
A Family of Anisotropic Distributions
on the Hyperbolic Plane

Emmanuel Chevallier(B)

Weizmann Institute of Science, Rehovot, Israel
emmanuelchevallier1@gmail.com

Abstract. Most of the parametric families of distributions on manifold
are constituted of radial distributions. The main reason is that quanti-
fying the anisotropy of a distribution on a manifold is not as straightfor-
ward as in vector spaces and usually leads to numerical computations.
Based on a simple definition of the covariance on manifolds, this paper
presents a way of constructing anisotropic distributions on the hyper-
bolic space whose covariance matrices are explicitly known. The app-
roach remains valid on every manifold homeomorphic to vector spaces.

1 Introduction

Probability density estimation on Riemannian manifolds is the subject of several
recent studies. The different approaches can be separated into two categories,
the parametric and non-parametric ones. The context of Riemannian manifolds
brings difficulties of two kinds. Firstly, the theoretical results about distributions
and the convergence of estimators known for random variables valued in R

n have
to be adapted to the case of random variables valued in Riemannian manifolds,
see [1–3,8,9,12–15]. Secondly, the construction of probability distribution and
of density estimators should require a reasonable amount of computational com-
plexity, see [8,12,13,16–18]. A generalization of the Gaussian distribution on
manifolds was proposed in [8]. Although the expression of the proposed law is
hard to compute on general manifolds, expressions of radial Gaussians on sym-
metric spaces can be found in [12–14]. On isotropic spaces, an isotropic density
is simply a radial density. The anisotropy of a density can be evaluated with the
notion of covariance proposed in [8].

In this paper, we are interested in the construction of anisotropic distribu-
tions on the hyperbolic space. The problem of anisotropic normal distributions
on manifold have been addressed in [19] through anisotropic diffusion. The con-
struction is valid on arbitrary manifolds but requires important computations.
The hyperbolic space is a very particular Riemannian manifold: it is at the same
time isotropic and diffeomorphic to a vector space. These two specificities signif-
icantly ease the construction of probability distributions and probability density
estimators. Generally, it is difficult to control the covariance of a distribution on
a Riemannian manifold, e.g. the covariance of the Gaussian law proposed in [8].
We propose a simple way of constructing distributions whose covariance is fully
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controlled. The method is derived from the density kernel proposed by [1]. These
distributions can be used in the non parametric kernel density estimator but also
to design mixture models for parametric density estimation.

The paper is organised as follows. Section 2 is a very brief introduction to
the hyperbolic plane. Section 3 reviews some general facts about probabilities
on Riemannian manifolds. Section 4 describes how to built anisotropic density
functions on the hyperbolic space.

2 The Hyperbolic Space

The hyperbolic geometry results of a modification of the fifth Euclid’s postulate
on parallel lines. In two dimensions, given an line D and a point p /∈ D, the
hyperbolic geometry is an example where there are at least two lines going
through p, which do not intersect D. Let us consider the open unit disk of the
Euclidean plane endowed with the Riemannian metric:

ds2
D

= 4
dx2 + dy2

(1 − x2 − y2)2
(1)

where x and y are the Cartesian coordinates. The unit disk D endowed with
dsD is called the Poincaré disk and is a model of the two-dimensional hyperbolic
geometry. The construction is generalized to higher dimensions. Let ISO be the
isometry group of D. It can be shown that:

– D is homogeneous: ∀p, q ∈ D,∃φ ∈ ISO, φ(p) = q, points are indistinguish-
able.

– D is isotropic: for any couple of geodesics γ1 and γ2 going through a point
p ∈ D, there exists φ ∈ ISO such that φ(p) = p and φ(γ1) = γ2. In other
words, directions are indistinguishable.

– the Riemannian exponential applications are bijective.
– D has a constant negative curvature.

Let x denote the coordinates of elements of TpD in an orthogonal basis. x
is mapped to a point on D by the Riemannian exponential application noted
expp and form thus a chart of D. This chart is called an exponential chart at the
point p.

Given a reference point p the point of polar coordinates (r, α) of the hyper-
bolic space is defined as the point at distance r of p on the geodesic with initial
direction α ∈ S

1. Since the hyperbolic space is isotropic, the expression of the
metric in polar coordinates only depends on r,

ds2 = dr2 + sinh(r)2dα2, (2)

see [10,11].
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3 Distributions on D

3.1 Densities

The metric of a Riemannian manifold provides a measure of volumes vol. In a
chart, if G is the matrix of the metric, the density of vol with respect to the
Lebesgue measure of the chart is

dvol

dLeb
= |det(

√
G)|

where
√

G is the matrix square root of G. Let μ be a measure on M. If μ has
a density f with respect to the Lebesgue measure of a chart, then the density
with respect to the Riemannian volume measure is given by

dμ

dvol
=

dμ

dLeb

dLeb

dvol
=

1
|det(

√
G)|f. (3)

3.2 Intrinsic Means

Given a distribution μ, the variance at p be defined by

σ2(p) =
∫
D

d(p, .)2dμ.

When the variance is finite everywhere, its minima are called mean points. The
hyperbolic space is a Cartan-Hadamar manifold, that is to say it is complete,
simply connected and of negative curvature. On Cartan-Hadamar manifolds,
when the variance is finite everywhere, the mean exists and is unique, see [8]
corollary 2. It is achieved at p such that

∫
TpD

xdμ̃ = 0,

where μ̃ is the image of the measure μ by the inverse of the exponential appli-
cation at p.

3.3 Covariance on Manifold

The covariance of a random vector is the matrix formed by the covariance of its
coordinates. In a vector space the coordinates of a vector are given in terms of
projection on the corresponding axis. On a Riemannian manifold the notions of
projection on a geodesic usually do not lead to explicit expressions. Even if it
does not conserve all the properties of the covariance of vectors, when possible,
the simplest generalisation to manifolds is to take the Euclidean covariance after
lifting the distribution on a tangent space by the inverse of the exponential map,
see [8]. Since on the hyperbolic space the exponential application a bijection, it



720 E. Chevallier

is always possible to lift distributions on tangent spaces. Given a distribution μ
and a orthogonal basis of TpD, the covariance at p ∈ D is thus defined as

Σp(μ) =
∫

TpD

xxtdμ̃

This definition of covariance was used to define a notion of principal geodesic
analysis on manifolds in [20]. It can be noted that the covariance at the point p
is a point in TD ⊗ TD.

4 Constructing Anisotropic Distributions

The author of [8] proposes a generalization of Gaussian distributions on man-
ifolds as the distribution that maximizes the entropy given its barycenter and
covariance. This generalization leads to a density of the form,

N(p,Γ )(expp(x)) = k. exp
(

−xtΓx

2

)

Given p and the covariance matrix Σp, the main difficulties are to obtain expres-
sions of the normalizing factor k and of the concentration matrix Γ . Since hyper-
bolic space is homogenous, k and Γ only depend on the matrix Σp. The expres-
sion of k and Γ when Σp is a (positive) multiple of the identity matrix can be
found in [12]. However, it is difficult to obtain these relations when Σp is not
diagonal.

It might be interesting to define parametric families of distributions whose
means and covariances can easily be controlled, even if they do not verify the
same statistical properties as the Gaussian distributions. Let K : R+ → R+ be
a function such that,

i.
∫
R2 K(‖y‖) dy = 1

ii.
∫
R2 ‖y‖2K(‖y‖) dy = 2

Given Γ a symmetric positive definite matrix, we have then
∫
R2

1√
det(Γ )

K(
√

xtΓ−1x)dx = 1.

Let p be a point in D. Set an orthonormal basis of the tangent space TpD and
consider the distribution νp,Γ on TpD whose density with respect to the Lebesgue
measure of TpD is given by 1√

det(Σ)
K(

√
xtΓ−1x), where x and Γ are expressed

in the reference basis. Let μp,Γ = expp∗(νp,Γ ) be the pushforward measure of
νp,Γ by the Riemannian exponential at p.

Theorem 1. p is the unique mean of μp,Γ .
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Proof. It can be checked that μp,Γ has a finite variance everywhere. Moreover,
∫

TpD

√
Γ−1x

1√
det Γ

K(
√

xtΓ−1x) dx = 0.

The integrability of the function can be deduced from i and ii and the nullity
from its symmetry. Therefore according to Sect. 3.2 p is the unique mean of μp,Γ .

Theorem 2. The covariance Σp of μp,Γ at p and the concentration matrix Γ
are equal.

Proof. In the reference basis, making use of ii with the change of variables y =√
Γ−1x

Σp =
∫
R2

xxt 1√
det(Γ )

K(
√

xtΓ−1x)dx

= Γ 1/2

∫
R2

yytK(
√

yty)dyΓ 1/2

= Γ 1/2

(∫
R

∫ 2π

0

r2
(

cos(θ)
sin(θ)

)(
cos(θ)
sin(θ)

)t

K(r)rdrdθ

)
Γ 1/2

= Γ 1/2

(
1
2

∫
R

r2IK(r)2πrdr

)
Γ 1/2

= Γ 1/2I

(
1
2

∫
R2

‖y‖2K(‖y‖) dy

)
Γ 1/2

= Γ.

The tangent space TpD endowed with the reference basis provides a para-
metrization of the hyperbolic space. By definition, the density of μp,Γ in this
parametrization is given by 1√

det(Σ)
K(

√
xtΣ−1x). In order to obtain the den-

sity with respect to the Riemannian measure this term should be multiplied by
the density of the Lebesgue measure of the parametrization with respect to the
Riemannian measure, see Eq. 3. In an adapted orthonormal basis of TpD, Eq. 2
leads to the following expression of the matrix of the metric,

G =

(
1 0
0 sinh(r)2

r2

)
.

Thus,

det(
√

G) =
sinh(r)

r
.

Equation 3 leads to the density ratio,

dx

dvol
(x) =

||x||
sinh(||x||) ,
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where dx is the Lebesgue measure induced by the reference basis. Recall that in
this parametrization, the Euclidean norm of x is the distance between expp(x)
and p. The density of μp,Γ with respect to the Riemannian measure is given by

f(expp(x)) =
||x||

sinh(||x||)√det(Σ)
K

(√
xtΣ−1x

)
.

Figure 1 shows the level lines when K is Gaussian.

Fig. 1. In this example K(x) = 1√
2π

e−x2
and Σ has 1 and 1

4
as eigenvalues. The level

lines of the corresponding density f are flattened circle but are not ellipses.

5 Estimating the Mean and the Covariance

Let the function K and the distribution μp,Γ be as defined in Sect. 4. Given a set
of draws drawn from this distribution it is important to have estimators of the
two parameters: the mean and the covariance. In order to estimate the unknown
parameters (p,Σp) given a set of independent samples (p1, .., pn), it is usual to
try to maximize the likelihood function. The log-likelihood of a set of samples is
defined as

L(p1, .., pn; (p̂, Σ̂)) =
∑

i

log

⎛
⎝ ||xi||

sinh(||xi||)
√

det(Σ̂)
K

(√
xt

iΣ̂
−1xi

)⎞
⎠

=
∑

i

log

⎛
⎝ ||xi||

sinh(||xi||)
√

det(Σ̂)

⎞
⎠ + log

(
K

(√
xt

iΣ̂
−1xi

))
.
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The major difficulty is that it is not possible to optimize the mean and the covari-
ance separately. Thus there might not be explicit expressions of the maximum
likelihood. However, the mean and the covariance have natural estimators. It is
already known that the empirical barycenter is a strongly consistent estimator
of the barycenter, see [21] Theorem 2.3.

Given an estimate of the barycenter, it is possible to compute the empirical
covariance in the corresponding tangent plane,

Σ̂p̂ =
1
N

∑
xix

t
i (4)

Using a similar construction as the Sasakian metric, see [22], the vector bundle
TD⊗TD can be endowed with a Riemannian metric. Although we do not prove
it in this paper, we are convinced that almost surely

d((p̂, Σ̂p̂), (p,Σ)) −→
n→+∞ 0,

where d is the Riemannian distance on TD ⊗ TD.

6 Conclusion

In this paper we proposed a set of parametric families of anisotropic distribu-
tions on the hyperbolic plane. The main interest of these distributions is that
the covariance matrix and concentration matrix are equal. The empirical mean
and covariance provide thus simple estimators of the parameters of the distrib-
ution. Working with anisotropic distributions is expected to reduce the number
of distributions used in mixture models and thus to reduce the computational
complexity of the parameter estimation of the mixture models. On the one hand,
our future work will focus on deriving convergence rates of the estimation of the
covariance. On the other hand, we will study the use of these distributions in
problems of radar signal classification.
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