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Abstract. In this article we develop in the case of triangulated meshes
the notion of normal cycle as a dissimilarity measure introduced in [13].
Our construction is based on the definition of kernel metrics on the space
of normal cycles which take explicit expressions in a discrete setting. We
derive the computational setting for discrete surfaces, using the Large
Deformation Diffeomorphic Metric Mapping framework as model for
deformations. We present experiments on real data and compare with
the varifolds approach.

1 Introduction

The field of computational anatomy focuses on the analysis of datasets composed
of anatomical shapes through the action of deformations on these shapes. The key
algorithm in this framework is the estimation of an optimal deformation which
matches any two given shapes. This problem is most of the time formulated as
the minimization of a functional composed of two terms. The first one is an
energy term which enforces the regularity of the deformation. The second one is
a data-fidelity term which measures a remaining distance between the deformed
shape and the target. This data attachment term is of importance since it drives
the registration and relaxes the constraint of exact matching.

In the case of shapes given as curves or surfaces, a framework based on
currents have been developed in [8,14] to provide a satisfying data attachment
term, which does not necessitate point correspondences. However, currents are
sensitive to orientation, and consequently insensitive to high curvature points of
the shapes, which can lead to incorrect matchings of these points, or boundaries
of shapes. To overcome this drawback, the varifold representation of shapes was
introduced in [4]. Such a representation is orientation-free, and thus overcomes
the difficulties experienced with currents. In [13], we developed a new data-
attachment term using the theory of normal cycles. The normal cycle of a shape
is the current associated with its normal bundle. It is orientation-free and encodes
curvature information of the shape. The general framework have been set in [13]
as well as the application to three dimensional curves.

In this article, we extend this framework to the case of surfaces. Section 2
focuses on the description of the normal bundle for a triangulation. When this
description is done, we will introduce kernel metrics on normal cycles, so that we
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have an explicit distance between shapes represented as normal cycles (Sect. 3).
In Sect. 4 we present some results of surface matching using the Large Deforma-
tion Diffeomorphic Metric Mapping (LDDMM) framework and kernel metrics
on normal cycles. We illustrate the properties of a matching with normal cycles,
as well as some limitations. Using parallel computations, we are able to pro-
vide examples on real data with a large number of points (around 6000 for
each shape).

2 Normal Cycle of a Triangulated Mesh

Normal Cycles. This section requires basics knowledge about currents. The
interested reader can see [5,7] for an approach in the field of computational ana-
tomy. Moreover, we only very briefly remind the mathematical notion of normal
cycle in this section, one should refer to [13] for a more extensive presentation.

Normal cycles are defined for sets with positive reach (see [6] for the original
definition). For such a set X ∈ R

d, one can consider its normal bundle NX , which
is the set of all (x, n), x ∈ X, with n unit normal vector at point x. Here the
notion of normal vector is considered in a generalized sense (see again [6]). For a
given point x ∈ X, we denote Noru(X,x) all the unit normal vectors of the set
X at this point. In the following, we denote Λd−1(Rd ×R

d) the space of (d − 1)-
vectors in R

d ×R
d and Ωd−1

0 (Rd ×Sd−1) := C0
(
R

d ×Sd−1, Λd−1(Rd ×R
d)∗) the

space of continuous (d − 1)-differential forms of Rd × Sd−1 vanishing at infinity,
endowed with the supremum norm.

Definition 1 (Normal cycle). The normal cycle of a positive reach set
X ⊂ R

d is the (d − 1)-current associated with NX with its canonical ori-
entation (independent of any orientation of X). For any differential form
ω ∈ Ωd−1

0 (Rd × Sd−1), one has:

N(X)(ω) := [NX ](ω) =
∫

NX

ω(x,n)(τNX
(x, n))dHd−1(x, n) (1)

The theory of normal cycles can be extended to the case of finite unions of
sets with positive reach, as done in [15], with the use of the following additive
property:

N(C ∪ S) := N(C) + N(S) − N(C ∩ S) (2)

This allows to define normal cycles for a very large class of subsets, in particular
for unions of triangles, which will be used in our discrete model.

Normal Cycle of a Triangle. Consider a single triangle T , with vertices
x1, x2, x3 and edges: f1 = x2 − x1, f2 = x3 − x2, f3 = x1 − x3. The normal
vectors of the face are: nT = f1×f2

|f1×f2| and −nT . The description of the normal
bundle of a triangle is quite straightforward. As illustrated in Fig. 1, it can be
decomposed into a planar part, composed of two triangles, a cylindrical part,
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composed of three “half” cylinders located at the edges, and a spherical part,
composed of three portions of sphere located at the vertices:

N p
T := ∪x∈T\∂T Noru(T, x) = T × {−nT , nt},

N c
T := ∪3

i=1[xi, xi+1] × S⊥+
fi,fi×nT

,

N s
T := ∪3

i=1{xi} × S+
fi−1,−fi+1

,

where for any non zero vectors α, β ∈ R
3, we denote the semicircle

S⊥+
α,β =

(
S2 ∩ α⊥)

∩ {u| 〈u, β〉 ≥ 0}, and the portion of sphere S+
α,β :={

u ∈ S2, 〈u, α〉 ≥ 0, 〈u, β〉 ≥ 0
}
.

Fig. 1. Illustration of the decomposition of the normal bundle of a triangle into a
planar (in purple), a cylindrical (in blue) and a spherical (in yellow) parts. Note that
the actual normal bundle lives in R

3 × S2 (Color figure online)

Normal Cycle of a Triangulated Mesh. Let T be a triangulated mesh, which
we define as a finite union of triangles T = ∪nT

i=1Ti such that the intersection
of any two triangles is either empty or a common edge. The normal cycle of a
triangulated mesh is defined using the additive formula (2) as a combination of
normal cycles of its faces (triangles), edges (segments) and vertices (points). All
these elements further decompose into planar, cylindrical and spherical parts.

3 Kernel Metrics on Normal Cycles with Constant
Normal Kernel

Construction of the Kernel Metric. As detailed in [13], we use the frame-
work of Reproducing Kernel Hilbert Spaces (RKHS) to define a metric between
normal cycles. The kernel has the form

KW : (R3 × S2)2 → L
(
Λ2(R3 × R

3)
)

((x, u), (y, v)) 
→ kp(x, y)kn(u, v)IdΛ2(R3×R3),
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This defines a RKHS W , and under some regularity conditions on the kernels
([13], Proposition 25), we have W ↪→ Ω2

0(R
3×S2), and thus, Ω2

0(R
3×S2)′ ⊂ W ′.

The corresponding metric on W ′ can be used as a data attachment term for
shapes represented as normal cycles. In this work, for simplicity and efficiency
reasons, we consider the following normal kernel: kn(u, v) = 1 (constant kernel).
Other simple and interesting choices will be kn(u, v) = 〈u, v〉 (linear kernel) or
kn(u, v) = 1 + 〈u, v〉, but we keep them for future work.

The expression of scalar product between two normal cycles N(C) and N(S),
associated with shapes S and C is then:

〈N(C), N(S)〉W ′ =

∫
NC

∫
NS

kp(x, y) 〈τNC (x, u), τNS (y, v)〉 dH2(x, u)dH2(y, v), (3)

for the constant kernel, where τNC
(x, u) ∈ Λ2(R3 ×R

3) is a 2-vector associated
with an orthonormal basis of T(x,u)NC , positively oriented.

Scalar Product Associated with the Kernel Metric for Discrete
Surfaces. Let T = ∪n

i=1Ti and T ′ = ∪m
i=1T

′
i be two triangulated meshes. As

explained in Sect. 2, we decompose the two corresponding normal cycles into
combinations of planar, cylindrical and spherical parts which, as was proven in
[13], are orthogonal with respect to the kernel metric. Moreover, we approximate
integrations over triangles and edges by a single evaluation at the center of these
elements. This is equivalent to approximate in the space of currents the cylin-
drical and planar part by Dirac functionals as explained in [13], Sect. 3.2.2. For
integrations over the sphere however, we can get simple analytic formulas for
the integrations with our choice of kernel. The new approximations in the space
of currents are denoted Ñ(T ) and Ñ(T ′). We do not further detail the calculus
of the different integrations over the normal bundle and express only the result
obtained:
〈
Ñ(T ), Ñ(T ′)

〉
W ′

=
∑

f edge of the
border of T

∑
g edge of the
border of T ′

π2

4

(
kp(x

1
f , y1

g) + kp(x
2
f , y2

g) − kp(x
2
f , y1

g) − kp(x
1
f , y2

g)
)〈 f

|f |
,

g

|g|

〉

+

F∑
i=1

G∑
j=1

4kp(ci, dj) 〈fi, gj〉
〈 ∑

{T |fi edge of T}
nT,fi ,

∑

{T ′|gj edge of T ′}
nT ′,gj

〉
,

(4)
where

– x1
f and x2

f are the two vertices of f with f = x2
f − x1

f .
– ci (resp. dj) is the middle of the edge fi (resp. gj).
– nT,fi

is the normal vector of the triangle T such that nT,fi
× fi is oriented

inward for the triangle T .

Let us make a few remarks here. First, we recall that the previous expression
does not necessitate a coherent orientation for the mesh.
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Secondly, even with a constant kernel kn for the normal part, the metric is
sensitive to curvature. Indeed, for an edge f , the cylindrical part of the scalar
product involves scalar products between normal vectors of the adjacent triangles
which are required quantities to compute the discrete mean curvature.

Another interesting feature to notice is that the scalar product involves a
specific term for the boundary which will enforce the matching of the bound-
aries of the shapes. The fact that the boundary has a special behaviour for the
normal cycle metric is not surprising. Indeed a normal cycle encodes generalized
curvature information of the shape. Hence, the boundary corresponds to a sin-
gularity of the curvature and has a specific behaviour in the kernel metric. We
will see in Sect. 4 that this feature is of interest for a matching purpose.

4 Results

We used the Large Deformation Diffeomorphic Metric Mapping (LDDMM)
framework (see for example [1,2,12]) in our experiments to model deforma-
tions of the ambient space. We emphasize here that this choice of framework
is not mandatory, and that other registration models could be used together
with our normal cycle data attachment term. We used the discrete formula-
tion of LDDMM via initial momentum parametrization and a geodesic shooting
algorithm [1,12]. For the optimization of the functional we used a quasi Newton
Broyden Fletcher Goldfarb Shanno algorithm with limited memory (L-BFGS)
[11]. The step in the descent direction is fixed by a Wolfe line search. For the
numerical integrations of geodesic and backward equations, a Runge-Kutta (4,5)
scheme is used (function ode45 in Matlab). In order to improve the computa-
tional cost, the convolution operations involved are done with parallel computing
on a graphic card. The CUDA mex files using GPU are included in the MATLAB
body program. The algorithm is run until convergence with a stopping criterion
on the norm of the successive iterations, with a tolerance of 10−6.

For all the following matchings, the geometric kernel kp is a Gaussian kernel
of width σW , and kn is a constant kernel. The kernel KV is a sum of 4 Gaussian
kernels of decreasing sizes, in order to capture different features of the deforma-
tion (see [3]). The trade-off parameter γ is fixed at 0.1 for all the experiments.

The first example is a matching of two human hippocampi. Each shape has
around 7000 vertices. Three runs at different geometric kernel sizes are per-
formed (see Fig. 2). We can see that the final deformation matches well the two
hippocampi, even the high curved regions of the shape.

The second data set was provided by B. Charlier, N. Charon and M.F. Beg. It
is a set of retina layers from different subjects [10], which has been already used
for computational anatomy studies [9]. The retinas are surfaces of typical size
8 mm2. Each retina is sampled with approximately 5000 points. All the details
of the matching are in Fig. 3. The retinas have a boundary which will be seen
as a region with singularities for the kernel metric on normal cycles. This is not
the case for the varifolds metric which makes the matching of the corresponding
corners harder. The matching of the boundaries is better with normal cycles,
and provides a much more regular deformation (see Fig. 3).
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Fig. 2. Two views (profile and face) at times t = 0 and t = 1 of the matching of
two hippocampi with normal cycles. The target shape is in orange and the source
in blue. Each shape has 6600 points. Three runs at different geometric kernel sizes
are performed (σW = 25, 10, 5) and the kernel of deformation is a sum of Gaussian
kernels with σV = 10, 5, 2.5, 1.25 (the diameter of hippocampus is about 40 mm). Each
run ended respectively at 62, 66 and 48 iterations for a total time of 4076 s (23 s per
iteration). (Color figure online)

Fig. 3. Matching of two retinas with kernel metric on normal cycles (left) and varifolds
(right). The target shape is in orange and the source shape is in blue. Each shape
has 5000 points. For the varifolds metric, the geometric kernel is Gaussian and the
kernel on the Grassmanian is chosen linear. The same parameters are used for each
data attachment term. Three runs at different geometric kernel sizes are performed
(σW = 0.8, 0.4, 0.2). KV is a sum of Gaussian kernels with σV = 2.4, 1.2, 0.6, 0.3. For
normal cycles, each run ended respectively at 88, 297 and 5 iterations for a total time
of 5487 s (14 s/it). For varifolds, it was 55, 1 and 1 iterations for a total time of 2051 s
(35 s/it). (Color figure online)
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In the last example (Fig. 4), the two retinas are the result of an unsatisfactory
segmentation. This leads to artifacts in each retina: two triangles for the source
retina (in blue, Fig. 4) and only one for the target, in orange. These are regions
of high curvature and as we could expect, the kernel metric on normal cycles will
make a correspondence between those points. As we can see in the second row
of Fig. 4, the two triangles are crushed together, into one triangle, even though
the cost of the resulting deformation is high. This example shows how sensitive
to noise or artifacts normal cycles are.

Fig. 4. Matching of two retinas with normal cycles: the target (in orange) and the
source (in blue). Three runs at different geometric kernel sizes are performed (σW =
0.8, 0.4, 0.2). KV is a sum of Gaussian kernels with σV = 2.4, 1.2, 0.6, 0.3. The first row
shows the initial configuration. The second row shows the matching in the specific zone
delimited by the red rectangle. The metric on normal cycles enforces the matching of
corresponding high curvature points, which leads to the alignment of the two triangles
into the single one of the target. Each run ended respectively at 211, 90 and 202
iterations for a total time of 8114 s (16 s/it). (Color figure online)

5 Conclusion

In this article we extended to the case of surfaces the methodology introduced
in [13] for curve matching, based on the notion of normal cycle. Compared to
the representation of shapes with currents or varifolds, this model encodes the
curvature information of the surfaces. We define a scalar product between two
triangulations represented as normal cycles using the theory of reproducing ker-
nels. The intrinsic complexity of the model is simplified by using a constant
normal kernel for the metric. Even though it may seem rough, we do not get rid
of all curvature information of the shape, as it can be seen in Eq. (4) or in the
example showed in Figs. 3 and 4. Using parallel computing on GPU, we are able
to match two surfaces with a large number of points in a reasonable time, with
a descent algorithm that is run until convergence.
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The examples of this article show promising first results. For the retinas data
set, the weighting of the boundaries and corner points provided by the metric
on normal cycles allows a much more precise and regular deformation than with
varifolds. As a future work, it will be interesting to study more complex normal
kernels kn, as the linear kernel or a combination of a linear kernel and a constant
kernel. The exact type of curvatures (mean, Gaussian) that we are able to retrieve
with such kernels is not clear yet and should be investigated. We also would like
to work on data sets were the refinement of normal cycles is relevant.
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