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Abstract. This paper considers the estimation problem arising when
inferring parameters in the stochastic development regression model
for manifold valued non-linear data. Stochastic development regression
captures the relation between manifold-valued response and Euclidean
covariate variables using the stochastic development construction. It
is thereby able to incorporate several covariate variables and random
effects. The model is intrinsically defined using the connection of the
manifold, and the use of stochastic development avoids linearizing the
geometry. We propose to infer parameters using the Method of Moments
procedure that matches known constraints on moments of the observa-
tions conditional on the latent variables. The performance of the model
is investigated in a simulation example using data on finite dimensional
landmark manifolds.
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1 Introduction

There is a growing interest for statistical analysis of non-linear data such as shape
data arising in medical imaging and computational anatomy. Non-linear data
spaces lack vector space structure, and traditional Euclidean statistical theory is
therefore not sufficient to analyze non-linear data. This paper considers parame-
ter inference for the stochastic development regression (SDR) model introduced
in [10] that generalizes Euclidean regression models to non-linear spaces. The
focus of this paper is to introduce an alternative estimation procedure which is
simple and computationally tractable.

Stochastic development regression is used to model the relation between a
manifold-valued response and Euclidean covariate variables. Similar to Brown-
ian motions on a manifold, M, defined as the transport of a Euclidean Brown-
ian motion from R

n to M, the SDR model is defined as the transport of a
Euclidean regression model. A Euclidean regression model can be regarded as
a time dependent model in which, potentially, several observations have been
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observed over time. Given a response variable yt ∈ R
d and covariate vector

xt = (x1
t , . . . , x

m
t ) ∈ R

m, the Euclidean regression model can be written as

yt = αt + βtxt + εt, t ∈ [0, 1], (1)

where αt ∈ R
d and βt ∈ R

d×m. A regression model can hence be defined as
a stochastic process with drift αt, covariate dependency through βtxt, and a
brownian noise εt. The SDR model is then defined as the transport of a regres-
sion model of the form (1), from R

d to the manifold M. The transportation is
performed by stochastic development described in Sect. 2. Figure 1 visualizes the
idea behind the model.

Fig. 1. The idea behind the model. Normal linear regression process zi
t defined in (1) is

transported to the manifold through stochastic development, ϕ. Here FM is the frame
bundle, π a projection map, and Dyi1 the transition distribution of yit = π(ϕ(zi

t)). The
tangent bundle of FM can be split in a horizontal and vertical subspace. Changes on
FM in the vertical direction corresponds to fixing a point y ∈ M while changing the
frame, ν, of the tangent space, TyM. Changes in the horizontal direction is fixing the
frame for the tangent space and changing the point on the manifold. The frame is in
this case parallel transported to the new tangent space.

In [10], Laplace approximation was applied for estimation of the parameter
vector. However, this method was computational expensive and it was difficult
to obtain results for detailed shapes. Alternatively, a Monte Carlo Expectation
Maximization (MCEM) method has been considered, but, with this method,
high probability samples were hard to obtain, which led to an unstable objective
function. As a consequence, this paper examines the Method of Moments (MM)
procedure for parameter estimation. The MM procedure is easy to apply and not
as computationally expensive as the Laplace approximation. It is a well-known
method for estimation in Euclidean statistics (see for example [3,6,14]), where
it has been proven in general to provide consistent parameter estimates.

Several versions of the generalized regression model have been proposed in
the case of manifold-valued response and Euclidean covariate variables. Local
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regression is considered in [11,19]. The former defines an intrinsic local regres-
sion model, while [11] constructs an extrinsic model. For global regression
models, [5,12,16] consider geodesic regression, which is a generalization of the
Euclidean linear regression model. There have been several approaches for defin-
ing non-geodesic regression models on manifolds. An example is kernel based
regression models, in which the model function is estimated by a kernel repre-
sentation [1,4,13]. In [7,8,17], the non-geodesic relation is modelled by a poly-
nomial or piecewise cubic spline function. Moreover, [2,15] propose estimation of
a parametric link function by minimization of the total residual sum of squares
and the generalized method of moments procedure respectively.

The paper will be structured as follows. Section 2 gives a brief description
of stochastic development and the frame bundle FM. Section 3 introduces the
SDR model and Sect. 4 describes the estimation procedure, Method of Moments.
At the end, a simulation example is performed in Sect. 5.

2 Stochastic Development

This section gives a brief introduction to frame bundle and stochastic develop-
ment. For a more detailed description and a reference for the following see [9].
Consider a d-dimensional Riemannian manifold (M, g) and a probability space
(Ω,F , P ). Stochastic development is a method for transportation of stochas-
tic processes in R

d to stochastic processes on M. Let zt : Ω → R
d denote

a stochastic process for t ∈ [0, 1]. In order to define the stochastic develop-
ment of zt it is necessary to consider a connection on M. A connection, ∇,
defines transportation of vectors along curves on the manifold, such that tan-
gent vectors in different tangent spaces can be compared. A frequently used
connection, which will also be used in this paper, is the Levi-Civita connection
of a Riemannian metric. Consider a point q ∈ M and let ∂i for i = 1, . . . , d
denote a coordinate frame at q, i.e. an ordered basis for TqM, with dual frame
dxi. A connection ∇ is locally determined by the Christoffel symbols defined
by ∇∂i

∂j = Γk
ij∂k. The Christoffel symbols for the Levi-Civita connection are

given by Γk
ij = 1

2gkl (∂igjl + ∂jgil − ∂lgij), where gij denotes the coefficients of
the metric g in the dual frame dxi, i.e. g = gijdxidxj , and gij are the inverse
coefficients.

Stochastic development uses the frame bundle, FM, defined as the fiber
bundle of tuples (y, ν), y ∈ M with ν : Rd → TyM being a frame for the tangent
space TyM. Given a connection on FM, the tangent bundle of the frame bundle,
TFM, can be split into a horizontal, HFM, and vertical, V FM, subspace, i.e.
TFM = HFM⊕V FM. Figure 1 shows a visualization of the frame bundle and
the horizontal and vertical tangent spaces. The horizontal subspace determines
changes in y ∈ M while fixing the frame ν, while V FM fixes y ∈ M and
describes the change in the frame for TyM. Given the split of the tangent bundle
TFM, an isomorphism π�,(y,ν) : H(y,ν)FM → TyM can be defined. The inverse
map π�

(y,ν) is called the horizontal lift and pulls a tangent vector in TyM to
H(y,ν)FM. The horizontal lift of v ∈ TyM is here denoted v� ∈ H(y,ν)FM.
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Let e1, . . . , ed be the canonical basis of Rd and consider a point (y, ν) ∈ FM.
Define the horizontal vector fields, H1, . . . , Hd, by Hi(ν) = (νei)�. The vector
fields H1, . . . ,Hd then form a basis for the subspace HFM. Given this basis
for HFM, the stochastic development of a Euclidean stochastic process, zt,
to the frame bundle FM can be found by the solution to the Stratonovich
differential equation dUt = Hi(Ut) ◦ dzi

t, where Einsteins summation notation is
used and ◦ specifies that it is a Stratonovich differential equation. The stochastic
development of a process zt ∈ R

d with reference point (y, ν) will be denoted
ϕ(y,ν)(zt). A stochastic process on M can then be obtained by the projection of
Ut to M by the projection map π : FM → M.

3 Model

Consider a d-dimensional manifold M equipped with a connection ∇ and let
y1, . . . ,yn be n realizations of the response y ∈ M. Notice that the realiza-
tions are assumed to be measured with additive noise, which might pull the
observations to an ambient space of M. An example of such additive noise for
landmark data is given in Sect. 5. Denote for each observation i = 1, . . . , n,
xi = (xi1, . . . , xim) ∈ R

m the covariate vector of m ≤ d covariate variables. The
SDR model is defined as a stochastic process on M based on the definition of
Euclidean regression models regarded as stochastic processes (see (1)). Assume
therefore that the response y ∈ M is the endpoint of a stochastic process yt in M
and the covariates, xi, the endpoint of a stochastic process Xt = (X1t, . . . , Xmt)
in R

m. The process Xjt is for random covariate variables assumed to be a Brown-
ian motion in R, while for fixed covariate effects it is modelled as a fixed drift.
The process yit for each observation i = 1, . . . , n is defined as the stochastic
development of a Euclidean model on R

m. Consider the stochastic process, zit,
in R

m defined by the stochastic differential equation equivalent to the Euclidean
regression model defined in (1),

dzit = αdt + WdXit + dεit, t ∈ [0, 1]. (2)

Here αdt is a fixed drift, W the m × m coefficient matrix and εit the random
error modelled as a Brownian motion in R

m. The response process yit is then
given as the stochastic development of zit, i.e. yit = ϕ(y0,ν0)(zit) for a reference
point y0 and frame ν0 ∈ Ty0

M (see Fig. 1). The realizations are modelled as
noisy observations of the endpoints of yit, yi = yi1 + ε̃i in which ε̃i ∼ N (0, τ2I)
denotes iid. additive noise. There is a natural relation between W and the frame
ν0. If ν0 is assumed to be an orthonormal basis and U the d × m-matrix with
columns of basis vectors of ν0, then the matrix W̃ = UW explains the gathered
effect of W and ν0 through U . However, this decomposition is not unique and
hence the W̃ matrix is estimated instead of U and W individually.

4 Method of Moments

In this section the MM procedure is introduced for the estimation of the parame-
ters in the regression model. The MM procedure uses known moment conditions



Stochastic Development Regression Using Method of Moments 7

to define a set of equations which can be optimized to find the true parameter
vector θ = (τ, α, W̃ ,y0), see [3,6,14]. Here τ2 is the additive noise variance, α
the drift, W̃ combined effect of covariates and ν0, and y0 the initial point on M.

In the SDR model the known moment conditions are based on the moments
of the additive noise ε̃i and the fact that ε̃i is independent of the covariate
variables xik for each k = 1, . . . ,m. Hence, the moment conditions are,

E [ε̃ij ] = 0, E [ε̃ijxik] = 0, E
[
ε̃2ij

]
= τ2 ∀j = 1, . . . , d, and k = 1, . . . ,m.

Known consistent estimators for these moments are the sample means. Consider
the residuals, ε̂ij = yij − ŷij , in which the dependency of the parameter vec-
tor, θ, lies in the predictions, ŷij for i = 1, . . . , n, j = 1, . . . , d. For a proper
choice of parameter vector θ, the sample means will approach the true moments.
Therefore, the set of equations used to optimize the parameter vector θ are,

1
n

n∑

i=1

ε̂ij = 0,
1
n

n∑

i=1

xikε̂ij = 0, and
1

n − 2

n∑

i=1

ε̂2ij = τ̂2,

for all j = 1, . . . , d and k = 1, . . . , m and where τ̂2 is the estimated variance.
In Euclidean statistics, the method of moments is known to provide consistent
estimators, but these estimators might be biased.

The cost function considered for optimization with respect to θ is,

f(θ) =
1
d

∑

j

(
1
n

n∑

i=1

ε̂ij

)2

+
1

dm

∑

j,k

(
1
n

n∑

i=1

xikε̂ij

)2

+
1
d

∑

j

(
1

n − 2

n∑

i=1

ε̂2ij − τ̂2

)2

. (3)

This cost function depends on predictions from the model based on the given
parameter vector in each iteration. In order for the objective function to be
stable it has to be evaluated for several predictions. Therefore, the function has
been averaged for several predictions to obtain a more stable gradient descent
optimization procedure.

The initial value of θ can in practice be chosen as parameters estimated from
a Euclidean multivariate linear regression model. Here, the estimated covariance
matrix would resemble the W̃ effect and the intercept the initial point y0.

5 Simulation Example

The performance of the estimation procedure will be evaluated using simulated
data. We will generate landmark data on Riemannian landmark manifolds as
defined in the Large Deformation Diffeomorphic Metric Mapping (LDDMM)
framework [18], and use the Levi-Civita connection. Shapes in the landmark
manifold M are defined by a finite landmark representation, i.e. q ∈ M, q =
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(x1
1, x

2
1, . . . , x

1
nl

, x2
nl

), where nl denotes the number of landmarks. The dimension
of M is hence d = 2nl. Using a kernel K, the Riemannian metric on M is
defined as g(v, w) =

∑nl

i,j vK−1(xi,xj)w with K−1 denoting the inverse of the
kernel matrix. In the following, we use a Gaussian kernel for K with standard
deviation σ = 0.1. We will consider a single covariate variable x ∈ R drawn from
N (0, 36) and model the relation to two response variables either with 1 or 3
landmarks. The response variables are simulated from a model with parameters
given in Table 1 and Fig. 2 for nl = 3. Examples of simulated data for nl = 1
and 3 are shown in Fig. 2. The additive noise is in this case normally distributed
iid. random noise added to each coordinate of landmarks. In this example we
consider a simplification of the model, as the random error in zit, given in (2), will
be disregarded. Estimation of parameters is examined for three different models:
one without additive noise and drift, one without drift, and at last the full model.
For nl = 3 only estimation of the two first models is studied, and estimation in
the model with no drift has been considered for n = 70 and n = 150.

Table 1. Parameter estimates found with the MM procedure for 1 landmark. First
column shows the true values and each column, estimated parameters in each model.

True Excl. τ , α n = 70 Excl. α n = 70 Excl. α n = 150 Full model n = 150

τ 0.1 −(τ = 0) 0.256 0.226 0.207

α 40 −(α = 0) −(α = 0) −(α = 0) 37.19

W̃ (0, 2) (0, 2.013) (0.004, 1.996) (0, 2.003) (0, 2.004)

y0 (1, 0) (1.064, 0.0438) (1.158, 0.162) (1.026, 0.0227) (1.076, 2.708)

By the results shown in Table 1 and Fig. 2, the procedure makes a good
estimate of the frame matrix W̃ in every situation. For the model with no additive
noise and no drift, the procedure finds a reasonable estimate of y0. When noise
is added, it is seen that a larger sample size is needed in order to get a good
estimate of y0. On the contrary, the variance estimate seems biased in each
case. For nl = 3 the variance parameters estimated were τ̂ = 0.306 for n = 70
and τ̂ = 0.231 for n = 150. However, when drift is added to the model, the
estimation procedure has a hard time recapture the true estimates of y0 and α.
This difficulty can be explained by the relation between the variables. In normal
linear regression, only one intercept variable is present in the model, but in the
SDR this intercept variable is split between α and y0.
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Fig. 2. (upper left) Sample drawn from model without additive noise and drift. (upper
center) Sample drawn with additive noise, but no drift. (upper right) Sample drawn
from the full model. The vertical lines are the stochastic development of zit and the
horizontal corresponds to the additive noise, the blue point is the reference point.
(lower left) Model without drift and variance for nl = 3, n = 70. (lower center) Model
without drift and n = 70. (lower right) Model without drift and n = 150. These plots
show the estimated results. (red) initial, (green) true, and (black) estimated reference
point and frame. The gray samples are predicted from the estimated model while the
green are a subset of the simulated data. Lower right plot does also show the difference
in the estimated parameters for n = 70, n = 150 for the model with no drift. The
magenta parameters in that plot is the estimated parameters for model without drift
and n = 70, the corresponding black parameters in lower center plot. (Color figure
online)

6 Conclusion

Method of Moments procedure has been examined for parameter estimation in
the stochastic development regression (SDR) model. The SDR model is a gener-
alization of regression models on Euclidean space to manifold-valued data. This
model analyzes the relation between manifold-valued response and Euclidean
covariate variables. The performance of the estimation procedure was studied
based on a simulation example. The Method of Moments procedure was easier
to apply and less computationally expensive than the Laplace approximation
considered in [10]. The estimates found for the frame parameters were reason-
able, but the procedure had a hard time retrieving the reference point and drift
parameter. This is due to a mis-specification of the model as the reference point
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and drift parameter jointly correspond to the intercept in normal Euclidean
regression models and hence there is no unique split of these parameters.

For further investigation, it could be interesting to test the relation between
the reference point and drift parameter to be able to retrieve good estimates of
these parameters. In the Euclidean case, the Method of Moments procedure has
been shown to provide consistent, but sometimes biased estimates. An interesting
question for future work could also be, whether the parameter estimates in this
model is consistent and biased.
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