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Abstract. Vigelis and Cavalcante extended the Naudts’ deformed expo-
nential families to a generic reference density. Here, the special case of
Newton’s deformed logarithm is used to construct an Hilbert statistical
bundle for an infinite dimensional class of probability densities.

1 Introduction

Let P be a family of positive probability densities on the probability space
(X,X , μ). At each p ∈ P we have the Hilbert space of square-integrable random
variables L2(p · μ) so that we can define the Hilbert bundle consisting of P with
linear fibers L2(p·μ). Such a bundle supports most of the structure of Information
Geometry, cf. [1] and the non-parametric version in [6,7].

If P is an exponential manifold, there exists a splitting of each fiber L(p·μ) =
Hp⊕H⊥

p , such that Hp is equal or contains as a dense subset, the tangent space of
the manifold at p. Moreover, the geometry on P is affine and, as a consequence,
there are natural transport mappings on the Hilbert bundle.

We shall study a similar set-up when the manifold is defined by charts based
on mapping other than the exponential, while retaining an affine structure, see
e.g. [10]. Here, we use p = expA(v), where expA is exponential-like function with
linear growth at +∞. In such a case, the Hilbert bundle has fibers which are all
sub-spaces of the same L2(μ) space.

The formalism of deformed exponentials by Naudts [4] is reviewed and
adapted in Sect. 2. The following Sect. 3 is devoted to the adaptation of that
formalism to the non-parametric case. Our construction is based on the work
of Vigelis and Cavalcante [9], and we add a few more details about the infinite-
dimensional case. Section 4 discusses the construction of the Hilbert statistical
bundle in our case.

2 Background

We recall a special case of a nice and useful formalism introduced by Naudts [4].
Let A : [0,+∞[→ [0, 1[ be an increasing, concave and differentiable function
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with A(0) = 0, A(+∞) = 1 and A′(0+) = 1. We focus on the case A(x) =
1 − 1/(1 + x) = x/(1 + x) that has been firstly discussed by Newton [5]. The
deformed A-logarithm is the function logA(x) =

∫ x

1
A(ξ)−1 dξ = x − 1 + log x,

x ∈]0,+∞[. The deformed A-exponential is expA = log−1
A which turns out to be

the solution to the Cauchy problem e′(y) = A(e(y)) = 1+1/(1+e(y)), e(0) = 1.
In the spirit of [8,9] we consider the curve in the space of positive measures on

(X,X ) given by t �→ μt = expA(tu+logA p)·μ, where u ∈ L2(μ). As expA(a+b) ≤
a+ + expA(b), each μt is a finite measure, μt(X) ≤ ∫

(tu)+ dμ + 1, with μ0 =
p · μ. The curve is actually continuous and differentiable because the pointwise
derivative of the density pt = expA(tu+logA(p)) is ṗt = A(pt)u so that |ṗt| ≤ |u|.
In conclusion μ0 = p and μ̇0 = u.

Notice that there are two ways to normalize the density pt, either dividing
by a normalizing constant Z(t) to get the statistical model t �→ expA(tu −
logA p)/Z(t) or, subtracting a constant ψ(t) from the argument to get the model
t �→ expA(tu−ψ(t)+logA(p)). In the standard exponential case the two methods
lead to the same result, which is not the case for deformed exponentials where
expA(α + β) �= expA(α) expA(β). We choose in the present paper the latter
option.

3 Deformed Exponential Family Based on expA

Here we use the ideas of [4,8,9] to construct deformed non-parametric exponen-
tial families. Recall that we are given: the measure space (X,X , μ); the set P of
probability densities; the function A(x) = x/(1 + x). Throughout this section,
the density p ∈ P will be fixed.

Proposition 1. 1. The mapping L1(μ) 	 u �→ expA(u + logA p) ∈ L1(μ) has
full domain and is 1-Lipschitz. Consequently, the mapping

u �→
∫

g expA(u + logA p) dμ

is ‖g‖∞-Lipschitz for each bounded function g.
2. For each u ∈ L1(μ) there exists a unique constant K(u) ∈ R such that

expA(u − K(u) + logA p) · μ is a probability.
3. It holds K(u) = u if, and only if, u is constant. In such a case,

expA(u − K(u) + logA p) · μ = p · μ .

Otherwise, expA(u − K(u) + logA p) · μ �= p · μ.
4. A density q takes the form q = expA(u − K(u) + logA p), with u ∈ L1(μ) if,

and only if, logA q − logA p ∈ L1(μ).
5. If u, v ∈ L1(μ)

expA(u − K(u) + logA p) = expA(v − K(v) + logA p) ,

then u − v is constant.
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6. The functional K : L1(μ) → R is translation invariant. More specifically,
c ∈ R implies K(u + c) = K(u) + cK(1).

7. The functional K : L1(μ) → R is continuous and quasi-convex, namely all its
sub-levels Lα =

{
u ∈ L1(μ)

∣
∣K(u) ≤ α

}
are convex.

8. K : L1(μ) → R is convex.

Proof. 1. As expA(u + logA p) ≤ u+ + p and so expA(u + logA p) ∈ L1(μ) for
all u ∈ L1(μ). The estimate |expA(u + logA p) − expA(v + logA p)| ≤ |u − v|
leads to the desired result.

2. For all κ ∈ R the integral I(κ) =
∫

expA(u − κ + logA p) dμ is bounded
by 1 +

∫
(u − κ)+ dμ < ∞ and the function κ �→ I(k) is continuous and

strictly decreasing. Convexity of expA together with the equation for its deriv-
ative imply expA(u − κ + logA p) ≥ expA(u + logA p) − A(expA(u + logA p))κ,
so that

∫
expA(u − κ + logA p) dμ ≥ ∫

expA(u + logA p) dμ − κ
∫

A(expA(u +
logA p)) dμ, where the coefficient of κ is positive. Hence limκ→−∞

∫
expA(u −

κ+logA p) dμ = +∞. For each κ ≥ 0, we have expA(u−κ+logA p) ≤ expA(u+
logA p) ≤ p + u+ so that by dominated convergence we get limκ→∞ I(κ) = 0.
Therefore K(u) will be the unique value for which

∫
expA(u−κ+logA p) dμ = 1.

3. If the function u is a constant, then
∫

expA(u − u + logA p) dμ =
∫

p dμ = 1
and so K(u) = u. The converse implication is trivial. The equality expA(u −
K(u) + logA p) = p holds if, and only if, u − K(u) = 0.

4. If logA q = u − K(u) + logA p, then logA q − logA p = u − K(u) ∈ L1(μ).
Conversely, if logA q − logA p = v ∈ L1(μ), then q = expA(v + logA p). As q is
a density, then K(v) = 0.

5. If u − K(u) + logA p = v − K(v) + logA p, then u − v = K(u) − K(v).
6. Clearly, K(c) = c = cK(1) and K(u + c) = K(u) + c.
7. Observe that

∫
expA(u + logA p) dμ ≤ 1 if, and only if, K(u) ≤ 0. Hence

u1, u2 ∈ L0, implies
∫

expA(ui + logA p) dμ ≤ 1, i = 1, 2. Thanks to the
convexity of the function expA, we have

∫
expA((1−α)u1+αu2)+logA p dμ ≤

(1 − α)
∫

expA(u1 + logA p) dμ + α
∫

expA(u2 + logA p) dμ ≤ 1, that provides
K((1−α)u1 +αu2) ≤ 0. Hence the sub-level L0 is convex. Notice that all the
other sub-levels are convex since they are obtained by translation of L0. More
precisely, Lα = L0 + α. Clearly both the sets

{∫
expA(u + logA p) dμ ≤ 1

}

and
{∫

expA(u + logA p) dμ ≥ 1
}

are closed in L1(μ), since the functional
u → ∫

expA(u) dμ is continuous. Hence u → K(u) is continuous as well.
8. A functional which is translation invariant and quasiconvex is necessarily

convex. Though this property is more or less known, a proof is gathered
below.

Lemma 1. A translation invariant functional on a vector space V , namely
I : V → R such that for some v ∈ V one has I(x + λv) = I(x) + λI(v) for
all x ∈ V and λ ∈ R, is convex if and only if I is quasiconvex, namely all level
sets are convex, provided I(v) �= 0.

Proof. Let I be quasiconvex, then the sublevel L0 (I) = {x ∈ V : I (x) ≤ 0} is
nonempty and convex. Clearly, Lλ (I) = L0 (I)+(λ/I(v))v holds for every λ ∈ R.
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Hence, if λ and μ are any pair of assigned real numbers and α ∈ (0, 1), ᾱ = 1−α,
then

αLλ (I) + ᾱLμ (I) = αL0 (I) + ᾱL0 (I) +
αλ + ᾱμ

I (v)
v

= L0 (I) +
αλ + ᾱμ

I (v)
v = Lαλ+ᾱμ (I) .

Therefore, if for any pair of points x, y ∈ V , we set I (x) = λ and I (y) = μ,
then x ∈ Lλ (I) and y ∈ Lμ (I). Consequently αx + ᾱy ∈ αLλ (I) + ᾱLμ (I) =
Lαλ+ᾱμ(I). That is, I (αx + ᾱy) ≤ αλ + ᾱμ = αI (x) + ᾱI (y) that shows the
convexity of I. Of course the converse holds in that a convex function is quasi-
convex.

For each positive density q, define its escort density to be q̃ =
A(q)/

∫
A(q) dμ, see [4]. Notice that 0 < A(q) < 1. The next proposition provides

a subgradient of the convex function K.

Proposition 2. Let v ∈ L1(μ) and q(v) = expA(v − K(v) + logA p). For every
u ∈ L1(μ), the inequality K(u + v) − K(v) ≥ ∫

uq̃(v) dμ holds i.e., the density
q̃(v) ∈ L∞(μ) is a subgradient of K at v.

Proof. Thanks to convexity of expA and the derivation formula, we have

expA(u + v − K(u + v) + logA p) − q ≥ A(q)(u − K(u + v) + K(v)) .

If we take μ-integral of both sides,

0 ≥
∫

uA(q) dμ − (K(u + v) − K(v))
∫

A(q) dμ .

Isolating the increment K(u + v) − K(v), the desired inequality obtains.

By Proposition 2, if the functional K were differentiable, the gradient map-
ping would be v �→ q̃(v), whose strong continuity requires additional assump-
tions. We would like to show that K is differentiable by means of the Implicit
Function Theorem. That too, would require specific assumptions. In fact, it
is in general not true that a superposition operator such as L1(μ) 	 u �→
expA(u + logA p) ∈ L1(μ) is differentiable, cf. [2, Sect. 1.2]. In this perspective,
we prove the following.

Proposition 3. 1. The superposition operator L2(μ) 	 v �→ expA(v +logA p) ∈
L1(μ) is continuously Fréchet differentiable with derivative

d expA(v) = (h �→ A(expA(v + logA p))h) ∈ L(L2(μ), L1(μ)) .

2. The functional K : L2(μ) → R, implicitly defined by the equation
∫

expA(v − K(v) + logA p) dμ = 1, v ∈ L2(μ)
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is continuously Fréchet differentiable with derivative

dK(v) = (h �→
∫

hq̃(v) dμ), q(v) = expA(v − K(v))

where

q̃(v) =
A ◦ q(v)

∫
A ◦ q(v) dμ

is the escort density of p.

Proof. 1. It is easily seen that

expA(v + h + logA p) − expA(v + expA p) − A[expA(v + logA p)]h = R2(h),

with the bound |R2(h)| ≤ (1/2) |h|2. It follows
∫ |R2(h)| dμ
(∫ |h|2 dμ

) 1
2

≤
1
2

∫ |h|2 dμ
(∫ |h|2 dμ

) 1
2

=
1
2

(∫
|h|2 dμ

) 1
2

.

Therefore ‖R2(h)‖L1(μ) = o
(
‖h‖L2(μ)

)
and so the operator v �→ expA(v +

logA p) is Fréchet-differentiable with derivative h �→ A(expA(v + logA p))h
at v. Let us show that the F-derivative is a continuous map L2(μ) →
L(L2(μ), L1(μ)). If ‖h‖L2(μ) ≤ 1 and v, w ∈ L2(μ) we have

∫
|(A[expA(v + logA p)] − A[expA(w + logA p)])h| dμ

≤ ‖A[expA(v + logA p) − A[expA(w + logA p)]‖L2(μ) ≤ ‖v − w‖L2(μ) ,

hence the derivative is 1-Lipschitz.
2. Frechét differentiability of K is a consequence of the Implicit Function

Theorem in Banach spaces, see [3], applied to the C1-mapping

L2(μ) × R 	 (v, κ) �→
∫

expA(v − κ + logA p) dμ .

The derivative can be easily obtained from the computation of the subgradient.

In the expression q(u) = expA(u − K(u) + logA p), u ∈ L1(μ), the random
variable u is identified up to a constant. We can choose in the class a unique
representative, by assuming

∫
up̃ dμ = 0, the expected value being well defined

as the escort density is bounded. In this case we can solve for u and get

u = logA q − logA p − Ep̃ [logA p − logA q]

In analogy with the exponential case, we can express the functional K as a
divergence associated to the N.J. Newton logarithm:

K(u) = Ep̃ [logA p − logA q(u)] = DA(p‖q(u)) .

It would be interesting to proceed with the study of the convex conjugation of
K and the related properties of the divergence, but do not do that here.
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4 Hilbert Bundle Based on expA

In this section A(x) = x/(1+x) and P(μ) denotes the set of all μ-densities on the
probability space (X,X , μ) of the form q = expA(u − K(u)) with u ∈ L2(μ) and
Eμ [u] = 0, cf. [5]. Notice that 1 ∈ P(μ) because we can take u = 0. Equivalently,
P(μ) is the set of all densities q such that logA q ∈ L2(μ) because in such a case we
can take u = logA q − Eμ [logA q]. The condition for q ∈ P(μ) can be expressed
by saying that both q and log q are in L2(μ). In fact, as expA is 1-Lipschitz,
we have ‖q − 1‖μ ≤ ‖u − K(u)‖μ and the other inclusion follows from log q =
logA q + 1 − q. An easy but important consequence of such a characterization
is the compatibility of the class P(μ) with the product of measures. If qi =
expA(ui − K1(ui)) ∈ P(μi), i = 1, 2, the product is (q1 · μ1) ⊗ (q2 · μ2) = (q2 ⊗
q2) · (μ1 ⊗ μ2), hence q2 ⊗ q2 ∈ P(μ1 ⊗ μ2) since ‖q1 ⊗ q2‖μ1⊗μ2

= ‖q1‖μ1
‖q2‖μ2

.
Moreover log (q1 ⊗ q2) = log q1+log q2, hence ‖log (q1 ⊗ q2)‖μ1⊗μ2

≤ ‖log q1‖μ1
+

‖log q2‖μ2
.

We proceed now to define an Hilbert bundle with base P(μ). For each
p ∈ P(μ) consider the Hilbert spaces Hp =

{
u ∈ L2(μ)

∣
∣Ep̃ [u] = 0

}
with scalar

product 〈u, v〉p =
∫

uv dμ and form the Hilbert bundle

HP(μ) = {(p, u)|p ∈ P(μ), u ∈ Hp} .

For each p, q ∈ P(μ) the mapping U
q
pu = u−Eq̃ [u] is a continuous linear mapping

from Hp to Hq. We have U
r
qU

q
p = U

r
p. In particular, Up

qU
q
p is the identity on Hp,

hence U
q
p is an isomorphism of Hp onto Hq. In the next proposition we construct

an atlas of charts for which P(μ) is a Riemannian manifold and HP(μ) is an
expression of the tangent bundle.

In the following proposition we introduce an affine atlas of charts and use
it to define our Hilbert bundle which is an expression of the tangent bundle.
The velocity of a curve t �→ p(t) ∈ P(μ) is expressed in the Hilbert bundle by
the so called A-score that, in our case, takes the form A(p(t))−1ṗ(t), with ṗ(t)
computed in L1(μ).

Proposition 4. 1. q ∈ P(μ) if, and only if, both q and log q are in L2(μ).
2. Fix p ∈ P(μ). Then a positive density q can be written as

q = expA(v − Kp(v) + logA p), with v ∈ L2(μ) and Ep̃ [v] = 0,

if, and only if, q ∈ P(μ).
3. For each p ∈ P(μ) the mapping

sp : P(μ) 	 q �→ logA q − logA p − Ep̃ [logA q − logA p] ∈ Hp

is injective and surjective, with inverse ep(u) = expA(u − Kp(u) + logA p).
4. The atlas {sp|p ∈ P(μ)} is affine with transitions

sq ◦ ep(u) = U
q
pu + sp(q) .
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5. The expression of the velocity of the differentiable curve t �→ p(t) ∈ P(μ) in
the chart sp is dsp(p(t))/dt ∈ Hp. Conversely, given any u ∈ Hp, the curve
p : t �→ expA(tu − Kp(tu) + logA p) has p(0) = p and has velocity at t = 0
expressed in the chart sp by u. If the velocity of a curve is expressed in the
chart sp by t �→ u̇(t), then its expression in the chart sq is U

q
pu̇(t).

6. If t �→ p(t) ∈ P(μ) is differentiable with respect to the atlas then it is dif-
ferentiable as a mapping in L1(μ). It follows that the A-score is well-defined
and is the expression of the velocity of the curve t �→ p(t) in the moving chart
t �→ sp(t).

Proof. 1. Assume q = expA(u − K(u)) with u ∈ L2
0(μ). It follows u − K(u) ∈

L2(μ) hence q ∈ L2(μ) because expA is 1-Lipschitz. As moreover q+log q−1 =
u − K(u) ∈ L2(μ), then log q ∈ L2(μ). Conversely, loga q = q − 1 + log q =
v ∈ L2(μ) and we can write q = expA v = expA((v − Ep [v]) + Ep [v]) and we
can take u = v − Eμ [v].

2. The assumption p, q ∈ P(μ) is equivalent to logA p, logA q ∈ L2(μ). Define
u = logA q − logA p−Ep̃ [logA q − logA p] and DA(p‖q) = Ep̃ [logA p − logA q].
It follows u ∈ L2(μ), Ep̃ [u] = 0, and expA(u − DA(p‖q) + logA p) = q.
Conversely, logA q = u − Kp(u) + logA p ∈ L2(μ).

3. This has been already proved.
4. All simple computations.
5. If p(t) = expA(u(t) − Kp(u(t)) + logA p), with u(t) = sp(u(t)) then in that

chart the velocity is u̇(t) ∈ Hp. When u(t) = tu the expression of the velocity
will be u. The proof of the second part follows from the fact that U

q
p is the

linear part of the affine change of coordinates sq ◦ ep.
6. Choose a chart sp and express the curve as t �→ sp(p(t)) = u(t) so that

p(t) = expA(u(t)−Kp(u(t))+logA p). It follows that the derivative of t �→ p(t)
exists in L1(μ) by derivation of the composite function and it is given by
ṗ(t) = A(p(t))Up(t)

p u̇(t), hence A(p(t))−1ṗ(t) = U
p(t)
p u̇(t). If the velocity at t

is expressed in the chart centered at p(t), then its expression is the score.

5 Conclusions

We have constructed an Hilbert statistical bundle using an affine atlas of charts
based on the A-logarithm with A(x) = x/(1 + x). In particular, this entails a
Riemannian manifold of densities. On the other end, our bundle structure could
be useful in certain contexts. The general structure of the argument mimics
the standard case of the exponential manifold. We would like to explicit some,
hopefully new, features of our set-up.

The proof of the convexity and continuity of the functional K when defined on
L1(μ) relies on the property of translation invariance. Whenever K is restricted
to L2(μ), it is shown to be differentiable along with the deformed exponential
and this, in turn, provides a rigorous construction of the A-score.

The gradient mapping of K is continuous and 1-to-1, but its inverse cannot be
continuous as it takes values which are bounded functions. It would be interesting
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to analyze the analytic properties of the convex conjugate of K∗, as both K and
K∗ are the coordinate expression of relevant divergences.

If F is a section of the Hilbert bundle namely, F : P(μ) → L2(μ) with
Ep̃ [F (p)] = 0 for all p, differential equations take the form A(p(t))ṗ(t) = F (p(t))
in the atlas, which in turn implies ṗ(t) = A(p(t))F (p(t)) in L1(μ). This is impor-
tant for some applications e.g., when the section F is the gradient with respect to
the Hilbert bundle of a real function. Namely, the gradient, gradφ, of a smooth
function φ : P(μ) → R is a section of the Hilbert bundle such that

d

dt
φ(p(t)) = 〈grad φ(p(t)), A(p(t))ṗ(t)〉μ

for each differentiable curve t �→ p(t) ∈ P(μ).
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