU and %METEOR performance of NMT
and FNMT systems with and without UNK replacement (UR) are presented. For each
system we provide the number of generated UNK tokens in the last column

Model %METEOR↑ %BLEU↑ #UNK

Word Word Lemma Factors

NMT/+UR 62.21/63.38 41.80/42.74 45.10 51.80 1111

BPE 62.87 42.37 45.96 53.31 0

FNMT/+UR 64.10/64.81 43.42/44.15 47.18 54.24 604

As we can see from the Table 2 results, the FNMT system obtains better
%BLEU and %METEOR scores compared to the state of the art NMT and
BPE systems. An improvement of about 1 %BLEU point is achieved compared
to the best baseline system (BPE). This improvement is even bigger (1.4 %BLEU
point) when UNK replacement is applied to both systems. In a quest to better
understand the reasons of this improvement, we also computed the %BLEU
scores of each output level (lemmas and factors) for FNMT. Theses scores are
presented in Table 2. The lemma and factors scores of NMT and BPE systems
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are obtained through a decomposing of their word level output into lemma and
factors. We observe yet again that FNMT systems gives better score at both
lemma and factors level. Replacement of unknown words has been performed
using the alignments extracted from the attention mechanism. We have replaced
the generated UNK tokens by translating its highest probability aligned source
word. We see an improvement of around 1 point %BLEU score in both NMT
and FNMT systems.

The last column of Table 2 shows, for each system, the number of generated
UNK tokens. As shown in the table our FNMT system produces half of the UNK
tokens compared to the word-based NMT system. This tends to prove that the
Factored NMT system effectively succeed in modelling more words compared to
the word based NMT system augmenting the generalization power of our model
and preserving manageable output layer sizes. Though we can see that BPE
system does not produce UNK tokens, this is not reflected in the scores. Indeed,
this can be due to the possibility of generation of incorrect words using BPE
units in contrast to the FNMT system.

4.4 Qualitative Analysis

The strengths of FNMT are considered under this qualitative analysis. We have
studied and compared the translation outputs of NMT at word-level and BPE-
level with the ones of FNMT systems. Two examples are presented in Fig. 3 and
Table 3.

Table 3. Examples of translations with NMT, BPE and FNMT systems (without
unknown words replacement)

The reference translation of the source sentence presented in Fig. 3 is “mais
voilà où ça devient intéressant”. As we can see, contrary to the baseline NMT
system, the FNMT system matches exactly the reference and thus produces the
correct translation. An additional interesting observation is that the alignment
provided by the attention mechanism seems to be better defined and more help-
ful when using factors. Also, one can notice the difference between the attention
distributions made by the systems over the source sentence. The NMT system
first translated “here” into “là”, added a coma, and then was in trouble for trans-
lating the rest of the sentence, which is reflected by the rather fuzzy attention
weights. The FNMT system had better attention distribution over of the source
sentence in this case.
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Table 3 shows another example comparing NMT, BPE and FNMT systems.
The NMT system generated an unknown token (UNK) when translating the
English word “baffled”. We observe that BPE translates “baffled” to “bafs” which
does not exist in French. This error probably comes from the shared vocabulary
between the source and target languages creating an incorrect word very similar
to its aligned source tokens. FNMT translates it to “dconcerts” which is a better
translation than in the reference. One should note that it is not generated by
the unknown word replacement method. However, for this particular example,
an error on the factors leads to the word “sont” instead of “sommes”, resulting
in lower automatic scores for FNMT output.

5 Conclusion

In this paper, the Factored NMT approach has been further explored. Factors
based on linguistic a priori knowledge have been used to decompose the target
words. This approach outperforms a strong baseline system using subword units
computed with byte pair encoding. Our FNMT system is able to model an almost
6 times bigger word vocabulary with only a slight increase of the computational
cost. By these means, the FNMT system is able to halve the generation of
unknown tokens compared to word-level NMT. Using a simple unknown word
replacement procedure involving a bilingual dictionary, we are able to obtain
even better results (+0.8 %BLEU compared to previous best system).

Also, the use of external linguistic resources allows us to generate new word
forms that would not be included in the standard NMT system shortlist. The
advantage of this approach is that the new generated words are controlled by
the linguistic knowledge, that avoid producing incorrect words, as opposed to
actual systems using BPE. We demonstrated the performance of such a system
on an inflected language (French). The results are very promising for use with
highly inflected languages like Arabic or Czech.
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