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Abstract. There are two geometrical structures in a manifold of prob-
ability distributions. One is invariant, based on the Fisher information,
and the other is based on the Wasserstein distance of optimal trans-
portation. We propose a unified framework which connects the Wasser-
stein distance and the Kullback-Leibler (KL) divergence to give a new
information-geometrical theory. We consider the discrete case consist-
ing of n elements and study the geometry of the probability simplex
Sn−1, the set of all probability distributions over n atoms. The Wasser-
stein distance is introduced in Sn−1 by the optimal transportation of
commodities from distribution p ∈ Sn−1 to q ∈ Sn−1. We relax the opti-
mal transportation by using entropy, introduced by Cuturi (2013) and
show that the entropy-relaxed transportation plan naturally defines the
exponential family and the dually flat structure of information geometry.
Although the optimal cost does not define a distance function, we intro-
duce a novel divergence function in Sn−1, which connects the relaxed
Wasserstein distance to the KL-divergence by one parameter.

1 Introduction

Information geometry studies invariant properties of a manifold of probability dis-
tributions, which are useful for various applications in statistics, machine learning,
signal processing, optimization and others. Two geometrical structures have been
introduced from two different backgrounds. One is constructed based on the invari-
ance principle: The geometry is invariant under reversible transformations of ran-
dom variables. We then have the Fisher information matrix as the unique invariant
Riemannian metric (Rao 1945; Chentsov 1982; Amari 2016). Moreover, two dually
coupled affine connections are given as invariant connections. These structures
are useful for various applications. Another geometrical structure is introduced
through the transportation problem. A distribution of commodities in a manifold
is transported to another distribution. The transportation with the minimal cost
defines a distance between the two distributions, called the Monge-Kantorovich-
Wasserstein distance or earth-mover distance. This gives a tool to study the geom-
etry of distributions taking the metric of the supporting manifold into account.
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Let X = {1, · · · , n} be the support of a probability measure p. The invariant
geometry gives a structure which is invariant under permutations of elements
of X. It leads to an efficient estimator in statistical estimation. On the other
hand, when we consider a picture over n2 pixels X = {(ij); i, j = 1, · · · , n},
neighboring pixels are close. A permutation of X destroys such a neighboring
structure, so the invariance should not be required. The Wasserstein distance
is responsible for such a structure. Therefore, it is useful for problems having
neighboring structure in support X.

An interesting question arises how these two geometrical structures are
related. They are useful structures in their own right, but it is intriguing to find
a unified framework to include the two. For this purpose in mind, the present
paper treats the discrete case over n elements, such that a probability distribu-
tion is given by a probability vector p = (p1, · · · , pn) in the probability simplex
Sn−1, letting a general case of continuous distributions over a manifold to be
studied in future.

Cuturi (2013) modified the transportation problem such that the cost is min-
imized under the entropy constraint. This is called the entropy-relaxed optimal
translation problem. In many applications, his group showed the quasi-distance
defined by the entropy-constrained optimal solution gives superior properties to
the information-geometric distance such as the KL divergence or the Hellinger
distance. As an application, consider a set of normalized histograms over X. A
clustering problem categorizes them in some classes such that a class consists of
similar histograms. Since a histogram is regarded as an empirical probability dis-
tribution, the problem is formulated within the probability simplex Sn−1 in the
discrete case and the distances among supporting pixels play a fundamental role.

We follow the entropy-relaxed framework of Cuturi (2013), Cuturi and Avis
(2014), Cuturi and Peyré (2016), etc. and introduce a Lagrangian function which
is a linear combination of the transportation cost and the entropy. Given dis-
tribution p of commodities at the sender and q at the receiver, the optimal
transportation plan is the minimizer of the Lagrangian function. We reveal that
it is a convex function of p and q so it defines a dually flat geometric structure in
Sn−1 ×Sn−1. The m-flat coordinates are (p, q) and their dual, e-flat coordinates
(α,β) are given from the Lagrangian duality of nonlinear optimization prob-
lems. The set of the optimal transportation plans is an exponential family with
the canonical parameters (α,β), where the expectation parameters are (p, q).
Furthermore, we introduce a novel divergence between p and q in Sn−1. It con-
nects the relaxed Wasserstein distance to the KL-divergence by a one parameter
family. Our divergence will be expected to be useful for practical applications,
because a divergence is a general concept including the square of a distance and
more flexible admitting non-symmetricity between p and q.

2 Entropy-Constrained Transportation Problem

Let us consider n terminals X = (X1, · · · ,Xn) at which amounts p1, · · · , pn

of commodities are stocked. We transport them within X such that amounts
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q1, · · · , qn are newly stored at X1, · · · ,Xn. We normalize the total amount to be
equal to 1, so p = (p1, · · · , pn) and q = (q1, · · · , qn) are regarded as probability
distributions in the probability simplex Sn−1,

∑
pi = 1,

∑
qi = 1, pi > 0, qi > 0. (1)

We consider a transportation plan P = (Pij), where Pij is the amount of
commodity transported from Xi to Xj . A plan P is regarded as a joint proba-
bility distribution of commodities flowing from Xi to Xj , satisfying the sender
and receiver constraints,

∑

j

Pij = pi,
∑

i

Pij = qj . (2)

The set of P’s satisfying (2) is denoted by U(p, q).
Let c = (cij) be the cost matrix, where cij denotes the cost of transporting

one unit of commodities from Xi to Xj .
The transportation cost is defined by

c(P) = 〈c,P〉 =
∑

cijPij . (3)

The Wasserstein distance is defined by the minimal cost of transporting distri-
bution p at the senders to q at the receivers,

c(p, q) = min
P⊂U(p,q)

〈c,P〉, (4)

where min is taken over all P satisfying constraints (2). See e.g., Villani (2013).
Given p and q, let us consider a special transportation plan PD defined by

the direct product of p and q,

PD = p ⊗ q = (piqj) . (5)

This plan transports commodities from each sender to the receivers according
to the receiver distribution q, irrespective of c. The entropy of PD,

H (PD) = −
∑

PDij log PDij = H(p) + H(q), (6)

is the minimum among all P’s belonging to U(p, q), because of H(P) ≤ H(p)+
H(q), where H(P), H(p) and H(q) are the respective entropies and the equality
holds for P = PD.

We consider a constrained problem of searching for P that minimizes 〈c,P〉
within a KL-divergence ball centered at PD,

KL [P : PD] ≤ d (7)

for constant d. As d increases, the entropy of P increases within the ball. This
is equivalent to the entropy constrained problem that minimizes a linear combi-
nation of the transportation cost 〈c,P〉 and entropy H(P),

Fλ(P) =
1

1 + λ
〈c,P〉 − λ

1 + λ
H(P) (8)

for constant λ (Cuturi 2013). Here, λ is a Lagrangian multiplier and λ becomes
smaller as d becomes larger.
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3 Solution of Entropy-Constrained Problem

Since P satisfies constraints (2), by using Lagrange multipliers αi, βj , minimiza-
tion of (8) is formulated in the Lagrangian form,

Lλ(P) =
1

1 + λ
〈c,P〉 − λ

1 + λ
H(P) −

∑

i,j

(αi + βj) Pij . (9)

Let us fix λ, considering it as a parameter controlling the magnitude of the
entropy or the size of the KL-ball. By differentiating (9) with respect to Pij , we
have the following solution,

Pij = exp
{

−cij

λ
+

1 + λ

λ
(αi + βj) − 1

}
. (10)

Let us put

ai = exp
(

1 + λ

λ
αi

)
bj = exp

(
1 + λ

λ
βj

)
, Kij = exp

{
−cij

λ

}
, (11)

and the optimal solution is written as

P ∗
λij ∝ aibjKij , (12)

where ai and bj correspond to the Lagrange multipliers αi and βj to be deter-
mined from the constraints (2). Note that 2n constraints (2) are not independent.
Because of

∑
pi = 1, we can obtain an by an = 1 − ∑

i�=n ai. Further, we note
that μa and b/μ give the same answer for any μ > 0, where a = (ai) and
b = (bj). Therefore, the degrees of freedom of a and b are 2(n − 1), which are
to be determined from p and q of which degrees of freedom are also 2(n − 1).
Therefore, we may choose a and b such that they satisfy

∑
ai = 1,

∑
bj = 1. (13)

Then, a, b ∈ Sn−1 and we have the following theorem.

Theorem 1. The optimal transportation plan P∗
λ is given by

P ∗
λij = caibjKij , (14)

c =
1∑

aibjKij
, (15)

where two vectors a and b are determined from p and q.

Cuturi (2013) obtained the above P ∗
λij and applied the Sinkhorn-Knopp algo-

rithm to iteratively compute a and b.
The following lemma is useful for later calculations.
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Lemma 1. The optimal value

ϕλ(p, q) = min Fλ(P) (16)

is given by

ϕλ(p, q) =
λ

1 + λ

(∑
pi log ai +

∑
qj log bj + log c

)
. (17)

Proof. We first calculate H (P∗
λ). Substituting (15) in H (P∗

λ), we have

H (P∗
λ) = −

∑

ij

P∗
λij

(
−cij

λ
+ log caibj

)
(18)

=
1
λ

〈c,P∗
λ〉 −

∑
pi log ai −

∑
qj log bj − log c. (19)

Hence, (17) follows.

4 Exponential Family of Optimal Transportation Plans

A transportation plan P is a probability distribution over branches (i, j) con-
necting terminals i and j. Let x denote branches and δij(x) = 1 when x is (i, j)
and 0 otherwise. Then P is a probability distribution of random variable x,

P (x) =
n∑

i,j=1

Pijδij(x). (20)

By introducing new parameters

θij = log
Pij

Pnn
, θ =

(
θij

)
, (21)

it is rewritten in a parameterized form as

P (x,θ) = exp

⎧
⎨

⎩
∑

i,j

θijδij(x) + log Pnn

⎫
⎬

⎭ . (22)

This shows that the set of transportation plans is an exponential family, where
θij are the canonical parameters and ηij = Pij the expectation parameters. They
form an

(
n2 − 1

)
-dimensional manifold denoted by STP , because θnn = 0.

An optimal transportation plan is specified by (α,β) in (10), α = (αi),
β = (βj) which are determined from (p, q). It is written as

P (x,α,β) = exp

⎡

⎣
∑

i,j

{
λ + 1

λ
(αi + βj) − cij

λ

}
δij(x) − λ + 1

λ
ψ

⎤

⎦ , (23)
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where

ψ(α,β) =
λ

1 + λ
log

∑

i,j

exp
{

λ + 1
λ

(αi + βj) − cij

λ

}
(24)

is the normalization factor. By putting

θij =
1 + λ

λ
(αi + βj) − cij

λ
, (25)

we see that the set SOTP of optimal transformation plans is a submanifold of
STP . Because (25) is linear in α and β, SOTP itself is an exponential family,
where the canonical parameters are (1 + λ)/λ times (α,β) and the expectation
parameters are (p, q) ∈ Sn−1 × Sn−1, since

E

⎡

⎣
∑

j

δij(x)

⎤

⎦ = pi, (26)

E

[
∑

i

δij(x)

]
= qj . (27)

Since each of p, q ∈ Sn−1 has n − 1 degrees of freedom, SOPT is a 2(n − 1)-
dimensional dually flat manifold. We may put αn = βn = 0 without loss of
generality, which correspond to putting an = bn = 1 instead of

∑
ai =

∑
bj = 1.

We calculate the relaxed cost function ϕλ(p, q) corresponding to P(α,β).
We then have

ϕλ(p, q) =
1

1+λ
〈c,P〉 +

λ

1+λ

∑

i,j

Pij

{
1 + λ

λ
(αi + βj) − cij

λ
− 1 + λ

λ
ψλ

}
(28)

= p · α + q · β − ψλ(α,β). (29)

When we use new notations η = (p, q)T , θ = (α,β)T , we have

ψλ(θ) + ϕλ(η) = θ · η, (30)

which is the Legendre relation between θ and η. Thus, we have the following
theorem.

Theorem 2. The relaxed cost function ϕλ and the free energy (cumulant gen-
erating function) ψλ of the exponential family are both convex, connected by
the Legendre transformation,

θ = ∇ηϕλ(η), η = ∇θψλ(θ), (31)
α = ∇pϕλ(p, q), β = ∇qϕλ(p, q), (32)
p = ∇αψλ(α,β), q = ∇pψλ(α,β). (33)
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The Riemannian metric Gλ is given to Sn−1 × Sn−1 by

Gλ = ∇η∇ηϕλ(η) (34)

in the η-coordinate system (p, q). Its inverse is

G−1
λ = ∇θ∇θψλ(θ). (35)

In addition, we can calculate G−1
λ explicitly from (24).

Theorem 3. The Fisher information matrix G−1
λ in the θ-coordinate system is

given by

G−1
λ =

1 + λ

λ

{[
diag(p) P
PT diag(q)

]
−

[
p

q

]
[pT qT ]

}
, (36)

or in the component form as

G−1
λ =

1 + λ

λ

[
piδij − pipj Pij − piqj

Pij − piqj qiδij − qiqj

]
. (37)

Remark 1. The p-part of G−1
λ is a scalar multiple of the Fisher information of

p in Sn−1 in the e-coordinate system. So is the q-part. They are independent of
the cost matrix cij , but the off-diagonal blocks of G−1

λ depend on it.

Remark 2. The p-part of Gλ is not equal to the Fisher information of p in the
m-coordinate system. It is the p-part of the inverse of G−1

λ , depending on q,
too.

5 λ-Divergence in Sn−1

The relaxed Wasserstein distance ϕλ(p : q) does not satisfy a criterion of diver-
gence, i.e. ϕλ(p : p) 	= 0, because ϕλ(p : q) is minimalized at q 	= p in general.
In contrast, the original Wasserstein distance literally satisfies the criteria of
distance and those of divergence. To recover the property of divergence in the
relaxed form, we introduce a canonical divergence between two transportation
plans (p,p) and (p, q), which is composed of the Legendre pair of the convex
functions ϕλ and ψλ (Amari 2016):

Dλ[p : q] = ψλ(α,β) + ϕλ(p,p) − α · p − β · p, (38)

where (α,β) corresponds to (p, q). We call this a λ-divergence Dλ[p : q] in Sn−1

from p to q. It connects the Wasserstein distance and the KL-divergence in the
following way.

This λ-divergence can be transformed into a Bregman-like divergence with
the relaxed cost function ϕλ (not a Bregman divergence constructed from a
convex function of a single variable q):

Dλ[p : q] = ϕλ(p,p) − ϕλ(p, q) − 〈∇qϕλ(p, q),p − q〉. (39)



126 R. Karakida and S. Amari

As easily confirmed by substituting (14) to (38), the λ-divergence is equivalent
to the KL-divergence between the two transportation plans, up to a constant
factor:

Dλ[p : q] =
λ

1 + λ
KL [P′ : P] , (40)

where P′ and P are the optimal plans from p to p and p to q, respectively. It is
easy to see that Dλ[p : q] satisfies the criteria of divergence. However, it is not
dually flat in general.

Let us consider the case of λ → ∞. Then,

P′ = (pipj) , P = (piqj) , (41)

and hence
Dλ[p : q] = KL[p : q], (42)

converging to the KL-divergence of Sn−1.

6 Conclusions

We have opened a new way of studying the geometry of probability distributions.
We showed that the entropy-relaxed transportation plan in a probability simplex
naturally defines the exponential family and the dually flat structure of informa-
tion geometry. We also introduced a one-parameter family which connects the
relaxed Wasserstein distance to the KL-divergence.

It remains as future problems to extend the information geometry of the
relaxed Wasserstain distance into a general case of continuous distributions on
a metric manifold. Another direction of research is to study the geometrical
properties of the manifold through the new family of λ-divergence and to apply
it to various practical applications, where some modifications of Dλ might be
useful.
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