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Preface

These proceedings contain the papers that were presented at the 5th International
Conference on Statistical Language and Speech Processing (SLSP 2017), held in LeMans,
France, during October 23–25, 2017.

The scope of SLSP deals with topics of either theoretical or applied interest dis-
cussing the employment of statistical models (including machine learning) in language
and speech processing, namely:

Anaphora and coreference resolution
Authorship identification, plagiarism, and spam filtering
Computer-aided translation
Corpora and language resources
Data mining and Semantic Web
Information extraction
Information retrieval
Knowledge representation and ontologies
Lexicons and dictionaries
Machine translation
Multimodal technologies
Natural language understanding
Neural representation of speech and language
Opinion mining and sentiment analysis
Parsing
Part-of-speech tagging
Question-answering systems
Semantic role labeling
Speaker identification and verification
Speech and language generation
Speech recognition
Speech synthesis
Speech transcription
Spelling correction
Spoken dialogue systems
Term extraction
Text categorization
Text summarization
User modeling

SLSP 2017 received 39 submissions. Every paper was reviewed by three Pro-
gramme Committee members. There were also a few external experts consulted. After a
thorough and vivid discussion phase, the committee decided to accept 21 papers (which



represents an acceptance rate of about 54%). The conference program included three
invited talks and presentations of work in progress as well.

The excellent facilities provided by the EasyChair conference management system
allowed us to deal with the submissions successfully and handle the preparation
of these proceedings in time.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the external reviewers for their diligent cooperation, and
Springer for its very professional publishing work.

July 2017 Nathalie Camelin
Yannick Estève

Carlos Martín-Vide

VI Preface
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Author Profiling in Social Media: The Impact
of Emotions on Discourse Analysis

Paolo Rosso1(B) and Francisco Rangel1,2

1 PRHLT Research Center, Universitat Politècnica de València, Valencia, Spain
prosso@dsic.upv.es

http://www.dsic.upv.es/~prosso
2 Autoritas Consulting, Valencia, Spain

francisco.rangel@autoritas.es

http://www.kicorangel.com

Abstract. In this paper we summarise the content of the keynote that
will be given at the 5th International Conference on Statistical Lan-
guage and Speech Processing (SLSP) in Le Mans, France in October
23–25, 2017. In the keynote we will address the importance of inferring
demographic information for marketing and security reasons. The aim
is to model how language is shared in gender and age groups taking
into account its statistical usage. We will see how a shallow discourse
analysis can be done on the basis of a graph-based representation in
order to extract information such as how complicated the discourse is
(i.e., how connected the graph is), how much interconnected grammat-
ical categories are, how far a grammatical category is from others, how
different grammatical categories are related to each other, how the dis-
course is modelled in different structural or stylistic units, what are the
grammatical categories with the most central use in the discourse of a
demographic group, what are the most common connectors in the lin-
guistic structures used, etc. Moreover, we will see also the importance to
consider emotions in the shallow discourse analysis and the impact that
this has. We carried out some experiments for identifying gender and
age, both in Spanish and in English, using PAN-AP-13 and PAN-PC-14
corpora, obtaining comparable results to the best performing systems of
the PAN Lab at CLEF.

Keywords: Author profiling · Graph-based representation · Shallow
discourse analysis · EmoGraph

1 Author Profiling in Social Media

Often social media users do not explicitly provide demographic information
about themselves. Therefore, due to the importance that is for marketing, but
also for security or forensics, this information needs to be inferred somehow, for
instance on the basis of how language is generally used among group of people
that may share a more common writing style (e.g. adolescents vs. adults).
c© Springer International Publishing AG 2017
N. Camelin et al. (Eds.): SLSP 2017, LNAI 10583, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-68456-7 1



4 P. Rosso and F. Rangel

Studies like [8] linked the use of language with demographic traits. The
authors approached the problem of gender and age identification combining func-
tion words with part-of-speech (POS) features. In [15] the authors related the
language use with personality traits. They employed a set of psycho-linguistic
features obtained from texts, such as POS, sentiment words and so forth. In [22]
the authors studied the effect of gender and age in the writing style in blogs. They
obtained a set of stylistic features such as non-dictionary words, POS, function
words and hyperlinks, combined with content features, such as word unigrams
with the highest information gain. They showed that language features in blogs
correlates with age, as reflected in, for example, the use of prepositions and
determiners.

More recently, at PAN 20131 and 20142 gender and age identification have
been addressed in the framework of a shared task on author profiling in social
media. Majority of approaches at PAN-AP 2013 [18] and PAN-AP 2014 [19] used
combinations of style-based features such as frequency of punctuation marks,
capital letters, quotations, and so on, together with POS tags and content-
based features such as bag of words, dictionary-based words, topic-based words,
entropy-based words, etc. Two participants used the occurrence of sentiment
or emotional words as features. It is interesting to highlight the approach that
obtained the overall best results using a representation that considered the rela-
tionship between documents and author profiles [14]. The best results in English
were obtained employing collocations [12].

Following, in Sect. 2 we describe how discourse features can be extracted from
a graph-based representation of texts, and in Sect. 3 we show the impact that
considering emotions in the framework of discourse analysis may have. Finally,
in Sect. 4 we draw some conclusions.

2 Discourse Analysis in Author Profiling

Very recently, discourse features started to be used in author profiling [23,24].
Rhetorical Structure Theory (RST)3 has been applied for the characterization
of the writing style of authors. Features have been extracted from the discourse
trees, such as the frequencies of each discourse relation per elementary discourse
unit, obtaining interesting results when used in combination with other features.
Unfortunately, no comparison has been made with any state-of-the-art method,
for instance on the PAN-AP-13 and PAN-AP-14 corpora, and it is difficult to
fully understand the impact that the use of discourse features may have on
author profiling, but the preliminary results that have been obtained are quite
promising.

1 http://www.uni-weimar.de/medien/webis/research/events/pan-13/pan13-web/auth
or-profiling.html.

2 http://www.uni-weimar.de/medien/webis/research/events/pan-14/pan14-web/auth
or-profiling.html.

3 RST is a descriptive linguistic approach to the organization of discourse based on
the linguistic theory formulated by Mann and Thompson in 1988 [11].

http://www.uni-weimar.de/medien/webis/research/events/pan-13/pan13-web/author-profiling.html
http://www.uni-weimar.de/medien/webis/research/events/pan-13/pan13-web/author-profiling.html
http://www.uni-weimar.de/medien/webis/research/events/pan-14/pan14-web/author-profiling.html
http://www.uni-weimar.de/medien/webis/research/events/pan-14/pan14-web/author-profiling.html
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Our aim is instead to extract discourse features after modelling the use of
language of a group of authors with a graph-based representation. These features
will indicate the discourse complexity, the different structural and stylistic units
the discourse is modelled in, etc. Concretely, our aim is to analyse the writing
style from the perspective people combine the different POS in a text, the kind
of verbs they employ, the topics they mention, the emotions and sentiments they
express, etc. As Pennebaker pointed out [16], men generally use more preposi-
tions than women and, for instance, they may use more prepositional syntagmas
than women (e.g. preposition + determinant + noun + adjective). In the pro-
posed approach, we build a graph with the different POS of authors’ texts and
enrich it with semantic information with the topics they speak about, the type
of verbs they use, and the emotions they express. We model the text of authors
of a given gender or age group as a single graph, considering also punctuation
signs in order to capture how a gender or age group of authors connects con-
cepts in sentences. Once the graph is built, we extract from the graph structure
and discourse features we feed a machine learning approach with. Moreover, we
will see that the way authors express their emotions depends on their age and
gender. The main motivation for using a graph-based approach is its capacity to
analyse complex language structures and discourses.

2.1 EmoGraph Graph-Based Representation

For each text of a group of authors, we carry out a morphological analysis with
Freeling4 [4,13], obtaining POS and lemmas of the words. Freeling describes
each POS with an Eagle label5. We model each POS as a node (N) of the graph
(G), and each edge (E) defines the sequence of POS in the text as directed links
between the previous part-of-speech and the current one. For example, let us
consider a simple text like the following:

El gato come pescado y bebe agua. (The cat eats fish and drinks water)

It generates the following sequence of Eagle labels:

DA0MS0 ->NCMS000 ->VMIP3S0 ->NCMS000 ->CC ->VMIP3S0 ->NCMS000 ->Fp

We model such sequence as the graph showed in Fig. 1. Due to the fact that
the link VMIP3S0 -> NCMS000 is produced twice, the weight of this edge is
double than the rest.
4 http://nlp.lsi.upc.edu/freeling/.
5 The Eagles group (http://www.ilc.cnr.it/EAGLES96/intro.html) proposed a series

of recommendations for the morphosyntactic annotation of corpora. For Spanish,
we used the Spanish version (http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.
html). For example in the sentence “El gato come pescado y bebe agua.” (The cat
eats fish and drinks water.), the word “gato” (cat) is returned as NCMS000 where
NC means common noun, M means male, S means singular, and 000 is a filling until
7 chars; or the word “come” (eats) is returned as VMIP3S0 where V means verb,
M means main verb (not auxiliary), I means indicative mode of the verb, P means
present time, 3 means third person, S means singular, and 0 is a filling until 7 chars.

http://nlp.lsi.upc.edu/freeling/
http://www.ilc.cnr.it/EAGLES96/intro.html
http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html
http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html
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Fig. 1. POS Graph of “El gato come pescado y bebe agua.” (The cat eats fish and
drinks water)

The following step is to enrich the described graph with semantic and affective
information. For each word in the text, we look for the following information:

• Wordnet domains6: If the word is a common noun, adjective or verb, we
search for the domain of its lemma. We use Wordnet Domains linked to the
Spanish version of the Euro Wordnet7 in order to find domains of Spanish
lemmas. If the word has one or more related topics, a new node is created for
each topic and a new edge from the current Eagle label to the created node(s)
is added. In the previous example, gato (cat) is related both to biology and
animals, thus two nodes are created and a link is added from NCMS000 to
each of them (NCMS000 ->biology & animals).

• Semantic classification of verbs: Semantic classification of (V)erbs: We
search for the semantic classification of verbs. On the basis of what was inves-
tigated in [10], we have manually annotated 158 verbs with one of the follow-
ing semantic categories: (a) perception (see, listen, smell...); (b) understanding
(know, understand, think...); (c) doubt (doubt, ignore...); (d) language (tell,
say, declare, speak...); (e) emotion (feel, want, love...); (f) and will (must,
forbid, allow...). We add six features with the frequencies of each verb type.
If the word is a verb we search for the semantic classification of its lemma. We
create a node with the semantic label and we add an edge from the current
Eagle label to the new one. For example, if the verb is a perception verb, we
would create a new node named “perception” and link the node VMIP3S0 to
it (VMIP3S0 -> perception).

• Polarity of words: If the word is a common noun, adjective, adverb or verb,
we look for its polarity in a sentiment lexicon. For example, let us consider
the following sentence:

She is an incredible friend.

It has the following sequence of Eagle labels:

PP3FS000 ->VSIP3S0 ->DI0FS0 ->NCFS000 ->AQ0CS0(->positive &negative) ->Fp

6 http://wndomains.fbk.eu/.
7 http://www.illc.uva.nl/EuroWordNet/.

http://wndomains.fbk.eu/
http://www.illc.uva.nl/EuroWordNet/
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The adjective node AQ0CS0 has links both to the positive and negative tags,
because incredible could be both positive and negative depending on the
context. Therefore, from a polarity viewpoint it is an ambiguous word which
gives us two nodes (and two edges).

• Emotional words: If the word is a common noun, adjective, adverb or verb,
for texts in English we look for its relationship to one emotion in Wordnet
Affect8 [25] and for texts in Spanish in the Spanish Emotion Lexicon [5]. We
create a new node for each of them. See the following sentence as an example:

He estado tomando cursos en ĺınea sobre temas valiosos que disfruto
estudiando y que podŕıan ayudarme a hablar en público (I have been
taking online courses about valuable subjects that I enjoy studying
and might help me to speak in public)

The representation of the previous sentence with our graph-based approach,
that will call EmoGraph, is shown in Fig. 2. The sequence may be followed
by starting in VAIP1S0 node. Nodes size depends on their eigenvector and
nodes colour on their modularity.

Fig. 2. EmoGraph of “He estado tomando cursos en ĺınea sobre temas valiosos que
disfruto estudiando y que podŕıan ayudarme a hablar en público” (“I have been taking
online courses about valuable subjects that I enjoy studying and might help me to speak
in public”)

Finally, we link the last element of the sentence (e.g. Fp) with the first
element of the next one, since we are also interested in how people use sentence
splitters (e.g. . ; :) and any other information prone to model how people use
their language.

Once the graph is built, our objective is to use a machine learning approach
to model texts of gender and age groups in order to be able to classify a given
text later into the right class. Therefore, we have first to extract features from
8 http://wndomains.fbk.eu/wnaffect.html.

http://wndomains.fbk.eu/wnaffect.html
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the graph. We obtain such features on the basis of graph analysis in two ways: (a)
general properties of the graph describing the overall structure of the modelled
texts; (b) and specific properties of its nodes and how they are related to each
other, that describe how authors use language.

Following, we describe how to extract the structure-based features from the
graph and what they describe from a discourse-based perspective:

• Nodes-Edges ratio. We calculate the ratio between the number of nodes N
and the number of edges E of the graph G = {N, E}. The maximum possible
number of nodes (429) is given by: (a) the total number of Eagle labels
(247); (b) the total number of topics in Wordnet Domains (168); (c) the total
number of verb classes (6); (d) the total number of emotions (6); (e) and the
total number of sentiment polarities (2). The maximum possible number of
edges (183, 612) in a directed graph is theoretically calculated as:

max(E) = N ∗ (N − 1)

where N is the total number of nodes. Thus, the ratio between nodes and
edges gives us an indicator of how connected the graph is, or in our case, how
complicated the structure of the discourse of the user is.

• Average degree of the graph, which indicates how much interconnected
the graph is. The degree of a node is the number of its neighbours; in our
case, this is given by the number of other grammatical categories or semantic
information preceding or following each node. The average degree is calculated
by averaging all the node degrees.

• Weighted average degree of the graph is calculated as the average degree
but by dividing each node degree by the maximum number of edges a node
can have (N − 1). Thus, the result is transformed in the range [0, 1]. The
meaning is the same than the average degree but in another scale.

• Diameter of the graph indicates the greatest distance between any pair of
nodes. It is obtained by calculating all the shortest paths between each pair
of nodes in the graph and selecting the greatest length of any of these paths.
That is:

d = maxn∈Nε(N)

where ε(n) is the eccentricity or the greatest geodesic distance between n and
any other node. In our case, it measures how far one grammatical category
is from others, for example how far a topic is from an emotion.

• Density of the graph measures how close the graph is to be completed, or in
our case, how dense is the text in the sense of how each grammatical category
is used in combination to others. Given a graph G = (N, E), it measures how
many edges are in set E compared to the maximum possible number of edges
between the nodes of the set N. Then, the density is calculated as:

D =
2 ∗ |E|

(|N | ∗ (|N | − 1))
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• Modularity of the graph measures the strength of division of a graph into
modules, groups, clusters or communities. A high modularity indicates that
nodes within modules have dense connections whereas they have sparse con-
nections with nodes in other modules. In our case may indicate how the
discourse is modelled in different structural or stylistic units. Modularity is
calculated following the algorithm described in [1].

• Clustering coefficient of the graph indicates the transitivity of the graph,
that is, if a is directly linked to b and b is directly linked to c, the probability
that a is also linked to c. The clustering coefficient indicates how nodes are
embedded in their neighbourhood, or in our case, how the different grammat-
ical categories (or semantic information such as emotions) are related to each
others. For each node, the cluster coefficient (cc1) may be calculated with the
Watts-Strogatzt formula [26]:

cc1 =
∑n

i=1C(i)
n

Each C(i) measures how close the neighbours of node i are to be a complete
graph. It is calculated as follows:

C(i) =
|{ejk : nj , nk ∈ Ni, ejk ∈ E}|

ki(ki − 1)

where ejk is the edge which connects node nj with node nk and ki is the
number of neighbours of the node i. Finally, we calculate the global clustering
coefficient as the average of all node’s coefficients, excluding nodes with degree
0 or 1, following the algorithm described in [9].

• Average path length of the graph is the average graph-distance between
all the pairs of nodes and could be calculated following [3]. It gives us an
indicator on how far some nodes are from others or in our case how far some
grammatical categories are from others.

Moreover, for each node in the graph, we calculate two centrality measures:
betweenness and eigenvector. We use each obtained value as the weight of a
feature named respectively BTW-xxx and EIGEN-xxx, where xxx is the name
of the node (e.g. AQ0CS0, positive, enjoyment, animal and so on):

• Betweenness centrality measures how important a node is by counting the
number of shortest paths of which it is part of. The betweenness centrality of
a node x is the ratio of all shortest paths from one node to another node in
the graph that pass through x. We calculate it as follows:

BC(x) =
∑

i,j∈N−{n}
σi,j(n)

σi,j

where σi,j is the total number of shortest paths from node i to node j, and
σi,j(n) is the total number of those paths that pass through n. In our case, if
one node has a high betweenness centrality means that it is a common element
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used for link among parts-of-speech, for example, prepositions, conjunctions,
or even verbs or nouns. This measure may give us an indicator of what the
most common links in the linguistic structures used by authors are.

• Eigenvector centrality of a node measures the influence of such node in
the graph [2]. Given a graph and its adjacency matrix A = an,t where an,t

is 1 if a node n is linked to a node t, and 0 otherwise, we can calculate the
eigenvector centrality score as:

xn =
1
λ

∑

t∈M(n)
xt =

1
λ

∑

t∈G
an,txt

where λ is a constant representing the greatest eigenvalue associated with
the centrality measure, M(n) is a set of the neighbours of node n and xt

represents each node different to xn in the graph. This measure may give us
an indicator of what are the grammatical categories with the most central
use in the authors’ discourse, for example nouns, verbs, adjectives, etc.

2.2 Experiments with PAN-AP-13 and PAN-AP-14 Corpora

Below we present the results that have been obtained for gender and age identifi-
cation with a Support Vector machine with a Gaussian Kernel on the PAN-AP-13
and PAN-AP-14 corpora.

We carried out the experiments with the Spanish partition of the PAN-AP-13
social media corpus. In Table 1 the results for gender identification are shown.
The proposed graph-based approach obtained competitive results with respect
to the two best performing systems (with no statistically significant difference).
In Table 2 EmoGraph shows a better performance than the system that was

Table 1. Results in accuracy for gender identification in PAN-AP-13 corpus (Spanish)

Ranking Team Accuracy

1 Santosh 0.6473

2 EmoGraph 0.6365

3 Pastor 0.6299

4 Haro 0.6165

5 Ladra 0.6138

6 Flekova 0.6103

7 Jankowska 0.5846

. . . . . .

17 Baseline 0.5000

. . . . . .

22 Gillam 0.4784
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Table 2. Results in accuracy for age identification in PAN-AP-13 corpus (Spanish)

Ranking Team Accuracy

1 EmoGraph 0.6624

2 Pastor 0.6558

3 Santosh 0.6430

4 Haro 0.6219

5 Flekova 0.5966

. . . . . .

19 Baseline 0.3333

. . . . . .

21 Mechti 0.0512

ranked first at the shared task was obtained for age identification (10s, 20s and
30s), although statistically with no significant difference (t-Student test).

We studied what topics the different group of authors wrote about in the
corpus (we removed the most frequent topics9 because not so informative being
at the top of the domain hierarchy). We obtained the topics with the help of
Wordnet Domains. The corresponding word clouds are shown in Figs. 3, 4 and 5
for females in each age group (10s, 20s and 30s), and in Figs. 6, 7 and 8 for males
in the same age groups. Younger people tend to write more about many different
disciplines such as physics, linguistics, literature, metrology, law, medicine, chem-
istry and so on, maybe due to the fact that this is the stage of life when people
mostly speak about their homework. Females seem to write more about chem-
istry or gastronomy, and males about physics or law. Both write about music and
play. On the contrary of what one could might think, 10s females write about

Fig. 3. Top domains for
10s females in PAN-AP-
13 corpus

Fig. 4. Top domains for
20s females in PAN-AP-
13 corpus

Fig. 5. Top domains for
30s females in PAN-AP-
13 corpus

9 E.g. biology, quality, features, psychological, economy, anatomy, period, person,
transport, time and psychology.
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Fig. 6. Top domains for
10s males in PAN-AP-
13 corpus

Fig. 7. Top domains for
20s males in PAN-AP-
13 corpus

Fig. 8. Top domains for
30s males in PAN-AP-
13 corpus

sexuality whereas males do not, and the contrary for commerce (shopping). As
they grow up, both females and males show more interest in buildings (maybe
due to the fact that they look for flats to rent), animals, gastronomy, medicine,
and about religion, although in a highest rate among males.

With respect to the use of verb types, we were interested in investigating
what kind of actions (verbs) females and males mostly refer to and how this
changes over time. Figure 9 illustrates that males use more language verbs (e.g.
tell, say, speak...), whereas females use more emotional verbs (e.g. feel, want,
love...) conveying more verbal emotions than males.

Fig. 9. Use of verb types per gender in PAN-AP-13 corpus
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Moreover, we analysed the evolution of the use of verbs over the age.
Figures 10 and 11 show the evolution through 10s, 20s and 30s. The use of
emotional verbs decreases over years, although we can assert that females use
more emotional verbs than males in any stage of life. The contrary happens with
verbs of language. Verbs of understanding (e.g. know, understand, think...) seem
to increase for males and remain stable for females, but it has to be said that
females started using more verbs of understanding already in the early age at
a similar ratio than males do later. Similarly, verbs of will10 (e.g. must, forbid,
allow...) increase for both genders, but at a higher rate for males.

Fig. 10. Evolution in the use of verb
types for females in PAN-AP-13 corpus

Fig. 11. Evolution in the use of verb
types for males in PAN-AP-13 corpus

Finally, we analyse the most discriminative features for the identification of
gender and age on the basis of information gain [27]. Table 3 shows the top 20 fea-
tures over 1100. Betweenness (BTW-xxx ) and eigenvector (EIGEN-xxx ) features
are among the top features. We can identify a higher number of eigen features
(mainly for verbs, nouns and adjectives) in gender identification in comparison to
the higher number of betweenness features (mainly prepositions or punctuation
marks) in age identification. This means that features describing the important
nodes in the discourse provide more information to gender identification, whereas
features describing the most common links in the discourse provide more infor-
mation to the age identification. In other words, the selection of the position in
the discourse for words such as nouns, verbs or adjectives, which mainly give the
meaning of the sentence, is the best discriminative features for gender identifica-
tion, whereas the selection of connectors such as prepositions, punctuation marks

10 “Verbs of will”: verbs that suggest interest or intention of doing things (such as must,
forbid, allow). Verbs of will do not have any relationship with will as the auxiliary
verb for the future in English.
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Table 3. Most discriminating features for gender and age identification

Ranking Gender Age Ranking Gender Age

1 Punctuation-semicolon Words-length 11 BTW-NC00000 EIGEN-SPS00

2 EIGEN-VMP00SM Pron 12 BTW-Z BTW-NC00000

3 EIGEN-Z BTW-SPS00 13 EIGEN-DA0MS0 Punctuation-exclamation

4 EIGEN-NCCP000 BTW-NCMS000 14 BTW-Fz Emoticon-happy

5 Pron Intj 15 BTW-NCCP000 BTW-Fh

6 Words-length EIGEN-Fh 16 EIGEN-AQ0MS0 Punctuation-colon

7 EIGEN-NC00000 BTW-PP1CS000 17 SEL-disgust Punctuation

8 EIGEN-administration EIGEN-Fpt 18 EIGEN-DP3CP0 BTW-Fpt

9 Intj EIGEN-NC00000 19 EIGEN-DP3CS0 EIGEN-DA0FS0

10 SEL-sadness EIGEN-NCMS000 20 SEL-anger Verb

or interjections are the best discriminative features for age identification. It is
important to notice the amount of features related to emotions (SEL-sadness,
SEL-disgust, SEL-anger) for gender identification and the presence of certain
grammatical categories (Pron, Intj, Verb) for age identification.

Following, we tested further the robustness of the EmoGraph approach on the
PAN-AP-14 corpus, both in Spanish and in English. This corpus is composed
of four different genres: (i) social media (such as in the PAN-AP-13 corpus);
(ii) blogs; (iii) Twitter; (iv) and hotel reviews. All corpora were in English and
in Spanish, with the exception of the hotel reviews (in English only). In 2014
the age information was labelled in a continuous way (without gaps of 5 years),
and the following classes were considered: (i) 18–24; (ii) 25–34; (iii) 35–49; (iv)
50–64; (v) and 65+.

Results are shown in Fig. 12. Results for Spanish are in general better than
for English. This may be due to the higher variety of the morphological informa-
tion obtained with Freeling for Spanish. In fact, Freeling obtains 247 different
annotations for Spanish whereas it obtains 53 for English. For example, in the
Spanish version the word “cursos” (courses) for the given example in Fig. 2 is
returned as NCMP000 where NC means common noun, M means male, P means
plural, and 000 is a filling until 7 chars; in the English version, the word “courses”
is annotated as NNS.

With respect to the results obtained in the PAN-AP-13 corpus for Spanish,
the results for age are lower due to the higher number of classes (3 classes in
2013 vs. 5 continuous ones in 2014). Results for Twitter and blogs are better
than for social media and reviews. This is due to the quality of the annotation, in
fact both blogs and Twitter corpora were manually annotated, ensuring that the
reported gender and age of each author was true. On the contrary, in social media
and reviews what the authors reported was assumed to be true. Furthermore, in
blogs and also in Twitter there were enough texts per author in order to obtain
a better profile. In fact, although in Twitter each tweet is short (as much 140
characters), we had access to hundreds of tweets per author. The worst results
were obtained for the reviews. Besides the possibility of deceptive information
regarding age and gender in the reviews corpus, it is important to know that
reviews were bounded to the hotel domain and just to two kinds of emotions:
complain or praise.
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Fig. 12. Results in accuracy in PAN-AP-14 corpus: EmoGraph vs. the best team

3 The Impact of Emotions

In order to understand further the impact of emotions in our graph-based repre-
sentation of texts, we carried out a further experiment with another corpus, the
EmIroGeFB [17] corpus of Facebook comments in Spanish, that we previously
annotated with the Ekmans’s six basic emotions [6]. We compared the proposed
approach where emotions are taken into account with other variations of the
graph-based representation that take into account some of the structure and
discourse features:

• Simple Graph: a graph built only with the grammatical category of the
Eagle labels (the first character of the Eagle label), that is, verb, noun, adjec-
tive and so on;

• Complete Graph: a graph built only with the complete Eagle labels, but
without topics, verbs classification and emotions;

• Semantic Graph: a graph built with all the features described above (Eagle
labels, topics and verbs classification) but without emotions.

Results for gender identification are shown in Table 4. The best results were
obtained when also emotions that were used in the discourse were considered in
the graph-based approach.
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Table 4. Results for gender identification in accuracy on the EmIroGeFB corpus (in
Spanish)

Features Accuracy

EmoGraph 0.6596

Semantic Graph 0.5501

Complete Graph 0.5192

Simple Graph 0.5083

4 Conclusions

In this paper we tried to summarise the main concepts that will be addressed
in the keynote at the 5th International Conference on Statistical Language and
Speech Processing (SLSP) that will be held in Le Mans, France in October
23–25, 2017. Our aim was to show that with a graph-based representation of
texts is possible to extract discourse features that describe how complicated the
discourse is, how the discourse is modelled in different structural or stylistic units,
what are the grammatical categories with the most central use in the discourse of
a demographic group, where in the discourse emotion-bearing words have been
used, etc. Eigen features describing the important nodes in the discourse (e.g.
the position in the discourse of words such as nouns, verbs or adjectives, which
mainly give the meaning of the sentence) showed to help in gender identification,
whereas betweenness features describing the most common links in the discourse
(e.g. connectors such as prepositions, punctuation marks or interjections) helped
more in age identification.

A more complete description of the EmoGraph graph-based approach and
the experiments carried out on the PAN-AP-13 and PAN-AP-14 can be found
in [21] and in [20].
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Abstract. Factored neural machine translation (FNMT) is founded on
the idea of using the morphological and grammatical decomposition of
the words (factors) at the output side of the neural network. This archi-
tecture addresses two well-known problems occurring in MT, namely the
size of target language vocabulary and the number of unknown tokens
produced in the translation. FNMT system is designed to manage larger
vocabulary and reduce the training time (for systems with equivalent tar-
get language vocabulary size). Moreover, we can produce grammatically
correct words that are not part of the vocabulary. FNMT model is evalu-
ated on IWSLT’15 English to French task and compared to the baseline
word-based and BPE-based NMT systems. Promising qualitative and
quantitative results (in terms of BLEU and METEOR) are reported.

Keywords: Machine translation · Neural networks · Deep learning ·
Factored representation

1 Introduction and Related Works

In contrast to the traditional phrased-based statistical machine translation [12]
that automatically translates subparts of the sentences, standard Neural
Machine Translation (NMT) systems use the sequence to sequence approach at
word level and consider the entire input sentence as a unit for translation [2,5,25].

Recently, NMT showed better accuracy than existing phrase-based systems
for several language pairs. Despite these positive results, NMT systems still face
several challenges. These challenges include the high computational complex-
ity of the softmax function which is linear to the target language vocabulary
size (Eq. 1).

pi = eoi/

N∑

r=1

eor for i ∈ {1, . . . , N} (1)

where oi are the outputs, pi their softmax normalization and N the total number
of outputs.

In order to solve this issue, a standard technique is to define a short-list
limited to the s most frequent words where s << N . The major drawback
of this technique is the growing rate of unknown tokens generated at the out-
put. Another work around has been proposed in [11] by carefully organising the
c© Springer International Publishing AG 2017
N. Camelin et al. (Eds.): SLSP 2017, LNAI 10583, pp. 21–31, 2017.
DOI: 10.1007/978-3-319-68456-7 2
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batches so that only a subset K of the target vocabulary is possibly generated
at training time. This allows the system to train a model with much larger tar-
get vocabulary without substantially increasing the computational complexity.
Another possibility is to define a structured output layer (SOUL) to handle the
words not appearing in the shortlist. This allows the system to always apply
the softmax normalization on a layer with reduced size [14]. The problem of
unknown words was addressed making use of the alignments produced by an
unsupervised aligner [16]. The unknown generated words are substituted in a
post-process step by the translation of their corresponding aligned source word
or copying the source word if no translation is found. The translation of the
source word is made by means of a dictionary.

Other recent work have used subword units instead of words. In [24], some
unknown and rare words are encoded as subword units with the Byte Pair Encod-
ing (BPE) method. Authors show that this can also generates words unseen at
training time. As an extreme case, the character-level neural machine transla-
tion has been presented in several works [6,7,15] and showed very promising
results. The character-level NMT architectures are composed of many layers, to
deal with the long distance dependencies, increasing aggressively the computa-
tional complexity of the training process. In [22] has been shown that character-
level decoders outperform subwords units using BPE method when processing
unknown words, but they perform worse when extracting morphosyntactic infor-
mation about the sentences, due to the long distances.

Among other previous works, our work can be seen as a continuation of [9].
Several works have used factors as additional information for the input words
in neural language modelling with interesting results [1,18,26]. More recently,
factors have also been integrated into a word-level NMT system as additional
linguistic input features [23]. Unlike these previous works, we are considering
factors as translation unit. We refer to factors as some linguistic annotations
at word level, e.g. the Part of Speech (POS) tag, number, gender, etc. The
advantages of using factors as translation unit are two-fold: reducing the output
vocabulary size and allowing to generate surface forms which are never seen in
the training data.

Factors were first introduced for NMT at output side in [9] where two fac-
tored synchronous symbols are simultaneously generated. Authors presented an
investigation of the architecture of their factored NMT system to show that
better results are obtained using a feedback of the two generated outputs con-
catenation.

Our work is different from previous efforts in that we consider only the best
type of feedback for the network. We also introduce an additional factor about
the case information (lowercase, uppercase or in capitals) and evaluate using a
different translation test. Moreover, we apply an unknown words (unk) replace-
ment technique using the alignments of the attention mechanism to replace the
generated unknown words in target side. For that, we make use of an unigram
dictionary to find the translation of the source word corresponding to the gen-
erated unk.
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We compare this architecture to the state of the art BPE approach and
the classic word-level NMT approach on the English to French dataset from
IWSLT’15 evaluation campaign. We provide, in addition a quantitative and qual-
itative study about the obtained results.

The remainder of this paper is organized as follows: Sect. 2 describes the
attention-based NMT system and Sect. 3 its extension using the factored app-
roach. In Sect. 4, we describe the experiments and the obtained results. Finally,
Sect. 5 concludes the paper and presents the future work.

2 Neural Machine Translation

The standard NMT model consists of a sequence to sequence encoder-decoder
of two recurrent neural networks (RNN), one used by the encoder and the other
by the decoder. The source language sequence is mapped into an embedded
dimension in the encoder and the decoder maps the representation back to a
target language sequence.

DECODERENCODER

Attention 
Mechanism

x1 x2 xN· · ·

x1x2xN ···
· · ·

AnnotationsBidirectional RNN

GRU1 GRU2

∑
αijai

a1 aN

Cj LC

LR

LOSoftmax

Φ
∑

Word

Fig. 1. Attention-based NMT system (Color figure online)

The architecture includes a bidirectional RNN encoder (see left part of
Fig. 1) equipped with an attention mechanism [2]. Each input sentence word xi

(i ∈ 1 . . . N with N the source sequence length) is encoded into an annotation ai

by concatenating the hidden states of a forward and a backward RNN provided
by a gated recurrent unit (GRU) [5] to control the flow of information. These
annotations a1 . . . aN represents the whole sentence with a focus on the word
being processed. One difference from the architecture of [2] is that the decoder
contains a conditional GRU [8] which consists of two GRUs interspersed with the
attention mechanism (see right top part of the Fig. 1). The first GRU combines
the embedding of the previous decoded token and the previous hidden state in
order to generate an intermediate representation which is an input of the atten-
tion mechanism and the second GRU. The attention mechanism (bottom yellow
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part of the Fig. 1) computes a source context vector Cj as a convex combina-
tion of annotation vectors, where the weights of each annotation are computed
locally using a feed-forward network. These weights can be used to align the
target words with the source positions. The second GRU generates the hidden
state of the conditional GRU by looking at the output of the first GRU and the
context vector Cj . The decoder RNN takes as input the embedding of the previ-
ous output word (feedback of the network) in the first GRU, the context vector
Cj in the second GRU and its hidden state. The output layer LO is connected to
the network through a hyperbolic tangent sum operation Φ(

∑
) which takes as

input the embedding of the previous output word as well as the context vector
and the output of the decoder from the second GRU (both adapted with a linear
transformation, respectively, LC and LR). Finally, the output probabilities for
each word in the target vocabulary are computed with a softmax function. The
word with the highest probability is the translation output at each timestep.
The encoder and the decoder are trained jointly to maximize the conditional
probability of the reference translation.

3 Factored Neural Machine Translation

The Factored Neural Machine Translation (FNMT) [9] is an extension of the
standard NMT architecture which allows the system to generate several output
symbols at the same time.

For the sake of simplicity, only two symbols are generated: the lemma and
the concatenation of the different factors (verb, tense, person, gender, number
and case information). The target words are then represented by a factored
output: lemmas and factors. Factors may help the translation process providing
grammatical information to enrich the output. The task of this work is English to
French translation, English is a grammatically poor language and factors do not
help for its translation, this has been tested in previous experiments. Therefore,
we apply the factors only in the target side when translating to French which is
a grammatically rich language. In the example shown in Fig. 3, from the verbal
form in French devient, we obtain the lemma devenir and its factors VP3#SL
(Verb, in Present, 3rd person, no gender (#), Singular and Lowercased form).
Moreover, we can see the word interéssant with the lemma interéssant and
factors Adj##MSL (Adjective, no tense (#) and no person (#), Masculine
gender, Singular number and Lowercased form). The morphological analyser
MACAON toolkit [17] is used to obtain the lemma and factors for each word
taking into account its context with nearly 100% accuracy. The first entry is
used in the few cases that MACAON proposes multiple words (e.g. same word
written in two forms).

The FNMT architecture is presented in Fig. 2. The encoder and attention
mechanism of Fig. 1 remain unchanged. However, the decoder has been modified
to get multiple outputs. The hidden state of the conditional GRU (cGRU) is
shared to produce simultaneously several outputs. The output from the layer
LO has been diversified to two softmax layers, one to generate the lemma and
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Fig. 2. Detailed view of the decoder of the Factored NMT system

Fig. 3. Examples of NMT and FNMT outputs aligned against the source sentence

the other to generate the factors. An additional design decision is related to
the decoder feedback. Contrary to the word based model, where the feedback is
naturally the previous word (see Fig. 1), we have multiple choices where multi-
ple outputs are generated for each decoding time-step. We have decided to use
the concatenation of the embeddings of both generated symbols based on the
work [9].

The FNMT model may lead to sequences with a different length, since lem-
mas and factors are generated simultaneously but separately (each sequence
ends after the generation of the end of sequence <eos> token). To avoid this,
the sequences length is decided based on the lemmas stream length (i.e. the
length of the factors sequence is constrained to be equal to the length of the
lemma sequence). This is motivated by the fact that the lemmas contain most
of the information of the final surface form (word).

Once we obtain the factored outputs from the neural network, we need to
combine them to obtain the surface form (word representation). This operation
is also performed with the MACAON tool, which, given a lemma and some
factors, provides the word. Word forms given by MACAON toolkit have a 99%
success rate. In the cases (e.g. name entities) that the word corresponding to the
lemma and factors is not found, the system outputs the lemma itself.
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4 Experiments

We performed a set of experiments for Factored NMT (FNMT) and compared
them with the word-based NMT and BPE-based NMT systems.

4.1 Data Processing and Selection

The systems are trained on the English to French (EN-FR) Spoken Language
Translation task from IWSLT 2015 evaluation campaign1. We applied data selec-
tion using modified Moore-Lewis filtered by XenC [21] to obtain a sub part
of the available parallel corpora (news-commentary, united-nations, europarl,
wikipedia, and two crawled corpora). The Technology Entertainment Design
(TED) [4] corpus has been used as in-domain corpus.

We preprocess the data to convert html entities and filter out the sentences
with more than 50 words for both source and target languages. Finally, we obtain
a corpus of 2M sentences with 147k unique words for the English side and 266k
unique words for the French side. French vocabulary is bigger than English since
French is more highly inflected language. Table 1 shows training, development
and testing sets statistics.

Table 1. Datasets statistics

Data Corpus name Datasets # Sents # Words EN-FR

Training train15 data selection 2M 147–266k

Development dev15 dev10 + test10 + test13 3.6k 7.3–8.9k

Testing test15 test11 + test12 1.9k 4.5–5.4k

4.2 Training

Models are trained using NMTPY [3], an NMT toolkit in Python based on
Theano2. The following hyperparameters have been chosen to train the systems.
The embedding and recurrent layers have the dimensions 620 and 1000, respec-
tively. The batch size is set to 80 sentences and the parameters are trained
using the Adadelta [27] optimizer. We clipped the norm of the gradient to be
no more than 1 [20] and initialize the weights using Xavier [10]. The systems
are validated on dev15 dataset using early stopping based on BLEU [19]. The
vocabulary size of the source language is set to 30K. The output layer size of the
baseline NMT system is set to 30K. For the sake of comparability and consis-
tency, the same value (30k) is used for the lemma output of the FNMT system.
This 30K FNMT vocabulary includes 17k lemmas obtained from the original
NMT vocabulary (30k word level gives 17k lemmas when all the derived forms

1 https://sites.google.com/site/iwsltevaluation2015.
2 https://github.com/lium-lst/nmtpy.

https://sites.google.com/site/iwsltevaluation2015
https://github.com/lium-lst/nmtpy
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of the verbs, nouns, adjectives, etc. are discarded) increased with additional new
lemmas to fit the 30K desired value. The factors have 142 different units in their
vocabulary. When it comes to combining the lemmas and the factors vocabulary,
the system is able to generate 172K different words, using the external linguistic
resources, which is 6 times bigger than a standard word-based NMT vocabulary.

For BPE systems, bilingual vocabulary has been built using source and tar-
get language applying the joint vocabulary BPE approach. In order to create
comparable BPE systems, we set the number of merge operations for the BPE
algorithm (the only hyperparameter of the method) as 30K minus the number
of character according to the paper [24]. Then, we apply a total of 29388 merge
operations to learn the BPE models on the training and validation sets. During
the decoding process, we use a beam size of 12 as used in [2].

4.3 Quantitative Results

The Factored NMT system aims at integrating linguistic knowledge into the
decoder in order to overcome the restriction of having a large vocabulary at
target side. We first compare our system with the standard word-level NMT
system. For the sake of comparison with state of the art systems, we have built
a subword system using the BPE method. Subwords were calculated at the input
and the output side of the neural network as described in [24]. The results are
measured with two automatic metrics, the most common metric for machine
translation BLEU and METEOR [13]. We evaluate on test15 dataset from the
IWSLT 2015 campaign and results are presented in Table 2.

Table 2. Results on IWSLT test15. %BLEU and %METEOR performance of NMT
and FNMT systems with and without UNK replacement (UR) are presented. For each
system we provide the number of generated UNK tokens in the last column

Model %METEOR↑ %BLEU↑ #UNK

Word Word Lemma Factors

NMT/+UR 62.21/63.38 41.80/42.74 45.10 51.80 1111

BPE 62.87 42.37 45.96 53.31 0

FNMT/+UR 64.10/64.81 43.42/44.15 47.18 54.24 604

As we can see from the Table 2 results, the FNMT system obtains better
%BLEU and %METEOR scores compared to the state of the art NMT and
BPE systems. An improvement of about 1 %BLEU point is achieved compared
to the best baseline system (BPE). This improvement is even bigger (1.4 %BLEU
point) when UNK replacement is applied to both systems. In a quest to better
understand the reasons of this improvement, we also computed the %BLEU
scores of each output level (lemmas and factors) for FNMT. Theses scores are
presented in Table 2. The lemma and factors scores of NMT and BPE systems
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are obtained through a decomposing of their word level output into lemma and
factors. We observe yet again that FNMT systems gives better score at both
lemma and factors level. Replacement of unknown words has been performed
using the alignments extracted from the attention mechanism. We have replaced
the generated UNK tokens by translating its highest probability aligned source
word. We see an improvement of around 1 point %BLEU score in both NMT
and FNMT systems.

The last column of Table 2 shows, for each system, the number of generated
UNK tokens. As shown in the table our FNMT system produces half of the UNK
tokens compared to the word-based NMT system. This tends to prove that the
Factored NMT system effectively succeed in modelling more words compared to
the word based NMT system augmenting the generalization power of our model
and preserving manageable output layer sizes. Though we can see that BPE
system does not produce UNK tokens, this is not reflected in the scores. Indeed,
this can be due to the possibility of generation of incorrect words using BPE
units in contrast to the FNMT system.

4.4 Qualitative Analysis

The strengths of FNMT are considered under this qualitative analysis. We have
studied and compared the translation outputs of NMT at word-level and BPE-
level with the ones of FNMT systems. Two examples are presented in Fig. 3 and
Table 3.

Table 3. Examples of translations with NMT, BPE and FNMT systems (without
unknown words replacement)

The reference translation of the source sentence presented in Fig. 3 is “mais
voilà où ça devient intéressant”. As we can see, contrary to the baseline NMT
system, the FNMT system matches exactly the reference and thus produces the
correct translation. An additional interesting observation is that the alignment
provided by the attention mechanism seems to be better defined and more help-
ful when using factors. Also, one can notice the difference between the attention
distributions made by the systems over the source sentence. The NMT system
first translated “here” into “là”, added a coma, and then was in trouble for trans-
lating the rest of the sentence, which is reflected by the rather fuzzy attention
weights. The FNMT system had better attention distribution over of the source
sentence in this case.
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Table 3 shows another example comparing NMT, BPE and FNMT systems.
The NMT system generated an unknown token (UNK) when translating the
English word “baffled”. We observe that BPE translates “baffled” to “bafs” which
does not exist in French. This error probably comes from the shared vocabulary
between the source and target languages creating an incorrect word very similar
to its aligned source tokens. FNMT translates it to “dconcerts” which is a better
translation than in the reference. One should note that it is not generated by
the unknown word replacement method. However, for this particular example,
an error on the factors leads to the word “sont” instead of “sommes”, resulting
in lower automatic scores for FNMT output.

5 Conclusion

In this paper, the Factored NMT approach has been further explored. Factors
based on linguistic a priori knowledge have been used to decompose the target
words. This approach outperforms a strong baseline system using subword units
computed with byte pair encoding. Our FNMT system is able to model an almost
6 times bigger word vocabulary with only a slight increase of the computational
cost. By these means, the FNMT system is able to halve the generation of
unknown tokens compared to word-level NMT. Using a simple unknown word
replacement procedure involving a bilingual dictionary, we are able to obtain
even better results (+0.8 %BLEU compared to previous best system).

Also, the use of external linguistic resources allows us to generate new word
forms that would not be included in the standard NMT system shortlist. The
advantage of this approach is that the new generated words are controlled by
the linguistic knowledge, that avoid producing incorrect words, as opposed to
actual systems using BPE. We demonstrated the performance of such a system
on an inflected language (French). The results are very promising for use with
highly inflected languages like Arabic or Czech.

Acknowledgments. This work was partially funded by the French National Research
Agency (ANR) through the CHIST-ERA M2CR project, under the contract number
ANR-15-CHR2-0006-01.
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Abstract. In French, quite a number of words and expressions are fre-
quently used as discourse particles in spoken language, especially in spon-
taneous speech. The semantic load of these words or expressions differ
whether they are used as discourse particles or not. Therefore, the correct
identification of their discourse function remains of great importance. In
this paper the distribution of the discourse function (or not discourse
function), and of the detailed discourse functions of some of these words,
is studied on a large set of French corpora ranging from prepared speech
(e.g. storytelling and broadcast news) to spontaneous speech (e.g. inter-
views and interactions between people). The paper is focused on a subset
of discourse particles that are recurrent in the considered corpora. The
discourse function of a few thousand occurrences of these words have
been manually annotated. A statistical analysis of the functions of the
words is presented and discussed with respect to the types of spoken
corpora. Finally, some statistics with respect to a few prosodic correlates
of the discourse particles are presented, as well as some results of auto-
matic classification and detection of the word function (discourse particle
or not) using prosodic features.

Keywords: Discourse particles · French language · Prosodic parame-
ters · Discourse function statistics · Discourse particle detection

1 Introduction

In French, some words and expressions are frequently used as Discourse Particles
(DPs) in spoken language. The ongoing study aims at investigating the correla-
tion between the main semantico-pragmatic values of the DPs and their prosodic
features (pause, position in prosodic group, duration...). To not be biased by a
c© Springer International Publishing AG 2017
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Analysis and Automatic Classification of Some Discourse Particles 33

single type of speech data, our study is based on a large variety of speech corpora
that range from storytelling and prepared speech to highly spontaneous speech
resulting from interactions between people.

Studies of discourse markers, including DPs, have flourished in the last twenty
years, but they most often address only the semantic, pragmatic and sometimes
syntactic components of linguistic description, from a synchronic as well as dia-
chronic point of view. However, prosodic considerations remain peripheral or
quite general (see for instance [1–5]).

Using the term DP raises problems about terminology and categorization.
Several terms coexist (discourse or pragmatic markers, discourse or modal parti-
cles, phatic connectives, etc.) and they are not always interchangeable. DPs are
frequently defined in contrast to discourse markers (connectives) or to modal
particles [6–8]. In this paper, a DP is defined as a functional category [9], whose
lexical members, in addition to being a DP, have more traditional uses (conjunc-
tion, adverb, interjection, adjective, etc.). Semantically, analyzing DPs raises the
complex problem of the referential status of those items, in particular of their
indexical [10,11] and procedural values [12,13]. In short, a DP is an invariable
linguistic item that functions at the discourse level: it conveys deictic information
available only at utterance time. The information content can concern utterance
interpretation, epistemic state and affective mood of the speaker or management
of interaction.

The three items studied here behave differently, but all exist as DPs and
non-DPs in French. “Alors” (then, what’s up. . . ) can be a temporal anaphoric
adverb, a discourse connective or a DP. “Bon” (well, all right, OK. . . ) can be
an adjective, a noun or a DP. “Donc” (therefore, well. . . ) can be a discourse
connective or a DP. As DP, they present most of the prototypical properties
listed in the scientific literature (see [1,6,14,15] for some general approaches).

For conducting the study, we rely on a large variety of speech corpora coming
from the ESTER2 speech recognition evaluation campaign [16] and from the
ORFEO project [17]. This amounts to several millions of time aligned words.
Occurrences of the selected words (“alors”, “bon”, “donc”) have been chosen at
random and then manually annotated.

The paper is organized as follows. Section 2 presents the speech corpora
and the annotations. Section 3 discusses the DP vs. non-DP usage of the words
with respect to the various speech corpora. Section 4 focuses on some frequent
detailed discourse functions. Finally, Sect. 5 presents some information on a few
prosodic correlates of the DPs, and Sect. 6 discusses some automatic classification
experiments.

2 Speech Corpora and Annotations

The study is based on a large set of French speech corpora, of various degree of
spontaneity, coming from the ESTER2 evaluation campaign [16] and the ORFEO
project [17].



34 D. Jouvet et al.

Storytelling. FRE (FREnch oral narrative corpus, [18]) is a corpus of oral
storytelling in French.

News (Prepared Speech). EST (ESTER 2, [16]) is a corpus of French broad-
cast news collected from various radio channels. It contains mainly prepared
speech and a few interviews.

Interviews, Dialogues, and Conversations. CFP (Corpus de Français
Parlé Parisien – French spoken in Paris, [19,20]) contains interviews about Paris
and its suburbs. COR (French part of the C-ORAL-ROM project – integrated
reference corpora for spoken romance languages, [21,22]) contains dialogues and
conversations as well as some more formal speech. CRF (Corpus de référence
du français parlé – reference corpus for spoken French, [23,24]) contains speech
recorded from speakers with various education levels. TUF refers to the French
part of TUFS speech corpus [25]. And VAL refers to a part of the Valibel speech
database [26].

Interactions. CLA refers to a part of the CLAPI corpus (Corpus de LAngue
Parlée en Interaction – Corpus of spoken language in interaction, [27]). FLE
(a part of the FLEURON corpus, [28]) corresponds to interactions between stu-
dents and other speakers (such as university staff, professors . . . ). TCO (TCOF:
Traitement de Corpus Oraux en Français – processing French oral corpora,
[29]) consists of interactions between speakers. OFR (OFROM: Corpus Oral
de français de Suisse Romande – Speech corpus from French-speaking Switzer-
land, [30,31]) contains data recorded during interactions and interviews. DEC
(DECODA corpus, [32]) contains anonymized dialogs recorded from calls to the
Paris transport authority (RATP) call-center. Finally, HUS is a speech corpus
containing recordings of working meetings.

All the corpora have been recorded in France, except VAL (recorded in
Belgium) and OFR (recorded in Switzerland).

Except for ESTER2, which is not part of the ORFEO project, we have
used the automatic speech-text alignments carried on in the ORFEO project.
Table 1 reports the number of words in the alignments for each corpus. Globally,
for the 13 corpora, more than 5 million word occurrences have been speech-text
aligned. Also, Table 1 displays for each selected word its frequency of occurrence
in each corpus; this vary from 0.05% for the word “donc” in the FRE corpus
up to 1.61% for the word “donc” in the CLA corpus.

In each corpus, a subset of occurrences of the words “alors”, “bon” and
“donc” has been selected at random, and manually annotated by listening to
a speech segment spanning the considered occurrence (15 words before and 15
words after). The manual annotation consists in indicating whether the occur-
rences correspond to DP functions or non-DP functions. For DP functions, a finer
annotation is made to detail the pragmatic function (e.g., concluding, rephrasing,
expressing emotion, (re)introducing etc.). Incorrect data (e.g. too bad speech-
text alignment) have been discarded from detailed manual annotations. Table 1
indicates for each word, the number of items annotated (either as DP or as
non-DP).
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Table 1. Counts and statistics for the three studied words, for the various corpora.

Corpus Story News Interviews, conversations Interactions, . . .

FRE EST CFP COR CRF TUF VAL CLA FLE TCO OFR DEC HUS

Number of words
(millions)

0.14 1.82 0.41 0.22 0.38 0.58 0.25 0.02 0.03 0.36 0.29 0.65 0.17

Articulation rate
(pho./sec.)

11.9 13.7 13.1 13.0 12.8 14.8 13.5 14.9 13.9 13.9 12.9 13.3 15.1

“alors”
(what’s up,
then, . . . )

Freq. (%) 0.56 0.16 0.38 0.39 0.36 0.24 0.33 0.23 0.49 0.38 0.45 0.79 0.40

Nb. annot 98 172 87 86 91 84 77 35 73 71 91 66 79

DP (%) 24 55 79 77 68 67 71 63 93 75 84 79 89

“bon” (all
right, well,
. . . )

Freq. (%) 0.11 0.06 0.37 0.31 0.52 0.48 0.38 0.49 0.30 0.45 0.23 0.38 0.45

Nb. annot. 88 181 75 89 80 83 79 78 69 75 91 82 66

DP (%) 59 58 87 80 90 75 90 39 61 93 86 84 82

“donc”
(therefore,
well, . . . )

Freq. (%) 0.05 0.24 0.72 0.68 0.87 0.52 0.41 0.32 1.61 0.76 0.71 0.80 0.91

Nb. annot. 70 191 84 76 90 82 88 60 89 79 95 85 68

DP (%) 67 78 75 83 80 85 89 67 93 91 87 88 90

3 Discourse Particle or Not

DPs do not contribute to propositional content, but they add some pragmatic
function for ongoing discourse and elaborate the meaning of the utterance [33].
The three words studied here have a ‘traditional’ grammatical or lexical mean-
ing, but can also convey a ‘pragmatic’ function when used as a DP. Non-DP
“alors” is either an adverb of time (Table 2, Ex. 1) or a discourse connective.
When “alors” is a DP, it no longer has its traditional meaning or function. As
a DP, “alors” (re)introduces a topic, expresses speaker’s emotions, attracts the
interlocutors’ attention, or structures the speech flow, sometimes in correlation
with the cognitive process, etc. In Table 2, Ex. 2, it expresses a hesitation, not a
consecutive, nor a temporal meaning. In the same way, the basic role of “bon”
is an adjective; however, when “bon” is a DP it can be used to connect two
discourse units.

An interesting distributional tendency of words used as DPs is observed with
respect to the type of corpus. As shown in Table 1, the frequency of DPs in the
spontaneous speech (interviews or interactions) is significantly higher than in
the prepared speech (storytelling or broadcast news). This is of no surprise if

Table 2. Examples of non-DP and DP usages for the word “alors”.

Ex. 1 ... la question que tout le monde se posait alors était les
ventes de ces nains de jardin refléteraient elles ...

Non-DP ... the question that everyone was asking then was would
the sales of these garden dwarves reflect ...

Ex. 2 ... il a dit qu’il avait qu’il avait dix-huit, dix-neuf euh alors
euh presque dix-neuf ans ...

DP ... he said that he was that he was eighteen, nineteen ah
then ah almost nineteen ...
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we accept that the main characteristics of DPs are pragmatic/deictic functions,
showing speaker’s intentions or emotions rather than actually conveying a lexical
or a grammatical meaning.

The word “alors” is, originally, an anaphoric adverb of time (‘then’ or ‘at
that time’) as well as a discourse connective. As it can be seen in Table 1, most
of the “alors” in storytelling are non-DPs (only 24% are DPs). The narrative
nature of these corpora can explain this distribution: “alors” is one of the favorite
markers to make narration progress. However, more than 50% of the “alors” are
DPs in broadcast news, and the percentage increases in interviews (around 70%)
and gets even larger for interactions (up to 93% for FLE). The highest number
of DPs “alors” are observed in the FLE, OFR, and HUS corpora. This can be
explained by the fact that these corpora contain a high number of interactions
between two or more speakers, and therefore a high number of turn-takings and
hesitations.

As, for the word “bon”, a significantly greater number of DPs are also found
in spontaneous speech than in prepared speech. FRE (storytelling) and EST
(broadcast news) have rather low rates of DPs (59% and 58%) compared to the
other corpora that have over 80% of DP rates.

The word “donc” exhibits less difference between the various types of speech
(spontaneous and prepared), though it has a slightly higher number of DPs in
the spontaneous speech. Moreover, “donc” is the most frequent DP observed in
prepared speech among the three DPs studied in this paper.

4 Discourse Particle Function

The DPs have been further annotated with respect to their most frequent and
prominent pragmatic meanings, based on specific studies and on our annotation
experience.

Six pragmatic functions were identified for “alors” (hesitation, introduc-
tion, re-introduction, conclusion, interaction, addition); six pragmatic functions
for “bon” (conclusion, transition-confirmation, transition-dialogue, transition-
incision, interruption, emotion); and five pragmatic functions for “donc” (re-
introduction, introduction, conclusion, interaction, addition). Some example of
DP pragmatic functions for the word “alors” are displayed in Table 3. Each DP
has also a ‘complex’ pragmatic function when the word occurs along with one
or more other DPs. This complex function is necessary as the meaning of DPs
occurring in such contexts is different from the one they have when they occur
alone (e.g. “bon bah” (well), “mais bon” (but OK), “enfin bon” (anyway), “bon
alors” (well then), “donc voilà” (here we are), etc.)

The frequency of usage of the various DP pragmatic functions has been stud-
ied, and only the usage frequencies for the most frequent pragmatic functions
are reported in Table 4, along with the number of word occurrences that were
labelled ‘DP’ in each set of data. As it can be observed, the pragmatic functions
of DPs depend on the type of corpus, whether it is prepared speech, interview,
or interactions between speakers.
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Table 3. Examples of DP pragmatic functions for the word “alors”.

DP-introduction ... la les forces régulières les forces loyalistes vont mettre le
paquet sur bouaké [pause] alors la question qui qui se pose
à la mi journée c’est de savoir qui ...

... the regular forces the loyalist forces will provide full
backing on bouaké [pause] then the question arising at
midday is to know ...

DP-conclusion ... en achetant tout simplement des produits vous savez
étiquetés satisfait ou remboursé alors c’est une gestion
mais ça marche il l’a prouvé il a rempli son frigo ...

... by simply buying products you know labeled satisfied or
refunded then it is a management but it works he proved
it he has filled its fridge ...

DP-interaction [Speaker1] ... et vous pensez l’avoir perdu où
madame?/[Speaker2] alors euh j’ai deux endroits possibles
alors je sais que je l’ai passé au à le au métro ...

[speaker1] ... and you think you have lost it where
madam?/[speaker2] so uh there are two possible places
then I know I used it at at station ...

Table 4. Statistics for the main discursive functions.

Word DP function Story News Interviews Interactions total

“alors” Nb. times DP 23 95 308 341 767

Conclusion 4% 7% 12% 27% 18%

Hesitation 4% 20% 12% 6% 10%

Introduction 4% 71% 33% 26% 34%

Reintroduction 35% 0% 22% 24% 21%

“bon” Nb. times DP 52 104 341 343 840

Complex 33% 11% 35% 43% 35%

Trans.-confirm 27% 26% 19% 17% 20%

Trans.-incision 10% 22% 13% 10% 13%

“donc” Nb. times DP 47 149 346 414 956

Addition 13% 20% 23% 26% 23%

Conclusion 19% 36% 31% 28% 30%

Reintroduction 21% 26% 34% 33% 32%

The DP “alors” in spontaneous speech corpora show more variety with
respect to their pragmatic functions, compared to its usage in storytelling. The
highest usage percentage of the DP “alors” in storytelling has the ‘reintroduc-
tion’ function, and in prepared speech the ‘introduction’ function.

A significant number of complex DPs are found for “bon”, especially in spon-
taneous speech. This shows that “bon” is very often combined with other DPs,
and in that case the meaning is not necessarily compositional. Less of ‘complex’
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DPs “bon” are found in prepared speech (broadcast news) compared to all the
other corpora. A more formal – and less emotional – language used in broadcast
news can explain this fact. Further studies are needed for complex DPs with
a finer-grained analysis of their actual meanings or functions. Moreover, there
are three subcategories of the pragmatic ‘transition’ function for the DP “bon”:
confirmation, when the speaker agrees with his interlocutor; dialogue, for simple
transition between two speakers; and incision, when the speaker wants to add
more information or details. The amount of transition-confirmation functions of
DPs is reduced when the spontaneity degree increases.

As, for the DP “donc”, the functions ‘addition’, ‘conclusion’ and ‘reintroduc-
tion’ have very similar frequency in our data.

5 Analysis of a Few Prosodic Correlates

In [34], prosodic correlates of a few words that can be used as discourse par-
ticles have been analyzed, but using data mainly from prepared speech. Here,
as mentioned in Sect. 2, we consider a much larger set of speech corpora span-
ning various speaking styles (from storytelling to highly spontaneous speech).
We report and discuss here statistics on a few prosodic correlates.

The prosodic annotation has been carried on automatically. The presence (or
not) of a pause before or after the word results from the analysis of the force
speech-text alignments. The segmentation of the speech stream into intonation
groups is obtained with the ProsoTree software [35], which relies on F0 slope
inversions as described in [36], and locates intonation group boundaries using
information based on F0 slope values, pitch level and vowel duration.

Pauses Before the Word. Table 5 displays the percentage of occurrences of
pauses before the considered word, when used as DP or as non-DP. For the
word “alors”, there is no difference in pause occurrences between its DP and
non-DP functions in storytelling style. However, in the three remaining styles
there are significantly fewer pauses in non-DP than in DP functions. As far as the
word “bon” is concerned, pauses in non-DP functions are very few in storytelling
style while their number remains significantly lower than in DP functions in the
other styles too. The word “donc” has approximately the same frequency of
pause occurrences in DP and non-DP functions with, however, a slightly higher
number of pauses in interaction data when DP.

Pauses After the Word. With respect to the occurrences of pauses after the
word (Table 6), in general, there are more pauses occurring after the DP functions
of the studied words than after the non-DP functions. When a pause occurs after
the word “bon”, there are substantial differences in storytelling (high number of
pause after DPs) while in the other styles the number of pauses is either very
similar between DPs and non-DPs or only slightly higher in DPs. For the word
“alors” the highest differences are found in “interview” and “interaction” styles
(higher number of pauses after DPs). The “interaction” style is also the one
where the greatest difference is found for the word “donc” (also more pauses
after DPs).
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Table 5. Occurrences of pauses before the word.

Word DP/non-DP Story Prepared Interviews Interactions

“alors” DP 82% 79% 63% 62%

Non-DP 82% 51% 42% 38%

“bon” DP 42% 54% 34% 42%

Non-DP 3% 10% 7% 14%

“donc” DP 34% 31% 52% 59%

Non-DP 45% 32% 51% 38%

Table 6. Occurrences of pauses after the word.

Word DP/non-DP Story Prepared Interviews Interactions

“alors” DP 18% 17% 26% 25%

Non-DP 12% 20% 9% 13%

“bon” DP 49% 36% 34% 30%

Non-DP 3% 21% 22% 31%

“donc” DP 12% 20% 25% 24%

Non-DP 9% 17% 20% 8%

Table 7. Position of the word in the intonation group.

Word Position Story Prepared Interviews Interactions

“alors” DP Alone 82% 65% 82% 77%

First 18% 26% 18% 20%

Non-DP Alone 89% 61% 66% 58%

First 11% 30% 32% 39%

“bon” DP Alone 67% 78% 63% 66%

Last 29% 9% 23% 17%

Non-DP Alone 38% 40% 41% 55%

Last 50% 43% 45% 42%

“donc” DP Alone 83% 61% 75% 76%

Last 12% 18% 12% 11%

Non-DP Alone 68% 59% 74% 64%

Last 18% 10% 10% 18%

Position in Intonation Group. According to Table 7, the studied words occur
more often alone in prosodic groups when they are used as DPs than when non-
DPs. The highest differences are observed for the word “alors” and “bon” while
no substantial difference is observed for the word “donc”. On the other hand,
in non-DP functions, “alors” occurs more frequently in first position in prosodic
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groups while “bon” is more frequently in last position. In the interview and
interaction styles, the word “alors” is more frequently alone when DP. The word
“bon”, when DP, is more frequently alone in all considered styles while, when
non-DP, it is more frequent in last position. Finally, for the word “donc” there is
a noteworthy difference between DP and non-DP functions in storytelling (more
DPs alone than when non-DPs) while in the other styles there is either only a
slight difference (‘interaction’) or no significant difference is found.

6 Automatic Classification and Detection

In the reported experiments, prosodic correlates are used to automatically clas-
sify word occurrences as DP or non-DP, and a neural network (NN) approach is
used. For each of the three words, experiments are conducted using the Keras
toolkit [37]. 60% of the data are used for training the NN parameters, 10% for
validation, and the remaining 30% are used for evaluating performance.

First experiments are conducted using prosodic features computed over the
considered words and its neighbors (a few words before and after). The prosodic
features include absolute and normalized values of the duration and energy of the
last vowel of the words, F0 values at the end of the words and their slopes, the
presence and the duration of pauses, . . . The best classification results with these
prosodic parameters are obtained by taking into account features associated to
sequences of five to nine words centered over the considered word. As reported in
Table 8, this leads to a correct classification rates ranging from 69% (for “alors”)
to 82% (for “bon”). With respect to DP detection, the F1-measure ranges from
78% (for “alors”) to 88% (for “bon”).

Another set of experiments have been conducted by considering only the
F0 values (computed with the RAPT [38] approach of the SPTK toolkit [39])
over a time window centered over the considered word. Best results are obtained
by considering a 3 to 5 second window. Classification and detection results are
reported in Table 9. The correct classification rate ranges from 64% (for “alors”)
to 73% (for “donc”). With respect to DP detection, the F1-measure ranges from
75% (for “alors”) to 84% (for “donc”).

The results obtained with the F0 curve are almost as good as those achieved
with the prosodic parameters (which include more information, as for example
the durations of the last vowel of the words, pauses, . . . ). Further classification
experiments will consider combining these two sets of features.

Table 8. Automatic classification and detection results using prosodic features.

Classification correct DP detection

Recall Precision F1-measure

“alors” 69% 81% 75% 78%

“bon” 82% 90% 86% 88%

“donc” 71% 79% 84% 81%



Analysis and Automatic Classification of Some Discourse Particles 41

Table 9. Automatic classification and detection results using fundamental frequency
values.

Classification correct DP detection

Recall Precision F1-measure

“alors” 64% 79% 71% 75%

“bon” 69% 84% 76% 80%

“donc” 73% 87% 81% 84%

7 Conclusion

In this paper, we have analyzed and discussed the distribution of discourse func-
tions for three very frequent French words that can be used as discourse par-
ticles (DP) or not discourse particles (non-DP), over a large set of speech cor-
pora. These corpora exhibit different speaking styles ranging from storytelling
to highly spontaneous speech corresponding to oral interactions between speak-
ers, and including intermediate styles such as prepared speech (from broadcast
news) and spontaneous speech from interviews, dialogues and conversations.

For the three words (“alors”, “bon” and “donc”) considered in this study,
a noticeable increase of their usage as a DP is observed from (1) storytelling
(lowest percentage of DP usage), to (2) prepared speech, then to (3) interviews
and conversations, and finally to (4) highly spontaneous speech observed in oral
interactions between speakers (highest percentage of DP usage). A detailed study
of the DP pragmatic function also show that the pragmatic usage vary across
the corpora, and seems dependent on the spontaneity degree of the data.

Prosodic correlates of the words vary whether they are used as DPs or non-
DPs. Moreover, in many cases, the distribution of the prosodic correlates also
varies with respect to the spontaneity degree of the speech data. Automatic
classification tests show that prosodic parameters (over a few words window) as
well as the F0 curve (over a few second windows) carry significant information
with respect to DP vs. non-DP function.
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15. Fernandez-Vest, J.: Les particules énonciatives dans la construction du discours.

Presses Universitaires de France, Paris (1994)
16. Galliano, S., Gravier, G., Chaubard, L.: The ESTER 2 evaluation campaign for

rich transcription of French broadcasts. In: INTERSPEECH 2009, 10th Annual
Conference of the International Speech Communication Association, Brighton, UK,
pp. 2583–2586 (2009)

17. ORFEO project: http://www.projet-orfeo.fr/
18. French oral narrative: http://frenchoralnarrative.qub.ac.uk
19. CFPP2000: http://cfpp2000.univ-paris3.fr/
20. Branca-Rosoff, S., Fleury, S., Lefeuvre, F., Pires, M.: Discours sur la ville.
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Abstract. We present algorithms that learn to segment words in mor-
phologically rich languages, in an unsupervised fashion. Morphology of
many languages can be modeled by finite state machines (FSMs). We
start with a baseline MDL-based learning algorithm. We then formu-
late well-motivated and general linguistic principles about morphology,
and incorporate them into the algorithm as heuristics, to constrain the
search space. We evaluate the algorithm on two highly-inflecting lan-
guages. Evaluation of segmentation shows gains in performance com-
pared to the state of the art. We conclude with a discussion about how
the learned model relates to a morphological FSM, which is the ultimate
goal.

Keywords: Unsupervised morphology induction · Minimum descrip-
tion length principle · MDL · Finite-state automata

1 Introduction

We present work on unsupervised segmentation for languages with complex mor-
phology. Our ultimate research question is to explore to what extent morpholog-
ical structure can be induced without supervision, from a large body of unanno-
tated text (a corpus). This has implications for the question whether the mor-
phological system is somehow “inherently encoded” in language, as represented
by the corpus.

The paper is organized as follows: we state the morphology induction problem
(Sect. 2), review prior work (Sect. 3), present our models (Sects. 4 and 5), present
the evaluation and experiments (Sect. 6), and finally discuss future work.

2 Morphological Description

We focus on highly-inflecting languages. In the experiments, we use Finnish and
Turkish, which belong to different language families (Uralic and Turkic) and
exhibit different morphological phenomena.

Finnish is considered to be agglutinative, although it has some fusional
phenomena—morpho-phonological alternation. It has complex derivation and
inflection, and productive compounding. Derivation and inflection are achieved
c© Springer International Publishing AG 2017
N. Camelin et al. (Eds.): SLSP 2017, LNAI 10583, pp. 44–57, 2017.
DOI: 10.1007/978-3-319-68456-7 4
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via suffixation; prefixes do not exist. Multiple stems in the compound may be
inflected, e.g., kunnossapidon = “of keeping (smth.) in usable condition”:

kunno + ssa # pido + n

condition + Iness. # keeping + Gen.

where # is a compound boundary, + is a morpheme boundary, Iness. marks
inessive case (presence in a location, or being in a state), and Gen. marks the
genitive. The morph kunno is a “weak” allomorph of the stem kunto; the weak-
ening is conditioned by the closed syllable environment, i.e., the following double
consonant -ss-.

Turkish is similar to Finnish: agglutination, no prefixation, minimal
compounding.

The ultimate goal in the future is to model aspects of morphology, includ-
ing classification of morphemes into morphological categories, and capturing
allomorphy—morpho-phonological alternation.1 However, at present, as in most
prior work, we address the problem of segmentation only, to try to establish a
solid baseline. Once we have a good way of segmenting words into morphs, we
plan to move to modeling the more complex morphological phenomena.2

3 Prior Work

Interest in unsupervised morphology induction has surged since 2000. Detailed
surveys are found, e.g., in [15,19], and in proceedings from a series of “Morpho-
Challenge” workshops between 2005 and 2010 [17,18,20]. Our approach is
founded on the Minimum Description Length principle (MDL) as a measure
of model quality, see e.g., [14]. Linguistica, [11], also uses MDL, combined with
the idea of a signature—set of affixes that belong to a morphological paradigm;
e.g., suffixes for a certain class of nouns form one signature, etc. Our models
also group morphs into different morphological classes, though using a different
approach (Sect. 4).

Finite state machines (FSMs) are used in [12], which are similar to our FSMs;
however, the approach there is less general, since it uses heuristics unsuitable for
languages with very rich morphology.

The MDL-based Morfessor and its variants, e.g., [3,5], are closely related
to our work. Unlike [4], we do not posit morphological classes a priori, but
allow the model to learn the classes and distributions of morphs automatically.
Word embedding, modeling semantic relations between words, have been used
with orthographic features of words to learn the morphology of languages as
“morphological chains” in [21].

1 In the example above, the morph kunno- is an allomorph of kunto; which allomorph
appears in a given word is determined by its phonological environment.

2 Note, we do not claim that the problem must be sub-divided this way. As others
before us, we begin with segmentation because it is more tractable.
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Evaluation of morphological learning is a complex challenge in itself [23,26];
prior work on this topic is described in detail in Sect. 6.

The Morpho-Challenges have seen attempts to model aspects of morphol-
ogy which we do not address: using analogical reasoning, handling ablaut-type
morphology (as in German, and Semitic languages), etc. Beyond segmentation,
modeling allomorphy has been attempted, e.g., by [24], but the performance of
the proposed algorithms on segmentation so far falls short of those that do not
model allomorphy. Research on induction of morphological structure is driven in
part by the observation that children learn it at a very early age,3 which makes
acquisition by machine a fascinating challenge.

4 The Learning Algorithm: SMorph

Morphological systems for many languages are modeled by a finite-state machine
(FSM), where each state corresponds to a morphological class. The seminal app-
roach of Two-Level Morphology, [16], represents morphological grammar by a
FSM. We can associate a state with, e.g., a set of verb stems that belong to
a certain inflectional paradigm; or the set of suffixes in a certain noun para-
digm, etc. The edges in the FSM define the morphotactics of the language—the
permissible ordering among the states.

The data D (the corpus) is a large list of words in the given language. For
every word w ∈ D, SMorph tries to learn the most probable sequence of states
that generates w: it treats the problem as finding a model that produces the most
probable segmentation for each word w into “morphs”—fragments of w—and
the classification—assignment of the morphs to classes (classes are identified
with the states).4

The learning algorithm searches for the best model in a certain model class.
Thus, the full description of the algorithm must specify a. the model class
(Sect. 4.1), b. the objective function: a way of assigning a score—the cost—to
each model (Sect. 4.3), and c. a search strategy for optimizing the objective across
the model class (Sect. 4.2).

4.1 Morphology Models

We begin with a hidden Markov model (HMM), with a set of hidden
states/classes {Ci}. States emit morphs with certain emission probabilities, and
transition probabilities between states. To code each word w, the model starts
at the initial state C0. From state Ci, it can transition to another state Cj with
a certain probability Ptr(Cj |Ci) and emit a morph—a segment of w from Cj .
The probability of emitting a morph μ from state Cj is denoted by Pem(μ|Cj).
Once the entire w is emitted, the model transitions to the final state CF and
emits a special end-of-word symbol #.
3 This relates to the poverty of stimulus claim, [2], about human ability to learn com-

plex systems from very limited data.
4 Note that we evaluate only the segmentation, (Sect. 6).
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Ideally, the states will correspond to “true” morphological classes; for exam-
ple, nouns may fall into different declension paradigms and each paradigm would
be assigned its own class/state in the model.

Probabilities Ptr and Pem are determined by counting how words are seg-
mented into morphs, and which states emit which morphs. Many segmentations
are possible for the given corpus. We need a way to choose the best segmenta-
tion for D—the best parameters for the model. To approach this model selection
problem via MDL we define a code-length for the data D, which is the number
of bits required to encode it.

4.2 Search

Algorithm 1. Baseline search algorithm, using Expectation-Maximization [10]

Input: Data: a large list D of words in the language
Initialize: create a random segmentation and classification—split all words in D into1

morphs randomly, and assign morphs to classes randomly;
repeat2

Compute Parameters: (E-step) based on the current segmentation and3

classification, compute all emission and transition costs;
Re-segment: (M-step) given the newly computed parameter values find the best4

segmentation for all words in the corpus (using Dynamic Programming, Sect. 4.6)
until convergence in cost ;5

Convergence is determined by the MDL code-length of the complete model (cost),
defined in Sect. 4.3. We fix the number of classes K,5 and begin with a ran-
dom segmentation and classification (assignment of morphs to classes). We then
greedily re-segment each word w ∈ D, minimizing the MDL code-length of the
model plus the data.

4.3 The Objective: Two-Part MDL Cost

Finding the best segmentation and classification can be viewed as the problem
of compressing D. In MDL 2-part coding, we try to minimize the cost of the
complete data: the cost of the model plus the cost of the data given the model.
In our case, this means summing the costs of coding the Lexicon, the transitions
and the emissions:

L(D) = L(M) + L(D|M) = L(Lex) + L(Tr) + L(Em)

The cost of the Lexicon: L(Lex), is the number of bits needed to encode each
class, morph by morph, irrespective of the order of the morphs in the class:

L(Lex) =
K∑

i=1

[
∑

µ∈Ci

L(μ) − log |Ci|!
]

(1)

5 Ideally, K should be large, to give the model sufficient expressiveness.
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where K is the number of classes, μ ranges over all morphs in class Ci, L(μ) is
the code length of a morph μ (Eq. 2), and |Ci| is the number of morphs in class
Ci. The term − log |Ci|! accounts for the fact Ci is a set, and we do not need to
code the morphs in Ci in any particular order.

The code length L(μ) of morph μ is computed similarly to [5], as the number
of bits needed to encode μ:

L(μ) = (|μ| + 1) · log(|Σ| + 1) (2)

where |μ| is the number of symbols in μ, and |Σ| is the size of the alphabet; one
is added to |Σ| to account for one special morph-boundary symbol.6

Transitions: Given the lexicon, we code the paths of class transitions from C0

to CF , from word start to word finish, using Bayesian Marginal Likelihood (ML),
as introduced in [9]. In ML, we treat each transition (CiCj) in the data as an
“event” to be coded. If in a set of events E = {Ej}, each Ej has a corresponding
“prior” count αj and count of observed occurrences Oj , the cost of coding E is:

L(E) = −
∑

j

log Γ (Oj + αj) +
∑

j

log Γ (αj) + log Γ
∑

j

(Oj + αj) − log Γ
∑

j

αj

(3)
where the summations range over the set E .7 We use uniform priors, αj = 1,∀j.
Thus log Γ (αj) = 0, and the second term is always zero in this equation.

To compute the cost of all transitions L(Tr), we apply Eq. 3 to each class Ci,
as i ranges from 0 to K; the set of “events” E is the set of all classes Cj , which
are the targets of transitions from Ci:

K∑

i=0

[
−

K+1∑

j=1

log Γ
(
f(CiCj) + 1

)
+ log Γ

⎛

⎝
K+1∑

j=1

[
f(CiCj) + 1

]
⎞

⎠ − log Γ (K)

]

Emissions: We code the emissions L(Em) analogously:

K∑

i=1

[
−

∑

µ∈Ci

log Γ
(
f(μ,Ci) + 1

)
+ log Γ

⎛

⎝
∑

µ∈Ci

[
f(μ,Ci) + 1

]
⎞

⎠ − log Γ (|Ci|)
]

where f(Ci, Cj) is the count of transitions from Ci to Cj , and f(μ,C) is the
number of times morph μ was emitted from class C. The cost L(Em) is computed
by applying Eq. 3, where the set of “events” E is now the set of emissions (μ,Ci)
of all morphs μ from Ci.

6 Another way to code L(μ) is to account for the frequencies of the symbols of the
alphabet.

7 For additional explanation about this coding scheme please refer to the original
paper.
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4.4 Input

For each language, we pre-process a large text by collecting distinct words from
the text. We do not model the text—i.e., the distribution of words in the text—
but the language, i.e., the observed distinct words, as is done in recent prior
work. In this paper, corpus refers to the list of distinct words.8

4.5 Initialization

The initial segmentation and classification is obtained by randomly placing
morph boundaries in each input word w, independently, according to a Bernoulli
distribution,9 and by randomly assigning the morphs to one of the classes in the
Lexicon.

4.6 Dynamic Programming Re-segmentation

We compute the most probable segmentation of every word w in the corpus into
morphs, at iteration t, given a set of transitions and emissions from iteration
t − 1.

We apply a Viterbi-like dynamic programming (DP) search for every word w,
to compute the most probable path through the HMM, given w, without using
the segmentation of w at iteration t − 1. Standard Viterbi would only give us
the best class assignment given a segmentation. Here, the search algorithm fills
in the DP matrix starting from the leftmost column toward the right.

Notation: σb
a is a substring of w, from position a to position b, inclusive. We

number positions starting from 1. The shorthand σb ≡ σb
1 is a prefix of w up to b,

and σa ≡ σn
a is a suffix, when |w| = n. A single morph μb

a lies between positions
a and b in w. Note that σb

a is just a sub-string, and may contain several morphs,
or cut across morph boundaries. In the cell (i, j), marked X, in the DP matrix,
we compute the cost of the HMM being in state Ci and having emitted the prefix
up to the j-th symbol of w, L(Ci|σj). This cost is computed as the minimum
over the following expressions, using values computed previously and already
available in columns to the left of σj :

L(Ci|σj) = min
q,b

(
L(Cq|σb) + L(Ci|Cq) + L(μj

b+1|Ci)
)

(4)

This says that the best way of getting to state Ci and emitting w up to σj is to
come from some state Cq having emitted w up to σb, then jump from Cq to Ci,
8 This is different from some of the earlier work, e.g., [3,5], and agrees with [25], who

observe “that training on word types...give similar scores, while...training on word
tokens, is significantly worse.” We do not claim that there is no useful information
in the distribution of words for learning morphology; however, the current models
do not utilize it.

9 With parameter ρ. In the current experiments we used ρ = 0.20 and 0.25. This is
similar to the approach in [6], where they used a Poisson distribution with a fixed
parameter.
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and emit μj
b+1 as a single morph from Ci. L(Ci|Cq) is the cost of transition from

state Cq to Ci. This can be calculated using the Bayesian Marginal Likelihood
code-length formula as:

L(Ci|Cq) = ΔL = L(Tr ∪ t) − L(Tr) = − log
f(CqCi) + 1

∑K−1
k=0

∑K
j=1

(
f(CkCj) + 1

)

where t is the transition Cq → Ci. The cost of emitting morph μ from class Ci is:

L(μ|Ci) =

⎧
⎨

⎩
− log f(µ,Ci)+1

f(Ci)+|Ci| if μ ∈ Ci

− log |Ci|(
f(Ci)+|Ci|

)(
f(Ci)+|Ci|+1

) + L(μ) if μ �∈ Ci

The second case is for when μ is not emitted from Ci yet and does not exist
in its lexicon and L(μ) is the cost of adding μ to the lexicon.

In Eq. 4, the minimum is taken over all states q = 0, 1, . . . ,K, including the
initial state C0, and over all columns b that precede column j: b = j − 1, . . . , 0.
Here L(μj

b+1|Ci) is the cost of emitting the μj
b+1 from Ci, for some b < j. For the

empty string, σ0 ≡ ε, we set L(C0|σ0) ≡ 0 for the initial state, and L(Cq|σ0) ≡ ∞
for q �= 0.

The transition to the final state CF is computed in the rightmost column of
the matrix, marked #, using the transition from the last morph-emitting state—
in column σn—to CF . (State CF always emits the word boundary #). Thus, the
cost of the best path to generate w is:

L(w) = min
q=1,...,K

L(Cq|σn) + L(CF |Cq) + L(#|CF )

where the last factor L(#|CF ) is always 0. In addition to storing L(Ci|σj) in cell
(i, j) of the matrix, we store also the “best” (least expensive) state q and the
column b from which we arrived at this cell. These values, the previous row and
column, allow us to backtrack through the matrix at the end, to reconstruct the
lowest-cost—most probable—path through the HMM.

5 Enhancements to Baseline Model

We next present enhancements to the baseline algorithm described in Sect. 4,
which yield improvements in performance.

Simulated Annealing: The greedy search for the best segmentation for all
words in the corpus quickly converges to local—far from global—optima. To
avoid local optima, we use simulated annealing, with temperature T varying
between fixed starting and ending values, T0 and TF , and a geometric cooling
schedule, α. In Eq. 4, rather than using min to determine the best cell (q, b) from
which to jump to X in the DP matrix, we select a candidate cell at random,
depending on its cost, from a gradually narrowing window.10

10 We use a standard approach to simulated annealing, for details please see [1].
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This ensures that the model does not always greedily choose the best solution,
and enables it to initially make random jumps to avoid local optima.

Next, as mentioned in the abstract, we introduce heuristics that constrain
the search, based on simple yet general linguistic principles.

1. Directionality of the FSM: The FSM must be directional: the mor-
photactics of any language specify exactly the order in which morphological
classes may follow one another. In many Indo-European languages, e.g., a
word can have some prefixes, then a stem, then suffixes—always in a fixed
order. Further, different kinds of suffixes have strict ordering among them—
e.g., derivation precedes inflection.11

To enforce directionality, in Sect. 4.6, we constrain the DP matrix so that the
preceding state q in Eq. 4 ranges only from 0 up to i − 1, rather than up to
K. Since the states are ordered, this blocks transitions from a later state to
an earlier one.
2. Natural Classes of Morphs: As a general principle, morph classes fall
into two principal kinds: stems vs. affixes. We arbitrarily fix some range of
states in the beginning to be prefix states, followed by a range of stem states,
followed by suffix states.12 A simple heuristic based on this is that the HMM
must pass through at least one stem state during the DP search.
3. Bulk Re-segmentation: An important linguistic principle is that stems
and affixes have very different properties. First, stem classes are usually
open—i.e., potentially very large, whereas all affix classes are necessarily
closed—very limited. This is reflected, e.g., in borrowing: one language may
borrow any number of stems from another freely, but it is extremely unlikely
to borrow a suffix.

Second, in general a randomly chosen affix is typically expected to occur
much more frequently in the corpus than a random stem.13

Based on this principle, we introduce another heuristic to guide the search:
after the normal re-segmentation step, we check all classes for “bad” morphs
that violate this principle: very frequent morphs in stem classes, and very rare
morphs in affix classes.14 With a certain probability π(T ) which depends only
on the simulated annealing temperature,15 all words that contain a bad morph
11 A problem for the directionality heuristic is compounding, where, e.g., in Finnish,

the FSM can jump back to a stem class, even after some suffix classes, as seen in the
examples in Sect. 2. We will model compounding in the future via a special “restart”
state in the grammar. Despite this, even for Finnish, with its heavy compounding,
the directional models still perform better than non-directional ones.

12 Here we divide 15 available states as: 2 classes for prefixes, 6 for stems, and 7 for
suffixes.

13 This is true in general (though a language may have some exceptionally rarely used
affix, which might happen to be less frequent than a very frequent stem).

14 We model this via two hyper-parameters: smax for maximum tolerated count of a
stem, and amin for minimum frequency of an affix. In the experiments, we set both
to 100.

15 For example, π(T ) can be e−T .
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are removed from the model in bulk (from the lexicon, and their transition and
emission counts), and re-segmented afresh. When T is high, π(T ) is small; as T
cools, π(T ) → 1.

6 Evaluation

Evaluation of morphology discovery is challenging, specifically since morpholog-
ical analysis is limited to segmentation—here, as well as in most prior work—
because in general it is not possible to posit definitively “correct” segmentation
boundaries, which by definition ignore allomorphy.

An evaluation based on probabilistic sampling is suggested in [23]. Another
scheme is suggested in the papers about the HUTMEGS “Gold-standard” eval-
uation corpus for Finnish, [6,7]. However, these approaches to evaluation are
problematic, in that they ignore the issue of consistency of the segmentation.

[7] observe correctly that positing a single “proper” morphological analysis for
a word w is not possible, in general. A motivating example is English w = tries:
it can be analyzed as tri+es or trie+s. In actuality, w has two morphemes, which
can have more than one allomorph—a stem {try-/tri-} or {try-/trie-}, and 3rd
person suffix {-s/-es} or {-s}. Restricting morphological analysis to segmentation
makes the problem ill-defined: it is not possible to posit a “proper” way to place
the morpheme boundary and then to expect an automatic system to discover that
particular way. HUTMEGS proposes “fuzzy” morpheme boundaries, to allow
the system free choice within the bounds of the fuzzy boundary—as long as the
system splits the word somewhere inside the boundary, it is not penalized.

Recent work has called into question the validity of evaluation schemes that
disregard the consistency of segmentations across the data, considering such
schemes as too permissive: the system should commit to one way of segmenting
similar words—its chosen “theory”—and then consistently segment according to
its theory—and should be penalized for violating its own theory by placing the
boundaries differently in similar words. We follow the evaluation scheme in [22],
which provides for gold-standard segmentations and an evaluation algorithm so
as to enforce consistency while giving the learning algorithm maximal benefit of
the doubt.

Consider again the example of tries. In the suggested gold standard, one
annotates the segmentation neither as tri-es nor as trie-s, but as tri

X· e
X· s—

the special markers (dots) indicate that this segmentation is “ambiguous”—can
be handled in more than one way. The label X identifies this particular kind of
ambiguity. (The gold-standard defines a separate set of labels for each language.)
In this case, the definition of X states that it accepts two “theories”: {10, 01}
as valid—i.e., a morpheme boundary in the first position (10), or in the second
(01), but not both (not 11; also not 00). Similar words: cries, dries, flies are then
annotated similarly in the gold-standard.

Suppose the words tries, flies, and applies are in the gold standard, annotated
with X as above, and the model segments them as: trie-s, flie-s, but appli-es.
We conclude that A. its preferred theory for handling X is to put the boundary
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in the second position (2 out of 3), and B. when it segmented appli-es it placed
the boundary incorrectly: it violated its own preferred theory (defined by the
majority of its choices). Thus its accuracy will be 2/3. The label X is used to
co-index possible “ambiguous” boundaries in the gold standard, for a particular
type of ambiguity. Annotators use these labels consistently across the evaluation
corpus.

6.1 Experiments

We test on data from Finnish and Turkish. For each language, the corpus con-
sists of about 100,000 distinct word forms, from texts of novels. Approximately
1000 words extracted at random from the data were annotated for the gold-
standard by at least two annotators with knowledge of morphology and native
proficiency.16

Ablation Studies: Shown in Table 1, confirm the gains in performance yielded
by the heuristics. The enhancements to the basic algorithm are simulated anneal-
ing (SA), directionality (Dir), natural classes (NC) and bulk re-segmentation
(Bu). Without SA, performance drops substantially. With SA, the table shows
the gain obtained from adding all possible combinations of the heuristics. It
might seem that adding directionality reduces the scores of the model, however,
adding heuristics built upon directionality help the model achieve better results
compared to the non-directional model.17

Comparison Studies: Are shown in Fig. 1, for Finnish and Turkish. Each point
in the plots represents a single run of an algorithm. The coordinates of each point
are its recall and precision; the accuracy of each run is in its label.

For comparison, we ran Morfessor CatMAP [8], on the same data, since it
currently obtains the best performance over all Morfessor variants, as explained
in [13]. FlatCat performs better than CatMAP with semi-supervised learning,
but falls short of CatMAP performance in the unsupervised setting. CatMAP
has a perplexity threshold parameter, b, “which indicates the point where a

Table 1. Ablation studies—Finnish

SA Dir NC Bu Recall Precis. F-1 Accuracy

− − − − 30.83 70.79 42.96 75.94

+ − − − 34.30 79.48 47.92 78.06

+ + − − 33.93 77.80 47.25 77.70

+ + + − 34.77 73.32 47.17 77.65

+ + + + 36.37 83.83 50.73 79.80

16 Disagreements between annotators were resolved. All annotated gold-standard data,
for Finnish and Turkish, will be made publicly available with this paper on-line.

17 To save space, we show results for Finnish only; other languages follow similar pat-
terns (included in final paper).
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Fig. 1. Precision vs. recall: A—Finnish data, B—Turkish data (Color figure online)

morph is as likely to be a prefix as a non-prefix” [8]. This parameter trades off
recall for precision; the more data there is, the higher b should be. As b grows,
words are split less, giving higher precision but lower recall. Running Morfessor
with varying 5 ≤ b ≤ 800, yields the red line in the plots. SMorph also has
hyper-parameters, which we test in the experiments. Probability ρ of a morph
boundary between two adjacent symbols during the initial random segmentation,
0.20–0.25; the number of classes K, 15; assignment of classes to prefix, stem and
suffix kinds, smax and amin.

The blue points in the plots correspond to runs of SMorph, with different
settings of the hyper-parameters,18 which can be optimized further, e.g., on a
development corpus.

The runs of SMorph show an improvement in terms of recall and precision
over Morfessor CatMAP: the blue points lie above the red curve. For example,
at a given level of recall, SMorph reaches higher precision. For Finnish, the gain
in precision is 2–8%; for Turkish, 2–7%. Conversely, at a given level of precision,
SMorph reaches higher recall; for very large b, Morfessor reaches higher recall,
but generally at a loss in precision. SMorph and Morfessor obtain similar accu-
racy values, though at a fixed level of recall SMorph has higher accuracy. More
fine-grained effects of the hyper-parameters on performance are to be explored
and investigated in future work.

Qualitative Evaluation of Classification: An important feature of SMorph

is that the morph classes it learns are of a high quality. Manual inspection
confirms that the classes group together morphs of a similar nature: noun-stem
classes separate from verb stems, classes of affixes of similar kinds, etc.; hence
the high precision.

As is natural in MDL, if some affixes appear frequently together, they will
eventually be learned as a single affix; this explains lower recall. However,

18 The parameters have not been tuned jointly; we started with values for the parame-
ters as above, and checked the effect of varying them independently. Choice of the
parameter values is driven by the observed total MDL cost (i.e., with no reference
to the gold-standard evaluations).
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this problem may be addressable as a post-processing step, after learning is
complete.19 (To be explored in future work.) Of course, evaluating the
classes quantitatively is difficult, hence we evaluate quantitatively only the
segmentations.

6.2 Error Analysis

A non-directional model trained on Finnish is shown in Fig. 2—with only 5
classes for clearer visualization. Each node shows the 8 most frequent morphs
emitted from it, as well as the number of distinct morphs (|Lex|) and emission
frequency (freq). Probabilities of transition between states are shown on the
edges. (Edges with probability <0.02 are omitted for clarity.) The model has
learned to often emit stems from states S1 and S5, and suffixes from S2, S3 and
S4. As expected, stem states are much larger than suffix states. They exhibit
different properties: S1 and S5 have much flatter distribution, while S3 and S4

have spiked distributions: a few morphs with very high frequencies, and many
with very low frequencies.

Further, S1 has mostly verbal stems, whereas S5 mostly nominal ones; S4 is
heavy on nominal suffixes, while S2 has mostly verbal ones.20

Fig. 2. Visualization of a model trained on Finnish data (with only 5 states)

7 Conclusions and Current Work

We have presented an algorithm for segmentation of a large corpus of words,
which improves upon the state of the art. There are several important differ-
ences between SMorph and Morfessor models. SMorph tries to approach the
19 Hence it is easier to recover from recall errors (false negatives) than from precision

errors (false positives), and thus they are not equally important in this setting. Note
that we do not consider F-score in the evaluation, but rather follow both recall and
precision. F-score favors points where recall and precision are as near as possible.
For example, whereas Morfessor trades off precision for recall to achieve a higher
F-score, we do not consider it a benefit.

20 This shows that the model indeed begins to resemble a FSM that we hope to achieve.
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problem in a systematic way by grouping the discovered morphs into classes that
respect general linguistic principles: directionality of morphotactics and natural
differences between stems vs. affixes. It starts from a random initial model with
no prior assumptions about the language, and learns to segment the data by
optimizing a two-part cost function and Bayesian Marginal Likelihood, different
from coding schemes used in prior work. The model is evaluated using a scheme,
which avoids some of the problems in earlier evaluations.

To assure replicability, all gold-standard segmentations and code are made
publicly available. Future improvements include those mentioned above, learning
the optimal number of classes automatically, which should be reflected in the
code-length, modeling compounding and allomorphy.
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Abstract. The paper contributes to the task of automated evaluation
of surface coherence. It introduces a coreference-related extension to the
EVALD applications, which aim at evaluating essays produced by native
and non-native students learning Czech. Having successfully employed
the coreference resolver and coreference-related features, our system out-
performs the original EVALD approaches by up to 8% points. The paper
also introduces a dataset for non-native speakers’ evaluation, which was
collected from multiple corpora and the parts with missing annotation of
coherence grade were manually judged. The resulting corpora contains
sufficient number of examples for each of the grading levels.

Keywords: Evaluation of coherence · Acquisition corpora processing ·
Coherence · Anaphora · Coreference · Discourse

1 Introduction

The task of automated evaluation of coherence can be defined as assigning grades
to essays based on the level of their surface coherence. The essays can be writ-
ten by native as well as non-native speakers of a given language. A system that
addresses this problem may be particularly beneficial for teachers and may facil-
itate their work in grading the school essays. At the same time, it might also
be useful for students themselves who can easily and quickly verify the level of
their writing skills. They can also use the automatic evaluation as a practical
tool for learning and practicing writing a coherent piece of text.

We focus on possibilities of automated evaluation of surface text coherence
in students’ essays in Czech. Particularly, we experiment with the EVALD appli-
cation, which has been recently released in two variants: EVALD 1.0 [14] and
EVALD 1.0 for Foreigners [15] (both described in [17]). EVALD 1.0 for native
speakers evaluates the texts according to the scale commonly used in Czech
schools, i.e. it assigns grades 1–5 (excellent–fail). EVALD 1.0 for Foreigners
uses six grades A1–C2 (beginner–mastery) according to the internationally used
scale established by Common European Framework of Reference for Languages,
CEFR). The EVALD applications have so far focused only on discourse and lexi-
cal phenomena [16]. For instance, they take into account diversity and frequency
c© Springer International Publishing AG 2017
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of discourse connectives. However, other aspects of coherence such as coreference
relations or topic-focus articulation has been so far neglected.

This paper introduces a coreference-related extension of EVALD. We inte-
grate a coreference resolver to the processing pipeline and extend the feature
set to utilize its output. Furthermore, we design features that focus on pronouns
but do not require a coreference resolver to be run.

The original EVALD for Foreigners as proposed in [16] uses a dataset with a
skewed distribution over the CEFR levels, which often prevents it from predict-
ing a low-populated level. We attempt to rectify this shortcoming by merging
examples from multiple corpora, thus creating a much richer dataset.

The structure of the paper is as follows. Section 2 presents an original EVALD
application, its data preprocessing stage and a discourse-based feature set it
applies. The coreference-based extensions including the coreference resolver and
the new set of features are introduced in Sect. 3. Datasets employed in the exper-
iments and their construction is described in Sect. 4. Finally, in Sect. 5, the pro-
posed approaches are evaluated and compared with a couple of baselines, before
the paper concludes in Sect. 7.

2 Evaluator of Discourse

EVALD (EVALuator of Discourse) is a software application that employs
machine learning methods to automatically rate the quality of surface coher-
ence in Czech texts, based on the methodology and experiments first reported in
[16] and later in [17]. It exists in two versions optimized for two different groups
of users: one for Czech native speakers (EVALD 1.0, [14]), one for learners of
Czech as a foreign language (EVALD 1.0 for Foreigners, [15]).

In the present paper, we use an updated experimental setting and an enlarged
set of features (as compared with [16]). This section elaborates on the two main
components of the application: the data preprocessing pipeline, and the original
feature set extracted from this preprocessed data. Eventually, the final EVALD
application to rate a level of surface coherence is built by using the Random
Forest algorithm for machine learning.

2.1 Data Preprocessing

The preprocessing pipeline carries out an automatic linguistic analysis on the raw
texts. It enriches them with morphological, surface and deep syntax information.
Deep syntax (tectogrammatical) representation follows the theory of Functional
Generative Description [21] and attempts to resemble manually annotated struc-
tures from the Prague Dependency Treebank [2]. A sentence on the tectogram-
matical layer is structured as a dependency tree consisting only of content words
and possibly reconstructed expressions that are elided on the surface. It enables
representing pro-drops, which is essential for modeling anaphoric and corefer-
ence relations in Czech. Furthermore, this representation layer accommodates
annotation of discourse connectives and relations.
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All these preprocessing steps were performed in the current version of Treex
[12], which is a modular system for natural language processing, using a pre-
defined scenario for Czech text analysis. The scenario includes tens of individual
steps, most notably tokenization, sentence segmentation, morphological analysis
and part-of-speech tagging by the MorphoDiTa tool [23], dependency parsing by
MST parser adjusted to Czech [8]. The scenario proceeds with transformation
of the surface tree to a tectogrammatical tree: auxiliary nodes are made hidden,
pro-drops are reconstructed, semantic roles are assigned, etc.

The preprocessing stage of the original EVALD application is concluded with
a discourse parser. It focuses on discourse relations marked by explicit connec-
tives, employing the approach described in [11]. It is a lexically based approach
inspired by the annotation of the Penn Discourse Treebank 2.0 [13] and aims at
capturing local discourse relations (between clauses, sentences, or short spans
of texts). During processing, it first addresses intra-sentential discourse rela-
tions, followed by recognition of inter-sentential relations. The latter procedure
utilizes lists of common Czech inter-sentential connectives and their most fre-
quent discourse types (senses) extracted from the Prague Discourse Treebank 2.0
[18, PDiT 2.0].

2.2 Original Feature Sets

The original feature set as introduced in [16] embraces discourse-related and
lexical features. In fact, for experimental purpose we distinguish its two subsets:
surface and advanced features.

Surface Features. This set consists of features that only use tokenization and
sentence segmentation. No advanced part of the text analysis such as syntactic
or discourse parsing is exploited.

The lexical part of the surface set includes features such as the number of
tokens per sentence, the normalized number of different lemmas, Yule’s index of
lemmas repetition [26], and Simpson’s index of lemmas diversity [22].

One of the discourse-oriented surface features uses a list of 49 most frequent
discourse connectives extracted from the discourse annotation in the PDiT 2.0,
complemented by a few informal variants that are likely to appear in texts written
by non-native speakers (e.g. teda as an informal variant of tedy [so, therefore]).
The feature counts number of occurrences of these connective words in the tested
text, without trying to distinguish their connective and non-connective usages,
and normalizes the count by the number of sentences. Another two features count
the number of coordinating and subordinating connective words separately.

Advanced Features. Information comes from the rich linguistic preprocessing
producing automatically parsed trees and associated discourse relations (see
Sect. 2.1).

Some of the features measure the frequency of predicate-less sentences, some
of them the frequency of discourse relations – intra-sentential, inter-sentential
as well as all together.

Another group of features questions variety of used discourse relations. It con-
tains 11 features measuring a ratio of relations with a given connective as well



Incorporating Coreference to Automatic Evaluation of Coherence in Essays 61

as features expressing the ratio of 4 major types of discourse relationship (tem-
poral, contingency, contrast and expansion). Finally, it includes a total number
of unique connectives used in the whole text.

3 Coreference-Related Extension to EVALD

The original EVALD applications take advantage of discourse-related and lexical
features only. This paper introduces coreference-related features. We designed
these features by focusing on potentially coreferential expressions, mostly pro-
nouns, and collecting their relative frequencies. Further features also inspect the
coreference links reconstructed in the text, which would not be possible without
a coreference resolution system.

First, we introduce the coreference resolution system, which enriches the pre-
processing pipeline described in Sect. 2.1. After that, we proceed with presenting
the new features to extend the original feature sets from Sect. 2.2.

3.1 Coreference Resolution System

Our extension to EVALD uses information acquired by the state-of-the-art coref-
erence resolver for Czech – Treex Coreference Resolver [7, Treex CR]. As its name
suggests, like the EVALD preprocessing stage it is an integral part of the Treex
framework [12]. Although it is available for multiple languages, we utilize only
its Czech version in this work.

Similarly to EVALD, Treex CR also operates on the text analyzed to the
tectogrammatical representation. Tectogrammatics not only allows for exploit-
ing the rich linguistic annotation available on this layer, but it also facilitates
addressing zero anaphora. Addressing zero anaphora is central in Czech espe-
cially for subject pronouns, which are rarely expressed on the surface.

Treex CR consists of a sequence of models optimized by a supervised machine
learning method. Every model targets a different type of coreferential expres-
sions. Namely for Czech, Treex CR comprises a model for: (1) relative pronouns,
(2) reflexive pronouns including the reflexive possessive pronoun “sv̊uj”, (3) 3rd
person zero subjects, personal and possessive pronouns.

Models were trained on a dataset extracted from the training portion of the
Prague Dependency Treebank 3.0 [2], containing more than 38,000 sentences and
652,000 words. Table 1 shows the performance of around 7-times smaller testset

Table 1. Counts of selected anaphoric expressions and performance of Treex CR on
them measured in terms of F-score. The type ZsPP3 denotes 3rd person zero subjects,
personal and possessive pronouns.

Relative Reflexive ZsPP3 All

# instances 1,075 579 1,950 3,604

Treex CR 78.40 76.19 61.31 68.46
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extracted from the same corpus. The F-score measuring how good the resolver
is in finding any of the pronoun’s antecedents is around 70% in total for all the
selected expression categories.

3.2 Anaphora-Related Features

This work proposes two sets of additional features to the original EVALD appli-
cations. A common property of both sets is that they aim at describing how
successful the essay’s writer is in maintaining coreference relations. On the other
hand, the main difference between the two sets lies in whether they use the
information obtained by the CR system or not.

Pronoun Features. Pronouns are one of the most prominent part-of-speech cat-
egories used to retain coherence in a text. The reason is that they frequently
appear as anaphoric occurrences, i.e. their interpretation often depends on pre-
vious context. It is pronouns and their distribution in the text that is in focus of
the first set of features. We do not employ information coming from the CR sys-
tem here, though. The aggregated frequencies thus may capture both anaphoric
and non-anaphoric occurrences of pronouns.

The set includes a relative frequency of pronouns among all words as well as
among nouns and pronouns together. Same ratios are also computed for each of
the 21 pronoun subtypes. The subtype is specified within the positional part-of-
speech tag assigned by the MorphoDiTa tagger [23]. In addition, a proportion
of every subtype to all pronouns is included as a feature. Analogously, similar
counts are aggregated over the tectogrammatical tree. Unlike the surface features
above, these are able to capture also zero subjects, which appear massively in
Czech.

Besides the quantity of pronouns’ usage, we measure also its quality, i.e. how
wide the repertoire of used pronouns is. Again, we compute a relative frequency of
the number of different pronoun lemmas. Furthermore, another group of features
focus on pronouns or zeros filling the semantic role of Actor in a sentence and
measure what is the distribution of lemmas at this position. Czech learners
may prefer using overt pronouns here, despite their low proportion compared to
zeros in stylistically well-written texts. Similarly, an excessive use of the Czech
demonstrative pronoun “to” is a typical sign of informal style or spoken language.

Coreference Features. The second set of new features takes advantage of the
output of the CR system introduced in Sect. 3.1.

Quantitative features collect the count of coreference chains (i.e. the men-
tions of the same entity), and links and normalize them by the text length.
A distribution of coreferential chains by their length forms another group of fea-
tures. At the same time, the proportion of intra- and inter-sentential coreference
links is recorded as a feature.

Qualitative features measure the variety of expressions forming the coreferen-
tial chains, focusing on lemmas and part-of-speech subtypes of the expressions.
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4 Sources of Data

To build and test the EVALD applications, we created two datasets that consist
of text authored by learners for whom Czech is a native language (L1 dataset), or
a foreign language (L2 dataset). We compiled these datasets from the content of
three language acquisition corpora: MERLIN corpus [3], CzeSL-SGT/AKCES 5
[19], and Skript2012/AKCES 1 [20].

MERLIN. The original corpus contains altogether 2,286 writing samples by non-
native speakers (students) of Czech, German and Italian. The texts have been
collected from the CEFR-related test provided by institutions that offer inter-
nationally recognized language exams in accordance with the high standards
defined by The Association of Language Testers in Europe.1 Namely, the total
number of 441 Czech texts has been provided by ÚJOP Institute in Prague.

All the texts are rated with respect to various criteria, including coher-
ence/cohesion. The Czech texts consist of tests for overall examination levels
A2–B1. Hence, the majority of coherence ratings stays at these levels and the
A1 and C1 grades account only for less than 3% of the texts.

CzeSL-SGT/AKCES 5. It is another corpus of texts written by non-native speak-
ers of Czech. It contains 8,617 texts that were created in courses of Czech for
foreigners from 2009 to 2013. The texts come from the authors that speak 54
different first languages.

Almost all the texts are labeled with an overall language proficiency CEFR
level of the writer. Nevertheless, unlike the Merlin corpus, no annotation of
coherence levels is provided in CzeSL-SGT.

Skript2012/AKCES 1. This corpus comprises texts written by native speakers
of Czech, particularly, the students’ essays created during the lessons of Czech
language at elementary and high schools. The original corpus contains 1,694
texts.

Most of the texts are labeled with overall grades 1–5. Similarly to the CzeSL-
SGT corpus, no specific coherence level annotation is available.

The L1 dataset was formed solely from Skript2012, because as far as we
know it is the only corpus of Czech essays produced by native students. We
included only the essays that are labeled with an overall grade. However, we had
to manually judge all of them on the level of coherence.

A core of the L2 dataset is constituted by the MERLIN corpus containing
explicit coherence level annotation. However, due to the fact that it comprises
only tests for certain examination levels, we do not consider it representative.
Unlike other authors (e.g., [10,24]), who excluded the under-represented levels
A1 and C2, we decided to keep all levels by merging multiple data sources. Less
populated levels were thus supplied with the texts from the CzeSL-SGT corpus.
As it has no coherence levels annotated, we selected a sample of CzeSL-SGT
texts with less populated overall proficiency levels (A1, A2, and C1), manu-
ally assessed the level of coherence there, and added them to the L2 dataset.

1 http://www.alte.org.

http://www.alte.org
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Table 2. Basic statistics of the collected datasets.

L1 dataset 1 2 3 4 5 Total

# documents 484 149 121 239 125 1,118

# sentences 20,986 4,449 2,913 3,382 939 32,669

# tokens 301,238 65,684 40,054 43,797 11,379 462,152

L2 dataset A1 A2 B1 B2 C1 C2 Total

# documents 174 176 171 157 105 162 945

# sentences 1,802 2,179 2,930 2,302 1,498 10,870 21,581

# tokens 15,555 21,750 27,223 37,717 21,959 143,845 268,049

To collect examples also for the C2 level, we exploit the fact that this level
is generally characterized as a near-native language competence. That is, the
authors of such texts are likely to have developed so high degree of proficiency
in Czech that their texts are hardly distinguishable from the texts produced by
native speakers. Therefore, we filled the C2 level with a sample of texts from the
Skript2012 corpus.

Our L2 dataset merged from three different corpora differs from the dataset
used in previous experiments with EVALD in [16]. Their dataset contained only
MERLIN essays, with levels A1 and C1 low-populated and C2 not represented
at all. Therefore, the performance scores of EVALD that we present in Sect. 5
are not directly comparable with their results.

The basic statistics of the L1 and L2 datasets are highlighted in Table 2.

5 Experiments

Extensions to EVALD applications as proposed in Sect. 3 are evaluated in three
variants of additional feature sets: (1) pronoun features only, (2) coreference
features only, (3) both pronoun and coreference features. We compare these
settings with two baselines that follow a design introduced in Sect. 2, namely the
baseline (1) with surface features only, and (2) with both surface and advanced
features.

All these variants are evaluated by 10-fold cross-validation. However, the per-
formance cannot be measured directly by accuracy as we arbitrarily adjusted the
dataset to make the levels more balanced (see Sect. 4). Moreover, the process of
how the source corpora were collected does not convince us that the distribu-
tion of grades there reflects their real distribution over the population. We thus
assume that new essays to be evaluated come from a uniform distribution over
all possible grades.

One way to ensure that the test data fold is uniformly distributed is to
sample from it so that each of the class has the same size as the smallest one.
A shortcoming of such approach is that many valuable data instances are thrown
away. Aggregated over all folds, such limited test L1 and L2 data consists of 475
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Table 3. Performance of the new feature sets compared to the original feature sets.
It is measured by F-score on complete dataset, and by exact (e-Acc) and one-level
tolerance (1-Acc) accuracy on the balanced dataset.

L1 dataset L2 dataset

F e-Acc 1-Acc F e-Acc 1-Acc

Surface 40.1 42.1 72.4 47.6 48.5 74.7

Surface+advanced 44.9 46.1 80.8 51.3 55.5 82.5

+pronoun 45.9 48.2 83.0 58.6 62.3 86.8

+coref 45.2 47.0 81.3 54.7 58.7 85.2

+pronoun+coref 46.0 49.5 83.0 59.0 63.3 85.5

and 600 instances, which account for 43% and 64% of all available instances. We
used this limited testset to calculate the exact accuracy score.

Alternatively, macro-averaging of class-oriented scores has a similar balancing
effect without a need to reduce the test data. The F-score Fc is first calculated
for every class c in the dataset. The scores are the averaged over all classes to
produce the macro-averaged F-score: F = 1

|C|
∑

c∈C Fc.
Results of evaluation are highlighted in Table 3. They exhibit consistent

improvement of the coreference-related extension of EVALD over the baselines
in terms of all these measures. Baseline methods are outperformed by all the
three new settings. Nevertheless, the combination of all the presented feature
sets seems to perform the best. Evaluating each of the two new additional fea-
ture sets without the other one suggests that the pronoun features are more
valuable.

The new feature sets also appear to have a stronger effect on the L2 dataset,
i.e. in evaluation of non-native speakers’ essays. It may be attributed to the
quality of these essays, which is supposed to vary more widely than it is for
native speaker’s essays.

Besides the two metrics presented above, we also score the methods with the
one-level tolerance accuracy in Table 3. Like the exact accuracy, this variant is
also calculated on the balanced data. However, a positive point is counted even if
a method predicts a class adjacent to the true one. Such score is justified by the
fact that even a human judge has often difficulties to determine the evaluation
grade precisely. According to this score, the baselines are again surpassed by all
the new settings, achieving over 80% in accuracy on both datasets. Nevertheless,
this time the pronoun feature set alone reaches the superior results.

Figure 1 shows F-scores of all the variants measured for individual grades in
the L1 (left) and L2 dataset (right). For both datasets, the evaluator seems to
perform best for extreme grades, which sounds reasonable in the light of the
scale nature of the evaluation grades. On the other hand, note that in the L2
dataset the performance for the neighboring grades of the extreme ones (i.e., A2
and C1) is the worst. These neighboring grades are in fact often misclassified as
the A1 and C2 levels, respectively.
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Fig. 1. F-scores for individual grades in the L1 (left) and L2 dataset (right).

Inspecting the performance while adding new features, the score improves
only slightly for most of the grades. The overall improvement should thus be
mostly attributed to performance jumps for only a few grades, namely, the grade
3 for the L1 dataset, and C1 and C2 levels for the L2 dataset. The positive
effect of coreference-related features for the C2 level may be a consequence of
apparently longer documents (see Table 2), which are supposed to contain more
coreferential relations. Nevertheless, the performance jumps for the other grades
would seem to be difficult to justify without inspecting the data manually.

6 Related Work

The aim of the present work is to judge texts and assign grades to them, both
with respect to the level of its coherence/cohesion. We do this on texts written
by native Czech speakers as well as by learners of Czech as a foreign language.
Hence, the task is analogous to the tasks of Automated essay scoring (AES) and
Proficiency Level Classification (PLC).

The goal of AES is to automatically assign grades to essays written in an
educational setting. The research on AES traces back to the prehistory of auto-
matic processing, with the first program called Project Essay GradeTM [9]. Over
the years multiple even commercial applications to address this task have been
developed (see [5] for an overview).

Due to using discourse structure and stylistic features for AES, the e-rater R©
[1] is particularly related to our work. In detail, they exploit a linear discourse
structure associated with the text by a specialized tool [4]. Analogous to our
system, this tool takes advantage of discourse marker words and structures, and
syntactic structures such as subordinating and relative clauses.

In a recent work by Zupanc and Bosnić [27], a wide repertoire of coherence
features is employed for AES. These features are not linguistically motivated,
they rather address statistical properties of coherent texts. Nevertheless, apart
from the score, this system also provides a comprehensive feedback on errors.
The preprocessing pipeline for this task integrates also two coreference resolution
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systems. In addition, just like in our work, among the variety of machine-learning
methods they had tested, the Random Trees method appeared to perform the
best.

A CR system is also utilized in the AES system of Wonowidjojo et al. [25]
to preprocess the data subsequently modeled by Latent Semantic Analysis.

Proficiency Level Classification can be considered as a special case of AES
applied on text written by non-native speakers of a language (L2). The following
review of the related works focuses on works that share these common features:
the L2 language is other than English, and the texts are graded by CEFR levels.

Works of Hancke and Meurers [6], Vajjala and Lõo [24], and Pilán et al. [10]
address PLC on German, Estonian, and Swedish texts, respectively. Like us, all
these works encountered the issue of few data for especially marginal level A1
and C2. Whereas we filled these levels from another corpora, [10,24] decided to
remove under-represented levels from training and evaluation. In [6], this issue
seems to be ignored.

Except for the German one, all works report scores that treat the evaluation
as if the test data were uniformly distributed over the grades. Accuracy on
balanced set with each level reduced to the size of the minimal one reached
77% for Estonian. Their macro-averaged F-score is even higher – 78.5%. The
Swedish system performed 72% in F-score, which improved by 2.5% points after
applying domain adaptation with additional data coming from coursebooks. All
the scores were calculated by 10-fold cross-validation. Compared to these scores,
the performance of our classifier falls behind by 10–15% points. Nonetheless, the
reader should keep in mind that our task is to evaluate solely coherence of the
essays, which might be viewed as more difficult task than overall evaluation.

7 Conclusion

This work contributed to the task of automated evaluation of coherence.
The paper introduced a coreference-related extension to the EVALD appli-

cations, which aim at evaluating essays in Czech produced by native and non-
native speakers of this language. We successfully integrated the Treex CR system
for coreference resolution and designed a set of features investigate the level of
retaining coreference relations in the essays. Measured by exact accuracy on a
balanced dataset, the extended version outperformed the original EVALD appli-
cations by 3 and 5% points in native and non-native settings, respectively.

The paper also introduced a dataset for evaluation of surface coherence in
texts produced by non-native speakers of Czech. The dataset was collected from
multiple corpora and the parts with missing annotation of coherence grade were
manually judged. The resulting corpora thus contains sufficient number of exam-
ples for each of the CEFR levels.

In the future work, we would like to extend the evaluator with features related
to topic-focus articulation. Apart from the discourse and coreference relations,
this is the third main component that strongly influences surface coherence of a
text.
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Abstract. While online communities have become increasingly impor-
tant over the years, the moderation of user-generated content is still
performed mostly manually. Automating this task is an important step
in reducing the financial cost associated with moderation, but the major-
ity of automated approaches strictly based on message content are highly
vulnerable to intentional obfuscation. In this paper, we discuss methods
for extracting conversational networks based on raw multi-participant
chat logs, and we study the contribution of graph features to a classi-
fication system that aims to determine if a given message is abusive.
The conversational graph-based system yields unexpectedly high per-
formance, with results comparable to those previously obtained with a
content-based approach.

Keywords: Text categorization · Abuse detection · Online communi-
ties · Moderation

1 Introduction

The widespread availability of Internet access allows users from around the
world to congregate into online communities. With the ever-increasing num-
ber of users, online communities have become important places to trade ideas,
and have acquired a great socio-economical importance.

However, because of the anonymity provided by the medium, an online com-
munity is often confronted with users that display abusive behaviors. For com-
munity maintainers, it can be important to act on this issue through the use
of moderation, because failure to do so can poison the community, trigger user
exodus, and expose the administrators to legal jeopardy. Moderation is the appli-
cation of sanctions when users are judged to violate the community rules. When
done by humans, this work is expensive and companies have a vested interest
in automating the process. One can distinguish two types of automated sys-
tems assisting in moderation: (1) an automated flagging system that raises some
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messages to the attention of moderators; and (2) a fully automated system that
detects abusive messages and executes sanctions on users that are breaking the
community rules.

In this work, we consider the classification problem of automatically deter-
mining if a message from a user is abusive or not. For this purpose, we propose an
original approach aiming at exploring a range of graph-based features extracted
from online textual conversations. We first extract various types of conversational
networks, i.e. graphs where vertices represent users and where edges correspond
to supposed message-based interactions between them. We then process a number
of graph-theoretical measures that characterize these networks in different ways.
A classifier is then trained and tested on a corpus of chat logs originating from
the community of the French massively multiplayer on-line game SpaceOrigin1.
We finally conduct a qualitative study to analyze the impact of each graph-based
feature on the automatic abusive message classification performance.

The rest of this paper is organized as follows. In Sect. 2, we review related
work on abuse detection and network extraction from raw conversation logs. In
Sect. 3, we describe the method proposed to extract conversational networks, and
the topological features that we compute for the resulting graphs. In Sect. 4, our
dataset is presented as well as the overall experimental setup for the classification
task. A discussion and a qualitative study of our results is also provided. Finally,
we summarize our contributions in Sect. 5 and present some perspectives.

2 Related Work

This section is a brief review of the literature focusing on the most relevant works
relating to two aspects of the problem at hand. First, in Subsect. 2.1, we review
general works regarding the detection of online abuse. Second, in Subsect. 2.2,
we explore previously used techniques to extract network structures from raw
conversation data.

2.1 Abuse Detection

One can distinguish two main categories of works related to abuse detection:
those using the content of the exchanged messages and those focusing on their
context. Some works also propose to combine both categories.

From the content-based point-of-view, the work initiated by Spertus in [19]
was a first attempt to create a classifier for hostile messages. This is relevant
to us, because abusive messages often contain hostility. They use static rules
to extract linguistic markers for each message: Imperative Statement, Profanity,
Condescension, Insult, Politeness and Praise. These are then used as features in
a binary classifier. They obtain good results, except in specific cases like hostility
through sarcasm. However, the limitation of this approach is that its application
to another language is a difficult task, requiring to transpose it to other grammar
rules and idioms.
1 https://play.spaceorigin.fr/.

https://play.spaceorigin.fr/
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Cheng et al. [5] note that a word tagged as offensive in a message is not a
definite indication that the message is offensive, i.e. while “You are stupid.” is
clearly offensive, “This is stupid. xD” is not. Lack of context can be somewhat
mitigated by looking at word n-grams instead of unigrams (i.e. single words).

Dinakar et al. [8] use tf -idf features, a static list of badwords and of widely
used sentences containing verbal abuse to detect cyberbullying in Youtube com-
ments. Again, their model showed good results, except when sarcasm was used.

In [4], Chavan and Shylaja review machine learning approaches to detect
aggressive messages in on-line social networks. They show that Pronoun Occur-
rence, usually neglected in text classification, is important, and use Skip-Gram
features to mitigate the context issues.

Content-based text classification usually makes for a good baseline. Content
features are inexpensive to compute. However, such methods have severe limi-
tations: for instance, abuse can be spread over a succession of messages. Some
messages can reference a shared history between two users. Even more com-
mon are users that are voluntarily obfuscating message content to work around
badwords detection. Indeed, abusers can bypass automatic systems by making
the abusive content difficult to detect [11]: for instance, they can intentionally
modify the spelling of a forbidden word.

Because the reactions of other users to an abuse case are completely beyond
the control of the abuser, some works consider the content of messages around
the targeted message.

For instance, Yin et al. [21] use features derived from the neighboring phrases
of a given message to detect harassment on the Web. Their goal is to spot conver-
sations going off-topic, and use that as an indicator. Their approach shows good
results when used against multi-participant chat logs, and they note that senti-
ment features seem to constitute mostly noise due to the high misspelling rate.

In [6], Cheng et al. propose to focus on building user behavior models. For
this purpose, they perform a comprehensive study of antisocial behavior in on-
line discussion communities. Their work provides insight into the devolution of
abusive users over time in a community, regarding both the quality of their
contributions and their reactions towards other members of the community.
A critical result of the analysis is that instances of antisocial messages usually
generate a bigger response from the community, compared to normal messages.

Balci and Salah [1] make use of user features to detect abuse in the com-
munity of an online game. These features include information such as gender,
number of friends, financial investment, avatars, and general rankings. The goal
is to help human moderators dealing with abuse reports, and the approach yields
sufficiently good results to achieve it. However, in our case the user data neces-
sary to replicate this approach is not available.

In our own previous work [15], we propose to detect abusive messages from
chat messages using a wide array of language features (bag-of-words, tf -idf
scores, sentiment scores, etc.) as well as context features derived from the lan-
guage models of other users. We also try advanced preprocessing approaches.
This method allowed us to reach a performance of 72.1% in terms of F -measure
on an abusive message detection task.
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2.2 Network Extraction from Raw Data

Although a major part of the solutions focus on content features of exchanged
messages to address the abuse problem, it appears that a user with previous
exposure to automatic moderation techniques can easily circumvent them [11].
To avoid this problem, a solution would be to not focus only on the direct content
exchanged but on the interactions between the users through these messages.

The number of respondents to a given message appears frequently in the
literature, as a classification feature, e.g. [6]. However, there are not many works
dealing with the extraction of conversational networks. This may be due to
the fact that the task can be far from trivial, depending on the nature of the
available raw data: the task is much harder for chat logs than for structured
messages board or Web forums, for instance. These networks have the advantage
of including the mentioned feature, but also much more information regarding
the way users interact.

In [13], Mutton proposes a strategy to extract such a network from IRC chat
logs. The goal is to build a tool to visualize user interactions in an IRC chat
room over time. The author uses a simple set of rules based on direct referencing
(when a user addresses another one by using his nickname), temporal proximity
of messages, and temporal density of messages. In this paper, we will adapt and
expend on those rules. Specifically, while in a regular IRC channel timestamps
are indeed useful to determine intended recipients of a message, in our case they
are basically irrelevant, so this approach cannot be adapted as is.

Travassoli et al. [20] explore different methods to extract representative net-
works from group psychotherapy chat logs. One method includes fuzzy refer-
encing to mitigate effects of misspelled nicknames, and rules for representing
one-to-all messages. The bulk of the methods uses static patterns of exchanges
to predict a receiver. Their system shows a good agreement score with a human
annotator.

Sinha and Rajasingh [18] use only direct referencing, but with the same
fuzzy matching strategy, in order to extract a network representing the activity
in the #ubuntu IRC support channel. This method manages to expose high
level components of the Ubuntu social network, which in turn allows for the
qualification of user behaviors into specific classes. This method of building user
models can be very interesting when the data describing the users are scarce, as is
the case on IRC where everyone can join and there is no requirement to register.

3 Methods

In this section, we describe our proposed original approach to detect abusive
messages. It basically consists in training a classifier on features corresponding
to topological measures processed on conversational networks. The classifier is
standard, so we focus on the processing of the features. Thereby, Subsect. 3.1
presents how we extract conversational networks from conversation logs, while
Subsect. 3.2 describes the topological measures computed for these conversa-
tional networks, and later used as classification features.
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3.1 Network Extraction

We extract networks representing conversations between users, through a textual
discussion channel. They take the form of weighted undirected graphs, in which
the vertices and edges represent the users and the communication between them,
respectively. The edge weights are a score which is an estimation of the intensity
of the communication between the two connected users. Note that each network
is defined relatively to a targeted message, since the goal of this operation is to
provide features used to classify the said message.

The first step consists in determining which messages are used to extract the
network. For this purpose, we define a context period, which is centered on the
targeted message, and spans symmetrically before and after its occurrence. We
arbitrarily use a width of 200 messages in our experiments. The graph extracted
from this context period contains only the vertices representing the users which
posted at least once on this channel, during this period.

The second step is to add the appropriate edges to the network, and to
process their weight. We use a method based on a sliding window, a choice that
is justified by two properties of the user interface of the considered discussion
channel: (1) when a user joins a channel, the server sends him only the last 20
messages posted on the channel; and (2) it is impossible for a user to scroll back
the history further than 20 lines. In our experiments, we arbitrarily use a window
of 10 messages. We apply an iterative process, consisting in sliding the window
over the whole context one message at a time. We call current message the
last message of the window taken at a given time. Our assumption is that this
message is destined to the authors of the other messages present in the window
at this time. Furthermore, we suppose it is more likely that the message concerns
the users who posted the most recently. These hypotheses can be justified by
another property of the user interface: by default, users do not know who is in
the channel at a given time, in particular the join/part events are not shown to
them.

Based on these hypotheses, we update the edges and weights in the following
way. First, we list the authors of the messages currently present in the window,
order them by last message posted, and discard the author of the current message
(since it is possible that several of his messages appear in this window): this
results in what we call the neighbor list. However, the user interface allows to
explicitly mention users in a message by their name, and the game prevents the
users from changing their name: we need to take this property into account. For
this purpose, we move the users directly referenced in the current message at
the top of our list. If a user was not even in the window, it is simply inserted at
the top of the list. Each user in the neighbor list is assigned by a score, which
is a decreasing function of both his position in the list and of the length of the
neighbor list. We can then update the graph: we create an edge between each
user in the neighbor list and the author of the current message, with a weight
corresponding to the user’s score. If this edge already exists, we increase its
current weight by the user’s score.
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Our choice to create or update edges towards all users in the window even
in case of direct referencing is based on several considerations. First, directly
referencing a user does not imply that he is part of the conversation or that the
message is directed towards him: for instance, his name could just be mentioned
as an object of the sentence. Second, there can be multiple direct references
in a single message. Third, when in online public discourse, directly addressing
someone does not mean he is the sole intended recipient of the message. For
instance when discussing politics, a question directed towards someone can have
as a secondary objective to have the target expose his stance on an issue to the
other participants.

Once the iterative process has been applied for the whole context period,
we get what we call the Full network. For testing matters, we also process
2 lesser networks based on the same context: the Before and After networks
are extracted using only the 100 messages preceding and following the targeted
message, respectively, as well as the targeted message itself. Figure 1 shows an
example of the three networks associated with an abusive comment.

Fig. 1. Example of the 3 types of conversational networks extracted for a given context
period: Before (left), After (center), and Full (right). The abusive user is represented
in red. (Color figure online)

3.2 Features

The classification features we consider in this work are all topological measures,
allowing to characterize graphs in various ways. We adopt an exploratory app-
roach and consider a wide range of such measures, focusing on the most wide-
spread in the literature. In the following, we describe them briefly, distinguishing
between local ones, which characterize individual vertices, and global ones, which
describe the whole graph at once. We process all the features for each of the 3
types of networks (Before, After, Full) described in the previous subsection.

Local Topological Measures. These measures are computed for the Vertex
corresponding to the author of the targeted message.

The Degree centrality is a normalized version of the standard degree, which
corresponds itself to the number of direct neighbors of the considered vertex. The
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Eigenvector Centrality [2] can be considered as a generalization of the degree, in
which instead of just counting the neighbors, one also takes into account their
centrality: a central neighbor increases the centrality of the vertex of interest
more than a peripheral one.

The PageRank Centrality [3] is also spectral (like the Eigenvector Centrality),
but it is based on very different rationales. It models a random walk occurring
on the network, and noticeably includes the possibility for the walker to teleport
anywhere in the network at any step. The Hub and Authority Scores [12] are
two complementary measures also based on random walks.

The Betweenness Centrality [9] is based on the number of shortest paths
going through the considered vertex.

In communication networks, it is sometimes interpreted as the level of control
the vertex of interest has over information transmission in the network. The
Closeness Centrality [9] is the reciprocal of the total geodesic distance (i.e. the
length of the shortest path) between the vertex of interest and the other vertices.
It is generally considered it measures the efficiency of the vertex to spread a
message over the graph, and its independence from the other vertices in terms of
communication. The Eccentricity [10] is also distance-based, but to the contrary
of the other selected measures, it quantifies how peripheral the vertex of interest
is, by considering the distance to its farthest vertex.

Finally, the Coreness Score [17] is based on the notion of k-core, which is a
maximal induced subgraph whose all vertices have a degree of at least k. The
coreness of a vertex is the k of the k-core of maximal degree to which it belongs.

Global Topological Measures. First, we use very classic statistics describing
the graph size, the Vertex and Edge Counts. We also select the Density, which
corresponds to the ratio of the number of existing edges to the number of edges
in a complete graph containing the same number of vertices. In other words,
the density corresponds to the proportion of existing edges, compared to the
maximal possible number for the considered graph.

We also use two distance-related measures. The first is the Diameter, which
corresponds to the highest distance found in the graph, i.e. the length of the
longest shortest path. The second is the Average Distance, which is the average
length of the shortest path processed over all pairs of vertices.

We process the total Clique Count in the network, where a clique is a com-
plete induced subgraph. The Degree Assortativity [14] is also potentially inter-
esting. It corresponds to the correlation processed between the series constituted
of all connected vertices, and measures the statistical dependence between the
degrees of two vertices and the presence of an edge connecting them. Finally, for
each one of the 10 previously described local measures, we process the average
over the whole graph.

4 Experiments

In this section, we first briefly present our corpus and our experimental
setup (Subsect. 4.1), before describing and discussing our classification results
(Subsect. 4.2).
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4.1 Experimental Setup

We have access to a database of 4, 029, 343 messages that were exchanged by
the users of a browser-based multi-player game. In the database, 779 messages
have been flagged by one or more users as being abusive and subsequently con-
firmed as abusive by the game moderators. Each message belongs to a unique
communication channel.

We further extract 2, 000 messages at random from the messages not con-
firmed as abusive to constitute the non-abuse class. We previously experimented
with this dataset in [15].

Because of the relatively small dataset, our experiment is set up for 10-Fold
cross validation. We use a 70%-train/30%-test split.

We use Python-iGraph [7] to create the network and process the graph-based
features for each message. As a classifier, we use an SVM, implemented in Sklearn
under the name SVC (C-Support Vector Classification) [16] toolkit.

4.2 Results

Table 1 displays the results obtained for our random baseline, the content- and
context-based classifier we previously presented in [15], and the graph-based
classifier proposed in this article. The baseline uses the same classifier and archi-
tecture but the feature extraction step is replaced by a dummy function that
yields two random values in [0, 1]. Our previous approach takes advantage of mor-
phological, language and user behavior-based features, such as: message length,
number of words, compressibility, bag of words with tf–idf scores and probabil-
ity of n-gram emission. In the present experiment, the training and testing sets
were resampled, which explains why the values displayed for the content/context-
based classifier are slightly different form the ones shown in [15].

With the graph-based approach, the performance is improved according to all
3 considered measures, compared to our previous effort. The overall performance
is unexpectedly high for an approach that completely ignores the content of the
messages. We suppose that this is mainly due to the fact that two thirds of the
features include information regarding to the part of the conversations happening
after the classified message, whereas this was the case for only two features (out
of 67) in our content/context-based approach. Independently from this point,

Table 1. Classification results (in %) of the 3 abusive message classifiers: a random
baseline, our previous approach [15], and the one presented in this article. All measures
are computed for the Abuse class.

Experiment Precision Recall F -measure

Random baseline 29.3 52.6 37.6

Content/context-based classifier 70.3 74.3 72.2

Graph-based classifier 76.8 77.2 77.0
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the fact that both approaches reach relatively high performance levels is a very
promising result: given that both classifiers are built on completely different
features, combining them should even improve the overall performance.

Since our classifier is an SVM, we can use the Platt Scalling implementation
of Sklearn to vary the decision threshold and therefore tune the system towards
either high precision or high recall. The left plot of Fig. 2 shows the Precision-
Recall curves of each of the 10 classifiers created for our experiment. One can
see that by lowering the post probability threshold a little, it is possible to gain
better coverage of the abuse class without losing too much precision. Therefore,
we would argue that this system shows better promise as an alert system than
as an automated moderation system.

Fig. 2. Left: Precision-Recall curves of the 10 SVM classifiers. Right: Feature ablation
curves of one classifier (200 runs). In both plots, the red curve represents the average.
(Color figure online)

In order to estimate the importance of our features with regards to this
classification task, we use the meta estimator ExtraTreesClassifier provided by
the Sklearn toolkit. While the process is stochastic, it allows to give features a
score indicating their contribution to the decisions of the classifier. We run fur-
ther ablation runs, ordering the features by increasing impact of their removal
on the classifier performance. This allows obtaining a smoother curve, with a
performance drop on the right-side, corresponding to the removal of the most
discriminant features (right plot of Fig. 2). Table 2 shows the 10 most discrim-
inant features: using only these features, one can train a classifier obtaining a
F -Measure score of 75.8%.

Overall, these features are quite heterogeneous, topologically speaking, in
the sense they correspond to very different ways of characterizing graph struc-
tures. The Degree Centrality, Edge Count, and Density features are based on a
microscopic view of the graph (vertices and edges are considered individually, or
only with respect to their direct neighborhood). On the contrary, the Between-
ness Centrality, Hub Score and Eccentricity are macroscopic, because they take
advantage of paths spanning the whole graph. Finally, the Coreness Score is
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Table 2. Most useful features of the graph-based classification approach.

Network Feature name F -measure before
ablation

Full Average betweenness centrality 75.8

Before Average coreness score 75.4

After Edge count 74.5

After Density 73.1

Full Hub score 72.9

After Degree centrality 67.7

Before Edge count 67.2

Full Average eccentricity 58.4

Before Average eigenvector centrality 56.6

Full Eccentricity 35.0

mesoscopic, in the sense it is based on an intermediate view and considers sub-
graphs. This is consistent with the assumption that redundant features should
not appear amongst the most discriminant ones.

At first sight, finding both Edge Count and Density can be surprising: given
that the latter is a normalized version of the former, one could suppose they are
redundant. However, this normalization is based on the number of vertices in the
graph. Thus, in the present case, this simply means that the number of edges in
our networks does not increase as a square function of number of vertices. On the
contrary, certain features present in the table are part of some very correlated
groups of features, which can be considered as almost inter-exchangeable. For
instance, the Average Eigenvector Centrality and Average Hub Score for the
Before graph have a 0.73 correlation.

All 3 considered types of graphs (Before, After, Full) are represented in these
top features, which means they convey different information and are all of some
help regarding the classification problem at hand. Moreover, it appears that cer-
tain related features appear together for several versions of the graph. This is
the case for the Edge Count (Before vs. After), and of the Hub Score and Eigen-
vector Centrality (Full vs. Before). We assume that this reflects the fact abuses
significantly modify the graph structure, according to these topological mea-
sures. In other words, they reflect strong changes in the conversation dynamics.
When a measure appears only for the Before or After version of the graph, we
conclude it allows characterizing only the pre- or post-state of the conversation,
relatively to the abuse.

It is interesting that both the individual and average Eccentricity features are
present in this table. A closer look reveals that their values are lower for graphs
belonging to the Abuse class. This means that the maximal distance between
the author of the targeted message and the rest of the graph decreases in case of
abuse. More concretely, this user becomes less peripheral (or more central), and
the same goes for the other users of the graph (in average). This fits in quite well



80 E. Papegnies et al.

with assumptions about how abuse impacts a discussion: an abuser would tend
not to be peripheral in a conversation, while we can reasonably assume that the
other participants will be piling on and therefore be less peripheral themselves.
This may also explain why those features are, by far, the most discriminant ones.

5 Conclusion

In this article, we have presented an approach purely based on graph features to
tackle the problem of automatically detecting online abuse. The method, while
simple, yields reasonable results, besting the score obtained with our previous
effort, which was content- and context-based.

However it is important to note a couple of important limitations. First, the
amount of necessary computation is quite high if it is to be applied each time a
new message is posted to the channel, compared to a pure content-based app-
roach. Second, the method can only be applied after a delay when the necessary
number of messages have been posted in response to the target message - this
is not a method that can help prevent the 5th message in a torrent of insults
from reaching the channel. Rather, it could be used to perform some a posteriori
moderation.

The next step in our study will be to assess the impact of different network
construction strategies on the performance of the classifier. This will include
experimenting with other weight distribution strategies, and different sizes for
the context period and the sliding window. We will then aim to combine this
system with our content-based classifier: in theory, they are both based on com-
pletely different types of information, so we can assume they are complementary
and could lead to improved classification performance.
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Abstract. Online social networking platforms are an important commu-
nication medium for cultural events, as they allow exchanging opinions
almost in real-time, by publishing messages during the event itself, but
also outside of this period. Word embedding has become a popular way
to represent and extract information from such messages. In this paper,
we propose a preliminary work aiming at assessing the benefits of taking
temporal information into account when modeling messages in the con-
text of a cultural event. We perform statistical and visual analyses on
two word different representations: one including temporal information
(Temporal Embedding), the second ignoring it (Word2Vec approach).
Our preliminary results show that the obtained models exhibit some
similarities, but also differ significantly in the way they represent certain
specific words. More interestingly, the temporal information conveyed by
the Temporal Embedding model allows to identify more relevant word
associations related to the domain at hand (cultural festivals).

Keywords: Word embedding · Temporal representation · Statistical
analysis · Cultural events

1 Introduction

Social networks have become a new way of communicating and sharing informa-
tion and views that can be accessed by billions of people. These social interactions
may take the form of short text messages, such as the Twitter platform, where
users have the possibility to instantly send a message (here a tweet) containing
around 140 characters.

Thanks to its ease of use, Twitter is currently an essential platform for the
exchange of messages. For particular events (news, concerts, festivals, presiden-
tial elections, etc.), users are increasingly inclined to express themselves through
these short messages. Although this platform has become a formidable object
of study for a variety of domains ranging from sociology [8,10,13] to automatic
information extraction [3,11,15], the short format of the messages and the large
size of the corpora often both make them difficult to analyze. In this article,
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we analyze messages exchanged through the Twitter platform in the context of
cultural events, with a particular focus on festivals. More precisely, we seek to
account for shared content, through the words contained in tweets. The major
difficulty of this type of analysis lies in the duration of the considered events:
although a festival takes place over a defined period (ranging from a few days
to several weeks), the activity of users on social networks can intervene at any
time (before, during, or after the festival).

We assume that it is difficult to reveal all the information conveyed through
the discussions (the tweets) in a global way without taking into account the tem-
poral aspect of the messages (i.e. their emission date). A global model would have
a tendency to reveal only the frequently shared information, ignoring the uncom-
mon ones that could nonetheless be important over a particular period of time.
This is problematic when these models are used as input for information retrieval
tasks, such as automatic event extraction, automatic summarization, etc. Based
on this observation we propose a preliminary work close to those initiated in [1,7]
that seeks to compare two word embedding-based models: one ignoring the tem-
poral aspect of the messages, using the state-of-the-art Word2Vec model [9],
and one taking advantage of the emission date of tweets, using the Temporal
Embedding approach.

The rest of this article is organized as follows. Section 2 presents the different
methods used to analyze the impact of time in the events analysis. We present-
the experimental protocol as well as the results obtained in Sect. 3. Finally, we
conclude and give some perspectives in Sect. 4.

2 Methods

We seek to highlight the interest of taking into account the temporal information
conveyed by messages emitted through social networks, in a context of cultural
events analysis. In Subsect. 2.1, the two compared word embedding represen-
tations are described: one considers the complete set of messages regardless of
their emission date (the Word2Vec neural network method), while the second
one takes into account the chronology of the documents (Temporal embedding
approach). In Subsect. 2.2, we describe the methods used to compare the word
embedding models, which include both subjective and objective tools. The goal
here is to identify the points on which the models differ or converge. Figure 1
summarizes our overall framework, and is detailed in the rest of this section.
Our different models are specified there in bold.

We note N the total number of unique words in the corpus. When performing
the analysis, one can focus on a list of n words of interest corresponding to a
subset of the corpus lexicon: this allows the end user to adopt either a verifica-
tion-directed approach. If the user has some a priori knowledge and would like
to check certain assumptions regarding the corpus, or a exploratory approach,
consisting in using the whole lexicon as the word list (in this case, n = N).
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Fig. 1. Overview of the method proposed to process the models (left side) and compare
them (right side). The blue boxes represent plots, which are compared visually as
explained in Subsect. 2.2. The models are represented in bold. (Color figure online)

2.1 Word Embedding Representations

We briefly describe the classic Word2Vec model, before explaining how the Tem-
poral Embedding model is extracted. Two distinct temporal resolutions are con-
sidered in this work (weeks vs. months).

Word2Vec Neural Network. Word2Vec models [9] are based on the hypothesis
that semantically similar words tend to have similar contextual distributions.
Concretely, this context is a window whose size is expressed in a number of
words. This is centered on the word of interest. For our experiments we use
the CBOW method, it seeks to predict the word reference given a context. For
instance, a context of 2 words, the CBOW neural network model takes an input
taking the form of a sequence of 4 words wi−2, wi−1, wi+1 and wi+2, and outputs
a word wi. We only use the hidden layer of the neural networks, which means
each word is represented by a vector. The length of this vector is specified by
the user as a parameter d which is 200 by default in literature. We use the
complete word vocabulary to train the CBOW model, the method outputs an
N × d matrix. More information about Word2Vec models can be found in [9].

Temporal Embedding. Instead of globally taking all the corpus words into account
for this method, as for the Word2Vec model, we focus on a predefined list of n
words of interest (represented by the Word filtering box in Fig. 1). For each word
in this list we count its number of occurrences by time unit where the time unit
is either one month or one week, depending on the considered model. In order to
avoid zero values, which can be frequent when considering weekly occurrences,
we smooth the numbers of occurrences through a moving average. This results
in an n × m occurrence matrix called Temporal matrix, where m is the period
covered by the corpus expressed in time units. We then perform a Principal
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Component Analysis (PCA) on this matrix. This provides us with the temporal
embedding: another n×m matrix, whose columns are the obtained components
ordered by increasing informativeness. The interest of the PCA is to get a more
compact representation of the temporal embedding by focusing on the first few
components.

2.2 Model Comparison

Comparing models is usually a difficult problem, the most frequent solution being
to compare their performance on a targeted task (for example, in speech recog-
nition, the best models are those that allow the lowest word error rate). In this
paper, we investigate the interest of including temporal information in word rep-
resentations from cultural events. To correctly evaluate the impact of each model,
an objective ground truth would be necessary, i.e. knowing which words clearly
represent a particular event and should be associated with it (and therefore
which words have no interest). This would reveal the model that best represents
a targeted cultural event. Since no ground truth is available, we first perform
an objective comparison relying on statistical tests. These results are generally
considered more reliable (and more easily comparable because experiments are
reproducible). We seek to know with this first evaluation how close or different
the models are. Then, we perform a more detailed analysis through a subjective
comparison based on a visual human interpretation in order to investigate the
contribution of the temporal information to cultural event representation.

Objective Comparison. Two statistical tests are used to compare the models
globally: Wilcoxon-Mann-Whitney and Kendall’s τ . These non-parametric tests
check the hypothesis whether two samples originate from the same distribution.
They are complementary, in the sense the former can be considered as a median-
based version of the t-test, whereas the latter focuses on rank correlation. We
apply them to the Rescaled Correlation and Cosine Distance matrices which were
previously computed for the models when extracting the plots and dendrograms.
The tests allow us to compare the way the pairs of words are ordered in the
different models based on their distances. In other words, they compare the
models based on the relative positions of the words in the model spaces.

Besides this global comparison, we also perform a local one by focusing on
each word separately. For a given word, we perform the same Kendall’s and
Wilcoxon-Mann-Whitney tests as before, on the distances between this word
of interest and the other considered words. When comparing two models, we
ultimately identify two groups of words: those whose relative positions are sig-
nificantly different in these models (using a significance level of .05), and the
others, whose relative positions are supposedly similar in both models.

Subjective Comparison. The second comparison is visually performed by humans,
based on graphical representations of the models. We consider two of them:
(1) the projection of the words in a 2D space, and (2) dendrograms. The for-
mer representation allows us to identify opposition between words, whereas the
second one focuses on their associations.
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The 2D space representation is obtained by considering the first 2 components
(i.e. the most informative ones) of a PCA. Since the Temporal Embedding model
includes a PCA, no additional process is required. For the Word2Vec approach,
some additional processing is needed: we extract the n rows corresponding to the
word list from the N × d matrix (this step is represented as the Word filtering
box in Fig. 1), resulting in the n×d so-called Filtered Matrix, on which a PCA is
performed. The subjective comparison is conducted by checking how the words
are spatially separated by the plot axes and how this differs from one model
to the other. Put differently, if an axis separates two pairs of words and these
words are away from this axis, we will consider that they are in opposition. If
an opposition is present in both models, we consider this as a similarity between
the models. On the contrary, if an opposition is found in one model only, we
consider it as a difference between the models.

The dendrograms allow us to identify how the models gather words and
organize them hierarchically. We obtain them using the standard hierarchical
clustering algorithm available in the R Language. Note that this implementa-
tion requires a dissimilarity matrix as its input. Moreover, we use the complete
linkage approach in order to favor compact clusters with small diameters. In
the case of the temporal embedding, we first build an n × n correlation matrix
based on the (week/month) temporal matrix (i.e. without the PCA). The cor-
relation between two words is obtained by processing Pearson’s coefficient for
the two rows associated to these words in the matrix. When the correlation is
negative, we set it to zero: this is a common practice when dealing with tem-
poral series because in this context they are generally considered as noise. The
dissimilarity is then obtained through the following rescaling: 1−Cor, which in
our case produces values ranging from 0 (similar) to 1 (dissimilar). This gives us
an n × n matrix, which is called Rescaled Correlation Matrix in Fig. 1. For the
Word2Vec model, we build an n × n Distance Matrix based on the previously
computed n×d filtered matrix. Each element of this distance matrix corresponds
to the Cosine distance between two words of the list. Let us note w1 and w2 the
respective word embeddings of these two words, then the distance is given by:
d(w1, w2) = 1 − Sim(w1, w2), where Sim(w1, w2) is the classic Cosine similar-
ity between the words. Here the Cosine approach seems more appropriate than
the Correlation used on the temporal data because we know that the rows of
the considered matrix are inter-dependent by construction. After having gener-
ated the dendrograms, we make the visual comparison by checking if two words
which are contiguous in one dendrogram are also placed together in another
dendrogram.

3 Experiments

In this section, we briefly present the data analyzed in this study (Subsect. 3.1),
before describing and discussing the obtained results (Subsect. 3.2).
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3.1 Corpus and List of Words

We use the corpus provided for the MC2 CLEF 2017 lab1 which contains 70
million tweets [6]. These were automatically retrieved from Twitter using a pre-
defined set of keywords related to cultural festivals in the world. They cover
a period ranging from May 2015 to November 2016 and are composed by 134
different languages [4,5].

We focus on a manually curated list of words of interest. It was originally
designed by cultural sociologists to focus on festivals. We extended the list in the
following way. Firstly, we added certain cities of interest based on various general
and specialized sources: Wikipedia’s List of the world’s most liveable (31 cities)
[17], BFM Business’s List of the top 20 European cities [2], and festival cities from
Wikipedia’s List of theatre festivals (30 cities) [18], Red Bulletin’s List of the top
15 music festivals (12 cities) [12], Sky Scanner’s List of the top 10 music festivals
[14], and Temps de Vivre’s List of top cinema festivals [16]. Second, we added
other words related to the concept of festival in general: “theater”, “music”,
“film”. Third, we added some commercial brands also related to festivals, such
as apple or deezer (33 words). In total, the list contains 119 different words.

3.2 Results

In this subsection we compare two word embedding representations under the
form of 3 distinct models2. One Word2Vec model and two Temporal Embedding
models based on two different time units (weeks and months respectively). We
first discuss the outcome of the statistical tests before presenting the visual
comparison of the plots and dendrograms (see Sect. 2).

Statistical Methods. We apply both the Wilcoxon-Mann-Whitney and Kendall’s
tests on all 3 models: Month vs. Week Temporal Embeddings, Month Tempo-
ral Embedding vs. Word2Vec, and Week Temporal Embedding vs. Word2Vec. All
tests return a p-value smaller than 10−15: for these implementations of the tests,
this means that they always reject model independence. Kendall’s τ , which is
an association measure ranging from −1 to +1, is 0.68 when comparing the
Month vs. Week Temporal Embeddings: this corresponds to a strong correlation
between these models. For the Word2Vec vs. Month and Week Temporal models,
we get τ = −0.06 for both comparisons, which means that Word2Vec is almost
independent from our temporal models. According to these tests, the informa-
tion encoded in the temporal models is not the same as the one conveyed by
Word2Vec. Thus, they can be considered as complementary and are likely to
lead to different results depending on the task at hand.

After the global analysis we switch to individual words to compare the models
in terms of which words have significantly different relative positions in the two
considered models or a similar position in both models. Based on Kendall’s
test, we consider a similar representation when p < 0.05 and τ > 0.7. For

1 http://mc2.talne.eu/.
2 http://tac.talne.eu.

http://mc2.talne.eu/
http://tac.talne.eu
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Fig. 2. Two first principal components of the Month Temporal Embedding model.
(Color figure online)

the Word2Vec vs. Month Temporal Embedding models, out of the 119 words
constituting our list, only 27 words are represented differently in the models.
For the Month Temporal Embedding vs. Week Temporal Embedding and Week
Temporal Embedding vs. Word2Vec, 74 and 25 words are represented differently.
With Wilcoxon-Mann-Whitney, we test at p < 0.05 and get (in the same order):
64, 25 and 33 differing words. These results show that most words have the
similar representation in the different tested model which in accordance to our
global test results, means that the difference for the remaining words are very
important.

2D Representation. We now switch to the visual comparison starting with the 2D
plot based on the 2 main components obtained from the PCA. The semantics
of these components are not available for the Word2Vec model so we do not
discuss them. We only consider the positions of word pairs in the graphical
representation, and stress the presence of oppositions.

We first compare the Month and Week Temporal Embedding models whose
PCA are shown in Figs. 2 and 3, respectively. Globally, they seem to present the
same oppositions. For instance, “Deezer” vs. “Venise” (in red in all the figures),
and “Vancouver” vs. “Valdez” (in blue). This comparison is in line with our
statistical results and seems to indicate that it is not necessary to use the week
as a time unit because the month-based model requires less data and captures
roughly the same information. We then compare both temporal models with the
Word2Vec one, whose PCA is shown in Fig. 4. Visually, the oppositions seem to
differ more than previously. For instance, “deezer” and “Venise” are not opposed
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Fig. 3. Two first principal components of the Week Temporal Embedding model. (Color
figure online)
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Fig. 4. Two first principal components of the Word2Vec model. (Color figure online)

anymore, while “Vancouver” and “Valdez” are less opposed. However we can also
see some oppositions such as “Madrid” vs. “free” (in green), which are common
to all 3 models.
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Let us focus on an illustrative example: the Apple Music Festival, which takes
place in London. Both Temporal Models tend to group the 3 concerned words
“London”, “Apple” and “music” (represented in yellow in the figures), whereas
Word2Vec does not. This means that temporal models tend to gather words
from a same cultural event. If we examine finely the Word2Vec representation,
we can observe it groups words by semantic category: there are several clusters
of cities, whereas “Film”, “Filmmakers”, “Hollywood” and “movie” are together
(cinematic items), and so are “musique”, “opera”, “theatre”, “jazz” and “Bach”
(musical items). This is of course consistent of how Word2Vec is supposed to
work. In conclusion of this visual comparison, we can state that not only are
the temporal and Word2Vec models different as shown by the statistical tests,
but the chronological information encoded by the former also allows to identify
relevant groups of words relatively to what we know of the studied corpus.

Dendograms. The dendrograms of the Month and Week Temporal models, which
are represented in Figs. 5 and 6, respectively, look strongly similar. In particular,
we get the same direct connection between “Kyoto” and “Albuquerque” (in blue

Sa
nt

a 
M

ar
ia

Th
es

pi
an

 F
es

tiv
al

By
ro

n 
Ba

y
R

io
 d

e 
Ja

ne
iro

Te
at

ri
ja

rd
in

N
ew

 Y
or

k 
C

ity
C

hi
ca

go
Sa

lt 
La

ke
 C

ity
ra

ve
he

av
y 

m
et

al
Sa

lz
bu

rg
re

gg
ae

Pe
rfo

rm
an

ce
 W

rit
in

g
m

us
ic

ia
ns

Bo
go

tá
Sã

o 
Pa

ul
o

Fl
or

ia
no

po
lis

M
ad

rid
An

gr
a 

do
s 

R
ei

s
C

hi
ld

re
n 

Th
ea

tre
s

Li
sb

on
ne

tra
nc

e
G

la
st

on
bu

ry
W

ig
ht

An
ne

cy Ba
rc

el
on

a
de

ez
er

C
an

ne
s

H
ol

ly
w

oo
d Fi

lm
m

ov
ie

Pa
ris

Fi
lm

m
ak

er
s

el
ec

tro
ni

c
Pe

rth
Ly

on
H

am
bu

rg
Lo

nd
rin

a
Ve

ni
se

N
ev

ad
a

D
ea

uv
ille Sa

n 
Se

ba
st

iá
n

Zu
ric

h
Lo

nd
on

M
us

ic
To

ro
nt

o
ea

rly
ap

pl
e

Ad
el

ai
de

Be
lg

ra
de kp

op
Am

st
er

da
m

Ky
ot

o
Al

bu
qu

er
qu

e
do

gg
M

el
bo

ur
ne

Au
ck

la
nd

C
ur

iti
ba

M
ia

m
i

Br
us

se
ls

G
ar

de
n

M
an

ch
es

te
r

sh
ow

ca
si

ng
Li

ve
rp

oo
l

fre
e M
un

ic
h

D
ub

lin
At

he
ns

M
os

co
w

op
er

a
m

us
iq

ue
ja

zz At
la

nt
a

R
eg

gi
o 

C
al

ab
ria

Fu
ku

ok
a

Tb
ilis

i
hi

st
or

ic
 m

us
ic

In
te

rn
at

io
na

l T
he

at
re

in
te

rn
at

io
na

l
Si

bi
u

Fr
an

kf
ur

t
Te

at
ro

Sy
dn

ey
Lo

s 
An

ge
le

s
Be

rn
e

hi
ph

op C
op

en
ha

gu
e

Lu
xe

m
bo

ur
g

G
en

èv
e

C
os

ta
 M

es
a

G
ra

ha
m

st
ow

n
Av

ig
no

n
Sa

nt
ar

ca
ng

el
o 

di
 R

om
ag

na
Vi

en
ne

C
al

ga
ry

Li
nc

ol
n ce

lti
c

Th
ea

tre
ba

ch
M

on
t N

ae
ba

ro
ck fo
lk

Va
nc

ou
ve

r
W

illi
am

st
ow

n
Va

ld
ez

N
ia

ga
r a

−o
n−

th
e−

La
ke

sp
ot

ify
Be

rli
n

Te
hr

an
St

oc
kh

ol
m

Be
rg

en
O

sl
o

H
el

si
nk

i
Bu

da
pe

st
R

en
ne

s
Bo

om
To

ky
o

Ed
in

bu
rg

h

Fig. 5. Dendrogram of the Month Temporal Embedding model. (Color figure online)
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Fig. 6. Dendrogram of the Week Temporal Embedding model. (Color figure online)
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Fig. 7. Dendrogram of the Word2Vec model. (Color figure online)

in all the figures), or “Frankfurt” and “Teatro” (in purple). Note that they nev-
ertheless differ on some pairs of words such as “Berne” and “Teatro” (in green),
which are directly connected in the month model whereas “Berne” is connected
to “hiphop” in the week model. Like before, there are visible differences between
the representations of the temporal models and that of the Word2Vec, repre-
sented in Fig. 7. Focusing on the same pairs of words, we see that “Kyoto” is
not connected with “Albuquerque” anymore, and neither are “Frankfurt” and
“Teatro”. Moreover, “Berne” is neither connected with “Teatro” or “hiphop”,
but rather with “MontNaeba” (a Japanese mountain).

In the case of Word2Vec the words are grouped by semantic similar-
ity. The hierarchical nature of the groupings seem to connect them accord-
ing to hyper/hyponymy relationships. For instance, “rock” is connected to
“heavy.metal” (in orange in the figure), the latter is a subgenre of the former.
Both are close to “Jazz” in the dendrogram, itself connected to “reggae” (in red)
which can be considered as musical style strongly influenced by certain forms of
jazz. Elsewhere, “Tokyo” is connected to “Kyoto” (both Japanese cities, Kyoto
is in blue), “Santa Maria” to “Los Angeles” (both Californian cities, in Cyan)
or “Paris” and “Cannes” (both French cities, in yellow).

Unlike Word2Vec, the temporal models lead to clusters of words which are
consistent with the fact that the corpus is related to festivals. For instance in the
dendrograms of both temporal models, we observe that “Cannes” (French city
hosting a Cinema festival) and “Hollywood” (Californian center of the movie
industry) are directly connected (both in orange in the figures), they are close
to “Film” and “movie” (themselves directly connected aas well and represented
in red). We also have “Avignon” (French city) connected to “Santarcangelo di
Romagna” (Italian city): both cities (in cyan in the figures) host a renown theater
festival. An other example is “London”, directly connected to “Music” and close
to “Apple” (all in yellow): this would represent the previously mentioned Apple
Music Festival in London. Generally speaking in the dendrograms, festival cities
are associated to words which are semantically related to the nature of their
festival.
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The visual comparison of the dendrograms confirm and complete our previ-
ous observations. The Word2Vec model is definitely different from the temporal
ones which are relatively similar to each other. The context-based approach of
Word2Vec does not capture the temporal information conveyed by the other
models. In both cases, words are grouped according to their relative semantics.
But in the case of Word2Vec these groups are built on semantic proximity. How-
ever with the Temporal Embeddings words from the same groups are indirectly
related through a festival. In conclusion, the latter models seem more appropriate
to a festival-oriented analysis of this corpus.

4 Conclusion

In this preliminary work, our objective was to study how considering tempo-
ral information affects the word embedding-based modeling of text corpora. We
built two Temporal Embedding models and one Word2Vec model based on a
corpus of tweets focusing on cultural events. We studied and compared them
objectively through statistical tests and visually through PCA plots and den-
drograms. It turns out that both temporal models appear to be highly similar
according to their PCA plots and dendrograms whereas they seem different from
the Word2Vec model. The statistical tests conclude that when taken globally,
they are all significantly different from on an other. However, when considering
each word separately we show that they differ only on a small proportion of words
albeit with a large magnitude. These first results show that temporal informa-
tion is not completely captured on Word2Vec model and Temporal Embedding
is worth considering, at least when dealing with analyzing temporally messages
related to cultural events.

However, a finer analysis is indispensable to correctly characterize the contri-
bution of time information. To this end, we must carry on several steps. Firstly,
we could adopt a more exploratory approach by expanding our analysis to the
whole lexicon instead of focusing on a predefined list of words. Secondly, we
could compare our models built on the considered corpus with out-of-the-box
Word2Vec models in order to analyze the contribution of the corpus regarding
how words are represented.

Acknowledgments. This work was funded by the GaFes project supported by the
French National Research Agency (ANR) under contract ANR-14-CE24-0022.
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Abstract. Argumentation mining aims to detect and identify the argu-
mentative content expressed in text. In this paper we present a relation-
based approach that aims to capture the relation of inference between
the premise and conclusion. We follow a supervised machine learning
approach and explore features at different levels of abstraction. Then,
we apply this system for the task of argumentative sentence detection
and compare the performance of the system with a competitive base-
line approach. The corpus used in our experiments was annotated with
arguments from textual resources written in Portuguese, namely opinion
articles. The proposed system outperforms the baseline system, achieving
0.75 of f1-score on the test set.

Keywords: Information extraction · Argumentation mining · Machine
learning · Natural language processing

1 Introduction

Argumentation is the process whereby arguments are constructed, presented
and evaluated. An argument is composed by a set of propositions, where some
of them (the premises) are pieces of evidence offered in support of a conclusion.
The conclusion is a proposition that has truth-value (which is either true or
false), put forward by somebody as true on the basis of the premises. As an
example of an argument, consider the following two sentences: “All men are
mortal and Socrates is a man. Therefore, Socrates is mortal.”. In this simple
example, the conclusion is “Socrates is mortal.” and the premises are “All men
are mortal” and “Socrates is a man”. Each piece of text that constitutes an
argument component (i.e. premise or conclusion) is known as an Argumentative
Discourse Unit (ADU) [16]. The aim of Argumentation Mining (AM) from text,
a sub-domain of text mining, is the automatic detection and identification of the
argumentative structure contained within a piece of natural language text. As
input, this process receives a piece of natural language text. If the text under
analysis contains argumentative content, AM aims to detect all the arguments
that are present in the text document, the relations between them and the
internal structure of each individual argument. In the end, this process should
c© Springer International Publishing AG 2017
N. Camelin et al. (Eds.): SLSP 2017, LNAI 10583, pp. 94–105, 2017.
DOI: 10.1007/978-3-319-68456-7 8
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be able to output the corresponding argument diagram: the visual representation
of the arguments presented in the text. The full task of AM can be decomposed
into several subtasks [17], namely: text segmentation, identification of ADUs,
ADU type classification (i.e. premise or conclusion), relation identification and
relation type classification (i.e. support or conclusion).

In this paper we address the task of Argumentative Sentence Detection (ASD)
following a supervised machine learning approach and employing different for-
mulations to address this task. We explore several machine learning (ML) and
natural language processing (NLP) techniques and features at different levels of
abstraction: lexical, syntactic, structural and semantic. Some of these features
were constructed using external resources, such as: a part-of-speech tagger, fuzzy
wordnet and a model developed to recognize textual entailment and paraphrases.

Recognizing Textual Entailment (RTE) [4], a NLP task closely related to
AM, aims to find entailment relations between text fragments. Given two text
fragments, typically denoted as ‘Text’ (T) and ‘Hypothesis’ (H), RTE is the
task of determining whether the meaning of the Hypothesis (H, e.g. “Joe Smith
contributes to academia”) is entailed (can be inferred) from the Text (T, e.g.
“Joe Smith offers a generous gift to the university”) [21]. In other words, a
sentence T entails another sentence H if after reading and knowing that T is
true, a human would infer that H must also be true. We may think of textual
entailment and paraphrasing in terms of logical entailment (|=) (see [2] for more
details).

This paper is structured as follows: Sect. 2 presents related work on argumen-
tation mining. Section 3 introduces the corpus that was used in our experiments.
Section 4 describe some of the external resources that were used to performed
some of the NLP tasks and employ some of features described in this paper.
Section 5 describes the methods that were used to address the task of ASD using
supervised ML algorithms. Section 6 presents the results obtained by the system
described in this paper. Finally, Sect. 7 concludes and points to directions of
future work.

2 Related Work

Most argumentation mining approaches follow a machine learning paradigm,
relying on heavily engineered NLP pipelines, extensive manual creation of fea-
tures and making several simplifying assumptions for each subtask of the process.

Identifying arguments and their components are the first steps of an argu-
mentation mining system. The former is typically formulated as a binary clas-
sification problem. Most existing systems make the simplifying assumption that
ADUs are sentence level and employ wide variety of ML algorithms, including
SVM [20,23], Logistic regression [18], Näıve Bayes [5], Maximum Entropy [14]
and Decision Trees [5,23]. Employed features can be divided into lexical, syn-
tactic, structural and semantic. Performance of state-of-the-art systems ranges
from 0.55 to 0.77 of F1-score. Fine-grained approaches to determine the exact
boundaries of ADUs usually apply state-of-the-art sequential models, such as
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HMM and CRF [10,11,22], with performance ranging from 0.2 to 0.42 F1-score.
An exception [22] reports F1-score of 0.867, though limited to a specific text
genre (persuasive essays).

ADU classification aims to classify each ADU according to its argumentative
role. Approaches vary mainly in the adopted argumentation theory, leading to
different sets of labels. Typically, systems employ supervised ML algorithms and
specialized features: lexical, syntactic, structural, topic, sentiment and seman-
tic [14,18,22]. Performance varies from 0.17 to 0.83 F1-score, depending on the
type of texts and assumptions made.

The last two steps of the process comprise the identification and classification
of rhetorical relations between ADUs, aiming to obtain an argument diagram.
Few state-of-the-art argumentation mining systems address these subtasks: [3]
uses textual entailment; [14] uses a context-free grammar; [17] uses a minimum
spanning tree algorithm; [12] combines methods from discourse analysis, topic
modeling and supervised ML; [22] employs SVM using lexical, syntactic, dis-
course and structural features combined with a stance recognition model. Per-
formance ranges from 0.51 to 0.83 F1-score, relying on simplifying assumptions
regarding previous steps of the process and differing on the target argumentative
relations and structure.

3 Corpus

The corpus used in the experiments reported in this paper, the ArgMine corpus1,
consists of a news articles collection, namely opinion articles, crawled from SAPO
(a portal that aggregates news from several news providers in Portugal, amongst
other services) and annotated with arguments by human annotators. An opinion
article is an article published in a newspaper that reflects the author’s opinion
about a specific subject. One of the advantages of working with opinion articles
is the richer argumentative content that is typically present, as compared to
other types of news articles. On the other hand, authors tend to use refined
vocabulary which can make the interpretation of the text more challenging. In
addition, different authors tend to use different writing styles, which create some
variability in the analyzed texts, and in turn complicate the task of machine
learning algorithms. Another characteristic of opinion articles is their typical
length: they are typically longer than other types of news articles.

Since longer text documents are more difficult and very time-consuming to
annotate, each opinion article was divided into paragraphs. Consequently, for
each annotation task a paragraph is presented to annotators instead of the com-
plete opinion article. Providing paragraphs to annotators instead of the com-
plete article can have some drawbacks, namely: when an argument is spread
through several paragraphs, it is impossible to annotate it because each part of
the argument will be presented in different annotation tasks; moreover, in some
situations it can happen that some information in the remaining parts of the
document could be useful and/or necessary to detect the arguments presented
1 http://corpora.aifdb.org/ArgMine.

http://corpora.aifdb.org/ArgMine
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in one of the parts of the document. In the first case, we assume that this situ-
ation will not occur too often. A paragraph corresponds to a distinct section in
a document, usually dealing with a single topic and terminated by a new line.
Since arguments have to be about some topic and changes in topic can indi-
cate that different arguments are being expressed, as explored in [12], then this
assumption seems reasonable. In some situations where they are spread through
several paragraphs, arguments require complex reasoning and knowledge about
the world that are beyond the scope of the approaches presented in this paper.

In each annotation task, the annotators were asked to annotate all the argu-
ments that are explicitly stated in the corresponding paragraph. These anno-
tations consist of argument diagrams (i.e. a graph structure, where each node
corresponds to an ADU and arrows indicate relations of support or conflict
between ADUs) following the premise-conclusion argumentation model.

More details regarding the characteristics of the ArgMine corpus are pre-
sented in the following sections.

4 Resources

Here we introduce external resources used as auxiliary tools by the methods
employed in this paper.

4.1 Data Preparation

To transform each sentence into the corresponding set of tokens and to obtain
for each token the corresponding lemma and part-of-speech information (includ-
ing syntactic function, person, number, tense, amongst others) we used the
CitiusTagger [8] NLP tool. This tool includes a named entity recognizer trained
in natural language text written in Portuguese.

Several experiments were made using different NLP techniques to process the
sentences received as input: removing stop-words and auxiliary words (i.e. words
relevant for the discourse structure but not domain specific, such as: prepositions,
determiners, conjunctions, interjections, numbers and some adverbial groups)
and lemmatization. Transforming each token in the corresponding lemma is a
promising approach because it will make explicit that some of the words are
repeated in both sentences, even if small variations of these words are used (e.g.
different verb tenses). After this step, each sentence was represented in a struc-
tured format (set of tokens) and annotated with some additional information
regarding the content of the text (e.g. part-of-speech tags).

4.2 Semantic Resources

Knowledge about the words of a language and their semantic relations with
other words can be exploited with large-scale lexical databases. To enrich the
feature set shown in Tables 1 and 2 with semantic knowledge, we explored exter-
nal semantic resources. By exploiting these resources we aim to enable the sys-
tem to deal better with the diversity and ambiguity of natural language text.
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Similarly to WordNet [6] for the English language, CONTO.PT [9] is a fuzzy
wordnet for Portuguese, which groups words into sets of cognitive synonyms
(called synsets), each expressing a distinct concept. In addition, synsets are
interlinked by means of conceptual and semantic relations (e.g. “hyperonym”
and “part-of”). Synsets included in CONTO.PT were automatically extracted
from several linguistic resources. All the relations represented in CONTO.PT
(i.e. relations between words and synsets, as well as relations between synsets)
include degrees of membership. Two tokens (obtained after tokenization and
lemmatization) are considered synonyms if they occur in the same synset. One
token Ti is considered hyperonym of Tj if there exists a hyperonym relation
(“hyperonym of”) between the synset of Ti and the synset of Tj . Similarly, Ti

is considered meronym of Tj if there exists a meronym relation (“part of” or
“member of”) between the synset of Ti and the synset of Tj .

Finally, we exploit a distributed representation of words (word embeddings).
These distributions map a word from a dictionary to a feature vector in high-
dimensional space in an unsupervised setting (without human intervention). This
real-valued vector representation tries to arrange words with similar meanings
close to each other based on the co-occurrences of these words in large-scale
(non-annotated) corpora. Then, from these representations, interesting features
can be explored, such as semantic and syntactic similarities. In our experiments,
we used a pre-trained model provided by the Polyglot2 tool [1], in which a neural
network architecture was trained with Portuguese Wikipedia articles.

In order to obtain a score indicating the similarity between two text fragments
Ti and Tj , we compute the cosine similarity between the vectors representing each
of the text fragments in the embedding space. Each text fragment is projected
into the embedding space as �Ti =

∑n
k=1 �e(wk)n−1, where �e(wk) represents the

embedding vector of the word wk and n corresponds to the number of words
contained in the text fragment Ti. Then, we compute the final value of the cosine
similarity δ �Ti, �Tj

= cos(�Ti, �Tj), δ �Ti, �Tj
∈ [−1, 1] followed by the following rescaling

and normalization: (1.0 − δ �Ti, �Tj
)/2.0. The entailment versor (d̂) corresponds to

the normalized direction vector obtained by subtracting the projection of T in
the embedding space, �e(T ), from the projection of H,�e(H).

Additionally, we made use of an external system for recognizing textual
entailment and paraphrases in text written in the Portuguese language [19].
This system receives as input a pair of sentences 〈T,H〉, where T corresponds
to the Text sentence and H to the Hypothesis sentence. Given that the problem
was formulated as a multi-class classification problem, the system classifies each
〈T,H〉 with one of the labels Entailment (if T |= H), Paraphrase (if T |= H
and H |= T , i.e., if T is paraphrase of H), or None (if T and H are not related
with one of the previous labels). The system was trained in the ASSIN cor-
pus [7], which corresponds, to the best of our knowledge, to the first corpus
annotated with pairs of sentences written in Portuguese that is suitable for this
task. It contains 5000 pairs of sentences extracted from news articles written

2 http://polyglot.readthedocs.io/en/latest/index.html.

http://polyglot.readthedocs.io/en/latest/index.html


Relation-Based Argument Extraction Model for Argumentation Mining 99

in European-Portuguese (EP) and 5000 pairs of sentences written in Brazilian-
Portuguese (BP), obtained from Google News Portugal and Brazil, respectively.
The model for recognizing textual entailment and paraphrases used in this paper
was trained and evaluated in the EP partition of the corpus using a maximum
entropy model. This model achieved an overall 0.83 of accuracy on the test set.

5 Methods

We here describe the approach we followed to address the task of argumentative
sentence detection from natural language Portuguese text. We formulate the
problem as a binary classification problem, following two distinct settings, as
described in Sects. 5.1 and 5.2.

5.1 Sentence-Based Approach

In the first setting, each learning instance corresponds to a sentence and we
aim to classify each sentence as Argumentative (Arg), if it contains one com-
plete argument or at least one argumentative discourse unit (ADU), or Non-
argumentative (NArg) otherwise. Following this setting, we make the simplify-
ing assumption that an ADU or complete argument (i.e. containing at least two
ADUs, the conclusion and one premise) corresponds to a single sentence. This
is a strong assumption because some of the ADUs that can be found in the
corpus have intra-sentence boundaries. However, learning intra-sentence bound-
aries to retrieve the exact boundaries of each ADU requires a corpus containing a
considerable amount of intra-sentence annotations, something that the ArgMine
corpus is lacking at this moment. We argue that making this assumption is the
most adequate approach (given the corpus) to the problem.

This experimental setting can be seen as our baseline approach since it cor-
responds to the simplest way of formulating the problem.

Data Preparation. For each news article ai, where ai ∈ Cargmine, we divided
ai into sentences using the Citius Tagger tool [8], which offers the functionality
of dividing a given text in different sentences as part of the process of part-of-
speech tagging. Concatenating all the sentences obtained from each article ai ∈
Cargmine, we obtain dataset X, which will be used for the task of argumentative
sentence detection. For each sentence xj ∈ X, we determine the corresponding
target value yj ∈ Y , where Y represents the set of target values, by performing
the following procedure: consider news article ai, where xj ∈ ai, and let Z be
the set of ADUs annotated for news article ai. We consider that sentence xj has
argumentative content (yj = 1) if ∃zi ∈ Z : (zi ⊆ xj) or (xj ⊆ zi). Otherwise,
we consider that sentence xj has no argumentative content (yj = 0).

Features. As listed in Table 1, we employ features at different levels of abstrac-
tion, namely: lexical, syntactic, structural and semantic-level.
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Table 1. Feature set for Sentence-based approach

Feature Description

Lexical

Bag-of-words

Contiguous sequence of 1 to N tokens from a given sentence. We
encode the presence of unigrams (N = 1), bigrams (N = 2),
and trigrams (N = 3) in the sentence. Experiments were made
with one-hot encoding and TF-IDF encoding;

Clue words If contains words typically found in argumentative content;

Word couples

All possible combinations of word pairs within a sentence.
Experiments were made constraining the pair of words to
include one or two clue words. Experiments were made
with one-hot encoding and TF-IDF encoding;

Syntactic

Stats

Statistics regarding some of the part-of-speech tags occurring
in the sentence, namely: adverbs, modal auxiliary, verbs and
punctuation marks. Experiments were made with normalized
counters and one-hot encoding;

Verb tense Verb tense changes between sentence and surrounding sentences.

Structural

Sentence length Number of tokens in the sentence;
Avg. word length Averaged number of letters in each word in the sentence;
Relative position Sentence relative position in the document.

Semantic

Domain words
overlap

Overlap of domain words (nouns, adjectives, verbs) between
the sentence and the surrounding sentences. Each pair of words
is considered an overlap if they have the same lemma or one of
the following relations: synonym, hypernym and meronym.

RTE prediction
If RTE system predicts that the sentence entails or is entailed
by any other sentence in the same document

Cosine similarity
Cosine similarity between the embedding vector �e(si) and the
embedding vector �e(sj), with j ∈ {i − 1; i + 1}.

Entail versor Entailment versor (d̂) in the word embeddings space.

5.2 Relation-Based Approach

In this setting the problem is formulated in two steps: (a) a binary classifier is
trained to distinguish whether a pair of sentences constitutes a simple argument
or not (binary classifier). Here we assume that each sentence is an ADU and
that one of the sentences plays the role of premise and the other plays the role
of conclusion, composing a simple argument; (b) each sentence is classified as an
argumentative sentence (Arg) if the classifier described in (a) predicts that the
sentence is part of an argument (premise or conclusion) when paired with any
other sentence within a given document. Otherwise, the sentence is classified as
non-argumentative (NArg).

We hypothesize that the second formulation yields better predictions for
ASD since it encapsulates and focuses on the notion that an argument is made
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of the least two components: one conclusion and at least one premise. In Sect. 6,
experiments made to validate this hypothesis are presented.

Data Preparation. Similarly to the procedure performed with the method
described in Sect. 5.1, we divided each news article ai into sentences using the
Citius Tagger tool [8]. For each sentence sj ∈ ai, a pair of sentences is created
with each of the remaining sentences sk, with k ∈ [1, |ai|] ∧ k �= j. A positive
(argumentative) pair is created with the first sentence (P) playing the role of
premise and the second sentence (C) playing the role of conclusion in the cor-
responding annotated argument diagram. Otherwise, the pair of sentences is
considered a negative (non-argumentative) pair. We followed this setup for the
following reasons: (a) this approach follows the formulation used by the system
for RTE and paraphrases. Consequently, predictions made by this system can be
directly applied as a feature; (b) this is a consistent way of creating the learning
instances (i.e. the premise is always the first sentence and the conclusion always
the second sentence), which is an important requirement for the learning process
when employing machine learning algorithms.

Table 2. Feature set for relation-based approach

Feature Description

Lexical

Word couples

All possible combinations of word pairs between the sentences
(one word in P and other word in C). Experiments were made
constraining the pair of words to include one or two clue words.
Experiments were made with one-hot and TF-IDF encoding

Clue Words If exists premise keyword in P and conclusion keyword in C;

Syntactic

Stats

Statistics regarding some of the part-of-speech tags occurring
in P and C, namely: adverbs, modal auxiliary, verbs and
punctuation marks. Experiments were made with normalized
counters and one-hot encoding;

Verb tense Changes in the verb tense between P and C.

Structural

Sentence length Number of tokens in P and C;
Avg. word length Averaged number of letters in each word in P and C;
Relative position Absolute distance in number of sentences between P and C.

Semantic

Domain words
overlap

Overlap of domain words between P and C. An overlap occurs
when two words have the same lemma or are synonyms

Hyperonym % of tokens in T hyperonyms of tokens in H. And vice-versa.
Meronym % of tokens in T meronyms of tokens in H. And vice-versa.
Antonym % of tokens in T antonyms of tokens in H. And vice-versa.

RTE prediction RTE system predicts that P entails C
Cosine similarity Cosine similarity between the embedding vector �e(P ) and �e(C)

Entail versor Entailment versor (d̂) in the word embeddings space.
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Due the characteristics of the corpus, where the number of sentences con-
taining ADUs is lower than the number of sentences that do not contain any
ADU, the number of non-argumentative pairs generated with this approach is
much larger than the number of argumentative sentence pairs. Consequently,
we obtained a dataset that is extremely unbalanced. To overcome this problem,
we performed random undersampling [13] to generate a balanced dataset, by
randomly removing some of the learning instances (non-argumentative pairs).

Features. As listed in Table 2, we employ features at different levels of abstrac-
tion, namely: lexical, syntactic, structural and semantic-level.

Resolution Step. After training the model to classify each pair of sentences as
argumentative or non-argumentative we have to translate these predictions to
classify each sentence as argumentative or not (ASD), which corresponds to the
task we aim to address in this paper.

First, for all possible pairs of sentences in a given document the model pre-
viously described predicts if the sentences constitute an argument or not. Then,
for all sentences within a document we retrieve all the predictions where the tar-
get sentence was used (as P or C). If at least one of these predictions indicates
that the target sentence forms an argument with any other sentence, then we
indicate that the target sentence is an argumentative sentence. This procedure
can be seen as a resolution step where we retrieve all pair-wise predictions and
transform them into sentence-level predictions.

6 Experiments

The results presented in this section were obtained using the methods described
in Sect. 5 and exploring the corpus described in Sect. 3.

For each classification task, we have run several experiments exploring some
well known state-of-the-art algorithms, namely: Support Vector Machine (SVM)
using linear and polynomial kernels, Maximum Entropy model (MaxEnt), Adap-
tive Boosting algorithm (AdaBoost) using Decision Trees as weak classifiers,
Random Forest Classifier using Decision Trees as weak classifiers, and Multilayer
Perceptron Classifier (Neural Net) with one hidden layer. All the ML algorithms
previously mentioned were employed using the scikit-learn library [15] for the
Python programming language. Since the MaxEnt model performed better for
all the experiments presented in this paper, the results depicted in this section
were all obtained using this model.

First, we report on 5-fold cross validation results over all the training exam-
ples available in the corpus described in Sect. 3 and using the model described
in Sect. 5.1. The system obtained using this experimental setup is our baseline.
Results are shown in Table 3.

In the second evaluation scenario we report results obtained using the method
presented in Sect. 5.2. Since the number of non-argumentative (NArg) sentence
pairs is substantially higher than the number of argumentative (Arg) sentence
pairs, we employed methods to generate balanced datasets. To obtain the dataset
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Table 3. Sentence-based approach scores

Prec. Rec. F1 # Sentences

NArg 0.55 0.57 0.56 291

Arg 0.49 0.47 0.48 255

presented in Table 4, we used the random undersampling technique [13] by ran-
domly removing some of the NArg examples until the number of NArg examples
is the same as the number of Arg examples. The results shown in Table 4 were
obtained in a 5-fold cross validation scenario.

Table 4. Relation-based approach scores

Prec. Rec. F1 # Sentence Pairs

NArg 0.94 0.81 0.87 114

Arg 0.83 0.95 0.89 114

Finally, the results depicted in Table 5 were obtained using the test set par-
tition from the corpus described in Sect. 3. The test set consists of 50 sentences:
37 non-argumentative sentences (NArg) and 13 argumentative sentences (Arg).
From the analysis of the results, we conclude that the Relation-based approach
yields the best overall results and, therefore, corresponds to the model that gen-
eralizes better to unseen data. This results confirm the hypothesis formulated in
this paper: the Relation-based approach seems to provide a better formulation
for the Argumentative Sentence Detection task.

Table 5. ASD test set scores

Sentence-based approach Relation-based approach

Prec. Rec. F1 Prec. Rec. F1

NArg 0.81 0.57 0.67 0.88 0.76 0.81

Arg 0.33 0.62 0.43 0.5 0.69 0.58

7 Conclusions

In this paper we address the task of argumentative sentence detection from text
written in the Portuguese language. We aim to classify each sentence as contain-
ing argumentative content (i.e. containing a premise, conclusion or complete
argument) or not. We formulate the task following two different approaches:
sentence-based and relation-based approach. Validating our hypothesis, the
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relation based approach outperformed the sentence-based approach in the test
set, demonstrating that the relation-based system generalizes better to unseen
data for the task of ASD. In future work, we aim to replicate these experiments
in a different corpus to validate the conclusions reported in this paper for texts
written in other languages and with a corpora containing more annotated data.
Furthermore, we aim to improve the quality of the semantic-based features.
Even though semantic-based features were shown to have a positive impact in
the predictions made by the system, we noticed some problems regarding cov-
erage and propagation of errors caused by the external tools employed in this
paper. Better computations (e.g. metrics to evaluate semantic similarity in the
embeddings space and fuzzy wordnet), different sentence-level representations
(e.g. exploring tree and dependency parsers) and approaches to deal with prob-
lems of coverage that were experienced when employing external resources are
promising directions to improve the results presented in this paper that we aim
to pursue.

Acknowledgments. The first author is partially supported by a doctoral grant from
Doctoral Program in Informatics Engineering (ProDEI) from the Faculty of Engineer-
ing of the University of Porto (FEUP).

References

1. Al-Rfou, R., Perozzi, B., Skiena, S.: Polyglot: distributed word representations
for multilingual NLP. In: Proceedings of the 17th Conference on Computational
Natural Language Learning, pp. 183–192. ACL, Sofia, August 2013

2. Androutsopoulos, I., Malakasiotis, P.: A survey of paraphrasing and textual entail-
ment methods. J. Artif. Int. Res. 38(1), 135–187 (2010)

3. Cabrio, E., Villata, S.: Natural language arguments: a combined approach. In:
ECAI, vol. 242, pp. 205–210 (2012)

4. Dagan, I., Roth, D., Sammons, M., Zanzotto, F.M.: Recognizing Textual Entail-
ment: Models and Applications. Synthesis Lectures on Human Language Technolo-
gies. Morgan & Claypool Publishers, San Rafael (2013)

5. Eckle-Kohler, J., Kluge, R., Gurevych, I.: On the role of discourse markers for
discriminating claims and premises in argumentative discourse. In: Proceedings of
the Conference on Empirical Methods in NLP, Lisbon, Portugal, 17–21 September
2015, pp. 2236–2242 (2015)

6. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database Language, Speech,
and Communication. MIT Press, Cambridge (1998)

7. Fonseca, E., Santos, L., Criscuolo, M., Aluisio, S.: ASSIN: Avaliacao de similar-
idade semantica e inferencia textual. In: Computational Processing of the Por-
tuguese Language - 12th International Conference, Tomar, Portugal, 13–15 July
2016 (2016)

8. Garcia, M., Gamallo, P.: Yet another suite of multilingual NLP tools. In: Sierra-
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Abstract. In this work we examine the performance of automatic
speech recognition (ASR) in industrial applications. We particularly
present three experiments relating to the capturing device applied, the
signal pre-processing employed, and the recognition engine used. Here,
our aim was to create experimental conditions as close as possible to
the envisioned application, i.e., an industrial adoption of ASR. Our
results show the existence of evident dependencies between the recogni-
tion engine, the type of capturing device, and the noise type on the one
side, and the complexity of the task, the present Signal-to-Noise-Ratio
(SNR), and the minimum-acceptable SNR value on the other side. In
summary, this work gives an overview of the capabilities and limitations
of nowadays ASR systems for an application in an industrial context.

Keywords: Speech recognition · Industrial application · Noise

1 Introduction

Due to the spread of mobile devices, applications of ASR now range across almost
all commercial and professional areas. Its employment in the producing industry
is, however, still very limited, since companies often rely on traditional, thus
reliable systems, which are hard to enhance with new technologies. Nevertheless,
speech technologies have been in increased focus of industrial research effort for
the last years.

Research on ASR goes back to the 1950s and has been continuously developed
over the last decades [4]. Conventional systems based on Hidden-Markov-Models
(HMMs) seemed to stagnate in performance around 20 years ago. Recently,
advances in computing power and the availability of masses of internet-sourced
acoustic and text data have provided a new performance boost. A good overview
of the conventional approach and nowadays ASR systems can be found in [8]
and [3], respectively.

The work reported in this article has been supported by the Austrian Ministry for
Transport, Innovation and Technology (bmvit).

c© Springer International Publishing AG 2017
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Industrial applications provide several difficulties for ASR applications. First
of all, the acoustic environment exhibits non-stationary, often very loud noise
sources. Here, noise reduction or speech enhancement algorithms must be applied
to improve the recognition performance of the ASR system [1,5]. Moreover, users
of such systems often speak with strong accents due to dialects or migration
backgrounds. Modern ASR systems use speaker adaptation methods to adapt
their acoustic models to the specific properties of the user(s) [9]. Finally, the
used vocabulary depends heavily on the application domain context, which is
often not covered by multi-purpose systems.

In this work we aim at comparing different speech recognition setups for
industrial applications. These setups differ in the acoustic environment, the
applied microphone type, the used pre-processing, the speech recognition engine,
and the task. In particular, we compare different industrial noise types, dis-
tant vs. close microphone settings, different passive and active signal enhance-
ment methods, scalable vs. cloud-based ASR, as well as various task settings
(e.g., vocabulary complexity) in terms of the resulting recognition performance.
All of the used resources (data, ASR signal chain, application tasks, etc.) were
obtained and designed considering conditions as realistic as possible. The pre-
sented results give us clear insights into the potentials and limitations of the
evaluated ASR setups in the context of industrial applications.

The remainder is organized as follows: Sect. 2.1 provides information about
the data applied, while Sect. 2.2 describes the method used to generate the differ-
ent ASR setups as well as the ASR systems employed. Section 3 outlines the three
experiments while Sect. 4 presents and discusses the results obtained. Finally,
Sect. 5 concludes this article.

2 Materials and Methods

In this section, we describe the main methodology behind the experiments. The
aim was to compare the performance of different ASR systems in industrial
applications under the most realistic conditions. We therefore first recorded real
speech and environmental audio (noise) signals from production sites. Second,
we generated evaluation data by recording the simulataneous-emitted speech
and noise signals at various SNR values with different signal capturing and pre-
processing devices. We then performed speech recognition from the generated
evaluation data and compared the resulting performance of 2 different ASR
systems. In all experiments, we used a sampling frequency of 44.1 kHz and 16-
bit amplitude quantization, the employed language was German.

2.1 Data

The data used for the evaluation experiments were taken solely from recordings
of real target signals. We recorded speech utterances from subjects working in
the industrial production-site area and gathered environmental noise signals from
different production sites.
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We visited 6 different production sites (PS) where we were able to record
indoor environmental audio signals. We placed several omnidirectional micro-
phones at different positions at the production site and captured up to 6 h of
audio data at each site. The visited production sites range from heavy machinery
production (injection molding with dozens of machines in the hall), over semi-
automatic production lines with humans and robots working side-by-side, to the
set-up of automatic production lines where humans install and teach robots. We
recorded during the production process, hence the full range of manufacturing
sounds was captured. Measured sound pressure levels ranged from 60 to 82 dBA,
Fig. 1 additionally shows the average Power Spectral Densities (PSD) of the six
noise types recorded in PS1 to PS6.
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Fig. 1. Power Spectral Densities (PSD) for noise types PS1 to PS6. Data was obtained
by averaging the power spectra of 30 s of audio followed by a gaussian smoothing. For
better comparability, resulting spectra were aligned to start at 0 dB

Speech signals were acquired by recording 52 (39 males and 13 females)
subjects working in the industrial production-site domain. Many of them had
strong accents due to a migration background or a specific regional dialect.
We prepared 70 short utterances in German which included short commands,
typical menu navigation utterances, search requests to a machine, and some out-
of-context sentences. Subjects were asked to read from a printed sheet of paper
and advised to speak as natural as possible. The speech signals were captured
via an AKG HSC271 headset microphone, we used the headphones to playback
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noise samples previously recorded (PS1 with a SPL of 75 dBA measured with a
reference microphone placed at the outer ear channel entrance) to account for
the Lombard effect [7].

2.2 Method

Next, we describe the process of generating evaluation data from the previously
recorded speech and noise signals. The aim was to create the most comparable
and realistic settings among different ASR setups for a given acoustic environ-
ment. The experimental setup was arranged in an acoustically treated room
with semi-aneochic reflective behavior. A NTi TalkBox reproduced the target
speech signal which was captured by different sound receiving devices at differ-
ent distances. We particularly used a high-quality headset microphone H (AKG
HSC271) at the mouth position (i.e. very close), a shotgun microphone S (AKG
C300B with CK98 capsule), a cardioide microphone C (AKG C300B with CK91
capsule), and a 14 cm 1-dimensional microphone array with 8 equally spaced
measurement microphones (PCB 130D20), each of the 3 latter in a 1 m dis-
tance to the sound emitter. Noise was input via 4 studio loudspeakers, placed
all around the emitter-receiver setup, with membranes pointing away from the
recording devices. This enabled a quasi-diffuse acoustic noise environment. A
reference microphone was placed at 0.5 m distance, used to measure the levels of
speech and noise signals. Levels were measured using the A-weighted equivalent
continuous sound level (LAeq) over an integration time of 1 s. Figure 2 illustrates
the experimental setup.

The microphone array signals were processed by different beamforming algo-
rithms to enhance the received speech audio signal. Here, we applied two different
beamforming algorithms, Delay & Sum (D&S) beamforming and the Parsimo-
nious Excitation-based Generalized sidelobe canceller (PEG) [6]. D&S compen-
sates the phase differences of the target direction to enforce signals from the
target direction and average signals from other directions by summation of the
delayed signals [2]. The D&S introduces no artifacts but shows weak interference
suppression and poor directivity behavior for low frequencies. The PEG localizes
and tracks the target speaker in every frequency bin and utilizes the information
achieved to build the blocking matrix and the adaptive noise canceller of the
subsequent Generalized Sidelobe Canceller (GSC). We implemented this beam-
former with a shrink threshold, defining the opening angle of the main lobe, of
±9◦. The PEG shows high suppression performance but introduces artifacts by
adaptively subtracting noise.

ASR was then applied by either a local, scalable system (LSS) or an
online, cloud-based system (OCS). The main difference between these two ASR
approaches is that the former is fully configurable while the latter can be viewed
as a black-box where the speech signal is input and a text string is output.
We particularly provided a restricted phrase-based dictionary, i.e. finite-state
grammar (FSG), in the LSS for each application scenario (see Sect. 3), while the
OCS is only updated with the respective context-domain words. Moreover, the
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Fig. 2. Schematic illustration of the experimental setup for data set generation. Speech
signals are emitted by the TalkBox speaker (TB) and received by the headset (H),
shotgun (S), cardioid (C), and an array of omnidirectional microphones (O). Noise
is generated by the 4 loudspeakers positioned around the emitter-receiver setup. The
reference microphone (R) is used to measure the levels of speech and noise

SDK applied for the LSS (see below) offered full adaptation functionality for the
acoustic models. We therefore adapted the underlying acoustic models for both
the speaker and the acoustic background1.

3 Experiments

As a first step, we generated evaluation data at different SNRs, i.e., −5, 0, 5, and
10 dB, using all speech data for all noise types. In a second step, the recorded
signals are sent to the ASR systems and the output is evaluated for different
task scenarios to infer the performance of the ASR setups examined. Here, we
defined the following three scenarios to represent different possible applications
of ASR systems for industrial tasks:

– S1 - C&C. Typical command and control utterances, consisting of at most
2 words, e.g., “greater”, “engine on”.

– S2 - Menu. Menu navigation via speech utterances for a machine operation,
e.g., “open the setup mask”.

– S3 - Search. Parameter search in a complex machine user interface, including
many domain words, e.g., “where can I find the heating parameters”.

1 We note that detailed information related to the acoustic models applied by the
ASR systems cannot be provided here, since these parts of the systems are meant
to be used as black-boxes. We nevertheless assume that both ASR systems adopt
state-of-the-art acoustic models following a DNN-HMM structure.
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From these scenarios we built vocabularies representing the three different
application tasks. These vocabularies differ in size and complexity, and include
the respective utterances recorded from the subjects working in the industrial
production-site field (see Sect. 2.1). The vocabularies were used to construct the
FSG for the LSS ASR system, as well as the domain-word context for the OCS.
Table 1 lists the properties of the three vocabularies depending on the respective
ASR system. It should be noted that we explicitly set for S1 the number of
domain-words to 0, since the used utterances did not contain any domain-specific
semantics, rather frequently-used control sequences such as “start engine” or
“greater” (see above). The speech utterances recorded were then divided into
three different datasets corresponding to the vocabularies outlined above.

Table 1. Comparison of the defined vocabularies, resulting from the three scenarios.
For each scenario, the total audio length of the resulting dataset in minutes, the max-
imum length of the speech utterance in words, the number of phrases in the grammar
(for the LSS), and the number of domain words (for the OCS) is shown.

Scenario Length [min] Max. length # phrases (LSS) # domain words (OCS)

S1 - C&C 12.0 2 27 0

S2 - menu 12.4 8 112 20

S3 - search 20 9 957 33

We used a commercial available ASR SDK, typically used for low SNR appli-
cations, as the LSS, and Google’s Cloud Speech API2 as the OCS system. Lan-
guage settings were set to German for both systems.

In order to evaluate the performance of the different ASR setups we compared
the Word Accuracy (WA) of the resulting output. For each scenario (S1 to S3)
applied in the subsequent experiments, we record all relevant utterances from
all 52 subjects with all capturing devices at each considered SNR.

From these data, we derived the 3 experiments. They will be examined in
detail in the remainder of this work.

– E1 - Capturing. We compare the capturing devices applied for a given
acoustic environment at various SNRs and for the different scenarios. Fol-
lowing Sect. 2.2, these devices are H, S, C, D&S, and PEG. Hence, we can
compare the ASR performance depending on the devices for a determined
SNR and a specific task. As described above, the given scenario defines
the language model setting applied. We use the LSS ASR system in this
experiment.

– E2 - Noise. We compare the different noise types recorded at the production
sites for various SNRs for a given capturing device. Thus, we can identify the
influence of the acoustic environment on the ASR performance. Again, we
use the LSS in this experiment.

2 https://cloud.google.com/speech/.

https://cloud.google.com/speech/
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– E3 - ASR method. We compare the two ASR methods described in Sect. 2.2
for a given acoustic environment at various SNRs and for different tasks. This
is done for selected capturing devices. Here, we can assess the applicability
of each method for a determined SNR in each task.

4 Results

Table 2 shows the results for E1. Here, a comparison of the WA for all capturing
devices dependent on the SNR and the scenario is shown. In the following, we
will particularly refer to three aspects covered, (a) the difference between close
vs. a distant microphones, (b) the performance of the active and passive pre-
processing devices, and (c) the influence of the task.

Table 2. Results for E1. WA is shown for different capturing devices at different SNR
values and different scenarios, for a given noise type (PS1). The devices are headset
(H), shotgun (S), cardioid (C), delay-&-sum (D&S), and parsimonious excitation-based
generalized sidelobe canceller (PEG). The LSS system is used in this experiment for
recognition

SNR Scenario H S C D&S PEG

10 dB C&C 98.2 95.9 93.6 92.7 90.4

Menu 93.6 91.5 86.0 86.7 88.3

Search 85.7 79.4 72.4 69.8 70.0

5 dB C&C 97.3 93.1 88.0 86.6 89.1

Menu 92.8 86.2 81.3 81.0 85.7

Search 83.7 72.1 62.2 58.1 64.5

0 dB C&C 96.6 86.4 77.9 73.3 82.1

Menu 92.5 79.6 73.4 72.9 78.9

Search 81.1 54.3 40.1 36.1 48.5

−5 dB C&C 95.2 66.7 53.8 52.4 70.9

Menu 90.4 69.2 62.9 64.4 70.1

Search 75.9 24.4 13.2 12.3 23.3

(a) A first comparison of close vs. distant microphones obviously reveals differ-
ences between H and the others for any SNR setting. Only for small vocab-
ularies and high SNR values (10 dB and more) these differences become
small and a comparable ASR performance can be expected. For SNR values
of 5 dB and less the close microphone settings clearly outperform all other
microphones in terms of speech recognition accuracy.

(b) We show that the best performing active pre-processing algorithm (PEG)
can achieve a recognition rate as good as S, but only for low SNR values.
Since the PEG algorithm heavily distorts the enhanced microphone signal,
recognition performance is degraded for high SNR values and improved for
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lower ones when compared to S. Moreover, D&S does not perform better
than C for any of the evaluated configurations. We note that array geome-
try is an important factor influencing the performance of the beamformer.
Here we applied a very simple geometry with a very limited number of
microphones. We expect performance to improve for all array setups with
enhanced geometries (nested, spirals, etc.) and more microphones.

(c) Evaluating the simulated scenarios we can see that C&C (S1) combined
with H always achieve acceptable performance. Contrary, a single cardioid
microphone setup (C) only works for high SNR values (5 dB and greater),
and passive signal pre-processing via S may be used for SNRs greater than
0 dB. Menu navigation (S2) via speech input may be useful for SNRs of 10 dB
and greater with a single microphone, while a complex search functionality
(S3) is only applicable with H and SNRs of 5 dB and greater.

Table 3. Results for E2. WA is shown for different noise types at various SNR values
and three different scenarios, for a given capturing device (i.e. shotgun). Again, the
LSS system is used in this experiment for recognition

SNR Scenario PS1 PS2 PS3 PS4 PS5 PS6

10 dB C&C 95.9 96.1 97.3 97.1 97.8 96.2

Menu 91.5 91.8 92.2 92.5 93.7 92.3

Search 79.4 79.8 83.3 82.3 85.1 79.1

5 dB C&C 93.1 92.6 95.9 96.0 96.8 93.3

Menu 86.2 86.7 91.7 91.0 93.3 88.6

Search 72.1 71.5 80.3 77.4 83.4 73.2

0 dB C&C 86.4 85.2 92.5 92.8 95.2 83.3

Menu 79.6 77.3 88.3 88.0 91.3 79.7

Search 54.3 52.5 72.1 69.7 79.5 54.7

−5 dB C&C 66.7 61.0 83.2 81.5 92.7 61.1

Menu 69.2 66.5 79.8 79.1 85.1 68.1

Search 24.4 19.0 52.0 50.3 69.0 26.7

Table 3 shows the results for E2. Here, we compare for a given ASR setup
– shotgun microphone S with LSS system – the WA for the different recorded
noise types. As can be seen, the performance greatly depends on the noise type.
For instance, the scenario menu is applicable for all depicted SNRs for noise type
PS5, while for most other noise types a SNR of 5 dB is the absolute minimum.
However, looking at the figures alone is not clearly conclusive. Therefore, inspec-
tion of Fig. 1 together with a perceptual evaluation revealed the differences in the
respective noise types; the more energy in the frequency band 500 Hz to 5 kHz,
the worse the performance of the ASR setup. Perceptually speaking, the brighter
the noise sounds, the more problems should be expected for speech interfaces
(e.g. the acoustic environment of PS1 and PS2 consisted of the noise of dozens
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heavy machines, while the PS3 settings only included a few machines making
far less mid and high frequency noise). This observation makes sense since those
frequencies which are relevant for human perception to recognize speech fall
inside the above-mentioned frequency interval. In conclusion, SNR values only
approximately give hints about the applicability of speech interfaces. It seems
that the properties of the noise type should be considered as important as the
SNR value.

Table 4. Results for E3. WA is shown for the two different ASR systems and two
selected capturing devices (headset and cardioid) for a given noise type (PS1)

SNR Scenario Headset (H) Cardioid (C)

LSS OCS LSS OCS

10 dB C&C 98.2 72.8 93.6 65.4

Menu 93.6 94.6 86.0 92.5

Search 85.7 80.0 72.4 74.0

5 dB C&C 97.3 73.1 88.0 55.8

Menu 92.8 94.5 81.3 83.9

Search 83.7 79.1 62.2 67.6

0 dB C&C 96.6 68.7 77.9 26.9

Menu 92.5 93.4 73.4 59.9

Search 81.1 79.2 40.1 47.4

−5 dB C&C 95.2 63.8 53.8 7.0

Menu 90.4 91.6 62.9 18.4

Search 75.9 78.2 13.2 12.2

Finally, Table 4 shows the results for E3. Here, we compare, for the micro-
phones headset (H) and cardioid (C), the performance between the two different
recognition engines described in Sect. 3. Due to their difference in language mod-
eling, we can observe great recognition performance differences dependent on the
SNR value and the task (S1-S3). First, OCS is not an option for the C&C task,
as the performance of this system is worse for all SNRs and evaluated micro-
phones. This result seems obvious since the language context, which is heavily
utilized by OCS systems, is not present in this task. For syntactically more com-
plex utterances as represented in S2 and S3, OCS exhibits similar performance
figures as the LSS, even though we can observe a performance drop for lower
SNR values when compared to the LSS. In summary, for the majority of tasks
employed in industrial applications, regardless of SNR and used signal capturing
device, FSG-based systems (LSS) are the best choice. However, if more language
context is provided in the utterances, OCS systems offer the potentials of a nat-
ural language recognition and an easy integration via cloud APIs, with a similar
performance compared to the LSS.
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At last it should be noted that the here-adopted experimental method includ-
ing the separation of data collection and laboratory experimentation allows for
a wide range of parameter adjustments and thus experimental evaluation. Nev-
ertheless, this method may introduce some minor misalignment in the resulting
figures of the tables above. In particular, the used playback level and noise type
applied in the recording of the speech utterances do not always align with the
corresponding settings of those parameters in the laboratory experiments. Nev-
ertheless, we think that the bias introduced by this misalignment can safely be
neglected when looking at the broad scope of the obtained results.

5 Conclusions

In this work we present 3 experiments related to ASR for industrial applications.
In a thorough experimental methodology we evaluated the different components
in a typical ASR system signal chain. We only applied realistic audio data from
industrial production sites in our evaluation experiments. Our results give a clear
picture regarding the main influencing factors determining the applicability of
ASR in industrial context. Depending on the task, the SNR and the frequency
characteristics of the acoustic environment, one has to choose the proper signal
capturing, pre-processing and recognition system. Here, our tabular comparison
provides clear suggestions towards the right setup given the determining factors.
In conclusion, speech recognition is ready for the industry but must be carefully
implemented with respect to the identified conditions.
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Abstract. The paper proposes a new approach for a posteriori enrich-
ment of automatic speech recognition (ASR) confusion networks (CNs).
CNs are usually needed to decrease word error rate and to compute confi-
dence measures, but they are also used in many ways in order to improve
post-processing of ASR outputs. For instance, they can be helpfully used
to propose alternative word hypotheses when ASR outputs are corrected
by a human on post-edition. However, CNs bins do not have a fixed
length, and sometimes contain only one or two word hypotheses: in this
case the number of alternatives to correct a misrecognized word is very
low, reducing the chance of helping the human annotator.

Our approach for CN enrichment is based on a new similarity mea-
sure presented in this paper, computed from acoustic and linguistic word
embeddings, that allows us to take into consideration both acoustic and
linguistic similarities between two words.

Experimental results show that our approach is relevant: enriched CNs
(for a bin size equals to 6) increase the potential correction of erroneous
words by 23% than initial CNs produced by an ASR system. In our
experiments, a spoken language understanding task is also targeted.

Keywords: Confusion networks · Post processing · Acoustic and lin-
guistic word embeddings · Similarity measurey measure

1 Introduction

Despite of the recent advances in the field of speech processing, automatic speech
recognition errors are still unavoidable. This reflects the sensitivity of this tech-
nology to variability, e.g. to acoustic conditions, speaker, language style, etc.

These errors can have a considerable impact on applications based on the
use of automatic transcriptions, like subtitling, computer assisted transcrip-
tion, speech to speech translation, spoken language understanding, information
retrieval, etc. Error detection and correction aim to improve the exploitation of
ASR outputs by downstream applications.

Many studies have focused on ASR error detection and correction, some of
them [1–3] have attempted to improve recognition accuracy for many tasks such
as keyword search, spoken language understanding and other tasks by using
discriminative post-processing on ASR outputs.

Other studies consider the use of automatic speech recognition confusion
networks (CNs) to decrease word error rate and to compute confidence measure.
c© Springer International Publishing AG 2017
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These networks were introduced in [4]. They rely on posterior probabilities and
were used to represent a set of alternative sentences. Authors in [5] propose an
approach to automatically correct erroneous words in the CNs. It depends on
the use of the n-grams and the semantic score between words that are located far
from each other based on Normalized Relevance Distance. Confusion networks
can be used as well in many ways to improve post-processing of ASR outputs.
For instance, they can be used to propose alternative word hypotheses when
ASR outputs are corrected by a human on post-edition [6]. However, CN bins,
sets of competing hypothesis between two nodes in the CN, do not have a fixed
length, and sometimes contain only one or two word hypotheses: in this case the
number of alternatives to correct a misrecognized word is very low, reducing the
chance of helping the human annotator.

In this study, we propose an approach for CN enrichment, which is based on
a similarity measure computed from acoustic and linguistic word embeddings.
This measure allows us to take into consideration both acoustic and linguistic
similarities between two words. Since our assumption is that word hypotheses in
a same bin should be close in term of acoustics and/or linguistics, we propose to
use this particularity to enrich confusion networks by applying this new similarity
measure. This enrichment will be evaluated in the context of a human post-
edition of automatic transcripts. Moreover, the proposed similarity measure can
be used in a spoken language understanding (SLU) system in order to propose
semantically relevant alternative words to ASR outputs. Last, this similarity
measure is applied as well for prediction of potential ASR errors for rare words.

2 Word Embeddings

Many neural approaches have been proposed to build word embeddings, they
can be based on continuous bag of words, syntactic dependency, co-occurrences
matrix, and even audio signal. Hence, they can capture different types of infor-
mation: semantic, syntactic, and acoustic.

2.1 Linguistic Word Embeddings

Word embeddings were initially introduced through the construction of neural
language models [7,8]. They are defined as projections in a continuous space of
words in a manner that preserve semantic and syntactic similarities.

Following the results published in [9] in which different kinds of word embed-
dings are evaluated and different word embeddings combinations are compared,
we use a combination of word embeddings to get better results. It has been
shown in [9] that the combination through PCA (Principal Component Analy-
sis) achieves the best performance in the analogical and similarity tasks. Since
the approach we propose is based on the cosine similarity too, we suggest to
use PCA to combine word2vecf on dependency trees [10], skip-gram provided
by word2vec [11], and GloVe [12]. The description of these embeddings and the
combination approaches is presented in our previous study [9].
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We considered word embeddings presented here as linguistic representa-
tions of words, since they are built based on lexical, contextual, and syntactic
information.

2.2 Acoustic Word Embeddings

Recent studies have started to reconsider the use of whole words as the basic
modeling unit in speech recognition and query applications, instead of phonetic
units. These systems are based on the use of a function that embeds an arbitrary
or fixed dimensional speech segments into a continuous space, named acoustic
embeddings, in a such way that speech segments of words that sound similarly
will have similar embeddings. These representations were successfully used in a
query-by-example search system [13,14], in a segmental ASR lattice re-scoring
system [15] and recently for ASR error detection [16].

In [15], the authors proposed an approach to build acoustic word embed-
dings of words observed in an audio corpus, and also of words never observed
in this corpus, by exploiting their orthographic representation. Moreover, a such
acoustic word embedding derived from an orthographic representation can be
perceived as a canonical acoustic representation for a word, since different pro-
nunciations imply different acoustic embeddings. This approach relies on the use
of two neural architectures: a convolutional neural network classifier over words
trained independently to build acoustic embeddings, and a deep neural network
(DNN) trained by using a triplet ranking loss function [15,17,18] in order to
project the orthographic word representation to the acoustic embeddings space,
that results the acoustic word embeddings w+. The orthographic word repre-
sentation consists on a bag of n-grams of letters (n ≤ 3), in which we reduce its
dimension using an auto-encoder, that results the orthographic embeddings o+.

In another previous study [19], we have investigated the evaluation of the
intrinsic performances of acoustic word embeddings, and compare them to their
orthographic embeddings, on orthographic, phonetic similarities and homophone
detection tasks. As a reminder, we report in Table 1 some results obtained in that
study.

Table 1. Evaluation results of similarity (ρ) and homophone detection tasks (preci-
sion). ρ corresponds to the Spearman’s rank correlation coefficient

Tasks 160K Vocab.
o+ w+

Orthographic 0.569 0.510
Phonetic 0.414 0.468

Homophone 0.528 0.593

As shown in this table, the acoustic word embeddings are better than ortho-
graphic ones to measure the phonetic proximity between two words. Moreover,
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they are better too to detect homophone words. These results confirm that
acoustic word embeddings have captured additional information about word
pronunciation in addition to the information carried by their spelling. In this
study, the acoustic word embeddings are used as acoustic representations of the
words.

3 Similarity Measure to Enrich Confusion Networks

In this study, we propose to use both linguistic and acoustic word embeddings
to a posteriori enrich confusion networks, in order to improve post-processing
of ASR outputs. Due to the nature of acoustic and language models involved in
an ASR system, our assumption is that word hypotheses in a same bin should
be close from acoustic and/or linguistic points of view.

Since we aim to enrich confusion networks by adding nearest neighbors of
the recognized word hypotheses, this neighborhood has to be characterized: it is
done through the cosine similarities of acoustic and linguistic word embeddings.

With the purpose to take benefit from both linguistic and acoustic similari-
ties, we propose to use a linear interpolation to combine them. This results to a
similarity called LASimInter, defined as:

LASimInter(λ, x, y) = (1 − λ) × LSim(x, y) + λ × ASim(x, y) (1)

where x and y are two words, λ is the interpolation coefficient, while LSim

and ASim are respectively the linguistic and acoustic similarities computed with
the cosine similarity applied to respectively the linguistic and acoustic word
embeddings of x and y.

Since our goal is to enrich confusion networks and use them to propose alter-
native word hypotheses to correct ASR outputs, we aim to optimize the λ value
for this purpose. To estimate λ, a list of known substitution errors made by
an ASR system is used. The construction details of this list is presented in the
Sect. 4.1.

Let define h an erroneous word hypothesis and r the reference word that
is substituted with h. For each word pairs (h, r) in the list, we compute the
probability of using h when the reference word r is wrong, i.e. the probability
of substituting the reference word with the hypothesis one, which is defined as:

P (h|r) = #(h, r)
#r

(2)

where #(h, r) refers to the number of occurrences of the word pair and #r is
the number of errors (deletion + substitution) on the reference word.

Based on the similarity score LASimInter(λ, h, r) and the probability P (h|r),
we choose the interpolation coefficient λ̂ that minimizes the mean squared
error (MSE) as:

λ̂ = argmin
λ

MSE(∀(h, r) : P (h|r), LASimInter(λ, h, r)) (3)
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This choice is not optimal since similarities are not normalized in function of
the number of errors related to one word in the vocabulary whereas probabilities
are, but we assume this approach provides an acceptable approximation in the
search of the λ value that aims to combine LSim(x, y) and ASim(x, y) in order
to predict the confusability between x and y.

By using LASimInter with λ̂, it is now possible to propose for a given word
its linguistically and acoustically nearest neighbors.

Table 2 shows an example of hypothesis word and its nearest neighbors.
As expected, the neighbors of any given word seem linguistically similar when
induced by linguistic word embeddings, and sound like it when they are induced
by the acoustic ones. By combining acoustic and linguistic word similarities
(LASimInter), it is also possible to restrict the neighborhood to words close to
any given word both linguistically and acoustically.

Table 2. Nearest neighbors of the hypothesis word ‘portables’, with some translations
in English and their pronunciation in French. ‘portables’ is a French word pronounced
pOKtabl that can be translated to the same word ‘portables’ in English

Nearest neighbors of the French word ‘portables’, pronounced /pOKtabl/

LSim ASim LASimInter

téléphones, ordinateurs, portable, portatifportable, portant, portants, portait portable, portant, portatif, portait

telephones, computers, portable, portableportable, carrying, racks, carried portable, carrying, portative, carried

/ telefOn/ / OKdinatœK/ / pOKtabl/ / pOKtatif/ / pOKtabl/ / pOKtã/ / pOKtã/ / pOKtE/ / pOKtabl/ / pOKtã/ / pOKtã/ /pOKtE/

4 Experimental Setup

We present in this section the performance of the similarity measure
LASimInter(λ, h, r) on two tasks: prediction of ASR potential errors for rare
words and enrichment of confusion networks.

4.1 Computation of Linguistic and Acoustic Embeddings

The 100-dimensional linguistic word embeddings results from the combination
of word2vecf, skip-gram, and GloVe, using PCA. The word embeddings were
computed from a large textual corpus composed of about 2 billions of words. This
corpus was built from articles of the French newspaper “Le Monde”, the French
Gigaword corpus, articles provided by Google News, and manual transcriptions
of about 400 h of French broadcast news. It contains dependency parses used to
train word2vecf embedding, while the unlabeled version is used to train skip-
gram and GloVe [20].

The training set for the convolution neural network consists of 488 h of French
Broadcast News with manual transcriptions. This dataset is composed of data
coming from the ESTER1 [21], ESTER2 [22] and EPAC [23] corpora. It contains
52K unique words that are seen at least twice each in the corpus. All of them
corresponds to a total of 5.75 millions occurrences.

Acoustic features provided to the convolution neural network are log-
filterbanks, computed every 10ms over a 25ms window yielding a 23-dimension



124 S. Ghannay et al.

vector for each frame. Each word is represented by 100 frames, thus, by a vector
of 2300 dimensions. When words are shorter they are padded with zero equally
on both ends, while longer words are cut equally on both ends. Once the acoustic
embeddings are built, we build orthographic embeddings from the vocabulary
compose of 52K words, and train the DNN architecture to build the acoustic
word embeddings.

The resulting model, is used to build 100-dimensional acoustic word embed-
dings from the same vocabulary as the linguistic ones. A detailed description of
the training data of the architectures used to build these acoustic word embed-
dings is presented in [16].

4.2 Experimental Data

Experimental data is based on the entire official ETAPE corpus [24], composed
by audio recordings of French broadcast news shows, with manual transcriptions.
This corpus is enriched with automatic transcriptions generated by the LIUM
ASR system, detailed in [25], which won the ETAPE evaluation campaign. Its
vocabulary contains 160K words.

The automatic transcriptions have been aligned with reference transcriptions
using the sclite1 tool. From this alignment, one can derive the lists of errors
produced by our ASR system. The experimental data is divided into two sets:
Train and Test, which are composed respectively of 399K and 58K words. Their
word error rates are 25.2% and 21.9% respectively. More, they have respectively
10.3% and 8.3% of substitution errors.

For this task, we will use the list of substitution errors of Train to compute
the interpolation coefficient λ̂, while the list of Test will be used to evaluate
the performance of our approach to enrich confusion networks and to correct
erroneous word hypotheses. This list is composed of 4678 occurrences of substi-
tution error pairs, named SubTest further in the paper. For these substitution
error pairs we use their corresponding confusion bins.

Figure 1 illustrates the percentage of the confusion bins according to the
number of their alternative words (i.e words in concurrence with the 1-best

Fig. 1. Percentage of confusion network bins according to their size

1 http://www.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm.

http://www.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
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hypothesis). The CN bins do not have a fixed length and 55% of them con-
tain none or only one alternative word, that justify our aim about CN enrich-
ment. The CN bins that have a size between 6 and 12 are grouped into a single
class [6-12].

4.3 Tasks and Evaluation Score

We propose in this study two evaluation tasks: the prediction of errors for rare
words (task1) and the correction of ASR errors (task2).

Given a word pair (a, b) in a list L of m substitution errors, the evaluation
tasks consist on looking for the word b in the list N(a, Γ, n) of the n nearest
neighbors of a, computed through the similarity Γ . In our experiments, the
similarity can be LSim, ASim or LASimInter.

The evaluation score is calculated by varying the size n and computing the
precision at n of finding the word b. The precision at n computed for all the
word pairs in the list L, taking into account their occurrence frequencies in the
evaluation corpus, is called S(Γ, n) and computed as follows:

S(Γ, n) =
∑m

i=1 f(i, Γ, n) × #(ai, bi)∑m
i=1 #(ai, bi)

(4)

where f is defined as:

f(i, Γ, n) =
{
1 if bi ⊂ N(ai, Γ, n)
0 otherwise

where i corresponds to the ith word pair (ai, bi) of L, ai and bi are defined
according to the evaluation tasks:

– task1: bi corresponds to the hypothesis word h and ai is the reference word r,
– task2: bi corresponds to reference word r and ai is the hypothesis word h.

5 Experimental Results

5.1 Prediction of Potential ASR Errors for Rare Words

To compare the performance of the combined similarity to the linguistic and
acoustic ones, we evaluate them on ASR errors prediction task for rare words.
These latter are defined as the reference words not seen in the training corpus
of the ASR system. This is why the SubTest list was filtered to keep only the
errors (misrecognized reference words) not seen in Train. It is composed of 538
pairs of substitution errors, named SubTestRarewords. For each reference word
r in the SubTestRarewords we derive their 30 nearest neighbors from the ASR
vocabulary, based on linguistic, acoustic or combined similarities. That results to
three similarity lists named respectively ListSimL, ListSimA, and ListSimInter.

Figure 2 illustrates the results of predicting errors for rare words using the
lists described above, by varying their sizes from 1 to 30. We observe that
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the results are in favor of ListSimInter followed by ListSimA: this shows that
our proposition to optimize the interpolation weight to combine ListSimL and
ListSimA is relevant. The interesting area in this figure is the left part, which
shows the results of the prediction when the list of errors is short. When this
list is composed of only one word, the prediction is correct 11% of the time.
This must be analyzed in light of the vocabulary size of the ASR system, which
contains 160K words: each word of the vocabulary can be selected in a list of
error prediction. The prediction is correct 20% of the time when the size of
the ListSimInter list is 12. It seems that this list reaches then a plateau. The
combined similarity will be used for the remaining experiments.
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Fig. 2. Performance of predicting ASR errors for rare words by varying the size of the
lists

5.2 Enrichment of Confusion Networks

The enrichment of confusion networks can be used for post-processing of auto-
matic transcriptions, or to enrich the automatic transcriptions provided for a
spoken language understanding system.

Post-processing of Automatic Transcriptions. For each hypothesis word
(h) in SubTest we derive their 6 nearest neighbors from the ASR vocabulary,
based on the combined linguistic and acoustic similarity LASimInter. The result-
ing list is named ListhSimInter. Then, for each word pair (h, r) in SubTest we
enrich their corresponding confusion bins with the nearest neighbors of the
hypothesis word (h) from LASimInter, to have a bin size equals to 6 (this size
seems relevant to visualize alternative words in a graphical user interface in a
computer-assisted transcription software [26]). The list of competing words in
the confusion bin is named ListCN , and the one in the enriched confusion bin is
named ListEnrichCN .

We evaluate the performance of the resulting lists on erroneous word hypothe-
ses correction task. In this task, we try to see, when there is a recognition error,
whether the correct word (r) was in the nearest neighbors (or confusion bin) of
the recognized word (h). As shown in Table 3, experimental results show that
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Table 3. Performance of CN enrichment: evaluation of ListCN and ListEnrichCN on
erroneous word hypotheses correction task in terms of precision at 6

ListCN ListEnrichCN

P@6 0.17 0.21 (+23.5%)

our approach is relevant: enriched confusion networks permit to increase the
precision at 6 of more than 23% in comparison to CN produced by our ASR
system. Notice that the P@6 value for the alternative words proposed by the
ListSimInter alone is 0.11.

Spoken Language Understanding Task. The approach we propose can be
useful for a spoken language understanding task, to correct the semantically
relevant erroneous word hypotheses. However, in the case of only the 1-best
ASR hypotheses was provided to the dialogue manager, one can use the proposed
similarity metric to expand this 1-best hypotheses and build confusion networks.
This scenario in which getting access to only the 1-best ASR hypotheses is
frequent in industry, especially when the semantic interpretation module is fed
by outputs generated by an ASR system from a third party in the cloud.

For this experiment, we use the automatic transcriptions of the French
MEDIA corpus [27,28] generated by a variant of the ASR system developed
by LIUM that won the last evaluation campaign on French language [29]. This
variant system contains 2.5K words and its language model is adapted to the
MEDIA data. The purpose of the MEDIA corpus is to evaluate spoken lan-
guage understanding systems. Often the SLU task derived from the MEDIA
corpus consists on labeling recognized words with semantic concepts [30]. For a
such task, a misrecognized word implies usually an error of labeling, that can
be prevented by using confusion networks or word-lattices [31], when available.
We expect to propose relevant alternative words in the scenario where only the
1-best hypothesis is available.

The automatic transcriptions were aligned with the reference ones in order
to extract the list of substitution errors produced by the ASR system. This list is
divided into two sets: Train to compute the interpolation coefficient λ̂, which is
enriched with Train Etape used for the previous experiments. Test is used for the
evaluation, and has been filtered to keep only 1204 occurrences of semantically
relevant erroneous words, based on the semantic labels. Since the size of MEDIA
vocabulary is limited to 2.5K words, it is enriched with the vocabulary composed
with 160K words.

For each hypothesis word (h) in Test list, we derive their 6 nearest neighbors
from the ASR MEDIA vocabulary, based on the combined linguistic and acoustic
similarity LAh

SimInter.
By using the resulting list, one can enrich the one-best hypotheses produced

by the ASR system and compute how many times we propose the correct word to
recognize as an alternative in this list. Experimental results show that, thanks
to our proposition, it is possible to potentially retrieve 20.6% of semantically
relevant words that were initially misrecognized.



128 S. Ghannay et al.

6 Conclusions

Assuming that word hypotheses in a same confusion network bin should be close
in term of acoustics and/or linguistics, we propose to take benefit from linguistic
and acoustic word embeddings to enrich confusion networks, in order to improve
post-processing of ASR outputs.

We propose an approach to compute a similarity function, called LASimInter,
which is optimized to ASR error correction. We show that this function allows
us to compute relevant lists of nearest neighbors linguistically and acoustically.
This list is used successfully to enrich the confusion networks and to increase the
potential correction of erroneous words by 23% in comparison to initial confusion
networks provided by the ASR system. Moreover, when used in a spoken lan-
guage understanding task, this approach permits to propose 6 alternative words
to 1-best hypotheses carrying on semantics to be exploited by the SLU module.
When the ASR hypothesis is wrong on a word supporting a semantic concept,
these alternatives contain the correct word in 20.6% of the cases.

Through our contribution and experimental results, we show that it is pos-
sible to relevantly enrich confusion networks by applying a similarity computed
from linguistic and acoustic word embeddings. In addition, once we have the
linguistic and the acoustic word embeddings, one can derive easily the lists of
nearest neighbors linguistically and acoustically and use them as additional infor-
mation to improve downstream applications.
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Abstract. Until very recently, the generation of punctuation marks for
automatic speech recognition (ASR) output has been mostly done by
looking at the syntactic structure of the recognized utterances. Prosodic
cues such as breaks, speech rate, pitch intonation that influence placing of
punctuation marks on speech transcripts have been seldom used. We pro-
pose a method that uses recurrent neural networks, taking prosodic and
lexical information into account in order to predict punctuation marks
for raw ASR output. Our experiments show that an attention mechanism
over parallel sequences of prosodic cues aligned with transcribed speech
improves accuracy of punctuation generation.

Keywords: Speech transcription · Recurrent neural networks ·
Prosody · Punctuation generation · Automatic speech recognition

1 Introduction

The introduction of punctuation marks into the automatic speech recognition
(ASR) output is an important issue in applications such as automatic transcrip-
tion/subtitling, speech-to-speech translation, language analysis, etc. Punctua-
tion is essential for grammaticality, readability, and (in the case of a number
of different tasks), subsequent processing. Thus, correct sentence segmentation
and punctuation of recognized speech improves the quality of machine trans-
lation [6,7,24,26], and missing periods and commas in machine generated text
results in suboptimal information extraction from speech [13,15]. Also, most of
the data-driven parsing models use punctuation as features.

In spoken language, punctuation is influenced by two intertwined linguistic
phenomena: (1) syntax and (2) prosody. Syntax determines the distribution of
punctuation marks in accordance with the grammar of a language. Prosody real-
ization in speech (such as, e.g., word grouping, pausing, emphasis, rising-falling
intonation, etc.) tends also to signal the position and type of the punctuation
marks. For instance, a pause after consecutive words might signal an enumera-
tion, which requires comma, and rising intonation at the end of a sentence is a
likely indicator of a question.

c© Springer International Publishing AG 2017
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However, state-of-the-art approaches to punctuation generation are mainly
driven by only syntactic (and lexical) criteria. In particular, recent data-driven
approaches that use recurrent neural networks (RNN) proved to be competitive
due to RNN’s ability to capture long and short term syntactic dependencies.
Models that account for prosodic features [30,31] rely merely on pause duration
between words; other prosodic features such as fundamental frequency (f0) and
intensity information are ignored. Another shortcoming of the state-of-the-art is
that the models are trained on either only written data [2] or on a combination
of written and spoken data (with, again, a dominance of written material) [31].
This makes the trained models biased towards written data.

In what follows, we present a neural network setup that is able to process
lexical and prosodic information in parallel for punctuation generation in raw
speech data. This is different to, e.g., [31], which processes syntactic and prosodic
information in sequence (and thus loses the linguistic evidence that both are
intertwined). The proposed model makes it possible to integrate any desired
feature (be it lexical, syntactic or prosodic) and allows us to test which prosodic
features influence punctuation placement to what extent. Unlike previous works,
we furthermore use in our experiments only spoken data and exploit various
prosodic features that influence the usage of punctuation marks in automated
transcriptions. The source code of our model is made publicly available together
with a link to the dataset we used in our experiments in https://github.com/
TalnUPF/punkProse.

The remainder of the paper is structured as follows. In Sect. 2, we describe the
main architecture of our model. The experimental setup and the results of the
experiments are outlined in Sect. 3 and discussed in Sect. 4. Section 5 summarizes
briefly recent related work, and, finally, Sect. 6 concludes the paper and sketches
some of the main lines proposed for future work.

2 Our Model

Our model is inspired by Tilk et al.’s work [31]. Tilk et al. use a bidirectional
recurrent network [27] for keeping track of the word context in two directions.
Their model is a two-stage model. In the first stage, syntactic and lexical features
are processed. In the second stage, pauses between words (as prosodic features)
are also taken into account.

As Tilk et al., we use gated recurrent units (GRU) [8] for the RNN layers.
Introduced as a simpler variate of long short-term memory (LSTM) units [11],
GRUs make computation simpler by having fewer parameters. Number of gates
in hidden units are reduced to two: (a) the reset gate determines whether the
previous memory will be ignored, and (b) the update gate determines how much
of the previous memory will be carried on.

Our modification to their proposal is that instead of passing continuous
prosodic feature values to the second stage, we discretize the feature values and
input them to the model through separate parallel GRU layers that are tuned
in one single stage. Figure 1 illustrates our model.

https://github.com/TalnUPF/punkProse
https://github.com/TalnUPF/punkProse
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Fig. 1. Our neural network architecture depicting processing of a speech data sample
with pause and mean f0 features aligned at the word level

For the sake of simplicity, we assume that the model is trained only with
sequences of words (w), pause durations (p) and mean fundamental frequency
(m). In this setting, the model has 4 GRU units: bidirectional layers for words,
a unidirectional layer for pauses coming before the words, and a unidirectional
layer for mean f0 values of words. GRU layers are preceded by embedding layers
for words (We), pauses (Wp) and mean f0 (Wm). Inputs to the embedding layers
are one-hot encoded vectors of sizes respective to their vocabulary sizes. The
hidden states of the GRU layers at time step t are:

−→
hw(t) = GRU(x(t)We,

−→
hw(t − 1))

←−
hw(t) = GRU(x(t)We,

←−
hw(t + 1))

hp(t) = GRU(p(t)Wp, hp(t − 1))
hm(t) = GRU(m(t)Wm, hm(t − 1))

where x(t), p(t) and m(t) are the word index, pause level and mean f0 level
respectively at time step t. The parallel GRU states are concatenated to form the
context vector h(t) before being passed over as input to another unidirectional
GRU layer:

h(t) =
[−→
hw(t),

←−
hw(t), hp(t), hm(t)

]

s(t) = GRU(h(t), s(t − 1))

The attention mechanism combines all input states into a weighted context
vector a(t) which is then late-fused with the state s(t) of the output GRU:
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a(t) =
N∑
i=1

h(t)αt,i

f(t) = a(t)Wfa

⊙
σ(a(t)WfaWff + s(t)Wfs + bf ) + s(t)

where αt,i is the weight that determines the amount of influence of each input
state to the current output and N is sequence size.

The attention mechanism is useful for the neural network to identify positions
in a sequence where important information is concentrated [1]. For words, it
helps to focus on positions of words and word combinations that signal the
introduction of a punctuation mark. For prosodic features, it either remembers
a salient point in the sequence or detects a certain movement that could help
determining a punctuation mark at a certain position.

The output GRU layer uses a late-fusion approach, which lets the context
gradient carry on easily by preventing it passing through many activation func-
tions [33].

Finally, the late-fused context f(t) is passed through a Softmax layer, which
outputs the probability of the punctuation mark to be placed between the current
and the previous word (starting from the second word in sequence):

y(t) = Softmax(f(t)Wy + by)

3 Experiments

3.1 Data

The experiments presented in this paper were performed on a corpus consisting
of TED (Technology, Entertainment, Design) talks1. TED talks are a set of con-
ference talks lasting approximately 15 min each that have been held worldwide in
more than 100 languages. They include a large variety of topics, from technology
and design to science, culture and academia. The corpus consists of 1046 talks
by 884 English speakers, uttering a total amount of 156034 sentences. The cor-
responding transcripts, as well as audio and video files, are available on TED’s
website; they were created by volunteers and include punctuation and paragraph
breaks [12]. The subtitle timings of TED transcripts do not always correspond
to sentences in the transcript. To overcome this limitation, precise word timings
were first obtained through Viterbi forced alignment using an automatic speech
recognition system. The word timings were then further used to automatically
obtain sentence boundaries and thus sentence timings [12].

As for the prosodic features, three main prosodic elements were extracted fol-
lowing the methodology in [12] in order to analyze their influence on punctuation
generation: pauses, fundamental frequency (f0), and intensity. Pause durations
were extracted from the provided word timings, while f0 and intensity contours
were extracted at 10 ms precision using Praat software [5] with linear interpo-
lation and octave jump removal for fundamental frequency provided by Praat.
1 http://www.ted.com.

http://www.ted.com
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f0 measurements were converted to semitones relative to speaker mean f0 value
for normalization, while the speaker mean intensity over a talk was subtracted
from the intensity values for the same purpose, so that speaker mean values were
represented by zero values in both cases.

3.2 Features Extraction and Preprocessing

The prosodic TED corpus is processed in order to be fed into the neural network.
Firstly, the following aligned sequences are extracted for each talk:

word stands for the words that are uttered by the speaker. Abbreviations are
decomposed into the letters they consist of (e.g., ‘DIY’ to three separate
words ‘D’ ‘I’ ‘Y’). Numbers are converted into text and separated (e.g., ‘93’
to ‘ninety three’).

punctuation marks the symbol coming before the corresponding word. We lim-
ited the symbol vocabulary to period (‘.’), comma (‘,’), question mark (‘?’),
exclamation mark (‘!’), colon (‘:’), semicolon (‘;’), dash (‘-’) and ‘no punc-
tuation’. In the cases when more than one punctuation mark occur before a
word (e.g., in a quotation), the most important punctuation mark is chosen
as the symbol at that position.

reduced-punctuation is the reduced version of punctuation. Exclamation mark,
dash, colon, and semicolon are mapped to a period.

pause holds the silence duration in milliseconds coming before the corresponding
word. It is calculated from the word timings information obtained from speech
alignment.

mean.f0 and mean.i0 are the mean fundamental frequency and intensity values
(in semitones) for the corresponding word.

range.f0 and range.i0 are calculated by subtracting the minimum f0/intensity
value from the maximum f0/intensity value for the corresponding word.

Secondly, taking into account that the number of words per sentence in our
corpus is 15–20 in average, the data is sampled into sequences of size 50, each
sample starting with a new sentence and ending with an END token. With
this setting, more than one sentence fits into a sample. Sentences are placed
in samples in the same order in the speech data. If the sample end is reached
before the end of a sentence, the sentence portion that fits is kept in that sample
and the next sample starts from the beginning of that sentence. We avoided
putting together data from different talks in the same sample by discarding the
last unfinished sample from a talk. Also, sentences with more than 50 words are
discarded.

59811 samples were extracted this way. 70% (41867 samples) of this data
were allocated for training, 15% for testing and 15% for validation (8971 samples
each).

The word vocabulary is created with the tokens that occur more than 7
times in the corpus and two extra tokens: out-of-vocabulary and end-of-sequence.
This totaled up to 13830 tokens. The output punctuation vocabulary in our
experiments is of size 4 (from the reduced punctuation set).
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In order to input prosodic features to the RNNs, they had to be vocabularized
as well. This is achieved by assigning a vocabulary index for certain ranges of the
continuous feature values. The ranges were determined by dividing the feature
value distribution according to the number of occurrences within that range. Via
manual inspection, we divided the pause durations into 66 and semitone values
distribution into 81 levels.

3.3 Experimental Setup

We used Theano [29] for implementing our models. In our experimental setup,
the embedding vector sizes for words and prosodic features are set to 100 and 10
respectively. This is because prosodic feature vocabulary is significantly smaller
than the word vocabulary. The hidden layer dimension of all GRU layers is also
set to 100, except for pause durations, where a smaller dimension of 10 performed
better in terms of validation scores, such that we set it to 10.

The model is trained in batches of size 128. The weight matrices are updated
using the AdaGrad algorithm [10] with a learning rate of 0.05 for minimizing
the negative log-likelihood of the predicted punctuation sequence.

3.4 Punctuation Generation Results

As the majority of the punctuation marks in our dataset consisted of the punctu-
ation marks in the reduced set (comma, period and question mark), experiments
were performed only with this set.

The two-stage method by Tilk et al. is used as a baseline by training over
our data twice: first, only with text, and then together with the pause durations.

Table 1. Punctuation generation results for two stages [31] and our single-stage
approach

Model Features Comma Period Question All

P R F1 P R F1 P R F1 P R F1

Two

stages

word (w) 56.9 36.6 44.5 67.6 62.5 64.9 68.5 46.9 55.7 63.2 49.0 55.2

w+pause(p) 51.0 51.6 51.3 68.6 57.8 62.8 66.8 48.9 56.5 58.9 54.4 56.6

Single

stage

w+p 61.6 44.5 65.6 71.7 72.5 72.1 66.5 64.7 65.6 67.3 58.2 62.4

w+p+range.f0 58.7 52.0 55.1 72.4 76.1 74.2 67.9 64.7 66.3 65.9 63.6 64.8

w+p+mean.f0 59.3 53.3 56.1 74.9 75.9 75.4 65.2 67.4 66.3 67.2 64.3 65.7

w+p+range.i0 55.0 54.3 54.6 75.0 70.3 72.5 70.0 58.7 63.9 64.5 61.9 63.2

w+p+mean.i0 58.4 53.4 55.8 74.5 74.3 74.4 68.8 63.9 66.3 66.6 63.5 65.0

w+p+range.f0+range.i0 60.9 45.5 52.1 71.9 76.0 73.9 71.5 61.0 65.9 67.3 60.2 63.6

w+p+range.f0+mean.i0 61.2 46.6 53.0 72.9 77.6 75.2 74.2 63.1 68.2 68.0 61.6 64.7

w+p+mean.f0+range.i0 61.6 47.9 53.9 73.1 79.6 76.2 74.1 62.0 67.5 68.2 63.1 65.6

w+p+mean.f0+mean.i0 56.9 52.2 54.4 77.1 70.4 73.6 71.3 61.6 66.1 66.7 60.9 63.7

w+p+mean.f0

+range.f0+range.i0

63.4 44.5 52.3 73.6 77.4 75.5 65.7 66.4 66.1 69.2 60.5 64.6
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Tilk et al.’s models are based on BRNN with an attention mechanism, which
provided the best results when compared to other models [31].

In our single stage approach, the use of only lexical information (words)
provided the same scores as the use of only words in the two-stages approach,
since only one step is involved in both approaches. Then, in order to assess the
contribution of new prosodic information to our model, the extracted prosodic
features were added one by one. The pause duration feature was always kept
while trying combinations of new features, i.e., means and ranges of both f0 and
intensity. The outcomes of our experiments in generating periods, commas and
question marks are presented in Table 1 in terms of precision (P), recall (R), and
F1 scores.

4 Discussion

A significant improvement is achieved with the proposed parallel RNNs app-
roach compared to the two-stage model when trained with the same dataset. We
observe an overall improvement in F1 score of 5.8% when same features (word
and pause durations) are used with our model. The model opens the way for
a further improvement of 3.3% with the addition of mean f0 feature into the
model, resulting in an overall F1 score of 65.7%.

We also see from the results that the inclusion of f0- and intensity-related
prosodic features—apart from pauses—into the neural network improves the gen-
eration score for period and question marks. An improvement of 4.1% in F1 score
is observed for periods with the inclusion of mean f0 and intensity range features
on top of pause features. For question marks, the best F1 score is achieved with
f0 range and mean intensity features on top of pause durations (improvement of
2.6%). For commas, we observe that precision and recall improve with different
settings but when looked at the F1 score best feature combination stays to be
words and pause durations.

The best performing set of features seems to be the combination of pause
and mean f0 when looked at the overall F1 score. However, we see that each
punctuation mark has a different set of features that improve their generation
results the most. Combination of f0 range and mean of intensity gives best results
for generating question marks (68.2% in F1 score). For period, using mean f0
and intensity range features together yields the best result (76.2% in F1 score).
Recall that colons, semicolons, dashes and exclamation marks in our dataset are
also mapped to periods.

It has to be stated that our evaluation method for the baseline does not
corroborate the design decision of Tilk et al. Their two stage training helps
building a more solid lexical model by training on a larger text corpus. In [31],
they report an overall F1 score of 72.2% trained only on written textual data,
which further improves to an F1 score of 77% with additional training on pause-
annotated corpus. However for our purely spoken data, their model performs
with an F1 score of 56.6% which shows only an 1.4% improvement after the
addition of pause features.
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Our initial guess was that training with four prosodic features at once would
oversaturate the model; however, the results for the feature set consisting of
mean f0, f0 range and intensity range combined gives promising results. The best
overall precision score (69.2%) and precision for generating commas (63.4%) are
achieved with this feature set.

5 Related Work

The problem of punctuation determination has been addressed in several works
in the literature—as has been the closely-related issue of boundary detection.
Both problems have been tackled from diverse perspectives, and many of them
only take into consideration the recognized ASR output text, ignoring the speech
related information contained in the original speech, or they simply tackle the
problem for textual data in which the correct punctuation is missing, e.g., in a
sentence generation or a grammatical correction scenario. In [16], for instance,
the punctuation detection is addressed from a syntax-based perspective by
using the output of an adapted chart parser, which provides information on
the expected punctuation placement. Also in [32] and in [23] the punctuation
generation task is carried out without taking prosodic cues into account. In the
former, several textual features including language model scores, token n-grams,
sentence length and syntactic information extracted from parse trees are com-
bined using conditional random fields (CRF). In the latter, the task is based
on dynamic conditional random fields and applied to a conversational speech
domain. A more recent work [2] introduces a language-independent model with
a transition-based algorithm using LSTMs [11], without any additional syntactic
features.

Overall, it has been shown that prosodic features are highly indicative of
sentence boundaries as well as of punctuation placement. Therefore, a great
deal of effort has been put in several works into the use of prosodic features
when original speech is available. In [3], sentence boundaries are characterized
by prosodic features and modeled by decision tree classifiers. In [20], the authors
successfully detect automatically full stops by using a neural network to estimate
the weights assigned to pauses, f0 changes and amplitude range, which are later
used by a punctuation mark classifier; commas are shown to be more difficult to
detect.

Other studies, such as [17], combine prosodic, word and grammatical fea-
tures by using SVM and CRF classifiers, and test the prediction experiments on
different speech styles, validating the hypothesis that the punctuation problem
is much more difficult to address in ASR output than in manual transcripts.
Prosodic and textual cues are also combined in [22] and implemented in a deci-
sion tree classifier with the goal to detect sentence boundaries. A combination of
lexical-, prosodic-, and speaker-based features is also found in [4] for the detec-
tion of full stops, commas, and question marks in a bilingual English-Portuguese
broadcast news data, while [19] focuses on Czech broadcast news speech to detect
commas and sentence boundaries by using a prosodic model in a decision trees
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and a multi-layer perceptron and N-gram models for language modeling. Similar
works deal with the punctuation generation problem by using statistical models
of prosodic features [9], the combination of both textual and prosodic features
based on adaptive boosting [18], and a cross-linguistic study of prosodic features
through two different approaches for feature selection: a forward search wrapper
and feature filtering [14]. Although not using prosodic features strictly speaking,
[25] takes advantage of the transcriptions of multiple parallel speech streams in
four different languages in order to increase punctuation generation accuracy.

More recently, the already mentioned work by Tilk et al. addresses the use
of textual features and pauses (as sole prosodic feature) in an LSTM recurrent
neural network [30] and in a bidirectional recurrent neural network [31] in order
to detect full stops and commas in the former, and also question marks in the
latter. As already discussed above, Tilk et al. ’s methodology combines syntactic
and prosodic features in a two-stage model. Only textual features are learned
from a large non-spoken text corpus in a first stage. Then, in a second stage,
the model is retrained with pause durations on a smaller corpus. This approach
follows the work from [28], in which the language model can be trained on large
amounts of textual data—lacking of the corresponding spoken data—, while
the acoustic model—also based only on pause duration—is trained on a smaller
corpus.

6 Conclusions and Future Work

In this work, we have presented a recurrent neural network architecture that
processes lexical and prosodic information in parallel for the generation of punc-
tuation, avoiding the dominance of written data, and thus the bias of trained
models towards written material. Our proposed model allows the integration of
any desired feature (lexical, syntactic or prosodic) and thus a further analysis
of the impact of every feature used on the punctuation generation. In addition,
the current model achieves a significant improvement over previous works that
used two stages and were biased to written data.

The results are significantly better also when prosodic features are added
to the lexical information. Solely pauses—when trained with a separate RNN—
improve considerably the lexical-based scores. Moreover, f0- and intensity-based
prosodic features help to achieve a better period and question mark detection
in terms of F1 measure, and comma detection is improved in terms of precision
and recall in some specific settings. All in all, the best combination of prosodic
features is when our model is trained on words together with the preceding pause
durations and their normalized mean f0 values.

As future work, we plan to experiment with more prosodic features (such as
speech rate) and their combinations and also see whether other RNN types such
as LSTM help solve the problem better. Also, a model that gives attention to
different prosodic features for different punctuation marks is a field to explore.

Our model trains word embeddings together with the whole architecture.
We believe that pre-trained word embeddings extracted from a larger speech
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corpus would improve the scores. Also it has been recently shown that character-
based encodings improve results in neural network based applications by largely
decreasing the word vocabulary size [21].
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Abstract. We describe a simple spoken utterance classification method
suitable for data-sparse domains which can be approximately described
by CFG grammars. The central idea is to perform robust matching of
CFG rules against output from a large-vocabulary recogniser, using a
dynamic programming method which optimises the tf-idf score of the
matched grammar string. We present results of experiments carried out
on a substantial CFG-based medical speech translator and the publicly
available Spoken CALL Shared Task. Robust utterance classification
using the tf-idf method strongly outperforms plain CFG-based recog-
nition for both domains. When comparing with Naive Bayes classifiers
trained on data sampled from the CFG grammars, the tf-idf/dynamic
programming method is much better on the complex speech translation
domain, but worse on the simple Spoken CALL Shared Task domain.

Keywords: Speech recognition · Spoken utterance classification ·
Robustness · Context-free grammar · tf-idf · Medical applications

1 Overview

Spoken utterance classification is generally agreed to be an important problem,
but published work to date has concentrated on a small number of scenarios, the
most common of which are call routing and slot-filling applications like ATIS. It
is in most cases assumed that there will be substantial amounts of training data
available [5,7,8]. There are, however, many practically interesting types of appli-
cation requiring spoken utterance classification which do not fit well into this
picture. Our primary focus of interest here is fixed-phrase medical speech trans-
lators (“medical phraselators”). A medical phraselator contains on the order of
thousands to tens of thousands of source-language utterances relevant to medical
situations, each one paired with predefined translations in the target languages.
The doctor speaks, and the app attempts to find the stored utterance closest
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to what they have said, showing it to the doctor to confirm that it has under-
stood correctly; if the doctor approves the app’s choice, it speaks a translation
in the target language. The challenge is to make the matching process flexible
and accurate, so that the users can express themselves reasonably freely and be
correctly recognised most of the time. Since there are many semantic classes,
and doctor time is scarce and hard to obtain, it is optimistic to expect more
than small amounts of training data to be available until an advanced point in
the project.

In the approach we describe here, we manually construct a CFG grammar
which defines plausible variants for the questions, after which we robustly match
spoken input to that CFG grammar. We have been surprised to find that a very
simple matching method based on tf-idf indexing and dynamic programming
gives quite good results. Although it seems plausible that a sophisticated modern
deep learning method could achieve a lower error rate, the tf-idf method has
definite advantages. It requires essentially no training data, is easy to implement,
and is fast both at compile-time and at runtime. As noted, our main interest is
in medical speech translation, but we also present results for the Spoken CALL
Shared Task, an open dataset we recently have been involved in popularising.

The rest of the paper is organised as follows. Section 2 describes the two
domains used. Section 3 describes the speech recognisers. Section 4 sketches
experiments using Weka classifiers; these work well for the simple CALL domain,
but much less well for the complex medical speech translation domain. The next
two sections contain the main results of the paper: Sect. 5 describes the tf-idf/DP
matching method, and Sect. 6 an evaluation on the two domains used. The final
section concludes.

2 Domains Used

2.1 Medical Phraselators and the BabelDr Project

In the preceding section, we briefly outlined what we mean by a “medical phrase-
lator”. We have since 2015 been involved in a collaboration between the Geneva
University Faculty of Translation and Interpreting and the Hôpitaux Universi-
taires de Genève (HUG), Geneva’s largest hospital, whose goal is to produce a
system of this general type. It is worth pointing out that medical phraselators
have not been rendered obsolete by Google Translate (GT). A 2014 study [9]
suggests that GT may mistranslate typical medical questions as much as 30%
of the time; recent experiments carried out by our own group produce broadly
similar results [3]. The problem is not so much the high error rate in itself as
the fact that the only feedback given to the user, the recognition result, is very
unreliable; GT often produces an incorrect translation after correct recognition.
A phraselator, in contrast is explicitly designed to give dependable feedback.

The system we have developed, BabelDr (http://babeldr.unige.ch/; [4]), sup-
ports translation of medical examination questions from French into several lan-
guages, prioritising coverage relevant to Arabic- and Tigrinya-speaking migrants
presenting at HUG’s Accident & Emergency and migrant health departments.

http://babeldr.unige.ch/
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The grammar has been written manually in a simple formalism based on Syn-
chronous CFG [1]. The structure is “flat” and consists of a large set of top-level
rules defining the various question patterns, together with more rules that define
various kinds of phrase. The size of the generated coverage is of the order of tens
or hundreds of millions of possible source-language sentences, mapping into of
the order of thousands of semantic concepts. An example of a BabelDr rule is
shown in Fig. 1. The Source lines define the actual CFG rule; the line marked
Target/french is the backtranslation shown to the user at runtime. The back-
translations can also be accessed through a searchable help pane in the GUI.

Fig. 1. BabelDr rule for the question “Depuis combien d’heures avez-vous mal au ven-
tre?” (“For how many hours have you experienced stomach pain?”). We only show the
source-language (French) side. Items starting with a dollar sign ($) are non-terminals.

In the initial version of the system, the grammar was compiled into a CFG-
based language model and then into a recognition package that could be run
on the Nuance Toolkit 10.2 engine [11]. This yielded a system which provided
practically useful performance, but suffered from the usual problems associated
with rule-based applications: performance was reasonably good for utterances
inside grammar coverage but very poor on out-of-coverage ones, and it was too
often difficult for the user to know where the dividing line went.

2.2 Data and CFG Grammars Used for Current Experiments

For the experiments carried out here, we had 965 utterances of recorded training
data available. Test data was collected from medical students and doctors during
December 2016 and January 2017, using a scenario in which the subjects used the
earlier rule-based version of the system to communicate with simulated patients
[3]. Data was logged and then transcribed and semantically annotated by the
project member responsible for grammar development (not one of the authors).
This produced a total of 827 utterances, of which 110 were annotated as being
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out of domain with respect to the grammar version used, i.e. not sufficiently
closely associated with any of the semantic categories defined by the grammar.
This left 717 in-domain utterances, containing 3794 words, which were used for
the present experiments. Of these 717 in-domain utterances, 503 (70.2%) were
inside grammar coverage.

The experiments described in this paper were performed using a version of
the grammar chosen so that it predated the data collection exercise. The version
used has a vocabulary of 2046 words, expands to about 45M possible strings,
and defines 2187 possible semantic categories. Each semantic category has an
associated backtranslation. We extracted the set of 2187 backtranslations, and
used them as additional training data in ways described in more detail below.

2.3 The Spoken CALL Shared Task

The methods we describe here were motivated by the requirements of the
BabelDr project, but in order to get some idea of their general applicabil-
ity we also evaluated them on a second domain where we had suitable data
readily available. The Spoken CALL Shared Task ([2]; https://regulus.unige.ch/
spokencallsharedtask/) is a joint initiative by Geneva University, the University
of Birmingham and Radboud University, whose goal has been to create an open
challenge dataset in the area of prompt-response systems for speech-enabled
Computer Assisted Language Learning (“spoken CALL”). Training data was
released in July 2016, and test data in January 2017; the task received twenty
submissions from nine different groups. Results were presented at the SLaTE
workshop in August 2017 (http://www.slate2017.org/challenge.html).

The Shared Task dataset was collected using an online CALL app designed
for Swiss German teens in their second or third year of learning English. Content
was structured as a series of interactive dialogues, each one parametrized so that
it could appear in many different variants, which allowed students to practice
fluency and generative language skills. Like BabelDr, the CALL app used a
Nuance recogniser with a language model derived from a CFG grammar, which
associated each response with one or more prompts. This CFG grammar was
made available as part of the Shared Task training data released. The grammar
was not intended to be complete, and was only meant to be taken as providing
a baseline.

A Shared Task item is a tuple consisting of the following elements: (a) a
prompt; (b) a recorded audio file with the student’s response; (c) a transcription;
(d) a binary annotation (correct/incorrect) noting whether the audio file is a
fully correct response to the prompt; (e) a binary annotation (correct/incorrect)
noting whether the audio file is a semantically (but possibly not grammatically)
correct response to the prompt. The last three fields are kept secret in the test
data, and the task is to reproduce the (d) column. Shared Task data can easily be
transformed into an utterance classification task by extracting the items where
the response is marked as semantically correct. The semantic classification task
is then to reconstruct the prompt given the audio file.

https://regulus.unige.ch/spokencallsharedtask/
https://regulus.unige.ch/spokencallsharedtask/
http://www.slate2017.org/challenge.html
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2.4 Data and CFG Grammars Used for Current Experiments

The training data used for the experiments was the 5222 utterance set released
with the Spoken CALL Shared Task. This was available in two versions: as
transcriptions, and as recognition results produced by the recogniser (cf. Sect. 3).

As test data, we used the portion of the Shared Task test data which was
marked as semantically correct, transforming it as described above into data for
an utterance classification task. The resulting dataset has 875 items containing
4630 words. 568 items (64.9%) were inside grammar coverage.

The grammar used was the one included in the Shared Task release. This has
a vocabulary of 419 words, expands to about 45K possible strings, and defines
501 possible semantic categories.

3 Recognisers

In both domains, the baseline was thus defined by an annotated CFG grammar
which also acted as a language model for a recogniser. The challenge was to
make this baseline system robust to out-of-coverage utterances. We adopted an
obvious strategy: use the available data to create a broad-coverage recogniser
tuned to the domain and a robust classifier which associated recogniser output
with the semantic classes defined by the CFG grammar. We start by describing
the large-vocabulary recognisers, which were produced differently in the two
domains:

BabelDr. We used the large vocabulary Nuance Transcription Engine, with an
interpolated language model that combined the default language model with
a model derived from the BabelDr training data.

Shared Task. We used the Kaldi recogniser developed by Mengjie Qian and
colleagues at the University of Birmingham, the ASR data for which was
publicly posted on the Shared Task site1 under entry JJJ. The JJJ entry
achieved the second best score on the Shared Task and is described in [10].

Table 1 presents basic performance results for the different recognisers when
run on the test data, giving Word Error Rate (WER) and Sentence Error Rate
(SER) for in-coverage, out-of-coverage and all data. For the grammar-based
recogniser, we also present results for the portion of the test data where the
confidence score is over the threshold. The threshold value of 0.65 was tuned on
the Shared Task training data, also available from the Shared Task site. Perfor-
mance was not sensitive to the exact setting, and threshold values between 0.60
and 0.70 gave similar results. Note that although the large-vocabulary recog-
niser strongly outperforms the grammar-based recogniser on the whole set, the
converse relationship obtains on the “high confidence” subset of the data. As we
will see later, this is why a hybrid system is able to outperform the plain robust
system for both domains.

We now proceed to issues concerning semantic classification, which are the
main subject of the paper.
1 https://regulus.unige.ch/spokencallsharedtask, “Results” tab.

https://regulus.unige.ch/spokencallsharedtask
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Table 1. Recogniser performance for BabelDr and Spoken CALL Shared Task domains
on in-coverage, out-of-coverage and all data. The “%Data” column shows the pro-
portion of the data for which the grammar-based recogniser is over the confidence
threshold.

Recogniser %Data IC OOC All

WER SER WER SER WER SER

BabelDr

Grammar-based (All) 16.1 29.0 64.4 100.0 31.7 50.2

Grammar-based (high confidence) 38.9 3.4 13.5 39.5 100.0 6.8 19.7

Large-vocabulary (All) 10.4 29.0 22.3 63.1 13.3 39.2

Spoken CALL Shared Task

Grammar-based (All) 17.2 28.2 53.4 99.3 30.0 53.1

Grammar-based (high confidence) 27.7 1.7 3.8 36.5 100.0 6.0 16.0

Large-vocabulary (All) 7.9 21.1 18.6 52.8 11.7 32.2

4 Utterance Classification Using Weka

We began by testing performance, for the two domains used, of several popular
classifiers supported by the Weka toolkit [6]. We report results for J48 decision
trees, naive Bayes and SVM; other methods we tried gave clearly worse results.
Our basic approach in all cases was to take labelled text data—sets of text strings
representing utterances, each one paired with an associated semantic class—and
extract unigram features, one for each word in the vocabulary.

For both domains we had a bit less than a thousand items of test data, in
the form of labelled recognition results produced by recognisers. This data could
reasonably be regarded as unseen for the purposes of the present experiments.
The labelled training data we had available was fairly dissimilar for the two
domains. For the Spoken CALL Shared Task, we had a substantial number (more
than 5K) training examples, which were available both as transcriptions and as
recognition results; for BabelDr, we had less than a thousand such examples. We
did however have 2187 backtranslations, one for each semantic class. Since the
backtranslations are both shown to the user after each turn and also available
through the help system, users often imitated them, so we expected them to be
a useful knowledge source.

Another important difference between the domains was in the grammars.
The Spoken CALL Shared Task grammar was quite small; it was possible to
expand it fully, giving about 45 thousand utterances, and use the whole grammar
for training. The BabelDr grammar was much bigger, expanding to about 45
million utterances, and using the whole set was not feasible. Instead, we sampled
the grammar randomly, creating 100 possible utterances from each rule. Table 2
summarises the domains and the available resources.

Table 3 presents the results. For the Spoken CALL Shared Task, the classi-
fication error was quite good even when training only on the transcriptions and
recognition results, and improved further when the grammar data was added,
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Table 2. Summary of available resources for the two domains

SharedTask BabelDr

Grammar

#semantic categories 501 2187

#words of vocabulary 419 2046

#utterances in coverage ∼45K ∼45M

#utterances used for training ∼45K ∼220K

Recorded training data

#utterances training data 5222 965

Backtranslations

#backtranslations – 2187

Recorded test data

#utterances test data 875 717

reaching 11.8% for the best method. The figures for BabelDr, the domain we
were actually interested in, were much less satisfactory, with a best error rate
of 28.8%. On examining the results more closely, we thought one problem might
be the fact that we were only using a small portion of the grammar. We con-
sequently searched for a method which would let us use the whole grammar in
some suitable form.

Table 3. Classification error rates using Weka methods on unseen spoken test data for
the two domains. “J48” = J48 decision tree method. “NBayes” = Naive Bayes method.
SVM training exceeded resource bounds for the BabelDr data.

Training data J48 NBayes SVM

BabelDr

Backtranslations 87.7 54.3 –

Backtranslations + Transcriptions + Rec results 55.2 38.4 –

Backtranslations + Transcriptions + Rec results + Grammar 34.1 28.8 –

Spoken CALL Shared Task

Transcriptions + Rec results 16.2 15.9 13.9

Transcriptions + Rec results + Grammar 14.1 13.0 11.8

5 Utterance Classification Using tf-idf and Dynamic
Programming

Attempting to find a way to use the whole grammar, rather than only a small
part of it, two possible ideas suggested themselves to us. One was simply to try
to find some kind of closest match between the string returned by the recogniser



150 M. Rayner et al.

and a grammar rule. The other was to recast the problem as a type of document-
indexing task, where the “documents” are the grammar rules. Specifically, we
could use some version of the well-known tf-idf method [12] to find the rules
which had high tf-idf scores with respect to the recogniser string; the tf-idf score
basically measures the extent to which a word is a useful “keyword”, i.e. occurs
only in a small number of rules. In fact, it turned out to be easy to combine
both ideas and split the problem into three parts. First, use tf-idf to find a
small number of rules whose associated keywords match words in the recognition
hypothesis produced by the recogniser; second, find the closest match between
the recognition hypothesis and each rule in the shortlist produced by the first
step; third, use information obtained from the matches to reorder the shortlist.

We approximate by treating the recogniser hypothesis as a bag of words
rather than as an ordered string. This is an acceptable approximation for gram-
mars like those considered here, where word-order is rarely important. It makes
it possible to implement the matching process as a simple dynamic programming
algorithm which recursively expands out the chosen grammar rule, chooses the
best match for each piece, and combines the pieces. Since each grammar con-
stituent only needs to be considered once, the process is very fast. In a little
more detail, the currently implemented method is as follows:

1. At compile time, index words to associate them with the top-level rules in
which they occur. Assign a word an idf score which is high if it occurs in few
rules, low if it occurs in many rules. The simplest way to do this is to define
the idf score for a word W to be 1/fW , where fW is the number of top-level
rules in which W can occur; we may also smooth, use a logarithmic scale, etc.
Call this mapping of words to rules and idf scores the word to rules table.

2. At compile time, associate each top-level rule with the closure of the set of
non-top-level rules it may link to. Order these rules by the maximum depth
at which they can occur. Call this mapping of rules to ordered lists of non-
top-level rules the rule to rule closure table.

3. At runtime, the matcher is presented with a recognition hypothesis from
the large-vocabulary recogniser. Use tf-idf to find the n top-level rules with
the best scores according to a naive scoring method which totals the tf-idf
scores for all the words that are both used by the rule and also occur in the
recognition hypothesis. This gives us a preliminary ordering of the rules.

4. For each rule in the n-best list created by the preceding step, perform a
dynamic programming (DP) match against the recognition hypothesis, treat-
ing the hypothesis as a bag of words weighted by tf-idf scores. This DP match
can be performed efficiently, since it is linear in the size of the grammar clo-
sure for the rule and logarithmic in the length of the input string. In more
detail, the match proceeds as follows:
(a) Begin by matching each phrasal rule in the rule closure list from (2),

starting with the deepest ones, which are ordered to occur earliest in the
list. The idea is that each rule will only be matched when all the non-
terminals that can occur in it have already been matched. Associate each
non-top-level rule with its best matching score and call the mapping of
non-top-level rules to scores the phrase score table.
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(b) To match a word in a CFG rule, check to see if it is in the input bag
of words. If it is, add the tf-idf score from (1). If it isn’t, add a fixed
no-match penalty.

(c) To match a sequence 〈P,Q〉 in a CFG rule, match P and Q separately
and assign a score which is the sum of the scores for P and Q.

(d) To match an alternation (P | Q) in a CFG rule, match P and Q separately
and assign a score which is the larger of the scores for P and Q.

(e) To match a nonterminal in a CFG rule, look up its best score in the
phrase score table.

(f) At the end, add the fixed no-match penalty for each word in the input
that has not been matched.

5. When all items in the n-best list have been matched, reorder them using the
scores obtained in the previous step.

5.1 Refinements to the Basic Method

We tried a variety of tweaks to the basic method described above, including
replacing the plain tf-idf scores with logarithmic scores and rescoring using the
edit distance to the best grammar match measured in terms of the number of
characters, the number of words, or the number of words weighted by the td-idf
scores of the words affected. The only modification which had a positive effect on
development set performance was one designed to address the problem of very
unspecific rules, for example the rule associated with questions semantically
equivalent to Avez-vous mal? (“Does it hurt?”). The problem with rules like
these is that utterances matching them may fail to contain any word with a
high tf-idf score, meaning that they cannot rise to the top of the n-best list.
After some experimentation, the best solution found was to order the rules by
minimum possible score at compile time, and at runtime always to add the m
potentially lowest-scoring rules. Based on the development set, we put m = 3.

6 Evaluation of the tf-idf/DP Method

We carried out a series of experiments to evaluate the tf-idf/DP method using
the BabelDr and Spoken CALL Shared Task domains. For each domain, we
compared four different versions of the system:

Rule-based. The pure rule-based version. Recognition is performed by the gra-
mmar-based language model, and semantic interpretation by the CFG.

tf-idf. A minimal robust version using the large-vocabulary recogniser together
with semantic interpretation using only tf-idf. For this to be possible, we
expanded the CFG rules to remove all the non-terminals and leave a flat
grammar where each rule gave a single semantic result, and only used steps
(1) and (3) from the sequence in Sect. 5.

tf-idf/DP. The full robust version, which combines the large-vocabulary recog-
niser and the complete semantic interpretation method from Sect. 5, including
both tf-idf and DP matching.
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Hybrid. A version which uses a simple method to combine the Rule-based
and tf-idf/DP versions. For 1-best, the hypothesis is chosen from the rule-
based system if the recogniser’s confidence score is over a threshold, otherwise
it is chosen from the robust system. For n-best (n > 1), the hypotheses chosen
are the 1-best result from the rule-based system and enough results from the
robust system to make n different hypotheses.

Table 4. 1-best and 2-best semantic classification error on unseen text and speech
data for four different versions of the two systems, distinguishing between in-coverage,
out-of-coverage and all input. Text input is transcribed speech input. “Rule-based” =
pure rule-based system; “tf-idf” = robust system with only tf-idf; “tf-idf/DP” = full
robust system; “hybrid” = hybrid system combining “rule-based” and “tf-idf/DP”.

Version IC OOC All data

Text Speech Text Speech Text Speech

1-bst 2-bst 1-bst 2-bst 1-bst 2-bst 1-bst 2-bst 1-bst 2-bst 1-bst 2-bst

BabelDr

Rule-based (0) (0) 13.9 11.7 (100) (100) 72.0 70.6 29.8 29.8 31.2 29.3

tf-idf 11.9 10.7 19.7 17.5 47.7 34.6 52.8 43.5 22.3 17.9 29.6 25.2

tf-idf/DP 1.2 0.0 8.5 6.2 43.5 28.5 48.1 39.3 13.8 8.6 20.4 16.0

Hybrid (0) (0) 6.4 1.6 43.5 28.5 48.1 38.8 13.8 8.6 18.8 12.7

Spoken CALL Shared Task

Rule-based (0) (0) 22.5 19.7 (100) (100) 63.5 60.9 35.1 35.1 36.9 34.2

tf-idf 15.3 9.3 25.0 13.0 23.5 14.7 30.6 22.1 18.2 9.3 27.3 15.9

tf-idf/DP 1.8 0.5 11.8 7.2 20.2 14.0 30.9 21.2 8.2 5.3 18.5 12.2

Hybrid (0) (0) 9.5 6.0 20.2 14.0 30.6 22.5 8.2 5.3 16.9 11.8

Summary results for classification error on the test sets are presented in
Table 4, which shows 1-best and 2-best error rates for text and speech input,
and Table 5, which breaks down results for the robust versions as a function of
the number of word errors in the large-vocabulary recogniser’s output. Rather
surprisingly, the first impression is that performance on the two domains is
reasonably similar. Looking first at Table 3, we see that WER over the whole
test set is 12–13% for the large-vocabulary recogniser. For the grammar-based
recogniser it is about 30% for the whole set and about 6–7% for the subset where
the confidence score is over the threshold.

Turning next to Table 4, we see that 1-best semantic classification error on
the whole set using the pure rule-based system is about 30–40% for spoken
input. This is reduced to 17–19% for the hybrid version. 2-best error reduces
from 30–35% to about 12–13%. The relative improvement in 1-best error is 40%
for BabelDr and 54% for Shared Task; for 2-best error, it is 57% for BabelDr
and 65% for Shared Task. The larger improvement in the Shared Task system
is consistent with the fact that its CFG grammar represents a much smaller
development effort and is less carefully constructed. Comparing the lines for
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Table 5. 1-best and 2-best semantic classification error as a function of number of
word errors. #Errs = number of word errors in 1-best speech recognition hypothesis;
#Sents = number of examples with given number of word errors

#Errs #Sents tf-idf tf-idf/DP Hybrid

1-bst 2-bst 1-bst 2-bst 1-bst 2-bst

BabelDr

0 453 18.3 15.0 7.5 4.0 7.3 5.5

1 121 41.3 37.2 30.6 28.2 27.3 19.8

2 75 54.7 44.0 54.7 42.7 49.3 30.7

>2 68 55.9 51.5 50.0 45.6 47.1 27.9

Spoken CALL Shared Task

0 593 15.3 7.1 5.6 2.0 5.9 3.5

1 117 39.3 30.8 36.8 28.2 32.5 21.4

2 110 56.4 26.4 49.1 29.1 40.0 30.9

>2 55 72.7 58.2 58.2 52.7 56.4 41.8

plain tf-idf, tf-idf/DP and hybrid, we see that inclusion of the DP matching step
makes a large difference, particularly on in-coverage data, and hybrid improves
non-trivially on tf-idf/DP.

Finally, Table 5 measures robustness to recognition errors. The hybrid sys-
tem achieves a 1-best classification error of 6–7% on utterances which are cor-
rectly recognised, falling to about 30% on utterances with one recognition error,
40–45% on utterances with two recognition errors, and 50–55% on utterances
with more than two recognition errors. The contribution of DP matching is
most important on correctly recognised utterances. The largest differences occur
on text input, which we included to give a baseline approximating perfect recog-
nition. The higher error rate on BabelDr data (13.8% versus 8.2%) probably
reflects the more challenging nature of the domain.

The dynamic programming matching method is fast both at compile-time
and at runtime. Running on a 2.5 GHz Intel laptop, compilation of the tables
required by the tf-idf/DP method requires less than a minute for each domain.
Average processing time at runtime is about 40 ms/utterance.

7 Conclusions and Further Directions

We have presented a simple spoken utterance classification method suitable for
domains which have little training data and can be approximately described by
CFG grammars, and evaluated it on two such domains. Compared to plain CFG-
based classification, the method reduces 1-best error on spoken input by over
a third on the well-tuned BabelDr domain and over a half on the poorly-tuned
Shared Task domain. We find these results encouraging, not least because the
methods so far implemented can very likely be improved. Two obvious things to
try next are introducing a better treatment of OOV words, which at the moment
are uniformly counted as skipped, and simply tuning the recogniser more.
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Our practical goal in this project has been to improve the BabelDr system.
From a theoretical point of view, however, the most interesting finding has been
the contrast between the mainstream Weka methods and tf-idf/DP. On the small
Shared Task domain, the Weka methods strongly outperform tf-idf/DP, with
the Naive Bayes method achieving a classification error of 13.0% as compared to
the “hybrid” method’s 16.9%. On the much more challenging BabelDr domain,
however, the pattern is reversed. Naive Bayes scores 28.8%—only slightly better
than the baseline CFG—while “hybrid” reduces the error to 18.8%. As noted,
we think the poor performance of the Weka methods may reflect the inadequacy
of creating training data by random sampling from the grammar, and it is pos-
sible that some more intelligent sampling method may allow us to address the
problem. We are currently investigating this.
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Abstract. Automatic Speech Recognition (ASR) rarely addresses the
punctuation of the obtained transcriptions. Recently, Recurrent Neural
Network (RNN) based models were proposed in automatic punctuation
exploiting wide word contexts. In real-time ASR tasks such as closed
captioning of live TV streams, text based punctuation poses two partic-
ular challenges: a requirement for low latency (limiting the future con-
text), and the propagation of ASR errors, seen more often for informal or
spontaneous speech. This paper investigates Maximum Entropy (Max-
Ent) and RNN punctuation models in such real-time conditions, but also
compares the models to off-line setups. As expected, the RNN outper-
forms the MaxEnt baseline system. Limiting future context results only
in a slighter performance drop, whereas ASR errors influence punctua-
tion performance considerably. A genre analysis is also carried out w.r.t.
the punctuation performance. Our approach is also evaluated on TED
talks within the IWSLT English dataset providing comparable results to
the state-of-the-art systems.

Keywords: Punctuation recovery · Recurrent Neural Network ·
LSTM · Maximum Entropy · Low latency real-time modeling

1 Introduction

Punctuation insertion into the output of Automatic Speech Recognition (ASR)
is a known problem in speech technology. The importance of having punctua-
tions in automatically generated text – transcripts, indexing, closed captions,
for metadata extraction etc. – has been outlined several times [1,16], as punc-
tuation helps both human readability, and also eventual subsequent processing
with text based tools, which usually require the punctuation marks at the very
first step of their operation: the tokenization. In dictation systems, punctuation
marks can be explicitly dictated; however, in several other domains where ASR
is used, this is not possible.
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Two basic approaches can be distinguished for automatic punctuation,
although they are often used in combination: prosody and text based approaches.
In general prosody based approaches require less computation, less training data
and hence can result in lightweight punctuation models. They are also more
robust to ASR errors; recently proposed text based approaches on the other
hand provide mostly more accurate punctuation, but are more sensitive to ASR
errors and may introduce high latency due to the processing of a wide context,
requiring extensive computations and also future context which directly results
in high latency.

In this paper we focus on reducing this latency by still maintaining the accu-
racy provided by text based models. We demonstrate systems intended to be
used for punctuation of closed-captioned data. ASR technology is widely used by
television companies to produce closed captions especially for live programs [21],
which require almost real-time processing with little latency.

Much effort has been devoted to develop reliable punctuation restoration
algorithms, early approaches proposed to add punctuation marks to the N-gram
language model of the ASR as hidden events [8,23]. These models have to be
trained on huge corpora to reduce data sparsity [8]. More sophisticated sequence
modeling approaches were also inspired by this idea: a transducer alike approach
getting a non-punctuated text as input is capable of predicting punctuation
as was presented in numerous works [1,3,11], with frameworks built on top
of Hidden Markov Models (HMM), Maximum Entropy (MaxEnt) models or
conditional random fields, etc. MaxEnt models allow for any easy combination
of textual and prosodic features into a common punctuation model [10]. In a
comprehensive study [2], many features were compared in terms of their effect
on punctuation accuracy of a MaxEnt model. It was found that the most powerful
textual features were the word forms and part-of-speech (POS) tags, whereas the
best prosodic feature was the duration of inter-word pauses.

Applying a monolingual translation paradigm for punctuation regarded as a
sequence modeling task was also proposed in [5], which also allowed for consider-
ably reducing time latency. Recently, sequence-to-sequence modeling deep neural
network based solutions have been also presented: taking a large word-context
and projecting the words via an embedding layer into a bidirectional Recur-
rent Neural Network (RNN) [22], high quality punctuation could be achieved.
RNNs are successfully used in many sequence labeling tasks as they are able
to model large contexts and to learn distributed features of words to overcome
data sparsity issues. The first attempt to use RNN for punctuation restoration
was presented in [24], where a one-directional LSTM [9] was trained on Estonian
broadcast transcripts. Shortly after, Tilk and Alumäe introduced a bidirectional
RNN model using GRU [7] together with attention mechanism, which outper-
formed previous state-of-the-art on Estonian and English IWSLT datasets [25].
In a recent study [15], capitalization and punctuation recovery are treated as cor-
related multiple sequence labeling tasks and modeled with bidirectional RNN.
In [14], a prosody based punctuation approach was proposed using an RNN on
top of phonological phrase sequence modeling.
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In this paper, we introduce a lightweight RNN-based punctuation restoration
model using bidirectional LSTM units on top of word embeddings, and compare
its performance to a MaxEnt model. We pay a special attention to low latency
solutions. Both approaches are evaluated on automatic and manual transcripts
and in various setups including on-line and off-line operation. We present results
on Hungarian broadcast speech transcripts and the IWSLT English dataset [4] to
make the performance of our approach comparable to state-of-the-art systems.
Apart form the purely prosody based approach outlined in [14], we are not aware
of any prior work for punctuation restoration for Hungarian speech transcripts.

Our paper is structured in the following way: first we present the used
datasets in Sect. 2, then we move on to presenting the experimental systems
in Sect. 3. The results of Hungarian and English Punctuation Restoration tasks
are presented and discussed in Sect. 4. Our conclusions and future ideas are
drawn in Sect. 5.

2 Data

2.1 The Hungarian Broadcast Dataset

The Hungarian dataset consists of manually transcribed closed captions made
available by the Media Service Support and Asset Management Fund (MTVA),
Hungary’s public service broadcaster. The dataset contains captions for various
TV genres enabling us to evaluate the punctuation models on different speech
types, such as weather forecasts, broadcast news and conversations, magazines,
sport news and sport magazines. We focus on the restoration of those punc-
tuations, which have a high importance for understandability in Hungarian:
commas, periods, question marks and exclamation marks. The colons and semi-
colons were mapped to comma. All other punctuation symbols are removed from
the corpora. We reserve a disjunct 20% of the corpus for validation and use a
representative test set, not overlapping with training and validation subsets. For
further statistics about training and test data we refer the reader to Table 1.

Table 1. Statistics of the Hungarian dataset

Genres Training & Validation Test

#Words #Com #Per #Que #Excl #Words #Com #Per #Ques #Excl WER

Weather 478K 40K 31.5K 30 730 2.4K 250 200 0 20 6.8

Brc.-News 3493K 279K 223K 3.5K 4.6K 17K 1.5K 1K 20 50 10.1

Sport News 671K 55K 39.5K 280 2K 6K 500 400 2 30 21.4

Brc.-Conv. 4161K 533K 225K 26.5K 4K 46.8K 6.3K 2.6K 250 130 24.7

Sport mag. - - - - - 22.7K 2K 1.4K 100 50 30.3

Magazine 4909K 732K 376K 72K 36K 10.4K 1.5K 700 150 70 38.7

Mixed 1526K 187K 102K 11K 11.4K 30.7 4K 1.7K 280 150 -

ALL 15238 K 1826K 997K 113K 58.8K 136K 16K 8K 800 500 24.2
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The automatic transcription of the test set is carried out with an ASR system
optimized for the task (close captioning of live audio) [27]. The language model
for the ASR was trained on the same corpus as the punctuation model and was
coupled with a Deep Neural Network based acoustic model trained on roughly
500 hours of speech using the Kaldi ASR toolkit [18]. The average word error rate
(WER) of the automatic transcripts was around 24%, however showed a large
variation depending on genre (see later Table 1). Note, that for Mixed category
there was no available audio data in the test database.

2.2 The English IWSLT Dataset

The IWSLT dataset consists of English TED talks transcripts, and has recently
became a benchmark for evaluating English punctuation recovery models [4,15,
24,25]. We use the same training, validation and test sets as the studies above,
containing 2.1 M, 296 K and 13 K words respectively. This dataset deals with
only three types of punctuations: comma, period and question mark.

3 Experimental Setups

3.1 MaxEnt Model

The maximum entropy (MaxEnt) model was suggested by Ratnaparkhi for POS
Tagging [19]. In his framework, each sentence is described as a token (word)
sequence. Each classified token is described with a set of unique features. The
system learns the output labels based on these. In supervised learning, the output
labels are hence assigned to the token series. To determine the set of features,
the MaxEnt model defines a joint distribution through the available tags and the
current context, which can be controlled with a radius parameter. Pre-defined
features such as word forms, capitalization, etc. can also be added.

We use the MaxEnt model only with word form-related input features, and
all tokens are represented in lower case. To obtain these input features, we
use Huntag, an open-source, language independent Maximum Entropy Markov
Model-based Sequential tagger for both Hungarian and English data [20].

The radius parameter of the MaxEnt tagger determines the size of the con-
text considered. By default, left (past) and right (future) context is taken into
account. We will refer to this setup as off-line mode. As taking future context
into account increases latency, we consider the limit of it, which we will refer to
by on-line mode. In the experiments we use round brackets to specify left and
right context, respectively. Hence (5,1) means that we are considering 5 past and
1 future token actually.

3.2 Recurrent Neural Networks

We split the training, validation and test corpus into short, fixed-length sub-
sequences, called chunks (see the optimized length in Table 2), without over-
lapping, i.e. such that every token appears once. A vocabulary is built from
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the k-most common words from the training set, by adding a garbage collector
“Unknown” entry to map rare words. Incomplete sub-sequences were padded
with zeros. An embedding weight matrix was added based on pre-trained embed-
ding weights and the tokens of the vocabulary.

We investigate the performance of an unidirectional and a bidirectional RNN
model in our experiments. Our target slot for punctuation prediction is preceding
the actual word. The used architectures are presented in Fig. 1.

Our RNN models (WE-LSTM and WE-BiLSTM, named after using “Word
Embedding”) are built up in the following way: based on the embedding matrix,
the preprocessed sequences are projected into the embedding space (xt represents
the word vector x at time step t). These features are fed into the following layer
composed of LSTM or BiLSTM hidden cells, to capture the context of xt. The
output is obtained by applying a softmax activation function to predict the yt
punctuation label for the slot preceding the current word xt. We chose this simple
and lightweight structure to allow for real-time operation with low latency.

Fig. 1. Structure of WE-BiLSTM (left) and WE-LSTM (right) RNN model

The Hungarian punctuation models were trained on the 100 K most frequent
words in the training corpus, by mapping the remaining outlier words to a
shared “Unknown” symbol. RNN-based recovery models use 600-dimensional
pre-trained Hungarian word embeddings [13]. This relative high dimensionality
of the embeddings comes from the highly agglutinating nature of Hungarian. In
our English RNN-models, a 100-dimensional pre-trained “GloVe” word embed-
ding [17] is used for projection. During training, we use categorical cross-entropy
cost function and also let the imported embeddings updated.

We performed a systematic grid search optimization for hyperparameters of
the RNNs on the validation set: length of chunks, vocabulary size, number of
hidden states, mini-batch size, optimizers. We also use early stopping to prevent
overfitting, controlled with patience. Table 2 summarizes the final values of each
hyperparameter used in the Hungarian and the English WE-BiLSTM and WE-
LSTM models, also including those ones which were inherited from [25], to ensure
a partial comparability.
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Table 2. Hyperparameters of WE-BiLSTM and WE-LSTM models

Language Model Chunk
length
(#words)

Vocab. Size
(#words)

Word
embedding
dimension

#Hidden
states

Batch size Optimizer Patience

HUN WE-BiLSTM 200 100 000 600 512 128 RMSProp 3
HUN WE-LSTM 256 2
EN WE-BiLSTM 200 27 244 (by [25]) 100 (by [25]) 256 2
EN WE-LSTM 250

As for the MaxEnt setup, we differentiate low latency and lightweight on-line
mode, and robust off-line mode using the future context. All RNN models for
punctuation recovery were implemented with the Keras library [6], trained on
GPU. The source code of the RNN models is publicly available1.

We briefly mention that beside word forms, we were considering other tex-
tual features too: lemmas, POS-tags (also suggested by [26]) and morphological
analysis. The latter were extracted using the magyarlánc toolkit, designed for
morphological analysis and dependency parsing in Hungarian [28]. Neverthe-
less, as using word forms yielded the most encouraging results, and also as fur-
ther analysis for feature extraction increases latency considerably, the evaluated
experimental systems rely on word forms features only, input to the embedding
layers.

4 Results and Discussion

This section presents the punctuation recovery results for the Hungarian and
English tasks. For evaluation, we use standard information retrieval metrics such
as Precision (Pr), Recall (Rc), and the F1-Score (F1). In addition, we also cal-
culate the Slot Error Rate (SER) [12], as it is able to incorporate all types of
punctuation errors – insertions (Ins), substitutions (Subs) and deletions (Dels)
– into a single measure:

SER =
C(Ins) + C(Subs) + C(Del)

C(totalslots)
, (1)

for slots considered following each word in the transcription (in (1) C(.) is the
count operator).

4.1 Hungarian Overall Results

First, we compare the performance of the baseline MaxEnt sequence tagger (see
Subsect. 3.1) to the RNN-based punctuation recovery system (see Subsect. 3.2)
on the Hungarian broadcast dataset. Both approaches are presented in two con-
figurations. In the on-line mode punctuations are predicted for the slot preceding
the current word in the input sequence resulting in a low latency system, suit-
able for real-time application. In the off-line mode, aimed at achieving the best

1 https://github.com/tundik/HuPP.

https://github.com/tundik/HuPP
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result with the given features and architecture, the future word context is also
exploited. Please note that hyperparameters of all approaches and configurations
were optimized on the validation set as explained earlier (see Sect. 3).

The test evaluations are presented in Table 3 for the reference and in Table 4
for the automatic (ASR) transcripts, respectively. In the notation of MaxEnt
models (i, j), i stands for the backward (past), whereas j stands for the forward
(future) radius. As it can be seen, the prediction results for comma stand out
from the others for all methods and configurations. This can be explained by
the fact that Hungarian has generally clear rules for comma usage. In contrast
to that, period prediction may also benefit from acoustic information, which
assumption is supported by the results in [14], showing robust period recovery
with less effective comma restoration.

Table 3. Punctuation restoration results for Hungarian reference transcripts

Reference transcript Model Comma Period Question Exclamation SER
Pr Rc F1 Pr Rc F1 Pr Rc F1 Pr Rc F1

Off-line mode MaxEnt-(19, 19) 72.5 59.6 65.5 52.1 40.0 45.2 55.7 21.8 31.3 31.1 31.5 31.3 63.5
WE-BiLSTM 72.9 71.2 72.0 59.1 56.1 57.6 52.4 38.7 44.5 51.3 36.1 42.4 50.1

On-line mode MaxEnt-(25, 1) 71.8 58.1 64.2 47.5 35.7 40.8 50.4 16.2 24.5 29.3 33.3 31.2 66.9
WE-LSTM 72.7 69.5 71.1 56.2 48.3 52.0 60.4 31.1 41.1 61.1 29.4 39.7 53.6

As Table 3 shows, switching to the RNN-based punctuation restoration for
Hungarian reference transcripts reduces SER by around 20% relative compared
to the baseline MaxEnt approach. The WE-BiLSTM and WE-LSTM are espe-
cially beneficial in restoring periods, question marks and exclamation marks as
they are able to exploit large contexts much more efficiently than the MaxEnt
tagger. Limiting the future context in on-line configuration causes much less
deterioration in results than we had expected. The features from the future
word sequence seem to be useful if task requires maximizing recall, otherwise
the WE-LSTM is an equally suitable model for punctuation recovery.

Table 4. Punctuation restoration results for Hungarian ASR transcripts

ASR transcript Model Comma Period Question Exclamation SER
Pr Rc F1 Pr Rc F1 Pr Rc F1 Pr Rc F1

Off-line mode MaxEnt-(19, 19) 64.5 55.8 59.9 41.1 31.2 35.6 41.2 8.8 14.4 48.8 17.1 25.4 79.2
WE-BiLSTM 63.9 67.7 65.7 50.5 49.0 49.8 37.7 24.1 29.4 60.9 24.0 34.4 70.1

On-line mode MaxEnt-(25, 1) 64.3 54.9 59.2 38.9 29.4 33.5 36.0 7.1 11.9 47.1 20.6 28.6 81.3
WE-LSTM 63.8 65.1 64.4 47.8 42.0 44.7 48.5 20.5 28.9 61.8 21.7 32.1 73.1

As outlined in the introduction, limiting the future context and propagation
of ASR errors into the punctuation recovery pipeline are considered to be the
most important factors hindering effective recovery of punctuations in live TV
streams. Results confirm that a large future context is less crucial for robust
recovery of punctuations, contradictory to our expectations. In contrast, ASR
errors seem to be more directly related to punctuation errors: switching from ref-
erence transcripts to ASR hypotheses resulted in 15–20% increase in SER (see
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Table 4). Although the performance gap is decreased between the two approaches
in case of input featuring ASR hypothesis, RNN still outperforms MaxEnt base-
line by a large margin.

4.2 Hungarian Results by Genre

The Hungarian test database can be divided into 6 subsets based on the genres
of the transcripts (see Table 1). We also analyzed punctuation recovery for these
subsets, hypothesizing that more informal and more spontaneous genres are
harder to punctuate, in parallel to the more ASR errors seen in these scenarios.
Some of the punctuation marks for specific genres were not evaluated (see “N/A”
in Table 1), if the Precision or Recall was not possible to be determined based
on their confusion matrix.

As the RNN-based approach outperformed the MaxEnt tagger for every
genre, we decided to include only results of WE-BiLSTM and WE-LSTM sys-
tems in Tables 5 and 6 for better readability.

Table 5. Hungarian reference transcript results by genres

Reference transcript Genre Comma Period Question Exclamation SER
Pr Rc F1 Pr Rc F1 Pr Rc F1 Pr Rc F1

RNN Off-line mode Weather 61.2 54.3 57.5 46.7 46.7 46.7 N/A N/A N/A 90.0 45.0 60.0 69.3
Brc.-News 89.9 84.4 87.1 84.3 90.7 87.3 91.7 50.0 64.7 83.9 56.5 67.5 20.0

Sport news 68.3 60.6 64.2 49.4 51.4 50.4 N/A N/A N/A 75.0 30.0 42.9 67.0
Brc.-Conv. 80.4 74.5 77.3 63.9 64.9 64.4 63.0 46.4 53.5 88.9 18.5 30.6 38.7
Sport mag. 61.2 61.1 61.1 43.9 49.3 46.5 55.2 37.5 44.7 38.5 9.4 15.2 73.1
Magazine 67.6 67.6 67.6 45.1 46.3 45.7 50.5 29.7 37.5 50.0 5.6 10.1 58.6

RNN On-line mode Weather 60.2 57.5 58.8 45.7 37.9 41.4 N/A N/A N/A 87.5 35.0 50.0 70.6
Brc.-News 88.4 83.1 85.7 86.6 81.3 83.9 75.0 40.9 52.9 100.0 67.4 80.5 24.1

Sport news 68.7 57.2 62.4 42.4 37.5 39.8 N/A N/A N/A 90.0 60.0 72.0 74.2
Brc.-Conv. 80.1 74.0 76.9 66.7 54.8 60.1 63.0 45.6 52.9 77.6 29.2 42.5 40.8
Sport mag. 60.8 59.7 60.3 42.3 34.8 38.2 53.3 38.3 44.5 20.0 7.5 11.0 77.3
Magazine 67.6 65.1 66.3 43.5 32.8 37.4 57.3 27.2 36.9 36.4 11.3 17.2 61.5

If we compare the results to the statistics in Table 1, it can be seen that the
punctuation recovery system performed best on those genres (broadcast news,
broadcast conversations, magazine), for which we had the most training sam-
ples. However, the relatively large difference among these three, well-modeled
genres suggests that there must be another factor in the background, as well,
which is the predictability of the given task. Analogous to language modeling,
the more formal, the task is, the better is the predictability of punctuations (see
broadcast news results). Obviously, conversational (broadcast conversations) and
informal (magazine) speech styles (characterized with less constrained wording
and increased number of disfluencies and ungrammatical phrases) make predic-
tion more difficult and introduce punctuation errors compared to more formal
styles.

The relatively high SER of the weather forecast and the sport programs
genres point out the importance of using a sufficient amount of in-domain train-
ing data. Besides collecting more training data, adaptation techniques could be
utilized to improve results for these under-resourced genres.
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Table 6. Hungarian ASR transcript results by genres

ASR transcript Genre Comma Period Question Exclamation SER WER

Pr Rc F1 Pr Rc F1 Pr Rc F1 Pr Rc F1

RNN Off-line mode Weather 64.7 54.3 59.1 45.9 42.0 43.9 N/A N/A N/A 100.0 c50.0 66.7 70.0 6.8

Brc.-News 79.5 80.0 79.7 74.7 82.6 78.4 50.0 14.3 22.2 80.0 46.2 58.5 37.0 10.1

Sport news 47.7 54.8 51.0 32.1 40.5 35.8 N/A N/A N/A 100.0 50.0 66.7 107.5 21.4

Brc.-Conv. 70.6 67.5 69.0 56.8 51.3 53.9 43.8 28.9 34.8 84.6 13.6 23.4 60.2 24.7

Sport mag. 55.9 59.8 57.8 39.2 43.5 41.3 48.0 16.2 24.2 N/A N/A N/A 87.5 30.3

Magazine 58.6 60.2 59.5 35.6 28.4 31.6 31.2 14.9 20.2 N/A N/A N/A 83.1 38.7

RNN On-line mode Weather 65.3 58.7 61.8 37.8 34.6 36.1 N/A N/A N/A 100.0 12.5 22.2 72.7 6.8

Brc.-News 76.5 79.3 77.9 76.8 70.7 73.6 N/A N/A N/A 100.0 50.0 66.7 42.9 10.1

Sport news 48.9 54.3 51.5 28.6 30.1 29.3 N/A N/A N/A 75.0 60.0 66.7 108.9 21.4

Brc.-Conv. 70.3 66.8 68.5 57.4 41.2 48.0 37.0 24.8 29.7 86.7 16.0 27.1 62.2 24.7

Sport mag. 53.6 56.4 55.0 37.8 30.4 33.4 42.1 21.6 28.6 14.3 4.5 6.9 91.0 30.3

Magazine 57.6 59.4 58.5 36.5 20.8 26.5 42.1 11.9 18.7 N/A N/A N/A 83.9 38.7

By comparing punctuation recovery error of the reference and ASR tran-
scripts, we can draw some interesting conclusions. For the well-modeled gen-
res (Brc.-News, Brc.-Conv., magazine) the increase in SER correlates with the
word error rate (WER) of the ASR transcript. However, for the remaining gen-
res (weather, sport news, sport magazine), this relationship between SER and
WER is much less predictable. It is particularity difficult to explain the rel-
atively poor results for the sport news genre. Whereas the WER of the ASR
transcript is moderate (24.7%), the SER of punctuation is almost doubled for it
(67% to 107%). We assume that this phenomenon is related to the high number
of named entities in the sport news program, considering that the highest OOV
Rate (10%) can be spotted for this genre among all the 6 tested genres.

4.3 English Results

In this subsection, we compare our solutions for punctuation recovery with some
recently published models. For this purpose, we use the IWSLT English dataset,
which consists of TED Talks transcripts and is a considered benchmark for
English punctuation recovery. For complete comparability, we used the default
training, validation and test datasets. However, the hyperparameters were opti-
mized for this task (see Table 2). Please note that the IWSLT dataset does not
contain samples for exclamation marks.

We present the English punctuation recovery results in Tables 7 and 8. As it
can be seen, in on-line mode, the proposed RNN (WE-LSTM) significantly out-
performed the so-called T-LSTM configuration presented in [25], which had the
best on-line results on this dataset so far to the best of our knowledge. Without
using pre-trained word embedding (noWE-LSTM) our results are getting very
close to the T-LSTM configuration.

Although in this paper we primarily focused on creating a lightweight, low
latency punctuation recovery system, we also compared our WE-BiLSTM sys-
tem to the best available off-line solutions. As it is shown in Tables 7 and 8, both
T-BRNN-pre from [25] configuration and Corr-BiRNN form [15] outperformed
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Table 7. Punctuation restoration results for English reference transcripts

Reference transcript Model Comma Period Question SER

Pr Rc F1 Pr Rc F1 Pr Rc F1

Off-line mode MaxEnt-(6, 6) 45.6 26.7 33.7 59.4 57.0 58.2 52.4 23.9 32.8 77.2

WE-BiLSTM 55.5 45.1 49.8 65.9 75.1 70.2 57.1 52.2 54.5 59.8

T-BRNN-pre [25] 65.5 47.1 54.8 73.3 72.5 72.9 70.7 63.0 66.7 49.7

Corr-BiRNN [15] 60.9 52.4 56.4 75.3 70.8 73.0 70.7 56.9 63.0 50.8

On-line mode MaxEnt-(10, 1) 44.9 23.7 31.0 53.4 50.1 51.7 50.0 21.7 30.8 83.2

noWE-LSTM 47.3 42.7 44.9 60.9 50.4 55.2 68.2 32.6 44.1 76.4

WE-LSTM 56.3 40.3 47.0 61.2 60.5 60.8 55.5 43.5 48.8 68.1

T-LSTM [24] 49.6 41.1 45.1 60.2 53.4 56.6 57.1 43.5 49.4 74.0

Table 8. Punctuation restoration results for English ASR transcripts

ASR transcript Model Comma Period Question SER

Pr Rc F1 Pr Rc F1 Pr Rc F1

Off-line mode MaxEnt-(6, 6) 40.6 23.9 30.1 56.2 53.5 54.8 31.6 17.1 22.2 84.0

WE-BiLSTM 46.8 39.6 42.9 60.7 70.3 65.1 44.4 45.7 45.0 72.5

T-BRNN-pre [25] 59.6 42.9 49.9 70.7 72.0 71.4 60.7 48.6 54.0 57.0

Corr-BiRNN [15] 53.5 52.5 53.0 63.7 68.7 66.2 66.7 50.0 57.1 65.4

On-line mode MaxEnt-(10, 1) 42.6 23.9 30.7 53.2 48.9 51.0 33.3 17.1 23.0 87.0

noWE-LSTM 40.2 39.3 39.7 56.2 46.6 51.0 76.5 38.2 51.0 86.5

WE-LSTM 48.8 37.1 42.2 57.6 57.3 57.4 41.2 41.2 41.2 78.3

T-LSTM [24] 41.8 37.8 39.7 56.4 49.3 52.6 55.6 42.9 48.4 83.7

our WE-BiLSTM mainly due to their better performance for commas and ques-
tion marks. However, these punctuation recovery systems are using much more
complex structure and it is questionable whether they would be able to operate
in real time scenarios. We consider the high recall of periods by our WE-BiLSTM
models as a nice achievement both in reference and ASR transcripts.

5 Conclusions

In this paper, we introduced a low latency, RNN-based punctuation recovery
system, which we evaluated on Hungarian and English datasets and compared
its performance to a MaxEnt sequence tagger. Both approaches were tested in off-
line mode, where textual features could be used from both forward and backward
directions; and also in on-line mode, where only backward features were used
to allow for real-time operation. The RNN-based approach outperformed the
MaxEnt baseline by a large margin in every test configuration. However, what
is more surprising, on-line mode causes only a small drop in the accuracy of
punctuation recovery.

By comparing results on different genres of the Hungarian broadcast tran-
scripts, we found (analogous to language modeling) that the accuracy of text
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based punctuation restoration mainly depends on the amount of available train-
ing data and the predictability of the given task. Note, that we are not aware
of any prior work in the field of text based punctuation recovery of Hungarian
speech transcripts.

In order to compare our models to state-of-the-art punctuation recovery sys-
tems, we also evaluated them on the IWSLT English dataset in both on-line and
off-line modes. In on-line mode, our WE-LSTM system achieved the overall best
result. In off-line mode, however, some more complex networks turned out to
perform better than our lightweight solution.

For future work, we are mainly interested in merging of our word-level sys-
tem and the prosody-based approach outlined in [14] for Hungarian. Extending
the English model with further textual or acoustic features is also a promising
direction, as we keep our focus on low latency for both languages.

All in all, we consider as important contributions of our work that (1) we
use a lightweight and fast RNN model by closely maintained performance; (2)
we target real-time operation with little latency; (3) we use the approach for the
highly agglutinating Hungarian which has a much less constrained word order
than English, as grammatical functions depend much less on the word order than
on suffixes (case endings), which makes sequence modeling more difficult due to
higher variation seen in the data.
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Abstract. Unsupervised discovery of sub-lexical units in speech is a
problem that currently interests speech researchers. In this paper, we
report experiments in which we use phone segmentation followed by clus-
tering the segments together using k-means and a Convolutional Neural
Network. We thus obtain an annotation of the corpus in pseudo-phones,
which then allows us to find pseudo-words. We compare the results for
two different segmentations: manual and automatic. To check the porta-
bility of our approach, we compare the results for three different lan-
guages (English, French and Xitsonga). The originality of our work lies
in the use of neural networks in an unsupervised way that differ from
the common method for unsupervised speech unit discovery based on
auto-encoders. With the Xitsonga corpus, for instance, with manual and
automatic segmentations, we were able to obtain 46% and 42% purity
scores, respectively, at phone-level with 30 pseudo-phones. Based on the
inferred pseudo-phones, we discovered about 200 pseudo-words.

Keywords: Neural representation of speech and language · Unsuper-
vised learning · Speech unit discovery · Neural network · Sub-lexical
units · Phone clustering

1 Introduction

Annotated speech data abound for the most widely spoken languages, but the
vast majority of languages or dialects is few endowed with manual annotations.
To overcome this problem, unsupervised discovery of linguistic pseudo-units in
continuous speech is gaining momentum in the recent years, encouraged for
example by initiatives such as the Zero Resource Speech Challenge [15].

We are interested in discovering pseudo-units in speech without supervision
at phone level (“pseudo-phones”) and at word level (“pseudo-word”). Pseudo-
words are defined by one or more speech segments representing the same phonetic
sequence. These are not necessarily words: they may not start/end at the begin-
ning/ending of a true word and may contain several words, such as “I think
that”. The same applies for pseudo-phones that may be shorter or longer than
true phones, and one pseudo-phone may represent several phones.

To find speech units, one can use dotplots [4], a graphical method for com-
paring sequences, and Segmental Dynamic Time Warping (S-DTW) with the
c© Springer International Publishing AG 2017
N. Camelin et al. (Eds.): SLSP 2017, LNAI 10583, pp. 169–180, 2017.
DOI: 10.1007/978-3-319-68456-7 14
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use of the cosine similarity that gives distances between phonetic acoustic mod-
els [1,11]. In [17], DTW and Hidden Markov Models are also used on posterior-
grams (posterior distribution over categorical units (e.g. phonemes) as a function
of time) to find pseudo-words.

During our own experiments, we were able to see the usefulness of the poste-
riorgrams, which are data obtained by supervised learning. We therefore sought
to obtain these posteriorgrams phones in an unsupervised way.

To obtain phone posteriorgrams, clustering can be used. In [17], k-means are
used on parameters generated by an auto-encoder (AE), also called Bottleneck
Features (BnF), after binarization. k-means are similarly used in [14], with AEs
and graph clustering. Increasingly used in speech research, neural networks come
in several unsupervised flavors. AEs learn to retrieve the input data after several
transformations performed by neuron layers. The interesting parameters lie in
the hidden layers. AEs can have several uses: denoising with the so-called denois-
ing AEs [16], or creating new feature representations, such as Bottleneck features
using a hidden layer with a number of neurons that is markedly lower than that
of the other layers. The information is reformulated in a condensed form and
the AE is expected to capture the most salient features of the training data.
Studies have shown that, in some cases, AE posteriorgrams results are better
than those of GMM [2,7]. In the context of unsupervised speech unit discovery,
AE variants have emerged, such as correspondence AEs (cAEs) [13]. cAEs no
longer seek to reconstruct the input data but other data, previously mapped in
a certain way. They therefore require a first step of grouping segments of speech
into similar pairs (pseudo-words, etc.) found by a DTW. There is another type
of AEs, which avoids the DTW step by forcing to reconstruct neighboring data
frames, using the speech stability properties: the so-called segmental AEs [2].

In our work, we first performed tests with different AEs. Their results mainly
helped to separate the voiced sounds from the unvoiced sounds but gave poor
results for our task of pseudo-phone discovery (less than 30% purity on the
BUCKEYE corpus, see Sect. 3). We decided to design an alternative approach
coupling k-means and supervised neural networks.

This paper is organized as follows. Section 2 presents the system architec-
ture, then the speech material used to validate our approach on three languages
is described. Finally, results both at phone- and word-levels are reported and
discussed in Sect. 4.

2 System Description

Figure 1 shows the schema of the system. First, pseudo-phones are discovered
by a k-means algorithm using log F-banks as input. Second, a CNN classifier is
trained to predict these pseudo-units taken as pseudo-groundtruth. The prob-
abilities outputted by the CNN are then used as features to run k-means once
again. These last two steps (supervised CNN and k-means) are iterated as long
as the CNN training cost decreases.
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Fig. 1. General architecture: the system is trained in an iterative manner

2.1 Features

As input, we use 40 log Filterbank coefficients extracted on 16-ms duration
windows, with a 3/4 hop size. 40 Mel-filters is a conventional number of filters
used for speech analysis tasks.

Currently, our model needs to know the boundaries of the phones in order to
standardize the input feature at segment level. We use and compare two different
segmentations: the manual segmentation provided with the corpus and a seg-
mentation derived automatically based on our previous work on cross-language
automatic phone-level segmentation [8].

2.2 Class Assignment for CNN Learning

For initialization, the k-means algorithm uses frames of log F-bank coefficients
as input and each input feature window is concatenated with its 6 neighborhood
windows. It assigns a single class per window and we propagate this result on
the segments delimited by the phone boundaries by a majority vote. Figure 2
illustrates the majority voting strategy used to choose the single pseudo-phone
number 7 on a given segment. In the following iterations, the k-means algorithm
takes as input the phone posteriorgrams generated by the CNN.

Fig. 2. Majority voting strategy

As we require the CNN to output the same class for all the windows com-
prising a segment, the model learns to output rather stable probabilities on the
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segments. We therefore accelerate the k-means step by using as input a single
window, which is the average of the windows comprising a given segment and we
obtain directly a class by segment. This simplification was shown in preliminary
experiments to have no impact on the results. As a result, we have a single class
assigned by segment.

2.3 CNN Architecture

Supervised neural networks require to know the classes of the training data. In
our case, the true manually annotated phones are not available, thus, we use
pseudo-phones clusters previously inferred by the k-means algorithm based on a
previous segmentation of the input data.

We use a CNN with two convolution layers followed by a fully connected
layer and a final output layer. The nonlinearity function used is the hyperbolic
tangent. The first convolution layer is comprised of thirty 4 × 3 filters followed
by a layer of 2× 2 maxpooling and the second one of sixty 3× 3 filters followed
by a layer of 1 × 2 maxpooling. The dense layer has 60 neurons and we use
dropout (0.5) before the last layer. A 0.007 learning rate was used with Nesterov
momentum parameter updates.

Our experiments showed that the iterative process using pseudo-phones
inferred by the k-means algorithm gives better results than those attributed
by the first k-means iteration. Moreover, the CNN can also give us for each
window the class probabilities. After experiments, these posteriorgrams outper-
formed the F-bank coefficients. We have chosen to retain these probabilities, on
which we apply the consecutive k-means iterations. Our model is therefore an
iterative model.

3 Speech Material

For our experiments, we used three corpus of different languages, sizes and
conditions.

3.1 BUCKEYE

We used the American English corpus called BUCKEYE [12], composed of spon-
taneous speech (radio recordings) collected from 40 different speakers with about
30 min of time speech per speaker. This corpus is described in detail in [6].

The median duration of phonemes is about 70 ms, with 60 different phonemes
annotated. It is more than the 40 usually reported for English, because of peculiar
pronunciations that the authors of BUCKEYE chose to distinguish in different
classes, particularly for nasal sounds.

We used 13 h of recordings of 26 different speakers, corresponding to the part
of training according to the subsets defined in the Zero Resource Speech 2015
challenge [15].
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3.2 BREF80

BREF80 is a corpus of read speech in French. As we are interested in less-
resourced languages, we only took one hour of speech, recorded by eight different
speakers. The French phone set we considered is the standard one comprised of
35 different phones, with a median duration of 70 ms.

3.3 NCHLT

The Xitsonga corpus [5], called NCHLT, is composed of short read sentences
recorded on smart-phones, outdoors. We used nearly 500 phrases, with a total
of 10,000 examples of phonemes annotated manually, from the same challenge
database than the one used in the Zero Resource Speech challenge. The median
duration of the phones is about 90 ms and there are 49 different phones.

4 Experiments and Results

In this section, we first report results with manual phone segmentations in order
to evaluate our approach on the pseudo-phone discovery task only. Results at
phone and word levels are given. In the last Subsect. 4.3, we evaluate the system
under real conditions, namely with our automatic phone-level segmentations.
We evaluate our system on different languages and speaking styles.

4.1 Results at Phone Level

To evaluate our results, we compute the standard purity metric of the pseudo-
phones [9].

Let N be the number of manual segments at phone level, K the number of
pseudo-phones, C the number of phones and ni

j the number of segments labeled
with phone j and automatically assigned to pseudo-phone i. Then, the clustering
purity obtained is defined as:

1
N

K∑

i=1

arg max
j∈[1,C]

(ni
j)

First, we sought to optimize the results of the first k-means’ iteration, the
one used to initialize the process by assigning class numbers to segments for the
first time. The parameters that influence its results are the input features (log
F-bank coefficients), the context size in number of frames and the number of
means used.

We tested different context sizes and found that the influence of this para-
meter was at most one percent on the results. The best value is around six
windows.

The choice of the number of clusters is ideally in the vicinity of the number
of phones sought, that is to say generally about thirty. This is an average value
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of course, and there are languages that comprise many more phones, such as the
Khoisan language with 141 different phones. We will look at the influence of the
mean number on the search for pseudo-words in Sect. 4.2.

It is interesting to compare the results with the ones obtained in a super-
vised learning setting. Table 1 shows the results in terms of purity. As expected,
results obtained with the supervised CNN are much better than with the clus-
tering approach. Figure 3 shows the improvement provided by the use of a neural
network. It is for a small number of pseudo-phones that the CNN improves the
results the most (almost + 10% for 15 clusters).

Number of clusters
10 20 30 40 50 60

P
ur

ity

30

40

50

k-means
k-means + CNN

Fig. 3. Improvement in percent purity thanks to the neural network

One of the possible applications of this work is to help manual corpus anno-
tation. In the case where a human would label each of the clusters attributed by
the model with the real phonetic labels, thus regrouping the duplicates, we can
consider using more averages than the number of phones present in the language
considered. We have therefore looked at the evolution of purity as a function of
the number of clusters in Fig. 4.

We see that, for few clusters, the results improve rapidly. But, starting from
a hundred clusters, purity begins to evolve more slowly: in order to gain about
4% in purity, the number of averages needs to be multiplied by a factor of 10.

Table 1 gives the following pieces of information to evaluate the quality of
the results:

– The percentage of purity obtained in supervised classification by the same
CNN model as the one we use in the unsupervised setting. We did not try to
build a complicated model to maximize the scores but rather a model adapted
to our unsupervised problem. In comparison, the state of the art is around
80% of phone accuracy on the corpus TIMIT [3].

– The percentage of purity obtained by our unsupervised model. Scores are cal-
culated for 30 pseudo-phones. We see that there are almost 20% of difference
between the small corpus of read Xitsonga and the large spontaneous English
corpus.
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Fig. 4. Influence of the number of clusters on purity

– To further evaluate these results, we assign to each group the phonetic class
most present among the grouped segments. Several groups can thus corre-
spond to the same phone. The last line in the table indicates the number
of different phones allocated for 30 groups found by our model. We see that
we have only about fifteen different phones allocated, which is less than the
number of phones present in these languages. So there are more than half
of the phones that are not represented. This value changes slightly when we
increase the number of clusters.

Table 1. Purity by segment (%) obtained for each corpus: English (En, BUCKEYE),
French (Fr, BREF80) and Xitsonga (Xi, NCHLT)

Language En Fr Xi

Purity (%) supervised learning 60 62 66

Purity (%) for 30 clusters 29 43 46

Number of �= phonetic classes 16 18 11

With the French and Xitsonga corpora, we obtained the best results, whether
supervised or not. This can be easily explained: they are comprised of read
speech, are the smallest corpora and with the least numbers of different speakers.
These three criteria strongly influence the results. It is interesting to note that
we get almost equivalent results with English if we only take 30 min of training
data from a single speaker.

By studying in details the composition of the clusters, we found that having
30% (respectively 40%) purity scores does not mean that we have 70% (respec-
tively 60%) of errors due to phones that differ from the phonetic label attributed
during the clustering. The clusters are generally made up of two or three batches
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of examples belonging to close phonetic classes. Thus, the three phones most fre-
quent in each cluster represent on average 70% of their group samples for French
or Xitsonga and 57% for English.

4.2 Results at Word Level

To find pseudo-words, we look for the sequences comprised of the same pseudo-
phones. A pseudo-word must at least appear twice. We only consider sequences
of more than 5 pseudo-phones. Using shorter pseudo-phone sequences leads to
too many incorrect pseudo-words.

To evaluate these results, we compare the phone transcripts constituting the
different realizations of a given pseudo-word. If these manual transcripts are
identical, then the pseudo-word is considered as correct. Otherwise, we count
the number of phone differences. For a pseudo-word with only two realizations,
we accept up to two differences in their phone sequences. For a pseudo-word
with more than two examples, we rely on a median pseudo-word as done in [10],
and again tolerate two differences maximum.

The results may depend on the number of groups selected. If we consider a
larger number of distinct clusters, we get less pseudo-phone sequences that are
the same, and thus we discover less pseudo-words. But by doing so, the groupings
are purer, as shown in the Fig. 5.
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Fig. 5. Influence of the number of pseudo-phones on quantity and purity of pseudo-
words found.

In Table 2, we look at three characteristics of the identified pseudo-words to
evaluate our results:

– Number of pseudo-words found,
– Number of pseudo-words whose manual phonetic transcription between group

examples has at most two differences,
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Table 2. Pseudo-words statistics with manual and automatic segmentations

Language En Fr Xi

# Hours 13 1 1/2

# Phone examples 586k 36k 10k

Manual segmentation

# pseudo-words 3304 671 231

# Pseudo-words ≤ 2 differences 1171 415 172

# Identical pseudo-words 334 188 76

Automatic segmentation

# Pseudo-words 3966 540 200

# Pseudo-words ≤ 2 differences 843 269 120

# Identical pseudo-words 40 32 25

– Number of pseudo-words in which all lists representing them have exactly the
same phonetic transcription.

The French corpus allows to obtain 671 pseudo-words, out of which 188 are
correct and 227 with one or two differences in their phonetic transcriptions. We
thus find ourselves with 415 pseudo-words with at most two differences with
their manual phonetic transcriptions of the examples defining them. The results
obtained on the other two corpora are worse. Proportionally, we find about ten
times less pseudo-words than for with the French corpus.

In comparison, in a work performed on four hours of the corpus ESTER,
1560 pseudo-words were found, out of which 672 of them were sufficiently accu-
rate according to their criteria, with an optimized pseudo-word search algorithm
based on the DTW and self-similarities [10].

4.3 Towards a Fully Automatic Approach: With Automatic
Segmentations

Until now we have used manual phones segmentation. To deal with real con-
ditions when working on a few resourced language, we will now use our model
without input handwritten data. We therefore use automatic phones segmenta-
tion to train our model. This automatic segmentation can be learned in other
languages, with more resources.

In a previous work, we used a CNN to perform automatic segmentation
task [8]. It is a supervised model, but we have demonstrated its portability to
languages other than those learned.

The CNN takes as input F-bank coefficients and outputs probabilities of
the presence/absence of a boundary at frame-level. The diagram of this model
is represented in the Fig. 6. The output is a probability curve evolving in time
whose summits are the locations of probable boundaries. To avoid duplicates due
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to noisy peaks, the curve is smoothed and all summits above a certain threshold
are identified as phones boundaries.

Fig. 6. Illustration of our automatic segmentation approach, based on a CNN

Previously, we showed that this network was portable to other languages than
the one used for training and this is very useful in the present work. Indeed, for
a language with few resources, we can use a corpus from other well-resourced
languages. In addition, it is an additional step towards a fully unsupervised
setting. Table 3 shows that the network gets a good F-measure on languages
other than those used for training.

Table 3. F-measure (%) obtained with the automatic cross-language segmentation
with the results on the columns according to the test corpus and on the lines according
to the two training corpora, for 20 ms.

Languages Test En Fr Xi

En + Fr 73 74 53

Train Fr + Xi 64 80 64

En + Xi 73 63 58

Concerning the pseudo-word discovery, we get the results displayed in Table 2.
The number of pseudo-words found is similar to that found with the manual
segmentation but the purity score is lower with this automatic segmentation,
as expected. For French and Xitsonga, half of the pseudo-words found have less
than two errors, for English it is less than a quarter.

5 Conclusions

In this paper, we reported our experiments on speech unit discovery based first
on a simple approach using the k-means algorithm on acoustic features, second
on an improved version, in which a CNN is trained on the pseudo-phones clusters
inferred by k-means. This solution differs from the standard approach based on
AEs reported in the literature.
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Our model is not yet fully unsupervised: it needs a pre-segmentation at phone
level and obviously the best results were obtained with a manual segmentation.
Fortunately, the loss due to the use of automatic segmentation is small and
we have shown in a previous work that this segmentation can be done using
a segmentation model trained on languages for which we have large manually
annotated corpora. This allows us to apply our approach to less-resourced lan-
guages without any manual annotation, with the audio signal as input only. In
the present work, the automatic segmentation system was trained for English,
language with a lot of resources.

We tested our approach on three languages: American English, French and
the less-represented language called Xitsonga. Concerning the results, there are
differences according to the target language, and especially according to their
characteristics. In all our experiments, the results on the BUCKEYE corpus,
which is comprised of conversational speech, are worse than for the other two
corpora, which are made up of read speech. The increase in the number of
speakers also can be a factor of performance decrease.

With the Xitsonga corpus, for instance, with manual and automatic seg-
mentations, we were able to obtain 46% and 42% purity scores, respectively,
at phone-level with 30 pseudo-phones. Based on the inferred pseudo-phones, we
discovered about 200 pseudo-words.

Our next work will focus on use DPGMM instead of k-means and on use
unsupervised segmentation to have a fully unsupervised model. Furthermore,
we presented first results on pseudo-word discovery based on mining similar
pseudo-phone sequences. The next step will be to apply pseudo-word discovery
algorithms to audio recordings, such as dotplots.
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Abstract. Dealing with noise deteriorating the speech is still a major
problem for automatic speech recognition. An interesting approach to
tackle this problem consists of using multi-task learning. In this case, an
efficient auxiliary task is clean-speech generation. This auxiliary task is
trained in addition to the main speech recognition task and its goal is
to help improve the results of the main task. In this paper, we investi-
gate this idea further by generating features extracted directly from the
audio file containing only the noise, instead of the clean-speech. After
demonstrating that an improvement can be obtained through this multi-
task learning auxiliary task, we also show that using both noise and
clean-speech estimation auxiliary tasks leads to a 4% relative word error
rate improvement in comparison to the classic single-task learning on the
CHiME4 dataset.

Keywords: Speech recognition · Multi-task learning · Robust ASR ·
Noise estimation · CHiME4

1 Introduction

In recent years, Deep Neural Networks (DNN) have proven their efficiency in
solving a wide variety of classification and regression tasks [14]. In particular,
DNNs have been used as acoustic models for Automatic Speech Recognition
(ASR), significantly outperforming the previous state-of-the-art methods based
on Gaussian Mixture Models (GMM) [9]. Improvements brought by neural net-
works have progressively reduced the Word Error Rate (WER) to a level where
some studies argue that ASR can now achieve near human-level performance [31].
Despite these recent improvements, dealing with noisy and reverberant condi-
tions is still a major challenge for ASR [29]. Several techniques have been devel-
oped to address this problem, including feature enhancement for example, where
features are cleaned at the front-end of the ASR system.
c© Springer International Publishing AG 2017
N. Camelin et al. (Eds.): SLSP 2017, LNAI 10583, pp. 181–192, 2017.
DOI: 10.1007/978-3-319-68456-7 15
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In this work, we use Multi-Task Learning (MTL) to improve ASR perfor-
mance in the noisy and reverberant acoustic context. MTL consists of training
a single system, specifically a DNN, to solve multiple tasks that are different
but related, as opposed to the traditional Single-Task Learning (STL) architec-
ture where the system is trained on only one task [2]. MTL has previously been
applied in a variety of situations where ASR is the main task and different aux-
iliary tasks are added. In most cases, however, few MTL auxiliary tasks have
been found to be helpful for the main ASR task when speech is corrupted by
noise and reverberation. Generating the clean-speech feature as an auxiliary task
is one of the most efficient such approaches [5,15,17,23]. We explore this idea
further here by generating the noise features alone as an auxiliary task, as well
as generating the noise and clean-speech features separately as two additional
auxiliary tasks. The core idea is to increase the acoustic model’s awareness of
the noisy environment, and how it corrupts speech. To evaluate these auxiliary
tasks, we use the simulated part of the CHiME4 dataset [29]. While the CHiME4
dataset contains both real and simulated data, only the simulated part may be
used here since we need to extract clean-speech and noise features to train the
MTL system.

This paper is organized as follows. First, we present the state-of-the-art in
MTL for ASR in Sect. 2. We then describe the MTL mechanism in depth in
Sect. 3. Details of the experimental setup used to evaluate the noise estimation
auxiliary task are presented in Sect. 4, with the results and analysis presented in
Sect. 5. Finally, the conclusion and ideas for future work are discussed in Sect. 6.

2 Related Work

Many speech and language processing problems including speech synthe-
sis [10,30], speaker verification [4], and spoken language understanding [16] have
benefited form MTL training. In the case of ASR, whether applying an STL
or MTL architecture, the main task consists of training the acoustic model to
estimate the phone-state posterior probabilities. These probabilities are then fed
as input to a Hidden-Markov Model (HMM) that deals with the temporality
of speech. The use of MTL for ASR has already been tested with a variety of
auxiliary tasks. Early studies used MTL with gender classification as an aux-
iliary task [17,26], the goal being to increase the acoustic model’s awareness
of the impact of the speaker gender on the speech. As explained previously,
the goal of the main task is to predict phone-state probabilities; some studies
investigate a broader level of classes as the auxiliary task, as they try to directly
predict the phone probability instead of the probability of the HMM state [1,25].
A related auxiliary task consists of classifying even broader phonetic classes (e.g.
fricative, plosive, nasal,. . . ) but has shown poor performance [26]. Another app-
roach consists of classifying graphemes as auxiliary task, where graphemes are
the symbolic representation of speech (e.g. any alphabet), as opposed to the
phonemes that directly describe the sound [3,26]. In order to increase the gen-
eralization ability of the network, recent studies have also focused on increasing
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its speaker-awareness. This is done by recognizing the speaker or by estimating
the associated i-vector [6] of each speaker as auxiliary task [19,20,27,28], instead
of concatenating the i-vector to the input features. Adapting the acoustic model
to a particular speaker can also benefit from MTL [11]. Additional information
about these methods can be found in [18].

Most of the previously cited methods do not particularly focus on ASR in
noisy and reverberant conditions, nonetheless robust ASR is a field of interest as
well. Some studies have focused solely on improving ASR in reverberant acoustic
environment by generating de-reverberated speech as auxiliary task, using rever-
berated speech as input during training [8,22]. Another approach that tackles
the noise problem in ASR with MTL consists of recognizing the type of noise
corrupting the speech, where a single noise type among several possible types
is added for each sentence of the clean speech [12,24]. This approach does not
seem to have a real positive impact on the main ASR task, however. The MTL
task that shows the highest improvement consists of generating the clean-speech
features as auxiliary task [15,17,23]. Of course, in order to generate the targets
needed to train this auxiliary task, access to the clean speech is required to
extract the features, and this can only be done with simulated noisy and rever-
berant data. It is also possible to use an MTL system as a feature extractor for
robust ASR, where a bottle-neck layer is used, the goal being to use the activa-
tions of the bottle-neck layer as input of a traditional STL/ASR system [13].

Though previous studies have proposed recognizing the type of noise, or
generating the clean-speech features, to the best of our knowledge, there have
been no attempts to estimate the noise features alone as an auxiliary task, or to
estimate both the noise and speech features separately in an MTL setup.

3 Multi-Task Learning

Initially introduced in 1997, the core idea of multi-task learning consists of train-
ing a single system (a neural network here) to solve multiple tasks that are differ-
ent but still related [2]. In the MTL nomenclature, the main task is the principal
task, i.e. the task that would be initially used for a STL architecture, whereas
at least one auxiliary task is added to help improve the network’s convergence
to the benefit of the main task. An MTL architecture with one main task and
N auxiliary tasks is shown in Fig. 1 as an example.

All MTL systems share two essential characteristics: (a) The same input
features are used for training both the main and the auxiliary tasks. (b) The
parameters (weights and biases) of all neurons, and more generally the internal
structure of the network, are shared among the main and auxiliary tasks, with
the exception of the output layer. Furthermore, these parameters are updated by
backpropagating a mixture of the error associated with each task, with a term:

εMTL = εMain +
N∑

n=1

λn ∗ εAuxiliaryn
, (1)
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Fig. 1. A Multi-Task Learning system with one main task and N auxiliary tasks.

where εMTL is the sum of all the task errors to be minimized, εMain and
εAuxiliaryn

are the errors obtained from the main and auxiliary tasks respec-
tively, λn is a nonnegative weight associated with each of the auxiliary tasks,
and N is the total number of auxiliary tasks added to the main task. The value
λn controls the influence of the auxiliary task with respect to the main task.
If the nth auxiliary task has a λn close to 1, the main task and the auxiliary
task will contribute equally to the error estimation. On the other hand, if λn is
close to 0, a single-task learning system could be obtained due to the very small
(or nonexistent) influence of the auxiliary task. The auxiliary task is frequently
removed during testing, keeping only the main task. Selecting a relevant auxil-
iary task with respect to the main task is the crucial point leading to convergence
of the main task. Instead of computing and training each task independently,
sharing the parameters of the system among multiple tasks may lead to better
results than an independent processing of each task [2].

4 Experimental Setup

In this section, we will present the tools and methods used to evaluate the new
auxiliary task that we propose for robust ASR.

4.1 Database

In order to evaluate noise estimation as an auxiliary task for robust ASR, we
use the CHiME4 database [29]. This database was released in 2016 for a speech
recognition and separation challenge in reverberant and noisy environments. This
database is composed of 1-channel, 2-channel, and 6-channel microphone array
recordings. Four different noisy environments (café, street junction, public trans-
port, and pedestrian area) were used to record real acoustic mixtures through
a tablet device with 6-channel microphones. The WSJ0 database [7] is used to
create simulated data. WSJ0 contains clean-speech recordings to which noise is
added. The noise is recorded from the four noisy environments described above.
For the noise estimation auxiliary task, we use features extracted from these
recordings containing only noise as targets for training. As we cannot obtain
these targets for real data, we only use the simulated data in this study.
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All datasets (training, development, and test sets) consist of 16 bit wav files
sampled at 16 kHz. The training set consists of 83 speakers uttering 7138 simu-
lated sentences, which is the equivalent of ∼15 h of training data. The develop-
ment set consists of 1640 utterances (∼2.8 h) uttered by 4 speakers. Finally, 4
additional speakers compose the test set with 1320 utterances corresponding to
approximately 4.5 h of recordings.

In this work, we investigate noise and clean-speech estimation as auxiliary
tasks, therefore we use only the noise recorded from a single channel during train-
ing (channel no 5). The test and development set noises are randomly selected
from all channels, making the task harder but also challenging the generalization
ability of the setup.

4.2 Features

The features used as input for training the MTL system as well as targets for the
noise and/or clean-speech estimation tasks are obtained through the following
traditional ASR pipeline:

1. Using the raw audio wav files, 13-dimensional Mel-Frequency Cepstral Coeffi-
cients (MFCC) features are extracted and normalized through Cepstral Mean-
Variance Normalization (CMVN).

2. For each frame, the adjacent ±3 frames are spliced.
3. These 91-dimensional feature vectors are reduced through a Linear Discrim-

inative Analysis (LDA) transformation to a 40-dimensional feature space.
4. The final step consists of projecting the features through a feature-space

speaker adaptation transformation known as feature-space Maximum Likeli-
hood Linear Regression (fMLLR).

Finally, the 40-dimensional features that are computed through this pipeline
are spliced one more time with the surrounding ±5 frames for the input features
fed to the acoustic model, thus giving additional temporal context to the network
during training. For the auxiliary tasks’ targets, the same pipeline is followed to
generate the clean-speech and noise features but there is no ±5 splicing at the
final stage. Alignments from the clean-speech are reused for the transformations
applied on noisy features.

4.3 Training the Acoustic Model

Training and testing this MTL auxiliary tasks was done using the nnet3 version
of the Kaldi toolbox [21].

We use a classic feed-forward deep neural network acoustic model to evaluate
the performance of this new auxiliary task. The DNN is composed of 4 hidden
layers, each of them consisting of 1024 neurons activated through Rectified Linear
Units (ReLU). The main task used for STL and MTL computes 1972 phone-state
posterior probabilities after a softmax output layer. The training of the DNN is
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done through 14 epochs using the cross-entropy loss function for the main task,
and quadratic loss function for the auxiliary tasks (as they are regression issues),
with an initial learning rate starting at 0.0015 that is progressively reduced to
0.00015. Stochastic gradient descent (SDG) is used to update the parameters of
the network through the backpropagation of the error derivatives. The size of
the mini-batch used to process the input features is set 512. These parameters
were selected through empirical observations.

The same experiments were also conducted using other deep learning algo-
rithms including Recurrent Neural Networks (RNN) with Long Short-Term
Memory (LSTM) cells and Time-Delay Neural Networks (TDNN). However,
the feed-forward DNN showed similar or better results than these more complex
architectures on the simulated data of CHiME4. Also, the computational time
for the RNN-LSTM network was much higher than for the feed-forward DNN.
While the complexity and temporarily of the main and auxiliary tasks did not
require a more complex acoustic model here, we note that for some auxiliary
tasks, having a more complex network can be crucial for the convergence of the
auxiliary task, as is the case for speaker classification for instance [19].

During decoding, the most likely transcriptions are obtained through the
phone-state probabilities estimated by the feed-forward network, and used by
the HMM system and associated with a language model. The language model is
the 3-gram KN language model trained on the WSJ 5K standard corpus.

4.4 Baseline

The baseline of our system is obtained by training the setup presented in the
previous section in single-task learning manner. We compute the word error rate
for both the development and test sets over all four noisy environments for the
simulated data of CHiME4. The results are shown in Table 1. A very significant
mismatch coming from the recording environments between the development
and test set can be noticed, explaining the higher WER for the test set. For
the rest of this paper we display only the Average results as the trends and
evolutions of the WER are similar over all four noisy environments.

Table 1. Word error rate in % on the development and test sets of CHiME4 dataset
used as baseline. Average is the mean WER of all 4 environmental noises and Overall
is the mean WER over the development and test sets.

Average Bus Café Pedestrian Street

Dev set 18.54 16.55 22.05 15.03 20.52

Test set 26.82 21.44 30.99 26.90 27.96

Overall 22.68 19.00 26.52 20.97 24.24
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5 Results

In this section, we investigate the improvement brought by the new MTL aux-
iliary task, namely regenerating the noise contained in the corrupted sentence,
in comparison to STL. We also combine this auxiliary task with the more tradi-
tional clean-speech generation auxiliary task.

5.1 Noise Features Estimation

In order to evaluate the impact of estimating the noise features as an auxiliary
task in our MTL setup, we vary the value of λnoise, thus varying the influence of
this auxiliary task with respect to main ASR task. The obtained results for values
of λnoise varying between 0 (STL) and 0.5 are presented in Table 2. There is a
small but persistent improvement of the WER for λnoise = 0.05, over both the
development and test sets. For smaller values (λnoise = 0.01), the improvement
is nearly insignificant as the value of λnoise brings the training too close to STL
(λnoise = 0), while for values of λnoise too high (λnoise ≥ 0.15), the WER is
worse than for STL as the influence of the auxiliary task overshadows the main
ASR task.

Table 2. Average word error rate (in %) of the Multi-Task Learning architecture when
the auxiliary task is noise feature estimation, where λnoise is the weight attributed to
the noise estimation auxiliary task during training. The baseline, which is the Single-
Task Learning architecture, is obtained for λnoise = 0. The Overall values are computed
over both datasets.

λnoise 0 (STL) 0.01 0.05 0.1 0.15 0.2 0.3 0.5

Dev set 18.54 18.43 18.19 18.31 18.65 18.82 19.59 20.83

Test set 26.82 26.63 26.50 26.55 26.85 27.08 28.01 29.89

Overall 22.68 22.53 22.35 22.43 22.75 22.95 23.80 25.36

In order to further highlight these observations, we present the relative WER
improvement brought by MTL in comparison to STL in Fig. 2. An improvement
is obtained for values of λnoise between 0.01 and 0.1. The highest improvement
is obtained for λnoise = 0.05, with a relative improvement in comparison to STL
going up to 1.9% on the development set for instance. Larger values of λnoise

degrade performance on the main speech recognition task.
As discussed in Sect. 4.3, training is done over 14 epochs. In order to prove the

ASR improvement is not only the result of the introduction of a small noise into
the system, but rather that both tasks are converging, we present the error over
these 14 epochs in Fig. 3, highlighting in this way the error reduction obtained
on both tasks loss functions over time.

Despite the persistence of the relative improvement for small values of λnoise,
it can be noted that this improvement is quite small. This can be explained by
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Fig. 2. Evaluation of the relative improvement of the word error rate brought by multi-
task learning in comparison to single-task learning, with λnoise the weight attributed
to the noise estimation auxiliary task. The Overall values are computed over both the
development and test datasets.
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Fig. 3. Evolution of the tasks errors over training epochs. The Main Task is the speech
recognition error computed through the cross-entropy loss function, whereas the Aux-
iliary Task corresponds to the noise estimation error obtained through the quadratic
loss function.

several considerations. First, this auxiliary task is less directly related to the
main task than for instance clean speech generation, meaning that the conver-
gence of the auxiliary task may not significantly help the main task. Another
consideration is that the auxiliary task is in fact quite a hard task here as the
Signal-to-Noise Ratio (SNR) is always in favor of the clean-speech and not the
noise, making it hard to estimate the noise alone. Finally, the suitability of the
features extracted following the pipeline presented in Sect. 4.2, as well as using
fMLLR transformation in this context, is most likely not optimal for noise.
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Despite these considerations, using noise estimation as auxiliary task seems
to be helpful for the main ASR task when λnoise is properly selected. Addition-
ally, using a MTL setup is easy to implement and does not require extensive
computational time in comparison to STL (as the same network is trained for
both tasks). Finally, the targets for this particular auxiliary task, noise estima-
tion, are easy to get as we have access to the noise when generating the simulated
data.

5.2 Combining Noise and Clean-Speech Features Estimation

Instead of separately generating clean-speech or noise as auxiliary tasks, we
investigate here the combination of both tasks in the MTL framework. In order
to do that, we first repeat the same experiment as in Sect. 5.1 but where we
generate only the clean-speech features as the auxiliary task. After varying the

Table 3. Average word error rate in % on the development and test sets of CHiME4
dataset, when different auxiliary tasks are applied. Overall is the mean WER over the
development and test sets data.

Auxiliary task(s) Dev set Test set Overall

None (STL) 18.54 26.82 22.68

Noise estimation (λnoise = 0.05) 18.19 26.50 22.35

Clean-speech estimation (λspeech = 0.15) 17.99 26.06 22.03

Noise + clean-speech estimation 17.79 25.78 21.79
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Fig. 4. Evaluation of the relative improvement of the word error rate brought by multi-
task learning in comparison to single-task learning, with different auxiliary tasks. The
Overall values are computed over both the development and test datasets.
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value of λspeech we found the best WER is obtained for λspeech = 0.15. The
obtained results are depicted in Table 3 and, as in the previous section, we com-
pute the relative improvement brought by the different auxiliary tasks (plus their
combination) in comparison to STL in Fig. 4.

The results show that, as expected, a better WER is obtained when using
clean-speech estimation as auxiliary task in comparison to noise estimation,
with an overall relative improvement of 2.9% (while it was 1.5% in the pre-
vious experiment). Interestingly however, using both the clean-speech and noise
estimation auxiliary tasks lead to even better performance, with 3.9% overall
relative improvement and more than 1% absolute improvement on the test set.
This result highlights the fact that the network is learning different and valuable
information from both auxiliary tasks in order to improve the main task. Once
again, implementing these auxiliary tasks is simple and does not require signifi-
cant additional computational time in comparison to classic single-task learning
architectures.

6 Conclusion

In this paper, we have studied multi-task learning acoustic modeling for robust
speech recognition. While most previous studies focus on clean-speech generation
as auxiliary task, we propose and investigate here another different but related
auxiliary task: noise estimation. This auxiliary task consists of generating the
features extracted from the audio file containing only the noise that is later
added to the clean-speech to create the simulated noisy data. After showing
that an improvement can be obtained with this auxiliary task, we combined
it with the clean-speech estimation auxiliary task, resulting in one main task
and two auxiliary tasks. A relative WER improvement of 4% can be obtained
thanks to the association of these two auxiliary tasks in comparison to the classic
single-task learning architecture. Training and testing here was done only on the
simulated data taken from the CHiME4 dataset, as the clean-speech and noise
audio are required separately for the auxiliary tasks training, thus making it
impossible to train with real data. In future work, we would like to find a way
to integrate real data to the training, and re-evaluate the impact of these two
auxiliary tasks. We would also like to use other types of features which may be
more suitable to capture the noise variations, as the features we are currently
using are designed to best capture the diversity of speech.

Acknowledgments. This work has been partly funded by the Walloon Region of
Belgium through the SPW-DGO6 Wallinov Program no 1610152.
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Abstract. This paper deals with the development of language specific
modules (lexicons, phonetic inventories, LMs and AMs) for Russian,
Ukrainian and Belarusian (used by 260M, 45M and 3M native speakers,
respectively). Instead of working on each language separately, we adopt a
common approach that allows us to share data and tools, yet taking into
account language unique features. We utilize only freely available text
and audio data that can be found on web pages of major newspaper and
broadcast publishers. This must be done with large care, as the 3 lan-
guages are often mixed in spoken and written media. So, one component
of the automated training process is a language identification module.
At the output of the complete process there are 3 pronunciation lexicons
(each about 300K words), 3 partly shared phoneme sets, and correspond-
ing acoustic (DNN) and language (N-gram) models. We employ them in
our media monitoring system and provide results achieved on a test set
made of several complete TV news in all the 3 languages. The WER
values vary in range from 24 to 36%.

Keywords: Speech recognition · Multi-lingual · Cross-lingual · East
slavic languages · Language identification

1 Introduction

Since 2000s we have been developing ASR systems that would suit the needs of
Slavic languages, i.e. those with a high degree of inflection, rich morphology and
more or less free word order. We started with Czech (our native tongue) and
designed a fully automated framework which includes also our own real-time
decoder. Currently, it has been used in several applications, such as broadcast
monitoring [11], voice dictation, or spoken archive processing [13]. Later, we have
adapted it to other Slavic languages: Slovak [12], Polish [14], Croatian, Serbian,
Slovene, Macedonian, and Bulgarian [10].

There is a big interest from media monitoring companies to apply the ASR
technology for their business, namely for automatic transcription, sub-titling,
indexation, or on-line alerting. We collaborate with a company that is apply-
ing our ASR engine and the above mentioned language specific components for
c© Springer International Publishing AG 2017
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broadcast monitoring in the countries where Slavic languages are used. To cover
all, we had to include also the East Slavic family of languages, i.e. Russian,
Ukrainian and Belarusian. They have several common features, the most visi-
ble one being the Cyrillic alphabet (azbuka), although each has several unique
letters (in orthography) and phonemes (in pronunciation). Instead of working
on each language separately, we have built a development platform that allows
to combine the sharable data and tools with those components that are lan-
guage dependent. The research and the practical implementation is supported
by the Technology Agency of the Czech Republic within a large project called
MultiLinMedia.

We started our work on the East Slavic languages with an initial study
focused on Russian, as it is the largest one and also because it offers some real
challenges, such as the crucial role of stress in pronunciation or a large number of
palatalized phonemes. In [19], we presented an approach that tried to solve these
issues in an efficient way and yielded rather fair results. Therefore, we decided to
take Russian as the pilot language, from which the other two are bootstrapped.

While getting enough text and audio data is not that hard for Russian, for
Ukrainian, and namely for Belarusian, it is more difficult and less straightfor-
ward. One reason is that (from historical reasons) Russian is frequently used
in Ukraine and Belarus, and all the 3 languages are often mixed in newspapers
and in broadcasting. Hence, a good language identifier must be a part of the
development platform. Like in some other under-resourced languages, we had to
consider also combination of training data from multiple languages.

2 Related Works

Let us recall that the first ASR system for Russian was proposed already in
1960s. It used dynamic programming and worked with some 300 words [3]. In
next decades, many small/middle vocabulary ASR have been reported for dif-
ferent applications, such as phone call routing, voice commanding, etc. The first
real LVCSR system for Russian was designed by IBM researchers in 1996 [4]. It
had 36k words in its lexicon and achieved 5% WER, but only with short read sen-
tences. Later, many other ASR systems were created using different approaches
to deal with Russian specific features, such as high degree of inflection or rich
phonology. In [21], grapheme-based acoustic modelling was used and achieved
32.8% WER on the GlobalPhone data-base [22]. To cope with rich inflection,
in [6] syntactic/morphemic analysis was used to ‘compress’ the lexicon and lan-
guage model. It was tested on 78k and 208k lexicons and yielded 44% WER.
A similar approach was applied also in [5] with 26.9% WER on the SPIIRAS
database [2] with statistical 3 gram model interpolated with syntactic-statistical
2 gram model and 204k words in the lexicon. In [23], a fully automated scheme
(RLAT) for the rapid development of LMs was presented. It was tested also on
the Russian part of GlobalPhone and yielded 36.2% of WER.

For the Ukrainian language, published works have a shorter record. First
LVCSR systems were reported in 2000s. Among them, there was e.g., a comput-
erized stenographer for the Ukrainian Parliament [17] achieving 28.5% WER, or
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systems built on the Ukrainian Broadcast Speech corpus [16] with about 40%
WER for spontaneous speech [7] and 10% for dictation [18] (with a 100k lexi-
con). Another work utilizes the GlobalPhone and RLAT for Ukrainian (in the
same way as in [23]) and reports 21.6% WER [20]. There is also a paper that
deals with the detection of and code switching between Russian and Ukrainian
in spoken documents [8]. It reports 24 and 31% WER for Ukrainian and Russian,
respectively.

As to Belarusian, we have found only one paper [9] which describes an HTK
based voice-command demo system. The authors reported 43% WER with 1838
commands and 8% WER with a subset of 460 specially selected ones.

Our work differs from the mentioned ones by (a) focusing on a practical real-
world application (on-line transcription of broadcast programs), (b) utilizing
only freely available data, (c) employing an own decoder optimized and already
deployed for 10 other languages, (d) making almost all the development process
fully automated, which also means that no native speakers needed to be involved.

3 East Slavic Languages

The East Slavic language family consists of 3 main official languages (Russian,
Ukrainian and Belarusian) and several smaller regional ones, sometimes consid-
ered as dialects, such as Rusyn or Polesian. While Russian is the language with
the highest number of speakers among all the Slavic languages, Ukrainian and
Belarusian have less speakers and they are not always native tongues for a large
part of population in their respective countries. Due to historical reasons, there
was and still is a big Russian influence in the neighbouring post-Soviet states.
About one third of Ukrainian people consider Russian as their native language
and for Belarus it is even about two thirds. This a true challenge for automatic
gathering and processing of Ukrainian and Belarusian text and speech data.

All the 3 languages use the Cyrillic alphabet but each has several unique
letters. Fortunately, this enables to distinguish between their written texts. Pho-
netics is the most complex one among the whole Slavic group. Most consonants
have two versions, hard and soft pronounced (palatalized) ones. Syllable stress
plays an important role both in pronunciation and in perception. It does not
have a fixed position in a word and it is not marked in standard texts. A gram-
matical case or even a meaning is changed by moving it (e.g. zamók – lock
and zámok – castle). The stress also causes vowel reduction which means that
the unstressed phonemes significantly change their quality (e.g. unstressed /o/
is reduced to /a/). However, this applies mainly to Russian. In the other two
languages, the vowel reduction is not that strong and it is already reflected in
the orthography (e.g. odin [adjin] in Russian and adzin [adjin] in Belarusian for
word ‘one’). Therefore, from practical reasons, we distinguish between stressed
and unstressed vowels only in the Russian phoneme inventory.

As in the other Slavic languages, the degree of inflection is rather high, which
results in larger ASR vocabularies if we want to get an acceptable coverage rate
(>97%) needed for the general broadcast task. Large and multi-domain text
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corpora are necessary not only for reliable word frequency lists but also for
representative LMs because the Slavic languages have a relatively free word
order in a sentence (Table 1).

Table 1. East Slavic languages

Language Abbreviation Speakers

Russian RU 260 million
Ukrainian UK 45 million
Belarusian BE 3.2 million

4 Language Specific ASR Modules

For each language, three specific modules need to be made: a pronunciation
lexicon, a language model (LM) and an acoustic model (AM). The first two
require large text corpora, for the third we have to collect enough audio data
containing speech of many speakers in the target language.

Table 2. Statistics on corpora and ASR vocabularies

Language RU UK BE

# Web 12 28 11

Downloaded text 2.83 GB 4.39 GB 2.56 GB
After processing 998 MB 2.37 GB 814 MB
After lang. filtering 998 MB 758 MB 280 MB
# Words 149M 111M 42M

Lexicon size 326k 324k 293k
Pronunciations 408k 372k 353k
Phonemes 53 39 36

4.1 Text Corpus, Lexicon and Language Model

Text Corpus. The best free sources of texts are web pages of newspapers and
broadcasters. They contain multi-domain texts in large quantities and with a rel-
atively small number of typos and other errors. We have made a tool that crawls
through a given web source, process its HTML code and extracts text blocks
that meet several basic criteria (e.g. constrains on the number and length of
strings, number of digits in a sequence, length of supposed-to-be sentences, etc.).



East Slavic Languages ASR Development 197

This is to avoid downloading of captions, tables, advertisements and other non-
verbal data. After that, the corpus is further processed to remove or unify punc-
tuation, URLs, specific characters, etc. Repetitive sentences that may have origin
in multi-page web layout are also removed. Table 2 shows the amount of down-
loaded data and its size after processing and language filtering.

As mentioned earlier, there is a high number of Russian speaking people in
Ukraine and Belarus. Russian texts may occur everywhere in these two countries,
on official web pages and documents, in interviews, in citations, etc. Luckily, the
three languages differ in few characters, especially in those representing sounds
/i/ and /y/ that are very common letters. We proposed a simple filter that
counts these unique letters in a sentence for each pair of languages and classifies
it to that with the highest count. This method achieved 96.9% accuracy on 500
test sentences labelled by native speakers. Table 3 shows which letters of the
language in the row are not present in the language in the column.

In our scheme, the last step is a conversion of the texts into Latin script. For
this purpose we have created a 1-to-1 mapping of Cyrillic letters to the Latin
ones; to those with the same or similar pronunciation (see [19]). It significantly
simplifies reading, typing, editing non-Latin texts to those who are not familiar
with azbuka. Moreover, it allows us to use the same string manipulation routines
(needed, e.g., for digit transcription or G2P conversion) for all Slavic languages.

Table 3. Character differences in three alphabets

RU UK BE

RU / э, ё, ы, ъ и, ъ, щ
UK ґ, е, i, ї, ’ / ґ, е, и, ї, щ
BE ґ, i, ў, ’ э, ё, ы, ў /

Pronunciation Lexicon. The ASR lexicon is based on the frequency of strings
found in the corpus for the given language. Not all are true words, and we need
to apply filtering, e.g. to remove strings with digits inside, or to omit 1- and
2-letter strings that are not valid words or abbreviations. The lexicon is made of
those words that reach some minimum count (usually 5). This leads to lexicons
with about 300K words and about 3% OOV rate.

All Slavic languages have fairly straightforward relation between orthography
and pronunciation and this applies even more for those using Cyrillic alphabet
where foreign words and names are phonetically transliterated.

For Russian, we use a set of 53 phonemes, including the palatalized conso-
nants and pairs of stressed/unstressed vowels [19]. For UK and BE languages, we
omit the unstressed ones and several specific phonemes, and get subsets with 39
and 36 phonemes, respectively. Pronunciation is generated according to the rules,
from which many are common to all Slavic languages (e.g. consonant assimila-
tion). The specific ones are related mainly to the palatalization phenomenon.
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The method how we deal the stress in Russian is described in detail in [19]. Spe-
cial care is also given to abbreviations were we allow alternative pronunciation.
The size of the lexicons and some other statistics on them are summarized in
Table 2.

Language Model. From the corpora we compute N-gram statistics that allow
us to identify the most frequently occurring collocated words. These are added
to the lexicon and after that a bigram LM is made using Knesser-Ney smoothing
algorithm. Due to the added multi-words it has a larger span than a standard
2-gram model yet with lower computation demands.

4.2 Speech Data and Acoustic Model

Within the MultiLinMedia project we use only freely available speech data that
can be gathered from audio and video sources on the Internet. There exist some
dedicated speech databases, like e.g., GlobalPhone [22] with Russian and recently
added Ukrainian parts, but they are not free, their size is limited, usually they
cover just read speech, and they are not available for all the target languages.
The AM training is done using HTK speech recognition toolkit and Torch library
to train the neural networks.

Speech Data Harvesting Scheme. We have developed our own approach
that allows us to gather (and annotate) enough speech from such sources, like
broadcast or parliament archives. We rely on the fact that these archives contain
both spoken records and some related text in form of, e.g. printed articles, sub-
titles for videos or stenograms from parliament sessions. Our goal is to detect
automatically those documents or their parts (we call them chunks) where the
spoken content agrees with the attached text. The estimate of the spoken con-
tent is provided by the best ASR system available at that stage and its output is
matched with the provided text. The chunks where the former perfectly matches
the latter are considered as correctly transcribed and their orthographic and
phonetic transcriptions are used to build up a regular training database. The
scheme proved to be robust. If there is no correspondence between the text and
audio/video documents, the system will produce no training data in this case
and it will cost us nothing except of the used CPU time. On the other side,
if for a given document or its chunk, the ASR output is exactly same as the
provided text, we can be sure that the transcription is trustworthy and that also
the phonetic annotation provided by the system is precise enough for the AM
training. The amount of the data gathered in this way depends on the nature
of the sources. E.g., the parliament archives have a high degree of agreement
between spoken and written content, while broadcasters’ web pages can have a
rather loose relation between them. However, because these sources are usually
very large, there is always a chance to gather hours or even tens of hours of
training data. The system and its efficiency improves in time. It is lower at the
initial phase when the ASR system need to use an AM borrowed from other
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language(s) but it increases after several iterations when the newly acquired
training data is added to the previous one.
The scheme is applied in several iterative steps:

1. Take a document with a related text from web
2. Transcribe it with the best available AM
3. Find chunks with closely matched text and transcript
4. Compare transcription with related text:

(a) If match score = 100%, add it to training set
(b) (Optional) If match score > threshold (e.g. 90%), check and correct by

human and add to training set
5. Train new AM from the current training set
6. If any data left, go back to 1., 2., or 4., accordingly.

A more detailed description can be found in [10,14].
In each language, we start the data gathering process by searching for webs of

major TV and radio stations and also the national parliaments. We have to find
if they contain audio or video data, and a text that could be somehow related.
(Usually this can be guessed without any particular knowledge of the language).
The documents are automatically downloaded and the process described above
is launched. It can run almost without any human supervision but it is useful
to include also the optional human check (step 4b). We use a tool that replays
the audio chunks whose score is above the specified threshold. The annotator
also sees the original text and ASR output with highlighted differences and just
clicks on that choice that sounds more appropriate to him/her. This human
intervention is used mainly during initial iterations to boost the progress and
also to discover potential errors in pronunciation.

Application to East Slavic Languages. In Table 4, there are some relevant
statistics from the data harvesting process. We show the number of used web
sources (it was all TV and radio stations, and in case of Russian also the national
parliament Duma), the total size of downloaded audio data, the size of the
extracted chunks with text match, and the real amount of speech data gathered
for AM training.

Table 4. Statistics on acoustic data

Language RU UK BE

# Web sources 7 6 3

Downloaded audio [hours] 4627 4015 955

Total size of chunks [hours] 192 161 48

Gathered and annotated data [hours] 58.3 48.0 16.4
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Language Identification. As mentioned earlier, there is a lot of Russian
speakers in Belarus. In TV news, Belarusian is often mixed with Russian and
Ukrainian. If we wanted to get a pure training database for BE, we had to
incorporate a spoken language identification (LID) module. Classic LID meth-
ods based on phonotactics do not work well for closely related languages. In
such a situation, it is better to use a method that takes into account a longer
context, it means words and their combinations, i.e. the LM. We used the app-
roach described in [15]. We took our ASR system and let it work with special
components: (a) an AM trained on the RU and UK speech data (obviously, BE
data was not available at that stage), a lexicon composed of 100K most frequent
words from RU, UK and BE (with a language label attached to each word), and
(c) an LM trained on the joint RU+UK+BE corpus. The ASR system processed
the audio data from the BE sources, segmented them into chunks and for each
chunk it made a decision about the language based on the majority labels and
a threshold. The latter was tuned on a small development set to get a balance
between precision and recall values. When applied to the all Belarusian sources,
it approved about 55% audio chunks as those belonging to BE. This is the main
reason why we gathered only 16.4 h of BE training data as shown in Table 4.
Anyway, in the following section we demonstrate that an AM based on this pure
data works better than a mixed AM.

5 Evaluation on Real Broadcast Data

For evaluation we have prepared a standard test set used in the whole MultiL-
inMedia project. For each language, we took 3 full TVR main news shows, each
about 30min long. The shows were complete and contained jingles, headlines,
clean studio speech, interviews in streets, large background noise, dubbed speech
and also utterances in other languages (denoted as out-of-language, OOL). Pre-
cise orthographic annotations were made by native speakers. It should be also
noted that the data was recorded at the beginning of 2017, while all the data
used in the AM and LM training comes from the period 2010–2016. Like in our
previous projects, we make them publicly available. They can be downloaded
from gitlab.ite.tul.cz/SpeechLab/EastSlavicTestData. In all the experiments,
we employed the same LVCSR system as in [10]. It uses 39-dimensional log-
filter banks and DNN-HMM architecture. All the DNNs have 5 hidden layers
(1024-768-768-512-512) with ReLU activation functions.

The results for the 3 languages are summarized in Table 5. We present two
WER values. The first represents the total number of errors made by the system
trained for the target language. It includes also those errors caused by talks
in other languages (OOL passages). If we skip them in evaluation, we get the
second WER value, which reflects the performance measured only on the target
language speech. We can see that this plays a significant role mainly in UK and
BE news.

The results for Russian (22%) are on the similar level like we got for most
other Slavic languages. Ukrainian is worse but still acceptable for the broadcast
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monitoring task. Belarusian shows the worst performance, which is most likely
caused by the small AM training set (16.4 h). We run an experiment in which the
BE test set was recognized using either the UK acoustic model or that trained
on the UK and BE data. The results are shown in Table 6. They are worse
compared to the case when the genuine Belarusian AM was used. We have also
analysed the main sources of ASR errors. In case of clean speech, most are due
to misrecognized word-forms belonging to the same lemma and differing just in
acoustically (and phonetically) similar suffixes. In these languages, the suffixes
often have unstressed and hence reduced pronunciation. Obviously, more serious
errors occur in noisy and spontaneous speech passages. One important issue that
we are currently working on is the implementation of the LID module that runs
on-line and allow for switching between the languages.

Table 5. Broadcast news test set and performance. The last column shows WER after
excluding OOL passages, i.e. those in other than target language

Language Duration #words OOV WER WER excl. OOL

Russian 93 min 12277 2.18% 23.02% 22.08%
Ukrainian 75 min 9440 2.75% 34.25% 30.15%
Belarusian 82 min 1716 3.12% 44.52% 35.95%

6 Discussion

One may ask, how good is an AM created in the presented way compared to
that made of a dedicated speech database. As we have the Russian part of the
Global-Phone (GP) dataset, we run several experiments. We trained an AM on
the GP train set (22 h) and compared it to our AM based on 58 h gathered
automatically. Two test sets were used: the test part of GP (10 speakers) and
the broadcast set mentioned in Sect. 5. The results are summarized in Table 7
and show that the AM from the free sources outperforms the GP based one in
both the tasks. We assume that it is mainly because the former is larger in size,
it includes more speakers and, in particular, a larger variety of speaking styles
and acoustic conditions.

Table 6. Results achieved on Belarusian test set with cross-lingual (UK) and multi-
lingual (BE+UK) AMs

AM WER axcl. OOL

UK 47.02%
BE+UK 36.36%



202 R. Safarik and J. Nouza

Table 7. Comparison of 2 train & test sets in Russian (The values are WERs in %)

Test set\Train set GlobalPhone Automatically gathered

GlobalPhone 18.21% 14.30%
Broadcast News 50.74% 23.02%

7 Conclusions

In this paper, we show that both the linguistic as well as the acoustic part of a
state-of-the-art LVCSR system can be trained on data that is freely available on
the Internet. The data can be acquired and processed in an almost automatic
way, with minimum human intervention and without any particular knowledge
of the target language.

We spent almost 2 years working on the Russian system, as it was our first
experience with an East Slavic language, azbuka, the stress issue, etc. Anyway,
it helped us to get a deeper insight. The other two languages were processed in
a faster and more efficient way, using Russian as a start point, well suited for
bootstrapping. We have also benefited from the multi-lingual platform and its
tools built during the previous work on other Slavic languages. Recently, we have
a portfolio that contains phonetic inventories, grapheme-to-phoneme converters,
digit-to-text transducers [1], lexicons, acoustic models and language models for
all 13 Slavic languages.
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Abstract. Neural Networks (NNs) are prone to overfitting. Especially,
the Deep Neural Networks in the cases where the training data are not
abundant. There are several techniques which allow us to prevent the
overfitting, e.g., L1/L2 regularization, unsupervised pre-training, early
training stopping, dropout, bootstrapping or cross-validation models
aggregation. In this paper, we proposed a regularization post-layer that
may be combined with prior techniques, and it brings additional robust-
ness to the NN. We trained the regularization post-layer in the cross-
validation (CV) aggregation scenario: we used the CV held-out folds to
train an additional neural network post-layer that boosts the network
robustness. We have tested various post-layer topologies and compared
results with other regularization techniques. As a benchmark task, we
have selected the TIMIT phone recognition which is a well-known and
still favorite task where the training data are limited, and the used reg-
ularization techniques play a key role. However, the regularization post-
layer is a general method, and it may be employed in any classification
task.

Keywords: Speech recognition · Phone recognition · Acoustic model-
ing · Neural networks · Regularization · Neural networks ensemble

1 Introduction

A usual problem that occurs during neural network training is called overfitting:
the accuracy on the training set is driven to be a very nice, but when new data is
presented to the network the accuracy drops. The network has nicely memorized
the training data, but it has not learned to generalize the new ones.

A method for improving network generalization is to use a network that is
just large enough to provide an adequate fit. The larger/deeper network we use,
the more complex the functions the network can create. If we use a small enough
network, it will not have enough power to overfit the data. Unfortunately, it is
hard to know beforehand how large a network should be for a specific task. In the
automatic speech recognition (ASR) domain, too shallow networks do not have
an ability to learn the complex dependencies in the speech data. Therefore, it
c© Springer International Publishing AG 2017
N. Camelin et al. (Eds.): SLSP 2017, LNAI 10583, pp. 204–214, 2017.
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is preferred to use a deep enough network in combination with some techniques
that prevent the overfitting.

2 Related Work

A brief overview of the most popular techniques that prevent the overfitting
follows.

2.1 Early Stopping

A possible way to regularize a neural network is early stopping, meaning that the
training procedure is monitored by a validation set. When the validation error
increases for a specified number of iterations, the training is stopped.

2.2 Stochastic Gradient Descent (SGD)

Despite the fact that the main benefit SGD is a training process acceleration,
SGD could be also seen as an overfitting avoiding technique because it does not
let a training process use the same examples over and over again.

2.3 L1, L2 Regularization

The other way to better neural networks generalization ability is to add an
extra term to the error function that will penalize complexity of the network [1].
Penalizing the number of nonzero weights is called L1 regularization: a coeffi-
cient times a sign of weight values are added to the error gradient function. L2
regularization uses a sum of the squares: a fraction of weights values is added to
the error gradient function. We can set the L1 and L2 coefficients for an entire
network or on a per-layer basis.

2.4 Dropout

The term dropout refers to dropping out units (hidden and visible) in a neural
network [2]. The dropping a unit out means temporarily removing it from the
network, along with all its incoming and outgoing connections. The choice of
which units to drop is random with a fixed probability p independent of other
units, where p can be chosen using a validation set or can simply be set in an
interval between 0 and 0.5. For the input units, however, p is usually closer
to 0 than to 0.5. At training time, a new random set of weights is sampled
and trained for each training sample. At test time, a very simple approximate
averaging method works well in practice. The weights of this network are scaled-
down versions of the trained weights. The outgoing weights are multiplied by
1− p at test time. This ensures that for any hidden unit the expected output is
the same as the actual output at test time [2].
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The dropout technique described above prevents feature co-adaptation by
encouraging independent contributions from different features. However, repeat-
edly sampling a random subset of active weights makes training much slower.
Wang et al. in [3] experimented with a Gaussian approximation of integrated
dropout sampling. This approximation, justified by the central limit theorem
and empirical evidence, gives an order of magnitude speedup and more stability.

2.5 Shakeout

From the statistic point of view, the dropout works by implicitly imposing an L2
regularizer on the weights. Kang et al. presented in [4] a new training scheme:
shakeout. Instead of randomly discarding units as the dropout does at the train-
ing stage, the shakeout method randomly chooses to enhance or inverse the
contributions of each unit to the next layer. This scheme leads to a combination
of L1 regularization and L2 regularization imposed on the weights of the model.
The technique was called shakeout because of the randomly shaking process and
the L1 regularization effect pushing network weights to zero. The models trained
by shakeout generalize better than the standardly trained networks. Moreover,
in adverse training conditions, such as with limited data, the shakeout training
scheme outperforms the dropout training.

2.6 Unsupervised Pre-training

Since gradient-based optimization often appears to get stuck in poor solutions
starting from random initialization, Hinton et al. in [5] proposed a greedy layer-
wise unsupervised pre-training learning procedure. This procedure relies on the
training algorithm of restricted Boltzmann machines (RBM) and initializes the
parameters of a deep belief network (DBN), a generative model with many layers
of hidden causal variables. The greedy layer-wise unsupervised training strategy
helps the optimization by initializing weights in a region near a good local mini-
mum, but also implicitly acts as a sort of regularization that brings better gener-
alization and encourages internal distributed representations that are high-level
abstractions of the input [6]. The main idea is a using unsupervised learning at
each stage of a deep network as a part of a training procedure for DBN. Upper
layers of a DBN are supposed to represent more abstract concepts that explain
the input observation, whereas lower layers extract low-level features from the
input. In other words: this model first learns simple concepts, on which it builds
more abstract concepts. In combination with the early stopping technique, the
DBN pre-trained networks provide better generalization ability.

2.7 NNs Ensemble: Models Combination and Aggregation

Ensemble method or combining multiple classifiers is another way to improve the
generalization ability [7–9]. By averaging or voting the prediction results from
multiple networks, we can significantly reduce the model classification variance.
The motivation of combining several neural networks is to improve a new data
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classification performance over individual networks. Perrone et. al showed, the-
oretically, in [10] that the performance of the ensemble can not be worse than
any single model used separately if the predictions of the individual classifier are
unbiased and uncorrelated.

Bootstrap Aggregation - Bagging. Bootstrap aggregation, also called bag-
ging, is a method for generating multiple versions of a predictor and using these
to get an aggregated predictor [11]. The aggregation averages over the versions
when predicting a numerical outcome and does a plurality vote when predicting
a class. The multiple versions are formed by making bootstrap replicates of the
learning set and using these as new learning sets. The vital element is the instabil-
ity of the prediction method. If perturbing the training set can cause significant
changes in the predictor constructed, then bagging can improve accuracy.

Cross-Validation Aggregation - Crogging. In classification, cross-validation
(CV) is widely employed to estimate the expected accuracy of a predictive algo-
rithm by averaging predictive errors across mutually exclusive sub-samples of
the data. Similarly, bootstrapping aims to increase the validity of estimating
the expected accuracy by repeatedly sub-sampling the data with replacement,
creating overlapping samples of the data. Beyond error estimation, bootstrap
aggregation or bagging is used to make a NNs ensemble. Barrow et al. consid-
ered in [12] similar extensions of cross-validation to create diverse models. By
bagging, it was proposed to combine the benefits of cross-validation and pre-
diction aggregation, called crogging. In [12], the crogging approach significantly
improved prediction accuracy relative to the bagging.

3 Regularization Post-Layer (RPL)

The RPL technique is based on cross-validation aggregation; however, it is more
advanced. Cross-validation ensures that all observations are used for both train-
ing and validation, though not simultaneously, and each observation is guaran-
teed to be used for model estimation and validation the same number of times.
Furthermore, the validation set available in CV can be used to control for over-
fitting in neural network training using early stopping. A k-fold cross-validation
allows the use of all k validation sets in performing early stopping, and this
potentially further reduces the risk of overfitting. Moreover, prediction values
for all k folds can be obtained in validation mode. These validation-predictions
for all folds – all training data – make a new valuable training set for an addi-
tional NN layer that we called regularization post-layer.

The RPL input dimension is equal to the number of classes, and the output
dimension is the same. We assume that there is softmax function in the last
layer of a standard NN. To be compatible, RPL must end by the softmax layer
too. In principle, an application of the proposed regularization is not restricted
on a post-layer or on only one single layer. But an output of the last layer has a
straightforward influence on a criterion value. Thus a robustness of the layer is
crucial. Any regularization of some deeper layer might make a training process
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less stable. This danger is always present but it is clearly minimal in the case of
the last layer. Furthermore, dropout as a technique that works well for hidden
layers can be applied technically also on the last layers but, for obvious reasons, is
inappropriate. We prefer using of log-softmax values of the main NN as an input
to RPL because RPL ends by additional softmax layer that assumes log-domain
inputs. Because of log-domain processing, a multiplication in RPL corresponds
to power at the output/probability domain, and an addition in RPL corresponds
to a multiplication at the output. We lacked in a function that corresponds to
an addition at the output. Therefore, we proposed to add a log-addition part to
RPL.

Let xi be a log-sofmax output vector of the main NN, where i = 1 . . . N . N
is number of training samples. In general case, we proposed the RPL topology
as follows:

yi = softmax
(
addlog(x + Wx + b, c)

)
, (1)

where addlog is a log-addition function

addlog(α, β) = log
(

exp(α) + exp(β)
)
, (2)

that is illustrated on Fig. 1 and can be computed in a robust way as follows:

addlog(α, β) = max(α, β) + log
(

1 + exp
(

min(α, β) − max(α, β)
))

, (3)

W is a square matrix, b is a vector of offsets, and c is a logarithm of a vector
of offsets in non-log-domain. Using x + Wx (i.e. (I + W )x) instead of a simpler
Wx keeps values of gradients significantly non-zero in the beginning of a training
process when items of W and b are still small numbers. In this case, (I +W ) is a
regularization of W. Therefore, the matrix W and the vector b may be initialized
close to zero. For initialization of the vector c, values close to the neutral element
of the operation addlog are required. The neutral element is not 0 in this case
but negative infinity. Thus the initial values were logarithms of small positive
numbers e.g. log(1e−6). We trained RPL in the same way as the main NN: By
SGD with identical training parameters.

As Fig. 1 shows, the addlog operation used in described way (see Eq. (1))
is similar to rectified linear unit (ReLU) function (precisely, it is the so-called
softplus function for c = 0) but the difference is that the addlog function infimum
(i.e. c) is not fixed as zero. The set infimum possibility is not relevant in hidden
layer because a subsequent layer can do that too by means of its biases. In the last
layer, especially when softmax function is applied, it is crucial because a posterior
close to zero could be done only by means increasing other posteriors (before
softmax) and that could make a NN and its training process less effective. The
withc have the greatest influence on rare classes where the variance of predictions
in log-domain is high.

When then the number of classes is high (i.e. thousands of classes as it
is the typical situation in acoustic modeling for speech recognition), W is too
large and some regularization or other treatment is necessary. Besides L1/L2
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Fig. 1. Addlog function behavior

regularization, one may try a diagonal matrix W only or decomposition the
square matrix W to a multiplication of two rectangular matrices W = AB,
where an additional tunable hidden dimension parameter of matrices A and B
is available.

In the testing phase, k outputs of main NNs are available. We follow the
crogging technique: we aggregate all k outputs first and then proceed to the
RPL that produces the single final output.

4 Regularization Techniques in Automatic Speech
Recognition (ASR)

Training of NN as an acoustical model for automatic speech recognition (ASR)
has some unique issues. The main fundamental issue is the data dependency. Usu-
ally, the training data samples are defined to be independent, but it does not hold
in ASR. In a stream of processed audio signal, subsequent samples are mutually
dependent and very similar. Also, data produced by the same speaker or under
the same condition (recording hardware, codec, environment) are dependent. It
is well known in the community and it could be partially avoided by splitting
between training/validation parts at speaker-level. Cross-validation and boot-
strapping need to be done at speaker-level also. The dependency in data lowers
the “effective” amount of training data and we need to process a higher num-
ber of training samples during training relatively to another task where the data
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samples are independent. Therefore, ASR NNs are more prone to overfitting and
the proper combination of regularization techniques belongs to key parts that
affect the total ASR performance.

Early stopping, L2 regularization, dropout, and DBN unsupervised pre-
training belongs in the most often used techniques in ASR. The pre-training
also reduces total training time because the training starts much closer to a
local optimum. On the other hand, pre-training is hard to use for the most
recent NN types as (B) LSTM and TDNN. Using of dropout in ASR is some-
times tricky; p-values closer to one is used, or dropout is utilized in the first
several training epochs only. While the dropout method was not designed for
noise robustness, in [13] it was demonstrated that it was useful for noisy speech
as it produced a network that was highly robust to variabilities in the input.
NNs ensemble methods including bagging and crogging have not been popular
in ASR because of high computation requirement also in the test phase. Most
of the ASR systems need to keep computation burden low. However, offloading
most of the NN computation to a GPU offers a space to apply more complex
NNs, including NNs ensemble.

5 Experiments

As a benchmark task, we have selected the TIMIT phone recognition which is a
well-known and still popular task where the training data are limited, and the
used regularization technique plays a key role. As a baseline system, we used
Kaldi and its TIMIT training example which is publicly available and offer easy
experiments repeatability.

The TIMIT corpus contains recordings of phonetically-balanced prompted
English speech. It was recorded using a Sennheiser close-talking microphone at
16 kHz rate with 16 bit sample resolution. TIMIT contains a total of 6300 sen-
tences (5.4 h), consisting of 10 sentences spoken by each of 630 speakers from
8 major dialect regions of the United States. All sentences were manually seg-
mented at the phone level.

The prompts for the 6300 utterances consist of 2 dialect sentences (SA),
450 phonetically compact sentences (SX) and 1890 phonetically-diverse sen-
tences (SI).

The training set contains 3696 utterances from 462 speakers. The core test
set consists of 192 utterances, 8 from each of 24 speakers (2 males and 1 female
from each dialect region). The training and test sets do not overlap.

5.1 Speech Data, Processing, and Test Description

As mentioned above, we used TIMIT data available from LDC as a corpus
LDC93S1. Then, we ran the Kaldi TIMIT example script, which trained various
NN-based phone recognition systems with a common HMM-GMM tied-triphone
model and alignments. The common baseline system consisted of the follow-
ing methods: It started from MFCC features which were augmented by Δ and
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ΔΔ coefficients and then processed by LDA. Final feature vectors dimension
was 40. We obtained final alignments by HMM-GMM tied-triphone model with
1909 tied-states. We trained the model with MLLT and SAT methods, and we
used fMLLR for the SAT training and a test phase adaptation. We dumped all
training, development and test fMLLR processed data, and alignments to disk.
Therefore, it was easy to do compatible experiments from the same common
starting point. We employed a bigram language/phone model for final phone
recognition. A bigram model is a very weak model for phone recognition; how-
ever, it forced focus to the acoustic part of the system, and it boosted benchmark
sensitivity. The training, as well as the recognition, was done for 48 phones. We
mapped the final results on TIMIT core test set to 39 phones (as it is usual
by processing TIMIT corpora), and phone error rate (PER) was evaluated by
the provided NIST script to be compatible with previously published works. In
contrast to the Kaldi recipe, we used a different phone decoder to be able to test
novel types of NNs. The decoder is simple, but it does not tie mapped triphones
and it process entire “full-triphone” lattice. It gives slightly better results than
Kaldi standard WFST decoder. To be comparable, we used our full-triphone
decoder for all results in this paper.

5.2 NNs Topology and Initialization

We used a common NN topology for all tests because the focus of this article
is NN regularization and generalization ability. It followed the standard Kaldi
recipe: we stacked input fMLLR feature 11 frames long window to 440 NN input
dimension. All the input vectors were transformed by an affine transform to
normalize input distribution. The net had 6 layers with 1024 sigmoid neurons
and the final softmax layer with 1909 neurons. We used the DBN pre-training.
In this point, we exported the NN parameters from Kaldi to our Theano-based
training tool and made 10 epochs of SGD. Ten epochs are not enough to train
a good model, but it was our common starting point for all our experiments.
This way, we reduced the total computation time. We trained all NNs with L2
regularization with value 1e–4. Note that we also tested more recent types of
NNs: LSTM NN and TDNN. However, we were not able to obtain better results
compared to above mentioned deep NN (DNN).

5.3 Results

In Table 1, we show the summary of our results together with a couple state-
of-the-art recently published results. DNN means the above described NN ran-
domly initialized and trained by SGD with the L2 regularization and early stop-
ping. DBN DNN is identical to DNN but with DBN unsupervised pre-training.
DBN DNN sMBR is DBN DNN followed by a sequence-discriminative training
[14]. DBN DNN Dropout means DBN DNN trained with dropout (probability of
dropping out p = 0.1). DBN DNN Bagging 5 is an aggregation of 5 bootstraped
NNs, all trained from the same DBN initialization. DBN DNN Crogging 5 is an
aggregation of 5 NNs done by a 5-fold cross-validation, all NNs were trained from
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Table 1. Phone error rate [%] on TIMIT for various acoustic model NNs

NNs Dev Test

DNN 21.6 23.0

DBN DNN Dropout 18.2 19.7

DBN DNN Bagging 5 16.5 17.3

DBN DNN sMBR 16.4 17.1

DBN DNN 16.3 17.0

DBN DNN Crogging 5 16.5 16.9

DBN DNN RPLFull 16.4 16.8

DBN DNN RPLDiag 16.2 16.5

RNNDROP [15] 15.9 16.9

CNN Hierarchical Maxout Dropout [16] 13.3 16.5

the same DBN initialization. DBN DNN RPLFull and DBN DNN RPLDiag are
based on DBN DNN Crogging 5 but the RPL with full- or diagonal-matrix W
was added and trained. The results in Table 1 show that the DBN unsupervised
pre-training was a key to get a low PER. Progress over DBN DNN baseline was
rather small. The sequence-discriminative training did not help on this task.
A big surprise was the dropout result. Here the dropout results were unsatis-
factory, and it was a problem to train the dropout NN in Kaldi successfully.
However, other published more positive result with dropout on TIMIT [15,17].
Bagging produced slightly higher PER that the DBN DNN baseline. We have
also done an experiment with a change of a count of aggregated NNs in the
bagging method. We show the accurate bagging results in Fig. 2. From the bag-
ging experiment analysis, it is clear that 5 NNs was enough for aggregating and
more NNs did not brings any further improvement. The greatest difference was
between single NN and 2-NNs bagging. Crogging itself produced similar results
as the baseline. We obtained an improvement with RPL only. With 1909 classes
(tied-states of HMM), the diagonal RPL worked better than the full matrix
variant, and we obtained PER that matched the best published TIMIT core test
results [15,16].

5.4 Using of RPL in Image Processing

Besides using of RPL in phone recognition, we successfully applied it in a Kaggle
image classification competition. We utilized RPL in the National Data Science
Bowl competition 2015 (www.kaggle.com/c/datasciencebowl). Thanks to RPL,
we achieved a very low drop of accuracy between development and test sets (the
public and private leaderboard, respectively) and our team was moved up by 7
places on the leaderboard and we have finished at 19th place from 1,049 teams.

www.kaggle.com/c/datasciencebowl
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Fig. 2. Bagging PER for various number of NNs aggregated

6 Conclusion

In this paper, we propose the regularization post layer as an additional way to
improve a deep neural networks generalization ability. It may be combined with
other techniques as L1/L2 regularization, early stopping, dropout and others.
It is based on cross-validation training and aggregation of NNs ensemble; there-
fore, the main drawback is higher computational requirements in the test phase.
However, this drawback may be overcome by using of GPUs to accelerate NNs
evaluation.

On TIMIT benchmark task, only a using of regularization post layer gives
better results than DNN with DBN pre-training and we obtained PER that
matched the best published TIMIT core test results.
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Abstract. Stuttering is a common problem in childhood that may per-
sist into adulthood if not treated in early stages. Techniques from spoken
language understanding may be applied to provide automated diagnosis
of stuttering from children speech. The main challenges however lie in the
lack of training data and the high dimensionality of this data. This study
investigates the applicability of machine learning approaches for detect-
ing stuttering events in transcripts. Two machine learning approaches
were applied, namely HELM and CRF. The performance of these two
approaches are compared, and the effect of data augmentation is exam-
ined in both approaches. Experimental results show that CRF outper-
forms HELM by 2.2% in the baseline experiments. Data augmentation
helps improve systems performance, especially for rarely available events.
In addition to the annotated augmented data, this study also adds anno-
tated human transcriptions from real stuttered children’s speech to help
expand the research in this field.

Keywords: Stuttering event detection · Speech disorder · Human-
computer interaction · CRF · HELM

1 Introduction

Stuttering, sometimes referred to as ‘stammering’, is a speech disorder problem
that starts in childhood and may result in severe emotional, communicational,
educational and social maladjustment. Inadequate diagnoses and intervention at
an early age may increase the risk that the condition may become chronic and
has negative consequences on children with stuttering and their families [2,5].
Thus, clinical intervention should take place as early as the preschool years
because later intervention does not help. Also, it is not possible to determine a
child’s chance of naturally recovering from stuttering. Moreover, children are less
tractable as they get older due to the reduction of neural plasticity [11]. During
the assessment phase, clinicians need to carefully measure the stuttering events
to determine the severity of stuttering. This measurement is usually conducted
by counting the number of stuttering events in the child’s speech. This process
is extremely dependent on the clinician’s experience [1]. In another approach,
c© Springer International Publishing AG 2017
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the clinician transcribes a recorded session and classifies each spoken term into
one of several normal, disfluent or stuttering categories [4]. This process takes
a long time because of the need to write every spoken word which takes time
and effort, requires knowledge of the relevant categories. An automated speech
transcription of the recorded speech using Automatic Speech Recognition (ASR)
could help clinicians speed up the assessment process and store the data for
further investigations. However, understanding children’s speech is well known to
be a challenge even for humans, due to several factors, such as speech spontaneity,
slow rate of speech and variability in the vocal effort [13]. Therefore, a large
amount of data is required to train an ASR with an acceptable word error rate
(WER) and to process the ASR output to automatically identify the stuttering
events in the transcription.

Research in this area investigate three main approaches to detect stuttering
events. The first area of study attempts to detect stuttering events from recorded
speech signals. Howell and Sackin [9], for example, proposed the first attempt
at stuttering recognition. Their study applied Artificial Neural Network (ANNs)
and focused on identifying repetitions and prolongations. The basic idea is that
the input vector of ANNs are the autocorrelation function and envelope. Their
best accuracy was 80%. Geetha et al. [3] presented an objective method of dif-
ferentiating stuttering disfluencies. They used ANN techniques on two groups
of disfluent children. Several features were chosen to discriminate between nor-
mal and stuttering speech. They reported that ANN classifiers could predict the
classifications of normal and stuttering with 92% accuracy. Another approach
detects stuttering events from transcriptions. Mahesha and Vinod [15] is used a
lexical Rule-Based (RB) algorithm to detect and estimate the severity of 4 types
of stuttering events: Interjection (I), word repetition (W), sylable repetition (S)
and prolongation (P), in orthographic transcripts from University College Lon-
don’s Archive of Stuttered Speech (UCLASS) [8]. In particular, they use prior
domain knowledge to construct expert-based sets of rules to count the number of
occurrences of each of the 4 stuttering events. The third approach is a combina-
tion of the previous two approaches. An automatic speech recognition approach
has been proposed by Heeman et al. [6,7] in an attempt to merge a clinician’s
annotations with an ASR transcript to produce an annotated transcript of audio
files (between 1 and 2 min duration) of read speech. Three types of stuttering
were considered in [6]; revisions, interjections, and phrase, word and sound repe-
titions. However, the proposed system relied on the availability of the clinician’s
annotations of the read recordings.

This work investigates the detection of stuttering events in orthographic
transcripts from UCLASS corpus. Traditional RB algorithm, for event detec-
tion tasks, is powerful in transferring the experiences of domain experts to make
automated decisions. For offline applications where time and effort are not con-
cerns and it can work with high accuracy for limited target data. However, this
approach depends on the expert’s knowledge [14], which means it only works if
all situations of stuttering events are considered. This condition cannot be satis-
fied in practice due to the continuous variability in data volume and complexity.
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Moreover, this knowledge based approach is deterministic as it uses rules like
“If word W is preceded by word Z, within C number of words, trigger the event
Y ”, and if such scenarios are missed false decisions will be made without giving
probability that evaluates those decisions.

Alternative probabilistic approaches are therefore required to learn the rules
from the structure embedded in the data (i.e. the stuttering pattern encapsu-
lated in the stuttering sentences). Machine learning classifiers such as Hidden
Event Language Model (HELM) and Conditional Random Fields (CRF) can
actually help build data driven rules, and furthermore, as we find more data,
these classifiers can be easily and frequently retrained. As a precursor to devel-
oping ASR for children with stuttering, this work investigates the applicability
of machine learning approaches; particularly HELM and CRF, for automatically
detecting stuttering events in transcripts of children’s speech. Moreover, it is
well known that the main limitation in children’s speech related research is the
lack of large publicly available corpora. To slightly alleviate the lack of training
data in this field, additional recordings (from the children recordings in Release
One of UCLASS has been transcribed and annotated with the stuttering events
to support the research in this field. This study also examines the effect of aug-
menting the training data with artificially generated data. The rest of the paper
is organised as follows. The guidelines and methodology used for producing the
stuttering data transcriptions and annotations are described in Sect. 2. Section 3
presents the process of data normalisation and extraction of classification fea-
tures. The two classification approaches are then described in Sect. 4. The data
augmentation design and process is presented in Sect. 5. Section 6 explains the
common measures used in stuttering events detection. Section 7 presents the
experiments used in this study. Finally, the conclusion and future work are dis-
cussed in Sect. 8.

2 Data Transcription and Annotation

2.1 Data Transcription

This study uses the 31 publicly available orthographic transcriptions of children’s
speech monologue in Release One of UCLASS [8]. The transcription method in
this release adopting certain conventional orthographies to indicate stuttering
disfluencies. For example, “This is is a a a amazing”. In addition to those tran-
scriptions, this study adds the orthographic transcriptions of another 32 files
from the same release following the same transcription guidelines. The data
consists of 45 males and 18 females between 7 and 17 years of age. The 63 tran-
scription files were then annotated to include the stuttering type for each word
using the annotation approach described in Sect. 2.2.

2.2 Data Annotation Approach

The annotation approach followed in this study is the one proposed by Yairi and
Ambrose [21] and used by Juste and De Andrade [16]. In this approach, eight
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types of stuttering are considered: (1) sound repetitions, which include phoneme
repetition (e.g.,‘c c c complex’), (2) part-word repetitions, which consider a rep-
etition of less than a word and more than a sound (e.g., ‘com com complex’), (3)
word repetitions that count the whole word repeated (e.g., ‘mommy mommy’),
(4) dysrhythmic prolongations, which involve an inappropriate duration of a
phoneme sound (e.g., ‘mmmmommy’), (5) phrase repetitions that repeat at least
two complete words (e.g., ‘this is this is’), (6) interjections, which involve the
inclusion of meaningless words (e.g., ‘ah’, ‘umm’), (7) revisions that attempt
to fix grammar or pronunciation mistakes (e.g., ‘I ate I prepared dinner’). (8)
The block type includes inappropriate breaks in different parts of the sentence
in between or within words. In this study, all types of stuttering were consid-
ered except the revision and block types. All stuttering types examined in the
study are listed with their corresponding abbreviations in Table 1. Illustrative
examples of the 6 different stuttering types are given in Fig. 1. The annotation
methodology was reviewed by a speech language pathologist (SLP), who is one of
the co-authors4 of this paper. The distribution of each type of stuttering event,
as well as the number of words in the training and testing data, are summarised
in Table 2.

Table 1. Stuttering types

Label Stuttering type

I Interjection

S Sound repetitions

PW Part-word repetitions

W Word repetitions

PH Phrase repetitions

P Prolongation

NS Non Stutter

Fig. 1. Stuttering examples

3 Data Normalisation and Features Extraction

Text normalisation is a very important step for the detection of stuttering events.
It is also considered to be a prerequisite step for lots of downstream speech and
language processing tasks. Text normalisation categorises text entities like dates,
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Table 2. Data statistics

Set Words %I %W %PW %S %PH %P %NS

Train 11204 4.6 2.7 2.2 11.8 1.1 1.6 76

Test 2501 3.8 2.7 2.0 12.3 1.8 0.6 76.8

All Data 13705 4.5 2.6 2.1 11.9 1.2 1.4 76.3

numbers, times and currency amounts, and transforms those entities into words.
For our experiments, we normalised the transcriptions and extracted word level
based features to be used in the classification approaches used in this work.
These features included n-grams for n = 2, 3 and 4, and up to two following
words, referred to as post words.

4 Classification Approaches

4.1 Hidden Event Language Model

The Hidden Event Language Model (HELM) technique was adopted in this
work, since it is an appropriate model to use when events of interest are not
visible in every training context [17]. Stuttering events may be treated as hidden
events, within a context that normally expects regular words. Standard lan-
guage models are normally used to predict the next word and give word history.
However, the language model here is applied to measure the probability of the
appearance of each stuttering event at the end of each observed word, given its
context. The inter-words events sequence are predicted by the model, E = e0, e1,
e2,. . . en, based on given of a sequence of words, W =w0, w1, w2,. . . wn, using a
quasi-HMM technique. The states of the model are represented as Word/event
pairs, while the hidden state is represented as the stuttering event type. A
standard language model provides the observations of previous words, and the
probabilities.

4.2 Conditional Random Fields

Linear-Chain Conditional Random Fields (CRFs) are discriminative models that
have been intensively used for sequence labelling and segmentation purposes [19].
The model aims to estimate and directly optimise the posterior probability of
the label sequence, given a sequence of features (hence the frequently used term
direct model). The CRF++ [12] toolkit was used in this work.

5 Data Augmentation

Data augmentation is a technique used for machine learning tasks in which there
are too few training resources and usually not enough for training a model with
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reasonable performance. In speech processing, for example, the data augmenta-
tion is performed by adding perturbation from different sources such as artificial
background noise, vocal tract length perturbation [10] and changing speaking
rate of the spoken utterance. For this study, we used a language model that
was trained on the stuttering data (the training set), to generate additional sen-
tences to supplement the original training data. The SRILM toolkit [18] was
used to generate random sentences from a word-list, weighted by the probability
of word-distribution in a language model. The word list was designed to include
stuttering versions of the words in the publicly available word list (lm-csr-64k-
vp-3gram) [20], in addition to the original word list.

The generated sentences (416,456 words) are of nonsense and not grammat-
ically correct, most of the time, just like children’s speech. Despite this fact,
those generated sentences tend to exhibit feasible stuttering patterns, including
less-common ones.
In order to automatically annotate the generated sentences, before it can be used
for training the classifiers, an RB algorithm was built through several attempts
with human annotators interventions. The annotation rules described in Sect. 2.2
were followed in this offline annotation process. A subset of 3000 words, was
taken from the generated data and manually annotated as a reference. This ref-
erence was used to improve the performance of the RB algorithm. To further
improve the labels on the generated data, some samples were revised and edited
by human annotators. However, it is important to clarify that the RB annotation
of the generated data is not fully revised by human annotators. Table 6 presents
the labels distribution in the generated data.

6 Metrics

In this work, the conventional metrics: precision Prec, recall Rec, F1 score
and accuracy Acc are used to evaluate the performance of the classifiers. The
definitions of these metrics are given below.

Prec =
TP

TP + FP
, Rec =

TP

TP + FN

F1 = 2
Precision ∗ Recall

Precision + Recall
, Acc =

TP + TN

TP + TN + FP + FN
.

TP, FPand FN refer to true positive, false positive, and false negative counts,
in that order.

7 Experiments

The following section presents our experiments on UCLASS data using the
approaches discussed in Sects. 4 and 5 for detecting stuttering events.
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7.1 Baseline Experiments

Initial experiments were conducted to determine the best order of textual fea-
tures to be used for training HELM and CRF classifiers. These initial exper-
iments were performed using 10-fold cross-validation (CV) sets, to verify the
reliability of the model performance. Tables 3 and 4 show the CV results for
HELM and CRF approaches, respectively. These results suggest that the best
results of the HELM approach are obtained with 3-gram features, yielding an
accuracy of 88%, Similarly, the best results for the CRF approach are obtained
with 2-gram plus 2-post-words features with an accuracy of 90%. Generally,
The CRF approach outperforms the HELM approach by 2.2% relatively on
accuracy.

Acceptable scores were obtained from both classifiers for detecting the HW ,
I and S classes. An important observation is the failure to detect the PH, PW ,
and P types of stuttering events. The main reason for this failure is referred to the
scarcity of these classes in the data, as shown in Table 2. Based on these results,
the rest of the experiments were designed to consider the 3-gram, and 2-gram

Table 3. Cross-validation results using HELM approach, with Acc=90%

N-gram Stuttering-type Precision Recall f1-score

2g I 0.55 0.15 0.22

W 0.99 0.88 0.93

NS 0.86 0.99 0.92

P 0.00 0.00 0.00

PH 0.00 0.00 0.00

PW 0.31 0.04 0.07

S 0.92 0.65 0.76

3g I 0.85 0.28 0.41

W 0.99 0.82 0.90

NS 0.87 1.00 0.93

P 0.00 0.00 0.00

PH 0.05 0.01 0.02

PW 0.38 0.07 0.11

S 0.96 0.65 0.78

4g I 0.87 0.27 0.40

W 0.99 0.80 0.88

NS 0.87 0.99 0.93

P 0.00 0.00 0.00

PH 0.05 0.01 0.02

PW 0.39 0.04 0.07

S 0.96 0.67 0.78
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Table 4. Cross-validation results using CRF approach, with Acc=92%

N-gram Stuttering-type Precision Recall f1-score

2g+2p I 0.78 0.23 0.34

W 0.99 0.95 0.97

NS 0.90 1.00 0.94

P 0.00 0.00 0.00

PH 0.20 0.02 0.03

PW 0.25 0.04 0.07

S 0.95 0.82 0.88

3g+2p I 0.84 0.25 0.38

W 0.99 0.95 0.97

NS 0.90 0.99 0.94

P 0.00 0.00 0.00

PH 0.20 0.04 0.07

PW 0.26 0.04 0.07

S 0.95 0.82 0.88

4g+2p I 0.91 0.21 0.34

W 0.99 0.95 0.97

NS 0.89 1.00 0.94

P 0.00 0.00 0.00

PH 0.10 0.03 0.04

PW 0.33 0.05 0.08

S 0.95 0.80 0.87

plus 2-post-words features for HELM and CRF approaches, respectively. in order
to avoid the cost of performing repeated cross-validation tests, we partitioned
the data into training (80%) and evaluation (20%) sets and we deliberately
ensured that the training and test sets had equal distributions of stuttering
events from the start. Table 6 shows the distribution of the 6 different types
of stuttering events in addition to the no stuttering event (NS). The initial
experiments described above were also repeated on the defined training and
evaluation sets, to check the generality of the defined sets. Table 5 shows the
baseline results on the evaluation set. Similar observations to the cross-validation
set of experiments are found.

7.2 Effect of Data Augmentation

Using the technique explained in Sect. 5, 416,456 words were generated and anno-
tated. The distributions of the 6 stuttering events in the generated data are
presented in Table 6. The HELM and CRF models were retrained on the gen-
erated data, jointly with the original training data. The results of the retrained
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Table 5. HELM vs CRF results on the evaluation set, with Acc=90% and
Acc=92%, respectively

Classifier Stuttering-type Precision Recall f1-score

HELM I 0.86 0.47 0.61

W 0.96 0.85 0.90

NS 0.89 0.99 0.94

P 0.00 0.00 0.00

PH 0.00 0.00 0.00

PW 0.00 0.00 0.00

S 0.98 0.78 0.87

CRF I 0.89 0.35 0.50

W 1.00 0.96 0.98

NS 0.92 0.99 0.96

P 0.00 0.00 0.00

PH 0.00 0.00 0.00

PW 0.00 0.00 0.00

S 0.95 0.94 0.95

Table 6. Data statistics of generated data

Words %I %W %PW %S %PH %P %NS

416456 6.5 8.5 6.8 27.2 5.3 1.6 44.1

HELM and CRF classifiers on detecting and classifying the 6 stuttering and non-
stuttering events, on the evaluation set, are presented in Table 7. Compared to
the baseline results in Table 5, the performance of both classifiers was improved,
with accuracies of 92%, and 94% for HELM and CRF approaches, respectively.
These results also show that the performance of the CRF classifier was improved
for all labels, including for those events that were infrequent in the original
training data. The improvement obtained by the retrained HELM is however
less, compared to that obtained by the CRF approach. Both classifiers still fail
to detect the PH events. This is, however, expected due to the fact that the
method used in the augmentation is based on a word list, not a list of phrases.
Finally, despite the general improvements obtained by retraining using the aug-
mented data, there is slight deterioration in the detection of NS, the dominant
class, as shown in the CRF confusion matrix Table 8. This deterioration may
due to the noisy labels of the generated data.
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Table 7. Effect of data augmentation on the performance of HELM and CRF, when
used to detect the stuttering events on the evaluation set

Classifier Stuttering-type Precision Recall f1-score

HELM I 0.85 0.52 0.64

W 0.97 0.74 0.84

NS 0.91 0.99 0.95

P 1.00 0.75 0.86

PH 0.00 0.00 0.00

PW 1.00 0.49 0.65

S 0.92 0.84 0.88

CRF I 0.96 0.49 0.65

W 1.00 1.00 1.00

NS 0.93 0.99 0.96

P 1.00 0.57 0.73

PH 0.00 0.00 0.00

PW 0.61 0.32 0.42

S 0.97 0.93 0.95

Table 8. CRF confusion matrix of stuttering event detection on the evaluation set:
before and after augmentation

Stuttering-type I W NS P PH PW S

CRF trained on train set

I 30 0 50 0 0 3 4

W 0 90 4 0 0 0 0

NS 2 0 1910 1 0 0 7

P 0 0 13 0 0 0 2

PH 0 0 44 0 0 0 0

PW 2 0 32 0 0 0 1

S 0 0 19 0 0 0 284

CRF trained on augmented data

I 46 0 48 0 0 0 0

W 0 94 0 0 0 0 0

NS 0 0 1899 0 0 7 7

P 0 0 5 8 0 0 1

PH 0 0 44 0 0 0 0

PW 2 0 21 0 0 11 0

S 0 0 21 0 0 0 285
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8 Conclusions and Future Work

In this work we studied the performance of HELM and CRF approaches as alter-
natives to the expert-based RB approach, in detecting the stuttering events in
orthographic transcripts. Experimental results show that CRF consistently out-
performs the HELM approach. Baseline experiments show how low frequency
stuttering events (PW/PH/P ) fail to be detected by both HELM and CRF clas-
sifiers, because those rare events were not seen or seen infrequently in the training
set. In an attempt to increase the training data to improve the performance of
these classifiers, data augmentation approach was adopted to generate additional
random sentences according to an n-gram distribution pattern of words with
probability of some stuttering event. Despite the fact that generated sentences
are only probability-weighted nonsense, they tend to exhibit feasible stuttering
patterns, including less common ones. Data augmentation helped improve the
performance of both classifiers, especially for infrequent events. Experimental
results reflect how the augmented data helped the CRF approach to improve
the recovery of most labels including the rare P and PW events. However, PH
events were still challenging to both classifiers. A phrase-based augmentation
method, for sentence generation that creates realistic phrase repetition, could
be a suitable solution.

Another contribution of this study has been to enlarge the corpus of human-
transcribed stuttering speech data. We have approximately doubled the number
of annotated sentences in the UCLASS corpus.
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Abstract. In this paper we present the AmuS database of about three
hours worth of data related to amused speech recorded from two males
and one female subjects and contains data in two languages French and
English. We review previous work on smiled speech and speech-laughs.
We describe acoustic analysis on part of our database, and a perception
test comparing speech-laughs with smiled and neutral speech. We show
the efficiency of the data in AmuS for synthesis of amused speech by
training HMM-based models for neutral and smiled speech for each voice
and comparing them using an on-line CMOS test.

Keywords: Corpora and language resources · Amused speech · Laugh ·
Smile · Speech synthesis · Speech processing · HMM · Affective comput-
ing · Machine learning

1 Introduction

Recognition and synthesis of emotion or affective states are core goals of affective
computing. Much research in these areas deals with several emotional or affective
states as members of a category of human expressions – grouping diverse states
such as anger, happiness and stress together. The emotive states are either con-
sidered as discrete classes [27,33] or as continuous values in a multidimensional
space [1,31], or as dynamically changing processes over time. Such approaches
are understandable and legitimate as the goal in most cases is to build a single
system that can deal with several of the emotional expressions displayed by users.

However, such approaches often require the same features to be extracted
from all classes for modeling purposes. Emotional states vary greatly in their
expression, and in how they manifest in different subjects, posing difficulties in
providing uniform feature sets for modeling a range of emotions – for example,
happiness can be expressed with laughs, which can be a periodic expressions
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with a certain rhythm, while disgust is usually expressed with continuous non-
periodic expressions. Some studies focused on a single emotion such as stress [18]
and amusement [12], with the aim to build a model of one emotional state. In
this study, we explore the expression of amusement through the audio modality.

Limiting models to audio cues has several advantages. Speech and vocaliza-
tion are fundamental forms of human communication. Audio is easier and less
computationally costly to collect, process, and store than other modalities such
as video or motion capture. Many applications rely on audio alone to collect user
spoken and affective information. Conversational agents in telephony or other
‘hands/eyes free’ platforms use audio to “understand” and interact with the user.
Many state-of-the-art robots such as NAO cannot display facial expressions, and
rely on audio features to express affective states.

Amusement is very frequently present in human interaction, and therefore
data are easy to collect. As amusement is a positive emotion, collection is not as
complicated as the collection of more negative emotions such as fear or disgust,
for ethical reasons. In addition, the ability to recognize amusement can be very
useful in monitoring user satisfaction or positive mood.

Amusement is often expressed through smiling and laughter, common ele-
ments of our daily conversations which should be included in human-agent inter-
action systems to increase naturalness. Laugher accounts for a significant pro-
portion of conversation – an estimated 9.5% of total spoken time in meetings
[30]. Smiling is very frequent, to the extent that smiles have been omitted from
comparison studies as they were so much more prevalent than other expres-
sions [6].

Laughter and smiling have different social functions. Laughter is more likely
to occur in company than in solitude [19], and punctuates rather than inter-
rupts speech [37]; it frequently occurs when a conversation topic is ending [3],
and can show affiliation with a speaker [20], while smiling is often used to express
politeness [22]. In amused speech, both smiling and laughter can occur together
or independently. As with laughter, smiling can be discerned in the voice when
co-occurring with speech [8,40]. The phenomenon of laughing while speaking
is sometimes referred to as speech-laughs [43], smiling while speaking has been
called smiling voice [36,42], speech-smiles [25] or smiled speech [14]. As listeners
can discriminate amused speech based on the speech signal alone [29,42], the per-
ception of amused speech must be directly linked to these components and thus
to parameters which influence them, such as duration and intensity. Mckeown
and Curran showed an association between laughter intensity level and humor
perception [32]. This suggests that the intensity level of laughter and, by exten-
sion, of all other amused speech components may be a particularly interesting
parameter to consider in amused speech.

In this paper we present the AmuS database, intended for use as a resource
for the analysis and synthesis of amused speech, and also for purposes such
as amusement intensity estimation. AmuS is publicly and freely available for
research purposes, and can be obtained from the first author1. It contains several

1 AmuS is available at: http://tcts.fpms.ac.be/∼elhaddad/AmuS/.

http://tcts.fpms.ac.be/~elhaddad/AmuS/
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amused speech components from different speakers and in different languages
(English and French) in sufficient quantity for corpus-based statistically robust
studies. The database contains recorded sentences of actors producing smiled
speech along with corresponding neutrally pronounced speech (i.e., with no spe-
cific emotion expressed) as well as laughter and speech-laughs from some of these
speakers adequate for analysis and synthesis. The difference from previous work
on the topic is, to the best of our knowledge, the quantity and nature of material
provided.

We also describe the following experiments, which demonstrate the efficiency
of the AmuS database for different problems:

– Acoustic study of smiled speech data from AmuS and comparison of results
with previous findings.

– On-line perception tests, comparing speech-laughs, smiled speech and neutral
sentences in terms of the arousal intensity scale.

– Evaluation results of HMM-based amused speech synthesis systems trained
with the AmuS data.

Below we briefly review the characteristics of smiled speech and speech-
laughs, outline the recording protocols we employed and describe the database of
recordings. Finally, we present and discuss results of the acoustic study carried
out on the recordings and results of the perception and evaluation experiments.

2 Motivations and Contributions

For the purposes of this study, we classify amused speech into two categories,
smiled speech and speech-laughs, although finer distinctions are possible.

Smiled Speech. As an emotional expression, when it co-occurs with speech, smil-
ing is formed not only by labial spreading but also by additional modifications of
the vocal tract. Lasarcyk and Trouvain [29] conducted a perception test asking
participants to rate the “smiliness” of vowels synthesized using an articulatory
synthesizer. These were synthesized by modifying three parameters: lip spread-
ing, fundamental frequency and the larynx length. The vowels synthesized by
modifying all three parameters were perceived as most “smiley”. In previous
work, amused smiled speech was perceived as more amused than synthesized
neutral or spread-lips speech, and the synthesized spread-lips sentences were
also perceived as more amused than the synthesized neutral sentences [12]. This
suggests that simply spreading the lips can give an impression of amusement.
In earlier studies, Tartter found that recorded spread-lips sentences were indeed
perceived as “smiled” [40]. Thus, although several factors contribute to emo-
tional smiled speech, spreading the lips while speaking can play a strong role in
its expression.

Smiled speech has also been studied at the acoustic level, with emphasis
on analysis of the fundamental frequency (f0) and the first three formants (F1,
F2, F3). f0 was found to be higher in smiled than neutral vowels in several
studies [2,16,28,40]. Emond et al. and Drahota et al. also compared mean f0, f0
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height and f0 range but did not find any systematic change between non-smiled
and smiled recorded speech [8,14]. In these two studies, they compared whole
sentences rather than isolated vowels or short words. However, after perception
tests using these same sentences were performed, both works reported a certain
correlation or relationship between f0 increase and perception of smiling.

Several acoustic studies show that the modification of the vocal tract caused
by smiling during speech affects formant frequencies [8,12,16,29,38,40,42],
although this effect varies somewhat from one study to another. Several authors
[2,8,16,38,40,41] report higher F2 in smiled than non-smiled speech. In addition,
in work dealing with smiled speech in which the speaker was asked not to express
any specific positive emotion while smiling was not reported to be subject to any
spread-lips stimuli, authors reported a less important or even absent increase of
F1 [12,16,38,40]. Barthel and Quené [2] used naturalistic data of dyadic conver-
sations, in the form of spontaneous smiles by speakers, to acoustically compare
smiled and neutral utterances. They report increases in the first three formants
but only obtained significant results for F2 and for rounded vowels. In [42], a
comparison was made between smiled and non-smiled data in a dataset of nat-
urally occurring conversation. An increase in F3 was reported from neutral to
smiled speech data, as well as an average increase of formants for rounded vowels.
Drahota et al. [8] also used conversational data for their study of different kinds
of smile, where they compared the distance between mean formant values for
smiled and neutral speech, e.g. F2-F1 for smiled speech compared versus F2-F1
neutral speech, instead of differences in formant height for smiled speech and
neutral speech. They report that the more times a speaker is perceived as not
smiling, the larger the difference F3-F2. In a previous study, we found variation,
in the form of increase and decrease in both F1 and F2 values, for amused smiled
speech with a greater effect on F2 [12].

The work cited above leads to several conclusions. f0 is reported as higher
in smiled than neutral speech or to be an important parameter of smiled speech
perception. Lip spreading predominantly affects F2 and has no or little effect on
F1. Relationships between formants (such as their distance) should be consid-
ered as potentially important parameters for discriminating smiled from neutral
speech. Finally, vocal tract deformation in smiled speech varies in different ways
depending on context and speaker.

Smile detection or recognition systems often form part of a multi-class emo-
tion classification system (smile would then be associated to positive emotions
such as happiness) [24], and are also found in facial detection systems rather than
systems based on audio features [23]. Recognition has been largely based on fea-
ture extraction for later classification [15]. The latest works on recognition using
audio cues rely on feature learning systems using the power of deep learning to
learn an internal representation of raw data with respect to a given task [17].

Smiled speech synthesis is generally reported in the literature as part of a
voice adaptation or voice conversion system aiming to generate different emotions
[46]. Among the very few studies on smiled speech synthesis is the articulatory
synthesis approach of Lasarcyk and Trouvain [29], which only considers smiled
(but not specifically amused) vowels.
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The scarcity of work related to amused or even smiled speech is probably
due to the lack of relevant data and the complexity of collecting it. Several
databases containing emotional speech exist, such as [4,5]. However, to the best
of our knowledge, these databases contain smiled speech related to happiness
or joy rather than amusement, and thus might not be representative of amused
smiled speech. For analysis and tasks like voice conversion it is very useful to have
utterances expressed in a certain emotion (in this case amused smiled speech)
and as neutral utterances; especially if the pairs came from the same speaker.
Such data can be found in [4] (again for happy and not precisely amused smiled
speech), but the amount for a single speaker might not be sufficient for current
systems data requirements.

We have collected a database of amused smiled speech and corresponding
neutral speech sentences from different speakers (male and female) in English
and French. This database contains enough data for analysis and for use in
machine learning-based systems. For a deeper understanding of amused smiled
speech we also recorded corresponding spread-lips data.

Speech-Laughs. Speech-laughs are instances of co-occurrence of laughter and
speech. The phenomenon has not been clearly defined in the literature. Provine
reports laughter occurring mostly at the extremities of a sentences [37], while
Nowkah et al. [34] report that up to 50% of conversational laughter is pro-
duced simultaneously with speech. Kohler notes the occurrence of speech - smiled
speech - speech-laugh - laughter and vice versa sequencing in amusing situations
in a small-scale study and mentions the need for further investigations [25].
Trouvain proposes an acoustic account of speech-laughs and describes types of
speech-laughs found in the analyzed data. He mentions the intervention of breath
bursts during speech and notes the presence of “tremor” in voiced segments. He
also investigates whether speech-laughs and smiled speech can be placed on a
continuum of amused expression, while commenting that the variety of functions
possible for laughter and the individuality of laughter among subjects would lead
to significant variation in the forms of speech-laugh encountered [43]. This intro-
duces another important aspect to be considered in relation to amused speech:
the continuity between smiled speech and laughter. Are these nothing more
than different levels of amusement expressions? Can intensity levels of amuse-
ment be mapped to combinations of amused speech components detected or
not in an utterance? No clear answer has been given concerning this aspect of
amused speech, although Trouvain rejected the hypothesis of a smile-laughter
continuum [43]. Dumpala et al. found that f0 was higher in laughter than in
speech-laughs and higher in speech-laughs than in neutral speech [9].

There has been very little work on synthesis and recognition of speech-laughs
and smiled speech. Dumpala et al. [9] present a speech-laugh/laughter discrim-
ination system. Oh and Wang [35] tried real-time modulation of neutral speech
to make it closer to speech-laughs, based on the variation of characteristics such
as pitch, rhythm and tempo. However, no evaluation of the naturalness of that
approach has been reported.

The AmuS database contains amused smiled speech, different types of
speech-laughs and also laughs. We hope that the collection will thus reflect
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the fact that laughter can interrupt or intermingle with speech [25,34,43], or
happen at the extremities of sentences [37]. Several laughter databases can be
found related to isolated laughter [10], but we know of no speech-laugh data-
base suitable for machine learning-based work or analysis. AmuS will facil-
itate research into the use of these components in amused speech and their
relation with amused speech arousal/intensity, and also into the smile-laughter
continuum.

3 Database

The AmuS database contains recordings of acted smiled speech and correspond-
ing neutral utterances from three different speakers in two different languages,
English and French. For some speakers, spread-lips speech was also recorded. It
also contains, for some speakers, speech-laughs and laughter data. The speech-
laughs were semi-acted since they were collected during the smiled speech record-
ings but without the speakers being explicitly asked to utter them. The laughs
were spontaneously expressed since they were elicited with appropriate stimuli.
The data were recorded in quiet rooms and resampled to 16 kHz for uniformity.
A more detailed description is given below and the data are summarized in
Table 1.

Smiled Speech: To provide comparative neutral and smiled speech, speakers
were asked to read the same sentences neutrally (not expressing any particular
emotion) and while sounding amused but without laughing. Two readers were
also asked to read the same utterances while spreading their lips without trying
to sound happy or amused. This was done to obtain a set of the same sentences
read in different speech styles for comparison. Noisy (saturated, or containing
artifacts) or wrongly pronounced data were removed from the dataset. The final
dataset is shown in the “Speech Styles” columns of Table 1. Voices from two males
(M) and one female (F) were collected. SpkA and SpkB are French native speak-
ers while SpkC is a British English native speaker. The sentences used to record
SpkA were phonetically balanced. The other French data were recorded using a
subset of these sentences. For English, a subset of the CMU Arctic Speech Data-
base [26] was used. All utterances were then force-aligned with their phonetic
transcriptions using the HMM ToolKit (HTK) software [44]. The transcriptions
were stored in label files in the HTK label format. SpkC’s annotations were also
manually checked. The amount of data available, to the best of our knowledge,
is comparable (SpkB and SpkC) and in some cases superior (SpkA) to currently
available databases.

Speech-Laughs: To represent the effect of laughter altering speech and thus
creating speech-laughs, we collected different types of speech-laughs from SpkA
and SpkC. The speech-laughs were collected from the smiled speech recordings
where actors produced them intuitively when trying to sound amused. In total
161 speech-laughs were collected from SpkA and SpkC. These were divided into
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two groups based on how they were produced. The first group contains tremor-
like sounds happening in vowels only. These were previously investigated by us
and will be referred to as chuckling (or shaking) vowels [21]. The second type
contains bursts of air appearing usually at the end of a syllable or between a
consonant and a vowel. A total of 109 and 52 instances were collected from the
first and second type respectively.

Laughs were collected from SpkB. Since these laughs are to be used in sen-
tences, we needed them to occur during an utterance. So, SpkB was asked to
sustain a vowel while watching funny videos. He eventually laughed while pro-
nouncing a vowel. A total of 148 laughs were recorded. These types of laughs
proved to be efficient to produce synthesized amused speech [13]. The perceived
arousal level or affective intensity of these laughs were then annotated in an on-
line experiment. Annotators were presented with 35 randomly picked laughs and
asked to rate how amused the laughs sounded, on a scale from 0 to 4 (0 begin
not amused and 4 being very amused). The annotators were free to logout at
any time. A total of 22 annotators took part in this experiment and each laugh
was annotated on average 5.08 times.

Table 1. AmuS database content description. The numbers represent the number
of utterance collected. M = Male, F = Female, Lang= Language, SL = Speech-laughs,
L= laughs, * = these are the same data since the laughs came from the same speaker.

Speakers Speech styles Lang SL L

N Sm Sp

SpkA (M) 1085 1085 - Fr 48 -

SpkB-Fr (M) 249 199 199 Fr - 148*

SpkB-Eng (M) 180 213 - Eng - 148*

SpkC (F) 170 84 152 Eng 113 -

4 Acoustic Analysis

In this section, we present data analysis on the acoustic effects of smiling on
speech, comparing neutral speech vowels to amused smiled and spread-lips speech
vowels. We considered 15 and 16 vowels from French and English respectively.

The f0 and first three formants (F1, F2 and F3) were calculated for each
sentence in each of the three speech styles using a sliding Hamming window
of 25 ms length, shifted by 10 ms using the Snack library [39]. F2-F1 and F3-
F2 were also calculated for each vowel. Pairs were formed of the same sentences
from amused smiled and neutral speech. Since the durations of two corresponding
sentences in a pair were different, Dynamic Time Warping (DTW) was applied at
the phoneme level to align each of the extracted parameters. Values for neutral
speech were subtracted from those for amused smiled speech. The mean values
of all the differences obtained were then calculated. The same method was then
applied between the spread-lips and neutral speech styles. Table 2 shows the
results of these mean differences. These are expressed in percentage of variation
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with respect to the neutral speech values (e.g. 5% represents an increase of 5% of
the neutral speech value, −5% a decrease). This table shows the mean percentage
obtained as well as the mean standard deviation.

Table 2. Mean difference of the acoustic parameters extracted between the neutral
and the other two styles. These are expressed in % of variation with respect to the
neutral speech, e.g. 56% ± 20% shows and increase of 56% of and from the neutral
speech values on average with 20% standard deviation.

Speakers Amused smiled - neutral Spread-lips - neutral

SpkA SpkB-Fr SpkB-Eng SpkC SpkB-Fr SpkC

F0 56%± 20% 8%± 16% 48%± 21% 16%± 18% 4%± 15% 14%± 13%

F1 13%± 13% −6%± 14% −2%± 15% 2%± 10% 3%± 10% 3%± 14%

F2 −1%± 9% −2%± 12% −5%± 9% 0.6%± 7% 2%± 6% 11%± 11%

F3 −0.2%± 10% −5%± 9% −2%± 9% −1%± 5% −2%± 6% 1%± 8%

F2 - F1 −4%± 15% 7%± 17% −2%± 15% 1%± 11% 3%± 11% 16%± 16%

F3 - F2 11%± 26% −4%± 23% 13%± 27% −3%± 20% −6%± 20% −7%± 23%

A 95% confidence interval paired Student’s t-test was used to study the
statistical significance of the results in Table 2. The mean value was calculated
for each of the acoustic parameters and for all the vowels for each sentence. The
set of values obtained for amused smiled and for the spread-lips styles were each
compared to the neutral style for each speaker. All proved to be significantly
different except for the spread-lips vs neutral F3 values of SpkB-Fr.

As can be seen from Table 2, f0 increased in all cases, congruently with pre-
vious studies. Instead, no common pattern could be noticed in the formants
even for the same speaker in two different languages (SpkB-Fr and SpkB-Eng),
although F3 seems to be decreasing in all cases. Regarding the spread lips,
instead, the pattern observed is more consistent between speakers (all changing
in the same way except for F3). Thus, amused smiles affect speech in different
ways with different vocal tract modifications. Since these are read sentences, fur-
ther perceptual studies should be made to compare the naturalness and amuse-
ment perceived. This might help to understand the acoustic variations better.

5 Perception Test

A perception test was carried out in order to compare the level of perceived
amusement from neutral (N), smiled speech (Sm) and speech-laughs (Sl). For
this, we used sentences from SpkA and SpkC. 16 sentences were randomly
selected from SpkA, of which 6 were the same sentences for all three speech
styles, while the remaining 10 were chosen randomly. From SpkC, 15 sentences
were randomly picked from each speech style, since unfortunately no identical
sentences could be found in the smiled and speech-laugh styles. The sentences
were then paired so that each style could be compared to the other two (N vs.
Sm, Sm vs. Sl and N vs. Sl). Except for the 6 same sentences from SpkA, all the
others were randomly paired.
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These sentences were then presented to 20 on-line raters as a Comparative
Mean Opinion Score (CMOS) test. Each rater was given thirty pairs of sentences
chosen randomly and asked to rate which one sounded more amused. The raters
were given seven possible choices each time: three on the right in favor of the
utterance on the right, three on the left in favor of the utterance on the left and
one in the middle, representing neutrality (i.e., both audio utterances sound the
same). Each choice was mapped to an integer ranging from −3 to +3. The scores
were as follows: 0.130 in favor of Sl when compared to Sm, 0.92 for Sm when
compared to N and 1.135 in favor of Sl when compared to N.

Thus, Sl sentences were perceived as more amused than both Sm and N,
and Sm more amused than N. Although the scores obtained in favor of Sl when
compared to Sm are not very high, this result suggests that containing the tremor
and/or air outburst in speech is more likely to increase the amusement intensity
level perception.

6 Synthesis Evaluation

The smiled and neutral speech from all voices were also used to train Hidden
Markov Model (HMM)-based speech synthesis systems [45] to generate a smiled
amused voice and a neutral voice for each speaker. The systems obtained from
SpkA and SpkB-Fr were previously trained and evaluated in [11] and [12], respec-
tively. The systems from SpkC and SpkB-Eng were trained and evaluated for
the purpose of this study.

HMMs were trained for each of the smiled and neutral speech styles and for
each speaker and language separately. Their topology was identical in each case
and consisted of 5 states left-to-right HMMs with no skip. Gaussian Mixture
Models (GMM) were used to model the observation probabilities for each state.
These were single multivariate Gaussian distributions with diagonal covariance
matrices since a unique voice was being modeled in each case. The features used
for training were the Mel Generalized Cepstral Coefficients (order 35, α = 0.35
and γ = 0) and the f0, along with their derivatives and double derivatives.
The features were extracted using a 25 ms wide window shifted by 5 ms, using
the Snack library. Except for SpkA, for which two HMM models were created
independently for each of the smiled and neutral voices, all the other models
were built using adaptation via the CMLLR algorithm [7], since SpkB-Fr, SpkB-
Eng and SpkC have fewer samples. For adaptation, a large dataset was used as a
source on which to adapt a smaller dataset, the target. Thus, for the French voice,
the neutral data of SpkA were used to build the source model and the SpkB-
Fr neutral and smiled targets. For the English voice, the RMS and SLT voices
from the CMU Arctic Speech Database were used as source data respectively to
target SpkB-Eng and SpkC (for both neutral and smiled). The implementation
was done using the HTS toolkit [45].

Synthesized smiled and neutral sentences were used for a comparison study
on an amusement level scale for each of the three voices. The same sentences were
synthesized in the neutral and smiling conditions for each speaker and paired for
a CMOS on-line evaluation. Participants were asked the same question as in the
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CMOS of Sect. 5, and in all cases the synthesized smiled sentences generated were
perceived as more amused than the neutral ones, indicating that this database
is suitable to train a parametric speech synthesizer such as an HMM-based one
(0.24 in favor of the synthesized amused smiled sentences).

7 Conclusion

In this article we presented an amused speech database containing different
amused speech components which can be grouped into the broad categories of
smiling and laughter. We also reviewed a state-of-the-art for the acoustic stud-
ies relative to smiled speech and previous literature concerning speech-laughs.
Our database was also used for acoustic studies and well as synthesis and per-
ceptual evaluations. Perception tests suggest that the presence of “low level”
laughs occurring in amused speech, known as speech-laughs, may increase the
perception of amusement of the utterance. In the future we plan on improving
this database by adding naturalistic non-acted amusement expressions, which
could be used for research purposes such as affective voice conversion or speech
synthesis.
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Abstract. Expressiveness and non-verbal information in speech are
active research topics in speech processing. In this work, we are inter-
ested in detecting emphasis at word-level as a mean to identify what are
the focus words in a given utterance. We compare several machine learn-
ing techniques (Linear Discriminant Analysis, Support Vector Machines,
Neural Networks) for this task carried out on SIWIS, a French speech
synthesis database. Our approach consists first in aligning the spo-
ken words to the speech signal and second to feed classifier with fil-
ter bank coefficients in order to take a binary decision at word-level:
neutral/emphasized. Evaluation results show that a three-layer neural
network performed best with a 93% accuracy.

Keywords: Emphasized content recognition · Non verbal information
in speech · SIWIS French speech synthesis database

1 Introduction

Speech in human communication is not only about the explicit message con-
veyed or the meaning of words, but also includes information, intentionally or
not, which are expressed through nonverbal behaviors. Verbal and non-verbal
information shape our interactions with others [4]. In [25], for instance, an appro-
priate use of emphasis was shown to improve the overall perception of synthesized
speech. Word-level emphasis is considered as an important form of expressiveness
in the speech synthesis field with the objective of drawing the listener attention
on specific pieces of information.

A speech utterance may convey different meanings according to intonation.
Such ambiguities can be clarified by emphasizing some words in different posi-
tions in a given utterance. Automatically detecting emphasized content may
be useful in spoken language processing: localizing emphasized words may help
speech understanding modules, in particular in semantic focus identification [15].

In speech production, various processes occur at word, sentence, or larger
chunk levels. According to [6], the tonal variation, defined by pitch variation,
c© Springer International Publishing AG 2017
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is considered as a type of pronunciation variation at the suprasegmental level.
Generally, systems for automatic classification of accented words use prosody,
and typically use combination of suprasegmental features such as duration, pitch,
and intensity features [5,14,17,20,24]. Emphasis cues found in natural speech
are more vague and heavily affected by suprasegmental features. Compared to
the intensity, pitch and duration are more insensitive to the channel effects such
as the distance between the speaker and the microphone. Furthermore, rather
than intensity, changes in vocal loudness also affect features such as spectral
balance, spectral emphasis or spectral tilt, which were explored in the detection
of prominent words [3], focal accent [9], stressed and unstressed syllables [18,19,
22]. Indeed, these measures were also generally found to be more reliable than
intensity.

In this paper, a statistical approach that models and detects word-level
emphasis patterns is investigated. Related works are dedicated to the detection
of lexical stress and pitch accent detection, in particular for Computer-Assisted
Language Learning [12,13,21,27,28]. The present study differs from these works
from the fact that we target at detecting acoustic emphasis at lexical level and in
native speech. We plan to detect emphasis at word-level as a first step for future
applications we would like to address. In particular, we would like to study if
keyword detection in speech transcripts could be improved using a measure of
emphasis as an additional piece of information.

Our methods consists first in aligning the speech signal to the spoken words,
second in classifying each word segment as emphasized or neutral using filter-
bank coefficients (F-BANKs) as input to a classifier. These acoustic features
measure the energy from a number of frequency bands and take time dynamics
into account. Furthermore, our preliminary experiments showed that F-BANKs
outperform the use of single pitch variations (F0). We compare several types
of classifiers for this task. As will be reported in this paper, neural networks
performed the best.

The present article is structured as follows. Section 2 describes our method-
ology for word-level emphasis detection, including feature extraction and model
description. In Sect. 3, we present the SIWIS French speech synthesis database,
then we report a comparison of approaches and analyze the classification results.

2 Method

Figure 1 illustrates the global system schema for an example sentence: “ce
FICHIER facilitera principalement la recherche [. . . ]” (“this FILE will mainly
ease the search for [. . . ]”). In this sentence, the word “FICHIER” (FILE ) was
emphasized by the speaker. As a first step, a word alignment is carried out, which
automatically aligns the expected text to the audio speech signal. Then, low-level
acoustic features described hereafter are extracted and fed to a binary classifier
that takes decisions on the emphasized/neutral pronunciations at word-level.
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Fig. 1. Word-level emphasis detection

2.1 Word Alignment

We adopt a standard approach used in speech recognition called the time align-
ment procedure. This procedure is accomplished using supervised phone-based
recognition and produces phone-by-phone time markings, which are reduced to
a word-by-word format involving the following steps [23]:

– create a word-level grammar from the orthographic transcription (read
speech);

– extract acoustic features from the speech signal;
– associate a phone transcription to each word, either extracting it from our

pronunciation lexicon or generating them automatically with a grapheme-to-
phoneme model; several pronunciations may be associated to a given word;

– perform the word alignment;
– extract the time markings from the aligned word segments.

We used in-house acoustical models trained with the Kaldi Speech Recogni-
tion Toolkit [16]. They were trained with the ESTER corpus [8] which consists
of 90 h of French broadcast news speech, each broadcast session contains from
20 to 40 min of spontaneous speech. Non-speech sounds, such as breath noises
and laughter are indicated in the transcriptions and we explicitly modeled them.

We followed a standard Kaldi recipe to train the models to obtain triphone
Gaussian Mixture Models/Hidden Markov Models, on 39 static, delta, and delta-
delta Mel-frequency cepstral coefficients, with LDA-MLLT and Speaker Adap-
tive Training (SAT). Finally, we obtain triphone with about 150 k Gaussian
mixtures and 21.2 k HMM states.

Regarding the pronunciation lexicon, we used the 105 k entry CMU-Sphinx
French dictionary. For out-of-vocabulary words, pronunciations were derived
from a grapheme-to-phoneme tool trained over the CMU-Sphinx lexicon [2].
This concerned a set of 471 words over the 33,628 different word types contained
in the SIWIS corpus used in this work.

2.2 Features

As input to the emphasis/neutral classifiers, we use 26 log filter-bank coefficients
(F-BANKs) extracted on 25 ms duration frames with a hop size of 10 ms. Differ-
ent numbers of filter bands were tested, but the set of 26 static F-BANK features
has shown to perform well.
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For each word of duration N frames, a N × 26 matrix is extracted. We
compare the use of these length varying input matrices and the same matrices
but in which some context is added: we add left and right frames to reach a 1s
total duration, which gives a 108 × 26 matrix for each word.

These matrices are used in two ways, as an image (dimension: 108 × 26) fed
to a Convolutional Neural Network (CNN), or as global statistics features (one
value per filter-bank coefficient along time): the minimum, maximum, mean,
median, standard deviation, skewness and kurtosis (dimension: 7 × 26), which
are expected to characterize the behavior of each F-BANK coefficient to improve
the temporal modeling.

Fig. 2. The two figures represent the F-BANK coefficients for the word: “courageuse-
ment” (courageously) with and without focus emphasis on the right and on the left,
respectively. (Color figure online)

Figure 2 shows the 26 F-BANK coefficient images for both an emphasized
and a neutral pronunciations of the word “courageusement” (courageously). We
can notice that the high frequency region on the right figure (with emphasis)
has higher energy values, particularly at the beginning of the word, as depicted
with a blue ellipse over this area [7].

2.3 Models

Two types of neural networks were tested for our task: a neural network with
fully-connected layers (FCNN), and a convolutional neural network (CNN).

In the case of FCNNs, the input layer is the concatenation of the global
statistics on the 26 F-BANKs, i.e. a vector of size 7×26 = 182. The k0 Softmax
outputs estimate the emphasis of each trial. We use rectified linear (ReLU)
units that have shown accurate performance in speech recognition tasks [26].
Furthermore, we experimented different number of hidden layers and different
number of units. We report results with a single layer and three hidden layers
each comprised of 200 units.

With CNNs, the input layer is composed of 108 frames of 26 log filter bank
coefficient. Three convolution layers were respectively applied: the frequency fil-
tering 1×26, then dynamic time filtering 108×1 and, finally, 3×3 squared filters.
Followed by 2×2 down-sampling (max-pooling) layers, and produce respectively
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32, 16, and 8 activation maps that serve as input parameters for three 200-unit
dense hidden layers with rectified linear unit (ReLU) activation function. Finally,
the output dense layer comprises 2 units with a Softmax activation function to
provide a probability.

The networks were trained with the Adam optimization [11] using a cross-
entropy cost function. The regularization L2 was used over all hidden layers.
Those models are not very deep but appear to be sufficient to get insights
on emphasis detection on a small database such as SIWIS. To carry out our
work, Tensorflow was used to perform the experiments on a GPU TITAN 1080
device [1].

Support Vector Machines (SVM) with a Gaussian kernel and Linear Discrim-
inant Analysis (LDA) were also used as a baseline of our experiments.

3 Experiments

3.1 Speech Material

The SIWIS French Speech Synthesis corpus contains read speech recorded from a
single native female French speaker, who reads texts selected from three different
written sources: books from French novels, parliament speeches and semantically
unpredictable sentences. These three written sources were divided to six subsets
and serve different purposes. In our study, we only use the sentences containing
emphasized words (named “part 5”) and their corresponding neutral sentences
(contained in parts 1 to 4). The corpus contains 1575 ∗ 2 sentences equivalent to
3 h 35 min duration of audio, moreover, emphasized words can be seen at different
positions in the sentences (begin, middle and end). The manual annotations of
emphasized phones are available in the HTS label format. Indeed, SIWIS aims
at building TTS systems, investigate multiple styles, and emphasis. For more
information about the corpus, the reader may refer to [10].

Word Alignment Experiments. Since the manual annotation provided with
the SIWIS database did not allow to get time markings at word-level easily,
one needed to perform word alignment as a pre-processing step for emphasis
detection. We have grouped the manual time markings of emphasized phones for
each word to evaluate the root mean square difference between the manual and
the automatic word boundaries, according to the following formula, in which tim
and tia are the manual and automatic time markers for the ith word, respectively,
and N the total number of words to be aligned:

RMS =

√
√
√
√ 1

N

N∑

i=1

(tim − tia)
2

We worked on 1817 ∗ 2 words (emphasized and neutral pronunciations). The
mean duration of these words is 0.372 s (±19% std), the word “monoparentales”
(uniparental) has the longest duration of about 1 s, and the shortest word “un”
(a) has a 0.03 s duration.
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The RMS obtained was 0.243. The smaller, the better the alignments. Nev-
ertheless, we are aware that this value per se is difficult to interpret without any
other reference value obtained on other speech data. Furthermore, the phone
error rate is 8.7%.

A set of 1695 emphasized words were found when grouping phones (e.g.
“temps en temps” was considered as one word by the corpus annotators), but our
manual re-checking of the 1575 sentences lead to 1817 emphasized words. This
increase is due to the fact that we consider each word in contiguous emphasized
word sequences as several emphasized words (we consider “temps en temps” as
three different words).

3.2 Classification Results

In this part, we evaluate the word-level emphasis detection method, which con-
sists in applying the procedure shown in Fig. 1. The dataset contains 1817 * 2
words (emphasized and neutral). The data was split into a training and a test
subsets in 80%/20% proportions, respectively, and we performed a 5-fold cross-
validation. We chose to keep pairs of the same words with emphasized and neutral
pronunciations in the same subset, either in a training or a test fold.

In a first experiment, we focused on the global statistical features extracted
over the F-BANKs. As explained previously, they were extracted with and with-
out adding context:

– with context: all the feature matrices share the same 108 × 26 dimension,
– without context: the feature matrices have a variable time length according

to each word: N × 26.

With the different machine learning algorithms used for the classification
task, we show in Table 1 that using a bit of context leads to better results in
accuracy. The FCNN with 3 hidden layers with 200 units in each layer, using the
ReLU activation function, obtained the best performance with a 93.4% accuracy.
The variations in performance indicated in the table correspond to the variations
according to the five folds used for cross-validation.

Table 1. Accuracy comparison between different classifier types.

With context No Yes

FCNN (1 layer) 81.1± 1.0% 89.9± 1.7%

FCNN (3 layers) 81.3± 5.9% 93.4± 3.3%

CNN 90.2± 1.8%

SVM 81.5± 1.0% 92.9± 2.3%

LDA 76.8± 2.4% 89.0± 3.6%

In a second experiment, we tested the use of a CNN model. As we showed
in Table 1, using context allowed better performance on this task. Consequently,
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we used the F-BANK images with context as input to a CNN (matrices of shape
108 × 26, which represent the extracted F-BANKs features over 1 s of speech
signal).

In order to train a CNN model, we needed a validation subset so that we used
70% for training, 10% for validation, and 20% for testing and always with 5 folds.
During training, we noticed a clear overfitting of the model on the validation
subset so that we used L2 regularization to overcome this issue. The averaged
performance on the five folds was 90.2% (±1.8%), which is not as good as the
SVM (92.9%) and the FCNN (93.4%).

3.3 Error Analysis

In this subsection, we analyze the errors made by the best classifier, the FCNN.
A first interesting cue concerns the influence of word duration on perfor-

mance. The mean duration of the wrong predicted words is about 200 ms. The
false positives (emphasized word predicted as neutral) predominantly concern
short words such as “moi” (me), “un” (a), “pas” (not), “cela” (that), and their
mean duration is about 140 ms. On the contrary, the false negatives are longest
word mostly, such as “historien” (historian), “constamment” (constantly). Mean
duration of the false negatives is around 400 ms.

By listening to some word utterances incorrectly predicted as neutral, we
noticed that the relative focus on these words was as obvious as other emphasized
realizations. Smaller intensity values can also be observed in their corresponding
spectrograms.

We also explored if there were any relation between the word positions in
sentences and the detection errors. Figure 3 shows histograms counting the errors
(in black the false positives, in orange the false negatives) according to the word
position: at the beginning, middle, or end of a sentence. No clear impact of
word position can be observed. Nevertheless, it seems that more false negatives
(emphasized words predicted as neutral) occur at the beginning and end of
sentences.

Fig. 3. Number of incorrect predictions according to the word position in sentences.
(Color figure online)
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4 Conclusions

In this paper, we presented an approach to detect emphasis/neutral intonation
at word level specific to the French language. As a first step, a word alignment
is carried out, which automatically aligns the expected text to the audio speech
signal. Then, F-BANK coefficients are extracted and fed to a binary classifier
that takes decisions on the emphasized/neutral decision at word-level.

Evaluation was conducted on SIWIS, a publicly available speech database,
that provides read speech material in French with a sub-part manually annotated
in terms of emphasis.

Several types of classifiers were tested and the best performance was obtained
with a neural network comprised of three fully-connected layers of 200 units each.

As future work, we plan to exploit this system to attempt to improve our
keyword extraction module applied to speech transcripts in spoken French. Addi-
tionally, we would like to use sequence modelling approach to carry out the
detection of emphasized words through entire sentences.
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Abstract. Speaker change detection can be of benefit to a number of
different speech processing tasks such as speaker diarization, recognition
and detection. Current solutions rely either on highly localized data or
on training with large quantities of background data. While efficient, the
former tend to over-segment. While more stable, the latter are less effi-
cient and need adaptation to mis-matching data. Building on previous
work in speaker recognition and diarization, this paper reports a new
binary key (BK) modelling approach to speaker change detection which
aims to strike a balance between efficiency and segmentation accuracy.
The BK approach benefits from training using a controllable degree of
contextual data, rather than relying on external background data, and
is efficient in terms of computation and speaker discrimination. Experi-
ments on a subset of the standard ETAPE database show that the new
approach outperforms the current state-of-the-art methods for speaker
change detection and gives an average relative improvement in segment
coverage and purity of 18.71% and 4.51% respectively.

Keywords: Speaker identification and verification · Speaker change
detection · Binary keys · Speaker diarization

1 Introduction and Related Work

Speaker change detection (SCD), also known as speaker turn detection and
more simply speaker segmentation, aims to segment an audio stream into
speaker-homogeneous segments. SCD is often a critical pre-processing step or
enabling technology before other tasks such as speaker recognition, detection or
diarization.

The literature shows two general approaches. On the one hand, metric-based
approaches aim to determine speaker-change points by computing distances
between two adjacent, sliding windows. Peaks in the resulting distance curve are
thresholded in order to identify speaker changes. Bayesian information criterion
(BIC) [8] and Gaussian divergence (GD) [4] are the most popular metric-based
approaches. On the other hand, model-based approaches generally use off-line
training using potentially large quantities of external data. Example model-based
approaches utilise Gaussian mixture models (GMMs) [20], universal background
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models (UBMs) [24], or more recent techniques such as those based on the
i-vector paradigm [21,25] or deep learning [6,17,18,23].

Despite significant research effort, SCD remains challenging, with high error
rates being common, particularly for short speaker turns. Since they use only
small quantities of data within the local context, metric-based approaches are
more efficient and domain-independent, though they tend to produce a substan-
tial number of false alarms. This over-segmentation stems from the intra-speaker
variability in short speech segments. Model-based approaches, while more sta-
ble than purely metric-based approaches, depend on external training data and
hence may not generalise well in the face of out-of-domain data.

The work reported in this paper has sought to combine the merits of metric-
and model-based approaches. The use of external data is avoided in order to
promote domain-independence. Instead, the approach to SCD reported here uses
variable quantities of contextual information for modelling, i.e. intervals of the
audio recording itself. These intervals range from the whole recording to shorter
intervals surrounding a hypothesized speaker change point.

The novelty of the approach lies in the use of an efficient and discriminative
approach to modelling using binary keys (BKs) which have been reported pre-
viously in the context of speaker recognition [1,5], emotion recognition [3,19],
speech activity detection [15] and, more extensively, speaker diarization [2,11–
15,22]. In all of this work, segmentation consists in a straightforward partition
of the audio stream into what are consequently non-heterogeneous speaker seg-
ments. In this case, speaker segmentation is only done implicitly at best; none of
this work has investigated the discriminability of the BK approach for the task
of explicit SCD. The novel contribution of this paper includes two BK-based
approaches to explicit SCD. They support the flexible use of contextual infor-
mation and are both shown to outperform a state-of-the-art baseline approach
to SCD based on the Bayesian information criterion (BIC).

The remainder of the paper is organised as follows. Section 2 describes binary
key modelling. Its application to speaker change detection is the subject of
Sect. 3. Section 4 describes the experimental setup including databases, system
configuration and evaluation metrics. Section 5 reports experimental results and
discussion. Conclusions are presented in Sect. 6.

2 Binary Key Modelling

This section presents an overview of the binary key modelling technique. The
material is based upon original work in speaker diarization [2] and recent
enhancements introduced in [22].

2.1 Binary Key Background Model (KBM)

Binary key representations of acoustic features are obtained using a binary key
background model (KBM). The KBM plays a similar role to the conventional
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Fig. 1. An illustration of the BK extraction procedure based upon the comparison of
acoustic features and the KBM. (Color figure online)

UBM. Just like a UBM, the KBM can be estimated using either external data [1]
or the test data itself [2].

The KBM training procedure involves the selection of discriminative Gaus-
sians from a large pool of candidates. The pool is learned from standard acoustic
features extracted with a conventional frame-blocking approach and spectral
analysis. The selection process uses a single-linkage criterion and a cosine dis-
tance metric to select the most discriminant and complementary Gaussians. This
approach favours the selection of dissimilar candidates thereby resulting in a set
of Gaussians with broad coverage of the acoustic space; closely related, redun-
dant candidates (which likely stem from the over-sampling of homogeneous audio
segments) are eliminated. The process is applied to select an arbitrary number
of N Gaussian candidates which then constitute the KBM. As in [22], the size
of the KBM is expressed not in terms of a fixed number of components, but
is defined adaptively according to the quantity of available data. The resulting
KBM size is hence defined as a percentage α of the number of Gaussians in the
original pool. The KBM is hence a decimated version of a conventional UBM
where Gaussian components are selected so as to be representative of the full
acoustic space in terms of coverage rather than density. Full details of the KBM
training approach can be found in [13].

2.2 Feature Binarisation

Binarised features are obtained from the comparison of conventional acoustic
features to the KBM. The process is illustrated in Fig. 1. A sequence of nf

acoustic features is transformed into a binary key (BK) whose dimension N is
dictated by the number of components in the KBM. For each acoustic feature
vector in the input sequence (labelled 1 in Fig. 1), the likelihood given each of



Speaker Change Detection Using Binary Key Modelling 253

0 20 40 60 80 100 120 140
Time (s)

320

270

220

170

120

70

20

K
B

M
 G

au
ss

ia
n

 in
d

ex

SPK4 SPK3 SPK4 SPK3 SPK2SPK1 SPK2 SPK3

Fig. 2. A matrix of BKs from an arbitrary 2.5-min speech fragment from the ETAPE
database. Each column of the matrix is an individual BK with N = 320 elements
extracted according to the procedure illustrated in Fig. 1. Distinguishable BK patterns
indicate distinct speakers whereas differences between them indicate speaker change
points. (Color figure online)

the N KBM components is computed and stored in a vector which is sorted by
Gaussian index. The top NG Gaussians defined as those with the NG highest
likelihoods (2 - illustrated in solid blue) are then selected and used to create
binarised versions of the acoustic features (3).

This process is repeated for each frame of acoustic features thereby resulting
in a binary matrix of nf × N , each column of which has NG values equal to
binary 1. A row-wise addition of this matrix is then used to determine a single
cumulative vector (CV) which reflects the number of times each Gaussian in the
KBM was selected as a top-Gaussian (4). The final BK is obtained from the M
positions with highest values in the CV (5). Corresponding elements in the BK
are set to binary 1 whereas others are set to 0. The BK provides a sparse, fixed
length representation of a speech segment based on similarities to the acoustic
space modelled by the KBM. Full details of the feature binarisation approach
are also available in [13].

2.3 An Illustrative Example

By way of illustrating the speaker-discriminability of the BK approach, Fig. 2
depicts a sequence of BKs extracted following the procedure described in Sect. 2.2
from an arbitrary speech fragment in the order of 2.5 min duration. Each column
of the matrix is a BK computed from a 1 s window with a 0.1 s shift using a KBM
of size N = 320. Speaker labels towards the top of the plot indicate the speaker
which is active during each apparent segment. The vertical axis indicates the
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sorted KBM Gaussian indexes whereas the horizontal axis indicates time. The
intra-speaker consistency of BKs is immediately evident, as are the inter-speaker
differences which indicate speaker changes or turns. The apparent diagonal com-
ponent towards the upper half of the figure stems from the sequential, temporal
nature with which Gaussian candidates are added to the KBM pool.

3 BK-based Speaker Change Detection

This section describes the application of BK modelling to speaker change detec-
tion. Two such approaches are proposed.

3.1 KBM Estimation

The KBM can be learned using either one of the two approaches illustrated in
Figs. 3 and 4. The first is a global-context approach whereby the KBM is learned
with data from the entire test sequence. This approach follows the algorithm
described in Sect. 2.1. The second is a variant referred to as a local-context app-
roach whereby the KBM is learned from a shorter context window centred on
the hypothesised speaker change point. Unlike the global-context approach, the
local-context approach uses all the Gaussians contained in the defined context
(no selection process is performed). This approach to KBM learning enables the
flexible use of acoustic context information.

Fig. 3. Global-context KBM obtained through the selection of Gaussians from a global
pool.

3.2 Speaker Change Detection

Speaker change detection (SCD) is performed using data from two smaller and
non-overlapping windows, one either side of hypothesized speaker change points.
BKs are extracted for each window and are compared using the Jaccard distance,
defined as:

DJ(va, vb) = 1 − SJ(va, vb) (1)
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Fig. 4. Local-context KBM constructed using all Gaussians estimated from within a
local context.

where SJ(va, vb) is the Jaccard similarity between two binary vectors va and vb
defined as:

SJ(va, vb) =
∑N

i=1(va[i] ∧ vb[i])
∑N

i=1(va[i] ∨ vb[i])
(2)

where N is the vector dimension, ∧ is the boolean AND operator and ∨ is the
boolean OR operator.

This procedure is applied sequentially to obtain a curve of window distances
at regular intervals. Local peaks in this curve represent speaker change candi-
dates. Speaker change decisions are then obtained by thresholding the distance
curve using an empirically optimised threshold.

4 Experimental Setup

This section describes the database, the configuration of baseline and BK-based
approaches to SCD and the evaluation metrics.

4.1 Database

In keeping with previous work on SCD, e.g. [6,17], this work was performed with
the ETAPE database [16] which contains audio recordings of a set of French TV
and radio shows. The TV show development partition used for all work reported
here consists of 9 audio files containing excerpts of debate, entertainment and
broadcast TV shows broadcast on a number of different French TV channels.
Together the recordings contain in the order of 5.5 h of audio of which 3.9 h
contain the speech of 61 speakers in 2304 speech segments.

4.2 Baseline System

Acoustic features comprise 19 static Mel-frequency cepstral coefficients (MFCCs)
which are extracted from pre-emphasised audio signals using an analysis window
of 25 ms with a time shift of 10 ms using a 20-channel Mel-scaled filterbank. No
dynamic features are used.
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The baseline SCD approach is a standard BIC segmentation algorithm [8]. It
is applied with two windows of 1 s duration either side of a hypothesised speaker
change point. The resulting BIC distance curve is smoothed by replacing each
point with the average estimated over 1 s context. Local maxima are identified
by enforcing a minimum distance of 0.5 s between consecutive peaks. Within any
0.5 s interval, only the highest peak is retained before speaker change points are
selected by thresholding. This is a standard approach similar to those reported
in [7,9,10].

4.3 Binary Key System

Acoustic features are the same as for the baseline system. Candidate Gaussians
for the KBM pool are learned from windows of 2 s duration with a time shift of
1 s. The number of components in the final KBM is chosen adaptively according
to a percentage α of the number in the initial pool. Reported below are a set of
experiments used to optimise α. The number of top Gaussians NG used for BK
extraction (step 5 in Fig. 1) is set to 5 and the number of bits M that are set to
1 is set to 20% of the number of KBM components N .

Two BKs are extracted every 0.1 s with sliding windows of 1 s duration posi-
tioned either side of the hypothesized change point. The distance between each
pair of BKs is calculated using the Jaccard similarity (Sect. 3.2) and the distance
curve is smoothed in the same way as for the baseline system. Speaker change
points are again selected by thresholding.

4.4 Evaluation Metrics

SCD performance is evaluated using the approach used in [6], namely through
estimates of segment coverage and purity. According to the work in [6], coverage
is defined as:

coverage(R,H) =
∑

r∈R maxh∈H|r ∩ h|
∑

r∈R |r| (3)

where |r| is the duration of segment r within the set of reference segments R,
and where r ∩ h is the intersection of segments r and segments h within the set
of hypothesis segments H. Purity is analogously defined with R and H in Eq. 3
being interchanged.

An over-segmented hypothesis (too many speaker changes) implies a high
segment purity at the expense of low coverage (hypothesised segments cover a low
percentage of reference segments). In contrast, an under-segmented hypothesis
(too few speaker changes) implies the opposite, namely high coverage, but low
purity. Purity and coverage are hence a classical trade-off, with the optimal
algorithm configuration depending on the subsequent task.

In order to concentrate on the assessment of SCD alone, ground-truth anno-
tations are used for speech activity detection (SAD). It is noted that the use
of ground-truth SAD as a hypothesis with a single speaker delivers a ceiling
coverage of 100% and a floor purity of 83%. These values can be taken as a
performance reference.



Speaker Change Detection Using Binary Key Modelling 257

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Coverage (%)

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

P
u

ri
ty

 (
%

)

BIC

20%

40%

60%

80%

100%

Fig. 5. Performance measured in segment purity and coverage using global-context
KBM, obtained by varying the decision threshold θ. (Color figure online)

5 Results

Figures 5 and 6 show plots of purity and coverage for global- and local-context
KBMs respectively. Each profile shows the trade-off between the two metrics as
the distance threshold θ is varied. Profiles are shown for KBMs whose size α is
set to 20, 40, 60, 80 and 100% of the total number of original Gaussians. In both
cases, the performance of the BIC baseline system is illustrated with a solid blue
line.

The BK approach with global-context KBMs (Fig. 5) gives universally better
performance than the baseline, even if the trend is somewhat inconsistent. This
behaviour is due to the Gaussian selection process which can result in a selection
of Gaussians that are not representative of certain audio segments. KBMs of
larger size have inherently better potential to cover the full acoustic space and
hence better potential to produce more discriminant BKs. Larger KBMs then
give better performance, e.g. for α greater than 40%. The optimal α is 60%.
Greater value of α do not necessarily give better performance. This is because
the acoustic space is already fully covered and the introduction of additional
Gaussians is largely redundant. The BK approach with local-context KBMs
(Fig. 6) also outperforms the baseline. While the trend is consistent for lower
values of coverage, across the range the optimal α varies between 60% and 100%.

Table 1 illustrates the variation in coverage against purity for BK-based SCD
using global-context KBMs for α = 60%. The performance is compared to that
obtained with the baseline system. The BK approach gives higher coverage at all
operating points, especially for those with higher purity. Estimated using an area-
under-the-curve (AUC) metric, the average relative improvement in coverage and
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Fig. 6. Performance measured in segment purity and coverage using local-context
KBM, obtained by varying the decision threshold θ. (Color figure online)

purity across all operating points is 17.39% and 4.48%, for coverage and purity
metrics respectively.

Table 2 illustrates the same analysis for BK-based SCD using local-context
KBMs for α = 70. Using the same AUC metric, the average relative improvement
in coverage and purity is 18.71% and 4.51% respectively. These improvements
are similar to results achieved by more advanced deep learning-based solutions
such as that in [6].

It is of interest to compare the two proposed methods not only in terms
of performance, but also in terms of efficiency and practical application. Even
if the local-context approach slightly outperforms the global-context one, each
approach can be better suited for different application modes. On one hand,
in the case of offline processing (when the entire input stream is available in
advance), the global-context approach is more efficient since the KBM is fix for all
the process, hence allowing to compute frame-wise likelihoods only once and then
reuse them for subsequent operations. However, in the local-context approach,
the KBM changes over time (by using Gaussian components estimated on the
contextual window around the current time point). This forces to recompute
frame-wise likelihoods every time the window is shifted, therefore adding an extra
computation cost. On the other hand, in online processing scenarios, the global-
context approach cannot be used since the complete input stream is required in
advance to train the KBM. However, the local-context approach is well suited
for online applications since it only utilises local information around the current
time point. In the latter case, system latency is proportional to the amount of
contextual data considered.
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Table 1. Comparative performance measured in coverage for several fixed purity values
using the global-context KBM approach.

Purity (%) 84 88 92 96

Coverage (%) BIC 96.48 79.54 60.92 37.90

BK 98.88 91.71 78.46 48.99

Table 2. Comparative performance measured in coverage for several fixed purity values
using the local-context KBM approach.

Purity (%) 84 88 92 96

Coverage (%) BIC 96.48 79.54 60.92 37.90

BK 98.99 92.86 77.45 51.51

6 Conclusions

This paper introduces a binary key (BK) solution to speaker change detection
(SCD). The algorithm uses traditional acoustic features and a configurable quan-
tity of contextual information captured through a binary key background model
(KBM). Speaker-discriminative BKs are then extracted from the comparison of
acoustic features to the KBM. The binarisation of acoustic features resembles a
form of quantisation which helps to reduce noise and hence improve the robust-
ness of subsequent SCD. The latter is performed by thresholding the distance
between BKs extracted from two adjacent windows either side of hypothesized
speaker change points. While not requiring the use of external data, two variants
of the novel BK SCD algorithm are shown to outperform a baseline approach
based on the classical Bayesian information criterion. Results obtained using a
standard dataset show average relative improvements which compare favourably
to results reported recently for more computationally demanding deep learning
solutions.
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Abstract. Actually a lot of work on expressive speech focus on acoustic
models and prosody variations. However, in expressive Text-to-Speech
(TTS) systems, prosody generation strongly relies on the sequence of
phonemes to be expressed and also to the words below these phonemes.
Consequently, linguistic and phonetic cues play a significant role in the
perception of expressivity. In previous works, we proposed a statistical
corpus-specific framework which adapts phonemes derived from an auto-
matic phonetizer to the phonemes as labelled in the TTS speech corpus.
This framework allows to synthesize good quality but neutral speech
samples. The present study goes further in the generation of expressive
speech by predicting not only corpus-specific but also expressive pro-
nunciation. It also investigates the shared impacts of linguistics, phonet-
ics and prosody, these impacts being evaluated through different French
neutral and expressive speech collected with different speaking styles and
linguistic content and expressed under diverse emotional states. Percep-
tion tests show that expressivity is more easily perceived when linguis-
tics, phonetics and prosody are consistent. Linguistics seems to be the
strongest cue in the perception of expressivity, but phonetics greatly
improves expressiveness when combined with and adequate prosody.

Keywords: Expressive speech synthesis · Perception · Linguistics ·
Phonetics · Prosody · Pronunciation adaptation

1 Introduction

Speech synthesis usually consists of the conversion of a written text to a speech
sound, also named as Text-To-Speech (TTS) process. While TTS has reached
a fairly acceptable level of quality and intelligibility on neutral speech in the
last decades, the lack of expressivity is often criticized, as it usually sounds dif-
ferent from spontaneous human conversations [17]. The shift of TTS from read
to spontaneous and expressive speech would greatly help to reproduce situa-
tions where the synthetic voice talks with a user, for instance in the field of
human-machine interactions. As a result, there is a crucial need not only for just
intelligible speech carrying linguistic information, but also for expressive speech.
The present study investigates affective speech for TTS and finds applications in
c© Springer International Publishing AG 2017
N. Camelin et al. (Eds.): SLSP 2017, LNAI 10583, pp. 262–274, 2017.
DOI: 10.1007/978-3-319-68456-7_22
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many domains such as education and entertainment. According to Campbell [5],
the main challenge in expressive TTS is to find the adequation of affective states
in the input and the realization of prosodic characteristics to express them in the
output speech. Undoubtedly, prosody is an important cue in the perception of
expressivity in speech. However, in the framework of expressive speech synthesis,
prosody is highly related to the sequences of phonemes to be expressed and to
the words below these phonemes. Therefore, lexical and phonetic cues also play
a significant role in the perception of expressivity. Here expressivity is reduced
to the expression of emotional states. The present work investigates the shared
impacts of linguistics, phonetics and prosody in the perception of quality and
expressivity of speech samples generated with a TTS system.

Three main data-driven approaches coexist for TTS [17], unit selection, sta-
tistical parametric and Deep Neural Networks systems, all of them require vari-
able affective speech data of good audio quality. In that sense, there is a growing
interest for audio books as shown by the Blizzard Challenge 2016 [13]. They are
very interesting for TTS as they contain both a text of interest, with different
characters, speaking styles and emotions, and the corresponding audio signal [6].
In the present study, three speech corpora with different levels of expressivity are
used, one being collected from an audio book, another from high quality speech
for synthesis, and the last from TV commentaries. A solution to introduce some
flexibility in TTS consists in training acoustic models on speech produced with
different speaking styles or in adapting models to specific voices or prosodic
styles [7,12]. Expressivity can also be controlled in symbolic terms (diphone
identity, position, etc.) [1] or in prosodic terms (fundamental frequency, energy,
duration) [18]. Those elements are usually used in the speech synthesizer directly
in the cost function or in the construction of the acoustic model [15]. In addition,
voice transformation techniques can be applied to synthetic samples [9,21]. The
TTS used in this paper is a neutral unit selection system [1], expressivity being
controlled with different types of text, pronunciation and speech databases.

While a lot of work on expressive speech focus on acoustic models and prosody
variations, very few of them deal with pronunciation. A perception study [4]
showed that samples synthesized with the realized pronunciation were preferred
to those synthesized with the pronunciation derived from an automatic phone-
tizer – the canonical pronunciation. In previous works, we proposed a statisti-
cal framework which adapts the canonical pronunciation to a target pronuncia-
tion. This framework allows to predict phoneme sequences by using Conditional
Random Fields (CRF) models trained on lexical, phonological, articulatory and
prosodic features. The framework was used to generate spontaneous English
pronunciations and the results show that a trade-off between quality and intel-
ligibility is necessary [16]. It was also used to predict a corpus-specific pronunci-
ation, i.e. a pronunciation adapted to the TTS voice corpus, thus conducting to
a significant improvement of the overall quality of synthesized speech [19,20]. In
the work realized in [19], we manage to synthesize good quality speech samples
on a neutral voice. The present study goes further in the generation of expres-
sive speech samples by predicting not only a corpus-specific pronunciation but



264 M. Tahon et al.

also an expressive pronunciation. We also investigate the shared impacts of lin-
guistics, phonetics and prosody on the perception of expressivity, as well as the
best configuration towards an expressive synthesis system. In the remainder, an
overview of the general process is presented in Sect. 2. Speech, pronunciation
and text databases are detailed in Sect. 3. Features and models are exposed in
Sect. 4. Finally, Sect. 5 presents the perception test protocol and results.

2 General Overview

The process used in this study has been set up in order to study the impact
of linguistic, phonetic and prosodic expressive variations on the perception of
expressivity. Expressive variations of linguistic and prosodic features are easily
managed through different corpora, whereas expressive pronunciation variants
need to be generated with a pronunciation adaptation framework as illustrated
in Fig. 1. As detailed in [19], the goal of pronunciation adaptation is to reduce
the differences between phonemes derived from a phonetizer (canonical) and
phonemes as labelled in the pronunciation corpus (realized). To do so, the pro-
posed method is to train CRFs phoneme-to-phoneme (P2P) models which predict
adapted phonemes from canonical ones. To go further towards expressive pro-
nunciation generation, this study combines two P2P models. The voice-specific
pronunciation P2P model is trained on the TTS speech corpus with canonical
phonemes and predicts neutral voice-specific (VoSpe) phonemes. The expressive

Fig. 1. General overview. Databases are symbolized with ellipses.
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pronunciation P2P model is trained on the pronunciation corpus with VoSpe
phonemes and predicts voice-specific and expressive (VoExp) phonemes. One
could argue that adaptation could have been realized without any voice-specific
adaptation. Such a method could probably improve the expressiveness of the
synthesized speech samples, but inconsistencies between speech and pronunci-
ation corpora would remain, thus lowering the TTS quality. Overcoming the
disadvantages of the aforementioned method, the protocol illustrated in Fig. 1
was designed to generate expressive speech samples of good quality. Adapted
VoSpe and VoExp pronunciations are evaluated with expressive and with neu-
tral utterances. Such a protocol is of interest in evaluating the influence of words
in the perception of expressivity. Finally, three different speech corpora are used
to create TTS voices, each one having its own prosodic characteristics.

3 Databases

This section presents the databases used in the following experiments, which
characteristics are given in Table 1. Three speech corpora are used for voice-
specific pronunciation modelling and in the TTS voice creation. An emotional
pronunciation corpus is used for expressive pronunciation modelling. Finally,
utterances from two subcorpora of the aforementioned databases are used to
evaluate the influence of linguistics.

Table 1. Characteristics of each database. Mean (standard deviations) of fundamental
frequency (F0) in semitone and speech rate (SR) in syllable per seconds are given.

Corpus Expressivity # utt. Dur. # phon. F0(st) SR

Speech corpora

Telecom - train 70% Neutral 5044 4h51’ 151,945 89 (2.7) 4.7 (2.1)

Audiobook Moderate 3339 10h45’ 379,897 77 (3.2) 6.3 (1.2)

Commentary Expressive 1631 5h25’ 173,858 85 (5.0) 6.0 (1.7)

Pronunciation corpus

Expressive Expressive 6 × 47 0h41’ 16,248 84 (7.1) 6.3 (1.8)

Text corpora

Telecom - eval 30% Neutral 2162 2h04’ 64,960
Expressive Expressive 6 × 47 0h41’ 16,248

3.1 Speech Corpora

Speech corpora are used to train voice-specific pronunciation P2P models. They
are also used to create TTS voices.

Telecom corpus features a French speech corpus dedicated to interactive vocal
servers. As such, this corpus covers all diphonemes present in French. Phonemes
and non speech sounds have been manually corrected. The Telecom corpus has
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been randomly split in two subsets. 70% are left for training purposes and the
remaining 30% are kept for evaluations. This corpus comprises most words used
in the telecommunication field. Utterances are neutral such as: “On nous invite
à visiter les églises de onze heures à trois heures.” (“We are pleased to visit
the churches from 11 a.m. to 3 p.m.”). It features a neutral female voice which
pitch is normal (170Hz, 89 st) and pitch standard deviation is quite small. The
speech rate is in the normal range according to [10]. According to these prosodic
characteristics, this corpus can be considered as little expressive.

Audiobook corpus is extracted from a French audio book [11]. The reader
is a professional male French actor with a very low voice (91Hz, 77 st). The
book “Albertine disparue” was written by the French author Marcel Proust.
Data was automatically segmented and annotated (phonemes, syllables, non-
speech sounds and syntactic features) using the process described in [3]. Since
the main topic is an analysis of love pain, the tone is mainly serious, as this
example suggests: “Alors je pleurais ce que je voyais si bien et qui, la veille,
n’était pour moi que néant.” (“Then I was crying what I was seeing so well, and
what, before, was for me just a void”). Compared to the Telecom corpus, pitch
variations are more important, speech rate is also faster. This corpus is then
considered as moderately expressive.

Commentary corpus is extracted from commentaries which precede science
-fiction French series. The male speaker presents the synopsis of each episode in
a very expressive way. Data was also automatically annotated using the process
described in [3]. The commentator often calls out to the audience, and gets it
interested in viewing the episode. For example, he says: “Qu’avez-vous pensé de
ce géant qui s’avère être une tour humaine formée par trois acrobates ? Réalité,
ou fiction ?” (“What did you think of this giant who turns out to be a human
tour made of three acrobats? Reality or fiction?”). In this corpus, the global pitch
is quite high (136Hz, 85 st) for a male speaker, and the variations are important,
revealing a large diversity in prosody. The speech rate and its variations are at
the same level as in the Audiobook corpus. For these reasons, this corpus is the
most expressive.

3.2 Pronunciation Corpus

The pronunciation expressive corpus is used to train expressive pronunciation
models for each emotion.

Expressive corpus has been collected for expressive synthesis purposes.
A male speaker recorded French sentences in various emotion styles with a high
activation degree: anger, disgust, joy, fear, surprise and sadness. The speech
material has been aligned to the corresponding text for prosodic analysis and
alignment has been manually corrected [2]. The linguistic content of the sentences
is informal and emotionally coloured language, as for example in the expression
of anger: “Oh! Merde! Il y a un bouchon, c’est pas vrai, on va encore louper
le début du film !” (“Oh! Shit! There is traffic, I can’t believe it, we are going
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to miss the beginning of the film again!”). The choice of such sentences greatly
helps the speaker to simulate an emotion while reading. Each of 6 expressive
pronunciation model will be trained and evaluated in cross-validation using the
47 available utterances per emotion. Unsurprisingly, pitch and energy are highly
variable throughout the corpus and the speech rate is as fast as in Audiobook.
The Expressive corpus offers the opportunity to study expressed pronunciations
for different emotional states, this aspect being left for further studies.

3.3 Text Corpora

120 utterances were randomly selected from Telecom-eval and Expressive cor-
pora by sub-sampling the corpus according to the Phoneme Error Rate (PER)
between canonical and realized pronunciations. These utterances will be used
as neutral and expressive input text to evaluate the models. The 60 utterances
selected from Telecom-eval differ from the utterances used to train the voice-
specific pronunciation model and to create the TTS voice. On the contrary, due
to the small size of the corpus, the 60 utterances selected from Expressive corpus
are also used to train the expressive pronunciation model. Therefore, this corpus
has been split in 5 folds and managed under cross-validation conditions.

4 P2P Models

Voice-specific and expressive phoneme sequences are predicted using CRFs as
pronunciation models. This section describes the features, then voice-specific
and expressive pronunciation CRF models.

4.1 Features

CRFs are trained using the Wapiti toolkit [14] with the default BFGS algo-
rithm on a speech or pronunciation corpus with different features. Precisely, as
detailed in [19], four groups of features were investigated: 26 lexical, 17 phonolog-
ical, 9 articulatory and 8 prosodic features. Relevant features for pronunciation
adaptation are then automatically selected according to a cross-validation pro-
tocol. Prosodic features are extracted in an oracle way, i.e., directly from the
recorded utterances of the speech corpus. In the future, a prosodic model could
be included in the synthesizer, thus making prosodic features available. Such a
protocol allows to know to what extent prosody affects pronunciation models.

4.2 P2P Voice-Specific Pronunciation Model

The voice pronunciation model adapts canonical phonemes to phonemes as real-
ized in the speech corpus. In previous work [19,20], we have presented the training
process of a P2P voice-specific model with the corpus Telecom. Table 2 shows
the distribution of selected features within groups. Feature selection performed
on the voice-specific model (VoSpe) excludes articulatory features. In the end,
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Table 2. Number of selected features within groups with a W0 phoneme window.
Feature selection results are presented for adaptation to the voice pronunciation on
Telecom (VoSpe) then to the expressive pronunciations on the Expressive corpus for
each emotion (VoExp).

Feature group VoSpe VoExp
(# feat.) Anger Disgust Joy Fear Surprise Sadness

Lexical (26) 2 3 5 2 4 5 3

Phonological (17) 7 5 7 6 6 3 3

Articulatory (9) 0 3 4 1 1 2 2

Prosodic (8) 0 (removed) 6 6 7 5 7 8

Total (52) 9 17 22 16 16 17 16

a set of 15 features including lexical, phonological and prosodic features with
a 5-phoneme window (two phonemes surrounding the current phoneme, named
as W2) were automatically selected. An optimal PER of 2.7% (baseline 11.2%)
was reached when training models on the data. However, a perception test has
shown that speech samples generated with the 15-feature set were perceived with
the same or a lower quality than samples generated with a 9-feature set exclud-
ing prosodic features. Since prosodic features are not generated from text yet
but are estimated in an oracle way, only the selected lexical and phonological
9-feature set is used. For the same reason, a 5-phoneme window (W2) is applied
to train voice-specific P2P models. The corpora used for training voice-specific
pronunciation models are the three speech corpora described in Sect. 3.1.

4.3 P2P Expressive Pronunciation Model

The expressive pronunciation model adapts VoSpe phonemes which are predicted
with the voice-specific pronunciation model described before, to phonemes as
labelled in the Expressive pronunciation corpus. More precisely, 6 pronuncia-
tion models are trained for each emotion contained in the Expressive corpus.
A greedy feature selection process is performed in 5-folds cross-validation con-
ditions for each emotion separately starting from at least VoSpe phonemes and
target realized expressive phonemes, then adding features one by one. Features
are selected separately in the four groups and with three window sizes: W0, W1

and W2. The window W0 has shown to reach the best PER.
The number of selected features and its distribution within groups differ

across emotions, as reported in Table 2, while applying W0 on the phoneme
sequence. According to Table 2, whatever the emotion, most of the prosodic
features seem to be highly relevant for expressive pronunciation modeling, while
articulatory features are not. Very few lexical features were selected. Among
them, word and stem are often selected, while word (disgust) and Part-of-Speech
(fear) context and frequency (surprise) were selected for some emotions only. The
case of sadness is interesting as all prosodic features were selected, and very few
features from other groups are included in the final subset.
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Table 3. Average [standard deviation] PER (%) over emotions between realized and
predicted phonemes, with neutral and expressive text.

Speech corpus → Telecom Audiobook Comment.

Text corpus → Neu. Exp. Neu. Exp. Neu. Exp.

VoSpe 3.0 [0] 16.0 [0.6] 6.9 [0] 15.6 [1.1] 6.4 [0] 16.3 [1.1]

VoExp (W0) 8.0 [0.8] 12.5 [2.3] 10.0 [0.5] 12.7 [0.7] 9.9 [0.5] 13.1 [1.5]

VoExp (W0 +sel. feat.) 9.0 [0.3] 5.1 [1.2] 10.0 [0.6] 6.0 [1.0] 9.9 [0.5] 5.1 [0.8]

4.4 Objective Evaluation of the Models

Canonical phonemes extracted automatically from neutral (in cross-validation
conditions) and expressive (in cross-corpus conditions) sentences are used as
inputs to evaluate the models. These are evaluated in terms of PER between
realized expressive or neutral phonemes and canonical or predicted phonemes.
The results are reported in Table 3. In the case of neutral utterances in input,
no realized expressive pronunciation is available since the corpus Telecom was
designed for neutral speech only. On the contrary, in the case of expressive utter-
ances in input, no realized neutral pronunciation is available since the corpus
Expressive was designed for emotional data collection. Therefore, with neutral
text in input, the PER obtained with VoSpe is smaller than the one obtained
with VoExp, and with expressive text in input, the PER obtained with VoSpe is
higher than the one obtained with VoExp. Both results being obtained whatever
the Voice corpus, as shown in Table 3.

The combination of voice and expressive pronunciation models – which out-
puts VoExp phonemes – helps in reducing phonemic differences between the
predicted and the realized expressive sequences when text is expressive. Fur-
thermore, the addition of selected features is not of significant interest when the
input text is neutral, but is when text is expressive. Average PER improvement
reaches 6.7 pp. with Audiobook, 7.4 pp. with Telecom and 8.0 pp. with Commen-
tary with the W0+ selected features. A perception test will be able to evaluate
the models in a similar way for both expressive and neutral text in input.

4.5 Example

Table 4 illustrates some differences which occur between a neutral and an expres-
sive pronunciation. In this example, the realized pronunciation comes from
Expressive corpus. Canonical pronunciation is adapted to the pronunciation of
the speech corpus (VoSpe) then to the emotional pronunciation corpus (VoExp).
Some deletions appear to be characteristic of an expressive pronunciation in
French, for example deletion of the vowel /ø/ or the liquid /l/. Also the liaison
/z/ is missing in the three adapted VoExp pronunciations as well as in the real-
ized pronunciation. This example also presents an interesting case: the canonical
pronunciation /Z ø n/ is subsituted by /Z/ in expressive pronunciations (see also
/i n ø/. This is a regular case in French: first the deletion of /ø/ gives /Z n/ and
the deletion of the negative ne gives the final pronunciation.
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Table 4. Example of pronunciation adaptations. The input text is Je suis dégoûtée,
ils ne m’ont pas embauchée parce que je n’ai pas le diplôme. “I am gutted, they did not
hire me because I do not have the diploma:”

Cano Z ø s 4 i d e g u t e i l n ø m Õ p a z Ã b o S e p a K s @ k ø Z ø n E p a l ø d i p l o m @

Real Z - s 4 i d e g u t e i - - - m Õ p a - Ã b o S e p a K s - k @ Z - - e p a l - d i p l o m @

Telecom

VoSpe Z ø s 4 i d e g u t e i l n ø m Õ p a z Ã b o S e p a K s - k @ Z ø n e p a l ø d i p l o m -

VoExp Z - s 4 i d e g u t e i - - - m Õ p a - Ã b o S e p a K s - k @ Z - - e p a l - d i p l o m -

Audiobook

VoSpe Z ø s 4 i d e g u t e i l n - m Õ p a z Ã b o S e p a K s - k @ Z - n E p a l ø d i p l o m -

VoExp Z - s 4 i d e g u t e i - - - m Õ p a - Ã b o S e p a K s - k @ Z - - - p a l - d i p l o m -

Commentary

VoSpe Z ø s 4 i d e g u t e i l n ø m Õ p a z Ã b o S e p a K s - k @ Z ø n E p a l ø d i p l o m -

VoExp Z - s 4 i d e g u t e i - - - m Õ p a - Ã b o S e p a K s - k @ Z - - e p a l - d i p l o m -

5 Perception Test Results

In this section, we present perception tests which evaluate the respective influ-
ences of linguistics, phonetics and prosody in terms of quality and expressivity.

5.1 Experimental Set-Up

Six perception AB tests were conducted independently. Each test combines a
TTS voice built on one of the 3 speech corpora (Telecom, Audiobook or Com-
mentary) and either neutral or expressive input text. Within a test, AB pairs
combine 3 different pronunciations: canonical (Cano), adapted neutral voice-
specific (VoSpe) and adapted expressive (VoExp). For each test, 11 participants
were asked to judge 30 utterances per AB pair, consequently each AB pair was
evaluated more than 300 times. The listeners had to answer to the questions
reported in Fig. 2 for the 30 utterances presented randomly. Speech samples were
synthesized directly from the phoneme sequence (canonical or predicted with one
of the 2 pronunciation models) derived from the tested input text. A TTS voice
was created with the corpus-based unit selection TTS system described in [1]
for each of the 3 speech corpora.

Fig. 2. Perception test design.
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5.2 Results

The results concerning quality are reported in Table 5, the ones concerning
expressivity are reported in Table 6. The number of preferred samples in %
is given for each pronunciation of the AB pair. Cases for which the two pro-
nunciations are judged as similar are not reported. Significant preferences are
annotated with a * according to the confidence interval used in [8]. VoSpe is
globally preferred to Cano whatever the voice and the input text. This neutral
adapted pronunciation is also judged with a better quality than the expressive
adapted pronunciation (VoExp). Moreover, it seems that VoExp reaches a better
quality than Cano when input text is expressive rather than when the input text
is neutral with Telecom and Commentary voices.

Interestingly, in cases where VoExp’s quality is preferred to Cano’s quality,
expressivity of VoExp is also preferred: with Telecom voice whatever the text
and with Commentary voice and expressive text, thus underlying the required
adequation between expressivity and audio quality. There is no differences in the
perception of expressivity between VoSpe and VoExp while input text is neutral.
With the Audiobook voice, Cano is preferred to VoExp both in terms of quality
and expressivity. This result was expected since the phonetizer was tuned with
Audiobook speech data. Obtained results show us that the expressive pronunci-
ation adaptation framework improves the perception of expressivity especially

Table 5. Preferred samples (%) in terms of quality.

Text Sample Telecom Audiobook Comment.
A/B A B A B A B

Neutral Cano/VoSpe 5.0 65* 20 27 8.1 27*
Cano/VoExp 32 48* 47* 8.3 35* 18
VoExp/VoSpe 13 41* 12 34* 14 35*

Expressive Cano/VoSpe 9.2 54* 14 26* 15 28*
Cano/VoExp 30 39 46* 22 25 32
VoExp/VoSpe 28 47* 14 44* 22 25

Table 6. Preferred samples (%) in terms of expressivity.

Text Sample Telecom Audiobook Comment.
A/B A B A B A B

Neutral Cano/VoSpe 22 30 22 13 15 26
Cano/VoExp 20 30 23 15 23 14
VoExp/VoSpe 15 15 13 18 17 14

Expressive Cano/VoSpe 28 22 24 30 29 21
Cano/VoExp 27 43* 34 28 24 29
VoExp/VoSpe 41* 24 26 33 26 24
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as the speech corpus contains neutral speech (such as Telecom). Should the
speech corpus be already expressive, the voice-specific pronunciation adaptation
improves the global perceived quality, while expressive pronunciation adaptation
does not achieve to improve the perceived expressivity, probably because expres-
sivity is already contained in the prosody of the voice. Therefore, we show that
the perception of expressivity relies on the adequation of phonetics and prosody.

With neutral text, whatever the prosody (i.e. the voice speech corpus), par-
ticipants are not able to recognize any emotion (correctly recognized emotions
<5% over all pronunciations). However, they do when linguistic content is expres-
sive (correctly recognized emotions >30% over all pronunciations), whatever the
prosody, thus meaning that emotion perception is strongly linked with linguistic
content. Whilst Commentary has been characterized as the most expressive, the
moderate voice Audiobook reaches the best recognition rate: average F1 measure
is 82% with Audiobook and only 67% with Commentary. Precisely, it seems that
Commentary voice is not suitable for the expression of sadness (F sad

1 = 34%),
while Audiobook is (F sad

1 = 74%). We have mentioned in Sect. 4.3 that prosodic
features were the most selected features in the expressive pronunciation model.
Same prosodic features can be used to model a sad pronunciation and can be
reached by the TTS Commentary voice. However, even if the Commentary cor-
pus is expressive, sadness is probably under-represented thus introducing the
observed mismatch.

6 Conclusions

The present work evaluates the respective influence of linguistics, phonetics and
prosody on the perception of quality and expressivity of synthetic speech sam-
ples. Neutral and expressive input texts, pronunciations and synthetic voices are
used in a TTS system to evaluate the shared influences of these factors. The
experiments confirm the interest of voice-specific adaptation for the perceived
quality of TTS with different voices. Perception tests show that expressivity is
better perceived when synthetic samples also have a good quality. While the per-
ception of expressivity mainly relies on the adequation of phonetics and prosody,
the perception of emotions is strongly linked with linguistics. The presented
results open new perspectives in emotional data collection. In the framework of
expressive speech synthesis, the use of a moderately expressive voice is of interest
for the expression of affect and also for the quality of synthetic speech samples.
In the future, prosodic features could be predicted directly from text, thus allow-
ing to select appropriate speech units in the TTS voice. Further experiments are
needed to label speech units according to their expressiveness, for instance with
emotion recognition frameworks or speaking styles models.
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