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Abstract. Until very recently, the generation of punctuation marks for
automatic speech recognition (ASR) output has been mostly done by
looking at the syntactic structure of the recognized utterances. Prosodic
cues such as breaks, speech rate, pitch intonation that influence placing of
punctuation marks on speech transcripts have been seldom used. We pro-
pose a method that uses recurrent neural networks, taking prosodic and
lexical information into account in order to predict punctuation marks
for raw ASR output. Our experiments show that an attention mechanism
over parallel sequences of prosodic cues aligned with transcribed speech
improves accuracy of punctuation generation.
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1 Introduction

The introduction of punctuation marks into the automatic speech recognition
(ASR) output is an important issue in applications such as automatic transcrip-
tion/subtitling, speech-to-speech translation, language analysis, etc. Punctua-
tion is essential for grammaticality, readability, and (in the case of a number
of different tasks), subsequent processing. Thus, correct sentence segmentation
and punctuation of recognized speech improves the quality of machine trans-
lation [6,7,24,26], and missing periods and commas in machine generated text
results in suboptimal information extraction from speech [13,15]. Also, most of
the data-driven parsing models use punctuation as features.

In spoken language, punctuation is influenced by two intertwined linguistic
phenomena: (1) syntax and (2) prosody. Syntax determines the distribution of
punctuation marks in accordance with the grammar of a language. Prosody real-
ization in speech (such as, e.g., word grouping, pausing, emphasis, rising-falling
intonation, etc.) tends also to signal the position and type of the punctuation
marks. For instance, a pause after consecutive words might signal an enumera-
tion, which requires comma, and rising intonation at the end of a sentence is a
likely indicator of a question.
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However, state-of-the-art approaches to punctuation generation are mainly
driven by only syntactic (and lexical) criteria. In particular, recent data-driven
approaches that use recurrent neural networks (RNN) proved to be competitive
due to RNN’s ability to capture long and short term syntactic dependencies.
Models that account for prosodic features [30,31] rely merely on pause duration
between words; other prosodic features such as fundamental frequency (f0) and
intensity information are ignored. Another shortcoming of the state-of-the-art is
that the models are trained on either only written data [2] or on a combination
of written and spoken data (with, again, a dominance of written material) [31].
This makes the trained models biased towards written data.

In what follows, we present a neural network setup that is able to process
lexical and prosodic information in parallel for punctuation generation in raw
speech data. This is different to, e.g., [31], which processes syntactic and prosodic
information in sequence (and thus loses the linguistic evidence that both are
intertwined). The proposed model makes it possible to integrate any desired
feature (be it lexical, syntactic or prosodic) and allows us to test which prosodic
features influence punctuation placement to what extent. Unlike previous works,
we furthermore use in our experiments only spoken data and exploit various
prosodic features that influence the usage of punctuation marks in automated
transcriptions. The source code of our model is made publicly available together
with a link to the dataset we used in our experiments in https://github.com/
TalnUPF/punkProse.

The remainder of the paper is structured as follows. In Sect. 2, we describe the
main architecture of our model. The experimental setup and the results of the
experiments are outlined in Sect. 3 and discussed in Sect. 4. Section 5 summarizes
briefly recent related work, and, finally, Sect. 6 concludes the paper and sketches
some of the main lines proposed for future work.

2 Our Model

Our model is inspired by Tilk et al.’s work [31]. Tilk et al. use a bidirectional
recurrent network [27] for keeping track of the word context in two directions.
Their model is a two-stage model. In the first stage, syntactic and lexical features
are processed. In the second stage, pauses between words (as prosodic features)
are also taken into account.

As Tilk et al., we use gated recurrent units (GRU) [8] for the RNN layers.
Introduced as a simpler variate of long short-term memory (LSTM) units [11],
GRUs make computation simpler by having fewer parameters. Number of gates
in hidden units are reduced to two: (a) the reset gate determines whether the
previous memory will be ignored, and (b) the update gate determines how much
of the previous memory will be carried on.

Our modification to their proposal is that instead of passing continuous
prosodic feature values to the second stage, we discretize the feature values and
input them to the model through separate parallel GRU layers that are tuned
in one single stage. Figure 1 illustrates our model.

https://github.com/TalnUPF/punkProse
https://github.com/TalnUPF/punkProse
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Fig. 1. Our neural network architecture depicting processing of a speech data sample
with pause and mean f0 features aligned at the word level

For the sake of simplicity, we assume that the model is trained only with
sequences of words (w), pause durations (p) and mean fundamental frequency
(m). In this setting, the model has 4 GRU units: bidirectional layers for words,
a unidirectional layer for pauses coming before the words, and a unidirectional
layer for mean f0 values of words. GRU layers are preceded by embedding layers
for words (We), pauses (Wp) and mean f0 (Wm). Inputs to the embedding layers
are one-hot encoded vectors of sizes respective to their vocabulary sizes. The
hidden states of the GRU layers at time step t are:

−→
hw(t) = GRU(x(t)We,

−→
hw(t − 1))

←−
hw(t) = GRU(x(t)We,

←−
hw(t + 1))

hp(t) = GRU(p(t)Wp, hp(t − 1))
hm(t) = GRU(m(t)Wm, hm(t − 1))

where x(t), p(t) and m(t) are the word index, pause level and mean f0 level
respectively at time step t. The parallel GRU states are concatenated to form the
context vector h(t) before being passed over as input to another unidirectional
GRU layer:

h(t) =
[−→
hw(t),

←−
hw(t), hp(t), hm(t)

]

s(t) = GRU(h(t), s(t − 1))

The attention mechanism combines all input states into a weighted context
vector a(t) which is then late-fused with the state s(t) of the output GRU:
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a(t) =
N∑
i=1

h(t)αt,i

f(t) = a(t)Wfa

⊙
σ(a(t)WfaWff + s(t)Wfs + bf ) + s(t)

where αt,i is the weight that determines the amount of influence of each input
state to the current output and N is sequence size.

The attention mechanism is useful for the neural network to identify positions
in a sequence where important information is concentrated [1]. For words, it
helps to focus on positions of words and word combinations that signal the
introduction of a punctuation mark. For prosodic features, it either remembers
a salient point in the sequence or detects a certain movement that could help
determining a punctuation mark at a certain position.

The output GRU layer uses a late-fusion approach, which lets the context
gradient carry on easily by preventing it passing through many activation func-
tions [33].

Finally, the late-fused context f(t) is passed through a Softmax layer, which
outputs the probability of the punctuation mark to be placed between the current
and the previous word (starting from the second word in sequence):

y(t) = Softmax(f(t)Wy + by)

3 Experiments

3.1 Data

The experiments presented in this paper were performed on a corpus consisting
of TED (Technology, Entertainment, Design) talks1. TED talks are a set of con-
ference talks lasting approximately 15 min each that have been held worldwide in
more than 100 languages. They include a large variety of topics, from technology
and design to science, culture and academia. The corpus consists of 1046 talks
by 884 English speakers, uttering a total amount of 156034 sentences. The cor-
responding transcripts, as well as audio and video files, are available on TED’s
website; they were created by volunteers and include punctuation and paragraph
breaks [12]. The subtitle timings of TED transcripts do not always correspond
to sentences in the transcript. To overcome this limitation, precise word timings
were first obtained through Viterbi forced alignment using an automatic speech
recognition system. The word timings were then further used to automatically
obtain sentence boundaries and thus sentence timings [12].

As for the prosodic features, three main prosodic elements were extracted fol-
lowing the methodology in [12] in order to analyze their influence on punctuation
generation: pauses, fundamental frequency (f0), and intensity. Pause durations
were extracted from the provided word timings, while f0 and intensity contours
were extracted at 10 ms precision using Praat software [5] with linear interpo-
lation and octave jump removal for fundamental frequency provided by Praat.
1 http://www.ted.com.

http://www.ted.com
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f0 measurements were converted to semitones relative to speaker mean f0 value
for normalization, while the speaker mean intensity over a talk was subtracted
from the intensity values for the same purpose, so that speaker mean values were
represented by zero values in both cases.

3.2 Features Extraction and Preprocessing

The prosodic TED corpus is processed in order to be fed into the neural network.
Firstly, the following aligned sequences are extracted for each talk:

word stands for the words that are uttered by the speaker. Abbreviations are
decomposed into the letters they consist of (e.g., ‘DIY’ to three separate
words ‘D’ ‘I’ ‘Y’). Numbers are converted into text and separated (e.g., ‘93’
to ‘ninety three’).

punctuation marks the symbol coming before the corresponding word. We lim-
ited the symbol vocabulary to period (‘.’), comma (‘,’), question mark (‘?’),
exclamation mark (‘!’), colon (‘:’), semicolon (‘;’), dash (‘-’) and ‘no punc-
tuation’. In the cases when more than one punctuation mark occur before a
word (e.g., in a quotation), the most important punctuation mark is chosen
as the symbol at that position.

reduced-punctuation is the reduced version of punctuation. Exclamation mark,
dash, colon, and semicolon are mapped to a period.

pause holds the silence duration in milliseconds coming before the corresponding
word. It is calculated from the word timings information obtained from speech
alignment.

mean.f0 and mean.i0 are the mean fundamental frequency and intensity values
(in semitones) for the corresponding word.

range.f0 and range.i0 are calculated by subtracting the minimum f0/intensity
value from the maximum f0/intensity value for the corresponding word.

Secondly, taking into account that the number of words per sentence in our
corpus is 15–20 in average, the data is sampled into sequences of size 50, each
sample starting with a new sentence and ending with an END token. With
this setting, more than one sentence fits into a sample. Sentences are placed
in samples in the same order in the speech data. If the sample end is reached
before the end of a sentence, the sentence portion that fits is kept in that sample
and the next sample starts from the beginning of that sentence. We avoided
putting together data from different talks in the same sample by discarding the
last unfinished sample from a talk. Also, sentences with more than 50 words are
discarded.

59811 samples were extracted this way. 70% (41867 samples) of this data
were allocated for training, 15% for testing and 15% for validation (8971 samples
each).

The word vocabulary is created with the tokens that occur more than 7
times in the corpus and two extra tokens: out-of-vocabulary and end-of-sequence.
This totaled up to 13830 tokens. The output punctuation vocabulary in our
experiments is of size 4 (from the reduced punctuation set).
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In order to input prosodic features to the RNNs, they had to be vocabularized
as well. This is achieved by assigning a vocabulary index for certain ranges of the
continuous feature values. The ranges were determined by dividing the feature
value distribution according to the number of occurrences within that range. Via
manual inspection, we divided the pause durations into 66 and semitone values
distribution into 81 levels.

3.3 Experimental Setup

We used Theano [29] for implementing our models. In our experimental setup,
the embedding vector sizes for words and prosodic features are set to 100 and 10
respectively. This is because prosodic feature vocabulary is significantly smaller
than the word vocabulary. The hidden layer dimension of all GRU layers is also
set to 100, except for pause durations, where a smaller dimension of 10 performed
better in terms of validation scores, such that we set it to 10.

The model is trained in batches of size 128. The weight matrices are updated
using the AdaGrad algorithm [10] with a learning rate of 0.05 for minimizing
the negative log-likelihood of the predicted punctuation sequence.

3.4 Punctuation Generation Results

As the majority of the punctuation marks in our dataset consisted of the punctu-
ation marks in the reduced set (comma, period and question mark), experiments
were performed only with this set.

The two-stage method by Tilk et al. is used as a baseline by training over
our data twice: first, only with text, and then together with the pause durations.

Table 1. Punctuation generation results for two stages [31] and our single-stage
approach

Model Features Comma Period Question All

P R F1 P R F1 P R F1 P R F1

Two

stages

word (w) 56.9 36.6 44.5 67.6 62.5 64.9 68.5 46.9 55.7 63.2 49.0 55.2

w+pause(p) 51.0 51.6 51.3 68.6 57.8 62.8 66.8 48.9 56.5 58.9 54.4 56.6

Single

stage

w+p 61.6 44.5 65.6 71.7 72.5 72.1 66.5 64.7 65.6 67.3 58.2 62.4

w+p+range.f0 58.7 52.0 55.1 72.4 76.1 74.2 67.9 64.7 66.3 65.9 63.6 64.8

w+p+mean.f0 59.3 53.3 56.1 74.9 75.9 75.4 65.2 67.4 66.3 67.2 64.3 65.7

w+p+range.i0 55.0 54.3 54.6 75.0 70.3 72.5 70.0 58.7 63.9 64.5 61.9 63.2

w+p+mean.i0 58.4 53.4 55.8 74.5 74.3 74.4 68.8 63.9 66.3 66.6 63.5 65.0

w+p+range.f0+range.i0 60.9 45.5 52.1 71.9 76.0 73.9 71.5 61.0 65.9 67.3 60.2 63.6

w+p+range.f0+mean.i0 61.2 46.6 53.0 72.9 77.6 75.2 74.2 63.1 68.2 68.0 61.6 64.7

w+p+mean.f0+range.i0 61.6 47.9 53.9 73.1 79.6 76.2 74.1 62.0 67.5 68.2 63.1 65.6

w+p+mean.f0+mean.i0 56.9 52.2 54.4 77.1 70.4 73.6 71.3 61.6 66.1 66.7 60.9 63.7

w+p+mean.f0

+range.f0+range.i0

63.4 44.5 52.3 73.6 77.4 75.5 65.7 66.4 66.1 69.2 60.5 64.6
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Tilk et al.’s models are based on BRNN with an attention mechanism, which
provided the best results when compared to other models [31].

In our single stage approach, the use of only lexical information (words)
provided the same scores as the use of only words in the two-stages approach,
since only one step is involved in both approaches. Then, in order to assess the
contribution of new prosodic information to our model, the extracted prosodic
features were added one by one. The pause duration feature was always kept
while trying combinations of new features, i.e., means and ranges of both f0 and
intensity. The outcomes of our experiments in generating periods, commas and
question marks are presented in Table 1 in terms of precision (P), recall (R), and
F1 scores.

4 Discussion

A significant improvement is achieved with the proposed parallel RNNs app-
roach compared to the two-stage model when trained with the same dataset. We
observe an overall improvement in F1 score of 5.8% when same features (word
and pause durations) are used with our model. The model opens the way for
a further improvement of 3.3% with the addition of mean f0 feature into the
model, resulting in an overall F1 score of 65.7%.

We also see from the results that the inclusion of f0- and intensity-related
prosodic features—apart from pauses—into the neural network improves the gen-
eration score for period and question marks. An improvement of 4.1% in F1 score
is observed for periods with the inclusion of mean f0 and intensity range features
on top of pause features. For question marks, the best F1 score is achieved with
f0 range and mean intensity features on top of pause durations (improvement of
2.6%). For commas, we observe that precision and recall improve with different
settings but when looked at the F1 score best feature combination stays to be
words and pause durations.

The best performing set of features seems to be the combination of pause
and mean f0 when looked at the overall F1 score. However, we see that each
punctuation mark has a different set of features that improve their generation
results the most. Combination of f0 range and mean of intensity gives best results
for generating question marks (68.2% in F1 score). For period, using mean f0
and intensity range features together yields the best result (76.2% in F1 score).
Recall that colons, semicolons, dashes and exclamation marks in our dataset are
also mapped to periods.

It has to be stated that our evaluation method for the baseline does not
corroborate the design decision of Tilk et al. Their two stage training helps
building a more solid lexical model by training on a larger text corpus. In [31],
they report an overall F1 score of 72.2% trained only on written textual data,
which further improves to an F1 score of 77% with additional training on pause-
annotated corpus. However for our purely spoken data, their model performs
with an F1 score of 56.6% which shows only an 1.4% improvement after the
addition of pause features.
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Our initial guess was that training with four prosodic features at once would
oversaturate the model; however, the results for the feature set consisting of
mean f0, f0 range and intensity range combined gives promising results. The best
overall precision score (69.2%) and precision for generating commas (63.4%) are
achieved with this feature set.

5 Related Work

The problem of punctuation determination has been addressed in several works
in the literature—as has been the closely-related issue of boundary detection.
Both problems have been tackled from diverse perspectives, and many of them
only take into consideration the recognized ASR output text, ignoring the speech
related information contained in the original speech, or they simply tackle the
problem for textual data in which the correct punctuation is missing, e.g., in a
sentence generation or a grammatical correction scenario. In [16], for instance,
the punctuation detection is addressed from a syntax-based perspective by
using the output of an adapted chart parser, which provides information on
the expected punctuation placement. Also in [32] and in [23] the punctuation
generation task is carried out without taking prosodic cues into account. In the
former, several textual features including language model scores, token n-grams,
sentence length and syntactic information extracted from parse trees are com-
bined using conditional random fields (CRF). In the latter, the task is based
on dynamic conditional random fields and applied to a conversational speech
domain. A more recent work [2] introduces a language-independent model with
a transition-based algorithm using LSTMs [11], without any additional syntactic
features.

Overall, it has been shown that prosodic features are highly indicative of
sentence boundaries as well as of punctuation placement. Therefore, a great
deal of effort has been put in several works into the use of prosodic features
when original speech is available. In [3], sentence boundaries are characterized
by prosodic features and modeled by decision tree classifiers. In [20], the authors
successfully detect automatically full stops by using a neural network to estimate
the weights assigned to pauses, f0 changes and amplitude range, which are later
used by a punctuation mark classifier; commas are shown to be more difficult to
detect.

Other studies, such as [17], combine prosodic, word and grammatical fea-
tures by using SVM and CRF classifiers, and test the prediction experiments on
different speech styles, validating the hypothesis that the punctuation problem
is much more difficult to address in ASR output than in manual transcripts.
Prosodic and textual cues are also combined in [22] and implemented in a deci-
sion tree classifier with the goal to detect sentence boundaries. A combination of
lexical-, prosodic-, and speaker-based features is also found in [4] for the detec-
tion of full stops, commas, and question marks in a bilingual English-Portuguese
broadcast news data, while [19] focuses on Czech broadcast news speech to detect
commas and sentence boundaries by using a prosodic model in a decision trees
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and a multi-layer perceptron and N-gram models for language modeling. Similar
works deal with the punctuation generation problem by using statistical models
of prosodic features [9], the combination of both textual and prosodic features
based on adaptive boosting [18], and a cross-linguistic study of prosodic features
through two different approaches for feature selection: a forward search wrapper
and feature filtering [14]. Although not using prosodic features strictly speaking,
[25] takes advantage of the transcriptions of multiple parallel speech streams in
four different languages in order to increase punctuation generation accuracy.

More recently, the already mentioned work by Tilk et al. addresses the use
of textual features and pauses (as sole prosodic feature) in an LSTM recurrent
neural network [30] and in a bidirectional recurrent neural network [31] in order
to detect full stops and commas in the former, and also question marks in the
latter. As already discussed above, Tilk et al. ’s methodology combines syntactic
and prosodic features in a two-stage model. Only textual features are learned
from a large non-spoken text corpus in a first stage. Then, in a second stage,
the model is retrained with pause durations on a smaller corpus. This approach
follows the work from [28], in which the language model can be trained on large
amounts of textual data—lacking of the corresponding spoken data—, while
the acoustic model—also based only on pause duration—is trained on a smaller
corpus.

6 Conclusions and Future Work

In this work, we have presented a recurrent neural network architecture that
processes lexical and prosodic information in parallel for the generation of punc-
tuation, avoiding the dominance of written data, and thus the bias of trained
models towards written material. Our proposed model allows the integration of
any desired feature (lexical, syntactic or prosodic) and thus a further analysis
of the impact of every feature used on the punctuation generation. In addition,
the current model achieves a significant improvement over previous works that
used two stages and were biased to written data.

The results are significantly better also when prosodic features are added
to the lexical information. Solely pauses—when trained with a separate RNN—
improve considerably the lexical-based scores. Moreover, f0- and intensity-based
prosodic features help to achieve a better period and question mark detection
in terms of F1 measure, and comma detection is improved in terms of precision
and recall in some specific settings. All in all, the best combination of prosodic
features is when our model is trained on words together with the preceding pause
durations and their normalized mean f0 values.

As future work, we plan to experiment with more prosodic features (such as
speech rate) and their combinations and also see whether other RNN types such
as LSTM help solve the problem better. Also, a model that gives attention to
different prosodic features for different punctuation marks is a field to explore.

Our model trains word embeddings together with the whole architecture.
We believe that pre-trained word embeddings extracted from a larger speech
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corpus would improve the scores. Also it has been recently shown that character-
based encodings improve results in neural network based applications by largely
decreasing the word vocabulary size [21].
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