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Abstract. We consider a two player game, where a first player has to
install a surveillance system within an admissible region. The second
player needs to enter the monitored area, visit a target region, and then
leave the area, while minimizing his overall probability of detection. Both
players know the target region, and the second player knows the surveil-
lance installation details. Optimal trajectories for the second player are
computed using a recently developed variant of the fast marching algo-
rithm, which takes into account curvature constraints modeling the sec-
ond player vehicle maneuverability. The surveillance system optimization
leverages a reverse-mode semi-automatic differentiation procedure, esti-
mating the gradient of the value function related to the sensor location
in time O(N ln N).

Keywords: Anisotropic fast-marching · Motion planning · Sensors
placement · Game theory · Optimization

1 Introduction

This paper presents a proof of concept numerical implementation of a motion
planning algorithm related to a two player game. A first player selects, within an
admissible class Ξ, an integral cost function on paths, which takes into account
their position, orientation, and possibly curvature. The second player selects a
path, within an admissible class Γ , with prescribed endpoints and an interme-
diate keypoint. The players objective is respectively to maximize and minimize
the path cost

C(Ξ, Γ ) := sup
ξ∈Ξ

inf
γ∈Γ

C(ξ, γ), where C(ξ, γ) :=

∫ T (γ)

0

Cξ(γ(t), γ′(t), γ′′(t)) dt, (1)
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where the path γ is parametrized at unit Euclidean speed, and the final time
T (γ) is free. From a game theoretic point of view, this is a non-cooperative zero-
sum game, where player Ξ has no information and player Γ has full information
over the opponent’s strategy.

The game (1) typically models a surveillance problem [17], and
exp(−C(Ξ,Γ )) is the probability for player Γ to visit a prescribed keypoint
without being detected by player Ξ. For instance player Ξ is responsible for
the installation of radar [1] or sonar detection systems [17], and would like to
prevent vehicles sent by player Γ from spying on some objectives without being
detected.

The dependence of the cost Cξ w.r.t. the path tangent γ′(t) models the varia-
tion of a measure of how detectable the target is (radar cross section, directivity
index, etc.) w.r.t. the relative positions and orientations of the target and sensor.
The dependence of Cξ on the path curvature γ′′(t) models the airplane maneu-
verability constraints, such as the need to slow down in tight turns [9], or even
a hard bound on the path curvature [8].

Strode [17] has shown the interplay of motion planning and game theory in
a similar setting, on a multistatic sonar network use case, but using isotropic
graph-based path planning. The same year, Barbaresco [2] used fast-marching
for computing threatening paths toward a single radar, but without taking into
account curvature constraints and without considering a game setting.

The main contributions of this paper are as follows:

1. Anisotropy and curvature penalization: Strategy optimization for player Γ is
an optimal motion planning problem, with a known cost function. This is
addressed by numerically solving a generalized eikonal PDE posed on a two
or three dimensional domain, and which is strongly anisotropic in the pres-
ence of a curvature penalty and a detection measurement that depends on
orientation. A Fast-Marching algorithm, relying on recent adaptive stencils
constructions, based on tools from lattice geometry, is used for that pur-
pose [9,12,13]. In contrast, the classical fast marching method [14] used in [5]
is limited to cost functions Cξ(γ(t)) independent of the path orientation γ′(t)
and curvature γ′′(t).

2. Gradient computation for sensors placement: Strategy optimization for player
Ξ is typically a non-convex problem, to which various strategies can be
applied, yet gradient information w.r.t. the variable ξ ∈ Ξ is usually of help.
For that purpose, we implement efficient differentiation algorithms, forward
and reverse, for estimating the gradient of the value function of player Ξ

∇ξC(ξ, Γ ), where C(ξ, Γ ) := inf
γ∈Γ

C(ξ, γ). (2)

Reverse mode differentiation reduced the computation cost of ∇ξC(ξ, Γ ) from
O(N2), as used in [5], to O(N lnN), where N denotes the number of dis-
cretization points of the domain. As a result, we can reproduce examples
from [5] with computation times reduced by several orders of magnitude, and
address complex three dimensional problems.
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Due to space constraints, this paper is focused on problem modeling and
numerical experiments, rather than on mathematical aspects of wellposedness
and convergence analysis. Free and open source codes for reproducing (part of)
the presented numerical experiments are available on the first author’s webpage1.

2 Mathematical Background of Trajectory Optimization

We describe in this section the PDE formalism, based on generalized eikonal
equations, used to compute the value function minγ∈Γ C(ξ, γ) of the second
player, where ξ is known and fixed. Their discretization is discussed in Sect. 3.
We distinguish two cases, depending on whether the path local cost function
Cξ(x, ẋ, ẍ) appearing in (1) depends on the last entry ẍ, i.e. on path curvature.

2.1 Curvature Independent Cost

Let Ω ⊂ E := R
2 be a bounded domain, and let the source set Υ and target set

Θ be disjoint subsets of Ω. For each x ∈ Ω, let Γx denote the set of all paths
γ ∈ C1([0, T ], Ω), where T = T (γ) is free, such that γ(0) ∈ Υ , γ(T ) = x and
∀t ∈ [0, T ], ‖γ′(t)‖ = 1. The problem description states that the first player needs
to go from Υ to Θ and back, hence its set of strategies is Γ =

⋃
x∈Θ Γ+

x × Γ−
x ,

where Γ+
x = Γ−

x := Γx, and

C(ξ, Γ ) = inf
x∈Θ

u+
ξ (x) + u−

ξ (x), where u±
ξ (x) := inf

γ∈Γ±
x

C±(ξ, γ). (3)

Here and below, the symbol “±” must be successively replaced with “+” and
then “−”. We denoted by C± the path cost defined in terms of the local cost
Cξ(x,±ẋ). In practice though, we only consider symmetric local costs, obeying
Cξ(x, ẋ) = Cξ(x,−ẋ), hence the forward and return paths are identical and we
denote uξ := u+

ξ = u−
ξ . Define the 1-homogenous metric Fξ : Ω × E → [0,∞],

the Lagrangian Lξ and the Hamiltonian Hξ by

Fξ(x, ẋ) := ‖ẋ‖Cξ(x, ẋ/‖ẋ‖), Lξ :=
1
2
F2

ξ , Hξ(x, x̂) := sup
ẋ∈E

〈x̂, ẋ〉 − Lξ(x, ẋ).

Here and below, symbols denoting tangent vectors are distinguished with a
“dot”, e.g. ẋ, and co-vectors with a “hat”, e.g. x̂. Under mild assumptions [3],
the function uξ : Ω → R is the unique viscosity solution to a generalized eikonal
equation ∀x ∈ Ω \ Υ, Hξ(x,∇xuξ(x)) = 1/2, ∀x ∈ Υ, uξ(x) = 0, with out-
flow boundary conditions on ∂Ω. The discretization of this PDE is discussed
in Sect. 3. We limit in practice our attention to Isotropic costs Cξ(x), and
Riemannian costs Cξ(x, ẋ) =

√〈ẋ,Mξ(x)ẋ〉 where Mξ(x) is symmetric positive
definite, for which efficient numerical strategies have been developed [11,12].

1 github.com/Mirebeau/HamiltonianFastMarching.

http://github.com/Mirebeau/HamiltonianFastMarching
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2.2 Curvature Dependent Cost

Let Ω ⊂ R
2 × S

1 be a bounded domain, within the three dimensional space of
all positions and orientations. As before, let Υ,Θ ⊂ Ω. For all x ∈ Ω let Γ±

x be
the collection of all γ ∈ C2([0, T ], Ω), such that η := (γ,±γ′) satisfies η(0) ∈ Υ ,
η(T ) = x and ∀t ∈ [0, T ], ‖γ′(t)‖ = 1. Since the first player needs to go from Υ
to Θ and back, its set of strategies is Γ =

⋃
x∈Θ Γ+

x × Γ−
x . Equation (3) holds,

where C± denotes the path cost defined in terms of the local cost Cξ(p,±ṗ, p̈).
Consider the 1-homogeneous metric F±

ξ : TΩ → [0,∞], defined on the tan-
gent bundle to Ω ⊂ R

2 × S
1 by

F±
ξ ((p, n), (ṗ, ṅ)) :=

{
+∞ if ṗ �= ‖ṗ‖n,

‖ṗ‖Cξ(p, n,±ṅ/‖ṗ‖) else,

where p ∈ R
2, n ∈ S

1 is a unit vector, and the tangent vector satisfies ṗ ∈ R
2, ṅ ⊥

n. This choice is motivated by the fact that
∫ T

0
F±

ξ (η(t), η′(t))dt is finite iff η :

[0, T ] → Ω is of the form (γ,±γ′), and then it equals
∫ T

0
Cξ(γ(t),±γ′(t), γ′′(t))dt.

Introducing the Lagrangian L±
ξ = 1

2 (F±
ξ )2 on TΩ, and its Legendre-Fenchel

dual the Hamiltonian H±
ξ , one can again under mild assumptions characterize u±

ξ

as the unique viscosity solution to the generalized eikonal PDE H±
ξ (x,∇u±

ξ (x)) =
1/2 with appropriate boundary conditions [3]. In practice, we choose cost func-
tions of the form Cξ(p, ṗ, p̈) = C◦

ξ (p, ṗ)C�(|p̈|), where C� is the Reeds-Shepp car or
Dubins car [8] curvature penalty, with respective labels � = RS and D, namely

CRS(κ) :=
√

1 + ρ2κ2, CD(κ) :=

{
1 if |ρκ| ≤ 1,

+∞ otherwise,

where ρ > 0 is a parameter which has the dimension of a curvature radius.
The Dubins car can only follow paths which curvature radius is ≤ ρ, whereas
the Reeds-Shepp car (in the sense of [9] and without reverse gear), can
rotate into place if needed. The Hamiltonian then has the explicit expression
H((p, n), (p̂, n̂)) = 1

2C0
ξ (p, n)−2H∗(n, (p̂, n̂)) where HRS = 1

2 (〈p̂, n〉2+ + ‖n̂/ρ‖2)
and HD = 1

2 max{0, 〈p̂, n〉 + ‖n̂/ρ‖}2.

3 Discretization of Generalized Eikonal Equations

We construct a discrete domain X by intersecting the computational domain
with an orthogonal grid of scale h > 0: X = Ω ∩ (hZ)d, where d = 2 for the
curvature independent models, and d = 3 for the other models which are posed
on R

2×(R/2πZ) —using the angular parametrization S
1 ∼= R/2πZ (in the latter

periodic case, 2π/h must be an integer). We design weights cξ(x, y), x, y ∈ X
such that for any tangent vector ẋ at x ∈ Ω one has

Hξ(x, ẋ) ≈ h−2
∑

y∈X

c2ξ(x, y)〈x − y, ẋ〉2+, (4)
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where a+ := max{0, a} (expression (4) is typical, although some models require
a slight generalization). The weights cξ(x, y) are non-zero for only few (x, y) ∈ X
at distance ‖x − y‖ = O(h). Their construction exploits the additive structure
of the discretization grid X and relies on techniques from lattice geometry [16],
see [9,12,13] for details. The generalized eikonal PDE Hξ(x,∇xuξ(x)) = 1/2,
which solution uξ(x) should be regarded as a distance map, is discretized as

∑

y∈X

c2ξ(x, y)(Uξ(x) − Uξ(y))2+ = h2/2, (5)

with adequate boundary conditions. The solution Uε : X → R to this system of
equations is computed in a single pass with O(N ln N) complexity [14], using a
variant of the Fast-Marching algorithm. This is possible since the l.h.s. of (5) is
a non-decreasing function of the positive parts of the finite differences (Uξ(x) −
Uξ(y))y∈X . Note that the eikonal PDE discretization (5), based on upwind finite
differences, differs from the semi-Lagrangian approach [15], which can also be
solved in a single pass but is usually less efficient due to the large cardinality and
radius of its stencils. Image segmentation techniques relying on the numerical
solutions to anisotropic eikonal PDEs were proposed in [6] using Riemannian
metrics, and in [4,7] based on the reversible Reeds-Shepp car and Euler elastica
curvature penalized models respectively. However these early works rely on non-
causal discretizations, which have super-linear complexity O(N1+1/d) where the
unspecified constant is large for strongly anisotropic and non-uniform metrics.
This alternative approach yields (much) longer solve times, incompatible our
application - where strongly anisotropic three dimensional eikonal PDEs are
solved as part of an inner loop of an optimization procedure.

To be able to use the gradient to solve the problem (1), we need to differ-
entiate the cost C(ξ, Γ ) w.r.t. the first player strategy ξ ∈ Ξ. In view of (3),
this only requires the sensitivity of the discrete solution values Uξ(x∗) at the few
points x∗ ∈ X ∩ Θ, w.r.t to variations in the weights cξ(x, y), x, y ∈ X. For that
purpose we differentiate (5) w.r.t. ξ at an arbitrary point x ∈ X \ Υ , and obtain

∑

y∈X

ωξ(x, y) (dUξ(x) − dUξ(y) + (Uξ(x) − Uξ(y)) d ln cξ(x, y)) = 0,

where ωξ(x, y) := c2ξ(x, y)(Uξ(x) − Uξ(y))+. Therefore

dUξ(x) =
∑

y∈X

αξ(x, y)dUξ(y) +
∑

y∈X

βξ(x, y)dcξ(x, y), (6)

where αξ(x, y) := ωξ(x, y)/
∑

y ωξ(x, y), and βξ(x, y) := αξ(x, y)/cξ(x, y). We
first choose x = x∗ in (6), and then recursively eliminate the terms dUξ(y) by
applying the same formula at these points, except for points in the source set
y ∈ Υ for which one uses the explicit expression dUξ(y) = 0 (since Uξ(y) = 0
is in this case independent of ξ). This procedure terminates: indeed, whenever
dUξ(x) depends on dUξ(y) in (6), one has αξ(x, y) > 0, thus ω(x, y) > 0, hence
Uξ(x) > Uξ(y). It is closely related to automatic differentiation by reverse accu-
mulation [10], and has the modest complexity O(N).
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4 Numerical Results

The chosen physical domain R is the rectangle [0, 2]×[0, 1] minus some obstacles,
as illustrated on Fig. 1. Source point is (0.2, 0.5) and target keypoint (1.8, 0.5).
The computational domain is thus Ω = R for curvature independent models and
Ω = R × S

1 for curvature dependent models, which is discretized on a 180 × 89
or 180 × 89 × 60 grid.

No intervention from the first player. The cost function is Cξ(p, ṗ, p̈) = C∗(|p̈|),
where C∗(κ) is respectively 1,

√
1 + ρ2κ2 and (1 if ρκ ≤ 1, otherwise +∞), with

ρ := 0.3. The differences between the three models are apparent: the curvature
independent model uses the same path forward and back; the Reeds-Shepp car
spreads some curvature along the way but still makes an angle at the target
point; the Dubins car maintains the radius of curvature below the bound ρ,
and its trajectory is a succession of straight and circular segments. A referee
notes that following an optimal trajectory for the Dubins model is dangerous in
practice, since any small deviation is typically impossible to correct locally, and
may drive into an obstacle; these trajectories are also easier to detect due to the
large circular arc motions.

Curvature independent Reeds Shepp car, forward only Dubins car

Fig. 1. Shortest path from the blue point (left) to the red keypoint (right) and back.
(Color figure online)

Next we study three games where player one aims to detect player two along
its way from the source set Υ to the target Θ and back, using different means. If
the first player does not intervene, see Fig. 1, or if its strategy is not optimized,
see Fig. 3, then there is typically a unique optimal path (optimal loop in our
games) for player two. In contrast, an interesting qualitative property of the
optimal strategy ξ ∈ Ξ for the first player is that it has a large number of
optimal responses from player two, see Fig. 4, in some cases even a continuum,
see Fig. 2 (bottom) and [5]. This is typical of two player games.

Fresh paint based detection. In this toy model, see Fig. 2, the first player spreads
some fresh paint over the domain, and the second player is regarded as detected
if he comes back covered in it from his visit to the keypoint. The cost function
is Cξ(p, ṗ, p̈) = ξ(p)C∗(|p̈|), where ξ : R → R+ is the fresh paint density, decided
by the first player, and C∗(κ) is as above. For wellposedness, we impose upper
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Curvature independent Reeds Shepp car, forward only Dubins car

Fig. 2. Top: Optimal distribution of paint, to mark a path from the blue point (left)
to the red keypoint (right) and back. Bottom: Geodesic density at the optimal paint
distribution. (Color figure online)

and lower bounds on the paint density, namely 0.1 ≤ ξ(p) ≤ 1, and subtract
the paint supply cost

∫
R

ξ(p)dp to (1). The main interest of this specific game,
also considered in [5], is that C(ξ, Γ ) is concave w.r.t. ξ ∈ Ξ. The observed
optimal strategy for player Ξ is in the curvature independent case to make some
“fences” of paint between close obstacles, and in the curvature penalized models
to deposit paint at the edges of obstacles, as well as along specific circular arcs
for the Dubins model.

Visual detection. The first player places some cameras, e.g. with 360-degree
field of view and mounted at the ceiling, which efficiency at detecting the second
player decreases with distance and is blocked by obstacles, see Fig. 3. The cost
function is

Cξ(p, ṗ, p̈) = C∗(κ)
∑

q∈ξ
[p,q]⊂R

1
‖q − p‖2 , (7)

where ξ ∈ Ξ is a subset of R with prescribed cardinality, two in our experiments.
The green arrows on Fig. 3 originate from the current (non optimal) camera
position, and point in the direction of greatest growth ∇C(ξ, Γ ) for the first
player objective function.

Radar based detection. The first player places some radars on the domain
R = [0, 2] × [0, 1], here devoid of obstacles, and the second player has to fly
by undetected. The cost function is

Cξ(p, ṗ, p̈) = C∗(|p̈|)
√
√
√
√

∑

q∈ξ

〈ṗ, npq〉2 + δ2〈ṗ, n⊥
pq〉

‖p − q‖4 (8)

where npq := (q−p)/‖q−p‖. The first player strategy ξ contains the positions of
three radars, constrained to lie in the subdomain [0.4, 1.6]× [0, 1]. The parameter
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Curvature independent Reeds Shepp forward Dubins car

Curvature independent Reeds Shepp forward Dubins car

Fig. 3. Field of view of the cameras (black gradients), optimal furtive paths (red lines),
local direction of improvement of the camera position (green arrows). (Color figure
online)

δ is set to 1 for an isotropic radar cross section (RCS), or to 0.2 for an anisotropic
RCS. In the latter case a plane showing its side to radar is five times less likely
to be detected than a plane showing its nose or back, at the same position.
Green arrows on Fig. 4 point from the original position to the (locally) optimized
position for player Ξ. At this position, several paths are optimal for player Γ ,
shown in red on Fig. 4.

Curvature independent Reeds Shepp forward Dubins car

Curvature independent Reeds Shepp forward Dubins car

Fig. 4. Optimal radar placement with an isotropic (top) or anisotropic (bottom) radar
cross section.

Computational cost. On a standard Laptop computer (2.7 Ghz, 16 GB ram),
optimizing the second player objective, by solving a generalized eikonal equation,
takes ≈1 s in the curvature dependent case, and ≈ 60 times less in the curvature
independent case thanks to the absence of angular discretization of the domain.
Optimizing the first player objective takes ≈100 L-BFGS iterations, each one
taking at most 8 s. For the stability of the minimization procedure, the problems
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considered were slightly regularized by the use of soft-minimum functions and
by “blurring” the target keypoint over the 3 × 3 box of adjacent pixels.

5 Conclusion

We have modeled a motion planning problem that minimize an anisotropic prob-
ability of detection, taking into account navigation constraints while computing
the gradient of the value function related to the sensors location. This model is
thus useful for surveillance applications modeled as a two-player zero-sum game
involving a target that tries to avoid detection.
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