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Abstract. Heavily tailed probability distributions are important
objects in anomalous statistical physics. For such probability distrib-
utions, expectations do not exist in general. Therefore, an escort distri-
bution and an escort expectation have been introduced. In this paper,
by generalizing such escort distributions, a sequence of escort distrib-
utions is introduced. For a deformed exponential family, we study the
fundamental properties of statistical manifold structures derived from
the sequence of escort expectations.
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1 Introduction

Heavily tailed probability distributions are important objects in anomalous sta-
tistical physics (cf. [11,15]). Such probability distributions do not have expecta-
tions in general. Therefore the notion of escort distribution has been introduced
[4] in order to give a suitable down weight for heavy tail probability. Conse-
quently, there exists a modified expectation for such a probability distributions.

For a deformed exponential family, an escort distribution is given by the
differential of a deformed exponential function. Therefore, the first named author
considered further generalizations of escort distributions In q-exponential case,
he introduced a sequential structure of escort distributions [7].

In this paper, we consider a sequential structure of escort distributions on
a deformed exponential family. It is known that a deformed exponential family
naturally has at least three kinds of different statistical manifold structures [8].
We elucidate relations between these statistical manifold structures and the
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structures derived from the sequence of escort expectations. Consequently, we
find that dually flat structures and generalized conformal structures for statisti-
cal manifolds naturally arise in this framework.

2 Deformed Exponential Families

Throughout this paper, we assume that all the objects are smooth. In this
section, we summarize foundations of deformed exponential functions and
deformed exponential families. For further details, see [11].

Let χ be a strictly increasing function from R++ to R++. We call this func-
tion χ a deformation function. By use of a deformation function, we define a
χ-exponential function expχ t (or a deformed exponential function) by the eigen-
function of the following non-linear differential equation

d

dt
expχ t = χ(expχ t).

The inverse of a χ-exponential function is called a χ-logarithm function or a
deformed logarithm function, and it is given by

lnχ s :=
∫ s

1

1
χ(t)

dt.

If the deformation function is a power function χ(t) = tq (q > 0, q �= 1), the
deformed exponential and the deformed logarithm are given by

expq t := (1 + (1 − q)t)
1

1−q , (1 + (1 − q)t > 0),

lnq s :=
s1−q − 1

1 − q
, (s > 0),

and they are called a q-exponential and a q-logarithm, respectively.
We suppose that a statistical model Sχ has the following expression

Sχ =

{
p(x, θ)

∣∣∣∣∣p(x; θ) = expχ

[
n∑

i=1

θiFi(x) − ψ(θ)

]
, θ ∈ Θ ⊂ Rn

}
,

where F1(x), . . . , Fn(x) are functions on the sample space Ω, θ = t(θ1, . . . , θn) is
a parameter, and ψ(θ) is the normalization defined by

∫
Ω

p(x; θ)dx = 1. We call
the statistical model Sχ a χ-exponential family or a deformed exponential family.
Under suitable conditions, Sχ is regarded as a manifold with coordinate system
θ = (θ1, . . . , θn). When the deformed exponential function is a q-exponential, we
denote the statistical model by Sq and call it a q-exponential family.

We remark that the regularity conditions for Sχ is very difficult. To elucidate
such conditions is quite an open problem. For example, regularity conditions for
a statistical model (see Chap. 2 in [1]) and the well-definedness of a deformed
exponential function should be satisfied simultaneously. A few arguments of this
problem is given in the first and the third named author’s previous work [9].
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3 A Sequential Structure of Expectations

In this section we consider a sequential structure of expectations. As we will see
later, statistical manifold structures are defined from this sequence.

Let Sχ = {pθ} = {p(x; θ)} be a χ-exponential family. We say that Pχ(x; θ)
is an escort distribution of pθ ∈ Sχ if

Pχ(x; θ) := Pχ,(1)(x; θ) := χ(pθ).

We say that P esc
χ (x; θ) is a normalized escort distribution of pθ if

P esc
χ (x; θ) := P esc

χ,(1)(x; θ) :=
χ(pθ)
Zχ(pθ)

,

where Zχ(pθ) := Zχ,(1)(pθ) :=
∫

Ω

χ(pθ)dx.

We generalize the escort distribution by use of higher-order differentials.

Definition 1. Let Sχ be a χ-exponential family. Denote by exp(n)
χ x the n-th

differential of the χ-exponential function. For pθ ∈ Sχ, we define the n-th escort
distribution Pχ,(n)(x; θ) by

Pχ,(n)(x; θ) := exp(n)
χ (lnχ pθ) = exp(n)

χ

(
n∑

i=1

θiFi(x) − ψ(θ)

)
,

and the normalized n-th escort distribution P esc
χ,(n)(x; θ) by

P esc
χ,(n)(x; θ) :=

Pχ,(n)(x; θ)
Zχ,(n)(pθ)

, where Zχ,(n)(pθ) =
∫

Ω

Pχ,(n)(x; θ)dx.

For a given function f(x) on Ω, we define the n-th escort expectation of f(x)
and the normalized n-th escort expectation of f(x) by

Eχ,(n),p[f(x)] :=
∫

Ω

f(x)Pχ,(n)(x; θ)dx,

Eesc
χ,(n),p[f(x)] :=

∫
Ω

f(x)P esc
χ,(n)(x; θ)dx,

respectively.

For example, in the case of q-exponential family Sq, the n-th escort distrib-
ution of pq(x; θ) is given by

Pq,(n)(x; θ) := {q(2q − 1) · · · ((n − 1)q − (n − 2))}{pq(x; θ)}nq−(n−1).

When we consider geometric structure determined from the unbiasedness of
generalized score function, that is,

Eχ,(1),p[∂i lnχ p(x; θ)] = 0,

a sequential structure of expectations naturally arises. This is one of our motiva-
tions to study sequential expectations. When we consider correlations of random
variables, another kinds of sequence of expectations will be required.
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4 Geometry of Statistical Models

Let (M, g) be a Riemannian manifold, and C be a totally symmetric (0, 3)-tensor
field on M . We call the triplet (M, g,C) a statistical manifold [6]. In this case, the
tensor field C is called a cubic form. For a given statistical manifold (M, g,C),
we can define one parameter family of affine connections by

g(∇(α)
X Y,Z) := g(∇(0)

X Y,Z) − α

2
C(X,Y,Z), (1)

where α ∈ R and ∇(0) is the Levi-Civita connection with respect to g. It is easy
to check that ∇(α) and ∇(−α) are mutually dual with respect to g, that is,

Xg(Y,Z) = g(∇(α)
X Y,Z) + g(Y,∇(−α)

X Z).

We say that S is a statistical model if S is a set of probability density functions
on Ω with parameter ξ ∈ Ξ such that

S =
{

p(x; ξ)
∣∣∣∣
∫

Ω

p(x; ξ)dx = 1, p(x; ξ) > 0, ξ = (ξ1, . . . , ξn) ∈ Ξ ⊂ Rn

}
.

Under suitable conditions, we can define a Fisher metric gF on S by

gF
ij(ξ) =

∫
Ω

(
∂

∂ξi
ln p(x; ξ)

) (
∂

∂ξj
ln p(x; ξ)

)
p(x; ξ) dx (2)

=
∫

Ω

(
∂

∂ξi
ln p(x; ξ)

) (
∂

∂ξj
p(x; ξ)

)
dx (3)

= Ep[∂ilξ∂j lξ],

where ∂i = ∂/∂ξi, lξ = l(x; ξ) = ln p(x; ξ), and Ep[f ] is the standard expectation
of f(x) with respect to p(x; ξ).

Next, we define a totally symmetric (0, 3)-tensor field CF by

CF
ijk(ξ) = Ep [(∂ilξ)(∂j lξ)(∂klξ)] .

From Eq. (1), we can define one parameter family of affine connections. In
particular, the connection ∇(e) = ∇(1) is called theexponential connection and
∇(m) = ∇(−1) is called the mixture connection. These connections are given by

Γ
(e)
ij,k(ξ) =

∫
Ω

(∂i∂j ln pξ)(∂kpξ)dx,

Γ
(m)
ij,k (ξ) =

∫
Ω

(∂k ln pξ)(∂i∂jpξ)dx.

It is known that gF and CF are independent of the choice of reference mea-
sure on Ω. Therefore, the triplet (S, gF , CF ) is called an invariant statistical
manifold. If a statistical model S is an exponential family, then the invari-
ant statistical manifold (S, gF , CF ) determines a dually flat structure on S.
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(See [1,13].) However, this fact may not be held for a deformed exponential
family Sχ and an invariant structure may not be important for Sχ. Therefore,
we consider another statistical manifold structures.

We summarize statistical manifold structures for Sχ based on [8].
Let Sχ be a χ-exponential family. We define a Riemannian metric gM by

gM
ij (θ) :=

∫
Ω

(∂i lnχ pθ) (∂jpθ) dx,

where ∂i = ∂/∂θi. The Riemannian metric gM is a generalization of the repre-
sentation of Fisher metric (3). A pair of dual affine connections are given by

Γ
M(e)
ij,k (θ) =

∫
Ω

(∂i∂j lnχ pθ)(∂kpθ)dx,

Γ
M(m)
ij,k (θ) =

∫
Ω

(∂k lnχ pθ)(∂i∂jpθ)dx.

The difference of two affine connections CM
ijk = Γ

M(m)
ij,k − Γ

M(e)
ij,k determines a

cubic form. In addition, from the definition of the deformed exponential family
Sχ, Γ

M(e)
ij,k (θ) always vanishes. Therefore, we have the following proposition.

Proposition 1. For a χ-exponential family Sχ, the triplet (Sχ, gM , CM ) is a
statistical manifold. In particular, (Sχ, gM ,∇M(e),∇M(m)) is a dually flat space.
By setting

Uχ(s) :=
∫ s

0

(expχ t) dt,

we define a U -divergence [10] by

Dχ(p||r) =
∫

Ω

{Uχ(lnχ r(x)) − Uχ(lnχ p(x)) − p(x)(lnχ r(x) − lnχ p(x))}dx.

It is known that the U -divergence Dχ(p||r) on Sχ coincides with the canonical
divergence for (Sχ, gM ,∇M(m),∇M(e)) (See [8,10]).

Next, we define another statistical manifold structure from the viewpoint of
Hessian geometry.

For a χ-exponential family Sχ, suppose that the normalization ψ is strictly
convex. Then we can define a χ-Fisher metric gχ and a χ-cubic form Cχ [3] by

gχ
ij(θ) := ∂i∂jψ(θ),

Cχ
ijk(θ) := ∂i∂j∂kψ(θ).

Obviously, the triplet (Sχ, gχ, Cχ) is a statistical manifold. From Eq. (1), we can
define a torsion-free affine connection ∇χ(α) by

gχ(∇χ(α)
X Y,Z) := gχ(∇χ(0)

X Y,Z) − α

2
Cχ(X,Y,Z),

where ∇χ(0) is the Levi-Civita connection with respect to gχ. By standard argu-
ments in Hessian geometry [13], (Sχ, gχ,∇χ(1),∇χ(−1)) is a dually flat space.
The canonical divergence for (Sχ, gχ,∇χ(−1),∇χ(1)) is given by

Dχ(p||r) = Eesc
χ,r [lnχ r(x) − lnχ p(x)].
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5 Statistical Manifolds Determined from Sequential
Escort Expectations

In this section, we consider statistical manifold structures determined from
sequential escort expectations.

For a χ-exponential family Sχ, we define g(n) and C(n) by

g
(n)
ij (θ) :=

∫
Ω

(∂i lnχ pθ)(∂j lnχ pθ)Pχ,(n)(x; θ)dx,

C
(n)
ijk (θ) :=

∫
Ω

(∂i lnχ pθ)(∂j lnχ pθ)(∂k lnχ pθ)Pχ,(n+1)(x; θ)dx.

We suppose that g(n) is a Riemannian metric on Sχ. Then we obtain a sequence
of statistical manifolds:

(Sχ, g(1), C(1)) → (Sχ, g(2), C(2)) → · · · → (Sχ, g(n), C(n)) → · · · .

The limit of this sequence is not clear at this moment. In the q-Gaussian
case, the sequence of normalized escort distributions {P esc

q,(n)(x; θ)} converges to
the Dirac’s delta function δ(x − μ) (cf. [14]).

Theorem 1. Let Sq = {p(x; θ)} be a χ-exponential family. Then (Sχ, g(1), C(1))
coincides with (Sχ, gM , CM ).

Proof. From the definition of χ-logarithm and Pχ(x; θ) = Pχ,(1)(x; θ) = χ(pθ),
we obtain

(∂i lnχ pθ)Pχ,(1)(x; θ) =
∂ipθ

χ(pθ)
χ(pθ) = ∂ipθ.

Therefore, we obtain

gM
ij (θ) =

∫
Ω

(∂i lnχ pθ)(∂jpθ)dx =
∫

Ω

(∂i lnχ pθ)(∂j lnχ pθ)Pχ,(1)(x; θ)dx

= g(1)(θ).

Recall that {θi} is a ∇M(e)-affine coordinate system [8]. In addition, the
generalized score function ∂i lnχ pθ is unbiased with respect to the escort expec-
tation, that is,

Eχ,p[∂i lnχ pθ] =
∫

Ω

(∂i lnχ pθ)Pχ,(1)(x; θ)dx =
∫

Ω

∂ipθdx = 0.

Therefore we obtain

CM
ijk(θ) = Γ

M(m)
ij,k (θ) =

∫
Ω

(∂k lnχ pθ)(∂i∂jpθ)dx

=
∫

Ω

(∂k lnχ pθ)∂i{(∂j lnχ pθ)Pχ,(1)(x; θ)}dx

= 0 +
∫

Ω

(∂k lnχ pθ)(∂j lnχ pθ)(∂i lnχ pθ)Pχ,(2)(x; θ)dx

= C
(1)
ijk(θ).
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From the second escort expectation, we have the following theorem.

Theorem 2. Let Sq = {p(x; θ)} be a χ-exponential family. Then (Sχ, g(2), C(2))
and (Sχ, gχ, Cχ) have the following relations:

g
(2)
ij (x; θ) = Zχ(pθ)g

χ
ij(θ),

C
(2)
ijk(x; θ) = Zχ(pθ)C

χ
ij(θ) + gχ

ij(θ)∂kZχ(pθ) + gχ
jk(θ)∂iZχ(pθ) + gχ

ki(θ)∂jZχ(pθ).

Proof. Set u(x) = (expq x)′. Then we have

∂ip(x; θ) = u
(∑

θkFk(x) − ψ(θ)
)

(Fi(x) − ∂iψ(θ))

∂i∂jp(x; θ) = u′
(∑

θkFk(x) − ψ(θ)
)

(Fi(x) − ∂iψ(θ))(Fj(x) − ∂jψ(θ))

−u
(∑

θkFk(x) − ψ(θ)
)

∂i∂jψ(θ)

= Pχ,(2)(x; θ)(∂i lnχ pθ)(∂j lnχ pθ) − Pχ,(1)(x; θ)∂i∂jψ(θ).

Since
∫

Ω
∂ip(x; θ)dx =

∫
Ω

∂i∂jp(x; θ)dx = 0 and Zχ(p) =
∫

Ω
χ(p(x; θ))dx =∫

Ω
Pχ,(1)(x; θ)dx, we obtain

g
(2)
ij (θ) = Zχ(pθ)g

χ
ij(θ).

From a straight forward calculation, we have

∂i∂j∂kp(x; θ) = u′′
(∑

θlFl(x) − ψ(θ)
)

× (Fi(x) − ∂iψ(θ))(Fj(x) − ∂jψ(θ))(Fk(x) − ∂kψ(θ))

−u′
(∑

θlFl(x) − ψ(θ)
)

(Fk(x) − ∂kψ(θ))∂i∂jψ(θ)

−u′
(∑

θlFl(x) − ψ(θ)
)

(Fi(x) − ∂iψ(θ))∂j∂kψ(θ)

−u′
(∑

θlFl(x) − ψ(θ)
)

(Fj(x) − ∂jψ(θ))∂k∂iψ(θ)

−u
(∑

θlFl(x) − ψ(θ)
)

∂i∂j∂kψ(θ), (4)

∂iZχ(pθ) =
∫

Ω

∂iPχ,(1)(x; θ)dx

=
∫

Ω

u
(∑

θlFl(x) − ψ(θ)
)

(Fi(x) − ∂iψ(θ))dx.

By integrating (4), we obtain the relation C(2) and Cχ.

We remark that the statistical manifold (Sχ, g(2), C(2)) cannot determine a
dually flat structure in general whereas (Sχ, gχ, Cχ) determines a dually flat
structure. The relations in Theorem 2 imply that two statistical manifolds have
a generalized conformal equivalence relation in the sense of Kurose [5].
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6 Concluding Remarks

In this paper, we considered a sequential structure of escort expectations and
statistical manifold structures that are defined from the sequence of escort
expectations. Further geometric properties of the sequence {(Sχ, g(n), C(n))}n∈N

are not clear at this moment. However. the sequential structure will be important
in the geometric theory of non-exponential type statistical models. Actually, in
the case of q-exponential family, (Sq, g

(1), C(1)) is induced from a β-divergence.
In addition, (Sq, g

(2), C(2)) are essentially equivalent to the invariant statistical
manifold structure (Sq, g

F .CF ), which are induced from an α-divergence [7].
The authors would like to express their sincere gratitude to the referees for

giving helpful comments to improve this paper.
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