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1 Introduction

This article is a digest of [2,3] with additional remarks on invariant submanifolds
of Sasakian statistical manifolds.

We set Ω = {1, . . . , n+1} as a sample space, and denote by P+(Ω) the set of
positive probability densities, that is, P+(Ω) = {p : Ω → R+ | ∑

x∈Ω p(x) = 1 },
where R+ is the set of positive real numbers. Let M be a smooth manifold as
a parameter space, and s : M � u �→ p(·, u) ∈ P+(Ω) an injection with the
property that p(x, ·) : M → R+ is smooth for each x ∈ Ω. Consider a family
of positive probability densities on Ω parametrized by M in this manner. We
define a (0, 2)-tensor field on M by

gu(X,Y ) =
∑

x∈Ω

{X log p(x, ·)}{Y log p(x, ·)}p(x, u)

for tangent vectors X,Y ∈ TuM . We say that an injection s : M → P+(Ω)
is a statistical model if gu is nondegenerate for each u ∈ M , namely, if g
is a Riemannian metric on M , which is called the Fisher information met-
ric for s. Define ϕ : M → R

n+1 for a statistical model s by ϕ(u) =
t[2

√
p(1, u), . . . , 2

√
p(n + 1, u)]. It is known that the metric on M induced by ϕ

from the Euclidean metric on R
n+1 coincides with the Fisher information metric

g. Since the image ϕ(M) lies on the n-dimensional hypersphere Sn(2) of radius 2,
the Fisher information metric is considered as the Riemannian metric induced
from the standard metric of the hypersphere. For example, we set

M = {u = t[u1, . . . , un] ∈ R
n | uj > 0,

n∑

l=1

ul < 1 },

s : M � u �→ p(x, u) =
{

uk, x = k ∈ {1, . . . , n},
1 − ∑n

l=1 ul, x = n + 1.

Then ϕ(M) = Sn(2)∩ (R+)n+1 and the Fisher information metric is the restric-
tion of the standard metric of Sn(2). It shows that a hypersphere with the stan-
dard metric plays an important role in information geometry. It is an interesting
question whether a whole hypersphere plays another part there.

In this article, we give a certain statistical structure on an odd-dimensional
hypersphere, and explain its background.
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2 Sasakian Statistical Structures

Throughout this paper, M denotes a smooth manifold, and Γ (E) denotes the
set of sections of a vector bundle E → M . All the objects are assumed to be
smooth. For example, Γ (TM (p,q)) means the set of all the C∞ tensor fields on
M of type (p, q).

At first, we will review the basic notion of Sasakian manifolds, which is a
classical topic in differential geometry (See [5] for example). Let g ∈ Γ (TM (0,2))
be a Riemannian metric, and denote by ∇g the Levi-Civita connection of g. Take
φ ∈ Γ (TM (1,1)) and ξ ∈ Γ (TM).

A triple (g, φ, ξ) is called an almost contact metric structure on M if the
following equations hold for any X,Y ∈ Γ (TM):

φ ξ = 0, g(ξ, ξ) = 1,

φ2X = −X + g(X, ξ)ξ,
g(φX, Y ) + g(X,φY ) = 0.

An almost contact metric structure on M is called a Sasakian structure if

(∇g
Xφ)Y = g(Y, ξ)X − g(Y,X)ξ (1)

holds for any X,Y ∈ Γ (TM). We call a manifold equipped with a Sasakian
structure a Sasakian manifold.

It is known that on a Sasakian manifold the formula

∇g
Xξ = φX (2)

holds for X ∈ Γ (TM). A typical example of a Sasakian manifold is a hypersphere
of odd dimension as mentioned below.

We now review the basic notion of statistical manifolds to fix the notation
(See [1] and references therein). Let ∇ be an affine connection of M , and g ∈
Γ (TM (0,2)) a Riemannian metric. The pair (∇, g) is called a statistical structure
on M if (i) ∇XY −∇Y X − [X,Y ] = 0 and (ii) (∇Xg)(Y,Z) = (∇Y g)(X,Z) hold
for any X,Y,Z ∈ Γ (TM). By definition, (∇g, g) is a statistical structure on M .

We denote by R∇ the curvature tensor field of ∇, and by ∇∗ the dual con-
nection of ∇ with respect to g, and set S = S(∇,g) ∈ Γ (TM (1,3)) as the mean of
the curvature tensor fields of ∇ and of ∇∗, that is, for X,Y,Z ∈ Γ (TM),

R∇(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z,

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗
XZ),

S(X,Y )Z =
1
2
{R∇(X,Y )Z + R∇∗

(X,Y )Z}. (3)

A statistical manifold (M,∇, g) is called a Hessian manifold if R∇ = 0. If so,
we have R∇∗

= S = 0 automatically.
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For a statistical structure (∇, g) on M , we set K = ∇ − ∇g. Then the
following hold:

K ∈ Γ (TM (1,2)),
KXY = KY X, g(KXY,Z) = g(Y,KXZ)

(4)

for any X,Y,Z ∈ Γ (TM). Conversely, if K satisfies (4), the pair (∇ = ∇g +K, g)
is a statistical structure on M .

The formula
S(X,Y )Z = Rg(X,Y )Z + [KX ,KY ]Z (5)

holds, where Rg = R∇g

is the curvature tensor field of the Levi-Civita connection
of g.

For a statistical structure (∇, g), we often use the expression like (∇ = ∇g +
K, g), and write KXY by K(X,Y ).

Definition 1. A quadruplet (∇ = ∇g +K, g, φ, ξ) is called a Sasakian statistical
structure on M if (i) (g, φ, ξ) is a Sasakian structure and (ii) (∇, g) is a statistical
structure on M , and (iii) K ∈ Γ (TM (1,2)) for (∇, g) satisfies

K(X,φY ) + φK(X,Y ) = 0 for X,Y ∈ Γ (TM). (6)

These three conditions are paraphrased in the following three conditions
([3, Theorem 2.17]: (i’) (g, φ, ξ) is an almost contact metric structure and (ii)
(∇, g) is a statistical structure on M , and (iii’) they satisfy

∇X(φY ) − φ∇∗
XY = g(ξ, Y )X − g(X,Y )ξ, (7)

∇Xξ = φX + g(∇Xξ, ξ)ξ. (8)

We get the following formulas for a Sasakian statistical manifold:

K(X, ξ) = λg(X, ξ)ξ, g(K(X,Y ), ξ) = λg(X, ξ)g(Y, ξ), (9)

where
λ = g(K(ξ, ξ), ξ). (10)

Proposition 2. For a Sasakian statistical manifold (M,∇, g, φ, ξ),

S(X,Y )ξ = g(Y, ξ)X − g(X, ξ)Y (11)

holds for X,Y ∈ Γ (TM).

Proof. By (9), we have [KX ,KY ]ξ = 0, from which (5) implies S = Rg. It is
known that Rg is written as the right hand side of (11) (See [5]).

A quadruplet (M̃, ∇̃ = ∇g̃ + K̃, g̃, J̃) is called a holomorphic statistical man-

ifold if (g̃, J̃) is a Kähler structure, (∇̃, g̃) is a statistical structure on M̃ , and

K̃(X, J̃Y ) + J̃K̃(X,Y ) = 0 (12)
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holds for X,Y ∈ Γ (TM̃). The notion of Sasakian statistical manifold can be
also expressed in the following: The cone over M defined below is a holomorphic
statistical manifold. Let (M,∇ = ∇g + K, g, φ, ξ) be a statistical manifold with
an almost contact metric structure. Set M̃ as M ×R+, and define a Riemannian

metric g̃ = r2g +(dr)2 on M̃ . Take a vector field Ψ = r
∂

∂r
∈ Γ (TM̃), and define

J̃ ∈ Γ (TM̃ (1,1)) by J̃Ψ = ξ and J̃X = φX − g(X, ξ)Ψ for any X ∈ Γ (TM).
Then, (g̃, J̃) is an almost Hermitian structure on M̃ , and furthermore, (g, φ, ξ)
is a Sasakian structure on M if and only if (g̃, J̃) is a Kähler structure on M̃ .
We construct connection ∇̃ on M̃ by

⎧
⎪⎨

⎪⎩

∇̃ΨΨ = −λξ + Ψ,

∇̃XΨ = ∇̃ΨX = X − λg(X, ξ)Ψ,

∇̃XY = ∇XY − g(X,Y )Ψ,

that is,

K̃(Ψ, Ψ) = −λξ, K̃(X,Ψ) = −λg(X, ξ)Ψ, K̃(X,Y ) = K(X,Y )

for X,Y ∈ Γ (TM), where λ is in (10). We then have that (M,∇, g, φ, ξ) is a
Sasakian statistical manifold if and only if (M̃, ∇̃, g̃, J̃) is a holomorphic statis-
tical manifold (A general statement is given as [2, Proposition 4.8 and Theorem
4.10]). It is derived from the fact that the formula (12) holds if and only if both
(6) and (9) hold.

Example 3. Let S2n−1 be a unit hypersphere in the Euclidean space R
2n.

Let J be a standard almost complex structure on R
2n considered as C

n,
and set ξ = −JN , where N is a unit normal vector field of S2n−1. Define
φ ∈ Γ (T (S2n−1)(1,1)) by φ(X) = JX − 〈JX,N〉N . Denote by g the standard
metric of the hypersphere. Then such a (g, φ, ξ) is known as a standard Sasakian
structure on S2n−1. We set

K(X,Y ) = g(X, ξ)g(Y, ξ)ξ (13)

for any X,Y ∈ Γ (TS2n−1). Since K satisfies (4) and (6), we have a Sasakian
statistical structure (∇ = ∇g + K, g, φ, ξ) on S2n−1.

Proposition 4. Let (M, g, φ, ξ) be a Sasakian manifold. Set ∇ as ∇g + fK
for f ∈ C∞(M), where K is given in (13). Then (∇, g, φ, ξ) is a Sasakian
statistical structure on M . Conversely, we define ∇XY = ∇g

XY + L(X,Y )V
for some unit vector field V and L ∈ Γ (TM (0,2)). If (∇, g, φ, ξ) is a Sasakian
statistical structure, then L ⊗ V is written as L(X,Y )V = fg(X, ξ)g(Y, ξ)ξ for
some f ∈ C∞(M), as above.

Proof. The first half is obtained by direct calculation. To get the second half,
we have by (4),

0 = L(X,Y )V − L(Y,X)V = {L(X,Y ) − L(Y,X)}V,

0 = g(L(X,Y )V,Z) − g(Y,L(X,Z)V ) = g(L(X,Y )Z − L(X,Z)Y, V ). (14)
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Substituting V for Z in (14), we have

L(X,Y ) = L(V, V )g(X,V )g(Y, V ).

Accordingly, we get by (6),

0 = L(X,φY )V + φ{L(X,Y )V } = L(V, V )g(X,V ){−g(Y, φV )V + g(Y, V )φV },

which implies that φV = 0 if L(V, V ) �= 0, and hence V = ±ξ.

3 Invariant Submanifolds

Let (M̃, g̃, φ̃, ξ̃) be a Sasakian manifold, and M a submanifold of M̃ . We say that
M is an invariant submanifold of M̃ if (i) ξ̃u ∈ TuM , (ii) φ̃X ∈ TuM for any
X ∈ TuM and u ∈ M . Let g ∈ Γ (TM (0,2)), φ ∈ Γ (TM (1,1)) and ξ ∈ Γ (TM)
be the restriction of g̃, φ̃ and ξ̃, respectively. Then it is shown that (g, φ, ξ) is a
Sasakian structure on M .

A typical example of an invariant submanifold of a Sasakian manifold S2n−1 in
Example 3 is an odd dimensional unit sphere. Furthermore, we have the following
example. Let ι : Q → CPn−1 be a complex hyperquadric in the complex projective
space, and Q̃ the principal fiber bundle over Q induced by ι from the Hopf fibration
π : S2n−1 → CPn−1. We denote the induced homomorphism by ι̃ : Q̃ → S2n−1.
Then it is known that ι̃(Q̃) is an invariant submanifold (See [4], [5]).

We briefly review the statistical submanifold theory to study invariant sub-
manifolds of a Sasakian statistical manifold. Let (M̃, ∇̃, g̃) be a statistical mani-
fold, and M a submanifold of M̃ . Let g be the metric on M induced from g̃, and
consider the orthogonal decomposition with respect to g̃: TuM̃ = TuM ⊕TuM⊥.
According to this decomposition, we define an affine connection ∇ on M ,
B ∈ Γ (TM⊥ ⊗ TM (0,2)), A ∈ Γ ((TM⊥)(0,1) ⊗ TM (1,1)), and a connection
∇⊥ of the vector bundle TM⊥ by

∇̃XY = ∇XY + B(X,Y ), ∇̃XN = −ANX + ∇⊥
XN (15)

for X,Y ∈ Γ (TM) and N ∈ Γ (TM⊥). Then (∇, g) is a statistical structure
on M . In the same fashion, we define an affine connection ∇∗ on M , B∗ ∈
Γ (TM⊥ ⊗ TM (0,2)), A∗ ∈ Γ ((TM⊥)(0,1) ⊗ TM (1,1)), and a connection (∇⊥)∗

of TM⊥ by using th dual connection ∇̃∗ instead of ∇̃ in (15).
We remark that g̃(B(X,Y ), N) = g(A∗

NX,Y ) for X,Y ∈ Γ (TM) and N ∈
Γ (TM⊥), and remark that ∇∗ coincides with the dual connection of ∇ with
respect to g. See [1] for example.

Theorem 5. Let (M̃, ∇̃, g̃, φ̃, ξ̃) be a Sasakian statistical manifold, and M an
invariant submanifold of M̃ with g, φ, ξ,∇, B,A,∇⊥,∇∗, B∗, A∗, (∇⊥)∗ defined
as above. Then the following hold:
(i) A quintuplet (M,∇, g, φ, ξ) is a Sasakian statistical manifold.
(ii) B(X, ξ) = B∗(X, ξ) = 0 for any X ∈ Γ (TM).
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(iii) B(X,φY ) = B(φX, Y ) = φ̃B∗(X,Y ) for any X,Y ∈ Γ (TM). In particular,
trgB = trgB

∗ = 0.
(iv) If B is parallel with respect to the Van der Weaden-Bortolotti connection
∇̃′ for ∇̃, then B and B∗ vanish. Namely, if (∇̃′

XB)(Y,Z) = ∇⊥
XB(Y,Z) −

B(∇XY,Z) − B(Y,∇XZ) = 0 for Z ∈ Γ (TM), then B∗(X,Y ) = 0.
(v) g̃(S̃(X, φ̃X)φ̃X − S(X,φX)φX,X) = 2g̃(B∗(X,X), B(X,X)) for X ∈
Γ (TM), where S = S(∇,g) and S̃ = S(˜∇,g̃) as in (3).

Corollary 6. Let (M̃, ∇̃, g̃, φ̃, ξ̃) be a Sasakian statistical manifold of constant
φ̃-sectional curvature c, and M an invariant submanifold of M̃ . The induced
Sasakian statistical structure on M has constant φ-sectional curvature c if and
only if g̃(B∗(X,X), B(X,X)) = 0 for any X ∈ Γ (TM) orthogonal to ξ.

If we take the Levi-Civita connection as ∇̃, the properties above reduce to
the ones for an invariant submanifold of a Sasakian manifold. It is known that an
invariant submanifold of a Sasakian manifold of constant φ̃-sectional curvature
c is of constant φ-sectional curvature c if and only if it is totally geodesic. It is
obtained by setting B = B∗ in Corollary 6. It is an interesting question whether
there is an interesting invariant submanifold having nonvanishing B with the
above property.

Outline of Proof of Theorem 5. The proof of (i) can be omitted.
By (i) and (8), we calculate that ∇Xξ+B(X, ξ) = ∇̃Xξ = φ̃X+g̃(∇̃Xξ, ξ̃)ξ̃ =

φX + g(∇Xξ, ξ)ξ. Comparing the normal components, we have (ii).
By (7), we have g̃(Y, ξ̃)X − g̃(Y,X)ξ̃ = ∇̃X(φ̃Y ) − φ̃∇̃∗

XY = ∇X(φY ) +
B(X,φY )−φ̃(∇∗

XY +B∗(X,Y )) = g(Y, ξ)X−g(Y,X)ξ+B(X,φY )−φ̃B∗(X,Y ).
Comparing the normal components, we have (iii).

By (i) and (ii), we get that 0 = ∇⊥
XB(Y, ξ) − B(∇XY, ξ) − B(Y,∇Xξ) =

−B(Y, φX) = −φ̃B∗(X,Y ), which implies (iv).
To get (v), we use the Gauss equation in the submanifold theory. The tan-

gential component of R
˜∇(X,Y )Z is given as

R∇(X,Y )Z − AB(Y,Z)X + AB(X,Z)Y,

for X,Y,Z ∈ Γ (TM), which implies that

2g̃(S̃(X,Y )Z,W ) = 2g(S(X,Y )Z,W )
− g̃(B∗(X,W ), B(Y,Z)) + g̃(B∗(Y,W ), B(X,Z))

− g̃(B(X,W ), B∗(Y,Z)) + g̃(B(Y,W ), B∗(X,Z)).

Therefore, we prove (v) from (iii).
To get Corollary 6, we have only to review the definition. A Sasakian sta-

tistical structure (∇, g, φ, ξ) is said to be of constant φ-sectional curvature c if
the sectional curvature defined by using S equals c for each φ-section, the plane
spanned by X and φX for a unit vector X orthogonal to ξ: g(S(X,φX)φX,X) =
cg(X,X)2 for X ∈ Γ (TM) such that g(X, ξ) = 0.
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