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Abstract. This paper introduces a novel algorithm for the online esti-
mate of the Riemannian mixture model parameters. This new approach
counts on Riemannian geometry concepts to extend the well-known Tit-
terington approach for the online estimate of mixture model parameters
in the Euclidean case to the Riemannian manifolds. Here, Riemannian
mixtures in the Riemannian manifold of Symmetric Positive Definite
(SPD) matrices are analyzed in details, even if the method is well suited
for other manifolds.
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1 Introduction

Information theory and Riemannian geometry have been widely developed in the
recent years in a lot of different applications. In particular, Symmetric Positive
Definite (SPD) matrices have been deeply studied through Riemannian geome-
try tools. Indeed, the space Pm of m × m SPD matrices can be equipped with
a Riemannian metric. This metric, usually called Rao-Fisher or affine-invariant
metric, gives it the structure of a Riemannian manifold (specifically a homo-
geneous space of non-positive curvature). SPD matrices are of great interest
in several applications, like diffusion tensor imaging, brain-computer interface,
radar signal processing, mechanics, computer vision and image processing [1–5].
Hence, it is very useful to develop statistical tools to analyze objects living in the
manifold Pm. In this paper we focus on the study of Mixtures of Riemannian
Gaussian distributions, as defined in [6]. They have been successfully used to
define probabilistic classifiers in the classification of texture images [7] or Elec-
troencephalography (EEG) data [8]. In these examples mixtures parameters are
estimated through suitable EM algorithms for Riemannian manifolds. In this
paper we consider a particular situation, that is the observations are observed
one at a time. Hence, an online estimation of the parameters is needed. Follow-
ing the Titterington’s approach [9], we derive a novel approach for the online
estimate of parameters of Riemannian Mixture distributions.
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The paper is structured as follows. In Sect. 2 we describe the Riemannian
Gaussian Mixture Model. In Sect. 3, we introduce the reference methods for
online estimate of mixture parameters in the Euclidean case, and we describe
in details our approach for the Riemannian framework. For lack of space, some
equation’s proofs will be omitted. Then, in Sect. 4, we present some simulations
to validate the proposed method. Finally we conclude with some remarks and
future perspectives in Sect. 5.

2 Riemannian Gaussian Mixture Model

We consider a Riemannian Gaussian Mixture model g(x; θ) =
∑K

k=1 ωkp(x;ψk),
with the constraint

∑K
k=1 ωk = 1. Here p(x;ψk) is the Riemannian Gaussian dis-

tribution studied in [6], defined as p(x;ψk) = 1
ζ(σk)

exp
(
−d2

R(x,xk)

2σ2
k

)
, where x is a

SPD matrix, xk is still a SPD matrix representing the center of mass of the kth
component of the mixture, σk is a positive number representing the dispersion
parameter of the kth mixture component, ζ(σk) is the normalization factor, and
dR(·, ·) is the Riemannian distance induced by the metric on Pm. g(x; θ) is also
called incomplete likelihood. In the typical mixture model approach, indeed, we
consider some latent variables Zi, categorical variables over {1, ...,K} with para-
meters {ωk}K

k=1, assuming Xi|Zi = k ∼ p(·, ψk). Thus, the complete likelihood
is defined as f(x, z; θ) =

∑K
k=1 ωkp(x;ψk)δz,k, where δz,k = 1 if z = k and 0

otherwise. We deal here with the problem to estimate the model parameters,
gathered in the vector θ = [ω1, x1, σ1, ..., ωK , xK , σK ]. Usually, given a set of N

i.i.d. observations χ = {xi}N
i=1, we look for θ̂MLE

N , that is the MLE of θ, i.e. the
maximizer of the log-likelihood l(θ;χ) = 1

N

∑N
i=1 log

∑K
k=1 ωkp(xi;ψk).

To obtain θ̂MLE
N , EM or stochastic EM approaches are used, based on the

complete dataset χc = {(xi, zi)}N
i=1, with the unobserved variables Zi. In this

case, average complete log-likelihood can be written:

lc(θ; χc) =
1

N

N∑

i=1

log
K∏

k=1

(ωkp(xi; ψk))δzi,k =
1

N

N∑

i=1

K∑

k=1

δzi,k log(ωkp(xi; ψk)). (1)

Here we consider a different situation, that is the dataset χ is not available
entirely, rather the observations are observed one at a time. In this situation
online estimation algorithms are needed.

3 Online Estimation

In the Euclidean case, reference algorithms are the Titterington’s algorithm,
introduced in [9], and the Cappé-Moulines’s algorithm presented in [10].

We focus here on Titterington’s approach. In classic EM algorithms, the
Expectation step consists in computing Q(θ; θ̂(r), χ) = E

̂θ(r) [lc(θ;χc)|χ], and
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then, in the Maximization step, in maximizing Q over θ. These steps are per-
formed iteratively and at each iteration r an estimate θ̂(r) of θ is obtained exploit-
ing the whole dataset. In the online framework, instead, the current estimate will
be indicated by θ̂(N), since in this setting, once x1, x2, ..., xN are observed we
want to update our estimate for a new observation xN+1. Titterington approach
corresponds to the direct optimization of Q(θ; θ̂(N), χ) using a Newton algorithm:

θ̂(N+1) = θ̂(N) + γ(N+1)I−1
c (θ̂(N))u(xN+1; θ̂(N)), (2)

where {γ(N)}N is a decreasing sequence, the Hessian of Q is approximated
by the Fisher Information matrix Ic for the complete data I−1

c (θ̂(N)) =
−E

̂θ(N) [
log f(x,z;θ)

∂θ∂θT ], and the score u(xN+1; θ̂(N)) is defined as u(xN+1; θ̂(N)) =
∇
̂θ(N) log g(xN+1; θ̂(N)) = E

̂θ(N) [∇̂θ(N) log f(xN+1; θ̂(N))|xN+1] (where last
equality is presented in [10]).

Geometrically speaking, Tittetington algorithm consists in modifying the cur-
rent estimate θ̂(N+1) adding the term ξ(N+1) = γ(N+1)I−1

c (θ̂(N))u(xN+1; θ̂(N)).
If we want to consider parameters belonging to Riemannian manifolds, we have
to suitably modify the update rule. Furthermore, even in the classical frame-
work, Titterington update does not necessarily constraint the estimates to be in
the parameters space. For instance, the weights could be assume negative values.
The approach we are going to introduce solves this problem, and furthermore is
suitable for Riemannian Mixtures.

We modify the update rule, exploiting the Exponential map. That is:

θ̂(N+1) = Exp
̂θ(N)(ξ(N+1)), (3)

where our parameters become θk = [sk, xk, ηk]. Specifically, s2k = wk → s =
[s1, ..., sK ] ∈ S

K−1 (i.e., the sphere), xk ∈ P (m) and ηk = − 1
2σ2

k
< 0.

Actually we are not forced to choose the exponential map, in the update
formula (3), but we can consider any retraction operator. Thus, we can generalize
(3) in θ̂(N+1) = R

̂θ(N)(ξ(N+1)).
In order to develop a suitable update rule, we have to define I(θ) and the score

u() in the manifold, noting that every parameter belongs to a different manifold.
Firstly we note that the Fisher Information matrix I(θ) can be written as:

I(θ) =

⎛

⎝
I(s)

I(x)
I(η)

⎞

⎠ .

Now we can analyze separately the update rule for s, x, and η. Since they belong
to different manifold the exponential map (or the retraction) will be different,
but the philosophy of the algorithm is still the same.

For the update of weights sk, the Riemannian manifold considered is the
sphere SK−1, and, given a point s ∈ S

K−1, the tangent space TsS
K−1 is identified

as TsS
K−1 = {ξ ∈ R

K : ξT s = 0}. We can write the complete log-likelihood only



678 P. Zanini et al.

in terms of s: l(x, z; s) = log f(x, z; s) =
∑K

k=1 log s2kδz,k. We start by evaluating
I(s), that will be a K × K matrix of the quadratic form

Is(u,w) = E[〈u, v(z, s)〉〈v(z, s), w〉], (4)

for u,w elements of the tangent space in s, and v(z, s) is the Riemannian gra-
dient, defined as v(z, s) = ∂l

∂s − (
∂l
∂s , s

)
s. In this case we obtain ∂l

∂sk
= 2 δz,k

sk
→

v(z, sk) = 2
(

δz,k
sk

− sk

)
. It is easy to see that the matrix of the quadratic form

has elements

Ikl(s) = E[vk(z, s)vl(z, s)] = E

[

4

(

δz,k

sk

− sk

)(

δz,l

sl

− sl

)]

= E

[

4

(

δz,kδz,l

sksl

− sl

sk

δz,k − sk

sl

δz,l + sksl

)]

= 4(δkl − sksl − sksl + sksl) = 4(δkl − sksl).

Thus, the Fisher Information matrix I(s) applied to an element ξ of the
tangent space results to be I(s)ξ = 4ξ, hence I(s) corresponds to 4 times
the identity matrix. Thus, if we consider update rule (3), we have ξ(N+1) =
γ(N+1)

4 u(xN+1; θ̂(N)). We have to evaluate u(xN+1; θ̂(N)). We proceed as follows:

uk(xN+1; ̂θ
(N)

) = E[vk(z, s)|xN+1] = E

[

2

(

δz,k

sk

− sk

)

|xN+1

]

= 2

(

hk(xN+1; ̂θ
(N))

sk

− sk

)

,

where hk(xN+1; θ̂(N)) ∝ s2kp(xN+1; θ̂
(N)
k ). Thus we obtain

ŝ(N+1) = Expŝ(N)

(
γ(N+1)

2

(
h1(xN+1;̂θ

(N))

ŝ
(N)
1

− ŝ
(N)
1 , ..., hK(xN+1;̂θ

(N))

ŝ
(N)
K

− ŝ
(N)
K

))

= Expŝ(N)

(
ξ(N+1)

)
. (5)

Considering the classical exponential map on the sphere (i.e., the geodesic),
the update rule (5) becomes

ŝ
(N+1)
k = ŝ

(N)
k cos(‖ξ(N+1)‖) +

γ(N+1)

2

(
hk

ŝ
(N)
k

− ŝ
(N)
k

)

‖ξ(N+1)‖ sin(‖ξ(N+1)‖). (6)

Actually, as anticipated before, we are not forced to used the exponential
map, but we can consider other retractions. In particular, on the sphere, we
could consider the “projection” retraction Rx(ξ) = x+ξ

‖x+ξ‖ , deriving update rule
accordingly.

For the update of barycenters xk we have, for every barycenter xk, k =
1, ...,K, an element of Pm, the Riemannian manifold of m × m SPD matrices.
Thus, we derive the update rule for a single k.

First of all we have to derive expression (4). But this expression is true only
for irreducible manifolds, as the sphere. In the case of Pm we have to introduce
some theoretical results. Let M a symmetric space of negative curvature (like
Pm), it can be expressed as a product M = M1 × · · · × MR, where each Mr
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is an irreducible space [11]. Now let x an element of M, and v, w elements of
the tangent space TxM. We can write x = (x1, ..., xR), v = (v1, ..., vR) and
w = (w1, ..., wR). We can generalize (4) by the following expression:

Ix(u,w) =
R∑

r=1

E[〈ur, vr(xr)〉x〈vr(xr), wr〉x], (7)

with vr(xr) = ∇xl(x) being the Riemannian score. In our case Pm = R× SPm,
where SPm represents the manifold of SPD matrices with unitary determinant,
while R takes into account the part relative to the determinant. Thus, if x ∈ Pm,
we can consider the isomorphism φ(x) = (x1, x2) with x1 = log det x ∈ R and
x2 = e−x1/mx ∈ SPm, (det x2 = 1). The idea is to use the procedure adopted to

derive ŝ(N+1), for each component of x̂
(N+1)

k . Specifically we proceed as follows:

– we derive I(xk) through formula (7), with components Ir.

– we derive the Riemannian score u(xN+1; θ̂(N)) = E
[
v(xN+1, zN+1; x̂

(N)

k ,

σ̂
(N)
k )|xN+1

]
, with components ur.

– for each component r = 1, 2 we evaluate ξ
(N+1)
r = γ(N+1)I−1

r ur

– we update each component
(
x̂
(N+1)

k

)

r
= Exp(

̂x
(N)
k

)

r

(
ξ
(N+1)
r

)
and we could

use φ−1(·) to derive x̂
(N+1)

k if needed.

We start deriving I(xk) for the complete model (see [12] for some derivations):

Ixk
(u, w) = E [〈u, v(x, z;xk, σk)〉〈v(x, z;xk, σk), w〉] = E

[
δz,k

σ4
k

〈u,Logxk
x〉〈Logxk

x, w〉
]
=

= E

[
δz,k

σ4
k

I(u, w)

]
=

ωk

σ4
k

2∑
r=1

ψ′
r(ηk)

dim(Mr)
〈ur, wr〉(xk)r

, (8)

where ψ(ηk) = log ζ as a function of ηk = − 1
2σ2

k
, and we have the result

introduced in [13] that says that if x ∈ M is distributed with a Riemannian
Gaussian distribution on M, xr is distributed as a Riemannian Gaussian dis-
tribution on Mr and ζ(σk) =

∏R
r=1 ζr(σk). In our case ζ1(σk) =

√
2πmσ2

k

(ψ1(ηk) = 1
2 log(−πm

ηk
)), and then we obtain ζ2(σk) = ζ(σk)

ζ1(σk)
easily, since ζ(σk)

has been derived in [6,8]. From (8), we observe that for both components r = 1, 2
the Fisher Information matrix is proportional to the identity matrix with a coef-
ficient ωk

σ4
k

ψ′
r(ηk)

dim(Mr)
.

We derive now the Riemannian score u(xN+1; θ̂
(N)
k ) ∈ T

̂x
(N)
k

P (m):

u(xN+1; θ̂
(N)
k ) = E

[
v(x, z; x̂

(N)

k , σ̂
(N)
k )|xN+1

]
=

hk(xN+1; θ̂(N))
σ̂2(N)

k

Log
̂x
(N)
k

xN+1.
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In order to find u1 and u2 we have simply to apply the Logarithmic map of
Riemannian manifold M1 and M2, which in our case are R and SPm, respec-
tively, to the component 1 and 2 of xN+1 and x̂

(N)

k :

u1 =
hk(xN+1; θ̂(N))

σ̂2(N)

k

(
(x̂

(N)

k )1 − (xN+1)1
)

u2 =
hk(xN+1; θ̂

(N))

σ̂2(N)
k

(
x̂
(N)
k

)1/2

2
log

((
x̂
(N)
k

)−1/2

2
(xN+1)2

(
x̂
(N)
k

)−1/2

2

)(
x̂
(N)
k

)1/2

2

Expliciting ψ′
r(ηk), specifically ψ′

1(ηk) = − 1
2ηk

= σ2
k and ψ′

2(ηk) = ψ′(ηk) + 1
2ηk

,
we can easily apply the Fisher Information matrix to ur. In this way we can
derive ξ

(N+1)
1 = γ(N+1)I−1

1 (θ̂(N))u1 and ξ
(N+1)
2 = γ(N+1)I−1

2 (θ̂(N))u2. We are
now able to obtain the update rules through the respective exponential maps:

(
x̂
(N+1)

k

)

1
=

(
x̂
(N)

k

)

1
− ξ

(N+1)
1 (9)

(
x̂
(N+1)

k

)

2
=

(
x̂
(N)

k

)1/2

2
exp

((
x̂
(N)

k

)−1/2

2
ξ
(N+1)
2

(
x̂
(N)

k

)−1/2

2

) (
x̂
(N)

k

)1/2

2
(10)

For the update of dispersion parameters σk, we consider ηk = − 1
2σ2

k
. Thus,

we consider a real parameter, and then our calculus will be done in the clas-
sical Euclidean framework. First of all we have l(x, z; ηk) = log f(x, z; ηk) =
∑K

k=1 δz,k

(−ψ(ηk) + ηkd2R(x, xk)
)
. Thus, we can derive v(x, z; ηk) = ∂l

∂ηk
=

δz,k(−ψ′(ηk) + d2R(x, xk)). Knowing that I(ηk) = ωkψ′′(ηk), we can evaluate
the score:

u(xN+1; θ̂
(N)) = E[v(x, z; ηk)|xN+1] = hk(xN+1; θ̂

(N))
(
d2R

(
xN+1, x̂

(N)
k

)
− ψ′(η̂(N)

k )
)

.

(11)
Hence we can obtain the updated formula for the dispersion parameter

η̂
(N+1)
k = η̂

(N)
k + γ(N+1) hk(xN+1; θ̂(N))

ω̂
(N)
k ψ′′(η̂(N)

k )

(
d2R

(
xN+1, x̂

(N)

k

)
− ψ′(η̂(N)

k )
)

, (12)

and, obviously σ̂2
k
(N+1) = − 1

2η̂
(N+1)
k

.

4 Simulations

We consider here two simulation frameworks to test the algorithm described in
this paper.

The first framework corresponds to the easiest case. Indeed we consider only
one mixture component (i.e., K = 1). Thus, this corresponds to a simple online
mean and dispersion parameter estimate for a Riemannian Gaussian sample.
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We consider matrices in P3 and we analyze three different simulations corre-
sponding to three different value of the barycenter x1:

x1 =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ; x1 =

⎛

⎝
1 0.8 0.64

0.8 1 0.8
0.64 0.8 1

⎞

⎠ ; x1 =

⎛

⎝
1 0.3 0.09

0.3 1 0.3
0.09 0.3 1

⎞

⎠

The value of dispersion parameter σ is taken equal to 0.1 for the three simu-
lations. We analyze different initial estimates θ̂in, closer to the true values at
the beginning, and further at the end. We focus only on the barycenter, while
the initial estimate for σ corresponds to the true value. We consider two dif-
ferent initial values for each simulation. Specifically for case (a), dR(x1, x̂

(0)

1 ) is
lower, varying between 0.11 and 0.14. For case (b) it is greater, varying between
1.03 and 1.16. For every simulation we generate Nrep = 100 samples, each one
of N = 100 observations. Thus at the end we obtain Nrep different estimates
(x̂1r, σ̂r) for every simulation and we can evaluate the mean m and standard
deviation s of the error, where the error is measured as the Riemannian dis-
tance between x̂1r and x1 for the barycenter, and as |σ − σ̂| for the dispersion
parameter. The results are summarized in Table 1.

Table 1. Mean and standard deviation of the error for the first framework

Simulation mx1 sx1 mσ sσ

1 0.0308 0.0092 0.0097 0.0556

2 0.0309 0.0098 0.0117 0.0570

3 0.0308 0.0096 0.0047 0.0051

In the second framework we consider the mixture case, in particular K = 2.
The true weight are 0.4 and 0.6, while σ1 = σ2 = 0.1. The true barycenters are:

x1 =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ x2 =

⎛

⎝
1 0.7 0.49

0.7 1 0.7
0.49 0.7 1

⎞

⎠

We make the initial estimates varying from the true barycenters to some SPD
different from the true ones. In particular we analyze three cases. Case (a),

where dR(x1, x̂
(0)

1 ) = dR(x2, x̂
(0)

2 ) = 0; case (b), where dR(x1, x̂
(0)

1 ) = 0.2 and

dR(x2, x̂
(0)

2 ) = 0.26; case (c), where dR(x1, x̂
(0)

1 ) = dR(x2, x̂
(0)

2 ) = 0.99. The
results obtained are shown in Table 2. In both frameworks it is clear that we can
obtain very good results when starting close to the real parameter values, while
the goodness of the estimates becomes weaker as the starting points are further
from real values.
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Table 2. Mean and standard deviation of the error for the second framework

mw sw mx1 sx1 mσ1 sσ1 mx2 sx2 mσ2 sσ2

Case a 0.059 0.077 0.078 0.078 0.142 0.172 0.051 0.050 0.071 0.241

Case b 0.089 0.114 0.119 0.136 0.379 0.400 0.100 0.109 0.265 0.325

Case c 0.515 0.090 1.035 0.215 0.455 0.230 0.812 0.292 0.184 0.323

5 Conclusion

This paper has addressed the problem of the online estimate of mixture model
parameters in the Riemannian framework. In particular we dealt with the case of
mixtures of Gaussian distributions in the Riemannian manifold of SPD matrices.
Starting from a classical approach proposed by Titterington for the Euclidean
case, we extend the algorithm to the Riemannian case. The key point was that to
look at the innovation part in the step-wise algorithm as an exponential map, or
a retraction, in the manifold. Furthermore, an important contribution was that
to consider Information Fisher matrix in the Riemannian manifold, in order to
implement the Newton algorithm. Finally, we presented some first simulations to
validate the proposed method. We can state that, when the starting point of the
algorithm is close to the real parameters, we are able to estimate the parameters
very accurately. The simulation results suggested us the next future work needed,
that is to investigate on the starting point influence in the algorithm, to find some
ways to improve convergence towords the good optimum. Another perspective is
to apply this algorithm on some real dataset where online estimation is needed.
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