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Abstract. It is well-known that a contrast function defined on a product
manifold M×M induces a Riemannian metric and a pair of dual torsion-
free affine connections on the manifold M . This geometrical structure is
called a statistical manifold and plays a central role in information geom-
etry. Recently, the notion of pre-contrast function has been introduced
and shown to induce a similar differential geometrical structure on M ,
but one of the two dual affine connections is not necessarily torsion-free.
This structure is called a statistical manifold admitting torsion. This
paper summarizes such previous results including the fact that an esti-
mating function on a parametric statistical model naturally defines a
pre-contrast function to induce a statistical manifold admitting torsion
and provides some new insights on this geometrical structure. That is,
we show that the canonical pre-contrast function can be defined on a
partially flat space, which is a flat manifold with respect to only one of
the dual connections, and discuss a generalized projection theorem in
terms of the canonical pre-contrast function.
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1 Introduction

In information geometry, a central role is played by a statistical manifold, which
is a Riemannian manifold with a pair of two dual torsion-free affine connections.
This geometrical structure is induced from an asymmetric (squared) distance-like
smooth function called a contrast function by taking its second and third deriv-
atives [1,2]. The Kullback-Leibler divergence on a regular parametric statistical
model is a typical example of contrast functions and its induced geometrical
objects are the Fisher metric, the exponential and mixture connections. The
structure determined by these objects play an important role in the geometry of
statistical inference, as is widely known [3,4].
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A statistical manifold admitting torsion (SMAT) is a Riemannian manifold
with a pair of two dual affine connections, where only one of them must be
torsion-free but the other is necessarily not. This geometrical structure naturally
appears in a quantum statistical model (i.e. a set of density matrices representing
quantum states) [3] and the notion of SMAT was originally introduced to study
such a geometrical structure from a mathematical point of view [5]. A pre-
contrast function was subsequently introduced as a generalization for the first
derivative of a contrast function and it was shown that an pre-contrast function
induces a SMAT by taking its first and second derivatives [6].

Henmi and Matsuzoe [7] showed that a SMAT also appears in “classical”
statistics through an estimating function. More precisely, an estimating function
naturally defines a pre-contrast function on a parametric statistical model and
a SMAT is induced from it.

This paper summarizes such previous results and provides some new insights
for this geometrical structure. That is, we show that the canonical pre-contrast
function can be defined on a partially flat space, which is a SMAT where only
one of its dual connections is flat, and discuss a generalized projection theorem in
a partially flat space. This theorem relates orthogonal projection of the geodesic
with respect to the flat connection to the canonical pre-contrast function.

2 Statistical Manifolds and Contrast Functions

In this paper, we assume that all geometrical objects on differentiable manifolds
are smooth and restrict our attention to Riemannian manifolds, although the
most of the concepts can be defined for semi-Riemannian manifolds.

Let (M, g) be a Riemannian manifold and ∇ be an affine connection on M .
The dual connection ∇∗ of ∇ with respect to g is defined by

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗
XZ) (∀X,∀Y,∀Z ∈ X (M))

where X (M) is the set of all vector fields on M .
For a affine connection ∇ on M , its curvature tensor field R and torsion

tensor field T are defined by the following equations as usual:

R(X,Y )Z := ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z (∀X,∀Y,∀Z ∈ X (M)),
T (X,Y ) := ∇XY − ∇Y X − [X,Y ] (∀X,∀Y ∈ X (M)).

It is said that an affine connection ∇ is torsion-free if T = 0. Note that for
a torsion-free affine connection ∇, ∇∗ = ∇ implies that ∇ is the Levi-Civita
connection with respect to g. Let R∗ and T ∗ be the curvature and torsion tensor
fields of ∇∗, respectively. It is easy to see that R = 0 always implies R∗ = 0, but
T = 0 does not necessarily implies T ∗ = 0.

Let ∇ be a torsion-free affine connection on a Riemannian manifold (M, g).
Following [8], we say that (M, g,∇) is a statistical manifold if and only if ∇g is
a symmetric (0, 3)-tensor field, that is

(∇Xg)(Y,Z) = (∇Y g)(X,Z) (∀X,∀Y,∀Z ∈ X (M)). (1)
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This condition is equivalent to T ∗ = 0 under the condition that ∇ is a torsion-
free. If (M, g,∇) is a statistical manifold, so is (M, g,∇∗) and it is called the
dual statistical manifold of (M, g,∇). Since ∇ and ∇∗ are both torsion-free for
a statistical manifold (M, g,∇), R = 0 implies that ∇ and ∇∗ are both flat. In
this case, (M, g,∇,∇∗) is called a dually flat space.

Let φ be a real-valued function on the direct product M × M of a
manifold M and X1, ...,Xi, Y1, ..., Yj be vector fields on M . The functions
φ[X1, ...,Xi|Y1, ..., Yj ], φ[X1, ...,Xi| ] and φ[ |Y1, ..., Yj ] on M are defined by the
equations

φ[X1, . . . , Xi|Y1, . . . , Yj ](r) := (X1)p · · · (Xi)p(Y1)q · · · (Yj)qφ(p, q)|p=r,q=r, (2)
φ[X1, . . . , Xi| ](r) := (X1)p · · · (Xi)pφ(p, r)|p=r, (3)
φ[ |Y1, . . . , Yj ](r) := (Y1)q · · · (Yj)qφ(r, q)|q=r (4)

for any r ∈ M , respectively [1]. Using these notations, a contrast function φ is
defined to be a real-valued function which satisfies the following conditions on
M [1,2]:

(a) φ(p, p) = 0 (∀p ∈ M)
(b) φ[X| ] = φ[ |X] = 0 (∀X ∈ X (M))
(c) g(X,Y ) := −φ[X|Y ] (∀X,∀Y ∈ X (M)) is a Riemannian metric on M .

Note that these conditions imply that in some neighborhood of the diagonal set
{(r, r)|r ∈ M} in M × M ,

φ(p, q) ≥ 0, φ(p, q) = 0 ⇐⇒ p = q.

Although a contrast function is not necessarily symmetric, this inequality means
that a contrast function measures some discrepancy between two points on M
(at least locally). For a given contrast function φ, the two affine connections ∇
and ∇∗ are defined by

g(∇XY,Z) = −φ[XY |Z], g(Y,∇∗
XZ) = −φ[Y |XZ] (∀X,∀Y,∀Z ∈ X (M)).

In this case, ∇ and ∇∗ are both torsion-free and dual to each other with respect to
g, which means that both of (M, g,∇) and (M, g,∇∗) are statistical manifolds. In
particular, (M, g,∇) is called the statistical manifold induced from the contrast
function φ.

Now we briefly mention a typical example of contrast functions. Let S =
{p(x;θ) | θ = (θ1, ..., θd) ∈ Θ ⊂ Rd} be a regular parametric statistical model,
which is a set of probability density functions with respect to a dominating
measure ν on a sample space X . Each element is indexed by a parameter (vector)
θ in an open subset Θ of Rd and the set S satisfies some regularity conditions,
under which S can be seen as a differentiable manifold. The Kullback-Leibler
divergence of the two density functions p1(x) = p(x;θ1) and p2(x) = p(x;θ2)
in S is defined to be

φKL(p1, p2) :=
∫

X
p2(x) log

p2(x)
p1(x)

ν(dx).
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It is easy to see that the Kullback-Leibler divergence satisfies the conditions (a),
(b) and (c), and so it is a contrast function on S. Its induced Riemannian metric
and dual connections are Fisher metric, the exponential an mixture connections,
respectively, and given as follows:

gjk(θ) := g(∂j , ∂k) = Eθ{sj(x,θ)sk(x,θ)},{
Γij,k(θ) := g(∇∂i

∂j , ∂k) = Eθ[{∂is
j(x,θ)}sk(x,θ)]

Γ ∗
ik,j(θ) := g(∂j ,∇∗

∂i
∂k) =

∫
X sj(x,θ)∂i∂kp(x;θ)ν(dx) ,

where Eθ indicates that the expectation is taken with respect to p(x;θ), ∂i = ∂
∂θi

and si(x;θ) = ∂i log p(x;θ) (i = 1, . . . , d). As is widely known, this geometri-
cal structure plays the most fundamental and important role in the differential
geometry of statistical inference [3,4].

3 Statistical Manifolds Admitting Torsion
and Pre-contrast Functions

A statistical manifold admitting torsion is an abstract notion for the geometrical
structure where only one of the dual connections is allow to have torsion, which
naturally appears in a quantum statistical model [3]. The definition is obtained
by generalizing (1) in the definition of statistical manifold as follows [5].

Let (M, g) be a Riemannian manifold and ∇ be an affine connection on M .
We say that (M, g,∇) is a statistical manifold admitting torsion (SMAT for
short) if and only if

(∇Xg)(Y,Z) − (∇Y g)(X,Z) = −g(T (X,Y ), Z) (∀X,∀Y,∀Z ∈ X (M)). (5)

This condition is equivalent to T ∗ = 0 in the case where ∇ possibly has torsion.
Note that the condition (5) reduces to (1) if ∇ is torsion-free and that (M, g,∇∗)
is not necessarily a statistical manifold although ∇∗ is torsion-free. It should be
also noted that (M, g,∇∗) is a SMAT whenever a torsion-free affine connection
∇ is given on a Riemannian manifold (M, g).

For a SMAT (M, g,∇), R = 0 does not necessarily imply that ∇ is flat,
but it implies that ∇∗ is flat since R∗ = 0 and T ∗ = 0. In this case, we call
(M, g,∇,∇∗) a partially flat space.

Let ρ be a real-valued function on the direct product TM ×M of a manifold
M and its tangent bundle TM , and X1, ...,Xi, Y1, ..., Yj , Z be vector fields on
M . The function ρ[X1, ...,XiZ|Y1, ..., Yj ] is defined by

ρ[X1, . . . , XiZ|Y1, . . . , Yj ](r) := (X1)p · · · (Xi)p(Y1)q · · · (Yj)qρ(Zp, q)|p=r,q=r

for any r ∈ M . Note that the role of Z is different from vector fields in the
notation of (2). The functions ρ[X1, ...,XiZ| ] and ρ[ |Y1, ..., Yj ] are also defined
in the similar way to (3) and (4).
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We say that φ is a pre-contrast function on M if and only if the following
conditions are satisfied [6,7]:

(a) ρ(f1X1 + f2X2, q) = 0 (∀fi ∈ C∞(M),∀Xi ∈ X (M) (i = 1, 2),∀q ∈ M)
(b) ρ[X| ] = 0 (∀X ∈ X (M)) i .e. ρ(Xp, p) = 0 (∀p ∈ M)
(c) g(X,Y ) := −ρ[X|Y ] (∀X,∀Y ∈ X (M)) is a Riemannian metric on M .

Note that for any contrast function φ, the function ρφ which is defined by
ρφ(Xp, q) := Xpφ(p, q) (∀p,∀q ∈ M, ∀Xp ∈ Tp(M)) is a pre-contrast function
on M . The notion of pre-contrast function is obtained by taking the fundamental
properties of the first derivative of a contrast function as axioms. For a given pre-
contrast function, two affine connections ∇ and ∇∗ are defined by the following
equations in the same way as a contrast function:

g(∇XY,Z) = −ρ[XY |Z], g(Y,∇∗
XZ) = −ρ[Y |XZ] (∀X,∀Y,∀Z ∈ X (M)).

In this case, ∇ and ∇∗ are dual to each other with respect to g and ∇∗ is torsion-
free. However, the affine connection ∇ possibly has torsion. This means that
(M, g,∇) is a SMAT and it is called the SMAT induced from the pre-contrast
function ρ.

4 Generalized Projection Theorem in Partially Flat
Spaces

In a dually flat space (M, g,∇,∇∗), it is well-known that the canonical con-
trast functions (called ∇- and ∇∗- divergences) are naturally defined, and the
Pythagorean theorem and the projection theorem are stated in terms of the ∇
and ∇∗ geodesics and the canonical contrast functions [3,4]. In a partially flat
space (M, g,∇,∇∗), where R = R∗ = 0 and T ∗ = 0, a pre-contrast function
which seems to be canonical can be defined and a projection theorem holds on
the “canonical” pre-contrast function and the ∇∗- geodesic.

Proposition 1 (Canonical Pre-contrast Functions). Let (M, g,∇,∇∗) be
a partially flat space (i.e. (M, g,∇) is a SMAT with R = R∗ = 0 and T ∗ = 0)
and (U, ηi) be an affine coordinate neighborhood with respect to ∇∗ in M . The
function ρ on TU ×U defined by the following equation is a pre-contrast function
on U which induces the SMAT (U, g,∇):

ρ(Zp, q) := −gp(Zp, γ̇
∗(0)) (∀p,∀q ∈ U,∀Zp ∈ Tp(U)), (6)

where γ∗ : [0, 1] → U is the ∇∗-geodesic such that γ∗(0) = p, γ∗(1) = q and γ̇∗(0)
is the tangent vector of γ∗ on p.

Proof. For the function ρ defined as (6), the condition (a) in the definition of
pre-contrast functions follows from the bilinearity of the inner product gp. The
condition (b) immediately follows from γ̇∗(0) = 0 when p = q. By calculating
the derivatives of ρ with the affine coordinate system (ηi), it can be shown that
the condition (c) holds and that the induced Riemannian metric and dual affine
connections coincide with the original g, ∇ and ∇∗. 
�
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In particular, if (M, g,∇,∇∗) is a dually flat space, the pre-contrast function ρ
defined in (6) coincides with the directional derivative of ∇∗-divergence φ∗(·, q)
with respect to Zp (cf. [9,10]). Hence, the definition of (6) seems to be natural
one and we call the function ρ in (6) the canonical pre-contrast function in a
partially flat space (U, g,∇,∇∗).

From the definition of the canonical pre-contrast function, we can immedi-
ately obtain the following theorem.

Corollary 1 (Generalized Projection Theorem). Let U be an affine
coordinate neighborhood and ρ be the canonical pre-contrast function defined
in Proposition 1. For any submanifold N in U , the following conditions are
equivalent:

(i) The ∇∗-geodesic starting at q ∈ U is perpendicular to N at p ∈ N

(ii) ρ(Zp, q) = 0 for any Zp in Tp(N).

In the case where (U, g,∇,∇∗) is a dually flat space, the projection theorem
states that the minimum of the ∇∗-divergence φ∗(·, q) : N → R should attain
at the point p ∈ N where the ∇∗-geodesic starting at q is perpendicular to
N . It immediately follows from the generalized projection theorem, since the
directional derivative of φ∗(·, q) is the canonical pre-contrast function.

5 Statistical Manifolds Admitting Torsion Induced
from Estimating Functions

As we mentioned in Introduction, a SMAT naturally appears through estimating
functions in a “classical” statistical model as well as in a quantum statistical
model. In this section, we briefly explain how a SMAT is induced on S from an
estimating function. See [7] for more details including a concrete example.

Let S = {p(x;θ) | θ = (θ1, ..., θd) ∈ Θ ⊂ Rd} be a regular parametric
statistical model. An estimating function on S, which we consider here, is a
Rd-valued function u(x,θ) satisfying the following conditions:

Eθ{u(x,θ)} = 0, Eθ{‖u(x,θ)‖2} < ∞, det
[
Eθ

{
∂u

∂θ
(x,θ)

}]
�= 0 (∀θ ∈ Θ).

The first condition is called the unbiasedness of estimating functions, which is
important to ensure the consistency of the estimator obtained from an esti-
mating function. Let X1, . . . , Xn be a random sample from an unknown prob-
ability distribution p(x;θ0) in S. The estimator θ̂ for θ0, which is obtained
as a solution to the estimating equation

∑n
i=1 u(Xi,θ) = 0, is called an

M-estimator. The M-estimator θ̂ has the consistency θ̂ → θ0 (in probabil-
ity as n → ∞) and the asymptotic normality

√
n(θ̂ − θ0) → N(0,Avar(θ̂))

(in distribution as n → ∞) under some additional regularity conditions [11],
where Avar(θ̂) is an asymptotic variance-covariance matrix of θ̂ and is given by
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Avar(θ̂) = {A(θ0)}−1B(θ0){A(θ0)}−T with A(θ) := Eθ {(∂u/∂θ)(x,θ)} and
B(θ) := Eθ

{
u(x,θ)u(x,θ)T

}
.

In order to induce the structure of SMAT on S from an estimating function,
we consider the notion of standardization of estimating functions. For an estimat-
ing function u(x,θ), its standardization (or standardized estimating function) is
defined by

u∗(x,θ) := Eθ

{
s(x,θ)u(x,θ)T

} [
Eθ

{
u(x,θ)u(x,θ)T

}]−1
u(x,θ),

where s(x,θ) = (∂/∂θ) log p(x;θ) is the score function [12]. Geometrically, the
ith component of the standardized estimating function u∗(x,θ) is the orthogonal
projection of the ith component of the score function s(x,θ) onto the linear space
spanned by all components of the estimating function u(x,θ) in the Hilbert
space

Hθ := {a(x) | Eθ{a(x)} = 0, Eθ{a(x)2} < ∞}

with the inner product < a(x), b(x) >θ:= Eθ{a(x)b(x)} (∀a(x),∀b(x) ∈ Hθ).
In terms of the standardization, the asymptotic variance-covariance matrix can
be rewritten as Avar(θ̂) = {G(θ0)}−1, where G(θ) := Eθ

{
u∗(x,θ)u∗(x,θ)T

}
.

The matrix G(θ) is called a Godambe information matrix [13], which is a gen-
eralization of the Fisher information matrix.

As we have seen in Sect. 2, the Kullback-Leibler divergence φKL is a contrast
function on S. Hence, the first derivative of φKL is a pre-contrast function on S
and given by

ρKL((∂j)p1 , p2) := (∂j)p1φKL(p1, p2) = −
∫

X
sj(x,θ1)p(x;θ2)ν(dx)

for any two probability distributions p1(x) = p(x;θ1), p2(x) = p(x;θ2) in S
and j = 1, . . . , d. This observation leads to the following proposition.

Proposition 2 (Pre-contrast Functions from Estimating Functions).
For an estimating function u(x,θ) on the parametric model S, a pre-contrast
function ρu : TS × S → R is defined by

ρu((∂j)p1 , p2) := −
∫

X
uj

∗(x,θ1)p(x;θ2)ν(dx)

for any two probability distributions p1(x) = p(x;θ1), p2(x) = p(x;θ2) in S and
j = 1, . . . , d, where uj

∗(x,θ) is the jth component of the standardization u∗(x,θ)
of u(x,θ).

The use of the standardization u∗(x,θ) instead of u(x,θ) ensures that the
definition of the function ρu does not depend on the choice of coordinate
system (parameter) of S. In fact, for a coordinate transformation (parame-
ter transformation) η = Φ(θ), the estimating function u(x,θ) is changed into
v(x,η) = u(x, Φ−1(η)) and we have v∗(x,η) = (∂θ/∂η)T

u∗(x,θ). The proof of
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Proposition 2 is straightforward. In particular, the condition (b) in the definition
of pre-contrast function follows from the unbiasedness of the (standardized) esti-
mating function. The Riemannian metric g, dual connections ∇ and ∇∗ induced
from the pre-contrast function ρu are given as follows:

gjk(θ) := g(∂j , ∂k) = Eθ{uj
∗(x,θ)uk

∗(x,θ)} = G(θ)jk,{
Γij,k(θ) := g(∇∂i

∂j , ∂k) = Eθ[{∂iu
j
∗(x,θ)}sk(x,θ)]

Γ ∗
ik,j(θ) := g(∂j ,∇∗

∂i
∂k) =

∫
X uj

∗(x,θ)∂i∂kp(x;θ)ν(dx)
,

where G(θ)jk is the (j, k) component of the Godambe information matrix G(θ).
Note that ∇∗ is always torsion-free since Γ ∗

ik,j = Γ ∗
ki,j , whereas ∇ is not neces-

sarily torsion-free unless u∗(x,θ) is integrable with respect to θ.
Henmi and Matsuzoe [7] discussed the quasi score function in [14], which is

a well-known example of non-integrable estimating functions. They showed that
one of the induced affine connections actually has torsion and the other connec-
tion is flat, that is, a partially flat space is induced. The pre-contrast function
defined from the estimating function coincides with the canonical pre-contrast
function and the generalized projection theorem can be applied. However, its
statistical meaning has not been clarified yet. Although it is expected that the
SMAT induced from an estimating function has something to do with statisti-
cal inference based on the estimating function, the clarification on it is a future
problem.
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