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Abstract. We describe a simple spoken utterance classification method
suitable for data-sparse domains which can be approximately described
by CFG grammars. The central idea is to perform robust matching of
CFG rules against output from a large-vocabulary recogniser, using a
dynamic programming method which optimises the tf-idf score of the
matched grammar string. We present results of experiments carried out
on a substantial CFG-based medical speech translator and the publicly
available Spoken CALL Shared Task. Robust utterance classification
using the tf-idf method strongly outperforms plain CFG-based recog-
nition for both domains. When comparing with Naive Bayes classifiers
trained on data sampled from the CFG grammars, the tf-idf/dynamic
programming method is much better on the complex speech translation
domain, but worse on the simple Spoken CALL Shared Task domain.
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1 Overview

Spoken utterance classification is generally agreed to be an important problem,
but published work to date has concentrated on a small number of scenarios, the
most common of which are call routing and slot-filling applications like ATIS. It
is in most cases assumed that there will be substantial amounts of training data
available [5,7,8]. There are, however, many practically interesting types of appli-
cation requiring spoken utterance classification which do not fit well into this
picture. Our primary focus of interest here is fixed-phrase medical speech trans-
lators (“medical phraselators”). A medical phraselator contains on the order of
thousands to tens of thousands of source-language utterances relevant to medical
situations, each one paired with predefined translations in the target languages.
The doctor speaks, and the app attempts to find the stored utterance closest
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to what they have said, showing it to the doctor to confirm that it has under-
stood correctly; if the doctor approves the app’s choice, it speaks a translation
in the target language. The challenge is to make the matching process flexible
and accurate, so that the users can express themselves reasonably freely and be
correctly recognised most of the time. Since there are many semantic classes,
and doctor time is scarce and hard to obtain, it is optimistic to expect more
than small amounts of training data to be available until an advanced point in
the project.

In the approach we describe here, we manually construct a CFG grammar
which defines plausible variants for the questions, after which we robustly match
spoken input to that CFG grammar. We have been surprised to find that a very
simple matching method based on tf-idf indexing and dynamic programming
gives quite good results. Although it seems plausible that a sophisticated modern
deep learning method could achieve a lower error rate, the tf-idf method has
definite advantages. It requires essentially no training data, is easy to implement,
and is fast both at compile-time and at runtime. As noted, our main interest is
in medical speech translation, but we also present results for the Spoken CALL
Shared Task, an open dataset we recently have been involved in popularising.

The rest of the paper is organised as follows. Section 2 describes the two
domains used. Section 3 describes the speech recognisers. Section 4 sketches
experiments using Weka classifiers; these work well for the simple CALL domain,
but much less well for the complex medical speech translation domain. The next
two sections contain the main results of the paper: Sect. 5 describes the tf-idf/DP
matching method, and Sect. 6 an evaluation on the two domains used. The final
section concludes.

2 Domains Used

2.1 Medical Phraselators and the BabelDr Project

In the preceding section, we briefly outlined what we mean by a “medical phrase-
lator”. We have since 2015 been involved in a collaboration between the Geneva
University Faculty of Translation and Interpreting and the Hôpitaux Universi-
taires de Genève (HUG), Geneva’s largest hospital, whose goal is to produce a
system of this general type. It is worth pointing out that medical phraselators
have not been rendered obsolete by Google Translate (GT). A 2014 study [9]
suggests that GT may mistranslate typical medical questions as much as 30%
of the time; recent experiments carried out by our own group produce broadly
similar results [3]. The problem is not so much the high error rate in itself as
the fact that the only feedback given to the user, the recognition result, is very
unreliable; GT often produces an incorrect translation after correct recognition.
A phraselator, in contrast is explicitly designed to give dependable feedback.

The system we have developed, BabelDr (http://babeldr.unige.ch/; [4]), sup-
ports translation of medical examination questions from French into several lan-
guages, prioritising coverage relevant to Arabic- and Tigrinya-speaking migrants
presenting at HUG’s Accident & Emergency and migrant health departments.

http://babeldr.unige.ch/
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The grammar has been written manually in a simple formalism based on Syn-
chronous CFG [1]. The structure is “flat” and consists of a large set of top-level
rules defining the various question patterns, together with more rules that define
various kinds of phrase. The size of the generated coverage is of the order of tens
or hundreds of millions of possible source-language sentences, mapping into of
the order of thousands of semantic concepts. An example of a BabelDr rule is
shown in Fig. 1. The Source lines define the actual CFG rule; the line marked
Target/french is the backtranslation shown to the user at runtime. The back-
translations can also be accessed through a searchable help pane in the GUI.

Fig. 1. BabelDr rule for the question “Depuis combien d’heures avez-vous mal au ven-
tre?” (“For how many hours have you experienced stomach pain?”). We only show the
source-language (French) side. Items starting with a dollar sign ($) are non-terminals.

In the initial version of the system, the grammar was compiled into a CFG-
based language model and then into a recognition package that could be run
on the Nuance Toolkit 10.2 engine [11]. This yielded a system which provided
practically useful performance, but suffered from the usual problems associated
with rule-based applications: performance was reasonably good for utterances
inside grammar coverage but very poor on out-of-coverage ones, and it was too
often difficult for the user to know where the dividing line went.

2.2 Data and CFG Grammars Used for Current Experiments

For the experiments carried out here, we had 965 utterances of recorded training
data available. Test data was collected from medical students and doctors during
December 2016 and January 2017, using a scenario in which the subjects used the
earlier rule-based version of the system to communicate with simulated patients
[3]. Data was logged and then transcribed and semantically annotated by the
project member responsible for grammar development (not one of the authors).
This produced a total of 827 utterances, of which 110 were annotated as being
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out of domain with respect to the grammar version used, i.e. not sufficiently
closely associated with any of the semantic categories defined by the grammar.
This left 717 in-domain utterances, containing 3794 words, which were used for
the present experiments. Of these 717 in-domain utterances, 503 (70.2%) were
inside grammar coverage.

The experiments described in this paper were performed using a version of
the grammar chosen so that it predated the data collection exercise. The version
used has a vocabulary of 2046 words, expands to about 45M possible strings,
and defines 2187 possible semantic categories. Each semantic category has an
associated backtranslation. We extracted the set of 2187 backtranslations, and
used them as additional training data in ways described in more detail below.

2.3 The Spoken CALL Shared Task

The methods we describe here were motivated by the requirements of the
BabelDr project, but in order to get some idea of their general applicabil-
ity we also evaluated them on a second domain where we had suitable data
readily available. The Spoken CALL Shared Task ([2]; https://regulus.unige.ch/
spokencallsharedtask/) is a joint initiative by Geneva University, the University
of Birmingham and Radboud University, whose goal has been to create an open
challenge dataset in the area of prompt-response systems for speech-enabled
Computer Assisted Language Learning (“spoken CALL”). Training data was
released in July 2016, and test data in January 2017; the task received twenty
submissions from nine different groups. Results were presented at the SLaTE
workshop in August 2017 (http://www.slate2017.org/challenge.html).

The Shared Task dataset was collected using an online CALL app designed
for Swiss German teens in their second or third year of learning English. Content
was structured as a series of interactive dialogues, each one parametrized so that
it could appear in many different variants, which allowed students to practice
fluency and generative language skills. Like BabelDr, the CALL app used a
Nuance recogniser with a language model derived from a CFG grammar, which
associated each response with one or more prompts. This CFG grammar was
made available as part of the Shared Task training data released. The grammar
was not intended to be complete, and was only meant to be taken as providing
a baseline.

A Shared Task item is a tuple consisting of the following elements: (a) a
prompt; (b) a recorded audio file with the student’s response; (c) a transcription;
(d) a binary annotation (correct/incorrect) noting whether the audio file is a
fully correct response to the prompt; (e) a binary annotation (correct/incorrect)
noting whether the audio file is a semantically (but possibly not grammatically)
correct response to the prompt. The last three fields are kept secret in the test
data, and the task is to reproduce the (d) column. Shared Task data can easily be
transformed into an utterance classification task by extracting the items where
the response is marked as semantically correct. The semantic classification task
is then to reconstruct the prompt given the audio file.

https://regulus.unige.ch/spokencallsharedtask/
https://regulus.unige.ch/spokencallsharedtask/
http://www.slate2017.org/challenge.html
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2.4 Data and CFG Grammars Used for Current Experiments

The training data used for the experiments was the 5222 utterance set released
with the Spoken CALL Shared Task. This was available in two versions: as
transcriptions, and as recognition results produced by the recogniser (cf. Sect. 3).

As test data, we used the portion of the Shared Task test data which was
marked as semantically correct, transforming it as described above into data for
an utterance classification task. The resulting dataset has 875 items containing
4630 words. 568 items (64.9%) were inside grammar coverage.

The grammar used was the one included in the Shared Task release. This has
a vocabulary of 419 words, expands to about 45K possible strings, and defines
501 possible semantic categories.

3 Recognisers

In both domains, the baseline was thus defined by an annotated CFG grammar
which also acted as a language model for a recogniser. The challenge was to
make this baseline system robust to out-of-coverage utterances. We adopted an
obvious strategy: use the available data to create a broad-coverage recogniser
tuned to the domain and a robust classifier which associated recogniser output
with the semantic classes defined by the CFG grammar. We start by describing
the large-vocabulary recognisers, which were produced differently in the two
domains:

BabelDr. We used the large vocabulary Nuance Transcription Engine, with an
interpolated language model that combined the default language model with
a model derived from the BabelDr training data.

Shared Task. We used the Kaldi recogniser developed by Mengjie Qian and
colleagues at the University of Birmingham, the ASR data for which was
publicly posted on the Shared Task site1 under entry JJJ. The JJJ entry
achieved the second best score on the Shared Task and is described in [10].

Table 1 presents basic performance results for the different recognisers when
run on the test data, giving Word Error Rate (WER) and Sentence Error Rate
(SER) for in-coverage, out-of-coverage and all data. For the grammar-based
recogniser, we also present results for the portion of the test data where the
confidence score is over the threshold. The threshold value of 0.65 was tuned on
the Shared Task training data, also available from the Shared Task site. Perfor-
mance was not sensitive to the exact setting, and threshold values between 0.60
and 0.70 gave similar results. Note that although the large-vocabulary recog-
niser strongly outperforms the grammar-based recogniser on the whole set, the
converse relationship obtains on the “high confidence” subset of the data. As we
will see later, this is why a hybrid system is able to outperform the plain robust
system for both domains.

We now proceed to issues concerning semantic classification, which are the
main subject of the paper.
1 https://regulus.unige.ch/spokencallsharedtask, “Results” tab.

https://regulus.unige.ch/spokencallsharedtask
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Table 1. Recogniser performance for BabelDr and Spoken CALL Shared Task domains
on in-coverage, out-of-coverage and all data. The “%Data” column shows the pro-
portion of the data for which the grammar-based recogniser is over the confidence
threshold.

Recogniser %Data IC OOC All

WER SER WER SER WER SER

BabelDr

Grammar-based (All) 16.1 29.0 64.4 100.0 31.7 50.2

Grammar-based (high confidence) 38.9 3.4 13.5 39.5 100.0 6.8 19.7

Large-vocabulary (All) 10.4 29.0 22.3 63.1 13.3 39.2

Spoken CALL Shared Task

Grammar-based (All) 17.2 28.2 53.4 99.3 30.0 53.1

Grammar-based (high confidence) 27.7 1.7 3.8 36.5 100.0 6.0 16.0

Large-vocabulary (All) 7.9 21.1 18.6 52.8 11.7 32.2

4 Utterance Classification Using Weka

We began by testing performance, for the two domains used, of several popular
classifiers supported by the Weka toolkit [6]. We report results for J48 decision
trees, naive Bayes and SVM; other methods we tried gave clearly worse results.
Our basic approach in all cases was to take labelled text data—sets of text strings
representing utterances, each one paired with an associated semantic class—and
extract unigram features, one for each word in the vocabulary.

For both domains we had a bit less than a thousand items of test data, in
the form of labelled recognition results produced by recognisers. This data could
reasonably be regarded as unseen for the purposes of the present experiments.
The labelled training data we had available was fairly dissimilar for the two
domains. For the Spoken CALL Shared Task, we had a substantial number (more
than 5K) training examples, which were available both as transcriptions and as
recognition results; for BabelDr, we had less than a thousand such examples. We
did however have 2187 backtranslations, one for each semantic class. Since the
backtranslations are both shown to the user after each turn and also available
through the help system, users often imitated them, so we expected them to be
a useful knowledge source.

Another important difference between the domains was in the grammars.
The Spoken CALL Shared Task grammar was quite small; it was possible to
expand it fully, giving about 45 thousand utterances, and use the whole grammar
for training. The BabelDr grammar was much bigger, expanding to about 45
million utterances, and using the whole set was not feasible. Instead, we sampled
the grammar randomly, creating 100 possible utterances from each rule. Table 2
summarises the domains and the available resources.

Table 3 presents the results. For the Spoken CALL Shared Task, the classi-
fication error was quite good even when training only on the transcriptions and
recognition results, and improved further when the grammar data was added,
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Table 2. Summary of available resources for the two domains

SharedTask BabelDr

Grammar

#semantic categories 501 2187

#words of vocabulary 419 2046

#utterances in coverage ∼45K ∼45M

#utterances used for training ∼45K ∼220K

Recorded training data

#utterances training data 5222 965

Backtranslations

#backtranslations – 2187

Recorded test data

#utterances test data 875 717

reaching 11.8% for the best method. The figures for BabelDr, the domain we
were actually interested in, were much less satisfactory, with a best error rate
of 28.8%. On examining the results more closely, we thought one problem might
be the fact that we were only using a small portion of the grammar. We con-
sequently searched for a method which would let us use the whole grammar in
some suitable form.

Table 3. Classification error rates using Weka methods on unseen spoken test data for
the two domains. “J48” = J48 decision tree method. “NBayes” = Naive Bayes method.
SVM training exceeded resource bounds for the BabelDr data.

Training data J48 NBayes SVM

BabelDr

Backtranslations 87.7 54.3 –

Backtranslations + Transcriptions + Rec results 55.2 38.4 –

Backtranslations + Transcriptions + Rec results + Grammar 34.1 28.8 –

Spoken CALL Shared Task

Transcriptions + Rec results 16.2 15.9 13.9

Transcriptions + Rec results + Grammar 14.1 13.0 11.8

5 Utterance Classification Using tf-idf and Dynamic
Programming

Attempting to find a way to use the whole grammar, rather than only a small
part of it, two possible ideas suggested themselves to us. One was simply to try
to find some kind of closest match between the string returned by the recogniser
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and a grammar rule. The other was to recast the problem as a type of document-
indexing task, where the “documents” are the grammar rules. Specifically, we
could use some version of the well-known tf-idf method [12] to find the rules
which had high tf-idf scores with respect to the recogniser string; the tf-idf score
basically measures the extent to which a word is a useful “keyword”, i.e. occurs
only in a small number of rules. In fact, it turned out to be easy to combine
both ideas and split the problem into three parts. First, use tf-idf to find a
small number of rules whose associated keywords match words in the recognition
hypothesis produced by the recogniser; second, find the closest match between
the recognition hypothesis and each rule in the shortlist produced by the first
step; third, use information obtained from the matches to reorder the shortlist.

We approximate by treating the recogniser hypothesis as a bag of words
rather than as an ordered string. This is an acceptable approximation for gram-
mars like those considered here, where word-order is rarely important. It makes
it possible to implement the matching process as a simple dynamic programming
algorithm which recursively expands out the chosen grammar rule, chooses the
best match for each piece, and combines the pieces. Since each grammar con-
stituent only needs to be considered once, the process is very fast. In a little
more detail, the currently implemented method is as follows:

1. At compile time, index words to associate them with the top-level rules in
which they occur. Assign a word an idf score which is high if it occurs in few
rules, low if it occurs in many rules. The simplest way to do this is to define
the idf score for a word W to be 1/fW , where fW is the number of top-level
rules in which W can occur; we may also smooth, use a logarithmic scale, etc.
Call this mapping of words to rules and idf scores the word to rules table.

2. At compile time, associate each top-level rule with the closure of the set of
non-top-level rules it may link to. Order these rules by the maximum depth
at which they can occur. Call this mapping of rules to ordered lists of non-
top-level rules the rule to rule closure table.

3. At runtime, the matcher is presented with a recognition hypothesis from
the large-vocabulary recogniser. Use tf-idf to find the n top-level rules with
the best scores according to a naive scoring method which totals the tf-idf
scores for all the words that are both used by the rule and also occur in the
recognition hypothesis. This gives us a preliminary ordering of the rules.

4. For each rule in the n-best list created by the preceding step, perform a
dynamic programming (DP) match against the recognition hypothesis, treat-
ing the hypothesis as a bag of words weighted by tf-idf scores. This DP match
can be performed efficiently, since it is linear in the size of the grammar clo-
sure for the rule and logarithmic in the length of the input string. In more
detail, the match proceeds as follows:
(a) Begin by matching each phrasal rule in the rule closure list from (2),

starting with the deepest ones, which are ordered to occur earliest in the
list. The idea is that each rule will only be matched when all the non-
terminals that can occur in it have already been matched. Associate each
non-top-level rule with its best matching score and call the mapping of
non-top-level rules to scores the phrase score table.
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(b) To match a word in a CFG rule, check to see if it is in the input bag
of words. If it is, add the tf-idf score from (1). If it isn’t, add a fixed
no-match penalty.

(c) To match a sequence 〈P,Q〉 in a CFG rule, match P and Q separately
and assign a score which is the sum of the scores for P and Q.

(d) To match an alternation (P | Q) in a CFG rule, match P and Q separately
and assign a score which is the larger of the scores for P and Q.

(e) To match a nonterminal in a CFG rule, look up its best score in the
phrase score table.

(f) At the end, add the fixed no-match penalty for each word in the input
that has not been matched.

5. When all items in the n-best list have been matched, reorder them using the
scores obtained in the previous step.

5.1 Refinements to the Basic Method

We tried a variety of tweaks to the basic method described above, including
replacing the plain tf-idf scores with logarithmic scores and rescoring using the
edit distance to the best grammar match measured in terms of the number of
characters, the number of words, or the number of words weighted by the td-idf
scores of the words affected. The only modification which had a positive effect on
development set performance was one designed to address the problem of very
unspecific rules, for example the rule associated with questions semantically
equivalent to Avez-vous mal? (“Does it hurt?”). The problem with rules like
these is that utterances matching them may fail to contain any word with a
high tf-idf score, meaning that they cannot rise to the top of the n-best list.
After some experimentation, the best solution found was to order the rules by
minimum possible score at compile time, and at runtime always to add the m
potentially lowest-scoring rules. Based on the development set, we put m = 3.

6 Evaluation of the tf-idf/DP Method

We carried out a series of experiments to evaluate the tf-idf/DP method using
the BabelDr and Spoken CALL Shared Task domains. For each domain, we
compared four different versions of the system:

Rule-based. The pure rule-based version. Recognition is performed by the gra-
mmar-based language model, and semantic interpretation by the CFG.

tf-idf. A minimal robust version using the large-vocabulary recogniser together
with semantic interpretation using only tf-idf. For this to be possible, we
expanded the CFG rules to remove all the non-terminals and leave a flat
grammar where each rule gave a single semantic result, and only used steps
(1) and (3) from the sequence in Sect. 5.

tf-idf/DP. The full robust version, which combines the large-vocabulary recog-
niser and the complete semantic interpretation method from Sect. 5, including
both tf-idf and DP matching.
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Hybrid. A version which uses a simple method to combine the Rule-based
and tf-idf/DP versions. For 1-best, the hypothesis is chosen from the rule-
based system if the recogniser’s confidence score is over a threshold, otherwise
it is chosen from the robust system. For n-best (n > 1), the hypotheses chosen
are the 1-best result from the rule-based system and enough results from the
robust system to make n different hypotheses.

Table 4. 1-best and 2-best semantic classification error on unseen text and speech
data for four different versions of the two systems, distinguishing between in-coverage,
out-of-coverage and all input. Text input is transcribed speech input. “Rule-based” =
pure rule-based system; “tf-idf” = robust system with only tf-idf; “tf-idf/DP” = full
robust system; “hybrid” = hybrid system combining “rule-based” and “tf-idf/DP”.

Version IC OOC All data

Text Speech Text Speech Text Speech

1-bst 2-bst 1-bst 2-bst 1-bst 2-bst 1-bst 2-bst 1-bst 2-bst 1-bst 2-bst

BabelDr

Rule-based (0) (0) 13.9 11.7 (100) (100) 72.0 70.6 29.8 29.8 31.2 29.3

tf-idf 11.9 10.7 19.7 17.5 47.7 34.6 52.8 43.5 22.3 17.9 29.6 25.2

tf-idf/DP 1.2 0.0 8.5 6.2 43.5 28.5 48.1 39.3 13.8 8.6 20.4 16.0

Hybrid (0) (0) 6.4 1.6 43.5 28.5 48.1 38.8 13.8 8.6 18.8 12.7

Spoken CALL Shared Task

Rule-based (0) (0) 22.5 19.7 (100) (100) 63.5 60.9 35.1 35.1 36.9 34.2

tf-idf 15.3 9.3 25.0 13.0 23.5 14.7 30.6 22.1 18.2 9.3 27.3 15.9

tf-idf/DP 1.8 0.5 11.8 7.2 20.2 14.0 30.9 21.2 8.2 5.3 18.5 12.2

Hybrid (0) (0) 9.5 6.0 20.2 14.0 30.6 22.5 8.2 5.3 16.9 11.8

Summary results for classification error on the test sets are presented in
Table 4, which shows 1-best and 2-best error rates for text and speech input,
and Table 5, which breaks down results for the robust versions as a function of
the number of word errors in the large-vocabulary recogniser’s output. Rather
surprisingly, the first impression is that performance on the two domains is
reasonably similar. Looking first at Table 3, we see that WER over the whole
test set is 12–13% for the large-vocabulary recogniser. For the grammar-based
recogniser it is about 30% for the whole set and about 6–7% for the subset where
the confidence score is over the threshold.

Turning next to Table 4, we see that 1-best semantic classification error on
the whole set using the pure rule-based system is about 30–40% for spoken
input. This is reduced to 17–19% for the hybrid version. 2-best error reduces
from 30–35% to about 12–13%. The relative improvement in 1-best error is 40%
for BabelDr and 54% for Shared Task; for 2-best error, it is 57% for BabelDr
and 65% for Shared Task. The larger improvement in the Shared Task system
is consistent with the fact that its CFG grammar represents a much smaller
development effort and is less carefully constructed. Comparing the lines for
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Table 5. 1-best and 2-best semantic classification error as a function of number of
word errors. #Errs = number of word errors in 1-best speech recognition hypothesis;
#Sents = number of examples with given number of word errors

#Errs #Sents tf-idf tf-idf/DP Hybrid

1-bst 2-bst 1-bst 2-bst 1-bst 2-bst

BabelDr

0 453 18.3 15.0 7.5 4.0 7.3 5.5

1 121 41.3 37.2 30.6 28.2 27.3 19.8

2 75 54.7 44.0 54.7 42.7 49.3 30.7

>2 68 55.9 51.5 50.0 45.6 47.1 27.9

Spoken CALL Shared Task

0 593 15.3 7.1 5.6 2.0 5.9 3.5

1 117 39.3 30.8 36.8 28.2 32.5 21.4

2 110 56.4 26.4 49.1 29.1 40.0 30.9

>2 55 72.7 58.2 58.2 52.7 56.4 41.8

plain tf-idf, tf-idf/DP and hybrid, we see that inclusion of the DP matching step
makes a large difference, particularly on in-coverage data, and hybrid improves
non-trivially on tf-idf/DP.

Finally, Table 5 measures robustness to recognition errors. The hybrid sys-
tem achieves a 1-best classification error of 6–7% on utterances which are cor-
rectly recognised, falling to about 30% on utterances with one recognition error,
40–45% on utterances with two recognition errors, and 50–55% on utterances
with more than two recognition errors. The contribution of DP matching is
most important on correctly recognised utterances. The largest differences occur
on text input, which we included to give a baseline approximating perfect recog-
nition. The higher error rate on BabelDr data (13.8% versus 8.2%) probably
reflects the more challenging nature of the domain.

The dynamic programming matching method is fast both at compile-time
and at runtime. Running on a 2.5 GHz Intel laptop, compilation of the tables
required by the tf-idf/DP method requires less than a minute for each domain.
Average processing time at runtime is about 40 ms/utterance.

7 Conclusions and Further Directions

We have presented a simple spoken utterance classification method suitable for
domains which have little training data and can be approximately described by
CFG grammars, and evaluated it on two such domains. Compared to plain CFG-
based classification, the method reduces 1-best error on spoken input by over
a third on the well-tuned BabelDr domain and over a half on the poorly-tuned
Shared Task domain. We find these results encouraging, not least because the
methods so far implemented can very likely be improved. Two obvious things to
try next are introducing a better treatment of OOV words, which at the moment
are uniformly counted as skipped, and simply tuning the recogniser more.
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Our practical goal in this project has been to improve the BabelDr system.
From a theoretical point of view, however, the most interesting finding has been
the contrast between the mainstream Weka methods and tf-idf/DP. On the small
Shared Task domain, the Weka methods strongly outperform tf-idf/DP, with
the Naive Bayes method achieving a classification error of 13.0% as compared to
the “hybrid” method’s 16.9%. On the much more challenging BabelDr domain,
however, the pattern is reversed. Naive Bayes scores 28.8%—only slightly better
than the baseline CFG—while “hybrid” reduces the error to 18.8%. As noted,
we think the poor performance of the Weka methods may reflect the inadequacy
of creating training data by random sampling from the grammar, and it is pos-
sible that some more intelligent sampling method may allow us to address the
problem. We are currently investigating this.
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5. Hakkani-Tür, D., Béchet, F., Riccardi, G., Tur, G.: Beyond ASR 1-best: using
word confusion networks in spoken language understanding. Comput. Speech Lang.
20(4), 495–514 (2006)

6. Holmes, G., Donkin, A., Witten, I.H.: Weka: A machine learning workbench. In:
Proceedings of the Second Australian and New Zealand Conference on Intelligent
Information Systems, pp. 357–361. IEEE (1994)

7. Kuo, H.K.J., Lee, C.H., Zitouni, I., Fosler-Lussier, E., Ammicht, E.: Discriminative
training for call classification and routing. Training 8, 9 (2002)

8. Mesnil, G., He, X., Deng, L., Bengio, Y.: Investigation of recurrent-neural-network
architectures and learning methods for spoken language understanding. In: Inter-
speech, pp. 3771–3775 (2013)

9. Patil, S., Davies, P.: Use of Google Translate in medical communication: evaluation
of accuracy. BMJ 349, g7392 (2014)

10. Qian, M., Wei, X., Jancovic, P., Russell, M.: The University of Birmingham 2017
SLaTE CALL shared task systems. In: Proceedings of the Seventh SLaTE Work-
shop, Stockholm, Sweden (2017)

11. Rayner, M., Bouillon, P., Ebling, S., Strasly, I., Tsourakis, N.: A framework for
rapid development of limited-domain speech-to-sign phrasal translators. In: Pro-
ceedings of the workshop on Future and Emerging Trends in Language Technology,
Sevilla, Spain (2015)

12. Sparck Jones, K.: A statistical interpretation of term specificity and its application
in retrieval. J. Doc. 28(1), 11–21 (1972)


	Lightweight Spoken Utterance Classification with CFG, tf-idf and Dynamic Programming
	1 Overview
	2 Domains Used
	2.1 Medical Phraselators and the BabelDr Project
	2.2 Data and CFG Grammars Used for Current Experiments
	2.3 The Spoken CALL Shared Task
	2.4 Data and CFG Grammars Used for Current Experiments

	3 Recognisers
	4 Utterance Classification Using Weka
	5 Utterance Classification Using tf-idf and Dynamic Programming
	5.1 Refinements to the Basic Method

	6 Evaluation of the tf-idf/DP Method
	7 Conclusions and Further Directions
	References




