Sasakian Statistical Manifolds II

Hitoshi Furuhata $^{(\boxtimes)}$

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan furuhata@math.sci.hokudai.ac.jp

1 Introduction

This article is a digest of [\[2](#page-6-0)[,3](#page-6-1)] with additional remarks on invariant submanifolds of Sasakian statistical manifolds.

We set $\Omega = \{1, \ldots, n+1\}$ as a sample space, and denote by $\mathcal{P}^+(\Omega)$ the set of positive probability densities, that is, $\mathcal{P}^+(\Omega) = \{p : \Omega \to \mathbb{R}_+ \mid \sum_{x \in \Omega} p(x) = 1 \}$, where \mathbb{R}_+ is the set of positive real numbers. Let M be a smooth manifold as where \mathbb{R}_+ is the set of positive real numbers. Let M be a smooth manifold as a parameter space, and $s : M \ni u \mapsto p(\cdot, u) \in \mathcal{P}^+(\Omega)$ an injection with the property that $p(x, \cdot) : M \to \mathbb{R}_+$ is smooth for each $x \in \Omega$. Consider a family of positive probability densities on Ω parametrized by M in this manner. We define a $(0, 2)$ -tensor field on M by

$$
g_u(X, Y) = \sum_{x \in \Omega} \{ X \log p(x, \cdot) \} \{ Y \log p(x, \cdot) \} p(x, u)
$$

for tangent vectors $X, Y \in T_uM$. We say that an injection $s : M \to \mathcal{P}^+(\Omega)$ is a *statistical model* if g_u is nondegenerate for each $u \in M$, namely, if g is a Riemannian metric on M, which is called the *Fisher information metric* for s. Define $\varphi : M \to \mathbb{R}^{n+1}$ for a statistical model s by $\varphi(u)$ = ${}^{t}[\frac{2\sqrt{p(1,u)},\ldots,2\sqrt{p(n+1,u)}]}$. It is known that the metric on M induced by φ from the Euclidean metric on \mathbb{R}^{n+1} coincides with the Fisher information metric q. Since the image $\varphi(M)$ lies on the *n*-dimensional hypersphere $Sⁿ(2)$ of radius 2, the Fisher information metric is considered as the Riemannian metric induced from the standard metric of the hypersphere. For example, we set

$$
M = \{u = {}^{t}[u^{1}, \ldots, u^{n}] \in \mathbb{R}^{n} \mid u^{j} > 0, \sum_{l=1}^{n} u^{l} < 1 \},\
$$

$$
s: M \ni u \mapsto p(x, u) = \begin{cases} u^{k}, & x = k \in \{1, \ldots, n\},\\ 1 - \sum_{l=1}^{n} u^{l}, & x = n+1. \end{cases}
$$

Then $\varphi(M) = S^{n}(2) \cap (\mathbb{R}_{+})^{n+1}$ and the Fisher information metric is the restriction of the standard metric of $Sⁿ(2)$. It shows that a hypersphere with the standard metric plays an important role in information geometry. It is an interesting question whether a *whole* hypersphere plays another part there.

In this article, we give a certain statistical structure on an odd-dimensional hypersphere, and explain its background.

c Springer International Publishing AG 2017

F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 179–185, 2017.

https://doi.org/10.1007/978-3-319-68445-1_21

2 Sasakian Statistical Structures

Throughout this paper, M denotes a smooth manifold, and $\Gamma(E)$ denotes the set of sections of a vector bundle $E \to M$. All the objects are assumed to be smooth. For example, $\Gamma(TM^{(p,q)})$ means the set of all the C^{∞} tensor fields on M of type (p, q) .

At first, we will review the basic notion of Sasakian manifolds, which is a classical topic in differential geometry (See [\[5](#page-6-2)] for example). Let $q \in \Gamma(TM^{(0,2)})$ be a Riemannian metric, and denote by ∇^g the Levi-Civita connection of q. Take $\phi \in \Gamma(TM^{(1,1)})$ and $\xi \in \Gamma(TM)$.

A triple (a, ϕ, ξ) is called an *almost contact metric structure* on M if the following equations hold for any $X, Y \in \Gamma(TM)$:

$$
\phi \xi = 0, \quad g(\xi, \xi) = 1,
$$

$$
\phi^2 X = -X + g(X, \xi)\xi,
$$

$$
g(\phi X, Y) + g(X, \phi Y) = 0.
$$

An almost contact metric structure on M is called a *Sasakian structure* if

$$
(\nabla_X^g \phi)Y = g(Y, \xi)X - g(Y, X)\xi
$$
\n(1)

holds for any $X, Y \in \Gamma(TM)$. We call a manifold equipped with a Sasakian structure a *Sasakian manifold*.

It is known that on a Sasakian manifold the formula

$$
\nabla_X^g \xi = \phi X \tag{2}
$$

holds for $X \in \Gamma(TM)$. A typical example of a Sasakian manifold is a hypersphere of odd dimension as mentioned below.

We now review the basic notion of statistical manifolds to fix the notation (See [\[1](#page-6-3)] and references therein). Let ∇ be an affine connection of M, and $q \in$ $\Gamma(T\dot{M}^{(0,2)})$ a Riemannian metric. The pair (∇, g) is called a *statistical structure* on M if (i) $\nabla_X Y - \nabla_Y X - [X, Y] = 0$ and (ii) $(\nabla_X g)(Y, Z) = (\nabla_Y g)(X, Z)$ hold for any $X, Y, Z \in \Gamma(TM)$. By definition, (∇^g, g) is a statistical structure on M.

We denote by R^{∇} the curvature tensor field of ∇ , and by ∇^* the dual connection of ∇ with respect to g, and set $S = S^{(\nabla, g)} \in \Gamma(TM^{(1,3)})$ as the mean of the curvature tensor fields of ∇ and of ∇^* , that is, for $X, Y, Z \in \Gamma(TM)$,

$$
R^{V}(X,Y)Z = \nabla_{X}\nabla_{Y}Z - \nabla_{Y}\nabla_{X}Z - \nabla_{[X,Y]}Z,
$$

\n
$$
Xg(Y,Z) = g(\nabla_{X}Y,Z) + g(Y,\nabla_{X}^{*}Z),
$$

\n
$$
S(X,Y)Z = \frac{1}{2}\{R^{V}(X,Y)Z + R^{V^{*}}(X,Y)Z\}.
$$
\n(3)

A statistical manifold (M, ∇, g) is called a *Hessian manifold* if $R^{\nabla} = 0$. If so, we have $R^{\nabla^*} = S = 0$ automatically.

For a statistical structure (∇, g) on M, we set $K = \nabla - \nabla^g$. Then the following hold:

$$
K \in \Gamma(TM^{(1,2)}),K_XY = K_YX, \quad g(K_XY, Z) = g(Y, K_XZ)
$$
\n(4)

for any X, Y, Z e $\Gamma(TM)$. Conversely, if K satisfies [\(4\)](#page-2-0), the pair $(\nabla = \nabla^g + K, g)$ is a statistical structure on M.

The formula

$$
S(X,Y)Z = R^g(X,Y)Z + [K_X, K_Y]Z
$$
\n⁽⁵⁾

holds, where $R^g = R^{\vee^g}$ is the curvature tensor field of the Levi-Civita connection of g.

For a statistical structure (∇, g) , we often use the expression like $(\nabla = \nabla^g +$ K, g , and write $K_X Y$ by $K(X, Y)$.

Definition 1. A quadruplet $(\nabla = \nabla^g + K, g, \phi, \xi)$ is called a *Sasakian statistical structure* on M if (i) (g, ϕ, ξ) is a Sasakian structure and (ii) (∇, g) is a statistical structure on M, and (iii) $K \in \Gamma(TM^{(1,2)})$ for (∇, q) satisfies

$$
K(X, \phi Y) + \phi K(X, Y) = 0 \quad \text{for} \quad X, Y \in \Gamma(TM). \tag{6}
$$

These three conditions are paraphrased in the following three conditions ([\[3](#page-6-1), Theorem 2.17]: (i') (q, ϕ, ξ) is an almost contact metric structure and (ii) (∇, g) is a statistical structure on M, and (iii) they satisfy

$$
\nabla_X(\phi Y) - \phi \nabla_X^* Y = g(\xi, Y)X - g(X, Y)\xi,
$$
\n(7)

$$
\nabla_X \xi = \phi X + g(\nabla_X \xi, \xi) \xi. \tag{8}
$$

We get the following formulas for a Sasakian statistical manifold:

$$
K(X,\xi) = \lambda g(X,\xi)\xi, \quad g(K(X,Y),\xi) = \lambda g(X,\xi)g(Y,\xi),\tag{9}
$$

where

$$
\lambda = g(K(\xi, \xi), \xi). \tag{10}
$$

Proposition 2. For a Sasakian statistical manifold $(M, \nabla, q, \phi, \xi)$,

$$
S(X,Y)\xi = g(Y,\xi)X - g(X,\xi)Y\tag{11}
$$

holds for $X, Y \in \Gamma(TM)$ *.*

Proof. By [\(9\)](#page-2-1), we have $[K_X, K_Y]\xi = 0$, from which [\(5\)](#page-2-2) implies $S = R^g$. It is known that R^g is written as the right hand side of (11) (See [5]). known that R^g is written as the right hand side of [\(11\)](#page-2-3) (See [\[5](#page-6-2)]). *A* quadruplet $(\widetilde{M}, \widetilde{\nabla} = \nabla^{\widetilde{g}} + \widetilde{K}, \widetilde{g}, \widetilde{J})$ is called a *holomorphic statistical mandate* $(\widetilde{M}, \widetilde{\nabla} = \nabla^{\widetilde{g}} + \widetilde{K}, \widetilde{g}, \widetilde{J})$ is called a *holomorphic statistical mandate* $(\widetilde{$

ifold if (\tilde{g}, \tilde{J}) is a Kähler structure, $(\tilde{\nabla}, \tilde{g})$ is a statistical structure on \tilde{M} , and

$$
\widetilde{K}(X,\widetilde{J}Y) + \widetilde{J}\widetilde{K}(X,Y) = 0\tag{12}
$$

holds for $X, Y \in \Gamma(TM)$. The notion of Sasakian statistical manifold can be also assumed in the following Theorem Multifund holomics halomomorphic also expressed in the following: The *cone* over M defined below is a holomorphic statistical manifold. Let $(M, \nabla = \nabla^g + K, g, \phi, \xi)$ be a statistical manifold with an almost contact metric structure. Set \widetilde{M} as $M \times \mathbb{R}_+$, and define a Riemannian metric $\widetilde{g} = r^2 g + (dr)^2$ on \widetilde{M} . Take a vector field $\Psi = r \frac{\partial}{\partial r} \in \Gamma(T\widetilde{M})$, and define $J \in \Gamma(TM^{(1,1)})$ by $J\Psi = \xi$ and $JX = \phi X - g(X, \xi)\Psi$ for any $X \in \Gamma(TM)$. Then, (\tilde{g}, J) is an almost Hermitian structure on M, and furthermore, (g, ϕ, ξ)
is a Sasakian structure on M if and only if (\tilde{a}, \tilde{J}) is a Kähler structure on \tilde{M} is a Sasakian structure on M if and only if (\tilde{g}, J) is a Kähler structure on M.
We construct connection $\tilde{\nabla}$ on \widetilde{M} by We construct connection ∇ on M by

$$
\begin{cases}\n\widetilde{\nabla}_{\Psi}\Psi = -\lambda\xi + \Psi, \\
\widetilde{\nabla}_{X}\Psi = \widetilde{\nabla}_{\Psi}X = X - \lambda g(X,\xi)\Psi, \\
\widetilde{\nabla}_{X}Y = \nabla_{X}Y - g(X,Y)\Psi,\n\end{cases}
$$

that is,

$$
\widetilde{K}(\Psi,\Psi) = -\lambda \xi, \quad \widetilde{K}(X,\Psi) = -\lambda g(X,\xi)\Psi, \quad \widetilde{K}(X,Y) = K(X,Y)
$$

for $X, Y \in \Gamma(TM)$, where λ is in [\(10\)](#page-2-4). We then have that $(M, \nabla, g, \phi, \xi)$ is a Sasakian statistical manifold if and only if $(M, \nabla, \tilde{g}, J)$ is a holomorphic statis-
tical manifold (A general statement is given as [2. Proposition 4.8 and Theorem tical manifold (A general statement is given as [\[2](#page-6-0), Proposition 4.8 and Theorem 4.10]). It is derived from the fact that the formula [\(12\)](#page-2-5) holds if and only if both [\(6\)](#page-2-6) and [\(9\)](#page-2-1) hold.

Example 3. Let S^{2n-1} be a unit hypersphere in the Euclidean space \mathbb{R}^{2n} . Let J be a standard almost complex structure on \mathbb{R}^{2n} considered as \mathbb{C}^n , and set $\xi = -JN$, where N is a unit normal vector field of S^{2n-1} . Define $\phi \in \Gamma(T(S^{2n-1})^{(1,1)})$ by $\phi(X) = JX - \langle JX, N \rangle N$. Denote by g the standard metric of the hypersphere. Then such a (g, ϕ, ξ) is known as a standard Sasakian structure on S^{2n-1} . We set

$$
K(X,Y) = g(X,\xi)g(Y,\xi)\xi
$$
\n(13)

for any $X, Y \in \Gamma(TS^{2n-1})$. Since K satisfies [\(4\)](#page-2-0) and [\(6\)](#page-2-6), we have a Sasakian statistical structure ($\nabla = \nabla^g + K$, g, ϕ, ξ) on S^{2n-1} .

Proposition 4. *Let* (M, g, ϕ, ξ) *be a Sasakian manifold. Set* ∇ *as* $\nabla^g + fK$ *for* $f \in C^{\infty}(M)$ *, where* K *is given in* [\(13\)](#page-3-0)*.* Then (∇, g, ϕ, ξ) *is a Sasakian statistical structure on* M. Conversely, we define $\nabla_X Y = \nabla^g_Y Y + L(X, Y)V$ *statistical structure on M. Conversely, we define* $\nabla_X Y = \nabla_X^g Y + L(X, Y)V$ *for some unit vector field V and* $L \in \Gamma(TM^{(0,2)})$ *. If* (∇, g, ϕ, ξ) *is a Sasakian statistical structure, then* $L \otimes V$ *is written as* $L(X, Y)V = fg(X, \xi)g(Y, \xi)\xi$ for *some* $f \in C^{\infty}(M)$ *, as above.*

Proof. The first half is obtained by direct calculation. To get the second half, we have by (4) ,

$$
0 = L(X, Y)V - L(Y, X)V = \{L(X, Y) - L(Y, X)\}V,
$$

\n
$$
0 = g(L(X, Y)V, Z) - g(Y, L(X, Z)V) = g(L(X, Y)Z - L(X, Z)Y, V).
$$
 (14)

 \Box

Substituting V for Z in (14) , we have

$$
L(X,Y) = L(V,V)g(X,V)g(Y,V).
$$

Accordingly, we get by [\(6\)](#page-2-6),

$$
0 = L(X, \phi Y)V + \phi\{L(X, Y)V\} = L(V, V)g(X, V)\{-g(Y, \phi V)V + g(Y, V)\phi V\},\
$$

which implies that $\phi V = 0$ if $L(V, V) \neq 0$, and hence $V = \pm \xi$.

3 Invariant Submanifolds

Let $(M, \tilde{g}, \phi, \xi)$ be a Sasakian manifold, and M a submanifold of M. We say that
M is an *invariant submanifold* of \widetilde{M} if (i) $\widetilde{\xi}_u \in T_uM$, (ii) $\widetilde{\phi}X \in T_uM$ for any
 $X \subset T_uM$ and $u \in M_u$ Let $g \in L(TM^{(0,2)})$, ξ be a Sasakian manifold, and M a submanifold of M. We say that $X \in T_u M$ and $u \in M$. Let $g \in \Gamma(TM^{(0,2)})$, $\phi \in \Gamma(TM^{(1,1)})$ and $\xi \in \Gamma(TM)$
 \vdots is an invariant submanifold of M if (v, ξ) be the restriction of \tilde{g} , ϕ and ξ , respectively. Then it is shown that (g, ϕ, ξ) is a
Sasakian structure on M Sasakian structure on M.

A typical example of an invariant submanifold of a Sasakian manifold S^{2n-1} in Example [3](#page-3-2) is an odd dimensional unit sphere. Furthermore, we have the following example. Let $\iota: Q \to \mathbb{C}P^{n-1}$ be a complex hyperquadric in the complex projective space, and \tilde{Q} the principal fiber bundle over Q induced by ι from the Hopf fibration $\pi : S^{2n-1} \to \mathbb{C}P^{n-1}$. We denote the induced homomorphism by $\tilde{\iota} : \tilde{Q} \to S^{2n-1}$. Then it is known that $\tilde{\iota}(Q)$ is an invariant submanifold (See [\[4](#page-6-4)], [\[5](#page-6-2)]).

We briefly review the statistical submanifold theory to study invariant submanifolds of a Sasakian statistical manifold. Let (M, ∇, \tilde{q}) be a statistical manifold, and M a submanifold of M. Let g be the metric on M induced from \widetilde{g} , and consider the orthogonal decomposition with respect to \widetilde{g} . \widetilde{T} $\widetilde{M} - T$ $M \oplus T$ M^{\perp} consider the orthogonal decomposition with respect to $\tilde{g}: T_uM = T_uM \oplus T_uM^{\perp}$.
According to this decomposition we define an affine connection ∇ on M According to this decomposition, we define an affine connection ∇ on M, $B \in \Gamma(TM^{\perp} \otimes TM^{(0,2)})$, $A \in \Gamma((TM^{\perp})^{(0,1)} \otimes TM^{(1,1)})$, and a connection ∇^{\perp} of the vector bundle TM^{\perp} by

$$
\widetilde{\nabla}_X Y = \nabla_X Y + B(X, Y), \quad \widetilde{\nabla}_X N = -A_N X + \nabla_X^{\perp} N \tag{15}
$$

for $X, Y \in \Gamma(TM)$ and $N \in \Gamma(TM^{\perp})$. Then (∇, g) is a statistical structure on M. In the same fashion, we define an affine connection ∇^* on $M, B^* \in$ $\Gamma(TM^{\perp} \otimes TM^{(0,2)}), A^* \in \Gamma((TM^{\perp})^{(0,1)} \otimes TM^{(1,1)}),$ and a connection $(\nabla^{\perp})^*$ of TM^{\perp} by using th dual connection $\widetilde{\nabla}^*$ instead of $\widetilde{\nabla}$ in [\(15\)](#page-4-0).

We remark that $\widetilde{g}(B(X,Y),N) = g(A_N^* X,Y)$ for $X, Y \in \Gamma(TM)$ and $N \in \Gamma(M^{\perp})$ and remark that ∇^* coincides with the dual connection of ∇ with $\Gamma(TM^{\perp})$, and remark that ∇^* coincides with the dual connection of ∇ with respect to g . See [\[1\]](#page-6-3) for example.

Theorem 5. Let $(M, \nabla, \tilde{g}, \phi, \xi)$ be a Sasakian statistical manifold, and M and manifold of \widetilde{M} with a $\phi \in \nabla P$, $A \nabla^{\perp} \nabla^* P^*$, $A^* (\nabla^{\perp})^*$ defined *invariant submanifold of* M with $g, \phi, \xi, \nabla, B, A, \nabla^{\perp}, \nabla^*, B^*, A^*, (\nabla^{\perp})^*$ defined *as above. Then the following hold:*

(i) *A quintuplet* $(M, \nabla, g, \phi, \xi)$ *is a Sasakian statistical manifold.*

(ii) $B(X, \xi) = B^*(X, \xi) = 0$ *for any* $X \in \Gamma(TM)$ *.*

(iii) $B(X, \phi Y) = B(\phi X, Y) = \widetilde{\phi} B^*(X, Y)$ *for any* $X, Y \in \Gamma(TM)$ *. In particular,* $\text{tr}_qB = \text{tr}_qB^* = 0.$ (iv) *If* B *is parallel with respect to the Van der Weaden-Bortolotti connection* ∇' for ∇ , then B and B^{*} vanish. Namely, if $(\nabla'_{X}B)(Y,Z) = \nabla'_{X}B(Y,Z) - B(\nabla_{X}Y,Z) - B(Y|\nabla_{X}Z) = 0$ for $Z \in \Gamma(TM)$, then $R^*(X,Y) = 0$ $B(\nabla_X Y, Z) - B(Y, \nabla_X Z) = 0$ for $Z \in \Gamma(TM)$, then $B^*(X, Y) = 0$. (v) $\widetilde{g}(\widetilde{S}(X, \widetilde{\phi}X)\widetilde{\phi}X - S(X, \phi X)\phi X, X) = 2\widetilde{g}(B^*(X, X), B(X, X))$ for $X \in$ ∇' for ∇ , then B and B^* vanish. Namely, if $(\nabla'_X B(\nabla_X Y, Z) - B(Y, \nabla_X Z) = 0$ for $Z \in \Gamma(TM)$, then
 $(\mathbf{v}) \widetilde{g}(\widetilde{S}(X, \widetilde{\phi}X) \widetilde{\phi}X - S(X, \phi X) \phi X, X) = 2\widetilde{g}(B^*(X, \widetilde{\phi}X))$
 $\Gamma(TM)$, where $S = S^{(\nabla, g)}$ an $\begin{array}{c} m \ \neg (\neg) \ \neg \widetilde{g} \end{array}$

Corollary 6. *Let* $(M, \nabla, \widetilde{g}, \phi, \xi)$ *be a Sasakian statistical manifold of constant*
 $\widetilde{\phi}$ existence constants a sense of M constant submanifold of \widetilde{M} . The induced ^φ*-sectional curvature* ^c*, and* ^M *an invariant submanifold of* ^M *. The induced Sasakian statistical structure on* M *has constant* φ*-sectional curvature* c *if and only if* $\widetilde{g}(B^*(X, X), B(X, X)) = 0$ *for any* $X \in \Gamma(TM)$ *orthogonal to* ξ *.*

If we take the Levi-Civita connection as $\tilde{\nabla}$, the properties above reduce to the ones for an invariant submanifold of a Sasakian manifold. It is known that an invariant submanifold of a Sasakian manifold of constant ϕ -sectional curvature c is of constant ϕ -sectional curvature c if and only if it is totally geodesic. It is obtained by setting $B = B^*$ in Corollary [6.](#page-5-0) It is an interesting question whether there is an interesting invariant submanifold having nonvanishing B with the above property.

Outline of Proof of Theorem [5.](#page-4-1) The proof of (i) can be omitted.

By (i) and [\(8\)](#page-2-7), we calculate that $\nabla_X \xi + B(X, \xi) = \nabla_X \xi = \phi X + \tilde{g}(\nabla_X \xi, \xi) \xi =$
+ $g(\nabla_X \xi, \xi) \xi$. Comparing the normal components, we have (ii) $\phi X + g(\nabla_X \xi, \xi) \xi$. Comparing the normal components, we have (ii).

By [\(7\)](#page-2-8), we have $\widetilde{g}(Y,\xi)X - \widetilde{g}(Y,X)\xi = \nabla_X(\phi Y) - \phi \nabla^*_X Y = \nabla_X(\phi Y) +$
 $\widetilde{g}(X \star Y) = \widetilde{g}(Y \star Y) - g(Y \star Y) - g(Y \star Y) - g(Y \star Y) - \widetilde{g}(P^* \star Y) - \widetilde{g}(P^* \star Y)$ $B(X, \phi Y) - \phi(\nabla^*_X Y + B^*(X, Y)) = g(Y, \xi)X - g(Y, X)\xi + B(X, \phi Y) - \phi B^*(X, Y).$
Comparing the normal components, we have (iii) Comparing the normal components, we have (iii).

By (i) and (ii), we get that $0 = \nabla_X^{\perp} B(Y, \xi) - B(\nabla_X Y, \xi) - B(Y, \nabla_X \xi) =$
 $(B(X, \xi))$ $-B(Y, \phi X) = -\overline{\phi}B^*(X, Y)$, which implies (iv).

To get (v), we use the Gauss equation in the submanifold theory. The tan-By (i) and (ii), we get that $0 = \nabla_{\overline{X}} B(-B(Y, \phi X)) = -\widetilde{\phi} B^*(X, Y)$, which implies (if To get (v), we use the Gauss equation in gential component of $R^{\widetilde{\nabla}}(X, Y)Z$ is given as

$$
R^{\nabla}(X,Y)Z - A_{B(Y,Z)}X + A_{B(X,Z)}Y,
$$

for $X, Y, Z \in \Gamma(TM)$, which implies that

$$
2\widetilde{g}(\widetilde{S}(X,Y)Z,W) = 2g(S(X,Y)Z,W)
$$

$$
-\widetilde{g}(B^*(X,W),B(Y,Z)) + \widetilde{g}(B^*(Y,W),B(X,Z))
$$

$$
-\widetilde{g}(B(X,W),B^*(Y,Z)) + \widetilde{g}(B(Y,W),B^*(X,Z)).
$$

Therefore, we prove (v) from (iii).

To get Corollary [6,](#page-5-0) we have only to review the definition. A Sasakian statistical structure (∇, g, ϕ, ξ) is said to be of constant ϕ -sectional curvature c if the sectional curvature defined by using S equals c for each ϕ -section, the plane spanned by X and ϕX for a unit vector X orthogonal to $\xi: g(S(X, \phi X) \phi X, X) =$ $cg(X, X)^2$ for $X \in \Gamma(TM)$ such that $g(X, \xi) = 0$.

П

Acknowledgments. The author thanks the anonymous reviewers for their careful reading of the manuscript. This work was supported by JSPS KAKENHI Grant Number JP26400058.

References

- 1. Furuhata, H., Hasegawa, I.: Submanifold theory in holomorphic statistical manifolds. In: Dragomir, S., Shahid, M.H., Al-Solamy, F.R. (eds.) Geometry of Cauchy-Riemann Submanifolds, pp. 179–215. Springer, Singapore (2016). doi[:10.1007/](http://dx.doi.org/10.1007/978-981-10-0916-7_7) [978-981-10-0916-7](http://dx.doi.org/10.1007/978-981-10-0916-7_7) 7
- 2. Furuhata, H., Hasegawa, I., Okuyama, Y., Sato, K.: Kenmotsu statistical manifolds and warped product. J. Geom. To appear. doi[:10.1007/s00022-017-0403-1](http://dx.doi.org/10.1007/s00022-017-0403-1)
- 3. Furuhata, H., Hasegawa, I., Okuyama, Y., Sato, K., Shahid, M.H.: Sasakian statistical manifolds. J. Geom. Phys. **117**, 179–186 (2017). doi[:10.1016/j.geomphys.2017.](http://dx.doi.org/10.1016/j.geomphys.2017.03.010) [03.010](http://dx.doi.org/10.1016/j.geomphys.2017.03.010)
- 4. Kenmotsu, K.: Invariant submanifolds in a Sasakian manifold. Tohoku Math. J. **21**, 495–500 (1969)
- 5. Yano, K., Kon, M.: Structures on Manifolds. World Scientific, Singapore (1984)