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Abstract. For data carrying a non-Euclidean geometric structure it
is natural to perform statistics via geometric descriptors. Typical can-
didates are means, geodesics, or more generally, lower dimensional
subspaces, which carry specific structure. Asymptotic theory for such
descriptors is slowly unfolding and its application to statistical testing
usually requires one more step: Assessing the distribution of such descrip-
tors. To this end, one may use the bootstrap that has proven to be a very
successful tool to extract inferential information from small samples. In
this communication we review asymptotics for descriptors of manifold
valued data and study a non-parametric bootstrap test that aims at a
high power, also under the alternative.

1 Introduction

In recent years, the study of data on non-Euclidean spaces has found increasing
attention in statistics. Non-Euclidean data spaces have lead to a surge of special-
ized fields: directional statistics is concerned with data on spheres of different
dimensions (e.g. [15]); shape analysis studies lead to data on quotient spaces
(e.g. [6]), some of which are manifolds and some of which are non-manifold
stratified spaces; and applications in population genetics have lead to increasing
interest in data on non-manifold phylogenetic tree spaces (e.g. [4]) and to graph
data in general.

As a basis for statistics on these spaces, it is important to investigate asymp-
totic consistency of estimators, as has been done for intrinsic and extrinsic
Fréchet means on manifolds by [3,8], and more generally for a class of descrip-
tors called generalized Fréchet means by [11,12]. Examples of such generalized
Fréchet means are not only Procrustes means on non-manifold shape spaces
([6,11]) but also geodesic principal components on such spaces (cf. [10]), or more
generally, barycentric subspaces by [17], see also [16] for a similar approach on
phylogenetic tree spaces, or more specifically, small and great subspheres for
spherical data by [14,18].
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In particular, the question of asymptotic consistency and normality of prin-
cipal nested spheres analysis [14], say, goes beyond generalized Fréchet means
analysis. In all nested schemes, several estimators are determined sequentially,
where each estimation depends on all previous ones. Recently, asymptotic
consistency of nested generalized Fréchet means was introduced in [13], as a
generalization of classical PCA’s asymptotics, e.g. by [1], where nestedness of
approximating subspaces is not an issue because it is trivially given.

Based on asymptotic consistency of nested and non-nested descriptors,
hypothesis tests, like the two-sample test can be considered. Since by construc-
tion, every sample determines only one single descriptor and not its distribution,
resampling techniques like the bootstrap are necessary to produce confidence
sets. Notably, this is a very generic technique independent of specific sample
spaces and descriptors. In the following, after introducing non-nested and nested
generalized Fréchet means, we will elaborate on bootstrapping quantiles for a
two-sample test. We will show that a separated approach in general leads to
greatly increased power of the test in comparison to a pooled approach, both
with correct asymptotic size. Also, we illustrate the benefit of nested over non-
nested descriptors.

2 Descriptors for Manifold Valued Data

2.1 Single Descriptors

With a silently underlying probability space (Ω,A,P), random elements on a
topological space Q are mappings X : Ω → Q that are measurable with respect
to the Borel σ-algebra of Q.

For a topological space Q we say that a continuous function d : Q × Q →
[0,∞) is a loss function if d(q, q′) = 0 if and only if q = q′.

Definition 1 (Generalized Fréchet Means [11]). Let Q be a separable topo-
logical space, called the data space, and P a separable topological space, called
the descriptor space, with loss function d : P × P → [0,∞) and a continuous
map ρ : Q × P → [0,∞). Random elements X1, . . . , Xn

i.i.d.∼ X on Q give rise to
population and sample descriptors

μ ∈ argmin
p∈P

E[ρ(X, p)2], μn ∈ argmin
p∈P

n∑

j=1

ρ(Xj , p)2.

The descriptors are also called generalized ρ-Fréchet means. The sample descrip-
tor is a least squares M-estimator.

Asymptotic theory for generalized ρ-Fréchet means under additional assump-
tions, among them that the means be unique and attained on a twice differen-
tiable manifold part of P has been established by [11,12].
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2.2 Nested Descriptors

For nested descriptors, we need to establish a notion of nestedness and the
relations between the successive descriptor spaces.

Definition 2 ([13]). A separable topological data space Q admits backward
nested families of descriptors (BNFDs) if

(i) there is a collection Pj (j = 0, . . . ,m) of topological separable spaces with
loss functions dj : Pj × Pj → [0,∞);

(ii) Pm = {Q};
(iii) every p ∈ Pj (j = 1, . . . , m) is itself a topological space and gives rise to a

topological space ∅ �= Sp ⊂ Pj−1 which comes with a continuous map

ρp : p × Sp → [0,∞);

(iv) for every pair p ∈ Pj (j = 1, . . . ,m) and s ∈ Sp there is a measurable
projection map

πp,s : p → s.

For j ∈ {1, . . . , m − 2} call a family

f = {pj , . . . , pm−1}, with pk−1 ∈ Spk , k = j + 1, . . . ,m

a backward nested family of descriptors (BNFD) ending in Pj, where we ignore
the unique pm = Q ∈ Pm. The space of all BNFDs ending in Pj is given by

Tj =
{

f = {pk}m−1
k=j : pk−1 ∈ Spk , k = j + 1, . . . , m

}
⊆

m−1∏

k=j

Pk.

For j ∈ {1, . . . , m}, given a BNFD f = {pk}m−1
k=j set

πf = πpj+1,pj ◦ . . . ◦ πpm,pm−1 : pm → pj

which projects along each descriptor. For another BNFD f ′ = {p′k}m−1
k=j ∈ Tj

set

dj(f, f ′) =

√√√√
m−1∑

k=j

dk(pk, p′k)2.

Building on this notion, we can now define nested population and sample
descriptors similar to Definition 1.

Definition 3 (Nested Generalized Fréchet Means [13]). Random elements
X1, . . . , Xn

i.i.d.∼ X on a data space Q admitting BNFDs give rise to backward
nested population and sample descriptors (abbreviated as BN descriptors)

{Efj

: j = m − 1, . . . , 0}, {E
fj
n

n : j = m − 1, . . . , 0}
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recursively defined using pm = Q = pm
n via

Efj

= argmin
s∈Spj+1

E[ρpj+1(πfj+1 ◦ X, s)2], f j = {pk}m−1
k=j

E
fj
n

n = argmin
s∈S

p
j+1
n

n∑

i=1

ρpj+1
n

(πfj+1
n

◦ Xi, s)2, f j
n = {pk

n}m−1
k=j .

where pj ∈ Efj

and pj
n ∈ Efj

n is a measurable choice for j = 1, . . . , m − 1.
We say that a BNFD f = {pk}m−1

k=0 gives unique BN population descriptors
if Efj

= {pj} with f j = {pk}m−1
k=j for all j = 0, . . . , m − 1.

Each of the Efj

and E
fj
n

n is called a nested generalized Fréchet mean and
E

fj
n

n can be viewed as nested least squares M-estimator.

Asymptotic theory for such backward nested families of descriptors,
again under additional assumptions, among them being assumed on twice-
differentiable manifold parts, has been established in [13].

In order to asses asymptotics of single elements in a family of nested gener-
alized ρ-Fréchet means, the last element, say, a key ingredient is the following
definition from [13].

Definition 4 (Factoring Charts [13]). Let W ⊂ Tj, U ⊂ P j open subsets
with C2 manifold structure, f ′ = (p′m−1

, . . . , p′j) ∈ W and p′j ∈ U , and with
local chart

ψ : W → ψ(W ) ⊂ R
dim(W ), f = (pm−1, . . . , pj) �→ η = (θ, ξ)

the chart ψ factors, if there is a chart φ and projections πU , πφ(U)

φ : U → φ(U) ⊂ R
dim(U), pj �→ θ

πU : W → U, f �→ pj , πφ(U) : ψ(W ) → φ(U), (θ, ξ) �→ θ

such that the following diagram commutes

(1)

In case that factoring charts exist, from the asymptotics of an entire backward
nested descriptor family it is possible to project to a chart, describing the last
element descriptor only, and such a projection preserves asymptotic Gaussianity,
cf. [13].

3 Bootstrap Testing

Based on the central limit theorems proved in [11,13], it is possible to introduce
a T 2-like two-sample test for non-nested descriptors, BNFDs and single nested
descriptors.
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3.1 The Test Statistic

Suppose that we have two independent i.i.d. samples X1, . . . , Xn ∼ X ∈ Q,
Y1, . . . , Ym ∼ Y ∈ Q in a data space Q admitting non-nested descriptors, BNFDs
and single nested descriptors in P and we want to test

H0 : X ∼ Y versus H1 : X �∼ Y

using descriptors in p ∈ P . Here, p ∈ P stands either for a single pk ∈ Pk

or for a suitable sequence f ∈ Tj . We assume that the first sample gives rise
to p̂X

n ∈ P , the second to p̂Y
m ∈ P , and that these are unique. We introduce

shorthand notation to simplify the following complex expressions

dX,∗
n,b = φ(p̂X,∗

n,b ) − φ(p̂X
n ) dY,∗

m,b = φ(p̂Y,∗
m,b) − φ(p̂Y

m)

ΣX,∗
φ,n : =

1
B

B∑

b=1

dX,∗
n,b dX,∗

n,b

T
ΣY,∗

φ,m : =
1
B

B∑

b=1

dY,∗
m,bd

Y,∗
m,b

T
.

Define the statistic

T 2 : =
(
φ(p̂X

n ) − φ(p̂Y
m)

)T
(
ΣX,∗

φ,n + ΣY,∗
φ,m

)−1 (
φ(p̂X

n ) − φ(p̂Y
m)

)
. (2)

Under H0 and the assumptions of the CLTs shown in [11,13], this is asymp-
totically Hotelling T 2 distributed if the corresponding bootstrapped covariance
matrices exist. Notably, under slightly stronger regularity assumptions, which
are needed for the bootstrap, this estimator is asymptotically consistent, cf. [5,
Corollary 1].

3.2 Pooled Bootstrapped Quantiles

Since the test statistic (2) is only asymptotically T 2 distributed and especially
deeply nested estimators may have sizable bias for finite sample size, it can
be advantageous to use the bootstrap to simulate quantiles, whose covering rate
usually has better convergence properties, cf. [7]. A pooled approach to simulated
quantiles runs as follows. From X1, . . . , Xn, Y1 . . . , Ym, sample Z1,b, . . . , Zn+m,b

and compute the corresponding T ∗2
b (b = 1, . . . , B) following (2) from X∗

i,b =
Zi,b, Y

∗
j,b = Zn+j,b (i = 1, . . . , n, j = 1, . . . , m). From these, for a given level

α ∈ (0, 1) we compute the empirical quantile c∗
1−α such that

P
{
T ∗2 ≤ c∗

1−α|X1, . . . , Xn, Y1, . . . , Ym

}
= 1 − α.

We have then under H0 that c∗
1−α gives an asymptotic coverage of 1 − α for T 2,

i. e. P{T 2 ≤ c∗
1−α} → 1 − α as n,m → ∞ if n/m → c with a fixed c ∈ (0,∞).

Under H1, however, the bootstrap samples X∗
i,b and Y ∗

j,b have substantially higher
variance than both the original Xi and Yj . This leads to a large spread between
the values of the quantiles and thus to diminished power of the test. This will
be exemplified in the simulations below.
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3.3 Separated Bootstrapped Quantiles

To improve the power of the test while still achieving the asymptotic size, we
simulate a slightly changed statistic under H0, by again bootstrapping, but now
separately, from X1, . . . , Xn and Y1 . . . , Ym (for b = 1, . . . , B),

T ∗2 =
(
dX,∗

n,b − dY,∗
m,b

)T (
ΣX,∗

φ,n + ΣY,∗
φ,m

)−1 (
dX,∗

n,b − dY,∗
m,b

)
. (3)

From these values, for a given level α ∈ (0, 1) we compute the empirical quantile
c∗
1−α such that

P
{
T ∗2(A) ≤ c∗

1−α|X1, . . . , Xn, Y1, . . . , Ym

}
= 1 − α.

Then, in consequence of [2, Theorems 3.2 and 3.5], asymptotic normality of√
n(

(
φ(p̂X

n )−φ(p̂X)
)
, and

√
m(

(
φ(p̂Y

m)−φ(p̂Y )
)
, guaranteed by the CLT in [13],

extends to the same asymptotic normality for
√

n dX ∗
n b , and

√
mdY ∗

m b, respec-
tively. We have then under H0 that c∗

1−α gives an asymptotic coverage of 1 − α

for T 2 from Eq. (2), i. e. P{T ∗2 ≤ c∗
1−α} → 1 − α as B,n,m → ∞ if n/m → c

with a fixed c ∈ (0,∞).
We note that also the argument from [3, Corollary 2.3 and Remark 2.6]

extends at once to our setup, as we assume that the corresponding population
covariance matrix Σψ or Σφ, respectively, is invertible.

4 Simulations

We perform simulations to illustrate two important points. For our simulations
we use the nested descriptors of Principal Nested Great Spheres (PNGS) analysis
[14] and the intrinsic Fréchet mean [3]. In all tests and simulated quantiles we
use B = 1000 bootstrap samples for each data set.

4.1 Differences Between Pooled and Separated Bootstrap

The first simulated example uses the nested mean and first geodesic principal
component (GPC) to compare the two different bootstrapped quantiles with T 2-
distribution quantiles in order to illustrate the benefits provided by separated
quantiles. The two data sets we use are concentrated along two great circle arcs
on an S

2 which are perpendicular to each other. The data sets are normally
distributed along these clearly different great circles with common nested mean
and have sample size of 60 and 50 points, respectively, cf. Fig. 1a.

We simulate 100 samples from the two distributions and compare the p-values
for the different quantiles. By design, we expect a roughly uniform distribution of
p-values for the nested mean, indicating correct size of the test, and a clear rejec-
tion of the null for the first GPC, showing the power of the test. Both is satisfied
for the separated quantiles and T 2-quantiles but not for the pooled quantiles, lead-
ing to diminished power under the alternative, cf. Fig. 1c. Under closer inspection,
Fig. 1b shows that separated quantile p-values are closer to T 2-quantile p-values
than pooled quantile p-values, which are systematically higher due to the different
covariance structures rendering the test too conservative.
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Fig. 1. Simulated data set I on S
2 (a) with correct size under the null hypothesis of

equal nested means (b) and power under the alternative of different first GPCs (c).
The red sample has 50 points, the blue 60 points; we use p-values for 100 simulations
each. (Color figure online)

4.2 Nested Descriptors May Outperform Non-nested Descriptors

The second point we highlight is that the nested mean of PNGS analysis is
generically much closer to the data than the ordinary intrinsic mean and can
thus, in specific situations, be more suitable to distinguish two populations. The
same may also hold true for other nested estimators in comparison with their
non-nested kin. The data set II considered here provides an example for such a
situation. It consists of two samples of 300 and 100 points, respectively, on an
S
2 with coinciding intrinsic mean but different nested mean.

Here we only consider separated simulated quantiles, for both nested and
intrinsic means. For the intrinsic mean two-sample test, we also use the bootstrap
to estimate covariances for simplicity as outlined by [3], although closed forms
for variance estimates exist, cf. [9]. Data set II and the distribution of resulting

Fig. 2. Simulated data set II (red: 100 points, blue: 300 points) on S
2 (left), and box

plots displaying the distribution of 100 p-values for PNGS nested mean and intrinsic
mean (right) from the two-sample test. (Color figure online)
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p-values are displayed in Fig. 2. These values are in perfect agreement with the
intuition guiding the design of the data showing that the nested mean is suited
to distinguish the data sets where the intrinsic mean fails to do so.
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