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Abstract. Automatic Speech Recognition (ASR) rarely addresses the
punctuation of the obtained transcriptions. Recently, Recurrent Neural
Network (RNN) based models were proposed in automatic punctuation
exploiting wide word contexts. In real-time ASR tasks such as closed
captioning of live TV streams, text based punctuation poses two partic-
ular challenges: a requirement for low latency (limiting the future con-
text), and the propagation of ASR errors, seen more often for informal or
spontaneous speech. This paper investigates Maximum Entropy (Max-
Ent) and RNN punctuation models in such real-time conditions, but also
compares the models to off-line setups. As expected, the RNN outper-
forms the MaxEnt baseline system. Limiting future context results only
in a slighter performance drop, whereas ASR errors influence punctua-
tion performance considerably. A genre analysis is also carried out w.r.t.
the punctuation performance. Our approach is also evaluated on TED
talks within the IWSLT English dataset providing comparable results to
the state-of-the-art systems.

Keywords: Punctuation recovery · Recurrent Neural Network ·
LSTM · Maximum Entropy · Low latency real-time modeling

1 Introduction

Punctuation insertion into the output of Automatic Speech Recognition (ASR)
is a known problem in speech technology. The importance of having punctua-
tions in automatically generated text – transcripts, indexing, closed captions,
for metadata extraction etc. – has been outlined several times [1,16], as punc-
tuation helps both human readability, and also eventual subsequent processing
with text based tools, which usually require the punctuation marks at the very
first step of their operation: the tokenization. In dictation systems, punctuation
marks can be explicitly dictated; however, in several other domains where ASR
is used, this is not possible.
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Two basic approaches can be distinguished for automatic punctuation,
although they are often used in combination: prosody and text based approaches.
In general prosody based approaches require less computation, less training data
and hence can result in lightweight punctuation models. They are also more
robust to ASR errors; recently proposed text based approaches on the other
hand provide mostly more accurate punctuation, but are more sensitive to ASR
errors and may introduce high latency due to the processing of a wide context,
requiring extensive computations and also future context which directly results
in high latency.

In this paper we focus on reducing this latency by still maintaining the accu-
racy provided by text based models. We demonstrate systems intended to be
used for punctuation of closed-captioned data. ASR technology is widely used by
television companies to produce closed captions especially for live programs [21],
which require almost real-time processing with little latency.

Much effort has been devoted to develop reliable punctuation restoration
algorithms, early approaches proposed to add punctuation marks to the N-gram
language model of the ASR as hidden events [8,23]. These models have to be
trained on huge corpora to reduce data sparsity [8]. More sophisticated sequence
modeling approaches were also inspired by this idea: a transducer alike approach
getting a non-punctuated text as input is capable of predicting punctuation
as was presented in numerous works [1,3,11], with frameworks built on top
of Hidden Markov Models (HMM), Maximum Entropy (MaxEnt) models or
conditional random fields, etc. MaxEnt models allow for any easy combination
of textual and prosodic features into a common punctuation model [10]. In a
comprehensive study [2], many features were compared in terms of their effect
on punctuation accuracy of a MaxEnt model. It was found that the most powerful
textual features were the word forms and part-of-speech (POS) tags, whereas the
best prosodic feature was the duration of inter-word pauses.

Applying a monolingual translation paradigm for punctuation regarded as a
sequence modeling task was also proposed in [5], which also allowed for consider-
ably reducing time latency. Recently, sequence-to-sequence modeling deep neural
network based solutions have been also presented: taking a large word-context
and projecting the words via an embedding layer into a bidirectional Recur-
rent Neural Network (RNN) [22], high quality punctuation could be achieved.
RNNs are successfully used in many sequence labeling tasks as they are able
to model large contexts and to learn distributed features of words to overcome
data sparsity issues. The first attempt to use RNN for punctuation restoration
was presented in [24], where a one-directional LSTM [9] was trained on Estonian
broadcast transcripts. Shortly after, Tilk and Alumäe introduced a bidirectional
RNN model using GRU [7] together with attention mechanism, which outper-
formed previous state-of-the-art on Estonian and English IWSLT datasets [25].
In a recent study [15], capitalization and punctuation recovery are treated as cor-
related multiple sequence labeling tasks and modeled with bidirectional RNN.
In [14], a prosody based punctuation approach was proposed using an RNN on
top of phonological phrase sequence modeling.
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In this paper, we introduce a lightweight RNN-based punctuation restoration
model using bidirectional LSTM units on top of word embeddings, and compare
its performance to a MaxEnt model. We pay a special attention to low latency
solutions. Both approaches are evaluated on automatic and manual transcripts
and in various setups including on-line and off-line operation. We present results
on Hungarian broadcast speech transcripts and the IWSLT English dataset [4] to
make the performance of our approach comparable to state-of-the-art systems.
Apart form the purely prosody based approach outlined in [14], we are not aware
of any prior work for punctuation restoration for Hungarian speech transcripts.

Our paper is structured in the following way: first we present the used
datasets in Sect. 2, then we move on to presenting the experimental systems
in Sect. 3. The results of Hungarian and English Punctuation Restoration tasks
are presented and discussed in Sect. 4. Our conclusions and future ideas are
drawn in Sect. 5.

2 Data

2.1 The Hungarian Broadcast Dataset

The Hungarian dataset consists of manually transcribed closed captions made
available by the Media Service Support and Asset Management Fund (MTVA),
Hungary’s public service broadcaster. The dataset contains captions for various
TV genres enabling us to evaluate the punctuation models on different speech
types, such as weather forecasts, broadcast news and conversations, magazines,
sport news and sport magazines. We focus on the restoration of those punc-
tuations, which have a high importance for understandability in Hungarian:
commas, periods, question marks and exclamation marks. The colons and semi-
colons were mapped to comma. All other punctuation symbols are removed from
the corpora. We reserve a disjunct 20% of the corpus for validation and use a
representative test set, not overlapping with training and validation subsets. For
further statistics about training and test data we refer the reader to Table 1.

Table 1. Statistics of the Hungarian dataset

Genres Training & Validation Test

#Words #Com #Per #Que #Excl #Words #Com #Per #Ques #Excl WER

Weather 478K 40K 31.5K 30 730 2.4K 250 200 0 20 6.8

Brc.-News 3493K 279K 223K 3.5K 4.6K 17K 1.5K 1K 20 50 10.1

Sport News 671K 55K 39.5K 280 2K 6K 500 400 2 30 21.4

Brc.-Conv. 4161K 533K 225K 26.5K 4K 46.8K 6.3K 2.6K 250 130 24.7

Sport mag. - - - - - 22.7K 2K 1.4K 100 50 30.3

Magazine 4909K 732K 376K 72K 36K 10.4K 1.5K 700 150 70 38.7

Mixed 1526K 187K 102K 11K 11.4K 30.7 4K 1.7K 280 150 -

ALL 15238 K 1826K 997K 113K 58.8K 136K 16K 8K 800 500 24.2
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The automatic transcription of the test set is carried out with an ASR system
optimized for the task (close captioning of live audio) [27]. The language model
for the ASR was trained on the same corpus as the punctuation model and was
coupled with a Deep Neural Network based acoustic model trained on roughly
500 hours of speech using the Kaldi ASR toolkit [18]. The average word error rate
(WER) of the automatic transcripts was around 24%, however showed a large
variation depending on genre (see later Table 1). Note, that for Mixed category
there was no available audio data in the test database.

2.2 The English IWSLT Dataset

The IWSLT dataset consists of English TED talks transcripts, and has recently
became a benchmark for evaluating English punctuation recovery models [4,15,
24,25]. We use the same training, validation and test sets as the studies above,
containing 2.1 M, 296 K and 13 K words respectively. This dataset deals with
only three types of punctuations: comma, period and question mark.

3 Experimental Setups

3.1 MaxEnt Model

The maximum entropy (MaxEnt) model was suggested by Ratnaparkhi for POS
Tagging [19]. In his framework, each sentence is described as a token (word)
sequence. Each classified token is described with a set of unique features. The
system learns the output labels based on these. In supervised learning, the output
labels are hence assigned to the token series. To determine the set of features,
the MaxEnt model defines a joint distribution through the available tags and the
current context, which can be controlled with a radius parameter. Pre-defined
features such as word forms, capitalization, etc. can also be added.

We use the MaxEnt model only with word form-related input features, and
all tokens are represented in lower case. To obtain these input features, we
use Huntag, an open-source, language independent Maximum Entropy Markov
Model-based Sequential tagger for both Hungarian and English data [20].

The radius parameter of the MaxEnt tagger determines the size of the con-
text considered. By default, left (past) and right (future) context is taken into
account. We will refer to this setup as off-line mode. As taking future context
into account increases latency, we consider the limit of it, which we will refer to
by on-line mode. In the experiments we use round brackets to specify left and
right context, respectively. Hence (5,1) means that we are considering 5 past and
1 future token actually.

3.2 Recurrent Neural Networks

We split the training, validation and test corpus into short, fixed-length sub-
sequences, called chunks (see the optimized length in Table 2), without over-
lapping, i.e. such that every token appears once. A vocabulary is built from
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the k-most common words from the training set, by adding a garbage collector
“Unknown” entry to map rare words. Incomplete sub-sequences were padded
with zeros. An embedding weight matrix was added based on pre-trained embed-
ding weights and the tokens of the vocabulary.

We investigate the performance of an unidirectional and a bidirectional RNN
model in our experiments. Our target slot for punctuation prediction is preceding
the actual word. The used architectures are presented in Fig. 1.

Our RNN models (WE-LSTM and WE-BiLSTM, named after using “Word
Embedding”) are built up in the following way: based on the embedding matrix,
the preprocessed sequences are projected into the embedding space (xt represents
the word vector x at time step t). These features are fed into the following layer
composed of LSTM or BiLSTM hidden cells, to capture the context of xt. The
output is obtained by applying a softmax activation function to predict the yt
punctuation label for the slot preceding the current word xt. We chose this simple
and lightweight structure to allow for real-time operation with low latency.

Fig. 1. Structure of WE-BiLSTM (left) and WE-LSTM (right) RNN model

The Hungarian punctuation models were trained on the 100 K most frequent
words in the training corpus, by mapping the remaining outlier words to a
shared “Unknown” symbol. RNN-based recovery models use 600-dimensional
pre-trained Hungarian word embeddings [13]. This relative high dimensionality
of the embeddings comes from the highly agglutinating nature of Hungarian. In
our English RNN-models, a 100-dimensional pre-trained “GloVe” word embed-
ding [17] is used for projection. During training, we use categorical cross-entropy
cost function and also let the imported embeddings updated.

We performed a systematic grid search optimization for hyperparameters of
the RNNs on the validation set: length of chunks, vocabulary size, number of
hidden states, mini-batch size, optimizers. We also use early stopping to prevent
overfitting, controlled with patience. Table 2 summarizes the final values of each
hyperparameter used in the Hungarian and the English WE-BiLSTM and WE-
LSTM models, also including those ones which were inherited from [25], to ensure
a partial comparability.
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Table 2. Hyperparameters of WE-BiLSTM and WE-LSTM models

Language Model Chunk
length
(#words)

Vocab. Size
(#words)

Word
embedding
dimension

#Hidden
states

Batch size Optimizer Patience

HUN WE-BiLSTM 200 100 000 600 512 128 RMSProp 3
HUN WE-LSTM 256 2
EN WE-BiLSTM 200 27 244 (by [25]) 100 (by [25]) 256 2
EN WE-LSTM 250

As for the MaxEnt setup, we differentiate low latency and lightweight on-line
mode, and robust off-line mode using the future context. All RNN models for
punctuation recovery were implemented with the Keras library [6], trained on
GPU. The source code of the RNN models is publicly available1.

We briefly mention that beside word forms, we were considering other tex-
tual features too: lemmas, POS-tags (also suggested by [26]) and morphological
analysis. The latter were extracted using the magyarlánc toolkit, designed for
morphological analysis and dependency parsing in Hungarian [28]. Neverthe-
less, as using word forms yielded the most encouraging results, and also as fur-
ther analysis for feature extraction increases latency considerably, the evaluated
experimental systems rely on word forms features only, input to the embedding
layers.

4 Results and Discussion

This section presents the punctuation recovery results for the Hungarian and
English tasks. For evaluation, we use standard information retrieval metrics such
as Precision (Pr), Recall (Rc), and the F1-Score (F1). In addition, we also cal-
culate the Slot Error Rate (SER) [12], as it is able to incorporate all types of
punctuation errors – insertions (Ins), substitutions (Subs) and deletions (Dels)
– into a single measure:

SER =
C(Ins) + C(Subs) + C(Del)

C(totalslots)
, (1)

for slots considered following each word in the transcription (in (1) C(.) is the
count operator).

4.1 Hungarian Overall Results

First, we compare the performance of the baseline MaxEnt sequence tagger (see
Subsect. 3.1) to the RNN-based punctuation recovery system (see Subsect. 3.2)
on the Hungarian broadcast dataset. Both approaches are presented in two con-
figurations. In the on-line mode punctuations are predicted for the slot preceding
the current word in the input sequence resulting in a low latency system, suit-
able for real-time application. In the off-line mode, aimed at achieving the best

1 https://github.com/tundik/HuPP.

https://github.com/tundik/HuPP
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result with the given features and architecture, the future word context is also
exploited. Please note that hyperparameters of all approaches and configurations
were optimized on the validation set as explained earlier (see Sect. 3).

The test evaluations are presented in Table 3 for the reference and in Table 4
for the automatic (ASR) transcripts, respectively. In the notation of MaxEnt
models (i, j), i stands for the backward (past), whereas j stands for the forward
(future) radius. As it can be seen, the prediction results for comma stand out
from the others for all methods and configurations. This can be explained by
the fact that Hungarian has generally clear rules for comma usage. In contrast
to that, period prediction may also benefit from acoustic information, which
assumption is supported by the results in [14], showing robust period recovery
with less effective comma restoration.

Table 3. Punctuation restoration results for Hungarian reference transcripts

Reference transcript Model Comma Period Question Exclamation SER
Pr Rc F1 Pr Rc F1 Pr Rc F1 Pr Rc F1

Off-line mode MaxEnt-(19, 19) 72.5 59.6 65.5 52.1 40.0 45.2 55.7 21.8 31.3 31.1 31.5 31.3 63.5
WE-BiLSTM 72.9 71.2 72.0 59.1 56.1 57.6 52.4 38.7 44.5 51.3 36.1 42.4 50.1

On-line mode MaxEnt-(25, 1) 71.8 58.1 64.2 47.5 35.7 40.8 50.4 16.2 24.5 29.3 33.3 31.2 66.9
WE-LSTM 72.7 69.5 71.1 56.2 48.3 52.0 60.4 31.1 41.1 61.1 29.4 39.7 53.6

As Table 3 shows, switching to the RNN-based punctuation restoration for
Hungarian reference transcripts reduces SER by around 20% relative compared
to the baseline MaxEnt approach. The WE-BiLSTM and WE-LSTM are espe-
cially beneficial in restoring periods, question marks and exclamation marks as
they are able to exploit large contexts much more efficiently than the MaxEnt
tagger. Limiting the future context in on-line configuration causes much less
deterioration in results than we had expected. The features from the future
word sequence seem to be useful if task requires maximizing recall, otherwise
the WE-LSTM is an equally suitable model for punctuation recovery.

Table 4. Punctuation restoration results for Hungarian ASR transcripts

ASR transcript Model Comma Period Question Exclamation SER
Pr Rc F1 Pr Rc F1 Pr Rc F1 Pr Rc F1

Off-line mode MaxEnt-(19, 19) 64.5 55.8 59.9 41.1 31.2 35.6 41.2 8.8 14.4 48.8 17.1 25.4 79.2
WE-BiLSTM 63.9 67.7 65.7 50.5 49.0 49.8 37.7 24.1 29.4 60.9 24.0 34.4 70.1

On-line mode MaxEnt-(25, 1) 64.3 54.9 59.2 38.9 29.4 33.5 36.0 7.1 11.9 47.1 20.6 28.6 81.3
WE-LSTM 63.8 65.1 64.4 47.8 42.0 44.7 48.5 20.5 28.9 61.8 21.7 32.1 73.1

As outlined in the introduction, limiting the future context and propagation
of ASR errors into the punctuation recovery pipeline are considered to be the
most important factors hindering effective recovery of punctuations in live TV
streams. Results confirm that a large future context is less crucial for robust
recovery of punctuations, contradictory to our expectations. In contrast, ASR
errors seem to be more directly related to punctuation errors: switching from ref-
erence transcripts to ASR hypotheses resulted in 15–20% increase in SER (see
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Table 4). Although the performance gap is decreased between the two approaches
in case of input featuring ASR hypothesis, RNN still outperforms MaxEnt base-
line by a large margin.

4.2 Hungarian Results by Genre

The Hungarian test database can be divided into 6 subsets based on the genres
of the transcripts (see Table 1). We also analyzed punctuation recovery for these
subsets, hypothesizing that more informal and more spontaneous genres are
harder to punctuate, in parallel to the more ASR errors seen in these scenarios.
Some of the punctuation marks for specific genres were not evaluated (see “N/A”
in Table 1), if the Precision or Recall was not possible to be determined based
on their confusion matrix.

As the RNN-based approach outperformed the MaxEnt tagger for every
genre, we decided to include only results of WE-BiLSTM and WE-LSTM sys-
tems in Tables 5 and 6 for better readability.

Table 5. Hungarian reference transcript results by genres

Reference transcript Genre Comma Period Question Exclamation SER
Pr Rc F1 Pr Rc F1 Pr Rc F1 Pr Rc F1

RNN Off-line mode Weather 61.2 54.3 57.5 46.7 46.7 46.7 N/A N/A N/A 90.0 45.0 60.0 69.3
Brc.-News 89.9 84.4 87.1 84.3 90.7 87.3 91.7 50.0 64.7 83.9 56.5 67.5 20.0

Sport news 68.3 60.6 64.2 49.4 51.4 50.4 N/A N/A N/A 75.0 30.0 42.9 67.0
Brc.-Conv. 80.4 74.5 77.3 63.9 64.9 64.4 63.0 46.4 53.5 88.9 18.5 30.6 38.7
Sport mag. 61.2 61.1 61.1 43.9 49.3 46.5 55.2 37.5 44.7 38.5 9.4 15.2 73.1
Magazine 67.6 67.6 67.6 45.1 46.3 45.7 50.5 29.7 37.5 50.0 5.6 10.1 58.6

RNN On-line mode Weather 60.2 57.5 58.8 45.7 37.9 41.4 N/A N/A N/A 87.5 35.0 50.0 70.6
Brc.-News 88.4 83.1 85.7 86.6 81.3 83.9 75.0 40.9 52.9 100.0 67.4 80.5 24.1

Sport news 68.7 57.2 62.4 42.4 37.5 39.8 N/A N/A N/A 90.0 60.0 72.0 74.2
Brc.-Conv. 80.1 74.0 76.9 66.7 54.8 60.1 63.0 45.6 52.9 77.6 29.2 42.5 40.8
Sport mag. 60.8 59.7 60.3 42.3 34.8 38.2 53.3 38.3 44.5 20.0 7.5 11.0 77.3
Magazine 67.6 65.1 66.3 43.5 32.8 37.4 57.3 27.2 36.9 36.4 11.3 17.2 61.5

If we compare the results to the statistics in Table 1, it can be seen that the
punctuation recovery system performed best on those genres (broadcast news,
broadcast conversations, magazine), for which we had the most training sam-
ples. However, the relatively large difference among these three, well-modeled
genres suggests that there must be another factor in the background, as well,
which is the predictability of the given task. Analogous to language modeling,
the more formal, the task is, the better is the predictability of punctuations (see
broadcast news results). Obviously, conversational (broadcast conversations) and
informal (magazine) speech styles (characterized with less constrained wording
and increased number of disfluencies and ungrammatical phrases) make predic-
tion more difficult and introduce punctuation errors compared to more formal
styles.

The relatively high SER of the weather forecast and the sport programs
genres point out the importance of using a sufficient amount of in-domain train-
ing data. Besides collecting more training data, adaptation techniques could be
utilized to improve results for these under-resourced genres.
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Table 6. Hungarian ASR transcript results by genres

ASR transcript Genre Comma Period Question Exclamation SER WER

Pr Rc F1 Pr Rc F1 Pr Rc F1 Pr Rc F1

RNN Off-line mode Weather 64.7 54.3 59.1 45.9 42.0 43.9 N/A N/A N/A 100.0 c50.0 66.7 70.0 6.8

Brc.-News 79.5 80.0 79.7 74.7 82.6 78.4 50.0 14.3 22.2 80.0 46.2 58.5 37.0 10.1

Sport news 47.7 54.8 51.0 32.1 40.5 35.8 N/A N/A N/A 100.0 50.0 66.7 107.5 21.4

Brc.-Conv. 70.6 67.5 69.0 56.8 51.3 53.9 43.8 28.9 34.8 84.6 13.6 23.4 60.2 24.7

Sport mag. 55.9 59.8 57.8 39.2 43.5 41.3 48.0 16.2 24.2 N/A N/A N/A 87.5 30.3

Magazine 58.6 60.2 59.5 35.6 28.4 31.6 31.2 14.9 20.2 N/A N/A N/A 83.1 38.7

RNN On-line mode Weather 65.3 58.7 61.8 37.8 34.6 36.1 N/A N/A N/A 100.0 12.5 22.2 72.7 6.8

Brc.-News 76.5 79.3 77.9 76.8 70.7 73.6 N/A N/A N/A 100.0 50.0 66.7 42.9 10.1

Sport news 48.9 54.3 51.5 28.6 30.1 29.3 N/A N/A N/A 75.0 60.0 66.7 108.9 21.4

Brc.-Conv. 70.3 66.8 68.5 57.4 41.2 48.0 37.0 24.8 29.7 86.7 16.0 27.1 62.2 24.7

Sport mag. 53.6 56.4 55.0 37.8 30.4 33.4 42.1 21.6 28.6 14.3 4.5 6.9 91.0 30.3

Magazine 57.6 59.4 58.5 36.5 20.8 26.5 42.1 11.9 18.7 N/A N/A N/A 83.9 38.7

By comparing punctuation recovery error of the reference and ASR tran-
scripts, we can draw some interesting conclusions. For the well-modeled gen-
res (Brc.-News, Brc.-Conv., magazine) the increase in SER correlates with the
word error rate (WER) of the ASR transcript. However, for the remaining gen-
res (weather, sport news, sport magazine), this relationship between SER and
WER is much less predictable. It is particularity difficult to explain the rel-
atively poor results for the sport news genre. Whereas the WER of the ASR
transcript is moderate (24.7%), the SER of punctuation is almost doubled for it
(67% to 107%). We assume that this phenomenon is related to the high number
of named entities in the sport news program, considering that the highest OOV
Rate (10%) can be spotted for this genre among all the 6 tested genres.

4.3 English Results

In this subsection, we compare our solutions for punctuation recovery with some
recently published models. For this purpose, we use the IWSLT English dataset,
which consists of TED Talks transcripts and is a considered benchmark for
English punctuation recovery. For complete comparability, we used the default
training, validation and test datasets. However, the hyperparameters were opti-
mized for this task (see Table 2). Please note that the IWSLT dataset does not
contain samples for exclamation marks.

We present the English punctuation recovery results in Tables 7 and 8. As it
can be seen, in on-line mode, the proposed RNN (WE-LSTM) significantly out-
performed the so-called T-LSTM configuration presented in [25], which had the
best on-line results on this dataset so far to the best of our knowledge. Without
using pre-trained word embedding (noWE-LSTM) our results are getting very
close to the T-LSTM configuration.

Although in this paper we primarily focused on creating a lightweight, low
latency punctuation recovery system, we also compared our WE-BiLSTM sys-
tem to the best available off-line solutions. As it is shown in Tables 7 and 8, both
T-BRNN-pre from [25] configuration and Corr-BiRNN form [15] outperformed
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Table 7. Punctuation restoration results for English reference transcripts

Reference transcript Model Comma Period Question SER

Pr Rc F1 Pr Rc F1 Pr Rc F1

Off-line mode MaxEnt-(6, 6) 45.6 26.7 33.7 59.4 57.0 58.2 52.4 23.9 32.8 77.2

WE-BiLSTM 55.5 45.1 49.8 65.9 75.1 70.2 57.1 52.2 54.5 59.8

T-BRNN-pre [25] 65.5 47.1 54.8 73.3 72.5 72.9 70.7 63.0 66.7 49.7

Corr-BiRNN [15] 60.9 52.4 56.4 75.3 70.8 73.0 70.7 56.9 63.0 50.8

On-line mode MaxEnt-(10, 1) 44.9 23.7 31.0 53.4 50.1 51.7 50.0 21.7 30.8 83.2

noWE-LSTM 47.3 42.7 44.9 60.9 50.4 55.2 68.2 32.6 44.1 76.4

WE-LSTM 56.3 40.3 47.0 61.2 60.5 60.8 55.5 43.5 48.8 68.1

T-LSTM [24] 49.6 41.1 45.1 60.2 53.4 56.6 57.1 43.5 49.4 74.0

Table 8. Punctuation restoration results for English ASR transcripts

ASR transcript Model Comma Period Question SER

Pr Rc F1 Pr Rc F1 Pr Rc F1

Off-line mode MaxEnt-(6, 6) 40.6 23.9 30.1 56.2 53.5 54.8 31.6 17.1 22.2 84.0

WE-BiLSTM 46.8 39.6 42.9 60.7 70.3 65.1 44.4 45.7 45.0 72.5

T-BRNN-pre [25] 59.6 42.9 49.9 70.7 72.0 71.4 60.7 48.6 54.0 57.0

Corr-BiRNN [15] 53.5 52.5 53.0 63.7 68.7 66.2 66.7 50.0 57.1 65.4

On-line mode MaxEnt-(10, 1) 42.6 23.9 30.7 53.2 48.9 51.0 33.3 17.1 23.0 87.0

noWE-LSTM 40.2 39.3 39.7 56.2 46.6 51.0 76.5 38.2 51.0 86.5

WE-LSTM 48.8 37.1 42.2 57.6 57.3 57.4 41.2 41.2 41.2 78.3

T-LSTM [24] 41.8 37.8 39.7 56.4 49.3 52.6 55.6 42.9 48.4 83.7

our WE-BiLSTM mainly due to their better performance for commas and ques-
tion marks. However, these punctuation recovery systems are using much more
complex structure and it is questionable whether they would be able to operate
in real time scenarios. We consider the high recall of periods by our WE-BiLSTM
models as a nice achievement both in reference and ASR transcripts.

5 Conclusions

In this paper, we introduced a low latency, RNN-based punctuation recovery
system, which we evaluated on Hungarian and English datasets and compared
its performance to a MaxEnt sequence tagger. Both approaches were tested in off-
line mode, where textual features could be used from both forward and backward
directions; and also in on-line mode, where only backward features were used
to allow for real-time operation. The RNN-based approach outperformed the
MaxEnt baseline by a large margin in every test configuration. However, what
is more surprising, on-line mode causes only a small drop in the accuracy of
punctuation recovery.

By comparing results on different genres of the Hungarian broadcast tran-
scripts, we found (analogous to language modeling) that the accuracy of text
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based punctuation restoration mainly depends on the amount of available train-
ing data and the predictability of the given task. Note, that we are not aware
of any prior work in the field of text based punctuation recovery of Hungarian
speech transcripts.

In order to compare our models to state-of-the-art punctuation recovery sys-
tems, we also evaluated them on the IWSLT English dataset in both on-line and
off-line modes. In on-line mode, our WE-LSTM system achieved the overall best
result. In off-line mode, however, some more complex networks turned out to
perform better than our lightweight solution.

For future work, we are mainly interested in merging of our word-level sys-
tem and the prosody-based approach outlined in [14] for Hungarian. Extending
the English model with further textual or acoustic features is also a promising
direction, as we keep our focus on low latency for both languages.

All in all, we consider as important contributions of our work that (1) we
use a lightweight and fast RNN model by closely maintained performance; (2)
we target real-time operation with little latency; (3) we use the approach for the
highly agglutinating Hungarian which has a much less constrained word order
than English, as grammatical functions depend much less on the word order than
on suffixes (case endings), which makes sequence modeling more difficult due to
higher variation seen in the data.
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