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Preface

GSI 2017 in the Shadow of Blaise Pascal’s “Aleae Geometria”

GSI 2017 banner: Euclide, Thales, Clairaut, Legendre, Poncelet, Darboux,
Poincaré, Cartan, Fréchet, Libermann, Leray, Koszul, Ferrand, Souriau, Balian,
Berger, Choquet-Bruhat, Gromov

On behalf of both the Organizing and the Scientific Committees, it is our pleasure to
welcome you to the proceedings of the Third International SEE Conference on Geo-
metric Science of Information (GSI 2017), hosted in Paris, in 2017.

The three-day conference was organized in the framework of the relations set up
between SEE and the following scientific institutions or academic laboratories: Ecole
Polytechnique, Ecole des Mines ParisTech, Inria, Supélec, Université Paris-Sud,
Institut Mathématique de Bordeaux, Sony Computer Science Laboratories, Institut
Mines Télécom. GSI 2017 benefited from scientific and financial sponsors.

We would like to express all our thanks to the local organizers for hosting this
second scientific event at the interface between geometry, probability, and information
geometry.

The GSI conference cycle was initiated by the Brillouin Seminar Team. The
GSI 2017 event has been motivated by the continuity of the first initiatives launched in
2013 (https://www.see.asso.fr/gsi2013) and consolidated in 2015 (https://www.see.
asso.fr/gsi2015). In 2011, we organized an Indo-French workshop on “Matrix Infor-
mation Geometry” that yielded an edited book in 2013.

The technical program of GSI 2017 covered all the main topics and highlights in the
domain of “geometric science of information” including information geometry mani-
folds of structured data/information and their advanced applications. These proceedings
consist solely of original research papers that have been carefully peer-reviewed by two
or three experts before, and revised before acceptance.

The GSI 2017 program included a renowned invited speaker and three distinguished
keynote speakers.

https://www.see.asso.fr/
http://repmus.ircam.fr/brillouin/home
https://www.see.asso.fr/gsi2013
https://www.see.asso.fr/gsi2015
https://www.see.asso.fr/gsi2015
http://www.springer.com/us/book/9783642302312


Historical Background

Like GSI 2013 and 2015, GSI 2017 addressed the inter-relations between different
mathematical domains such as shape spaces (geometric statistics on manifolds and Lie
groups, deformations in shape space), probability/optimization and algorithms on
manifolds (structured matrix manifold, structured data/Information), relational and
discrete metric spaces (graph metrics, distance geometry, relational analysis), compu-
tational and Hessian information geometry, algebraic/infinite dimensional/Banach
information manifolds, divergence geometry, tensor-valued morphology, optimal
transport theory, manifold and topology learning, as well as applications such as
geometries of audio-processing, inverse problems, and signal processing. The program
was enriched by contributions in the area of (stochastic) geometric mechanics and
geometric model of quantum physics. GSI 2017 included new topics such as geometric
robotics, information structure on neuroscience, stochastic calculus of variations
(Malliavin calculus), and geometric deep learning among others.

At the turn of the century, new and fruitful interactions were discovered between
several branches of science: information science (information theory, digital commu-
nications, statistical signal processing), mathematics (group theory, geometry and
topology, probability, statistics, sheaf theory), and physics (geometric mechanics,
thermodynamics, statistical physics, quantum mechanics). The GSI conference cycle
aims to discover joint mathematical structures to all these disciplines by elaboration of
a “general theory of information” embracing physics science, information science, and
cognitive science in a global scheme.

The GSI 2017 program comprised 101 papers presented at 19 sessions:

• Session “Statistics on Non-linear Data” chaired by X. Pennec and S. Sommer
• Session “Shape Space” chaired by S. Allasonnière, S. Durrleman, and A. Trouvé
• Session “Optimal Transport and Applications I” chaired by Q. Merigot, J. Bigot,

and B. Maury
• Session “Optimal Transport and Applications II” chaired by J.F. Marcotorchino and

A. Galichon
• Session “Statistical Manifold & Hessian Information Geometry” chaired by

M. Boyom, A. Matsuzoe, and Hassan Shahid
• Session “Monotone Embedding in Information Geometry” chaired by J. Zhang and

J. Naudts
• Session “Information Structure in Neuroscience” chaired by P. Baudot, D. Bennequin,

and S. Roy
• Session “Geometric Robotics and Tracking” chaired by S. Bonnabel and A. Barrau
• Session “Geometric Mechanics and Robotics” chaired by G. de Saxcé, J. Bensoam,

and J. Lerbet
• Session “Stochastic Geometric Mechanics and Lie Group Thermodynamics”

chaired by F. Gay-Balmaz and F. Barbaresco
• Session “Probability on Riemannian Manifolds” chaired by M. Arnaudon and

A.-B. Cruzeiro
• Session “Divergence Geometry” chaired by M. Broniatowski and I. Csiszar
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• Session “Non-parametric Information Geometry” chaired by N. Ay and
J. Armstrong

• Session “Optimization on Manifold” chaired by P.A. Absil and R. Sepulchre
• Session “Computational Information Geometry” chaired by F. Nielsen and

O. Schwander
• Session “Probability Density Estimation” chaired by S. Said and E. Chevallier
• Session “Geometry of Tensor-Valued Data” chaired by J. Angulo, Y. Berthoumieu,

G. Verdoolaege, and A.M. Djafari
• Session “Geodesic Methods with Constraints” chaired by J.-M. Mirebeau and

L. Cohen
• Session “Applications of Distance Geometry” chaired by A. Mucherino and

D. Gonçalves

Three keynote speakers’ talks opened each day (Prof. A. Trouvé, B. Tumpach, and
M. Girolami). An invited honorary speaker (Prof. J.M. Bismut) gave a talk at the end
of the first day and a guest Honorary speaker (Prof. D. Bennequin) closed the con-
ference (https://www.see.asso.fr/wiki/18335_invited-keynote-speakers).

Invited Honorary Speaker:

• Jean-Michel Bismut (Paris-Saclay University), “The Hypoelliptic Laplacian”

Guest Honorary Speaker:

• Daniel Bennequin (Paris Diderot University), “Geometry and Vestibular
Information”

Keynote Speakers:

• Alain Trouvé (ENS Paris-Saclay), “Hamiltonian Modeling for Shape Evolution and
Statistical Modeling of Shapes Variability”

• Barbara Tumpach (Lille University), “Riemannian Metrics on Shape Spaces of
Curves and Surfaces”

• Mark Girolami (Imperial College London), “Riemann Manifold Langevin and
Hamiltonian Monte Carlo Methods”

GSI 2017 Seeding by Blaise Pascal’s Geometry of Chance

Preface VII

https://www.see.asso.fr/wiki/18335_invited-keynote-speakers


Blaise Pascal’s ideas are widely debated in 2017, because Pope François decided to
initiate a request for his beatification. Among all the genius ideas of Pascal, one was the
invention of probability. The “calculation of probabilities” began four years after the
death of René Descartes, in 1654, in a correspondence between Blaise Pascal and Pierre
Fermat. They exchanged letters on elementary problems of gambling, in this case a
problem of dice and a problem of “parties.” Pascal and Fermat were particularly
interested in this problem and succeeded in the “party rule” by two different methods.
One understands the legitimate pride of Pascal in his address of the same year at the
Académie Parisienne created by Mersenne, to which he presented, among “the ripe
fruit of our geometry” (“les fruits mûrs de notre Géométrie” in French), an entirely
new treaty, of an absolutely unexplored matter, the distribution of chance in the games.
In the same way, Pascal in his introduction to “Les Pensées” wrote that, “under the
influence of Méré, given to the game, he throws the bases of the calculation of
probabilities and composes the Treatise of the Arithmetical Triangle.” If Pascal appears
at first sight as the initiator of the calculation of probabilities, watching a little closer,
his role in the emergence of this theory is more complex. However, there is no trace
of the word “probabilities” in Pascal’s work. To designate what might resemble what
we now call calculation of probabilities, one does not even find the word in such a
context. The only occurrences of probability are found in “Les Provinciales” where he
referred to the doctrine of the Jesuits, or in “Les Pensées.” We do not find in Pascal’s
writings the words of “Doctrine des chances” or “Calcul des chances,” but only
“Géométrie du hasard” (geometry of chance). In 1654, Blaise Pascal submitted a short
paper to “Celeberrimae matheseos Academiae Parisiensi” (ancestor of the French
Royal Academy of Sciences founded in 1666), with the title “Aleae Geometria”
(Geometry of Chance) or “De compositione aleae in ludis ipsi subjectis,” which that
was the seminal paper founding Probability as a new discipline in Science. In this
paper, Pascal said: “… et sic matheseos demonstrationes cum aleae incertitudine
jugendo, et quae contraria videntur conciliando, ab utraque nominationem suam
accipiens, stupendum hunc titulum jure sibi arrogat: Aleae Geometria,” which we can
translate as: “By the union thus realized between the demonstrations of mathematics
and the uncertainty of chance, and by the conciliation of apparent contradictions, it can
derive its name from both sides and arrogate to itself this astonishing title: Geometry of
Chance” (« … par l’union ainsi réalisée entre les démonstrations des mathématiques et
l’incertitude du hasard, et par la conciliation entre les contraires apparents, elle peut
tirer son nom de part et d’autre et s’arroger à bon droit ce titre étonnant: Géométrie du
Hasard»). We can observe that Blaise Pascal attached a geometrical sense to proba-
bilities in this seminal paper. Like Jacques Bernoulli, we can also give references to
another Blaise Pascal document entitled “Art de penser” (the “Logique” of Port-Royal),
published the year of his death (1662), with the last chapters containing elements on the
calculus of probabilities applied to history, to medicine, to miracles, to literary criti-
cism, and to events of life, etc.

In “De l’esprit géométrique,” the use of reason for knowledge is based on a geometric
model. In geometry, the first principles are given by the natural common sense to all
men, and there is no need to define them. Other principles are clearly explained by
definitions of terms such that it is always possible to mentally substitute the explanation
for the defined term [23, 24, 25]. These definitions of terms are completely free, the only
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condition to be respected is univocity and invariability. Judging his solution as one of
his most important contributions to science, Pascal envisioned the drafting of a small
treatise entitled “Géométrie du Hasard” (Geometry of Chance). He never wrote it.
Inspired by this, Christian Huygens wrote the first treatise on the calculation of chances,
the “De ratiociniis in ludo aleae” (“On Calculation in Games of Chance,” 1657). We can
conclude this preamble by observing that seminal work of Blaise Pascal on probability
was inspired by geometry. The objective of the GSI conference is to return to this initial
idea that we can geometrize statistics in a rigorous way.

We can also make reference to Blaise Pascal for this GSI conference on computing
geometrical statistics because he was the inventor of computers with his “Pascaline”
machine. The introduction of Pascaline marks the beginning of the development of
mechanical calculus in Europe. This development, which passed from calculating
machines to the electrical and electronic calculators of the following centuries, cul-
minated in the invention of the microprocessor. Also, Charles Babbage conceived his
analytical machine from 1834 to 1837, a programmable calculating machine that was
the ancestor of the computers of the 1940s, combining the inventions of Blaise Pascal
and Jacquard’s machine, with instructions written on perforated cards, one of the
descendants of the Pascaline, the first machine that supplied the intelligence of man.
We can observe that these machines were conceived on “mechanical” principles to
develop “analytical” computation. GSI could be a source for new HPC machines based
on “geometrical” computation. Future machines could be conceived on algorithm
(geometrical) structures, with new numerical schemes that will overcome coordinate
systems by using an intrinsic approach based on symmetries. We could say that we
have to replace René Descartes by Blaise Pascal to build new HPC machines, intrin-
sically without coordinate systems.

• Babbage Analytic Machine
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• Jacquard Loom

• Pascaline Machine
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We will conclude with this beautiful citation of Joseph de Maistre comparing
geometry and probability:

If we add that the criticism which accustoms the mind, especially in matters of facts,
to receive simple probabilities for proofs, is, by this place, less adapted to form it
than the geometry which makes it contract the habit of acquiescence only in evi-
dence; We will reply that, strictly speaking, we might conclude from this very
difference that criticism gives, on the contrary, more exercise to the mind than
geometry: because the evidence, which is one and absolute, first aspect without
leaving either the freedom to doubt, or the merit of choosing; Whereas, in order to
be in a position to take a decision, it is necessary that they should be compared,
discussed, and weighed. A kind of study which, so to speak, breaks the mind to this
operation, is certainly of a wider use than that in which everything is subject to the
evidence; Because the chances of determining themselves on likelihoods or prob-
abilities are more frequent than those which require that we proceed by demon-
strations: why should we not say that they often also hold to much more important
objects?
—Joseph de Maistre in L’Esprit de Finesse

Si on ajoute que la critique qui accoutume l’esprit, surtout en matière de faits, à
recevoir de simples probabilités pour des preuves, est, par cet endroit, moins propre
à le former, que ne le doit être la géométrie qui lui fait contracter l’habitude de
n’acquiescer qu’à l’évidence; nous répliquerons qu’à la rigueur on pourrait con-
clure de cette différence même, que la critique donne, au contraire, plus d’exercice
à l’esprit que la géométrie: parce que l’évidence, qui est une et absolue, le fixe au
premier aspect sans lui laisser ni la liberté de douter, ni le mérite de choisir; au lieu
que les probabilités étant susceptibles du plus et du moins, il faut, pour se mettre en
état de prendre un parti, les comparer ensemble, les discuter et les peser. Un genre
d’étude qui rompt, pour ainsi dire, l’esprit à cette opération, est certainement d’un
usage plus étendu que celui où tout est soumis à l’évidence; parce que les occasions
de se déterminer sur des vraisemblances ou probabilités, sont plus fréquentes que
celles qui exigent qu’on procède par démonstrations: pourquoi ne dirions –nous
pas que souvent elles tiennent aussi à des objets beaucoup plus importants?
—Joseph de Maistre dans L’Esprit de Finesse

October 2017 Frank Nielsen
Frédéric Barbaresco
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Stochastic Development Regression Using
Method of Moments

Line Kühnel(B) and Stefan Sommer

Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark

{kuhnel,sommer}@di.ku.dk

Abstract. This paper considers the estimation problem arising when
inferring parameters in the stochastic development regression model
for manifold valued non-linear data. Stochastic development regression
captures the relation between manifold-valued response and Euclidean
covariate variables using the stochastic development construction. It
is thereby able to incorporate several covariate variables and random
effects. The model is intrinsically defined using the connection of the
manifold, and the use of stochastic development avoids linearizing the
geometry. We propose to infer parameters using the Method of Moments
procedure that matches known constraints on moments of the observa-
tions conditional on the latent variables. The performance of the model
is investigated in a simulation example using data on finite dimensional
landmark manifolds.

Keywords: Frame bundle · Non-linear statistics · Regression ·
Statistics on manifolds · Stochastic development

1 Introduction

There is a growing interest for statistical analysis of non-linear data such as shape
data arising in medical imaging and computational anatomy. Non-linear data
spaces lack vector space structure, and traditional Euclidean statistical theory is
therefore not sufficient to analyze non-linear data. This paper considers parame-
ter inference for the stochastic development regression (SDR) model introduced
in [10] that generalizes Euclidean regression models to non-linear spaces. The
focus of this paper is to introduce an alternative estimation procedure which is
simple and computationally tractable.

Stochastic development regression is used to model the relation between a
manifold-valued response and Euclidean covariate variables. Similar to Brown-
ian motions on a manifold, M, defined as the transport of a Euclidean Brown-
ian motion from R

n to M, the SDR model is defined as the transport of a
Euclidean regression model. A Euclidean regression model can be regarded as
a time dependent model in which, potentially, several observations have been

c© Springer International Publishing AG 2017
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4 L. Kühnel and S. Sommer

observed over time. Given a response variable yt ∈ R
d and covariate vector

xt = (x1
t , . . . , x

m
t ) ∈ R

m, the Euclidean regression model can be written as

yt = αt + βtxt + εt, t ∈ [0, 1], (1)

where αt ∈ R
d and βt ∈ R

d×m. A regression model can hence be defined as
a stochastic process with drift αt, covariate dependency through βtxt, and a
brownian noise εt. The SDR model is then defined as the transport of a regres-
sion model of the form (1), from R

d to the manifold M. The transportation is
performed by stochastic development described in Sect. 2. Figure 1 visualizes the
idea behind the model.

Fig. 1. The idea behind the model. Normal linear regression process zi
t defined in (1) is

transported to the manifold through stochastic development, ϕ. Here FM is the frame
bundle, π a projection map, and Dyi1 the transition distribution of yit = π(ϕ(zi

t)). The
tangent bundle of FM can be split in a horizontal and vertical subspace. Changes on
FM in the vertical direction corresponds to fixing a point y ∈ M while changing the
frame, ν, of the tangent space, TyM. Changes in the horizontal direction is fixing the
frame for the tangent space and changing the point on the manifold. The frame is in
this case parallel transported to the new tangent space.

In [10], Laplace approximation was applied for estimation of the parameter
vector. However, this method was computational expensive and it was difficult
to obtain results for detailed shapes. Alternatively, a Monte Carlo Expectation
Maximization (MCEM) method has been considered, but, with this method,
high probability samples were hard to obtain, which led to an unstable objective
function. As a consequence, this paper examines the Method of Moments (MM)
procedure for parameter estimation. The MM procedure is easy to apply and not
as computationally expensive as the Laplace approximation. It is a well-known
method for estimation in Euclidean statistics (see for example [3,6,14]), where
it has been proven in general to provide consistent parameter estimates.

Several versions of the generalized regression model have been proposed in
the case of manifold-valued response and Euclidean covariate variables. Local
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regression is considered in [11,19]. The former defines an intrinsic local regres-
sion model, while [11] constructs an extrinsic model. For global regression
models, [5,12,16] consider geodesic regression, which is a generalization of the
Euclidean linear regression model. There have been several approaches for defin-
ing non-geodesic regression models on manifolds. An example is kernel based
regression models, in which the model function is estimated by a kernel repre-
sentation [1,4,13]. In [7,8,17], the non-geodesic relation is modelled by a poly-
nomial or piecewise cubic spline function. Moreover, [2,15] propose estimation of
a parametric link function by minimization of the total residual sum of squares
and the generalized method of moments procedure respectively.

The paper will be structured as follows. Section 2 gives a brief description
of stochastic development and the frame bundle FM. Section 3 introduces the
SDR model and Sect. 4 describes the estimation procedure, Method of Moments.
At the end, a simulation example is performed in Sect. 5.

2 Stochastic Development

This section gives a brief introduction to frame bundle and stochastic develop-
ment. For a more detailed description and a reference for the following see [9].
Consider a d-dimensional Riemannian manifold (M, g) and a probability space
(Ω,F , P ). Stochastic development is a method for transportation of stochas-
tic processes in R

d to stochastic processes on M. Let zt : Ω → R
d denote

a stochastic process for t ∈ [0, 1]. In order to define the stochastic develop-
ment of zt it is necessary to consider a connection on M. A connection, ∇,
defines transportation of vectors along curves on the manifold, such that tan-
gent vectors in different tangent spaces can be compared. A frequently used
connection, which will also be used in this paper, is the Levi-Civita connection
of a Riemannian metric. Consider a point q ∈ M and let ∂i for i = 1, . . . , d
denote a coordinate frame at q, i.e. an ordered basis for TqM, with dual frame
dxi. A connection ∇ is locally determined by the Christoffel symbols defined
by ∇∂i

∂j = Γk
ij∂k. The Christoffel symbols for the Levi-Civita connection are

given by Γk
ij = 1

2gkl (∂igjl + ∂jgil − ∂lgij), where gij denotes the coefficients of
the metric g in the dual frame dxi, i.e. g = gijdxidxj , and gij are the inverse
coefficients.

Stochastic development uses the frame bundle, FM, defined as the fiber
bundle of tuples (y, ν), y ∈ M with ν : Rd → TyM being a frame for the tangent
space TyM. Given a connection on FM, the tangent bundle of the frame bundle,
TFM, can be split into a horizontal, HFM, and vertical, V FM, subspace, i.e.
TFM = HFM⊕V FM. Figure 1 shows a visualization of the frame bundle and
the horizontal and vertical tangent spaces. The horizontal subspace determines
changes in y ∈ M while fixing the frame ν, while V FM fixes y ∈ M and
describes the change in the frame for TyM. Given the split of the tangent bundle
TFM, an isomorphism π�,(y,ν) : H(y,ν)FM → TyM can be defined. The inverse
map π�

(y,ν) is called the horizontal lift and pulls a tangent vector in TyM to
H(y,ν)FM. The horizontal lift of v ∈ TyM is here denoted v� ∈ H(y,ν)FM.
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Let e1, . . . , ed be the canonical basis of Rd and consider a point (y, ν) ∈ FM.
Define the horizontal vector fields, H1, . . . , Hd, by Hi(ν) = (νei)�. The vector
fields H1, . . . ,Hd then form a basis for the subspace HFM. Given this basis
for HFM, the stochastic development of a Euclidean stochastic process, zt,
to the frame bundle FM can be found by the solution to the Stratonovich
differential equation dUt = Hi(Ut) ◦ dzi

t, where Einsteins summation notation is
used and ◦ specifies that it is a Stratonovich differential equation. The stochastic
development of a process zt ∈ R

d with reference point (y, ν) will be denoted
ϕ(y,ν)(zt). A stochastic process on M can then be obtained by the projection of
Ut to M by the projection map π : FM → M.

3 Model

Consider a d-dimensional manifold M equipped with a connection ∇ and let
y1, . . . ,yn be n realizations of the response y ∈ M. Notice that the realiza-
tions are assumed to be measured with additive noise, which might pull the
observations to an ambient space of M. An example of such additive noise for
landmark data is given in Sect. 5. Denote for each observation i = 1, . . . , n,
xi = (xi1, . . . , xim) ∈ R

m the covariate vector of m ≤ d covariate variables. The
SDR model is defined as a stochastic process on M based on the definition of
Euclidean regression models regarded as stochastic processes (see (1)). Assume
therefore that the response y ∈ M is the endpoint of a stochastic process yt in M
and the covariates, xi, the endpoint of a stochastic process Xt = (X1t, . . . , Xmt)
in R

m. The process Xjt is for random covariate variables assumed to be a Brown-
ian motion in R, while for fixed covariate effects it is modelled as a fixed drift.
The process yit for each observation i = 1, . . . , n is defined as the stochastic
development of a Euclidean model on R

m. Consider the stochastic process, zit,
in R

m defined by the stochastic differential equation equivalent to the Euclidean
regression model defined in (1),

dzit = αdt + WdXit + dεit, t ∈ [0, 1]. (2)

Here αdt is a fixed drift, W the m × m coefficient matrix and εit the random
error modelled as a Brownian motion in R

m. The response process yit is then
given as the stochastic development of zit, i.e. yit = ϕ(y0,ν0)(zit) for a reference
point y0 and frame ν0 ∈ Ty0

M (see Fig. 1). The realizations are modelled as
noisy observations of the endpoints of yit, yi = yi1 + ε̃i in which ε̃i ∼ N (0, τ2I)
denotes iid. additive noise. There is a natural relation between W and the frame
ν0. If ν0 is assumed to be an orthonormal basis and U the d × m-matrix with
columns of basis vectors of ν0, then the matrix W̃ = UW explains the gathered
effect of W and ν0 through U . However, this decomposition is not unique and
hence the W̃ matrix is estimated instead of U and W individually.

4 Method of Moments

In this section the MM procedure is introduced for the estimation of the parame-
ters in the regression model. The MM procedure uses known moment conditions
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to define a set of equations which can be optimized to find the true parameter
vector θ = (τ, α, W̃ ,y0), see [3,6,14]. Here τ2 is the additive noise variance, α
the drift, W̃ combined effect of covariates and ν0, and y0 the initial point on M.

In the SDR model the known moment conditions are based on the moments
of the additive noise ε̃i and the fact that ε̃i is independent of the covariate
variables xik for each k = 1, . . . ,m. Hence, the moment conditions are,

E [ε̃ij ] = 0, E [ε̃ijxik] = 0, E
[
ε̃2ij

]
= τ2 ∀j = 1, . . . , d, and k = 1, . . . ,m.

Known consistent estimators for these moments are the sample means. Consider
the residuals, ε̂ij = yij − ŷij , in which the dependency of the parameter vec-
tor, θ, lies in the predictions, ŷij for i = 1, . . . , n, j = 1, . . . , d. For a proper
choice of parameter vector θ, the sample means will approach the true moments.
Therefore, the set of equations used to optimize the parameter vector θ are,

1
n

n∑

i=1

ε̂ij = 0,
1
n

n∑

i=1

xikε̂ij = 0, and
1

n − 2

n∑

i=1

ε̂2ij = τ̂2,

for all j = 1, . . . , d and k = 1, . . . , m and where τ̂2 is the estimated variance.
In Euclidean statistics, the method of moments is known to provide consistent
estimators, but these estimators might be biased.

The cost function considered for optimization with respect to θ is,

f(θ) =
1
d

∑

j

(
1
n

n∑

i=1

ε̂ij

)2

+
1

dm

∑

j,k

(
1
n

n∑

i=1

xikε̂ij

)2

+
1
d

∑

j

(
1

n − 2

n∑

i=1

ε̂2ij − τ̂2

)2

. (3)

This cost function depends on predictions from the model based on the given
parameter vector in each iteration. In order for the objective function to be
stable it has to be evaluated for several predictions. Therefore, the function has
been averaged for several predictions to obtain a more stable gradient descent
optimization procedure.

The initial value of θ can in practice be chosen as parameters estimated from
a Euclidean multivariate linear regression model. Here, the estimated covariance
matrix would resemble the W̃ effect and the intercept the initial point y0.

5 Simulation Example

The performance of the estimation procedure will be evaluated using simulated
data. We will generate landmark data on Riemannian landmark manifolds as
defined in the Large Deformation Diffeomorphic Metric Mapping (LDDMM)
framework [18], and use the Levi-Civita connection. Shapes in the landmark
manifold M are defined by a finite landmark representation, i.e. q ∈ M, q =
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(x1
1, x

2
1, . . . , x

1
nl

, x2
nl

), where nl denotes the number of landmarks. The dimension
of M is hence d = 2nl. Using a kernel K, the Riemannian metric on M is
defined as g(v, w) =

∑nl

i,j vK−1(xi,xj)w with K−1 denoting the inverse of the
kernel matrix. In the following, we use a Gaussian kernel for K with standard
deviation σ = 0.1. We will consider a single covariate variable x ∈ R drawn from
N (0, 36) and model the relation to two response variables either with 1 or 3
landmarks. The response variables are simulated from a model with parameters
given in Table 1 and Fig. 2 for nl = 3. Examples of simulated data for nl = 1
and 3 are shown in Fig. 2. The additive noise is in this case normally distributed
iid. random noise added to each coordinate of landmarks. In this example we
consider a simplification of the model, as the random error in zit, given in (2), will
be disregarded. Estimation of parameters is examined for three different models:
one without additive noise and drift, one without drift, and at last the full model.
For nl = 3 only estimation of the two first models is studied, and estimation in
the model with no drift has been considered for n = 70 and n = 150.

Table 1. Parameter estimates found with the MM procedure for 1 landmark. First
column shows the true values and each column, estimated parameters in each model.

True Excl. τ , α n = 70 Excl. α n = 70 Excl. α n = 150 Full model n = 150

τ 0.1 −(τ = 0) 0.256 0.226 0.207

α 40 −(α = 0) −(α = 0) −(α = 0) 37.19

W̃ (0, 2) (0, 2.013) (0.004, 1.996) (0, 2.003) (0, 2.004)

y0 (1, 0) (1.064, 0.0438) (1.158, 0.162) (1.026, 0.0227) (1.076, 2.708)

By the results shown in Table 1 and Fig. 2, the procedure makes a good
estimate of the frame matrix W̃ in every situation. For the model with no additive
noise and no drift, the procedure finds a reasonable estimate of y0. When noise
is added, it is seen that a larger sample size is needed in order to get a good
estimate of y0. On the contrary, the variance estimate seems biased in each
case. For nl = 3 the variance parameters estimated were τ̂ = 0.306 for n = 70
and τ̂ = 0.231 for n = 150. However, when drift is added to the model, the
estimation procedure has a hard time recapture the true estimates of y0 and α.
This difficulty can be explained by the relation between the variables. In normal
linear regression, only one intercept variable is present in the model, but in the
SDR this intercept variable is split between α and y0.
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Fig. 2. (upper left) Sample drawn from model without additive noise and drift. (upper
center) Sample drawn with additive noise, but no drift. (upper right) Sample drawn
from the full model. The vertical lines are the stochastic development of zit and the
horizontal corresponds to the additive noise, the blue point is the reference point.
(lower left) Model without drift and variance for nl = 3, n = 70. (lower center) Model
without drift and n = 70. (lower right) Model without drift and n = 150. These plots
show the estimated results. (red) initial, (green) true, and (black) estimated reference
point and frame. The gray samples are predicted from the estimated model while the
green are a subset of the simulated data. Lower right plot does also show the difference
in the estimated parameters for n = 70, n = 150 for the model with no drift. The
magenta parameters in that plot is the estimated parameters for model without drift
and n = 70, the corresponding black parameters in lower center plot. (Color figure
online)

6 Conclusion

Method of Moments procedure has been examined for parameter estimation in
the stochastic development regression (SDR) model. The SDR model is a gener-
alization of regression models on Euclidean space to manifold-valued data. This
model analyzes the relation between manifold-valued response and Euclidean
covariate variables. The performance of the estimation procedure was studied
based on a simulation example. The Method of Moments procedure was easier
to apply and less computationally expensive than the Laplace approximation
considered in [10]. The estimates found for the frame parameters were reason-
able, but the procedure had a hard time retrieving the reference point and drift
parameter. This is due to a mis-specification of the model as the reference point
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and drift parameter jointly correspond to the intercept in normal Euclidean
regression models and hence there is no unique split of these parameters.

For further investigation, it could be interesting to test the relation between
the reference point and drift parameter to be able to retrieve good estimates of
these parameters. In the Euclidean case, the Method of Moments procedure has
been shown to provide consistent, but sometimes biased estimates. An interesting
question for future work could also be, whether the parameter estimates in this
model is consistent and biased.

Acknowledgements. This work was supported by the CSGB Centre for Stochastic
Geometry and Advanced Bioimaging funded by a grant from the Villum foundation.
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Abstract. For data carrying a non-Euclidean geometric structure it
is natural to perform statistics via geometric descriptors. Typical can-
didates are means, geodesics, or more generally, lower dimensional
subspaces, which carry specific structure. Asymptotic theory for such
descriptors is slowly unfolding and its application to statistical testing
usually requires one more step: Assessing the distribution of such descrip-
tors. To this end, one may use the bootstrap that has proven to be a very
successful tool to extract inferential information from small samples. In
this communication we review asymptotics for descriptors of manifold
valued data and study a non-parametric bootstrap test that aims at a
high power, also under the alternative.

1 Introduction

In recent years, the study of data on non-Euclidean spaces has found increasing
attention in statistics. Non-Euclidean data spaces have lead to a surge of special-
ized fields: directional statistics is concerned with data on spheres of different
dimensions (e.g. [15]); shape analysis studies lead to data on quotient spaces
(e.g. [6]), some of which are manifolds and some of which are non-manifold
stratified spaces; and applications in population genetics have lead to increasing
interest in data on non-manifold phylogenetic tree spaces (e.g. [4]) and to graph
data in general.

As a basis for statistics on these spaces, it is important to investigate asymp-
totic consistency of estimators, as has been done for intrinsic and extrinsic
Fréchet means on manifolds by [3,8], and more generally for a class of descrip-
tors called generalized Fréchet means by [11,12]. Examples of such generalized
Fréchet means are not only Procrustes means on non-manifold shape spaces
([6,11]) but also geodesic principal components on such spaces (cf. [10]), or more
generally, barycentric subspaces by [17], see also [16] for a similar approach on
phylogenetic tree spaces, or more specifically, small and great subspheres for
spherical data by [14,18].
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In particular, the question of asymptotic consistency and normality of prin-
cipal nested spheres analysis [14], say, goes beyond generalized Fréchet means
analysis. In all nested schemes, several estimators are determined sequentially,
where each estimation depends on all previous ones. Recently, asymptotic
consistency of nested generalized Fréchet means was introduced in [13], as a
generalization of classical PCA’s asymptotics, e.g. by [1], where nestedness of
approximating subspaces is not an issue because it is trivially given.

Based on asymptotic consistency of nested and non-nested descriptors,
hypothesis tests, like the two-sample test can be considered. Since by construc-
tion, every sample determines only one single descriptor and not its distribution,
resampling techniques like the bootstrap are necessary to produce confidence
sets. Notably, this is a very generic technique independent of specific sample
spaces and descriptors. In the following, after introducing non-nested and nested
generalized Fréchet means, we will elaborate on bootstrapping quantiles for a
two-sample test. We will show that a separated approach in general leads to
greatly increased power of the test in comparison to a pooled approach, both
with correct asymptotic size. Also, we illustrate the benefit of nested over non-
nested descriptors.

2 Descriptors for Manifold Valued Data

2.1 Single Descriptors

With a silently underlying probability space (Ω,A,P), random elements on a
topological space Q are mappings X : Ω → Q that are measurable with respect
to the Borel σ-algebra of Q.

For a topological space Q we say that a continuous function d : Q × Q →
[0,∞) is a loss function if d(q, q′) = 0 if and only if q = q′.

Definition 1 (Generalized Fréchet Means [11]). Let Q be a separable topo-
logical space, called the data space, and P a separable topological space, called
the descriptor space, with loss function d : P × P → [0,∞) and a continuous
map ρ : Q × P → [0,∞). Random elements X1, . . . , Xn

i.i.d.∼ X on Q give rise to
population and sample descriptors

μ ∈ argmin
p∈P

E[ρ(X, p)2], μn ∈ argmin
p∈P

n∑

j=1

ρ(Xj , p)2.

The descriptors are also called generalized ρ-Fréchet means. The sample descrip-
tor is a least squares M-estimator.

Asymptotic theory for generalized ρ-Fréchet means under additional assump-
tions, among them that the means be unique and attained on a twice differen-
tiable manifold part of P has been established by [11,12].
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2.2 Nested Descriptors

For nested descriptors, we need to establish a notion of nestedness and the
relations between the successive descriptor spaces.

Definition 2 ([13]). A separable topological data space Q admits backward
nested families of descriptors (BNFDs) if

(i) there is a collection Pj (j = 0, . . . ,m) of topological separable spaces with
loss functions dj : Pj × Pj → [0,∞);

(ii) Pm = {Q};
(iii) every p ∈ Pj (j = 1, . . . , m) is itself a topological space and gives rise to a

topological space ∅ �= Sp ⊂ Pj−1 which comes with a continuous map

ρp : p × Sp → [0,∞);

(iv) for every pair p ∈ Pj (j = 1, . . . ,m) and s ∈ Sp there is a measurable
projection map

πp,s : p → s.

For j ∈ {1, . . . , m − 2} call a family

f = {pj , . . . , pm−1}, with pk−1 ∈ Spk , k = j + 1, . . . ,m

a backward nested family of descriptors (BNFD) ending in Pj, where we ignore
the unique pm = Q ∈ Pm. The space of all BNFDs ending in Pj is given by

Tj =
{

f = {pk}m−1
k=j : pk−1 ∈ Spk , k = j + 1, . . . , m

}
⊆

m−1∏

k=j

Pk.

For j ∈ {1, . . . , m}, given a BNFD f = {pk}m−1
k=j set

πf = πpj+1,pj ◦ . . . ◦ πpm,pm−1 : pm → pj

which projects along each descriptor. For another BNFD f ′ = {p′k}m−1
k=j ∈ Tj

set

dj(f, f ′) =

√√√√
m−1∑

k=j

dk(pk, p′k)2.

Building on this notion, we can now define nested population and sample
descriptors similar to Definition 1.

Definition 3 (Nested Generalized Fréchet Means [13]). Random elements
X1, . . . , Xn

i.i.d.∼ X on a data space Q admitting BNFDs give rise to backward
nested population and sample descriptors (abbreviated as BN descriptors)

{Efj

: j = m − 1, . . . , 0}, {E
fj
n

n : j = m − 1, . . . , 0}
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recursively defined using pm = Q = pm
n via

Efj

= argmin
s∈Spj+1

E[ρpj+1(πfj+1 ◦ X, s)2], f j = {pk}m−1
k=j

E
fj
n

n = argmin
s∈S

p
j+1
n

n∑

i=1

ρpj+1
n

(πfj+1
n

◦ Xi, s)2, f j
n = {pk

n}m−1
k=j .

where pj ∈ Efj

and pj
n ∈ Efj

n is a measurable choice for j = 1, . . . , m − 1.
We say that a BNFD f = {pk}m−1

k=0 gives unique BN population descriptors
if Efj

= {pj} with f j = {pk}m−1
k=j for all j = 0, . . . , m − 1.

Each of the Efj

and E
fj
n

n is called a nested generalized Fréchet mean and
E

fj
n

n can be viewed as nested least squares M-estimator.

Asymptotic theory for such backward nested families of descriptors,
again under additional assumptions, among them being assumed on twice-
differentiable manifold parts, has been established in [13].

In order to asses asymptotics of single elements in a family of nested gener-
alized ρ-Fréchet means, the last element, say, a key ingredient is the following
definition from [13].

Definition 4 (Factoring Charts [13]). Let W ⊂ Tj, U ⊂ P j open subsets
with C2 manifold structure, f ′ = (p′m−1

, . . . , p′j) ∈ W and p′j ∈ U , and with
local chart

ψ : W → ψ(W ) ⊂ R
dim(W ), f = (pm−1, . . . , pj) �→ η = (θ, ξ)

the chart ψ factors, if there is a chart φ and projections πU , πφ(U)

φ : U → φ(U) ⊂ R
dim(U), pj �→ θ

πU : W → U, f �→ pj , πφ(U) : ψ(W ) → φ(U), (θ, ξ) �→ θ

such that the following diagram commutes

(1)

In case that factoring charts exist, from the asymptotics of an entire backward
nested descriptor family it is possible to project to a chart, describing the last
element descriptor only, and such a projection preserves asymptotic Gaussianity,
cf. [13].

3 Bootstrap Testing

Based on the central limit theorems proved in [11,13], it is possible to introduce
a T 2-like two-sample test for non-nested descriptors, BNFDs and single nested
descriptors.
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3.1 The Test Statistic

Suppose that we have two independent i.i.d. samples X1, . . . , Xn ∼ X ∈ Q,
Y1, . . . , Ym ∼ Y ∈ Q in a data space Q admitting non-nested descriptors, BNFDs
and single nested descriptors in P and we want to test

H0 : X ∼ Y versus H1 : X �∼ Y

using descriptors in p ∈ P . Here, p ∈ P stands either for a single pk ∈ Pk

or for a suitable sequence f ∈ Tj . We assume that the first sample gives rise
to p̂X

n ∈ P , the second to p̂Y
m ∈ P , and that these are unique. We introduce

shorthand notation to simplify the following complex expressions

dX,∗
n,b = φ(p̂X,∗

n,b ) − φ(p̂X
n ) dY,∗

m,b = φ(p̂Y,∗
m,b) − φ(p̂Y

m)

ΣX,∗
φ,n : =

1
B

B∑

b=1

dX,∗
n,b dX,∗

n,b

T
ΣY,∗

φ,m : =
1
B

B∑

b=1

dY,∗
m,bd

Y,∗
m,b

T
.

Define the statistic

T 2 : =
(
φ(p̂X

n ) − φ(p̂Y
m)

)T
(
ΣX,∗

φ,n + ΣY,∗
φ,m

)−1 (
φ(p̂X

n ) − φ(p̂Y
m)

)
. (2)

Under H0 and the assumptions of the CLTs shown in [11,13], this is asymp-
totically Hotelling T 2 distributed if the corresponding bootstrapped covariance
matrices exist. Notably, under slightly stronger regularity assumptions, which
are needed for the bootstrap, this estimator is asymptotically consistent, cf. [5,
Corollary 1].

3.2 Pooled Bootstrapped Quantiles

Since the test statistic (2) is only asymptotically T 2 distributed and especially
deeply nested estimators may have sizable bias for finite sample size, it can
be advantageous to use the bootstrap to simulate quantiles, whose covering rate
usually has better convergence properties, cf. [7]. A pooled approach to simulated
quantiles runs as follows. From X1, . . . , Xn, Y1 . . . , Ym, sample Z1,b, . . . , Zn+m,b

and compute the corresponding T ∗2
b (b = 1, . . . , B) following (2) from X∗

i,b =
Zi,b, Y

∗
j,b = Zn+j,b (i = 1, . . . , n, j = 1, . . . , m). From these, for a given level

α ∈ (0, 1) we compute the empirical quantile c∗
1−α such that

P
{
T ∗2 ≤ c∗

1−α|X1, . . . , Xn, Y1, . . . , Ym

}
= 1 − α.

We have then under H0 that c∗
1−α gives an asymptotic coverage of 1 − α for T 2,

i. e. P{T 2 ≤ c∗
1−α} → 1 − α as n,m → ∞ if n/m → c with a fixed c ∈ (0,∞).

Under H1, however, the bootstrap samples X∗
i,b and Y ∗

j,b have substantially higher
variance than both the original Xi and Yj . This leads to a large spread between
the values of the quantiles and thus to diminished power of the test. This will
be exemplified in the simulations below.
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3.3 Separated Bootstrapped Quantiles

To improve the power of the test while still achieving the asymptotic size, we
simulate a slightly changed statistic under H0, by again bootstrapping, but now
separately, from X1, . . . , Xn and Y1 . . . , Ym (for b = 1, . . . , B),

T ∗2 =
(
dX,∗

n,b − dY,∗
m,b

)T (
ΣX,∗

φ,n + ΣY,∗
φ,m

)−1 (
dX,∗

n,b − dY,∗
m,b

)
. (3)

From these values, for a given level α ∈ (0, 1) we compute the empirical quantile
c∗
1−α such that

P
{
T ∗2(A) ≤ c∗

1−α|X1, . . . , Xn, Y1, . . . , Ym

}
= 1 − α.

Then, in consequence of [2, Theorems 3.2 and 3.5], asymptotic normality of√
n(

(
φ(p̂X

n )−φ(p̂X)
)
, and

√
m(

(
φ(p̂Y

m)−φ(p̂Y )
)
, guaranteed by the CLT in [13],

extends to the same asymptotic normality for
√

n dX ∗
n b , and

√
mdY ∗

m b, respec-
tively. We have then under H0 that c∗

1−α gives an asymptotic coverage of 1 − α

for T 2 from Eq. (2), i. e. P{T ∗2 ≤ c∗
1−α} → 1 − α as B,n,m → ∞ if n/m → c

with a fixed c ∈ (0,∞).
We note that also the argument from [3, Corollary 2.3 and Remark 2.6]

extends at once to our setup, as we assume that the corresponding population
covariance matrix Σψ or Σφ, respectively, is invertible.

4 Simulations

We perform simulations to illustrate two important points. For our simulations
we use the nested descriptors of Principal Nested Great Spheres (PNGS) analysis
[14] and the intrinsic Fréchet mean [3]. In all tests and simulated quantiles we
use B = 1000 bootstrap samples for each data set.

4.1 Differences Between Pooled and Separated Bootstrap

The first simulated example uses the nested mean and first geodesic principal
component (GPC) to compare the two different bootstrapped quantiles with T 2-
distribution quantiles in order to illustrate the benefits provided by separated
quantiles. The two data sets we use are concentrated along two great circle arcs
on an S

2 which are perpendicular to each other. The data sets are normally
distributed along these clearly different great circles with common nested mean
and have sample size of 60 and 50 points, respectively, cf. Fig. 1a.

We simulate 100 samples from the two distributions and compare the p-values
for the different quantiles. By design, we expect a roughly uniform distribution of
p-values for the nested mean, indicating correct size of the test, and a clear rejec-
tion of the null for the first GPC, showing the power of the test. Both is satisfied
for the separated quantiles and T 2-quantiles but not for the pooled quantiles, lead-
ing to diminished power under the alternative, cf. Fig. 1c. Under closer inspection,
Fig. 1b shows that separated quantile p-values are closer to T 2-quantile p-values
than pooled quantile p-values, which are systematically higher due to the different
covariance structures rendering the test too conservative.
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Fig. 1. Simulated data set I on S
2 (a) with correct size under the null hypothesis of

equal nested means (b) and power under the alternative of different first GPCs (c).
The red sample has 50 points, the blue 60 points; we use p-values for 100 simulations
each. (Color figure online)

4.2 Nested Descriptors May Outperform Non-nested Descriptors

The second point we highlight is that the nested mean of PNGS analysis is
generically much closer to the data than the ordinary intrinsic mean and can
thus, in specific situations, be more suitable to distinguish two populations. The
same may also hold true for other nested estimators in comparison with their
non-nested kin. The data set II considered here provides an example for such a
situation. It consists of two samples of 300 and 100 points, respectively, on an
S
2 with coinciding intrinsic mean but different nested mean.

Here we only consider separated simulated quantiles, for both nested and
intrinsic means. For the intrinsic mean two-sample test, we also use the bootstrap
to estimate covariances for simplicity as outlined by [3], although closed forms
for variance estimates exist, cf. [9]. Data set II and the distribution of resulting

Fig. 2. Simulated data set II (red: 100 points, blue: 300 points) on S
2 (left), and box

plots displaying the distribution of 100 p-values for PNGS nested mean and intrinsic
mean (right) from the two-sample test. (Color figure online)
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p-values are displayed in Fig. 2. These values are in perfect agreement with the
intuition guiding the design of the data showing that the nested mean is suited
to distinguish the data sets where the intrinsic mean fails to do so.
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Abstract. Generalizing Principal Component Analysis (PCA) to man-
ifolds is pivotal for many statistical applications on geometric data. We
rely in this paper on barycentric subspaces, implicitly defined as the
locus of points which are weighted means of k + 1 reference points [8,9].
Barycentric subspaces can naturally be nested and allow the construction
of inductive forward or backward nested subspaces approximating data
points. We can also consider the whole hierarchy of embedded barycen-
tric subspaces defined by an ordered series of points in the manifold (a
flag of affine spans): optimizing the accumulated unexplained variance
(AUV) over all the subspaces actually generalizes PCA to non Euclidean
spaces, a procedure named Barycentric Subspaces Analysis (BSA).

In this paper, we first investigate sample-limited inference algo-
rithms where the optimization is limited to the actual data points:
this transforms a general optimization into a simple enumeration
problem. Second, we propose to robustify the criterion by consider-
ing the unexplained p-variance of the residuals instead of the clas-
sical 2-variance. This construction is very natural with barycentric
subspaces since the affine span is stable under the choice of the
value of p. The proposed algorithms are illustrated on examples in
constant curvature spaces: optimizing the (accumulated) unexplained
p-variance (Lp PBS and BSA) for 0 < p ≤ 1 can identify reference
points in clusters of a few points within a large number of random points
in spheres and hyperbolic spaces.

1 Introduction

Principal Component Analysis (PCA) is the ubiquitous tool to obtain low dimen-
sional representation of the data in linear spaces.To generalizePCAtoRiemannian
manifolds, one can analyze the covariance matrix of the data in the tangent space
at the Fréchet mean (Tangent PCA). This is often sufficient when data are suffi-
ciently centered around a central value (unimodal or Gaussian-like data), but gen-
erally fails for multimodal or distributions with a large variability with respect to
the curvature. Instead of maximizing the explained variance, methods minimiz-
ing the unexplained variance were proposed: Principal Geodesic Analysis (PGA)
[4] and Geodesic PCA (GPCA) [5] minimize the distance to a Geodesic Subspace
(GS) spanned by the geodesics going through a point with tangent vector in a linear
subspace of the tangent space.
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 20–28, 2017.
https://doi.org/10.1007/978-3-319-68445-1_3
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Barycentric subspaces are a new type of subspaces in manifolds recently
introduced which are implicitly defined as the locus of weighted means of k+1
reference points (with positive or negative weights) [8,9]. Depending on the def-
inition of the mean, we obtain the Fréchet, Karcher or Exponential Barycentric
subspaces (FBS/KBS/EBS). The Fréchet (resp. Karcher) barycentric subspace
of the points (x0, . . . xk) ∈ Mk+1 is the locus of weighted Fréchet (resp. Karcher)
means of these points, i.e. the set of global (resp. local) minima of the weighted
variance: σ2(x, λ) = 1

2

∑k
i=0 λi dist2(x, xi), where λ = λ/(

∑k
j=0 λj):

FBS(x0, . . . xk) =
{
arg minx∈M σ2(x, λ), λ ∈ P∗

k =
{
λ ∈ RPn/1�λ �= 0

}}
.

The EBS is the locus of weighted exponential barycenters of the reference points
(critical points of the weighted variance) defined outside their cut-locus by:

EBS(x0, . . . xk) = {x ∈ M \ C(x0, . . . xk)|∃λ ∈ P∗
k :

∑
i λi logx(xi) = 0}.

Thus, we clearly see the inclusion FBS ⊂ KBS ⊂ EBS. The metric completion
of the the EBS is called the affine span Aff(x0, . . . xk). Its completeness allows
ensuring that a closest point exists on the subspace, which is fundamental in
practice for optimizing the subspaces by minimizing the residuals of the data to
their projection. This definition works on metric spaces more general than Rie-
mannian manifolds. In stratified metric spaces, the barycentric subspace spanned
by points belonging to different strata naturally maps over several strata.

Barycentric subspaces can be characterized using the matrix field Z(x) =
[logx(x0), . . . logx(xk)] of the log of the reference points xi. This is a smooth
field outside the cut locus of the reference points. The EBS is the zero level-
set of the smallest singular value of Z(x). The associated right singular vector
gives the weights λ that satisfy the barycentric equation

∑
i λi logx(xi) = 0.

This simple equation generates a very rich geometry: at regular points where
the Hessian of the weighted distance to the reference points is not degenerate,
the EBS is a stratified space of maximal dimension k. In general, the largest
stratum defines locally a submanifold of dimension k.

From PCA to Barycentric Subspace Analysis. The nestedness of approx-
imation spaces is one of the most important characteristics for generalizing
PCA to more general spaces [1]. Barycentric subspaces can easily be nested
by adding or removing one or several points at a time, which corresponds to put
the barycentric weight of this (or these) point(s) to zero. This gives a family
of embedded submanifolds called a flag because this generalizes flags of vector
spaces [9].

With a forward analysis, we compute iteratively the flag of affine spans by
adding one point at a time keeping the previous ones fixed. Thus, we begin by
computing the optimal barycentric subspace Aff(x0) = {x0}, which may be a
Karcher mean or more generally a stationary value of the unexplained variance,
i.e. a Karcher mean. Adding a second point amounts to computing the geodesic
passing through the mean that best approximates the data. Adding a third
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point now generally differs from PGA. In practice, the forward analysis should
be stopped at a fixed number or when the variance of the residuals reaches
a threshold (typically 5% of the original variance). We call this method the
forward barycentric subspace (FBS) decomposition. Due to the greedy nature
of this forward method, the affine span of dimension k defined by the first k + 1
points is not in general the optimal one minimizing the unexplained variance.

The backward analysis consists in iteratively removing one dimension. As the
affine span of n + 1 linearly independent points generate the full manifold, the
optimization really begins with n points. Once they are fixed, the optimization
boils down to test which point should be removed. In practice, we may rather
optimize k + 1 points to find the optimal k-dimensional affine span, and then
reorder the points using a backward sweep to find inductively the one that least
increases the unexplained variance. We call this method the k-dimensional pure
barycentric subspace with backward ordering (k-PBS). With this method, the
k-dimensional affine span is optimizing the unexplained variance, but there is no
reason why any of the lower dimensional ones should do.

In order to obtain optimal subspaces which are embedded, it is necessary
to define a criterion which depends on the whole flag of subspaces and not on
each of the subspaces independently. In PCA, one often plots the unexplained
variance as a function of the number of modes used to approximate the data.
This curve should decreases as fast as possible from the variance of the data (for
0 modes) to 0 (for n modes). A standard way to quantify the decrease consists in
summing the values at all steps. This idea gives the Accumulated Unexplained
Variances (AUV) criterion [9], which is analogous to the Area-Under-the-Curve
(AUC) in Receiver Operating Characteristic (ROC) curves. This leads to an
interesting generalization of PCA on manifolds called Barycentric Subspaces
Analysis (BSA). In practice, one can stop at a maximal dimension k like for the
forward analysis in order to limit the computational complexity. This analysis
limited to a flag defined by k + 1 points is denoted k-BSA.

2 Sample-Limited Lp Barycentric Subspace Inference

This paper investigates variants of the three above barycentric subspace analysis
algorithms (FBS, k-PBS and k-BSA) along two main directions. First, we limit in
Sect. 2 the optimization of flags of barycentric subspaces to the sample points of
the data: this transforms a general optimization into a very simple enumeration
problem. Second, we robustify in Sect. 2 the optimized criteria by considering the
unexplained p-variance of the residuals instead of the classical 2-variance. This
construction is very natural with barycentric subspaces since the affine span is
stable under the choice of the value of p.

Sample-Limited Barycentric Subspace Inference. In several domains, it
has been proposed to limit the inference of the Fréchet mean to the data-points
only. In neuroimaging studies, the individual image minimizing the sum of square
deformation distance to other subject images is a good alternative to the mean
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template (a Fréchet mean in deformation and intensity space) because it con-
serves the original characteristics of a real subject image [7]. Beyond the Fréchet
mean, [3] proposed to define the first principal component mode as the unex-
plained variance minimizing geodesic going through two of the data points. The
method named set statistics was aiming to accelerate the computation of sta-
tistics on tree spaces. [11] further explored this idea under the name of sample-
limited geodesics in the context of PCA in phylogenetic tree space. In both cases,
defining higher order principal modes was seen as a challenging research topic.

With barycentric subspaces, the idea of sample-limited statistics naturally
extends to any dimension by restricting the search to the (flag of) affine spans
that are parametrized by points sampled form the data. The implementation
boils down to an enumeration problem. With this technique, the reference points
are never interpolated as they are by definition sampled from the data. This is a
important advantage for interpreting the modes of variation since we may go back
to other information about the samples like the medical history and disease type.
The search can be done exhaustively for a small number of reference points. The
main drawback is the combinatorial explosion of the computational complexity
with the dimension for the optimal order-k flag of affine spans, which is involving
O(Nk+1) operations, where N is the number of data points. In this paper we
perform an exhaustive search, but approximate optima can be sought using a
limited number of randomly sampled points [3].

Stability of Barycentric Subspaces by Lp Norms. Since barycentric sub-
spaces minimize the weighted variance, one could think of taking a power p of
the metric to define the p-variance σp(x) = 1

p

∑k
i=0 distp(x, xi). The global min-

ima of this p-variance defines the Fréchet median for p = 1, the Fréchet mean
for p = 2 and the barycenter of the support of the distribution for p = ∞. This
suggests to further generalize barycentric subspaces by taking the locus of the
minima of the weighted p-variance σp(x, λ) = 1

p

∑k
i=0 λi distp(x, xi). However,

it turns out that the critical points of the weighted p-variance are necessarily
included in the EBS: the gradient of the p-variance at a non-reference point is

∇xσp(x, λ) = ∇x
1
p

∑k
i=0 λi( dist2(x, xi))p/2 = −∑k

i=0 λi distp−2(x, xi) logx(xi).

Thus, we see that the critical points of the p-variance satisfy the equation∑k
i=0 λ′

i logx(xi) = 0 for the new weights λ′
i = λi distp−2(x, xi). Thus, they are

also elements of the EBS and changing the power of the metric just amounts to
a reparametrization of the barycentric weights. This stability of the EBS/affine
span with respect to the power of the metric p shows that the affine span is
really a central notion.

Lp Barycentric Subspaces Fitting and Analysis. While changing the power
does not change the subspace definition, it has a drastic impact on its estimation:
minimizing the sum of Lp distance to the subspace for non-vanishing residuals
obviously changes the relative influence of points. It is well known that medians
are more robust than least-squares estimators: the intuitive idea is to minimize
the power of residuals with 1 ≤ p ≤ 2 to minimize the influence of outliers.



24 X. Pennec

For 0 < p < 1, the influence of the closest points becomes predominant, at the
cost of non-convexity. In general, this is a problem for optimization. However,
since we perform an exhaustive search in our sample-limited setting, this is not
a problem here. At the limit of p = 0, all the barycentric subspaces containing
k+1 points (i.e. all the sample-limited barycentric subspaces of dimension k that
we consider) have the same L0 sum of residuals, which is a bit less interesting.

For a Euclidean space, minimizing the sum Lp norm of residuals under a
rank k constraint is essentially the idea of the robust R1-PCA [2]. However,
as noted in [6], an optimal rank k subspace is not in general a subspace of the
optimal subspace of larger ranks: we loose the nestedness property. In this paper,
we do not follow the PCA-L1 approach they propose, which maximizes the L1

dispersion within the subspace. On manifolds, this would lead to a generalization
of tangent-PCA maximizing the explained p-variance. In contrast, we solve this
problem by minimizing the Accumulated Unexplained p-Variance (Lp AUV) over
all the subspaces of the flag which is considered. Since the subspaces definition
is not impacted by the power p, we can compare the subspaces’ parameters (the
reference points) for different powers. It also allows to simplify the algorithms:
as the (positive) power of a (positive) distance is monotonic, the closest point
to an affine span for the 2-distance remains the closest point for the p-distance.
This give rise to three variations of our previous estimation algorithms:

– The Forward Barycentric Subspace decomposition (Lp k-FBS) iteratively
adds the point that minimizes the unexplained p-variance up to k + 1 points.

– The optimal Pure Barycentric Subspace with backward reordering (Lp k-
PBS) estimates the k + 1 points that minimize the unexplained p-variance,
and then reorders the points accordingly for lower dimensions.

– The Barycentric Subspace Analysis of order k (Lp k-BSA) looks for the flag
of affine spans defined by k + 1 ordered points that optimized the Lp AUV.

3 Examples on Constant Curvature Spaces

We consider here the exhaustive sample-limited version of the three above algo-
rithms and we illustrate some of their properties on spheres and hyperbolic
spaces. Affine spans in spheres are simply lower dimensional great subspheres
[8,9]. The projection of a point of a sphere on a subsphere is almost always unique
(with respect to the spherical measure) and corresponds to the renormaliza-
tion of the projection on the Euclidean subspace containing the subsphere. The
same property can be established for hyperbolic spaces, which can be viewed as
pseudo-spheres embedded in a Minkowski space. Affine spans are great pseudo-
spheres (hyperboloids) generated by the intersection of the plane containing the
reference points with the pseudo-sphere, and the closest point on the affine span
is the renormalization of the unique Minkowski projection on that plane. In both
cases, implementing the Riemannian norm of the residuals is very easy and the
difficulty of sample-limited barycentric subspace algorithms analysis resides in
the computational complexity of the exhaustive enumeration of tuples of points.
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Fig. 1. Mount Tom Dinosaur trackway 1 data (symbol +), with p = 2 (left), p = 1
(middle) and p = 0.1 (right). For each method (FBS in blue, 1-PBS in green and
1-BSA in red), the first reference point has a solid symbol. The 1D mode is the geodesic
joining this point to the second reference point (empty symbols). (Color figure online)

Example on Real Shape Data. For planar triangles, the shape space (quo-
tient of the triad by similarities) boils down to the sphere of radius 1/2. The
shape of three successive footprints of Mount Tom Dinosaur trackway 1 described
in [10, p.181] is displayed on Fig. 1 (sample of 9 shapes). In this example, the
reference points of the L2 BSA stay the same from k = 0 to 3 and identical to
the ones of the L2 FBS. This is a behavior that we have observed for simulated
examples when the variance of each mode is sufficiently different. The optimal
L2 1-PBS (the best geodesic approximation) picks up different reference points.
For p = 1, the L1 FBS is highly influenced by the location of the Fréchet median
(solid blue symbol at the center Fig. 1) and we see that the optimal L1 1-PBS
and 1-BSA pick-up a different zero-th order mode (solid green and red symbols
at the center). For a very low value p = 0.1, the optimal 1D subspace L0.1 1-PBS
and the 1-BSA agree on points defining a geodesic excluding the 3 points located
on the top right while the forward method gives something less intuitive.

3 Clusters on a 5D Sphere. In this synthetic dataset, we consider three
clusters of 10, 9 and 8 points around the axes e1, e2 and e3 (the vertices of an
equilateral triangle of side length π/2) on a 5-dimensional sphere (embedded in
6D) with an error of standard deviation σ = 6◦. We add 30 points uniformly
sampled on the sphere to simulate three clusters on a 2-sphere with 50% of
outliers. The ideal flag of subspaces is a pure 2D subspace spanning the first
three coordinates with points at the cluster centers (Fig. 2).

For the L2 metric, one first observes that at zero-th and first order, FBS,
PBS and BSA estimate the same reference points which do not fall into any
of the three clusters (blue point and geodesic on Fig. 2, left). For the second
order approximation, which should cover the ideal 2-sphere, 2-BSA and 2-FBS
continue to agree on the previous reference points and pick-up a third reference
point within the smallest cluster (dark green circle on top of the sphere). Thus,
we get at most one of the reference point in one of the clusters, except for the
optimal 2-subspace (2-PBS) which makes a remarkable job by picking one point
in each cluster (dark green point on Fig. 2, left).
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Fig. 2. Analysis of 3 clusters on a 5D sphere, projected to the expected 2-sphere, with
p = 2 (left), p = 1 (middle) and p = 0.1 (right). For each method (FBS in blue,
1-PBS in green, 1-BSA in red), the 1D mode is a geodesic joining the two reference
point. The three reference points of 2-PBS are represented with dark green solid circles,
and the ones of 2-BSA with deep pink solid boxes. (Color figure online)

With the L1 metric, we first observe that the FBS is fooled by the geometric
median, which is not in any of the three clusters. The two other reference points
successively added fall in two of the clusters. The L1 optimal subspace (1-PBS)
and 1-BSA find one of their reference points in a cluster, but the second point
is still an outlier. When we come to 2D subspaces, both the 2-PBS and 2-BSA
algorithms pick-up reference points in the three clusters, although they are not
the same (dark green circles and deep pink solid boxes on Fig. 2, center). For a
lower value of the power p = 0.1, all three reference points of the FBS are identi-
cal and within the three clusters, demonstrating the decrease in sensibility of the
method to the outliers. The first and second order PBS and BSA consistently
find very similar reference points within the clusters (Fig. 2, right).

3 Clusters on a 5D Hyperbolic Space. This example emulates the same
example as above but on the 5D hyperbolic space: we draw 5 random points
(tangent Gaussian with variance 0.015) around each vertex of an equilateral
triangle of length 1.57 centered at the bottom of the 5D hyperboloid embedded
in the (1,5)-Minkowski space. As outliers, we add 15 points drawn according to a
tangent Gaussian of variance 1.0 truncated at a maximum distance of 1.5 around
the bottom of the 5D hyperboloid. This simulates three clusters on a 2-pseudo-
sphere with 50% of outliers (Fig. 3). With the L2 hyperbolic distance, the 1-FBS
and 1-BSA methods select outliers for their two reference points. 1-PBS manages
to get one point in a cluster. For the two dimensional approximation, the 2-FBS
and the 2-PBS select only one reference points within the clusters while 2-BSA
correctly finds the clusters (Fig. 3 left, dark green points). With the L1 distance,
FBS, PBS and BSA select 3 very close points within the three clusters (Fig. 3
center). Lowering the power to p = 0.5 leads to selecting exactly the same points
optimally centered within the 3 clusters for all the methods (Fig. 3 right).
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Fig. 3. Analysis of 3 clusters on a 5D hyperbolic space, projected to the expected 2-
pseudo-sphere, with p = 2 (left), p = 1 (middle) and p = 0.5 (right). For each method
(FBS in blue, 1-PBS in green, 1-BSA in red), the 1d mode is figured as a geodesic joining
the two reference point. The three reference points of 2-PBS are represented with dark
green solid circles, and the ones of 2-BSA with deep pink solid boxes. (Color figure
online)

4 Conclusion

We have presented in this paper the extension of the barycentric subspace analy-
sis approach to Lp norms and developed sample-limited inference algorithms
which are quite naturally suited to barycentric subspaces, thanks to their defi-
nition using points rather than vectors as in more classical extensions of PCA.
Experimental results on spheres and hyperbolic spaces demonstrate that the for-
ward and optimal estimations of a k-subspace may differ from the barycentric
subspace analysis optimizing the full flag of embedded subspaces together, even
with the L2 norm on residuals. This behavior differs from the one in Euclidean
space where all methods are identical. Experiments also demonstrate that taking
the Lp norm for p < 2 improves the robustness. Combined with the sample-
limited estimation technique, we can even go well below p = 1 using exhaus-
tive optimization. The main limitation of the optimal pure barycentric subspace
(PBS) and barycentric subspace analysis (BSA) algorithms is their computa-
tional complexity which is exponential in the number of reference points. Thus,
in order to increase the dimensionality, we now nee to develop efficient stochastic
sampling techniques which allow to quickly pick up good reference points.
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Abstract. The analysis of manifold-valued data requires efficient tools
from Riemannian geometry to cope with the computational complexity
at stake. This complexity arises from the always-increasing dimension of
the data, and the absence of closed-form expressions to basic operations
such as the Riemannian logarithm. In this paper, we adapt a generic
numerical scheme recently introduced for computing parallel transport
along geodesics in a Riemannian manifold to finite-dimensional manifolds
of diffeomorphisms. We provide a qualitative and quantitative analysis
of its behavior on high-dimensional manifolds, and investigate an appli-
cation with the prediction of brain structures progression.

1 Introduction

Riemannian geometry is increasingly meeting applications in statistical learning.
Indeed, working in flat space amounts to neglecting the underlying geometry of
the laws which have produced the considered data. In other words, such a sim-
plifying assumption ignores the intrinsic constraints on the observations. When
prior knowledge is available, top-down methods can express invariance properties
as group actions or smooth constraints and model the data as points in quotient
spaces, as for Kendall shape space. In other situations, manifold learning can be
used to find a low-dimensional hypersurface best describing a set of observations.

Once the geometry has been modeled, classical statistical approaches for
constrained inference or prediction must be adapted to deal with structured
data, as it is done in [4,5,11,13]. Being an isometry, the parallel transport arises
as a natural tool to compare features defined at different tangent spaces.

In a system of coordinates, the parallel transport is defined as the solution
to an ordinary differential equation. The integration of this equation requires
to compute the Christoffel symbols, which are in general hard to compute –
e.g. in the case of the Levi-Civita connection – and whose number is cubic in
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the dimension. The Schild’s ladder [5], later improved into the Pole ladder [7]
when transporting along geodesics, is a more geometrical approach which only
requires the computation of Riemannian exponentials and logarithms. When the
geodesic equation is autonomous, the scaling and squaring procedure [6] allows to
compute exponentials very efficiently. In Lie groups, the Baker-Campbell Hauss-
dorff formula allows fast computations of logarithms with a controlled precision.
In such settings, the Schild’s ladder is computationally tractable. However, no
theoretical study has studied the numerical approximations or has provided a
convergence result. In addition, in the more general case of Riemannian mani-
folds, the needed logarithm operators are often computationally intractable.

The Large Deformation Diffeomorphic Metric Mapping (LDDMM) frame-
work [1] focuses on groups of diffeomorphisms, for shape analysis. Geodesic
trajectories can be computed by integrating the Hamiltonian equations, which
makes the exponential operator computationally tractable, when the logarithm
remains costly and hard to control in its accuracy. In [12] is suggested a numeri-
cal scheme which approximates the parallel transport along geodesics using only
the Riemannian exponential and the metric. The convergence is proved in [8].

In this paper, we translate this so-called fanning sheme to finite-dimensional
manifolds of diffeomorphisms built within the LDDMM framework [2]. We pro-
vide a qualitative and quantitative analysis of its behavior, and investigate a
high-dimensional application with the prediction of brain structures progres-
sion. Section 2 gives the theoretical background and the detailed steps of the
algorithm, in the LDDMM context. Section 3 describes the considered applica-
tion and discusses the obtained results. Section 4 concludes.

2 Theoretical Background and Practical Description

2.1 Notations and Assumptions

Let M be a finite-dimensional Riemannian manifold with metric g and tangent
space norm ‖ · ‖g. Let γ : t → [0, 1] be a geodesic whose coordinates are known
at all time. Given t0, t ∈ [0, 1], the parallel transport of a vector w ∈ Tγ(s)M
from γ(t0) to γ(t) along γ will be noted Pt0,t(w) ∈ Tγ(t)M. We recall that
this mapping is uniquely defined by the integration from u = t0 to t of the
differential equation ∇γ̇(u)Pt0,u(w) = 0 with Pt0,t0(w) = w where ∇ is the Levi-
Civita covariant derivative.

We denote Exp the exponential map, and for h small enough we define
Jw

γ(t)(h), the Jacobi Field emerging from γ(t) in the direction w ∈ Tγ(t)M by:

Jw
γ(t)(h) =

∂

∂ε

∣
∣
∣
∣
ε=0

Expγ(t)

(

h [γ̇(t) + εw]
) ∈ Tγ(t+h)M. (1)
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2.2 The Key Identity

The following proposition relates the parallel transport to a Jacobi field [12]:

Proposition. For all t > 0 small enough and w ∈ Tγ(0)M, we have:

P0,t(w) =
Jw

γ(0)(t)

t
+ O

(

t2
)

. (2)

Proof. Let X(t) be the time-varying vector field corresponding to the parallel
transport of w, i.e. such that Ẋi + Γ i

klX
lγ̇k = 0 with X(0) = w. At t = 0, in

normal coordinates the differential equation simplifies into Ẋi(0) = 0. Besides,
near t = 0 in the same local chart, the Taylor expansion of X(t) writes Xi(t) =
wi + O

(

t2
)

. Noticing that the ith normal coordinate of Expγ(0) (t [γ̇(t) + εw])
is t(vi

0 + εwi), the ith coordinate of Jw
γ(0)(t) = ∂

∂ε |ε=0Expγ(0) (t [γ̇(0) + εw]) is
therefore twi, and we thus obtain the desired result. ��

Subdividing [0, 1] into N intervals and iteratively computing the Jacobi fields
1
N Jw

γ(k/N)(
1
N ) should therefore approach the parallel transport P0,1(w). With

an error in O
(

1
N2

)

at each step, a global error in O
(

1
N

)

can be expected. We
propose below an implementation of this scheme in the context of a manifold of
diffeomorphisms parametrized by control points and momenta. Its convergence
with a rate of O

(
1
N

)

is proved in [8].

2.3 The Chosen Manifold of Diffeomorphisms

The LDDMM-derived construction proposed in [2] provides an effective way
to build a finite-dimensional manifold of diffeomorphims acting on the d-
dimensional ambient space R

d. Time-varying vector fields vt(.) are generated
by the convolution of a Gaussian kernel k(x, y) = exp

[−‖x − y‖2/2σ2
]

over ncp

time-varying control points c(t) = [ci(t)]i, weighted by ncp associated momenta
α(t) = [αi(t)]i, i.e. vt(.) =

∑ncp

i=1 k [. , ci(t)] αi(t). The set of such vector fields
forms a Reproducible Kernel Hilbert Space (RKHS).

Those vector fields are then integrated along ∂tφt(.) = vt[φ(.)] from φ0 = Id
into a flow of diffeomorphisms. In [10], the authors showed that the kernel-
induced distance between φ0 and φ1 – which can be seen as the deformation
kinetic energy – is minimal i.e. the obtained flow is geodesic when the control
points and momenta satisfy the Hamiltonian equations:

ċ(t) = Kc(t)α(t), α̇(t) = −1
2

gradc(t)

{

α(t)T Kc(t) α(t)
}

, (3)

where Kc(t) is the kernel matrix. A diffeomorphism is therefore fully parame-
trized by its initial control points c and momenta α.

Those Hamiltonian equations can be integrated with a Runge-Kutta scheme
without computing the Christoffel symbols, thus avoiding the associated curse
of dimensionality. The obtained diffeomorphisms then act on shapes embedded
in R

d, such as images or meshes.
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For any set of control points c = (ci)i∈{1,..,n}, we define the finite-dimensional
subspace Vc = span

{

k(., ci)ξ | ξ ∈ R
d, i ∈ {1, .., n}}

of the vector fields’ RKHS.
We fix an initial set c = (ci)i∈{1,..,n} of distinct control points and define the set
Gc = {φ1 | ∂tφt = vt ◦ φt, v0 ∈ Vc, φ0 = Id}. Equipped with Kc(t) as – inverse –
metric, Gc is a Riemannian manifold such that Tφ1Gc = Vc(1), where for all t in
[0, 1], c(t) is obtained from c(0) = c through the Hamiltonian equations (3) [9].

2.4 Summary of the Algorithm

We are now ready to describe the algorithm on the Riemannian manifold Gc.

Algorithm. Divide [0, 1] into N intervals of length h = 1
N where N ∈ N. We

note ωk the momenta of the transported diffeomorphism, ck the control points
and αk the momenta of the geodesic γ at time k

N . Iteratively:

(i) Compute the main geodesic control points ck+1 and momenta αk+1, using
a Runge-Kutta 2 method.

(ii) Compute the control points c±h
k+1 of the perturbed geodesics γ±h with initial

momenta and control points (αk±hωk, ck), using a Runge-Kutta 2 method.
(iii) Approximate the Jacobi field Jk+1 by central finite difference:

Jk+1 =
c+h
k+1 − c−h

k+1

2h
. (4)

(iv) Compute the transported momenta ω̃k+1 according to Eq. (2):

Kck+1 ω̃k+1 =
Jk+1

h
. (5)

(v) Correct this value with ωk+1 = βk+1ω̃k+1+δk+1αk+1, where βk+1 and δk+1

are normalization factors ensuring the conservation of ‖ω‖Vc
= ωT

k Kckωk

and of 〈αk, ωk〉ck = αT
k Kckωk.

As step of the scheme is illustrated in Fig. 1. The Jacobi field is computed with
only four calls to the Hamiltonian equations. This operation scales quadratically
with the dimension of the manifold, which makes this algorithm practical in high
dimension, unlike Christoffel-symbol-based solutions. Step (iv) – solving a linear
system of size ncp – is the most expensive one, but remained within reasonable
computational time in the investigated examples.

In [8], the authors prove the convergence of this scheme, and show that
the error increases linearly with the size of the step used. The convergence is
guaranteed as long as the step (ii) is performed with a method of order at least
two. A first order method in step (iii) is also theoretically sufficient to guarantee
convergence. Those variations will be studied in Sect. 3.3.
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Fig. 1. Step of the parallel transport of the vector w (blue arrow) along the geodesic
γ. Jw

γ is computed by central finite difference with the perturbed geodesics γh and γ−h,
integrated with a second-order Runge-Kutta scheme (dotted black arrows). A fan of
geodesics is formed. (Color figure online)

3 Application to the Prediction of Brain Structures

3.1 Introducing the Exp-parallelization Concept

Exploiting the fanning scheme described in Sect. 2.4, we can parallel-transport
any set of momenta along any given reference geodesic. Figure 2 illustrates the
procedure. The target shape is first registered to the reference geodesic: the
diffeomorphism that best transforms the chosen reference shape into the target
one is estimated with a gradient descent algorithm on the initial control points
and momenta [2]. Such a procedure can be applied generically to images or
meshes. Once this geodesic is obtained, its initial set of momenta is parallel-
transported along the reference geodesic. Taking the Riemannian exponential of
the transported vector at each point of the geodesic defines a new trajectory,
which we will call exp-parallel to the reference one.

Fig. 2. Time-reparametrized exp-parallelization of a reference geodesic model. The
black dots are the observations, on which are fitted a geodesic regression (solid black
curve, parametrized by the blue arrow) and a matching (leftmost red arrow). The red
arrow is then parallel-transported along the geodesic, and exponentiated to define the
exp-parallel curve (black dashes). (Color figure online)
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As pointed out in [5], the parallel transport is quite intuitive in the context
of shape analysis, for it is an isometry which transposes the evolution of a shape
into the geometry of another shape, as illustrated by Fig. 3.

Fig. 3. Illustration of the exp-parallelization concept. Top row: the reference geodesic
at successive times. Bottom row: the exp-parallel curve. Blue arrows: the geodesic
momenta and velocity field. Red arrows: the momenta describing the initial registration
with the target shape and its transport along the geodesic. (Color figure online)

3.2 Data and Experimental Protocol

Repeated Magnetic Resonance Imaging (MRI) measurements from 71 subjects
are extracted from the ADNI database and preprocessed through standard
pipelines into affinely co-registered surface meshes of hippocampi, caudates and
putamina. The geometries of those brain sub-cortical structures are altered along
the Alzheimer’s disease course, which all considered subjects finally convert to.

Two subjects are successively chosen as references, for they have fully devel-
oped the disease within the clinical measurement protocol. As illustrated on
Fig. 2, a geodesic regression [3] is first performed on each reference subject to
model the observed shape progression. The obtained trajectory on the chosen
manifold of diffeomorphisms is then exp-parallelized into a shifted curve, which
is hoped to model the progression of the target subject.

To account for the variability of the disease dynamics, for each subject two
scalar coefficients encoding respectively for the disease onset age and the rate of
progression are extracted from longitudinal cognitive evaluations as in [11]. The
exp-parallel curve is time-reparametrized accordingly, and finally gives predic-
tions for the brain structures. In the proposed experiment, the registrations and
geodesic regressions typically feature around 3000 control points in R

3, so that
the deformation can be seen as an element of a manifold of dimension 9000.

3.3 Estimating the Error Associated to a Single Parallel Transport

To study the error in this high-dimensional setting, we compute the paral-
lel transport for a varying number of discretization steps N , thus obtaining
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Fig. 4. Empirical relative error of the parallel transport in a high-dimensional setting.
In black the proposed algorithm, in green the WEC variant, in red the RK4 variant,
and in blue the SPG one. (Color figure online)

increasingly accurate estimations. We then compute the empirical relative errors,
taking the most accurate computation as reference.

Arbitrary reference and target subjects being chosen, Fig. 4 gives the results
for the proposed algorithm and three variations: without enforcing the conserva-
tions at step (v) [WEC], using a Runge-Kutta of order 4 at step (ii) [RK4], and
using a single perturbed geodesic to compute J at step (iii) [SPG]. We recover
a linear behavior with the length of the step 1

N in all cases. The SPG variant
converges much slower, and is excluded from the following considerations.

For the other algorithms, the empirical relative error remains below 5% with
15 steps or more, and below 1% with 25 steps or more. The slopes of the asymp-
totic linear behaviors, estimated with the last 10 experimental measurements,
range from 0.10 for the RK4 method to 0.13 for the WEC one. Finally, an itera-
tion takes respectively 4.26, 4.24 and 8.64 s for the proposed algorithm, the WEC
variant and the RK4 one. Therefore the initially detailed algorithm in Sect. 2.4
seems to achieve the best tradeoff between accuracy and speed in the considered
experimental setting.

3.4 Prediction Performance

Table 1 gathers the predictive performance of the proposed exp-parallelization
method. The performance metric is the Dice coefficient, which ranges from 0 for
disjoint structures to 1 for a perfect match. A Mann-Witney test is performed
to quantify the significance of the results in comparison to a naive methodology,
which keeps constant the baseline structures over time. Considering the very high
dimension of the manifold, failing to accurately capture the disease progression
trend can quickly translates into unnatural predictions, much worse than the
naive approach.
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Table 1. Averaged Dice performance measures. In each cell, the first line gives the aver-
age performance of the exp-parallelization-based prediction [exp], and the second line
the reference one [ref]. Each column corresponds to an increasingly remote predicted
visit from baseline. Significance levels [.05, .01, .001].

Method

Predicted follow-up visit

M12 M24 M36 M48 M60 M72 M96

N=140 N=134 N=123 N=113 N=81 N=62 N=17

[exp] .882

.884

.852

.852

.825

.809

}
∗∗

.796

.764

}
∗∗∗

.768

.734

}
∗∗

.756

.706

}
∗∗∗

.730

.636

}
∗∗[ref]

The proposed paradigm significantly outperforms the naive prediction three
years or later from the baseline, thus demonstrating the relevance of the
exp-parallelization concept for disease progression modeling, made computa-
tionally tractable thanks to the operational qualities of the fanning scheme for
high-dimensional applications.

4 Conclusion

We detailed the fanning scheme for parallel transport on a high-dimensional
manifold of diffeomorphisms, in the shape analysis context. Our analysis unveiled
the operational qualities and computational efficiency of the scheme in high
dimensions, with a empirical relative error below 1% for 25 steps only. We then
took advantage of the parallel transport for accurately predicting the progression
of brain structures in a personalized way, from previously acquired knowledge.
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Abstract. Euclidean data often exhibit a nonlinear behavior, which
may be modeled by assuming the data is distributed near a nonlinear
submanifold in the data space. One approach to find such a manifold
is to estimate a Riemannian metric that locally models the given data.
Data distributions with respect to this metric will then tend to follow the
nonlinear structure of the data. In practice, the learned metric rely on
parameters that are hand-tuned for a given task. We propose to estimate
such parameters by maximizing the data likelihood under the assumed
distribution. This is complicated by two issues: (1) a change of parame-
ters imply a change of measure such that different likelihoods are incom-
parable; (2) some choice of parameters renders the numerical calculation
of distances and geodesics unstable such that likelihoods cannot be eval-
uated. As a practical solution, we propose to (1) re-normalize likelihoods
with respect to the usual Lebesgue measure of the data space, and (2)
to bound the likelihood when its exact value is unattainable. We provide
practical algorithms for these ideas and illustrate their use on synthetic
data, images of digits and faces, as well as signals extracted from EEG
scalp measurements.

Keywords: Manifold learning · Metric learning · Statistics on manifolds

1 Introduction

The “manifold assumption” is often applied in machine learning research to
express that data is believed to lie near a (nonlinear) submanifold embedded
in the data space. Such an assumption finds uses e.g. in dynamical or periodic
systems, and in many problems with a smooth behavior. When the manifold
structure is known a priori it can be incorporated into the problem specifica-
tion, but unfortunately such structure is often not known. In these cases it is
necessary to estimate the manifold structure from the observed data, a process
known as manifold learning. In this work, we approach manifold learning geo-
metrically by estimating a Riemannian metric that captures local behavior of
the data, and probabilistically by estimating unknown parameters of the metric
using maximum likelihood. First we set the stage with background informa-
tion on manifold learning (Sect. 1.1) and geometry (Sect. 1.2), followed by an
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 38–46, 2017.
https://doi.org/10.1007/978-3-319-68445-1_5
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exposition of our model (Sect. 2) and the proposed maximum likelihood scheme
(Sect. 3). Finally results are presented (Sect. 4) and discussed (Sect. 5).

1.1 Background and Related Work

Given observations x1:N = {x1, . . . ,xN} in R
D, the key task in manifold learning

is to estimate a data representation that reflect the nonlinear structure of the
original data. The intuition behind most methods for this was phrased by Saul
and Roweis [18] as “Think Globally, Fit Locally”, practically meaning that locally
linear models are fitted to all points in data space and these then are merged to
a global representation (details depend on the method).

The Isomap method [20] famously replace Euclidean distances with geodesic
distances defined on a neighborhood graph and then embed the data in a lower
dimensional space where Euclidean distances approximate the geodesic coun-
terparts. While this approach is popular, its discrete nature only describes the
observed data points and consequently cannot be used to develop probabilistic
generative models. Similar comments hold for other graph-based methods [2,18].

As a smooth alternative, Lawrence [16] proposed a probabilistic extension
of standard surface models by assuming that each dimension of the data is
described as xd = fd(z), where z is a low-dimensional latent variable and fd is a
Gaussian process. The latent variables then provide a low-dimensional parame-
trization that capture the manifold structure. Tosi et al. [21] give this a geometric
interpretation by deriving the distribution of the induced Riemannian pull-back
metric and show how geodesics can be computed under this uncertain metric.

Often manifold learning is viewed as a form of dimensionality reduction,
but this need not be the case. Hauberg et al. [12] suggest to model the local
behavior of the data manifold via a locally-defined Riemannian metric, which is
constructed by interpolating a set of pre-trained metric tensors at a few select
points in data space. Once a Riemannian metric is available existing tools can be
used for dimensionality reduction [8,11,22], mixture modeling [1,19], tracking
[13,14], hypothesis testing [17], transfer learning [9] and more. Our approach
follow this line of work.

1.2 The Basics of Riemannian Geometry

For completeness we start with an informal review of Riemannian manifolds, but
refer the reader to standard text books [5] for a more detailed exposition.

Definition 1. A smooth manifold M together with a Riemannian metric M :
M → R

D×D and M � 0 is called a Riemannian manifold. The Riemannian
metric M encodes a smoothly changing inner product 〈u,M(x)v〉 on the tangent
space u,v ∈ TxM of each point x ∈ M.

Since the Riemannian metric M(x) acts on tangent vectors it may be inter-
preted as a standard Mahalanobis metric restricted to an infinitesimal region
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around x. This local inner product is a suitable model for capturing local behav-
ior of data, i.e. manifold learning. Shortest paths (geodesics) are then length-
minimizing curves connecting two points x,y ∈ M, i.e.

γ̂ = argmin
γ

∫ 1

0

√
〈γ′(t),M(γ(t))γ′(t)〉dt, s.t. γ(0) = x, γ(1) = y. (1)

Here M(γ(t)) is the metric tensor at γ(t), and the tangent vector γ′ denotes
the derivative (velocity) of γ. The distance between x and y is defined as the
length of the geodesic. Geodesic can be found as the solution to a system of 2nd

order ordinary differential equations (ODEs):

γ′′(t) = −1
2
M−1(γ(t))

[
∂vec[M(γ(t))]

∂γ(t)

]ᵀ
(γ′(t) ⊗ γ′(t)) (2)

subject to γ(0) = x, γ(1) = y. Here vec[·] stacks the columns of a matrix into
a vector and ⊗ is the Kronecker product.

This differential equation allows us to define basic operations on the manifold.
The exponential map at a point x takes a tangent vector v ∈ TxM to y =
Expx(v) ∈ M such that the curve γ(t) = Expx(t · v) is a geodesic originating
at x with initial velocity v and length ‖v‖. The inverse mapping, which takes y
to TxM is known as the logarithm map and is denoted Logx(y). By definition
‖Logx(y)‖ corresponds to the geodesic distance from x to y. The exponential
and the logarithmic map can be computed by solving Eq. 2 numerically, as an
initial value problem or a boundary value problem respectively.

2 A Locally Adaptive Normal Distribution

We have previously provided a simple nonparametric manifold learning scheme
that conceptually mimics a local principal component analysis [1]. At each point
x ∈ R

D a local covariance matrix is computed and its inverse then specify a
local metric. For computational efficiency and to prevent overfitting we restrict
ourselves to diagonal covariances

Mdd(x) =

(
N∑

n=1

wn(x)(xnd − xd)2 + ρ

)−1

, (3)

wn(x) = exp

(
−‖xn − x‖22

2σ2

)
. (4)

Here the subscript d is the dimension, n corresponds to the given data,
and ρ is a regularization parameter to avoid singular covariances. The weight-
function wn(x) changes smoothly such that the resulting metric is Rie-
mannian. It is easy to see that if x is outside of the support of the data,
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Fig. 1. Example geodesics.

then the metric tensor is large. Thus, geodesics are
“pulled” towards the data where the metric is small
(see Fig. 1).

The weight-function wn(x) depends on a para-
meter σ that effectively determine the size of the
neighborhood used to define the data manifold.
Small values of σ gives a manifold with high curva-
ture, while a large σ gives an almost flat manifold.
The main contribution of this paper is a systematic
approach to determine this parameter.

For a given metric (and hence σ), we can esti-
mate data distributions with respect to this metric. We consider Riemannian
normal distributions [17]

pM(x | μ,Σ) =
1
C exp

(
−1

2
d2Σ(x,μ)

)
, x ∈ M (5)

and mixtures thereof. Here M denote the manifold induced by the
learned metric, μ and Σ are the mean and covariance, and d2Σ(x,μ) =
〈Logμ(x),Σ−1Logμ(x)〉. The normalization constant C is by definition

C(μ,Σ) =
∫

M
exp

(
−1

2
d2Σ(x,μ)

)
dM(x), (6)

Fig. 2. Example of the
locally adaptive normal dis-
tribution (LAND).

where dM(x) denotes the measure induced by the
Riemannian metric. Note that this measure depends
in σ. Figure 2 show an example of the resulting dis-
tribution under the proposed metric. As the distrib-
ution adapts locally to the data we coin it a locally
adaptive normal distribution (LAND).

Assuming that the data are generated from a dis-
tribution qM then commonly the mean μ and covari-
ance Σ are estimated with intrinsic least squares
(ILS)

μ̂ = argmin
μ∈M

∫
M

d2(μ,x)qM(x)dM(x), (7)

Σ̂ =
∫

Tµ̂M
Logμ̂(x)Logμ̂(x)ᵀpM(x)dM(x), (8)

where d2(·, ·) denotes the squared geodesic distance. These parameter esti-
mates naturally generalize their Euclidean counterparts, and they can be further
shown to have maximal likelihood when the manifold is also a symmet-
ric space [7]. For more general manifolds, like the ones under consid-
eration in this paper, these estimates do not attain maximal likelihood.
Figure 3 show both the ILS estimate of μ and the maximum likelihood
(ML) estimate. Since the ILS estimate falls outside the support of the data,
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Fig. 3. ML and ILS means.

a significantly larger covariance matrix is needed to
explain the data, which gives a poor likelihood. To
find the maximum likelihood parameters of μ and Σ
we perform steepest descent directly on the data log-
likelihood using an efficient Monte Carlo estimator of
the normalization constant C [1].

3 Maximum Likelihood Metric
Learning

Determining the optimal metric (parametrized by σ) is an open question. Since
the LAND is a parametric probabilistic model it is natural to perform this model
selection using maximum likelihood. The complete data log-likelihood is

L(σ) = −1
2

N∑
n=1

d2Σ(xn,μ) − N log C(μ,Σ). (9)

It is tempting to evaluate L(σ) for several values of σ and pick the one with
maximal likelihood. This, however, is both theoretically and practically flawed.

The first issue is that the measure dM(·) used to define the LAND depends
on σ. This imply that L(σ) cannot be compared for different values of σ as they
do not rely on the same measure. The second issue is that Logμ(xn) must be
evaluated numerically, which can become unstable when M has high curvature.
This imply that L(σ) can often not be fully evaluated when σ is small.

3.1 Likelihood Bounds to Cope with Numerical Instabilities

When numerical instabilities prevent us from evaluating L(σ) we instead rely on
an easy-to-evaluate lower bound L(σ). To derive this, let vn = Logμ(xn). Then
‖vn‖ is the geodesic distance between μ and xn, while vn/‖vn‖ is the initial
direction of the connecting geodesic. It is easy to provide an upper bound on the
geodesic distance by taking the length of a non-geodesic connecting curve, here
chosen as the straight line connecting μ and xn. The bound then becomes

‖vn‖ ≤ d̃n =
∫ 1

0

√
〈(xn − μ),M(txn + (1 − t)μ)(xn − μ)〉dt. (10)

The initial orientation vn/‖vn‖ influence the log-likelihood as the covariance Σ
is generally anisotropic. This is, however, easily bounded by picking the initial
direction as the eigenvector of Σ corresponding to the smallest eigenvalue λmin.
This then gives the final lower bound

L(σ) = −1
2

N∑
n=1

d̃2n
λmin

− N log C(μ,Σ). (11)

In practice, we only use the bound for data points x where the logarithm map
cannot be evaluated, and otherwise use the correct log-likelihood.
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3.2 Comparing Likelihoods

Since the measure dM(·) changes with σ we cannot directly compare L(σ) across
inputs. In order to make this comparison feasible, we propose to re-normalize
the LAND with respect to the usual Lebesgue measure of the data space R

D.
This amount to changing the applied measure in Eq. 6. As we lack closed-form
expressions, we perform this re-normalization using importance sampling [4]

C̃(μ,Σ) =
∫
RD

exp
(

−1
2
d2Σ(μ,x)

)
dx =

∫
RD

exp
(
− 1

2d2Σ(μ,x)
)

q(x)
q(x)dx (12)

≈ 1
S

S∑
s=1

ws exp
(

−1
2
d2Σ(μ,xs)

)
, xs ∼ q(x), ws =

1
q(xs)

, (13)

where q(x) is the proposal distribution from which we draw S samples. In our
experiments we choose q(x) = N (x|μ,Σ) with the linear mean and covariance
of the data. Thus, we ensure that the support of the proposal captures the data
manifold, but any other distribution with the desired properties can be used.

4 Results

Experimental setup: We evaluate the proposed method on both synthetic
and real data. The two-dimensional synthetic data is drawn from an arc-shaped
distribution (see Fig. 4c) [1]. We further consider features extracted from EEG
measurements during human sleep [1]; the digit “1” from MNIST; and the “Frey
faces”1. Both image modalities are projected onto their first two principal compo-
nents, and are separated into 10 and 5 folds respectively. To each data modality,
we fit a mixture of LANDs with K components.

Verification: First, we validate the importance sampling scheme in Fig. 4b
where we compare with an expensive numerical integration scheme on a prede-
fined grid. It is evident that importance sampling quickly gives a good approx-
imation to the true normalization constant. However, choosing the correct pro-
posal distribution is usually crucial for the success of the approximation [4].
Then, in Fig. 4c we show the impact of σ on the geodesic solution. When σ is
small (0.01) the true geodesic cannot be computed numerically and a straight
line is used to bound the likelihood (Sect. 3). For larger values of σ the geodesic
can be computed. Note that the geodesic becomes increasingly “straight” for
large values of σ.

Model selection: Figures 4d–g show the log-likelihood bound proposed in
Sect. 3 for all data sets. In particular, we can distinguish three different regions
for the σ parameter. (1) For small values of σ the manifold has high curva-
ture and some geodesics cannot be computed, such that the bound penalizes the
data log-likelihood. (2) There is a range of σ values where the construction of the

1 http://www.cs.nyu.edu/∼roweis/data.html.

http://www.cs.nyu.edu/~roweis/data.html
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Fig. 4. Experimental results on various data sets; see text for details.

manifold captures the actual underlying data structure, and in those cases we
achieve the best log-likelihood. (3) For larger values of σ the manifold becomes
flat, and even if we are able compute all the geodesics the likelihood is reduced.
The reason is that when the manifolds becomes flat, significant probability mass
is assigned to regions outside of the data support, while in the other case all the
probability mass is concentrated near the data resulting to higher likelihood.

5 Discussion

Probability density estimation in non-linear spaces is essential in data
analysis [6]. With the current work, we have proposed practical tools for
model selection of the metric underlying the locally adaptive normal distribu-
tion (LAND) [1]. The basic idea amounts to picking the metric that maximize
the data likelihood. A theoretical concern is that different metrics gives different
measures implying that likelihoods are not comparable. We have proposed to
solve this by re-normalizing according to the Lebesgue measure associated with
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the data space. Practically our idea face numerical challenges when the met-
ric has high curvature as geodesics then become unstable to compute. Here we
have proposed an easy-to-compute bound on the data likelihood, which has the
added benefit that metrics giving rise to numerical instabilities are penalized.
Experimental results on diverse data sets indicate that the approach is suitable
for model selection.

In this paper we have considered maximum likelihood estimation on the
training data, which can potentially overfit [10]. While we did not observe such
behavior in our experiments it is still worth investigating model selection on a
held-out test set or to put a prior on σ and pick the value that maximize the
posterior probability. Both choices are straight-forward.

An interesting alternative to bounding the likelihood appears when consid-
ering probabilistic solvers [15] for the geodesic equations (2). These represent
the numerical estimate of geodesics with a Gaussian process whose uncertainty
captures numerical approximation errors. Efficient algorithms then exist for
estimating the distribution of the geodesic arc length [3]. With these solvers,
hard-to-estimate geodesics will be associated with high variance, such that the
now-stochastic data log-likelihood also has high variance. Model selection should
then take this variance into account.
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LUM FONDEN. LKH was supported by the Novo Nordisk Foundation Interdiscipli-
nary Synergy Program 2014, ‘Biophysically adjusted state-informed cortex stimulation
(BASICS)’.

References

1. Arvanitidis, G., Hansen, L.K., Hauberg, S.: A locally adaptive normal distribution.
In: Advances in Neural Information Processing Systems (NIPS) (2016)

2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Comput. 15(6), 1373–1396 (2003)

3. Bewsher, J., Tosi, A., Osborne, M., Roberts, S.: Distribution of Gaussian process
arc lengths. In: AISTATS (2017)

4. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, New York (2006)

5. Carmo, M.: Riemannian Geometry. Birkhäuser, Boston (1992)
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Abstract. In this paper we are concerned with the approach to shape
analysis based on the so called Square Root Velocity Transform (SRVT).
We propose a generalisation of the SRVT from Euclidean spaces to shape
spaces of curves on Lie groups and on homogeneous manifolds. The main
idea behind our approach is to exploit the geometry of the natural Lie
group actions on these spaces.

Keywords: Shape analysis · Lie group · Homogeneous spaces · SRVT

Shape analysis methods have significantly increased in popularity in the last
decade. Advances in this field have been made both in the theoretical founda-
tions and in the extension of the methods to new areas of application. Originally
developed for planar curves, the techniques of shape analysis have been suc-
cessfully extended to higher dimensional curves, surfaces, activities, character
motions and a number of different types of digitalized objects.

In the present paper, shapes are unparametrized curves, evolving on a vector
space, on a Lie group, or on a manifold. Shape spaces and spaces of curves are
infinite-dimensional Riemannian manifolds, whose Riemannian metrics are the
crucial tool to compare and analyse shapes.

We are concerned with one particular approach to shape analysis, which is
based on the Square Root Velocity Transform (SRVT) [10]. On vector spaces,
the SRVT maps parametrized curves (i.e. smooth immersions) to appropriately
scaled tangent vector fields along them via

R : Imm([0, 1],Rd) → C∞([0, 1],Rd \ {0}), c �→ ċ
√‖ċ‖ . (1)

The transformed curves are then compared computing geodesics in the L2 met-
ric, and the scaling induces reparametrization invariance of the pullback metric.
Note that it is quite natural to consider an L2 metric directly on the original
parametrized curves. Constructing the L2 metric with respect to integration by
arc-length, one obtains a reparametrisation invariant metric. However, this met-
ric is unsuitable for our purpose as it leads to vanishing geodesic distance on
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 49–56, 2017.
https://doi.org/10.1007/978-3-319-68445-1_6
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the quotient shape space [6] and consequently also on the space of parametrised
curves [1]. This infinite-dimensional phenomenon prompted the investigation of
alternative, higher order Sobolev type metrics [7], which however can be compu-
tationally demanding. Since it allows geodesic computations via the L2 metric
on the transformed curves, the SRVT technique is computationally attractive.
It is also possible to prove that this algorithmic approach corresponds, at least
locally, to a particular Sobolev type metric, see [2,4].

We propose a generalisation of the SRVT to construct well-behaved Rie-
mannian metrics on shape spaces with values in Lie groups and homogeneous
manifolds. Our methodology is alternative to what was earlier proposed in [5,11]
and the main idea is, following [4], to take advantage of the Lie group acting
transitively on the homogeneous manifold. Since we want to compare curves, the
main tool here is an SRVT which transports the manifold valued curves into the
Lie algebra or a subspace of the Lie algebra.

1 SRVT for Lie Group Valued Shape Spaces

In the Lie group case, the obvious choice for this tangent space is of course the
Lie algebra g of the Lie group G. The idea is to use the derivative TeRg of the
right translation for the transport and measure with respect to a right-invariant
Riemannian metric.1 Instead of the ordinary derivative, one thus works with
the right-logarithmic derivative δr(c)(t) = TeRc(t)−1(ċ(t)) (here e is the identity
element of G) and defines an SRVT for Lie group valued curves as (see [4]):

R : Imm([0, 1], G) → C∞([0, 1], g \ {0}), c �→ δr(c)
√‖ċ‖ . (2)

We will use the short notation I = [0, 1] in what follows. Using tools from Lie
theory, we are then able to describe the resulting pullback metric on the space
P∗ of immersions c : [0, 1] → G which satisfy c(0) = e:

Theorem 1 (The Elastic metric on Lie group valued shape spaces [4]).
Let c ∈ P∗ and consider v, w ∈ TcP∗. The pullback of the L2-metric on C∞(I, g\
{0}) under the SRVT (2) to P∗ is given by the first order Sobolev metric:

Gc(v, w) =
∫

I

1
4

〈Dsv, uc〉 〈Dsw, uc〉
+ 〈Dsv − uc 〈Dsv, uc〉 ,Dsw − uc 〈Dsw, uc〉〉 ds,

(3)

where Dsv := Tcδ
r(v)/‖ċ‖, uc := δr(c)/‖δr(c)‖ is the unit tangent vector of δr(c)

and ds = ‖ċ(t)‖dt.
The geodesic distance of this metric descends to a nonvanishing metric on the
space of unparametrized curves. In particular, this distance is easy to compute
as one can prove [4, Theorem 3.16] that
1 Equivalently one could instead use left translations and a left-invariant metric here.
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Theorem 2. If dim g > 2, then the geodesic distance of C∞(I, g\{0}) is globally
given by the L2-distance. In particular, in this case the geodesic distance of the
pullback metric (3) on P∗ is given by

dP∗(c0, c1) :=

√∫

I

‖R(c0)(t) − R(c1)(t)‖2dt.

These tools give rise to algorithms which can be used in, among other things,
tasks related to computer animation and blending of curves, as shown in [4]. The
blending c(t, s) of two curves c0(t) and c1(t), t ∈ I, amounts simply to a convex
linear convex combination of their SRV transforms:

c(t, s) = R−1 (sR(c0(t)) + (1 − s)R(c1(t))) , s ∈ [0, 1].

Using the transformation of the curves to the Lie algebra by the SRVT, we also
propose a curve closing algorithm allowing one to remove discontinuities from
motion capturing data while preserving the general structure of the movement.
(See Fig. 1.)

Fig. 1. Application of closing algorithm to a cartwheel animation. Note the large dif-
ference between start and end poses, on the right and the left respectively. The motion
is repeated once and suffers from a strong jerk when it repeats, especially in the left
hand. In the second row, the curve closing method has been used to alleviate this
discontinuity.
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2 The Structure of the SRVT

Analysing the constructions for the square root velocity transform, e.g. (1)
and (2) or the generalisations proposed in the literature, every SRVT is com-
posed of three distinct building blocks. While two of these blocks can not be
changed, there are many choices for the second one (transport) in constructing
an SRVT:

– Differentiation: The basic building block of every SRVT, taking a curve to
its derivative.

– Transport: Bringing a curve into a common space of reference. In general
there are many choices for this transport2 (in our approach we use the Lie
group action to transport data into the Lie algebra of the acting group).

– Scaling: The second basic building block, assures reparametrization invari-
ance of the metrics obtained.

In constructing the SRVT, we advocate the use of Lie group actions for the
transport. This action allows us to transport derivatives of curves to our choice
of base point and to lift this information to a curve in the Lie algebra.

Other common choices for the transport usually arise from parallel transport
(cf. e.g. [5,11]). The advantage of using the Lie group action is that we obtain
a global transport, i.e. we do not need to restrict to certain open submanifolds
to make sense of the (parallel) transport.3 Last but not least, right translation
is in general computationally more efficient than computing parallel transport
using the original Riemannian metric on the manifold.

3 SRVT on Homogeneous Spaces

Our approach [3] for shape analysis on a homogeneous manifold M = G/H
exploits again the geometry induced by the canonical group action Λ : G ×
M → M. We fix a Riemannian metric on G which is right H-invariant, i.e. the
maps Rh for h ∈ H are Riemannian isometries. The SRVT is obtained using a
right inverse of the composition of the Lie group action with the evolution oper-
ator (i.e. the inverse of the right-logarithmic derivative) of the Lie group. If the
homogeneous manifold is reductive,4 there is an explicit way to construct this
right inverse. Identifying the tangent space at [e], the equivalence class of the
identity, via ωe : T[e]M → m ⊆ g with the reductive complement. Then we define

2 In the literature, e.g. [11], a common choice is parallel transport with respect to the
Riemannian structure.

3 The problem in these approaches arises from choosing curves along which the par-
allel transport is conducted. Typically, one wants to transport along geodesics to a
reference point and this is only well-defined outside of the cut locus (also cf. [8]).

4 Recall that a homogeneous space G/H is reductive if the Lie subalgebra h of H ⊆ G
admits a reductive complement, i.e. g = h⊕m, where m is a subvector space invariant
under the adjoint action of H.
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the map ω([g]) = Ad(g).ωe(TΛ(g−1, ·)[g]) (which is well-defined by reductivity)
and obtain a square root velocity transform for reductive homogeneous spaces as

R : Imm([0, 1],M) → C∞([0, 1], g \ {0}), c �→ ω ◦ ċ
√‖ω ◦ ċ‖ (4)

Conceptually this SRVT is somewhat different from the one for Lie groups, as
it does not establish a bijection between the manifolds of smooth mappings.
However, one can still use (4) to construct a pullback metric on the manifold of
curves to the homogeneous space by pulling back the L2 inner product of curves
on the Lie algebra through the SRVT. Different choices of Lie group actions will
give rise to different Riemannian metrics (with different properties).

4 Numerical Experiments

We present some results about the realisation of this metric through the SRVT
framework in the case of reductive homogeneous spaces. Further, our results are
illustrated in a concrete example. We compare the new methods for curves into
the sphere SO(3)/SO(2) with results derived from the Lie group case.

In the following, we use the Rodrigues’ formula for the Lie group exponential
exp: so(3) → SO(3),

exp(x̂) = I +
sin (α)

α
x̂ +

1 − cos (α)
α2

x̂2, α = ‖x‖2

and the corresponding formula for the logarithm log : SO(3) → so(3),

log(X) =
sin−1(‖y‖)

‖y‖ ŷ, X 
= I, X close to I,

are used, where ŷ = 1
2 (X − XT), and the relationship between x and x̂ is given

by the isomorphism between R
3 and so(3) known as the hat map

x =

⎛

⎝
x1

x2

x3

⎞

⎠ �→ x̂ =

⎛

⎝
0 −x3 x2

x3 0 −x1

−x2 x1 0

⎞

⎠ .

4.1 Lie Group Case

Consider a continuous curve z(t), t ∈ [t0, tN ], in SO(3). We approximate it by
z̄(t), interpolating between N + 1 values z̄i = z(ti), with t0 < t1 < ... < tN , as:

z̄(t) :=
N−1∑

i=0

χ[ti,ti+1)(t) exp
(

t − ti
ti+1 − ti

log
(
z̄i+1z̄

T
i

))
z̄i, (5)

where χ is the characteristic function.
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The SRVT (2) of z̄(t) is a piecewise constant function p̄(t) in so(3) with
values p̄i = p̄(ti), i = 0, ..., N − 1, found by

p̄i =
ηi√‖ηi‖

, ηi =
log(z̄i+1z̄

T
i )

ti+1 − ti
.

The inverse R−1 : so(3) → SO(3) is then given by (5), with the discrete points

z̄i+1 = exp (‖p̄i‖p̄i)z̄i, i = 1, ..., N − 1, z̄0 = z(t0).

4.2 Homogeneous Manifold Case

As an example of the homogeneous space case, consider the curve c(t) on
the sphere SO(3)/SO(2) (i.e. S2), which we approximate by c̄(t), interpolating
between the N + 1 values c̄i = c(ti):

c̄(t) :=
N−1∑

i=0

χ[ti,ti+1)(t) exp
(

t − ti
ti+1 − ti

(
vic̄

T
i − c̄iv

T
i

))
c̄i, (6)

where vi are approximations to d
dt

∣∣
t=ti

c(t) found by solving the equations

c̄i+1 = exp
(
vic̄

T
i − c̄iv

T
i

)
c̄i, (7)

constrained by vT
i c̄i = 0. (8)

Observing that if κ = c̄i×vi, then κ̂ = vic̄
T
i − c̄iv

T
i , and assuming that the sphere

has radius 1, we have by (8) that ‖c̄i × vi‖2 = ‖c̄i‖2‖vi‖2 = ‖vi‖2. By (7) we get

c̄i+1 =
sin (‖vi‖2)

‖vi‖2 vi + cos (‖vi‖2)c̄i.

Calculations give c̄Ti c̄i+1 = 1 − cos (‖vi‖2) and ‖vi‖2 = arccos
(
c̄Ti c̄i+1

)
, leading

to vi =
(
c̄i+1 − c̄Ti c̄i+1c̄i

) arccos (c̄Ti c̄i+1)√
1−(c̄Ti c̄i+1)2

, which we insert into (6) to get

c̄(t) =
N−1∑

i=0

χ[ti,ti+1)(t) exp

⎛

⎝ t − ti
ti+1 − ti

arccos
(
c̄Ti c̄i+1

)

√
1 − (

c̄Ti c̄i+1

)2
(
c̄i+1c̄

T
i − c̄ic̄

T
i+1

)
⎞

⎠c̄i.

(9)
The SRVT (4) of c̄(t) is a piecewise constant function q̄(t) in so(3), taking values
q̄i = q̄(ti), i = 0, ..., N − 1, where

q̄i = R(c̄i) =
ac̄i(vi)

‖ac̄i(vi)‖ 1
2

=
vic̄

T
i − c̄iv

T
i

‖vic̄Ti − c̄ivT
i ‖ 1

2

=
arccos

1
2

(
c̄Ti c̄i+1

)

(
1 − (

c̄Ti c̄i+1

)2) 1
4 ‖c̄i+1c̄Ti − c̄ic̄Ti+1‖

1
2

(
c̄i+1c̄

T
i − c̄ic̄

T
i+1

)
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The inverse of this SRVT is given by (9), with the discrete points found as in
the Lie group case by c̄i+1 = exp (‖q̄i‖q̄i)c̄i and c̄0 = c(t0).

As an alternative, we define the reductive SRVT [3] by

Rm(c̄i) := R([U,U⊥]Ti c̄i),

(a) From left to right: Two curves on the sphere, their original parametrizations,
the reparametrization minimizing the distance in SO(3) and the reparametrization
minimizing the distance in S2, using the reductive SRVT.

(b) The interpolated curves at times θ =
{

1
4
, 1
2
, 3
4

}
, from left to right, before

reparametrization, on S2 (blue line) and SO(3) (yellow line).

(c) The interpolated curves at times θ =
{

1
4
, 1
2
, 3
4

}
, from left to right, after reparametriza-

tion, on S2 (blue line) and SO(3) (yellow line).

Fig. 2. Interpolation between two curves on S2, with and without reparametrization,
obtained by the reductive SRVT. The results are compared to the corresponding SRVT
interpolation between curves on SO(3). The SO(3) curves are mapped to S2 by multi-
plying with the vector (0, 1, 1)T/

√
2. (Colour figure online)
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where [U,U⊥]i+1 = exp (ac̄i(vi))[U,U⊥]i for i = 0, ..., N − 1, and [U,U⊥]0 can
be found e.g. by QR-factorization of c(t0).

In Fig. 2 we show instants of the computed geodesic in the shape space of
curves on the sphere between two curves c̄1 and c̄2, using the reductive SRVT.
We compare this to the geodesic between the curves z̄1 and z̄2 in SO(3) which
when mapped to S2 gives c̄1 and c̄2. We show the results obtained before and
after reparametrization. In the latter case, a dynamic programming algorithm,
see [9], was used to reparametrize the curve c̄2(t) such that its distance to c̄1(t),
measured by taking the L2 norm of q̄1(t)− q̄2(t) in the Lie algebra, is minimized.
The various instances of the geodesics between c̄1(t) and c̄2(t) are found by
interpolation,

c̄int(c̄1, c̄2, θ) = R−1 ((1 − θ)R(c̄1) + θ R(c̄2)) , θ ∈ [0, 1].
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Abstract. This paper is concerned with the computation of an opti-
mal matching between two manifold-valued curves. Curves are seen as
elements of an infinite-dimensional manifold and compared using a Rie-
mannian metric that is invariant under the action of the reparameteriza-
tion group. This group induces a quotient structure classically interpreted
as the “shape space”.We introduce a simple algorithmallowing to compute
geodesics of the quotient shape space using a canonical decomposition of
a path in the associated principal bundle. We consider the particular case
of elastic metrics and show simulations for open curves in the plane, the
hyperbolic plane and the sphere.

Keywords: Optimal matching · Manifold-valued curves · Elastic metric

1 Introduction

A popular way to compare shapes of curves is through a Riemannian framework.
The set of curves is seen as an infinite-dimensional manifold on which acts the
group of reparameterizations, and is equipped with a Riemannian metric G that
is invariant with respect to the action of that group. Here we consider the set
of open oriented curves in a Riemannian manifold (M, 〈·, ·〉) with velocity that
never vanishes, i.e. smooth immersions,

M = Imm([0, 1],M) = {c ∈ C∞([0, 1],M) : c′(t) �= 0 ∀t ∈ [0, 1]}.

It is an open submanifold of the Fréchet manifold C∞([0, 1],M) and its tangent
space at a point c is the set of infinitesimal vector fields along the curve c in M ,

TcM = {w ∈ C∞([0, 1], TM) : w(t) ∈ Tc(t)M ∀t ∈ [0, 1]}.

A curve c can be reparametrized by right composition c ◦ ϕ with an increasing
diffeomorphism ϕ : [0, 1] → [0, 1], the set of which is denoted by Diff+([0, 1]). We
consider the quotient space S = M/Diff+([0, 1],M), interpreted as the space of
“shapes” or “unparameterized curves”. If we restrict ourselves to elements of M
on which the diffeomorphism group acts freely, then we obtain a principal bundle
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 57–64, 2017.
https://doi.org/10.1007/978-3-319-68445-1_7
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π : M → S, the fibers of which are the sets of all the curves that are identical
modulo reparameterization, i.e. that project on the same “shape” (Fig. 1). We
denote by c̄ := π(c) ∈ S the shape of a curve c ∈ M. Any tangent vector
w ∈ TcM can then be decomposed as the sum of a vertical part wver ∈ Verc,
that has an action of reparameterizing the curve without changing its shape,
and a horizontal part whor ∈ Horc = (Verc)

⊥G , G-orthogonal to the fiber,

TcM 	 w = wver + whor ∈ Verc ⊕ Horc,

Verc = ker Tcπ = {mv := mc′/|c′| : m ∈ C∞([0, 1],R),m(0) = m(1) = 0} ,

Horc = {h ∈ TcM : Gc(h,mv) = 0, ∀m ∈ C∞([0, 1],R),m(0) = m(1) = 0} .

If we equip M with a Riemannian metric Gc : TcM × TcM → R, c ∈ M, that
is constant along the fibers, i.e. such that

Gc◦ϕ(w ◦ ϕ, z ◦ ϕ) = Gc(w, z), ∀ϕ ∈ Diff+([0, 1]), (1)

then there exists a Riemannian metric Ḡ on the shape space S such that π is a
Riemannian submersion from (M, G) to (S, Ḡ), i.e.

Gc(whor, zhor) = Ḡπ(c) (Tcπ(w), Tcπ(z)) , ∀w, z ∈ TcM.

This expression defines Ḡ in the sense that it does not depend on the choice
of the representatives c, w and z ([4], Sect. 29.21). If a geodesic for G has a
horizontal initial speed, then its speed vector stays horizontal at all times - we
say it is a horizontal geodesic - and projects on a geodesic of the shape space for
Ḡ ([4], Sect. 26.12). The distance between two shapes for Ḡ is given by

d̄ (c0, c1) = inf
{

d (c0, c1 ◦ ϕ) | ϕ ∈ Diff+([0, 1])
}

.

Solving the boundary value problem in the shape space can therefore be achieved
either through the construction of horizontal geodesics e.g. by minimizing the
horizontal path energy [1,7], or by incorporating the optimal reparameteriza-
tion of one of the boundary curves as a parameter in the optimization prob-
lem [2,6,8]. Here we introduce a simple algorithm that computes the horizontal
geodesic linking an initial curve with fixed parameterization c0 to the closest
reparameterization c1 ◦ϕ of the target curve c1. The optimal reparameterization
ϕ yields what we will call an optimal matching between the curves c0 and c1.

2 The Optimal Matching Algorithm

We want to compute the geodesic path s �→ c̄(s) between the shapes of two
curves c0 and c1, that is the projection c̄ = π(ch) of the horizontal geodesic
s �→ ch(s) - if it exists - linking c0 to the fiber of c1 in M, see Fig. 1. This
horizontal path verifies ch(0) = c0, ch(1) ∈ π−1(c1) and ∂ch/∂s(s) ∈ Horch(s)

for all s ∈ [0, 1]. Its end point gives the optimal reparameterization c1 ◦ ϕ of the
target curve c1 with respect to the initial curve c0, i.e. such that

d̄(c0, c1) = d(c0, c1 ◦ ϕ) = d(c0, ch(1)).
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Fig. 1. Schematic representation of the shape bundle.

In all that follows we identify a path of curves [0, 1] 	 s �→ c(s) ∈ M with
the function of two variables [0, 1] × [0, 1] 	 (s, t) �→ c(s, t) ∈ M and denote
by cs := ∂c/∂s and ct := ∂c/∂t its partial derivatives with respect to s and
t. We decompose any path of curves s �→ c(s) in M into a horizontal path
reparameterized by a path of diffeomorphisms, i.e. c(s) = chor(s) ◦ ϕ(s) where
chor
s (s) ∈ Horchor(s) and ϕ(s) ∈ Diff+([0, 1]) for all s ∈ [0, 1]. That is,

c(s, t) = chor(s, ϕ(s, t)) ∀s, t ∈ [0, 1]. (2)

The horizontal and vertical parts of the speed vector of c can be expressed in
terms of this decomposition. Indeed, by taking the derivative of (2) with respect
to s and t we obtain

cs(s) = chor
s (s) ◦ ϕ(s) + ϕs(s) · chor

t (s) ◦ ϕ(s), (3a)

ct(s) = ϕt(s) · chor
t (s) ◦ ϕ(s), (3b)

and so if vhor(s, t) := chor
t (s, t)/|chor

t (s, t)| denotes the normalized speed vector
of chor, (3b) gives since ϕt > 0, v(s) = vhor(s) ◦ ϕ(s). We can see that the
first term on the right-hand side of Eq. (3a) is horizontal. Indeed, for any m :
[0, 1] → C∞([0, 1],R) such that m(s, 0) = m(s, 1) = 0 for all s, since G is
reparameterization invariant we have

G
(
chor
s (s) ◦ ϕ(s), m(s) · v(s)

)
= G

(
chor
s (s) ◦ ϕ(s), m(s) · vhor(s) ◦ ϕ(s)

)

= G
(
chor
s (s), m(s) ◦ ϕ(s)−1 · vhor(s)

)

= G
(
chor
s (s), m̃(s) · vhor(s)

)
,

with m̃(s) = m(s) ◦ ϕ(s)−1. Since m̃(s, 0) = m̃(s, 1) = 0 for all s, the vector
m̃(s) ·vhor(s) is vertical and its scalar product with the horizontal vector chor

s (s)
vanishes. On the other hand, the second term on the right hand-side of Eq. (3a)
is vertical, since it can be written

ϕs(s) · chor
t ◦ ϕ(s) = m(s) · v(s),
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with m(s) = |ct(s)|ϕs(s)/ϕt(s) verifying m(s, 0) = m(s, 1) = 0 for all s. Finally,
the vertical and horizontal parts of the speed vector cs(s) are given by

cs(s)ver = m(s) · v(s) = |ct(s)|ϕs(s)/ϕt(s) · v(s), (4a)

cs(s)hor = cs(s) − m(s) · v(s) = chor
s (s) ◦ ϕ(s). (4b)

We call chor the horizontal part of the path c with respect to G.

Proposition 1. The horizontal part of a path of curves c is at most the same
length as c

LG(chor) ≤ LG(c).

Proof. Since the metric G is reparameterization invariant, the squared norm of
the speed vector of the path c at time s ∈ [0, 1] is given by, if ‖ · ‖2G := G(·, ·),

‖cs(s, ·)‖2G = ‖chor
s (s, ϕ(s, ·))‖2G + |ϕs(s, ·)|2‖chor

t (s, ϕ(s, ·)‖2G
= ‖chor

s (s, ·)‖2G + |ϕs(s, ·)|2‖chor
t (s, ·)‖2G,

This gives ‖chor
s (s)‖G ≤ ‖cs(s)‖ for all s and so LG(chor) ≤ LG(c).

Now we will see how the horizontal part of a path of curves can be computed.

Proposition 2 (Horizontal part of a path). Let s �→ c(s) be a path in M.
Then its horizontal part is given by chor(s, t) = c(s, ϕ(s)−1(t)), where the path
of diffeomorphisms s �→ ϕ(s) is solution of the PDE

ϕs(s, t) = m(s, t)/|ct(s, t)| · ϕt(s, t), (5)

with initial condition ϕ(0, ·) = Id, and where m(s) : [0, 1] → R, t �→ m(s, t) :=
|cver

s (s, t)| is the vertical component of cs(s).

Proof. This is a direct consequence of Eq. (4a), which states that the vertical
part of cs(s) is m(s) · v(s) where m(s) = |ct(s)|ϕs(s)/ϕt(s).

If we take the horizontal part of the geodesic linking two curves c0 and c1, we
will obtain a horizontal path linking c0 to the fiber of c1 which will no longer
be a geodesic path. However this path reduces the distance between c0 and the
fiber of c1, and gives a “better” representative c̃1 = c1 ◦ϕ(1) of the target curve.
By computing the geodesic between c0 and this new representative c̃1, we are
guaranteed to reduce once more the distance to the fiber. The algorithm that
we propose simply iterates these two steps and is detailed in Algorithm 1.

3 Example: Elastic Metrics

In this section we consider the particular case of the two-parameter family of
elastic metrics, introduced for plane curves by Mio et al. in [5]. We denote by ∇
the Levi-Civita connection of the Riemannian manifold M , and by ∇tw := ∇ctw,
∇2

t w := ∇ct∇ctw the first and second order covariant derivatives of a vector field
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Data: c0, c1 ∈ M
Result: c̃1
Set c̃1 ← c1 and Gap ← 2 × Threshold;
while Gap > Threshold do

construct the geodesic s �→ c(s) between c0 and c̃1;

compute the horizontal part s �→ chor(s) of c;

set Gap ← distL2
(
chor(1), c̃1

)
and c̃1 ← chor(1);

end
Algorithm 1. Optimal matching.

w along a curve c of parameter t. For manifold-valued curves, elastic metrics can
be defined for any c ∈ TcM and w, z ∈ TcM by

Ga,b
c (w, z) = 〈w(0), z(0)〉 +

∫ 1

0

(
a2〈∇�w

N ,∇�z
N 〉 + b2〈∇�w

T ,∇�z
T 〉) d�, (6)

where d� = |c′(t)|dt and ∇� = 1
|c′(t)|∇t respectively denote integration and

covariant derivation according to arc length. In the following section, we will
show simulations for the special case a = 1 and b = 1/2: for this choice of coef-
ficients, the geodesic equations are easily numerically solved [3] if we adopt the
so-called square root velocity representation [6], in which each curve is repre-
sented by the pair formed by its starting point and speed vector renormalized
by the square root of its norm. Let us characterize the horizontal subspace for
Ga,b, and give the decomposition of a tangent vector.

Proposition 3 (Horizontal part of a vector for an elastic metric). Let
c ∈ M be a smooth immersion. A tangent vector h ∈ TcM is horizontal for the
elastic metric (6) if and only if it verifies the ordinary differential equation

(
(a/b)2 − 1

) 〈∇th,∇tv〉 − 〈∇2
t h, v〉 + |c′|−1〈∇tc

′, v〉〈∇th, v〉 = 0. (7)

The vertical and horizontal parts of a tangent vector w ∈ TcM are given by

wver = mv, whor = w − mv,

where the real function m ∈ C∞([0, 1],R) verifies m(0) = m(1) = 0 and

m′′ − 〈∇tc
′/|c′|, v〉m′ − (a/b)2|∇tv|2m (8)

= 〈∇t∇tw, v〉 − (
(a/b)2 − 1

) 〈∇tw,∇tv〉 − 〈∇tc
′/|c′|, v〉〈∇tw, v〉.

Proof. Let h ∈ TcM be a tangent vector. It is horizontal if and only if it is
orthogonal to any vertical vector, that is any vector of the form mv with m ∈
C∞([0, 1],R) such that m(0) = m(1) = 0. We have ∇t(mv) = m′v + m∇tv
and since 〈∇tv, v〉 = 0 we get ∇t(mv)N = m∇tv and ∇t(mv)T = m′v. Since
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m(0) = 0 the non integral part vanishes and the scalar product is written

Ga,b
c (h,mv) =

∫ 1

0

(
a2m〈∇th,∇tv〉 + b2m′〈∇th, v〉) |c′|−1dt

=
∫ 1

0

a2m〈∇th,∇tv〉|c′|−1dt −
∫ 1

0

b2m
d

dt

(〈∇th, v〉|c′|−1
)
dt

=
∫ 1

0

m/|c′|
(
(a2 − b2)〈∇th,∇tv〉−b2〈∇t∇th, v〉 + b2〈∇tc

′, v〉〈∇th, v〉|c′|−1
)
dt,

where we used integration by parts. The vector h is horizontal if and only if
Ga,b

c (h,mv) = 0 for all such m, and so we obtain the desired equation. Now
consider a tangent vector w and a real function m : [0, 1] → R such that m(0) =
m(1) = 0. Then w − mv is horizontal if and only if it verifies the ODE (7).
Noticing that 〈∇tv, v〉 = 0, 〈∇t∇tv, v〉 = −|∇tv|2 and ∇t∇t(mv) = m′′v +
2m′∇tv + m∇t∇tv, we easily get the desired equation.

This allows us to characterize the horizontal part of a path of curves for Ga,b.

Proposition 4 (Horizontal part of a path for an elastic metric). Let
s �→ c(s) be a path in M. Then its horizontal part is given by chor(s, t) =
c(s, ϕ(s)−1(t)), where the path of diffeomorphisms s �→ ϕ(s) is solution of the
PDE

ϕs(s, t) = m(s, t)/|ct(s, t)| · ϕt(s, t), (9)

with initial condition ϕ(0, ·) = Id, and where m(s) : [0, 1] → R, t �→ m(s, t) is
solution for all s of the ODE

mtt − 〈∇tct/|ct|, v〉mt − (a/b)2|∇tv|2m (10)

= 〈∇t∇tcs, v〉 − (
(a/b)2 − 1

) 〈∇tcs,∇tv〉 − 〈∇tct/|ct|, v〉〈∇tcs, v〉.

Proof. This is a direct consequence of Propositions 2 and 3.

We numerically solve the PDE of Proposition 4 using Algorithm 2.

Data: path of curves s �→ c(s)
Result: path of diffeomorphisms s �→ ϕ(s)
for k = 1 to n do

estimate the derivative ϕt(
k
n
, ·);

solve ODE (10) using a finite difference method to obtain m( k
n
, ·);

set ϕs(
k
n
, t) ← m( k

n
, t)/|ct( k

n
, t)| · ϕt(

k
n
, t) for all t;

propagate ϕ( k+1
n

, t) ← ϕ( k
n
, t) + 1

n
ϕs(

k
n
, t) for all t;

end
Algorithm 2. Decomposition of a path of curves.
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4 Simulations

We test the optimal matching algorithm for the elastic metric with parameters
a = 2b = 1 - for which all the formulas and tools to compute geodesics are avail-
able [3] - and for curves in the plane, the hyperbolic half-plane H2 and the sphere
S
2. The curves are discretized and geodesics are computed using a discrete geo-

desic shooting method presented in detail in [3]. Useful formulas and algorithms
in H

2 and S
2 are available in [3] and [8] respectively. Figure 2 shows results of

the optimal matching algorithm for a pair of segments in H
2. We consider 5

different combinations of parameterizations of the two curves, always fixing the
parameterization of the curve on the left-hand side while searching for the opti-
mal reparameterization of the curve on the right-hand side. On the top row, the
points are “evenly distributed” along the latter, and on the bottom row, along
the former. For each set of parameterizations, the geodesic between the initial
parameterized curves (more precisely, the trajectories taken by each point) is
shown in blue, and the horizontal geodesic obtained as output of the optimal
matching algorithm is shown in red. The two images on the bottom right cor-
ner show their superpositions, and their lengths are displayed in Table 1, in the
same order as the corresponding images of Fig. 2. We can see that the horizontal
geodesics redistribute the points along the right-hand side curve in a way that
seems natural: similarly to the distribution of the points on the left curve. Their
superposition shows that the underlying shapes of the horizontal geodesics are
very similar, which is not the case of the initial geodesics. The horizontal geo-
desics are always shorter than the initial geodesics, as expected, and have always
approximatively the same length. This common length is the distance between
the shapes of the two curves. The same exercise can be carried out on spherical
curves (Fig. 3) and on plane curves, for which we show the superposition of the
geodesics and horizontal geodesics between different parameterizations in Fig. 4.
The execution time varies from a few seconds to a few minutes, depending on the
curves and the ambient space: the geodesics between plane curves are computed
using explicit equations whereas for curves in a nonlinear manifold, we use a
time-consuming geodesic shooting algorithm.

Fig. 2. Geodesics between parameterized curves (blue) and corresponding horizontal
geodesics (red) in the hyperbolic half-plane, and their superpositions. (Color figure
online)
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Fig. 3. Initial and horizontal geodesics between spherical parameterized curves.

Fig. 4. Superposition of the initial (blue) and horizontal (red) geodesics obtained for
different sets of parameterizations of three pairs of plane curves. (Color figure online)

Table 1. Length of the geodesics of the hyperbolic half-plane shown in Fig. 2.

0.6287 0.5611 0.6249 0.5633 0.5798 0.5608

0.7161 0.5601 0.7051 0.5601
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Abstract. The theory of shape optimization problems constrained by
partial differential equations is connected with the differential-geometric
structure of the space of smooth shapes.

1 Introduction

A lot of real world problems can be reformulated as shape optimization prob-
lems which are constrained by partial differential equations (PDEs), see, for
instance, [6,16]. The subject of shape optimization is covered by several funda-
mental monographs (cf. [5,20]). In recent work, PDE constrained shape opti-
mization problems are embedded in the framework of optimization on shape
spaces. Finding a shape space and an associated metric is a challenging task
and different approaches lead to various models. One possible approach is to
define shapes as elements of a Riemannian manifold as proposed in [11]. In [12],
a survey of various suitable inner products is given, e.g., the curvature weighted
metric and the Sobolev metric. From a theoretical point of view this is attrac-
tive because algorithmic ideas from [1] can be combined with approaches from
differential geometry. In [17], shape optimization is considered as optimization
on a Riemannian shape manifold which contains smooth shapes, i.e., shapes
with infinitely differentiable boundaries. We consider exactly this manifold in
the following.

A well-established approach in shape optimization is to deal with shape deriv-
atives in a so-called Hadamard form, i.e., in the form of integrals over the surface,
as well as intrinsic shape metrics (cf. [13,20]). Major effort in shape calculus has
been devoted towards such surface expressions (cf. [5,20]), which are often very
tedious to derive. Along the way, volume formulations appear as an interme-
diate step. Recently, it has been shown that this intermediate formulation has
numerical advantages, see, for instance, [3,6,14]. In [9], also practical advan-
tages of volume shape formulations have been demonstrated. E.g., they require
less smoothness assumptions. Furthermore, the derivation as well as the imple-
mentation of volume formulations require less manual and programming work.
However, volume integral forms of shape derivatives require an outer metric on
the domain surrounding the shape boundary. In [18], both points of view are
harmonized by deriving a metric from an outer metric. Efficient shape optimiza-
tion algorithms based on this metric, which reduce the analytical effort so far
involved in the derivation of shape derivatives, are proposed in [18,19].

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 65–72, 2017.
https://doi.org/10.1007/978-3-319-68445-1_8
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The main aim of this paper is to explain how shape calculus can be combined
with geometric concepts of the space of smooth shapes and to outline how this
combination results in efficient optimization techniques. This paper reports on
ongoing work and has the following structure. A short overview of basics concepts
in shape optimization is given in Sect. 2. Afterwards, in Sect. 3, we do not only
introduce the space of smooth shapes, but we also consider the surface and
volume form of shape derivatives and summarize the way from shape derivatives
to entire optimization algorithms in this shape space for each formulation.

2 A Brief Introduction in Shape Optimization

In this section, we set up notation and terminology of basic shape optimization
concepts. For a detailed introduction into shape calculus, we refer to [5,20].

Shape optimization deals with shape functionals, which are defined as a func-
tions J : A → R, Ω �→ J(Ω) with A ⊂ {Ω : Ω ⊂ D}, where D denotes a
non-empty subset of R

d. One of the main focuses of shape optimization is to
solve shape optimization problems. A shape optimization problem is given by
minΩ J(Ω), where J is a shape functional. When J depends on a solution of a
PDE, we call the shape optimization problem PDE constrained. To solve PDE
constrained shape optimization problems, we need their shape derivatives:

Let D be as above. Moreover, let {Ft}t∈[0,T ] be a family of mappings
Ft : D → R

d such that F0 = id, where D denotes the closure of D and
T > 0. This family transforms the domain Ω into new perturbed domains
Ωt := Ft(Ω) = {Ft(x) : x ∈ Ω} with Ω0 = Ω and the boundary Γ of Ω into
new perturbed boundaries Γt := Ft(Γ ) = {Ft(x) : x ∈ Γ} with Γ0 = Γ. Such a
transformation can be described, e.g., by the perturbation of identity, which is
defined by Ft(x) := x + tV (x), where V denotes a sufficiently smooth vector
field.

Definition 1. Let D ⊂ R
d be open, where d ≥ 2 is a natural number. Moreover,

let k ∈ N ∪ {∞}, let Ω ⊂ D be measurable and let Ωt denote the perturbed
domains defined above. The Eulerian derivative of a shape functional J at Ω in
direction V ∈ Ck

0 (D,Rd) is defined by

DJ(Ω)[V ] := lim
t→0+

J(Ωt) − J(Ω)
t

. (1)

If for all directions V ∈ Ck
0 (D,Rd) the Eulerian derivative (1) exists and the

mapping G(Ω) : Ck
0 (D,Rd) → R, V �→ DJ(Ω)[V ] is linear and continuous, the

expression DJ(Ω)[V ] is called the shape derivative of J at Ω in direction V ∈
Ck
0 (D,Rd). In this case, J is called shape differentiable of class Ck at Ω.

There are a lot of options to prove shape differentiability of shape function-
als, e.g., the min-max approach [5], the chain rule approach [20], the Lagrange
method of Céa [4] and the rearrangement method [7]. Note that there are cases
where the method of Céa fails (cf. [15]). A nice overview about these approaches
is given in [21].
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In many cases, the shape derivative arises in two equivalent notational forms:

DJΩ [V ] :=
∫

Ω

RV (x) dx (volume formulation) (2)

DJΓ [V ] :=
∫

Γ

r(s)〈V (s), n(s)〉ds (surface formulation) (3)

Here r ∈ L1(Γ ) and R is a differential operator acting linearly on the vector field
V with DJΩ [V ] = DJ(Ω)[V ] = DJΓ [V ]. Surface expressions of shape derivatives
are often very tedious to derive. Along the way, volume formulations appear as
an intermediate step. These volume expressions are preferable over surface forms.
This is not only because of saving analytical effort, but also due to additional
regularity assumptions, which usually have to be required in order to transform
volume into surface forms, as well as because of saving programming effort. In
the next section, it is outlined how shape calculus and in particular surface as
well as volume shape derivatives can be combined with geometric concepts of
the space of smooth shapes.

3 Shape Calculus Combined with Geometric Concepts
of the Space of Smooth Shapes

In this section, we analyze the connection of Riemannian geometry on the space
of smooth shapes to shape optimization. Moreover, we summarize the way from
shape derivatives to entire optimization algorithms in the space of smooth shapes
for both, surface and volume shape derivative formulations.

First, we introduce the space of smooth shapes. In [11], the set of all two-
dimensional smooth shapes is characterized by

Be(S1,R2) := Emb(S1,R2)/Diff(S1),

i.e., the orbit space of Emb(S1,R2) under the action by composition from the
right by the Lie group Diff(S1). Here Emb(S1,R2) denotes set of all embeddings
from the unit circle S1 into the plane R

2 and Diff(S1) is the set of all diffeo-
morphisms from S1 into itself. In [8], it is proven that Be(S1,R2) is a smooth
manifold. For the sake of completeness it should be mentioned that the shape
space Be(S1,R2) together with appropriate inner products is even a Riemannian
manifold. In [12], a survey of various suitable inner products is given. Note that
the shape space Be(S1,R2) and its theoretical results can be generalized to
higher dimensions (cf. [10]). The tangent space TcBe(S1,R2) is isomorphic to
the set of all smooth normal vector fields along c ∈ Be(S1,R2), i.e.,

TcBe(S1,R2) ∼= {
h : h = αn, α ∈ C∞(S1)

}
, (4)

where n denotes the exterior unit normal field to the shape boundary c such that
n(θ) ⊥ cθ(θ) for all θ ∈ S1, where cθ = ∂c

∂θ denotes the circumferential derivative.
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Due to the Hadamard Structure Theorem given in [20, Theorem 2.27], there
exists a scalar distribution r on the boundary Γ of the domain Ω under consid-
eration. If we assume r ∈ L1(Γ ), the shape derivative can be expressed on the
boundary Γ of Ω (cf. (3)). The distribution r is often called the shape gradient.
However, note that gradients depend always on chosen scalar products defined
on the space under consideration. Thus, it rather means that r is the usual
L2-shape gradient. If we want to optimize on the shape manifold Be, we have
to find a representation of the shape gradient with respect to an appropriate
inner product. This representation is called the Riemannian shape gradient and
required to formulate optimization methods in Be.

In order to deal with surface formulations of shape derivatives in opti-
mization techniques, e.g., the Sobolev metric is an appropriate inner product.
Of course, there are a lot of further metrics on Be (cf. [12]), but the Sobolev
metric is the most suitable choice for our applications. One reason for this is that
the Riemannian shape gradient with respect to g1 acts as a Laplace-Beltrami
smoothing of the usual L2-shape gradient (cf. Definition 2). Thus, in the fol-
lowing, we consider the first Sobolev metric g1 on the shape space Be. It is
given by

g1 : TcBe(S1,R2) × TcBe(S1,R2) → R, (h, k) �→
∫

S1
〈(I − Ac)α, β〉 ds,

where h = αn, k = βn denote elements of the tangent space TcBe(S1,R2),
A > 0 and c denotes the Laplace-Beltrami operator on the surface c. For the
definition of the Sobolev metric g1 in higher dimensions we refer to [2].

Now, we have to detail the Riemannian shape gradient with respect to g1.
The shape derivative can be expressed as

DJΓ [V ] =
∫

Γ

αr ds (5)

if V
∂Ω

= αn. In order to get an expression of the Riemannian shape gradient

with respect to the Sobolev metric g1, we look at the isomorphism (4). Due to this
isomorphism, a tangent vector h ∈ TΓ Be is given by h = αn with α ∈ C∞(Γ ).
This leads to the following definition.

Definition 2. The Riemannian shape gradient of a shape differentiable objective
function J in terms of the Sobolev metric g1 is given by

grad(J) = qn with (I − AΓ )q = r,

where Γ ∈ Be, A > 0, q ∈ C∞(Γ ) and r is the L2-shape gradient given in (3).

The Riemannian shape gradient is required to formulate optimization methods in
the shape space Be. In the setting of PDE constrained shape optimization prob-
lems, a Lagrange-Newton method is obtained by applying a Newton method to
find stationary points of the Lagrangian of the optimization problem. In con-
trast to this method, which requires the Hessian in each iteration, quasi-Newton
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methods only need an approximation of the Hessian. Such an approximation is
realized, e.g., by a limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update. In a limited-memory BFGS method, a representation of the shape gra-
dient with respect to the Sobolev metric g1 has to be computed and applied
as a Dirichlet boundary condition in the linear elasticity mesh deformation. We
refer to [17] for the limited-memory BFGS method in Be. In Fig. 1, the entire
optimization algorithm for the limited-memory BFGS case is summarized. Note
that this method boils down to a steepest descent method by omitting the com-
putation of the BFGS-update. This method only needs the gradient—but not
the Hessian—in each iteration.

Fig. 1. Entire optimization algorithm based on surface expressions and g1.

One possible approach to use volume formulations of shape derivatives is to
consider Steklov-Poincaré metrics. In order to define these metrics, let us consider
a compact domain Ω ⊂ X ⊂ R

d with Ω �= ∅ and C∞-boundary Γ := ∂Ω,
where X denotes a bounded domain with Lipschitz-boundary Γout := ∂X. In
particular, this means Γ ∈ Be(Sd−1,Rd). In this setting, the Steklov-Poincaré
metric is defined by

gS : H1/2(Γ ) × H1/2(Γ ) → R, (α, β) �→
∫

Γ

α(s) · [(Spr)−1β](s) ds.

Here Spr denotes the projected Poincaré-Steklov operator which is given by

Spr : H−1/2(Γout) → H1/2(Γout), α �→ (γ0U)T n,

where γ0 : H1
0 (X,Rd) → H1/2(Γout,R

d), U �→ U
Γout

and U ∈ H1
0 (X,Rd) solves

the Neumann problem

a(U, V ) =
∫

Γout

α · (γ0V )T n ds ∀V ∈ H1
0 (X,Rd)

with a(·, ·) being a symmetric and coercive bilinear form.
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Due to isomorphism (4) and expression (5), we can state the connection of
Be with respect to gS to shape calculus:

Definition 3. Let r denote the L2-shape gradient given in (3). Moreover, let
Spr and γ0 be as above. A representation h ∈ TΓ Be

∼= C∞(Γ ) of the shape
gradient in terms of gS is determined by

gS(φ, h) = (r, φ)L2(Γ ) ∀φ ∈ C∞(Γ ),

which is equivalent to
∫

Γ

φ(s) · [(Spr)−1h](s) ds =
∫

Γ

r(s)φ(s) ds ∀φ ∈ C∞(Γ ). (6)

The definition of the shape gradient with respect to Steklov-Poincaré metric
enables the formulation of optimization methods in Be which involve volume
formulations of shape derivatives. From (6) we get h = Sprr = (γ0U)T n, where
U ∈ H1

0 (X,Rd) solves

a(U, V ) =
∫

Γ

r · (γ0V )T n ds = DJΓ [V ] = DJΩ [V ] ∀V ∈ H1
0 (X,Rd).

We get the gradient representation h and the mesh deformation U all at
once. In each iteration, we have to solve the so-called deformation equation
a(U, V ) = b(V ) for all test functions V in the optimization algorithm, where
b(·) is a linear form and given by b(V ) := DJvol(Ω)[V ] + DJsurf(Ω)[V ]. Here
Jsurf(Ω) denotes parts of the objective function leading to surface shape deriv-
ative expressions. It is incorporated as a Neumann boundary condition. Parts
of the objective function leading to volume shape derivative expressions are
denoted by Jvol(Ω). Note that from a theoretical point of view the volume and
surface shape derivative formulations have to be equal to each other for all test
functions. Thus, DJvol[V ] is assembled only for test functions V whose support
includes Γ .

Figure 2 summarizes the entire optimization algorithm in the setting of the
Steklov-Poincaré metric and, thus, in the case of volume shape derivative expres-
sions. This algorithm is very attractive from a computational point of view. The
computation of a representation of the shape gradient with respect to the chosen
inner product of the tangent space is moved into the mesh deformation itself.
The elliptic operator is used as an inner product and a mesh deformation. This
leads to only one linear system, which has to be solved. In shape optimization one
usually computes a descent direction as a deformation of the variable boundary.
Note that this method also boils down to a steepest descent method by omitting
the computation of the BFGS-update. In contrast to the algorithm based on the
Sobolev metric (cf. Fig. 1), the metric used here interprets the descent direction
as a volumetric force within the FE grid. For more details about this approach
and in particular the implementation details we refer to [18,19].
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Fig. 2. Entire optimization algorithm based on volume formulations and gS .

4 Conclusion

The differential-geometric structure of the space of smooth shapes is applied to
the theory of PDE constrained shape optimization problems. In particular, a
Riemannian shape gradient with respect to the Sobolev metric and the Steklov-
Poincaré metric are defined. If we consider Sobolev metrics, we have to deal
with surface formulations of shape derivatives. An intermediate and equivalent
result in the process of deriving surface forms is the volume expression, which is
preferable over surface forms. One possible approach to use volume forms is to
consider Steklov-Poincaré metrics. The gradients with respect to both, g1 and
gS , open the door to formulate optimization algorithms in the space of smooth
shapes.
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Abstract. In this article we develop in the case of triangulated meshes
the notion of normal cycle as a dissimilarity measure introduced in [13].
Our construction is based on the definition of kernel metrics on the space
of normal cycles which take explicit expressions in a discrete setting. We
derive the computational setting for discrete surfaces, using the Large
Deformation Diffeomorphic Metric Mapping framework as model for
deformations. We present experiments on real data and compare with
the varifolds approach.

1 Introduction

The field of computational anatomy focuses on the analysis of datasets composed
of anatomical shapes through the action of deformations on these shapes. The key
algorithm in this framework is the estimation of an optimal deformation which
matches any two given shapes. This problem is most of the time formulated as
the minimization of a functional composed of two terms. The first one is an
energy term which enforces the regularity of the deformation. The second one is
a data-fidelity term which measures a remaining distance between the deformed
shape and the target. This data attachment term is of importance since it drives
the registration and relaxes the constraint of exact matching.

In the case of shapes given as curves or surfaces, a framework based on
currents have been developed in [8,14] to provide a satisfying data attachment
term, which does not necessitate point correspondences. However, currents are
sensitive to orientation, and consequently insensitive to high curvature points of
the shapes, which can lead to incorrect matchings of these points, or boundaries
of shapes. To overcome this drawback, the varifold representation of shapes was
introduced in [4]. Such a representation is orientation-free, and thus overcomes
the difficulties experienced with currents. In [13], we developed a new data-
attachment term using the theory of normal cycles. The normal cycle of a shape
is the current associated with its normal bundle. It is orientation-free and encodes
curvature information of the shape. The general framework have been set in [13]
as well as the application to three dimensional curves.

In this article, we extend this framework to the case of surfaces. Section 2
focuses on the description of the normal bundle for a triangulation. When this
description is done, we will introduce kernel metrics on normal cycles, so that we
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have an explicit distance between shapes represented as normal cycles (Sect. 3).
In Sect. 4 we present some results of surface matching using the Large Deforma-
tion Diffeomorphic Metric Mapping (LDDMM) framework and kernel metrics
on normal cycles. We illustrate the properties of a matching with normal cycles,
as well as some limitations. Using parallel computations, we are able to pro-
vide examples on real data with a large number of points (around 6000 for
each shape).

2 Normal Cycle of a Triangulated Mesh

Normal Cycles. This section requires basics knowledge about currents. The
interested reader can see [5,7] for an approach in the field of computational ana-
tomy. Moreover, we only very briefly remind the mathematical notion of normal
cycle in this section, one should refer to [13] for a more extensive presentation.

Normal cycles are defined for sets with positive reach (see [6] for the original
definition). For such a set X ∈ R

d, one can consider its normal bundle NX , which
is the set of all (x, n), x ∈ X, with n unit normal vector at point x. Here the
notion of normal vector is considered in a generalized sense (see again [6]). For a
given point x ∈ X, we denote Noru(X,x) all the unit normal vectors of the set
X at this point. In the following, we denote Λd−1(Rd ×R

d) the space of (d − 1)-
vectors in R

d ×R
d and Ωd−1

0 (Rd ×Sd−1) := C0
(
R

d ×Sd−1, Λd−1(Rd ×R
d)∗) the

space of continuous (d − 1)-differential forms of Rd × Sd−1 vanishing at infinity,
endowed with the supremum norm.

Definition 1 (Normal cycle). The normal cycle of a positive reach set
X ⊂ R

d is the (d − 1)-current associated with NX with its canonical ori-
entation (independent of any orientation of X). For any differential form
ω ∈ Ωd−1

0 (Rd × Sd−1), one has:

N(X)(ω) := [NX ](ω) =
∫

NX

ω(x,n)(τNX
(x, n))dHd−1(x, n) (1)

The theory of normal cycles can be extended to the case of finite unions of
sets with positive reach, as done in [15], with the use of the following additive
property:

N(C ∪ S) := N(C) + N(S) − N(C ∩ S) (2)

This allows to define normal cycles for a very large class of subsets, in particular
for unions of triangles, which will be used in our discrete model.

Normal Cycle of a Triangle. Consider a single triangle T , with vertices
x1, x2, x3 and edges: f1 = x2 − x1, f2 = x3 − x2, f3 = x1 − x3. The normal
vectors of the face are: nT = f1×f2

|f1×f2| and −nT . The description of the normal
bundle of a triangle is quite straightforward. As illustrated in Fig. 1, it can be
decomposed into a planar part, composed of two triangles, a cylindrical part,
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composed of three “half” cylinders located at the edges, and a spherical part,
composed of three portions of sphere located at the vertices:

N p
T := ∪x∈T\∂T Noru(T, x) = T × {−nT , nt},

N c
T := ∪3

i=1[xi, xi+1] × S⊥+
fi,fi×nT

,

N s
T := ∪3

i=1{xi} × S+
fi−1,−fi+1

,

where for any non zero vectors α, β ∈ R
3, we denote the semicircle

S⊥+
α,β =

(
S2 ∩ α⊥)

∩ {u| 〈u, β〉 ≥ 0}, and the portion of sphere S+
α,β :={

u ∈ S2, 〈u, α〉 ≥ 0, 〈u, β〉 ≥ 0
}
.

Fig. 1. Illustration of the decomposition of the normal bundle of a triangle into a
planar (in purple), a cylindrical (in blue) and a spherical (in yellow) parts. Note that
the actual normal bundle lives in R

3 × S2 (Color figure online)

Normal Cycle of a Triangulated Mesh. Let T be a triangulated mesh, which
we define as a finite union of triangles T = ∪nT

i=1Ti such that the intersection
of any two triangles is either empty or a common edge. The normal cycle of a
triangulated mesh is defined using the additive formula (2) as a combination of
normal cycles of its faces (triangles), edges (segments) and vertices (points). All
these elements further decompose into planar, cylindrical and spherical parts.

3 Kernel Metrics on Normal Cycles with Constant
Normal Kernel

Construction of the Kernel Metric. As detailed in [13], we use the frame-
work of Reproducing Kernel Hilbert Spaces (RKHS) to define a metric between
normal cycles. The kernel has the form

KW : (R3 × S2)2 → L
(
Λ2(R3 × R

3)
)

((x, u), (y, v)) 
→ kp(x, y)kn(u, v)IdΛ2(R3×R3),
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This defines a RKHS W , and under some regularity conditions on the kernels
([13], Proposition 25), we have W ↪→ Ω2

0(R
3×S2), and thus, Ω2

0(R
3×S2)′ ⊂ W ′.

The corresponding metric on W ′ can be used as a data attachment term for
shapes represented as normal cycles. In this work, for simplicity and efficiency
reasons, we consider the following normal kernel: kn(u, v) = 1 (constant kernel).
Other simple and interesting choices will be kn(u, v) = 〈u, v〉 (linear kernel) or
kn(u, v) = 1 + 〈u, v〉, but we keep them for future work.

The expression of scalar product between two normal cycles N(C) and N(S),
associated with shapes S and C is then:

〈N(C), N(S)〉W ′ =

∫
NC

∫
NS

kp(x, y) 〈τNC (x, u), τNS (y, v)〉 dH2(x, u)dH2(y, v), (3)

for the constant kernel, where τNC
(x, u) ∈ Λ2(R3 ×R

3) is a 2-vector associated
with an orthonormal basis of T(x,u)NC , positively oriented.

Scalar Product Associated with the Kernel Metric for Discrete
Surfaces. Let T = ∪n

i=1Ti and T ′ = ∪m
i=1T

′
i be two triangulated meshes. As

explained in Sect. 2, we decompose the two corresponding normal cycles into
combinations of planar, cylindrical and spherical parts which, as was proven in
[13], are orthogonal with respect to the kernel metric. Moreover, we approximate
integrations over triangles and edges by a single evaluation at the center of these
elements. This is equivalent to approximate in the space of currents the cylin-
drical and planar part by Dirac functionals as explained in [13], Sect. 3.2.2. For
integrations over the sphere however, we can get simple analytic formulas for
the integrations with our choice of kernel. The new approximations in the space
of currents are denoted Ñ(T ) and Ñ(T ′). We do not further detail the calculus
of the different integrations over the normal bundle and express only the result
obtained:
〈
Ñ(T ), Ñ(T ′)

〉
W ′

=
∑

f edge of the
border of T

∑
g edge of the
border of T ′

π2

4

(
kp(x

1
f , y1

g) + kp(x
2
f , y2

g) − kp(x
2
f , y1

g) − kp(x
1
f , y2

g)
)〈 f

|f |
,

g

|g|

〉

+

F∑
i=1

G∑
j=1

4kp(ci, dj) 〈fi, gj〉
〈 ∑

{T |fi edge of T}
nT,fi ,

∑

{T ′|gj edge of T ′}
nT ′,gj

〉
,

(4)
where

– x1
f and x2

f are the two vertices of f with f = x2
f − x1

f .
– ci (resp. dj) is the middle of the edge fi (resp. gj).
– nT,fi

is the normal vector of the triangle T such that nT,fi
× fi is oriented

inward for the triangle T .

Let us make a few remarks here. First, we recall that the previous expression
does not necessitate a coherent orientation for the mesh.
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Secondly, even with a constant kernel kn for the normal part, the metric is
sensitive to curvature. Indeed, for an edge f , the cylindrical part of the scalar
product involves scalar products between normal vectors of the adjacent triangles
which are required quantities to compute the discrete mean curvature.

Another interesting feature to notice is that the scalar product involves a
specific term for the boundary which will enforce the matching of the bound-
aries of the shapes. The fact that the boundary has a special behaviour for the
normal cycle metric is not surprising. Indeed a normal cycle encodes generalized
curvature information of the shape. Hence, the boundary corresponds to a sin-
gularity of the curvature and has a specific behaviour in the kernel metric. We
will see in Sect. 4 that this feature is of interest for a matching purpose.

4 Results

We used the Large Deformation Diffeomorphic Metric Mapping (LDDMM)
framework (see for example [1,2,12]) in our experiments to model deforma-
tions of the ambient space. We emphasize here that this choice of framework
is not mandatory, and that other registration models could be used together
with our normal cycle data attachment term. We used the discrete formula-
tion of LDDMM via initial momentum parametrization and a geodesic shooting
algorithm [1,12]. For the optimization of the functional we used a quasi Newton
Broyden Fletcher Goldfarb Shanno algorithm with limited memory (L-BFGS)
[11]. The step in the descent direction is fixed by a Wolfe line search. For the
numerical integrations of geodesic and backward equations, a Runge-Kutta (4,5)
scheme is used (function ode45 in Matlab). In order to improve the computa-
tional cost, the convolution operations involved are done with parallel computing
on a graphic card. The CUDA mex files using GPU are included in the MATLAB
body program. The algorithm is run until convergence with a stopping criterion
on the norm of the successive iterations, with a tolerance of 10−6.

For all the following matchings, the geometric kernel kp is a Gaussian kernel
of width σW , and kn is a constant kernel. The kernel KV is a sum of 4 Gaussian
kernels of decreasing sizes, in order to capture different features of the deforma-
tion (see [3]). The trade-off parameter γ is fixed at 0.1 for all the experiments.

The first example is a matching of two human hippocampi. Each shape has
around 7000 vertices. Three runs at different geometric kernel sizes are per-
formed (see Fig. 2). We can see that the final deformation matches well the two
hippocampi, even the high curved regions of the shape.

The second data set was provided by B. Charlier, N. Charon and M.F. Beg. It
is a set of retina layers from different subjects [10], which has been already used
for computational anatomy studies [9]. The retinas are surfaces of typical size
8 mm2. Each retina is sampled with approximately 5000 points. All the details
of the matching are in Fig. 3. The retinas have a boundary which will be seen
as a region with singularities for the kernel metric on normal cycles. This is not
the case for the varifolds metric which makes the matching of the corresponding
corners harder. The matching of the boundaries is better with normal cycles,
and provides a much more regular deformation (see Fig. 3).
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Fig. 2. Two views (profile and face) at times t = 0 and t = 1 of the matching of
two hippocampi with normal cycles. The target shape is in orange and the source
in blue. Each shape has 6600 points. Three runs at different geometric kernel sizes
are performed (σW = 25, 10, 5) and the kernel of deformation is a sum of Gaussian
kernels with σV = 10, 5, 2.5, 1.25 (the diameter of hippocampus is about 40 mm). Each
run ended respectively at 62, 66 and 48 iterations for a total time of 4076 s (23 s per
iteration). (Color figure online)

Fig. 3. Matching of two retinas with kernel metric on normal cycles (left) and varifolds
(right). The target shape is in orange and the source shape is in blue. Each shape
has 5000 points. For the varifolds metric, the geometric kernel is Gaussian and the
kernel on the Grassmanian is chosen linear. The same parameters are used for each
data attachment term. Three runs at different geometric kernel sizes are performed
(σW = 0.8, 0.4, 0.2). KV is a sum of Gaussian kernels with σV = 2.4, 1.2, 0.6, 0.3. For
normal cycles, each run ended respectively at 88, 297 and 5 iterations for a total time
of 5487 s (14 s/it). For varifolds, it was 55, 1 and 1 iterations for a total time of 2051 s
(35 s/it). (Color figure online)
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In the last example (Fig. 4), the two retinas are the result of an unsatisfactory
segmentation. This leads to artifacts in each retina: two triangles for the source
retina (in blue, Fig. 4) and only one for the target, in orange. These are regions
of high curvature and as we could expect, the kernel metric on normal cycles will
make a correspondence between those points. As we can see in the second row
of Fig. 4, the two triangles are crushed together, into one triangle, even though
the cost of the resulting deformation is high. This example shows how sensitive
to noise or artifacts normal cycles are.

Fig. 4. Matching of two retinas with normal cycles: the target (in orange) and the
source (in blue). Three runs at different geometric kernel sizes are performed (σW =
0.8, 0.4, 0.2). KV is a sum of Gaussian kernels with σV = 2.4, 1.2, 0.6, 0.3. The first row
shows the initial configuration. The second row shows the matching in the specific zone
delimited by the red rectangle. The metric on normal cycles enforces the matching of
corresponding high curvature points, which leads to the alignment of the two triangles
into the single one of the target. Each run ended respectively at 211, 90 and 202
iterations for a total time of 8114 s (16 s/it). (Color figure online)

5 Conclusion

In this article we extended to the case of surfaces the methodology introduced
in [13] for curve matching, based on the notion of normal cycle. Compared to
the representation of shapes with currents or varifolds, this model encodes the
curvature information of the surfaces. We define a scalar product between two
triangulations represented as normal cycles using the theory of reproducing ker-
nels. The intrinsic complexity of the model is simplified by using a constant
normal kernel for the metric. Even though it may seem rough, we do not get rid
of all curvature information of the shape, as it can be seen in Eq. (4) or in the
example showed in Figs. 3 and 4. Using parallel computing on GPU, we are able
to match two surfaces with a large number of points in a reasonable time, with
a descent algorithm that is run until convergence.
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The examples of this article show promising first results. For the retinas data
set, the weighting of the boundaries and corner points provided by the metric
on normal cycles allows a much more precise and regular deformation than with
varifolds. As a future work, it will be interesting to study more complex normal
kernels kn, as the linear kernel or a combination of a linear kernel and a constant
kernel. The exact type of curvatures (mean, Gaussian) that we are able to retrieve
with such kernels is not clear yet and should be investigated. We also would like
to work on data sets were the refinement of normal cycles is relevant.
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Paris 13 (2005)

8. Glaunès, J., Qiu, A., Miller, M., Younes, L.: Large deformation diffeomorphic met-
ric curve mapping. Int. J. Comput. Vision 80(3), 317–336 (2008)

9. Lee, S., Charon, N., Charlier, B., Popuri, K., Lebed, E., Sarunic, M., Trouvé, A.,
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Abstract. This paper is an overview of results that have been obtain in
[2] on the convex regularization of Wasserstein barycenters for random
measures supported on R

d. We discuss the existence and uniqueness of
such barycenters for a large class of regularizing functions. A stability
result of regularized barycenters in terms of Bregman distance associ-
ated to the convex regularization term is also given. Additionally we
discuss the convergence of the regularized empirical barycenter of a set
of n iid random probability measures towards its population counterpart
in the real line case, and we discuss its rate of convergence. This app-
roach is shown to be appropriate for the statistical analysis of discrete or
absolutely continuous random measures. In this setting, we propose an
efficient minimization algorithm based on accelerated gradient descent
for the computation of regularized Wasserstein barycenters.

Keywords: Wasserstein space · Fréchet mean · Barycenter of probabil-
ity measures · Convex regularization · Bregman divergence

1 Introduction

This paper is concerned by the statistical analysis of data sets whose elements
may be modeled as random probability measures supported on R

d. It is an
overview of results that have been obtain in [2]. In the special case of one dimen-
sion (d = 1), we are able to provide refined results on the study of a sequence
of discrete measures or probability density functions (e.g. histograms) that can
be viewed as random probability measures. Such data sets appear in various
research fields. Examples can be found in neuroscience [10], biodemographic and
genomics studies [11], economics [7], as well as in biomedical imaging [9]. In this
paper, we focus on first-order statistics methods for the purpose of estimating,
from such data, a population mean measure or density function.

The notion of averaging depends on the metric that is chosen to compare
elements in a given data set. In this work, we consider the Wasserstein distance
W2 associated to the quadratic cost for the comparison of probability measures.
Let Ω be a subset of Rd and P2(Ω) be the set of probability measures supported
on Ω with finite order second moment.
c© Springer International Publishing AG 2017
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Definition 1. As introduced in [1], an empirical Wasserstein barycenter ν̄n of
a set of n probability measures ν1, . . . , νn (not necessarily random) in P2(Ω) is
defined as a minimizer of

μ �→ 1
n

n∑

i=1

W 2
2 (μ, νi), over μ ∈ P2(Ω). (1)

The Wasserstein barycenter corresponds to the notion of empirical Fréchet mean
[6] that is an extension of the usual Euclidean barycenter to nonlinear metric
spaces.

However, depending on the data at hand, such a barycenter may be irregu-
lar. As an example let us consider a real data set of neural spike trains which
is publicly available from the MBI website1. During a squared-path task, the
spiking activity of a movement-encoded neuron of a monkey has been recorded
during 5 s over n = 60 repeated trials. Each spike train is then smoothed using a
Gaussian kernel (further details on the data collection can be found in [10]). For
each trial 1 ≤ i ≤ n, we let νi be the measure with probability density function
(pdf) proportional to the sum of these Gaussian kernels centered at the times
of spikes. The resulting data are displayed in Fig. 1(a). For probability measures
supported on the real line, computing a Wasserstein barycenter simply amounts
to averaging the quantile functions of the νi’s (see e.g. Sect. 6.1 in [1]). The pdf
of the Wasserstein barycenter ν̄n is displayed in Fig. 1(b). This approach clearly
leads to the estimation of a very irregular mean template density of spiking
activity.

In this paper, we thus introduce a convex regularization of the optimization
problem (1) for the purpose of obtaining a regularized Wasserstein barycenter.
In this way, by choosing an appropriate regularizing function (e.g. the nega-
tive entropy in Subsect. 2.1), it is of possible to enforce this barycenter to be
absolutely continuous with respect to the Lebesgue measure on R

d.

2 Regularization of Barycenters

We choose to add a penalty directly into the computation of the Wasserstein
barycenter in order to smooth the Fréchet mean and to remove the influence of
noise in the data.

Definition 2. Let Pν
n = 1

n

∑n
i=1 δνi

where δνi
is the dirac distribution at νi. We

define a regularized empirical barycenter μγ
Pν

n
of the discrete measure P

ν
n as a

minimizer of

μ �→ 1
n

n∑

i=1

W 2
2 (μ, νi) + γE(μ) over μ ∈ P2(Ω), (2)

where P2(Ω) is the space of probability measures on Ω with finite second order
moment, E : P2(Ω) → R+ is a smooth convex penalty function, and γ > 0 is a
regularization parameter.
1 http://mbi.osu.edu/2012/stwdescription.html.

http://mbi.osu.edu/2012/stwdescription.html
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Fig. 1. (a) A subset of 3 smoothed neural spike trains out of n = 60. Each row rep-
resents one trial and the pdf obtained by smoothing each spike train with a Gaussian
kernel of width 50ms. (b) Probability density function of the empirical Wasserstein
barycenter ν̄n for this data set.

In what follows, we present the main properties on the regularized empirical
Wasserstein barycenter μγ

Pν
n
.

2.1 Existence and Uniqueness

We consider the wider problem of

min
μ∈P2(Ω)

Jγ
P
(μ) =

∫
W 2

2 (μ, ν)dP(ν) + γE(μ). (3)

Hence, (2) corresponds to the minimization problem (3) where P is discrete i.e.
P = Pn = 1

n

∑n
i=1 δνi

.

Theorem 1 (Theorem 3.2 in [2]). Let E : P2(Ω) → R+ be a proper, lower
semicontinuous and differentiable function that is strictly convex on its domain
D(E) = {μ ∈ P2(Ω) such that E(μ) < +∞}. Then, the functional Jγ

P
define by

(3) admits a unique minimizer.

Such assumptions on E are supposed to be always satisfied throughout the paper.
A typical example of regularization function satisfying such assumptions is the
negative entropy defined as

E(μ) =

⎧
⎨

⎩

∫
Rd f(x) log(f(x))dx, if μ admits a density f with respect to

the Lebesgue measure dx on Ω,
+∞ otherwise.
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2.2 Stability

We study the stability of the minimizer of (3) with respect to the discrete dis-
tribution P

ν
n = 1

n

∑n
i=1 δνi

on P2(Ω). This result is obtained for the symmetric
Bregman distance dE(μ, ζ) between two measures μ and ζ. Bregman distances
associated to a convex penalty E are known to be appropriate error measures for
various regularization methods in inverse problems (see e.g. [4]). This Bregman
distance between two probability measures μ and ζ is defined as

dE(μ, ζ) := 〈∇E(μ) − ∇E(ζ), μ − ζ〉=
∫

Ω

(∇E(μ)(x)−∇E(ζ)(x))(dμ − dζ)(x),

where ∇E : Ω → R denotes the gradient of E. In the setting where E is the
negative entropy and μ = μf (resp. ζ = ζg) admits a density f (resp. g) with
respect to the Lebesgue measure, then dE is the symmetrised Kullback-Leibler
divergence

dE(μf , ζg) =
∫

(f(x) − g(x)) log
(

f(x)
g(x)

)
dx.

The stability result of the regularized empirical barycenter can then be stated
as follows.

Theorem 2 (Theorem 3.3 in [2]). Let ν1, . . . , νn and η1, . . . , ηn be two
sequences of probability measures in P2(Ω). If we denote by μγ

Pν
n

and μγ
P

η
n

the reg-
ularized empirical barycenter associated to the discrete measures Pν

n and P
η
n, then

the symmetric Bregman distance (associated to E) between these two barycenters
is bounded as follows

dE

(
μγ
Pν

n
, μγ

P
η
n

)
≤ 2

γn
inf

σ∈Sn

n∑

i=1

W2(νi, ησ(i)), (4)

where Sn denotes the permutation group of the set of indices {1, . . . , n}.
In particular, inequality (4) allows to compare the case of data made of n
absolutely continuous probability measures ν1, . . . , νn, with the more realis-
tic setting where we have only access to a dataset of random variables X =
(Xi,j)1≤i≤n; 1≤j≤pi

organized in the form of n experimental units, such that
Xi,1, . . . ,Xi,pi

are iid observations in R
d sampled from the measure νi for each

1 ≤ i ≤ n. If we denote by νpi
= 1

pi

∑pi

j=1 δXi,j the usual empirical measure
associated to νi, it follows from inequality (4) that

E

(
d2E

(
μγ
Pν

n
,μγ

X

))
≤ 4

γ2n

n∑

i=1

E
(
W 2

2 (νi,νpi
)
)
,

where μγ
X is given by μγ

X = argmin
μ∈P2(Ω)

1
n

∑n
i=1 W 2

2 (μ, 1
pi

∑pi

j=1 δXi,j
) + γE(μ).

This result allows to discuss the rate of convergence (for the symmetric squared
Bregman distance) of μγ

X to μγ
Pν

n
as a function of the rate of convergence (for the
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squared Wasserstein distance) of the empirical measure νpi
to νi for each 1 ≤

i ≤ n (in the asymptotic setting where p = min1≤i≤n pi is let going to infinity).
As an illustrative example, in the one-dimensional case (that is d = 1), one may
use the work in [3] on a detailed study of the variety of rates of convergence of
an empirical measure on the real line toward its population counterpart for the
expected squared Wasserstein distance. For example, by Theorem 5.1 in [3], it
follows that

E
(
W 2

2 (νi,νpi
)
) ≤ 2

pi + 1
J2(νi), with J2(νi) =

∫

Ω

Fi(x)(1 − Fi(x))
fi(x)

dx,

where fi is the pdf of νi, and Fi denotes its cumulative distribution function.
Therefore, provided that J2(νi) is finite for each 1 ≤ i ≤ n, one obtains the
following rate of convergence of μγ

X to μγ
Pν

n
(in the case of measures νi supported

on an interval Ω of R)

E

(
d2E

(
μγ
Pν

n
,μγ

X

))
≤ 8

γ2n

n∑

i=1

J2(νi)
pi + 1

≤ 8
γ2

(
1
n

n∑

i=1

J2(νi)

)
p−1. (5)

Note that by the results in Appendix A in [3], a necessary condition for J2(νi)
to be finite is to assume that fi is almost everywhere positive on the interval Ω.

2.3 Convergence to a Population Wasserstein Barycenter

Introducing this symmetric Bregman distance also allows to analyze the consis-
tency of the regularized barycenter μγ

Pn
as the number of observations n tends to

infinity and the parameter γ is let going to zero. When ν1, . . . ,νn are supposed
to be independent and identically distributed (iid) random measures in P2(Ω)
sampled from a distribution P, we analyze the convergence of μγ

Pν
n

with respect
to the population Wasserstein barycenter defined as

μ0
P

∈ argmin
μ∈P2(Ω)

∫
W 2

2 (μ, ν)dP(ν),

and its regularized version

μγ
P

= argmin
μ∈P2(Ω)

∫
W 2

2 (μ, ν)dP(ν) + γE(f).

In the case where Ω is a compact of Rd and ∇E(μ0
P
) is bounded, we prove that

μγ
P

converges to μ0
P

as γ → 0 for the Bregman divergence associated to E. This
result corresponds to showing that the bias term (as classically referred to in
nonparametric statistics) converges to zero when γ → 0. We also analyze the
rate of convergence of the variance term when Ω is a compact of R:

Theorem 3 (Theorem 4.5 in [2]). For Ω compact included in R, there exists
a constant C > 0 (not depending on n and γ) such that

E

(
d2E

(
μγ

Pν
n
, μγ

P

))
≤ C

γ2n
.
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Therefore, when ν1, . . . ,νn are iid random measures with support included in
a compact interval Ω, it follows that if γ = γn is such that limn→∞ γ2

nn = +∞
then

lim
n→∞E(d2E

(
μγ

Pν
n
, μ0

P
)
)

= 0.

3 Numerical Experiments

We consider a simulated example where the measures νi are discrete and sup-
ported on a small number pi of data points (5 ≤ pi ≤ 10). To this end, for
each i = 1, . . . , n, we simulate a sequence (Xij)1≤j≤pi

of iid random variables
sampled from a Gaussian distribution N (μi,σ

2
i ), and the μi’s (resp. σi) are

iid random variables such that −2 ≤ μi ≤ 2 and 0 ≤ σi ≤ 1 with E(μi) = 0
and E(σi) = 1/2. The target measure that we wish to estimate in these simula-
tions is the population (or true) Wasserstein barycenter of the random distrib-
ution N (μ1,σ

2
1) which is N (0, 1/4) thanks to the assumptions E(μ1) = 0 and

E(σ1) = 1/2. Then, let νi = 1
pi

∑pi

j=1 δXij , where δx is the Dirac measure at x.
In order to compute the regularized barycenter, we solve (3) with an efficient

minimization algorithm based on accelerated gradient descent (see [5]) for the
computation of regularized barycenters in 1-D (see Appendix C in [2]).

To illustrate the benefits of regularizing the Wasserstein barycenter of the
νi’s, we compare our estimator with the one obtained by the following procedure
which we refer to as the kernel method. In a preliminary step, each measure νi

is smoothed using a standard kernel density estimator to obtain

f̂ i,hi
(x) =

1
pihi

pi∑

j=1

K

(
x − Xij

hi

)
, x ∈ Ω,

where K is a Gaussian kernel. The bandwidth hi is chosen by cross-validation.
An alternative estimator is then defined as the Wasserstein barycenter of the
smoothed measures with density f̂1,h1

, . . . , f̂n,hn
. Thanks, to the well-know

quantile averaging formula, the quantile function F̄−1
n of this smoothed Wasser-

stein barycenter is given by F̄−1
n = 1

n

∑n
i=1 F−1

f̂ i,hi

where F−1
g denotes the quan-

tile function of a given pdf g. The estimator F̄−1
n corresponds to the notion of

smoothed Wasserstein barycenter of multiple point processes as considered in
[8]. The density of F̄−1

n is denoted by f̂n, and it is displayed in Fig. 2. Hence,
it seems that a preliminary smoothing of the νi followed quantile averaging is
not sufficient to recover a satisfactory Gaussian shape when the number pi of
observations per unit is small.

Alternatively, we have applied our algorithm directly on the (non-smoothed)
discrete measures νi to obtain the regularized barycenter fγ

Pn
defined as the min-

imizer of (2). For the penalty function E, we took either the negative entropy or
a Dirichlet regularization. The densities of the penalized Wasserstein barycenters
associated to these two choices for E and for different values of γ are displayed
as solid curves in warm colors in Fig. 2. For both penalty functions and despite a
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Fig. 2. Simulated data from Gaussian distributions with random means and variances.
In all the figures, the black curve is the density of the true Wasserstein barycenter.
The blue and dotted curve represents the pdf of the smoothed Wasserstein barycenter
obtained by a preliminary kernel smoothing step. Pdf of the regularized Wasserstein
barycenter μγ

Pn
(a) for 20 ≤ γ ≤ 50 with E(f) = ||f ′||2 (Dirichlet), and (b) for

0.08 ≤ γ ≤ 14 with E(f) =
∫

f log(f) (negative entropy). (Color figure online)

small number of observations per experimental units, the shape of these densities
better reflects the fact that the population Wasserstein barycenter is a Gaussian
distribution.

Finally, we provide Monte-Carlo simulations to illustrate the influence of the
number n = 100 of observed measures on the convergence of these estimators.
For a given 10 ≤ n0 ≤ n, we randomly draw n0 measures νi from the whole
sample, and we compute a smoothed barycenter via the kernel method and a
regularized barycenter for a chosen γ. For given value of n0, this procedure is
repeated 200 times, which allows to obtain an approximation of the expected

Fig. 3. Errors in terms of expected Bregman and Wasserstein distances between the
population barycenter and the estimated barycenters (kernel method in dashed blue,
regularized barycenter in red) for a sample of size n0 = 10, 25, 50 and 75. (Color figure
online)
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error E (d(μ̂, μP)) of each estimator μ̂, where d is either dE or W2. The penalty
used is a linear combinaison of Dirichlet and negative entropy functions. The
results are displayed in Fig. 3. It can be observed that our approach yields better
results than the kernel method for both types of error (using either the Bregman
or Wasserstein distance).

4 Conclusion

In this paper, we have summarize some of the results of [2]. We provide a study
on regularized barycenters in the Wasserstein space, which is of interest when the
data are irregular or for noisy probability measures. Future works will concern
the numerical computation and the study of the convergence to a population
Wasserstein barycenter for Ω ⊂ R

d.
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Abstract. We show that known Newton-type laws for Optimal Mass
Transport, Schrödinger Bridges and the classic Madelung fluid can be
derived from variational principles on Wasserstein space. The second
order differential equations are accordingly obtained by annihilating the
first variation of a suitable action.

Keywords: Kantorovich-Rubinstein metric · Calculus of variations ·
Displacement interpolation · Entropic interpolation · Schrödinger
bridge · Madelung fluid

1 Introduction

Continuous random evolutions which are critical for some suitable action occur
in many diverse fields of science. We have in mind, in particular, the follow-
ing three famous problems: The Benamou-Brenier formulation of the Optimal
Mass Transport (OMT) problem with quadratic cost [3], the Schrödinger Bridge
Problem (SBP) [44,45] and the quantum evolution of a nonrelativistic particle
in Madelung’s fluid (NSM) [24,31]. All three problems are considered in their
fluid-dynamic form. The flow of one-time marginals {μt; 0 ≤ t ≤ 1} of each
solution may be thought of as a curve in Wasserstein space.

It is known that SBP may be viewed as a “regularization” of OMT, the lat-
ter problem being recovered through a “zero-noise limit” [10,11,15,29,30,33–35].
Recently, it was shown by von Renesse [48], for the quantum mechanicalMadelung
fluid [24], and by Conforti [13], for the Schrödinger bridge, that their flows satisfy
suitable Newton-like laws in Wasserstein space. In [22], the foundations of a
Hamilton-Jacobi theory in Wasserstein space were laid.

In this paper, we outline some of the results of [14], where we show that the
solution flows of OMT, SBP and NSM may all be seen as extremal curves in
Wasserstein space of a suitable action. The actions only differ by the presence or
the sign of a (relative) Fisher information functional besides the kinetic energy
term. The solution marginals flows correspond to critical points, i.e. annihi-
late the first variation, of the respective functionals. The extremality conditions

c© Springer International Publishing AG 2017
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imply indeed the local form of Newton-type second laws in analogy to classi-
cal mechanics [25, p. 1777]. These are then interpreted in the frame of Otto’s
formal Riemannian calculus for optimal transport of probability measures as
second-order differential equations in Wasserstein space involving the covariant
derivative. Although some of these results are present in some form in the cited
literature, our goal here is to develop a coherent framework where an actual cal-
culus of variations on Wasserstein space can be developed for various significant
problems.

The paper is outlined as follows. In Sects. 2 and 3, we provide some essential
background on OMT and SBP, respectively. In Sect. 4, we obtain the second-
order differential equation from an extremality condition for the fluid-dynamic
version of the Schrödinger problem. The same is then accomplished for the
Madelung fluid - Nelson’s stochastic mechanics in Sect. 5.

2 Background on Optimal Mass Transport

The literature on this problem is by now vast. We refer the reader to the following
monographs and survey papers [1,2,18,39,41,43,46,47]. We shall only briefly
review some concepts and results which are relevant for the topics of this paper.

The optimal transport problem may be used to introduce a useful distance
between probability measures. Indeed, let P2(RN ) be the set of probability mea-
sures μ on R

N with finite second moment. For ν0, ν1 ∈ P2(RN ), the Kantorovich-
Rubinstein (Wasserstein) quadratic distance, is defined by

W2(ν0, ν1) =
(

inf
π∈Π(ν0,ν1)

∫
RN×RN

‖x − y‖2dπ(x, y)
)1/2

, (1)

where Π(ν0, ν1) are “couplings” of ν0 and ν1, namely probability distributions on
R

N ×R
N with marginals ν0 and ν1. As is well known [46, Theorem 7.3], W2 is a

bona fide distance. Moreover, it provides a most natural way to “metrize” weak
convergence1 in P2(RN ) [46, Theorem 7.12], [1, Proposition 7.1.5] (the same
applies to the case p ≥ 1 replacing 2 with p everywhere). The Wasserstein space
W2 is defined as the metric space

(P2(RN ),W2

)
. It is a Polish space, namely a

separable, complete metric space. A dynamic version of the OMT problem was
elegantly accomplished by Benamou and Brenier in [3] by showing that

W 2
2 (ν0, ν1) = inf

(μ,v)

∫ 1

0

∫
RN

‖v(x, t)‖2μt(dx)dt, (2a)

∂μ

∂t
+ ∇ · (vμ) = 0, (2b)

μ0 = ν0, μ1 = ν1. (2c)

Here the flow {μt; 0 ≤ t ≤ 1} varies over continuous maps from [0, 1] to P2(RN )
and v over smooth fields. In [47, Chap. 7], Villani provides some motivation to
1 μk converges weakly to μ if

∫
RN fdμk → ∫

RN fdμ for every continuous, bounded
function f .
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study the time-dependent version of OMT. Further reasons are the following. It
allows to view the optimal transport problem as an (atypical) optimal control
problem [7–11]. It provides a ground on which the Schrödinger bridge problem
appears as a regularization of the former [10,11,15,29,30,33–35]. Similarly with
the Madelung fluid, see below. In some applications, such as interpolation of
images [12] or spectral morphing [27], the interpolating flow is crucial.

Let {μ∗
t ; 0 ≤ t ≤ 1} and {v∗(x, t); (x, t) ∈ R

N × [0, 1]} be optimal for (2).
Then

μ∗
t = [(1 − t)I + t∇ϕ] #ν0,

with T = ∇ϕ solving Monge’s problem, provides, in McCann’s language, the dis-
placement interpolation between ν0 and ν1 (# denotes “push-forward”). Then
{μ∗

t ; 0 ≤ t ≤ 1} may be viewed as a constant-speed geodesic joining ν0 and ν1 in
Wasserstein space. This formally endows W2 with a kind of Riemannian struc-
ture. McCann discovered [32] that certain functionals are displacement convex,
namely convex along Wasserstein geodesics. This has led to a variety of applica-
tions. Following one of Otto’s main discoveries [28,38], it turns out that a large
class of PDE’s may be viewed as gradient flows on the Wasserstein space W2.
This interpretation, because of the displacement convexity of the functionals,
is well suited to establish uniqueness and to study energy dissipation and con-
vergence to equilibrium. A rigorous setting in which to make sense of the Otto
calculus has been developed by Ambrosio, Gigli and Savaré [1] for a suitable
class of functionals. Convexity along geodesics in W2 also leads to new proofs
of various geometric and functional inequalities [32], [46, Chap. 9]. The tangent
space of P2(RN ) at a probability measure μ, denoted by TμP2(RN ) [1] may be
identified with the closure in L2

μ of the span of {∇ϕ : ϕ ∈ C∞
c }, where C∞

c is
the family of smooth functions with compact support. It is equipped with the
scalar product of L2

μ.

3 Schrödinger Bridges and Entropic Interpolation

Let Ω = C([t0, t1]; RN ) be the space of R
N valued continuous functions. Let

W σ2

x denote Wiener measure on Ω with variance σ2IN starting at the point
x at time t0. If, instead of a Dirac measure concentrated at x, we give the
volume measure as initial condition, we get the unbounded measure on path
space W σ2

=
∫

RN W σ2

x dx. It is useful to introduce the family of distributions
P on Ω which are equivalent to it. Let P(ρ0, ρ1) denote the set of distributions
in P having the prescribed marginal marginals densities at t = 0 and t = 1,
respectively. Then, the Schrödinger bridge problem (SBP) with Wσ2

as “prior”
is the maximum entropy problem

Minimize H(P |W σ2
) = EP

[
log

dP

dW σ2

]
over P ∈ P(ρ0, ρ1). (3)

Conditions for existence and uniqueness for this problem and properties of
the minimizing measure (with general Markovian prior) have been studied
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by many authors, most noticeably by Fortet, Beurlin, Jamison and Föllmer
[4,20,21,26,29],[30, Proposition 2.5]. The solution P ∗ is called the Schrödinger
bridge from ρ0 to ρ1 over P [20]. We shall tacitly assume henceforth that they are
satisfied so that P ∗ is well defined. In view of Sanov’s theorem [42], solving the
maximum entropy problem is equivalent to a problem of large deviations of the
empirical distribution as showed by Föllmer [20] recovering Schrödinger’s orig-
inal motivation [44,45]. It has been observed since the early nineties that SBP
can be turned, thanks to Girsanov’s theorem, into a stochastic control prob-
lem with atypical boundary constraints, see [5,16,17,19,40]. The latter has a
fluid dynamic counterpart: When prior is W σ2

stationary Wiener measure with
variance σ2 2, the solution of the SBP with marginal densities ρ0 and ρ1 can
be characterized as the solution of the fluid-dynamic problem [10, p. 683], [23,
Corollary 5.8]:

inf
(ρ,v)

∫
Rn

∫ 1

0

[
1

2σ2
‖v(x, t)‖2 +

σ2

8
‖∇ log ρ(x, t)‖2

]
ρ(x, t)dtdx, (4a)

∂ρ

∂t
+ ∇ · (vρ) = 0, (4b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y), (4c)

Notice that the only difference from the Benamou-Brenier problem (2) is given
by an extra term in the action with the form of a Fisher Information functional

I(ρ) =
∫

Rn

‖∇ρ‖2

ρ
dx. (5)

4 Variational Analysis for the Fluid-Dynamic SBP

Let Pρ0ρ1 be the family of continuous flows of probability densities ρ =
{ρ(·, t); 0 ≤ t ≤ 1} satisfying (4c) and let V be the family of continuous feedback
control laws v(·, ·). Consider the unconstrained minimization over Pρ0ρ1 × V of
the Lagrangian

L(ρ, v;λ) =
∫

Rn

∫ 1

0

{[
1

2σ2
‖v(x, t)‖2 +

σ2

8
‖∇ log ρ(x, t)‖2

]
ρ(x, t)

+λ(x, t)
(

∂ρ

∂t
+ ∇ · (vρ)

)}
dtdx,

where λ is a C1 Lagrange multiplier. After integration by parts and discarding
the constant boundary terms, we get the problem of minimizing over Pρ0ρ1 × V

∫
Rn

∫ 1

0

[
1

2σ2
‖v(x, t)‖2 +

σ2

8
‖∇ log ρ(x, t)‖2 +

(
−∂λ

∂t
− ∇λ · v)

)]
ρ(x, t)dtdx.

(6)
2 The case of a general reversible Markovian prior is treated in [14] where all the

details of the variational analysis may also be found.
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Pointwise minimization with respect to v for a fixed flow in Pρ0ρ1 gives

v∗
ρ(x, t) = σ2∇λ(x, t), (7)

which is continuous. Plugging this into (6), we get to minimize over Pρ0ρ1

J(ρ) = −
∫

Rn

∫ 1

0

[
∂λ

∂t
+

σ2

2
‖∇λ‖2 − σ2

8
‖∇ log ρ‖2

]
ρdtdx. (8)

Setting the first variation of J in direction δρ equal to zero for all smooth vari-
ations vanishing at times t = 0 and t = 1, we get the extremality condition

∂λ

∂t
+

σ2

2
‖∇λ‖2 +

σ2

8
‖∇ log ρ‖2 +

σ2

4
Δ log ρ = 0. (9)

By (9), the convective derivative of v∗ in (7) yields the acceleration field

a∗(x, t) =
(

∂

∂t
+ v∗ · ∇

)
(v∗) (x, t) = −σ2∇

(
σ2

8
‖∇ log ρ‖2 +

σ2

4
Δ log ρ

)
.

(10)
The term appearing in the right-hand side of (10) may be viewed as a gradient
in Wasserstein space of the entropic part of the Lagrangian (4a), namely

− ∇
(

σ2

8
‖∇ log ρ‖2 +

σ2

4
Δ log ρ

)
= ∇W2

σ2

8
I(ρ). (11)

This relation can be found in [48, A.2] and [13]. Indeed, a calculation shows

d

dt

∫

Rn

‖∇ log ρ(x, t)‖2ρ(x, t)dx = −
∫

Rn

∇ [‖∇ log ρ‖2 + 2Δ log ρ
] · v(x, t)ρ(x, t)dx.

Finally, since v∗ is a gradient, it follows that the convective derivative a∗ is in
fact the covariant derivative ∇W2

μ̇ μ̇ for the smooth curve t → μt = ρ(x, t)dx, see
[48, A.3] and [2, Chap. 6]. Thus, (10) takes on the form of a Newton-type law
[13] on W2

∇W2
μ̇ μ̇ =

σ4

8
∇W2I(μ). (12)

In the case when σ2 ↘ 0, we recover in the limit that displacement interpolation
provides constant speed geodesics for which ∇W2

μ̇ μ̇ ≡ 0.

5 Optimal Transport and Nelson’s Stochastic Mechanics

There has been some interest in connecting optimal transport with Nelson’s
stochastic mechanics [6], [47, p. 707] or directly with the Madelung fluid [48].
Consider the case of a free non-relativistic particle of mass m (the case of a par-
ticle in a force field is treated similarly). Then, a variational principle leading to
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the Schrödinger equation, can be based on the Guerra-Morato action functional
[25] which, in fluid dynamic form, is

AGM =
∫ t1

t0

[∫
Rn

m

2
‖v(x, t)‖2ρt(x)dx − �

2

8m
I(ρt)

]
dt. (13)

For the Nelson process, we have σ2 = �/m. It can be derived directly from the
classical action [37]. Instead, the Yasue action [49] in fluid-dynamic form is

AY (t0, t1) =
∫ t1

t0

[∫
RN

m

2
‖v(x, t)‖2ρt(x)dx +

�
2

8m
I(ρt)

]
dt. (14)

In [6, p. 131], Eric Carlen poses the question of minimizing the Yasue action sub-
ject to the continuity equation (4b) for given initial and final marginals (4c). In
view of the formulation (4), we already know the solution: It is provided by Nel-
son’s current velocity [36] and the flow of one-time densities of the Schrödinger
bridge with (4c) and stationary Wiener measure as a prior. Finally observe that
the action in (4a) and 1

�
AGM only differ by the sign in front of the Fisher infor-

mation functional! Thus the variational analysis can be carried out as in the
previous section obtaining eventually the Newton-type law as in [48]

∇W2
μ̇ μ̇ = − �

2

m28
∇W2I(μ). (15)

6 Conclusion

We have outlined some of the results of [14] where the optimal evolutions for
OMT, SBP and NSM are shown to be critical curves for suitable actions. These
extremality conditions lead to second-order differential equations on Wasserstein
space. A number of piecemeal results available in various fields of science such
as Optimal Mass Transport, Statistical Mechanics and Quantum Mechanics can
all be cast in this coherent picture.
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1 Laboratoire MAP5, Université Paris Descartes and CNRS, Sorbonne Paris Cité,
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Abstract. A bilevel texture model is proposed, based on a local trans-
form of a Gaussian random field. The core of this method relies on the
optimal transport of a continuous Gaussian distribution towards the dis-
crete exemplar patch distribution. The synthesis then simply consists
in a fast post-processing of a Gaussian texture sample, boiling down to
an improved nearest-neighbor patch matching, while offering theoretical
guarantees on statistical compliancy.

Keywords: Optimal transport · Texture synthesis · Patch distribution

1 Introduction

Designing models for realistic and fast rendering of structured textures is a
challenging research topic. In the past, many models have been proposed for
exemplar-based synthesis, which consists in synthesizing a piece of texture hav-
ing the same perceptual characteristics as an observed texture sample with still
some innovative content. Several authors [2,24] have proposed non-parametric
methods based on progressive sampling of the texture using a copy-paste prin-
ciple. This paved the way to many other successful synthesis methods relying
on patch-based sampling [3,11–13,16,19] (see [23] for a detailed review). Even if
these methods can be applied very efficiently [13], they do not offer much math-
ematical guarantees (except asymptotic results [14]) which reflects for example
in the growing garbage effect described in [2].

In contrast Gaussian texture models [4] are stationary and inherently respect
the frequency content of the input texture. They can be efficiently simulated on
the discrete plane Z

2 [6] and even generalized to the framework of procedural
noises defined in the continuous domain R

2 (see e.g. [7] and references therein).
They also allow for dynamic texture synthesis and mixing [25] and inpainting [5].
However the Gaussian model is intrinsically limited since the color distribution
of the output is always symmetric around the mean color and the local texture
patterns cannot contain salient features such as contrasted contours.

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 100–108, 2017.
https://doi.org/10.1007/978-3-319-68445-1_12
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The main purpose of this work is to propose a theoretically sound post-
processing of the Gaussian model to cope with some of these limitations. Since
the color and local pattern information is a part of the patch distribution, we
propose to apply a local operation that will transform the patch distribution of
the Gaussian texture into the patch distribution of the input image. This can
naturally be addressed using a semi-discrete optimal transport plan.

Several tools from optimal transport (OT) have already been applied to tex-
ture synthesis: Rabin et al. [20] and Xia et al. [25] formulate texture mixing via
Wasserstein barycenters, Tartavel et al. [21] use Wasserstein distances in a varia-
tional formulation of texture synthesis, and Gutierrez et al. [9] apply discrete OT
in order to specify a global patch distribution. Here, we suggest to locally apply
a semi-discrete transport plan which can be seen as a tweaked nearest-neighbor
projection.

Indeed, semi-discrete OT corresponds to assign the centers of Laguerre cells
to each point of a well-designed Laguerre partition [1,17]. So far, determinis-
tic methods for solving semi-discrete methods have been limited to dimensions
D = 2 [17] and D = 3 [15] using explicit geometric construction of the Laguerre
tessellation. Recently, Genevay et al. [8] proposed several stochastic optimization
schemes for solving entropy-regularized OT problems.

In Sect. 2 we summarize the non-regularized semi-discrete OT framework
and the numerical solution given in [8]. In Sect. 3 we show how to use this
algorithm to transport patch distributions (in dimensions D = 27 or higher)
thus enriching the Gaussian texture model. The resulting bilevel algorithm, can
be seen as a non-iterative version of [11] with a global statistical constraint,
which is confirmed by the experiments of Sect. 4.

2 Semi-discrete Optimal Transport

In this section, we recall the framework for semi-discrete optimal transport and
the numerical solution given by Genevay et al. [8].

2.1 The Optimal Transport Problem and Its Dual Formulation

Let μ, ν be two probability measures on R
D. We assume that μ has a bounded

probability density function ρ and that ν is a discrete measure ν =
∑

y∈S νyδy

with finite support S. Let us denote by Π(μ, ν) the set of probability measures on
R

D ×R
D having marginal distributions μ, ν. If T is a measurable map, we denote

by T�μ the push-forward measure defined as T�μ(A) = μ(T−1(A)). If v ∈ R
S ,

we define the c-transform of v with respect to the cost c(x, y) = ‖x − y‖2 as
vc(x) = miny∈S ‖x − y‖2 − v(y), and Tv the corresponding assignment uniquely
defined almost everywhere by

Tv(x) = argmin
y∈S

‖x − y‖2 − v(y). (1)

When v = 0, we get the nearest neighbor (NN) projection which assigns to x
the closest point in S (unique for almost all x).
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The preimages of Tv define a partition of R
D (up to a negligible set), called

the power diagram or Laguerre tessellation, the cells of which are defined as

Powv(y) = {x ∈ R
D | ∀z ∈ S \ {y}, ‖x − y‖2 − v(y) < ‖x − z‖2 − v(z)}. (2)

The Kantorovich formulation of optimal transport consists in solving

min
π∈Π(μ,ν)

∫

RD×RD

‖x − y‖2dπ(x, y). (3)

It has been shown [1,10,15,22] that this problem admits solutions of the form
(Id ×Tv)�μ where v solves the dual problem

argmax
v∈RS

H(v) where H(v) =
∫

RD

vc(x)ρ(x)dx +
∑

y∈S

v(y)νy. (4)

The same authors have shown that the function H is concave, C1-smooth, and
that its gradient is given by ∂H

∂v(y) = −μ(Powv(y))+νy. Thus, v is a critical point
of H if and only if μ(Powv(y)) = νy for all y, which means that (Tv)�μ = ν.

2.2 Stochastic Optimization

Genevay et al. [8] have suggested to address the maximization of (4) by using a
stochastic gradient ascent, which is made possible by writing

H(v) = E[h(X, v)] where h(x, v) = vc(x) +
∑

y∈S

v(y)νy (5)

and where X is a random variable with distribution μ. Notice that for
x ∈ Powv(y), v �→ vc(x) is smooth with gradient −ey (where {ey}y∈S is the
canonical basis of R

S). Therefore, for any w ∈ R
S , for almost all x ∈ R

D,
v �→ h(x, v) is differentiable at w and ∇vh(x,w) = −eTw(x) + ν. (abusing nota-
tion (νy) ∈ R

S).
In order to minimize −H, Genevay et al. propose the following averaged

stochastic gradient descent (ASGD) initialized with ṽ1 = 0
{

ṽk = ṽk−1 + C√
k
∇vh(xk, ṽk−1) where xk ∼ μ

vk = 1
k (ṽ1 + . . . + ṽk).

(6)

Since ∇vh(x, ṽk−1) exists x-a.s. and is bounded, the convergence of this algo-
rithm is ensured by [18, Theorem 7], in the sense max(H)−E[H(vk)] = O( log k√

k
).

The authors of [8] also proposed to address a regularized transport problem with
a similar method but we do not discuss it here due to lack of space.
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3 A Bilevel Model for Texture Synthesis

In this section, we introduce a bilevel model for texture synthesis that consists in
first synthesizing a Gaussian version of the texture (with long range correlations
but no geometric structures) and next transforming each patch of the synthesis
with an optimal assignment (in order to enforce the patch distribution of the
exemplar texture).

To be more precise, let us denote by u : Ω → R
d the exemplar texture defined

on a discrete domain Ω ⊂ Z
2. Let U : Z

2 → R
d be the asymptotic discrete spot

noise (ADSN) [4,6] associated with u, which is defined as

∀x ∈ Z
2, U(x) = ū+

∑

y∈Z2

tu(y)W (x− y) where

⎧
⎨

⎩

ū = 1
|Ω|

∑
x∈Ω u(x),

tu = 1√
|Ω| (u − ū)1Ω

(7)

where 1Ω is the indicator function, and where W is a normalized Gaussian white
noise on Z

2 (the convolution between tu and W is computed in Fourier domain).
U is a stationary Gaussian random field whose first and second order moments
are the empirical mean and covariance of the exemplar texture. In particular

E[(U(x)− ū)(U(y)− ū)] = au(y−x) where au(z) =
∑

x∈Z2

tu(z)tu(x+z)T . (8)

Thus, U can be considered as a “Gaussianized” version of u, that has the correct
correlations but no salient structures.

The second step consists in a patchwise operation. Let ω = {−r, . . . , r}2 be
the patch domain with r ∈ N. Let us denote by μ the distribution of patches
of U , that is μ = N (ū, C) with C(x, y) = au(y − x), x, y ∈ ω. Let us denote
by ν the empirical distribution of patches of the exemplar texture u, that is
ν = 1

|S|
∑

p∈S δp, where S = {u|x+ω | x + ω ⊂ Ω}. Actually, in practice we

approximate it with ν = 1
J

∑J
j=1 δpj

where p1, . . . , pJ are J = 1000 patches
randomly drawn from the exemplar texture. Thus, μ and ν are two probability
measures on R

D with D = d(2r + 1)2. Besides, μ is a Gaussian distribution
that, except in degenerate cases, admits a probability density function ρ with
respect to the Lebesgue measure. Using the algorithm explained in Sect. 2.2, we
compute the optimal assignment Tv that realizes the semi-discrete OT from μ
to ν. We then apply this mapping Tv to each patch of the Gaussian synthesis
U , and we recompose an image V by averaging the “transported” patches: the
value at pixel x is the average of values of x in all overlapping patches. More
formally,

∀x ∈ Z
2, Px = Tv(U|x+ω), (9)

∀x ∈ Z
2, V (x) =

1
|ω|

∑

h∈ω

Px−h(h). (10)
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Proposition 1. V is a stationary random field on Z
2 and satisfies the fol-

lowing long-range independence property: if Γ denotes the finite support of the
auto-correlation function au defined in (8), then for every A,B ⊂ Z

2 such that
(A − B) ∩ (Γ + 4ω) = ∅ the restrictions V|A, V|B are independent.

Proof. Since U is Gaussian, U(x) |= U(y) as soon as x − y /∈ Γ . Therefore, if
x − y /∈ Γ + 2ω, then U|x+ω |= U|y+ω and thus Px |= Py. After averaging we get
V (x) |= V (y) as soon as x − y /∈ Γ + 4ω. The generalization to subsets A,B is
straightforward.

This property is a guarantee of spatial stability for synthesis, meaning that
the synthesis algorithm will not start to “grow garbage” as may do the method
of [2]. We also have a guarantee on the patch distribution. Indeed, if Tv is the
true solution to the semi-discrete optimal-transport problem, then any patch Px

is exactly distributed according to ν. After recomposition, the distribution of
V|ω may not be exactly ν but is expected to be not too far away (as will be
confirmed in Fig. 4). In this sense, V still respects the long range correlations
(inherited from U) while better preserving the local structures.

4 Results and Discussion

In this section, we discuss experimental results of texture synthesis obtained
with the proposed bilevel model. Figure 1 compares the synthesis results obtained
with the Gaussian model before and after local transformation. One clearly
observes the benefit of applying the optimal transport in the patch domain:
it restores the color distribution of the exemplar and also creates salient features
from the Gaussian content. In particular (Rows 1 and 3), it is able to break the
symmetry of the color distribution which is a strong restriction of the Gaussian
model.

Figures 1 and 2 demonstrate that the optimal assignment (OT) is better
suited than the simple NN projection, as illustrated in Fig. 3(a). While these
two operators project on the exemplar patches, the assignment is optimized to
globally respect a statistical constraint. On Fig. 2 we also question the use of
different patch sizes. The simple 1×1 case (which only amounts to apply a color
map to the Gaussian field) is already interesting because it precisely respects the
color distribution of the exemplar. Thus the bilevel model with 1×1 patch can be
seen as an extension of the ADSN model with prescribed marginal distributions.
For a larger patch size, we observe only minor improvements of the model with
slightly cleaner geometric structures.

One possible explanation could be the slow convergence speed in very high
dimensions of the stochastic gradient descent scheme. In this non-smooth setting
(∇v(x, ·) is not Lipschitz continuous), the convergence rate given in [18] is only
O( log k√

k
). Besides, in our setting, we apply this algorithm for 106 iterations with

gradient step parameter C = 1 in a very high-dimensional space R
D (D = 27

for 3 × 3 RGB patches), and with discrete target distributions ν having large
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Fig. 1. Bilevel synthesis. Each row displays an exemplar texture, a sample of the
associated ADSN model, and samples of the bilevel models obtained with 3 × 3 patch
optimal assignment (OT) or patch nearest neighbor projection (NN), and the one with
white noise initialization (WN). The OT assignment better preserves patch statistics
than the NN projection. Besides, the last column illustrates the importance to start
from a spatially correlated Gaussian model at the first level.

Fig. 2. Influence of the patch size. On the middle column we display two original
textures and on the other columns we display samples of the bilevel models with varying
patch size using the patch optimal assignment (OT, first row) and the patch nearest
neighbor projection (NN, second row). The OT performs in general better than a NN
(it better preserves the color/patch statistics) but fails to reproduce complex geometry
(like in the right example). (Color figure online)
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1D Gaussian

Fig. 3. Illustration of the semi-discrete OT and the convergence of ASGD (6)
in 1D. (a) Semi-discrete Transport of a Gaussian distribution μ (red curve) towards a
set of points ν (blue dots with J = 12). The corresponding power diagram Powv (in red
lines) is compared to the Voronoi diagram Pow0 (blue lines). The optimal transport
plan Tv (black lines) is compared to the nearest-neighbor matching T0 (grey dotted

lines). (b) ASGD in 1D. Evolution of the relative error, defined as E(k) = ‖vk−v�‖
‖v�‖

where v� is the (closed-form) optimal solution and k the number of iterations. The
curves are shown for J = 10, 102, and 103 points, using the same random sequence.
(Color figure online)

support (J = |S| = 103). Updating all coordinates of v during the gradient
descent requires to visit enough all the power cells. As a consequence, even in
the 1D case, practical convergence can be very slow (see on Fig. 3(b) for C = 10).

This means that in our experiments for texture synthesis, the convergence
is not reached, and yet the OT solution provides better synthesis results than
a simple NN approach, which is confirmed by examining the output patch dis-
tribution (Fig. 4). Interestingly, it is also true after patch recomposition (which
remains to be properly justified).

The results obtained with this bilevel model raise several questions. First,
one may very well question the use of the 
2-distance for patch comparison,
both in the transport problem and the recomposition step. It is already well
known [11] that using other distances for recomposition may improve the visual
quality of the results (less blur than with the 
2 average). Also, it would be
interesting to analyze more precisely the effect of the recomposition step on the
patch distribution.
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Fig. 4. Patch distribution (three first principal components). For the first
image of Fig. 1 we plot the estimated distribution of patches in the three first principal
components (columns) for different patch sizes (rows). The PCA transform is obtained
on the exemplar patch distribution. We compare the patch distributions of the exemplar
image (legend “ref”), of the synthesized image before patch recomposition (legend
“OT”) and after (legend “OT recomp”), and of the transformed patch with nearest-
neighbor projection (legend “NN”). Even if we only approximate the optimal transport
mapping, it suffices to reproduce the reference patch distribution better than the NN
projection.
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Abstract. We analyze different misfit functions for comparing synthetic
and observed data in seismic imaging, for example, the Wasserstein met-
ric and the conventional least-squares norm. We revisit the convexity and
insensitivity to noise of the Wasserstein metric which demonstrate the
robustness of the metric in seismic inversion. Numerical results illustrate
that full waveform inversion with quadratic Wasserstein metric can often
effectively overcome the risk of local minimum trapping in the optimiza-
tion part of the algorithm. A mathematical study on Fréchet derivative
with respect to the model parameters of the objective functions further
illustrates the role of optimal transport maps in this iterative approach.
In this context we refer to the objective function as misfit. A realistic
numerical example is presented.

Keywords: Full waveform inversion · Optimal transport · Seismic imag-
ing · Optimization · Inverse problem

1 Introduction

Seismic data contains interpretable information about subsurface properties.
Imaging predicts the spatial locations as well as properties that are useful in
exploration seismology. The inverse method in the imaging predicts more phys-
ical properties if a full wave equation is employed instead of an asymptotic
far-field approximation to it [9].

This, so called full waveform inversion (FWI) is a data-driven method to
obtain high resolution subsurface properties by minimizing the difference or
misfit between observed and synthetic seismic waveforms [12]. In the past
three decades, the least-squares norm (L2) has been widely used as a misfit
function [10], which is known to suffer from cycle skipping issues (local mini-
mum trapping) and sensitivity to noise [12].

Optimal transport has become a well developed topic in mathematics since it
was first proposed by Gaspard Monge in 1781. The idea of using optimal trans-
port for seismic inversion was first proposed in 2014 [3]. A useful tool from the
theory of optimal transport, the Wasserstein metric computes the optimal cost
of rearranging one distribution into another given a cost function. In computer
c© Springer International Publishing AG 2017
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science the metric is often called the “Earth Mover’s Distance” (EMD). Here we
will focus on the quadratic Wasserstein metric (W2).

In this paper, we briefly review the theory of optimal transport and revisit the
convexity and noise insensitivity of W2 that were proved in [4]. The properties
come from the analysis of the objective function. Next, we compare the Fréchet
derivative with respect to the model parameters in different misfit functions
using the adjoint-state method [8]. Discussions and comparisons between large
scale inversion results using W2 and L2 metrics illustrate that the W2 metric is
very promising for overcoming the cycle skipping issue in seismic inversion.

2 Theory

2.1 Full Waveform Inversion and the Least Squares Functional

Full waveform inversion is a PDE-constrained optimization problem, minimizing
the data misfit J(f, g) by updating the model m, i.e.:

m� = argmin
m

J(f(xr, t;m), g(xr, t)), (1)

where g is observed data, f is simulated data, xr are receiver locations. We get
the modeled data f(x, t;m) by numerically solving in both the space and time
domain [1].

Generalized least squares functional is a weighted sum of the squared errors
and hence a generalized version of the standard least-squares misfit function.
The formulation is

J1(m) =
∑

r

∫
|W (f(xr, t;m)) − W (g(xr, t))|2 dt. (2)

In the conventional L2 misfit, the weighting operator W is the identity I.
The integral wavefields misfit functional [5] is a generalized least squares

functional applied on full-waveform inversion (FWI) with weighting operator
W (u) =

∫ t

0
u(x, τ)dτ . If we define the integral wavefields U(x, t) =

∫ t

0
u(x, τ)dτ,

then misfit function becomes the ordinary least squares difference between∫ t

0
g(xr, τ)dτ and

∫ t

0
f(xr, τ ;m)dτ . The integral wavefields still satisfy the orig-

inal acoustic wave equation with a different source term: δ(x − xs)H(t) ∗ S(t),
where S is the original source term and H(t) is the Heaviside step function [5].
We will refer this misfit function as H−1 norm in this paper.

Normalized Integration Method (NIM) is another generalized least squares
functional, with an additional normalization step than integral wavefields misfit
functional [6]. The weighting operator is

W (u)(xr, t) =

∫ t

0
P (u)(xr, τ)dτ

∫ T

0
P (u)(xr, τ)dτ

, (3)

where function P is included to make the data nonnegative. Three common
choices are P1(u) = |u|, P2(u) = u2 and P3 = E(u), which correspond to the
absolute value, the square and the envelop of the signal [6].
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2.2 Optimal Transport

Optimal transport is a problem that seeks the minimum cost required to trans-
port mass of one distribution into another given a cost function, e.g. |x − y|2. The
mathematical definition of the distance between the distributions f : X → R

+

and g : Y → R
+ can then be formulated as

W 2
2 (f, g) = inf

Tf,g∈M

∫

X

|x − Tf,g(x)|2 f(x) dx (4)

where M is the set of all maps Tf,g that rearrange the distribution f into g [11].
The Wasserstein metric is an alternative misfit function for FWI to measure

the difference between synthetic data f and observed data g. We can compare
the data trace by trace and use the Wasserstein metric (Wp) in 1D to measure
the misfit. The overall misfit is then

J2(m) =
R∑

r=1

W p
p (f(xr, t;m), g(xr, t)), (5)

where R is the total number of traces. In this paper, we mainly discuss about
quadratic Wasserstein metric (W2) when p = 2 in (4) and (5).

Here we consider f0(t) and g0(t) as synthetic data and observed data from
one single trace. After proper scaling with operator P , we get preconditioned
data f = P (f0) and g = P (g0) which are positive and having total sum one. If
we consider they are probability density functions (pdf), then after integrating
once, we get the cumulative distribution function (cdf) F (t) and G(t).

If f is continuous we can write the explicit formulation for the 1D Wasserstein
metric as:

W 2
2 (f, g) =

∫ 1

0

|F−1(t) − G−1(t)|2dt =
∫ T

0

(G−1F (t) − t)2f(t)dt. (6)

The interesting fact is that W2 computes the L2 misfit between F−1 and G−1

(Fig. 1), while the objective function of NIM measures the L2 misfit between F
and G (Fig. 1). This is identical to the mathematical norm of Sobolev space H−1,
||f − g||2H−1 , given f and g are nonnegative and sharing equal mass.

Fig. 1. After data normalization NIM measures
∫

(F − G)2dt, while W2 considers∫
(F−1 −G−1)2dt and W1 considers

∫ |F−1 −G−1|dt.
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3 Properties

Figure 2a shows two signals f and its shift g, both of which contain two ricker
wavelets. Shift of signals are common in seismic data when we have incorrect
velocity. We compute the L2 norm and W2 norm between f and g, and plot the
misfit curves in terms of s in Fig. 2b and c. The L2 difference between two signals
has many local minima and maxima as s changes. It is a clear demonstration
of the cycle skipping issue of L2 norm. The global convexity of Fig. 2c is a
motivation to further study the ideal properties of W2 norm.

Fig. 2. (a) A signal consisting two Ricker wavelets (blue) and its shift (red). (b) L2

norm between f and g which is a shift of f . (c) W2 norm between P2(f) and P2(g) in
terms of different shift s. (Color figure online)

As demonstrated in [4], the squared Wasserstein metric has several properties
that make it attractive as a choice of misfit function. One highly desirable feature
is its convexity with respect to several parameterizations that occur naturally
in seismic waveform inversion [13]. For example, variations in the wave velocity
lead to simulations f(m) that are derived from shifts,

f(x; s) = g(x + sη), η ∈ R
n, (7)

or dilations,
f(x;A) = g(Ax), AT = A, A > 0, (8)
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applied to the observation g. Variations in the strength of a reflecting surface or
the focusing of seismic waves can also lead to local rescalings of the form

f(x;β) =

{
βg(x), x ∈ E

g(x), x ∈ R
n\E.

(9)

In Theorem 1, f and g are assumed to be nonnegative with identical integrals.

Theorem 1 (Convexity of squared Wasserstein metric [4]). The squared
Wasserstein metric W 2

2 (f(m), g) is convex with respect to the model parameters
m corresponding to a shift s in (7), the eigenvalues of a dilation matrix A in (8),
or the local rescaling parameter β in (9).

The Fig. 2c numerically exemplifies Theorem 1. Even if the scaling P (u) = u2

perfectly fits the theorem it has turned out not to work well in generating an
adjoint source that works well in inversion. The linear scaling, P (u) = au+b, on
the other hand works very well even if the related misfit lacks strict convexity
with respect to shifts. The two-variable example described below and Fig. 3 are
based on the linear scaling. It gives the convexity with respect to other variables
in velocity than a simple shift in the data.

The example from [7] shows a convexity result in higher dimensional model
domain. The model velocity is increasing linearly in depth as v(x, z) = vp,0+αz,
where vp,0 is the starting velocity on the surface, α is vertical gradient and z
is depth. The reference for (vp,0, α) is (2 km/s, 0.7 s−1), and we plot the misfit
curves with α ∈ [0.4, 1] and v0 ∈ [1.75, 2.25] on 41×45 grid in Fig. 3. We observe
many local minima and maxima in Fig. 3a. The curve for W2 (Fig. 3b) is globally
convex in model parameters vp,0 and α. It demonstrates the capacity of W2 in
mitigating cycle skipping issues.

Fig. 3. (a) Conventional L2 misfit function (b) W2 misfit function trace-by-trace

Another ideal property of optimal transport is the insensitivity to noise. All
seismic data contains either natural or experimental noise. For example, the
ocean waves lead to extremely low frequency data in marine acquisition. Wind
and cable motions also generate random noise.
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The L2 norm is known to be sensitive to noise since the misfit between
clean and noisy data is calculated as the sum of squared noise amplitude at each
sampling point. In [4] W2 norm is proved to be insensitive to mean-zero noise and
the property apply for any dimension of the data. This is a natural result from
optimal transport theory since the W2 metric defines a global comparison that
not only considers the change in signal intensity but also the phase difference.

Theorem 2 (Insensitivity to noise [4]). Let fns be f with a piecewise con-
stant additive noise of mean zero uniform distribution. The squared Wasserstein
metric W 2

2 (f, fns) is of O( 1
N ) where N is the number of pieces of the additive

noise in fns.

4 Discussions

Typically we solve the linearized problem iteratively to approximate the solu-
tion in FWI. This approach requires the Fréchet derivatives of the misfit function
J(m) which is expensive to compute directly. The adjoint-state method [8] pro-
vides an efficient way of computing the gradient. This approach requires the
Fréchet derivative ∂J

∂f and two modelings by solving the wave equations. Here
we will only discuss about the acoustics wave Eq. (10).

m
∂2u(x, t)

∂t2
− Δu(x, t) = S(x, t) (10)

In the adjoint-state method, we first forward propagate the source wavelet
with zero initial conditions. The simulated data f is the source wavefield u
recorded on the boundary. Next we back propagate the Fréchet derivative ∂J

∂f as
the source with zero final conditions and get the receiver wavefield v.

With both the forward wavefield u and backward wavefield v, the Fréchet
derivative of m becomes

∂J

∂m
= −

∫ T

0

utt(x, t)v(x, T − t) = −
∫ T

0

u(x, t)vtt(x, T − t) (11)

In the acoustic setting, the vtt(x, t) is equivalent to the wavefield with the
second order time derivative of ∂J

∂f being the source. The change of the misfit
function only impacts the source term of the back propagation, particularly the
second order time derivative of ∂J

∂f . For L2 norm, the term is 2(ftt(x, t)−gtt(x, t)),
and for H−1 norm it becomes 2(g(x, t)−f(x, t)). For trace-by-trace W2 norm, the
second order time derivative of ∂W 2

2 (f,g)
∂f is 2

(
g(x,t′)−f(x,t)

g(x,t′)

)
where t′ = G−1F (t),

the optimal coupling of t for each trace.
Compared with L2 norm, the source term of H−1 does not has the two time

derivatives and therefore has more of a focus on the lower frequency part of the
data. Lower frequency components normally provide a wider basin of attraction
in optimization. The source term of W2 is similar to the one of H−1 norm, but
the order of signal g in time has changed with the optimal map for each trace
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at receiver x. The optimal couplings often change the location of the wavefront.
For example, if g is a shift of f , then the wavefront of g will be mapped to the
wavefront of f even if two wavefronts do not match in time. The change of time
order in g also helps generate a better image under the reflectors when we back
propagate the source and compute the gradient as in (11).

5 Numerical Example

In this section, we use a part of the BP 2004 benchmark velocity model [2]
(Fig. 4a) and a highly smoothed initial model without the upper salt part
(Fig. 4b) to do inversion with W2 and L2 norm respectively. A fixed-spread sur-
face acquisition is used, involving 11 shots located every 1.6 Km on top. A Ricker
wavelet centered on 5 Hz is used to generate the synthetic data with a bandpass
filter only keeping 3 to 9 Hz components. We stopped the inversion after 300
L-BFGS iterations.

Fig. 4. Large scale FWI example

Here we precondition the data with function P (f) = a · f + b to satisfy the
nonnegativity and mass balance in optimal transport. Inversion with trace-by-
trace W2 norm successfully construct the shape of the salt bodies (Fig. 4d), while
FWI with the conventional L2 failed to recover boundaries of the salt bodies as
shown by Fig. 4c.
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6 Conclusion

In this paper, we revisited the quadratic Wasserstein metric from the optimal
transport theory in the application of seismic inversion. The desirable properties
of convexity and insensitivity to noise make it a promising alternative misfit func-
tion in FWI. We also analyze the conventional least-squares inversion (L2 norm),
the integral wavefields misfit function (H−1 norm) and the quadratic Wasserstein
metric (W2) in terms of the model parameter gradient using the adjoint-state
method. The analysis further demonstrate the effectiveness of optimal transport
ideas in dealing with cycle skipping.
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Abstract. There are two geometrical structures in a manifold of prob-
ability distributions. One is invariant, based on the Fisher information,
and the other is based on the Wasserstein distance of optimal trans-
portation. We propose a unified framework which connects the Wasser-
stein distance and the Kullback-Leibler (KL) divergence to give a new
information-geometrical theory. We consider the discrete case consist-
ing of n elements and study the geometry of the probability simplex
Sn−1, the set of all probability distributions over n atoms. The Wasser-
stein distance is introduced in Sn−1 by the optimal transportation of
commodities from distribution p ∈ Sn−1 to q ∈ Sn−1. We relax the opti-
mal transportation by using entropy, introduced by Cuturi (2013) and
show that the entropy-relaxed transportation plan naturally defines the
exponential family and the dually flat structure of information geometry.
Although the optimal cost does not define a distance function, we intro-
duce a novel divergence function in Sn−1, which connects the relaxed
Wasserstein distance to the KL-divergence by one parameter.

1 Introduction

Information geometry studies invariant properties of a manifold of probability dis-
tributions, which are useful for various applications in statistics, machine learning,
signal processing, optimization and others. Two geometrical structures have been
introduced from two different backgrounds. One is constructed based on the invari-
ance principle: The geometry is invariant under reversible transformations of ran-
dom variables. We then have the Fisher information matrix as the unique invariant
Riemannian metric (Rao 1945; Chentsov 1982; Amari 2016). Moreover, two dually
coupled affine connections are given as invariant connections. These structures
are useful for various applications. Another geometrical structure is introduced
through the transportation problem. A distribution of commodities in a manifold
is transported to another distribution. The transportation with the minimal cost
defines a distance between the two distributions, called the Monge-Kantorovich-
Wasserstein distance or earth-mover distance. This gives a tool to study the geom-
etry of distributions taking the metric of the supporting manifold into account.
c© Springer International Publishing AG 2017
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Let X = {1, · · · , n} be the support of a probability measure p. The invariant
geometry gives a structure which is invariant under permutations of elements
of X. It leads to an efficient estimator in statistical estimation. On the other
hand, when we consider a picture over n2 pixels X = {(ij); i, j = 1, · · · , n},
neighboring pixels are close. A permutation of X destroys such a neighboring
structure, so the invariance should not be required. The Wasserstein distance
is responsible for such a structure. Therefore, it is useful for problems having
neighboring structure in support X.

An interesting question arises how these two geometrical structures are
related. They are useful structures in their own right, but it is intriguing to find
a unified framework to include the two. For this purpose in mind, the present
paper treats the discrete case over n elements, such that a probability distribu-
tion is given by a probability vector p = (p1, · · · , pn) in the probability simplex
Sn−1, letting a general case of continuous distributions over a manifold to be
studied in future.

Cuturi (2013) modified the transportation problem such that the cost is min-
imized under the entropy constraint. This is called the entropy-relaxed optimal
translation problem. In many applications, his group showed the quasi-distance
defined by the entropy-constrained optimal solution gives superior properties to
the information-geometric distance such as the KL divergence or the Hellinger
distance. As an application, consider a set of normalized histograms over X. A
clustering problem categorizes them in some classes such that a class consists of
similar histograms. Since a histogram is regarded as an empirical probability dis-
tribution, the problem is formulated within the probability simplex Sn−1 in the
discrete case and the distances among supporting pixels play a fundamental role.

We follow the entropy-relaxed framework of Cuturi (2013), Cuturi and Avis
(2014), Cuturi and Peyré (2016), etc. and introduce a Lagrangian function which
is a linear combination of the transportation cost and the entropy. Given dis-
tribution p of commodities at the sender and q at the receiver, the optimal
transportation plan is the minimizer of the Lagrangian function. We reveal that
it is a convex function of p and q so it defines a dually flat geometric structure in
Sn−1 ×Sn−1. The m-flat coordinates are (p, q) and their dual, e-flat coordinates
(α,β) are given from the Lagrangian duality of nonlinear optimization prob-
lems. The set of the optimal transportation plans is an exponential family with
the canonical parameters (α,β), where the expectation parameters are (p, q).
Furthermore, we introduce a novel divergence between p and q in Sn−1. It con-
nects the relaxed Wasserstein distance to the KL-divergence by a one parameter
family. Our divergence will be expected to be useful for practical applications,
because a divergence is a general concept including the square of a distance and
more flexible admitting non-symmetricity between p and q.

2 Entropy-Constrained Transportation Problem

Let us consider n terminals X = (X1, · · · ,Xn) at which amounts p1, · · · , pn

of commodities are stocked. We transport them within X such that amounts
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q1, · · · , qn are newly stored at X1, · · · ,Xn. We normalize the total amount to be
equal to 1, so p = (p1, · · · , pn) and q = (q1, · · · , qn) are regarded as probability
distributions in the probability simplex Sn−1,

∑
pi = 1,

∑
qi = 1, pi > 0, qi > 0. (1)

We consider a transportation plan P = (Pij), where Pij is the amount of
commodity transported from Xi to Xj . A plan P is regarded as a joint proba-
bility distribution of commodities flowing from Xi to Xj , satisfying the sender
and receiver constraints,

∑

j

Pij = pi,
∑

i

Pij = qj . (2)

The set of P’s satisfying (2) is denoted by U(p, q).
Let c = (cij) be the cost matrix, where cij denotes the cost of transporting

one unit of commodities from Xi to Xj .
The transportation cost is defined by

c(P) = 〈c,P〉 =
∑

cijPij . (3)

The Wasserstein distance is defined by the minimal cost of transporting distri-
bution p at the senders to q at the receivers,

c(p, q) = min
P⊂U(p,q)

〈c,P〉, (4)

where min is taken over all P satisfying constraints (2). See e.g., Villani (2013).
Given p and q, let us consider a special transportation plan PD defined by

the direct product of p and q,

PD = p ⊗ q = (piqj) . (5)

This plan transports commodities from each sender to the receivers according
to the receiver distribution q, irrespective of c. The entropy of PD,

H (PD) = −
∑

PDij log PDij = H(p) + H(q), (6)

is the minimum among all P’s belonging to U(p, q), because of H(P) ≤ H(p)+
H(q), where H(P), H(p) and H(q) are the respective entropies and the equality
holds for P = PD.

We consider a constrained problem of searching for P that minimizes 〈c,P〉
within a KL-divergence ball centered at PD,

KL [P : PD] ≤ d (7)

for constant d. As d increases, the entropy of P increases within the ball. This
is equivalent to the entropy constrained problem that minimizes a linear combi-
nation of the transportation cost 〈c,P〉 and entropy H(P),

Fλ(P) =
1

1 + λ
〈c,P〉 − λ

1 + λ
H(P) (8)

for constant λ (Cuturi 2013). Here, λ is a Lagrangian multiplier and λ becomes
smaller as d becomes larger.
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3 Solution of Entropy-Constrained Problem

Since P satisfies constraints (2), by using Lagrange multipliers αi, βj , minimiza-
tion of (8) is formulated in the Lagrangian form,

Lλ(P) =
1

1 + λ
〈c,P〉 − λ

1 + λ
H(P) −

∑

i,j

(αi + βj) Pij . (9)

Let us fix λ, considering it as a parameter controlling the magnitude of the
entropy or the size of the KL-ball. By differentiating (9) with respect to Pij , we
have the following solution,

Pij = exp
{

−cij

λ
+

1 + λ

λ
(αi + βj) − 1

}
. (10)

Let us put

ai = exp
(

1 + λ

λ
αi

)
bj = exp

(
1 + λ

λ
βj

)
, Kij = exp

{
−cij

λ

}
, (11)

and the optimal solution is written as

P ∗
λij ∝ aibjKij , (12)

where ai and bj correspond to the Lagrange multipliers αi and βj to be deter-
mined from the constraints (2). Note that 2n constraints (2) are not independent.
Because of

∑
pi = 1, we can obtain an by an = 1 − ∑

i�=n ai. Further, we note
that μa and b/μ give the same answer for any μ > 0, where a = (ai) and
b = (bj). Therefore, the degrees of freedom of a and b are 2(n − 1), which are
to be determined from p and q of which degrees of freedom are also 2(n − 1).
Therefore, we may choose a and b such that they satisfy

∑
ai = 1,

∑
bj = 1. (13)

Then, a, b ∈ Sn−1 and we have the following theorem.

Theorem 1. The optimal transportation plan P∗
λ is given by

P ∗
λij = caibjKij , (14)

c =
1∑

aibjKij
, (15)

where two vectors a and b are determined from p and q.

Cuturi (2013) obtained the above P ∗
λij and applied the Sinkhorn-Knopp algo-

rithm to iteratively compute a and b.
The following lemma is useful for later calculations.



Information Geometry of Wasserstein Divergence 123

Lemma 1. The optimal value

ϕλ(p, q) = min Fλ(P) (16)

is given by

ϕλ(p, q) =
λ

1 + λ

(∑
pi log ai +

∑
qj log bj + log c

)
. (17)

Proof. We first calculate H (P∗
λ). Substituting (15) in H (P∗

λ), we have

H (P∗
λ) = −

∑

ij

P∗
λij

(
−cij

λ
+ log caibj

)
(18)

=
1
λ

〈c,P∗
λ〉 −

∑
pi log ai −

∑
qj log bj − log c. (19)

Hence, (17) follows.

4 Exponential Family of Optimal Transportation Plans

A transportation plan P is a probability distribution over branches (i, j) con-
necting terminals i and j. Let x denote branches and δij(x) = 1 when x is (i, j)
and 0 otherwise. Then P is a probability distribution of random variable x,

P (x) =
n∑

i,j=1

Pijδij(x). (20)

By introducing new parameters

θij = log
Pij

Pnn
, θ =

(
θij

)
, (21)

it is rewritten in a parameterized form as

P (x,θ) = exp

⎧
⎨

⎩
∑

i,j

θijδij(x) + log Pnn

⎫
⎬

⎭ . (22)

This shows that the set of transportation plans is an exponential family, where
θij are the canonical parameters and ηij = Pij the expectation parameters. They
form an

(
n2 − 1

)
-dimensional manifold denoted by STP , because θnn = 0.

An optimal transportation plan is specified by (α,β) in (10), α = (αi),
β = (βj) which are determined from (p, q). It is written as

P (x,α,β) = exp

⎡

⎣
∑

i,j

{
λ + 1

λ
(αi + βj) − cij

λ

}
δij(x) − λ + 1

λ
ψ

⎤

⎦ , (23)
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where

ψ(α,β) =
λ

1 + λ
log

∑

i,j

exp
{

λ + 1
λ

(αi + βj) − cij

λ

}
(24)

is the normalization factor. By putting

θij =
1 + λ

λ
(αi + βj) − cij

λ
, (25)

we see that the set SOTP of optimal transformation plans is a submanifold of
STP . Because (25) is linear in α and β, SOTP itself is an exponential family,
where the canonical parameters are (1 + λ)/λ times (α,β) and the expectation
parameters are (p, q) ∈ Sn−1 × Sn−1, since

E

⎡

⎣
∑

j

δij(x)

⎤

⎦ = pi, (26)

E

[
∑

i

δij(x)

]
= qj . (27)

Since each of p, q ∈ Sn−1 has n − 1 degrees of freedom, SOPT is a 2(n − 1)-
dimensional dually flat manifold. We may put αn = βn = 0 without loss of
generality, which correspond to putting an = bn = 1 instead of

∑
ai =

∑
bj = 1.

We calculate the relaxed cost function ϕλ(p, q) corresponding to P(α,β).
We then have

ϕλ(p, q) =
1

1+λ
〈c,P〉 +

λ

1+λ

∑

i,j

Pij

{
1 + λ

λ
(αi + βj) − cij

λ
− 1 + λ

λ
ψλ

}
(28)

= p · α + q · β − ψλ(α,β). (29)

When we use new notations η = (p, q)T , θ = (α,β)T , we have

ψλ(θ) + ϕλ(η) = θ · η, (30)

which is the Legendre relation between θ and η. Thus, we have the following
theorem.

Theorem 2. The relaxed cost function ϕλ and the free energy (cumulant gen-
erating function) ψλ of the exponential family are both convex, connected by
the Legendre transformation,

θ = ∇ηϕλ(η), η = ∇θψλ(θ), (31)
α = ∇pϕλ(p, q), β = ∇qϕλ(p, q), (32)
p = ∇αψλ(α,β), q = ∇pψλ(α,β). (33)
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The Riemannian metric Gλ is given to Sn−1 × Sn−1 by

Gλ = ∇η∇ηϕλ(η) (34)

in the η-coordinate system (p, q). Its inverse is

G−1
λ = ∇θ∇θψλ(θ). (35)

In addition, we can calculate G−1
λ explicitly from (24).

Theorem 3. The Fisher information matrix G−1
λ in the θ-coordinate system is

given by

G−1
λ =

1 + λ

λ

{[
diag(p) P
PT diag(q)

]
−

[
p

q

]
[pT qT ]

}
, (36)

or in the component form as

G−1
λ =

1 + λ

λ

[
piδij − pipj Pij − piqj

Pij − piqj qiδij − qiqj

]
. (37)

Remark 1. The p-part of G−1
λ is a scalar multiple of the Fisher information of

p in Sn−1 in the e-coordinate system. So is the q-part. They are independent of
the cost matrix cij , but the off-diagonal blocks of G−1

λ depend on it.

Remark 2. The p-part of Gλ is not equal to the Fisher information of p in the
m-coordinate system. It is the p-part of the inverse of G−1

λ , depending on q,
too.

5 λ-Divergence in Sn−1

The relaxed Wasserstein distance ϕλ(p : q) does not satisfy a criterion of diver-
gence, i.e. ϕλ(p : p) 	= 0, because ϕλ(p : q) is minimalized at q 	= p in general.
In contrast, the original Wasserstein distance literally satisfies the criteria of
distance and those of divergence. To recover the property of divergence in the
relaxed form, we introduce a canonical divergence between two transportation
plans (p,p) and (p, q), which is composed of the Legendre pair of the convex
functions ϕλ and ψλ (Amari 2016):

Dλ[p : q] = ψλ(α,β) + ϕλ(p,p) − α · p − β · p, (38)

where (α,β) corresponds to (p, q). We call this a λ-divergence Dλ[p : q] in Sn−1

from p to q. It connects the Wasserstein distance and the KL-divergence in the
following way.

This λ-divergence can be transformed into a Bregman-like divergence with
the relaxed cost function ϕλ (not a Bregman divergence constructed from a
convex function of a single variable q):

Dλ[p : q] = ϕλ(p,p) − ϕλ(p, q) − 〈∇qϕλ(p, q),p − q〉. (39)
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As easily confirmed by substituting (14) to (38), the λ-divergence is equivalent
to the KL-divergence between the two transportation plans, up to a constant
factor:

Dλ[p : q] =
λ

1 + λ
KL [P′ : P] , (40)

where P′ and P are the optimal plans from p to p and p to q, respectively. It is
easy to see that Dλ[p : q] satisfies the criteria of divergence. However, it is not
dually flat in general.

Let us consider the case of λ → ∞. Then,

P′ = (pipj) , P = (piqj) , (41)

and hence
Dλ[p : q] = KL[p : q], (42)

converging to the KL-divergence of Sn−1.

6 Conclusions

We have opened a new way of studying the geometry of probability distributions.
We showed that the entropy-relaxed transportation plan in a probability simplex
naturally defines the exponential family and the dually flat structure of informa-
tion geometry. We also introduced a one-parameter family which connects the
relaxed Wasserstein distance to the KL-divergence.

It remains as future problems to extend the information geometry of the
relaxed Wasserstain distance into a general case of continuous distributions on
a metric manifold. Another direction of research is to study the geometrical
properties of the manifold through the new family of λ-divergence and to apply
it to various practical applications, where some modifications of Dλ might be
useful.
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Abstract. Unsupervised anomaly detection is a very promising tech-
nique for intrusion detection. Among many other approaches, cluster-
ing algorithms have often been used to perform this task. However, to
describe network traffic, both numerical and categorical variables are
commonly used. So most clustering algorithms are not very well-suited
to such data. Few clustering algorithms have been proposed for such
heterogeneous data. Many approaches do not possess suitable complex-
ity. In this article, using Relational Analysis, we propose a new, unified
clustering criterion. This criterion is based on a new similarity function
for values in a lattice, which can then be applied to both numerical and
categorical variables. Finally we propose an optimisation heuristic of this
criterion and an anomaly score which outperforms many state of the art
solutions.

1 Anomaly Detection Using Clustering: Motivations

To detect breaches in information systems, most organisations rely on traditional
approaches such as anti-viruses and firewalls. However, these approaches are too
often too straightforward to evade. Many techniques designed to circumvent
detection have been proposed in the literature [8,17].

For this reason, new security systems have been developed: Intrusion Detec-
tion Systems (IDS). At their core, these systems act as a system wide alarm
system. But most IDS use a misuse detection technique. This means, they rely
on some sort of signature database to perform the detection.

Unfortunately, signatures do not permit to detect new or modified attacks.
Hence, such systems are often not sufficient to detect advanced, targeted attacks.

This is the reason why anomaly based IDS have been proposed. Further-
more, due to the prohibitive cost of labelling a training dataset of sufficient
size, unsupervised anomaly detection is often preferred in intrusion detection.
In unsupervised anomaly detection, some hypothesis are necessary. First, nor-
mal behaviour must be far more frequent than anomalies, second anomalies and
normal events must be structurally different.

Many anomaly detection techniques have been proposed. Interested readers
are encouraged to consult this very complete survey [4] and reference therein.
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 127–134, 2017.
https://doi.org/10.1007/978-3-319-68445-1_15



128 D. Nogues

In this paper, we will focus solely on clustering based anomaly detection.
These techniques usually work in the following way: first the data is partitioned
using a clustering algorithm, then large clusters are used to define what is the
normal state of the system, allowing to decide which small clusters are composed
of anomalies.

However, most clustering algorithms are not well suited for intrusion detec-
tion. Some do not offer sufficient computational performances. Many algorithms
are unable to create very small clusters which contain the anomalies, especially
when the number of clusters is a given parameter. And most are not able to han-
dle both qualitative and numerical data. To adress those issues, we developed
a new clustering algorithm, able to handle heterogeneous data, and particularly
efficient for anomaly detection.

2 A New Clustering Criterion

Events used in intrusion detection are often described using both qualitative and
numerical data. For example, network flows are described with numerical fea-
tures such as the duration of the communication and the quantity of exchanged
information, and qualitative features such as the protocol and port numbers
used. But, most clustering algorithms are not designed to handle heterogeneous
data.

Most algorithms, starting with the most common k-means [15], rely on
distances. Hence, they are only able to handle numerical data.

Some approaches are designed for categorical data, but relatively few
approaches tackle heterogeneous data. Most of the time, either numerical data
will be discretized, or numerical values will be assigned to categorical data modal-
ities. But these approaches will lead to either loss or addition of information to
the data, making them not really satisfactory.

Our approach however rely on an unified notion of similarity and dissimilarity,
defined on values of lattices, which can be applied to both types of variables. In
a way, it is similar to the approach introduced in [3] called triordonnances. But
unfortunately, this approach has a cubic complexity, making it unpractical.

2.1 Intuitive Definition

Defining a clustering criterion using similarities and dissimilarities is quite
straightforward. Often, the intuitive definition given to define the goal of clus-
tering is the following: clustering is the task of partitioning a set of objects so
that objects within the same cluster are more similar to each other than they
are to objects belonging to different clusters.

To define our clustering criterion, we will use the theory of Relational Analy-
sis. This theory consists in representing relations between objects with a binary
coding. Readers unfamiliar with this theory can refer to the following [11,12].
A clustering, being nothing more than a partition of the object set, can be
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thought of as the equivalence relation “being in the same cluster”. This will be
represented with the following matrix:

Xi,j =
{

1 if oi and oj belong to the same cluster
0 otherwise

Using the formalism of relational analysis this intuitive definition can easily
be translated into a mathematical formula. Let us assume we have n objects
o1, . . . , on and let us consider two functions s and s which measure the similarity
(resp. the dissimilarity) between pairs of objects. Let us also define the similarity
matrix S (resp. the dissimilarity matrix S) with:

Si,j = s(oi, oj)

Si,j = s(oi, oj)

We can now consider the following score for any given value of α:

Qα(X) =
∑

1≤i,j≤n

αSi,jXi,j + (1 − α)Si,jXi,j , with 0 ≤ α ≤ 1 (1)

assuming the following are satisfied:

– ∀i, j, Xi,j ∈ {0; 1}
– ∀i, j, Xi,j = 1 − Xi,j

– ∀i, Xi,i = 1 (reflexive relation)
– ∀i, j, Xi,j = Xj,i (symmetrical relation)
– ∀i, j, k, Xi,j + Xj,k − Xi,k ≤ 1 (transitive relation)

These constraints ensure we obtain an equivalence relation.
This criterion is quite straightforward to analyse:

∑
1≤i,j≤n Si,jXi,j is

the sum of similarities of objects belonging to the same clusters and∑
1≤i,j≤n Si,jXi,j is the sum of dissimilarities between objects from distinct

clusters, which are the values we wish to maximize.
Our clustering algorithm will then consist of a maximisation heuristic of

Qα(X).
We need only to define the similarity and dissimilarity functions to obtain

our criterion. This will be done with a single definition of similarity.
The main difference between categorical and numerical values is the notion

of order. There is a natural order on numerical values, but it makes no sense
to compare two modalities of a categorical variable. This is why we will use a
special case of partially ordered set: lattices, to define our criterion.

2.2 Similarity and Dissimilarity on a Lattice

To obtain the similarity between objects described with both numerical and
categorical values, we used an unified definition for values belonging to a lattice.

A lattice is a partially ordered set of objects (L,≤) where every pair of
elements (x, y) have a unique least upper bound x ∨ y and a unique greatest
lower bound x ∧ y. Meaning ∀x, y ∈ L there exists x ∧ y ∈ L and x ∨ y ∈ L
such as:
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– x ∧ y ≤ x ≤ x ∨ y
– x ∧ y ≤ y ≤ x ∨ y
– if z ≤ x and z ≤ y then z ≤ x ∧ y (resp. if x ≤ z and y ≤ z then x ∨ y ≤ z)

Using these notions we can generalise the notion of interval. Let us con-
sider Ia,b, the interval defined by two elements of a lattice L as Ia,b =
{x ∈ L, a ∧ b ≤ x ≤ a ∨ b}.

And let us consider S a finite sequence which takes its values in L. The
number of elements of S belonging to the interval Ia,b will be noted na,b.

Using these notations we can now define the similarity between two elements
a and b of a sequence of size n of elements belonging to a lattice as:

Sa,b = 1 − na,b

n

This similarity function verifies intuitive properties of similarities. It takes
its values between 0 and 1, and any object is more similar to itself, than it is to
other objects: ∀a �= b, Sa,a > Sa,b.

This function is also particularly interesting for anomaly detection. It gives
a greater importance to values which define a sparse interval.

Using this similarity we can now also define a dissimilarity function. The
less two objects are similar, the more they will be dissimilar. The dissimilarity
should also be positive. And we can also wish that the dissimilarity of an object
with itself be 0, so that the dissimilarity is a semi metric function.

For those reasons Sa,b = Sa,a+Sb,b

2 − Sa,b has been chosen as a dissimilarity
function.

2.3 Similarity on Heterogeneous Data

With these notions we can now define a similarity and a dissimilarity function
for objects represented by heterogeneous variables.

Each object is defined by several variables. So the similarity (and dissimilarity)
between two objects will simply be the sum of similarity (resp.dissimilarity) of each
variables.

Let us now see how our definition of similarity on lattices can be applied to
qualitative and numerical values. To that end, we will see how we can create
lattices from our variables.

Similarity on numerical variables. For numerical variables, the values of the
variables and their natural order define a lattice. With this order, we simply
obtain a ∨ b = max(a, b) and a ∧ b = min(a, b).

It follows that if a variable takes the values a and b with a ≤ b, then na,b is
the number of objects which take its value in [a, b] for this variable. It follows
that Sa,b is the proportion of objects which does not take their values in [a, b].

This similarity offers several advantages. We do not use the actual values
of the variables, only their relative orders, hence normalisation of the values
is unnecessary. Also, unlike distance based similarities, our similarity will not
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be dominated by a few abhorrent values. Finally, it also allows us to consider
“ordinal” variables, such as a variable which takes the values “low”, “medium”,
and “high”, exactly the same way we consider a numerical variable.

Similarity on categorical variables. Comparing modalities of a categorical vari-
able is senseless. This is reflected in the lattice we construct.

If we have a variable whose set of modalities is U , let us consider the following
lattice (U ∪ {	,⊥},≤) where the values of U are not comparable, i.e. ∀a, b ∈ U ,
if a �= b then a � b and b � a, and ∀a ∈ U a ≤ 	 and ⊥ ≤ a.

A graphical representation for such a lattice is given Fig. 1.

�

a b c d . . .

⊥

Fig. 1. Graphical representation of the lattice associated to a categorical variable whose
modalities are a, b, c, d, . . . .

It follows, if a �= b, Ia,b = I⊥,�, hence na,b = n the number of objects. Also,
na,a = na is the number of objects whose variable takes the modality a. The
similarity function becomes:

Sa,b =
{

1 − na

n if a = b
0 otherwise

3 Optimisation of the Criterion and Anomaly Detection

Having defined a new clustering criterion, we will now see an optimisation heuris-
tic we developed to optimize it. As the finality of this work is anomaly detection,
we will propose an anomaly score for the obtained clusters which offers good per-
formances.

3.1 The Optimisation Procedure, a Gradient Descent

Computing the best clustering for a given criterion is a difficult task. An exhaus-
tive approach swiftly becomes infeasible. The number of partitions of a set of n
elements is Bn the nth Bell number:

Bn = e−1
∞∑

k=1

kn

k!
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This value is gigantic for relatively small values of n. For example, B10 =
115975 and B75 > 1080 the estimated number of atoms in the observable uni-
verse. That explains why optimisations heuristics are usually employed.

Here, we proposed a version of a gradient descent [2] in the lattice of sub-
partitions. Without going into detail, our approach will look for a good clustering
by either merging two clusters or splitting a cluster into two sub-clusters. These
operations will be performed when they improve our criterion until a local max-
imum has been found. Details about the algorithm can be found in [13].

This simple heuristic gives good performances. On small sets where the opti-
mum solution is known such as the “felin” or “iris” datasets, it gives the best
solution. Also, by using small optimisations and an equivalent formula for the
criterion it also gives empirically linear complexity. The computations times are
provided Fig. 2.
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Fig. 2. Computational performances of our algorithm.

3.2 Anomaly Score and Performances

Our goal is to perform anomaly detection on network traffic using the computed
clustering. As mentioned previously, we assume that normal traffic represents a
broad majority of our data. This will lead us to suppose that large clusters are
composed of normal events.
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So, to detect anomalous clusters we will consider clusters that are highly
dissimilar to large clusters. The anomaly score we used to assess whether a
cluster is anomalous uses the weighted sum of mean dissimilarity between the
cluster and the others. Formally, if C = C1, . . . , Cp is the computed clustering,
and n1, . . . np are the sizes of those clusters, the mean dissimilarity between Ci

and Cj is 1
ninj

∑
a∈Ci

∑
b∈Cj

Sa,b.
The anomaly score for cluster Ci will be

Ai =
∑
j �=i

nj
1

ninj

∑
a∈Ci

∑
b∈Cj

Sa,b (2)

=
1
ni

∑
j �=i

∑
a∈Ci

∑
b∈Cj

Sa,b (3)

Using this anomaly score we obtain excellent performances. To assess the
performances of our approach we used subsets of the KDD 99 dataset. It is
necessary to select only a subset of the dataset because Denial Of Service (DOS)
attacks represent roughly 80% of the records.

For comparison, the performances of our approach are detailled in Table 1a
and b.

Table 1. Performances of our approach compared to state of the art.

To measure these performances, we used the area under the ROC curve
(AUC). The ROC curve is the curve created by plotting the true positive rate
against the false positive rate for various anomaly score cut-off values. A perfect
classifier would yield an AUC of 1. On two different subsets of the dataset used
in the literature, thanks to its ability to create small clusters of attacks, our
method outperforms the state of the art techniques.
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Abstract. In this article we explore an algorithm for diffeomorphic ran-
dom sampling of nonuniform probability distributions on Riemannian
manifolds. The algorithm is based on optimal information transport
(OIT)—an analogue of optimal mass transport (OMT). Our framework
uses the deep geometric connections between the Fisher-Rao metric on
the space of probability densities and the right-invariant information
metric on the group of diffeomorphisms. The resulting sampling algo-
rithm is a promising alternative to OMT, in particular as our formu-
lation is semi-explicit, free of the nonlinear Monge–Ampere equation.
Compared to Markov Chain Monte Carlo methods, we expect our algo-
rithm to stand up well when a large number of samples from a low
dimensional nonuniform distribution is needed.
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metric · Optimal transport · Image registration · Diffeomorphism groups ·
Random sampling

MSC2010: 58E50 · 49Q10 · 58E10

1 Introduction

We construct algorithms for random sampling, addressing the following problem.

Problem 1. Let μ be a probability distribution on a manifold M . Generate N
random samples from μ.

The classic approach to sample from a probability distribution on a higher dimen-
sional space is to use Markov Chain Monte Carlo (MCMC) methods, for example
the Metropolis–Hastings algorithm [6]. An alternative idea is to use diffeomor-
phic density matching between the density μ and a standard density μ0 from
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 135–142, 2017.
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which samples can be drawn easily. Standard samples are then transformed by
the diffeomorphism to generate non-uniform samples. In Bayesian inference, for
example, the distribution μ would be the posterior distribution and μ0 would be
the prior distribution. In case the prior itself is hard to sample from the uniform
distribution can be used. For M being a subset of the real line, the standard
approach is to use the cumulative distribution function to define the diffeomor-
phic transformation. If, however, the dimension of M is greater then one there
is no obvious change of variables to transform the samples to the distribution of
the prior. We are thus led to the following matching problem.

Problem 2. Given a probability distribution μ on M , find a diffeomorpism ϕ
such that

ϕ∗μ0 = μ.

Here, μ0 denotes a standard distribution on M from which samples can be drawn,
and ϕ∗ is the push-forward of ϕ acting on densities, i.e.,

ϕ∗μ0 = |Dϕ|μ0 ◦ ϕ,

where |Dϕ| is the Jacobian determinant.

A benefit of transport-based methods over traditional MCMC methods is cheap
computation of additional samples; it amounts to drawing uniform samples and
then evaluating the transformation. On the other hand, transport-based methods
scale poorly with increasing dimensionality of M , contrary to MCMC.

The action of the diffeomorphism group on the space of smooth probabil-
ity densities is transitive (Moser’s lemma [13]), so existence of a solution to
Problem 2 is guaranteed. However, if the dimension of M is greater then one,
there is an infinite-dimensional space of solutions. Thus, one needs to select a
specific diffeomorphism within the set of all solutions. Moselhy and Marzouk [12]
and Reich [15] proposed to use optimal mass transport (OMT) to construct the
desired diffeomorphism ϕ, thereby enforcing ϕ = ∇c for some convex function c.
The OMT approach implies solving, in one form or another, the heavily non-
linear Monge–Ampere equation for c. A survey of the OMT approach to random
sampling is given by Marzouk et al. [9].

In this article we pursue an alternative approach for diffeomorphic based ran-
dom sampling, replacing OMT by optimal information transport (OIT), which
is diffeomorphic transport based on the Fisher–Rao geometry [11]. Building on
deep geometric connections between the Fisher–Rao metric on the space of
probability densities and the right-invariant information metric on the group
of diffeomorphisms [7,11], we developed in [3] an efficient numerical method for
density matching. The efficiency stems from a solution formula for ϕ that is
explicit up to inversion of the Laplace operator, thus avoiding the solution of
nonlinear PDE such as Monge–Ampere. In this paper we explore this method
for random sampling (the initial motivation in [3] is medical imaging, although
other applications, including random sampling, are also suggested). The result-
ing algorithm is implemented in a short MATLAB code, available under MIT
license at https://github.com/kmodin/oit-random.

https://github.com/kmodin/oit-random
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2 Density Transport Problems

Let M be an d–dimensional orientable, compact manifold equipped with a
Riemannian metric g = 〈., .〉. The volume density induced by g is denoted μ0 and
without loss of generality we assume that the total volume of M with respect to
μ0 is one, i.e.,

∫
M

μ0 = 1. Furthermore, the space of smooth probability densities
on M is given by

Prob(M) = {μ ∈ Ωd(M) | μ > 0,

∫

M

μ = 1}, (1)

where Ωd(M) denotes the space of smooth d-forms. The group of smooth diffeo-
morphisms Diff(M) acts on the space of probability densities via push-forward:

Diff(M) × Prob(M) �→ Prob(M) (2)
(ϕ, μ) → ϕ∗μ. (3)

By a result of Moser [13] this action is transitive.
We introduce the subgroup of volume preserving diffeomorphisms

SDiff(M) = {ϕ ∈ Diff(M) | ϕ∗μ0 = μ0}. (4)

Note that SDiff(M) is the isotropy group of μ0 with respect to the action of
Diff(M). The spaces Prob(M), Diff(M), and SDiff(M) all have the structure
of smooth, infinite dimensional Fréchet manifold. Furthermore, Diff(M) and
SDiff(M) are infinite dimensional Fréchet Lie groups. A careful treatment of
these Fréchet topologies can be found in the work by Hamilton [5].

In the following we will focus our attention on the diffeomorphic density
matching problem (Problem 2). A common approach to overcome the non-
uniqueness in the solution is to add a regularization term to the problem. That
is, to search for a minimum energy solution that has the required matching
property, for some energy functional E on the diffeomorphism group. Following
ideas from mathematical shape analysis [10] it is a natural approach to define
this energy functional using the geodesic distance function dist of a Riemannian
metric on the diffeomorphism group. Then the regularized diffeomorphic match-
ing problem can be written as follows.

Problem 3. Given a probability density μ ∈ Prob(M) we want to find the dif-
feomorphism ϕ ∈ Diff(M) that minimizes the energy functional

E(ϕ) = dist2(id, ϕ) (5)

over all diffeomorphisms ϕ with ϕ∗μ0 = μ.

The free variable in the above matching problem is the choice of Riemannian
metric—thus distance function—on the group of diffeomorphisms. Although not
formulated as here, Moselhy and Marzouk [12] proposed to use the L2 metric on
Diff(M)

Gϕ(u ◦ ϕ, v ◦ ϕ) =
∫

M

〈u ◦ ϕ, v ◦ ϕ〉 μ0 (6)
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for u ◦ϕ, v ◦ϕ ∈ TϕDiff(M). This corresponds to distance-squared optimal mass
transport (OMT), which induces the Wasserstein L2 distance on Prob(M), see,
for example, [8,14,16].

In this article we use the right-invariant H1-type metric

GI
ϕ(u ◦ ϕ, v ◦ ϕ) = −

∫

M

〈Δu, v〉μ0 + λ

k∑

i=1

∫

M

〈u, ξi〉μ0

∫

M

〈v, ξi〉μ0, (7)

where λ > 0, Δ is the Laplace–de Rham operator lifted to vector fields, and
ξ1, . . . , ξk is an orthonormal basis of the harmonic 1-forms on M . Because of the
Hodge decomposition theorem, GI is independent of the choice of orthonormal
basis ξ1, . . . , ξk for the harmonic vector fields. This construction is related to the
Fisher-Rao metric on the space of probability density [2,4], which is predominant
in the field of information geometry [1]. We call GI the information metric. See
[3,7,11] for more information on the underlying geometry.

The connection between the information metric and the Fisher-Rao metric
allows us to construct almost explicit solutions formulas for Problem2 using the
explicit formulas for the geodesics of the Fisher-Rao metric.

Theorem 1 [3,11]. Let μ ∈ Prob(M) be a smooth probability density. The
diffeomorphism ϕ ∈ Diff(M) minimizing distGI (id, ϕ) under the constraint
ϕ∗μ0 = μ is given by ϕ(1), where ϕ(t) is obtained as the solution to the problem

Δf(t) =
μ̇(t)
μ(t)

◦ ϕ(t),

v(t) = ∇(f(t)),
d

dt
ϕ(t)−1 = v(t) ◦ ϕ(t)−1, ϕ(0) = id

(8)

where μ(t) is the (unique) Fisher-Rao geodesic connecting μ0 and μ

μ(t) =
(

sin ((1 − t)θ)
sin θ

+
sin (tθ)
sin θ

√
μ

μ0

)2

μ0, cos θ =
∫

M

√
μ

μ0
μ0. (9)

The algorithm for diffeomorphic random sampling, described in the following
section, is directly based on solving the Eq. (8).

3 Numerical Algorithm

In this section we explain the algorithm for random sampling using optimal
information transport. It is a direct adaptation of [3, Algorithm 1] (If needed,
one may also compute the inverse by ϕ−1

k+1 = ϕ−1
k + εv ◦ ϕ−1

k .).
The algorithm generates N random samples y1, . . . , yN from the distribu-

tion μ. One can save ϕK and repeat 8–9 whenever additional samples are needed.
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Algorithm 1. (OIT based random sampling)

Assume we have a numerical way to represent functions, vector fields, and dif-
feomorphisms on M , and numerical methods for

– composing functions and vector fields with diffeomorphisms,
– computing the gradient of functions,
– computing solutions to Poisson’s equation on M ,
– sampling from the standard distribution μ0 on M , and
– evaluating diffeomorphisms.

An OIT based algorithm for Problem 1 is then given as follows:

1. Choose a step size ε = 1/K for some positive integer K and calculate the
Fisher-Rao geodesic μ(t) and its derivative μ̇(t) at all time points tk = k

K
using equation (9).

2. Initialize ϕ0 = id. Set k ← 0.
3. Compute sk = μ̇(tk)

μ(tk)
◦ ϕk and solve the Poisson equation

Δfk = sk. (10)

4. Compute the gradient vector field vk = ∇fk.
5. Construct approximations ψk to exp(−εvk), for example

ψk = id−εvk. (11)

6. Update the diffeomorphism

ϕk+1 = ϕk ◦ ψk. (12)

7. Set k ← k + 1 and continue from step 3 unless k = K.
8. Draw N random samples x1, . . . xN from the uniform distribution μ0.
9. Set yn = ϕK(xn), n ∈ {1, . . . N}.

The computationally most intensive part of the algorithm is the solution of
Poisson’s equation at each time step. Notice, however, that we do not need to
solve nonlinear equations, such as Monge–Ampere, as is necessary in OMT.

4 Example

In this example we consider M = T
2 
 (R/2πZ)2 with distribution defined in

Cartesian coordinates x, y ∈ [−π, π) by

μ ∼ 3 exp(−x2 − 10(y − x2/2 + 1)2) + 2 exp(−(x + 1)2 − y2) + 1/10, (13)
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Fig. 1. (left) The probability density μ of (13). The maximal density ratio is 100. (right)
105 samples from μ calculated using our OIT based random sampling algorithm.

Fig. 2. The computed diffeomorphism ϕK shown as a warp of the uniform 256 × 256
mesh (every 4th mesh-line is shown). Notice that the warp is periodic. It satisfies
ϕ∗μ0 = μ and solves Problem 3 by minimizing the information metric (7). The ratio
between the largest and smallest warped volumes is 100.
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normalized so that the ratio between the maximum and mimimum of μ is 100.
The resulting density is depicted in Fig. 1(left).

We draw 105 samples from this distribution using a MATLAB implemen-
tation of our algorithm, available under MIT license at https://github.com/
kmodin/oit-random.

The implementation can be summarized as follows. To solve the lifting Eq. (8)
we discretize the torus by a 256 × 256 mesh and use the fast Fourier transform
(FFT) to invert the Laplacian. We use 100 time steps. The resulting diffeomor-
phism is shown as a mesh warp in Fig. 2. We then draw 105 uniform samples on
[−π, π]2 and apply the diffeomorphism on each sample (applying the diffeomor-
phism corresponds to interpolation on the warped mesh). The resulting random
samples are depicted in Fig. 1(right). To draw new samples is very efficient. For
example, another 107 samples can be drawn in less than a second on a standard
laptop.

5 Conclusions

In this paper we explore random sampling based on the optimal information
transport algorithm developed in [3]. Given the semi-explicit nature of the algo-
rithm, we expect it to be an efficient competitor to existing methods, especially
for drawing a large number of samples from a low dimensional manifold. How-
ever, a detailed comparison with other methods, including MCMC methods, is
outside the scope of this paper and left for future work.

We provide an example of a complicated distribution on the flat 2-torus.
It is straighforward to extended the method to more elaborate manifolds, e.g.,
by using finite element methods for Poisson’s equation on manifolds. For non-
compact manifolds, most importantly R

n, one might use standard techniques,
such as Box–Muller, to first transform the required distribution to a compact
domain.
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Abstract. Recently, an optimal transportation argument was proposed
by the author to provide a simple proof of Shannon’s entropy-power
inequality. Interestingly, such a proof could have been given by Shannon
himself in his 1948 seminal paper. In fact, by 1948 Shannon established
all the ingredients necessary for the proof and the transport argument
takes the form of a simple change of variables.

In this paper, the optimal transportation argument is extended to
Rényi entropies in relation to Shannon’s entropy-power inequality and
to a reverse version involving a certain conditional entropy. The trans-
portation argument turns out to coincide with Barthe’s proof of sharp
direct and reverse Young’s convolutional inequalities and can be applied
to derive recent Rényi entropy-power inequalities.

Keywords: Rényi entropy · Entropy-power inequality · Optimal
transport

1 Introduction: A Proof that Shannon Missed

2016 was the Shannon Centenary which marked the life and influence of
Claude E. Shannon on the 100th anniversary of his birth. On this occasion
many scientific events were organized throughout the world in honor of his
achievements—on top of which his 1948 seminal paper [1] which developed the
mathematical foundations of communication. The French edition of the book
re-edition of Shannon’s paper [2] has recently been published.

Remarkably, Shannon’s revolutionary work, in a single publication [1], estab-
lished the fully formed field of information theory, with all insights and math-
ematical proofs, albeit in sketched form. There seems to be only one exception
in which Shannon’s proof turned out to be flawed: the celebrated entropy-power
inequality (EPI).

The EPI can be described as follows. Letting P (X) = 1
nE{‖X‖2} be the

average power of a random vector X taking values in R
n, Shannon defined the

entropy-power N(X) as the power of a zero-mean white Gaussian random vector
X∗ having the same entropy as X. He argued [1, Sect. 21] that for continuous
random vectors it is more convenient to work with the entropy-power N(X)
than with the differential entropy h(X). By Shannon’s formula [1, Sect. 20.6]

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 143–150, 2017.
https://doi.org/10.1007/978-3-319-68445-1_17
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h(X∗) = n
2 log

(
2πeP (X∗)

)
for the entropy of the white Gaussian X∗, the closed-

form expression of N(X) = P (X∗) when h(X∗) = h(X) is

N(X) =
exp

(
2
nh(X)

)

2πe
(1)

which is essentially e to the power a multiple of the entropy of X, also recognized
as the “entropy power” of X in this sense. Since the Gaussian maximizes entropy
for a given power [1, Sect. 20.5]: h(X) ≤ n

2 log
(
2πeP (X)

)
, the entropy-power

does not exceed the actual power: N(X) ≤ P (X) with equality if and only if X
is white Gaussian. The power of a scaled random vector is given by P (aX) =
a2P (X), and the same property holds for the entropy-power:

N(aX) = a2N(X) (2)

thanks to the well-known scaling property of the entropy [1, Sect. 20.9]:

h(aX) = h(X) + n log |a| (3)

Now for any two independent continuous random vectors X and Y , the power
of the sum equals the sum of the individual powers: P (X + Y ) = P (X) + P (Y )
and clearly the same relation holds for the entropy-power in the case of white
Gaussian vectors (or Gaussian vectors with proportional covariances). In general,
however, the entropy-power of the sum exceeds the sum of the individual entropy-
powers:

N(X + Y ) ≥ N(X) + N(Y ) (4)

where equality holds only if X and Y are Gaussian with proportional covariances.
This is the celebrated entropy-power inequality (EPI) as stated by Shannon.

It is remarkable that Shannon had the intuition of this inequality since it
turns out to be quite difficult to prove. Shannon’s proof [1, Appendix 6] is an
incomplete variational argument which shows that Gaussian densities yield a
stationary point for N(X + Y ) with fixed N(X) and N(Y ) but this does not
exclude the possibility that the stationary point is not a global minimum.

The first actual proof of the EPI occurred more than ten years later and
was quite involved; subsequent proofs used either integration over a path of a
continuous Gaussian perturbation or the sharp version of Young’s inequality
where the EPI is obtained as a limit (which precludes to settle the equality
condition in this case). We refer to [3] for a comprehensive list of references and
a detailed history.

Recently, an optimal transportation argument was proposed by the author
[4,5] to provide a simple proof of the entropy-power inequality, including the equal-
ity condition. Interestingly, as we shall now demonstrate, such a proof, appropri-
ately rephrased, could have been given by Shannon himself in his 1948 seminal
paper. In fact, by 1948 Shannon established all the ingredients necessary for the
proof. As in Shannon’s paper [1], to simplify the presentation we assume, without
loss of generality, that all considered random vectors have zero mean and we here
restrict ourselves to real-valued random variables in one dimension n = 1.
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The optimal transport argument takes the form of a simple change of vari-
ables: if e.g., X∗ is Gaussian, then there exists a (possibly nonlinear) nonde-
creasing transformation T such that T (X∗) is identically distributed as X—so
that one would take X = T (X∗) in what follows. Similarly if Y ∗ is Gaussian on
can take Y = U(Y ∗). A detailed proof of this change of variable is given in [4,5]
but this is easily seen as a generalization of the inverse c.d.f. method used e.g.,
for sampling random variables.

Theorem 1 (Shannon’s Entropy-Power Inequality). Let X,Y be indepen-
dent zero-mean random variables with continuous densities. Then N(X + Y ) ≥
N(X) + N(Y ).

Proof. The proof is in several steps, each being a direct consequence of Shannon’s
basic results established in [1].

1. We first proceed to prove the apparently more general inequality

N(aX + bY ) ≥ a2N(X) + b2N(Y ) (5)

for any real-valued coefficients a, b. By the scaling property of the entropy-
power (2), this is in fact equivalent to the original EPI (4).

2. We can always assume that X and Y have the same entropy-power N(X) =
N(Y ), or equivalently, have the same entropy h(X) = h(Y ). Otherwise, one
could find constants c, d such that cX and dY have equal entropy-power (e.g.,
c = exp(−h(X)) and d = exp(−h(Y ))) and applying (5) to cX and dY yields
the general case, again thanks to the scaling property of the entropy-power.

3. Let X∗, Y ∗ be independent zero-mean Gaussian variables with the same
entropy as X,Y . Since the entropies of X∗ and Y ∗ are equal they have the
same variance and are, therefore, identically distributed. Since equality holds
in (5) for X∗, Y ∗, we have a2N(X) + b2N(Y ) = a2N(X∗) + b2N(Y ∗) =
N(aX∗ + bY ∗) so that (5) is equivalent to N(aX + bY ) ≥ N(aX∗ + bY ∗) or
(taking the logarithm)

h(aX + bY ) ≥ h(aX∗ + bY ∗) (6)

4. To prove (6) we may always assume the change of variables X = T (X∗),
Y = U(Y ∗) as explained above. One is led to prove that

h(aT (X∗) + bU(Y ∗)) ≥ h(aX∗ + bY ∗) (7)

which is written only in terms of the Gaussian variables.
5. Since X∗ and Y ∗ are i.i.d. Gaussian, the Gaussian variables X̃ = aX∗ + bY ∗

and Ỹ = −bX∗ + aY ∗ are uncorrelated and, therefore, independent. Letting
Δ = a2 + b2 we can write X∗ = (aX̃ − bỸ )/Δ and Y ∗ = (bX̃ + aỸ )/Δ. Since
conditioning reduces entropy [1, Sect. 20.4],

h(aT (X∗) + bU(Y ∗)) = h(aT (aX̃−bỸ
Δ ) + bU( bX̃+aỸ

Δ ))

≥ h(aT (aX̃−bỸ
Δ ) + bU( bX̃+aỸ

Δ )|Ỹ ) (8)
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6. By the change of variable in the entropy [1, Sect. 20.8], for any transformation
T , h(T (X)) = h(X) + E log T ′(X) where T ′(X) > 0 is the jacobian of the
transformation. Applying the transformation in X̃ for fixed Ỹ in the right-
hand side of (8) we obtain

h(aT (aX̃−bỸ
Δ

) + bU( bX̃+aỸ
Δ

)|Ỹ ) = h(X̃|Ỹ ) + E log
(

a2

Δ
T ′(aX̃−bỸ

Δ
) + b2

Δ
U ′( bX̃+aỸ

Δ
)
)

(9)

7. By the concavity of the logarithm,

log
(

a2

Δ T ′(aX̃−bỸ
Δ ) + b2

Δ U ′( bX̃+aỸ
Δ )

)
= log

(
a2

Δ T ′(X∗) + b2

Δ U ′(Y ∗)
)

≥ a2

Δ log T ′(X∗) + b2

Δ log U ′(Y ∗) (10)

but again from change of variable in the entropy [1, Sect. 20.8], E log T ′(X∗) =
h(T (X∗))−h(X∗) = h(X)−h(X∗) = 0 and similarly E log U ′(Y ∗) = 0. Thus
the second term in the right-hand side of (9) is ≥ 0.

8. Since X̃, Ỹ are independent, one has [1, Sect. 20.2] h(X̃|Ỹ ) = h(X̃) =
h(aX∗ + bY ∗), which is the right-hand side of (7). Combining the established
inequalities this proves the EPI. ��

Remark 1. The case of equality can easily be settled by noting that equality
holds in (10) only if T ′(X) = U ′(Y ) a.e., which since X and Y are independent
implies that T ′ = U ′ is constant, hence transformations T,U are linear and X,Y
are Gaussian (see [4] for details).

Going back to the proof it is interesting to note that the only place where
the gaussianity of X∗, Y ∗ is used is for the simplification h(X̃|Ỹ ) = h(X̃). If we
drop this assumption we obtain the more general statement:

Corollary 1. Let X,Y be independent zero-mean random variables with con-
tinuous densities, and similarly let X∗, Y ∗ be independent zero-mean random
variables with continuous densities, all of equal entropies. Then for any real a, b,

h(aX + bY ) ≥ h(aX∗ + bY ∗| − bX∗ + aY ∗) (11)

If in addition we drop the assumption of equal entropies than letting λ = a2/Δ,
1 − λ = b2/Δ we obtain

Corollary 2. Let X,Y be independent zero-mean random variables with con-
tinuous densities, and similarly let X∗, Y ∗ be independent zero-mean random
variables with continuous densities. Then for any 0 < λ < 1,

h(
√

λX +
√

1 − λY ) − λh(X) − (1 − λ)h(Y ) (12)

≥ h(
√

λX∗ +
√

1 − λY ∗| − √
1 − λX∗ +

√
λY ∗) − λh(X∗) − (1 − λ)h(Y ∗)

In fact since the choice of (X,Y ) and (X∗, Y ∗) is arbitrary the latter inequality
can be split into two inequalities [5], the EPI and a reverse EPI:

h(
√

λX +
√

1 − λY ) ≥ λh(X) + (1 − λ)h(Y )

h(
√

λX∗+
√

1 − λY ∗| −√
1 − λX∗+

√
λY ∗) ≤ λh(X∗)+(1 − λ)h(Y ∗).

(13)
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2 Generalization to Rényi Entropies

We now extend the same argument to Rényi entropies.

Definition 1 (Hölder Conjugate). Let p > 0, its Hölder conjugate is p′ such
that 1

p + 1
p′ = 1. We write p′ = ∞ if p = 1; note that p′ can be negative if p < 1.

Definition 2 (Rényi Entropy). The Rényi entropy of order p of a random
vector X with density f ∈ Lp(Rn) is defined by

hp(X) = −p′ log ‖f‖p =
1

1 − p
log

∫

Rn

fp. (14)

As is well known, hp(X) is non-increasing in p and we recover Shannon’s entropy
by letting p → 1 from above or below: h(X) = limp→1 hp(X). We also make the
following definitions.

Definition 3 (Power Transformation). Given a random vector X with den-
sity f ∈ Lα, we define Xα as the random vector with density

fα =
fα

∫
fα

. (15)

Definition 4 (Young’s Triple). A Young triple (p, q, r) consists of three pos-
itive real numbers such that p′, q′, r′ are of the same sign and

1
p′ +

1
q′ =

1
r′ . (16)

The triple rate λ associated to (p, q, r) is the ratio of 1/p′ in 1/r′:

λ =
1/p′

1/r′ =
r′

p′ 1 − λ =
1/q′

1/r′ =
r′

q′ . (17)

In other words 1/p + 1/q = 1 + 1/r as in the classical Young’s inequality. If all
p′, q′, r′ are > 0 then p, q, r > 1; otherwise p′, q′, r′ < 0 and p, q, r < 1. Thus we
always have 0 < λ < 1.

Definition 5 (Dual Young’s Triple). A Young triple (p∗, q∗, r∗) (with rate
λ∗) is dual to (p, q, r) if it satisfies r∗ = 1

r and λ∗ = 1 − λ.

From the definition we have p, q, r > 1 ⇐⇒ p∗, q∗, r∗ < 1 and vice versa. Since
1

p∗′ = λ∗ 1
r∗′ = 1/r′−1/p′

1/r′ (1 − r) = 1/r−1/p
1/r and similarly for q∗′, the definition

fully determines (p∗, q∗, r∗) as

(p∗ =
p

r
, q∗ =

q

r
, r∗ =

1
r
) (18)

We observe from the definition that the dual of (p∗, q∗, r∗) is the original triple
(p, q, r).



148 O. Rioul

We can now state the following
Theorem 2. Let X,Y be independent zero-mean random variables with con-
tinuous densities, and similarly let X∗, Y ∗ be independent zero-mean random
variables with continuous densities. Then for any Young’s triple (p, q, r) with
dual (p∗, q∗, r∗),

hr(
√

λX1/p +
√

1 − λY1/q) − λhp(X1/p) − (1 − λ)hq(Y1/q) (19)

≥ λ∗hp∗(X∗
1/p∗) + (1 − λ∗)hq∗(Y ∗

1/q∗) − hr∗(−
√

λ∗X∗
1/p∗ +

√
1 − λ∗Y ∗

1/q∗)

Proof. The proof uses the same transportation argument X = T (X∗), Y =
U(Y ∗) as above, combined with an application of Hölder’s inequality. It is omit-
ted due to lack of space (but see Sect. 3.2 below). ��
Remark 2. In (19) terms like hp(X1/p) may be simplified since

hp(X1/p) =
1

1 − p
log

∫
f

(
∫

f1/p)p
=

1
1 − 1/p

log
∫

f1/p = h1/p(X). (20)

The above form was chosen to stress the similarity with (12).

Remark 3. The inequality (19) is invariant by duality, in the sense that if
we permute the roles of all variables (p, q, r, λ,X, Y ) and starred variables
(p∗, q∗, r∗, λ∗,X∗, Y ∗) we obtain the exact same inequality.

Remark 4. The case of equality can be determined as in the proof of Theorem 1:
this is the case where T ′ = U ′ is constant, hence transformations T,U are linear.
Hence equality holds in (19) if and only if there exists a constant c > 0 such that
X has the same distribution as cX∗ and Y has the same distribution as cY ∗.

3 Some Applications

3.1 Back to Shannon’s Entropy-Power Inequality

There is a striking similarity between Theorem 2 and Corollary 2. In fact for fixed
λ = 1 − λ∗, we can let p, q, r → 1 from above (or below) so that p∗, q∗, r∗ → 1
from below (or above) to obtain

h(
√

λX +
√

1 − λY ) − λh(X) − (1 − λ)h(Y ) (21)

≥ (1 − λ)h(X∗) + λh(Y ∗) − h(−√
1 − λX∗ +

√
λY ∗).

This is exactly (12) in Corollary 2 because the right-hand side can be rewritten as

(1 − λ)h(X∗) + λh(Y ∗) − h(−√
1 − λX∗ +

√
λY ∗)

= h(X∗) + h(Y ∗) − h(−√
1 − λX∗ +

√
λY ∗) − λh(X∗) − (1 − λ)h(Y ∗)

= h(
√

λX∗ +
√

1 − λY ∗,−√
1 − λX∗ +

√
λY ∗)

− h(−√
1 − λX∗ +

√
λY ∗) − λh(X∗) − (1 − λ)h(Y ∗) (22)

= h(
√

λX∗ +
√

1 − λY ∗| − √
1 − λX∗ +

√
λY ∗) − λh(X∗) − (1 − λ)h(Y ∗)

(23)

where (22) holds because the entropy is invariant by rotation.
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Thus, Theorem 2 implies the classical Shannon’s entropy-power inequal-
ity. It is the natural generalization to Rényi entropies using optimal transport
arguments.

Remark 5. The above calculation (22)–(23) also shows that the EPI and the
“reverse EPI” (13) are in fact equivalent, as already noted in [5]. This is due to
the fact that Theorem 2 is invariant by duality (Remark 3).

3.2 Relation to Sharp Young Direct and Reverse Inequalities

To simplify the presentation we stay with one-dimensional random variables.
As in Corollary 2, since the choice of (X,Y ) and (X∗, Y ∗) is arbitrary, (19)
can be simplified. If we let X1/p, Y1/q be i.i.d. centered Gaussian,

√
λX1/p +√

1 − λY1/q also has the same Gaussian distribution, and since the Rényi entropy
of a Gaussian variable X ∼ N (m,σ2) is easily found to be

hp(X) = −p′ log p

2p
+ log

√
2πσ2, (24)

the l.h.s. of (19) is equal to − r′
2 ( log r

r − log p
p − log q

q ). By the equality case
(Remark 4) this expression is also the value taken by the r.h.s. of (19) when
X∗

1/p∗ , Y ∗
1/q∗ are i.i.d. Gaussian (this can also be checked directly from the above

definition of the dual Young’s triple). Therefore, the expression − r′
2 ( log r

r − log p
p

− log q
q ) can be inserted between the two sides of (19) in Theorem 2. In other

words, (19) is split into two equivalent inequalities which can be rewritten as

hr(
√

λX+
√

1 − λY )−λhp(X)−(1−λ)hq(Y ) ≥ −r′

2
(
log r

r
− log p

p
− log q

q
) (25)

with equality if and only if X and Y are i.i.d. Gaussian. Plugging the defini-
tion (14) of Rényi entropies and dividing by r′ (which can be positive of nega-
tive), it is easily found [5] that (25) yields the optimal Young’s direct and reverse
inequalities:

√
r1/r

|r′|1/r′ ‖f ∗ g‖r ≤
√

p1/p

|p′|1/p′ ‖f‖p ·
√

q1/q

|q′|1/q′ ‖g‖q. (26)

for p, q, r > 1 (r′ > 0) and the reverse inequality for 0 < p, q, r < 1 (r′ < 0),
where f and g denote the densities of

√
λX and

√
1 − λY . Equality holds if

and only if X/
√

p′ and Y/
√

q′ are i.i.d. Gaussian. In fact, a closer look at (19)
shows that it coincide with Barthe’s transportation proof of sharp Young’s
inequalities [6, Lemma 1] which uses the same change of variables X = T (X∗),
Y = U(Y ∗) as above.
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3.3 Rényi Entropy-Power Inequalities

Again to simplify the presentation we stay with two one-dimensional indepen-
dent random variables X,Y . By analogy with the entropy-power (1), the Rényi
entropy-power of order p is defined by

Np(X) =
exp

(
2
nhp(X)

)

2πe
(27)

We have the following characterization which is an immediate generalization of
the classical case r = c = 1:

Lemma 1. Let r > 0, c > 0. The Renyi entropy-power inequality

Nr(X + Y ) ≥ c
(
Nr(X) + Nr(Y )

)
(28)

is equivalent to

hr(
√

λX +
√

1 − λY ) − λhr(X) − (1 − λ)hr(Y ) ≥ 1
2

log c
(∀λ ∈ (0, 1)

)
. (29)

Now suppose p∗, q∗, r∗ < 1 so that r > 1 is greater than p and q. Since hp(X)
is non-increasing in p, one has hp(X) ≥ hr(X) and hq(Y ) ≥ hr(Y ), hence
Theorem 2 in the form (25) implies (29) for any λ ∈ (0, 1) provided that 1

2 log c is
taken as the minimum of the r.h.s. of (25) taken over all p, q such that 1/p+1/q =
1 + 1/r.

The method can easily be generalized to more than two independent random
variables. In this way we obtain the recent Renyi entropy-power inequalities
obtained by Bobkov and Chistyakov [7] and by Ram and Sason [8].
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Abstract. It is well-known that a contrast function defined on a product
manifold M×M induces a Riemannian metric and a pair of dual torsion-
free affine connections on the manifold M . This geometrical structure is
called a statistical manifold and plays a central role in information geom-
etry. Recently, the notion of pre-contrast function has been introduced
and shown to induce a similar differential geometrical structure on M ,
but one of the two dual affine connections is not necessarily torsion-free.
This structure is called a statistical manifold admitting torsion. This
paper summarizes such previous results including the fact that an esti-
mating function on a parametric statistical model naturally defines a
pre-contrast function to induce a statistical manifold admitting torsion
and provides some new insights on this geometrical structure. That is,
we show that the canonical pre-contrast function can be defined on a
partially flat space, which is a flat manifold with respect to only one of
the dual connections, and discuss a generalized projection theorem in
terms of the canonical pre-contrast function.

Keywords: Statistical manifold · Torsion · Contrast function · Estimat-
ing function · Standardization · Godambe information matrix · Informa-
tion geometry

1 Introduction

In information geometry, a central role is played by a statistical manifold, which
is a Riemannian manifold with a pair of two dual torsion-free affine connections.
This geometrical structure is induced from an asymmetric (squared) distance-like
smooth function called a contrast function by taking its second and third deriv-
atives [1,2]. The Kullback-Leibler divergence on a regular parametric statistical
model is a typical example of contrast functions and its induced geometrical
objects are the Fisher metric, the exponential and mixture connections. The
structure determined by these objects play an important role in the geometry of
statistical inference, as is widely known [3,4].
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A statistical manifold admitting torsion (SMAT) is a Riemannian manifold
with a pair of two dual affine connections, where only one of them must be
torsion-free but the other is necessarily not. This geometrical structure naturally
appears in a quantum statistical model (i.e. a set of density matrices representing
quantum states) [3] and the notion of SMAT was originally introduced to study
such a geometrical structure from a mathematical point of view [5]. A pre-
contrast function was subsequently introduced as a generalization for the first
derivative of a contrast function and it was shown that an pre-contrast function
induces a SMAT by taking its first and second derivatives [6].

Henmi and Matsuzoe [7] showed that a SMAT also appears in “classical”
statistics through an estimating function. More precisely, an estimating function
naturally defines a pre-contrast function on a parametric statistical model and
a SMAT is induced from it.

This paper summarizes such previous results and provides some new insights
for this geometrical structure. That is, we show that the canonical pre-contrast
function can be defined on a partially flat space, which is a SMAT where only
one of its dual connections is flat, and discuss a generalized projection theorem in
a partially flat space. This theorem relates orthogonal projection of the geodesic
with respect to the flat connection to the canonical pre-contrast function.

2 Statistical Manifolds and Contrast Functions

In this paper, we assume that all geometrical objects on differentiable manifolds
are smooth and restrict our attention to Riemannian manifolds, although the
most of the concepts can be defined for semi-Riemannian manifolds.

Let (M, g) be a Riemannian manifold and ∇ be an affine connection on M .
The dual connection ∇∗ of ∇ with respect to g is defined by

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗
XZ) (∀X,∀Y,∀Z ∈ X (M))

where X (M) is the set of all vector fields on M .
For a affine connection ∇ on M , its curvature tensor field R and torsion

tensor field T are defined by the following equations as usual:

R(X,Y )Z := ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z (∀X,∀Y,∀Z ∈ X (M)),
T (X,Y ) := ∇XY − ∇Y X − [X,Y ] (∀X,∀Y ∈ X (M)).

It is said that an affine connection ∇ is torsion-free if T = 0. Note that for
a torsion-free affine connection ∇, ∇∗ = ∇ implies that ∇ is the Levi-Civita
connection with respect to g. Let R∗ and T ∗ be the curvature and torsion tensor
fields of ∇∗, respectively. It is easy to see that R = 0 always implies R∗ = 0, but
T = 0 does not necessarily implies T ∗ = 0.

Let ∇ be a torsion-free affine connection on a Riemannian manifold (M, g).
Following [8], we say that (M, g,∇) is a statistical manifold if and only if ∇g is
a symmetric (0, 3)-tensor field, that is

(∇Xg)(Y,Z) = (∇Y g)(X,Z) (∀X,∀Y,∀Z ∈ X (M)). (1)
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This condition is equivalent to T ∗ = 0 under the condition that ∇ is a torsion-
free. If (M, g,∇) is a statistical manifold, so is (M, g,∇∗) and it is called the
dual statistical manifold of (M, g,∇). Since ∇ and ∇∗ are both torsion-free for
a statistical manifold (M, g,∇), R = 0 implies that ∇ and ∇∗ are both flat. In
this case, (M, g,∇,∇∗) is called a dually flat space.

Let φ be a real-valued function on the direct product M × M of a
manifold M and X1, ...,Xi, Y1, ..., Yj be vector fields on M . The functions
φ[X1, ...,Xi|Y1, ..., Yj ], φ[X1, ...,Xi| ] and φ[ |Y1, ..., Yj ] on M are defined by the
equations

φ[X1, . . . , Xi|Y1, . . . , Yj ](r) := (X1)p · · · (Xi)p(Y1)q · · · (Yj)qφ(p, q)|p=r,q=r, (2)
φ[X1, . . . , Xi| ](r) := (X1)p · · · (Xi)pφ(p, r)|p=r, (3)
φ[ |Y1, . . . , Yj ](r) := (Y1)q · · · (Yj)qφ(r, q)|q=r (4)

for any r ∈ M , respectively [1]. Using these notations, a contrast function φ is
defined to be a real-valued function which satisfies the following conditions on
M [1,2]:

(a) φ(p, p) = 0 (∀p ∈ M)
(b) φ[X| ] = φ[ |X] = 0 (∀X ∈ X (M))
(c) g(X,Y ) := −φ[X|Y ] (∀X,∀Y ∈ X (M)) is a Riemannian metric on M .

Note that these conditions imply that in some neighborhood of the diagonal set
{(r, r)|r ∈ M} in M × M ,

φ(p, q) ≥ 0, φ(p, q) = 0 ⇐⇒ p = q.

Although a contrast function is not necessarily symmetric, this inequality means
that a contrast function measures some discrepancy between two points on M
(at least locally). For a given contrast function φ, the two affine connections ∇
and ∇∗ are defined by

g(∇XY,Z) = −φ[XY |Z], g(Y,∇∗
XZ) = −φ[Y |XZ] (∀X,∀Y,∀Z ∈ X (M)).

In this case, ∇ and ∇∗ are both torsion-free and dual to each other with respect to
g, which means that both of (M, g,∇) and (M, g,∇∗) are statistical manifolds. In
particular, (M, g,∇) is called the statistical manifold induced from the contrast
function φ.

Now we briefly mention a typical example of contrast functions. Let S =
{p(x;θ) | θ = (θ1, ..., θd) ∈ Θ ⊂ Rd} be a regular parametric statistical model,
which is a set of probability density functions with respect to a dominating
measure ν on a sample space X . Each element is indexed by a parameter (vector)
θ in an open subset Θ of Rd and the set S satisfies some regularity conditions,
under which S can be seen as a differentiable manifold. The Kullback-Leibler
divergence of the two density functions p1(x) = p(x;θ1) and p2(x) = p(x;θ2)
in S is defined to be

φKL(p1, p2) :=
∫

X
p2(x) log

p2(x)
p1(x)

ν(dx).
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It is easy to see that the Kullback-Leibler divergence satisfies the conditions (a),
(b) and (c), and so it is a contrast function on S. Its induced Riemannian metric
and dual connections are Fisher metric, the exponential an mixture connections,
respectively, and given as follows:

gjk(θ) := g(∂j , ∂k) = Eθ{sj(x,θ)sk(x,θ)},{
Γij,k(θ) := g(∇∂i

∂j , ∂k) = Eθ[{∂is
j(x,θ)}sk(x,θ)]

Γ ∗
ik,j(θ) := g(∂j ,∇∗

∂i
∂k) =

∫
X sj(x,θ)∂i∂kp(x;θ)ν(dx) ,

where Eθ indicates that the expectation is taken with respect to p(x;θ), ∂i = ∂
∂θi

and si(x;θ) = ∂i log p(x;θ) (i = 1, . . . , d). As is widely known, this geometri-
cal structure plays the most fundamental and important role in the differential
geometry of statistical inference [3,4].

3 Statistical Manifolds Admitting Torsion
and Pre-contrast Functions

A statistical manifold admitting torsion is an abstract notion for the geometrical
structure where only one of the dual connections is allow to have torsion, which
naturally appears in a quantum statistical model [3]. The definition is obtained
by generalizing (1) in the definition of statistical manifold as follows [5].

Let (M, g) be a Riemannian manifold and ∇ be an affine connection on M .
We say that (M, g,∇) is a statistical manifold admitting torsion (SMAT for
short) if and only if

(∇Xg)(Y,Z) − (∇Y g)(X,Z) = −g(T (X,Y ), Z) (∀X,∀Y,∀Z ∈ X (M)). (5)

This condition is equivalent to T ∗ = 0 in the case where ∇ possibly has torsion.
Note that the condition (5) reduces to (1) if ∇ is torsion-free and that (M, g,∇∗)
is not necessarily a statistical manifold although ∇∗ is torsion-free. It should be
also noted that (M, g,∇∗) is a SMAT whenever a torsion-free affine connection
∇ is given on a Riemannian manifold (M, g).

For a SMAT (M, g,∇), R = 0 does not necessarily imply that ∇ is flat,
but it implies that ∇∗ is flat since R∗ = 0 and T ∗ = 0. In this case, we call
(M, g,∇,∇∗) a partially flat space.

Let ρ be a real-valued function on the direct product TM ×M of a manifold
M and its tangent bundle TM , and X1, ...,Xi, Y1, ..., Yj , Z be vector fields on
M . The function ρ[X1, ...,XiZ|Y1, ..., Yj ] is defined by

ρ[X1, . . . , XiZ|Y1, . . . , Yj ](r) := (X1)p · · · (Xi)p(Y1)q · · · (Yj)qρ(Zp, q)|p=r,q=r

for any r ∈ M . Note that the role of Z is different from vector fields in the
notation of (2). The functions ρ[X1, ...,XiZ| ] and ρ[ |Y1, ..., Yj ] are also defined
in the similar way to (3) and (4).
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We say that φ is a pre-contrast function on M if and only if the following
conditions are satisfied [6,7]:

(a) ρ(f1X1 + f2X2, q) = 0 (∀fi ∈ C∞(M),∀Xi ∈ X (M) (i = 1, 2),∀q ∈ M)
(b) ρ[X| ] = 0 (∀X ∈ X (M)) i .e. ρ(Xp, p) = 0 (∀p ∈ M)
(c) g(X,Y ) := −ρ[X|Y ] (∀X,∀Y ∈ X (M)) is a Riemannian metric on M .

Note that for any contrast function φ, the function ρφ which is defined by
ρφ(Xp, q) := Xpφ(p, q) (∀p,∀q ∈ M, ∀Xp ∈ Tp(M)) is a pre-contrast function
on M . The notion of pre-contrast function is obtained by taking the fundamental
properties of the first derivative of a contrast function as axioms. For a given pre-
contrast function, two affine connections ∇ and ∇∗ are defined by the following
equations in the same way as a contrast function:

g(∇XY,Z) = −ρ[XY |Z], g(Y,∇∗
XZ) = −ρ[Y |XZ] (∀X,∀Y,∀Z ∈ X (M)).

In this case, ∇ and ∇∗ are dual to each other with respect to g and ∇∗ is torsion-
free. However, the affine connection ∇ possibly has torsion. This means that
(M, g,∇) is a SMAT and it is called the SMAT induced from the pre-contrast
function ρ.

4 Generalized Projection Theorem in Partially Flat
Spaces

In a dually flat space (M, g,∇,∇∗), it is well-known that the canonical con-
trast functions (called ∇- and ∇∗- divergences) are naturally defined, and the
Pythagorean theorem and the projection theorem are stated in terms of the ∇
and ∇∗ geodesics and the canonical contrast functions [3,4]. In a partially flat
space (M, g,∇,∇∗), where R = R∗ = 0 and T ∗ = 0, a pre-contrast function
which seems to be canonical can be defined and a projection theorem holds on
the “canonical” pre-contrast function and the ∇∗- geodesic.

Proposition 1 (Canonical Pre-contrast Functions). Let (M, g,∇,∇∗) be
a partially flat space (i.e. (M, g,∇) is a SMAT with R = R∗ = 0 and T ∗ = 0)
and (U, ηi) be an affine coordinate neighborhood with respect to ∇∗ in M . The
function ρ on TU ×U defined by the following equation is a pre-contrast function
on U which induces the SMAT (U, g,∇):

ρ(Zp, q) := −gp(Zp, γ̇
∗(0)) (∀p,∀q ∈ U,∀Zp ∈ Tp(U)), (6)

where γ∗ : [0, 1] → U is the ∇∗-geodesic such that γ∗(0) = p, γ∗(1) = q and γ̇∗(0)
is the tangent vector of γ∗ on p.

Proof. For the function ρ defined as (6), the condition (a) in the definition of
pre-contrast functions follows from the bilinearity of the inner product gp. The
condition (b) immediately follows from γ̇∗(0) = 0 when p = q. By calculating
the derivatives of ρ with the affine coordinate system (ηi), it can be shown that
the condition (c) holds and that the induced Riemannian metric and dual affine
connections coincide with the original g, ∇ and ∇∗. 
�



158 M. Henmi

In particular, if (M, g,∇,∇∗) is a dually flat space, the pre-contrast function ρ
defined in (6) coincides with the directional derivative of ∇∗-divergence φ∗(·, q)
with respect to Zp (cf. [9,10]). Hence, the definition of (6) seems to be natural
one and we call the function ρ in (6) the canonical pre-contrast function in a
partially flat space (U, g,∇,∇∗).

From the definition of the canonical pre-contrast function, we can immedi-
ately obtain the following theorem.

Corollary 1 (Generalized Projection Theorem). Let U be an affine
coordinate neighborhood and ρ be the canonical pre-contrast function defined
in Proposition 1. For any submanifold N in U , the following conditions are
equivalent:

(i) The ∇∗-geodesic starting at q ∈ U is perpendicular to N at p ∈ N

(ii) ρ(Zp, q) = 0 for any Zp in Tp(N).

In the case where (U, g,∇,∇∗) is a dually flat space, the projection theorem
states that the minimum of the ∇∗-divergence φ∗(·, q) : N → R should attain
at the point p ∈ N where the ∇∗-geodesic starting at q is perpendicular to
N . It immediately follows from the generalized projection theorem, since the
directional derivative of φ∗(·, q) is the canonical pre-contrast function.

5 Statistical Manifolds Admitting Torsion Induced
from Estimating Functions

As we mentioned in Introduction, a SMAT naturally appears through estimating
functions in a “classical” statistical model as well as in a quantum statistical
model. In this section, we briefly explain how a SMAT is induced on S from an
estimating function. See [7] for more details including a concrete example.

Let S = {p(x;θ) | θ = (θ1, ..., θd) ∈ Θ ⊂ Rd} be a regular parametric
statistical model. An estimating function on S, which we consider here, is a
Rd-valued function u(x,θ) satisfying the following conditions:

Eθ{u(x,θ)} = 0, Eθ{‖u(x,θ)‖2} < ∞, det
[
Eθ

{
∂u

∂θ
(x,θ)

}]
�= 0 (∀θ ∈ Θ).

The first condition is called the unbiasedness of estimating functions, which is
important to ensure the consistency of the estimator obtained from an esti-
mating function. Let X1, . . . , Xn be a random sample from an unknown prob-
ability distribution p(x;θ0) in S. The estimator θ̂ for θ0, which is obtained
as a solution to the estimating equation

∑n
i=1 u(Xi,θ) = 0, is called an

M-estimator. The M-estimator θ̂ has the consistency θ̂ → θ0 (in probabil-
ity as n → ∞) and the asymptotic normality

√
n(θ̂ − θ0) → N(0,Avar(θ̂))

(in distribution as n → ∞) under some additional regularity conditions [11],
where Avar(θ̂) is an asymptotic variance-covariance matrix of θ̂ and is given by
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Avar(θ̂) = {A(θ0)}−1B(θ0){A(θ0)}−T with A(θ) := Eθ {(∂u/∂θ)(x,θ)} and
B(θ) := Eθ

{
u(x,θ)u(x,θ)T

}
.

In order to induce the structure of SMAT on S from an estimating function,
we consider the notion of standardization of estimating functions. For an estimat-
ing function u(x,θ), its standardization (or standardized estimating function) is
defined by

u∗(x,θ) := Eθ

{
s(x,θ)u(x,θ)T

} [
Eθ

{
u(x,θ)u(x,θ)T

}]−1
u(x,θ),

where s(x,θ) = (∂/∂θ) log p(x;θ) is the score function [12]. Geometrically, the
ith component of the standardized estimating function u∗(x,θ) is the orthogonal
projection of the ith component of the score function s(x,θ) onto the linear space
spanned by all components of the estimating function u(x,θ) in the Hilbert
space

Hθ := {a(x) | Eθ{a(x)} = 0, Eθ{a(x)2} < ∞}

with the inner product < a(x), b(x) >θ:= Eθ{a(x)b(x)} (∀a(x),∀b(x) ∈ Hθ).
In terms of the standardization, the asymptotic variance-covariance matrix can
be rewritten as Avar(θ̂) = {G(θ0)}−1, where G(θ) := Eθ

{
u∗(x,θ)u∗(x,θ)T

}
.

The matrix G(θ) is called a Godambe information matrix [13], which is a gen-
eralization of the Fisher information matrix.

As we have seen in Sect. 2, the Kullback-Leibler divergence φKL is a contrast
function on S. Hence, the first derivative of φKL is a pre-contrast function on S
and given by

ρKL((∂j)p1 , p2) := (∂j)p1φKL(p1, p2) = −
∫

X
sj(x,θ1)p(x;θ2)ν(dx)

for any two probability distributions p1(x) = p(x;θ1), p2(x) = p(x;θ2) in S
and j = 1, . . . , d. This observation leads to the following proposition.

Proposition 2 (Pre-contrast Functions from Estimating Functions).
For an estimating function u(x,θ) on the parametric model S, a pre-contrast
function ρu : TS × S → R is defined by

ρu((∂j)p1 , p2) := −
∫

X
uj

∗(x,θ1)p(x;θ2)ν(dx)

for any two probability distributions p1(x) = p(x;θ1), p2(x) = p(x;θ2) in S and
j = 1, . . . , d, where uj

∗(x,θ) is the jth component of the standardization u∗(x,θ)
of u(x,θ).

The use of the standardization u∗(x,θ) instead of u(x,θ) ensures that the
definition of the function ρu does not depend on the choice of coordinate
system (parameter) of S. In fact, for a coordinate transformation (parame-
ter transformation) η = Φ(θ), the estimating function u(x,θ) is changed into
v(x,η) = u(x, Φ−1(η)) and we have v∗(x,η) = (∂θ/∂η)T

u∗(x,θ). The proof of
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Proposition 2 is straightforward. In particular, the condition (b) in the definition
of pre-contrast function follows from the unbiasedness of the (standardized) esti-
mating function. The Riemannian metric g, dual connections ∇ and ∇∗ induced
from the pre-contrast function ρu are given as follows:

gjk(θ) := g(∂j , ∂k) = Eθ{uj
∗(x,θ)uk

∗(x,θ)} = G(θ)jk,{
Γij,k(θ) := g(∇∂i

∂j , ∂k) = Eθ[{∂iu
j
∗(x,θ)}sk(x,θ)]

Γ ∗
ik,j(θ) := g(∂j ,∇∗

∂i
∂k) =

∫
X uj

∗(x,θ)∂i∂kp(x;θ)ν(dx)
,

where G(θ)jk is the (j, k) component of the Godambe information matrix G(θ).
Note that ∇∗ is always torsion-free since Γ ∗

ik,j = Γ ∗
ki,j , whereas ∇ is not neces-

sarily torsion-free unless u∗(x,θ) is integrable with respect to θ.
Henmi and Matsuzoe [7] discussed the quasi score function in [14], which is

a well-known example of non-integrable estimating functions. They showed that
one of the induced affine connections actually has torsion and the other connec-
tion is flat, that is, a partially flat space is induced. The pre-contrast function
defined from the estimating function coincides with the canonical pre-contrast
function and the generalized projection theorem can be applied. However, its
statistical meaning has not been clarified yet. Although it is expected that the
SMAT induced from an estimating function has something to do with statisti-
cal inference based on the estimating function, the clarification on it is a future
problem.

References

1. Eguchi, S.: Geometry of minimum contrast. Hiroshima Math. J. 22, 631–647 (1992)
2. Matsuzoe, H.: Geometry of contrast functions and conformal geometry. Hiroshima

Math. J. 29, 175–191 (1999)
3. Amari, S., Nagaoka, H.: Method of Information Geometry. Amer. Math. Soc.,

Providence, Oxford University Press, Oxford (2000)
4. Amari, S.: Information Geometry and Its Applications. AMS, vol. 194. Springer,

Tokyo (2016). doi:10.1007/978-4-431-55978-8
5. Kurose, T.: Statistical manifolds admitting torsion. Geometry and Something,

Fukuoka University (2007)
6. Matsuzoe, H.: Statistical manifolds admitting torsion and pre-contrast functions.

Information Geometry and Its Related Fields, Osaka City University (2010)
7. Henmi, M., Matsuzoe, H.: Geometry of pre-contrast functions and non-conservative

estimating functions. In: AIP Conference Proceedings, vol. 1340, pp. 32–41 (2011)
8. Kurose, T.: On the divergences of 1-conformally flat statistical manifolds. Tohoku

Math. J. 46, 427–433 (1994)
9. Henmi, M., Kobayashi, R.: Hooke’s law in statistical manifolds and divergences.

Nagoya Math. J. 159, 1–24 (2000)
10. Ay, N., Amari, S.: A novel approach to canonical divergences within information

geometry. Entropy 17, 8111–8129 (2015)
11. van der Vaart, A.W.: Asymptotic Statistics. Cambridge University Press,

Cambridge (2000)

http://dx.doi.org/10.1007/978-4-431-55978-8


Statistical Manifolds Admitting Torsion 161

12. Heyde, C.C.: Quasi-Likelihood and Its Application. Springer, New York (1997).
doi:10.1007/b98823

13. Godambe, V.: An optimum property of regular maximum likelihood estimation.
Ann. Math. Statist. 31, 1208–1211 (1960)

14. McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman and
Hall, Boca Raton (1989)

http://dx.doi.org/10.1007/b98823


Generalized Wintegen Type Inequality
for Lagrangian Submanifolds in Holomorphic

Statistical Space Forms

Michel Nguiffo Boyom1, Mohd. Aquib2(B), Mohammad Hasan Shahid3,
and Mohammed Jamali4

1 IMAG, Alexander Grothendieck Research Institute,
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Abstract. Statistical manifolds are abstract generalizations of statisti-
cal models introduced by Amari [1] in 1985. Such manifolds have been
studied in terms of information geometry which includes the notion
of dual connections, called conjugate connection in affine geometry.
Recently, Furuhata [5] defined and studied the properties of holomor-
phic statistical space forms.

In this paper, we obtain the generalized Wintgen type inequality for
Lagrangian submanifolds in holomorphic statistical space forms. We also
obtain condition under which the submanifold becomes minimal or H is
some scalar multiple of H∗.

Keywords: Wintgen inequality · Lagrangian submanifold · Holomor-
phic statistical space forms

1 Introduction

The history of statistical manifold was started from investigations of geometric
structures on sets of certain probability distributions. In fact, statistical mani-
folds introduced, in 1985, by Amari [1] have been studied in terms of information
geometry and such manifolds include the notion of dual connections, called con-
jugate connection in affine geometry, closely related to affine differential geome-
try and which has application in various fields of science and engineering such as
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string theory, robot control, digital signal processing etc. The geometry of sub-
manifolds of statistical manifolds is still a young geometry, therefore it attracts
our attention.

Moreover, the Wintgen inequality is a sharp geometric inequality for surface
in 4-dimensional Euclidean space involving Gauss curvature (intrinsic invariant),
normal curvature and square mean curvature (extrinsic invariant). The gener-
alized Wintgen inequality was conjectured by De Smet, Dillen, Verstraelen and
Vrancken in 1999 for the submanifolds in real space forms also known as DDVV
conjecture.

In present article, we will prove the generalized Wintgen type inequalities
for Lagrangian submanifolds in statistical holomorphic space forms some of its
applications.

2 Statistical Manifolds and Submanifolds

A statistical manifold is a Riemannian manifold (M, g) endowed with a pair of
torsion-free affine connections ∇ and ∇∗

satisfying

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇∗
ZY ), (1)

for X,Y,Z ∈ Γ (TM). It is denoted by (M, g,∇,∇∗
). The connections ∇ and

∇∗
are called dual connections and it is easily shown that (∇∗

)∗ = ∇. The pair
(∇, g) is said to be a statistical structure. If (∇, g) is a statistical structure on M ,
then (∇∗

, g) is also statistical structure on M . Denote by R and R
∗

the curvature
tensor fields of ∇ and ∇∗

, respectively. Then the curvature tensor fields R and
R

∗
satisfies

g(R
∗
(X,Y )Z,W ) = −g(Z,R(X,Y )W ). (2)

Let M be a 2m-dimensional manifold and let M be a n-dimensional submanifolds
of M . Then, the corresponding Gauss formulas according to [7] are:

∇XY = ∇XY + h(X,Y ) (3)

∇∗
XY = ∇∗

XY + h∗(X,Y ) (4)

where h and h∗ are symmetric and bilinear, called imbedding curvature tensor
of M in M for ∇ and the imbedding curvature tensor of M in M for ∇∗

,
respectively. Let us denote the normal bundle of M by Γ (TM⊥). Since h and
h∗ are bilinear, we have the linear transformations Aξ and A∗

ξ defined by

g(AξX,Y ) = g(h(X,Y ), ξ), (5)

g(A∗
ξX,Y ) = g(h∗(X,Y ), ξ), (6)
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for any ξ ∈ Γ (TM⊥) and X,Y ∈ Γ (TM). The corresponding Weingarten
formulas [7] are:

∇Xξ = −A∗
ξX + ∇⊥

Xξ, (7)

∇∗
Xξ = −AξX + ∇∗⊥

X ξ, (8)

for any ξ ∈ Γ (TM⊥) and X ∈ Γ (TM). The connections ∇⊥
X and ∇∗⊥

X given
in the above equations are Riemannian dual connections with respect to the
induced metric on Γ (TM⊥).

The corresponding Gauss, Codazzi and Ricci equations are given by the
following results.

Proposition 1 ([7]). Let ∇ be a dual connection on M and ∇ the induced
connection on M . Let R and R be the Riemannian curvature tensors of ∇ and ∇,
respectively. Then,

g(R(X,Y )Z,W ) = g(R(X,Y )Z,W ) + g(h(X,Z), h∗(Y,W ))
− g(h∗(X,W ), h(Y,Z)), (9)

(R(X,Y )Z)⊥ = ∇⊥
Xh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ)

− {∇⊥
Y h(X,Z) − h(∇Y X,Z) − h(X,∇Y Z)}, (10)

g(R⊥(X, y)ξ, η) = g(R(X, y)ξ, η) + g([A∗
ξ , Aη]X,Y ), (11)

where R⊥ is the Riemannian curvature tensor on TM⊥, ξ, η ∈ Γ (TM⊥) and
[A∗

ξ , Aη] = A∗
ξAη − AηA∗

ξ .

Similarly, for the dual connection ∇∗
on M , we have

Proposition 2 ([7]). Let ∇∗
be a dual connection on M and ∇∗ the induced

connection on M . Let R
∗
and R∗ be the Riemannian curvature tensors of ∇∗

and ∇∗, respectively. Then,

g(R
∗
(X,Y )Z,W ) = g(R∗(X,Y )Z,W ) + g(h∗(X,Z), h(Y,W ))

− g(h(X,W ), h∗(Y,Z)), (12)

(R
∗
(X,Y )Z)⊥ = ∇∗⊥

X h∗(Y,Z) − h∗(∇∗
XY,Z) − h∗(Y,∇∗

XZ)

− {∇∗⊥
Y h∗(X,Z) − h∗(∇∗

Y X,Z) − h∗(X,∇∗
Y Z)}, (13)

g(R∗⊥(X, y)ξ, η) = g(R
∗
(X, y)ξ, η) + g([Aξ, A

∗
η]X,Y ), (14)

where R∗⊥ is the Riemannian curvature tensor for ∇⊥∗ on TM⊥, ξ, η ∈
Γ (TM⊥) and [Aξ, A

∗
η] = AξA

∗
η − A∗

ηAξ.
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Definition 1 ([5]). A 2m-dimensional statistical manifold M is said to be a
holomorphic statistical manifold if it admits an endomorphism over the tangent
bundle Γ (M) and a metric g and a fundamental form ω given by ω(X,Y ) =
g(X,JY ) such that

J2 = −Id; ∇ω = 0, (15)

for any vector fields X,Y ∈ Γ (M). Since ω is skew-symmetric, we have
g(X,JY ) = −g(JX, Y ).

Definition 2 ([5]). A holomorphic statistical manifold M is said to be of con-
stant holomorphic curvature c ∈ R if the following curvature equation holds:

R(X,Y )Z =
c

4
{g(Y,Z)X − g(X,Z)Y + g(X,JZ)JY

− g(Y, JZ)JX + 2g(X,JY )JZ}. (16)

According to the behavior of the tangent space under the action of J , subman-
ifolds in a Hermitian manifold is divided into two fundamental classes namely:
Invariant submanifold and totally real submanifold.

Definition 3. A totally real submanifold of maximal dimension is called
Lagrangian submanifold.

Let {e1, . . . , en} and {en+1, . . . , e2m} be tangent orthonormal frame and nor-
mal orthonormal frame, respectively, on M . The mean curvature vector field is
given by

H =
1
n

n∑

i=1

h(ei, ei) (17)

and

H∗ =
1
n

n∑

i=1

h∗(ei, ei). (18)

We also set

‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)) (19)

and

‖h∗‖2 =
n∑

i,j=1

g(h∗(ei, ej), h∗(ei, ej)). (20)
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3 Generalized Wintgen Type Inequality

We denote by K and R⊥ the sectional curvature function and the normal curva-
ture tensor on M , respectively. Then the normalized scalar curvature ρ is given
by [7]

ρ =
2τ

n(n − 1)
=

2
n(n − 1)

∑

1≤i<j≤n

K(ei ∧ ej), (21)

where τ is scalar curvature, and the normalized normal scalar curvature by [2]

ρ⊥ =
2τ⊥

n(n − 1)
=

2
n(n − 1)

√ ∑

1≤i<j≤n

∑

1≤α<β≤2m

(R⊥(ei, ej , ξα, ξβ))2. (22)

Following [8] we put

KN =
1
4

2m−n∑

r,s=1

Trace[A∗
r , As]2 (23)

and called it the scalar normal curvature of M . The normalized scalar normal
curvature is given by [6] ρN = 2

n(n−1)

√
KN .

Obviously

KN =
1
2

∑

1≤r<s≤2m−n

Trace[A∗
r , As]2

=
∑

1≤r<s≤2m−n

∑

1≤i<j≤n

g([A∗
r , As]ei.ej)2, (24)

for i, j ∈ {1, . . . , n} and r, s ∈ {1, . . . , 2m − n}.
In term of the components of the second fundamental form, we can express

KN by the formula [6]

KN =
∑

1≤r<s≤2m−n

∑

1≤i<j≤n

( n∑

k=1

h∗r
jkhs

ik − hr
jkh∗s

ik

)2
. (25)

We prove the following.

Theorem 1. Let M be a Lagrangian submanifold of a holomorphic statistical
space form M . Then

(ρ⊥)2 ≥ c

n(n − 1)
(ρ − c

4
) +

c

(n − 1)2
[
g(H∗,H) − ‖H‖‖H∗‖]

. (26)
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Proof. Let M be a Lagrangian submanifold of a holomorphic statistical space
form M and {e1, . . . , en} an orthonormal frame on M ; then {ξ1 = Je1, . . . , ξn =
Jen} is the orthonormal frame in the normal bundle Γ (TM⊥). Putting X =
W = ei, Y = Z = ej , i �= j from (16), we have

R(ei, ej , ej , ei) =
c

4
{g(ej , ej)g(ei, ei) − g(ei, ej)g(ej , ei)

+ g(ei, Jej)g(Jej , ei) − g(ej , Jej)g(Jei, ei)
+ 2g(ei, Jej)g(Jej , ei)}. (27)

Combining Eqs. (9) and (27), we obtain

R(ei, ej , ej , ei) =
c

4
{g(ej , ej)g(ei, ei) − g(ei, ej)g(ej , ei)

+ g(ei, Jej)g(Jej , ei) − g(ej , Jej)g(Jei, ei)
+ 2g(ei, Jej)g(Jej , ei)} + g(h(ei, ei), h∗(ej , ej))
− g(h∗(ei, ej), h(ei, ej)). (28)

By taking summation 1 ≤ i, j ≤ n and using (17), (18) in (28), we derive

2τ = n(n − 1)
c

4
+ n2g(H,H∗) − g(h∗(ei, ej), h(ei, ej)). (29)

Using (21) in (29), we get

ρ =
c

4
+

n

n − 1
g(H,H∗) − 1

n(n − 1)
g(h∗(ei, ej), h(ei, ej)). (30)

Now, using Cauchy-Schwarz inequality, (19) and (20) in the above equation, we
find

ρ ≤ c

4
+

n

n − 1
g(H,H∗) − 1

n(n − 1)
‖h∗‖‖h‖, (31)

which imply

‖h∗‖‖h‖ ≤ n(n − 1)(
c

4
− ρ) + n2‖H‖‖H∗‖. (32)

Further, Eq. (11) implies

R⊥(ei, ej , ξr, ξs) =
c

4
{−(δirδjs − δjrδis)} + g([A∗

ξr , Aξs ]ei, ej), (33)

for all i, j ∈ {1, . . . , n} and r, s ∈ {1, . . . , n}.
Then we have

(τ⊥)2 = (R⊥(ei, ej , ξr, ξs))2

= (
c

4
{(δirδjs − δjrδis)} − g([A∗

ξr , Aξs ]ei, ej))2

=
c2

16
n(n − 1)

2
+ KN − c

4
g(h(ei, ej), h∗(ei, ej))

+
c

4
g(h∗(ei, ei), h(ej , ej)) (34)



168 M. Nguiffo Boyom et al.

Above equation can be re-written as

(ρ⊥)2 =
c2

8n(n − 1)
+ ρ2N − c

n2(n − 1)2
g(h(ei, ej), h∗(ei, ej))

+
c

n2(n − 1)2
g(h∗(ei, ei), h(ej , ej))

≥ c2

8n(n − 1)
+ ρ2N − c

n2(n − 1)2
‖h‖‖h∗‖

+
c

n2(n − 1)2
g(h∗(ei, ei), h(ej , ej)). (35)

Now, from (32) and (35), we have

(ρ⊥)2 ≥ c2

8n(n − 1)
+ ρ2N − c

n2(n − 1)2
[
n(n − 1)(

c

4
− ρ)

+n2‖H‖‖H∗‖]
+

c

n2(n − 1)2
g(h∗(ei, ei), h(ej , ej))

≥ c2

8n(n − 1)
+ ρ2N +

c

n(n − 1)
(ρ − c

4
)

+
c

(n − 1)2
[
g(H,H∗) − ‖H‖‖H∗‖]

≥ c

n(n − 1)
(ρ − c

4
) +

c

(n − 1)2
[
g(H,H∗) − ‖H‖‖H∗‖]

An immediate consequence of the Theorem 1 yields the following.

Corollary 1. Let M be a Lagrangian submanifold of negatively curved holomor-
phic space form with flat normal bundle. If ρ = c

4 , then M is either minimal or
H is some scalar multiple of H∗.

Further, we observe

Proposition 3. Let M be a Lagrangian submanifold of a holomorphic statistical
space form M . If θ be the angle between H and H∗, then

(ρ⊥)2 ≥ c

n(n − 1)
(ρ − c

4
) +

c

(n − 1)2
[‖H‖‖H∗‖(cos θ − 1)

]
.

Corollary 2. Let M be a Lagrangian submanifold of a holomorphic statistical
space form M . If H and H∗ are parallel, then

(ρ⊥)2 ≥ c

n(n − 1)
(ρ − c

4
).

Corollary 3. Let M be a Lagrangian submanifold of a holomorphic statistical
space form M . If H and H∗ are perpendicular, then

(ρ⊥)2 ≥ c

n(n − 1)
(ρ − c

4
) − c

(n − 1)2
‖H‖‖H∗‖.
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Notes and Comments

1. The above results are verified for Lagrangian submanifold in complex space
form, which is ordinary case of Lagrangian submanifold in holomorphic sta-
tistical space form when H and H∗ coincides.

2. Please notice that giving a lagrangian submanifold M is a singular foliation
with a unique positive dimensional leaf M, the 0-dimensional leaves are sin-
gletons {x}. In the future, we may plan investigating the case of lagrangian
foliations whose leaves are subjects the requirements which are assumed in
this paper. Therefore, what about the orthogonal lagrangian distribution?
That would be our forthcoming challenge.
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Abstract. We deal with finite dimensional differentiable manifolds. All
items are concerned with are differentiable as well. The class of differ-
entiability is C∞. A metric structure in a vector bundle E is a constant
rank symmetric bilinear vector bundle homomorphism of E × E in the
trivial bundle line bundle. We address the question whether a given gauge
structure in E is metric. That is the main concerns. We use generalized
Amari functors of the information geometry for introducing two index
functions defined in the moduli space of gauge structures in E. Beside
we introduce a differential equation whose analysis allows to link the
new index functions just mentioned with the main concerns. We sketch
applications in the differential geometry theory of statistics.

Keywords: Gauge structure · Metric structure · Amari functor · Index
functions · Metric dynamic

1 Introduction

A metric structure (E,g) in a vector bundle E assigns to every fiber Ex a
symmetric bilinear form gx : Ex × Ex → R. Every finite rank vector bundle
admits nondegenerate positive metric structures. One uses the paracompacity
for constructing those positive regular metric structures. At another side every
nondegenerate metric vector bundle (E,g) admits metric gauge structures, viz
gauge structures (E,∇) subject to the requirement ∇g = 0. In a nondegenerate
structure the values of the curvature tensor of a metric gauge structure (E,∇)
belong to the orthogonal sub-algebra o(E,∇) of the Lie algebra G(E). Arises
the question whether a gauge structure (E,∇) is a metric gauge structure in E.

Our concern is to relate this existence question with some methods of the
information geometry. In fact in the family ∇α of α-connections in a non sin-
gular statistical model [E, π,M,D, p] the 0-connection yields a metric gauge
structure in (TM, g). Here g in the Fisher information of the statistical model
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F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 170–178, 2017.
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as in [2,4]. The question what about the cases α �= 0 deserves the attention.
More generally arises the question when the pair (∇,∇�) in a statistical mani-
fold (M, g,∇,∇�) is a pair of a metric gauge structures? Our aim is to address
those questions in the general framework of finite rank real vector bundle over
finite dimensional smooth manifolds. Our investigation involve two dynamics
in the category Ga(E). The first dynamic is the natural action of the gauge
group G(E). The second is the action of the infinitely generated Coxeter group
generated by the family Me(E) of regular metric structures (E,g). This second
dynamic is derived from Amari functors.

2 The Gauge Dynamic in Ga(E)

2.1 The Gauge Group of a Vector Bundle

Let E� be the dual vector bundle of E. Throughout this Sect. 2 we go to identify
the vector bundles E� ⊗ E and Hom(E,E). Actually Hom(E,E) is the vector
bundle of vector bundle homomorphisms from E to E. The sheaf of sections of
E�⊗E is denoted by G(E). This G(E) is a Lie algebra sheaf bracket is defined by

(φ, ψ) �−→ [φ, ψ] = φ ◦ ψ − ψ ◦ φ.

Actually E� ⊗E is a Lie algebras bundle. It is called the Lie algebra of infinitesi-
mals gauge transformations. The sheaf of inversible sections of E� ⊗E is denoted
by G(E). This G(E) is a Lie groups sheaf whose composition is the composition
of applications of E in E. Elements of G(E) are called gauge transformations
of the vector bundle E. Consequently the set Gx(E) ⊂ Hom(Ex,Ex) is nothing
but the Lie group GL(Ex). This G(E) is the seheaf of sections of the Lie groups
bundle ˜E� ⊗ E ⊂ E�⊗E. We abuse by calling G(E) and ˜E� ⊗ E the gauge group
of the vector bundle E.

2.2 Gauge Structures in a Vector Bundle E

A gauge structure in a vector bundle E is a pair (E,∇) where ∇ is a Koszul
connection in E. The set of gauge structures is denoted by Ga(E). We define the
action of the gauge group in Ga(E) as it follows

G(E) × Ga(E) −→ Ga(E),

φ�(E,∇) = (E, φ�∇).

The Koszul connection φ�∇ is defined by

(φ�∇)Xs = φ(∇Xφ−1s)

for all s ∈ Ga(E) and all vectors field X on M . We denoted the gauge moduli
space by Ga(E), viz

Ga(E) =
Ga(E)
G(E)
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2.3 The Equation FE(∇∇�)

Inspired by the appendix to [4] and by [6] and by we define a map from pairs
of gauge structures in the space of differential operators DO(Eo∗ ⊗ E, T ∗M ⊗
E∗ ⊗ E).

To every pair of gauge structures [(E,∇), (E,∇�)] we introduce the first order
differential operator D∇∇�

of E� ⊗ E in T �M ⊗ E� ⊗ E which is defined as it
follows

D∇∇∗
(φ)(X, s) = ∇∗

X(φ(s)) − φ(∇Xs)

for all s and for all vector fields X.
Assume the rank of E is equal to r and the dimension of M is equal to m.

Assume (xi) is a system of local coordinate functions defined in an open subset
U ⊂ M and (sα) is a basis of local sections of E defined in U . We set

∇∂xi
sα =

∑
β Γ β

i:αsβ , ∇�
∂xi

sα =
∑

β Γ �β
i:αsβ and φ (sα) =

∑
β φβ

αsβ .

Our concern is the analysis of system of partial derivative equations

[FE (∇∇�)]γi:α :
∂φβ

α

∂xi
+

r∑

β=1

{
φβ

αΓ �γ
i:β − φγ

βΓ β
i:α

}
= 0.

When we deal with the vector tangent bundles the differential operator D∇∇∗

plays many outstanding roles in the global analysis of the base manifold [6]. In
general though every vector bundle admits positive metric structures this same
claim is far from being true for symplectic structure and for positive signature
metric structures. We aim at linking those open problems with the differential
equation FE(∇∇∗).

The sheaf of germs of solutions to FE(∇∇�) is denoted by J∇∇�(E).

3 The Metric Dynamics in Ga(E)

3.1 The Amari Functors in the Category Ga(E)

Without the express statement of the contrary a metric structure in a vector
bundle E is a constant rank symmetric bilinear vector bundle homomorphism g
of E ⊗ E in R̃. Such a metric structure is denoted by (E,g). A nondegenerate
metric structure si called regular, otherwise it is called singular. The category of
regular metric structures in E is denoted by Me(E).

Henceforth the concern is the dynamic

G(E) × Me(E) −→ Me(E)
(φ, (E,g)) �−→ (E, φ�g) .

Here the metric φ�g is defined by

φ�g(s, s′) = g(φ−1(s), φ−1(s′)).
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This leads to the moduli space of regular metric structures in a vector bundle E

Me(E) =
Me(E)
G(E)

.

A gauge structure (E,∇) is called metric if there exist a metric structure (E,g)
subject to the requirement ∇g = 0.

We consider the functor Me(E) × Ga(E) → Ga(E) which is defined by

[(E,g), (E,∇) �−→ (E,g.∇)] .

Here the Koszul connection g.∇ is defined by

g(g.∇Xs, s′) = X(g(s, s′)) − g(s,∇Xs′).

The functor just mentioned is called the general Amari functor of the vector
bundle E. According to [6], the general Amari functor yield two restrictions:

{g} × Ga (E, ) −→ Ga (E)
∇ �−→ g.∇ (1)

Me (E) × {∇} −→ Ga (E)
g �−→ g.∇ (2)

The restriction (1) is called the metric Amari functor of the gauge structure
(E,∇). The restriction (2) is called the gauge Amari functor of the metric vector
bundle (E,g).

We observe that ∇g = 0 if and only if g.∇ = ∇. The restriction (1) gives
rise to the involution of Ga(E) : ∇ → g.∇. In other words g.(g.∇) = ∇ for
all (E,∇) ∈ Ga(E). In general the question whether an involution admits fixed
points has negative answers. In the framework we are concerned with every
involution defined by a regular metric structure has fixed points formed by metric
gauge structures in (E,g).

The dynamics
G (E) × Ga (E) −→ Ga (E)

(φ,∇) �−→ φ�∇
G (E) × Me (E) −→ Me (E)

(φ,g) �−→ φ�g

are linked with the metric Amari functor by the formula

φ�g.∇ = φ�g.φ�∇.

We go to introduce the metric dynamics in Ga(E). The abstract group of all
isomorphisms of Ga(E) is denoted by ISO(Ga(E)). By the metric Amari functor
every regular metric structure (E,g) yields the involution (E,∇) → (E,g.∇).

The subgroup of ISO(Ga(E)) which is generated by all regular metric struc-
tures in E is denoted by Gm(E). This group Gm(E) looks like an infinitely
generated Coxeter group. Using this analogy we call Gm(E) the metric Coxeter
group of Ga(E). For instance every metric structure (E,g) generates a dihedral
group of order 2.
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3.2 The Quasi-commutativity Property of the Metric Dynamic
and the Gauge Dynamic

At the present step we are dealing with both the gauge dynamic

G (E) × Ga (E) −→ Ga (E)
(φ,∇) �−→ φ�∇ (3)

and the metric dynamic

Gm (E) × Ga (E) −→ Ga (E)
(γ,∇) �−→ γ.∇ (4)

What we call the quasi commutativity property of (1) and (2) is the link

φ�g.∇ = φ�g.φ�∇.

We consider two regular metric structures (E,g0) and (E,g). There exists a
unique φ ∈ G(E) subject to the requirement

g0(s, s′) = g(φ(s), s′).

By direct calculations one sees that for every gauge structure (E,∇) one has

g.∇ = φ�(g0.∇).

The quasi-commutativity property shows that every regular metric structure
acts in the moduli space Ga(E). Further the gauge orbit G(E)(g.∇) does not
depend on the choice of the regular metric structure (E,g). Thus the metric
Coxeter group Gm(E) acts in the moduli space Ga(E). When there is no risk
of confusion the orbit of [∇] ∈ Ga(E) is denoted by Gm.[∇] while its stabilizer
subgroup is denoted by Gm[∇]. Consequently one has

Proposition 1. The index of every stabilizer subgroup Gm[∇] ⊂ Gm(E) is equal
to 1 or to 2.

We go to rephrase Proposition 1 versus the orbits of the metric Coxeter group
in the moduli space Ga(E).

Proposition 2. For every orbit Gm(E).[∇] cardinal 	 (Gm(E).[∇]) ∈ {1, 2}.

3.3 The Metric Index Function

The concern is the metric dynamic

Gm (E) × Ga (E) −→ Ga (E)
(γ,∇) �−→ γ.∇ (5)

The length of γ ∈ Gm(E) is denoted by l(γ). It is defined as it follows

l(γ) = min {p ∈ N : γ = g1g2 . . .gp, gj ∈ Me(E)}



Amari Functors and Dynamics in Gauge Structures 175

For every gauge structure (E,∇) the metric index of (E,∇) is defined by

ind(∇) = min
γ∈G∗m∇

{l(γ) − 1} .

Here G∗m∇ stands for the subset formed of elements of the isotropy subgroup
that differ from the unit element. The flowing statement is a straightforward
consequence of the quasi-commutativity property.

Lemma 1. The non negative integer ind(∇) is a gauge invariant.

Consequently we go to encode every orbit [∇] = G(E)�∇ with metric index
ind([∇]) = ind(∇).

Definition 1. By Lemma1 we get the metric index function

Ga(E) 
 [∇] → ind([∇]) ∈ Z

3.4 The Gauge Index Function

We consider the general Amari functor

Me (E) × Ga (E) −→ Ga (E)
(g,∇) �−→ g.∇

For convenience we set ∇g = g.∇. Therefore to a pair [(E,g), (E,∇)] we
assign the differential equation FE(∇∇g). The sheaf of solutions to FE(∇∇g)
is denoted by J∇∇g(E). We go to perform a formalism which is developed in [5].
See also [6] for the case of tangent bundles of a manifolds.

The concerns are metric structures in vector bundles. We recall that a sin-
gular metric structure in E is a constant rank degenerate symmetric bilinear
vector bundles homomorphism g : E × E → R̃. Let (E,g) be a regular metric
structure. We pose ∇g = g.∇.

For every φ ∈ G(E) there exists a unique pair (Φ,Φ∗) ⊂ G(E) subject to the
following requirements

g(Φ(s), s′) =
1
2

[g(φ(s), s′) + g(s, φ(s′))] , (6)

g(Φ�(s), s′) =
1
2

[g(φ(s), s′) − g(s, φ(s′))] (7)

We put q(s, s′) = g(Φ(s), s′) and ω(s, s′) = g(Φ�(s), s′).

Proposition 3 ([5]). If φ is a solution to FE(∇∇�) then Φ and Φ� are solutions
to FE(∇∇�). Furthermore,

∇q = 0,

∇ω = 0.
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By the virtue of the Proposition 3 one has rank(Φ) = Constant and
rank(Φ�) = Constant.

Corollary 1. We assume that the regular metric structure (E,g) is positive
definite then we have

E = ker(Φ) ⊕ Im(Φ) (8)

E = ker(Φ�) ⊕ Im(Φ�) (9)

Further one has the following gauge reductions

(ker(Φ),∇) ⊂ (E,∇), (10)

(Im(Φ),∇g) ⊂ (E,∇g), (11)

(ker(Φ�),∇) ⊂ (E,∇), (12)

(Im(Φ�),∇g) ⊂ (E,∇g). (13)

Corollary 2. Assume that (E,g,∇,∇g) is the vector bundle versus of a statis-
tical manifold (M,g,∇,∇g) here ∇ =. Then (10, 11, 12, 13) is (quasi) 4-web in
the base manifold M .

Given a metric vector bundle (E,g) and gauge structure (E,∇). The triple
(E,g,∇) is called special if the differential equation FE(∇∇g) has non trivial
solutions. We deduce from Corollary 2 that every special statistical manifold
supports a canonical (quasi) 4-web, viz 4 foliations in (quasi) general position.

Before pursing we remark that among formalisms introduce in [6], many
(of them) walk in the category of vector bundles. We go to perform this remark.
To every special triple (E,g,∇) we assign the function

J∇∇g (E) −→ Z

φ �−→ rank(Φ)

Reminder: The map Φ is the solution to FE(∇∇g) given by g(Φ(s), s′) =
1
2 [g(φ(s), s′) + g(s, φ(s′))].

We define the following non negatives integers

sb (∇,g) = min
φ∈J∇∇g (E)

corank (Φ) , (14)

sb (∇) = min
(E,g)∈Me(E)

sb (∇,g) . (15)

Proposition 4. The non negative integer sb(∇) is a gauge invariant Ga(E),
viz sb(∇) = sb(Φ�∇) for all gauge transformation Φ.

Definition 2. By Proposition 4 we get the gauge index function

Ga(E) 
 [∇] → sb([∇]) ∈ Z
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4 The Topological Nature of the Index Functions

4.1 Index Functions as Characteristic Obstruction

According to [1], every positive Riemannian foliation (nice singular metric in
the tangent bundle of a smooth manifold) admits a unique symmetric metric
connection. A combination of [1,4] shows that all those metrics are constructed
using methods of the information geometry as in [4] (see the exact sequence
(16) below). Remind that we are concerned with the question whether a gauge
structure (E,∇) is metric. By the virtue of [1,5] one has

Theorem 1. In a finite rank vector bundle E a gauge structure (E,∇) is metric
if and only if for some regular metric structure (E,g) the differential equation
FE(∇∇g) admits non trivial solutions.

Remark 1. If for some metric structure (E,g0) the differential equation
FE(∇∇g0

) admits non trivial solutions then for every regular metric structure
(E,g) the differential equation FE(∇∇g) admits non trivial solutions.

Hint: use the following the short exact sequence as in [5]

0 −→ Ω∇
2 (TM) −→ J∇∇g(TM) −→ S∇

2 (TM) −→ 0. (16)

We recall that the concern is the question whether a gauge structure (E,∇) is
metric. By the remark raised above, this question is linked with the solvability
of differential equations FE(∇∇g) which locally is a system of linear PDE with
non constant coefficients. Theorem 1 highlights the links of its solvability with
the theory of Riemannian foliations which are objects of the differential topology.
The key of those links are items of the information geometry. So giving (E,∇),
the property of (E,∇) to be metric is equivalent to the property of FE(∇∇g)
to admit non trivial solutions. Henceforth, our aim is to relate the question
just mentioned and the invariants ind(∇) and sb(∇). We assume that (E,∇) is
special.

Theorem 2. In a gauge structure (E,∇), the following assertions are equivalent

1. The gauge structure (E,∇) is regularly special.
2. The metric index function vanishes at [∇] ∈ Ga(E) i.e. ind([∇]) = 0.
3. The gauge index function vanishes at [∇] ∈ Ga(E) i.e. sb([∇]) = 0.

Theorem 3. A gauge structure (E,∇) is regularly metric if and only if (E,g.∇)
is regularly metric for all regular metric structure (E,g).

By Theorem 1 both ind(∇) and sb(∇) are characteristic obstructions to
(E,∇) being regularly special. We have no relevant interpretation of the case
ind(∇) �= 0. Regarding the case sb(∇) �= 0, we have

Proposition 5. Let (E,∇) be a gauge structure with sb(∇) �= 0. Then there
exists a metric structure (E,g) such subject to the following requirement:
rank(g) = sb(∇), further g is optimal for those requirement, viz every ∇-parallel
metric structure (E,g) has rank smaller than sb(∇).
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4.2 Applications to the Statistical Geometry

Theorem 4. Let {∇α} be the family of α-connections of a statistical manifold.
If ∇α is regularly metric for all of the positive real numbers α then all of the
α-connections are regularly metric.

References

1. Affane, A., Chergui, A.: Quasi-connections on degenerate semi-riemanniann mani-
folds. Mediterr. J. Math. 14(3), 1–15 (2017). Springer

2. Amari, S.I., Nagaoka, H.: Methods of Information Geometry. Translations of Math-
ematical Monographs, vol. 191. AMS-OXFORD, Oxford (2007)

3. Bel’ko, I.V.: Degenerate Riemannian metric. Math. Notes. Acad. Sci. USSR 18(5),
1046–1049 (1975)

4. Nguiffo Boyom, M.: Foliations-Webs-Hessian geometry-information geometry and
cohomology. Entropy 18, 433 (2016)

5. Nguiffo Boyom, M.: Analytic anchored Victor bundle, metric algebroids and strati-
fied Riemannian foliation. In: Naseem, A., Shehzad, H., Arshad, K., Yaya, A. (eds.)
Algebra, Geometry, Analysis and their Applications, pp. 1–23. Narosa Publishing
House, New Delhi (2016)

6. Nguiffo Boyom, M.: Numerical properties of Koszul connections (to appear)
7. Nguiffo Boyom, M., Wolak, R.A.: Transversely Hessian foliations and information

geometry. Int. J. Math. Word Sci. 27(11) (2016). 17 p
8. Kozlov, S.E.: Levi-Civita connections on degenerate pseudo-Riemannian manifolds.

J. Math. Sci. 104(4), 1338–1342 (2001)



Sasakian Statistical Manifolds II

Hitoshi Furuhata(B)

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
furuhata@math.sci.hokudai.ac.jp

1 Introduction

This article is a digest of [2,3] with additional remarks on invariant submanifolds
of Sasakian statistical manifolds.

We set Ω = {1, . . . , n+1} as a sample space, and denote by P+(Ω) the set of
positive probability densities, that is, P+(Ω) = {p : Ω → R+ | ∑

x∈Ω p(x) = 1 },
where R+ is the set of positive real numbers. Let M be a smooth manifold as
a parameter space, and s : M � u �→ p(·, u) ∈ P+(Ω) an injection with the
property that p(x, ·) : M → R+ is smooth for each x ∈ Ω. Consider a family
of positive probability densities on Ω parametrized by M in this manner. We
define a (0, 2)-tensor field on M by

gu(X,Y ) =
∑

x∈Ω

{X log p(x, ·)}{Y log p(x, ·)}p(x, u)

for tangent vectors X,Y ∈ TuM . We say that an injection s : M → P+(Ω)
is a statistical model if gu is nondegenerate for each u ∈ M , namely, if g
is a Riemannian metric on M , which is called the Fisher information met-
ric for s. Define ϕ : M → R

n+1 for a statistical model s by ϕ(u) =
t[2

√
p(1, u), . . . , 2

√
p(n + 1, u)]. It is known that the metric on M induced by ϕ

from the Euclidean metric on R
n+1 coincides with the Fisher information metric

g. Since the image ϕ(M) lies on the n-dimensional hypersphere Sn(2) of radius 2,
the Fisher information metric is considered as the Riemannian metric induced
from the standard metric of the hypersphere. For example, we set

M = {u = t[u1, . . . , un] ∈ R
n | uj > 0,

n∑

l=1

ul < 1 },

s : M � u �→ p(x, u) =
{

uk, x = k ∈ {1, . . . , n},
1 − ∑n

l=1 ul, x = n + 1.

Then ϕ(M) = Sn(2)∩ (R+)n+1 and the Fisher information metric is the restric-
tion of the standard metric of Sn(2). It shows that a hypersphere with the stan-
dard metric plays an important role in information geometry. It is an interesting
question whether a whole hypersphere plays another part there.

In this article, we give a certain statistical structure on an odd-dimensional
hypersphere, and explain its background.

c© Springer International Publishing AG 2017
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2 Sasakian Statistical Structures

Throughout this paper, M denotes a smooth manifold, and Γ (E) denotes the
set of sections of a vector bundle E → M . All the objects are assumed to be
smooth. For example, Γ (TM (p,q)) means the set of all the C∞ tensor fields on
M of type (p, q).

At first, we will review the basic notion of Sasakian manifolds, which is a
classical topic in differential geometry (See [5] for example). Let g ∈ Γ (TM (0,2))
be a Riemannian metric, and denote by ∇g the Levi-Civita connection of g. Take
φ ∈ Γ (TM (1,1)) and ξ ∈ Γ (TM).

A triple (g, φ, ξ) is called an almost contact metric structure on M if the
following equations hold for any X,Y ∈ Γ (TM):

φ ξ = 0, g(ξ, ξ) = 1,

φ2X = −X + g(X, ξ)ξ,
g(φX, Y ) + g(X,φY ) = 0.

An almost contact metric structure on M is called a Sasakian structure if

(∇g
Xφ)Y = g(Y, ξ)X − g(Y,X)ξ (1)

holds for any X,Y ∈ Γ (TM). We call a manifold equipped with a Sasakian
structure a Sasakian manifold.

It is known that on a Sasakian manifold the formula

∇g
Xξ = φX (2)

holds for X ∈ Γ (TM). A typical example of a Sasakian manifold is a hypersphere
of odd dimension as mentioned below.

We now review the basic notion of statistical manifolds to fix the notation
(See [1] and references therein). Let ∇ be an affine connection of M , and g ∈
Γ (TM (0,2)) a Riemannian metric. The pair (∇, g) is called a statistical structure
on M if (i) ∇XY −∇Y X − [X,Y ] = 0 and (ii) (∇Xg)(Y,Z) = (∇Y g)(X,Z) hold
for any X,Y,Z ∈ Γ (TM). By definition, (∇g, g) is a statistical structure on M .

We denote by R∇ the curvature tensor field of ∇, and by ∇∗ the dual con-
nection of ∇ with respect to g, and set S = S(∇,g) ∈ Γ (TM (1,3)) as the mean of
the curvature tensor fields of ∇ and of ∇∗, that is, for X,Y,Z ∈ Γ (TM),

R∇(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z,

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗
XZ),

S(X,Y )Z =
1
2
{R∇(X,Y )Z + R∇∗

(X,Y )Z}. (3)

A statistical manifold (M,∇, g) is called a Hessian manifold if R∇ = 0. If so,
we have R∇∗

= S = 0 automatically.
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For a statistical structure (∇, g) on M , we set K = ∇ − ∇g. Then the
following hold:

K ∈ Γ (TM (1,2)),
KXY = KY X, g(KXY,Z) = g(Y,KXZ)

(4)

for any X,Y,Z ∈ Γ (TM). Conversely, if K satisfies (4), the pair (∇ = ∇g +K, g)
is a statistical structure on M .

The formula
S(X,Y )Z = Rg(X,Y )Z + [KX ,KY ]Z (5)

holds, where Rg = R∇g

is the curvature tensor field of the Levi-Civita connection
of g.

For a statistical structure (∇, g), we often use the expression like (∇ = ∇g +
K, g), and write KXY by K(X,Y ).

Definition 1. A quadruplet (∇ = ∇g +K, g, φ, ξ) is called a Sasakian statistical
structure on M if (i) (g, φ, ξ) is a Sasakian structure and (ii) (∇, g) is a statistical
structure on M , and (iii) K ∈ Γ (TM (1,2)) for (∇, g) satisfies

K(X,φY ) + φK(X,Y ) = 0 for X,Y ∈ Γ (TM). (6)

These three conditions are paraphrased in the following three conditions
([3, Theorem 2.17]: (i’) (g, φ, ξ) is an almost contact metric structure and (ii)
(∇, g) is a statistical structure on M , and (iii’) they satisfy

∇X(φY ) − φ∇∗
XY = g(ξ, Y )X − g(X,Y )ξ, (7)

∇Xξ = φX + g(∇Xξ, ξ)ξ. (8)

We get the following formulas for a Sasakian statistical manifold:

K(X, ξ) = λg(X, ξ)ξ, g(K(X,Y ), ξ) = λg(X, ξ)g(Y, ξ), (9)

where
λ = g(K(ξ, ξ), ξ). (10)

Proposition 2. For a Sasakian statistical manifold (M,∇, g, φ, ξ),

S(X,Y )ξ = g(Y, ξ)X − g(X, ξ)Y (11)

holds for X,Y ∈ Γ (TM).

Proof. By (9), we have [KX ,KY ]ξ = 0, from which (5) implies S = Rg. It is
known that Rg is written as the right hand side of (11) (See [5]).

A quadruplet (M̃, ∇̃ = ∇g̃ + K̃, g̃, J̃) is called a holomorphic statistical man-

ifold if (g̃, J̃) is a Kähler structure, (∇̃, g̃) is a statistical structure on M̃ , and

K̃(X, J̃Y ) + J̃K̃(X,Y ) = 0 (12)
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holds for X,Y ∈ Γ (TM̃). The notion of Sasakian statistical manifold can be
also expressed in the following: The cone over M defined below is a holomorphic
statistical manifold. Let (M,∇ = ∇g + K, g, φ, ξ) be a statistical manifold with
an almost contact metric structure. Set M̃ as M ×R+, and define a Riemannian

metric g̃ = r2g +(dr)2 on M̃ . Take a vector field Ψ = r
∂

∂r
∈ Γ (TM̃), and define

J̃ ∈ Γ (TM̃ (1,1)) by J̃Ψ = ξ and J̃X = φX − g(X, ξ)Ψ for any X ∈ Γ (TM).
Then, (g̃, J̃) is an almost Hermitian structure on M̃ , and furthermore, (g, φ, ξ)
is a Sasakian structure on M if and only if (g̃, J̃) is a Kähler structure on M̃ .
We construct connection ∇̃ on M̃ by

⎧
⎪⎨

⎪⎩

∇̃ΨΨ = −λξ + Ψ,

∇̃XΨ = ∇̃ΨX = X − λg(X, ξ)Ψ,

∇̃XY = ∇XY − g(X,Y )Ψ,

that is,

K̃(Ψ, Ψ) = −λξ, K̃(X,Ψ) = −λg(X, ξ)Ψ, K̃(X,Y ) = K(X,Y )

for X,Y ∈ Γ (TM), where λ is in (10). We then have that (M,∇, g, φ, ξ) is a
Sasakian statistical manifold if and only if (M̃, ∇̃, g̃, J̃) is a holomorphic statis-
tical manifold (A general statement is given as [2, Proposition 4.8 and Theorem
4.10]). It is derived from the fact that the formula (12) holds if and only if both
(6) and (9) hold.

Example 3. Let S2n−1 be a unit hypersphere in the Euclidean space R
2n.

Let J be a standard almost complex structure on R
2n considered as C

n,
and set ξ = −JN , where N is a unit normal vector field of S2n−1. Define
φ ∈ Γ (T (S2n−1)(1,1)) by φ(X) = JX − 〈JX,N〉N . Denote by g the standard
metric of the hypersphere. Then such a (g, φ, ξ) is known as a standard Sasakian
structure on S2n−1. We set

K(X,Y ) = g(X, ξ)g(Y, ξ)ξ (13)

for any X,Y ∈ Γ (TS2n−1). Since K satisfies (4) and (6), we have a Sasakian
statistical structure (∇ = ∇g + K, g, φ, ξ) on S2n−1.

Proposition 4. Let (M, g, φ, ξ) be a Sasakian manifold. Set ∇ as ∇g + fK
for f ∈ C∞(M), where K is given in (13). Then (∇, g, φ, ξ) is a Sasakian
statistical structure on M . Conversely, we define ∇XY = ∇g

XY + L(X,Y )V
for some unit vector field V and L ∈ Γ (TM (0,2)). If (∇, g, φ, ξ) is a Sasakian
statistical structure, then L ⊗ V is written as L(X,Y )V = fg(X, ξ)g(Y, ξ)ξ for
some f ∈ C∞(M), as above.

Proof. The first half is obtained by direct calculation. To get the second half,
we have by (4),

0 = L(X,Y )V − L(Y,X)V = {L(X,Y ) − L(Y,X)}V,

0 = g(L(X,Y )V,Z) − g(Y,L(X,Z)V ) = g(L(X,Y )Z − L(X,Z)Y, V ). (14)



Sasakian Statistical Manifolds II 183

Substituting V for Z in (14), we have

L(X,Y ) = L(V, V )g(X,V )g(Y, V ).

Accordingly, we get by (6),

0 = L(X,φY )V + φ{L(X,Y )V } = L(V, V )g(X,V ){−g(Y, φV )V + g(Y, V )φV },

which implies that φV = 0 if L(V, V ) �= 0, and hence V = ±ξ.

3 Invariant Submanifolds

Let (M̃, g̃, φ̃, ξ̃) be a Sasakian manifold, and M a submanifold of M̃ . We say that
M is an invariant submanifold of M̃ if (i) ξ̃u ∈ TuM , (ii) φ̃X ∈ TuM for any
X ∈ TuM and u ∈ M . Let g ∈ Γ (TM (0,2)), φ ∈ Γ (TM (1,1)) and ξ ∈ Γ (TM)
be the restriction of g̃, φ̃ and ξ̃, respectively. Then it is shown that (g, φ, ξ) is a
Sasakian structure on M .

A typical example of an invariant submanifold of a Sasakian manifold S2n−1 in
Example 3 is an odd dimensional unit sphere. Furthermore, we have the following
example. Let ι : Q → CPn−1 be a complex hyperquadric in the complex projective
space, and Q̃ the principal fiber bundle over Q induced by ι from the Hopf fibration
π : S2n−1 → CPn−1. We denote the induced homomorphism by ι̃ : Q̃ → S2n−1.
Then it is known that ι̃(Q̃) is an invariant submanifold (See [4], [5]).

We briefly review the statistical submanifold theory to study invariant sub-
manifolds of a Sasakian statistical manifold. Let (M̃, ∇̃, g̃) be a statistical mani-
fold, and M a submanifold of M̃ . Let g be the metric on M induced from g̃, and
consider the orthogonal decomposition with respect to g̃: TuM̃ = TuM ⊕TuM⊥.
According to this decomposition, we define an affine connection ∇ on M ,
B ∈ Γ (TM⊥ ⊗ TM (0,2)), A ∈ Γ ((TM⊥)(0,1) ⊗ TM (1,1)), and a connection
∇⊥ of the vector bundle TM⊥ by

∇̃XY = ∇XY + B(X,Y ), ∇̃XN = −ANX + ∇⊥
XN (15)

for X,Y ∈ Γ (TM) and N ∈ Γ (TM⊥). Then (∇, g) is a statistical structure
on M . In the same fashion, we define an affine connection ∇∗ on M , B∗ ∈
Γ (TM⊥ ⊗ TM (0,2)), A∗ ∈ Γ ((TM⊥)(0,1) ⊗ TM (1,1)), and a connection (∇⊥)∗

of TM⊥ by using th dual connection ∇̃∗ instead of ∇̃ in (15).
We remark that g̃(B(X,Y ), N) = g(A∗

NX,Y ) for X,Y ∈ Γ (TM) and N ∈
Γ (TM⊥), and remark that ∇∗ coincides with the dual connection of ∇ with
respect to g. See [1] for example.

Theorem 5. Let (M̃, ∇̃, g̃, φ̃, ξ̃) be a Sasakian statistical manifold, and M an
invariant submanifold of M̃ with g, φ, ξ,∇, B,A,∇⊥,∇∗, B∗, A∗, (∇⊥)∗ defined
as above. Then the following hold:
(i) A quintuplet (M,∇, g, φ, ξ) is a Sasakian statistical manifold.
(ii) B(X, ξ) = B∗(X, ξ) = 0 for any X ∈ Γ (TM).
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(iii) B(X,φY ) = B(φX, Y ) = φ̃B∗(X,Y ) for any X,Y ∈ Γ (TM). In particular,
trgB = trgB

∗ = 0.
(iv) If B is parallel with respect to the Van der Weaden-Bortolotti connection
∇̃′ for ∇̃, then B and B∗ vanish. Namely, if (∇̃′

XB)(Y,Z) = ∇⊥
XB(Y,Z) −

B(∇XY,Z) − B(Y,∇XZ) = 0 for Z ∈ Γ (TM), then B∗(X,Y ) = 0.
(v) g̃(S̃(X, φ̃X)φ̃X − S(X,φX)φX,X) = 2g̃(B∗(X,X), B(X,X)) for X ∈
Γ (TM), where S = S(∇,g) and S̃ = S(˜∇,g̃) as in (3).

Corollary 6. Let (M̃, ∇̃, g̃, φ̃, ξ̃) be a Sasakian statistical manifold of constant
φ̃-sectional curvature c, and M an invariant submanifold of M̃ . The induced
Sasakian statistical structure on M has constant φ-sectional curvature c if and
only if g̃(B∗(X,X), B(X,X)) = 0 for any X ∈ Γ (TM) orthogonal to ξ.

If we take the Levi-Civita connection as ∇̃, the properties above reduce to
the ones for an invariant submanifold of a Sasakian manifold. It is known that an
invariant submanifold of a Sasakian manifold of constant φ̃-sectional curvature
c is of constant φ-sectional curvature c if and only if it is totally geodesic. It is
obtained by setting B = B∗ in Corollary 6. It is an interesting question whether
there is an interesting invariant submanifold having nonvanishing B with the
above property.

Outline of Proof of Theorem 5. The proof of (i) can be omitted.
By (i) and (8), we calculate that ∇Xξ+B(X, ξ) = ∇̃Xξ = φ̃X+g̃(∇̃Xξ, ξ̃)ξ̃ =

φX + g(∇Xξ, ξ)ξ. Comparing the normal components, we have (ii).
By (7), we have g̃(Y, ξ̃)X − g̃(Y,X)ξ̃ = ∇̃X(φ̃Y ) − φ̃∇̃∗

XY = ∇X(φY ) +
B(X,φY )−φ̃(∇∗

XY +B∗(X,Y )) = g(Y, ξ)X−g(Y,X)ξ+B(X,φY )−φ̃B∗(X,Y ).
Comparing the normal components, we have (iii).

By (i) and (ii), we get that 0 = ∇⊥
XB(Y, ξ) − B(∇XY, ξ) − B(Y,∇Xξ) =

−B(Y, φX) = −φ̃B∗(X,Y ), which implies (iv).
To get (v), we use the Gauss equation in the submanifold theory. The tan-

gential component of R
˜∇(X,Y )Z is given as

R∇(X,Y )Z − AB(Y,Z)X + AB(X,Z)Y,

for X,Y,Z ∈ Γ (TM), which implies that

2g̃(S̃(X,Y )Z,W ) = 2g(S(X,Y )Z,W )
− g̃(B∗(X,W ), B(Y,Z)) + g̃(B∗(Y,W ), B(X,Z))

− g̃(B(X,W ), B∗(Y,Z)) + g̃(B(Y,W ), B∗(X,Z)).

Therefore, we prove (v) from (iii).
To get Corollary 6, we have only to review the definition. A Sasakian sta-

tistical structure (∇, g, φ, ξ) is said to be of constant φ-sectional curvature c if
the sectional curvature defined by using S equals c for each φ-section, the plane
spanned by X and φX for a unit vector X orthogonal to ξ: g(S(X,φX)φX,X) =
cg(X,X)2 for X ∈ Γ (TM) such that g(X, ξ) = 0.
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Abstract. On a statistical manifold (M, g,∇), the Riemannian metric
g is coupled to an (torsion-free) affine connection ∇, such that ∇g is
totally symmetric; {∇, g} is said to form “Codazzi coupling”. This leads
∇∗, the g -conjugate of ∇, to have same torsion as that of ∇. In this
paper, we investigate how statistical structure interacts with L in an
almost Hermitian and almost para-Hermitian manifold (M, g, L), where
L denotes, respectively, an almost complex structure J with J2 = −id
or an almost para-complex structure K with K2 = id. Starting with
∇L, the L -conjugate of ∇, we investigate the interaction of (generally
torsion-admitting) ∇ with L, and derive a necessary and sufficient condi-
tion (called “Torsion Balancing” condition) for L to be integrable, hence
making (M, g, L) (para-)Hermitian, and for ∇ to be (para-)holomorphic.
We further derive that ∇L is (para-)holomorphic if and only if ∇ is, and
that ∇∗ is (para-)holomorphic if and only if ∇ is (para-)holomorphic and
Codazzi coupled to g. Our investigations provide concise conditions to
extend statistical manifolds to (para-)Hermitian manifolds.

1 Introduction

On the tangent bundle TM of a differentiable manifold M , one can introduce
two separate structures: affine connection ∇ and pseudo-Riemannian metric g. A
manifold M equipped with a g and a torsion-free connection ∇ is called a statisti-
cal manifold if (g,∇) is Codazzi-coupled [Lau87]. This is the setting of “classical”
information geometry, where the (g,∇) pair arises from a general construction
of divergence (“contrast”) functions. To accommodate for torsions in affine con-
nections, the concept of pre-contrast functions was introduced [HM11]. Codazzi
coupling has been traditionally studied by affine geometers [NS94,Sim00]. The
robustness of Codazzi coupling was investigated by perturbing both the metric
and the affine connection [SSS09] and by its interaction with other transforma-
tions of connection [TZ16]. Below, we provide a succinct overview.

1.1 g-conjugate Connection, Cubic Form, and Codazzi Coupling

Given the pair (g,∇), we construct the (0, 3)-tensor C by

C(X,Y,Z) := (∇Zg)(X,Y ) = Zg(X,Y ) − g(∇ZX,Y ) − g(X,∇ZY ). (1)
c© Springer International Publishing AG 2017
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The tensor C is sometimes referred to as the cubic form associated to the pair
(∇, g). When C = 0, we say g is parallel under ∇.

Given the pair (g,∇), we can also construct ∇∗, called g -conjugate connec-
tion, by

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇∗
ZY ). (2)

It can be checked easily that (i) ∇∗ is indeed a connection and (ii) g-conjugation
of a connection is involutive, i.e., (∇∗)∗ = ∇.

These two constructions from an arbitrary (g,∇) pair are related via

C(X,Y,Z) = g(X, (∇∗ − ∇)ZY ), (3)

so that
C∗(X,Y,Z) := (∇∗

Zg)(X,Y ) = −C(X,Y,Z).

Therefore C(X,Y,Z) = C∗(X,Y,Z) = 0 if and only if ∇∗ = ∇, that is, ∇ is
g-self-conjugate. A connection is both g -self-conjugate and torsion-free defines
what is called the Levi-Civita connection ∇LC associated to g.

Simple calculation reveals that

C(X,Y,Z) − C(Z, Y,X) = (∇Zg)(X,Y ) − (∇Xg)(Z, Y ),
C(X,Y,Z) − C(X,Z, Y ) = g(X,T∇∗

(Z, Y ) − T∇(Z, Y )),
(4)

where T∇ denotes the torsion of ∇
T∇(X,Y ) = ∇XY − ∇Y X − [X,Y ].

Note that C(X,Y,Z) = C(Y,X,Z) always holds, due to g(X,Y ) = g(Y,X).
Therefore, imposing either of the following is equivalent:

1. C(X,Y,Z) = C(Z, Y,X),
2. C(X,Y,Z) = C(X,Z, Y );

this is because either (i) or (ii) will make C totally symmetric in all of its indices.
In the case of (i), we say that g and ∇ are Codazzi-coupled :

(∇Zg)(X,Y ) = (∇Xg)(Z, Y ). (5)

In the case of (ii), ∇ and ∇∗ have same torsion. These well-known facts are
summarized in the following Lemma.

Lemma 1. Let g be a pseudo-Riemannian metric, ∇ an arbitrary affine connec-
tion, and ∇∗ be the g-conjugate connection of ∇. Then the following statements
are equivalent:

1. (∇, g) is Codazzi-coupled;
2. (∇∗, g) is Codazzi-coupled;
3. C is totally symmetric;
4. C∗ is totally symmetric;
5. T∇ = T∇∗

.
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In the above case, (g,∇,∇∗) is called a Codazzi triple. Codazzi-coupling
between g and ∇ or, equivalently, the existence of Codazzi triple (g,∇,∇∗) is the
key feature of a statistical manifold. In “quantum” information geometry, ∇ is
allowed to carry torsion, and [Mat13] introduced Statistical Manifold Admitting
Torsion (SMAT) as a manifold (M, g,∇) satisfying

(∇Y g)(X,Z) − (∇Xg)(Y,Z) = g(T∇(X,Y ), Z).

Note that ∇∗ is torsion-free if and only if (M, g,∇) is a SMAT. However, in a
SMAT, neither ∇ nor ∇∗ is Codazzi coupled to g; the deviation from Codazzi
coupling is measured by the torsion T∇ of ∇.

2 Structure of TM Arising from L

A tangent bundle isomorphism L may induce a splitting of TM , corresponding
to the eigenbundles associated with the eigenvalues of L. How the action of an
arbitrary connection ∇ respects such splitting is the focus of our current paper.

2.1 Splitting of TM by L

For a smooth manifold M , an isomorphism L of the tangent bundle TM is a
smooth section of the bundle End(TM) such that it is invertible everywhere.
By definition, L is called an almost complex structure if L2 = −id, or an almost
para-complex structure if L2 = id and the multiplicities of the eigenvalues ±1
are equal. We will use J and K to denote almost complex structures and almost
para-complex structures, respectively, and use L when these two structures can
be treated in a unified way. It is clear from our definition that such structures
exist only when M is of even dimension.

Denote eigenvalues of L as ±α, where α = 1 for L = K and α = i for L = J ,
respectively. Following the standard procedure, we (para-)complexify TM by
tensoring with C or para-complex (also known as split-complex) field D, and use
TLM to denote the resulting TM ⊗C or TM ⊗D, depending on the type of L.
In analogy with standard notation in the complex case, let T (1,0)M and T (0,1)M
be the eigenbundles of L corresponding to the eigenvalues ±α, i.e., at each point
p ∈ M , the fiber is defined by

T (1,0)(p) := {X ∈ TL
p M : Lp(X) = αX} ,

T (0,1)(p) := {X ∈ TL
p M : Lp(X) = −αX} .

As sub-bundles of the (para-)complexified tangent bundle TLM , T (1,0)M and
T (0,1)M are distributions. A distribution is called a foliation if it is closed under
the bracket [·, ·] . We will refer to vectors to be of type (1, 0) and (0, 1) if they take
values in T (1,0)M and T (0,1)M respectively. Moreover, define π(1,0) and π(0,1) to
be the projections of a vector field to T (1,0)M and T (0,1)M respectively.

The Nijenhuis tensor NL associated with L is defined as

NL(X,Y ) = −L2[X,Y ] + L[X,LY ] + L[LX, Y ] − [LX,LY ]. (6)
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When NL = 0, the operator L is said to be integrable. It is well-known that
both T (1,0)M and T (0,1)M are foliations if and only if L is integrable, i.e., the
integrability condition NL = 0 is satisfied.

2.2 L-conjugate of ∇
Starting from a (not necessarily torsion-free) connection ∇ operating on sections
of TM , we can apply an L-conjugate transformation to obtain a new connection
∇L := L−1∇L, or

∇L
XY = L−1(∇X(LY )) (7)

for any vector fields X and Y ; here L−1 denotes the inverse isomorphism of L.
It can be verified that indeed ∇L is an affine connection.

Define a (1, 2)-tensor (vector-valued bilinear form) S via the expression

S(X,Y ) = (∇XL)Y − (∇Y L)X, (8)

where
(∇XL)Y = ∇X(LY ) − L(∇XY ).

We say that L and ∇ are Codazzi-coupled if S = 0. The following is known.

Lemma 2 (e.g., [SSS09]). Let ∇ be an affine connection, and let L be an arbi-
trary tangent bundle isomorphism. Then the following statements are equivalent:

(i) (∇, L) is Codazzi-coupled.
(ii) T∇(X,Y ) = T∇L

(X,Y ).
(iii) (∇L, L−1) is Codazzi-coupled.

Lemma 3. For the special case of (para-)complex operators L2 = ±id,

1. ∇L = ∇L−1
, i.e., L-conjugate transformation is involutive, (∇L)L = ∇.

2. (∇, L) is Codazzi-coupled if and only if (∇L, L) is Codazzi-coupled.

As an affine connection, ∇ gives rise to a map

∇ : Ω0(TM) → Ω1(TM),

where Ωi(TM) is the space of smooth i-forms with value in TM . We may extend
this to a map

d∇ : Ωi(TM) → Ωi+1(TM)

by
d∇(α ⊗ v) = dα × v + (−1)iα ∧ ∇v

for any i-form α and vector field v. In the case that ∇ is flat, then (d∇)2 = 0 and
we get a chain complex whose cohomology is the de Rham cohomology twisted
by the local system determined by ∇. Regarding L as an element of Ω1(TM),
it is easy to check using local coordinates that

(d∇L)(X,Y ) = (∇XL)Y − (∇Y L)X + LT∇(X,Y ). (9)

Therefore, Codazzi coupling of ∇ and L can also be expressed as

(d∇L)(X,Y ) = T∇(LX, Y ). (10)
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2.3 Integrability of L

In [FZ17, Lemma 2.5] an expression for NL (X,Y ) in terms of T∇ has been
derived assuming S = 0. Using exactly the same procedure, we can write down
NL (X,Y ) for an arbitrary S.

Lemma 4. Given a connection ∇ with torsion T∇, the Nijenhuis tensor NL of
a (para-)complex operator L is given by

NL (X,Y ) = L2T∇ (X,Y ) − LT∇ (X,LY ) − LT∇ (LX, Y ) + T∇ (LX,LY )
+LS (X,Y ) − L−1S (LY,LX) .

Now, define θ to be

θ(X,Y ) =
1
2
(∇L

XY − ∇XY ) =
1
2
L−1(∇XL)Y. (11)

with
Lθ (X,Y ) + θ (X,LY ) = 0. (12)

In particular, we see that

1
2
L−1 (S (X,Y )) = θ (X,Y ) − θ (Y,X) ,

and therefore, θ is symmetric if and only if L and ∇ are Codazzi-coupled. Intro-
duce

∇̃ =
1
2
(∇ + ∇L),

which satisfies
∇̃L ≡ 0.

A connection with respect to which L is parallel is called (para-)complex
connection, and in particular, such a connection preserves the decomposition
TLM ∼= T (1,0)M ⊕ T (0,1)M . So starting from any connection ∇, we can con-
struct its conjugate ∇L, the average of which is the (para-)complex connection
∇̃. This situation mirrors the relationship between Levi-Civita connection and
the pair of g-conjugate connections ∇,∇∗. Note that we can also write ∇ = ∇̃−θ
and ∇L = ∇̃ + θ, so the quantity θ measures the failure of both ∇ and ∇L to
be a (para-)complex connection.

3 (Para-)Holomorphicity of ∇ Associated to L

3.1 (Para-)Holomorphic Connections

The (para-)Dolbeault operator ∂̄ for a given L on TLM is defined as

∂̄XY =
1
4

(
[X,Y ] − L2 [LX,LY ] − L−1 [LX, Y ] + L−1 [X,LY ]

)
(13)



(Para-)Holomorphic Connections for Information Geometry 191

for any vector fields X and Y . It can be checked easily that this expression is
tensorial in X, that is ∂̄fXY = f

(
∂̄XY

)
and is a derivation. In the case when

L = J, this defines the holomorphic structure on TCM and locally defines the
differentiation of vector fields of type (1, 0) with respect to the anti-holomorphic
coordinates ∂

∂z̄i . Similarly for para-holomorphic structure on TDM when L = K.
From (13) we obtain that if X and Y are of the same type, then ∂̄XY = 0.

However, if Y ∈ T (1,0)M and X ∈ T (0,1)M , then

∂̄XY = π(1,0) [X,Y ] (14)

and similarly ∂̄XY = π(0,1) [X,Y ] if Y ∈ T (0,1)M and X ∈ T (1,0)M .
Equivalently, note that if X ∈ T (1,0)M, then ∂̄X is a vector-valued 1-form, of
type (1, 0) as a vector and type (0, 1) as a 1-form, and conversely if X ∈ T (0,1)M.

Given a connection ∇ operating on TLM , we can ask the question whether ∇
is compatible with ∂̄. To understand this we may define an alternative operator
∂̄∇, which for Y ∈ T (1,0)M is defined as taking the (0, 1)-part of the vector-
valued 1-form ∇Y (and conversely on T (0,1)M). This can be expressed as

∂̄∇
XY =

1
2

(∇XY − ∇LX

(
L−1Y

))
(15)

for any vector fields X and Y in TLM . Clearly, ∂̄∇
XY = 0 if X and Y are

of the same type and is just ∇XY if X and Y are of opposite type. On a
(para-)holomorphic vector bundle, a connection is said to be (para)-holomorphic
if these two Dolbeault operators coincide. We extend this notion to arbitrary
connections on TLM ∼= T (1,0)M ⊕ T (0,1)M (that do not necessarily preserve
T (1,0)M and T (0,1)M) – we say a connection ∇ is (para-)holomorphic if ∂̄∇

XY =
∂̄XY for any vector fields X and Y .

It can be readily shown that

Theorem 1. ∇L is (para-)holomorphic if and only if ∇ is (para-)holomorphic.

Theorem 2. When ∇ is (para-)holomorphic, the quantity θ (X,Y ) satisfies:

Lθ (X,Y ) = −θ (X,LY ) = −θ (LX, Y ) = L−1θ (LX,LY ) . (16)

Theorem 2 shows that θ (X,Y ) vanishes whenever X and Y are of different
types. Moreover, if X and Y are both of type (1, 0), θ (X,Y ) is of type (0, 1),
and vice versa.

Using (13) and (15), we can also prove

Lemma 5. Given an arbitrary connection ∇ and an L on a manifold, the con-
nection ∇ is (para-)holomorphic if and only if

S(X,Y ) = T∇(LX, Y ) − LT∇(X,Y ) − 1
2
L2NL(LX, Y ). (17)

From this, we prove the main theorem of our paper.
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Theorem 3. Given the an arbitrary pair (∇, L) on a manifold, the connection
∇ is (para-)holomorphic and L is integrable if and only if

S(X,Y ) = T∇(LX, Y ) − LT∇(X,Y ). (18)

The significance of Theorem 3 is that this gives us a generalization of the
Codazzi coupling condition for L that was used in [FZ17] in the case T∇ = 0.
In fact, it follows immediately that if T∇ = 0 then Codazzi coupling of ∇ with
L makes L integrable and makes ∇ (para-)holomorphic.

The condition (18) can be recast in another form to reveal its meaning:

Theorem 4. Given ∇ and L on a manifold, then ∇ is (para-)holomorphic and
L is integrable if and only if

T∇(LX, Y ) = L(T∇L

(X,Y )). (19)

Theorem 4 shows that the (para-)holomorphicity condition on ∇ can be
thought of as requiring “Torsion-Balancing” between ∇ and ∇L.

3.2 Almost (Para-)Hermitian Structure

The compatibility condition between g and an almost (para-)complex structure
J(K) is well-known. We say that g is compatible with J if J is orthogonal, i.e.

g(JX, JY ) = g(X,Y ) (20)

holds for any vector fields X and Y . Similarly we say that g is compatible with
K if

g(KX,KY ) = −g(X,Y ) (21)

is always satisfied, which implies that g must be of split signature. When
expressed using L, (20) and (21) have the same form

g(X,LY ) + g(LX, Y ) = 0. (22)

When specified in terms of compatible g and L, the manifold (M, g, L) is said
to be almost (para-)Hermitian, and (para-)Hermitian manifold if L is integrable.

For any almost (para)-Hermitian manifold, we can define the 2-form
ω(X,Y ) = g(LX, Y ), called the fundamental form, which turns out to satisfy
ω(X,LY ) + ω(LX, Y ) = 0. The three structures, a pseudo-Riemannian metric
g, a nondegenerate 2-form ω, and a tangent bundle isomorphism L : TM → TM
forms a “compatible triple” such that given any two, the third one is uniquely
specified; the triple is rigidly “interlocked”.

It can be shown that for almost (para-)Hermitian manifolds,

(∇L
Xg)(LY,Z) + (∇Xg)(Y,LZ) = 0. (23)
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3.3 (Para-)Holomorphicity of ∇∗

We have seen in Theorem 1 that ∇ is (para-)holomorphic if and only if ∇L is
also (para-)holomorphic. We now investigate conditions under which ∇∗ is also
(para-)holomorphic whenever ∇ is.

Lemma 6. Given arbitrary g and L on a manifold, with a (para-)holomorphic
connection ∇. Then ∇∗ is also (para-)holomorphic if and only if

C (LX, Y, Z) = C (X,Y, LZ) (24)

for any vector fields X,Y,Z. If moreover, g and L are compatible, i.e., (22) holds,
then (24) is equivalent to

C (X,Y,Z) = g (θ (Z,X) , Y ) + g (X, θ (Z, Y )) . (25)

The condition that ∇∗ is (para-)holomorphic is a very strong one as the
theorem below shows.

Theorem 5. Let ∇ be a (para-)holomorphic connection ∇ on an almost (para-)
Hermitian manifold (M, g, L). Then, the connection ∇̃ = 1

2

(∇ + ∇L
)

is metric-
compatible if and only if ∇∗ is also (para-)holomorphic.

In fact, since we already know that ∇̃ is a (para-)complex connection, i.e.
it preserves L, the condition of ∇∗ being (para-)holomorphic is then equiva-
lent to ∇̃ being an almost (para-)Hermitian connection. Moreover, if we assume
L to be integrable, since ∇̃ is also (para-)holomorphic, we can conclude that
when restricted to bundle T (1,0)M , it must be equal to the (para-)Chern con-
nection. In the theory of holomorphic vector bundles, Chern connection is the
unique Hermitian holomorphic connection on a holomorphic vector bundle, and
in particular on T (1,0)M on complex manifolds [Mor07]. In general, the Chern
connection has torsion, however it is torsion-free on T (1,0)M if and only if (g, J)
define a Kähler structure.

It is significant that if g is Codazzi-coupled to a (para-)holomorphic connec-
tion ∇, then ∇∗ is (para-)holomorphic, and hence ∇̃ is (para-)Hermitian.

Theorem 6. Let (M, g, L) be a (para-)Hermitian manifold and let (∇,∇∗, g)
be a Codazzi triple. Then (∇∗, g) is (para-)holomorphic if and only if (∇, g) is
(para-)holomorphic.

This generalizes the results on a Codazzi-(para-)Kähler manifold [FZ17]
which admit a pair of torsion-free connections to a (para-)Hermitian manifold
which admits holomorphic connections with torsion. The Torsion-Balancing con-
dition, while breaking the requirements of (para-)Kähler structure by possibly
violating dω = 0, still preserves the integrability of L.
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4 Summary and Discussions

(Para-)holomorphic connections have hardly been systematically studied in
information geometry except in restricted setting of flat connections (see
[Fur09]). Connections investigated in this paper are neither curvature-free nor
torsion-free. We gave a necessary and sufficient condition(“Torsion Balance”)
of a ∇ to be (para-)holomorphic in the presence of a (para-)complex struc-
ture L on the manifold. Given a (para-)holomorphic connection ∇, we then
showed that (i) ∇L, its L-conjugate, is also (para-)holomorphic; (ii) ∇∗, its g
-conjugate, is (para-)holomorphic if and only if g and ∇ are Codazzi coupled.
These concise characterizations allow us to enhance a statistical structure to a
(para-)Hermitian structure, as well as understand the properties of L-conjugaty
and g-conjugacy of a connection of a (para-)Hermitian manifold.

Acknowledgement. This research is supported by DARPA/ARO Grant W911NF-
16-1-0383 to the University of Michigan (PI: Jun Zhang).
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Abstract. Extending previous results about matrix realization of a
homogeneous cone by the author, we realize any homogeneous Hessian
domain as a set of symmetric matrices with a specific block decompo-
sition. A global potential function as well as a transitive affine group
action preserving the Hessian structure is also expressed in terms of the
matrix realization.

Keywords: Homogeneous Hessian domain · Left-symmetric algebra ·
Normal Hessian algebra

1 Introduction

A Riemannian manifold with a flat connection is called a Hessian manifold
if the metric is locally expressed as the Hessian matrix of a smooth function
with respect to affine coordinates. Such Hessian structure is very important in
Information Geometry [9]. A Hessian manifold is said to be homogeneous if
its automorphism group acts on the manifold transitively, where the automor-
phism group is defined as the set of all diffeomorphisms preserving both the
flat connection and the metric. Shima [8] established a basic theory of homo-
geneous Hessian manifolds. He showed that the universal covering space of a
homogeneous Hessian manifold is a convex domain equipped with a homoge-
neous Hessian metric. Furthermore, the convex domain is shown to be the direct
product of an affine homogeneous convex domain (containing no straight line)
and a vector space. A normal Hessian algebra, which is a left-symmetric algebra
with a compatible inner product, plays an important role in Shima’s theory as
a convenient algebraic tool.

In this paper, combining the theory of normal Hessian algebras with the
matrix realization method developed by the author [3–5], we realize any homo-
geneous Hessian domain as a set of symmetric matrices with a specific block
decomposition (Theorem 4). A global potential function as well as a transitive
affine group action preserving the Hessian structure is also expressed in terms of
the matrix realization (see (8) and (9) respectively). The details with complete
proofs of statements will be published elsewhere. This research was supported
by JST PRESTO and JSPS KAKENHI Grant Number 16K05174.
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2 Normal Hessian Algebras

Let V be a finite dimensional real vector space, D a domain in V , and g a
Hessian metric on D. By definition, g is locally expressed as the Hessian matrix
of a convex function. If there exists a smooth function ϕ : D → R whose Hessian
matrix equals g at every point in D, we call ϕ a global potential of the Hessian
metric g. The automorphism group Aut(D, g) of the Hessian domain (D, g) is
defined by Aut(D, g) := { α ∈ Aff(V ) ; α(D) = D, α∗g = g }. A Hessian domain
(D, g) is said to be homogeneous if Aut(D, g) acts transitively on D.

Let (D, g) be a homogeneous Hessian domain in what follows. Shima [8]
showed that there exists a triangular solvable Lie subgroup H ⊂ Aut(D, g)
acting simply transitively on D. Here the word triangular means that there
exists a basis of V such that the linear part of every affine transformation h ∈ H
is expressed as an upper triangular matrix with respect to the basis. Let us take
and fix a point p0 ∈ D. Then we have a diffeomorphism H � h �→ h · p0 ∈ D.
Differentiating the diffeomorphism, we have a linear isomorphism h � X �→
X(p0) ∈ V ≡ Tp0D, where h is the Lie algebra of H, and h is identified with
a set of affine vector fields. For v ∈ V , we denote by Xv a unique vector field
belonging to h such that Xv(p0) = v, and by Lv the linear part of Xv. Then we
have Xv(p) = Lv(p − p0) + v. Now we introduce a bilinear product � on V by

x�y := Lx y ∈ V (x, y ∈ V ).

The algebra (V,�) is not commutative nor associative in general. Instead, we
have the following equality

[Lx, Ly] = Lx�y−y�x (x, y ∈ V ),

which is equivalent to

x�(y�z) − (x�y)�z = y�(x�z) − (y�x)�z (x, y, z ∈ V ). (1)

The algebra satisfying the equality above is called a left-symmetric alge-
bra (Koszul-Vinberg algebra [1] or pre-Lie algebra [7]). Since h is triangular, all
eigenvalues of the left-multiplication operator Lx are real for every x ∈ V . A
left-symmetric algebra is said to be normal if this eigenvalue condition of Lx is
satisfied.

By means of the identification V ≡ Tp0D, we transfer an inner product (·|·)
on V from the metric g on Tp0D. Then we have

(x|y�z) − (x�y|z) = (y|x�z) − (y�x|z) (x, y, z ∈ D). (2)

Shima named a normal left-symmetric algebra with an inner product sat-
isfying (2) a normal Hessian algebra, and we call the inner product a Hessian
inner product on the algebra. We have seen that a homogeneous Hessian domain
gives rise to a normal Hessian algebra. The converse is also true. When a normal
Hessian algebra (V,�) is given, we take any point p0 ∈ V , and consider the set h
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of affine vector fields Xv (v ∈ V ) defined by Xv(p) := Lv(p − p0) + v. Thanks to
the left-symmetry, h forms a Lie algebra. Let H be the Lie subgroup of Aff(V )
whose Lie algebra is h. It is shown that the H-orbit D = H · p0 through p0 is a
convex domain in V . Let g be the H-invariant metric on D which coincides with
the Hessian inner product on V at the tangent space Tp0D ≡ V . Then (D, g)
is a homogeneous Hessian domain. In this way, we have a one-to-one correspon-
dence between homogeneous Hessian domains and normal Hessian algebras up to
isomorphisms.

A left-symmetric algebra is said to be compact if there exists a linear form
ξ ∈ V ∗ such that (x|y)ξ := ξ(x�y) gives a positive inner product on V . In
view of (1), we see that the inner product (·|·)ξ satisfies (2). Namely, a compact
normal left-symmetric algebra (clan) is a normal Hessian algebra. The clans are
studied by Koszul [6] and Vinberg [10]. Vinberg showed that clans are in one-to-
one correspondence with affine homogeneous convex domains, and that a clan
has a unit element if and only if the corresponding domain is a homogeneous
cone. Using the latter fact, the author realized all homogeneous cones as well as
clans with a unit element as the set of symmetric matrices with certain block
decompositions in [5] (similar results are obtained by many researchers, e.g.
[2,11,12]). We recall the results of [5] briefly in the next section.

3 Matrix Realization of a Clan with a Unit Element

Let Vn be the vector space of real symmetric matrices of size n. We define a
bilinear product � on Vn by

x�y := x
ˇ
y + y t(x

ˇ
) (x, y ∈ Vn),

where x
ˇ

is a lower triangular matrix defined by

(x
ˇ
)ij :=

⎧
⎪⎨

⎪⎩

0 (i < j),
xii/2 (i = j),
xij (i > j).

Then (Vn,�) is a clan with a unit element En. Let n = n1 + n2 + · · · + nr

be a partition, and let Vlk ⊂ Mat(nl, nk;R) (1 ≤ k < l ≤ r) be vector spaces
satisfying
(V1) A ∈ Vlk, B ∈ Vki ⇒ AB ∈ Vli for 1 ≤ i < k < l ≤ r,
(V2) A ∈ Vli, B ∈ Vki ⇒ A tB ∈ Vlk for 1 ≤ i < k < l ≤ r,
(V3) A ∈ Vlk ⇒ A tA ∈ REnl

for 1 ≤ k < l ≤ r.

Let ZV be the subspace of Vn consisting of symmetric matrices x of the form

x =

⎛

⎜
⎜
⎜
⎝

X11
tX21 · · · tXr1

X21 X22
tXr2

...
. . .

Xr1 Xr2 Xrr

⎞

⎟
⎟
⎟
⎠

(
Xll = xllEnl

, xll ∈ R (l = 1, . . . , r)
Xlk ∈ Vlk (1 ≤ k < l ≤ r)

)

. (3)

Thanks to (V1)–(V3), ZV is a subalgebra of the clan (Vn,�).
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Theorem 1 ([5]). Every clan with a unit element is isomorphic to the algebra
(ZV ,�) with appropriate {Vlk}1≤k<l≤r.

We define

ΩV := { x ∈ ZV ; x is positive definite } ,

hV :=
{

x
ˇ

; x ∈ ZV
}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T =

⎛

⎜
⎜
⎜
⎝

T11

T21 T22

...
. . .

Tr1 Tr2 Trr

⎞

⎟
⎟
⎟
⎠

;
Tll = tllEnl

, tll ∈ R (l = 1, . . . , r)
Tlk ∈ Vlk (1 ≤ k < l ≤ r)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

HV := { T ∈ hV ; tll > 0 (l = 1, . . . , r) } .

Then hV forms a linear Lie algebra, and HV equals the corresponding Lie
group exp hV . The domain ΩV is a homogeneous cone on which HV acts simply
transitively by the action ρ(T )x := TxtT (x ∈ ZV , T ∈ HV). In fact, the
transformation group ρ(HV) on ΩV coincides with the integration of the vector
fields Xv (v ∈ ZV) given by

Xv(p) := v�(p − En) + v (p ∈ ΩV).

By (V3), we can define an inner product (·|·)Vlk
on each Vlk (1 ≤ k < l ≤ r)

in such a way that

Xlk
tYlk + Ylk

tXlk = 2(Xlk|Ylk)Vlk
Enl

(Xlk, Ylk ∈ Vlk).

For s = (s1, . . . , sr) ∈ R
r
>0, define a linear form ξs on ZV by

ξs(x) :=
r∑

k=1

skxkk (x ∈ ZV).

Then

(x|y)s := ξs(x�y) =
r∑

l=1

sl(xllyll +
∑

k<l

(Xlk|Ylk)Vlk
) (x, y ∈ ZV)

exhausts all the Hessian inner products on ZV . We set

N1 := 1, Nk := n1 + · · · + nk−1 + 1 (k = 2, . . . , r), (4)

and

σr := sr, σk := sk − nk

r∑

l=k+1

σl (k = 1, . . . , r − 1). (5)

Then, for x ∈ ZV , we have ξs(x) =
∑r

k=1 σktrx[Nk], where x[N ] denotes
the left-top corner submatrix of x of size N . By [5, Sect. 4], a global potential
function φs of the Hessian metric gs corresponding to (·|·)s is given by

φs(x) := − log
( r∏

k=1

(det x[Nk])σk

)
(x ∈ ΩV). (6)



Matrix Realization of a Homogeneous Hessian Domain 199

4 Matrix Realization of Normal Hessian Algebras

Let us assume r ≥ 2 in this section. For i = 1, . . . , r, let ei be the element of ZV
whose xii-component is 1 and all the other components are zero. We define

Z∨
V := { x ∈ ZV ; x11 = 0 } , Z�

V := { x ∈ ZV ; x11 = xrr = 0 } .

Then we have ZV = Re1 ⊕ Z∨
V = Re1 ⊕ Rer ⊕ Z�

V . We note that Z∨
V is

a subalgebra of ZV , but Z�
V is not in general. Let us introduce a linear map

πV : ZV � x �→ x − xrrer ∈ ZV . Then πV gives a projection from Z∨
V onto Z�

V .
We define a bilinear product �� on Z�

V by

x��y := πV(x�y) ∈ Z�
V (x, y ∈ Z�

V).

Theorem 2. (i) The algebra (Z�
V ,��) with the inner product (·|·)s on Z�

V forms
a normal Hessian algebra.
(ii) Every normal Hessian algebra is isomorphic to the algebra (Z�

V ,��) with
appropriate {Vlk}1≤k<l≤r.

Define h�
V :=

{
x
ˇ

; x ∈ Z�
V

}
. Then h�

V is a Lie subalgebra of hV , even though

(Z�
V ,��) is not a subalgebra of (Z,�). Let H�

V be the subgroup exp h�
V of HV .

Then H�
V = { T ∈ HV ; t11 = trr = 1 }. We define a group action σ : H�

V →
Aff(Z�

V) in such a way that

πV(ρ(T )(e1 + x)) = e1 + σ(T )x (x ∈ Z�
V , T ∈ H�

V).

Then σ(H�
V) is exactly the integration of the vector fields X�

v (v ∈ Z�
V) given

by
Xv(x) = v��(x − E�) + v (x ∈ Z�

V),

where E� := En − e1 − er ∈ Z�
V . Let D�

V be the σ(H�
V)-orbit through E� in

Z�
V . Then σ(H�

V) acts on D�
V simply transitively, so that a σ(H�

V)-invariant
Riemannian metric g�

s is uniquely determined in such a way that g�
s on TE�D�

V ≡
Z�

V coincides with (·|·)s. Recalling the correspondence between normal Hessian
algebras and homogeneous Hessian domains, we deduce the following Theorem
from Theorem 2.

Theorem 3. The Riemannian metric g�
s on the domain D�

V ⊂ Z�
V is Hessian.

Every homogeneous Hessian domain is isomorphic to some (D�
V , g�

s ) with appro-
priate {Vlk}1≤l<l≤r and s ∈ R

r
>0.

5 Description of Homogeneous Hessian Domains

We continue using the same notation as in the previous section. If r = 2, then

Z�
V =

{(
0 tX21

X21 0

)

; X21 ∈ V21

}

 V21. In this case, it is easy to check that

x��y = 0 for all x, y ∈ Z�
V , and that D�

V equals the vector space Z�
V with the

Euclidean metric given by gs(y, y′)x = s2(Y21|Y ′
21)V21 (x, y, y′ ∈ Z�

V).
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Now we assume r ≥ 3. Let us consider the subfamilies V ′ := {Vlk}1≤k<l≤r−1

and V ′′ := {Vlk}2≤k<l≤r−1 of {Vlk}1≤k<l≤r. Then both V ′ and V ′′ satisfy the
axioms (V1) – (V3), so that we have clans ZV′ ⊂ Vn′ and ZV′′ ⊂ Vn′′ , where n′ :=
n1+ · · ·+nr−1 and n′′ := n2+ · · ·+nr−1. Recall that Z∨

V′ = { x ∈ ZV′ ; x11 = 0 }
is a subalgebra of ZV′ . We define

UV :=

⎧
⎪⎨

⎪⎩
u =

⎛

⎜
⎝

X21

...
Xr−1,1

⎞

⎟
⎠ ; Xk1 ∈ Vk1 (2 ≤ k ≤ r − 1)

⎫
⎪⎬

⎪⎭
⊂ Mat(n′′, n1;R),

WV :=
{

w =
(
Xr1 Xr2 . . . Xr,r−1

)
; Xrk ∈ Vrk (1 ≤ k ≤ r − 1)

} ⊂ Mat(nr, n
′;R),

WV′′ :=
{

w =
(
Xr2 . . . Xr,r−1

)
; Xrk ∈ Vrk (2 ≤ k ≤ r − 1)

} ⊂ Mat(nr, n
′′;R).

Then every x ∈ Z�
V is written as

x =

(
x′ tw
w 0

)

=

⎛

⎝
0 tu tw′

u x′′ w′′

w′ w′′ 0

⎞

⎠
(
=: x(u, w′, x′′, w′′)

)
(7)

(x′ ∈ Z∨
V′ , w ∈ WV , x′′ ∈ ZV′′ , u ∈ UV , w′ ∈ Vr1, w′′ ∈ WV′′).

Theorem 4. The homogeneous Hessian domain D�
V ⊂ Z�

V is described as

D�
V =

{
x ∈ Z�

V ; e1 + x′ ∈ ΩV′
}

=
{

x(u, w′, x′′, w′′) ; x′′ − utu ∈ ΩV′′
}

.

In particular, D�
V is linearly isomorphic to the direct product of a real Siegel domain

SV′ :=

{

x′ =

(
0 tu
u x′′

)

∈ Z∨
V ; x′′ − utu ∈ ΩV′′

}

and the vector space WV .

We remark that the real Siegel domain SV′ ⊂ Z∨
V′ is the affine homogeneous convex

domain corresponding to the clan Z∨
V′ (see Vinberg [10, Chap. 2]).

Theorem 5. A global potential function ψs on D�
V of the Hessian metric g�

s is given
by

ψs(x) := − log
(r−1∏

k=2

(det(e1 + x′)[Nk])σk

)
+

sr

nr
tr tw(e1 + x′)−1w (8)

for x ∈ D�
V of the form (7), where σk and Nk are defined in (4) and (5) respectively.

Let us describe the affine action σ(H�
V) on Z�

V explicitly. Every element of H�
V is

written as

T (u, w′, T ′′, w′′) =

⎛

⎝
En1 0 0
u T ′′ 0
w′ w′′ Enr

⎞

⎠

(T ′′ ∈ HV′′ , u ∈ UV , w′ ∈ Vr1, w′′ ∈ WV′′),

which is factorized as

T (u, 0, En′′ , 0) T (0, w′, En′′ , 0) T (0, 0, T ′′, 0) T (0, 0, En′′ , w′′).
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Now take x0 = x(u0, w
′
0, x

′′
0 , w′′

0 ) ∈ Z�
V with u0 ∈ UV , w′

0 ∈ Vr1, x′′
0 ∈ ZV′′ , w′′

0 ∈
WV′′ . Then we get

σ(T )x0 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(u0, w
′
0 + w′′u0, x

′′
0 , w′′

0 + w′′x′′
0 ) (T = T (0, 0, En′′ , w′′)),

x(T ′′u0, w
′
0, ρ(T ′′)x′′

0 , w′
0
tT ′′) (T = T (0, 0, T ′′, 0)),

x(u0, w
′
0 + w′, x′′

0 , w′′
0 + w′tu0) (T = T (0, w′, En′′ , 0)),

x(u0 + u, w′
0, x

′′
0 + 2utu0 + utu, w′′

0 + w′
0
tu) (T = T (u, 0, En′′ , 0)).

(9)

Finally, we present two examples of homogeneous Hessian domains of dimension 2.

(1) When

ZV =

⎧
⎨

⎩

⎛

⎝
x11 x21 0
x21 x22 0
0 0 x33

⎞

⎠ ; xij ∈ R

⎫
⎬

⎭
,

we have

D�
V =

⎧
⎨

⎩
x =

⎛

⎝
0 u 0
u ξ 0
0 0 0

⎞

⎠ ; ξ − u2 > 0

⎫
⎬

⎭
.

A global potential of a homogeneous Hessian metric is parametrized by s > 0 as
ψs(x) = −s log(ξ − u2). Moreover, we have

σ(T )

⎛

⎝
0 u 0
u ξ 0
0 0 0

⎞

⎠ =

⎛

⎝
0 au + b 0

au + b a2ξ + 2abu + b2 0
0 0 0

⎞

⎠

⎛

⎝T =

⎛

⎝
1 0 0
b a 0
0 0 1

⎞

⎠ ∈ H�
V

⎞

⎠ .

(2) When

ZV =

⎧
⎨

⎩

⎛

⎝
x11 0 0
0 x22 x32

0 x32 x33

⎞

⎠ ; xij ∈ R

⎫
⎬

⎭
,

we have

D�
V =

⎧
⎨

⎩
x =

⎛

⎝
0 0 0
0 ξ w
0 w 0

⎞

⎠ ; ξ > 0, w ∈ R

⎫
⎬

⎭
.

A global potential is parametrized by s = (s2, s3) ∈ R
2
>0 as ψs(x) = −s2 log ξ+s3w

2/ξ.
Moreover, we have

σ(T )

⎛

⎝
0 0 0
0 ξ w
0 w 0

⎞

⎠ =

⎛

⎝
0 0 0
0 a2ξ a(w + bξ)
0 a(w + bξ) 0

⎞

⎠

⎛

⎝T =

⎛

⎝
1 0 0
0 a 0
0 b 1

⎞

⎠ ∈ H�
V

⎞

⎠ .

As a matter of fact, any 2-dimensional homogeneous Hessian domain is isomorphic
to the Euclidean vector space R2, a homogeneous cone R2

>0, or either of the two domains
D�

V above.
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Abstract. The standard model of information geometry, expressed as
Fisher-Rao metric and Amari-Chensov tensor, reflects an embedding
of probability density by log-transform. The standard embedding was
generalized by one-parametric families of embedding function, such
as α-embedding, q-embedding, κ-embedding. Further generalizations
using arbitrary monotone functions (or positive functions as derivatives)
include the deformed-log embedding (Naudts), U-embedding (Eguchi),
and rho-tau dual embedding (Zhang). Here we demonstrate that the
divergence function under the rho-tau dual embedding degenerates,
upon taking ρ = id, to that under either deformed-log embedding or
U-embedding; hence the latter two give an identical divergence func-
tion. While the rho-tau embedding gives rise to the most general form
of cross-entropy with two free functions, its entropy reduces to that of
deformed entropy of Naudts with only one free function. Fixing the gauge
freedom in rho-tau embedding through normalization of dual-entropy
function renders rho-tau cross-entropy to degenerate to U cross-entropy
of Eguchi, which has the simpler property, not true for general rho-
tau cross-entropy, of reducing to the deformed entropy upon setting the
two pdfs to be equal. In Part I, we investigate monotone embedding in
divergence function, entropy and cross-entropy, whereas in the sequel
(Part II), in induced geometries and probability families.

1 Introduction: A Plethora of Probability Embeddings

One motivation to study probability embedding functions is to extend the frame-
work of information geometry beyond the now-classic expressions of Fisher-Rao
metric and Amari-Chensov tensor. Realizing that the standard α-geometry is
based on log-embedding of probability functions, various approaches have been
proposed to generalize such probability embedding, using a one-parameter fam-
ily of specific functions at the first level of generality, and using arbitrarily chosen
(monotone or positive) functions at the second level of generality.
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(i). α-embedding. It was Amari [1] who first investigated the one-parameter
family of embeddings logα : R+ → R defined by

logα(u) =
{

log u α = 1
2

1−α u(1−α)/2 α �= 1 (1)

Under this α-embedding, α-divergence becomes canonical divergence, and
α-connections have a simple Γ 1, Γ−1-like characteristics [2].

(ii). q-exponential embedding. Tsallis [3], in investigating the equilibrium
distribution of statistical physics which maximizes the Boltzmann-Gibbs-
Shannon entropy under constraints, replaced the entropy function by a
q-dependent entropy, resulting in a deformed version of statistical physics; here,
q ∈ R. The q-logarithmic/exponential functions were introduced [4]:

logq(u) =
1

1 − q

(
u1−q − 1

)
, expq(u) = [1 + (1 − q)u]1/(1−q)

, q �= 1.

Note that q-embedding and α-embedding functions are different: logq(·) �=
logα(·), even after the identification α = 2q −1. Like α-embedding, q-embedding
reduces to the standard logarithm as limq→1.

(iii). κ-exponential embedding. An alternative to the q-deformed exponential
model for statistical physics is the κ-model [5], where

logκ(u) =
1
2κ

(
uκ − u−κ

)
, expκ(u) =

(
κu +

√
1 + κ2u2

) 1
κ

, κ �= 0;

the case of limκ→0 corresponds to the standard exponential/logarithm.

(iv). φ-, U-, and(ρ, τ)-embedding. Generalizing any parametric forms of
embedding functions further leads to the consideration of probability embedding
using arbitrary monotone (or after taking derivative, positive) functions. The
prominent inventions are Naudts’ phi-embedding [7], Eguchi’s U-embedding [8],
and Zhang’s rho-tau embedding [6], though they have been re-invented/renamed
by later authors, causing confusion and distraction. We discuss these in the next
section.

Below we first review the deformed logarithm, logφ, and deformed exponen-
tial, expφ, functions. Then we point out that logφ and expφ are nothing but an
arbitrary pair of mutually inverse monotone functions, and are representable as
derivatives of a pair of conjugate convex functions f, f∗. The deformed diver-
gence Dφ(p, q) is then precisely the Bregman divergence Df (p, q) associated
with f . The construction of entropy and cross-entropy from this deformed app-
roach is reviewed, as well as their construction from the U-embedding. Then, we
review the rho-tau embedding, which provides two independently chosen embed-
ding functions, and explicitly identify its entropy and cross-entropy. Our Main
Theorem shows that the divergence function and entropy function of the rho-
tau embedding reduce as a special case to those given by the phi-embedding and
U-embedding, while the rho-tau cross-entropy reduces as another special case to
the U cross-entropy.
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2 Deformation Versus Embedding

2.1 “Deforming” Exponential and Logarithmic Functions

Naudts [7,9] defines the phi-deformed logarithm

logφ(u) =
∫ u

1

1
φ(v)

dv.

Here, φ(v) is a strictly positive function. In the context of discrete probabilities
it suffices that it is strictly positive on the open interval (0, 1), possibly vanishing
at the end points. In the case of a probability density function it is assumed to
be strictly positive on the interval (0,+∞). Note that by construction one has
logφ(1) = 0. The inverse of the phi-logarithm is denoted expφ(u), and called
phi-exponential function:

expφ(logφ(u)) = logφ(expφ(u)) = u.

The phi-exponential has an integral expression

expφ(u) = 1 +
∫ u

0

dv ψ(v),

where the function ψ(u) is given by

ψ(u) =
d
du

expφ(u) =
d
du

(logφ)−1(u).

In terms of φ, ψ, we have the following relations:

ψ(u) = φ(expφ(u)),
φ(u) = ψ(logφ(u)).

We want to stress that all four functions, φ, ψ, logφ, expφ, arise out of choosing
one positive-valued function φ.

As examples, φ(v) = v gives rise to the classic natural logarithm and expo-
nential. Taking φ(u) = u

1+u in [13] leads to logφ(u) = u − 1 + log(u). Taking
φ(u) = u(1 + εu) in [14] leads to

log
(

(1 + ε)u
1 + εu

)
, expφ(u) =

1
(1 + ε)e−v − ε

.

2.2 Deformed Entropy and Deformed Divergence Functions

The phi-entropy of the probability distribution p is defined by [9]

Sφ(p) = −Ep logφ p +
∫

X
dx

∫ p(x)

0

du
u

φ(u)
+ constant. (2)
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By partial integration one obtains an equivalent expression

Sφ(p) = −
∫

X
dx

∫ p(x)

1

du logφ(u) + constant. (3)

For standard logarithm φ(u) = u, the above expression is the well-known entropy
of Boltzmann-Gibbs-Shannon

S(p) = −Ep log p.

The phi-divergence of two probability functions p and q is defined by [9]

Dφ(p, q) =
∫

X
dx

∫ p(x)

q(x)

dv
[
logφ(v) − logφ(q(x))

]
, (4)

which has another equivalent expression

Dφ(p, q) = Sφ(q) − Sφ(p) −
∫

X
dx [p(x) − q(x)] logφ(q(x)). (5)

Now let us express these quantities in terms of a strictly convex function f ,
satisfying f ′(u) = logφ(u). We have:

Sφ(p) = −
∫

X
dx f(p(x)) + constant, (6)

Dφ(p, q) =
∫

X
dx {f(p(x)) − f(q(x)) − [p(x) − q(x)]f ′(q(x))} . (7)

One can readily recognize that Dφ(p, q) is nothing but the Bregman divergence,
whereas the function f itself determines the deformed entropy Sφ(p). Note that
p �→ Sφ(p) is strictly concave while the map p �→ Dφ(p, q) is strictly convex.

2.3 U-embedding

Eguchi [8] introduces the U-embedding, which is essentially the Bregman diver-
gence under a strictly convex function U coupled with an embedding using
ψ = (U ′)−1. The U cross-entropy CU (p, q) is defined as:

CU (p, q) =
∫

X
dx {U(ψ(q(x))) − p(x) · ψ(q(x))} , (8)

whereas the U entropy HU is defined as HU (p) = CU (p, p). The U -divergence is

DU (p, q) = CU (p, q) − HU (p, p)

=
∫

X
dx

{
U (ψ(q(x))) − U (ψ(p(x))) − p(x) [(ψ(q(x)) − ψ(p(x))]

}
. (9)

Note that the U-embedding only has one arbitrarily chosen function, as does
phi-embedding.
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2.4 Dual rho-tau Embedding

In contrast with the “single function” embedding of the phi-model and the U-
model, Zhang’s (2004) rho-tau framework uses two arbitrarily and independently
chosen monotone functions. He starts with the observation that a pair of mutu-
ally inverse functions occurs naturally in the context of convex duality. Indeed,
if f is strictly convex and f∗ is its convex dual then the derivatives f ′ and (f∗)′

are inverse functions of each other:

f ′ ◦ (f∗)′(u) = (f∗)′ ◦ f ′(u) = u.

Here the definition of the convex dual f∗ of f is:

f∗(u) = sup{uv − f(v)}.

For u in the range of f ′ it is given by

f∗(u) = u(f ′)−1(u) − f ◦ (f ′)−1(u).

Take the derivative of this expression to find (f∗)′ ◦f ′(u) = u. By convex duality
then follows that also f ′ ◦ (f∗)′(u) = u. Take an additional derivative to obtain

f ′′((f∗)′(u)) · (f∗)′′(u) = (f∗)′′(f ′(u)) · f ′′(u) = 1. (10)

This identity will be used further on.

Consider now a pair (ρ(·), τ(·)) of strictly increasing functions. Then there
exists a strictly convex function f(·) satisfying f ′(u) = τ ◦ρ−1(u). This is because
the family of strictly increasing functions form a group, with function composi-
tion as group operation, an observation made in [6,12]. In terms of the conjugate
function f∗, the relation is (f∗)′(u) = ρ ◦ τ−1(u). The derivatives of f(u) and of
its conjugate f∗(u) have the property that

f ′(ρ(u)) = τ(u) and (f∗)′(τ(u)) = ρ(u). (11)

Among the triple (f, ρ, τ), given any two functions, the third is specified. When
we arbitrarily choose two strictly increasing functions ρ and τ as embedding
functions, then they are automatically linked by a pair of conjugated convex
functions f, f∗. On the other hand, we may also independently choose to specify
(ρ, f), (ρ, f∗), (τ, f), or (τ, f∗), with the others being fixed. Therefore, rho-tau
embedding is a mechanism with two independently chosen functions; this differs
from both the phi-embedding and the U-embedding. The following identities will
be useful:

f ′′(ρ(u)) ρ′(u) = τ ′(u) , (f∗)′′(τ(u)) τ ′(u) = ρ′(u) , (12)

f ′′(ρ(u)) (ρ′(u))2 = (f∗)′′(τ(u)) (τ ′(u))2 , (13)

f ′′(ρ(u)) (f∗)′′(τ(u)) = 1. (14)
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2.5 Divergence of the rho-tau Embedding

Zhang (2004) introduces1 the rho-tau divergence (see Proposition 6 of [6])

Dρ,τ (p, q) =
∫

X
dx {f(ρ(p(x))) + f∗(τ(q(x))) − ρ(p(x))τ(q(x))} , (15)

where f is a strictly convex function satisfying f ′(ρ(u)) = τ(u).

Lemma 1. Expression (15) can be written as

Dρ,τ (p, q) =
∫

X
dx

{
f(ρ(p(x))) − f(ρ(q(x))) − [ρ(p(x)) − ρ(q(x))]τ(q(x))

}

=
∫

X
dx

∫ p(x)

q(x)

[τ(v) − τ(q(x))] dρ(v)

=
∫

X
dx

∫ ρ(p(x))

ρ(q(x))

du [f ′(u) − f ′(ρ(q(x)))] . (16)

In particular this implies that Dρ,τ (p, q) ≥ 0, with equality if and only if p = q.
We note the following identity:

f(ρ(p(x))) − ρ(p(x))τ(p(x)) + f∗(τ(p(x))) = 0. (17)

The “reference-representation biduality” [6,10,12] reveals as

Dρ,τ (p, q) = Dτ,ρ(q, p).

2.6 Entropy and Cross-Entropy of rho-tau Embedding

It is now obvious to give the following definition of the rho-tau entropy

Sρ,τ (p) = −
∫

X
dx f(ρ(p(x))), (18)

where f(u) is a strictly convex function satisfying f ′(u) = τ ◦ ρ−1(u). This can
be written as

Sρ,τ (p) = −
∫

X
dx

∫ ρ(p(x))

f ′(v)dv + constant

= −
∫

X
dx

∫ p(x)

τ(u)dρ(u) + constant. (19)

1 The original definition as found in [6,12] uses the notation Df,ρ(p, q) and treats f
and ρ as independent. In the present definition Dρ,τ (p, q) the definition of f depends
on ρ, τ . The difference in only notational and inconsequential.
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Note that the rho-tau entropy Sρ,τ (p) is concave in ρ(p), but not necessarily
in p. This has consequences further on. We likewise define rho-tau cross-entropy

Cρ,τ (p, q) = −
∫

X
dx ρ(p(x))τ(q(x))

with Cρ,τ (p, q) = Cτ,ρ(q, p).

The rho-tau divergence can then be given by

Dρ,τ (p, q) = Sρ,τ (q) − Sρ,τ (p) −
∫

X
dx [ρ(p(x)) − ρ(q(x))]τ(q(x)).

= [Sρ,τ (q) − Cρ,τ (q, q)] − [Sρ,τ (p) − Cρ,τ (p, q)]

Note that in general Sρ,τ (q) �= Cρ,τ (q, q); this is because

Sρ,τ (p) − Cρ,τ (p, p) =
∫

X
dx f∗(τ(p(x))).

So unless f(u) = cu for constant c, f∗ would not vanish. In fact, denote

S∗
ρ,τ (p) = −

∫
X

dx f∗(τ(p(x))). (20)

Then S∗
ρ,τ (p) = Sτ,ρ(p), and

Sρ,τ (p) − Cρ,τ (p, p) + S∗
ρ,τ (p) = 0 (21)

which is, after integrating
∫

X dx, a re-write of (17). Therefore,

Dρ,τ (p, q) = Sρ,τ (p) − Cρ,τ (p, q) + S∗
ρ,τ (q). (22)

Because Dρ,τ (p, q) is non-negative and vanishes if and only if p = q, the
function p �→ Sρ,τ (p) − Cρ,τ (p, q) has its unique maximum at p = q. Therefore,
minimizing p �→ Dρ,τ (p, q) is equivalent with maximizing p �→ Sρ,τ (p)−Cρ,τ (p, q).

2.7 Gauge Freedom of the rho-tau Embedding

Because rho-tau embedding has the freedom of two functions, it reduces to the
single-function embeddings (either phi- or U-embedding) upon fixing one embed-
ding function.

Divergence. In the phi-embedding, Expression (15) of Dρ,τ (p, q) reduces to the
phi-divergence Dφ(p, q) for instance if ρ = id, the identity function; in this case,
τ(u) = logφ(u) = f ′(u).

The U-embedding is also a special case of the rho-tau embedding, with ρ = id
identification: U = f∗, τ = (U ′)−1 = f ′. So phi-divergence (7) and U -divergence
(9) are identical. U- and phi-embedding are the same, with U ′ = expφ, as noted
in [11].
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Entropy. By virtue of gauge selection ρ = id in the rho-tau embedding, any
phi-deformed entropy (3) is a special case of rho-tau entropy (18)

Sρ,τ (p) = Sφ(ρ(p)).

On the other hand, though the rho-tau entropy (18) has two free functions in
appearance, it is the result of their function composition that matters. So any
rho-tau entropy is also a phi-entropy for a well-chosen φ.

The situation with the U-embedding is the same, because U -entropy is iden-
tical with phi-entropy:

HU (p) =
∫

X
dx

[
U((U ′)−1(p(x))) − p(x) · (U ′)−1(p(x))

]

=
∫

X
dx [f∗(f ′(p(x))) − p(x) · f ′(p(x))] = −

∫
X

dxf(p(x)) = Sφ(p).

Cross-entropy. The rho-tau embedding identifies Cρ,τ (p, q) as the cross-entropy
with a dual embedding mechanism, one free function for each of the p, q. In this
most general form, however, we do not require that Cρ,τ (p, q) reduce to either
Sρ,τ (p) or S∗

ρ,τ (p) ≡ Sτ,ρ(p) when p = q. This is different from the approach of the
U-embedding, where its cross-entropy CU (p, q) is such that CU (p, p) = HU (p).
It turns out that CU (p, q) given by (8) equals the rho-tau cross-entropy minus
the dual rho-tau entropy (after adopting the ρ = id gauge):

Cρ,τ (p, q) − S∗
ρ,τ (q) = CU (p, q). (23)

Below, we extend Eguchi’s definition of U cross-entropy by removing the ρ = id
restriction. In other words, we can call the left-hand side of (23) U cross-entropy,
which depends on two free functions ρ, τ , and obtain from (22)

Dρ,τ = CU (p, q) − CU (p, p).

2.8 The Normalization Gauge

Let us fix the gauge by f∗ = τ−1. In this case,
∫

X dx f∗(τ(p(x))) =
∫

X p(x)dx =
1, so S∗

ρ,τ (p) = S∗
ρ,τ (q) = −1.

Adopting the f∗ = τ−1 gauge (we call this “normalization gauge”) implies
that

ρ(p) = (f∗)′(τ(p)) = (τ−1)′(τ(p)) =
1

τ ′(p)
.

So the transformation

λ : τ(·) −→ 1
τ ′(·) ≡ (τ−1)′(τ(·))

reflects a transformation of embedding functions. In the phi-embedding lan-
guage, τ → ρ is simply logφ → φ, or the phi-exponentiation operation.
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This transformation is important in studying phi-exponential family of pdfs
(Part II).

Fixing the gauge freedom by normalization simplifies the form of Dρ,τ . Mak-
ing use of (21), with S∗ = const, implies that the rho-tau cross-entropy Cρ,τ and
U cross-entropy CU (ρ, τ), as given by left-hand side of (23), are equal and are
denoted C0:

C0(p, q) = −
∫

X
dx ρ(p(x)) · τ(q(x)) = −

∫
X

dx (τ−1)′(τ(p(x))) · τ(q(x))

or, in terms of deformed-logarithm notation,

C0(p, q) = −
∫

X
dx ρ(p(x)) logρ(q(x)).

Then
H0(p) ≡ C0(p, p) = −

∫
X

dx ρ(p(x)) logρ(p(x)),

with

D0(p, q) = C0(p, q) − C0(p, p)

=
∫

X
dx ρ(p(x)) · (logρ(p(x)) − logρ(q(x)))

=
∫

X
dx

1
τ ′(p(x))

(τ(p(x)) − τ(q(x))). (24)

Note that D0 �= Dφ; they both degenerate from Dρ,τ under different gauges.

We summarize the above conclusions in the following theorem:

Theorem 1. The (ρ, τ) embedding reduces to special cases upon fixing the gauge
as:

(i) ρ = id: rho-tau divergence Dρ,τ reduces to deformed phi-divergence Dφ with
τ = f ′ = logφ, and to U -divergence DU with U = f∗ and τ = f ′ = (U ′)−1;

(ii) f∗ = τ−1: rho-tau cross-entropy Cρ,τ reduces to U -cross-entropy as rede-
fined in (23). In this case, ρ = φ, τ = logφ, i.e., τ → ρ = (τ−1)′ ◦ τ ≡ 1/τ ′

is taking phi-exponentiation operation;
(iii) ρ = τ : rho-tau divergence Dρ,τ becomes

∫
dx(ρ(p(x)) − ρ(q(x)))2/2.

3 Discussion

The main thesis of our paper is that the divergence function Dρ,τ constructed
from (ρ, τ)-embedding subsumes both the phi-divergence Dφ constructed from
the deformed-log embedding and the U -divergence constructed from the U-
embedding. A highlight of our analysis is that the rho-tau divergence Dρ,τ

provides a clear distinction between entropy and cross-entropy as two distinct
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quantities without requiring the latter to degenerate to the former. This is sig-
nificant in terms of the resulting geometry generated by these two quantities
(see Part II).

On the other hand, upon fixing the gauge f∗ = τ−1 (normalization gauge)
renders the rho-tau cross-entropy to be U cross-entropy, where the dual-entropy
is constant. In this case, τ ↔ ρ is akin to logφ ↔ φ transformation encountered
in studying normalization of phi-exponential family. A thorough discussion of the
geometries induced from the rho-tau divergence and from the phi-exponential
family will be given in Part II.

Acknowledgement. The first author is supported by DARPA/ARO Grant W911NF-
16-1-0383.
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Abstract. The rho-tau embedding of a parametric statistical model
defines both a Riemannian metric, called “rho-tau metric”, and an alpha
family of rho-tau connections. We give a set of equivalent conditions for
such a metric to become Hessian and for the ±1-connections to be dually
flat. Next we argue that for any choice of strictly increasing functions
ρ(u) and τ(u) one can construct a statistical model which is Hessian
and phi-exponential. The metric derived from the escort expectations is
conformally equivalent with the rho-tau metric.

Keywords: Hessian geometry · Dually-flat · rho-tau embedding · phi-
exponential family · Escort probability

1 Introduction

Amari [1,2] introduced the alpha family of connections Γ (α) for a statistical
model belonging to the exponential family. He showed that Γ (α) and Γ (−α) are
each others dual and that for α = ±1 the corresponding geometries are flat. Both
the notions of an alpha family of connections and that of an exponential family
of statistical models have been generalized. The present paper combines two
general settings, that of the alpha family of connections determined by rho-tau
embeddings [3] and that of phi-deformed exponential families [4].

Let M denote the space of probability density functions over the measure
space (X ,dx). A parametric model pθ is a map from some open domain in R

n

into M. It becomes a parametric statistical model if θ → pθ is a Riemannian
manifold with metric tensor g(θ).

Throughout the paper it is assumed that two strictly increasing functions ρ
and τ are given. The rho-tau divergence (see Part I) induces a metric tensor g
on finite-dimensional manifolds of probability distributions and makes them into
Riemannian manifolds.
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2 The Metric Tensor

The rho-tau divergence Dρ,τ (p, q) can be used [3,5,6] to define a metric tensor
g(θ) by

gi,j(θ) = ∂j∂iDρ,τ (p, pθ)
∣
∣
∣
∣
p=pθ

, (1)

with ∂i = ∂/∂θi. A short calculation gives

gij(θ) =
∫

X
dx

[

∂iτ(pθ(x))
] [

∂jρ(pθ(x))
]

. (2)

Because τ = f ′ ◦ ρ, the rho-tau metric g(θ) also takes the form:

gij(θ) =
∫

X
dx

[

∂if
′(ρ(pθ(x)))

] [

∂jρ(pθ(x))
]

=
∫

X
dx f ′′(ρ(pθ(x)))

[

∂iρ(pθ(x))
] [

∂jρ(pθ(x))
]

.

This shows that the matrix g(θ) is symmetric. Moreover, it is positive-
definite, because the derivatives ρ′ and f ′′ are strictly positive and the matrix
with components

(

∂jp
θ(x)

) (

∂ip
θ(x)

)

has eigenvalues 0 and 1 (assuming θ → pθ

has no stationary points). Finally, g(θ) is covariant, so g is indeed a metric tensor
on the Riemannian manifold pθ. From (2) follows that it is invariant under the
exchange of ρ and τ .

The rho-tau entropy Sρ,τ of the parametric family pθ can be written as

Sρ,τ (pθ) = −
∫

X
dx f(ρ(pθ(x))). (3)

So its second derivative

hij(θ) = −∂i∂jSρ,τ (pθ)

is symmetric in i, j. When positive-definite, h(θ) can also serve as a metric tensor
as is found sometimes in the Physics literature.

Note that h(θ) differs from g(θ) in general: the former is induced by the
entropy function Sρ,τ (p), whose definition depends on the single function f ◦ ρ,
the latter is derived from the function Dρ,τ (p, q).

3 Gauge Freedom

Write the rho-tau metric gij as

gij(θ) =
∫

X
dx

1
φ(pθ)

[

∂ip
θ(x)

] [

∂jp
θ(x)

]

, (4)
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where φ(u) = 1/(ρ′(u)τ ′(u)). So despite of the two independent choices of embed-
ding functions ρ and τ , the metric tensor gij is determined by one function φ
only. More remarkably,

gij(θ) =
∫

X
dx f ′′(ρ(pθ(x)))

[

∂i(ρ(pθ(x))
] [

∂jρ(pθ(x))
]

=
∫

X
dx (f∗)′′(τ(pθ(x)))

[

∂iτ(pθ(x))
] [

∂jτ(pθ(x))
]

,

so the gauge freedom in gij exists independent of the embedding – there is
freedom in choosing an arbitrary function f in the case of the ρ-embedding and
an arbitrary function f∗ in the case of the τ -embedding of pθ.

Without loss of generality, we choose τ -embedding and denote Xθ(x) =
τ(pθ(x)). From the form of the rho-tau metric

gij(θ) =
∫

X
dx

ρ′(pθ(x))
τ ′(pθ(x))

[

∂iτ(pθ(x))
] [

∂jτ(pθ(x))
]

,

we introduce a bilinear form 〈·, ·〉 defined on pairs of random variables u(x), v(x)

〈u, v〉θ =
∫

X
dx

ρ′(pθ(x))
τ ′(pθ(x))

u(x) v(x).

For any random variable u it holds that

∂j

∫

X
dx ρ(pθ(x))u(x) =

∫

X
dx

ρ′(pθ(x))
τ ′(pθ(x))

∂jτ(pθ(x))u(x) = 〈∂jX
θ, u〉θ

Following [2], ∂jX
θ is then, by definition, tangent to the rho-representation

ρ(pθ) of the model pθ. We also have

− ∂jSρ,τ (pθ) = 〈∂jX
θ,Xθ〉θ. (5)

The difference of the metrics g(θ) and h(θ) can be readily appreciated:

gij(θ) = 〈∂jX
θ, ∂iX

θ〉θ

whereas

hij(θ) = −∂i∂jSρ,τ (pθ) = ∂i〈∂jX
θ,Xθ〉θ

= gij(θ) +
∫

X
dx τ(pθ(x))∂i∂jρ(pθ(x)). (6)

4 The Hessian Case

We now consider the condition under which the rho-tau metric g becomes
Hessian.
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Theorem 1. Let be given a C∞-manifold of probability distributions pθ. For
fixed strictly increasing functions ρ and τ , let the metric tensor g(θ) be given
by (2). Then the following statements are equivalent:

(i) g is Hessian, i.e., there exists Φ(θ) such that

gij(θ) = ∂i∂jΦ(θ).

(ii) There exists a function V (θ) such that

∂2V

∂θi∂θj
= −

∫

X
dx τ(pθ(x))∂i∂jρ(pθ(x)). (7)

(iii) There exists a function W (θ) such that

∂2W

∂θi∂θj
= −

∫

X
dx ρ(pθ(x))∂i∂jτ(pθ(x)). (8)

(iv) There exist coordinates ηi(θ) for which

gij(θ) = ∂jηi.

(v) There exist coordinates ξi such that

∂jξi(θ) = −
∫

X
dx τ(pθ(x))∂i∂jρ(pθ(x)). (9)

(vi) There exist coordinates ζi such that

∂jζi(θ) = −
∫

X
dx ρ(pθ(x))∂i∂jτ(pθ(x)). (10)

Proof.
(i) ←→ (iv) This is well-known: the existence of a strictly convex function Φ is
equivalent to the existence of dual coordinates ηi.
(ii) ←→ (v) From (ii) to (v): Given the existence of V (θ) satisfying (7), choose
ξi = ∂iV , and (9) is satisfied. From (v) to (ii): Since the right-hand side of (9) is
symmetric with respect to i, j, we have ∂jξi = ∂iξj . Hence there exists a function
V (θ) such that ξi = ∂iV ; this is the V function satisfying (7).
(iii) ←→ (vi) The proof is similar to the previous paragraph, by simply changing
V to W and ξ to ζ.
(i) ←→ (ii) From the identity (6), the existence of Φ(θ) to represent gij as its
second derivatives allows us to choose the function V as V = Φ + S. So from
(i) we obtain (ii). Conversely when the integral term can be represented by the
second derivative of V (θ), we can choose Φ = V −S that would satisfy (6). This
yields (i) from (ii).
(i) ←→ (iii) The proof is similar to that of the previous paragraph, except that
we will invoke the following identity instead of (6):

−∂i∂jS
∗
ρ,τ (pθ) = gij(θ) +

∫

X
dx ρ(pθ(x))∂i∂jτ(pθ(x)).

��
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The case when g is Hessian is very special, because of the existence of various
bi-orthogonal coordinates.

The ηi are the dual coordinates of the θi. The ζi are called escort coordinates.
They are linked to ηi by

ζi = −
∫

X
dx ρ(pθ(x))∂iτ(pθ(x)) + ηi = ∂iS

∗
ρ,τ (pθ) + ηi. (11)

They satisfy

∂j∂kζi = −〈∂kXθ, ∂i∂jX
θ〉.

The dual escort coordinates ξi are given by

ξj(θ) = ∂jSρ,τ (pθ) + ηj . (12)

The Hessian of the function V (θ), when it does not vanish, causes a discrep-
ancy between a metric tensor h defined as minus the Hessian of the entropy and
the metric tensor g as defined by (2).

5 Zhang’s rho-tau Connections

Given a pair of strictly increasing functions ρ and τ and a model pθ, Zhang
introduced the following connections [3]

Γ
(α)
ij,k =

1 + α

2

∫

X
dx

[

∂i∂jρ(pθ(x))
] [

∂kτ(pθ(x))
]

+
1 − α

2

∫

X
dx

[

∂i∂jτ(pθ(x))
] [

∂kρ(pθ(x))
]

,

(13)

where Γ
(α)
ij,k ≡ (Γ (α))l

ijglk. One readily verifies

Γ
(α)
ij,k + Γ

(−α)
jk,i = ∂igjk(θ). (14)

This shows that, by definition, Γ (−α) is the dual connection of Γ (α).
The coefficients of the connection Γ (−1) vanish identically if

∫

X
dx

[

∂i∂jτ(pθ(x))
] [

∂kρ(pθ(x))
]

= 0. (15)

This condition can be written as

∂j∂kζi = −〈∂i∂jX
θ, ∂kXθ〉θ = 0. (16)

It states that the escort coordinates are affine functions of θ and expresses that
the second derivatives ∂i∂jX

θ are orthogonal to the tangent plane of the statis-
tical manifold. If satisfied then the dual of Γ (−1) satisfies

Γ
(1)
ij,k = ∂igjk(θ). (17)
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Likewise, the coefficients of the connection Γ (1) vanish identically if
∫

X
dx

[

∂i∂jρ(pθ(x))
] [

∂kτ(pθ(x))
]

= 0. (18)

Proposition 1. With respect to conditions (15) and (18),

1. When (15) holds, the coordinates θi are affine coordinates for Γ (−1); the dual
coordinates ηi are affine coordinates for Γ (1);

2. When (18) holds, the coordinates θi are affine coordinates for Γ (1); the dual
coordinates ηi are affine coordinates for Γ (−1);

3. In either case above, g(θ) is Hessian.

Proof.
One recalls that when Γ = 0 under a coordinate system θ, then θi’s are affine

coordinates – the geodesics are straight lines:

θ(t) = (1 − t)θ(t=1) + tθ(t=0).

The geodesics of the dual connection Γ ∗ satisfies the Euler-Lagrange equa-
tions

d2

dt2
θi + Γ i

km

(
d
dt

θk

)(
d
dt

θm

)

= 0. (19)

Its solution is such that the dual coordinates η are affine coordinates:

η(t) = (1 − t)η(t=1) + tη(t=0).

For Statement 1, we apply the above knowledge, taking Γ = Γ (−1) and
Γ ∗ = Γ (1); for Statement 2, taking Γ = Γ (1) and Γ ∗ = Γ (−1).

To prove Statement 3 observe that

∂kgij(θ) =
∫

X
dx

[

∂iτ(pθ(x))
]

∂j∂kρ(pθ(x)) +
∫

X
dx

[

∂jρ(pθ(x))
]

∂i∂kτ(pθ(x)).

So the vanishing of either term, i.e., either (15) or (18) holding, will lead
∂kgij(θ) to be symmetric in j, k or in i, k, respectively. This, in conjunction with
the fact that gij is symmetric in i, j, leads to the conclusion that ∂kgij(θ) is
totally symmetric in an exchange of any two of the three indices i, j, k. This
implies that ηi exist for which gij(θ) = ∂jηi. That g is Hessian follows now from
Theorem 1.

��

6 Rho-tau Embedding of phi-exponential Models

Let φ(u) = 1/(ρ′(u)τ ′(u)) as before and fix real random variables F1, F2, · · · , Fn.
These functions determine a phi-exponential family θ → pθ by the relation (see
[4,7,8])

pθ(x) = expφ

[

θkFk(x) − α(θ)
]

. (20)
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The function α(θ) is determined by the requirement that pθ is a probability
distribution and must be normalized to 1.

Assume that the integral

z(θ) =
∫

X
dxφ(pθ(x))

converges. Then the escort family of probability distributions p̃θ is defined by

p̃θ(x) =
1

z(θ)
φ(pθ(x)).

The corresponding escort expectation is denoted Ẽθ. From the normalization
of the pθ follows that ∂iα(θ) = ẼθFi. Now calculate, starting from (4),

gij(θ) =
∫

X
dx

1
φ(pθ(x))

[

∂ip
θ(x)

] [

∂jp
θ(x)

]

=
∫

X
dxφ(pθ(x)) [Fi − ∂iα(θ)] [Fj − ∂jα(θ)]

= z(θ)
[

ẼθFiFj − ẼθFiẼθFj

]

. (21)

The latter expression is the metric tensor of the phi-exponential model as
introduced in [4]. It implies that the rho-tau metric tensor is conformally equiv-
alent with the metric tensor as derived from the escort expectation of the random
variables Fi.

Finally, let ηi = EθFi. A short calculation shows that

∂jηi =
∫

X
dxφ(pθ(x)) [Fj − ∂jα(θ)] Fi

= z(θ)
[

ẼθFiFj − ẼθFiẼθFj

]

= gij(θ). (22)

By (iv) of Theorem 1 this implies that the metric tensor gij is Hessian. Note
that the ηi are dual coordinates. As defined here, they only depend on φ and not
on the particular choice of embeddings ρ and τ . In particular, also the dually
flat geometry does not depend on it.

One concludes that for any choice of strictly increasing functions ρ(u) and
τ(u) one can always construct statistical models for which the rho-tau metric is
Hessian. These are phi-exponential models, with φ given by φ(u) = 1/ρ′(u)τ ′(u).

Conversely, given a phi-exponential model, its metric tensor is always a rho-
tau metric tensor, with ρ, τ subject to the condition that ρ′(u)τ ′(u) = 1/φ(u).
Two special cases are that either ρ or τ is the identity map, with the other being
identified as the logφ function.

In the terminology of Zhang [3] the models of the phi-exponential family
are called ρ-affine models where the normalization condition is, however, not
imposed.
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7 Discussion

This paper studies parametrized statistical models pθ and the geometry induced
on them by the choice of a pair of strictly increasing functions ρ and τ .

Theorem 1 gives equivalent conditions for the metric to be Hessian. It is shown
that for the existence of a dually flat geometry the metric has to be Hessian.

The rho-tau metric tensor depends on a single function φ which is defined
by φ(u) = 1/(ρ′(u)τ ′(u)). If the model is phi-exponential for the same function
φ then the rho-tau metric coincides with the metric used in the context of phi-
exponential families and in particular the metric is Hessian. This shows that it
is always possible to construct models which are Hessian for the given rho-tau
metric.
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Abstract. Heavily tailed probability distributions are important
objects in anomalous statistical physics. For such probability distrib-
utions, expectations do not exist in general. Therefore, an escort distri-
bution and an escort expectation have been introduced. In this paper,
by generalizing such escort distributions, a sequence of escort distrib-
utions is introduced. For a deformed exponential family, we study the
fundamental properties of statistical manifold structures derived from
the sequence of escort expectations.

Keywords: Statistical manifold · Escort distribution · Escort expecta-
tion · Deformed exponential family · Information geometry

1 Introduction

Heavily tailed probability distributions are important objects in anomalous sta-
tistical physics (cf. [11,15]). Such probability distributions do not have expecta-
tions in general. Therefore the notion of escort distribution has been introduced
[4] in order to give a suitable down weight for heavy tail probability. Conse-
quently, there exists a modified expectation for such a probability distributions.

For a deformed exponential family, an escort distribution is given by the
differential of a deformed exponential function. Therefore, the first named author
considered further generalizations of escort distributions In q-exponential case,
he introduced a sequential structure of escort distributions [7].

In this paper, we consider a sequential structure of escort distributions on
a deformed exponential family. It is known that a deformed exponential family
naturally has at least three kinds of different statistical manifold structures [8].
We elucidate relations between these statistical manifold structures and the
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structures derived from the sequence of escort expectations. Consequently, we
find that dually flat structures and generalized conformal structures for statisti-
cal manifolds naturally arise in this framework.

2 Deformed Exponential Families

Throughout this paper, we assume that all the objects are smooth. In this
section, we summarize foundations of deformed exponential functions and
deformed exponential families. For further details, see [11].

Let χ be a strictly increasing function from R++ to R++. We call this func-
tion χ a deformation function. By use of a deformation function, we define a
χ-exponential function expχ t (or a deformed exponential function) by the eigen-
function of the following non-linear differential equation

d

dt
expχ t = χ(expχ t).

The inverse of a χ-exponential function is called a χ-logarithm function or a
deformed logarithm function, and it is given by

lnχ s :=
∫ s

1

1
χ(t)

dt.

If the deformation function is a power function χ(t) = tq (q > 0, q �= 1), the
deformed exponential and the deformed logarithm are given by

expq t := (1 + (1 − q)t)
1

1−q , (1 + (1 − q)t > 0),

lnq s :=
s1−q − 1

1 − q
, (s > 0),

and they are called a q-exponential and a q-logarithm, respectively.
We suppose that a statistical model Sχ has the following expression

Sχ =

{
p(x, θ)

∣∣∣∣∣p(x; θ) = expχ

[
n∑

i=1

θiFi(x) − ψ(θ)

]
, θ ∈ Θ ⊂ Rn

}
,

where F1(x), . . . , Fn(x) are functions on the sample space Ω, θ = t(θ1, . . . , θn) is
a parameter, and ψ(θ) is the normalization defined by

∫
Ω

p(x; θ)dx = 1. We call
the statistical model Sχ a χ-exponential family or a deformed exponential family.
Under suitable conditions, Sχ is regarded as a manifold with coordinate system
θ = (θ1, . . . , θn). When the deformed exponential function is a q-exponential, we
denote the statistical model by Sq and call it a q-exponential family.

We remark that the regularity conditions for Sχ is very difficult. To elucidate
such conditions is quite an open problem. For example, regularity conditions for
a statistical model (see Chap. 2 in [1]) and the well-definedness of a deformed
exponential function should be satisfied simultaneously. A few arguments of this
problem is given in the first and the third named author’s previous work [9].



A Sequential Structure of Statistical Manifolds 225

3 A Sequential Structure of Expectations

In this section we consider a sequential structure of expectations. As we will see
later, statistical manifold structures are defined from this sequence.

Let Sχ = {pθ} = {p(x; θ)} be a χ-exponential family. We say that Pχ(x; θ)
is an escort distribution of pθ ∈ Sχ if

Pχ(x; θ) := Pχ,(1)(x; θ) := χ(pθ).

We say that P esc
χ (x; θ) is a normalized escort distribution of pθ if

P esc
χ (x; θ) := P esc

χ,(1)(x; θ) :=
χ(pθ)
Zχ(pθ)

,

where Zχ(pθ) := Zχ,(1)(pθ) :=
∫

Ω

χ(pθ)dx.

We generalize the escort distribution by use of higher-order differentials.

Definition 1. Let Sχ be a χ-exponential family. Denote by exp(n)
χ x the n-th

differential of the χ-exponential function. For pθ ∈ Sχ, we define the n-th escort
distribution Pχ,(n)(x; θ) by

Pχ,(n)(x; θ) := exp(n)
χ (lnχ pθ) = exp(n)

χ

(
n∑

i=1

θiFi(x) − ψ(θ)

)
,

and the normalized n-th escort distribution P esc
χ,(n)(x; θ) by

P esc
χ,(n)(x; θ) :=

Pχ,(n)(x; θ)
Zχ,(n)(pθ)

, where Zχ,(n)(pθ) =
∫

Ω

Pχ,(n)(x; θ)dx.

For a given function f(x) on Ω, we define the n-th escort expectation of f(x)
and the normalized n-th escort expectation of f(x) by

Eχ,(n),p[f(x)] :=
∫

Ω

f(x)Pχ,(n)(x; θ)dx,

Eesc
χ,(n),p[f(x)] :=

∫
Ω

f(x)P esc
χ,(n)(x; θ)dx,

respectively.

For example, in the case of q-exponential family Sq, the n-th escort distrib-
ution of pq(x; θ) is given by

Pq,(n)(x; θ) := {q(2q − 1) · · · ((n − 1)q − (n − 2))}{pq(x; θ)}nq−(n−1).

When we consider geometric structure determined from the unbiasedness of
generalized score function, that is,

Eχ,(1),p[∂i lnχ p(x; θ)] = 0,

a sequential structure of expectations naturally arises. This is one of our motiva-
tions to study sequential expectations. When we consider correlations of random
variables, another kinds of sequence of expectations will be required.
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4 Geometry of Statistical Models

Let (M, g) be a Riemannian manifold, and C be a totally symmetric (0, 3)-tensor
field on M . We call the triplet (M, g,C) a statistical manifold [6]. In this case, the
tensor field C is called a cubic form. For a given statistical manifold (M, g,C),
we can define one parameter family of affine connections by

g(∇(α)
X Y,Z) := g(∇(0)

X Y,Z) − α

2
C(X,Y,Z), (1)

where α ∈ R and ∇(0) is the Levi-Civita connection with respect to g. It is easy
to check that ∇(α) and ∇(−α) are mutually dual with respect to g, that is,

Xg(Y,Z) = g(∇(α)
X Y,Z) + g(Y,∇(−α)

X Z).

We say that S is a statistical model if S is a set of probability density functions
on Ω with parameter ξ ∈ Ξ such that

S =
{

p(x; ξ)
∣∣∣∣
∫

Ω

p(x; ξ)dx = 1, p(x; ξ) > 0, ξ = (ξ1, . . . , ξn) ∈ Ξ ⊂ Rn

}
.

Under suitable conditions, we can define a Fisher metric gF on S by

gF
ij(ξ) =

∫
Ω

(
∂

∂ξi
ln p(x; ξ)

) (
∂

∂ξj
ln p(x; ξ)

)
p(x; ξ) dx (2)

=
∫

Ω

(
∂

∂ξi
ln p(x; ξ)

) (
∂

∂ξj
p(x; ξ)

)
dx (3)

= Ep[∂ilξ∂j lξ],

where ∂i = ∂/∂ξi, lξ = l(x; ξ) = ln p(x; ξ), and Ep[f ] is the standard expectation
of f(x) with respect to p(x; ξ).

Next, we define a totally symmetric (0, 3)-tensor field CF by

CF
ijk(ξ) = Ep [(∂ilξ)(∂j lξ)(∂klξ)] .

From Eq. (1), we can define one parameter family of affine connections. In
particular, the connection ∇(e) = ∇(1) is called theexponential connection and
∇(m) = ∇(−1) is called the mixture connection. These connections are given by

Γ
(e)
ij,k(ξ) =

∫
Ω

(∂i∂j ln pξ)(∂kpξ)dx,

Γ
(m)
ij,k (ξ) =

∫
Ω

(∂k ln pξ)(∂i∂jpξ)dx.

It is known that gF and CF are independent of the choice of reference mea-
sure on Ω. Therefore, the triplet (S, gF , CF ) is called an invariant statistical
manifold. If a statistical model S is an exponential family, then the invari-
ant statistical manifold (S, gF , CF ) determines a dually flat structure on S.
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(See [1,13].) However, this fact may not be held for a deformed exponential
family Sχ and an invariant structure may not be important for Sχ. Therefore,
we consider another statistical manifold structures.

We summarize statistical manifold structures for Sχ based on [8].
Let Sχ be a χ-exponential family. We define a Riemannian metric gM by

gM
ij (θ) :=

∫
Ω

(∂i lnχ pθ) (∂jpθ) dx,

where ∂i = ∂/∂θi. The Riemannian metric gM is a generalization of the repre-
sentation of Fisher metric (3). A pair of dual affine connections are given by

Γ
M(e)
ij,k (θ) =

∫
Ω

(∂i∂j lnχ pθ)(∂kpθ)dx,

Γ
M(m)
ij,k (θ) =

∫
Ω

(∂k lnχ pθ)(∂i∂jpθ)dx.

The difference of two affine connections CM
ijk = Γ

M(m)
ij,k − Γ

M(e)
ij,k determines a

cubic form. In addition, from the definition of the deformed exponential family
Sχ, Γ

M(e)
ij,k (θ) always vanishes. Therefore, we have the following proposition.

Proposition 1. For a χ-exponential family Sχ, the triplet (Sχ, gM , CM ) is a
statistical manifold. In particular, (Sχ, gM ,∇M(e),∇M(m)) is a dually flat space.
By setting

Uχ(s) :=
∫ s

0

(expχ t) dt,

we define a U -divergence [10] by

Dχ(p||r) =
∫

Ω

{Uχ(lnχ r(x)) − Uχ(lnχ p(x)) − p(x)(lnχ r(x) − lnχ p(x))}dx.

It is known that the U -divergence Dχ(p||r) on Sχ coincides with the canonical
divergence for (Sχ, gM ,∇M(m),∇M(e)) (See [8,10]).

Next, we define another statistical manifold structure from the viewpoint of
Hessian geometry.

For a χ-exponential family Sχ, suppose that the normalization ψ is strictly
convex. Then we can define a χ-Fisher metric gχ and a χ-cubic form Cχ [3] by

gχ
ij(θ) := ∂i∂jψ(θ),

Cχ
ijk(θ) := ∂i∂j∂kψ(θ).

Obviously, the triplet (Sχ, gχ, Cχ) is a statistical manifold. From Eq. (1), we can
define a torsion-free affine connection ∇χ(α) by

gχ(∇χ(α)
X Y,Z) := gχ(∇χ(0)

X Y,Z) − α

2
Cχ(X,Y,Z),

where ∇χ(0) is the Levi-Civita connection with respect to gχ. By standard argu-
ments in Hessian geometry [13], (Sχ, gχ,∇χ(1),∇χ(−1)) is a dually flat space.
The canonical divergence for (Sχ, gχ,∇χ(−1),∇χ(1)) is given by

Dχ(p||r) = Eesc
χ,r [lnχ r(x) − lnχ p(x)].
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5 Statistical Manifolds Determined from Sequential
Escort Expectations

In this section, we consider statistical manifold structures determined from
sequential escort expectations.

For a χ-exponential family Sχ, we define g(n) and C(n) by

g
(n)
ij (θ) :=

∫
Ω

(∂i lnχ pθ)(∂j lnχ pθ)Pχ,(n)(x; θ)dx,

C
(n)
ijk (θ) :=

∫
Ω

(∂i lnχ pθ)(∂j lnχ pθ)(∂k lnχ pθ)Pχ,(n+1)(x; θ)dx.

We suppose that g(n) is a Riemannian metric on Sχ. Then we obtain a sequence
of statistical manifolds:

(Sχ, g(1), C(1)) → (Sχ, g(2), C(2)) → · · · → (Sχ, g(n), C(n)) → · · · .

The limit of this sequence is not clear at this moment. In the q-Gaussian
case, the sequence of normalized escort distributions {P esc

q,(n)(x; θ)} converges to
the Dirac’s delta function δ(x − μ) (cf. [14]).

Theorem 1. Let Sq = {p(x; θ)} be a χ-exponential family. Then (Sχ, g(1), C(1))
coincides with (Sχ, gM , CM ).

Proof. From the definition of χ-logarithm and Pχ(x; θ) = Pχ,(1)(x; θ) = χ(pθ),
we obtain

(∂i lnχ pθ)Pχ,(1)(x; θ) =
∂ipθ

χ(pθ)
χ(pθ) = ∂ipθ.

Therefore, we obtain

gM
ij (θ) =

∫
Ω

(∂i lnχ pθ)(∂jpθ)dx =
∫

Ω

(∂i lnχ pθ)(∂j lnχ pθ)Pχ,(1)(x; θ)dx

= g(1)(θ).

Recall that {θi} is a ∇M(e)-affine coordinate system [8]. In addition, the
generalized score function ∂i lnχ pθ is unbiased with respect to the escort expec-
tation, that is,

Eχ,p[∂i lnχ pθ] =
∫

Ω

(∂i lnχ pθ)Pχ,(1)(x; θ)dx =
∫

Ω

∂ipθdx = 0.

Therefore we obtain

CM
ijk(θ) = Γ

M(m)
ij,k (θ) =

∫
Ω

(∂k lnχ pθ)(∂i∂jpθ)dx

=
∫

Ω

(∂k lnχ pθ)∂i{(∂j lnχ pθ)Pχ,(1)(x; θ)}dx

= 0 +
∫

Ω

(∂k lnχ pθ)(∂j lnχ pθ)(∂i lnχ pθ)Pχ,(2)(x; θ)dx

= C
(1)
ijk(θ).
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From the second escort expectation, we have the following theorem.

Theorem 2. Let Sq = {p(x; θ)} be a χ-exponential family. Then (Sχ, g(2), C(2))
and (Sχ, gχ, Cχ) have the following relations:

g
(2)
ij (x; θ) = Zχ(pθ)g

χ
ij(θ),

C
(2)
ijk(x; θ) = Zχ(pθ)C

χ
ij(θ) + gχ

ij(θ)∂kZχ(pθ) + gχ
jk(θ)∂iZχ(pθ) + gχ

ki(θ)∂jZχ(pθ).

Proof. Set u(x) = (expq x)′. Then we have

∂ip(x; θ) = u
(∑

θkFk(x) − ψ(θ)
)

(Fi(x) − ∂iψ(θ))

∂i∂jp(x; θ) = u′
(∑

θkFk(x) − ψ(θ)
)

(Fi(x) − ∂iψ(θ))(Fj(x) − ∂jψ(θ))

−u
(∑

θkFk(x) − ψ(θ)
)

∂i∂jψ(θ)

= Pχ,(2)(x; θ)(∂i lnχ pθ)(∂j lnχ pθ) − Pχ,(1)(x; θ)∂i∂jψ(θ).

Since
∫

Ω
∂ip(x; θ)dx =

∫
Ω

∂i∂jp(x; θ)dx = 0 and Zχ(p) =
∫

Ω
χ(p(x; θ))dx =∫

Ω
Pχ,(1)(x; θ)dx, we obtain

g
(2)
ij (θ) = Zχ(pθ)g

χ
ij(θ).

From a straight forward calculation, we have

∂i∂j∂kp(x; θ) = u′′
(∑

θlFl(x) − ψ(θ)
)

× (Fi(x) − ∂iψ(θ))(Fj(x) − ∂jψ(θ))(Fk(x) − ∂kψ(θ))

−u′
(∑

θlFl(x) − ψ(θ)
)

(Fk(x) − ∂kψ(θ))∂i∂jψ(θ)

−u′
(∑

θlFl(x) − ψ(θ)
)

(Fi(x) − ∂iψ(θ))∂j∂kψ(θ)

−u′
(∑

θlFl(x) − ψ(θ)
)

(Fj(x) − ∂jψ(θ))∂k∂iψ(θ)

−u
(∑

θlFl(x) − ψ(θ)
)

∂i∂j∂kψ(θ), (4)

∂iZχ(pθ) =
∫

Ω

∂iPχ,(1)(x; θ)dx

=
∫

Ω

u
(∑

θlFl(x) − ψ(θ)
)

(Fi(x) − ∂iψ(θ))dx.

By integrating (4), we obtain the relation C(2) and Cχ.

We remark that the statistical manifold (Sχ, g(2), C(2)) cannot determine a
dually flat structure in general whereas (Sχ, gχ, Cχ) determines a dually flat
structure. The relations in Theorem 2 imply that two statistical manifolds have
a generalized conformal equivalence relation in the sense of Kurose [5].
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6 Concluding Remarks

In this paper, we considered a sequential structure of escort expectations and
statistical manifold structures that are defined from the sequence of escort
expectations. Further geometric properties of the sequence {(Sχ, g(n), C(n))}n∈N

are not clear at this moment. However. the sequential structure will be important
in the geometric theory of non-exponential type statistical models. Actually, in
the case of q-exponential family, (Sq, g

(1), C(1)) is induced from a β-divergence.
In addition, (Sq, g

(2), C(2)) are essentially equivalent to the invariant statistical
manifold structure (Sq, g

F .CF ), which are induced from an α-divergence [7].
The authors would like to express their sincere gratitude to the referees for

giving helpful comments to improve this paper.
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4. Beck, C., Schlögl, F.: Thermodynamics of Chaotic Systems: An Introduction.
Cambridge University Press, Cambridge (1993)

5. Kurose, T.: On the divergences of 1-conformally flat statistical manifolds. Tôhoku
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Abstract. It is known from the literature that a ϕ-function may be used
to construct the ϕ-families of probability distributions. In this paper, we
assume that one of the properties in the definition of ϕ-function is not
satisfied and we analyze the behavior of the normalizing function near the
boundary of its domain. As a consequence, we find a measurable function
that does not belong to the Musielak–Orlicz class, but the normalizing
function applied to this found function converges to a finite value near
the boundary of its domain. We conclude showing that this change in the
definition of ϕ-function affects the behavior of the normalizing function.

1 Introduction

In [7] was obtained a generalization of exponential families of probability dis-
tributions [4,5], called ϕ-families. The construction of these families is based on
Musielak–Orlicz spaces [2] and on a function, called ϕ-function, which satisfies
some properties. Another generalization of exponential families of probability
distributions in infinite-dimensional setting was studied in [8]. In [6], it was
studied the Δ2-condition and its consequences on ϕ-families of probability dis-
tributions, we explain briefly this condition in Sect. 3.1. More specifically, the
behavior of the normalizing function near the boundary of its domain was ana-
lyzed, considering that the Musielak–Orlicz function Φc does not satisfies the
Δ2-condition. In [1] the authors found an example that has the same form of
a ϕ-function, but does not satisfy all the properties of a ϕ-function. Our aim
in this paper is to analyze the behavior of the normalizing function near the
boundary of its domain, considering functions, as the one found in [1], which do
not satisfy all the properties of the definition of a ϕ-function.
c© Springer International Publishing AG 2017
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2 Preliminary Considerations

In this section we provide an introduction to ϕ-families of probability distribu-
tions. Let (T,Σ, μ) be a σ-finite, non-atomic measure space on which probability
distributions are defined. In this space, T may be thought of as the set of real
numbers R. These families are based on the replacement of the exponential func-
tion by a ϕ-function ϕ : R → (0,∞) that satisfies the following properties [7]:

(a1) ϕ(·) is convex and injective;
(a2) limu→−∞ ϕ(u) = 0 and limu→∞ ϕ(u) = ∞;
(a3) There exists a measurable function u0 : T → (0,∞) such that

∫
T

ϕ(c + λu0)dμ < ∞, for all λ > 0,

for every measurable function c : T → R for which
∫

ϕ(c)dμ = 1.

There are many examples of ϕ-functions that satisfy (a1)–(a3) [7].
In the definition of ϕ-function, the constraint

∫
T

ϕ(c)dμ = 1 can be replaced
by

∫
T

ϕ(c)dμ < ∞ since this fact was shown in [1, Lemma 1]. Thus, condition
(a3) can be rewritten as:

(a3’) There exists a measurable function u0 : T → (0,∞) such that
∫

T

ϕ(c + λu0)dμ < ∞, for all λ > 0,

for every measurable function c : T → R for which
∫

T
ϕ(c)dμ < ∞.

Thus (a3) and (a3’) are equivalent.
Also, there are functions that satisfy (a1)–(a2) but do not satisfy (a3’) and

an example was given in [1, Example 2]:

ϕ(u) =

{
e(u+1)2/2, u ≥ 0,

e(u+1/2), u ≤ 0.
(1)

Clearly, limu→∞ ϕ(u) = ∞ and limu→−∞ ϕ(u) = 0. It was shown in [1] that
for the function (1) there exists a measurable function c : T → R and another
function u0, both functions were defined in [1], such that

∫
T

ϕ(c)dμ < ∞ but∫
T

ϕ(c + u0)dμ = ∞. This function in (1) is a deformed exponential function
up to a trivial multiplicative factor, as discussed in [3].

The ϕ-families of probability distributions were built based on the Musielak–
Orlicz spaces [2]. Let ϕ be a ϕ-function. The Musielak–Orlicz function was
defined in [7] by

Φc(t, u) = ϕ(c(t) + u) − ϕ(c(t)),

where c : T → R is a measurable function such that ϕ(c) is μ-integrable. Then we
have, the Musielak-Orlicz space LΦcand the Musielak–Orlicz class L̃Φc , denoted
by Lϕ

c and L̃ϕ
c , respectively.
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Let Kϕ
c be the set of all the functions u ∈ Lϕ

c such that ϕ(c + λu) is μ-
integrable for every λ in a neighborhood of [0, 1]. We know that Kϕ

c is an open
set in Lϕ

c [7, Lemma 2] and, for u ∈ Kϕ
c , the function ϕ(c + u) is not necessarily

in Pμ, so the normalizing function ψ : Kϕ
c → R is introduced in order to make

the density ϕ(c + u − ψ(u)u0) is in Pμ [7]. For any u ∈ Kϕ
c , ψ(u) ∈ R is the

unique function which ϕ(c + u − ψ(u)u0) is in Pμ [7, Proposition 3]. Let

Bϕ
c =

{
u ∈ Lϕ

c :
∫

T

uϕ′
+(t, c(t))dμ = 0

}

be a closed subspace of Lϕ
c , thus for every u ∈ Bϕ

c = Bϕ
c ∩ Kϕ

c , by the convexity
of ϕ, one has ψ(u) ≥ 0 and ϕ(c + u − ψ(u)u0) ∈ Pμ.

For each measurable function c : T → R such that p = ϕ(c) ∈ Pμ is associated
a parametrization ϕc : Bϕ

c → Fϕ
c , given by

ϕc(u) = ϕ(c + u − ψ(u)u0),

where the operator ϕ acts on the set of real-value functions u : T → R given by
ϕ(u)(t) = ϕ(u(t)) and the set Fϕ

c = ϕc(Bϕ
c ) ⊆ Pμ where Pμ =

⋃{Fϕ
c : ϕ(c) ∈

Pμ} and the map ϕc is a bijection from Bϕ
c to Fϕ

c . In the following section we
will study the behavior of the normalizing function ψ near the boundary of Bϕ

c .

3 The Behavior of ψ Near the Boundary of Bϕ
c

Let us suppose that the condition (a3) (or the equivalent (a3’)) on ϕ-function
definition is not fulfilled. In others words, it is possible to find functions c̃ : T → R

such that
∫

T
ϕ(c̃)dμ < ∞ but

∫
T

ϕ(c̃ + λu0)dμ = ∞ for some λ > 0. Now,
for u being a function in ∂Bϕ

c we want to know whether ψ(αu) converges to
a finite value as α ↑ 1 or not. First, let us remember how the normalizing
function ψ behaves near ∂Bϕ

c , assuming that the condition (a3’) is satisfied and
the Musielak–Orlicz function Φc does not satisfies the Δ2-condition [6].

3.1 Δ2-Condition and the Normalizing Function

The Δ2-condition of Musielak–Orlicz functions and ϕ-families of probability dis-
tributions was studied in [6], where the behavior of the normalizing function ψ
near the boundary of Bϕ

c was discussed. Remember that the set Bϕ
c = Kϕ

c ∩ Bϕ
c

is open in Bϕ
c , then a function u ∈ Bϕ

c belongs to ∂Bϕ
c , the boundary of Bϕ

c , if
and only if

∫
T

ϕ(c + λu)dμ < ∞ for all λ ∈ (0, 1) and
∫

T
ϕ(c + λu)dμ = ∞ for

all λ > 1.
We say that a Musielak–Orlicz function satisfies the Δ2-condition, if one can

find a constant K > 0 and a non-negative function f ∈ L̃ϕ
c such that

Φ(t, 2u) ≤ KΦ(t, u), for all u ≥ f(t), and μ-a.e. t ∈ T.

If the Musielak–Orlicz function Φc(u) = ϕ(c(t) + u) − ϕ(c(t)) satisfies the
Δ2-condition, then

∫
T

ϕ(c + u)dμ < ∞ for all u ∈ Lϕ
c and ∂Bϕ

c is empty.
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Assuming that the Musielak–Orlicz function Φc does not satisfies the
Δ2-condition, the boundary of Bϕ

c is non-empty. Let u be a function in ∂Bϕ
c ,

for α ∈ [0, 1). It was shown in [6, Proposition 6] that if
∫

T
ϕ(c + u)dμ < ∞ then

the normalizing function ψu(α) = ψ(αu) → β, with β ∈ (0,∞) as α ↑ 1, and
if

∫
T

ϕ(c + u)dμ = ∞ then (ψu)′
+(α) → ∞ as α ↑ 1. Now, it follows our first

result, which states that it is possible to show that ψ(αu) → ∞ as α ↑ 1, when∫
T

ϕ(c + u)dμ = ∞, with u ∈ ∂Bϕ
c , as in the following proposition:

Proposition 1. For a function u ∈ ∂Bϕ
c such that

∫
T

ϕ(c + u)dμ = ∞. Then
ψ(αu) → ∞ as α ↑ 1.

Proof. Suppose that, for some λ > 0, the function u satisfies ψ(αu) ≤ λ for all
α ∈ [0, 1). Denote A = {u ≥ 0}. Observing that
∫

A

ϕ(c+αu−λu0)dμ ≤
∫

T

ϕ(c+αu−λu0)dμ ≤
∫

T

ϕ(c+αu−ψ(αu)u0)dμ = 1,

we obtain that
∫

A
ϕ(c + u − λu0)dμ < ∞. In addition, it is clear that
∫

T\A

ϕ(c + u − λu0)dμ ≤
∫

T\A

ϕ(c)dμ ≤ 1.

As a result, we have
∫

T
ϕ(c + u − λu0)dμ < ∞. From the condition (a3’), it

follows that
∫

T
ϕ(c + u)dμ < ∞, which is a contradiction.

From this result we can investigate the behavior of ψ near the boundary of
Bϕ

c in terms of whether the condition (a3’) is satisfied or not. We will discuss
about this in the following section.

3.2 The Definition of ϕ-function and Its Consequences

We know there are functions that satisfy conditions (a1)–(a2) in the definition
of ϕ-function but do not satisfy (a3’) as seen in (1). In this section we discuss
about the behavior of the normalizing function ψ near the boundary of Bϕ

c in
cases where the condition (a3’) is not satisfied. To begin with, let us prove that
the condition (a3’) is equivalent to the existence of constants λ, α > 0 and a
non-negative function f ∈ L̃ϕ

c such that

αΦc(t, u) ≤ Φc−λu0
(t, u), for all u > f(t). (2)

For this we need the following lemma.

Lemma 1 [2, Theorem 8.4]. Let Ψ and Φ be finite-value Musielak–Orlicz
functions. Then the inclusion L̃Φ ⊂ L̃Ψis satisfied if and only if there exist
α > 0 and a non-negative function f ∈ L̃Φ such that

αΨ(t, u) ≤ Φ(t, u), for all u > f(t).
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Using the above lemma we can prove the equivalence between the condition
(a3’) in the definition of ϕ-function and the inequality (2).

Proposition 2. A measurable function u0 satisfies (a3 ’) in the definition of
ϕ-function if and only if for some measurable function c : T → R such that
ϕ(c) is μ-integrable, we can find constants λ, α > 0 and a non-negative function
f ∈ L̃Φc such that

αΦc(t, u) ≤ Φc−λu0
(t, u), for all u > f(t). (3)

Proof. Suppose that u0 satisfies condition (a3’). Let c : T → R be any measurable
function such that

∫
T

ϕ(c)dμ < ∞. As u is a measurable function with
∫

T
ϕ(c −

λu0 + u)dμ < ∞ then
∫

T

ϕ(c + u)dμ =
∫

T

ϕ(c − λu0 + u + λu0)dμ < ∞.

This result implies L̃Φc−λu0 ⊂ L̃Φc . Inequality (3) follows from Lemma 1.
Now suppose that inequality (3) is satisfied. By Lemma 1 we have L̃Φc−λu0 ⊂

L̃Φc . Therefore, u ∈ L̃Φc implies u + λu0 ∈ L̃Φc−λu0 ⊂ L̃Φc . Or, equivalently, if u
is a measurable function such that ϕ(c + u) is μ-integrable, then ϕ(c + u + λu0)
is μ-integrable. As a result, we conclude that

∫
T

ϕ(c + u + λu0)dμ < ∞ for all
λ > 0. Let c̃ : T → R be any measurable function satisfying

∫
T

ϕ(c̃)dμ < ∞.
Denote A = {c̃ > c}. Thus, for each λ > 0, it follows that
∫

T

ϕ(c̃+λu0)dμ =
∫

T

ϕ(c+(c̃−c)+λu0)dμ ≤
∫

T

ϕ(c+(c̃−c)χA +λu0)dμ < ∞,

which shows that u0 is stated in the definition of ϕ-functions.

From this proposition we have that the condition (a3’) is satisfied if, and only
if, there exists a measurable function u : T → R such that

∫
T

ϕ(c + u)dμ = ∞
but

∫
T

ϕ(c + u − λu0)dμ < ∞ for some λ > 0. For our main result we make use
of the lemmas below.

Lemma 2 [2, Lemma 8.3]. Consider a non-atomic and σ-finite measure μ. If
{un} is a sequence of finite-value, non-negative, measurable functions, and {αn}
is a sequence of positive, real numbers, such that

∫
T

undμ ≥ 2nαn, for all n ≥ 1,

then an increasing sequence {ni} of natural numbers and a sequence {Ai} of
pairwise disjoint, measurable sets can be found, such that

∫
Ai

uni
dμ = αni

, for all i ≥ 1.

For the next lemma we denote the functional IΦc
=

∫
T

Φc(t, | u(t) |)dμ for
any u ∈ L0.
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Lemma 3. Consider c : T → [0,∞) a measurable function such that∫
T

ϕ(c)dμ < ∞. Suppose that, for each λ > 0, we cannot find α > 0 and
f ∈ L̃Φcsuch that

αΦc(t, u) ≤ Φc−λu0(t, u), for all u > f(t). (4)

Then a strictly decreasing sequence 0 < λn ↓ 0, and sequences {un} and {An} of
finite-value, measurable functions, and pairwise disjoint, measurable sets, respec-
tively, can be found such that

IΦc
(unχAn

) = 1, and IΦc−λnu0
(unχAn

) ≤ 2−n, for all n ≥ 1. (5)

Proof. Let {λm} be a strictly decreasing sequence such that 0 < λm ↓ 0. Define
the non-negative functions

fm(t) = sup{u > 0 : 2−mΦc(t, u) > Φc−λmu0(t, u)}, for all m ≥ 1,

where we adopt the convention that sup ∅ = 0. Since (4) is not satisfied, we have
that IΦc

(fm) = ∞ for each m ≥ 1. For every rational number r > 0, define the
measurable sets

Am,r = {t ∈ T : 2−mΦc(t, r) > Φc−λmu0(t, r)},

and the simple functions um,r = rχAm,r
. For r = 0, set um,r = 0. Let {ri} be

an enumeration of the non-negative rational numbers with r1 = 0. Define the
non-negative, simple functions vm,k = max1≤i≤k um,ri

, for each m, k ≥ 1. By
continuity of Φc(t, ·) and Φc−λmu0(t, ·), it follows that vm,k ↑ fm as k → ∞.
In virtue of the Monotone Convergence Theorem, for each m ≥ 1, we can find
some km ≥ 1 such that the function vm = vm,km

satisfies IΦc
(vm) ≥ 2m. Clearly,

we have that Φc(t, vm(t)) < ∞ and 2−mΦc(t, vm(t)) ≥ Φc−λmu0(t, vm(t)). By
Lemma 2, there exist an increasing sequence {mn} of indices and a sequence
{An} of pairwise disjoint, measurable sets such that IΦc

(vmn
χAn

) = 1. Taking
λn = λm, un = vmn

and An, we obtain (5).

Finally, our main result follows.

Proposition 3. Assuming that the condition (a3 ’) is not satisfied in the defin-
ition of ϕ-function, then there exists u ∈ ∂Bϕ

c such that
∫

T
ϕ(c + u)dμ = ∞ but

ψ(αu) → β, with β ∈ (0,∞), as α ↑ 1.

Proof. Let {λn}, {un} and {An} as in Lemma 3. Given any λ > 0, take n0 ≥ 1
such that λ ≥ λn for all n ≥ n0. Denote B = T \ ⋃ ∞

n=n0
An, then we define

u =
∑∞

n=n0
unχAn

. From (5), it follows that

∫
T

ϕ(c + u − λu0)dμ =
∫

B

ϕ(c − λu0)dμ +
∞∑

n=n0

∫
An

ϕ((c − λu0) + un)dμ

=
∫

B

ϕ(c − λu0)dμ
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+
∞∑

n=n0

{∫
An

ϕ(c − λu0)dμ + IΦc−λu0
(unχAn

)
}

≤
∫

T

ϕ(c − λu0)dμ +
∞∑

n=n0

2−n < ∞.

Consequently, for α ∈ (0, 1), we can write∫
T

ϕ(c + αu)dμ =
∫

T

ϕ
(
c + α(u − λu0) + (1 − α)

αλ

1 − α
u0

)
dμ

≤ α

∫
T

ϕ(c + u − λu0)dμ + (1 − α)
∫

T

ϕ
(
c +

αλ

1 − α
u0

)
dμ

< ∞.

On the other hand, for α ≥ 1, it follows that
∫

T

ϕ(c + αu)dμ ≥
∫

B

ϕ(c)dμ +
∞∑

n=n0

∫
An

ϕ(c + un)dμ

≥
∫

B

ϕ(c)dμ +
∞∑

n=n0

{∫
An

ϕ(c)dμ + IΦc
(unχAn

)
}

=
∫

T

ϕ(c)dμ +
∞∑

n=n0

1 = ∞.

We can choose λ′ < 0 such that

w = λ′u0χB +
∞∑

n=n0

unχAn

satisfies
∫

T
wϕ′

+(c)dμ = 0. Clearly,
∫

T
ϕ(c + w)dμ = ∞,

∫
T

ϕ(c + αw)dμ < ∞
for α ∈ (0, 1) and

∫
T

ϕ(c + αw)dμ = ∞ for α > 1, that is, w ∈ ∂Bϕ
c and∫

T
ϕ(c + w − λu0)dμ < ∞ for some fixed λ > 0. Suppose that ψ(αw) ↑ ∞,

then for all K > 0, there exists δ > 0 such that 0 < |α − 1| < δ implies that
ψ(αw) > K. Let λ′′ > λ be such that

∫
T

ϕ(c+w−λ′′u0)dμ < 1, taking K = λ′′ we
have ϕ(c+αw−ψ(w)u0) < ϕ(c+αw{w>0} −λ′′u0) < ϕ(c+w{w>0} −λ′′u0), that
is a μ-integrable function. Therefore by the Dominated Convergence Theorem
we have

lim
α↑1

∫
T

ϕ(c + αw − λ′′u0)dμ =
∫

T

ϕ(c + w − λ′′u0)dμ,

then

1 = lim
α↑1

∫
T

ϕ(c + αw − ψ(αw)u0)dμ

≤ lim
α↑1

∫
T

ϕ(c + αw − λ′′u0)dμ =
∫

T

ϕ(c + w − λ′′u0)dμ < 1,

which is a contradiction.
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4 Conclusions

This paper focused on the behavior of the normalizing function ψ near the bound-
ary of its domain. Assuming that the condition (a3’) is satisfied, it has been
shown in [6] that for all measurable function u in the boundary of the normaliz-
ing function domain such that E[ϕ(c + u)] = ∞, ψ(αu) converges to infinity as
α approaches 1. Now, whereas that the condition (a3’) in ϕ-function definition
is not satisfied, we found a measurable function w : T → R in the boundary
of normalizing function domain such that E[ϕ(c + w)] = ∞ but ψ(αw) con-
verges to a finite value as α approaches 1. We conclude that the condition (a3’)
in the definition of ϕ-function affects the behavior of the normalizing function
near the boundary of its domain. A perspective for future works is to investi-
gate the behavior of normalizing function considering that the ϕ-function is not
necessarily injective.

Acknowledgement. The authors would like to thank CAPES and CNPq (Proc.
309055/2014-8) for partial funding of this research.
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Abstract. Vigelis and Cavalcante extended the Naudts’ deformed expo-
nential families to a generic reference density. Here, the special case of
Newton’s deformed logarithm is used to construct an Hilbert statistical
bundle for an infinite dimensional class of probability densities.

1 Introduction

Let P be a family of positive probability densities on the probability space
(X,X , μ). At each p ∈ P we have the Hilbert space of square-integrable random
variables L2(p · μ) so that we can define the Hilbert bundle consisting of P with
linear fibers L2(p·μ). Such a bundle supports most of the structure of Information
Geometry, cf. [1] and the non-parametric version in [6,7].

If P is an exponential manifold, there exists a splitting of each fiber L(p·μ) =
Hp⊕H⊥

p , such that Hp is equal or contains as a dense subset, the tangent space of
the manifold at p. Moreover, the geometry on P is affine and, as a consequence,
there are natural transport mappings on the Hilbert bundle.

We shall study a similar set-up when the manifold is defined by charts based
on mapping other than the exponential, while retaining an affine structure, see
e.g. [10]. Here, we use p = expA(v), where expA is exponential-like function with
linear growth at +∞. In such a case, the Hilbert bundle has fibers which are all
sub-spaces of the same L2(μ) space.

The formalism of deformed exponentials by Naudts [4] is reviewed and
adapted in Sect. 2. The following Sect. 3 is devoted to the adaptation of that
formalism to the non-parametric case. Our construction is based on the work
of Vigelis and Cavalcante [9], and we add a few more details about the infinite-
dimensional case. Section 4 discusses the construction of the Hilbert statistical
bundle in our case.

2 Background

We recall a special case of a nice and useful formalism introduced by Naudts [4].
Let A : [0,+∞[→ [0, 1[ be an increasing, concave and differentiable function
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 239–246, 2017.
https://doi.org/10.1007/978-3-319-68445-1_28
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with A(0) = 0, A(+∞) = 1 and A′(0+) = 1. We focus on the case A(x) =
1 − 1/(1 + x) = x/(1 + x) that has been firstly discussed by Newton [5]. The
deformed A-logarithm is the function logA(x) =

∫ x

1
A(ξ)−1 dξ = x − 1 + log x,

x ∈]0,+∞[. The deformed A-exponential is expA = log−1
A which turns out to be

the solution to the Cauchy problem e′(y) = A(e(y)) = 1+1/(1+e(y)), e(0) = 1.
In the spirit of [8,9] we consider the curve in the space of positive measures on

(X,X ) given by t �→ μt = expA(tu+logA p)·μ, where u ∈ L2(μ). As expA(a+b) ≤
a+ + expA(b), each μt is a finite measure, μt(X) ≤ ∫

(tu)+ dμ + 1, with μ0 =
p · μ. The curve is actually continuous and differentiable because the pointwise
derivative of the density pt = expA(tu+logA(p)) is ṗt = A(pt)u so that |ṗt| ≤ |u|.
In conclusion μ0 = p and μ̇0 = u.

Notice that there are two ways to normalize the density pt, either dividing
by a normalizing constant Z(t) to get the statistical model t �→ expA(tu −
logA p)/Z(t) or, subtracting a constant ψ(t) from the argument to get the model
t �→ expA(tu−ψ(t)+logA(p)). In the standard exponential case the two methods
lead to the same result, which is not the case for deformed exponentials where
expA(α + β) �= expA(α) expA(β). We choose in the present paper the latter
option.

3 Deformed Exponential Family Based on expA

Here we use the ideas of [4,8,9] to construct deformed non-parametric exponen-
tial families. Recall that we are given: the measure space (X,X , μ); the set P of
probability densities; the function A(x) = x/(1 + x). Throughout this section,
the density p ∈ P will be fixed.

Proposition 1. 1. The mapping L1(μ) 	 u �→ expA(u + logA p) ∈ L1(μ) has
full domain and is 1-Lipschitz. Consequently, the mapping

u �→
∫

g expA(u + logA p) dμ

is ‖g‖∞-Lipschitz for each bounded function g.
2. For each u ∈ L1(μ) there exists a unique constant K(u) ∈ R such that

expA(u − K(u) + logA p) · μ is a probability.
3. It holds K(u) = u if, and only if, u is constant. In such a case,

expA(u − K(u) + logA p) · μ = p · μ .

Otherwise, expA(u − K(u) + logA p) · μ �= p · μ.
4. A density q takes the form q = expA(u − K(u) + logA p), with u ∈ L1(μ) if,

and only if, logA q − logA p ∈ L1(μ).
5. If u, v ∈ L1(μ)

expA(u − K(u) + logA p) = expA(v − K(v) + logA p) ,

then u − v is constant.
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6. The functional K : L1(μ) → R is translation invariant. More specifically,
c ∈ R implies K(u + c) = K(u) + cK(1).

7. The functional K : L1(μ) → R is continuous and quasi-convex, namely all its
sub-levels Lα =

{
u ∈ L1(μ)

∣
∣K(u) ≤ α

}
are convex.

8. K : L1(μ) → R is convex.

Proof. 1. As expA(u + logA p) ≤ u+ + p and so expA(u + logA p) ∈ L1(μ) for
all u ∈ L1(μ). The estimate |expA(u + logA p) − expA(v + logA p)| ≤ |u − v|
leads to the desired result.

2. For all κ ∈ R the integral I(κ) =
∫

expA(u − κ + logA p) dμ is bounded
by 1 +

∫
(u − κ)+ dμ < ∞ and the function κ �→ I(k) is continuous and

strictly decreasing. Convexity of expA together with the equation for its deriv-
ative imply expA(u − κ + logA p) ≥ expA(u + logA p) − A(expA(u + logA p))κ,
so that

∫
expA(u − κ + logA p) dμ ≥ ∫

expA(u + logA p) dμ − κ
∫

A(expA(u +
logA p)) dμ, where the coefficient of κ is positive. Hence limκ→−∞

∫
expA(u −

κ+logA p) dμ = +∞. For each κ ≥ 0, we have expA(u−κ+logA p) ≤ expA(u+
logA p) ≤ p + u+ so that by dominated convergence we get limκ→∞ I(κ) = 0.
Therefore K(u) will be the unique value for which

∫
expA(u−κ+logA p) dμ = 1.

3. If the function u is a constant, then
∫

expA(u − u + logA p) dμ =
∫

p dμ = 1
and so K(u) = u. The converse implication is trivial. The equality expA(u −
K(u) + logA p) = p holds if, and only if, u − K(u) = 0.

4. If logA q = u − K(u) + logA p, then logA q − logA p = u − K(u) ∈ L1(μ).
Conversely, if logA q − logA p = v ∈ L1(μ), then q = expA(v + logA p). As q is
a density, then K(v) = 0.

5. If u − K(u) + logA p = v − K(v) + logA p, then u − v = K(u) − K(v).
6. Clearly, K(c) = c = cK(1) and K(u + c) = K(u) + c.
7. Observe that

∫
expA(u + logA p) dμ ≤ 1 if, and only if, K(u) ≤ 0. Hence

u1, u2 ∈ L0, implies
∫

expA(ui + logA p) dμ ≤ 1, i = 1, 2. Thanks to the
convexity of the function expA, we have

∫
expA((1−α)u1+αu2)+logA p dμ ≤

(1 − α)
∫

expA(u1 + logA p) dμ + α
∫

expA(u2 + logA p) dμ ≤ 1, that provides
K((1−α)u1 +αu2) ≤ 0. Hence the sub-level L0 is convex. Notice that all the
other sub-levels are convex since they are obtained by translation of L0. More
precisely, Lα = L0 + α. Clearly both the sets

{∫
expA(u + logA p) dμ ≤ 1

}

and
{∫

expA(u + logA p) dμ ≥ 1
}

are closed in L1(μ), since the functional
u → ∫

expA(u) dμ is continuous. Hence u → K(u) is continuous as well.
8. A functional which is translation invariant and quasiconvex is necessarily

convex. Though this property is more or less known, a proof is gathered
below.

Lemma 1. A translation invariant functional on a vector space V , namely
I : V → R such that for some v ∈ V one has I(x + λv) = I(x) + λI(v) for
all x ∈ V and λ ∈ R, is convex if and only if I is quasiconvex, namely all level
sets are convex, provided I(v) �= 0.

Proof. Let I be quasiconvex, then the sublevel L0 (I) = {x ∈ V : I (x) ≤ 0} is
nonempty and convex. Clearly, Lλ (I) = L0 (I)+(λ/I(v))v holds for every λ ∈ R.



242 L. Montrucchio and G. Pistone

Hence, if λ and μ are any pair of assigned real numbers and α ∈ (0, 1), ᾱ = 1−α,
then

αLλ (I) + ᾱLμ (I) = αL0 (I) + ᾱL0 (I) +
αλ + ᾱμ

I (v)
v

= L0 (I) +
αλ + ᾱμ

I (v)
v = Lαλ+ᾱμ (I) .

Therefore, if for any pair of points x, y ∈ V , we set I (x) = λ and I (y) = μ,
then x ∈ Lλ (I) and y ∈ Lμ (I). Consequently αx + ᾱy ∈ αLλ (I) + ᾱLμ (I) =
Lαλ+ᾱμ(I). That is, I (αx + ᾱy) ≤ αλ + ᾱμ = αI (x) + ᾱI (y) that shows the
convexity of I. Of course the converse holds in that a convex function is quasi-
convex.

For each positive density q, define its escort density to be q̃ =
A(q)/

∫
A(q) dμ, see [4]. Notice that 0 < A(q) < 1. The next proposition provides

a subgradient of the convex function K.

Proposition 2. Let v ∈ L1(μ) and q(v) = expA(v − K(v) + logA p). For every
u ∈ L1(μ), the inequality K(u + v) − K(v) ≥ ∫

uq̃(v) dμ holds i.e., the density
q̃(v) ∈ L∞(μ) is a subgradient of K at v.

Proof. Thanks to convexity of expA and the derivation formula, we have

expA(u + v − K(u + v) + logA p) − q ≥ A(q)(u − K(u + v) + K(v)) .

If we take μ-integral of both sides,

0 ≥
∫

uA(q) dμ − (K(u + v) − K(v))
∫

A(q) dμ .

Isolating the increment K(u + v) − K(v), the desired inequality obtains.

By Proposition 2, if the functional K were differentiable, the gradient map-
ping would be v �→ q̃(v), whose strong continuity requires additional assump-
tions. We would like to show that K is differentiable by means of the Implicit
Function Theorem. That too, would require specific assumptions. In fact, it
is in general not true that a superposition operator such as L1(μ) 	 u �→
expA(u + logA p) ∈ L1(μ) is differentiable, cf. [2, Sect. 1.2]. In this perspective,
we prove the following.

Proposition 3. 1. The superposition operator L2(μ) 	 v �→ expA(v +logA p) ∈
L1(μ) is continuously Fréchet differentiable with derivative

d expA(v) = (h �→ A(expA(v + logA p))h) ∈ L(L2(μ), L1(μ)) .

2. The functional K : L2(μ) → R, implicitly defined by the equation
∫

expA(v − K(v) + logA p) dμ = 1, v ∈ L2(μ)
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is continuously Fréchet differentiable with derivative

dK(v) = (h �→
∫

hq̃(v) dμ), q(v) = expA(v − K(v))

where

q̃(v) =
A ◦ q(v)

∫
A ◦ q(v) dμ

is the escort density of p.

Proof. 1. It is easily seen that

expA(v + h + logA p) − expA(v + expA p) − A[expA(v + logA p)]h = R2(h),

with the bound |R2(h)| ≤ (1/2) |h|2. It follows
∫ |R2(h)| dμ
(∫ |h|2 dμ

) 1
2

≤
1
2

∫ |h|2 dμ
(∫ |h|2 dμ

) 1
2

=
1
2

(∫
|h|2 dμ

) 1
2

.

Therefore ‖R2(h)‖L1(μ) = o
(
‖h‖L2(μ)

)
and so the operator v �→ expA(v +

logA p) is Fréchet-differentiable with derivative h �→ A(expA(v + logA p))h
at v. Let us show that the F-derivative is a continuous map L2(μ) →
L(L2(μ), L1(μ)). If ‖h‖L2(μ) ≤ 1 and v, w ∈ L2(μ) we have

∫
|(A[expA(v + logA p)] − A[expA(w + logA p)])h| dμ

≤ ‖A[expA(v + logA p) − A[expA(w + logA p)]‖L2(μ) ≤ ‖v − w‖L2(μ) ,

hence the derivative is 1-Lipschitz.
2. Frechét differentiability of K is a consequence of the Implicit Function

Theorem in Banach spaces, see [3], applied to the C1-mapping

L2(μ) × R 	 (v, κ) �→
∫

expA(v − κ + logA p) dμ .

The derivative can be easily obtained from the computation of the subgradient.

In the expression q(u) = expA(u − K(u) + logA p), u ∈ L1(μ), the random
variable u is identified up to a constant. We can choose in the class a unique
representative, by assuming

∫
up̃ dμ = 0, the expected value being well defined

as the escort density is bounded. In this case we can solve for u and get

u = logA q − logA p − Ep̃ [logA p − logA q]

In analogy with the exponential case, we can express the functional K as a
divergence associated to the N.J. Newton logarithm:

K(u) = Ep̃ [logA p − logA q(u)] = DA(p‖q(u)) .

It would be interesting to proceed with the study of the convex conjugation of
K and the related properties of the divergence, but do not do that here.
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4 Hilbert Bundle Based on expA

In this section A(x) = x/(1+x) and P(μ) denotes the set of all μ-densities on the
probability space (X,X , μ) of the form q = expA(u − K(u)) with u ∈ L2(μ) and
Eμ [u] = 0, cf. [5]. Notice that 1 ∈ P(μ) because we can take u = 0. Equivalently,
P(μ) is the set of all densities q such that logA q ∈ L2(μ) because in such a case we
can take u = logA q − Eμ [logA q]. The condition for q ∈ P(μ) can be expressed
by saying that both q and log q are in L2(μ). In fact, as expA is 1-Lipschitz,
we have ‖q − 1‖μ ≤ ‖u − K(u)‖μ and the other inclusion follows from log q =
logA q + 1 − q. An easy but important consequence of such a characterization
is the compatibility of the class P(μ) with the product of measures. If qi =
expA(ui − K1(ui)) ∈ P(μi), i = 1, 2, the product is (q1 · μ1) ⊗ (q2 · μ2) = (q2 ⊗
q2) · (μ1 ⊗ μ2), hence q2 ⊗ q2 ∈ P(μ1 ⊗ μ2) since ‖q1 ⊗ q2‖μ1⊗μ2

= ‖q1‖μ1
‖q2‖μ2

.
Moreover log (q1 ⊗ q2) = log q1+log q2, hence ‖log (q1 ⊗ q2)‖μ1⊗μ2

≤ ‖log q1‖μ1
+

‖log q2‖μ2
.

We proceed now to define an Hilbert bundle with base P(μ). For each
p ∈ P(μ) consider the Hilbert spaces Hp =

{
u ∈ L2(μ)

∣
∣Ep̃ [u] = 0

}
with scalar

product 〈u, v〉p =
∫

uv dμ and form the Hilbert bundle

HP(μ) = {(p, u)|p ∈ P(μ), u ∈ Hp} .

For each p, q ∈ P(μ) the mapping U
q
pu = u−Eq̃ [u] is a continuous linear mapping

from Hp to Hq. We have U
r
qU

q
p = U

r
p. In particular, Up

qU
q
p is the identity on Hp,

hence U
q
p is an isomorphism of Hp onto Hq. In the next proposition we construct

an atlas of charts for which P(μ) is a Riemannian manifold and HP(μ) is an
expression of the tangent bundle.

In the following proposition we introduce an affine atlas of charts and use
it to define our Hilbert bundle which is an expression of the tangent bundle.
The velocity of a curve t �→ p(t) ∈ P(μ) is expressed in the Hilbert bundle by
the so called A-score that, in our case, takes the form A(p(t))−1ṗ(t), with ṗ(t)
computed in L1(μ).

Proposition 4. 1. q ∈ P(μ) if, and only if, both q and log q are in L2(μ).
2. Fix p ∈ P(μ). Then a positive density q can be written as

q = expA(v − Kp(v) + logA p), with v ∈ L2(μ) and Ep̃ [v] = 0,

if, and only if, q ∈ P(μ).
3. For each p ∈ P(μ) the mapping

sp : P(μ) 	 q �→ logA q − logA p − Ep̃ [logA q − logA p] ∈ Hp

is injective and surjective, with inverse ep(u) = expA(u − Kp(u) + logA p).
4. The atlas {sp|p ∈ P(μ)} is affine with transitions

sq ◦ ep(u) = U
q
pu + sp(q) .
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5. The expression of the velocity of the differentiable curve t �→ p(t) ∈ P(μ) in
the chart sp is dsp(p(t))/dt ∈ Hp. Conversely, given any u ∈ Hp, the curve
p : t �→ expA(tu − Kp(tu) + logA p) has p(0) = p and has velocity at t = 0
expressed in the chart sp by u. If the velocity of a curve is expressed in the
chart sp by t �→ u̇(t), then its expression in the chart sq is U

q
pu̇(t).

6. If t �→ p(t) ∈ P(μ) is differentiable with respect to the atlas then it is dif-
ferentiable as a mapping in L1(μ). It follows that the A-score is well-defined
and is the expression of the velocity of the curve t �→ p(t) in the moving chart
t �→ sp(t).

Proof. 1. Assume q = expA(u − K(u)) with u ∈ L2
0(μ). It follows u − K(u) ∈

L2(μ) hence q ∈ L2(μ) because expA is 1-Lipschitz. As moreover q+log q−1 =
u − K(u) ∈ L2(μ), then log q ∈ L2(μ). Conversely, loga q = q − 1 + log q =
v ∈ L2(μ) and we can write q = expA v = expA((v − Ep [v]) + Ep [v]) and we
can take u = v − Eμ [v].

2. The assumption p, q ∈ P(μ) is equivalent to logA p, logA q ∈ L2(μ). Define
u = logA q − logA p−Ep̃ [logA q − logA p] and DA(p‖q) = Ep̃ [logA p − logA q].
It follows u ∈ L2(μ), Ep̃ [u] = 0, and expA(u − DA(p‖q) + logA p) = q.
Conversely, logA q = u − Kp(u) + logA p ∈ L2(μ).

3. This has been already proved.
4. All simple computations.
5. If p(t) = expA(u(t) − Kp(u(t)) + logA p), with u(t) = sp(u(t)) then in that

chart the velocity is u̇(t) ∈ Hp. When u(t) = tu the expression of the velocity
will be u. The proof of the second part follows from the fact that U

q
p is the

linear part of the affine change of coordinates sq ◦ ep.
6. Choose a chart sp and express the curve as t �→ sp(p(t)) = u(t) so that

p(t) = expA(u(t)−Kp(u(t))+logA p). It follows that the derivative of t �→ p(t)
exists in L1(μ) by derivation of the composite function and it is given by
ṗ(t) = A(p(t))Up(t)

p u̇(t), hence A(p(t))−1ṗ(t) = U
p(t)
p u̇(t). If the velocity at t

is expressed in the chart centered at p(t), then its expression is the score.

5 Conclusions

We have constructed an Hilbert statistical bundle using an affine atlas of charts
based on the A-logarithm with A(x) = x/(1 + x). In particular, this entails a
Riemannian manifold of densities. On the other end, our bundle structure could
be useful in certain contexts. The general structure of the argument mimics
the standard case of the exponential manifold. We would like to explicit some,
hopefully new, features of our set-up.

The proof of the convexity and continuity of the functional K when defined on
L1(μ) relies on the property of translation invariance. Whenever K is restricted
to L2(μ), it is shown to be differentiable along with the deformed exponential
and this, in turn, provides a rigorous construction of the A-score.

The gradient mapping of K is continuous and 1-to-1, but its inverse cannot be
continuous as it takes values which are bounded functions. It would be interesting
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to analyze the analytic properties of the convex conjugate of K∗, as both K and
K∗ are the coordinate expression of relevant divergences.

If F is a section of the Hilbert bundle namely, F : P(μ) → L2(μ) with
Ep̃ [F (p)] = 0 for all p, differential equations take the form A(p(t))ṗ(t) = F (p(t))
in the atlas, which in turn implies ṗ(t) = A(p(t))F (p(t)) in L1(μ). This is impor-
tant for some applications e.g., when the section F is the gradient with respect to
the Hilbert bundle of a real function. Namely, the gradient, gradφ, of a smooth
function φ : P(μ) → R is a section of the Hilbert bundle such that

d

dt
φ(p(t)) = 〈grad φ(p(t)), A(p(t))ṗ(t)〉μ

for each differentiable curve t �→ p(t) ∈ P(μ).
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3. Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1960)
4. Naudts, J.: Generalised Thermostatistics. Springer, London (2011). doi:10.1007/

978-0-85729-355-8
5. Newton, N.J.: An infinite-dimensional statistical manifold modelled on Hilbert

space. J. Funct. Anal. 263(6), 1661–1681 (2012)
6. Pistone, G.: Nonparametric information geometry. In: Nielsen, F., Barbaresco, F.

(eds.) GSI 2013. LNCS, vol. 8085, pp. 5–36. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40020-9 3

7. Pistone, G., Sempi, C.: An infinite-dimensional geometric structure on the space
of all the probability measures equivalent to a given one. Ann. Statist. 23(5),
1543–1561 (1995)
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On Affine Immersions of the Probability Simplex
and Their Conformal Flattening

Atsumi Ohara(B)

University of Fukui, Fukui 910-8507, Japan
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Abstract. Embedding or representing functions play important roles
in order to produce various information geometric structure. This paper
investigates them from a viewpoint of affine differential geometry [2]. By
restricting affine immersions to a certain class, the probability simplex
is realized to be 1-conformally flat [3] statistical manifolds immersed in
Rn+1. Using this fact, we introduce a concept of conformal flattening of
such manifolds to obtain dually flat statistical (Hessian) ones with con-
formal divergences, and show explicit forms of potential functions, dual
coordinates. Finally, we demonstrate applications of the conformal flat-
tening to nonextensive statistical physics and certain replicator equations
on the probability simplex.

Keywords: Conformal flattening · Affine differential geometry

1 Introduction

In the theory of information geometry for statistical models, the logarithmic func-
tion is crucially significant to give a standard information geometric structure for
exponential family [1]. By changing the logarithmic function to the other ones we
can deform the standard structure to new one keeping its basic property as a statis-
tical manifold, which consists of a pair of mutually dual affine connections (∇,∇∗)
with respect to Riemannian metric g. There exists several ways [4–6] to introduce
such freedom of functions to deform statistical manifold structure and the func-
tions are sometimes called embedding or representing functions.

In this paper we elucidate common geometrical properties of statistical man-
ifolds defined by representing functions, using concepts from affine differential
geometry [2,3].

2 Affine Immersion of the Probability Simplex

Let Sn be the probability simplex defined by

Sn :=

{
p = (pi)

∣∣∣∣∣pi ∈ R+,

n+1∑
i=1

pi = 1

}
,

where R+ denotes the set of positive numbers.
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 247–254, 2017.
https://doi.org/10.1007/978-3-319-68445-1_29
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Consider an affine immersion [2] (f, ξ) of the simplex Sn. Let D be the
canonical flat affine connection on Rn+1. Further, let f be an immersion of Sn

into Rn+1 and ξ be a transversal vector field on Sn. For a given affine immersion
(f, ξ) of Sn, the induced torsion-free connection ∇ and the affine fundamental
form h are defined from the Gauss formula by

DXf∗(Y ) = f∗(∇XY ) + h(X,Y )ξ, X, Y ∈ X (Sn), (1)

where X (Sn) is the set of vector fields on Sn.
It is well known [2,3] that the realized geometric structure (Sn,∇, h) is a

statistical manifold if and only if (f, ξ) is non-degenerate and equiaffine, i.e., h is
non-degenerate and ∇h is symmetric. Further, a statistical manifold (Sn,∇, h) is
1-conformally flat [3] (but not necessarily dually flat nor of constant curvature).

Now we consider the affine immersion with the following assumptions.

Assumptions:

1. The affine immersion (f, ξ) is nondegenerate and equiaffine,
2. The immersion f is given by the component-by-component and common rep-

resenting function L, i.e.,

f : Sn � p = (pi) �→ x = (xi) ∈ Rn+1, xi = L(pi), i = 1, · · · , n + 1,

3. The representing function L : R+ → R is concave with L′′ < 0 and strictly
increasing, i.e., L′ > 0. Hence, the inverse of L denoted by E exists, i.e.,
E ◦ L = id.

4. Each component of ξ satisfies ξi < 0, i = 1, · · · , n + 1 on Sn.

Remark 1. From the third assumption, it follows that L′E′ = 1, E′ > 0 and
E′′ > 0. Note that L is concave with L′′ < 0 or convex L′′ > 0 if and only if there
exists ξ for h to be positive definite. Hence, we can regard h as a Riemannian
metric on Sn. The details are described later.

2.1 Conormal Vector and the Geometric Divergence

Define a function Ψ on Rn+1 by

Ψ(x) :=
n+1∑
i=1

E(xi),

then f(Sn) immersed in Rn+1 is expressed as a level surface of Ψ(x) = 1.
Denote by Rn+1 the dual space of Rn+1 and by 〈ν, x〉 the pairing of x ∈ Rn+1

and ν ∈ Rn+1. The conormal vector [2] ν : Sn → Rn+1 for the affine immersion
(f, ξ) is defined by

〈ν(p), f∗(X)〉 = 0, ∀X ∈ TpSn, 〈ν(p), ξ(p)〉 = 1 (2)
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for p ∈ Sn. Using the assumptions and noting the relations:

∂Ψ

∂xi
= E′(xi) =

1
L′(pi)

> 0, i = 1, · · · , n + 1,

we have

νi(p) :=
1
Λ

∂Ψ

∂xi
=

1
Λ(p)

E′(xi) =
1

Λ(p)
1

L′(pi)
, i = 1, · · · , n + 1, (3)

where Λ is a normalizing factor defined by

Λ(p) :=
n+1∑
i=1

∂Ψ

∂xi
ξi =

n+1∑
i=1

1
L′(pi)

ξi(p). (4)

Then we can confirm (2) using the relation
∑n+1

i=1 Xi = 0 for X = (Xi) ∈ X (Sn).
Note that v : Sn → Rn+1 defined by

vi(p) = Λ(p)νi(p) =
1

L′(pi)
, i = 1, · · · , n + 1,

also satisfies

〈v(p), f∗(X)〉 = 0, ∀X ∈ TpSn. (5)

Further, it follows, from (3), (4) and the assumption 4, that

Λ(p) < 0, νi(p) < 0, i = 1, · · · , n + 1,

for all p ∈ Sn.
It is known [2] that the affine fundamental form h can be represented by

h(X,Y ) = −〈ν∗(X), f∗(Y )〉, X, Y ∈ TpSn.

In our case, it is calculated via (5) as

h(X,Y ) = −Λ−1〈v∗(X), f∗(Y )〉 − (XΛ−1)〈v, f∗(Y )〉

= − 1
Λ

n+1∑
i=1

(
1

L′(pi)

)′
L′(pi)XiY i =

1
Λ

n+1∑
i=1

L′′(pi)
L′(pi)

XiY i.

Since h is positive definite from the assumptions 3 and 4, we can regard it as a
Riemannian metric.

Utilizing these notions from affine differential geometry, we can introduce the
function ρ on Sn × Sn, which is called a geometric divergence [3], as follows:

ρ(p, r) = 〈ν(r), f(p) − f(r)〉 =
n+1∑
i=1

νi(r)(L(pi) − L(ri))

=
1

Λ(r)

n+1∑
i=1

L(pi) − L(ri)
L′(ri)

, p, r ∈ Sn. (6)
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We can easily see that ρ is a contrast function [1,7] of the geometric structure
(Sn,∇, h) because it holds that

ρ[X|] = 0, h(X,Y ) = −ρ[X|Y ], (7)
h(∇XY,Z) = −ρ[XY |Z], h(Y,∇∗

XZ) = −ρ[Y |XZ], (8)

where ρ[X1 · · · Xk|Y1 · · · Yl] stands for

ρ[X1 · · · Xk|Y1 · · · Yl](p) := (X1)p · · · (Xk)p(Y1)r · · · (Yl)rρ(p, r)|p=r

for p, r ∈ Sn and Xi, Yj ∈ X (Sn).

2.2 Conformal Divergence and Conformal Transformation

Let σ be a positive function on Sn. Associated with the geometric divergence
ρ, the conformal divergence [3] of ρ with respect to a conformal factor σ(r) is
defined by

ρ̃(p, r) = σ(r)ρ(p, r), p, r ∈ Sn.

The divergence ρ̃ can be proved to be a contrast function for (Sn, ∇̃, h̃), which
is conformally transformed geometric structure from (Sn,∇, h), where h̃ and ∇̃
are given by

h̃ = σh, (9)
h(∇̃XY,Z) = h(∇XY,Z) − d(ln σ)(Z)h(X,Y ). (10)

When there exists such a positive function σ that relates (Sn,∇, h) with
(Sn, ∇̃, h̃) as in (9) and (10), they are said 1-conformally equivalent and
(Sn, ∇̃, h̃) is also a statistical manifold [3].

2.3 A Main Result

Generally, the induced structure (Sn, ∇̃, h̃) from the conformal divergence ρ̃ is
not also dually flat, which is the most abundant structure in information geom-
etry. However, by choosing the conformal factor σ carefully, we can demonstrate
(Sn, ∇̃, h̃) is dually flat. Hereafter, we call such a transformation as conformal
flattening.

Define

Z(p) :=
n+1∑
i=1

νi(p) =
1

Λ(p)

n+1∑
i=1

1
L′(pi)

,

then it is negative because each νi(p) is. The conformal divergence to ρ with
respect to the conformal factor σ(r) := −1/Z(r) is

ρ̃(p, r) = − 1
Z(r)

ρ(p, r).
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Proposition 1. If the conformal factor is given by σ = −1/Z, then statistical
manifold (Sn, ∇̃, h̃) that is 1-conformally transformed from (Sn,∇, h) is dully
flat and ρ̃ is canonical where mutually dual potential functions and coordinate
systems are explicitly given by

θi(p) = xi(p) − xn+1(p) = L(pi) − L(pn+1), i = 1, · · · , n (11)

ηi(p) = Pi(p) :=
νi(p)
Z(p)

, i = 1, · · · , n, (12)

ψ(p) = −xn+1(p) = −L(pn+1), (13)

ϕ(p) =
1

Z(p)

n+1∑
i=1

νi(p)xi(p) =
n+1∑
i=1

Pi(p)L(pi). (14)

Proof. Using given relations, we first show that the conformal divergence ρ̃ is
the canonical divergence for (Sn, ∇̃, h̃):

ρ̃(p, r) = − 1
Z(r)

〈ν(r), f(p) − f(r)〉 = 〈P (r), f(r) − f(p)〉

=
n+1∑
i=1

Pi(r)(xi(r) − xi(p))

=
n+1∑
i=1

Pi(r)xi(r) −
n∑

i=1

Pi(r)(xi(p) − xn+1(p)) −
(

n+1∑
i=1

Pi(r)

)
xn+1(p)

= ϕ(r) −
n∑

i=1

ηi(r)θi(p) + ψ(p). (15)

Next, let us confirm that ∂ψ/∂θi = ηi. Since θi(p) = L(pi) + ψ(p), i = 1, · · · , n,
we have

pi = E(θi − ψ), i = 1, · · · , n + 1,

by setting θn+1 := 0. Hence, we have

1 =
n+1∑
i=1

E(θi − ψ).

Differentiating by θj , we have

0 =
∂

∂θj

n+1∑
i=1

E(θi − ψ) =
n+1∑
i=1

E′(θi − ψ)
(

δi
j − ∂ψ

∂θj

)

= E′(xj) −
(

n+1∑
i=1

E′(xi)

)
∂ψ

∂θj
.

This implies that
∂ψ

∂θj
=

E′(xj)∑n+1
i=1 E′(xi)

= Pj = ηj .
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Together with (15) and this relation, ϕ is confirmed to be the Legendre transform
of ψ.

The dual relation ∂ϕ/∂ηi = θi follows automatically from the property of
the Legendre transform. Q.E.D.

Remark 2. Note that h̃ = −h/Z and the dual affine connections ∇∗ and ∇̃∗

are projectively equivalent [3]. The form of ηi(p) = Pi(p) can be interpreted as
generalization of the escort probability [10] (See the following example).

Corollary 1. The choice of ξ does not affect on the obtained dually flat structure
(Sn, ∇̃, h̃).

Proof. We have the following alternative expressions of ηi = Pi with respect to
L and E:

Pi(p) =
1

L′(pi)
n+1∑
k=1

1/L′(pk)

=
E′(xi)

n+1∑
i=1

E′(xi)

.

Hence, all the expressions in proposition 1 does not depend on ξ, and the state-
ment follows. Q.E.D.

2.4 Examples

If we take L to be the logarithmic function L(t) = ln(t), we immediately have
the standard dually flat structure [1] (gF ,∇(1),∇(−1)) on the simplex Sn, where
gF denotes the Fisher metric.

Next let the affine immersion (f, ξ) be defined by the following L and ξ:

L(t) :=
1

1 − q
t1−q, xi(p) =

1
1 − q

(pi)1−q,

and
ξi(p) = −q(1 − q)xi(p),

with 0 < q and q �= 1, then it realizes the alpha-geometry [1] (Sn,∇(α), gF ) with
q = (1 + α)/2. Following the procedure of conformally flattening described in
the above, we have [8]

Ψ(x) =
n+1∑
i=1

((1 − q)xi)1/1−q, Λ(p) = −q, (constant)

νi(p) = −1
q
(pi)q, − 1

Z(p)
=

q∑n+1
k=1(pi)q

,

and obtain dually flat structure (h̃, ∇̃, ∇̃∗) via the formulas in proposition 1:

ηi =
(pi)q∑n+1

k=1(pk)q
, θi =

1
1 − q

(pi)1−q − 1
1 − q

(pn+1)1−q = lnq(pi) − ψ(p),
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ψ(p) = − lnq(pn+1), ϕ(p) = lnq

(
1

expq(Sq(p))

)
.

Here, lnq and Sq(p) are the q-logarithmic function and the Tsallis entropy [10],
respectively defined by

lnq(t) =
t1−q − 1

1 − q
, Sq(p) =

∑n+1
i=1 (pi)q − 1

1 − q
.

3 An Application to Gradient Flows on (Sn, ∇̃, h̃)

Recall the replicator system on the simplex Sn for given functions fi(p) defined by

ṗi = pi(fi(p) − f̄(p)), i = 1, · · · , n + 1, f̄(p) :=
n+1∑
i=1

pifi(p), (16)

which is extensively studied in evolutionary game theory. It is known [11] that

(i) the solution of (16) is the gradient flow that maximizes a function V (p)
satisfying

fi =
∂V

∂pi
, i = 1, · · · , n + 1, (17)

with respect to the Shahshahani metric gS (See below),
(ii) the KL divergence is a local Lyapunov function for an equilibrium called the

evolutionary stable state (ESS).

The Shahshahani metric gS is defined on the positive orthant Rn+1
+ by

gS
ij(p) =

∑n+1
k=1 pk

pi
δij , i, j = 1, · · · , n + 1.

Note that the Shahshahani metric induces the Fisher metric gF on Sn. Further,
the KL divergence is the canonical divergence [1] of (gF ,∇(1),∇(−1)). Thus, the
replicator dynamics (16) are closely related with the standard dually flat struc-
ture (gF ,∇(1),∇(−1)), which associates with exponential and mixture families
of probability distributions.

Similarly it would be of interest to investigate gradient flows for dually flat
geometry (Sn, ∇̃, h̃) (or (Sn,∇, h)). Since h̃ can be naturally extended to Rn+1

+

as a diagonal form:

h̃ij(p) = σ(p)hij(p) = − 1
Z(p)Λ(p)

L′′(pi)
L′(pi)

δij , i, j = 1, · · · , n + 1,

we can define the gradient flow for V (p) on Sn as

ṗi = h̃−1
ii (fi − f̄H), f̄H(p) :=

n+1∑
k=1

Hk(p)fk(p), Hi(p) :=
h̃−1

ii (p)∑n+1
k=1 h̃−1

kk (p)
. (18)
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We can verify that ṗ ∈ TpSn and

h̃(X, ṗ) =
n+1∑
i=1

fiX
i − f̄H

n+1∑
i=1

Xi =
n+1∑
i=1

∂V

∂pi
Xi, ∀X = (Xi) ∈ X (Sn).

For the flow (18) of special case: L(t) = t1−q/(1 − q), we have shown the
following result [9]:

Proposition 2. The trajectories of gradient flow (18) with respect to the confor-
mal metric h̃ for L(t) = t1−q/(1 − q) coincide with those of (16) while velocities
of time-evolutions are different by the factor −Z(p).

On the other hand, we here demonstrate another aspect of the flow (18). Let
us consider the following fi:

fi(p) :=
L′′(pi)

(L′(pi))2

n+1∑
j=1

aij(p)Pj(p), aij(p) = −aji(p), i, j = 1, · · · , n + 1.

(19)
Note that fi’s are not integrable, i.e., non-trivial V satisfying (17) does not exist
because of anti-symmetry of aij . Hence, for this case, (18) is no longer a gradient
flow. However, we can prove the following result:

Theorem 1. Assume that there exists an equilibrium r ∈ Sn for the flow (18)
on (Sn, ∇̃, h̃) with the functions fi defined by (19). Then, ρ̃(r, p) is the first
integral (conserved quantity) of the flow.
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Abstract. During wakefulness and deep sleep brain states, cortical
neural networks show a different behavior, with the second character-
ized by transients of high network activity. To investigate their impact
on neuronal behavior, we apply a pairwise Ising model analysis by infer-
ring the maximum entropy model that reproduces single and pairwise
moments of the neuron’s spiking activity. In this work we first review
the inference algorithm introduced in Ferrari, Phys. Rev. E (2016) [1].
We then succeed in applying the algorithm to infer the model from a
large ensemble of neurons recorded by multi-electrode array in human
temporal cortex. We compare the Ising model performance in captur-
ing the statistical properties of the network activity during wakefulness
and deep sleep. For the latter, the pairwise model misses relevant tran-
sients of high network activity, suggesting that additional constraints are
necessary to accurately model the data.

Keywords: Ising model · Maximum entropy principle · Natural gradi-
ent · Human temporal cortex · Multielectrode array recording · Brain
states

Advances in experimental techniques have recently enabled the recording of the
activity of tens to hundreds of neurons simultaneously [2] and has spurred the
interest in modeling their collective behavior [3–9]. To this purpose, the pairwise
Ising model has been introduced as the maximum entropy (most generic [10])
model able to reproduce the first and second empirical moments of the recorded
neurons. Moreover it has already been applied to different brain regions in dif-
ferent animals [3,5,6,9] and shown to work efficiently [11].

The inference problem for a pairwise Ising model is a computationally chal-
lenging task [12], that requires devoted algorithms [13–15]. Recently, we pro-
posed a data-driven algorithm and applied it on rat retinal recordings [1]. In
the present work we first review the algorithm structure and then describe our
successful application to a recording in the human temporal cortex [4].

We use the inferred Ising model to test if a model that reproduces empirical
pairwise covariances without assuming any other additional information, also
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 257–264, 2017.
https://doi.org/10.1007/978-3-319-68445-1_30
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predicts empirical higher-order statistics. We apply this strategy separately to
brain states of wakefulness (Awake) and Slow-Wave Sleep (SWS). In contrast to
the former, the latter is known to be characterized by transients of high activity
that modulate the whole population behavior [16]. Consistently, we found that
the Ising model does not account for such global oscillations of the network
dynamics. We do not address Rapid-Eye Movement (REM) sleep.

1 The Model and the Geometry of the Parameter Space

The pairwise Ising model is a fully connected Boltzmann machine without hidden
units. Consequently it belongs to the exponential family and has probability
distribution:

Pη

(
X

)
= exp

(
T (X) · η − log Z[η]

)
, (1)

where X ∈ [0, 1]N is the row vector of the N system’s free variables and Z[η]
is the normalization. η ∈ RD is the column vector of model parameters, with
D = N(N + 1)/2 and T (X) ∈ [0, 1]D is the vector of model sufficient statistics.
For the fully-connected pairwise Ising model the latter is composed of the list of
free variables X and their pairwise products:

{Ta(X)}D
a=1 = { {Xi}N

i=1, {XiXj}N
i=1,j=i+1 } ∈ [0, 1]D. (2)

A dataset Ω for the inference problem is composed by a set of τΩ i.i.d. empirical
configurations X: Ω = {X(t)}τΩ

t=1. We cast the inference problem as a log-
likelihood maximization task, which for the model (1) takes the shape:

η∗ ≡ argmax
η

�[η]; �[η] ≡ TΩ ·η − log Z[η], (3)

where TΩ ≡ E
[

T (X) | Ω
]

is the empirical mean of the sufficient statistics. As
a consequence of the exponential family properties, the log-likelihood gradient
may be written as:

∇ �[η] = TΩ −Tη, (4)

where Tη = E
[
T (X)

∣
∣ η

]
is the mean of T (X) under the model distribution (1)

with parameters η. Maximizing the log-likelihood is then equivalent to imposing
TΩ = Tη: the inferred model then reproduces the empirical averages.

Parameter Space Geometry. In order to characterize the geometry of the
model parameter space, we define the minus log-likelihood Hessian H[η], the
model Fisher matrix J [η] and the model susceptibility matrix χ[η] as:

χab[η] ≡ E
[

TaTb

∣
∣ η

] − E
[

Ta

∣
∣ η

]
E

[
Tb

∣
∣ η

]
(5)

Jab[η] ≡ E
[ ∇a log Pη

(
X

) ∇b log Pη

(
X

) ∣
∣ η

]
, (6)

Hab[η] ≡ −∇a∇bl
[
η

]
, (7)

As a property inherited from the exponential family, for the Ising model (1):

χab[η] = Jab[η] = Hab[η]. (8)

This last property is the keystone of the present algorithm.
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Moreover, the fact that the log-likelihood Hessian can be expressed as a
covariance matrix ensures its non-negativity. Some zero Eigenvalues can be
present, but they can easily be addressed by L2-regularization [1,14]. The infer-
ence problem is indeed convex and consequently the solution of (3) exists and is
unique.

2 Inference Algorithm

The inference task (3) is an hard problem because the partition function Z[η]
cannot be computed analytically. Ref. [1] suggests applying an approximated
natural gradient method to numerically address the problem. After an initial-
ization of the parameters to some initial value η0, the natural gradient [17,18]
iteratively updates their values with:

ηn+1 = ηn − αJ−1[ηn] · ∇ �[ηn]. (9)

For sufficiently small α, the convexity of the problem and the positiveness of the
Fisher matrix ensure the convergence of the dynamics to the solution η∗.

As computing J [ηn] at each n is computationally expensive, we use (8) to
approximate the Fisher with an empirical estimate of the susceptibility [1]:

J [η] = χ[η] ≈ χ[η∗] ≈ χΩ ≡ Cov
[

T
∣
∣ Ω

]
. (10)

The first approximation becomes exact upon convergence of the dynamics,
ηn → η∗. The second assumes that (i) the distribution underlying the data
belongs to the family (1), and that (ii) the error in the estimate of χΩ , arising
from the dataset’s finite size, is small.

We compute χΩ of Eq. (10) only once, and then we run the inference algo-
rithm that performs the following approximated natural gradient:

ηn+1 = ηn − αχ−1
Ω · ∇ �[ηn]. (11)

Stochastic Dynamics.1 The dynamics (11) require estimating ∇ �[η] and thus
of Tη at each iteration. This is accounted by a Metropolis Markov-Chain Monte
Carlo (MC), which collects Γη, a sequence of τΓ i.i.d. samples of the distribution
(1) with parameters η and therefore estimates:

TMC
η ≡ E

[
T (X)

∣
∣ Γη

]
. (12)

This estimate itself is a random variable with mean and covariance given by:

E
[
TMC

η

∣
∣ {Γη} ]

= Tη; Cov
[
TMC

η

∣
∣ {Γη} ]

=
J [η]
τΓ

, (13)

where E
[ · ∣

∣ {Γη} ]
means expectation with respect to the possible realizations

Γη of the configuration sequence.
1 The results of this section are grounded on the repeated use of central limit theorem.

See [1] for more detail.
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Data: TΩ,χΩ

Result: η∗,TMC
η∗

Initialization: set τΓ = τΩ ,α = 1 and η0; estimate TMC
η0 and compute ε0 ;

while ε > 1 do
ηn+1 ← ηn −αχ−1

Ω · ∇ l[ηn];

estimate TMC
ηn+1 and compute εn+1;

if εn+1 < εn then
increase α, keeping α ≤ 1 ;

else
decrease α and set ηn+1 = ηn;

end
n ← n + 1;

end
Fix α < 1 and perform several iterations.

Algorithm 1. Algorithm pseudocode for the ising model inference.

For η sufficiently close to η∗, after enough iterations, this last result allows
us to compute the first two moments of ∇�MC

η ≡ TΩ −TMC
η , using a second

order expansion of the log-likelihood (3):

E
[ ∇�MC

η

∣
∣ {Γη} ]

= H[η] · (η −η∗); Cov
[ ∇�MC

η

∣
∣ {Γη} ]

=
J [η∗]
τΓ

. (14)

In this framework, the learning dynamics becomes stochastic and ruled by
the master equation:

Pn+1(η′) =
∫

dη Pn(η) Wη→η′ [η]; Wη→η′ [η] = Prob
( ∇�MC

η = η′ −η
)
, (15)

where Wη→η[η] is the probability of transition from η to η′. For sufficiently
large τΓ and thanks to the equalities (8), the central limit theorem ensures that
the unique stationary solution of (15) is a Normal Distribution with moments:

E
[

η
∣
∣ P∞(η)

]
= η∗ ; Cov

[
η

∣
∣ P∞(η)

]
=

α

(2 − α)τΓ
χ−1[η∗] . (16)

Algorithm. Thanks to (8) one may compute the mean and covariance of the
model posterior distribution (with flat prior):

E
[

η
∣
∣ PPost(η)

]
= η∗ ; Cov

[
η

∣
∣ PPost(η)

]
=

1
τΩ

χ−1[η∗] (17)

where τΩ is the size of the training dataset. From (14), if η ∼ PPost we have:

E
[ ∇�MC

η

∣
∣ {Γη∼PPost} ]

= 0; Cov
[ ∇�MC

η

∣
∣ {Γη∼PPost} ]

=
2χ[η∗]

τΓ
. (18)
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Interestingly, by imposing:
1
τΩ

=
α

(2 − α)τΓ
(19)

the moments (16) equal (17) [1]. To evaluate the inference error at each iteration
we define:

εn =
∥
∥∇�MC

ηn

∥
∥

χΩ
=

√
τΩ

2D
∇�MC

ηn
·χ−1

Ω · ∇�MC
ηn

. (20)

Averaging ε over the posterior distribution, see (18), gives ε = 1. Consequently,
if ηn �= η∗ implies εn > 1 with high probability, for ηn → η∗ thanks to (19) we
expect εn =

√
τΩ/τΓ /(2 − α) [1]. As sketched in pseudocode 1, we iteratively

update ηn through (11) with τΓ = τΩ and α < 1 until εn < 1 is reached.

3 Analysis of Cortical Recording

As in [4,7], we analyze ∼ 12 h of intracranial multi-electrode array recording
of neurons in the temporal cortex of a single human patient. The dataset is
composed of the spike times of N = 59 neurons, including N I = 16 inhibitory
neurons and NE = 43 excitatory neurons. During the recording session, the sub-
ject alternates between different brain states [4]. Here we focused on wakefulness
(Awake) and Slow-Wave Sleep (SWS) periods. First, we divided each record-
ing into τΩ short 50 ms-long time bins and encoded the activity of each neuron
i = 1, . . . , N in each time bin t = 1, . . . , τΩ as a binary variable Xi(t) ∈ [0, 1]
depending on whether the cell i was silent (Xi(t) = 0) or emitted at least one
spike (Xi(t) = 1) in the time window t. We thus obtain one training dataset
Ω = {{Xi(t)}N

i=1}τΩ
t=1 per brain state of interest. To apply the Ising model we

assume that this binary representation of the spiking activity is representative
of the neural dynamics and that subsequent time-bins can be considered as inde-
pendent. We then run the inference algorithm on the two datasets separately to
obtain two sets of Ising model parameters ηAwake and ηSWS.

Fig. 1. Empirical pairwise covariances against their model prediction for Awake and
SWS. The goodness of the match implies that the inference task was successfully com-
pleted. Note the larger values in SWS than Awake
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Fig. 2. Empirical and predicted distributions of the whole population activity K =∑
i Xi. For both Awake and SWS periods the pairwise Ising model outperforms the

independent model (see text). However, Ising is more efficient at capturing the popu-
lation statistics during Awake than SWS, expecially for medium and large K values.
This is consistent with the presence of transients of high activity during SWS.

Thanks to (4), when the log-likelihood is maximized, the pairwise Ising model
reproduces the covariances E

[
XiXj | Ω

]
for all pairs i �= j. To validate the

inference method, in Fig. 1 we compare the empirical and model-predicted pair-
wise covariances and found that the first were always accurately predicted by
the second in both Awake and SWS periods.

This shows that the inference method is successful. Now we will test if this
model can describe well the statistics of the population activity. In particular,
synchronous events involving many neurons may not be well accounted by the
pairwise nature of the Ising model interactions. To test this, as introduced in
Ref. [6], we quantify the empirical probability of having K neurons active in
the same time window: K =

∑
i Xi. In Fig. 2 we compare empirical and model

prediction for P (K) alongside with the prediction from an independent neurons
model, the maximum entropy model that as sufficient statistics has only the
single variables and not the pairwise: {Ta(X)}N

a=1 = {Xi}N
i=1. We observed that

the Ising model always outperforms the independent model in predicting P
(

K
)
.

Figure 2 shows that the model performance are slightly better for Awake than
SWS states. This is confirmed by a Kullback-Leibler divergence estimate:

DKL

(
PData
Awake(K)

∣
∣ P Ising

Awake(K)
)

= 0.005; DKL

(
PData
SWS (K)

∣
∣ P Ising

SWS (K)
)

= 0.030.

This effect can be ascribed to the presence of high activity transients, known
to modulate neurons activity during SWS [16] and responsible for the larger
covariances, see Fig. 1 and the heavier tail of P (K), Fig. 2. These transients are
know to be related to an unbalance between the contributions of excitatory and
inhibitory cells to the total population activity [7]. To investigate the impact
of these transients, in Fig. 3 we compare P (K) for the two populations with
the corresponding Ising model predictions. For the Awake state, the two contri-
butions are very similar, probably in consequence of the excitatory/inhibitory
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Fig. 3. Empirical and predicted distributions of excitatory (red) and inhibitory (blue)
population activity. During SWS, the pairwise Ising model fails at reproducing high
activity transients, especially for inhibitory cells. (Color figure online)

balance [7]. Moreover the model is able to reproduce both behaviors. For SWS
periods, instead, the two populations are less balanced [7], with the inhibitory
(blue line) showing a much heavier tail. Moreover, the model partially fails in
reproducing this behavior, notably strongly overestimating large K probabilities.

4 Conclusions

(i) The pairwise Ising model offers a good description of the neural network activ-
ity observed during wakefulness. (ii) By contrast, taking into account pairwise
correlations is not sufficient to describe the statistics of the ensemble activity dur-
ing SWS, where (iii) alternating periods of high and low network activity intro-
duce high order correlations among neurons, especially for inhibitory cells [16].
(iv) This suggests that neural interactions during wakefulness are more local and
short-range, whereas (v) these in SWS are partially modulated by internally-
generated activity, synchronizing neural activity across long distances [4,16,19].
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Abstract. We propose a new method, based on sparse distributed mem-
ory, for studying dependence relations between syntactic parameters in
the Principles and Parameters model of Syntax. By storing data of syn-
tactic structures of world languages in a Kanerva network and checking
recoverability of corrupted data from the network, we identify two dif-
ferent effects: an overall underlying relation between the prevalence of
parameters across languages and their degree of recoverability, and a
finer effect that makes some parameters more easily recoverable beyond
what their prevalence would indicate. The latter can be seen as an indi-
cation of the existence of dependence relations, through which a given
parameter can be determined using the remaining uncorrupted data.

Keywords: Syntactic structures · Principles and parameters · Kanerva
networks

1 Introduction

The general idea behind the Principles and Parameters approach to Syntax, [2],
is the encoding of syntactic properties of natural languages as a vector of binary
variables, referred to as syntactic parameters. (For an expository introduction,
see [1].) While this model has controversial aspects, syntactic parameters are
especially suitable from the point of view of a mathematical approach to under-
standing the geometry of the syntactic parameters space and the distribution
of features across language families, with geometric methods of modern data
analysis, see [15,17,19–21]. Among the shortcomings ascribed to the Principles
and Parameters model (see for instance [6]) is the lack of a complete set of such
variable, the unclear nature of the dependence relations between them, and the
lack of a good set of independent coordinates.

In this paper we rely on data of syntactic structures collected in the
“Syntactic Structures of the World’s Languages” (SSWL) database [22]. We
selected a list of 21 syntactic parameters (numbered 1 to 20 and A01 in [22]),
which mostly describe word order relations1, and a list of 166 languages, selected
1 A detailed description of the properties described by these syntactic features can be

found at http://sswl.railsplayground.net/browse/properties.
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so that they cut across a broad range of different linguistic families, for which
the values of these 21 parameters are fully recorded in the SSWL database. By
storing these data of syntactic parameters in a Kanerva Network, we test for
recoverability when one of the binary variables is corrupted.

We find an overall relation between recoverability and prevalence across lan-
guages, which depends on the functioning of the sparse distributed memory.
Moreover, we also see a further effect, which deviates from a simple relation
with the overall prevalence of a parameter. This shows that certain syntactic
parameters have a higher degree of recoverability in a Kanerva Network. This
property can be interpreted as a consequence of existing underlying dependence
relations between different parameters. With this interpretation, one can envi-
sion a broader use of Kanerva Networks as a method to identify further, and less
clearly visible, dependence relations between other groups of syntactic parame-
ters. Another reason why it is interesting to analyze syntactic parameters using
Kanerva Networks is the widespread use of the latter as models of human mem-
ory, [5,9,11]. In view of the problem of understanding mechanism of language
acquisition, and how the syntactic structure of language may be stored in the
human brain, sparse distributed memories appear to be a promising candidate
for the construction of effective computational models.

2 Sparse Distributed Memory

Kanerva Networks were developed by Pentti Kanerva in 1988, [8,9], as a math-
ematical model of human long term memory. The model allows for approximate
accuracy storage and recall of data at any point in a high dimensional space,
using fixed hard locations distributed randomly throughout the space. During
storage of a datum, hard locations close to the datum encode information about
the data point. Retrieval of information at a location in the space is performed
by pooling nearby hard locations and aggregating their encoded data. The mech-
anism allows for memory addressability of a large memory space with reasonable
accuracy in a sparse representation. Kanerva Networks model human memory in
the following way: a human thought, perception, or experience is represented as
an (input) feature vector – a point in a high dimensional space. Concepts stored
by the brain are also represented as feature vectors, and are usually stored rel-
atively far from each other in the high dimensional space (the mind). Thus,
addressing the location represented by the input vector will yield, to a reason-
able degree of accuracy, the concept stored near that location. Thus, Kanerva
Networks model the fault tolerance of the human mind – the mind is capable
of mapping imprecise input experiences to well defined concepts. For a short
introduction to Kanerva Networks aimed at a general public, see Sect. 13 of [4].

The functioning of Kanerva Network models can be summarized as follows.
Over the field F2 = {0, 1}, consider a vector space (Boolean space) F

N
2 of suf-

ficiently large dimension N . Inside F
N
2 , choose a uniform random sample of 2k

hard locations, with 2k << 2N (a precise estimate is derived in Sect. 6 of [8]).
Compute the median Hamming distance between hard locations. The access
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sphere of a point in the space F
N
2 is a Hamming sphere of radius slightly larger

than this median value (see Sect. 6 of [8] for some precise estimates). When writ-
ing to the network at some location X in the space F

N
2 , data is distributively

stored by writing to all hard locations within the access sphere of that point X.
Namely, each hard location stores N counters (initialized to 0), and all hard
locations within the access sphere of X have their i-th counter incremented or
decremented by 1, depending on the value of the i-th bit of X, see Sect. 3.3.1
of [9]. When the operation is performed for a set of locations, each hard location
stores a datum whose i-th entry is determined by the majority rule of the cor-
responding i-th entries for all the stored data. One reads at a location Y in the
network a new datum, whose i-th entry is determined by comparing 0 to the i-th
counters of all the hard locations that fall within the access sphere of Y , that is,
the i-th entry read at Y is itself given by the majority rule on the i-th entries of
all the data stored at all the hard locations accessible from Y . The network is
typically successful in reconstructing stored data, because intersections between
access spheres are infrequent and small. Thus, copies of corrupted data in hard
locations within the access sphere of a stored datum X are in the minority with
respect to hard locations faithful to X’s data. When a datum is corrupted by
noise (i.e. flipping bit values randomly), the network is sometimes capable of
correctly reconstructing these corrupted bits. The ability to reconstruct certain
bits hints that these bits are derived from the remaining, uncorrupted bits in the
data. Thus, Kanerva networks are a valuable general tool for detecting depen-
dencies in a high-dimensional data sets, see [7].

3 Recoverability of Syntactic Features

The 21 SSWL syntactic features and 166 languages considered provide 166 data
points in a Kanerva Network with Boolean space F

21
2 , where each data point is a

concatenated binary string of all the values, for that particular language, of the
21 syntactic parameters considered. The Kanerva network was initialized with
an access sphere of n/4, with n the median Hamming distance between items.
This was the optimal value we could work with, because larger values resulted
in an excessive number of hard locations being in the sphere, which became
computationally unfeasible with the Python SDM library.

Three different methods of corruption were tested. First, the correct data was
written to the Kanerva network, then reads at corrupted locations were tested.
A known language bit-string, with a single corrupted bit, was used as the read
location, and the result of the read was compared to the original bit-string in
order to test bit recovery. The average Hamming distance resulting from the
corruption of a given bit, corresponding to a particular syntactic parameter, was
calculated across all languages. In order to test for relationships independent of
the prevalence of the features, another test was run that normalized for this. For
each feature, a subset of languages of fixed size was chosen randomly such that
half of the languages had that feature. Features that had too few languages with
or without the feature to reach the chosen fixed size were ignored for this purpose.
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Fig. 1. Prevalence and recoverability for syntactic parameters in a Kanerva Network
(actual data compared with random data).



Prevalence and Recoverability of Syntactic Parameters 269

For this test, a fixed size of 95 languages was chosen, as smaller sizes would
yield less significant results, and larger sizes would result in too many languages
being skipped. The languages were then written to the Kanerva network and
the recoverability of that feature was measured. Finally, to check whether the
different recovery rates we obtained for different syntactic parameters were really
a property of the language data, rather than of the Kanerva network itself, the
test was run again with random data generated with an approximately similar
distribution of bits. The results for the actual data and for random data are
reported in Fig. 1.

The random data show an overall general shape of the curve that reflects a
property of the Kanerva network relating frequency of occurrence and recover-
ability. This overall effect, relating frequencies and recoverability, seen in random
data with the same frequencies as the chosen set of parameters, seems in itself
interesting, given ongoing investigations on how prevalence rates of different
syntactic parameters may correlate to neuroscience models, see for instance [12].

The magnitude of the values for the actual data, however, differs signifi-
cantly from the random data curve. This indicates that the recoverability rates
observed for the syntactic parameters are also being influenced by the existence
of dependence relations between different syntactic parameters. The normalized
test indicates a smaller but still significant variation in feature recoverability
even when all features considered had the same prevalence among the dataset.

3.1 Recoverability Scores

To each parameter we assign a score, obtained by computing the average Ham-
ming distance between the resulting bit-vector in the corruption experiment and
the original one. The lower the score, the more easily recoverable a parameter is
from the uncorrupted data, hence from the other parameters.

The resulting levels of recoverability of the syntactic parameters are listed
in the table below along with the frequency of expression among the given set
of languages. The results of the normalized test are given, for a selection of
parameters, in Fig. 2.

Fig. 2. Corruption (normalized test) of some syntactic parameters.
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Parameter Frequency Corruption (non-normalized)

[01] Subject–Verb 0.64957267 1.50385541439

[02] Verb–Subject 0.31623933 2.03638553143

[03] Verb–Object 0.61538464 1.56180722713

[04] Object–Verb 0.32478634 1.86186747789

[05] Subject–Verb–Object 0.56837606 1.6709036088

[06] Subject–Object–Verb 0.30769232 1.88596384645

[07] Verb–Subject–Object 0.1923077 1.7879518199

[08] Verb–Object–Subject 0.15811966 1.66993976116

[09] Object–Subject–Verb 0.12393162 1.46596385241

[10] Object–Verb–Subject 0.10683761 1.4907228899

[11] Adposition–Noun–Phrase 0.58974361 1.52427710056

[12] Noun–Phrase–Adposition 0.2905983 1.81512048125

[13] Adjective–Noun 0.41025642 1.82927711248

[14] Noun–Adjective 0.52564102 1.6037349391

[15] Numeral–Noun 0.48290598 1.74969880581

[16] Noun–Numeral 0.38034189 1.94036144018

[17] Demonstrative–Noun 0.47435898 1.87596385121

[18] Noun–Demonstrative 0.38461539 1.87463855147

[19] Possessor–Noun 0.38034189 1.91487951279

[20] Noun–Possessor 0.49145299 1.74102410674

[A 01] Attributive–Adjective–Agreement 0.46581197 1.79102409244

4 Further Questions and Directions

We outline here some possible directions in which we plan to expand the
present work on an approach to the study of syntactic parameters using Kanerva
Networks.

One limitation of our result is that this scalar score is simply computed as
the average of the Hamming distance between the resultant bit-vector and the
original bit-vector. The derivability of a certain parameter might vary depending
on the family of languages that it belongs to. For example, when a certain
language feature is not robust to corruption in certain regions of the Kanerva
Network, which means the parameter is not dependent on other parameters,
but robust to corruption in all the other regions, we will get a low scalar score.
If a feature has a low scalar score in one family of languages, this means that
feature is a sharing characteristic of the language group. Otherwise, it might
indicate that the feature is a changeable one in the group. Thus, by conducting
the same experiments grouped by language families, we may be able to get some
information about which features are important in which language family.

It is reasonable to assume that languages belonging to the same historical-
linguistic family are located near each other in the Kanerva Network. However,
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a more detailed study where data are broken down by different language fam-
ilies will be needed to confirm whether syntactic proximity as detected by a
Kanerva network corresponds to historical poximity. Under the assumption that
closely related languages remain near in the Kanerva Network, the average of
dependencies of a given parameter over the whole space might be less informa-
tive globally, because there is no guarantee that the dependencies would hold
throughout all regions of the Kanerva Network. However, this technique may
help identifying specific relations between syntactic parameters that hold within
specific language families, rather than universally across all languages. The exis-
tence of such relations is consistent with the topological features identified in
[17] which also vary across language families.

One of the main open frontiers in understanding human language is relating
the structure of natural languages to the neuroscience of the human brain. In
an idealized vision, one could imagine a Universal Grammar being hard wired
in the human brain, with syntactic parameters being set during the process of
language acquisition (see [1] for an expository account). This view is inspired by
Chomsky’s original proposals about Universal Grammar. A serious difficulty lies
in the fact that there is, at present, no compelling evidence from the neuroscience
perspective that would confirm this elegant idea. Some advances in the direction
of linking a Universal Grammar model of human language to neurobiological data
have been obtained in recent years: for example, some studies have suggested
Broca’s area as a biological substrate for Universal Grammar, [16]. Recent stud-
ies like [12] found indication of possible links between cross linguistic prevalence
of syntactic parameters relating to word order structure and neuroscience mod-
els of how action is represented in Broca’s area of the human brain. This type
of results seems to cast a more positive light on the possibility of relating syn-
tactic parameters to computational neuroscience models. Universal Grammar
should be seen in the plasticity adaptive rules (storing algorithms) that shape
the network structure and that are known to be universal across cortical areas
and neural networks. Models of language acquisition based on neural networks
have been previously developed, see for example the survey [18]. Various results,
[3,7,10,11,13], have shown advantages of Kanerva’s sparse distributed memo-
ries over other models of memory based on neural networks. To our knowledge,
Kanerva Networks have not yet been systematically used in models of language
acquisition, although the use of Kanerva Networks is considered in the work [14]
on emergence of language. Thus, a possible way to extend the present model will
be storing data of syntactic parameters in Kanerva Network, with locations rep-
resenting (instead of different world languages) events in a language acquisition
process that contain parameter-setting cues. In this way, one can try to create
a model of parameter setting in language acquisition, based on sparse distrib-
uted memories as a model of human memory. We will return to this approach
in future work.
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Abstract. Estimation and forecasting of dynamic state are fundamental
to the design of autonomous systems such as intelligent robots. State-of-
the-art algorithms, such as the particle filter, face computational limita-
tions when needing to maintain beliefs over a hypothesis space that is
made large by the dynamic nature of the environment. We propose an
algorithm that utilises a hierarchy of such filters, exploiting a filtration
arising from the geometry of the underlying hypothesis space. In addition
to computational savings, such a method can accommodate the availabil-
ity of evidence at varying degrees of coarseness. We show, using synthetic
trajectory datasets, that our method achieves a better normalised error
in prediction and better time to convergence to a true class when com-
pared against baselines that do not similarly exploit geometric structure.

1 Introduction

Autonomous agents acting in dynamic environments need the capacity to make
predictions about the environment within which they are acting, so as to take
actions that are suited to the present world state. Traditionally, tools for state
estimation are geared to the case wherein uncertainty arises from noise in the
dynamics or sensorimotor processes. For example, the particle filter is a state
estimation method utilising a nonparametric representation of beliefs over the
state space, used extensively in robotics. However, in problems involving spatial
activity, e.g., robot navigation, the underlying dynamics are best described in a
hierarchical fashion, as movement is not just determined by local physical laws
and noise characteristics, but also by longer-term goals and preferences. This has
a few implications for predictive models: we require techniques that (1) accept
evidence at varying scales - from very precise position measurements to coarser
forms of knowledge, e.g. human feedback, and (2) make predictions at multiple
scales to support decision making. These form the primary focus of this paper.

Early models of large-scale spatial navigation [5] considered ways in which
multiple representations, ranging from coarse and intuitive topological notions
of connectivity between landmarks to a more detailed metrical and control level
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description of action selection, could be brought together in a coherent frame-
work and implemented on robots. Other recent methods, e.g. [1,3], propose ways
in which control vector fields could be abstracted so as to support reasoning
about larger-scale tasks. While these works provide useful inspiration, the hier-
archy in these methods is often statically defined by the designer, while in many
applications it is of interest to learn it directly from data, e.g. to enable contin-
ual adaptation over time. Also, these approaches are often silent on how best to
integrate tightly with Bayesian belief estimates, such as within a particle filter.

There is indeed prior work on the notion of hierarchy in state estimation with
particle filters. For instance, Verma et al. [11] define a variable resolution particle
filter for operation in large state spaces, where chosen states are aggregated to
reduce the complexity of the filter. Brandao et al. [2] devise a subspace hierar-
chical particle filter wherein state estimation can be run in parallel with factored
parallel computation. Other ways to factoring computation exist, e.g. [6,10], and
a hierarchy of feature encodings can be used [13]. However, to the best of our
knowledge, no prior method allows tracking a process on multiple scales at once
and accepts evidence with variable resolutions.

In this paper, we learn a spatial hierarchy directly from input trajectories,
using which we devise a novel construction of a bank of particle filters - one at
each scale in a geometric filtration - which maintain consistent beliefs over the
trajectories as a whole and, through that, over the state space. We present an
agglomerative clustering scheme [7] using the Fréchet distance between trajec-
tories [4] to compute a tree-structured representation of trajectory classes that
correspond to incrementally-coarser partitions of the underlying space. This is
inspired by persistent homology on trajectories [8,9] whose output is also such a
hierarchical representation. We then define a linear dynamics model at each of
the levels of the hierarchy based on the subset of trajectories they represent, and
show how that can be used with a stream of observations to provide updates to
the probability that the system is following the dynamics associated with each
of the abstracted trajectory classes. This construction of the filter allows us to
fluently incorporate readings of varying resolution if they were accompanied by
an indication of the coarseness with which the observation is to be interpreted.

We show that our proposed method performs better than baselines both in
terms of normalised error in prediction with respect to the ground truth, and in
terms of the time taken for the belief to converge to the true trajectory of a class
(where convergence is defined with respect to the resolution of the prediction
being considered). We perform experiments with synthetic datasets which brings
out the qualitative behaviour of the procedure in a visually intuitive manner.

2 Multiscale Hierarchy of Particle Filters

The Multiscale Hierarchy of Particle Filters (MHPF) is a bank of consistent
particle filters defined over abstractions of the state space induced by example
trajectories. The lowest level of this hierarchy consists of the complete set of
trajectories with cardinality equal to the size of the trajectory dataset, while
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each other abstract level has coarser descriptions of the trajectory shape defined
by equivalence class of similar trajectories for increasing thresholds. With a
particle filter defined at each level, this inclusion property of the representation
allows evidence at various degrees of coarseness to be incorporated into the full
bank of filters while maintaining consistency across all levels, see Fig. 2.

Construction. To create a filtration of spatial abstractions from trajectories
we consider agglomerative hierarchical clustering [12] by means of a trajectory
distance measure. In this paper, we use the discrete Fréchet distance [4]: for two
discretised d-dimensional trajectories τ1 : [0,m] → Rd and τ2 : [0, n] → Rd,
the distance δF (τ1, τ2) = infα,β maxj≤m+n δE(τ1(α(j)), τ2(β(j))), where α and
β are discrete, monotonic re-parametrisations α : [1 : m + n] → [0 : m], β :
[1 : m + n] → [0 : n] which align the trajectories to each other point-wise,
and δE(., .) is Euclidean distance. Thus, δF corresponds to the maximal point-
wise distance between optimal reparameterisations of τ1 and τ2, which can be
computed efficiently using dynamic programming in O(mn) time [4].

Let D be the distance matrix of the input trajectories, Di,j = Dj,i =
δF (τi, τj). A single-linkage hierarchical agglomerative clustering of D results in a
tree T of trajectory clusters in which the leaves are the single trajectories, while
every other tree layer is created when the pair with the smallest distance from
the previous layer combine together (Fig. 2). If τi and τj are such a pair, we call
the new cluster τij a parent to its constituents and write τij = ρ(τi) = ρ(τj).
Let the birth index b be that minimum distance that indexes the creation of a
layer (e.g., bij = Di,j for τij), and the death index d be the distance at which a
cluster is subsumed to its parent (e.g., di = dj = Di,j for τi and τj). Let C be
the set of all clusters in T . A class ci ∈ C is alive at some index x if bi ≤ x < di.
A level in the tree Cx ⊆ C at index x contains all the classes that are alive at x.
Figure 1 (Left) illustrates an example clustering.

(a) (b)

Fig. 1. (Left) Trajectory clusters with increasing birth indices of a tree of 14 trajectories
using hierarchical single-linkage agglomerative clustering with Fréchet distance. (Right)
The intuition behind the probability operations in a toy example 2D domain, where
(a) three classes merge into two (b).

Thus, a cluster c ∈ C is a collection of qualitatively similar trajectories at
some level of resolution (index) b. The class of behaviour that c represents could
be modelled as a generative model P(z′|z, c), z, z′ ∈ Rd. With the assumption of
no self-intersecting trajectories, we can approximate the dynamics of c at some
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Fig. 2. An overview of the approach. Trajectories are hierarchically clustered into a
filtration of spatial abstractions (classes), organised in a tree structure by birth indices.
Shaded areas on the tree show levels of the hierarchy, with C0 being the finest level
with single trajectory classes. Inset (a) shows an example particle set and how the
tree structure enforces the consistency of class probabilities. The distributions on the
right show an example of a consistent estimate across the tree maintained by a bank
of particle filters. Inset (b) shows an example of a coarse observation received at one
level, and how updates propagate throughout the tree to maintain consistency.

arbitrary point z ∈ Rd using a weighted average of velocity at local points of
c in an ε-ball around z: Bε(z) = {z′ ∈ c : δE(z′, z) < ε}, where ε relates to
the density or sparsity of the trajectories. Hence, ż = 1

η

∑
z′∈Bε(z)

ż′
δE(z,z′) , with

normalisation η =
∑

z′∈Bε(z)
1

δE(z,z′) . Thus, z′ ∼ z + ż + γ(κ), where γ(κ) is a
noise term related to dynamics noise κ.

At each level of the tree Cb we define a particle filter where a particle xt

represents a weighted hypothesis of both the class of behaviour c ∈ Cb and the
position zt ∈ Rd at time t. We write (xt(zt, c), wt) where wt is a weight that
reflects to what extent the hypothesis of the particle is compatible with evidence.
We denote by Xb the set of all particles of the filter at Cb. There are two kinds of
observations in MHPF: (1) position observations zt +γ(ψ), where γ(ψ) is a noise
term related to the observation noise parameter ψ; and (2) coarse observations
which provide qualitative evidence regarding the underlying process. Here, we
assume that coarse observations can be identified to one of the classes in C.

Algorithm 1 presents the full MHPF procedure. First, the particle set X0

of the filter at C0 is created by sampling N particles from a prior over ini-
tial positions and class assignment from C0 (individual trajectories) with uni-
form weights. Denote by Ni the number of particles of class ci, such that∑

ci∈C0
Ni = N . The prior probabilities of the classes ci ∈ C0 can be com-

puted as Ni/N . These probabilities propagate recursively upwards in the tree
by additivity: a parent’s probability is the sum of its children’s probabilities,
Pt(c̄) =

∑
c=ρ−1(c̄) P

t(c). By the same principle, the children of a class propor-
tionally inherit their parent’s probability when moving down the tree. For the
sake of intuition, consider the simple example in Fig. 1 (Right), where a cluster
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Algorithm 1. Multiscale hierarchy of particle filters
Require: Prior over particles, number of basic particles N , the depletion parameter

v, tree structure T
1: Create X0: sample N particles from a prior over C0 × Rd with equal weights.
2: for each time step t > 0 do
3: Build the tree probabilities up from X0 and C0 (Algorithm 2).
4: for parents c̄ of C0 classes recursively to the root of T do
5: Sample Nc̄ particles; Nc̄ =

∑
c=ρ−1(c̄) Nc, with equal weights

6: end for
7: Sample a new position per particle, zt ∼ P(z|zt−1, c)
8: Receive observation ξt.
9: if fine observation then
10: Cξ = C0.
11: update X0 weights with Euclidean distance to ξt: wt ∝ − log(δE(., ξt)).
12: else if coarse observation at tree level bξ then
13: Find all alive classes at bξ: Cξ = {ci ∈ C : bi ≤ bξ < di}.
14: Compute tree distance δT (c, ξt), for all c ∈ Cξ.
15: Update weights in Xc, c ∈ Cξ relative to distance: wt ∝ − log(δT (c, ξt)).
16: end if
17: Rebuild the tree probabilities from Cξ and Xξ (Algorithm 2).

18: Update particle weights in X \ Xξ : wt = wt−1 Pt(c)

Pt−1(c)

19: Update X0: resample N (1− v) particles from X0 based on new weights wt, and
N v particles uniformly randomly from C0.

20: end for

Algorithm 2. Tree probability rebuild
Require: Tree structure T , tree level Cb, particle set Xb

1: Update the probabilities of ci ∈ Cb from Xb weights: Pt(ci) =
∑

c(x)=ci
wt(x)

∑
x∈Xb

wt(x)

2: for children of Cb classes recursively to the leaves of T do

3: Update child c probability relative to its parent c̄: Pt(c) = Pt−1(c) Pt(c̄)

Pt−1(c̄)

4: end for
5: for parents of C0 classes recursively to the root of T do
6: Update parent c̄ probability relative to its children c: Pt(c̄) =

∑
c=ρ−1(c̄) P

t(c)
7: end for

of trajectories can be understood spatially as the union of Voronoi cells of trajec-
tory discretisation. The corresponding probability of this class is the probability
of the agent being in that region. Then, when classes merge at some level of
resolution their corresponding regions merge, and thus their probabilities are
added up. This simple technique guarantees consistency of the filters by design.

With the class probabilities specified, the same number of particles as
assigned to the children are sampled for parents, Nc̄ =

∑
c=ρ−1(c̄) Nc, and this

is repeated recursively to the top of the tree. Note that, any arbitrary level Cb

of the tree would have exactly N particles with a proper probability distribu-
tion. The last stage of the tree construction is to sample new positions for the
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particles. Note that the class assignment of a particle does not change due to
sampling.

Updates. A coarse observation ξ ∈ C with resolution bξ targets all the particles
from classes that are alive at Cξ = {ci ∈ C| bi ≤ bξ < di}. To update these
particles, we use the tree distance between classes δT (., .) which we define as
the birth index of the youngest shared parent of the two classes in the tree.
This measures how large the ε-balls around the points of one class need to be to
include the other. For example, in Fig. 2, δT (e, g) = δT (c, e) = bg. The weight of
a particle is updated relative to the distance of the observation from the particle’s
class c, w ∝ − log(δT (ξ, c)). A position observation ξ ∈ Rd, on the other hand,
updates a particle relative to the Euclidean distance between the observation
and the particle’s position z, w ∝ − log(δE(ξ, z)).

After updating all particles in Xξ, the probabilities of the corresponding
classes in Cξ are recomputed as the sum of their particles’ normalised weights,
then propagate to the rest of the tree as in Algorithm 2. Here, children classes
of Cξ are updated first recursively relative to their parents’ new probabilities,
Pt(c) = Pt−1(c) Pt(c̄)

Pt−1(c̄) , ∀c = ρ−1(c̄), then the updates propagate upwards
to update all the remaining parents Pt(c̄) =

∑
c=ρ−1(c̄) P

t(c). Then, particle

weights are updated to reflect the updated class probabilities, wt = wt−1 Pt(c)
Pt−1(c) ,

∀x ∈ X \ Xξ. The final step is to sample N particles from X0 with uniform
weights to get the posterior particle set after incorporating the evidence ξ. To
guard against particle depletion, we replace the classes of a small percentage v
of all particles uniformly randomly to classes from C0.

3 Experiments

We evaluate the performance of MHPF with N = 100 particles in two synthetic
2-dimensional navigation domains, one representing a 2-dimensional configura-
tion space with 33 trajectories, and the other with 13 trajectories (Fig. 3 (Left)).
We compare the performance to particle filters without access to the hierarchical
structure: BL1 is a basic particle filter with N = 100 particles, each follows the
dynamics of a single trajectory (classes c ∈ C0); and BL2 is a particle filter with
N = 100 particles which all follow the averaging dynamics of the trajectories
together with κ noise (Note that BL1 is equivalent to the filter at the bottom
layer of MHPF stack, and BL2 is equivalent to the filter at the top layer.) We
use as metrics: (1) the mean squared error of the filter’s point prediction, (2)
the tree distance of the filter’s predicted class to the ground truth, and (3) the
time to convergence to the true class. Each experiment is run with 10 randomly-
selected ground truth trajectories, reporting averaged scores of 25 repetitions.
Trajectories are uniformly discretised, and the length of a trial depends on the
number of trajectory points. Observation at time t is generated from the discre-
tised ground truth zt ∈ R2 and the observation noise ψ. A fine observation is
defined as zt+γ where γ ∈ [0, ψ]×[0, ψ], while a coarse observation is selected by
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sampling n = 10 points from N (zt, ψ2) then finding the class that is most likely
to generate these samples. We use the localised dynamics model as in Sect. 2
with ε = bc for some coarse class c and the noise parameter κ. At the end of
every step, v = 1% of the particles is changed randomly.

In the configuration space dataset, we compute the filter’s predicted position
at time t as the w-weighted average of the particle positions when using fine
observations only, and report the average mean squared error (MSE) of the
ground truth over time. MHPF achieved a mean of 0.27 (standard deviation of
0.04), beating BL1 0.38(0.14) and BL2 0.53(0.13). Figure 3 (Right) illustrates

(a) (b)

T
im

e

Coarseness

Fig. 3. (Left) Datasets used. (Right) Evolution of MHPF prediction. The columns
show levels across the tree with the finest at the left, and rows show time steps with
the first at the top. Each panel shows the trajectories of the alive classes. The opacity
of the line reflects the probability of the class.

(a) Tree distance of the ground truth to
MAP prediction. Coarse instructions were
provided stochastically 50% of the time.
The plot shows robustness against noise as
dynamics noise varies between 30% (Left)
to 75% (Right) of range, and observation
noise ranges between 1% (Bottom) to 5%
(Top). MHPF converges to a better solu-
tion than the baseline (statistically signif-
icant at p-value= 0.004).

(b) Time needed to reach within
33% of convergence. Fine observa-
tions are provided for a lead-in pe-
riod (5% (Top) and 7.5% (bottom) of
trial time). The plot shows the benefit
of coarse observations to convergence
time. Dynamics noise ranges from 30%
(Left) to 75% (Right), and observation
noise is set to 1%. MHPF converges
faster to the correct solution than the
baseline (statistically significant at a
p-value = 0.02).

Fig. 4. Performance results comparing MHPF (red) and BL1 (blue) - lower is better.
(Color figure online)
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the kind of multi-resolution output MHPF can produce, showing the maximum
a posteriori (MAP) class in time at different levels of the tree.

Next, we compare MHPF with BL1 using the 13 trajectory dataset in a situ-
ation where fine observations are consistently generated, but coarse observations
are produced stochastically 50% of the time. We analyse the benefit of this addi-
tional knowledge by plotting, in Fig. 4a, the average tree distance of the MAP
prediction to the ground truth, with noise parameters (κ = 30%, 50%, 75%) and
(ψ = 1%, 5%). Finally, when fine observations are only provided for a lead-in
period of 5%/ 7.5% of trial length followed by only coarse observations, we show
in Fig. 4b the time needed for the tree distance to converge within the 33%-ball
of the ground truth with noise parameters ψ = 1% and κ = 30%, 75%.

4 Conclusion

We propose an estimation and forecasting approach utilising a filtration over
trajectories and a correspondingly hierarchical representation of probability dis-
tributions over the underlying state space so as to enable Bayesian filtering. A
key benefit of our methodology is the ability to incorporate ‘coarse’ observations
alongside the basic ‘fine’ scale signals. This approach to seamlessly handling
inhomogeneity in scale is a benefit in many robotics and sensor networks appli-
cations. We demonstrate the usefulness of this technique with experiments that
show performance gains over a conventional particle filtering scheme that does
not similarly exploit the geometric structure in the hypothesis space.
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Abstract. We investigate the geometry of optimal memoryless time
independent decision making in relation to the amount of information
that the acting agent has about the state of the system. We show that the
expected long term reward, discounted or per time step, is maximized
by policies that randomize among at most k actions whenever at most
k world states are consistent with the agent’s observation. Moreover, we
show that the expected reward per time step can be studied in terms of
the expected discounted reward. Our main tool is a geometric version
of the policy improvement lemma, which identifies a polyhedral cone of
policy changes in which the state value function increases for all states.

Keywords: Partially Observable Markov Decision Process · Reinforce-
ment learning · Memoryless stochastic policy · Policy gradient theorem

1 Introduction

We are interested in the amount of randomization that is needed in action selec-
tion mechanisms in order to maximize the expected value of a long term reward,
depending on the uncertainty of the acting agent about the system state.

It is known that in a Markov Decision Process (MDP), the optimal policy
may always be chosen deterministic (see, e.g., [5]), in the sense that the action
a that the agent chooses is a deterministic function of the world state w the
agent observes. This is no longer true in a Partially Observable MDP (POMDP),
where the agent does not observe w directly, but only the value s of a sensor. In
general, optimal memoryless policies for POMDPs are stochastic. However, the
more information the agent has about w, the less stochastic an optimal policy
needs to be. As shown in [4], if a particular sensor value s uniquely identifies w,
then the optimal policy may be chosen such that, on observing s, the agent
always chooses the same action. We generalize this as follows: The agent may
choose an optimal policy such that, if a given sensor value s can be observed
from at most k world states, then the agent chooses an action probabilistically
among a set of at most k actions.

Such characterizations can be used to restrict the search space when searching
for an optimal policy. In [1], it was proposed to construct a low-dimensional
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 282–290, 2017.
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manifold of policies that contains an optimal policy in its closure and to restrict
the learning algorithm to this manifold. In [4], it was shown how to do this in
the POMDP setting when it is known that the optimal policy can be chosen
deterministic in certain sensor states. This construction can be generalized and
gives manifolds of even smaller dimension when the randomization of the policy
can be further restricted.

As in [4], we study the case where at each time step the agent receives a
reward that depends on the world state w and the chosen action a. We are inter-
ested in the long term reward in either the average or the discounted sense [6].
Discounted rewards are often preferred in theoretical analysis, because of the
properties of the dynamic programming operators. In [4], the analysis of average
rewards was much more involved than the analysis of discounted rewards. While
the case of discounted rewards follows from a policy improvement argument, an
elaborate geometric analysis was needed for the case of average rewards.

Various works have compared average and discounted rewards [2,3,8]. Here,
we develop a tool that allows us to transfer properties of optimal policies from
the discounted case to the average case. Namely, the average case can be seen as
the limit of the discounted case when the discount factor γ approaches 1. If the
Markov chain is irreducible and aperiodic, this limit is uniform, and the optimal
policies of the discounted case converge to optimal policies of the average case.

2 Optimal Policies for POMDPs

A (discrete time) partially observable Markov decision process (POMDP) is
defined by a tuple (W,S,A, α, β,R), where W,S,A are finite sets of world states,
sensor states, and actions, β : W → ΔS and α : W ×A → ΔW are Markov kernels
describing sensor measurements and world state transitions, and R : W ×A → R

is a reward signal. We consider stationary (memoryless and time independent)
action selection mechanisms, described by Markov kernels of the form π : S →
ΔA. We denote the set of stationary policies by ΔS,A. We write pπ(a|w) =∑

s β(s|w)π(a|s) for the effective world state policy. Standard reference texts
are [5,6].

We assume that the Markov chain starts with a distribution μ ∈ ΔW and
then progresses according to α, β and a fixed policy π. We denote by μt

π ∈ ΔW

the distribution of the world state at time t. It is well known that the limit
pπ

μ := limT→∞ 1
T

∑T−1
t=0 μt

π exists and is a stationary distribution of the Markov
chain. The following technical assumption is commonly made:

(∗) For all π, the Markov chain over world states is aperiodic and irreducible.

The most important implication of irreducibility is that the limit distribution pπ
μ

is independent of μ. If the chain has period s, then pπ
μ = limT→∞ 1

s

∑s
t=1 μT+t

π .
In particular, under assumption (∗), μt

π → pπ
μ for any μ. (Since we assume finite

sets, all notions of convergence of probability distributions are equivalent.)
The objective of learning is to maximize the expected value of a long term

reward. The (normalized) discounted reward with discount factor γ ∈ [0, 1) is
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Rγ
μ(π) = (1 − γ)

∞∑

t=0

γt
∑

w

μt
π(w)

∑

a

pπ(a|w)R(w, a) = (1 − γ)Eπ,μ

[ ∞∑

t=0

γtR(wt, at)
]
.

The average reward is

Rμ(π) =
∑
w

pπ
μ(w)

∑
a

pπ(a|w)R(w, a).

Under assumption (∗),Rμ is independent of the choice of μ and depends contin-
uously on π, as we show next. Since ΔS,A is compact, the existence of optimal
policies is guaranteed. Without assumption (∗), optimal policies for Rμ need
not exist. On the other hand, the expected discounted reward Rγ

μ is always
continuous, so that, for this, optimal policies always exist.

Lemma 1. Under assumption (∗),Rμ(π) is continuous as a function of π.

Proof. By (∗), pπ
μ is the unique solution to a linear system of equations that

smoothly depends on π. Thus, Rμ is continuous as a function of π. ��
Lemma 2. For fixed μ and γ ∈ [0, 1),Rγ

μ(π) is continuous as a function of π.

Proof. Fix ε > 0. There exists l > 0 such that (1 − γ)
∑∞

t=l γtR � ε/4, where
R = maxw,a |R(w, a)|. For each t, the distribution μt

π depends continuously on π.
For fixed π, let U be a neighborhood of π such that |μt

π(w) − μt
π′(w)| � 1

2|W |R ε

for t = 0, . . . , l − 1, w ∈ W and π′ ∈ U . Then, for all π′ ∈ U ,

|Rγ
μ(π)−Rγ

μ(π′)| � ε

2
+(1−γ)

l−1∑
t=0

γt
∑
w

|μt
π(w)−μt

π′(w)|R � ε

2
+

|W |
2|W |RεR = ε.

��
The following refinement of the analysis of [4] is our main result.

Theorem 1. Consider a POMDP (W,S,A, α, β,R), and let μ ∈ ΔW and γ ∈
[0, 1). There is a stationary (memoryless, time independent) policy π∗ ∈ ΔS,A

with | supp(π∗(·|s))| � | supp(β(s|·))| for all s ∈ S and Rγ
μ(π∗) � Rγ

μ(π) for all
π ∈ ΔS,A. Under assumption (∗), the same holds true for Rμ in place of Rγ

μ.

We prove the discounted case in Sect. 3 and the average case in Sect. 4.

3 Discounted Rewards from Policy Improvement

The state value function V π of a policy π is defined as the unique solution of
the Bellman equation

V π(w) =
∑

a

pπ(a|w)
[
R(w, a) + γ

∑
w′

α(w′|w, a)V π(w′)
]
, w ∈ W.



Geometry of Policy Improvement 285

It is useful to write V π(w) =
∑

a pπ(a|w)Qπ(w, a), where

Qπ(w, a) = R(w, a) + γ
∑
w′

α(w′|w, a)V π(w′), w ∈ W,a ∈ A,

is the state action value function. Observe that Rγ
μ(π) = (1−γ)

∑
w μ(w)V π(w).

If two policies π, π′ satisfy V π′
(w) � V π(w) for all w, then Rγ

μ(π′) � Rγ
μ(π) for

all μ. The following is a more explicit version of a lemma from [4]:

Lemma 3 (Policy improvement lemma). Let π, π′ ∈ ΔS,A and ε(w) =∑
a pπ′

(a|w)Qπ(w, a) − V π(w) for all w ∈ W . Then

V π′
(w) = V π(w) + Eπ′,w0=w

[ ∞∑
t=0

γtε(wt)
]

for all w ∈ W.

If ε(w) � 0 for all w ∈ W , then

V π′
(w) � V π(w) + dπ′

(w)ε(w) for allw ∈ W,

where dπ′
(w) =

∑∞
t=0 γt Pr(wt = w|π′, w0 = w) � 1 is the discounted expected

number of visits to w.

Proof. V π(w) =
∑

a

pπ′
(a|w)Qπ(w, a) − ε(w)

= Eπ′,w0=w

[(
R(w0, a0) − ε(w0)

)
+ γV π(w1)

]

= Eπ′,w0=w

[(
R(w0, a0) − ε(w0)

)
+ γ

( ∑
a

pπ′
(a|w1)Qπ(w1, a) − ε(w1)

)]

= Eπ′,w0=w

[ ∞∑
t=0

γt
(
R(wt, at) − ε(wt)

)]
= V π′

(w) − Eπ′,w0=w

[ ∞∑
t=0

γtε(wt)
]
.

��
Lemma 3 allows us to find policy changes that increase V π(w) for all w ∈ W

and thereby Rγ
μ(π) for any μ.

Definition 1. Fix a policy π ∈ ΔS,A. For each sensor state s ∈ S consider the
set supp(β(s|·)) = {w ∈ W : β(s|w) > 0} = {ws

1, . . . , w
s
ks

}, and define the linear
forms

lπ,s
i : ΔA → R; q �→

∑
a

q(a)Qπ(ws
i , a), i = 1, . . . , ks.

The policy improvement cone at policy π and sensation s is

Lπ,s =
{
q ∈ ΔA : lπ,s

i (q) � lπ,s
i (π(·|s)) for all i = 1, . . . , ks

}
.

The (total) policy improvement cone at policy π is

Lπ =
{
π′ ∈ ΔS,A : π′(·|s) ∈ Lπ,s for all s ∈ S

}
.
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Lπ,s and Lπ are intersections of ΔA and ΔS,A with intersections of affine half-
spaces (see Fig. 1). Since π ∈ Lπ, the policy improvement cones are never empty.

Lemma 4. Let π ∈ ΔS,A and π′ ∈ Lπ. Then, for all w,

V π′
(w) − V π(w) � dπ′

(w)
∑

s

β(s|w)
∑

a

(π′(a|s) − π(a|s))Qπ(w, a) � 0.

Proof. Fix w ∈ W . In the notation from Lemma3, suppose that supp(β(·|w)) =
{s1, . . . , sl} and that w = w

sj

ij
for j = 1 . . . , l. Then

ε(w) =
∑

a

pπ′
(a|w)Qπ(w, a) −

∑
a

pπ(a|w)Qπ(w, a)

=
l∑

j=1

β(sj |w)lπ,sj

ij
(π′(·|sj) − π(·|sj)) � 0,

since π′ ∈ Lπ. The statement now follows from Lemma 3. ��
Remark 1. Lemma 4 relates to the policy gradient theorem [7], which says that

∂V π(w)
∂π(a′|s′)

= dπ(w)
∑

s

β(s|w)
∑

a

∂π(a|s)
∂π(a′|s′)

Qπ(w, a). (1)

Our result adds that, for each w, the value function V π′
(w) is bounded from

below by a linear function of π′ that takes value at least V π(w) within the entire
policy improvement cone Lπ. See Fig. 1.

Now we show that there is an optimal policy with small support.

q

p

l2

l1

L
π(·|s)•

V π(w)•

Lπ,s

Fig. 1. Left: illustration of the policy improvement cone. Right: illustration of the state
value function V π(w) for some fixed w, showing the linear lower bound over the policy
improvement cone Lπ,s. This numerical example is discussed further in Sect. 5. (Color
figure online)
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Lemma 5. Let P be a polytope, and let l1, . . . , lk be linear forms on P . For any
p ∈ P , let Li,+ = {q ∈ P : li(q) � li(p)}. Then ⋂k

i=1 Li,+ contains an element q
that belongs to a face of P of dimension at most k − 1.

Proof. The argument is by induction. For k = 1, the maximum of l1 on P is
attained at a vertex q of P . Clearly, l1(q) � l1(p), and so q ∈ L1,+.

Now suppose that k > 1. Let P ′ := P ∩Lk,+. Each face of P ′ is a subset of a
face of P of at most one more dimension. By induction,

⋂k−1
i=1 Li,+ ∩P ′ contains

an element q that belongs to a face of P ′ of dimension at most k − 2. ��
Proof (of Theorem 1 for discounted rewards). By Lemma 5, each policy improve-
ment cone Lπ,s contains an element q that belongs to a face of ΔA of dimension
at most (k − 1) (that is, the support of q has cardinality at most k), where
k = | supp(β(s|·))|. Putting these together, we find a policy π′ in the total pol-
icy improvement cone that satisfies | supp(π(·|s))| � | supp(β(s|·))| for all s. By
Lemma 4, V π′

(w) � V π(w) for all w, and so Rγ
μ(π′) � Rγ

μ(π). ��
Remark 2. The | supp β(s|·)| positive probability actions at sensation s do not
necessarily correspond to the actions that the agent would choose if she knew
the identity of the world state, as our example in Sect. 5 shows.

4 Average Rewards from Discounted Rewards

The average reward per time step can be written in terms of the discounted
reward as R(π) = Rγ

pπ
μ
. However, the hypothesis V π′

(w) � V π(w) for all w, does
not directly imply any relation between R(π′) and R(π), since they compare the
value function against different stationary distributions. We show that results
for discounted rewards translate nonetheless to results for average rewards.

Lemma 6. Let μ be fixed, and assume (∗). For any ε > 0 there exists l > 0 such
that for all π and all t � l, |μt

π(w) − pπ
μ(w)| � ε for all w.

Proof. By (∗), the transition matrix of the Markov chain has the eigenvalue one
with multiplicity one, with left eigenvector denoted by pπ

μ. Let p2, . . . , p|W | be
orthonormal left eigenvectors to the other eigenvalues λ2, . . . , λ|W |, ordered such
that λ2 has the largest absolute value. There is a unique expansion μ = c1p

π
μ +

c2p2 + · · · + c|W |p|W |. Then μt
π = c1p

π
μ +

∑|W |
i=2 ciλ

t
ipi. Letting t → ∞, it follows

that c1 = 1. By orthonormality, |ci|2 �
∑|W |

i=2 c2i � ‖μ‖22 � 1 and |pi(w)| � 1 for
i = 2, . . . , |W |. Therefore, |μt

π(w) − pπ
μ(w)| = |∑|W |

i=2 ciλ
t
ip|W |(w)| � |W ||λ2|t.

|λ2| depends continuously on the transition matrix, which itself depends con-
tinuously on π. Since ΔS,A is compact, |λ2| = |λ2(π)| has a maximum d, and
d < 1 due to (∗). Therefore, |μt

π(w) − pπ
μ(w)| � |W |dt for all π. The statement

follows from this. ��
Proposition 1. For fixed μ, under assumption (∗),Rγ

μ(π) → Rμ(π) uniformly
in π as γ → 1.
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Proof. For fixed μ and ε, let l be as in Lemma 6. Let R = maxw,a |R(w, a)|. Then

Rγ
μ(π) = (1 − γ)

l−1∑
k=0

γk
∑
w

μk
π(w)

∑
a

π(a|w)R(w, a)

+ (1 − γ)γl
∞∑

k=0

γk
∑
w

pπ
μ(w)

∑
a

π(a|w)R(w, a) + O(εR)(1 − γ)
∞∑

k=0

γk

= O((1 − γ)lR) + O(εR) + γlRμ(π)

for all π. For given δ > 0, we can choose ε > 0 such that the term O(εR) is smaller
in absolute value than δ/3. This also fixes l = l(ε). Then, for any γ < 1 large
enough, the term O((1−γ)lR) is smaller than δ/3, and also |(γl−1)Rμ(π)| � δ/3.
This shows that for γ < 1 large enough, |Rγ

μ(π)−Rμ(π)| � δ, independent of π.
The statement follows since δ > 0 was arbitrary. ��
Theorem 2. For any γ ∈ [0, 1), let π̂γ be a policy that maximizes Rγ

μ. Let π̂ be
a limit point of a convergent subsequence as γ → 1. Then π̂ maximizes Rμ, and
limγ→1 Rγ

μ(π̂γ) = Rμ(π̂).

Proof. For any ε > 0, there is δ > 0 such that γ � 1−δ implies |Rμ(π)−Rγ
μ(π)| �

ε for all π. Thus |maxπ Rμ(π) − maxπ Rγ
μ| � ε, whence limγ→1 maxπ Rγ

μ(π) =
maxπ Rμ(π). Moreover, |maxπ Rμ(π)−Rμ(π̂γ)| � 2ε+|maxπ Rγ

μ(π)−Rγ
μ(π̂γ)| =

2ε. By continuity, the limit value of Rμ applied to a convergent subsequence of
the π̂γ is the maximum of Rμ. ��
Corollary 1. Fix a world state w, and let r � 0. If there exists for each γ ∈
[0, 1) a policy π̂γ that is optimal for Rγ

μ with | supp(π(·|s))| � r, then there exists
a policy π̂ with | supp(π(·|s))| � r that is optimal for Rμ.

Proof. Take a limit point of the family π̂γ as γ → 1 and apply Theorem2. ��
Remark 3. Without (∗), one can show that Rγ

μ(π) still converges to Rμ(π) for
each fixed π, but convergence is no longer uniform. Also, Rμ need not be con-
tinuous in π, and so an optimal policy need not exist.

5 Example

We illustrate our results on an example from [4]. Consider an agent with sensor
states S = {1, 2, 3} and actions A = {1, 2, 3}. The system has world states W =
{1, 2, 3, 4} with the transitions and rewards illustrated in Fig. 2. At w = 1, 4 all
actions produce the same outcomes. States w = 2, 3 are observed as s = 2. Hence
we can focus on π(·|s = 2) ∈ ΔA. We evaluate 861 evenly spaced policies in this 2-
simplex. Figure 2 shows color maps of the expected reward (interpolated between
evaluations), with lighter colors corresponding to higher values. As in Fig. 1, red
vectors are the gradients of the linear forms (corresponding to Qπ(w, ·), w = 2, 3),
and dashed blue lines limit the policy improvement cones Lπ,s=2. Stepping into
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the improvement cone always increases V π(w) = Rγ
μ=δw

(π) for all w ∈ W . Note
that each cone contains a policy at an edge of the simplex, i.e., assigning positive
probability to at most two actions. The convergence of Rγ

μ to Rμ as γ → 1 is
visible. Note also that for γ = 0.6 the optimal policy requires two positive
probability actions, so that our upper bound | supp(π(·|s))| � | supp(β(s|·))| is
attained.

1 4

2

3

1, 2, 3

3

31

2

1

2
1, 2, 3

R =

⎡
⎢⎢⎣

0 0 0
−1 +1 −0.1
+1 −1 −0.1
+1 +1 +1

⎤
⎥⎥⎦

Fig. 2. Illustration of the example form Sect. 5. Top: state transitions and reward
signal. Bottom: numerical evaluation of the expected long term reward. (Color figure
online)
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4. Montúfar, G., Ghazi-Zahedi, K., Ay, N.: Geometry and determinism of optimal sta-
tionary control in partially observable Markov decision processes. arXiv:1503.07206
(2015)

5. Ross, S.M.: Introduction to Stochastic Dynamic Programming. Academic Press Inc.,
Cambridge (1983)

6. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

7. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for
reinforcement learning with function approximation. In: Advances in Neural Infor-
mation Processing Systems 12, pp. 1057–1063. MIT Press (2000)

8. Tsitsiklis, J.N., Van Roy, B.: On average versus discounted reward temporal-
difference learning. Mach. Learn. 49(2), 179–191 (2002)

http://dx.doi.org/10.1007/3-540-44581-1_40
http://arxiv.org/abs/1503.07206


Joint Geometric and Photometric Visual
Tracking Based on Lie Group

Chenxi Li1,2,3,4(&), Zelin Shi1,3,4, Yunpeng Liu1,3,4,
and Tianci Liu1,2,3,4

1 Shenyang Institute of Automation, Chinese Academy of Sciences,
Shenyang 110016, Liaoning, China

lichenxi@sia.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

3 Key Laboratory of Opto-electronic Information Processing,
Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
4 The Key Lab of Image Understanding and Computer Vision,

Shenyang 110016, Liaoning Province, China

Abstract. This paper presents a novel efficient and robust direct visual tracking
method under illumination variations. In our approach, non-Euclidean Lie group
characteristics of both geometric and photometric transformations are exploited.
These transformations form Lie groups and are parameterized by their corre-
sponding Lie algebras. By applying the efficient second-order minimization trick,
we derive an efficient second-order optimization technique for jointly solving the
geometric and photometric parameters. Our approach has a high convergence
rate and low iterations. Moreover, our approach is almost not affected by linear
illumination variations. The superiority of our proposed method over the existing
direct methods, in terms of efficiency and robustness is demonstrated through
experiments on synthetic and real data.

Keywords: Visual tracking � Illumination variations � Lie algebra � Efficient
second-order minimization � Lie group

1 Introduction

Direct visual tracking can be formulated as finding the incremental transformations
between a reference image and successive frames of a video sequence. As utilizing all
information of pixels of interest to estimate the transformation, it can give sub-pixel
accuracy, which is necessary for certain applications, e.g., augmented reality,
vision-based robot control [1], medical image analysis. Direct visual tracking problem
can be made as complex as possible by considering illumination variations, occlusions
and multiple-modality. In this paper, we focus on direct visual tracking which is
formulated as iterative registration problem under global illumination variations.

Traditional direct visual tracking methods often assume intensity constancy under
Lucas-Kanade framework, where the sum of squared differences (SSD) is used
as similarity metric. The inverse compositional (IC) method [2] and the efficient

© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 291–298, 2017.
https://doi.org/10.1007/978-3-319-68445-1_34



second-order minimization (ESM) method [1] are two of the most efficient method. The
drawback of these methods is their sensitivity to illumination variations.

Two different strategies have been employed to improve the robustness to illumi-
nation variations. First, robust similarity metrics are used, such as the normalized
correlation coefficient (NCC), the mutual information (MI) [3], the enhanced correla-
tion coefficient (ECC) [4], and the sum of conditional variance (SCV) [5]. Recently,
robust multi-dimensional features are used [6]. These methods have superior robustness
to illumination variations, even multi-modality. However, these advantages come either
at a high computational cost, or at low convergent radius. The second approach relies
on modeling the illumination variations [7–12]. The affine photometric model is often
used to compensate for illumination variations, either in a global way [7, 12] or in a
local way [8–11]. In these approaches, all of them but DIC algorithm [12] used additive
rule to update the photometric parameters in the optimization process.

In this paper, we propose a very efficient and robust direct image registration
approach that jointly performs geometric and photometric registration by extending the
efficient second-order minimization method. We also use the affine transformation to
model illumination variations. Different from [11] where the photometric parameters
were updated using additive rule, we employ the compositional rule to update both the
geometric and photometric parameters, similar to [12]. Based on the joint Lie algebra
parameterization of geometric and photometric transformation we derive a second-
order optimization technique for image registration. Our approach preserves the
advantages of the original ESM with low iteration number, high convergence
frequency.

The rest of the paper is organized as follows. In Sect. 2, we give the necessary
theoretical background of our work. The details of our algorithm are given in Sect. 3.
Experimental results are presented in Sect. 4. A conclusion is provided in Sect. 5.

2 Theoretical Background

2.1 Lie Algebra Parameterization of Geometric Transformations

We consider homography as the geometric transformations as it is the most general
cases for planar objects. The coordinates of a pixel q� in the interest region R� of
reference image I� are related to its corresponding q in the current image I by a
projective homography G from which a warp w q� ;Gð Þ can be induced.

We employ the same parameterization way of homographies as in [1, 11]. The set
of homographies is identified with the 3-D special linear group defined as SLð3Þ. The
Lie group SLð3Þ and its Lie algebra slð3Þ are related via exponential map, then a
homography GðxÞ 2 SLð3Þ can be parameterized as follows:

GðxÞ¼ expðAðxÞÞ ¼
X1

i¼1
1
i!
ðAðxÞÞi: ð1Þ

where AðxÞ is the Lie algebra element of GðxÞ, x ¼ ½x1; � � � ; x8�T 2 R
8 the geometric

parameters vector [1, 11].
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2.2 Lie Algebra Parameterization of Photometric Transformation

For gray-level images, we model the global illumination variations as affine photo-
metric transformation, which is also referred as the gain and bias model. Based on this
model, the reference image I� and the current image I are related as I� ¼ aI þ b.
where a is the gain and b the bias. We rewrite this relation as matrix form
I�
1

� �
¼ a b

0 1

� � I
1

� �
. Then the set of photometric transformations can be identified

with 1-D affine Lie group GAð1Þ ¼ Pða; bÞ ¼ a b
0 1

� �����a; b 2 R

� �
. In our problem,

a[ 0. The Lie algebra associated with GAð1Þ is gað1Þ¼ t1 t2
0 0

� �����t1; t2 2 R

� �
. Let

fB1;B2g be a basis of Lie algebra gað1Þ. Each element B 2 gað1Þ can be written as a

combination of Bi, BðtÞ ¼
P2
i¼1

tiBi, with t ¼ ½t1; t2�T 2 R
2 the photometric parameters

vector. In this paper, we choose B1 ¼ 1 0
0 0

� �
;B2 ¼ 0 1

0 0

� �
. For each photometric

transformation Pða; bÞ2 GAð1Þ, we can parameterize it using its Lie algebra via
exponential map like geometric transformations as follows:

PðaðtÞ; bðtÞÞ ¼ expðBðtÞÞ ¼
X1

i¼1
1
i!

t1 t2
0 0

� �� �i

ð2Þ

We remake that this parameterization is smooth and one-to-one onto, with a smooth
inverse, for all a; b 2 R; a[ 0. In the following, if we emphasis on the photometric
parameters t, then the Lie algebra parameterized photometric transformation
PðaðtÞ; bðtÞÞ simply denoted as PðtÞ. For convenience, we define the group action of
the photometric transformation Pða; bÞ on the intensity I as Pða; bÞ � I ¼ aI þ b. It
satisfies

Pða2; b2Þ � Pða1; b1Þ � I ¼ Pða2; b2Þ � ðPða1; b1Þ � IÞ ¼ ðPða2; b2ÞPða1; b1ÞÞ � I
ð3Þ

according to the group properties of Lie group GAð1Þ.

3 The Proposed Visual Tracking Method

Considering illumination variations, the visual tracking problem can be formulated as a
search for the optimal geometric and photometric transformations between two the
reference image and the current frame. Given an estimated geometric transformation Ĝ
and an estimated photometric transformation P̂ðâ; b̂Þ which are often given by previous
frame, our considered problem can be formulated as
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min
x2R8;t2R2

1
2

X
q�i 2R�

½PðtÞ � P̂ � I w q�i ; ĜGðxÞ
	 
	 


� I�ðq�i Þ�2 ð4Þ

where GðxÞ and PðtÞ are the incremental geometric and photometric transformation.
Problem (4) can be explicitly written as

min
x2R8;t2R2

X
q�i 2R�

1
2
½ðâI w q�i ; ĜGðxÞ

	 
	 

þ b̂ÞaðtÞþ bðtÞ � I�ðq�i Þ�2 ð5Þ

Note that the geometric and photometric transformation in problem (4) can be
defined over the joint Lie group SLð3Þ �GAð1Þ whose corresponding Lie algebra is
slð3Þ � gað1Þ. If we denote h¼ ½xT ; tT �T to be the joint parameters, then
h 2 slð3Þ � gað1Þ ¼ R

10. Let the error function in problem (5) be denoted as

Dq�i ðhÞ ¼ ðâI w q�i ; ĜGðxÞ
	 
	 


þ b̂ÞaðtÞþ bðtÞ � I�ðq�i Þ, It can be shown that the

second-order approximation of Dq�i ðhÞ around h ¼ 0 is given by

Dq�i ðhÞ ¼ Dq�i ð0Þþ
1
2
ðJq�i ð0Þþ Jq�i ðhÞÞhþOð hk k3Þ ð6Þ

where Jq�i ð0Þ ¼ ½rxDq�i ð0Þ;rtDq�i ð0Þ� and Jq�i ðhÞ ¼ ½rxDq�i ðhÞ;rtDq�i ðhÞ� are the
Jacobians evaluated in 0 and h respectively. The expressions for rxDq�i ð0Þ and

rtDq�i ð0Þ can be directly computed as rxDq�i ð0Þ ¼ âJIJwJG, rtDq�i ð0Þ ¼ ½âI wðq�i ;
�

ĜÞÞþ b̂; 1�. The detailed computation of the derivatives JI , Jw and JG can be found in
[1]. rxDq�i ðhÞ and rtDq�i ðhÞ depend on the unknown parameters h, therefore are not

easy to compute. However, suppose that h�¼ ½x�T ; t�T �T are the solution of problem
(5), based on the Lie algebra parameterization of both geometric transformations and
photometric transformations, we can get that rxDq�i ðh�Þ¼ JI�JwJG [1] and
rtDq�i ðh�Þ ¼ ½I�ðq�i Þ; 1�. Let Jgpesm be the following ð1� 10Þ matrix:

Jgpesmðq�i Þ ¼
1
2
ðJq�i ð0Þþ Jq�i ðh�ÞÞ

¼ 1
2
½ðâJI þ JI�ÞJwJG; âI wðq�i ; ĜÞ

	 

þ b̂þI�ðq�i Þ; 2� ð7Þ

Then the problem (5) can be approximated as a linear least squares problem:

min
h2R10

1
2

X
q�i 2R�

½Dq�i ð0Þþ Jgpesmðq�i Þh�2 ð8Þ
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The solution of problem (8) is given by

h0 ¼ ½xT0 ; tT0 �T ¼ �ð
X
q�i 2R�

Jgpesmðq�i ÞTJgpesmðq�i ÞÞ�1 � ð
X
q�i 2R�

Jgpesmðq�i ÞTDq�i ð0ÞÞ ð9Þ

The geometric transformation Ĝ and photometric transformation P̂ are simultane-
ously updated as follows:

Ĝ ĜGðx0Þ ¼ Ĝ expðAðx0ÞÞ & P̂ Pðt0ÞP̂ ¼ expðBðt0ÞÞP̂ ð10Þ

The process is iterated until h0k k\e, where e¼ 1� 10�2 in our experiments.

4 Experimental Results

In this section, we compare our algorithm with four different algorithms which are also
designed for template tracking under illumination variations. They are DIC [12]; the
algorithm proposed in [8], which we terms as ESM-PA because the photometric
parameters are updated using additive rule; (ECC) [4]; SCV [5]. Our implementation
uses a PC equipped with Intel® Core™ i5-3470 CPU at 3.20 GHz and 4G RAM.

4.1 Convergence Comparison

Figure 1 shows the set of images used as the reference images whose gray-lever
versions were used. Two templates with size of 100� 100 pixels were cropped from
each of the reference image. As in [2, 4], a homography was simulated by adding
Gaussian noise with standard deviation c (c captures the magnitude of geometric
deformations) to the coordinates of the four corners of the template. The current image
was generated by the simulated homography in conjunction with a gain a and a bias b.
The initial values for geometric and photometric transformations were set to identity
maps. The max number of iterations was set to 50.

We reported the performance comparison in terms of number of iterations and
convergence frequency in Fig. 2. The results were averaged over 500 trials according
to 500 random geometric transformations.

As shown in Fig. 2a, our proposed algorithm always has the lowest number of
iterations under different magnitude of the geometric transformation. Here the gain and

Fig. 1. The selected images used for synthetic experiments
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bias are fixed to 1.3 and 15 respectively. One trial is considered to be converged if the
difference between the estimated coordinates of the corners of the template and the
ground truth is below 2 pixels. The convergence frequency is the percentage of the
convergent trials over the whole 500 trials. As shown in Fig. 2b, our proposed algo-
rithm always has the highest convergence frequency.

From Fig. 2c, we can see that our proposed algorithm always has the lowest
number of iterations under different gain values. Here the geometric deformation
magnitude was fixed to 5 pixels. Note that our proposed algorithm is almost free of the
influence of linear illumination variations, similar to ECC and DIC. Obviously,
ESM-PA which use additive update rule of photometric parameters is heavily affected
by illumination variations. Figure 2d presents the convergence frequencies versus the
gain. Our proposed algorithm has almost the same best results with ESM-PA and ECC.
DIC performs slightly worse. SCV is affected heavily by variations of the gain.

4.2 Tests on Template Tracking

We selected three videos from (www.cs.cmu.edu/˜halismai/bitplanes). These videos
contain sudden illumination variations and low light, therefore are challenging for
direct visual tracking. While the original videos are recorded at 120 Hz, we extracted
images from the videos at 40 Hz resulting in three image sequences where large
inter-frame displacements are induced. In this experiment, we fixed the max number of
iterations for each algorithm to 30 and each frame was resized to 180� 320.

Figure 3 plots the number of iterations for each frame during tracking. Figure 4
presents some examples of tracking results. The legends in Fig. 4 correspond to those
in Fig. 3. Sever illumination variation occurs at frame #172 and #362 in the first image
sequence, at frame #116 in the second image sequence and at frame #414 in the third
image sequence. Note that the number of iterations of ESM-PA increases dramatically
when sever illumination variation occurs as shown in Fig. 3. In the first and third image
sequences, SCV is affected heavily by the sever illumination variations as well. In fact,
SCV failed at frame #433 in the first sequence, as shown in Fig. 4a. DIC failed in all
the three sequences as shown in Fig. 4. ECC failed in the second image sequence at
frame #281. Our proposed algorithm can successfully track the template in all of these
image sequences. Table 1 shows the average number of iterations and runtime per
frame. We can see that in all of the three image sequences our proposed algorithm
needs the lowest iterations and runtime.

(b)(a) (c) (d)

Fig. 2. Performance comparison on image registration task.
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(a) (b)                 (c)

Fig. 3. The number of iterations for each algorithm when tracking in the three image sequences.
(a) Sequence 1 (b) Sequence 2 (c) Sequence 3.

(a) Sequence 1 with medium texture.

(b) Sequence 2 with ambiguous texture.

(c) Sequence 3 with high texture.

Fig. 4. Tracking results in the three image sequences with gray-level intensities. (a) Sequence 1
with medium texture. (b) Sequence 2 with ambiguous texture. (c) Sequence 3 with high texture.

Table 1. Template tracking average number of iterations per frame. In parenthesis we show the
average runtime (seconds). N/A stands for tracking failure.

Sequence (template
size)

Our
proposed

DIC ESM-PA SCV ECC

Sequence 1
(128� 163)

5.834
(0.0446)

N/A 14.50
(0.1139)

N/A 7.567
(0.1183)

Sequence 2
(133� 140)

3.833
(0.0305)

N/A 11.45
(0.0873)

3.903
(0.0351)

N/A

Sequence 3
(145� 175)

4.900
(0.0481)

N/A 9.675
(0.0949)

5.740
(0.0646)

8.102
(0.1523)
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5 Conclusions

In this paper, we have proposed an efficient and robust direct visual tracking algorithm
based on the efficient second-order minimization method. In our approach, Lie group
structure of both the photometric and geometric transformations are exploited. As a
second-order optimization technique, our algorithm preserves the permits of the orig-
inal ESM which has high convergence frequency and low number of iterations.

The efficiency and robustness of our proposed algorithm is verified by comparing
with several well-known algorithms through synthetic data and real data. Compared to
ESM-PA, our algorithm is more efficient under illumination variations.
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Marion Pilté1,2(B), Silvère Bonnabel1, and Frédéric Barbaresco2

1 Mines ParisTech, PSL Research University, Center for Robotics, Paris, France
{marion.pilte,silvere.bonnabel}@mines-paristech.fr

2 Thales Air Systems, Hameau de Roussigny, Limours, France
frederic.barbaresco@thalesgroup.com

Abstract. This paper addresses the drone tracking problem, using a
model based on the Frenet-Serret frame. A kinematic model in 2D, rep-
resenting intrinsic coordinates of the drone is used. The tracking prob-
lem is tackled using two recent filtering methods. On the one hand, the
Invariant Extended Kalman Filter (IEKF), introduced in [1] is tested,
and on the other hand, the second step of the filtering algorithm, i.e. the
update step of the IEKF is replaced by the update step of the Unscented
Kalman Filter (UKF), introduced in [2]. These two filters are compared
to the well known Extended Kalman Filter. The estimation precision of
all three algorithms are computed on a real drone tracking problem.

Keywords: Tracking · Geometric estimation · Kalman Filtering

1 Introduction

Very few works have been done on drone tracking using radars rather than
computer vision technologies such as the use of cameras. In this paper, we will
apply algorithms devoted to more usual targets for radars, such as planes or
missiles, to the problem of drone tracking. Indeed, more and more drones are
used, for military applications as well as for civilian applications, and it is crucial
to track them so that they do not interfere with regular air traffic operations,
especially when they are close to an airport. The challenge is different from that
of regular target tracking. The drones are much smaller and behave differently
as aircrafts, they fly slower, which is also a challenge for radars. The filtering
algorithms used for aircrafts thus have to be robustified.

The model chosen in this paper is based on the Frenet-Serret frame in 2D,
which is attached to the drone, and which represents some intrinsic parameters of
the motion, such as the curvature of the trajectory (through the angular velocity
of the target). The use of such intrinsic models has already been addressed in
[3] and is applied here to drone tracking.

There are a large variety of filters designed to perform state estimation, the
most well-known being the Kalman Filter [4], and its most widespread exten-
sion to nonlinear models, the Extended Kalman Filter (EKF), presented in [5].
However, the EKF is unstable when confronted to large initial errors and highly
nonlinear evolution or measurement functions, so we opt here for more evolved
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 301–309, 2017.
https://doi.org/10.1007/978-3-319-68445-1_35
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filtering techniques, such as the Invariant Extended Kalman Filter (IEKF) and
the Unscented Kalman Filter (UKF). These filters are much more stable than
the EKF, and more appropriate to the model formulation we have chosen. How-
ever, contrary to previous use of Kalman filtering on Lie groups to perform robot
localization, we do not have access to any odometer measurements, and we have
to extend the theory presented in [6], to the case when the angular and tangential
velocities are unknown. Another type of filters used to perform estimation are
the particle filters, as in [7], or the Rao-Blackwell particle filter, see [8], however,
we do not want to use any particles for this study, due to the computational cost
they induce.

This paper is organized as follows. In Sect. 2 the kinematic model is pre-
sented. In Sect. 3 we recall the IEKF equations for this model, as described in
[9]. In Sect. 4 we develop the UKF update step and adapt it to fit our IEKF prop-
agation step, the filter obtained will be called the left-UKF. Finally, in Sect. 5
we compare the precision of these two filters, and of the Extended Kalman Filter
when applied to some real drone tracking problems.

2 Kinematic Model

A drone is controlled by some commands activated either automatically or by a
human being. It seems thus natural to consider these control commands piecewise
constant. These commands are expressed in a frame attached to the drone, and
are called intrinsic coordinates. This was already proposed for instance in [3].
Drone positions are known only in range and bearing coordinates (the radar
does not give accurate altitude measurements for this type of target). We thus
need to use a 2D model to derive the evolution equation of the drone. They are
presented in [9] for instance, and they read:

d

dt
θt = ωt + wθ

t ,
d

dt
x
(1)
t = (ut + wx

t ) cos(θt),
d

dt
x
(2)
t = (ut + wx

t ) sin(θt)

d

dt
ωt = 0 + wω

t ,
d

dt
ut = 0 + wu

t

(1)

where θt is the direction of the drone,
(
x
(1)
t , x

(2)
t

)
is its cartesian position, ωt is

the angular velocity and ut is the tangential velocity (also called the norm of the
velocity). All these parameters form the state vector of the drone. wθ

t , wx
t , wω

t , wu
t

are white gaussian noises. The measurement equation writes:

Yn = (rn, αn) + vn = h(x
(1)
tn

, x
(2)
tn

) + vn =

(√
(x

(1)
tn

)2 + (x
(2)
tn

)2, arctan

(
x
(2)
tn

x
(1)
tn

))
+ vn

(2)
rn is called the range coordinate and αn the bearing coordinate. vn is a white
Gaussian noise, with covariance N .

We cast the angle θt in a rotation matrix R(θt) =
(

cos θt − sin θt

sin θt cos θt

)
, which

enables us to work on the matrix Lie group SE(2) with the partial state matrix
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χt and the evolution matrix νt, as in (3).

χt =

⎛
⎜⎝

cos θt − sin θt x
(1)
t

sin θt cos θt x
(2)
t

0 0 1

⎞
⎟⎠ , νt =

⎛
⎝

0 −ωt ut

ωt 0 0
0 0 0

⎞
⎠ (3)

The model evolution thus writes in a more compact way:

d

dt
χt = χt(νt + wχ

t ),
d

dt
ωt = 0 + wω

t ,
d

dt
ut = 0 + wu

t (4)

This kinematic model is used to design two different filters, the Invariant
Extended Kalman Filter, presented in the next Section, and an innovative UKF,
called the left-UKF, explained in Sect. 4.

3 Invariant Extended Kalman Filter Equations

We apply to this model the methodology of the IEKF, as explained in [1,10] for
instance. The method for the particular model (1) is also developed in [9].

We call exp the exponential of the Lie group SE(2), so we have exp: se(2) →
SE(2), with se(2) the Lie algebra of SE(2), for more precision on Lie groups, see
[11]. We also need to define the matrices (5).

At =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 ω̂t 0 1
ût −ω̂t 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

,Hn = ∇hx̂tn
R(θ̂tn)

(
0 1 0 0 0
0 0 1 0 0

)
(5)

The IEKF equations are summarized below.

1. Propagation step:

d

dt
θ̂t = ω̂t,

d

dt
x̂t =

(
cos θ̂t

sin θ̂t

)
ût,

d

dt
ω̂t = 0,

d

dt
ût = 0

d

dt
Pt = AtPt + PtAt + Qt

(6)

2. Update step:

Kn = PtnHn(HnPtnHT
n + N)−1

zn = R(θ̂tn)T (Yn − x̂tn)

e = Knzn, let us call e = (e1, e2, e3, e4, e5)T

χ̂+
tn = χ̂tn exp(e1, e2, e3), ω̂+

tn = ω̂tn + e4, û
+
tn = ûtn + e5

(7)
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The strength of the IEKF is that in a perfect theoretical setting, the lin-
earizations (they intervene in the equations as At for the propagation step and
as Hn for the update step) do not depend on the predicted state (χ̂t, ω̂t, ût). In
the previous equations however, we see that with our model, the matrices At

and Hn depend on the predicted state. For the propagation step, this does not
seem too preoccupying, since At only depends on ω̂t and ût, and not directly
on the position. However, for Hn the problem is different, since it depends on
(x̂(1)

t , x̂
(2)
t ), and we have the same approximation and stability problems as for

the EKF. We then need to find another method to avoid computing the Jacobian
of h. The UKF update step seems appropriate for this (see [12]), we present it
in the next section.

4 Left-UKF Filter

The Unscented Kalman Filter (UKF), see for instance [2], allows to approxi-
mate the posterior (Gaussian) distribution p(X|Y ) thanks to the use of so-called
sigma-points. This UKF is adapted here as in [6] to suit the model formulation,
this adaptation is called the left-UKF (l-UKF). We combine the prediction step
of the IEKF with the update step of the left-UKF.

Instead of performing a linearization of the nonlinear model, the unscented
transform is used to pick a minimal set of sigma points around the mean state.
These sigma points are updated through the nonlinear function h, and a new
mean and covariance are derived from this update.

The idea is to increase the dimension of the state and of its covariance. Let
us call χ̄ the mean of the whole state put in matrix form, that is:

χ̃ =

⎛
⎜⎜⎜⎜⎝

cos θ̄ − sin θ̄ x̄(1) 0 ū
sin θ̄ cos θ̄ x̄(2) ω̄ 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

(8)

Let us define the augmented covariance as P a
n = diag(Pn, N).

We then construct a set of 2L+1 sigma points (in our model L = 7, it is the
dimension of the augmented state) as in (9), and where λ is a scaling factor.

ᾱ = [0T , vT ], α0
n = ᾱ, αi

n = ᾱ +
(√

(L + λ)P a
n

)
i
, i = 1, . . . , L

αi
n = ᾱ −

(√
(L + λ)P a

n

)
i
, i = L + 1, . . . , 2L

(9)

We denote [ξi, vi] = αi
n, and our state at time n is χ̄. Then these sigma points

go through the measurement function h:

yi = h(χ̄ exp ξi) + vi, i = 0, . . . , 2L

The measure is thus ȳ =
∑2L

i=0 W i
syi. The values for the weights W i

s can be
found explicitly in [6].
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The state and covariance are then updated as:

Pyy =
2L∑
i=0

W i
c(yi − ȳ)(yi − ȳ)T , Pαy =

2L∑
i=0

W i
c(αi − ᾱ)(yi − ȳ)T

[ξ̄T , ∗]T = PαyP−1
yy (y − ȳ), χ+ = χ̄ exp(ξ̄)

P+ = P − Pαy(PαyP−1
yy )T

(10)

The final filter, that we call the l-UKF (left-Unscented Kalman Filter), is
composed of the propagation step of the IEKF (Eq. (6)) and of the left-UKF
update step (Eqs. (9) to (10)). This does not interfere with the consistency
properties of the IEKF in the optimal setting, but this allows to get around
the approximations of the measurement functions linearization.

5 Application on Real Drone Flights

In this section, we present results obtained on real drone flights. The data come
from GPS measurements. We have thus added noise by hand, with amplitude
similar to that of real radar noise. The drone positions are only known in 2D, so
our 2D model is well suited for these positions. The IEKF and l-UKF algorithms
can be adapted to 3D range, bearing and elevation measurements. The 3D IEKF
for the target tracking problem is for example presented in [13]. In the model (1),
the tangential and angular velocities (u and ω) were supposed constant. However,
it is not exactly the case in practice, as they are only piecewise constant. The
process noise tuning thus has to be adapted to the amplitude of the variations
of these parameters.

We have compared the EKF with the IEKF and the l-UKF on three different
drone trajectories. The trajectories are presented on Fig. 1, without measurement
noise for better readability. The trajectories were obtained with different types of
drones: a quadcopter drone, a hexacopter drone, and a flying wing drone. Position
estimations and RMSE for the EKF, the IEKF and the l-UKF respectively are
presented on Figs. 2, 3 and 4. The results for the IEKF and the l-UKF are more
precise than that of the EKF. It is mostly visible on the RMSE figures.

Fig. 1. Three different drone trajectories
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We have computed the Root Mean Squared Errors (RMSE) of each parameter
for each trajectory, with the same initialization for an EKF, an IEKF and a l-
UKF. The process noises used for each filtering algorithm and each trajectory
were optimzed by maximising the measurement likelihood, as in [14]. The same
measurement noises are used for all three trajectories. These RMSE results are
presented in Table 1. As we have already seen with the position RMSE plots,
the position estimation precision is better for the IEKF and the l-UKF than for
the EKF. But what is more remarquable is the orientation θ precision. Indeed,
it is notably better for the IEKF and the l-UKF filters. We can also notice
that the l-UKF performs overall slightly better than the IEKF, especially on
orientation, angular and tangential velocities. For the radar application, the
orientation precision is very important, indeed, the orientation parameter gives
the direction of the velocity of the target, and this is needed to refresh the beam
of the radar. This estimation is thus of great impact, and it is very valuable to
have a precise orientation estimation.

Table 1. RMSE for each parameter on 100 Monte Carlo, for each one of the three
trajectories, and for the three algorithms

Algorithm Parameter Trajectory 1 Trajectory 2 Trajectory 3

EKF x(1)(m) 4.6 11 6.0

x(2)(m) 1.9 3.4 2.3

θ (RMSE for 1 − cos θ) 0.45 0.22 0.38

ω(rad/s) 0.34 0.45 0.96

u(m/s) 3.6 3.6 1.7

IEKF x(1)(m) 4.5 7.2 5.3

x(2)(m) 1.9 2.3 2.2

θ (RMSE for 1 − cos θ) 0.34 0.17 0.21

ω(rad/s) 0.30 0.43 0.95

u(m/s) 2.7 3.6 1.4

l-UKF x(1)(m) 4.1 7.6 6.8

x(2)(m) 2.2 2.9 2.8

θ (RMSE for 1 − cos θ) 0.29 0.17 0.23

ω(rad/s) 0.25 0.42 0.95

u(m/s) 2.5 3.2 1.2
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Fig. 2. Estimation and RMSE of the position for the EKF algorithm

Fig. 3. Estimation and RMSE of the position for the IEKF algorithm

Fig. 4. Estimation and RMSE of the position for the l-UKF algorithm
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6 Conclusion

We have considered the drone tracking problem, with 2D range and bearing
measurements. Different filters were tested on three different real drone flights.
The drones were of different types, and we see that the model designed is suited
to all these types of drones. We have shown the l-UKF gives overall better results
than the IEKF, but most important, both filters give better results than the EKF
for the orientation and velocities estimations. The issue of noise tuning is very
important, and the process noise tuning wanted depends on the application.
Indeed, one can be interested in very precise position estimations or on very
precise velocity estimation, or on a balance of the two. For this study, we have
optimized the noises on each trajectory for each filter to compare the filters
with equal treatment. A more robust solution for the noise tuning is to use the
Castella method, see [15], which can be used for all kind of filters. This method
is used to adapt the process noise in real time. The position estimation is thus
more precise, however, this is at the cost of a lesser velocity estimation precision.
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groups. soumis à IROS (2017). https://hal.archives-ouvertes.fr/hal-01489204

7. Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson,
R., Nordlund, P.-J.: Particle filters for positioning, navigation, and tracking. IEEE
Trans. Signal Process. 50(2), 425–437 (2002)

8. Doucet, A., De Freitas, N., Murphy, K., Russell, S.: Rao-blackwellised particle fil-
tering for dynamic bayesian networks. In: Proceedings of the Sixteenth conference
on Uncertainty in Artificial Intelligence, pp. 176–183. Morgan Kaufmann Publish-
ers Inc. (2000)
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Abstract. In the present paper we consider a class of partially observed
dynamical systems. As in the Rao-Blackwellized particle filter (RBPF)
paradigm (see e.g., Doucet et al. 2000), we assume the state x can be
broken into two sets of variables x = (z, r) and has the property that
conditionally on z the system’s dynamics possess geometrical contraction
properties, or is amenable to such a system by using a nonlinear observer
whose dynamics possess contraction properties. Inspired by the RBPF we
propose to use particles to approximate the r variable and to use a simple
copy of the dynamics (or an observer) to estimate the rest of the state.
This has the benefits of 1- reducing the computational burden (a particle
filter would sample the variable x also), which is akin to the interest of
the RBPF, 2- coming with some indication of stability stemming from
contraction (actual proofs of stability seem difficult), and 3- the obtained
filter is well suited to systems where the dynamics of x conditionally on
z is precisely known and the dynamics governing the evolution of z is
quite uncertain.

1 A Primer on Contraction Theory

1.1 Background on Contraction Theory

Consider a Riemannian manifold (M, g), where g denotes the metric. Consider
local coordinates. In the present paper, we will simplify the exposure by system-
atically assuming that M = R

n. The squared infinitesimal length is given by
the quadratic form:

‖dx‖2 =
∑

1≤i,j≤n

gij(x)dxidxj

The matrix G = (gij)1≤i,j≤n is called the Riemannian metric tensor and it
generally depends on x. Now, consider the continuous time deterministic system
described by the following ordinary differential equation (ODE) on R

n:

d

dt
x = f(x), (1)

c© Springer International Publishing AG 2017
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with f a smooth nonlinear function satisfying the usual conditions for global
existence and unicity of the solution. For a detailed proof of the following theo-
rem, see e.g., Pham and Slotine (2013).

Theorem 1 (Lohmiller and Slotine (1998)). Let Jf (x) denote the Jacobian
matrix of f(x). Assume that M(x) = GT (x)G(x) is uniformly positive defi-
nite, and that G(x)Jf (x)G−1(x) is uniformly negative definite, then all trajec-
tories exponentially converge to a single trajectory. Moreover, the convergence
rate is equal to λ > 0 which is the supremum over x of the largest eigenvalue of
G(x)Jf (x)G−1(x). More precisely, if a(t) and b(t) are two trajectories of (1),
we have:

dg(a(t), b(t)) ≤ dg(a(0), b(0))e−2λt,

where dg denotes the Riemannian distance associated to metric g.

1.2 Nonlinear Observers for Contracting Systems

Consider the system (1) where x(t) ∈ R
N , with partial observations

y(t) = h(x(t)), (2)

The goal of observer design, is to estimate in real time the unknown quantity
x(t) with the greatest possible accuracy given all the measurements up to current
time t. Assume that for a class of functions y(t), the dynamics

d

dt
z = f(z) + K(z, y)(y − h(z)) (3)

can be proved to be contractive with rate λ > 0. Then, the observer for the
system (1) and (2) defined by

d

dt
x̂ = f(x̂) + K(x̂, y)(y − h(x̂)), (4)

possesses convergence properties. Indeed, as the simulated x̂(t) and the true
trajectory x(t) are both solutions of Eq. (3), Theorem 1 applies and we have:

dg(x̂(t), x(t)) ≤ dg(x̂(0), x(0))e−2λt.

2 The Basic Particle Observer

2.1 The Rao-Blackwellized Particle Filter (RBPF)

Consider a (discrete) Markov process rt of initial distribution p(r0) and tran-
sition equation p(rt | rt−1). The variable rt is hidden, and assume we have as
observation a random variable yt at time t, which is correlated with rt. The
observations are assumed to be conditionally independent given the process rt.
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The goal of discrete time filtering is to infer online the hidden variables from the
observations, that is, to compute:

p(rt | y1:t), where y1:t = {y1, · · · , yt},

or more generally p(r1:t | y1:t). Assume now, that we also want to infer another
related process zt, such that p(zt | y1:t, r1:t) can be analytically evaluated. This
is typically the case using a Kalman filter when conditionally on r the system is
linear and Gaussian. A simple version of the RBPF is given by Algorithm1.

Algorithm 1. RBPF with prior sampling (see e.g., Doucet et al. 2000)
Draw N particles from the prior initial distribution p(r0)
loop

Sample from the prior

r
(i)
t ∼ p(rt | r

(i)
t−1), and let r

(i)
1:t =

(
r
(i)
t , r

(i)
1:t−1

)

Evaluate and update weights

w
(i)
t = p(yt | y1:t−1, r

(i)
1:t) w

(i)
t−1

Normalize weights

w̃
(i)
t =

w
(i)
t

[
∑

j w
(j)
t ]−1

The estimate of the expected value E (F (z, r)) of any function F is

∑
i

w̃
(i)
t E

p(zt|y1:t,r(i)1:t)

(
F (r

(i)
t , zt)

)

Resample if necessary, i.e., duplicate and suppress particles to obtain N random
samples with equal weights (i.e., equal to 1/N).

end loop

2.2 The Particle Observer for Conditonnally Contracting Systems

Consider a noisy dynamical system of the form

d

dt
z = f(z, r) (5)

d

dt
r = g(r) + w(t) (6)

where f , g are smooth maps, w(t) is a process noise, and we have an initial
prior distribution π0(z, r) at time t = 0. Assume one has access to discrete time
uncertain measurements yn = h(ztn , rtn) + Vn at times t0 < t1 < t2 < · · · , and
where Vn are unknown independent identically distributed random variables with
known density l, that is, p(y | z, r) = l(y − h(z, r)). We introduce the following
definition.
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Definition 1. The system (5) and (6) is said to be a contraction conditionally
on z if Eq. (5) is a contraction when r(t) is considered as a known input.

The rationale of our particle observer is as follows. If r(t) were known, then,
all trajectories of the system (5) would converge to each other due to the
conditional contraction properties we assume. Thus, if we call ẑ(t) a solution
of (5) associated to some trajectory {r(t)}t≥0, then asymptotically we have
p(z(t) | {r(s)}0≤s≤t) ≈ δ(z(t) − ẑ(t)), which means that contrarily to the RBPF
paradigm we can not compute the conditional distributions in closed form but
we have access to relevant approximations to them. Thus, letting (ẑ(i)t , r

(i)
t ) be

a solution to the stochastic differential Eqs. (5) and (6), we have the following
approximations that stem from the partial contraction properties of the system:

p(zt | y1:t, r
(i)
1:tn

) ≈ δ(zt − ẑ
(i)
t ), p(ytn | y1:tn−1 , r

(i)
1:tn

) ≈ l(ytn − h(ẑ(i)tn , r
(i)
tn )).

Thus, resorting to those approximation, and applying the RBPF methodology
to the above system (5) and (6) we propose the following Algorithm2.

Algorithm 2. The PO with prior sampling

Draw N particles (z
(1)
t0

, r
(1)
t0

), · · · , (z
(N)
t0

, r
(N)
t0

) from the prior initial distribution π0(z, r)
loop

Sample (z
(i)
tn

, r
(i)
tn

) from the prior by numerically integrating the stochastic differential
Eqs. (5) and (6) from time tn−1 to tn.
Evaluate and update weights

w
(i)
t = l(ytn − h(z

(i)
tn

, r
(i)
tn

)) w
(i)
t−1.

Numerically enforce that at least one weight is not equal to zero (i.e., if all weights

are zero, set e.g. w
(1)
t = 1).

Normalize weights

w̃
(i)
t =

w
(i)
t

[
∑

j w
(j)
t ]−1

.

The estimate of the expected value E (F (z, r)) of any function F is approximated by

∑
i

w̃
(i)
t F (r

(i)
t , z

(i)
t )

In particular the state is approximated by

∑
i

w̃
(i)
t (r

(i)
t , z

(i)
t )

Resample if necessary, i.e., duplicate and suppress particles to obtain N random
samples with equal weights (i.e., equal to 1/N).

end loop
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2.3 Some Comments on the Choice of Model

The relevance of system (5) and (6) is debatable, for the two following reasons.
First, it might be surprising that the dynamics of z conditionally on r be deter-
ministic, whereas the dynamics of r be noisy. Second, because it is rare to find
systems that are naturally (conditionally) contracting. Both issues will be partly
addressed in the extensions outlined in the sequel. At this stage, we can make
the following comments regarding the first issue. Assume both Eqs. (5) and (6)
to be noisy. Then, thanks to the contraction property, the asymptotic distri-
bution of z(t) conditionally on r(t) is not very dispersed if the process noise
is moderate, see Pham et al. (2009). So the method may yield good results in
practice. Assume on the other hand, both Eqs. (5) and (6) to be deterministic.
Then, it is hopeless to estimate and track efficiently the state with a (RB) par-
ticle filter, as the state space will not be explored adequately. Indeed, because
multiple copies are produced after each resampling step, the diversity of the par-
ticle system decreases to a few points, which can be very different from the true
state. To solve this degeneracy problem, the regularized particle filter was pro-
posed in Musso and Oujdane (1998). Albeit debatable, this technique may yield
good results in practice. Following this route, we can postulate noisy Eq. (6) to
implement our particle filter.

Remark 1. Note that, here we do not deal with parameter identification, as
in e.g., Saccomani et. al (2003). Although this might look similar, r(t) is not a
parameter, preventing us to directly apply the results of e.g., Wills et. al (2008)

3 A Chemical Reactor Example

3.1 Retained Model

Consider the exothermic chemical reactor of Adebekun and Schork (1989). It
was shown in Lohmiller and Slotine (1998) that, if the temperature T is known,
and thus can be considered as an input, then the system is a contraction. But to
achieve best performance, and filter the noise out of the temperature measure-
ments, the temperature should be considered as a (measured) part of the state
as in Adebekun and Schork (1989). This leads to a system that is not a contrac-
tion. To make our point, we even propose to slightly modify the temperature
dynamics to make it clearly unstable, yielding the more challenging following
system:

d

dt
I =

q(t)
V

(If − I) − kde
− Ed

RT (t) I (7)

d

dt
M =

q(t)
V

(Mf − M) − 2kpe
− Ed

RT (t) M2I (8)

d

dt
P =

q(t)
V

(Pf − P ) + kpe
− Ed

RT (t) M2I (9)

d

dt
T = βT + σ2w(t) (10)
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where w(t) is a white Gaussian standard noise, and σ2 > 0 a parameter encoding
the noise amplitude. Letting Vn ∼ N (0, 1) a random standard centered Gaussian,
we assume discrete temperature measurements of the form:

yn = T (tn) + σ1Vn. (11)

Lohmiller and Slotine (1998) already proved the system is contracting condition-
ally on T (t). Thus, we can use the method described in Algorithm 2.

3.2 Simulation Results

The true system is simulated according to the Eqs. (7), (8), (9) and (10) where
we turned the noise off in Eq. (10) (this means we started from a noise-free
system for which the RBPF would not work properly, and used the regularization
technique discussed at Sect. 2.3). The noisy output (11) was also simulated,
where an observation is made every 5 steps. We chose σ̃2 = 0.1. Density l is
dictated by the observation noise, that is, l(u) = 1

σ1
√
2π

exp(− u2

2σ2
1
) with σ1 = 1K.

To apply our methodology, we assume that we have plausible physical upper
bounds on the concentrations inside, and denote them by Imax,Mmax, Pmax and
we let π0 be the uniform distribution on the hyperrectangle [0, Imax]×[0,Mmax]×
[0, Pmax] with a Dirac on the measured initial temperature. In the simulation,
all those upper bounds are set equal to 4 mol. q(t)

V and T (t) are slowly oscillating

around 1 min−1 and 300K, we have kde
+

Ed
RT (t) ≈ 0.8 min−1 and kpe

+
Ed

RT (t) ≈
0.2L mol−1 min−1. We also let β = 0.01 min−1.

Fig. 1. Left: True concentrations (dashed lines) and trajectories of the 15 particles.
We see the effect of resampling, that refocuses the bundle of trajectories on the fittest
ones, when too many become unlikely. Right: True concentrations (dashed lines), and
estimates of the particle observer (solid lines).
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Fig. 2. True (solid line), measured (noisy line), estimated (dashed line, output by the
RBPO) temperatures.

N=15 particles are used (which results in a very cheap to implement particle
filter, as each particle is associated only to a naive observer). We resampled1 each
time the number of effective particles 1/(

∑M
1 w2

j ) drops below N/4, i.e., 25% of
the total population. The resampling step is necessary, so that all particles grad-
ually improve their estimation of the temperature, allowing the concentrations
to be well estimated in turn.

The noise is efficiently filtered and all values asymptotically very well recov-
ered, although a very reduced number of particles is used (15 observers are
running in parallel) and measured temperature is noisy. See Figs. 1 and 2.

4 Conclusion

We have proposed a novel method to estimate the state of a class of dynamical
systems that possess partial contraction properties. The method has successfully
been applied to a chemical reactor example. Possible extensions are twofold.
First, if Eq. (5) is noisy, one can use the same RBPO. Using the result of Pham
et al. (2009), Pham and Slotine (2013), we can have an approximation of the
asymptotic variance associated to the distribution p(z(t) | {r(s)}0≤s≤t). Thus,
a Gaussian approximation to this distribution can be leveraged to implement a
RBPF. Second, if f is not contracting conditionally on r, but, is amenable to it

1 i.e., draw N particles from the current particle set with probabilities proportional to
their weights; replace the current particle set with this new one. Instead of setting
the weights of the new particles equal to 1/N as in the standard methodology, we
preferred in the simulations to assign them their former weight and then normalize.
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using an observer of the form

d

dt
z = f(z) + K(z, y, r)(y − h(z)),

then the method may still be applied.
The ideas introduced in this short paper might also be applied to differentially

positive systems Forni and Sepulchre (2016), Bonnabel et al. (2011). In the
future, we would also like to study the behavior of particle filters for systems
with contraction properties. A starting point could be to seek how to use the
recent results of Pham et al. (2009), Pham and Slotine (2013), Tabareau et. al
(2010) on stochastic contraction.
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Abstract. This paper considers sigma point Kalman filtering on matrix
Lie groups. Sigma points that are elements of a matrix Lie group are gen-
erated using the matrix exponential. Computing the mean and covariance
using the sigma points via weighted averaging and effective use of the
matrix natural logarithm, respectively, is discussed. The specific details
of estimating landmark locations, and the position and attitude of a
vehicle relative to the estimated landmark locations, is considered.

Keywords: Estimation · Sigma-point Kalman filtering · Matrix lie
group · Simultaneous localization and mapping

1 Introduction

The extended Kalman filter (EKF) [1, pp. 54–64], sigma point Kalman filter
(SPKF) [2], particle filter [1, pp. 96–113], and other approximations of the Bayes
filter [1, pp. 26–33], assume the system state is an element of a vector space, such
as R

nx , where nx is the state dimension. When the system state space is an ele-
ment a matrix Lie group, such as the special orthogonal group, denoted SO(3),
the EKF, SPKF, etc., are not directly applicable. This paper investigates SPKF-
ing on matrix Lie groups. After reviewing the sigma point transformation (SPT) it
is generalized and used to estimate means and covariances of nonlinear functions
with states that are elements of a matrix Lie group. Next, the matrix Lie group
SPT is used to construct a SPKF leading to the matrix Lie group SPKF (MLG
SPKF). For simplicity of exposition, the unscented transformation (UT) [3] is the
specific SPT used in all derivations, although the term SPT is retained throughout
the paper. Particular attention is paid to how to compute the weighted average of
sigma points when the underlying matrix Lie group is SO(3). This is particularly
relevant in robotics applications where vehicles can rotate in space. Two methods
to compute a weighted mean on SO(3) are discussed, one that employs a singular
value decomposition, and another based on [4]. The method of [4] is popular in
the aerospace community and, perhaps more importantly, the weighted averaging
employed in [4] is computationally simple.
c© Springer International Publishing AG 2017
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The papers [4–8] are closest to the present work. The work of [4] employes a
parameterization of SO(3), but in doing so, a simple way to compute the mean
of a set of sigma points is derived. The papers [5,6] also present SPKFs (and, to
be more specific, UKFs) for systems with states that are elements of nonlinear
manifolds. The formulations presented in [5,6] are similar to the formulation in
the present paper, but with some differences, such as how the correction step is
realized, and how the weighted mean of sigma points is computed in the special
case that the matrix Lie group is SO(3). The papers [7,8] share similarities to the
present work also. In particular, although [7] is specific to the special Euclidian
group, denoted SE(3), the way uncertainty is propagated and the way sigma
points are generated is the same to what is presented in this paper. Additionally,
[7] proposes an iterative method to fuse multiple poses in order to compute a
mean pose, while computing the mean attitude, which is an element of SO(3),
using alternative methods is discussed in this paper. In [8] SPKFing on matrix
Lie groups is also considered. In [8] both left and right Gaussian distributions
on the matrix Lie group are considered, while [7] and the present work only
consider right Gaussian distributions. The most significant difference between
[8] and the present work is the way the mean is computed in the prediction
step of the filter. In [8] the mean of the previous step is propagated using the
process model input in a noise-free manner, while herein the mean is computed
using sigma points generated using the prior state covariance and process model
noise covariance. Finally, the proposed MLG SPKF is applied to the problem
of simultaneous localization and mapping (SLAM), a challenging problem not
considered in [4–8]. This paper essentially combines and applies the results of
[4–8] to the SLAM problem with particular attention being paid to computing
the mean attitude from a set of sigma points.

2 The Sigma Point Transformation

The SPKF can be best understood in terms of approximating [2, p. 81] [9, p. 128]

E[f(xk)] =

∫ ∞

−∞
f(xk)p(xk)dxk, (1)

E
[
(f(xk) − E[f(xk)])(f(xk) − E[f(xk)])

T
]
=

∫ ∞

−∞
(f(xk) − E[f(xk)])(f(xk) − E[f(xk)])

T
p(xk)dxk, (2)

using a sigma point transformation. The probability density function p(xk) is
assumed to be Gaussian, denoted N (x̂k,Pk), where x̂k ∈ R

nx is the mean, Pk ∈
R

nx×nx is the covariance, and nx is the dimension of xk. Using a Cholesky decom-
position, Pk = SkSTk where Sk is lower-triangular and Sk = [s1,k · · · si,k · · · sL,k],
a set of sigma points are computed as X 0,k = x̂k, X i,k = x̂k +

√
L + κ si,k,

and X i+L,k = x̂k − √
L + κ si,k where i = 1, . . . , L and L = nx. Passing

the sigma points through the nonlinear function f(·) results in X+
i,k = f(X i,k),

i = 0, . . . , 2L. The mean, x̂+k , and covariance, P+
k , are then approximated as

x̂+k =
2L∑

i=0

wiX+
i,k, P+

k =
2L∑

i=0

wi

(
X+

i,k − x̂+k
)(

X+
i,k − x̂+k

)T

, (3)
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where wi are weights of the form w0 = κ/(κ + L) and wi = 1/(2κ + 2L). The
unscented transformation [3] is the specific sigma point transformation used in
this paper, but there are other sigma point transformations. See [2, Chap. 5],
[9, Chap. 5], or [10].

3 Matrix Lie Groups

A matrix Lie group, denoted G, is composed of full rank, and therefore invertible,
n×n matrices that is closed under matrix multiplication [11, p. 98]. The matrix
Lie algebra associated with a matrix Lie group, denoted g, is the tangent space
of G at the identity, denoted T1G. The tangent space of G at a point X ∈ G is
denoted TXG. The matrix Lie algebra is a vector space closed under the operation
of the matrix Lie bracket defined by [A,B] = AB − BA, ∀A,B ∈ g. Moreover,
XAX−1 ∈ g ∀X ∈ G, ∀A ∈ g [11, p. 98]. Let {B1, . . . ,Bn} be a basis for the
matrix Lie algebra, called the generators, so that any A ∈ g can be written
A = S(a) =

∑n
i=1 aiBi where a = [a1, . . . , an]T ∈ R

n is the column matrix of
coefficients associated with A [12]. The definition of S : R

n → g naturally leads
to the definition of the inverse operation S−1 : g → R

n. The matrix Lie group G
and its associated matrix Lie algebra are related through the matrix exponential
and matrix natural logarithm. Specifically, exp(·) : g → G, ln(·) : G → g so that
exp(ln(X)) = X, ∀X ∈ G [13, p. 19].

4 The Sigma Point Transformation on Matrix Lie Groups

Let N (X̂k,Pk) denote a Gaussian distribution with mean X̂k ∈ G and covariance
Pk ∈ R

nx×nx where nx is the dimension of g. A realization, also referred to
as a sample, from N (X̂k,Pk) must respect the group structure of G. Herein
realizations are generated using the matrix exponential [7,14]. Specifically, using
S(ξk) ∈ g where ξi ∈ R

nx and ξi ∼ N (0,Pk), a realization is generated via
Xk ← exp(S(ξk))X̂k.

The task at hand is to compute the mean and covariance of a nonlinear
function f : G → G where G is a matrix Lie Group. Starting with N (X̂k,Pk),
a Cholesky decomposition Pk = SkSTk where Sk is lower-triangular and Sk =
[s1,k · · · si,k · · · sL,k], is used to generate sigma points. In particular, X 0,k = X̂k,
X i,k = exp

(√
L + κ S(si,k)

)
X̂k, X i+L,k = exp

(−√
L + κ S(si,k)

)
X̂k, where i =

1, . . . , L and L = nx. The sigma points are passed through the nonlinear function
f(·) resulting in X+

i,k = f(X i,k), i = 0, . . . , 2L. The mean and covariance, X̂+
k and

P+
k , respectively, cannot be computed using (3) because adding or subtracting

elements of G does not yield an element of G. The mean can be computing by
solving

X̂+
k = arg min

Xk∈G

2L∑

i=0

wid
2(X+

i,k,Xk), (4)
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where d(·, ·) denotes distance on G. Usually d(·, ·) is the geodesic distance but,
as discussed in [15,16], it is possible to employ alternative distance measures.
For instance, when the matrix Lie group is SO(3) the chordal distance may be
employed over the geodesic distance. Although [5] suggest solving (4) as well,
a detailed discussion on how to go do so is not provided. On the other hand,
[6,7,14] proposes finding a solution to (4) in a similar manner to [17,18], that
is, in an iterative manner.

The covariance is computed by first defining exp(S(ei,k)) ∈ G where S(ei,k) ∈
g and ei,k ∈ R

nx such that X+
i,k = exp(S(ei,k))X̂+

k , where X̂+
k is the solu-

tion to (4). The term exp(S(ei,k)) can be thought of as the difference or error
between sigma point X+

i,k and the mean X̂+
k . Using the matrix logarithm and

S−1, each column matrix ei,k, i = 0, . . . , 2L, can be computed via exp(S(ei,k)) =
X+

i,k(X̂+
k )−1, S(ei,k) = ln(X+

i,k(X̂+
k )−1), ei,k = S−1(ln(X+

i,k(X̂+
k )−1)). It follows

that the covariance can be approximated as P+
k =

∑2L
i=0 wiei,keTi,k.

5 Specific Use of the Sigma Point Transformation
for State Estimation on Matrix Lie Groups

Consider the nonlinear process and measurement models

Xk = fk−1(Xk,uk−1,wk−1), wk ∼ N (0,Qk), (5)
yk = gk(Xk, vk), vk ∼ N (0,Rk), (6)

where Xk ∈ G, uk ∈ R
nu , wk ∈ R

nw , yk ∈ R
ny and vk ∈ R

ny . The process and
measurement models could alternatively have uk ∈ G, wk ∈ G, yk ∈ G, and
vk ∈ G.

To estimate Xk using the SPKF, the properties of the group G must be
respected. The state estimation procedure starts with definition of zk−1 =[
(S−1(ln(X̂k−1)))T 0T

]T
, and Yk−1 = diag {Pk−1,Qk−1} . Using a Cholesky

decomposition, let Yk−1 = Sk−1STk−1 where Sk−1 = [s1,k−1 · · · sL,k−1] is lower

triangular. Further partition each s1,k−1 as si,k−1 =
[
sTi,k−1,x sTi,k−1,w

]T
where

si,k−1,x ∈ R
nx and si,k−1,w ∈ R

nw . The sigma points are then computed as

Z0,k−1 =

[
S−1(ln(X̂k−1))

W0,k−1

]
, Zi,k−1 =

[
S−1(ln(exp(

√
L + κ S(si,k−1,x))X̂k−1))

W0,k−1 +
√

L + κsi,k−1,w

]
,

Zi+L,k−1 =

[
S−1(ln(exp(−

√
L + κ S(si,k−1,x))X̂k−1))

W0,k−1 −
√

L + κsi,k−1,w

]
.

Partitioning the i = 0, . . . , 2L sigma points, Zi,k−1 = [(S−1(ln(X i,k−1)))T

WT
i,k−1]

T, where X i,k−1 = exp(
√

L + κ S(si,k−1,x))X̂k−1 for i = 1, . . . , L

and X i,k−1 = exp(−√
L + κ S(si,k−1,x))X̂k−1 for i = L + 1, . . . , 2L, and

passing them through the nonlinear motion model in conjunction with uk−1

gives X−
i,k = fk−1(X i,k−1,uk−1,W i,k−1), i = 0, . . . , 2L. The prediction
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step is completed by computing the predicted state and covariance in a weighted
fashion that respects the group structure of G. As discussed in Sect. 4,

X̂−
k = arg min

Xk∈G

2L∑
i=0

wid
2
(X−

i,k,Xk), P−
k =

2L∑
i=0

wie
−
i,ke

−T
i,k , where e−

i,k = S−1
(ln(X−

i,k(X̂
−
k )

−1
)).

To execute the correction step, define z−
k =

[
(S−1(ln(X̂−

k )))T 0T
]T

, and Y−
k =

diag
{
P−

k ,Rk

}
, where L = nx +ny. Partition Y−

k using Cholesky decomposition,

Y−
k = S−

k S
−
k

T
, where S−

k is lower triangular, and s−j,k is the jth column of S−
k .

Moreover, partition the columns of S−
k as s−j,k =

[
(s−j,k,x)T (s−j,k,y)T

]T
. Compute

a set of sigma points via

Z0,k =
[
S−1(ln(X̂−

k ))
V0,k

]
, Z−

j,k =

[
S−1(ln(exp(

√
L + κ S(s−j,k,x))X̂−

k ))
V0,k +

√
L + κs−j,k,y

]
,

Zj+L,k =

[
S−1(ln(exp(−√

L + κ S(s−j,k))X̂−
k ))

V0,k − √
L + κs−j,k,y

]
.

Partitioning the sigma points as Z−
j,k =

[
(S−1(ln(X−

j,k)))T VT
j,k

]T
where X−

j,k =

exp(
√

L + κ S(s−j,k,x))X̂−
k for j = 1, . . . , L and X−

j,k = exp(−√
L + κ S(s−j,k))X̂−

k

for j = L + 1, . . . , 2L, and passing the sigma points through the nonlin-
ear observation model yields Yj,k = gk(X−

j,k,Vj,k), j = 0, . . . , 2L. The pre-
dicted measurement and its covariance are ŷk =

∑2L
j=0 wjYj,k and Vk =

∑2L
j=0 wj (Yj,k − ŷk) (Yj,k − ŷk)T, where wj are weights. The matrix Uk is com-

puted as Uk =
∑2L

j=0 wjej,k (Yj,k − ŷk)T, where ej,k = S−1(ln(X−
j,k(X̂−

k )−1)),
and Kk = UkV

−1
k . Defining δξk = Kk(yk − ŷk) so that S(δξk) ∈ g, it follows that

X̂k = exp(δξk)X̂−
k , Pk = P−

k − UkV
−1
k UT

k . (7)

In [5] the correction is not computed on G, but rather in TX̂−
k
G, while [6,8]

corrects in the same way as given in (7).

6 Application to Simultaneous Localization and Mapping

The MLG SPKF will now be applied to a popular problem in robotics, namely
the SLAM problem. Estimating attitude and position of a vehicle relative to
known landmarks is referred to as localization. When landmarks are not a priori
known, creating a map of observed landmarks and, at the same time, localizing
the vehicle relative to the map created, is referred to as SLAM. Consider a rigid-
body vehicle endowed with a body-fixed frame, denoted Fb, able to rotate relative
to a datum frame, denoted Fa. The matrix Cba ∈ SO(3) describes the attitude
of Fb relative to Fa, where SO(3) =

{
C ∈ R

3×3 | CTC = 1, detC = +1
}

is the
special orthogonal group [19]. In the aerospace community the matrix Cba ∈
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SO(3) is referred to as the direction cosine matrix (DCM) [20, p. 8]. The matrix
Lie algebra associated with SO(3), denoted so(3), is the vectors space of 3 × 3
skew-symmetric matrices so(3) =

{
S ∈ R

3×3 | S = −ST
}

. In particular, define
(·)× : R

3 → so(3) where y×z = −z×y, ∀y, z ∈ R
3, defines the typical cross

product operation, and (·)v : so(3) → R
3 such that (z×)v = z, ∀z ∈ R

3. The
DCM Cba can be written using axis/angle parameters as Cba = exp(−φa×) =
cos φ1 + (1 − cos φ)aaT − sin φa×, where φ ∈ R and a ∈ R

3 where aTa = 1.
The matrix exponential and matrix logarithm are defined as exp(−φ×) = Cba

and ln(Cba) = −φ× so that exp(ln(Cba)) = Cba where φ = φa is the rotation
vector (or, strictly speaking, the rotation column matrix). The negative sign in
the matrix exponential, and the“− sin φa×” term in Cba, follows the aerospace
convention of describing attitude in terms of the Fb relative to Fa [20, p. 12,
p. 32]. Consider two arbitrary points, points z and w. Let the position of point
z relative to point w resolved in Fa be denoted rzw

a . The relationship between
rzw
a ∈ R

3 and rzw
b ∈ R

3 is given by rzw
b = Cbarzw

a .

6.1 The Process and Measurement Models

Consider a robotic vehicle that can rotate and translate in space. Denote the
body-fixed frame associated with the vehicle by Fb, and the datum frame by Fa.
Assume the vehicle is equipped with two interoceptive sensors, an accelerometer
and rate gyro, located at point z on the vehicle. Assume also the vehicle is
equipped with an exteroceptive sensor located at point z on the vehicle that is
able to observe and identify landmarks p1, . . . , p� where � ∈ N relative to point
z, such as a camera. Let point w be another point. Point z can be thought of as
the “origin” of Fb while point w can be though of as the “origin” of Fa.

Accelerometer, Rate Gyro, and the Process Model — The discrete-time
relationship between the position, velocity, and the accelerometer measurement
u1bk

∈ R
3 is

rzkw
a = r

zk−1w
a + T v

zk−1w/a
a , vzkw/a

a = v
zk−1w/a
a + TCT

bk−1a(u
1
bk−1

+ w1
bk−1

) − T ga, (8)

where T = tk − tk−1, rzkw
a is the position of point z relative to point w resolved

in Fa at time tk, vzkw/a
a ∈ R

3 is the velocity of point z relative to point w
with respect to Fa resolved in Fa at time tk, ga ∈ R

3 is Earth’s gravitational
acceleration resolved in Fa, and w1

bk
∈ R

3 is noise.
The discrete-time relationship between attitude and the rate-gyro measure-

ment u2bk
∈ R

3 is

Cbka = exp(−ψ×
k−1)Cbk−1a, (9)

where ψk−1 = Tu2bk−1
+ Tw2

bk−1
, w2

bk
is noise.

Let r
pjk

w
a ∈ R

3 denote the position of landmark j ∈ {1, · · · , �} relative to
point w, resolved in Fa. The process model associated with r

pjk
w

a is

r
pjk

w
a = r

pjk−1w
a + Twpj

k , ∀j ∈ {1, · · · , �}, (10)
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where wpj

k is noise. This random-walk process model is used to ensure the pre-
diction step of the filter is not overconfident. An interpretation of such a process
model is that the landmarks are assumed to be moving very slowly. A similar
approach is taken when estimating bias in sensors [4].

Combining (8), (9), and (10) results in

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

rzkw
a

vzkw/a
a

−(ln(Cbka))v

r
p1k

w
a

...
r
p�k

w
a

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

rzk−1w
a + Tvzk−1w/a

a

vzk−1w/a
a + TCT

bk−1a(u1bk−1
+ w1

bk−1
) − Tga

−(ln(exp(−ψ×
k−1)Cbk−1a))v

r
p1k−1w
a + Twp1

k
...

r
p�k−1w
a + Twp�

k

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

the discrete-time process model.

Camera and the Measurement Model — Let A = {1, · · · , �} denote the
set of all landmark indices and let Ik = {1, · · · , q} ⊆ A, q ≤ �, denote the
set of all landmarks observed from time t = 0 to time t = kT . Further, let
Ok = {α, · · · , ζ} ⊆ A denote the set of landmarks observed at time t = kT . The
exteroceptive sensor measures yi

bk
= Cbka(rpiw

a − rzkw
a ) + vi

bk
where rpiw

a ∈ R
3 is

unknown but constant and vi
bk

∈ R
3 is noise. Combining all exteroceptive mea-

surements together to yields yk = gk(rzkw
a ,Cbka, rpαw

a , · · · , rpζw
a , vα

bk
, · · · , vζ

bk
).

6.2 MLG SPKF Applied to the SLAM Problem

To be concise, let r̂k−1 = r̂zk−1w
a , v̂k−1 = vzk−1w/a

a , Ĉk−1 = Ĉbk−1a, and m̂j
k−1 =

r̂pj,k−1w
a ∀j ∈ Ik−1. As discussed in Sect. 5, to execute the prediction step, first

define zk−1 and Yk−1 where L = 15 + 6q. Decomposing Yk−1 using a Cholesky
decomposition, forming sigma points, and passing the sigma points through the
nonlinear process model in conjunction with the measurements u1bk−1

and u2bk−1

gives

R−
i,k = Ri,k−1 + TVi,k−1, V−

i,k = V i,k−1 + TCT
i,k−1(u

1
bk−1

+ W1
i,k−1) − Tga,

C−
i,k = exp(−ψ×

k−1)Ci,k−1, where ψk−1 = Tu2bk−1
+ TW2

i,k−1,

Mj−
i,k = Mj

i,k−1 + TWpj

i,k−1, ∀j ∈ Ik−1.

Using weights wi it follows that r̂−
k =

∑2L
i=0 wiR−

i,k, v̂−
k =

∑2L
i=0 wiV−

i,k, m̂j−
k =

∑2L
i=0 wiMj−

i,k , ∀j ∈ Ik−1. On the other hand, computing Ĉ−
k must be done with

care. One way to compute Ĉ−
k is to solve

Ĉ−
k = arg min

Ck∈SO(3)

2L∑

i=0

wid
2(C−

i,k,Ck) (12)
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in an iterative manner [17,18]. Details of alternative methods to compute Ĉ−
k

are discussed in Sect. 6.3. The covariance P−
k is

P−
k =

2L∑
i=0

wiE−
i,kE−T

i,k , where E−
i,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R−
i,k − r̂−k

V−
i,k − v̂−k
ξ−
i,k

M1−
i,k − m̂1−

k

.

.

.

Mq−
i,k − m̂q−

k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and ξ−
i,k = −(ln(C−

i,kĈ
−T
k )) v.

When a landmark, such as mj
k, is first observed, it is initialized as

m̂j−
k = Ĉ−T

k yj
bk

+ r̂−
k , ∀j ∈ Ok, and the covariance is augmented as P−

k =[
P−

k P−
xkm

j
k

P−T

xkm
j
k

P−
mj

km
j
k

]
, where P−

mj
km

j
k

=
∑2L

i=0 wi(Mj
i,k −m̂j−

k )(Mj
i,k −m̂j−

k )T, P−
xkm

j
k

=

∑2L
i=0 wiE−

i,k(Mj
i,k − m̂j−

k )T, and Mj
i,k = C−T

i,k y
j
bk

+ R−
i,k.

Following Sect. 5, to execute the correction step, define zk and Y−
k where

L = 9+3q+3o, and o is the cardinality of Ok. Recall that the discretized extero-
ceptive measurement model is yk = gk(rzkw

a ,Cbka, rpαw
a , · · · , rpζw

a , vα
bk

, · · · , vζ
bk

).
Decomposing Y−

k using a Cholesky decomposition, forming sigma points, and
passing the sigma points through exteroceptive measurement model results in
Yj,k = gk(R−

j,k,C−
j,k,Mα−

j,k , · · · ,Mζ−
j,k ,N−

j,k), j = 0, . . . , 2L. The predicted
measurement and associated covariance are then ŷk =

∑2L
j=0 wjYj,k, and

Vk =
∑2L

j=0 wj (Yj,k − ŷk) (Yj,k − ŷk)T . The matrix Uk is computed in a similar
way to P−

k , that is

Uk =
2L∑

j=0

wjE−
j,k

(Yj,k − ŷk

)T
where E−

j,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R−
j,k − r̂−

k

V−
j,k − v̂−

k

ξ−
j,k

M1−
j,k − m̂1−

k

.

.

.

Mq−
j,k − m̂q−

k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where ξ
−
j,k = − ln(C−

j,kĈ
−T
k )

v
.

It follows that the Kalman gain is Kk = UkV
−1
k . To correct the state estimate

first define δχk = Kk(yk − ŷ−
k ) where

δχk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

δχk,r

δχr,v

δξk

δξk,m1

...
δξk,mq

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

r̂zkw
a − r̂−

k

v̂zkw/a
a − v̂−

k

δξk

r̂p1,kw
a − m̂1−

k
...

r̂pq,kw
a − m̂q−

k

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, to compute r̂zkw
a , v̂zkw/a

a , Cbka, and r̂pj,kw
a , j ∈ Ik, r̂zkw

a = r̂−
k + δχk,r,

v̂zkw/a
a = v̂−

k + δχk,v, Ĉbka = exp(−δξ×
k )Ĉ−

k , r̂pj,kw
a = m̂j−

k + δξk,mj
. The esti-

mated covariance is updated as Pk = P−
k − UkV

−1
k UT

k .
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6.3 Weighted Averaging

To solve (12), namely Ĉ−
k = arg minCk∈SO(3)

∑2L
i=0 wid

2(C−
i,k,Ck), the iterative

method of [17,18] can be employed when d(·, ·) is the geodesic distance. A similar
approach is proposed in [6]. The SE(3) case is considered in [7,14]. Alternatively,
when d(·, ·) is a chordal distance [15,16], namely d2(C1,C0) = ‖C1 − C0‖2F, a
singular value decomposition (SVD) can be used to solve for Ĉ−

k in the following

way. Consider the objective function Jk(Ck) =
∑2L

i=0 wi

∥∥∥C−
i,k − Ck

∥∥∥
2

F
, where

Ck ∈ SO(3) [15]. The objective function can be written as

Jk(Ck) =
2L∑

i=0

witr
(
C−

i,k − Ck

)T (
C−

i,k − Ck

)
= 6

2L∑

i=0

wi − 2
2L∑

i=0

tr
(
wiC−T

i,k Ck

)
.

Minimizing Jk(·) as a function of Ck is equivalent to maximizing Jk(Ck) =
tr

(
BTCk

)
where BT =

∑2L
i=0 wiC−T

i,k . The maximizing solution, Ĉ−
k , is Ĉ−

k =
VB diag {1, 1,detVB detUB} UT

B , where the SVD B = VBΣBUT
B , VT

BVB = 1,
UT

BUB = 1, and ΣB = diag {σ1, σ2, σ3} where σ1 ≥ σ2 ≥ σ3 ≥ 0 has been
employed [21,22].

An alternative way to compute Ĉ−
k using generalized Rodrigues parameters is

explored in [4]. Herein an exposition of something equivalent, although different,
to [4] is presented that is computationally simpler than both the iterative method
of [18] and the SVD method previously discussed. Consider C−

i,k = Ei0C−
0,k, i =

1, . . . , 2L, where Ei0 ∈ SO(3) represents the attitude of Fbki
relative to Fbk0

.

Write Ei0 as Ei0 = C−
i,kC−T

0,k = cos φi01+(1− cos φi0)ai0ai0T − sinφi0ai0×
, where

ai0 can be interpreted as the axis of rotation resolved in Fbk0
. Owing to the fact

that Ei0ai0 = ai0 it is also correct to state that ai0 can be interpreted as the
axis of rotation resolved in Fbki

. However, by resolving all i = 1, . . . , 2L axes of
rotation in Fbk0

, they can be added in a weighted fashion. Similarly, by resolving
all i = 1, . . . , 2L rotation vectors φi0

bk0
= φi0ai0 in Fbk0

, their weighted sum can

be added. Said another way, each φi0×
bk0

are being expressed in the same tangent

space, and therefore can be added. In particular, φbk0
=

∑2L
i=1 wiφ

i0
bk0

, where

wi = 1
2(L+κ) . It follows then that Ĉ−

k = exp(−φ×
bk0

)Ĉbk−1a.

7 Conclusion

This paper formulates a sigma point Kalman filter (SPKF) specifically for sys-
tems with states that are elements of a matrix Lie group. First, how the the sigma
point transformation is generalized and used to compute means and covariances
of nonlinear functions with states that are elements of matrix Lie groups is
discussed. The matrix Lie Group SPKF (MLG SPKF) is then formulated in
general. The MLG SPKF is applied to the problem of simultaneous localization
and mapping (SLAM) where the position and attitude of a vehicle are estimated
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relative to a set of estimated landmark locations and, simultaneously, the esti-
mates of the landmark locations are refined. Approaches to averaging elements
of SO(3) are discussed, including using the a chordal distance measure, as well
as a method adopted from [4]. Using the chordal distance measure allows for the
used of an SVD solution to the averaging of elements of SO(3).
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Abstract. We consider a system of a planar inverted pendulum in a
gravitational field. First, we assume that the pivot point of the pendu-
lum is moving along a horizontal line with a given law of motion. We
prove that, if the law of motion is periodic, then there always exists
a periodic solution along which the pendulum never becomes horizon-
tal (never falls). We also consider the case when the pendulum with a
moving pivot point is a control system, in which the mass point is con-
strained to be strictly above the pivot point (the rod cannot fall ‘below
the horizon’). We show that global stabilization of the vertical upward
position of the pendulum cannot be obtained for any smooth control law,
provided some natural assumptions.

Keywords: Inverted pendulum · Forced oscillations · Global
stabilization · Control design

1 Introduction

Below we consider the following system

q̇ = p,

ṗ = u(q, p, t) · sin q − cos q.
(1)

Here u is a smooth function. When u = ξ̈(t) is a function of time, the system
describes the motion of an inverted pendulum in a gravitational field with a
moving pivot point (without loss of generality, we assume that the mass and the
length of the pendulum equals 1 and the gravity acceleration is also 1). In this
case, the law of motion of the pivot point is defined by the smooth function ξ(t).
We show that for any T -periodic function ξ̈(t), there always exists a T -periodic
solution such that q(t) ∈ (0, π) for all t, i.e., the pendulum never falls.

When u is a smooth function from R
3 to R, we have a control system. When u

is periodic in q and autonomous, it can be shown that the problem of stabilization
of the vertical position of an inverted pendulum does not allow continuous control
which would asymptotically lead the pendulum to the vertical from any initial
position. This follows from the fact that a continuous function on a circle, which
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 329–335, 2017.
https://doi.org/10.1007/978-3-319-68445-1_38
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takes values of opposite sign, has at least two zeros, i.e., system (1) has at least
two equilibria.

The following questions naturally arise. First, do the above statements remain
true if we consider the pendulum only in the positions where its mass point is
above the pivot point (often there exists a physical constraint in the system
which do not allow the rod to be below the plane of support and it is meaning-
less to consider the pendulum in such positions). Second, is it true that global
stabilization cannot be obtained when the control law is a time-dependent func-
tion and it is also a non-periodic function of the position of the pendulum? For a
relatively broad class of problems, which may appear in practice, we show that
the answers are positive for the both questions.

The main idea of both proofs goes back to the topological method of
Ważewski [3,4] and its developments, which we shortly consider below.

2 Forced Oscillations

In this section we will discuss the existence of a forced oscillation in the system
(1) when u = ξ̈(t) is a smooth T -periodic function. For brevity of exposition, we
will proof the main result of this section for a slightly modified system

q̇ = p,

ṗ = ξ̈(t) · sin q − cos q − μq̇.
(2)

This system differs from (1) by the term −μq̇, which describes an arbitrary small
viscous friction (we assume that μ > 0 can be arbitrarily small).

First, we introduce some definitions and a result from [5,6] which we slightly
modify for our use.

Let v : R × M → TM be a time-dependent vector field on a manifold M

ẋ = v(t, x). (3)

For t0 ∈ R and x0 ∈ M , the map t �→ x(t, t0, x0) is the solution for the initial
value problem for the system (3), such that x(0, t0, x0) = x0. If W ⊂ R × M ,
t ∈ R, then we denote

Wt = {x ∈ M : (t, x) ∈ W}.

Definition 1. Let W ⊂ R × M . Define the exit set W− as follows. A point
(t0, x0) is in W− if there exists δ > 0 such that (t + t0, x(t, t0, x0)) /∈ W for all
t ∈ (0, δ).

Definition 2. We call W ⊂ R × M a Ważewski block for the system (3) if W
and W− are compact.

Definition 3. A set W ⊂ [a, b] × M is called a simple periodic segment over
[a, b] if it is a Ważewski block with respect to the system (3), W = [a, b] × Z,
where Z ⊂ M , and W−

t1 = W−
t2 for any t1, t2 ∈ [a, b).
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Definition 4. Let W be a simple periodic segment over [a, b]. The set W−− =
[a, b] × W−

a is called the essential exit set for W .

In our case, the result from [5,6] can be presented as follows.

Theorem 1. Let W be a simple periodic segment over [a, b]. Then the set

U = {x0 ∈ Wa : x(t − a, a, x0) ∈ Wt \ W−−
t for all t ∈ [a, b]}

is open in Wa and the set of fixed points of the restriction x(b−a, a, ·)|U : U → Wa

is compact. Moreover, the fixed point index of x(b − a, a, ·)|U can be calculated
by means of the Euler-Poincaré characteristics of W and W−

a as follows

ind(x(b − a, a, ·)|U ) = χ(Wa) − χ(W−
a ).

In particular, if χ(Wa) − χ(W−
a ) �= 0 then x(b − a, a, ·)|U has a fixed point in Wa.

Theorem 2. Suppose that the function ξ̈ : R → R in (2) is T -periodic, then for
any μ > 0 there exists q0 and p0 such that for all t ∈ R

1. q(t, 0, q0, p0) = q(t + T, 0, q0, p0) and p(t, 0, q0, p0) = p(t + T, 0, q0, p0),
2. q(t, 0, q0, p0) ∈ (0, π).

Proof. First, in order to apply Theorem1, we show that a periodic Ważewski
segment for our system can be defined as follows

W = {(t, q, p) ∈ [0, T ] × R/2πZ × R : 0 � q � π,−p′ � p � p′},

where p′ satisfies

p′ >
1
μ

sup
t∈[0,T ]

(|ξ̈| + 1). (4)

It is clear that W is compact. Let us show that W−− is compact as well and

W−− ={(t, q, p) ∈ [0, T ] × R/2πZ × R : q = 0,−p′ � p � 0}
∪ {(t, q, p) ∈ [0, T ] × R/2πZ × R : q = π, 0 � p � p′}.

If p = p′, then from (2) and (4) we have ṗ < 0. Therefore, (t, q, p) /∈ W−− for
0 < q < π, t ∈ [0, T ], p = p′. When q = 0 and t ∈ [0, T ], we have (t, q, p) ∈ W−−

for −p′ � p < 0 and (t, q, p) /∈ W−− for any p > 0. Moreover, it can be proved
that (t, q, p) ∈ W−− when p = 0. Indeed, for q = p = 0, we have

q̈ = ṗ = −1.

Therefore, any solution starting at q = p = 0 leaves W . The cases p = −p′ and
q = π can be considered in a similar way. Finally, we obtain χ(W0)−χ(W−

0 ) = −1
and Theorem 1 can be applied.

As we said above, this result can be proved without the assumption of the
presence of friction. To be more precise, the following holds
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Theorem 3. Suppose that the function u = ξ̈ : R → R in (1) is T -periodic, then
there exists q0 and p0 such that for all t ∈ R

1. q(t, 0, q0, p0) = q(t + T, 0, q0, p0) and p(t, 0, q0, p0) = p(t + T, 0, q0, p0) ,
2. q(t, 0, q0, p0) ∈ (0, π).

In this case, the proof is basically the same, but the Ważewski block W has a
different form. However, it can be continuously deformed to a simple periodic
segment and an extended version of Theorem 1 can be applied (Fig. 1).

Fig. 1. Ważewski block W . W−− is in gray.

3 Global Stabilization

The key observation in the proof of Theorem2 was that the solutions, that reach
the points where q = 0 or q = π and p = 0, are externally tangent to W . From
this we obtain that if a solution leaves W , then all solutions with close initial
data also leave W at close points. It can be seen that this property also holds
for system (1) for any u. From this we immediately obtain

Theorem 4. For any smooth control function u : R3 → R in (1), there exists q0
and p0 such that q(t, 0, q0, p0) ∈ (0, π) on the interval of existence of the solution.

Proof. Consider an arbitrary line segment γ in the hyperplane t = 0 which con-
nects the set {q, p, t : q = 0, p � 0} with the set {q, p, t : q = π, p � 0}. Suppose
that all solutions starting at γ reach the hyperplane q = 0 or the hyperplane
q = π. As it was mentioned before, if some solution reaches the set q = 0, then
all solutions with close initial data also reach this set at close points. In other
words, we have a continuous map from γ to the above hyperplanes. Therefore,
we can construct a continuous map from the line segment to its boundary points.
This contradiction proves the theorem.



A Topological View on Forced Oscillations and Control 333

Similar arguments can be applied to the case when we try to stabilize our
system in a vicinity of the vertical upward position. Suppose that we are looking
for a control that would stabilize system (1) in a vicinity of a certain equilibrium
position in the following sense. Let M be a subset of the phase space of the
system such that the points of M correspond to the positions of the pendulum
in which the rod is above the horizontal line (in our case, M = {0 < q < π})
and μ = (π/2, 0) ∈ M is the equilibrium for a given control u. We assume that
the control function u is chosen in such a way that there exists a compact subset
U ⊂ M , μ ∈ U \∂U and a C1-function V : U → R) with the following properties

L1. V (μ) = 0 and V > 0 in U \ μ.
L2. Derivative V̇ with respect to system (1) is negative in U \ μ for all t.

Since the function V can be considered as a Lyapunov function for our system,
the equilibrium μ is stable. For instance, such a function exists in the following
case. Suppose that for a given u, system (1) can be written as follows in a vicinity
of μ

ẋ = Ax + f(x, t),

where x = (q, p), A is a constant matrix and its eigenvalues have negative real
parts, f is a continuous function and f(t, x) = o(‖x‖) uniformly in t. Then
there exists [7] a function V satisfying properties L1, L2 (in this case, μ is
asymptotically stable).

Theorem 5. For a given control u(q, p, t), suppose there exists a function V
satisfying L1 and L2 for system (1). Then there exists an initial condition (q0, p0)
and a neighborhood B ⊂ M of μ such that on the interval of existence the solution
(q(t, 0, q0, p0), p(t, 0, q0, p0)) stays in M \ B.

Proof. The proof is similar to the one in Theorem 4. It can be shown that
for ε > 0 small enough, the level set V = ε is a circle (topologically). Let
B = {q, p : V (q, p) � ε}. Let γ1 and γ2 be two line segments in the plane t = 0
connecting the sets {q, p, t : q = 0, p � 0} and {q, p, t : q = π, p � 0} with
boundary ∂B, correspondingly. Suppose that any solution starting at γ1∪γ2∪∂B
leaves M \ B. From the same arguments as in Theorem 4, we conclude that if
the considered solution leaves this set, then all solutions with close initial data
also leave it. Therefore, we obtain a continuous map between γ1 ∪γ2 ∪∂B and a
disconnected set (∂B and two boundary points of γ1 and γ2). The contradiction
proves the theorem.

Remark 1. Actually, as it can be seen from the proofs of Theorems 4 and 5, we
obtain not a single solution, that does not leave the considered sets, but a one-
parameter family of such solutions. This family can be constructed by varying
the line segments considered in the proofs.

4 Conclusion

In this note, we have presented topological ideas which can be used for study-
ing forced oscillations and global stabilization of an inverted pendulum with a
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moving pivot point. In both cases, the results can be generalized and extended
to a broader class of systems.

For instance, the result on the existence of a forced oscillation can be proved
for the case when we consider a mass point on a manifold with a boundary in a
periodic external field [8,9]. In particular, similar result holds for the spherical
inverted pendulum [1] with a moving pivot point (here manifold with a boundary
is the upper semi-sphere). Moreover, similar result can be proved for groups
of interacting nonlinear systems [10]. As an illustration, we can consider the
following system. Let us have a finite number of planar pendulums moving with
viscous friction (can be arbitrarily small) in a gravitational field (Fig. 2). Let
ri be a radius-vector of the massive point of the i-th pendulum. Suppose that
their pivot points are moving along a horizontal line in accordance with a T -
periodic law of motion h : R/TZ → R, which is the same for all pendulums. Let
us also assume the following: for any two pendulums there is a repelling force
Fij acting on the mass point of the i-th pendulum from the j-th pendulum (Fij

is parallel to ri − rj). It is possible to prove that in this system with non-local
interaction (each pendulum is influenced by all other pendulums), there always
exists a forced oscillation and along this solution the pendulums never become
horizontal.

Fig. 2. When the i-th pendulum is horizontal, the repelling forces acting on it are
directed downward.

Our simple results on global stabilization can also be proved for various simi-
lar systems. One of the main possible generalizations is the system of an inverted
pendulum on a cart, which is more correct from the physical point of view [2].
It is also possible to consider multidimensional systems or systems with friction.
We can also omit the requirement of the existence of a Lyapunov-type function
V satisfying L1 and L2 (we just need the existence of a ‘capturing’ set containing
the point μ). Moreover, systems without the assumption on the uniqueness of
the solutions can also be considered, since only the right-uniqueness is impor-
tant for our considerations above. For instance, we can consider systems with
set-valued right-hand sides (Filippov-type systems), including systems with dry
friction.
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Abstract. Many methods have been proposed to estimate the state of a
nonlinear dynamical system from uncomplete measurements. This paper
concerns an approach that consists in lifting the estimation problem into
a higher-dimensional state-space so as to transform an original nonlinear
problem into a linear problem. Although the associated linear system
is usually time-varying, one can then rely on Kalman’s linear filtering
theory to achieve strong convergence and optimality properties. In this
paper, we first present a technical result on the uniform observability
of linear time-varying systems. Then, we illustrate through a problem
arising in robotics how this result and the lifting method evoked above
lead to explicit observability conditions and linear observers.

Keywords: Observability · Observer design · Filtering

1 Introduction

The general problem of observability and observer design concerns the recon-
struction of the state x of a dynamical system ẋ = f(x, u, t) from the knowledge
of the input u and an output function y = h(x, u, t). There is a vast control lit-
terature on this topic for both linear [11,12] and nonlinear systems [9]. For linear
systems, i.e. f(x, u, t) = A(t)x+B(t)u, h(x, u, t) = C(t)x+D(t)u, observability
is independent of the input u and is directly related to the system’s Grammian,
which only depends on the matrices A and C. By contrast, observability of a
nonlinear system usually depends on the input. This dependence is a source
of difficulty for both observability analysis and observer design. As a matter of
fact, the main observability characterization result for nonlinear systems [9] only
ensures a “weak” form of observability, i.e. existence of control inputs for which
the system is observable. Neither the characterization of these “good inputs”, nor
the characterization of the associated observability property (e.g. uniform ver-
sus non-uniform) is provided in [9]. Concerning observer design, in many appli-
cation fields involving nonlinear systems state estimation relies on Extended

These results were obtained while all authors were with ISIR. This work was sup-
ported by the “Chaire d’excellence en Robotique RTE-UPMC”.
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Kalman Filters (EKFs), which often perform well but also, sometimes, yield
divergent estimation errors or/and unconsistent results. One of the main progress
achieved in recent years on the topic of nonlinear observers concerns systems with
symmetries [2]. When both the system’s dynamics and output functions are
invariant under a transformation group, so-called “invariant observers” can be
built with improved convergence properties w.r.t. EKFs. In particular, if the
system’s state space is a Lie group and the system’s dynamics and output func-
tions are invariant w.r.t. the Lie group operation, observers with error dynamics
independent of the trajectory can be obtained [3]. W.r.t. EKFs this implies
stronger convergence results, as demonstrated for several applications [4,15].
As a remaining difficulty, the error dynamics is still nonlinear. This can make
global or semi-global convergence properties difficult to achieve. This paper con-
cerns a different approach, which consists in lifting the estimation problem into
a higher-dimensional state-space so as to transform the original nonlinear esti-
mation problem into a linear estimation problem in higher-dimension. Like for
invariant observers, the objective is still to simplify the observability analysis
and observer design. In this case the goal is fully achieved thanks to the strong
observability and observer design results for linear time-varying systems.

The paper is organized as follows. The main technical result of this paper is
given in Sect. 2. Then, a robotics application example is treated in Sect. 3.

2 Observability of Linear Time-Varying Systems

Consider a general linear time-varying (LTV) system
{

ẋ = A(t)x + B(t)u
y = C(t)x (1)

There exist different types of observability properties for LTV systems, like e.g.,
differential, instantaneous, or uniform observability (see e.g. [6, Chap. 5] for
more details). Here we focus on uniform observability, which ensures that the
state estimation process is well-conditionned and can be solved via the design of
exponentially stable observers. The following assumption will be used.

Assumption 1. The matrix-valued functions A,B, and C of the LTV
system (1) are continuous and bounded on [0,+∞).

Definition 1. A LTV system (1) satisfying Assumption 1 is uniformly observ-
able if there exist τ, δ > 0 such that

∀t ≥ 0, 0 < δI ≤ W (t, t + τ) Δ=
∫ t+τ

t

Ψ(s, t)T CT (s)C(s)Ψ(s, t) ds (2)

with Ψ(s, t) the state transition matrix of ẋ = A(t)x and I the identity matrix.
The matrix W is called observability Grammian of System (1).
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From this definition uniform observability is independent of B. Thus, we say
without distinction that System (1) or the pair (A,C) is uniformly observable.
Note also, as a consequence of Assumption 1, that W (t, t + τ) is upper bounded
by some δ̄I for any t ≥ 0.

The following theorem recalls two properties of uniformly observable systems.
The first property follows from [1, Lemma 3] and the duality principle (see, e.g.
[6, Theorem 5–10]). This principle, together with [10, Theorem 3], imply the
second property.

Theorem 1. For a LTV system (1) satisfying Assumption 1 the following prop-
erties hold.

1. The pair (A,C) is uniformly observable iff the pair (A − LC,C) is uniformly
observable, with L(.) any bounded matrix-valued time-function.

2. If the pair (A,C) is uniformly observable, then for any a > 0 there exists a
bounded matrix La(t) such that the linear observer

˙̂x = A(t)x̂ + La(t)(y − C(t)x̂)

is uniformly exponentially stable with convergence rate given by a, i.e. there
exists ca > 0 such that ‖x̂(t) − x(t)‖ ≤ cae−a(t−t0)‖x̂(t0) − x(t0)‖ for any
t ≥ t0 and any x(0), x̂(0).

Main technical result: Checking uniform observability of a LTV system can be
difficult since calculation of the Grammian requires integration of the solutions
of ẋ = A(t)x. It is well known that observability properties of LTV systems are
related to properties of the observability space O(t) defined by [6, Chap. 5]:

O(t) Δ=

⎛
⎜⎝

N0(t)
N1(t)

...

⎞
⎟⎠ , N0

Δ= C, Nk+1
Δ= NkA + Ṅk for k = 1, . . . (3)

For example, instantaneous observability at t is guaranteed if Rank(On−1(t)) =
n. For general LTV systems, however, uniform observability cannot be charac-
terized in term of rank conditions only. We propose below a sufficient condition
for uniform observability.

Proposition 1. Consider a LTV system (1) satisfying Assumption 1. Assume
that there exists a positive integer K such that:

1. The k-th order derivative of A (resp. C) is well defined and bounded on
[0,+∞) up to k = K (resp. up to k = K + 1).

2. There exist a n × n matrix M composed of row vectors of N0, . . . , NK , and
two scalars δ̄, τ̄ > 0 such that

∀t ≥ 0, 0 < δ̄ ≤
∫ t+τ̄

t

|det(M(s))| ds (4)

with det(M) the determinant of M .
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Then, System (1) is uniformly observable.

The proof of this result is given in the appendix. As illustrated in the following
section, this result leads to very explicit uniform observability conditions.

Remark: In [5] a sufficient condition for uniform complete observability (a prop-
erty equivalent to uniform observability under Assumption 1) is provided. There
are similarities between that condition and (4) but the latter is less demanding
as it only requires positivity “in average” while the positivity condition in [5]
must hold for any time-instant.

3 Application to a Robotics Estimation Problem

A classical robotics problem consists in recovering the motion of a robot from
measurements given by a vision system. For compacity reasons, monocular vision
can be preferred to stereo vision but then, full 3D motion estimation cannot be
performed due to depth ambiguity. To remedy this difficuty, vision data can
be fused with measurements provided by an IMU (Inertial Measurement Unit).
This is called visuo-inertial fusion. In this section, we describe how the problem
of monocular visuo-inertial fusion is commonly posed as a nonlinear estimation
problem, and we show how it can be transformed by lifting into a linear esti-
mation problem in higher dimension. The material presented in this section is
based on [7] to which we refer the reader for more details.

The monocular visuo-inertial problem. Consider two images IA and IB of
a planar scene taken by a monocular camera. Each image I∗ (∗ ∈ {A,B}) is
taken from a specific pose of the camera and we denote by F∗(∗ ∈ {A,B}) an
associated camera frame with origin corresponding to the optical center of the
camera and third basis vector aligned with the optical axis. We also denote by
d∗ and n∗ respectively the distance from the origin of F∗ to the planar scene
and the normal to the scene expressed in F∗. Let R denote the rotation matrix
from FB to FA and p ∈ R

3 the coordinate vector of the origin of FB expressed
in FA. The problem here considered consists in estimating R and p. From IA

and IB one can compute (see, e.g., [13]) the so-called “homography matrix”

H = RT − 1
dA

RT pnT
A (5)

Considering also a (strapped-down) IMU, we obtain as additional measure-
ments ω, the angular velocity vector of the sensor w.r.t. the inertial frame
expressed in body frame, and as, the so-called specific acceleration. Assuming
that FA is an inertial frame and FB is the body frame1, ω and as are defined
by:

Ṙ = RS(ω) , p̈ = gA + Ras (6)

1 For simplicity we assume that the camera frame and IMU frame coincide.
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where gA denotes the gravitational acceleration field expressed in FA and S(x) is
the skew-symmetric matrix associated with the cross product by x, i.e. S(x)y =
x × y with × the cross product. Note that as can also be defined by the relation

v̇ = −S(ω)v + as + gB (7)

where v = RT ṗ denotes the velocity of FB w.r.t. FA expressed in FB , and
gB = RT gA is the gravitational acceleration field expressed in FB.

Visuo-inertial fusion: Diverse estimation algorithms have been proposed. In
[16] the state is defined as x = (R, p, v, nA, dA), with measurement y = (H,ω, as).
Since H is a nonlinear function of x, the estimation problem is nonlinear and
an EKF is used. In [8,14] the state is defined as x = (H̄,M, nA) where H̄ =
det(H)− 1

3 H and M = v
nT
A

dA
, with measurement y = (H̄, ω, as). The measurement

then becomes a linear function of x, but the dynamics of x is nonlinear. Using
the fact that H̄ belongs to the Special Linear group SL(3), nonlinear observers
with convergence guarantees are proposed in [8,14], but under restrictive motion
assumptions.

As an alternative solution, define the state as x = (H,M,ns, Q) with H
defined by (5) and M = vnT

s , ns = nA

dA
, Q = gBnT

s . Since nA and dA are
constant quantities, one verifies from (6) and (7) that:{

Ḣ = −S(ω)H − M , ṅs = 0
Ṁ = −S(ω)M + Q + asn

T
s , Q̇ = −S(ω)Q

(8)

Since ω and as are known time-functions, the above system is a linear time-
varying system in x. In other words, the estimation problem has been trans-
formed into a linear estimation problem by lifting to a higher-dimensional state
space. One verifies (see [7] for details) that R and p can be extracted from x.
From this point, one can make use of existing tools of linear estimation theory.
Proposition 1 provides the following characterization of uniform observability in
term of the IMU data. It was initially obtained in [7].

Proposition 2. System (8) with measurement y = (H,ω, as) is uniformly
observable if

(i) ω and as are continuous and bounded on [0,+∞), and their first, second,
and third-order time-derivatives are well defined and bounded on [0,+∞);

(ii) there exists two scalars δ, σ > 0 such that

∀t ≥ 0, 0 < δ ≤
∫ t+σ

t

‖ȧs(τ) + ω(τ) × as(τ)‖ dτ (9)

4 Conclusion

We have provided a technical result on uniform observability of linear time-
varying system and we have illustrated the application of this result to an esti-
mation problem. We have also shown through this problem how an original non-
linear estimation problem could be transformed into a linear estimation problem
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through lifting of the state space. The main open problem is to characterize sys-
tems for which such a lifting exists.

Appendix: Proof of Proposition 1: We must show the existence of constants
τ, δ > 0 such that (2) is satisfied. The inequality in (2) is equivalent to xT W (t, t+
τ)x ≥ δ‖x‖2 for any vector x ∈ D = {x ∈ R

n : ‖x‖ = 1}. Thus, the proof consists
in showing the existence of constants τ, δ > 0 such that

∀t ≥ 0, 0 < δ ≤ inf
x∈D

∫ t+τ

t

‖C(s)Ψ(s, t)x‖2 ds

We proceed by contradiction. Assume that

∀τ > 0,∀δ > 0, ∃t(τ, δ) : inf
x∈D

∫ t(τ,δ)+τ

t(τ,δ)

‖C(s)Ψ(s, t(τ, δ))x‖2 ds < δ (10)

Take τ = τ̄ with τ̄ the constant in (4), and consider the sequence (δp = 1/p).
Thus, for any p ∈ N, there exists tp such that

inf
x∈D

∫ tp+τ̄

tp

‖C(s)Ψ(s, tp)x‖2 ds <
1
p

so that there exists xp ∈ D such that
∫ tp+τ̄

tp

‖C(s)Ψ(s, tp)xp‖2 ds <
1
p

(11)

Since D is compact, a sub-sequence of the sequence (xp) converges to some
x̄ ∈ D. From Assumption 1, A is bounded on [0,+∞). Therefore,

∀x ∈ R
n, ∀t ≤ s, e−(s−t)‖A‖∞‖x‖ ≤ ‖Ψ(s, t)x‖ ≤ e(s−t)‖A‖∞‖x‖ (12)

with ‖A‖∞ = supt≥0 ‖A(t)‖. Since C is also bounded (from Assumption 1) and
the interval of integration in (11) is of fixed length τ̄ , it follows that

lim
p→+∞

∫ tp+τ̄

tp

‖C(s)Ψ(s, tp)x̄‖2 ds = 0

By a change of integration variable, this equation can be written as

lim
p→+∞

∫ τ̄

0

‖fp(s)‖2 ds = 0 (13)

with fp(t) = C(t + tp)Ψ(t + tp, tp)x̄. It is well known, and easy to verify, that

f (k)
p (t) = Nk(t + tp)Ψ(t + tp, tp)x̄ (14)

with f
(k)
p the k-th order derivative of fp and Nk defined by (3). The existence

of f
(k)
p , for any k = 0, · · · ,K + 1, follows by Assumption 1 of Proposition 1. The

end of the proof relies on the following lemma, proved further.
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Lemma 1. Assume that (10) is satisfied. Then, ∀k = 0, . . . ,K,

lim
p→+∞

∫ τ̄

0

‖f (k)
p (s)‖2 ds = 0 (15)

Since the matrix M in (4) is composed of row vectors of N0, . . . , NK , it follows
from (14) that

∫ τ̄

0

‖M(s + t, p)Ψ(s + tp, tp)x̄‖2 ds ≤
K∑

k=0

∫ τ̄

0

‖f (k)
p (s)‖2 ds

Therefore, from Lemma 1,

lim
p→+∞

∫ tp+τ̄

tp

‖M(s)Ψ(s, tp)x̄‖2 ds = lim
p→+∞

∫ τ̄

0
‖M(s + tp)Ψ(s + tp, tp)x̄‖2 ds = 0 (16)

Then, for any ξ ∈ R
n

‖M(s)ξ‖2 = ξT MT (s)M(s)ξ ≥ ‖ξ‖2 min
i

λi(M
T (s)M(s)) = ‖ξ‖2λ1(M

T (s)M(s)) (17)

with λ1(MT (s)M(s)) ≤ · · · ≤ λn(MT (s)M(s)) the eigenvalues of MT (s)M(s) in
increasing order. Furthermore, since M is bounded on [0,+∞) (as a consequence
of Assumption 1 and the definition of M), there exists a constant c > 0 such that
maxi λi(MT (s)M(s)) ≤ c for all s. Thus

λ1(MT (s)M(s)) =
det(MT (s)M(s))∏
j>1 λj(MT (s)M(s))

≥ det(MT (s)M(s))
cn−1

≥ (det(M(s)))2

cn−1

It follows from this inequality, (12) and (17), and the fact that ‖x̄‖ = 1 that

∀p ∈ N,

∫ tp+τ̄

tp

‖M(s)Ψ(s, tp)x̄‖2 ds ≥ c̄

∫ tp+τ̄

tp

(det(M(s)))2 ds (18)

with c̄ = e−2τ̄‖A‖∞/cn−1 > 0. Furthermore, Schwarz inequality implies that

∫ tp+τ̄

tp

|det(M(s))| ds ≤
(∫ tp+τ̄

tp

1 ds

)1/2 (∫ tp+τ̄

tp

(det(M(s)))2 ds

)1/2

Thus, it follows from (4) and (18) that

∀p ∈ N,

∫ tp+τ̄

tp

‖M(s)Ψ(s, tp)x̄‖2 ds ≥ c̄δ̄2/τ̄ > 0

which contradicts (16). To complete the proof, we must prove Lemma 1.

Proof of Lemma 1: We proceed by induction. By assumption (10) is satisfied,
which implies that (13) holds true. Thus, (15) holds true for k = 0. Assuming now
that (15) holds true for k = 0, . . . , k̄ < K, we show that it holds true for k = k̄+1
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too. From Assumption 1 of Proposition 1, recall that ∀j = 1, . . . K+1, f
(j)
p is well

defined and bounded on [0, τ̄ ], uniformly w.r.t. p. We claim that f
(k̄)
p (0) tends to

zero as p tends to +∞. Assume on the contrary that f
(k̄)
p (0) does not tend to zero.

Then, ∃ε > 0 and a subsequence (f (k̄)
pj ) of (f (k̄)

p ) such that ‖f
(k̄)
pj (0)‖ > ε , ∀j ∈ N.

Since ‖f
(k̄+1)
pj (0)‖ is bounded uniformly w.r.t. j (because f

(k̄+1)
p is bounded on

[0, τ̄ ] uniformly w.r.t. p), ∃t′ > 0 such that ∀j ∈ N, ∀t ∈ [0, t′], ‖f
(k̄)
pj (t)‖ > ε/2.

By (15), this contradicts the induction hypothesis. Therefore, f
(k̄)
p (0) tends to

zero as p tends to +∞. By a similar argument, one can show that f
(k̄)
p (τ̄) tends

to zero as p tends to +∞. Now,
∫ τ̄

0

‖f (k̄+1)
p (s)‖2 ds =

n∑
i=1

∫ τ̄

0

(
f
(k̄+1)
p,i (s)

)2
ds

= −
n∑

i=1

∫ τ̄

0

f
(k̄)
p,i (s)f

(k̄+2)
p,i (s) ds+

n∑
i=1

[
f
(k̄)
p,i (s)f

(k̄+1)
p,i (s)

]τ̄
0

≤
n∑

i=1

(∫ τ̄

0

(
f
(k̄)
p,i (s)

)2
ds

)1/2(∫ τ̄

0

(
f
(k̄+2)
p,i (s)

)2
ds

)1/2

+
n∑

i=1

[
f
(k̄)
p,i (s)f

(k̄+1)
p,i (s)

]τ̄
0

Each term (∫ τ̄

0

(
f
(k̄)
p,i (s)

)2

ds

)1/2 (∫ τ̄

0

(
f
(k̄+2)
p,i (s)

)2

ds

)1/2

in the first sum tends to zero as p tends to infinity due to (15) for k = k̄ and the
fact that f

(k̄+2)
p is bounded uniformly w.r.t. p. Boundary terms in the second

sum also tend to zero as p tends to infinity since f
(k̄)
p (0) and f

(k̄)
p (τ̄) tend to

zero, and f
(k̄+1)
p is bounded. As a result, (15) is satisfied for k = k̄ + 1. �
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1 Centre Automatique et Systèmes, MINES ParisTech, PSL Research University,
75006 Paris, France

philippe.martin@mines-paristech.fr
2 ONERA – The French Aerospace Lab, 91123 Palaiseau, France

ioannis.sarras@onera.fr

Abstract. We consider the classical problem of estimating the attitude
and gyro biases of a rigid body from at least two vector measurements
and a triaxial rate gyro. We propose a solution based on a dynamic
nonlinear estimator designed without respecting the geometry of SO(3),
which achieves uniform global exponential convergence. The convergence
is established thanks to a dynamically scaled Lyapunov function.

1 Introduction

Estimating the attitude of a rigid body from vector measurements (obtained
for instance from accelerometers, magnetometers, sun sensors, etc.) has been
for decades a problem of interest, because of its importance for a variety of
technological applications such as satellites or unmanned aerial vehicles. The
attitude of the body can be described by the rotation matrix R ∈ SO(3) from
body to inertial axes. On the other hand, the (time-varying) measurement vec-
tors u1, · · · , un ∈ R

3 correspond to the expression in body axes of known and
not all collinear vectors U1, · · · , Un ∈ R

3 which are constant in inertial axes,
i.e., uk(t) = RT (t)Uk. The goal then is to reconstruct the attitude at time t
using only the knowledge of the measurement vectors until t. The solution to
the problem would be very easy if the vector measurements were perfect and
two of them were linearly independent: indeed, using for instance only the two
vectors u1(t) and u2(t) and noticing that RT (x × y) = RT x × RT y since R is a
rotation matrix, we readily find

RT (t) = RT (t) · (
U1 U2 U1 × U2

) · (
U1 U2 U1 × U2

)−1

=
(
u1(t) u2(t) u1(t) × u2(t)

) · (
U1 U2 U1 × U2

)−1
.

But in real situations, the measurement vectors are always corrupted at least by
noise. Moreover, the Uk’s may possibly be not strictly constant: for instance a
triaxial magnetometer measures the (locally) constant Earth magnetic field, but
is easily perturbed by ferromagnetic masses and electromagnetic perturbations;
similarly, a triaxial accelerometer can be considered as measuring the direction
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 345–351, 2017.
https://doi.org/10.1007/978-3-319-68445-1_40
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of gravity provided it is not undergoing a substantial acceleration (see e.g. [13]
for a detailed discussion of this assumption and its consequences in the frame-
work of quadrotor UAVs). That is why, despite the additional cost, it may be
interesting to use a triaxial rate gyro to supplement the possibly deteriorated
vector measurements.

The current literature on attitude estimation from vector measurements can
be broadly divided into three categories: (i) optimization-based methods; (ii) sto-
chastic filtering; (iii) nonlinear observers. Details on the various approaches can
be found e.g. in the surveys [6,17] and the references therein. The first category
sets the problem as the minimization of a cost function, and is usually referred
to as Wahba’s problem. The attitude is algebraically recovered at time t using
only the measurements at time t. No filtering is performed, and possibly avail-
able velocity information from rate gyros is not exploited. The second category
mainly hinges on Kalman filtering and its variants. Despite their many qualities,
the drawback of those designs is that convergence cannot in general be guaran-
teed except for mild trajectories. Moreover the tuning is not completely obvious,
and the computational cost may be too high for small embedded processors.
The third, and more recent, approach proposes nonlinear observers with a large
guaranteed domain of convergence and a rather simple tuning through a few
constant gains. These observers can be designed: (a) directly on SO(3) (or the
unit quaternion space), see e.g. [7,10,12,16]; (b) or more recently, on R

3×3, i.e.,
deliberately “forgetting” the underlying geometry [2,3,8,14]. Probably the best-
known design is the so-called nonlinear complementary filter of [10]; as noticed
in [11], it is a special case of so-called invariant observers [5].

In this paper, we propose a new observer of attitude and gyro biases from
gyro measurements and (at least) two measurement vectors. It also “forgets”
the geometry of SO(3), which allows for uniform global exponential convergence
(notice the observer of [10] is only quasi-globally convergent). This observer is an
extension of the observer of [14] (which is uniformly globally convergent), itself
a modification of the linear cascaded observer of [3] (which is uniformly globally
exponentially convergent). The idea of the proof is nevertheless completely dif-
ferent from the approach followed in [3]; it is much more direct, as it relies on a
strict, dynamically scaled, Lyapunov function, see [1,9].

2 The Design Model

We consider a moving rigid body subjected to an angular velocity ω. Its orien-
tation matrix R ∈ SO(3) is related to the angular velocity by the differential
equation

Ṙ = Rω×, (1)

where the skew-symmetric matrix ω× is defined by ω×u := ω × u whatever the
vector u ∈ R

3.
The rigid body is equipped with a triaxal rate gyro measuring the angular

velocity ω, and two additional triaxial sensors (for example accelerometers, mag-
netometers or sun sensors) providing the measurements of two vectors α and β.
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These vectors correspond to the expression in body axes of two known indepen-
dent vectors αi and βi which are constant in inertial axes. In other words,

α := RT αi

β := RT βi.

Since αi, βi are constant, we obviously have

α̇ = α × ω

β̇ = β × ω.

To take full advantage of the rate gyro, it is wise to take into account that it is
biased, hence rather provides the measurement

ωm := ω + b,

where b is a slowly-varying (for instance with temperature) unknown bias. Since
the effect of this bias on attitude estimation may be important, it is worth
determining this value. But being not exactly constant, it can not be calibrated
in advance and must be estimated online together with the attitude.

Our objective is to design an estimation scheme that can reconstruct online
the orientation matrix R(t) and the bias b(t), using (i) the measurements of the
gyro and of the two vector sensors; (ii) the knowledge of the constant vectors
αi and βi. The model on which the design will be based therefore consists of the
dynamics

α̇ = α × ω (2)
β̇ = β × ω (3)
ḃ = 0, (4)

together with the measurements

ωm := ω + b (5)
αm := α (6)
βm := β. (7)

3 The Observer

We want to show that the state of (2)–(7) can be estimated by the observer

˙̂α = α̂ × (ωm − b̂) − kα(α̂ − αm) (8)
˙̂
β = β̂ × (ωm − b̂) − kβ(β̂ − βm) (9)

ξ̇ = lα(ωm − b̂) × (α̂ × αm) + lβ(ωm − b̂) × (β̂ × βm) (10)

+ lαkαα̂ × αm + lβkβ β̂ × βm (11)

ṙ = −2ψ1(r − 1) + 2
(
lα|αm||α̂ − αm| + lβ |βm||β̂ − βm|)r, (12)
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where

b̂ := ξ + lαα̂ × αm + lβ β̂ × βm (13)

kα := k1 + r
( 1

2ε
+

l2α
ε1

r
)
|αm|2 (14)

kβ := k2 + r
( 1

2ε
+

l2β
ε1

r
)
|βm|2. (15)

α̂, β̂, b̂ ∈ R
3 are the estimates of α, β, b; ξ ∈ R

3 is the state of the bias observer,
and r ∈ R is a dynamic scaling variable; the (positive) constants lα, lβ , ψ1, k1, k2,
ε, ε1 are tuning gains. Defining the estimation errors as

eα := α̂ − α

eβ := β̂ − β

eb := b̂ − b,

the error system reads

ėα = eα × ω − (α + eα) × eb − kα(r, α̂)eα (16)

ėβ = eβ × ω − (β + eβ) × eb − kβ(r, β̂)eβ (17)
ėb = (lαα2

× + lββ2
×)eb + lαeα × (α × eb) + lβeβ × (β × eb) (18)

ṙ = −2ψ1(r − 1) + 2
(
lα|α||eα| + lβ |β||eβ |)r; (19)

(18) is obtained thanks to the Jacobi identity a×(b×c)+b×(c×a)+c×(a×b) = 0.
The main result is the global exponential convergence of the observer.

Theorem 1. Assume k1, k2, ε, ε1 > 0, ψ1 > ε1, and lα, lβ large enough so
that −(lαα2

× + lββ2
×) > (ψ1 + ε)I. Then the equilibrium point (ēα, ēβ , ēb, r̄) :=

(0, 0, 0, 1) of the error system (16)–(19) is uniformly globally exponentially stable.

Remark 1 (see [4,15]). Since α and β are linearly independent, −(lαα2
× + lββ2

×)
is a (symmetric) positive definite matrix when lα, lβ > 0; moreover, sufficiently
large lα, lβ yield −(lαα2

× + lββ2
×) > μI whatever the given constant μ.

Proof. First consider the candidate Lyapunov function for the (eα, eβ)-
subsystem

V (eα, eβ) :=
1
2
|eα|2 +

1
2
|eβ |2.

Its time derivative satisfies

V̇ = −〈eα, eα × ω〉 − kα|eα|2 − 〈eβ , eβ × ω〉 − kβ |eβ |2

≤ −kα|eα|2 − kβ |eβ |2 +
(√

r|α||eα|) |eb|√
r

+
(√

r|β||eβ |) |eb|√
r

≤ −
(
kα − r|α|2

2ε

)
|eα|2 −

(
kβ − r|β|2

2ε

)
|eβ |2 +

ε|eb|2
r

;
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where we have used 〈a, a× b〉 = 0 to obtain the first line, and Young’s inequality
ab ≤ a2

2ε + εb2

2 to obtain the second line.
Now, the obvious candidate Lyapunov function Vb(eb) := 1

2 |eb|2 for the eb-
subsystem satisfies

V̇b = 〈eb, (lαα2
× + lββ2

×)eb〉 + lα〈eb, eα × (α × eb)〉 + lβ〈eb, eβ × (β × eb)〉
≤ −μ|eb|2 +

(
lα|α||eα| + lβ |β||eβ |)|eb|2,

where we have used Remark 1. The term
(
lα|α||eα| + lβ |β||eβ |)|eb|2 happens to

be very difficult to dominate with a classical Lyapunov approach. To overcome
the problem, we use instead the candidate Lyapunov function

Ṽb(eb, r) :=
1
2r

|eb|2,
obtaining by dynamically scaling Vb with r defined by (19). Notice r(t) ≥ 1 for
all positive t as soon as r(0) ≥ 1. We then have

˙̃Vb :=
V̇b

r
− Ṽb

ṙ

r

≤ −μ
|eb|2

r
+

(
lα|α||eα| + lβ |β||eβ |) |eb|2

r
− |eb|2

2r

ṙ

r

= −(μ − ψ1)
|eb|2

r
,

where we have used r−1
r ≤ 1.

We next consider the candidate Lyapunov function for the r-subsystem

Vr(r) :=
1
2
(r − 1)2.

Its time derivative satisfies

V̇r = −2ψ1(r − 1)2 +
√

2(r − 1)
√

2rlα|α||eα| +
√

2(r − 1)
√

2rlβ |β||eβ |

≤ −2(ψ1 − ε1)(r − 1)2 +
r2

ε1

(
l2α|α|2|eα||2 + l2β |β||eβ |2),

where the second line is obtained by Young’s inequality.
Finally, consider the complete Lyapunov function

W (eα, eβ , eb, r) := V (eα, eβ) + Ṽb(eb, r) + Vr(r).

Collecting all the previous findings, its time derivative satisfies

Ẇ ≤ −
(
kα − r|α|2

2ε

)
|eα|2 −

(
kβ − r|β|2

2ε

)
|eβ |2 +

ε|eb|2
r

− (μ − ψ1)
|eb|2

r

−2 (ψ1 − ε1)(r − 1)2 +
r2

ε1

(
l2α|α|2|eα|2 + l2β |β||eβ |2)

= −k1|eα|2 − k2|eβ |2 − (μ − ψ1 − ε)
|eb|2

r
− 2(ψ1 − ε1)(r − 1)2.
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Choosing k1, k2 > 0, ψ1 > ε1, and lα, lβ large enough so that μ > ψ1 + ε
clearly guarantees the uniform global exponential stability of the equilibrium
point (ēα, ēm, ēb√

r̄
, r̄) := (0, 0, 0, 1), hence of (ēα, ēm, ēb, r̄) := (0, 0, 0, 1). �	

Remark 2. More than two vectors α and β can be used with a direct generaliza-
tion of the proposed structure.

Remark 3. The observer does not use the knowledge of the constant vectors αi

and βi. This may be an interesting feature in some applications when those
vectors for example are not precisely known and/or (slowly) vary.

We then have the following corollary, which gives an estimate of the true
orientation matrix R by using the knowledge of the inertial vectors αi and βi.
Notice it is considerably simpler than the approach of [3], where the estimated
orientation matrix is obtained through an additional observer of dimension 9.

Corollary 1. Under the assumptions of Theorem1, the matrix R̃ defined by

R̃T :=
(

α̂
|αi|

α̂×β̂
|αi×βi|

α̂×(α̂×β̂)
|αi×(αi×βi)|

)
· RT

i

Ri :=
(

αi

|αi|
αi×βi

|αi×βi|
αi×(αi×βi)

|αi×(αi×βi)|
)

exponentially converges to R.

Proof. By Theorem 1, |eα(t)| ≤ C|eα(0)|e−λt and |eβ(t)| ≤ C|eβ(0)|e−λt for
some C, λ > 0. Therefore,

|α̂ × β̂ − α × β| = |α × eβ + eα × β + eα × eβ |
≤ |α||eβ | + |β||eα| + |eα||eβ |
≤ C|αi||eβ(0)|e−λt + C|βi||eα(0)|e−λt + C2|eα(0)||eβ(0)|e−λ2t;

a similar bound is readily obtained for |α̂×(α̂×β̂)−α×(α×β)|. As a consequence,
all the coefficients of the matrix

R̃T −
(

α
|αi|

α×β
|αi×βi|

α×(α×β)
|αi×(αi×βi)|

)
· RT

i

exponentially converge to 0. The claim follows by noticing
(

α
|αi|

α×β
|αi×βi|

α×(α×β)
|αi×(αi×βi)|

)
· RT

i =
(

RT αi

|αi|
RT αi×RT βi

|αi×βi|
RT αi×(RT αi×RT βi)

|αi×(αi×βi)|
)

· RT
i

= RT RiR
T
i

= RT ,

where we have used RT (u × v) = RT u × RT v since R is a rotation matrix. �	
Of course, R̃T has no reason to be a rotation matrix (it is only asymptotically

so); it is nevertheless the product of a matrix with orthogonal (possibly zero)
columns by a rotation matrix. If a bona fide rotation matrix is required at all
times, a natural idea is to project R̃ onto the “closest” rotation matrix R̂, thanks
to a polar decomposition.
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Abstract. Symplectic structure is powerful especially when it is applied
to Hamiltonian systems. We show here how this symplectic structure may
define and evaluate an integer index that measures the defect for the sys-
tem to be Hamiltonian. This defect is called the Geometric Degree of Non
Conservativeness of the system. Darboux theorem on differential forms
is the key result. Linear and non linear frameworks are investigated.

Keywords: Hamiltonian system · Symplectic geometry · Geometric
Degree of Non Conservativeness · Kinematic constraints

1 Position of the Problem

Beyond the hamiltonian framework where external actions (like gravity) and
internal actions (like in elasticity) may be described by a potential function,
we are concerned here by mechanical systems whose actions are positional but
without potential. For external actions, this is the case for example of the so-
called follower forces ([1] for example). For internal actions, this is the case of
the so-called hypoelasticity ([8] for example). One main characteristic of these
questions is the loss of symmetry of the stiffness matrix K(p) in the investigated
equilibrium configuration and for the load parameter p.

For such systems, the stability issue presents some interesting paradoxi-
cal properties. For example, a divergence stable equilibrium configuration can
become unstable as the system is subjected to appropriate additional kinematic
constraints (see [4,7] for example). This problem and the associate Kinematic
Structural Stability concept have been deeply investigated for some years mainly
in the linear framework ([3,4] for example). In the present work, we are concerned
by the dual question: for such a non conservative system Σ, what is the minimal
number of additional kinematic constraints that transform the non conservative
system into a conservative one? This minimal number d is called the geometric
degree of nonconservativeness (GDNC). The second issue consists in finding the
set of appropriate constraints. This issue will be tackled in the framework of
discrete mechanics. More precisely, the set of configurations is a n-dimensional
manifold M and the non hamiltonian actions are described by a section ω of

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 355–358, 2017.
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the cotangent bundle T ∗
M. This one form ω is supposed to be a non closed

one form: dω �= 0 where d is the usual exterior derivative of differential forms.
With the differential geometry concepts, the geometric meaning of the GDNC
issue is: What is the highest dimension n − d of embedded submanifolds N of M
such that the “restriction” (in a well defined meaning) ωN to N is closed. We do
not tackled in this work the very difficult global issues on N and, by Poincaré’s
theorem, the closed form ωN will be locally exact.

2 Solution

2.1 Linear Framework

In this subsection, we are concerned by the linearized version of the general
problem. A configuration me ∈ M (we can think to me as an equilibrium
position) is fixed and a coordinate system q = (q1, . . . , qn) is given. We are
looking for solution of the linear GDNC issue at me. There is here a real geo-
metric issue to build the linearized counterpart of ω at me because it should
be obtained by derivative of ω. But there is no connection on M to make the
derivative of ω. We will come back to this problem in the last part. However, as
usual, in a coordinate system q, the linearized counterpart of ω is the so-called
stiffness matrix K = K(qe) of the system at me whose coordinate system is qe.

In this framework, the issue is pulled back on the tangent space Tme
M which

will be identified with R
n thanks to the natural basis of Tme

M associated with
the coordinate system q on M. We indifferently note E = R

n and E∗ its dual
space, the vector space of the linear forms on E. Thus, let φ the exterior 2-form
defined on E = R

n by:
φ(u, v) = uTKav (1)

where Ka is the skew-symmetric part of K. Usual linear algebra says that there is
a basis B = (e1, . . . , en) of Rn and a number r = 2s ≤ n such that φ(e2i−1, e2i) =
−φ(e2i, e2i−1) = 1 for i ≤ s and φ(ei, ej) = 0 for the other values of i and j. In
the dual basis (e∗

1, . . . , e
∗
n) of (e1, . . . , en), the form φ then reads:

φ = e∗
1 ∧ e∗

2 + . . . + e∗
2s−1 ∧ e∗

2s (2)

The solution of the linear GDNC issue at me is then given by the following:

Proposition 1. d = s is the GDNC of the mechanical system Σ and a possible
set C = {C1, . . . , Cs} of linear kinematic constraints making the constrained
system ΣC conservative is such that Ci is any in <e∗

2i−1, e
∗
2i> for i = 1, . . . , s.

In this framework, it is possible to find the set of all such possible constraints.
Let then F be the kernel of φ. Then (Rn/F, φ̃) is a 2s-dimensional symplectic
vector space where φ̃ is canonically defined by φ̃(ū, v̄) = φ(x, y) with x (resp, y)
any vector of the class ū (resp. v̄).

Proposition 2. The set of solutions of the GDNC is (isomorphic with) the set
of Lagrangian subspaces of (Rn/F, φ̃).

One can find in [6] a concrete construction of this set and in [5] the proof of
these results.
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2.2 Non Linear Framework

The key of the solution in the nonlinear framework is related to Darboux theorem
about the class of 1-form and 2-forms ([2] for example). We suppose now that
the 2-form dω is regular on M meaning that its class r is constant on M. Then
here, since the form dω is itself a closed form (d2 = 0), its class is also equal to
its rank and is even: r = 2s. s is the unique number such that (dω)s �= 0 and
(dω)s+1 = 0. We then deduce that 2s ≤ n.

Darboux’s theorem gives the local modeling of dω on an open set U of M
and reads:

dω =
s∑

k=1

dyk ∧ dyk+s (3)

where y1, . . . , y2s are 2s independent functions on U . We then deduce the
following

Proposition 3. Suppose that the class of dω is constant at m ∈ M (namely
maximal). The (non linear) GDNC of Σ (in a neighborhood of m ∈ M is then
the half s of the class 2s of dω. The local definition of a submanifold N solution
of the problem is given by the family f1 = 0, . . . , fs = 0 of equations on M where
f i is any linear combination (in the vector space on R and not in the modulus
on the ring on the functions on R) of the above yi and yi+s for all i = 1, . . . , s.

3 Open Issues

Two open issues are related to this GDNC issue. The first one concerns the
derivative of sections in T ∗

M. The dual issue is the KISS issue that involves, in a
linearized version at me, the symmetric part Ks(qe) of the stiffness matrix K(qe).
It is worth noting that the skew-symmetric aspect Ka(qe) may be extended to
the nonlinear framework through the exterior derivative dω whereas no similar
extension is possible for the symmetric part without specify a connection on
M. This issue is today partially solved and will be the subject of a forthcoming
paper.

The second one concerns the extension to continuum mechanics and infinite
dimension spaces. Regarding the dual KISS issue, it is has been performed and
will be soon published in an already accepted paper. Regarding the GDNC
issue, it remains an interesting challenge because the tools, involved for the
finite dimensional solution, are not naturally extendable to the case of infinite
dimensional (Hilbert) vector spaces.
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Abstract. Using the concept of symplectic subdifferential, we propose a
modification of the Hamiltonian formalism which can be used for dissipa-
tive systems. The formalism is first illustrated through an application of
the standard inelasticity in small strains. Some hints concerning possible
extensions to non-standard plasticity and finite strains are then given.
Finally, we show also how the dissipative transition between macrostates
can be viewed as an optimal transportation problem.

Keywords: Symplectic geometry · Convex analysis · Non smooth
mechanics

1 Introduction

Realistic dynamical systems considered by engineers and physicists are subjected
to energy loss. It may stem from external actions, in which case we call them non
conservative. The behaviour of such systems can be represented by Hamilton’s
least action principle. If the cause is internal, resulting from a broad spectrum
of phenomena such as collisions, surface friction, viscosity, plasticity, fracture,
damage and so on, we name them dissipative. Hamilton’s variational principle
failing for such systems, we want to propose another one for them.

Classical dynamics is generally addressed through the world of smooth func-
tions while the mechanics of dissipative systems deals with the one of non smooth
functions. Unfortunately, both worlds widely ignore each other. Our aim is laying
strong foundations to link both worlds and their corresponding methods.

2 Non Dissipative Systems

Let us consider a dynamical system, which is described by z = (x, y) ∈ X × Y ,
where the primal variables x describe the body motion and the dual ones y are
the corresponding momenta, both assembled in vectors. X and Y are topological,
locally convex, real vector spaces. There is a dual pairing:

〈·, ·〉 : X × Y → R

c© Springer International Publishing AG 2017
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which makes continuous the linear forms x �→ 〈x, y〉 and y �→ 〈x, y〉. The space
X × Y has a natural symplectic form ω : (X × Y )2 → R defined by:

ω(z, z′) = 〈x, y′〉 − 〈x′, y〉

For any smooth hamiltonian function (x, t) �→ H(x, t), we define the symplectic
gradient (or Hamiltonian vector field) by:

ż = XH ⇔ ∀ δz, ω(ż, δz) = δH

In the particular case X = Y , the dual pairing is a scalar product and the space
X × Y is dual with itself, with the duality product:

〈〈(x, y), (x′, y′)〉〉 = 〈x, x′〉 + 〈y, y′〉

Introducing the linear map J(x, y) = (−y, x) and putting:

ω(z, z′) = 〈〈J(z), z′〉〉

we have J (XH) = DzH that allows to recover the canonical equations governing
the motion:

ẋ = DyH, ẏ = −DxH (1)

Notice that J makes no sense in the general case when X 	= Y .

3 Dissipative Systems

For such systems, the cornerstone hypothesis is to decompose the velocity in the
phase space into reversible and irreversible parts:

ż = żR + żI , żR = X H, żI = ż − X H

the idea being that for a non dissipative system, the irreversible part vanishes
and the motion is governed by the canonical equations. Now, it is a crucial
turning-point. We will be confronting the tools of the differential geometry to
the ones of the non smooth mechanics. We start with a dissipation potential φ.
It is not differentiable everywhere but convex and lower semicontinuous. This
weakened properties allow to model set-valued constitutive laws –currently met
in mechanics of disipative materials– through the concept of subdifferential, a
set of generalized derivatives (a typical example, the plasticity, will be given at
the end of Sect. 5).

We introduce a new subdifferential, called symplectic [2]. Mere sleight of
hand: all we have to do is to replace the dual pairing by the symplectic form in
the classical definition;

żI ∈ ∂ωφ(ż) ⇔ ∀ż′, φ(ż + ż′) − φ(ż) ≥ ω(żI , ż
′) (2)
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From a mechanical viewpoint, it is the constitutive law of the material. Likewise,
we define a symplectic conjugate function, by the same sleight of hand in the
definition of the Legendre-Fenchel transform:

φ∗ω(żI) = sup
ż

{ω(żI , ż) − φ(ż)} (3)

satisfying a symplectic Fenchel inequality:

φ(ż) + φ∗ω(żI) − ω(żI , ż) ≥ 0 (4)

The equality is reached in the previous relation if and only if the constitutive
law (2) is satisfied.

Remarks. Always in the case X = Y where J makes sense, the subdifferential
is defined by:

żI ∈ ∂φ(ż) ⇔ ∀ż′, φ(ż + ż′) − φ(ż) ≥ 〈〈żI , ż
′〉〉

Comparing to the definition (2) of the symplectic subdifferential, one has:

żI ∈ ∂ωφ(ż) ⇔ J(żI) ∈ ∂φ(ż)

Recalling the definition of the conjugate function:

φ∗(żI) = sup
ż

{〈〈żI , ż〉〉 − φ(ż)}

and comparing to (3), we obtain φ∗ω(ż) = φ∗(J(ż)). Moreover, an interesting
fact is that, taking into account the antisymmetry of ω:

〈〈DzH, ż〉〉 = 〈〈J (X H), ż〉〉 = ω(X H, ż) = ω(ż, ż − X H) = ω(ż, żI)

If we suppose that for all couples (ż, żI):

φ(ż) + φ∗ω(żI) ≥ 0

the system dissipates for the couples satisfying the constitutive law:

〈〈DzH, ż〉〉 = −ω(żI , ż) = −(φ(z, ż) + φ∗ω(z, żI)) ≤ 0

4 The Symplectic Brezis-Ekeland-Nayroles Principle

The variational formulation can be obtained by integrating the left hand member
of (4) on the system evolution. On this ground, we proposed in [3] a symplectic
version of the Brezis-Ekeland-Nayroles variational principle:

The natural evolution curve z : [t0, t1] → X × Y minimizes the functional:

Π(z) :=
∫ t1

t0

[φ(ż) + φ∗ω(ż − XH) − ω(ż − XH, ż)] dt
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among all the curves verifying the initial conditions z(t0) = z0 and, remarkably,
the minimum is zero.

Observing that ω(ż, ż) vanishes and integrating by part, we have also the
variant (which is not compulsory):

Π(z) =
∫ t1

t0

[φ(ż) + φ∗ω(ż − XH) − ∂H

∂t
(t, z)] dt + H(t1, z(t1)) − H(0, z0)

5 Application to the Standard Plasticity
and Viscoplasticity

To illustrate the general formalism and to show how it allows to develop pow-
erful variational principles for dissipative systems within the frame of contin-
uum mechanics, we consider the standard plasticity and viscoplasticity in small
deformations based on the additive decomposition of strains into reversible and
irreversible strains:

ε = εR + εI

where εI is the plastic strain. Let Ω ⊂ R
n be a bounded, open set, with piecewise

smooth boundary ∂Ω. As usual, it is divided into two disjoint parts, ∂Ω0 (called
support) where the displacements are imposed and ∂Ω1 where the surface forces
are imposed. The elements of the space X are fields x = (u, εI) ∈ U × E where
εI is the irreversible strain field and u is a displacement field on the body Ω
with trace ū on ∂Ω. The elements of the corresponding dual space Y are of the
form y = (p,π). Unlike p which is clearly the linear momentum, we do not know
at this stage the physical meaning of π.

The duality between the spaces X and Y has the form:

〈x, y〉 =
∫

Ω

(〈u,p〉 + 〈εI ,π〉)

where the duality products which appear in the integral are finite dimensional
duality products on the image of the fields u,p (for our example this means a
scalar product on R

3) and on the image of the fields ε,π (in this case this is a
scalar product on the space of 3 by 3 symmetric matrices). We denote all these
standard dualities by the same 〈·, ·〉 symbols.

The total Hamiltonian of the structure is taken of the integral form:

H(t, z) =
∫

Ω

{
1
2ρ

‖ p ‖2 +w(∇u − εI) − f(t) · u

}
−

∫
∂Ω1

f̄(t) · u

The first term is the kinetic energy, w is the elastic strain energy, f is the volume
force and f̄ is the surface force on the part ∂Ω1 of the boundary, the displacement
field being equal to an imposed value ū on the remaining part ∂Ω0.

According to (1), its symplectic gradient is:

XH = ((DpH,DπH), (−DuH,−DεI
H))
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where, introducing as usual the stress field given by the elastic law:

σ = Dw(∇u − εI)

DuH is the gradient in the variational sense (from (1) and the integral form of
the duality product):

DuH =
∂H

∂u
− ∇ ·

(
∂H

∂∇u

)
= −f − ∇ · σ

and:
DūH = σ · n − f̄

Thus one has:

żI = ż − XH =
((

u̇ − p

ρ
, ε̇I

)
, (ṗ − f − ∇ · σ, π̇ − σ)

)

We shall use a dissipation potential which has an integral form:

Φ(z) =
∫

Ω

φ(p,π)

and we shall assume that the symplectic Fenchel transform of Φ expresses as
the integral of the symplectic Fenchel transform of the dissipation potential
density φ.

The symplectic Fenchel transform of the function φ reads:

φ∗ω(żI) = sup {〈u̇I , ṗ
′〉 + 〈ε̇I , π̇

′〉 − 〈u̇′, ṗI〉 − 〈ε̇′
I , π̇I〉 − φ(ż′) : ż′ ∈ X × Y }

To recover the standard plasticity, we suppose that φ is depending explicitly
only on π̇:

φ(ż) = ϕ(π̇) (5)

Denoting by χK the indicator function of a set K (equal to 0 on K and to +∞
otherwise), we obtain:

φ∗ω(żI) = χ{0}(u̇I) + χ{0}(ṗI) + χ{0}(π̇I) + ϕ∗(ε̇I)

where ϕ∗ is the usual Fenchel transform. In other words, the quantity φ∗ω(żI)
is finite and equal to:

φ∗ω(żI) = ϕ∗(ε̇I)

if and only if all of the following are true:

(a) p equals the linear momentum

p = ρu̇ (6)

(b) the balance of linear momentum is satisfied

∇ · σ + f = ṗ = ρü on Ω, σ · n = f̄ on ∂Ω1 (7)
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(c) and an equality which reveals the meaning of the variable π:

π̇ = σ . (8)

Eliminating π̇ by (8), the symplectic Brezis-Ekeland-Nayroles principle
applied to standard plasticity states that the evolution curve minimizes:

Π(z) =
∫ t1

t0

{
ϕ(σ) + ϕ∗(ε̇I) − ∂H

∂t
(t, z)

}
dt + H(t1, z(t1)) − H(t0, z0)

among all curves z : [t0, t1] → X × Y such that z(0) = (x0, y0), the kinemati-
cal conditions on ∂Ω0, (6) and (7) are satisfied. For instance, in plasticity, the
potential ϕ is the indicator function of the closed convex plastic domain K. The
constitutive law ε̇I ∈ ∂ϕ(σ) reads for σ ∈ K:

∀σ′ ∈ K, (σ′ − σ) : ε̇I ≤ 0 (9)

If σ is an interior point of K, ε̇I vanishes. If σ is a boundary point of K, ε̇I

is a called a subnormal to K at σ. An important case of interest is the metal
plasticity governed by von Mises model for which K is defined as the section:

K = {σ such that f(σ) ≤ 0}
where f is differentiable on the boundary of K. In this case, if σ is a boundary
point of K, there exists λ > 0 such that:

ε̇I = λ Df(σ)

that means ε̇I is an exterior normal to K. Otherwise, if σ does not belong to
K, there is no solution to this inequation (9). In short, the previous non smooth
constitutive law allows to model the following behavior: below a given stress
threshold, there is no plastic deformation then no dissipation; at the threshold,
plastic yielding and dissipation occur; over the threshold, no stress state may be
reached.

Remark. The assumption that u, εI and p are ignorable in (5) comes down to
introduce into the dynamical formalism a “statical” constitutive law:

ε̇I ∈ ∂ϕ(π̇) = ∂ϕ(σ)

Conversely, the symplectic framework suggests to imagine fully “dynamical” con-
stitutive laws of the more general form:

(u̇, ε̇I) ∈ ∂ωφ (ṗ, π̇)

6 Extensions to Non Standard Plasticity and Finite
Strains

In plasticity and more generally in the mechanics of dissipative materials, some
of the constitutive laws are non-associated, i.e. cannot be represented by a dis-
sipation potential. A response proposed first in [5] is to introduce a bipotential.
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The applications to solid Mechanics are various: Coulomb’s friction law, non-
associated Drucker-Prager and Cam-Clay models in Soil Mechanics, cyclic Plas-
ticity and Viscoplasticity of metals with the non linear kinematical hardening
rule, Lemaitre’s damage law (for more details, see reference [4]).

For such constitutive laws, the principle can be easily generalized replacing
φ(ż) + φ∗ω(ż′) by a symplectic bipotential b(ż, ż′):

– separatly convex and lower semicontinuous with respect to ż, ż′,
– satisfying a cornerstone inequality:

∀ż, ż′, b(ż, ż′) ≥ ω(ż, ż′)

extending the symplectic Fenchel inequality (4),

leading to generalize the functional of the symplectic BEN principle:

Π(z) :=
∫ t1

t0

[
b(ż, żI) − ∂H

∂t
(t, z)

]
dt + H(t1, z(t1)) − H(t0, z0)

For the extension to finite strains, we may modify the original framework by
working on the tangent bundle and making for instance φ = φ(z, ż) [3]. Then
the goal is reached in three steps. Firstly, we develop a Lagrangian formalism
for the reversible media based on the calculus of variation by jet theory. Next,
we propose a corresponding Hamiltonian formalism. Finally, we deduce from it
a symplectic minimum principle for dissipative media. This allows, among other
things, to get a minimum principle for unstationnary Navier-Stokes models.

7 Dissipative Transition Between Macrostates as an
Optimal Transportation Problem

We would like to model a dissipative transition between the macrostates at t = tk
(k = 0, 1). Now, X and Y are separable metric spaces. X × Y is viewed a the
space of microstates zk with Gibbs probability measure μk at t = tk of density:

μk = e−(ζk+βkH(zk))

where βk is the reciprocal temperature and ζk is Planck’s (or Massieu’s)
potential. Let us consider the set of curves from z0 to z1:

Z(z0, z1) = {z : [t0, t1] → X × Y s.t. z(t0) = z0 and z(t1) = z1}
We adopt as cost function:

c(z0, z1) = inf
z∈Z(z0,z1)

Π(z)

and suppose it is measurable. It is worth to remark that it is not generally zero.
For a measurable map T : X × Y → X × Y , T (μ0) denotes the push forward of
μ0 such that for all Borel set B:

T (μ0)(B) = μ0(B)
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Inspiring from Monge’s formulation of the optimal transportation problem, we
claim that:

Among all the transport maps T such that μ1 = T (μ0), the natural one
minimizes the functional:

Cμ0(T ) :=
∫

X×Y

c(z0, T (z0)) dμ0(z0)

Following Kantorovich’s formulation, we consider the set Γ (μ0, μ1) of all
probability measures γ on X ×Y with marginals μ0 on the first factor X ×Y and
μ1 on the second factor X×Y , i.e. for all Borel set B on X×Y , γ(B×(X×Y )) =
μ0(B) and γ((X × Y ) × B) = μ1(B). Hence, we claim that:

The natural probability measure γ minimizes the functional:

C(γ) :=
∫
(X×Y )2

c(z0, z1) dγ(z0, z1)

within the set Γ (μ0, μ1).
The advantage of the new formulation is that the latter problem is linear

with respect γ while the former one is non linear with respect to T .
The symplectic Wasserstein distance-like function is then defined as the opti-

mal value of the cost C:

Ws(μ0, μ1) := inf
γ∈Γ (μ0,μ1)

C(γ)
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3. Buliga, M., de Saxcé, G.: A symplectic Brezis-Ekeland-Nayroles principle. Math.
Mech. Solid, 1–15 (2016). doi:10.1177/1081286516629532
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Abstract. Having in mind applications to Condensed Matter Physics,
we perform a null-reduction of General Relativity in d + 1 space-
time dimensions thereby obtaining an extension to arbitrary torsion of
the twistless-torsional Newton-Cartan geometry. We shortly discuss the
implementation of the equations of motion.

1 Introduction

Usually, when discussing Newton-Cartan gravity, one defines an absolute time
by imposing that the curl of the time-like Vierbein τμ vanishes.1 This condition,
sometimes called the zero torsion condition, allows one to solve for τμ in terms
of a single scalar field τ(x):

∂μτν − ∂ντμ = 0 ⇒ τμ = ∂μτ. (1)

Choosing for this function the time t, i.e. τ(x) = t, defines the absolute time
direction:

τ(x) = t ⇒ τμ = δ0μ. (2)

The zero-torsion condition (1) is sufficient but not required to obtain a causal
behaviour of the theory. A more general condition, that guarantees a time flow
orthogonal to Riemannian spacelike leaves, is the so-called hypersurface orthog-
onality condition:

τab ≡ ea
μeb

ντμν = 0, τμν = ∂[μτν]. (3)

1 Most of this presentation applies to any spacetime dimension. We will therefore from
now on use the word Vielbein instead of Vierbein and take μ = 0, 1, · · · d − 1.
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Here ea
μ, together with τμ, are the projective inverses of the spatial and timelike

Vielbeine eμ
a and τμ, respectively, with a = 1, 2, · · · d − 1. They are defined by

the following projective invertibility relations:

eμ
aeν

a = δμ
ν − τμτν , eμ

aeμ
b = δa

b ,

τμτμ = 1, eμ
aτμ = 0, τμeμ

a = 0. (4)

The condition (3), also called the twistless torsional condition, was encoun-
tered in the context of Lifshitz holography when studying the coupling of
Newton-Cartan gravity to the Conformal Field Theory (CFT) at the boundary of
spacetime [1]. Twistless-torsional Newton-Cartan geometry has also been applied
in a study of the Quantum Hall Effect [2]. It not surprising that the twistless-
torsional condition (3) was found in the context of a CFT. The stronger condition
(1) simply does not fit within a CFT since it is not invariant under spacetime-
dependent dilations δτμ ∼ ΛD(x)τμ. Instead, the condition (3) is invariant under
spacetime-dependent dilatations due to the relation ea

μτμ = 0, see Eq. (4).
One can define a dilatation-covariant torsion as

τC
μν ≡ ∂[μτν] − 2b[μτν] = 0, (5)

where bμ transforms as the gauge field of dilatations, i.e. δbμ = ∂μΛD. Since
τμτμ = 1 one can use the space-time projection of the equation τC

μν = 0 to solve
for the spatial components of bμ:

τC
0a ≡ τμea

ντC
μν = 0 ⇒ ba ≡ ea

μbμ = −τ0a. (6)

This implies that in a conformal theory only the spatial components of the
conformal torsion can be non-zero:

τC
ab ≡ ea

μeb
ντC

μν = τab �= 0. (7)

At first sight, it seems strange to consider the case of arbitrary torsion since
causality is lost in that case. However, in condensed matter applications, one
often considers gravity not as a dynamical theory but as background fields that
couple to the energy and momentum flux. It was pointed out a long time ago in
the seminal paper by Luttinger [3] that to describe thermal transport one needs
to consider an auxiliary gravitational field ψ(x) that couples to the energy and
is defined by

τμ = eψ(x)δμ,0 (8)

corresponding to the case of twistless torsion. Later, it was pointed out that,
for describing other properties as well, one also needs to introduce the other
components of τμ that couple to the energy current. This leads to a full un-
restricted τμ describing arbitrary torsion [4]. For an earlier discussion on tor-
sional Newton-Cartan geometry, see [5]. For applications of torsion in condensed
matter, see [6,7]. To avoid confusion we will reserve the word ‘geometry’ if we
only consider the background fields and their symmetries whereas we will talk
about ‘gravity’ if also dynamical equations of motion are valid.
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In this presentation, we will construct by applying a null reduction of Gen-
eral Relativity, the extension of NC geometry to the case of arbitrary torsion,
i.e. τμν �= 0, see Table 1. Null-reductions and Newton-Cartan geometry with or
without torsion have been discussed before in [8–11].

The outline of this presentation is as follows. In the next section we will derive
NC geometry with arbitrary torsion from an off-shell null reduction, meaning we
do not perform a null reduction of the equations of motion, of General Relativity
in d+1 spacetime dimensions. We point out that performing a null reduction of
the equations of motion as well we obtain the equations of motion of NC gravity
with zero torsion thereby reproducing the result of [8,9]. We comment in the
Conclusions on how one could go on-shell keeping arbitrary torsion.

Table 1. Newton-Cartan geometry with torsion.

NC geometry Geometric constraint

Arbitrary torsion τ0a �= 0, τab �= 0

Twistless torsional τ0a �= 0, τab = 0

Zero torsion τ0a = 0, τab = 0

2 The Null Reduction of General Relativity

One way to obtain NC geometry with arbitrary torsion is by performing a dimen-
sional reduction of General Relativity (GR) from d+1 to d spacetime dimensions
along a null direction [9]. We show in detail how to perform such a null reduc-
tion off-shell, i.e. at the level of the transformation rules only. At the end of
this section, we point out that, after going on-shell, we obtain the equations of
motion of NC gravity with zero torsion [8,9].

Our starting point is General Relativity in d + 1 dimensions in the second
order formalism, where the single independent field is the Vielbein êM

A. Here
and in the following, hatted fields are (d+1)-dimensional and unhatted ones will
denote d-dimensional fields after dimensional reduction. Furthermore, capital
indices take d+1 values, with M being a curved and A a flat index. The Einstein-
Hilbert action in d + 1 spacetime dimensions is given by

S
(d+1)
GR = − 1

2κ

∫
dd+1x ê êM

AêN
BR̂MN

AB (ω̂(ê)) , (9)

where κ is the gravitational constant and ê is the determinant of the Vielbein.
The inverse Vielbein satisfies the usual relations

êM
AêM

B = δB
A , êM

AêN
A = δM

N . (10)

The spin connection is a dependent field, given in terms of the Vielbein as

ω̂M
BA(ê) = 2êN [A∂[M êN ]

B] − êN [AêB]P êMC∂N êP
C , (11)
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while the curvature tensor is given by

R̂MN
AB (ω̂(ê)) = 2∂[M ω̂N ]

AB − 2ω̂[M
AC ω̂N ]C

B . (12)

Under infinitesimal general coordinate transformations and local Lorentz trans-
formations, the Vielbein transforms as

δêM
A = ξN∂N êM

A + ∂MξN êN
A + λA

B êM
B . (13)

In order to dimensionally reduce the transformation rules along a null direc-
tion, we assume the existence of a null Killing vector ξ = ξM∂M for the metric
ĝMN ≡ êM

AêN
BηAB , i.e.

Lξ ĝMN = 0 and ξ2 = 0. (14)

Without loss of generality, we may choose adapted coordinates xM = {xμ, v},
with μ taking d values, and take the Killing vector to be ξ = ξv∂v. Then the
Killing equation implies that the metric is v-independent, i.e. ∂v ĝMN = 0, while
the null condition implies the following constraint on the metric: 2

ĝvv = 0. (15)

A suitable reduction Ansatz for the Vielbein should be consistent with this
constraint on the metric. Such an Ansatz was discussed in [9], and we repeat it
below in a formalism suited to our purposes.

First, we split the (d+1)-dimensional tangent space indices as A = {a,+,−},
where the index a is purely spatial and takes d − 1 values, while ± denote null
directions. Then the Minkowski metric components are ηab = δab and η+− = 1.
The reduction Ansatz is specified upon choosing the inverse Vielbein êM

+ to be
proportional to the null Killing vector ξ = ξv∂v. A consistent parametrization is

êM
A =

⎛
⎜⎜⎝

μ v

a eμ
a eμ

amμ

− Sτμ Sτμmμ

+ 0 S−1

⎞
⎟⎟⎠. (16)

The scalar S is a compensating one and will be gauge-fixed shortly.
Given the expression (16) for the inverse Vielbein, the Vielbein itself is

given by

êM
A =

( a − +
μ eμ

a S−1τμ −Smμ

v 0 0 S

)
. (17)

To avoid confusion, recall that the index a takes one value less than the index
μ; thus the above matrices are both square although in block form this is not
manifest.
2 Due to this constraint, we are not allowed to perform the null reduction in the action

but only in the transformation rules and equations of motion [9].
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Note that the Ansatz (17) has two zeros. The zero in the first column, êv
a = 0,

is due to the fact that we gauge-fixed the Lorentz transformations with parame-
ters λa

+. On the other hand, the zero in the second column, êv
− = 0, is due to

the existence of the null Killing vector ξ = ξv∂v:

ξ2 = ξvξv ĝvv = 0 ⇒ ĝvv = êv
Aêv

BηAB = 0 ⇒ êv
− = 0. (18)

We will call λa ≡ λa− and λ ≡ λ+
+.

A simple computation reveals that the invertibility relations (10), after sub-
stitution of the reduction Ansatz, precisely reproduce the projected invertibility
relations (4) provided we identify {τμ eμ

a} as the timelike and spatial Vielbein
of NC gravity, respectively. Starting from the transformation rule (13) of the
(d + 1)-dimensional Vielbein, we derive the following transformations of the
lower-dimensional fields:

δτμ = 0, (19)
δeμ

a = λa
beμ

b + S−1λaτμ, (20)
δmμ = −∂μξv − S−1λaeμ

a, (21)
δS = λS. (22)

Next, fixing the Lorentz transformations with parameter λ by setting S = 1 and
defining σ := −ξv we obtain, for arbitrary torsion, the transformation rules

δτμ = 0,

δeμ
a = λa

beμ
b + λaτμ, (23)

δmμ = ∂μσ + λaeμa

of Newton-Cartan geometry in d dimensions provided we identify mμ as the
central charge gauge field associated to the central charge generator of the
Bargmann algebra. Note that we have not imposed any constraint on the torsion,
i.e. τμν = ∂[μτν] �= 0.

We next consider the null-reduction of the spin-connection given in Eq. (11).
Inserting the Vielbein Ansatz (17) with S = 1 into Eq. (11) we obtain the fol-
lowing expressions for the torsionful spin-connections:

ω̂μ
ab(ê) ≡ ωμ

ab(τ, e,m) = ω̊μ
ab(e, τ,m) − mμτab,

ω̂μ
a+(ê) ≡ ωμ

a(τ, e,m) = ω̊μ
a(e, τ,m) + mμτ0

a, (24)

where ω̊μ
ab(e, τ,m) and ω̊μ

a(e, τ,m) are the torsion-free Newton-Cartan spin
connections given by

ω̊μ
ab(τ, e,m) = eμce

ρaeσb∂[ρeσ]
c − eνa∂[μeν]

b + eνb∂[μeν]
a − τμeρaeσb∂[ρmσ],(25)

ω̊μ
a(τ, e,m) = τν∂[μeν]

a + eμ
ceρaτσ∂[ρeσ]c + eνa∂[μmν] + τμτρeσa∂[ρmσ]. (26)
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Furthermore, we find that the remaining components of the spin-connections are
given by

ω̂v
ab(ê) = τab, ω̂v

a+(ê) = −τ0
a,

ω̂μ
a−(ê) = −τμτ0

a − eμ
bτb

a, ω̂v
a−(ê) = 0,

ω̂μ
−+(ê) = −eμ

bτ0b, ω̂v
−+(ê) = 0. (27)

At this point, we have obtained the transformation rules of the independent NC
gravitational fields describing NC geometry with arbitrary torsion. Furthermore,
we obtained the expressions for the dependent (torsional) spin-connections. The
same method cannot be used to obtain the equations of motion of NC gravity
with arbitrary torsion [8,9]. A simple argument for this will be given in the next
section. Instead, it has been shown [8,9] that reducing the Einstein equations of
motion leads to the torsion-less NC equations of motion. More precisely, using
flat indices, the equations of motion in the −−,−a and ab directions yield the
NC equations of motion while those in the ++,+− and +a direction constrain
the torsion to be zero [8,9]. Since the two sets of equations of motion transform
to each other under Galilean boosts, it is not consistent to leave out the second
set of equations of motion in the hope of obtaining NC equations of motion
with arbitrary torsion. As a final result, we find the following zero torsion NC
equations of motion:

R0a(Ga) = 0, Rcā(Jc
b) = 0, (28)

where R(G) and R(J) are the covariant curvatures of Galilean boosts and spatial
rotations and where in the last equation we collected two field equations into
one by using an index ā = (a, 0).

3 Comments

In this presentation we applied the null-reduction technique to construct the
transformation rules corresponding to Newton-Cartan geometry with arbitrary
torsion. The null reduction technique has the advantage that the construction
is algorithmic and can easily be generalized to other geometries, such as the
Schrödinger geometry, as well.

To explain why the on-shell null reduction leads to zero torsion equations of
motion, it is convenient to consider the Schrödinger field theory (SFT) 3 that
can be associated to the first NC equation of motion of Eq. (28) by adding
compensating scalars. To this end, we introduce a complex scalar Ψ = ϕeiχ that
transforms under general coordinate transformations, with parameter ξμ(x), as
a scalar and under local dilatations and central charge transformations, with
parameters λD(x) and σ(x), with weight w and M , respectively:

δΨ = ξμ∂μΨ +
(
wλD + iMσ

)
Ψ. (29)

3 SFTs are explained in [12]. The discussion below is partly based upon [12].
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We first consider the case of NC geometry with zero torsion. Since the zero
torsion NC equations of motion (28) are already invariant under central charge
transformations, we consider a real scalar ϕ, i.e. χ = 0. Due to the time/space
components of the zero torsion condition, i.e. τ0a = 0, this real scalar must
satisfy the constraint ∂aϕ = 0. 4 At the same time, the first NC equation of
motion in Eq. (28) leads to the scalar equation of motion ∂0∂0ϕ = 0. Given
these constraints the second NC equation of motion in Eq. (28) does not lead to
additional restrictions. Summarizing, one can show that the two equations just
derived form a SFT with the correct Schrödinger symmetries:

SFT1 : ∂0∂0φ = 0, ∂aϕ = 0. (30)

We next consider the case of NC geometry with arbitrary torsion. In that
case one lacks the second equation of (30) that followed from the torsion con-
straint τ0a = 0. The real scalar ϕ now satisfies only the first constraint of (30)
which does not constitute a SFT. Instead, one is forced to introduce the second
compensating scalar χ, together with a mass parameter M , such that φ and χ
together form the following SFT:

SFT2 : ∂0∂0ϕ − 2
M

(∂0∂aϕ)∂aχ +
1

M2 (∂a∂bϕ)∂aχ∂bχ = 0. (31)

Since χ is the compensating scalar for central charge transformations, this implies
that the extension to arbitrary torsion of the first NC equation of motion in
(28) cannot be invariant under central charge transformations. Because null-
reductions by construction lead to equations of motion that are invariant under
central charge transformations, this explains why we did find zero torsion equa-
tions of motion in the previous section.

The easiest way to obtain the Newton-Cartan equations of motion with arbi-
trary torsion would be to couple the SFT2 given in Eq. (31) to Schrödinger
gravity with arbitrary torsion that by itself can be obtained by a null-reduction
of conformal gravity. Indeed, such a null reduction has been performed and the
coupling of SFT2 to Schrödinger gravity can be constructed in three spacetime
dimensions [13]. The extension to higher dimensions remains an open question.

As a closing remark, it would be interesting to apply the null reduction tech-
nique to supergravity theories. The case of d = 3 should lead to a generalization
of the off-shell 3d NC supergravity constructed in [14,15] to the case of arbi-
trary torsion. More interestingly, one can also take d = 4 and construct on-shell
4D NC supergravity with zero torsion thereby obtaining, after gauge-fixing, the
very first supersymmetric generalization of 4D Newtonian gravity. An intriguing
feature of the 3D case is that the Newtonian supergravity theory contains both
a Newton potential as well as a dual Newton potential [16] . In analogy to the 3d
case, it would be interesting to see which representations of the Newton potential
would occur in the 4d case and investigate whether this could have any physical
effect.
4 Note that the space/space components of the zero torsion constraint are already

invariant under dilatations.
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Abstract. Port Hamiltonian systems (PHS) are open passive systems
that fulfil a power balance: they correspond to dynamical systems com-
posed of energy-storing elements, energy-dissipating elements and exter-
nal ports, endowed with a geometric structure (called Dirac structure)
that encodes conservative interconnections. This paper presents a mini-
mal PHS model of the full vocal apparatus. Elementary components are:
(a) an ideal subglottal pressure supply, (b) a glottal flow in a mobile
channel, (c) vocal-folds, (d) an acoustic resonator reduced to a single
mode. Particular attention is paid to the energetic consistency of each
component, to passivity and to the conservative interconnection. Simu-
lations are presented. They show the ability of the model to produce a
variety of regimes, including self-sustained oscillations. Typical healthy
or pathological configuration laryngeal configurations are explored.

1 Motivations

Many physics-based models of the human vocal apparatus were proposed to help
understanding the phonation and its pathologies, with a compromise between
the complexity introduced in the modelling and the vocal features that can be
reproduced by analytical or numerical calculations. Except recent works based
on finite elements methods applied to the glottal flow dynamics, most of the
models rely on the description of the aerodynamics provided by van den Berg [1]
for a glottal flow in static geometries, i.e., that ignores the motion of the vocal
folds. Even if enhancements appeared accounting for various effects, they failed
to represent correctly the energy exchanges between the flow and the surface of
the vocal folds that bounds the glottis.

The port-Hamiltonian approach offers a framework for the modelling, analy-
sis and control of complex system with emphasis on passivity and power bal-
ance [2]. A PHS for the classical body-cover model has been recently pro-
posed [3] without connection to a glottal flow nor to a vocal tract, so that no
self-oscillations can be produced. The current paper proposes a minimal PHS
model of the full vocal apparatus. This power-balanced numerical tool enables
the investigation of the various regimes that can be produced by time-domain
simulations. Sect. 2 is a reminder on the port-Hamiltonian systems, Sect. 3 is
dedicated to the description of the elementary components of the full vocal
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 375–383, 2017.
https://doi.org/10.1007/978-3-319-68445-1_44
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apparatus and their interconnection. Sect. 4 presents simulation and numerical
results for typical healthy and pathological laryngeal configurations.

2 Port-Hamiltonian Systems

Port-Hamiltonian systems are open passive systems that fulfil a power balance
[2,4]. A large class of such finite dimensional systems with input u(t) ∈ U = R

P ,
output y(t) ∈ Y = U, can be described by a differential algebraic equation

⎛
⎝

ẋ
w
−y

⎞
⎠ = S(x,w)

⎛
⎝

∇xH
z(w)
u

⎞
⎠ , with S = −ST =

⎛
⎝

Jx −K Gx

KT Jw Gw

−GT
x −GT

w Jy,

⎞
⎠ (1)

where state x(t) ∈ X = R
N is associated with energy E = H(x) ≥ 0 and where

variables w(t) ∈ W = R
Q are associated with dissipative constitutive laws z such

that Pdis = z(w)Tw ≥ 0 stands for a dissipated power. Such a system naturally
fulfils the power balance dE/dt + Pdis − Pext = 0, where the external power
is Pext = yTu. This is a straightforward consequence of the skew-symmetry
of matrix S, which encodes this geometric structure (Dirac structure, see [2]).
Indeed, rewriting Eq. (1) as B = SA, it follows that AT B = AT SA = 0, that is,

∇xH(x)T ẋ + z(w)Tw − uTy = 0 (2)

Moreover, connecting several PHS through external ports yields a PHS. This
modularity is used in practice, by working on elementary components, separately.

3 Vocal Apparatus

Benefiting from this modularity, the full vocal apparatus is built as the intercon-
nection of the following elementary components: a subglottal pressure supply,
two vocal folds, a glottal flow, and an acoustic resonator (see Fig. 1).

Fig. 1. Components of the vocal apparatus. The interconnection takes place via pairs
of effort (P ) and flux (Q) variables. The 0 connection expresses the equality of efforts
and the division of flux. See Ref. [4] for an introduction to bond graphs.
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3.1 The One-Mass Model of Vocal Folds

The left and right vocal folds (Fi = L or R with i = l or r, respectively), are
modelled as classical single-d.o.f. oscillators (as in Ref. [5], mass mi, spring ki

and damping ri) with a purely elastic cover (as in Ref. [6], spring κi). Their
dynamics relates the momentum πi of the mass, and the elongations ξi and ζi of
the body and cover springs, respectively, to the velocity vi = ζ̇i + ξ̇i of the cover
imposed by the glottal flow, and to the transverse resultants of the pressure forces
on the upstream (P sub

i ) and downstream (P sup
i ) faces of the trapezoid-shaped

structures (see Fig. 2, left part) :

π̇i = −kiξi − riξ̇i + κiζi − P sub
i Ssub

i − P sup
i Ssup

i . (3)

F p
i = −κiζi is the transverse feedback force opposed by the fold to the flow.

The motion of the fold produces the additional flowrates Qsub
i (pumping from

the subglottal space, i.e., positive when the fold compresses) and Qsup
i (pulsated

into the supraglottal cavity, i.e., positive when the fold inflates).

Port-Hamiltonian modelling of a vocal fold Fi :

xFi =

⎛
⎝

πi

ξi
ζi

⎞
⎠ , uFi =

⎛
⎝

P sub
i

P sup
i

vi

⎞
⎠ , yFi =

⎛
⎝
−Qsub

i

Qsup
i

−F p
i

⎞
⎠ , HFi =

1

2
xT
Fi

⎛
⎝

1/mi

ki

κi

⎞
⎠xFi ,

wFi = ξ̇i, zFi(wFi) = riwFi , J
Fi
w = 0, GFi

w = O1×3, J
Fi
y = O3×3,

JFi
x =

⎛
⎝

0 −1 1
1 0 0
−1 0 0

⎞
⎠ , KFi =

⎛
⎝

1
0
0

⎞
⎠ , and GFi

x =

⎛
⎝
−Ssub

i −Ssup
i 0

0 0 0
0 0 1

⎞
⎠ .

Fig. 2. Left: Schematic of a vocal fold. Right: Schematics of the glottal flow with open
boundaries S− and S+ and mobile walls Sl and Sr.

3.2 Glottal Flow

We consider a potential incompressible flow of an inviscid fluid of density ρ
between two parallel mobile walls located at y = yl(t) and y = yr(t), respectively.
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The glottis G has width L, length 2� and height h = yl − yr, its mid-line being
located at y = ym = (yr + yl)/2 (see Fig. 2, right part). The simplest kinematics
for the fluid velocity v(x, y) obeying the Euler equation

v̇ +
1
ρ
∇

(
p +

1
2
ρ|v|2

)
= 0 (4)

and satisfying the normal velocity continuity on the walls is given by:

v =
(

vx

vy

)
=

(
v0 − x ḣ

h

ẏm + ḣ
h (y − ym)

)
∀(x, y) ∈ Ω = [−�, �] × [yr, yl]. (5)

The velocity field is thus parametrised by four macroscopic quantities: h, its
time derivative ḣ, and the mean axial and transverse velocities v0 =< vx >Ω

and ẏm =< vy >Ω , respectively. Choosing these quantities as the state allows
the exact reduction of the infinite-dimensional problem to a finite-dimension
system. The pressure field p(x, y, t) can also be obtained from Eq. (4), as well as
the total pressure p + 1

2ρ|v|2, but are not expanded here for brevity.
The dynamics for the glottal flow is controlled by the mean total pressures

P−
tot and P+

tot on the open boundaries S− (x = −�) and S+ (x = +�), respectively,
and the resultant F p

r and F p
l of the pressure forces on the right and left walls,

respectively (see Appendix A for the derivation of the equations). The kinetic
energy of the fluid on the domain writes as

ε(t) = HG(xG(t)) =
1
2

(
m(h)v2

0 + m(h)ẏ2
m + m3(h)ḣ2

)
(6)

with the total mass of the fluid m(h) = 2ρ�Lh(t), and the effective mass for
the transverse expansion motion m3(h) = m(h)

(
1 + 4�2/h2

)
/12. The energy

could be written as a function of the momenta to yield a canonical Hamiltonian
representation (see Ref. [7] for a similar PHS based on normalised momenta).

Downstream the glottis, the flow enters the supraglottal space which has a
cross section area much larger than that of the glottis. For positive flowrate
(Q+ = Lhvx(�) > 0), the flow separates from the walls at the end point of
the (straight) channel. The downstream jet then spreads due to the shear-layer
vortices until the jet has lost most of its kinetic energy into heat and fully
mixed with the quiescent fluid. This phenomenon is modelled as a dissipa-
tive component with variable wG = Q+ and dissipation function zG (wG) =
(1/2)ρ(wG/Lh)2Θ(wG) where Θ is the Heaviside step function. The pressure in
the supraglottal space then writes P+ = P+

tot − zG .

Port-Hamiltonian modelling of the glottal flow G :

xG =

⎛
⎜⎜⎝

v0
ẏm

ḣ
h

⎞
⎟⎟⎠ , uG =

⎛
⎜⎜⎝

P−
tot

P+

F p
l

F p
r

⎞
⎟⎟⎠ , yG =

⎛
⎜⎜⎝

−Q− = −Lhvx(−�)
+Q+ = Lhvx(�)

−vl = +ẏl

−vr = −ẏr

⎞
⎟⎟⎠ ,

HG(xG) =
m(h)

2
(
v2
0 + ẏ2

m

)
+

m3(h)
2

ḣ2,
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wG = Q+, zG =
ρ

2

(wG
Lh

)2

Θ(wG),

JG
w = O1×1, GG

w = O1×4 and JG
y = O4×4,

JG
x =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 − 1

m3

0 0 1
m3

0

⎞
⎟⎟⎠ ,KG =

⎛
⎜⎜⎝

Lh
m
0

− L�
m3

0

⎞
⎟⎟⎠ , and GG

x =

⎛
⎜⎜⎝

Lh
m −Lh

m 0 0
0 0 − 1

m
1
m

L�
m3

L�
m3

− 1
2m3

− 1
2m3

0 0 0 0

⎞
⎟⎟⎠ .

3.3 Vocal Tract

We assume a modal representation of the input impedance of the vocal tract as
seen from the supraglottal cavity, i.e., the supraglottal pressure P ac is defined
as the sum of pressure components pn (for n = 1, N , denoted Pn in the Fourier
domain) related to the input flowrate Qac through 2nd order transfer functions:

Zin(ω) =
P ac(ω)
Qac(ω)

=
N∑

n=1

Pn(ω)
Qac(ω)

=
N∑

n=1

jωan

ω2
n + jqnωnω − ω2

(7)

where ω is the angular frequency, ωn are the modal angular frequencies, qn are
the modal dampings and an the modal coefficients. Each mode corresponds to a
resonance of the vocal tract, and so to an expected formant in the spectrum of
the radiated sound. We follow the convention defined in Ref. [8] for the internal
variables of this subsystem.

Port-Hamiltonian modelling of the acoustic resonator A :

xA =
(
p1/a1, . . . , pN/aN ,

∫ t

0
p1(t′)dt′, . . . ,

∫ t

0
pN (t′)dt′

)T

,

HA(xA) =
N∑

n=1

1
2

(
p2n
an

+
ω2

n

an

(∫ t

0

pn(t′)dt′
)2

)
,

wA = (p1, . . . , pN )T
, zA =

(
q1ω1

a1
wA1, . . . ,

qNωN

aN
wA,N

)
,

uA = (Qac) , yA = (−P ac) ,

JA
x =

(
ON×N −IN×N

IN×N ON×N

)
, KA =

(
IN×N

ON×N

)
, GA

x =
(

1N

ON×1

)
,

GA
w = ON×1, JA

w = ON×N , and JA
y = O1×1.

where IN×N is the identity matrix of dim N × N , and 1N is the column vector
N × 1 filled with 1.

3.4 Full System

We assume that the lower airways acts as a source able to impose the pressure
P sub in the subglottal space of the larynx. The flowrate Qsub coming from this
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source splits into the flowrate Q− entering the glottis and the flowrate Qsub
l

and Qsub
r pumped by the lower conus elasticus of the left and right vocal folds,

respectively, so that Qsub = Q− + Qsub
l + Qsub

r with Psub = P sub
r = P sub

l = P−
tot.

Conversely, the flowrate Q+ sums up with the flowrates Qsup
l and Qsup

r pulsated
by the left and right vocal folds, respectively. The resulting flowrate Qac that
enters the acoustic resonator is then Qac = Q++Qsup

l +Qsup
r with P ac = P sup

r =
P sup

l = P+.
The elementary components described above are now put together to assem-

bly the full vocal apparatus. In order to simplify the Dirac structure, the ports
of the subsystems have been chosen to be complementary: a port with sink con-
vention is always connected to a port with source convention. As a result, it is
trivial to expand the port Hamiltonian modelling of the full system with the
following variables, dissipation functions, ports and energy:

x =

⎛
⎜⎜⎝
xR
xL
xG
xA

⎞
⎟⎟⎠ , w =

⎛
⎜⎜⎝
wR
wL
wG
wA

⎞
⎟⎟⎠ , z =

⎛
⎜⎜⎝
zR
zL
zG
zA

⎞
⎟⎟⎠ , u =

(
P sub

)
, y =

(−Qsub
)
,

H(x) = HR(xR) + HL(xL) + HG(xG) + HA(xA).

The matrices Jx, K, Gx, Gw, Jw and Jy can be obtained using automated
generation tools like the PyPHS software [9].

4 Simulations and Results

We here briefly present some preliminary results. In the port-Hamiltonian mod-
elling of the full system, the dissipation variables w do not explicitly depend
on z (i.e., Jw = O), so that they can be eliminated leading to a differential
realisation that can be numerical integrated (e.g., using the Runge-Kutta 4
scheme). The parameters have the following values: mi = 0.2 g, ri = 0.05 kg/s,
L = 11 mm, � = 2 mm, ρ = 1.3 kg/m3. Due to the sparse data available on the
input impedances of vocal tract notably in terms of modal amplitudes an, we
consider a resonator with a single pole (N = 1) with ωn = 2π×640 rad/s, qn = .4
and an = 1 MΩ (from Ref. [10]). The system is driven by a subglottal pressure
P sub that increases from 0 to 800 Pa within 20 ms and is then maintained.

In the first simulation, the folds are symmetric (kr = kl = 100 N/m, κr =
κl = 3kr) and initially separated by a width h = 1 mm. In such conditions,
the folds are pushed away from their rest position (until h ∼ 3 mm), but this
equilibrium does not become unstable and the system does not vibrate.

If some adduction is performed bringing the folds closer together (h =
0.1 mm), the glottis first widens (until h ∼ 2 mm) and the folds then start to
vibrate and the acoustic pressure oscillates in the vocal tract (see Fig. 3, top).
The sound is stable even if the two folds are slightly mistuned (kr = 100 N/m
and kl = 97 N/m).

The right fold is then hardened (kr = 150 N/m). The system still succeeds to
vibrate, but, as visible on Fig. 3 (bottom), the oscillation is supported by the soft
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left fold at first, and then this latter decays while the hardened right fold starts
to vibrate and finally maintains the sound production (even if the oscillations
seem intermittent).

Fig. 3. Adducted (top) and asymmetric (bottom) configurations.

5 Conclusion

To the best knowledge of the authors, this paper proposes the first port-
Hamiltonian model of a full vocal apparatus. This ensures passivity and the
power balance. Simulations provide a variety of regimes that can be qualitatively
related to aphonia (stable equilibrium), phonation (nearly periodic regimes) and
dysphonia (irregular oscillations). This preliminary work provides a proof-of-
concept for the relevance/interest of the passive and geometric approach.

Further work will be devoted to: (1) analyse regimes and bifurcations of the
current model with respect to a few biomechanic parameters, (2) improve the
realism of elementary components (separately), (3) account for possible contact
between the vocal-folds, and (4) investigate on the synchronisation of coupled
asymmetric vocals-folds and explore strategies to treat pathological voices [11].
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A Dynamics of the glottal flow

The dynamics for the mean velocities can also be derived from the volume inte-
gration of the Euler equation (4). Using the gradient theorem, it comes that

m(h)v̇0 = Lh(t)
(
P−

tot − P+
tot

)
and m(h)ÿm = F p

r − F p
l . (8)

The energy balance for the glottal flow writes down as:

ε̇(t) +
∫

S−∪S+

(
p +

1
2
ρ|v|2

)
(v · n) +

∫

Sl∪Sr

p (v · n) = 0 (9)

where n is the outgoing normal. As the normal velocity is uniform on the walls,
the last term of the energy balance reduces to

∫

Sl∪Sr

p (v · n) = −ẏr

∫

Sr

p + ẏl

∫

Sl

p = ẏm (F p
l − F p

r ) +
ḣ

2
(F p

r + F p
l ) . (10)

The same applies on S− ∪ S+ where v · n = ±vx(x = ±�) does not depend on y:
∫

S−∪S+
ptot (v · n) = vx(�)

∫

S+
ptot − vx(−�)

∫

S−
ptot

= Lv0
(
P+

tot − P−
tot

) − L�
ḣ

h

(
P+

tot + P−
tot

)
. (11)

Thus,

ε̇ = ẏm (F p
r − F p

l ) − ḣ

2
(F p

r + F p
l ) + Lh(t)v0

(
P−

tot − P+
tot

)
+ L�ḣ

(
P−

tot + P+
tot

)
.

In the meanwhile, the kinetic energy in Eq. (6) can be derived against time:

ε̇ = m(h) (v0v̇0 + ẏmÿm) + m3(h)ḣḧ +
∂H

∂h
ḣ. The identification of the contri-

bution of the mean axial and transverse velocities (see Eq. (8)) leads to the
dynamics of the glottal channel expansion rate :

m3ḧ = L�
(
P−

tot + P+
tot

) − F p
r + F p

l

2
− ∂H

∂h
. (12)
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Frédéric Hélein1(B), Joël Bensoam2(B), and Pierre Carré2(B)
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Abstract. In the seventies, Arnold has a geometric approach by consid-
ering a dynamical system as a map taking values in an abstract Lie group.
As such, he was able to highlight fundamental equivalencies between rigid
body motion and fluids dynamic depending on the specific Lie group
chosen (group of rotations in the former and group of diffeomorphisms
in the latter). Following his idea, nonlinear propagation of waves can
also be formalized in their intrinsic qualities by adding space variables
independent to time. For a simple one-dimensional acoustical system,
it gives rise to the Reissner beam model for which the motion of each
different section, labelled by the arc length s, is encoding in the Spe-
cial Euclidean Lie group SE(3) - a natural choice to describe motion in
our 3-dimensional space. It turns out that, fortunately as a map over
spacetime, this multi-symplectic approach can be related to the study of
harmonic maps for which two dimensional cases can be solved exactly.
It allows us to identify, among the family of problems, a particular case
where the system is completely integrable. Among almost explicit solu-
tions of this fully nonlinear problem, it is tempting to identify solitons,
and to test the known numerical methods on these solutions.

1 Introduction

The Reissner beam is one of the simplest acoustical system that can be treated
in the context of mechanics with symmetry. A Lie group is a mathematical con-
struction that handle the symmetry but it is also a manifold on which a motion
can take place. As emphasized by Arnold [1], physical motions of symmetric sys-
tems governed by the variational principle of least action correspond to geodesic
motions on the corresponding group G.

For general problems (wave propagation, field theory), two different geomet-
ric approaches are basically available. The first approach, called the “dynamical”
approach, uses, as its main ingredient, an infinite dimensional manifold as con-
figuration space (TQ). The reduction techniques developed in the dynamical
framework have been studied thoroughly in the literature (see for example [25]
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 384–392, 2017.
https://doi.org/10.1007/978-3-319-68445-1_45
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and the references therein cited), but it presents the difficulty to handle geodesic
curves in an infinite dimensional function space.

As an alternative, the covariant formulation allows to consider a finite dimen-
sional configuration space (the dimension of the symmetry group itself in our
case). This can be achieved by increasing the number of independent variables
since the validity of the calculus of variations and of the Noether’s theorem is
not limited to the previous one-variable setting. Although its roots go back to
De Donder [26], Weyl [27], Caratheodory [28], after J. M. Souriau in the seven-
ties [29], the classical field theory has been only well understood in the late 20th
century (see for example [30] for an extension from symplectic to multisymplec-
tic form). It is therefore not surprising that, in this covariant or jet formulation
setting, the geometric constructions needed for reduction have been presented
even more recently.

In this context, the multi-symplectic form is obtained from the differential
of the Cartan-Poincaré n-form, and is crucial to give rise to an Hamiltonian
framework (Lie-Poisson Schouten-Nijenhuis (SN) brackets [31]). The derivation
of the conserved quantities from the symmetries of the Lie group is described by
a moment map that is no longer a function but must be defined, more generally,
as a Noether’s current. This form is the interior product of the Poincaré-Cartan
form by the fundamental vector field of the Lie group and leads to the dynamic
equations of the problem. To obtain a well-posed problem, a zero-curvature
equation (also know as the Maurer-Cartan equation) must be added to the
formulation.

The multi-symplectic approach is developed in the first section through the
Reissner’s beam model. Inspired from [32], it turns out that, under some assump-
tions, this system is a completely integrable one. This is done, in the next section,
by relating the formulation to the study of harmonic maps (also know under the
name of chiral fields in Theoretical Physics and Mathematical Physics) for which
the two dimensional case can be solved exactly. In Mathematical Physics this
was known for the non linear σ-model since the seventies but it was the Russian
school in integrable systems who made an exhaustive study of the principal chiral
model (chiral fields with values in a Lie group).

2 Nonlinear Model for Reissner Beam

For the reader convenience, we reproduce below the non-linear Reissner Beam
model as it was described in [2].

2.1 Reissner kinematics

A beam of length L, with cross-sectional area A and mass per unit volume ρ is
considered. Following the Reissner kinematics, each section of the beam is sup-
posed to be a rigid body. The beam configuration can be described by a position
r(s, t) and a rotation R(s, t) of each section. The coordinate s corresponds to
the position of the section in the reference configuration Σ0 (see Fig. 1).
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Fig. 1. Reference and current configuration of a beam. Each section, located at position
s in the reference configuration Σ0, is parametrized by a translation r(s, t) and a
rotation R(s, t) ∈ SO3 in the current configuration Σt.

2.2 Lie Group Configuration Space

Any material point M of the beam which is located at x(s, 0) = r(s, 0) + w0 =
sE1 + w0 in the reference configuration (t = 0) have a new position (at time
t) x(s, t) = r(s, t) + R(s, t)w0. In other words, the current configuration of the
beam Σt is completely described by a map

(
x(s, t)

1

)
=

(
R(s, t) r(s, t)

0 1

)
︸ ︷︷ ︸

H(s,t)

(
w0

1

)
, R ∈ SO(3), r ∈ R3, (1)

where the matrix H(s, t) is an element of the Lie group SE(3) = SO(3) × R3,
where SO(3) is the group of all 3 × 3 orthogonal matrices with determinant
1 (rotation in R3). As a consequence, to any motion of the beam a function
H(s, t) of the (scalar) independent variables s and t can be associated. Given
some boundary conditions, among all such motions, only a few correspond to
physical ones. What are the physical constraints that such motions are subjected
to?

In order to formulate those constraints the definition of the Lie algebra is
helpful. To every Lie group G, we can associate a Lie algebra g, whose underlying
vector space is the tangent space of G at the identity element, which completely
captures the local structure of the group. Concretely, the tangent vectors, ∂sH
and ∂tH, to the group SE(3) at the point H, are lifted to the tangent space
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at the identity e of the group. The definition in general is somewhat technical1,
but in the case of matrix groups this process is simply a multiplication by the
inverse matrix H−1. This operation gives rise to definition of two left invariant
vector fields in g = se(3)

ε̂c(s, t) = H−1(s, t)∂sH(s, t) (2)
χ̂c(s, t) = H−1(s, t)∂tH(s, t), (3)

which describe the deformations and the velocities of the beam. Assuming a lin-
ear stress-strain relation, those definitions allow to define a reduced Lagrangian
by the difference of kinetic and potential energy with

Ec(χc) =
∫ L

0

1
2
χT

c Jχcds, (4)

Ep(εc) =
∫ L

0

1
2
(εc − ε0)T

C(εc − ε0)ds, (5)

where ε̂0 = H−1(s, 0)∂sH(s, 0) correspond to the deformation of the initial con-
figuration and J and C are matrix of inertia and Hooke tensor respectively, which
are expressed by

J =
(
Jr 0
0 Jd

)
, Jr =

⎛
⎝I1 0 0

0 I2 0
0 0 I3

⎞
⎠ , Jd =

⎛
⎝m 0 0

0 m 0
0 0 m

⎞
⎠ (6)

C =
(
Cr 0
0 Cd

)
, Cr =

⎛
⎝GIρ 0 0

0 EIa 0
0 0 EIa

⎞
⎠ , Cd =

⎛
⎝EA 0 0

0 GA 0
0 0 GA

⎞
⎠ (7)

where Jr, m, Iρ and Ia are respectively the inertial tensor, the mass, the polar
momentum of inertia and the axial moment of inertia of a section, and with E, G
and A the Young modulus, shear coefficient and cross-sectional area respectively.
The reduced Lagrangian density 2-form yields

� = l(χL, εL)ω =
1
2

(
χT

LJχL − (εL − ε0)T
C(εL − ε0)

)
ds ∧ dt.

2.3 Equations of Motion

Applying the Hamilton principle to the left invariant Lagrangian l leads to the
Euler-Poincaré equation

∂tπc − ad∗
χc

πc = ∂s(σc − σ0) − ad∗
εc

(σc − σ0), (8)

1 In the literature, one can find the expression dLg−1 (ġ) where dL stands for the
differential of the left translation L by an element of G defined by

Lg : G → G

h → h ◦ g.

.
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where πc = Jχc and σc = Cεc, (see for example [4,5] or [6] for details). In
order to obtain a well-posed problem, the compatibility condition, obtained by
differentiating (2) and (3)

∂sχc − ∂tεc = adχc
εc, (9)

must be added to the equation of motion. It should be noted that the operators
ad and ad∗ in Eq. (8)

ad∗
(ω,v)(m,p) = (m × ω + p × v,p × ω) (10)

ad(ω1,v1)(ω2,v2) = (ω1 × ω2,ω1 × v2 − ω2 × v1), (11)

depend only on the group SE(3) and not on the choice of the particular “metric”
L that has been chosen to described the physical problem [7].

Equations (8) and (9) are written in material (or left invariant) form
(c subscript). Spatial (or right invariant) form exist also. In this case, spatial
variables (s subscript) are introduced by

ε̂s(s, t) = ∂sH(s, t)H−1(s, t) (12)
χ̂s(s, t) = ∂tH(s, t)H−1(s, t) (13)

and (8) leads to the conservation law [19]

∂tπs = ∂s(σs − σ0) (14)

where πs = Ad∗
H−1πc and σs = Ad∗

H−1σc. The Ad∗ map for SE(3) is

Ad∗
H−1(m,p) = (Rm + r × Rp,Rp). (15)

Compatibility condition (9) becomes

∂sχs − ∂tεs = adεs
χs. (16)

Equations (8) and (9) (or alternatively (14) and (16)) provide the exact non
linear Reissner beam model and can be used to handle the behavior of the beam
if the large displacements are taking into account.

Notations and assumptions vary so much in the literature, it is often difficult
to recognize this model (see for example [8] for a formulation using quaternions).

3 Comparison with Integrable Systems

3.1 The Zero-Curvature Formulation

I turns out that, under some assumptions, the previous system is a completely
integrable one. Our discussion is inspired from [32].

In the following we consider for simplicity the previous system on an infinite
2-dimensional space-time R

2. We also make the hypothesis that the tensors J

and C are proportional to the identity, so that they can be written JI and CI
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respectively, the Ad operator and the matrix product commutes, and the relation
between πs and χs simply becomes :

πs = Ad∗
H−1(JAdH−1χs) = Jχs (17)

In the same way we have σs = Cεs. Without loss of generality, J and C are taken
equal to one. Making the hypothesis σ0 = 0, the Eqs. (14) and (16) respectively
becomes: {

∂sχs − ∂tεs − [εs,χs] = 0
∂tχs − ∂sεs = 0 (18)

Consider the 1-form ω = χsdt+εsds and denote �ω := χsds+εsdt, the previous
equations are equivalent to

{
dω − ω ∧ ω = 0
d(�ω) = 0 (19)

We set also ωL := 1
2 (ω + �ω) = 1

2 (εs + χs)d(s + t) (L for left moving) and
ωR := 1

2 (ω − �ω) = 1
2 (εs − χs)d(s − t) (R for right moving) and remark that

�ωL = ωL and �ωR = −ωR.
The key in the following is to introduce a so-called spectral parameter λ ∈

(C∩{∞}) \ {−1, 1} = CP \ {−1, 1} and the following family of connexion forms

ωλ =
ωL

1 + λ
+

ωR

1 − λ
=

ω − λ � ω

1 − λ2
− . (20)

We observe that System (19) is satisfied if and only if

dωλ − ωλ ∧ ωλ = 0, ∀λ ∈ CP \ {−1, 1}. (21)

This relation is a necessary and sufficient condition for the existence of a family
of maps (Hλ)λ∈CP\{±1} from R

2 to SE(3)C, the complexification of SE(3), such
that

dHλ = ωλHλ on R
2. (22)

We will assume that Hλ(0, 0) = 1 (the identity element of SE(3)C). Then the
solution of (22) is unique. Since ω and �ω are real, ωλ is also real for any λ ∈
R \ {±1} and hence Hλ is also real, i.e. takes value in SE(3), for these values of
λ. In general Hλ satisfies the reality condition Hλ = Hλ, ∀λ ∈ CP \ {±1}.

3.2 The undressing procedure

The family of maps (Hλ)λ∈CP\{±1} is in correspondence with solutions of lin-
ear wave equations, through the following transformation, called the undressing
procedure.

For that purpose fix some small disks D−1 and D1 in C centered respec-
tively at −1 and 1 and denote respectively by Γ−1 and Γ1 their boundaries. We
temporarily fix (s, t) ∈ R

2, denote Hλ = Hλ(s, t) and let the variable λ run.
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By solving a Riemann-Hibert problem (which admits a solution for Hλ close
to the identity), we can find two maps [λ �−→ IL

λ ] and [λ �−→ OL
λ ] on Γ−1 with

value in SE(3)C such that:

– Hλ = (IL
λ )−1OL

λ , ∀λ ∈ Γ−1;
– IL

λ can be extended holomorphically inside Γ−1, i.e. in D−1;
– OL

λ can be extended holomorphically outside Γ−1, i.e. on CP \ D−1, and
converges to the unity at infinity.

Similarly we can find two maps [λ �−→ IR
λ ] and [λ �−→ OR

λ ] on Γ1 with value
in SE(3)C such that:

– Hλ = (IR
λ )−1OR

λ , ∀λ ∈ Γ1;
– IR

λ can be extended holomorphically in D1;
– OR

λ can be extended holomorphically on CP \ D1.

Set oL
λ := dOL

λ ·(OL
λ )−1. We deduce from OL

λ = IL
λ Hλ that oL

λ = dIL
λ (IL

λ )−1+
IL
λ ωλ(IL

λ )−1 on Γ−1. From its very definition we deduce that oL
λ can be extended

holomorphically on CP \D−1. From oL
λ = dIL

λ (IL
λ )−1+IL

λ ωλ(IL
λ )−1 and by using

(20) we deduce that oL
λ can be extended meromorphically inside D−1, with at

most one pole, equal to
IL
λ=−1

ωL

1 + λ
(IL

λ=−1)
−1.

By using Liouville’s theorem and the fact that oL converges to 0 at infinity we
deduce that oL

λ actually coincides with the latter expression, i.e. has the form

oL
λ =

v(s, t)
1 + λ

d(s + t). (23)

But by the definition of oL, we know that doL
λ − oL

λ ∧ oL
λ = 0. Writing this

equation gives us then that ∂v
∂s − ∂v

∂t = 0, hence oL
λ = v(s+t)

1+λ d(s + t).
A similar analysis on Γ1 gives us that oR

λ := dOR
λ · (OR

λ )−1 is of the form
oR

λ = u(s−t)
1−λ d(s − t).

Hence we constructed from Hλ two maps (s, t) �−→ v(s + t) and (s, t) �−→
u(s−t) with value in the complexification of the Lie algebra of SE(3) (but which
actually satisfy a reality condition) and which are solutions of the linear wave
equation (actually v is a left moving solution and u a right moving one).

This construction can be reversed through the so-called dressing procedure:
starting from the data (s, t) �−→ (u(s − t), v(s + t)), we build the forms oL

λ and
oR

λ using the previous expressions. We can integrate these forms for λ ∈ Γ±1

and we hence get the maps OL
λ and OR

λ . We then solve the Riemann–Hilbert
problem, consisting of finding a map Hλ on Γ := Γ−1 ∩Γ1 and two maps IL

λ and
IR
λ , defined respectively on Γ−1 and Γ1, such that

– OL
λ = IL

λ Hλ, ∀λ ∈ Γ−1;
– OR

λ = IR
λ Hλ, ∀λ ∈ Γ1;

– IL
λ can be extended holomorphically on D−1;
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– IR
λ can be extended holomorphically on D1;

– Hλ can be extended holomorphically on CP \ (D−1 ∩ D1) and converges to 0
at infinity.

Then Hλ will provides us with a solution of (18).

4 Conclusion

A geometrical approach of the dynamic of a Reissner beam has been studied
in this article in order to take into account non linear effects due to large dis-
placements. Among the family of problems we identified a particular case where
this system is completely integrable. This allows us to find almost explicit solu-
tions of this fully nonlinear problem. Among these solutions, it is tempting to
identify solitons, and to test the known numerical methods on these solutions.
The existence of such soliton solutions leads also to the question whether soliton
solutions exists whenever the tensors J and C are less symmetric.

References
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24. López, M.C., Garcia Perez, P.L.: Multidimensional Euler-Poincaré equations1.
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Abstract. The study of positivity properties of trace class operators is
essential in the theory of quantum mechanical density matrices; the latter
describe the “mixed states” of quantum mechanics and are essential in
information theory. While a general theory for these positivity results is
still lacking, we present some new results we have recently obtained and
which generalize and extend the well-known conditions given in the 1970s
by Kastler, Loupias, and Miracle-Sole, generalizing Bochner’s theorem on
the Fourier transform of a probability measure. The tools we use are the
theory of pseudodifferential operators, symplectic geometry, and Gabor
frame theory. We also speculate about some consequences of a possibly
varying Planck’s constant for the early universe.

1 Introduction

The characterization of positivity properties for trace class operators on L2(Rn)
is important because of its potential applications to quantum mechanics (positive
trace class operators with trace one represent the mixed quantum states). It is
also a notoriously difficult part of functional analysis which has been tackled by
many authors but there have been few decisive advances since the pioneering
work of Kastler [7] and Loupias and Miracle-Sole [8,9]. We begin by reviewing
the topic and thereafter state some new results recently obtained by us.

2 The KLM Conditions

Let η be a real parameter. The notion of η-positivity generalizes the usual notion
of positivity:

Definition 1. Let b ∈ S(R2n). We say that b is of η-positive type if for every
integer N the N × N matrix Λ(N) with entries

Λjk = e
iη
2 σ(zj ,zk)b(zj − zk)

is positive semidefinite for all choices of (z1, z2, ..., zN ) ∈ (R2n)N . (Here σ is the
standard symplectic form

∑
1≤j≤n dpj ∧ dxj on R

2n).
c© Springer International Publishing AG 2017
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Notice that η = 0 corresponds to the ordinary notion of positivity, used in
the statement of Bochner’s theorem on the Fourier transform of a probability
measure [1]. In what follows we denote by Â = OpW

η (a) the η-Weyl operator
with symbol a:

〈Âψ, φ〉 = 〈a,Wη(ψ, φ)〉 (1)

for all ψ, φ ∈ S(Rn); here 〈·, ·〉 denotes the distributional brackets on R
n and

R
2n (respectively) and Wη(ψ, φ) is the η-cross-Wigner transform defined, for

ψ, φ ∈ L2(Rn), by

Wη(ψ, φ)(z) =
(

1
πη

)n

(Rη(z)ψ|φ)L2 ; (2)

here Rη(z) is the η-parity operator

Rη(z) = Tη(z)R(0)Tη(z)−1 (3)

(with R(0)ψ(x) = ψ(−x)) and Tη(z) is the Heisenberg–Weyl η-operator

Tη(z0)ψ(x) = e
i
η (p0x− 1

2p0x0)ψ(x − x0). (4)

We will set Wη(ψ,ψ) = Wηψ. When η = � > 0, (� the Planck constant h
divided by 2π) we recapture the standard cross-Wigner function W�(ψ, φ), sim-
ply denoted by W (ψ, φ).

Using the symplectic Fourier transform of a ∈ S(R2n) defined by

a♦(z) = F♦a(z) =
∫

R2n

eiσ(z,z′)a(z′)dz′. (5)

Kastler [7] proved the following result using the theory of C∗-algebras; we have
given in [3] a simpler proof of this result:

Theorem 1. Let Â = OpW
η (a) be a self-adjoint trace-class operator on L2(Rn)

(hence a is real). We have Â ≥ 0 if and only the two following conditions hold:
(i) a♦ is continuous; (ii) a♦ is of η -positive type.

Sketch of the proof: assume that Â ≥ 0; there exists a constant C ∈ R such
that a = C

∑
j αjWηψj for some family of normalized functions ψj ∈ L2(Rn),

the coefficients αj being ≥ 0. Consider now the expression

IN (ψ) =
∑

1≤j,k≤N

λjλke− i
2η σ(zj ,zk)Fσ,ηWηψ(zj − zk) ≥ 0 (6)

where Fσ,η is the η-symplectic transform defined by

Fσ,ηa(z) = aσ,η(z) =
(

1
2πη

)n
∫

R2n

e− i
η σ(z,z′)a(z′)dz; (7)

for η �= 0 we have Fσ,ηa(z) = (2πη)−na♦(−z/η) hence the condition “a♦ is of
η-positive type” can be restated as: each N × N matrix Λ′

(N) with entries

Λ′
jk = e− i

2η σ(zj ,zk)Fσ,ηa(zj − zk)
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is positive semidefinite for all (z1, z2, ..., zN ) ∈ (R2n)N . We must verify that
IN (ψ) ≥ 0 but this follows from the observation that

IN (ψ) =
(

1
2πη

)n

||
∑

1≤j≤N

λjTη(zj)ψ||2L2 . (8)

Let us now show that, conversely, the conditions (i) and (ii) imply that
(Âψ|ψ)L2 ≥ 0 for all ψ ∈ L2(Rn); in view of (1) this equivalent to showing
that ∫

R2n

a(z)Wηψ(z)dz ≥ 0 (9)

for ψ ∈ L2(Rn). Choosing zk = 0 and setting zj = z in Λ′
jk this means that

every matrix (aσ,η(z))1≤j,k≤N is positive semidefinite. Setting

Γjk = e−− i
2η σ(zj ,zk)Fσ,ηWηψ(zj − zk)

the matrix Γ(N) = (Γjk)1≤j,k≤N is also positive semidefinite. Writing

Mjk = Fσ,ηWηψ(zj − zk)aσ,η(zj − zk);

one shows using Schur’s theorem on the positivity of Hadamard product of
the positive semidefinite matrices that the matrix (Mjk)1≤j,k≤N is also positive
semidefinite. One then concludes using Bochner’s theorem on the Fourier trans-
form of probability measures.

3 A New Positivity Test

The KLM conditions are not easily computable since they involve the verification
of a non-countable set of inequalities. The following result replaces the KLM
conditions by a countable set of conditions:

Theorem 2. Let a ∈ L2(R2n) and G(φ,Λ) be a Gabor frame for L2(Rn). For
(zλ, zμ) ∈ Λ × Λ set

aλ,μ =
∫

R2n

e− i
η σ(z,zλ−zμ)a(z)Wηφ(z − 1

2 (zλ + zμ))dz. (10)

The operator Â = OpW
η (a) is positive semidefinite if and only if for every integer

N ≥ 0 the matrix with entries

Mλ,μ = e− i
2η σ(zλ,zμ)aλ,μ, |zλ|, |zμ| ≤ N (11)

is positive semidefinite.

Sketch of the proof: Recall that a Gabor frame G(φ,Λ) in L2(Rn) is the
datum of a pair (φ,Λ) where φ (“the window”) belongs to a suitable functional
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space (for instance L2(Rn)) and Λ ⊂ R
2n is a lattice, and such that there exist

constants a, b > 0 such that

a||ψ||2L2 ≤
∑

zλ∈Λ

|(ψ|T (zλ)φ)|2 ≤ b||ψ||2L2

for all ψ ∈ L2(Rn), where we set T (zλ) = T1/(2π)(zλ). The condition Â ≥ 0 is
equivalent to ∫

R2n

a(z)Wηψ(z)dz ≥ 0 (12)

for every ψ ∈ L2(Rn). The numbers aλ,μ defined by (10) are the Gabor coef-
ficients with respect to the Gabor system G(Wηg, Λ × Λ). Expanding ψ in the
frame G(φ,Λ) we get

ψ =
∑

zλ∈Λ

c(zλ)T (zλ)φ

where cλ = (ψ|T (zλ)φ)L2 and hence
∫

R2n

a(z)Wη

(∑
zλ∈ΛcλT (zλ)φ

)
(z)dz ≥ 0. (13)

The claim follows using the relations

Wη

(∑
zλ∈Λc(zλ)T (zλ)φ

)
=

∑
zλ∈ΛcλcμWη(T (zλ)φ, T (zμ)φ);

and observing that [5]

Wη(T (zλ)φ, T (zμ)φ) = e− i
2η σ(zλ,zμ)e− i

η σ(z,zλ−zμ)Wηφ(z − 1
2 (zλ + zμ)).

Let us next show that the KLM conditions can be recaptured as a limit-
ing case of the conditions in Theorem 2. To show this claim, we make use of
another well-known time-frequency representation: the short-time Fourier trans-
form (STFT). Precisely, for a given function g ∈ S(Rn) \ {0} (called window),
the STFT Vgf of a distribution f ∈ S ′(Rn) is defined by

Vgf(x, p) =
∫

Rn

e−ip·yf(y)g(y − x) dy, (x, p) ∈ R
2n. (14)

Let φ0(x) = (πη)−n/4e−|x|2/2η be the standard Gaussian and φν = T (ν)φ0,
ν ∈ R

2n. We shall consider the STFT VWφν
a, with window given by the Wigner

function Wφν and symbol a.

Theorem 3. Let a ∈ L1(Rn) and zλ, zμ ∈ R
2n. Setting

Mλ,μ = e− i
2η σ(zλ,zμ)aσ,η(zλ − zμ)

Mφν

λ,μ = e− i
2η σ(zλ,zμ)VWφν

a( 1
2 (zλ + zμ), J(zμ − zλ)).

we have
Mλ,μ = lim

ε→0+

∑

zν∈εZ
2n

|zν |<1/ε

ε2nMφν

λ,μ.
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Sketch of the proof: Observe that we can write

Mλ,μ = e− i
2η σ(zλ,zμ)VΦa( 1

2 (zλ + zμ), J(zμ − zλ))

where Φ(z) = 1 for all z ∈ R
2n the result follows from the dominated convergence

theorem using the limit

lim
ε→0+

∑

zν∈εZ
2n

|zν |<1/ε

ε2nWφν(z) = 1 (15)

for all z ∈ R
2n and the bound

∣
∣
∣
∣
∣

∑
zν∈εZ

2n

|zν |<1/ε

ε2nWφν(z)

∣
∣
∣
∣
∣
≤ C. (16)

valid for all z ∈ R
2n.

4 Discussion

Positivity questions for operators are notoriously difficult to handle. In the case
of trace-class operators not many progresses have been done since the work of
Narcowich and his collaborators [12–15] and Bröcker and Werner [2]; also see
Dias and Prata [4]. The interest in these questions come from the quantum
mechanical problem of characterizing the so-called “mixed states”, which are sta-
tistical mixtures of well-defined quantum-mechanical states (the “pure states”).
Mixed states are mathematically represented by the quantum density operators:
such an operator is a self-adjoint positive semidefinite trace class operators with
unit trace (on any Hilbert space). While it is usually a rather trivial matter
to verify self-adjointness and the trace property, positivity is very delicate –
as exemplified by our discussion above –. The importance of this concept has
increased since it has been realized by cosmological observations [10,11] that
Planck’s constant η = h/2π might very well have been changing it value since
the early Universe. If true, this would mean that some quantum states have
evolved in classical ones (see our analysis in [6]).

Acknowledgement. Maurice de Gosson has been financed by the grant P27773-N23
of the Austrian Research Foundation FWF.
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Abstract. In this paper, we present a variational formulation for heat
conducting viscous fluids, which extends the Hamilton principle of
continuum mechanics to include irreversible processes. This formulation
follows from the general variational description of nonequilibrium ther-
modynamics introduced in [3,4] for discrete and continuum systems. It
relies on the concept of thermodynamic displacement. The irreversibility
is encoded into a nonlinear nonholonomic constraint given by the expres-
sion of the entropy production associated to the irreversible processes
involved.

Keywords: Nonequilibrium thermodynamics · Variational formalism ·
Viscosity · Heat conduction

1 Variational Principle for Discrete Systems

In this section we review the variational formulation for nonequilibrium thermo-
dynamics of discrete (i.e., finite dimensional) systems developed in [3].

1.1 Variational Formulation of Nonequilibrium Thermodynamics
of Simple Systems

We shall present the variational formulation by first considering simple thermo-
dynamic systems before going into the general setting of the discrete systems. We
follow the systematic treatment of thermodynamic systems presented in [12], to
which we also refer for the precise statement of the two laws of thermodynamics.

Simple discrete systems. A discrete thermodynamic system Σ is a collection
Σ = ∪N

A=1ΣA of a finite number of interacting simple thermodynamic systems
ΣA. By definition, a simple thermodynamic system is a macroscopic system for
which one (scalar) thermal variable and a finite set of mechanical variables are
sufficient to describe entirely the state of the system.

c© Springer International Publishing AG 2017
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Variational formulation. Let Q be the configuration manifold associated to
the mechanical variables of the simple system and denote by TQ and T ∗Q its
tangent and cotangent bundles. The Lagrangian of a simple thermodynamic
system is a function

L : TQ × R → R, (q, v, S) �→ L(q, v, S),

where S ∈ R is the entropy. We assume that the system is subject to exterior
and friction forces given by fiber preserving maps F ext, F fr : TQ × R → T ∗Q,
and to an external heat power supply P ext

H (t).

We say that a curve (q(t), S(t)) ∈ Q × R, t ∈ [t1, t2] ⊂ R is a solution of
the variational formulation of nonequilibrium thermodynamics if it satisfies the
variational condition

δ

∫ t2

t1

L(q, q̇, S)dt +
∫ t2

t1

〈
F ext(q, q̇, S), δq

〉
dt = 0, VariationalCondition

(1)
for all variations δq(t) and δS(t) subject to the constraint

∂L

∂S
(q, q̇, S)δS =

〈
F fr(q, q̇, S), δq

〉
, VariationalConstraint (2)

with δq(t1) = δ(t2) = 0, and also if it satisfies the phenomenological constraint

∂L

∂S
(q, q̇, S)Ṡ =

〈
F fr(q, q̇, S), q̇

〉 − P ext
H , PhenomenologicalConstraint

(3)
where q̇ = dq

dt and Ṡ = dS
dt .

From this variational formulation, we deduce the system of evolution equa-
tions for the simple thermodynamic system as

⎧⎪⎨
⎪⎩

d

dt

∂L

∂q̇
− ∂L

∂q
= F fr + F ext,

∂L

∂S
Ṡ =

〈
F fr, q̇

〉 − P ext
H .

(4)

We note that the energy function, defined by E =
〈

∂L
∂q̇ , q̇

〉
− L verifies d

dtE =

〈F ext, q̇〉 + P ext
H , i.e., the first law of thermodynamics.

Remark 1 (Phenomenological and variational constraints). The explicit expres-
sion of the constraint (3) involves phenomenological laws for the friction force
F fr, this is why we refer to it as a phenomenological constraint. The associated
constraint (2) is called a variational constraint since it is a condition on the
variations to be used in (1). Note that the constraint (3) is nonlinear and also
that one passes from the variational constraint to the phenomenological con-
straint by formally replacing the variations δq, δS by the time derivatives q̇, Ṡ.
Such a systematic correspondence between the phenomenological and variational
constraints still holds for the general discrete systems, as we shall recall below.
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For the case of adiabatically closed systems (i.e., P ext
H = 0), the evolution

Eq. (4) can be geometrically formulated in terms of Dirac structures induced
from the phenomenological constraint and from the canonical symplectic form
on T ∗Q or on T ∗(Q × R), see [6].

1.2 Variational Formulation of Nonequilibrium Thermodynamics
of Discrete Systems

Discrete systems. We now consider the case of a discrete system Σ =
∪N

A=1ΣA, composed of interconnecting simple systems ΣA, A = 1, ..., N that can
exchange heat and mechanical power, and interact with external heat sources.
We follow the description of discrete systems given in [7,12].

The state of the discrete system Σ is described by geometric variables q ∈ QΣ

and entropy variables SA, A = 1, ..., N . The Lagrangian is a function

L : TQΣ × R
N → R, (q, q̇, S1, ..., SN ) �→ L(q, q̇, S1, ..., SN ). (5)

We assume that the system is subject to external forces F ext =∑N
A=1 F ext→A : TQΣ × R

N → T ∗QΣ and external heat power supply P ext
H =∑N

A=1 P ext→A
H .

The friction force associated to system ΣA is F fr(A) : TQΣ × R
N → T ∗QΣ

and we define the total friction force F fr :=
∑N

A=1 F fr(A). The internal heat
power exchange between ΣA and ΣB can be described by

PB→A
H = κAB(q, SA, SB)(TB − TA),

where κAB = κBA ≥ 0 are the heat transfer phenomenological coefficients.
For simplicity, we ignore internal and external matter exchanges in this

section. Hence, in particular, the system is closed.
A typical, and historically relevant, example of a discrete (non-simple) system

is the adiabatic piston. We refer to [8] for a systematic treatment of the adiabatic
piston from Stueckelberg’s approach.

Variational formulation. Our variational formulation is based on the intro-
duction of new variables, called thermodynamic displacements, that allow a sys-
tematic inclusion of all the irreversible processes involved in the system. In our
case, since we only consider the irreversible processes of mechanical friction and
heat conduction, we just need to introduce (in addition to the mechanical dis-
placement q) the thermal displacements1, ΓA, A = 1, ..., N such that Γ̇A = TA,
where ΓA are monotonically increasing real functions of time t and hence the
temperatures TA of ΣA take positive real values, i.e., (T 1, ..., TN ) ∈ R

N
+ . Each

of these variables is accompanied with its dual variable ΣA whose time rate of
change is associated to the entropy production of the simple system ΣA.

1 The notion of thermal displacement was first used by [13] and in the continuum
setting by [9]. We refer to the Appendix of [11] for an historical account.
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We say that a curve
(
q(t), SA(t), ΓA(t), ΣA(t)

) ∈ QΣ × R
3N , t ∈ [t1, t2] ⊂ R

is the solution of the variational formulation of nonequilibrium thermodynamics
if it satisfies the variational condition

δ

∫ t2

t1

[
L(q, q̇, S1, ...SN ) +

N∑
A=1

(SA − ΣA)Γ̇A
]
dt +

∫ t2

t1

〈
F ext, δq

〉
dt = 0, (6)

for all variations δq(t), δΓA(t), δΣA(t) subject to the variational constraint

∂L

∂SA
δΣA =

〈
F fr(A), δq

〉
−

N∑
B=1

κAB(δΓB − δΓA), (no sum on A) (7)

with δq(ti) = 0 and δΓ (ti) = 0, for i = 1, 2, and also if it satisfies the nonlinear
phenomenological constraint

∂L

∂SA
Σ̇A =

〈
F fr(A), q̇

〉
−

N∑
B=1

κAB(Γ̇B − Γ̇A) − P ext→A
H . (no sum on A) (8)

From this variational formulation, we deduce the system of evolution equations
for the discrete thermodynamic system as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dt

∂L

∂q̇
− ∂L

∂q
=

N∑
A=1

F fr(A) + F ext,

∂L

∂SA
ṠA =

〈
F fr(A), q̇

〉
+

N∑
B=1

κAB

(
∂L

∂SB
− ∂L

∂SA

)
− P ext→A

H , A = 1, ..., N.

We refer to [3] for the details regarding the treatment of discrete systems. In
a similar way with the situation of simple thermodynamic systems, one passes
from the variational constraint (7) to the phenomenological constraint (8) by
formally replacing the δ-variations δq, δΣA, δΓA by the time derivatives q̇, Σ̇A, Γ̇A

(see Remark 1). This is possible thanks to the introduction of the thermodynamic
displacements ΓA.

2 The Heat Conducting Viscous Fluid

We shall now systematically extend to the continuum setting the previous vari-
ational formulation by focalising on the case of a heat conducting viscous fluid.
We refer to [2,4] for the extension of this approach to the case of diffusion, chem-
ical reaction, and phase changes in fluid dynamics, and to [5] for the variational
formulation in terms of the free energy.

Configuration space and geometric setting. We assume that the domain
occupied by the fluid is a smooth compact manifold D with smooth boundary ∂D.
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The configuration space is Q = Diff0(D), the group of all diffeomorphisms2 of D
that keep the boundary ∂D pointwise fixed. This corresponds to no-slip boundary
conditions. We assume that the manifold D is endowed with a Riemannian metric
g. The Levi-Civita covariant derivative, the sharp and flat operator associated
to g are denoted as ∇g, �g : TD → T ∗D, and �g : T ∗D → TD.

Given a curve ϕt of diffeomorphisms, starting at the identity at t = 0, we
denote by x = ϕt(X) = ϕ(t,X) ∈ D the current position of a fluid particle
which at time t = 0 is at X ∈ D. The mass density 
(t,X) and the entropy
density S(t,X) in the Lagrangian (or material) description are related to the
corresponding quantities ρ(t, x) and s(t, x) in the Eulerian (or spatial) descrip-
tion as


(t,X) = ρ(t, ϕt(X))Jϕt
(X) and S(t,X) = s(t, ϕt(X))Jϕt

(X), (9)

were Jϕt
denotes the Jacobian of ϕt relative to the Riemannian metric g, i.e.,

ϕ∗
t μg = Jϕt

μg, with μg the Riemannian volume form.
From the conservation of the total mass, we have 
(t,X) = 
ref(X), i.e., the

mass density in the material description is time independent. It therefore appears
as a parameter in the Lagrangian function and in the variational formulation.

Lagrangian. In a similar way to the case of discrete systems in (5), the
Lagrangian in the material description is a map

L�ref : T Diff0(D) × F(D) → R, (ϕ, ϕ̇, S) �→ L�ref (ϕ, ϕ̇, S),

where T Diff0(D) is the tangent bundle to Diff0(D) and F(D) is a space of
real valued functions on D with a given high enough regularity, so that all the
formulas used below are valid. The index notation in L�ref is used to recall that
L depends parametrically on 
ref .

Consider a fluid with a given state equation ε = ε(ρ, s) where ε is the internal
energy density. The Lagrangian is given by

L�ref (ϕ, ϕ̇, S)=

∫
D

1

2
�ref(X)|ϕ̇(X)|2gμg(X)−

∫
D

ε

(
�ref(X)

Jϕ(X)
,

S(X)

Jϕ(X)

)
Jϕ(X)μg(X)

=

∫
D
L(ϕ(X), ϕ̇(X), TXϕ, �ref(X), S(X))μg(X),

(10)

where TXϕ : TXD → Tϕ(X)D is the tangent map to ϕ. The first term of L�ref

represents the total kinetic energy of the fluid, computed with the help of the
Riemannian metric g, and the second term represents the total internal energy.
The second term is deduced from ε(ρ, s) by using the relations (9). In the second

2 In this paper we do not describe the functional analytic setting needed to rigor-
ously work in the framework of infinite dimensional manifolds. For example, one can
assume that the diffeomorphisms are of some given Sobolev class, regular enough (at
least of class C1), so that Diff0(D) is a smooth infinite dimensional manifold and a
topological group with smooth right translation, [1].
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line we defined the Lagrangian density L(ϕ, ϕ̇, Tϕ, 
ref , S)μg as the integrand of
the Lagrangian L. The material temperature is given by

T = −∂L

∂S
=

∂ε

∂s
(ρ, s) ◦ ϕ = T ◦ ϕ,

where T is the Eulerian temperature. The derivative of L with respect to TXϕ
is the conservative Piola-Kirchhoff stress tensor

Pcons := −
[

∂L

∂TXϕ

]�g

.

Variational formulation in material description. The continuum version
of the variational formulation (6)–(8) reads

δ

∫ t2

t1

[
L�ref (ϕ, ϕ̇, S) −

∫
D

(Ṡ − Σ̇)Γμg

]
dt = 0, VariationalCondition (11)

with variational and phenomenological and constraint

Γ̇ δΣ = (Pfr)�g : ∇gδϕ − JS · dδΓ Variational constraint (12)

Γ̇ Σ̇ = (Pfr)�g : ∇gϕ̇ − JS · dΓ̇ + 
refR, Phenomenological constraint (13)

where Pfr(t,X) is the friction Piola-Kirchhoff tensor, JS(t,X) is the entropy
flux density, and 
ref(X)R(t,X) is the heat power supply density. In (12) and
(13), the double point “:” indicates the contraction with respect to both indices.

In the same way as the case of discrete systems, the introduction of the vari-
ables Γ and Σ allows us to propose a variational formulation with a very simple
and physically meaningful structure:

– The criticality condition (11) is an extension of the Hamilton critical action
principle for fluid dynamics in material representation.

– The nonholonomic constraint (13) is the expression of the power density asso-
ciated to all the irreversible processes involved (heat transport and viscosity
in our case) in the entropy production. This constraint is of phenomenological
nature, each of the “thermodynamic forces” being related to the fluxes char-
acterizing an irreversible process via phenomenological laws, see Remark 2
below. The introduction of the variable Γ allows to write this constraint as a
sum of force densities acting on velocities, namely Pfr “acting” on d

dtϕ and
JS “acting” on d

dtΓ , resulting in a power or rate of work density.

– Concerning the virtual constraint (12), the occurrence of the time derivative in
(13), also allows us to systematically replace all velocities by “δ-derivatives”,
i.e., virtual displacements and to formulate the variational constraint as a sum
of virtual thermodynamic work densities associated to each of the irreversible
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processes. It is important to note that this interpretation is possible thanks
to the introduction of the variable Γ (t,X) whose time derivative is identified
with the temperature T(t,X):

d

dt
Γ = −∂L

∂S
=: T,

from the stationarity condition associated with the variation δS in the vari-
ational principle.

By computing the variations in (11), using the condition δϕ|∂D = 0 associated
to no-slip boundary conditions, and using the variational and phenomenological
constraints (12) and (13), we get the following result, see [3] for details.

Proposition 1. In material representation, the evolution equations for a heat
conducting viscous fluid given by

⎧⎨
⎩


ref
DV
Dt

= DIV(Pcons + Pfr),

T(Ṡ + DIV JS) = (Pfr)�g : ∇gϕ̇ − JS · dT + 
refR,

with no-slip boundary conditions, follow from the variational formulation for
non-equilibrium thermodynamics (11) with variational and phenomenological
constraints (12), (13), and with δΓ |∂D = 0. If the constraint δΓ |∂D = 0 is
removed, then it implies JS · n�g = 0, where n is the outward pointing unit vec-
tor field on ∂D. If, in addition, 
refR = 0, then the fluid is adiabatically closed.

Variational formulation in spatial description. In terms of the Eulerian
velocity v = ϕ̇ ◦ ϕ−1 and Eulerian variables ρ and s, the Lagrangian (10) reads

(v, ρ, s) =
∫

S

1
2
ρ|v|2gμg −

∫
S

ε(ρ, s)μg.

The material variational formulation (11)–(13) induces the spatial variational
formulation

δ

∫ t2

t1

[
(v, ρ, s) −

∫
S

[Dt(s − σ)] γ μg

]
dt = 0 (14)

with respect to variations

δv = ∂tζ + [v, ζ], δρ = −div(ρζ), δγ, and δσ, (15)

and subject to the variational and phenomenological constraints

DtγD̄δσ = (σfr)�g : ∇ζ − jS · dDδγ, (16)

DtγD̄tσ = (σfr)�g : ∇v − jS · dDtγ + ρr, (17)

where γ, σ, jS , and σfr are the Eulerian quantities associated to Γ , Σ, JS ,
and Pfr, and we used the notations Dtf = ∂tf + v · df , Dδf = δf + ζ · df ,
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D̄tf = ∂tf+div(fv) and D̄δf = δf+div(fζ) for the Lagrangian time derivatives
and variations of scalar fields and density fields. The first two expressions in
(15) are obtained by taking the variations with respect to ϕ, v, and ρ, of the
relations v = ϕ̇ ◦ ϕ−1 and ρ = (
ref ◦ ϕ−1)Jϕ and by defining the vector field
ζ := δϕ ◦ ϕ−1. These formulas can be directly justified by employing the Euler-
Poincaré reduction theory on Lie groups, [10].

By computing the variations in (14), using the condition ζ|∂D = 0 associated
to no-slip boundary conditions, and using the variational and phenomenological
constraints (16) and (17), we get the following result, see [3] for details.

Proposition 2. In spatial representation, the evolution equations for a viscous
heat conducting fluid given by

⎧⎨
⎩

ρ(∂tv + ∇vv) = − grad p + div σfr, p = ∂ε
∂ρρ + ∂ε

∂ss − ε

∂tρ + div(ρv) = 0
T (∂ts + div(sv) + div jS) = (σfr)� : ∇v − jS · dT + ρr, T = ∂ε

∂s ,

(18)

with no-slip boundary conditions, follow from the variational condition for non-
equilibrium thermodynamics given in (14), with variational and phenomenologi-
cal constraints (15), (16), (17), and with δγ|∂D = 0. If the constraint δγ|∂D = 0
is removed, then it implies jS · n�g = 0. If, in addition, 
refR = 0, then the fluid
is adiabatically closed.

Remark 2 (Thermodynamic phenomenology). In order to close the system (18),
it is necessary to provide phenomenological expressions of the thermodynamic
fluxes in terms of the thermodynamic affinities, compatible with the second law
of thermodynamics. In our case, the thermodynamic fluxes are σfr and js and
we have the well-known relations:

σfr = 2μ(Def v)� +
(

ζ − 2
3
μ

)
(divv)g� and T j�s = −κdT (Fourier law),

where Def v = 1
2 (∇v + ∇vT), μ ≥ 0 is the first coefficient of viscosity (shear

viscosity), ζ ≥ 0 is the second coefficient of viscosity (bulk viscosity), and κ ≥ 0
is the thermal conductivity. Generally, these coefficients depend on ρ and T .
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Abstract. In this paper, we show that the evolution equations for non-
equilibrium thermodynamics can be formulated in terms of Dirac struc-
tures on the Pontryagin bundle P = TQ ⊕ T ∗Q, where Q = Q × R

denotes the thermodynamic configuration manifold. In particular, we
extend the use of Dirac structures from the case of linear nonholo-
nomic constraints to the case of nonlinear nonholonomic constraints.
Such a nonlinear constraint comes from the entropy production associ-
ated with irreversible processes in nonequilibrium thermodynamics. We
also develop the induced Dirac structure on N = T ∗Q×R and the asso-
ciated Lagrange-Dirac and Hamilton-Dirac dynamical formulations.

Keywords: Nonequilibrium thermodynamics · Dirac structures · Non-
linear constraints · Irreversible processes · Implicit systems

1 Dirac Structures in Thermodynamics

Dirac structures are known as a geometric object that generalizes both (almost)
Poisson structures and (pre)symplectic structures on manifolds (see, [2,4]). They
were named after Dirac’s theory of constraints [3], and various physical systems
with constraints such as electric circuits and nonholonomic mechanical systems
are shown to be represented in the context of Dirac structures and the associated
implicit Hamiltonian systems [1,11,12]. On the Lagrangian side, it was shown
by [13,14] that the notion of implicit Lagrangian systems can be developed in
the context of induced Dirac structures, together with its associated variational
structure given by the Lagrange-d’Alembert-Pontryagin principle.

1.1 Fundamental Setting for Thermodynamics

Simple Discrete Systems. A simple thermodynamical system1 is a macro-
scopic system for which one (scalar) thermal variable and a finite set of mechan-
ical variables are sufficient to describe entirely the state of the system. From the
1 In [9] they are called élément de système (French). We choose to use the English

terminology simple system instead of system element.

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 410–417, 2017.
https://doi.org/10.1007/978-3-319-68445-1_48
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second law of thermodynamics, we can always choose such a thermal variable as
entropy S (see [9]).

In this paper, we focus on the particular case of simple adiabatically closed
systems; namely, we assume that there is no exchange of matter and heat with
the exterior of the system

Constraints for the Thermodynamics of Simple Systems. Let us consider
a simple thermodynamic system with a Lagrangian L = L(q, v, S) : TQ×R → R

and a friction force F fr : TQ×R → T ∗Q, where Q is a configuration manifold of
the mechanical variables q of the system, and R denotes the space of the ther-
modynamic variable S. We introduce the thermodynamic configuration manifold
Q := Q × R. Following [5], we define the variational constraint as

CV =
{

(q, S, v,W, δq, δS) ∈ TQ ×Q TQ

∣∣∣∣ ∂L

∂S
(q, v, S)δS =

〈
F fr(q, v, S), δq

〉}
,

where (q, S) ∈ Q, (v,W ) ∈ T(q,S)Q, and (δq, δS) ∈ T(q,S)Q. Since ∂L
∂S (q, v, S) �= 0

(temperature is always positive), we obtain that CV is a submanifold of TQ×Q

TQ of codimension one. For each fixed (q, S, v,W ) ∈ TQ, the annihilator of
CV (q, S, v,W ) is given by

CV (q, S, v,W )◦ =
{

(q, S, α, T ) ∈ T ∗
(q,S)Q

∣∣∣∣ α
∂L

∂S
(q, v, S) = −T F fr(q, v, S)

}
.

The kinematic constraint CK ⊂ TQ is defined from CV as

CK =
{

(q, S, v,W ) ∈ TQ

∣∣∣∣ ∂L

∂S
(q, v, S)W =

〈
F fr(q, v, S), v

〉}
.

1.2 Dirac Dynamical Systems on the Pontryagin Bundle

Let P = TQ⊕ T ∗Q be the Pontryagin bundle over Q. We shall use the notation
x = (q, S, v,W, p, Λ) for an element of the Pontryagin bundle P. A distribu-
tion ΔP on P may be induced from CV using the projection π(P,Q) : P → Q,
(q, S, v,W, p, Λ) �→ (q, S) as ΔP(x) := (Txπ(P,Q))−1(CV (q, S, v,W )). It is locally
given by

ΔP(x) :=
{

(x, δx) ∈ TP

∣∣∣∣ ∂L

∂S
(q, v, S)δS =

〈
F fr(q, v, S), δq

〉}
.

Let ΩT ∗Q be the canonical symplectic structure on T ∗Q. We define the
induced Dirac structure on P from the distribution ΔP and the presymplectic
form ωP = π∗

(P,T ∗Q)ΩT ∗Q on P by

DΔP
(x) : =

{
(vx, αx) ∈ TxP × T ∗

xP | vx ∈ ΔP(x) and

〈αx, wx〉 = ωP(x)(vx, wx) for all wx ∈ ΔP(x)
}
.
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Using the local expressions ẋ = (q̇, Ṡ, v̇, Ẇ , ṗ, Λ̇) ∈ TxP, and ζ = (α, T , β, Υ ,
u, Ψ) ∈ T ∗

xP, the condition
(
(x, ẋ), (x, ζ)

)
∈ DΔP

(x) is equivalently given by
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ṗ + α)
∂L

∂S
(q, v, S) = −(Λ̇ + T )F fr(q, v, S),

∂L

∂S
(q, v, S)Ṡ =

〈
F fr(q, v, S), q̇

〉
,

β = 0, Υ = 0, u = q̇, Ψ = Ṡ.

(1)

Dirac Dynamical Formulation on P = T ∗Q ⊕ T ∗Q. Let E : P → R be the
generalized energy given by

E(q, S, v,W, p, Λ) = 〈p, v〉 + ΛW − L(q, v, S).

Using dE(q, S, v,W, p, Λ) =
(
q, S, v,W, p, Λ,−∂L

∂q ,−∂L
∂S , p − ∂L

∂v , Λ, v,W
)

and the
condition (1), the Dirac dynamical system

(
(x, ẋ),dE(x)

)
∈ DΔP

(x)

yields the evolution equations of the thermodynamics of simple systems:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
ṗ − ∂L

∂q
(q, v, S)

)
∂L

∂S
(q, v, S) = −

(
Λ̇ − ∂L

∂S
(q, v, S)

)
F fr(q, v, S),

∂L

∂S
(q, v, S)Ṡ =

〈
F fr(q, v, S), q̇

〉
,

p =
∂L

∂v
, Λ = 0, v = q̇, W = Ṡ,

which are finally written as
⎧⎪⎨
⎪⎩

d

dt

∂L

∂q̇
(q(t), q̇(t), S(t)) − ∂L

∂q
(q(t), q̇(t), S(t)) = F fr(q(t), q̇(t), S(t)),

∂L

∂S
(q(t), q̇(t), S(t))Ṡ(t) =

〈
F fr(q(t), q̇(t), S(t)), q̇(t)

〉
.

(2)

These are the evolution equations for the nonequilibrium thermodynamics of
simple closed systems, see [5–7].

In the above, the temperature is defined by minus the partial derivative of
the Lagrangian with respect to the entropy, namely, T = −∂L

∂S , which is assumed
to be positive. The friction force F fr is dissipative, that is

〈
F fr(q, q̇, S), q̇

〉
≤ 0,

for all (q, q̇, S) ∈ TQ × R. For the case in which the force is linear in velocity,
and in one dimension, we have F fr(q, q̇, S) = −λ(q, S)q̇, where λ(q, S) ≥ 0
is the phenomenological coefficient, determined experimentally. The internal
entropy production of the simple system is given by

I(t) = − 1
T

〈
F fr(q, q̇, S), q̇

〉
=

1
T

λ(q, S)q̇2.
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2 The Lagrange-Dirac Formulation

2.1 Induced Dirac Structures on N = T ∗Q × R.

Here we present the thermodynamic analogue of the Lagrange-Dirac formulation
in [13] for nonholonomic mechanics. Namely, we develop the Lagrange-Dirac
formulation on N = T ∗Q ×R associated with the induced Dirac structure on N
from the variational constraint CV ⊂ TQ ×Q TQ and the canonical symplectic
form on T ∗Q.

Constraints. We assume that the Lagrangian L = L(q, v, S) : TQ × R → R of
a simple thermodynamic system is hyperregular with respect to the mechanical
variables (q, v), namely, the map

FLS : TQ → T ∗Q, (q, v) �→
(

q,
∂L

∂v
(q, v, S)

)

is a diffeomorphism for each fixed S ∈ R. Given the variational constraint CV ,
we can define the constraint CV ⊂ T ∗Q ×Q TQ as

CV (q, S, p, Λ) := CV (q, S, v,W ),

which can be explicitly described as

CV (q, S, p, Λ) =
{
(q, S, δq, δS) | −T (q, p, S)δS =

〈
F fr(q, p, S), δq

〉}
.

In the above, T (q, p, S) := −∂L
∂S (q, v, S) and F fr(q, p, S) := F fr(q, v, S), in which

v is uniquely determined from the condition ∂L
∂v (q, v, S) = p. Since CV does not

depend on W , we can define from CV the constraint CV (q, S, p, Λ) ∈ T(q,S)Q and
it induces the following distribution on N :

ΔN (q, S, p) :=
(
T(q,S,p)π(N,Q)

)−1 (
CV (q, S, p, Λ)

)
,

locally given as

ΔN (q, S, p) =
{
(q, S, p, δq, δS, δp) ∈ TN

∣∣ −T (q, S, p)δS =
〈
F fr(q, S, p), δq

〉}
.

Using the distribution ΔN (q, S, p) and the presymplectic form ωN =
π∗
(N,T ∗Q)ΩT ∗Q, where ΩT ∗Q is the canonical symplectic structure, the Dirac

structure on N is defined by, for each n = (q, S, p) ∈ N ,

DΔN
(n) : =

{
(vn, ζn) ∈ TnN × T ∗

nN | vn ∈ ΔN (n) and

〈ζn, wn〉 = ωN (n)(vn, wn) for all wn ∈ ΔN (n)
}
.

Writing locally (n, ṅ) ∈ TN and (n, ζ) ∈ T ∗N , where ṅ = (q̇, Ṡ, ṗ), and ζ =
(α, T , u), the condition

(
(n, ṅ), (n, ζ)

)
∈ DΔN

(n) is equivalent to, for each n =
(q, S, p), ⎧⎨

⎩
(ṗ + α)T (q, S, p) = T F fr(q, S, p),
T (q, S, p)Ṡ = −

〈
F fr(q, S, p), q̇

〉
,

u = q̇.

(3)
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2.2 The Lagrange-Dirac Systems

Recall from [13] that the Dirac differential for a Lagrangian L : TQ → R is
defined by using the symplectic diffeomorphism γQ : T ∗TQ → T ∗T ∗Q, locally
given by γQ(q, v, α, p) = (q, p,−α, v), as introduced in [10]. For the case of ther-
modynamics, we introduce the symplectic diffeomorphism

γ̂Q : T ∗(TQ × R) → T ∗(T ∗Q × R), (q, S, v, α, Λ, p) �→ (q, S, p,−α,−Λ, v).

Then we define the associated Dirac differential of L as

d̂DL(q, S, v) := (γ̂Q ◦ dL) (q, S, v) =
(

q, S,
∂L

∂v
,−∂L

∂q
,−∂L

∂S
, v

)
.

By this definition and the relations (3), it follows that we have
(
(q, S, p, q̇, Ṡ, ṗ), d̂DL(q, S, v)

)
∈ DΔN

(q, S, p),

if and only if⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ṗ − ∂L

∂q
(q, v, S)

)
T (q, p, S) = −∂L

∂S
(q, v, S)F fr(q, p, S),

T (q, S, p)Ṡ = −
〈
F fr(q, p, S), q̇

〉
,

v = q̇, p =
∂L

∂v
(q, v, S).

The last equality comes from the fact that (q, S, p, q̇, Ṡ, ṗ) and d̂DL(q, S, v) both
belong to the fibers at (q, S, p) ∈ T ∗Q ×R and hence we have the following the-
orem concerning the Lagrange-Dirac formulation for thermodynamics of simple
systems.

Theorem 1. Consider a simple system with a Lagrangian L = L(q, v, S) :
TQ × R → R and a friction force F fr : TQ × R → T ∗Q. Assume that L is
hyperregular with respect to the mechanical variables (q, v) and define T (q, p, S)
and F fr(q, p, S) as before. Then the following statements are equivalent:

– The curve (q(t), S(t), v(t), p(t)) ∈ M satisfies the equations⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
ṗ(t) − ∂L

∂q
(q(t), v(t), S(t))

)
T (q(t), p(t), S(t))

= −∂L

∂S
(q(t), v(t), S(t))F fr(q(t), p(t), S(t)),

T (q(t), v(t), S(t))Ṡ(t) = −
〈
F fr(q(t), p(t), S(t)), q̇(t)

〉
,

v(t) = q̇(t), p(t) =
∂L

∂v
(q(t), v(t), S(t)).

(4)

– The curve (q(t), S(t), v(t), p(t)) ∈ M satisfies the Lagrange-Dirac system
of the simple thermodynamic system(

(q, S, p, q̇, Ṡ, ṗ), d̂DL(q, S, v)
)

∈ DΔN
(q, S, p).

Moreover, the system (4) is an implicit version of the system of evolution Eq. (2)
for the thermodynamics of simple systems.
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3 The Hamilton-Dirac Formulation

3.1 Hamilton-Dirac Systems on N = T ∗Q × R

Since we assume that L : TQ × R → R is hyperregular with respect to the
mechanical variables (see Sect. 2.1), we can define the Hamiltonian function H :
N = T ∗Q × R → R by

H(q, p, S) = 〈p, q̇〉 − L(q, q̇, S),

where q̇ is uniquely determined from (q, p, S) by the condition ∂L
∂q̇ (q, q̇, S) = p.

We shall make use of the same distribution and the same Dirac structure of
Sect. 2. In (3) we can directly write the constraint in the Hamiltonian setting
in view of T (q, S, p) = ∂H

∂S (q, S, p). Then, it follows that the Hamilton-Dirac
system (

(q, S, p, q̇, Ṡ, ṗ),dH(q, S, p)
)

∈ DΔN
(q, S, p)

is equivalent to
⎧⎪⎨
⎪⎩

(
ṗ +

∂H

∂q
(q, S, p)

)
∂H

∂S
(q, S, p) =

∂H

∂S
(q, S, p)F fr(q, S, p),

∂H

∂p
= q̇,

∂H

∂S
(q, S, p)Ṡ = −

〈
F fr(q, S, p), q̇

〉
.

We obtain the following theorem.

Theorem 2. Consider a simple system with a Lagrangian L = L(q, v, S) : TQ×
R → R and a friction force F fr : TQ × R → T ∗Q. Assume that the Lagrangian
is hyperregular with respect to the mechanical variables, consider the associated
Hamiltonian H : T ∗Q × R → R and define F fr(q, p, S) as before. Then the
following statements are equivalent:

– The curve (q(t), S(t), p(t)) ∈ N satisfies the equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ṗ(t) +

∂H

∂q
(q(t), p(t), S(t))

)
∂H

∂S
(q(t), p(t), S(t))

=
∂H

∂S
(q(t), p(t), S(t))F fr(q(t), p(t), S(t)),

−∂H

∂S
(q(t), p(t), S(t))Ṡ(t) =

〈
F fr(q(t), p(t), S(t)), q̇(t)

〉
,

∂H

∂p
(q(t), p(t), S(t)) = q̇(t).

(5)

– The curve (q(t), S(t), p(t)) ∈ N satisfies the Hamilton-Dirac system
(
(q, S, p, q̇, Ṡ, ṗ),dH(q, S, p)

)
∈ DΔN

(q, S, p).
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Moreover the system (5), equivalently written as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ṗ(t) = −∂H

∂q
(q(t), p(t), S(t)) + F fr(q(t), p(t), S(t)),

q̇(t) =
∂H

∂p
(q(t), p(t), S(t)),

∂H

∂S
(q(t), p(t), S(t))Ṡ(t) = −

〈
F fr(q(t), p(t), S(t)), q̇(t)

〉
(6)

is the Hamiltonian description of the system of evolution equations (2) for the
thermodynamics of simple systems.

The Hamilton-d’Alembert Principle. To the Hamilton-Dirac formulation
is naturally associated a variational structure. In our case, the variational for-
mulation on N = T ∗Q × R is

δ

∫ t2

t1

[
〈p, q̇〉 − H(q, S, p)

]
dt = 0 (7)

for all variations (δq(t), δS(t), δp(t)) for the curve (q(t), S(t), p(t)) ∈ N that
satisfy

− ∂H

∂S
(q, p, S)δS =

〈
F fr(q, p, S), δq

〉
(8)

with δq(t1) = δq(t2) = 0, and the curve is subject to the phenomenological
constraint

− ∂H

∂S
(q, p, S)Ṡ =

〈
F fr(q, p, S), q̇

〉
. (9)

The principle (7)–(9) is called the Hamilton-d’Alembert principle. From this prin-
ciple one immediately obtains the system (6).

We refer to [8] for a thorough treatment of Dirac structures in nonequilibrium
thermodynamics.
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Abstract. Extending the formulation of reversible thermodynamical
transformations to the formulation of irreversible transformations of open
thermodynamical systems different classes of nonlinear control systems
has been defined in terms of control Hamiltonian systems defined on a
contact manifold. In this paper we discuss the relation between the defin-
ition of variational control contact systems and the input-output contact
systems. We have first given an expression of the variational control con-
tact systems in terms of a nonlinear control systems. Secondly we have
shown that the conservative input-output contact systems are a subclass
of the contact variational systems with integrable output dynamics.

Keywords: Open irreversible thermodynamic systems · Nonlinear con-
trol systems · Hamiltonian systems on contact manifolds

1 Introduction

Extending the formulation of reversible thermodynamical transformations sug-
gested in [11] to the formulation of irreversible transformations of open ther-
modynamical systems, a class of nonlinear control systems has been defined in
terms of control Hamiltonian systems defined on a contact manifold [4,5,7,14].
Their dynamic properties as well as their feedback invariance and stabilization
properties have been studied in [2,6,13,15]. An alternative definition, based on
a variational formulation has been suggested in [10]. In this paper we shall dis-
cuss and compare this definition with the system-theoretic definition suggested
in [13].

2 Control Hamiltonian Systems Defined on Contact
Manifolds

Since Gibbs’ work, it has been established that the Thermodynamic Phase Space
is intrinsically defined as a contact manifold, that is a differentiable manifold
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 418–424, 2017.
https://doi.org/10.1007/978-3-319-68445-1_49
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M � x̃ equipped with a contact form θ. In the sequel we shall denote by(
x0, x, p�) ∈ R × R

n × R
n a set of canonical coordinates1.

It has also been established that the dynamics of thermodynamic systems
subject to reversible and irreversible processes may be formulated in terms of
contact Hamiltonian vector fields [4,5,7,11,14].

For open thermodynamic systems, a class of nonlinear control systems [12]
has been defined, where the drift vector field and the input vector fields are both
contact Hamiltonian vector fields [4,5,14]. Deriving from condition on structure
preserving state feedback control, the natural output functions have then be
defined as the contact Hamiltonian functions defining the input vector field [13].
An alternative definition of control contact systems, derived from a variational
formulation, has been suggested in [10].

In this section we shall recall these two different definitions of control
Hamiltonian systems and formulate the variational contact systems in terms
of nonlinear control systems [12].

2.1 Input - Output Contact Systems [13]

Let us first recall the definition of input-output contact systems.

Definition 1 [13]. An input - output contact system on the contact manifold
(M, θ), with input variable belonging the trivial vector bundle F = M × R

m �
(x̃, u) over M and output variables being the dual vector bundle E = F ∗ ∼
M × R

m � (x̃, y), is defined by the two functions K0 ∈ C∞(M), called the
internal contact Hamiltonian, Kc ∈ C∞(M) called the interaction (or control)
contact Hamiltonian, and the state and output equations

dx̃

dt
= XK0 +

m∑

i=1

XKi
ui (1)

yi = Ki(x̃) i = 1, . . . , m (2)

where XK0 and XKi
are the contact vector fields2 of (M, θ) generated by the

contact Hamiltonians K0 and Ki respectively.

Note that input - output contact system are the analogue of input-output
Hamiltonian systems defined on symplectic manifolds for driven mechanical sys-
tems [3,16,17] but extended to contact manifolds.

The models of physical systems such as heat diffusion or the Continuous
Stirred Tank Reactor belong to a subclass of contact systems [4,5,14], called
conservative input-output contact systems.
1 The reader is referred to the classical textbooks [8, chap. V.] [1, app. 4.].
2 Recall that a contact vector field XK generated by the Hamiltonian function K (x̃)

is the unique vector field satisfying

iXθ = K
iXdθ = −dK (H (X)) .

(3)
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Definition 2 [4]. A conservative input-output contact system with respect to
the Legendre submanifold L is an input-output contact system with the internal,
respectively control, contact Hamiltonians K0, respectively Ki, satisfying the two
conditions:

(i) they are invariants of the Reeb vector field, satisfying

iEdK0 = iEdKi = 0 (4)

(ii) they satisfy the invariance condition

K0

∣
∣
L = 0, Ki

∣
∣
L = 0 (5)

2.2 Control Contact System Arizing from a Variational
Principle [10]

Arizing from the variational principle defined in [10] a more general class of
contact systems has been defined which we briefly recall now.

Definition 3. A variational control contact system [10] on the contact manifold
(M, θ), is defined by

(i) the set of output variables is defined by the vector bundle E � y overM
endowed with a (flat) covariant derivative ∇

(ii) a bundle map A : T ∗M → E with A(θ) = 0
(ii) the set of conjugated input variables is the dual bundle E∗ � u overM
(iii) the input map defined by the adjoint bundle map A∗ : E∗ → TM
(iv) a smooth real function K0 (x̃), called internal contact Hamiltonian function

and the dynamical system dx̃
dt = X (x̃, u, y) associated with the unique vector

field X (x̃, u, y) satisfying

i(X−A∗u)dθ + dK0 = 0
θ (X) = iXθ = K0 + 〈u, y〉 (6)

Let us write the system explicitely in the form of a nonlinear control system.
Firstly, notice that the condition A(θ) = 0 is equivalent to

im A∗ ⊂ ker θ (7)

that is, the image of A∗ is contained in the field of contact elements ker θ = C
(or horizontal with respect to θ).3 Denoting by XK0 the contact vector field
3 The tangent bundle TM may be decomposed into

TM = ker dθ ⊕ ker θ (8)

where ker dθ , called vertical bundle , is of rank 1 and is generated by the Reeb vector
field and ker θ , called horizontal bundle, is of rank 2n . Every vector field X on M
may be decomposed in a unique way into

X = (iXθ) E + (X − (iXθ) E) (9)

where (iXθ) E ∈ ker dθ is vertical and (X − (iXθ) E) = H (X) ∈ ker θ = C is hori-
zontal with respect to the contact form θ.
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generated by the internal contact Hamiltonian K0 and using the decomposition
of the tangent manifold (8), the vector field X defined by (6) becomes

X (x̃, u, y) = (iXθ)E
︸ ︷︷ ︸
∈ker dθ

+ (X − (iXθ)E)
︸ ︷︷ ︸
=H(X)∈ker θ=C

= (K0 + 〈u, y〉) E + H (XK0) + A∗u
︸ ︷︷ ︸

∈ker θ=C

= XK0︸︷︷︸
drift contact vect. field

+ 〈u, y〉E
︸ ︷︷ ︸
∈ker dθ

+ A∗u︸︷︷︸
∈ker θ=C

︸ ︷︷ ︸
control vector field

(10)

The second line of (10) shows the decomposition of the control vector field
in terms of the vertical component which may be interpreted as the power bal-
ance term K0 + 〈u, y〉 and the horizontal component which, using the tensor θ�

mapping the semi-basic forms on the contact elements4 , may be interpreted as
a Hamiltonian control system defined on the contact elements

θ� (dK0 − (iEdK0) θ) + A∗u (12)

Note that these properties are due to the assumption (7).
The third line of (10) shows the decomposition of the control vector field into

an drift contact vector field XK0 defined by the internal Hamiltonian function
K0 and a control vector field decomposed into its vertical and horizontal parts.

The output variable y satisfies a dynamical equation on the output according
to [10, p. 786–787]

d

dt
y = A ◦ dθ (X (x̃, u, y)) (13)

Using the expression (10), one obtains

dθ (X (x̃, u, y)) = iX(x̃, u, y)dθ
= iXK0

dθ + 〈u, y〉 iEdθ︸︷︷︸
=0

+dθ (A∗ u)

= [dK0 − (iEdK0) θ] + dθ (A∗ u)

Using that A(θ) = 0 hence the dynamics of the output (13) becomes

d
dty = A ([dK0]) + (A ◦ dθ ◦ A∗)u

4 Any contact vector fields may be decomposed into

XK = K E + θ� (dK − (iEdK) θ) (11)

where K E is the vertical and θ� (dK − (iEdK) θ) is the horizontal components of

the contact vector field where θ� denotes the inverse of the isomorphism θ�
∣
∣
∣
C

from

the vector space C of horizontal vector fields onto the space F of semi-basic 1-forms
induced by the map θ� (X) = −iXdθ. [8, p. 293].
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The Eq. (6) actually define the dynamical equations summarized in the fol-
lowing proposition.

Proposition 1. The Eq. (6) defining the dynamics of a variational control con-
tact system of definition 3, are equivalent to the dynamical system

dx̃

dt
= XK0 + 〈u, y〉E + A∗u (14)

dy

dt
= A ([dK0]) + (A ◦ dθ ◦ A∗) u (15)

3 Relation Between Variational and Conservative
Input-Output Contact Systems

In this section, we shall analyse the relations between conservative input-output
contact systems of the definition 2 and the variational control contact systems
of the definition 3. We shall give a direct proof that in this case the output
dynamics (15) is integrable , that is when the output variable y may be expressed
as a function of the state variable x̃ , as has been stated in [10, Sect. 4.1].

Proposition 2. The conservative contact input-output system of definition 2
with internal contact Hamiltonian K0 (x̃) and control contact Hamiltonians
−Ki (x̃) is a variational control contact system defined in definition 3 with inter-
nal contact Hamiltonian K0 (x̃) and bundle map A : T ∗M → R

n ×M defined by

A (λ) = (〈λ, H (Ki)〉)i=1, ...,m (16)

Proof. Firstly, let us identify the dynamics Eqs. (14) and (1) by decomposing
the input contact vector field into its vertical and horizontal part

dx̃

dt
= XK0 −

m∑

i=1

XKi
ui

= XK0 −
m∑

i=1

Ki (x̃) ui −
m∑

i=1

H (XKi
) ui

Comparing this expression with third line of (10), leads to the natural identifica-
tion of the dual output bundle map A∗ (u) =

∑m
i=1 H (XKi

) ui and the outputs
yi = Ki (x̃). The map A∗ obviously satisfies the condition (7) and its dual is
by definition (16). Let us now check that the defined output indeed satisfies the
dynamic Eq. (15). Using that that the functions Ki are invariants of the Reeb
vector field : iEdKi = 0, let us compute the j-th component of A (dKi)5

A (dKi)j = − 〈dKi, H (XKi
)〉 = [Kj , Ki]θ i = 0, . . . , m , j = 1, . . . , m

5 The Jacobi bracket [f, g]θ of two differentiable functions f and g , defined by
[f, g]θ = iE ([Xf , Xg]) where [ , ]denotes the Lie bracket on vector fields. We shall
use the following identities [f, g]θ = iXf dg − g iEdf = −iXgdf + f iEdg.
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Compute now the control term of the output Eq. (2), using again that that the
functions Ki are invariants of the Reeb vector field

(A ◦ dθ ◦ A∗) u = A (dθ (A∗ (u)))

= −A (dθ (
∑m

i=1 ui H (XKi
)))

= −∑m
i=1 ui dθ� (Xi,Xj)

= −∑m
i=1 ui

(
[Kj , Ki]θ

)
j=1,..., m

Hence the second member of the dynamics (15) of the j-th component of
output becomes

A ([dK0]) + (A ◦ dθ ◦ A∗) u = [Kj , K0]θ − ∑m
i=1 ui [Kj , Ki]θ (17)

Using that, for functions Ki are invariants of the Reeb vector field [Kj , Ki]θ =
LXj

Ki , one obtains

A ([dK0]) + (A ◦ dθ ◦ A∗) u = −dKj

dt
(18)

Let us firstly notice that the output dynamics has a feedthrough term
(depends explicitely on the input variables) which is linear in the Jacobi brackets
of the control Hamiltonian functions. This resembles very much the situation for
input-output Hamiltonian systems defined in symplectic or Poisson manifolds [9].

Let us discuss the example of integrable system given in [10, Sect. 4.1], for
which the control contact Hamiltonians satisfy the conditions that they are in
involution with respect to the Jacobi bracket. Indeed a contact manifold may be
identified with the 1-jet of some manifold Q, (called configuration manifold in
[10] and manifold of independent extensive variables in the context of Thermo-
dynamics [4]). This 1-jet manifold may be identified with R× T ∗Q and equiped
with the canonical contact structure. As the control Hamiltonian functions are
chosen to be function of the configuration manifold only, they are in involution. If
[Kj , Ki]θ = 0 , i, j = 1, . . . , m , then the output dynamics (17) does not depend
on the control variables. It may be noticed that this condition is not fullfilled
for the models of physical systems given in [4,5,14], except for the single input
case of course.

4 Conclusion

In this paper we have discussed the relation between the definition of variational
control contact systems suggested in [10] and the input-output contact systems
defined in [13]. We have first given an expression of the variational control contact
systems of [10] in terms of a nonlinear control systems. Secondly we have shown
that the conservative input-output contact systems are a subclass of the contact
variational systems defined in [10] with integrable output dynamics.
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Abstract. A method of the solution of the main problem of homoge-
neous spaces thermodynamics for non-compact Lie groups is presented
in the work. The method originates from formalism of non-commutative
Fourier analysis based on method of coadjoint orbits. A formula that
allows efficiently evaluate heat kernel and statistic sum on non-compact
Lie group is obtained. The algorithm of construction of high temperature
heat kernel expansion is also discussed.
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1 Introduction

The purpose of that work is to work out the method for solution of the main
problem of homogeneous spaces thermodynamics which consists of evaluation of
statistic sum (partition function)

Zβ =
∑

n

dn exp(−βEn), (1)

where dn is degeneration degree of corresponding En. It also may be found as a
trace of density matrix (heat kernel)

Zβ =
∫

ρβ(x, x)dμ(x), dμ(x) =
√

|g|dx. (2)

That problem is important not only because statistic sum and heat kernel are
important features of the space and can reveal thermodynamic properties of
particles in that manifold [1]. The solution of main problem of homogeneous
spaces thermodynamics for arbitrary manifold can move one step further to
understanding the problem formulated by Kac “Can we hear the shape of the
drum?”. In other words we try to understand how can geometry and topology
of the space influence spectral properties of Laplace operator on it ([2–4]).
c© Springer International Publishing AG 2017
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All existing results in that field were related to the compact manifolds or
non-compact manifolds of finite volume. There is no algorithm of building heat
kernel and statistic sum for arbitrary non-compact manifold because in this case
series (1) and integral (2) are divergent since the volume of the manifold is
infinite.

Density matrix (heat kernel) is to be found from heat kernel equation (Bloch
equation) on homogeneous space with special initial condition

∂ρβ(x, x′)
∂β

+ H(x)ρβ(x, x′) = 0, ρβ(x, x′)|β=0 = δ(x, x′). (3)

Solution of Eq. (3) has two problems which can hardly be overcome by exist-
ing methods of integration of PDEs, for instance by widely used separation of
variables. Firstly one must obtain global solution on entire manifold but sep-
aration of variables sufficiently connected with the coordinate system on the
manifold and therefor can give only local solutions. Secondly we have to build
the solution of Bloch Eq. (3) from the functions which form the solution basis
which must satisfy special initial condition chosen as δ - function. That is also
a complicated problem.

2 Integration of Heat Kernel Equation on Non-compact
Lie Groups

Let’s consider Eq. (3) on n–dimensional real Lie group G with operator H being
a quadratic function of left-invariant vector fields ξ on the group. That means
that H is Laplace operator on a group space with left-invariant Riemann metric

H(−i�ξ) = −�
2Gabξaξb = −�

2Δ. (4)

Solution of Eq. (3) on non-compact Lie group will be obtained using the
formalism of non-commutative Fourier analysis on Lie groups based on method
of orbits. The method originates from works by Kirillov [6], Souriau [7] and
Kostant [8].

For that purpose we induce special irreducible representation of Lie algebra
G (so called λ–representation) on Lagrange submanifold Q to a co-adjoint orbit
Oλ ∈ G∗

[li(q, ∂q, λ), lj(q, ∂q, λ)] = Ck
ij lk(q, ∂q, λ). (5)

where Ck
ij are structural constants of Lie algebra G, and li(q, ∂q, λ) - first order

differential operators.
It can be shown that any irreducible representation of Lie algebra can be

acquired as a certain λ – representation determined by the choice of linear func-
tional λ ∈ G∗. Linear functional λ ≡ λ(j) where number of parameters j is equal
to the number of Casimir functions - index of Lie algebra G. Since that measure
dμ(λ) is a spectral measure of Casimir operators on Lie group.
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Let’s consider representation of the Lie group G in the functional space
C∞(Q) which acts on the functions from that space as follows

Tλ
g ψ(q) =

∫
Dλ

qq′(g)ψ(q′)dμ(q′), (6)

and appears to be the lift of λ–representation of Lie algebra to a group

li(q, ∂q, λ) =
∂

∂gi
Tλ

g |g=e. (7)

Linear functional λ must be integer, i.e.
∫

γ∈H2(Oλ)

ωλ = 2πin, n ∈ Z, (8)

where ωλ is well known Kirillov 2-form on the orbit [6].
Functions Dj

qq′(g) are matrix elements of representation (6) and can be found
from equations

[ξi(g) + li(q′, ∂′
q, j)]D

λ
qq′(g) = 0, Dλ

qq′(e) = δ(q, q′), (9)

here e is identity element of the group.
Functions Dλ

qq′(g) perform generalized Fourier transform on Lie group solving
the main problem of harmonic analysis [9]. Here J if a manifold of parameters
determining covector λ.

ϕ(g) =
∫

Q×Q×J

ϕ̂j(q, q′)Dλ
qq′(g) dμ(q)dμ(q′)dμ(λ). (10)

So action of right-invariant and left-invariant vector fields on group goes into
action of operators of λ–representation on Lagrange submanifold of the coadjoint
orbit [5]

ξiϕ(g) ⇐⇒ li(q′, ∂′
q, λ)ϕ̂j(q, q′); ηiϕ(g) ⇐⇒ li(q, ∂q, λ)ϕ̂j(q, q′). (11)

After transition from the group space to the Lagrange submanifold of the
orbit Oλ we have heat kernel equation on coadjoint orbit with smaller number
of variables [10]

∂Rβ(q, q̃, j)
∂β

+ H(−i�l)Rβ(q, q̃, j) = 0, Rβ(q, q̃, j)|β=0 = δ(q, q̃), (12)

which appears to be ODE and is to be integrated in quadratures if following
condition

(dim G − indG)/2 = 1 (13)

is satisfied.
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In (12) heat kernel Rβ(q, q̃, j) is connected with ρβ(g, g′) on entire space by
expression

ρβ(g, g′) =
∫

Rβ(q, q̃, j)Dλ
qq̃(g

′−1
g)dμ(q)dμ(q̃)dμ(λ) (14)

From solution of (12) we can obtain statistic sum on non-compact Lie group
using properties of Dλ

qq′(g)

Zβ =
∫

G

dμ(x)
∫

Q×J

Rβ(q, q, j)dμ(q)dμ(λ) = V olG

∫

Q×J

Rβ(q, q, j)dμ(q)dμ(λ).

(15)
One can see that integration in (15) over the volume of the manifold goes inde-
pendently from integration over measure dμ(q) on coadjoint orbit and spectral
measure dμ(λ). So we have opportunity to factorize in statistic sum divergences
connected with infinite volume of non-compact space and since that we have
following expression for specific statistic sum

zβ = Zβ/V olG =
∫

Rβ(q, q, j)dμ(q)dμ(λ), (16)

which is sufficiently finite.
So instead of solution of (2) with n independent variables we solve Eq. (12)

with smaller number of variables and get specific statistic sum on non-compact
group manifold. Application of statistic sum touches numerous fields of theo-
retical physics from quantum statistic mechanics and quantum field theory to
information theory where traditional physical objects such as entropy find new
and quite productive interpretation [11,12].

3 High Temperature Expansion of Heat Kernel
on Non-compact Lie Groups

Representation of the partition function and heat kernel itself as a power series
(heat kernel expansion) is a significant problem. That expansion in the most
general for the homogeneous case is to be written as

Zβ =
V ol(M)
(4πβ)d/2

∞∑

n=0

anβn. (17)

here β is an inverse thermodynamic temperature.
In order to find the coefficients of heat kernel expansion on Lie group is

proposed to express the heat kernel as

Rβ(q, q̃, j) = exp(
i

�
Sβ(q, q̃, j)), (18)

where Sβ(q, q̃, j) is a complex function.
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Using regular Fourier transform in respect to the variable q̃

φ(q, p) =
∫

φ(q, q̃) exp(
ipq̃

�
)dq̃,

φ(q, q̃) =
1

(2π�)
dimOλ

2

∫
φ(q, p) exp(− ipq

�
)dp,

it’s possible to pass to the function Rβ(q, p, j), which satisfies heat kernel equa-
tion

∂Rβ(q, p, j)
∂β

+ Ĥ(−i�l(q, ∂q))Rβ(q, p, j) = 0. (19)

The equation for the function Sβ(q, q̃, j) is

i

�

∂Sβ(q, p, j)
∂β

+ exp (− i

�
Sβ(q, p, j))Ĥ(−i�l(q, ∂q)) exp

i

�
Sβ(q, p, j)) = 0 (20)

with initial condition
Sβ(q, p, j)|β=0 = pq.

To be also represented as a power series

Sβ(q, p, j) =
∞∑

n=0

Sn(q, p, j)βn. (21)

Ĥ(−i�l(q, ∂q)) is a second order differential operator and can be repre-
sented as

Ĥ(−i�l(q, ∂q)) = −�
2Gabla(q, ∂q)lb(q, ∂q) = hab(q)

∂2

∂qa∂qb
+ ha(q)

∂

∂qa
+ h(q),

(22)
where coefficients hab, ha, h(q) can be easily obtained through the operators of λ
— representation (7). Expression (22) using standard notation p̂a = i� ∂

∂qa
can

be rewritten as

Ĥ(−i�l(q, ∂q)) = Hab(q)p̂ap̂a + Ha(q)p̂a + H(q). (23)

So the Eq. (20) transforms at

i

h

∞∑

k=0

kSkβ(k−1)(q, p, j) +
∞∑

k=0

Θ(k)(q, p, j)βk = 0, (24)

with notation

Θ
(k)

(q, p, j) = −i�H
ab

Sk,ab(q, p, j)+H
ab

k∑

m=0

Sm,a(q, p, j)Sk−m,b(q, p, j)+H
a
Sk,a(q, p, j)+Hδ

0
k,
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Finally we get the recurrent expression to determine coefficients Sk+1(q, p, j)

Sk+1(q, p, j) =
i�

k + 1
Θ(k)(q, p, j). (25)

It’s obvious that a coefficient corresponding to the first power β in (21) is H(q, p)
- a qp-symbol of the hamiltonian Ĥ(−i�l(q, ∂q)). That allows to get the formula
of the first order for the high temperature expansion of partition function

zβ ≈ 1

(2π�)
dimOλ

2

∫
exp(

i(q − q)
h

− H(q, p))dpdqdj.

Power series of the heat kernel expansion on symplectic sheet to the coadjoint
orbit Rβ(q, p, j) can be obtained through coefficients Sk(q, p, j) by expression

Rβ(q, p, j) =
∞∑

n=0

1
n!

d

dβn

n+1∏

k=1

n+1−k∑

m=0

(( i
�
Sk(q, p, j))βk)m

m!
|β=0β

n. (26)

High temperature asymptotic of partition function (statistic sum) is to be
found by the formula (16), which after inverse Fourier transformations is per-
formed looks as follows

zβ =
1

(2π�)
dimOλ

2

∫
Rβ(q, p, j) exp(− ipq

�
)dpdqdj =

∞∑

n=0

znβn,

so the coefficients zn of the partition sum expansion are

zn =
1

(2π�)
dimOλ

2

∫
1

n!

d

dβn

n+1∏

k=1

n+1−k∑

m=0

(( i
�

Sk(q, p, j))βk)m

m!
|β=0e

(− ipq
�

)
dμ(p)dμ(q)dμ(λ), (27)

and for the expansion of the heat kernel itself

Rn(q, q̃, j) =
1

(2π�)
dimOλ

2

∫
1

n!

d

dβn

n+1∏

k=1

n+1−k∑

m=0

(( i
�

Sk(q, p, j))βk)m

m!
|β=0e

− ipq̃
� dμ(p). (28)

The final result for the heat kernel expansion on the Lie group manifold G
is obtained after substitution of coefficients (21) in the formula (14)

ρn(x, x′) =
∫

Rn(q, q̃, j)Dλ
qq̃(x

′−1
x)dμ(q)dμ(q̃)dμ(λ). (29)

Applications of heat kernel and partition sum are quite useful in many fields
of theoretical physics. Among them are worth mentioning problems of quantum
field theory and quantum thermodynamics as well as problems of theory of
information being considered from a geometric point of view. As an application
example of presented method must be mentioned result obtained by the author
in [13] for heat kernel on group E(2).
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Abstract. We introduce poly-symplectic extension of Souriau Lie group
Thermodynamics based on higher-order model of statistical physics introduced
by R.S. Ingarden. This extended model could be used for small data analytics

Keywords: Higher order thermodynamics � Lie group thermodynamics

1 Preamble

As early as 1966, Souriau applied his theory of geometric mechanics to statistical
mechanics, developed in the Chap. 4 of his book “Structure of Dynamical Systems”
[1, 2], what he called “Lie group thermodynamics”. Using Lagrange’s viewpoint, in
Souriau statistical mechanics, a statistical state is a probability measure on the manifold
of motions. Souriau observed that Gibbs equilibrium is not covariant with respect to
dynamic groups of Physics. To solve this braking of symmetry, Souriau introduced a
new “geometric theory of heat” where the equilibrium states are indexed by a
parameter b with values in the Lie algebra of the group, generalizing the Gibbs
equilibrium states, where b plays the role of a geometric (Planck) temperature. We will
generalize Souriau theory [4, 5] in the framework of higher order thermodynamics as
introduced by Ingarden [9–11] for mesoscopic systems. The Gibbs canonical state
results from the Maximum Entropy principle when the statistical mean value of energy
is supposed to be known. Polish School has studied the maximum entropy inference
with higher-order moments of energy (when not only mean values but also statistical
moments of higher order of some physical quantities are taken into account). Ingarden
in 1992 and Jaworski in 1981 have introduced the concept of second and higher-order
temperatures, by assuming a distribution function which includes information not only
on the average of the energy but also on higher-order moments, in particular 2nd
moment related to fluctuations. This case should be considered in situations where
fluctuations are not negligible, such as near phase transitions or critical points, in
metastable states in systems with a small number of degrees of freedom. Ingarden idea
is that if we can measure more details, such as the first n cumulants of the energy, we
can then introduce n high-order temperature, as the Lagrange multipliers when we
maximize the Entropy with respect to these values:

© Springer International Publishing AG 2017
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P b1;b2ð Þ ¼ 1
Z b1; b2ð Þ e

�b1:H�b2 H�Uð Þ2 ¼ eb0�b1:H�b2 H�Uð Þ2 ð1Þ

Ingarden proposed that if we can measure the second cumulant of the energy (the
fluctuation of the energy), the equilibrium state is not the canonical state, but would
need two temperatures. Ingarden argues that for a macroscopic system there is very
little difference between the two states, and that we would need a mesoscopic or
microscopic system to be able to detect the higher temperature. Jaworski [7, 8] has
shown that the contribution to the total entropy, arising from the extra information
corresponding to the higher-order moments, is o(N), when N tends to infinity and N/V
ratio is constant, with N the number of particles and V the volume. The main result of
Jaworski is that from a purely thermodynamic point of view, the information corre-
sponding to the higher-order moments of extensive physical quantities is not essential
and can be neglected in the maximum entropy procedure. Jaworski showed that the
maximum entropy inference has a certain stability property with respect to information
corresponding to higher order moments of extensive quantities. It can serve as an
argument in favor of the maximum entropy method in statistical physics and to
understand better why these methods are successful. Streater [3] has prefered to say that
the states with generalized temperatures are not in equilibrium, assuming that the final
state, at large times, will be the canonical or grand canonical state depending on mixing
properties. Streater [3] intends that this occur even for a mesoscopic system, such as a
few atoms, adding that his approach is equivalent to Ingarden model if the relaxation
time from the state with generalized temperatures to the final equilibrium is very long.

2 Model of Souriau Lie Groups Thermodynamics

In 1970, Souriau [1, 2] introduced the concept of co-adjoint action of a group on its
momentum space, based on the orbit method works, that allows to define physical
observables like energy, heat and momentum or moment as pure geometrical objects.
The moment map is a constant of the motion and is associated to symplectic coho-
mology. In a first step to establish new foundations of thermodynamics, Souriau has
defined a Gibbs canonical ensemble on a symplectic manifold M for a Lie group action
on M. In classical statistical mechanics, a state is given by the solution of Liouville
equation on the phase space, the partition function. As symplectic manifolds have a
completely continuous measure, invariant by diffeomorphisms, the Liouville measure
k, all statistical states will be the product of the Liouville measure by the scalar function
given by the generalized partition function eUðbÞ� b;UðnÞh i defined by the energy U
(defined in the dual of the Lie algebra of this dynamical group) and the geometric
temperature b, where U is a normalizing constant such the mass of probability is equal
to 1, UðbÞ ¼ � log

R
M
e� b;UðnÞh idk. Jean-Marie Souriau then generalizes the Gibbs

equilibrium state to all symplectic manifolds that have a dynamical group. Souriau has
observed that if we apply this theory for non-commutative group (Galileo or Poincaré
groups), the symmetry has been broken. For each temperature b, element of the Lie

Poly-symplectic Model of Higher Order Souriau Lie Groups 433



algebra g, Souriau has introduced a tensor eHb, equal to the sum of the cocycle eH and
the heat coboundary (with [.,.] Lie bracket):

~Hb Z1; Z2ð Þ ¼ ~H Z1; Z2ð Þþ Q; adZ1ðZ2Þh i ð2Þ

This tensor ~Hb has the following properties: eHðX; YÞ ¼ HðXÞ; Yh i where the map H is
the symplectic one-cocycle of the Lie algebra g with values in g�, with HðXÞ ¼
Teh XðeÞð Þ where h the one-cocycle of the Lie group G. eH X; Yð Þ is constant on M and

the map eH X; Yð Þ : g� g ! < is a skew-symmetric bilinear form, and is called the
symplectic two-cocycle of Lie algebra g associated to the moment map J, with the
following properties:

eHðX; YÞ ¼ J X;Y½ � � JX ; JYf g with J the Moment Map ð3Þ

eHð X; Y½ �; ZÞþ eHð Y ; Z½ �;XÞþ eHð Z;X½ �; YÞ ¼ 0 ð4Þ

where JX linear application from g to differential function on M: g ! C1ðM;RÞ;X !
JX and the associated differentiable application J, called moment (um) map
J : M ! g�; x 7! JðxÞ such that JXðxÞ ¼ JðxÞ;Xh i;X 2 g.

The geometric temperature, element of the algebra g, is in the the kernel of the

tensor eHb:b 2 Ker eHb such that eHb b; bð Þ ¼ 0; 8b 2 g. The following symmetric

tensor gb b; Z1½ �; b; Z2½ �ð Þ ¼ eHb Z1; b; Z2½ �ð Þ, defined on all values of adbð:Þ ¼ b; :½ � is
positive definite, and defines extension of classical Fisher metric in Information
Geometry (as hessian of the logarithm of partition function):

gb b; Z1½ �;Z2ð Þ ¼ eHb Z1; Z2ð Þ; 8Z1 2 g; 8Z2 2 Im adb :ð Þ� � ð5Þ

with

gb Z1; Z2ð Þ� 0; 8Z1; Z2 2 Im adb :ð Þ� � ð6Þ

These equations are universal, because they are not dependent on the symplectic
manifold but only on the dynamical group G, the symplectic two-cocycle H, the
temperature b and the heat Q. Souriau called it “Lie groups thermodynamics”.

Theorem (Souriau Theorem of Lie Group Thermodynamics). Let X be the largest
open proper subset of g, Lie algebra of G, such that

R
M
e� b;UðnÞh idk and

R
M
n:e� b;UðnÞh idk

are convergent integrals, this set X is convex and is invariant under every transfor-
mation Adgð:Þ. Then, the fundamental equations of Lie group thermodynamics are
given by the action of the group:
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• Action of Lie group on Lie algebra:

b ! AdgðbÞ ð7Þ

• Characteristic function after Lie group action:

U ! U� h g�1
� �

; b
� � ð8Þ

• Invariance of entropy with respect to action of Lie group:

s ! s ð9Þ

• Action of Lie group on geometric heat:

Q ! aðg;QÞ ¼ Ad�gðQÞþ h gð Þ ð10Þ

In the framework of Lie group action on a symplectic manifold, equivariance of
moment could be studied to prove that there is a unique action a(.,.) of the Lie group
G on the dual g� of its Lie algebra for which the moment map J is equivariant, that
means for each

x 2 M: J UgðxÞ
� � ¼ aðg; JðxÞÞ ¼ Ad�g JðxÞð Þþ hðgÞ ð11Þ

Jean-Louis Koszul has analyzed Souriau model in his book “Introduction to symplectic
geometry” [6]. Defining classical operation Adsa ¼ sas�1; s 2 G; a 2 g, adab ¼
a; b½ �; a 2 g; b 2 g and Ad�s ¼ tAds�1 ; s 2 G with classical properties Adexp a ¼
exp �adað Þ; a 2 g or Ad�exp a ¼ exp t adað Þ; a 2 g, we can consider: x 7! sx; x 2 M,
l : M ! g�, we have dlðvÞ; ah i ¼ x ax; vð Þ.

If we study l � sM � Ad�s � l : M ! g�, we have:

d Ad�s � l; a
� � ¼ Ad�s dl; a

� � ¼ dl;Ads�1ah i

dlðvÞ;Ads�1ah i ¼ x s�1asx; v
� � ¼ x asx; svð Þ ¼ dlðsvÞ; ah i ¼ d l � sM ; ah ið ÞðvÞ

d Ad�s � l; a
� � ¼ d l � sM ; ah i and then prove that

d l � sM � Ad�s � l; a
� � ¼ 0 ð12Þ

If we develop the cocycle given by hlðsÞ ¼ lðsxÞ � Ad�s lðxÞ; s 2 G, we can study
hlðstÞ ¼ hlðsÞ � Ad�s hlðtÞ; s; t 2 G. If we note cl a; bð Þ ¼ dhlðaÞ; b

� �
; a; b 2 g

hlðstÞ ¼ lðstxÞ � Ad�stlðxÞ ¼ hlðsÞþAd�s lðtxÞ � Ad�s Ad
�
t lðxÞ ¼ hlðsÞþAd�s hlðtÞ
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By developing dlðaxÞ ¼ tadalðxÞþ dhlðaÞ; x 2 M; a 2 g, we obtain:

dlðaxÞ; bh i ¼ lðxÞ; a; b½ �h iþ dhlðaÞ; b
� � ¼ l; ah i; l; bh if gðxÞ; x 2 M; a; b 2 g ð13Þ

We have then cl a; bð Þ ¼ l; ah i; l; bh if g � l; a; b½ �h i ¼ dhlðaÞ; b
� �

; a; b 2 g

And the property

cl a; b½ �; cð Þþ cl b; c½ �; að Þþ cl c; a½ �; bð Þ ¼ 0; a; b; c 2 g ð14Þ

If the moment map is transform as

l0 ¼ lþu ) cl0 ða; bÞ ¼ clða; bÞ � u; a; b½ �h i ð15Þ

By considering this action of the group on dual Lie algebra
G� g� ! g�; ðs; nÞ 7! sn ¼ Ad�s nþ hlðsÞ

We have the property that

lðsxÞ ¼ slðxÞ ¼ Ad�s lðxÞþ hlðsÞ; 8s 2 G; x 2 M

where the cocycle is given by hlðsÞ ¼ lðsxÞ � Ad�s lðxÞ
We can verify the following properties:

G� g� ! g�; e; nð Þ 7! en ¼ Ad�enþ hlðeÞ ¼ nþ lðxÞ � lðxÞ ¼ n ð16Þ

ðs1s2Þn ¼ Ad�s1s2nþ hlðs1s2Þ ¼ Ad�s1Ad
�
s2nþ hlðs1ÞþAd�s1hlðs2Þ

ðs1s2Þn ¼ Ad�s1 Ad�s2nþ hlðs2Þ
� �

þ hlðs1Þ ¼ s1 s2nð Þ; 8s1; s2 2 G; n 2 g�
ð17Þ

Finally using cl a; bð Þ ¼ l; ah i; l; bh if g � l; a; b½ �h i ¼ dhlðaÞ; b
� �

; a; b 2 g:

l�ðaÞ; l�ðbÞf g ¼ l; ah i; l; bh if g ¼ l� a; b½ � þ clða; bÞ
� � ¼ l� a; bf gcl ð18Þ

3 poly-sympectic Higher-Order Lie Groups
Thermodynamics

As observed by Jean-Marie Souriau, the Gaussian density is a maximum entropy
density of 1storder. This remark is clear if we replace z and ðm;RÞ by n and b:
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pðm;RÞðzÞ ¼
1

2pð Þn=2detðRÞ1=2
e�

1
2 z�mð ÞTR�1ðz�mÞ ¼ 1

2pð Þn=2detðRÞ1=2e1
2m

TR�1m
e� �mTR�1zþ 1

2z
TR�1z½ �

pðm;RÞðzÞ ¼ pn̂ðnÞ ¼
1
Z
e� b;nh i with n ¼ z

zzT

� 	
;n̂ ¼ E z½ �

E zzT½ �

� 	
¼ m

RþmmT

� 	
and b ¼ �R�1m

1
2R

�1

" #
¼ a

H

� 	
where b; nh i ¼ aTzþ zTHz ¼ Tr zaT þHTzzT


 �
with log Zð Þ ¼ n

2
logð2pÞþ 1

2
log detðRÞþ 1

2
mTR�1m and Sðn̂Þ ¼ n̂;b

D E
� UðbÞ

n̂ ¼ HðbÞ ¼ @UðbÞ
@b

and b ¼ H�1ðn̂Þ with UðbÞ ¼ � logwXðbÞ ¼ � log
Z
X�

e� b;nh idn

Fisher : IðbÞ ¼ @2 logwXðbÞ
@b2

¼ E
@ log pbðnÞ

@b
@ log pbðnÞ

@b

T
" #

¼ E n� n̂
� �

n� n̂
� �T

� 	
ð19Þ

As soon as 1963, R.S. Ingarden has introduced the concept of higher order tem-
peratures for statistical systems such as thermodynamics. In physics, the concept of
temperature is connected with the mean value of kinetic energy of molecules in an ideal
gas. For a general physical system with interactions among particles (non-ideal gas,
liquid or solid), an equilibrium probability distribution is assumed to depend on tem-
perature T as the only statistical parameter of the Gibbs state: PbðxÞ ¼ 1

Z bð Þ e
�b:HðxÞ with

b ¼ 1
kbT

and HðxÞ ¼ H p; qð Þ where p is position, q the mechanical momentum and kb
the Boltzmann constant (a factor to insure that b:H is dimensionless). In case of no
stochastic interactions between particles (ideal gas), partition function Z is integrable
and we obtain Gauss distribution in the momentum space which corresponds to the
result of the limit theorem for large N. Boltzmann ideal gas model can fail if the
number of particles is not large enough (rnesoscopic systems), and if the interactions
between particles are not weak enough. Gibbs hypothesis can also fail if stochastic
interactions with the environment are not sufficiently weak. As remarked by R.S.
Ingarden, nobody has never observed thermal equilibrium of Gibbs in large and
complex systems (Earth’s atmosphere, cosmic systems, biological organisms), but only
flows, turbulence or pumping, replacing classical approach by the concept of local
temperature and thermodynamic flows (thermo-hydrodynamics and non-equilibrium
thermodynamics), that is non-coherent with the concept of temperature which is
global/intensive by definition and does not depend on position. R.S. Ingarden propose
to consider the stationary case by means of the concept of higher order temperatures
defined by:

P b1;...;bnð ÞðxÞ ¼ 1
Z b1; . . .; bnð Þ e

�b1:HðxÞ�b2 HðxÞ�Uð Þ2�...�bn HðxÞ�Uð Þn ð20Þ

where U ¼ E Hð Þ is the mean energy introduced to preserve the invariance of the total
energy with respect to an arbitrary additive constant, and b0 ¼ � log Z b1; . . .; bnð Þ the
normalizing constant. The new constants bk are said to be b-temperatures of order k.
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HðxÞ is usually a quadratic function of x (for ideal gas only of p, for ideal solid of p and q).
The probability distribution is fixed uniquely by all (independent and not contradictory)
statistical moments which should be experimentally measured. But if the number of
values is too large to make this method practical, we can measure only the lowest
moments up to some order (if the higher orders do not change the result to a given
accuracy), and to fix the respective b-temperatures as Lagrange multipliers by maxi-
mization of entropy of distribution S ¼ � R

P b1;...;bnð ÞðxÞ logP b1;...;bnð ÞðxÞdx, with the
given moments as additional conditions. R.S. Ingarden observed that the entropy max-
imization randomizes higher moments in a symmetric way, and it liquidates any possible
bias with respect to their special values, and it gives the best estimate to a given accuracy.
The values of b can be found by:

E xk
� � ¼ @b0

@bk
¼ @ log Z

@bk
with E xk

� � ¼ Z�1
Z

xke
�
Pn
k¼1

bkx
k

dx ¼
Z

xkP b1;...;bnð ÞðxÞdx ð21Þ

Z ¼
Z

e
�
Pn
k¼1

bkx
k

dx and the relation: S ¼
Xn
k¼1

bkE xk
� �þ log Z ¼

Xn
k¼1

bk
@b0
@bk

� b0 ð22Þ

R.S. Ingarden has applied this model for linguistic statistics, assuming the appearance
of higher order temperatures since there occur rather strong statistical correlations
between phonemes and words as elements of these statistics. He argued his choice
observing that in the case of word statistics, the existence of strong correlations is given
by grammatical or semantical studies [9]. R.S. Ingarden made the conjecture that his
high order thermodynamics is the model of statistically interacting, small systems, and
biological living systems, although the calculation/observation are more difficult. We
have seen that Souriau has replaced classical Maximum Entropy approach by replacing
Lagrange parameters by only one geometric “temperature vector” as element of Lie
algebra. In parallel, Ingarden has introduced second and higher order temperature of the
Gibbs state that could be extended to Souriau theory of thermodynamics. Ingarden
higher order temperatures could be defined in the case when no variation is considered,
but when a probability distribution depending on more than one parameter. It has been
observed by Ingarden, that Gibbs assumption can fail if the number of components of
the sum goes to infinity and the components of the sum are stochastically independent,
and if stochastic interactions with the environment are not sufficiently weak. In all these
cases, we never observe absolute thermal equilibrium of Gibbs type but only flows or
turbulence. Non-equilibrium thermodynamics could be indirectly addressed by means
of high order temperatures.

Initiated by Gunther [12, 13] based on n-symplectic model [14, 15], it has been
shown that the symplectic structure on the phase space remains true, if we replace the
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symplectic form by a vector valued form, that is called polysymplectic. This extension

defines an action of G over g� � . . .ðnÞ �g� called n-coadjoint action:

Ad�ðnÞg : G� g� � . . .ðnÞ �g�
� �

! g� � . . .ðnÞ �g�

g� l1 � . . .� ln 7!Ad�ðnÞg l1; . . .; lnð Þ ¼ Ad�gl1; . . .;Ad
�
gln

� � ð23Þ

Let l ¼ l1; . . .; lnð Þ a poly-momentum, element of g� � . . .ðnÞ �g�, we can define a
n-coadjoint orbit Ol ¼ O l1;...;lnð Þ at the point l, for which the canonical projection

Prk : g� � . . .ðnÞ �g� ! g�; m1; . . .; mnð Þ 7! mk induces a smooth map between the
n-coadjoint orbit Ol and the coadjoint orbit Olk : pk : Ol ¼ O l1;...;lnð Þ ! Olk that is a

surjective submersion with
Tn
k¼1

KerTpk ¼ 0f g. Extending Souriau approach, equivari-

ance of poly-moment could be studied to prove that there is a unique action a(.,.) of the

Lie group G on g� � . . .ðnÞ �g� for which the polymoment map JðnÞ ¼ J1; . . .; Jnð Þ :
M ! g� � . . .ðnÞ �g� verifies x 2 M and g 2 G:

JðnÞ UgðxÞ
� � ¼ aðg; JðnÞðxÞÞ ¼ Ad�ðnÞg JðnÞðxÞ

� �
þ hðnÞðgÞ ð24Þ

with Ad�ðnÞg JðnÞðxÞ� � ¼ Ad�gJ
1; . . .;Ad�gJ

n
� �

and hðnÞðgÞ ¼ h1ðgÞ; . . .; hnðgÞ� �
a

poly-symplectic one-cocycle. We can also defined poly-symplectic two-cocycleeHðnÞ ¼ eH1
; . . .; eHn� �

with eHkðX; YÞ ¼ HkðXÞ; Y� � ¼ JkX;Y½ � � JkX ; J
k
Y

� 
where

HkðXÞ ¼ Teh
k XðeÞð Þ. Finally, the poly-symplectic Souriau-Fisher metric is given by:

gb b; Z1½ �; Z2ð Þ ¼ diag ~Hbk Z1; Z2ð Þ
 �
k; 8Z1 2 g; 8Z2 2 Im adb :ð Þ� �

; b ¼ b1; . . .; bnð Þ
ð25Þ

~Hbk Z1; Z2ð Þ ¼ � @U b1; . . .; bnð Þ
@bk

¼ eHk Z1; Z2ð Þþ Qk; adZ1ðZ2Þh i ð26Þ

Compared to Souriau model, heat is replaced by previous polysymplectic model:

Q ¼ Q1; . . .;Qnð Þ 2 g� � . . .ðnÞ �g� withQk ¼ @Uðb1; . . .; bnÞ
@bk

¼

R
M
U	kðnÞ:e

�
Pn
k¼1

bk ;U
	kðnÞh i

dx

R
M
e
�
Pn
k¼1

bk ;U	kðnÞh i
dx

ð27Þ

with characteristic function:
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Uðb1; . . .; bnÞ ¼ � log
Z
M

e
�
Pn
k¼1

bk ;U
	kðnÞh i

dx ð28Þ

We extrapolate Souriau results, who proved in [1, 2] that
R
M
U	kðnÞ:e� bk ;U

	kðnÞh idx is

locally normally convergent using multi-linear norm U	k
�� �� ¼ Sup

U
E;Uh ik and where

U	k ¼ U 	 U
ðkÞ

. . .	 U is defined as a tensorial product (see [1] and Bourbaki).
Entropy is defined by Legendre transform of Souriau-Massieu characteristic

function:

S Q1; . . .;Qnð Þ ¼
Xn
k¼1

bk;Qkh i � Uðb1; . . .; bnÞwhere bk ¼
@SðQ1; . . .;QnÞ

@Qk
ð29Þ

The Gibbs density could be then extended with respect to high order temperatures by:

pGibbsðnÞ ¼ e
U b1;...;bnð Þ�

Pn
k¼1

bk ;U
	kðnÞh i

¼ e
�
Pn
k¼1

bk ;U
	kðnÞh i

R
M
e
�
Pn
k¼1

bk ;U	kðnÞh i
dx

ð30Þ
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Abstract. The main concepts of general relativistic thermodynamics
and general relativistic statistical mechanics are reviewed in a quantum
framework. The main building block of the proper relativistic exten-
sion of classical thermodynamics laws is the four-temperature vector β.
The general relativistic thermodynamic equilibrium condition demands
β to be a Killing vector field. A remarkable consequence of this con-
dition is that all Lie derivatives of all physical observables along the
four-temperature flow vanish.

Keywords: Relativistic thermodynamics · General relativity · Thermo-
dynamic equilibrium

1 Introduction

Relativistic thermodynamics and relativistic statistical mechanics are wide-
spreadly used in advanced research topics: high energy astrophysics, cosmology,
and relativistic nuclear collisions. The standard cosmological model views the
primordial Universe as a curved manifold with matter content at local ther-
modynamic equilibrium. Similarly, the matter produced in high energy nuclear
collisions is assumed to reach and maintain local thermodynamic equilibrium for
a large fraction of its lifetime.

In this paper, we review the basic concepts of thermodynamic equilibrium in
a quantum relativistic framework including general relativity. We will follow a
rather informal approach leaving mathematical rigour aside for the ease of read-
ing and to better illustrate the reasoning and the methods. We will see that the
key role in the extension of thermodynamics to the quantum relativistic realm is
played by the inverse temperature or, simply, four-temperature, vector β. This
vector field has a precise physical meaning in terms of ideal thermometers, its
magnitude being the inverse temperature marked by an ideal thermometer mov-
ing along the flow. At global thermodynamic equilibrium, the four-temperature
β must be a Killing vector and we will show that, as a consequence, the Lie
derivatives of all physical quantities vanish.
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Notation

In this paper we use the natural units, with � = c = kB = 1.
The Minkowskian metric tensor is diag(1,−1,−1,−1); for the Levi-Civita

symbol we use the convention ε0123 = 1.
We will use the relativistic notation with repeated indices assumed to be

summed over. Quantum operators will be denoted by a large upper hat, e.g. ̂T
while unit vectors with a small upper hat, e.g. v̂. The stress-energy tensor is
assumed to be symmetric with an associated vanishing spin tensor.

2 Density Operator for Local Thermodynamic
Equilibrium

The density operator, or density matrix, for local thermodynamic equilibrium in
a relativistic framework can be derived by maximizing the Von Neumann entropy
with the constraints of fixed energy- time τ . This requires the specification of a
space-like hypersurface Σ(τ), where these densities are given, and a continuous
set of Lagrange multipliers β and ζ at each point of the hypersurface:

−tr(ρ̂ log ρ̂)+

∫

Σ(τ)

dΣnμ

[(

〈̂T μν(x)〉 − T μν(x)
)

βν(x) −
(

〈̂jμ(x)〉 − jμ(x)
)

ζ(x)
]

(1)

where dΣ is the measure of the hypersurface and n the unit vector perpendicular
to Σ. The solution is:

ρ̂LE =
1

ZLE
exp

[

−
∫

Σ(τ)

dΣnμ

(

̂Tμν(x)βν(x) − ζ(x)̂jμ(x)
)

]

(2)

being:

ZLE = tr

(

exp

[

−
∫

Σ(τ)

dΣnμ

(

̂Tμν(x)βν(x) − ζ(x)̂jμ(x)
)

])

is the partition function. The operator (2) does depend on the hypersurface
Σ, which can be chosen arbitrarily. However, there is a preferential choice which
pertains to the definition of local thermodynamic equilibrium itself which relates
n to the Lagrange multiplier function β [1].

Starting from the operator (2) and calculating the entropy expression, it is
then possible to show that β has a precise physical meaning; its magnitude is
the inverse temperature marked by an ideal relativistic thermometer [1], that
is an ideal pointlike device which is capable of instantaneously moving with
the four-velocity u = β/

√

β2 (hence β should be timelike), and marking the
temperature T = 1/

√

β2. The four-velocity u is to be interpreted as the four-
velocity of the fluid and defines a new frame in relativistic hydrodynamics called
β or thermodynamic frame [2].
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3 Global Equilibrium Condition

The expression (2) of the density operator is generally covariant and it becomes
independent of the hypersurface Σ if - according to the Gauss’ theorem - the
divergence of the integrand and contribution of the time-like boundary to the
integral vanishes. In this case, the operator becomes time-independent and one
has thus achieved global thermodynamic equilibrium. If the stress-energy tensor
is symmetric, the requirement of the vanishing of the divergence implies:

∇μβν + ∇νβμ = 0 (3)

that is, the four-temperature becomes a Killing vector. This condition was
obtained in different fashions. De Groot et al. [3] derived it in special relativity
from relativistic Boltzmann equation, Souriau [4,5] from a geometric approach.
The solution of the above equation in Minkowski spacetime is known:

βμ = bμ + �μνxν

where b and � are constants, and includes all known forms of thermodynamic
equilibrium: the familiar one with � = 0, as well as the rotational and with
constant acceleration.

This condition, however, holds in general relativity and may be used to define
in the most general fashion the notion of thermodynamic equilibrium in an
arbitray space-time. Conversely, the existence of at least one time-like Killing
vector field ensures that thermodynamic equilibrium exists because all physical
quantities will be stationary along the Killing vector field lines (see next Section).
We note that it is not necessary that the Killing vector field is globally time-like;
for instance, in Minkowski spacetime the field:

β =
1
T0

(1,ω × x)

with ω and T0 constant, describing equilibrium with rotation [6] is a Killing
vector field but it becomes space-like at a radial distance R = 1/ω from the axis.
Similarly, in Schwarzschild space-time the vector field ∂/∂t is time-like up to the
Schwarzschild radius.

4 Thermodynamic Equilibrium and Lie Derivatives

A symmetry transformation Λ in spacetime can be defined as follows [7]:

ψ(Λ(x)) = D(Λ)ψ(x) (4)

for every physical field ψ(x) on the tangent hyperplane at x, where D(Λ) is a
matrix which takes care of the correct transformation of the indices of ψ, whether
they are spinorial, vector or tensor. If one has a set of symmetry transformations
Λξ(τ) along a vector field ξ described by some real parameter τ , the above
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equation implies that the Lie derivative along the vector field ξ of ψ vanishes,
that is:

Lξ(ψ) = 0 (5)

These notions can be made mathematically rigorous in differential geometry (see
e.g. [7]).

Since thermodynamic equilibrium involves stationarity in time, it is reason-
able to surmise that a time translation is a symmetry transformation for all
physical fields. While this is clear and unambiguous in special relativity, in gen-
eral relativity there is no preferential frame or set of frames definining a “time”.
Thus, we need a time-like vector field which is naturally associated to thermo-
dynamic equilibrium such that the Lie derivative of any physical quantity along
it vanishes. Such vector field exists and it is just the four-temperature field β(x)
which meets the above requirement being a Killing vector field.

In order to show that Lβ(anything) = 0 two methods are available. The
first is to write anything as the mean value of an operator at thermodynamic
equilibrium:

A = tr( ̂Aρ̂) (6)

work out all possible dependences of A on the metric tensor, the four-temperature
and all of their derivatives and show that all of them have vanishing Lie deriv-
ative along β. This method was used in ref. [9] and we refer to that paper for
the proof. The second method, which is sketched here, is more elegant, but it
requires the use of quantum field theory in curved spacetime, which is a dif-
ficult subject for the familiar Hilbert space formalism of flat spacetime getting
troublesome. To overcome some of the difficulties, one can take an algebraic app-
roach by maintaining the relations involving quantum field operators in Hilbert
space, by interpreting them as elements of a C*-algebra [8]. Particularly, the
transformation rule of the Wightman axiom shall be kept:

̂U(Λ) ̂ψ(x) ̂U(Λ)−1 = D(Λ))−1
̂ψ(Λ(x)) (7)

where ̂U(Λ) is the “operator” corresponding to the diffeomorphism Λ in the
physical (curved) spacetime and D(Λ) its associated matrix (pull-back transfor-
mation [7]). Also, one can extend the trace operation with its ciclicity property
for the calculation of mean values, that is Eq. (6) by suitably redefining the
notion of state [8].

With these mathematical tools, we can work out the desired proof. For the
sake of simplicity, we will focus on the special case ζ = 0 in Eq. (2), the general
case with conserved currents being a straightforward extension. The first step is
to define a one-parameter group of diffeomorphisms Λ(τ) along a vector field ξ,
with:

dxμ

dτ
= ξμ(τ)

and look for the conditions by which this set defines symmetry transformations
for the density operator, that is:

̂U(Λ(τ)) ρ̂ ̂U(Λ(τ))−1 = ρ̂ (8)
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If the above condition is met, then, by ciclicity and using (7):

A(x) = tr(ρ̂ ̂A(x)) = tr(̂U(Λ(τ))ρ̂̂U(Λ(τ))−1
̂A(x))

= tr(ρ̂̂U(Λ(τ))−1
̂A(x)̂U(Λ(τ))) = D(Λ(τ))tr(ρ̂ ̂A(Λ(τ)−1(x)))

= D(Λ(τ))A(Λ(τ)−1(x)) (9)

for any τ , whence the conclusion:

Lξ(A) = 0 (10)

by taking the derivative with respect to τ on both sides follows at once.
Let us now find the conditions which ensure the relation (8). With ρ̂ given

by (2), one has:

̂U(Λ(τ)) exp
[

−
∫

Σ

dΣμ
̂Tμν(x)βν(x)

]

̂U(Λ(τ))−1

= exp
[

−
∫

Σ

dΣμ
̂U(Λ(τ)) ̂Tμν(x)̂U(Λ(τ))−1βν(x)

]

One can now apply the Wightman rule (7) to the last expression:

exp
[

−
∫

Σ

dΣnμ
̂U(Λ(τ)) ̂Tμν(x)̂U(Λ(τ))−1βν(x)

]

= exp
[

−
∫

Σ

dΣnμΛ(τ))−1μ
ρ Λ(τ))−1ν

σ
̂T (Λ(τ)(x))ρσβν(x)

]

= exp

[

−
∫

Σ′(τ)
dΣ′n′

ρΛ(τ))−1ν
σ

̂T (x′)ρσβν(Λ(τ)−1(x′))

]

where, in the last equality we have changed the integration variable to the trans-
formed one, that is x′ = Λ(τ)(x) and the integral is now computed over the
transformed domain Σ′(τ) with n′ = Λ(τ)(n).

One can now make the transformation infinitesimal and expand the last
expression to the first order in δτ ; both the domain and the β field will contribute
to the first order expression. It is known that the domain expansion will give
rise to:

∫

Σ′
dΣ′

μV μ �
∫

Σ

dΣμV μ+δτ
1
2

∫

dS̃μα(V μξα−V αξμ)+δτ

∫

Σ

dΣμξμ∇·V (11)

where dΣμ ≡ dΣnμ and the field V μ in our case is ̂Tμνβν . Similarly, it is also
well known that:

Λ(τ))−1ν
σ βν(Λ(τ)−1(x)) � βσ(x) − Lξ(β)σδτ (12)

where Lξ(β) is just the Lie derivative of the field β along ξ. If the surface
boundary term in Eq. (11) vanishes, one can conclude that if a one-parameter
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group of diffeomorphisms make up a set of continuous symmetry transformations
for ρ̂, then:

∫

Σ

dΣμ

(

ξμ
̂Tλν∇λβν − ̂TμνLξ(β)ν

)

= 0 (13)

A sufficient condition for this is the vanishing of the integrand at any τ , which
is the case if β and ξ meet the following requirements:

– β is a Killing vector field fulfilling Eq. (3), so that the first term in the
integrand of Eq. (13) vanishes being ̂T symmetric;

– ξ = β so that the second term in the integrand of Eq. (13) vanishes as well.

If these conditions are met for any τ , the one-parameter group structure
makes it possible to retrace the above reasoning and conclude that the Eq. (8)
applies. The above proof can be readily extended to the more general operator
involving currents, leading to the conclusion that ζ must be a constant.

5 Consequences

Not only do the mean value of operators have vanishing Lie derivatives along
the Killing vector field β, also all of the tensors describing the geometry of
the spacetime [9], that is Riemann tensor, its covariant derivatives of any order
and combinations thereof. The identification of β with (1/T )u where T is the
temperature marked by a thermometer moving with four-velocity u gives β its
thermodynamic physical content.
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Abstract. One way to avoid overfitting in machine learning is to use
model parameters distributed according to a Bayesian posterior given the
data, rather than the maximum likelihood estimator. Stochastic gradi-
ent Langevin dynamics (SGLD) is one algorithm to approximate such
Bayesian posteriors for large models and datasets. SGLD is a standard sto-
chastic gradient descent to which is added a controlled amount of noise,
specifically scaled so that the parameter converges in law to the posterior
distribution [WT11,TTV16]. The posterior predictive distribution can be
approximated by an ensemble of samples from the trajectory.

Choice of the variance of the noise is known to impact the practical
behavior of SGLD: for instance, noise should be smaller for sensitive para-
meter directions. Theoretically, it has been suggested to use the inverse
Fisher information matrix of the model as the variance of the noise, since
it is also the variance of the Bayesian posterior [PT13,AKW12,GC11]. But
the Fisher matrix is costly to compute for large-dimensional models.

Here we use the easily computed Fisher matrix approximations for
deep neural networks from [MO16,Oll15]. The resulting natural Langevin
dynamics combines the advantages of Amari’s natural gradient descent
and Fisher-preconditioned Langevin dynamics for large neural networks.

Small-scale experiments on MNIST show that Fisher matrix precondi-
tioning brings SGLD close to dropout as a regularizing technique.

Consider a supervised learning problem with a dataset D = {(x1, y1), . . . ,
(xN , yN )} of N input-output pairs, to be modelled by a parametric probabilistic
distribution yi ∼ pθ(y|xi) (x = ∅ amounts to unsupervised learning of y). Defin-
ing the log-loss �θ(yi|xi) := − ln pθ(yi|xi), the maximum likelihood estimator is
the value θ that minimizes E(x,y)∈D�θ(y|x), where E(x,y)∈D denotes averaging
over the dataset.

Stochastic gradient descent is often used to tackle this minimization problem
for large-scale datasets [BL03,Bot10]. This consists in iterating

θ ← θ − η Ê(x,y)∈D ∂θ�θ(y|x), (1)

where η is a step size, ∂θ denotes the gradient of a function with respect to θ,
and Ê(x,y)∈D denotes an empirical average of gradients from a random subset of
the dataset D (a minibatch, which may be of size 1).

Estimating the model parameter θ via maximum likelihood, i.e., minimizing
the training loss on D, is prone to overfitting. Bayesian methods arguably offer a
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 451–459, 2017.
https://doi.org/10.1007/978-3-319-68445-1_53
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protection against overfitting ([Bis06, 3.4], [Mac03, 44.4]; see also [Nea96,Mac92]
for Bayesian neural networks). Arguably, the variance of the posterior distribu-
tion of θ represents the intrinsic uncertainty on θ given the data, and optimizing
θ beyond that point results in overfitting [WT11]; sampling the parameter θ
from its Bayesian posterior prevents using a too precisely tuned value.

Stochastic gradient Langevin dynamics (SGLD) [WT11,TTV16] modifies sto-
chastic gradient descent to provide random values of θ that are distributed
according to a Bayesian posterior. This is achieved by adding controlled noise to
the gradient descent, together with an O(1/N) pull towards a Bayesian prior:

θ ← θ − η Ê(x,y)∈D ∂θ

(
�θ(y|x) − 1

N
ln α(θ)

)
+

√
2η

N
N (0, Id) (2)

where N is the size of the dataset, α(θ) is the density of a Bayesian prior on θ,
and N (0, Id) is a random Gaussian vector of size dim(θ).1 The larger N is, the
closer SGLD is to simple stochastic gradient descent, as the Bayesian posterior
concentrates around a single point. The Bayesian interpretation determines the
necessary amount of noise depending on step size and dataset size. SGLD has
the same algorithmic complexity as simple stochastic gradient descent.

Thanks to the injected noise, θ does not converge to a single value, but
its distribution at time t converges to the Bayesian posterior of θ given the
data, namely, π(θ) ∝ α(θ)

∏
(x,y)∈D pθ(y|x). A formal proof is given in [TTV16,

CDC15] for suitably decreasing step sizes; the asymptotically optimal step size
is ηk ≈ k−1/3 at step k, thus, larger than the usual Robbins–Monro criterion for
stochastic gradient descent. The asymptotic behavior is well understood from
[TTV16,CDC15], and [MDM17,DM16] provide sharp non-asymptotic rates in
the convex case.

One can then extract information from the distribution of θ. For instance, the
Bayesian posterior mean can be approximated by averaging θ over the trajec-
tory. The full Bayesian posterior prediction can be approximated by ensembling
[GBC16, 7.12] predictions from several values of θ sampled from the trajectory,
though this creates additional computational and memory costs at test time.

We refer to [WT11,TTV16] for a general discussion of SGLD (and other
Bayesian methods) for large-scale machine learning.

Practical remarks. For regression problems, the square loss (y − ŷ(θ))2 between
observations y and predictions ŷ(θ) must be properly cast as the log-loss of a
Gaussian model, � = (y − ŷ(θ))2/2σ2 +dim(y) ln σ for a proper choice of σ (such
as the empirical RMSE). Just using σ2 = 1 amounts to using a badly specified
error model and will provide a poor Bayesian posterior.

The variance coming from computing gradients on a minibatch from D,
Ê(x,y)∈D∂θ�θ(y|x), adds up to the SGLD noise. For small step sizes, η � √

η, so
the SGLD noise dominates. [AKW12] suggest a correction for large η.
1 Our convention for the step size η differs from [TTV16] by a factor 2/N , namely,

δ = 2
N

η where δ is the step size in [TTV16, (3)]: this allows for a direct comparison
with stochastic gradient descent.
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A popular choice of prior α(θ) is a Gaussian prior N (0, Σ2); the variance Σ2

becomes an additional hyperparameter. In line with Bayesian philosophy we also
tested the conjugate prior for Gaussian distributions with unknown variance (a
mixture of Gaussian priors for all Σ2), the normal-inverse gamma, with default
hyperparameters; empirically, performance comes close enough to the best Σ2,
without having to optimize over Σ2.

Preconditioning the noise. SGLD as above introduces uniform noise in all para-
meter directions. This might hurt the optimization process. If performance is
more sensitive in certain parameter directions, adapting the noise covariance
can largely improve SGLD performance. This requires changing both the noise
covariance and the gradient step by the same matrix [WT11,GC11,AKW12,
LCCC16].

For any positive-definite symmetric matrix C, the preconditioned SGLD,

θ ← θ − η C Ê(x,y)∈D ∂θ

(
�θ(y|x) − 1

N
ln α(θ)

)
+

√
2η

N
C1/2N (0, Id) (3)

still converges in law to the Bayesian posterior (it is equivalent to a non-precon-
ditioned Langevin dynamics on C−1/2θ). A diagonal C amounts to having dis-
tinct values of the step size η for each parameter direction, both for noise and
gradient.

This assumes that C is fixed and does not depend on θ.2 In practice, this
means C should be adapted slowly in the algorithms (hence our use of running
averages for C hereafter); the resulting bias is analyzed in [LCCC16, Corollary 2].

[LCCC16] apply preconditioned SGLD to neural networks, with a diagonal
preconditioner C taken from the RMSProp optimization scheme, a classical tool
to adapt step sizes for each direction of θ.3

Langevin preconditioners and information geometry. In order to provide a good
or even optimal preconditioner C, it has been suggested to set C to the inverse
of the Fisher information matrix [GC11,AKW12,PT13].

The Fisher information matrix J(θ) at θ, for a model pθ, is defined by

J(θ) := E(x,y)∈D Eỹ∼pθ(ỹ|x)
[
(∂θ ln pθ(ỹ|x)) (∂θ ln pθ(ỹ|x))�

]
(4)

(note that for supervised learning, we fix the distribution of the inputs x from
the data but sample y according to the model pθ(y|x)). Intuitively, the entries
of the Fisher matrix represent the sensitivity of the model in each parameter
direction.

2 If C(θ) depends on θ, the algorithm involves derivatives of C(θ) with respect to θ
[GC11,XSL+14]. In our case (neural networks), these are not readily available.

3 We could not reproduce the good results from [LCCC16]. Their code contains a
bug which produces noise of variance 2η/N2 instead of 2η/N in (2), thus greatly
suppressing the Langevin noise, and not matching the Bayesian posterior.
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Using the inverse Fisher matrix as the SGLD preconditioner C has several
theoretical advantages. First, this reduces Langevin noise in sensitive parameter
directions (thanks to the Fisher matrix being the average of squared gradients).

Second, since C also affects the gradient term in (3), the gradient part of
SGLD becomes Amari’s natural gradient, known to have theoretically optimal
convergence [Ama98]. The resulting algorithm is also insensitive to changes of
variables in θ (for small learning rates) and makes sense if θ belongs to a manifold.

Third, the Bayesian posterior variance of the parameter θ is asymptotically
proportional to the inverse Fisher information matrix J(θ∗)−1 at the maximum
a posteriori θ∗ (Bernstein–von Mises theorem [vdV00]). So with Fisher precondi-
tioning, the noise injected in the optimization process has the same shape as the
actual noise in the target distribution on θ. Thus, it is tempting to investigate
the behavior of SGLD with noise covariance C ∝ J(θ∗)−1.

Approximating the Fisher matrix for large models. The Fisher matrix J(θ∗) can
be estimated by replacing the expectation in its definition (4) by an empirical
average along the trajectory [AKW12]. This results in Algorithm 3 below.4

However, for large-dimensional models such as deep neural networks, the
Fisher matrix is too large to be inverted or even stored (it is a full matrix of size
dim(θ) × dim(θ)). So approximation strategies are necessary.

Approximating the Fisher matrix does not invalidate asymptotic convergence
of SGLD, since (3) converges to the true Bayesian posterior for any precondi-
tioning matrix C. But the closer C is to the inverse Fisher matrix, the closer
SGLD will be to a natural gradient descent, and SGLD noise to the true posterior
variance.

One way of building principled approximations of the Fisher matrix is to rea-
son in terms of the associated invariance group. The full Fisher matrix provides
invariance under all changes of variables in parameter space θ: optimizing by
natural gradient descent over θ or over a reparameterization of θ will yield the
same learning trajectories (in the limit of small learning rates). Meanwhile, the
Euclidean gradient descent does not have any invariance properties (e.g., invert-
ing black and white in the image inputs of a neural network affects performance).
We refer to [Oll15] for further discussion in the context of neural networks.

The diagonal of the Fisher matrix is the most obvious approximation. Its
invariance subgroup consists of all rescalings of individual parameter components.

The quasi-diagonal approximation of the Fisher matrix [Oll15] is built to
retain more invariance properties of the Fisher matrix, at a small computational
cost. It provides invariance under all affine transformations of the activities of
units in a neural network (e.g., shifting or rescaling the inputs, or switching from
sigmoid to tanh activation function). The quasi-diagonal approximation main-
tains the diagonal of the Fisher matrix plus a few well-chosen off-diagonal terms,

4 The Fisher matrix definition (4) averages over synthetic data ỹ generated by pθ(ỹ|x).
In practice, using the samples y from the dataset is simpler (the OP variant in
Algorithm 3). This can result in significant differences [MO16,Oll15,PB13], even in
simple cases.
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requiring to store an additional vector of size dim(θ). Overall, the resulting algo-
rithmic complexity is of the same order as ordinary backpropagation, thus suitable
for large-dimensional models. [Oll15] also provides more complex approximations
with a larger invariance group, suited to sparsely connected neural networks.

The resulting quasi-diagonal natural gradient can be coded efficiently [MO16];
experimentally, the few extra off-diagonal terms can make a large difference.

Natural Langevin dynamics for neural networks: implementation. Algorithm 1
presents the Langevin dynamics with a generic preconditioner C. For the ordinary
SGLD, C would be the identity matrix. The internal setup of a preconditioner
decouples from the general implementation of SGLD optimization. A precondi-
tioner C is a matrix object that provides the routines needed by Algorithm1:

– Multiply a gradient estimate by C: g ← Cg;
– Draw a Gaussian random vector ξ ∼ N (0, C) = C1/2N (0, Id);
– Update C given recent gradient observations;
– An initialization procedure for C at startup.

We now make these routines explicit for several choices of preconditioner.
The RMSProp preconditioner used in [LCCC16] divides gradients by their

recent magnitude: C is diagonal, and for each parameter component i, Cii is
the inverse of a root-mean-square average of recent gradients in direction i
(Algorithm 2).

Algorithm 3 describes preconditioned SGLD with a preconditioner C = J−1

using the full Fisher matrix J at the posterior mean θ∗. This is suitable only for
small-dimensional models. The Fisher matrix is obtained as a moving average of
rank-one contributions over the trajectory (Algorithm 3). This moving average
has the further advantage of smoothing the fluctuations of the parameter θ over
the SGLD trajectory, ensuring convergence [AKW12].

Finally we consider SGLD using the quasi-diagonal Fisher matrix, the object
of the tests in this article, applicable to large-dimensional models.

For a neural network, the parameters are grouped into blocks corresponding
to the bias and incoming weights of each neuron, with the bias being the first
parameter in a block. The Fisher matrix J is updated as in Algorithm 3, but stor-
ing only its diagonal and the first row in each block. Then a Cholesky decompo-
sition C = AA� is maintained for the preconditioner C, such that the axioms
of the quasi-diagonal approximation are satisfied (Algorithm4): in each block,
A has non-zero entries only on its diagonal and first row, and is built such that
C−1 = (A�)−1A−1 has the same first row and diagonal as the Fisher matrix J .
The sparse Cholesky decomposition provides the operations of the preconditioner:
multiplying by C = AA� and sampling from N (0, C) = AN (0, Id).

Experiments. We compare empirically four SGLD preconditioners: Euclidean
(C = Id, standard SGLD), RMSProp, Diagonal Outer Product (DOP) and Quasi-
Diagonal Outer Product (QDOP) on the MNIST dataset. The Euclidean and
RMSProp results widely mismatch those from [LCCC16], see footnote 5.
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We compare SGLD to Dropout, a standard regularization procedure for neural
networks. For SGLD we compare the performance of using a single network set
to the posterior mean, and an ensemble of networks sampled from the trajectory
(theoretically closer to the true Bayesian posterior, but computationally costlier).

The code for the experiments can be found at https://github.
com/gmarceaucaron/natural-langevin-dynamics-for-neural-networks. We use a
feedforward ReLU network with two hidden layers of size 400, with the usual
N (0, 1/fan-in) initialization [GBC16]. Inputs are normalized to [0; 1]. Step sizes
are optimized over η ∈ {.001, .01, .1, 1} for Euclidean and η ∈ {.0001, .001, .01, .1}
for the others, with schedule η ← η/2 every 10,000 updates [LCCC16]. Minibatch
size is 100. The metric decay rate and regularizer are γt = 1/

√
t and ε = 10−4.

The prior was a Gaussian N (0, σ2) with σ2 ∈ {0.01, 0.1, 1}. The Bayesian pos-
terior ensemble is built by storing every 100-th parameter value of the trajectory
after the first 500.

Table 1 shows that SGLD with a quasi-diagonal Fisher matrix preconditioner
and Bayesian posterior ensembling outperforms other SGLD settings.

Table 1. Performance on the MNIST test set with a feedforward 400-400 architecture.
Hyperparameters were selected based on accuracy on a validation set. The methods
are SGD without regularization, Dropout, SGLD ensemble and SGLD posterior mean
(PostMean) with a Gaussian prior (σ2 = 0.1)

Method NLL (train) Accuracy (train) NLL (test) Accuracy (test)

SGD 0.0003 100.00 0.0584 98.24

Dropout 0.0006 100.00 0.0519 98.61

Ensemble, Euclidean 0.0357 99.63 0.0726 98.10

Ensemble, RMSProp 0.0415 99.47 0.0742 98.17

Ensemble, DOP 0.0292 99.69 0.0660 98.13

Ensemble, QDOP 0.0229 99.85 0.0591 98.38

PostMean, Euclidean 0.0281 99.12 0.1240 97.16

PostMean, RMSProp 0.0299 99.07 0.1134 97.21

PostMean, DOP 0.0243 99.20 0.1389 97.20

PostMean, QDOP 0.0292 99.60 0.3429 98.14

Bayesian theory favors the use of the full Bayesian posterior at test time,
rather than any single parameter value. The results here are consistent with this
viewpoint: using a single parameter set to the Bayesian posterior mean offers
much poorer performance than either Dropout or a Bayesian posterior ensemble.
(Dropout also has a Bayesian inspiration as a mixture of models [SHK+14].) This
is also consistent with the generally good performance of ensemble methods.

All other preconditioners perform worse than QDOP or Dropout. In partic-
ular, the diagonal Fisher matrix offers no advantage over RMSProp, while the
quasi-diagonal Fisher matrix does. This is consistent with [MO16] and may vin-
dicate the quasi-diagonal construction via an invariance group viewpoint.

https://github.com/gmarceaucaron/natural-langevin-dynamics-for-neural-networks
https://github.com/gmarceaucaron/natural-langevin-dynamics-for-neural-networks
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Data: Dataset D = {(x1, y1), . . . , (xN , yN )} of size N ;
probabilistic model pθ(y|x) with log-loss �(y|x) := − ln pθ(y|x);
Bayesian prior α(θ) = N (θ0, Σ0), default: θ0 = 0;
Learning rate ηt � 1. Preconditioner C (for simple SGLD: C = Id).
Result: Parameter θ whose distribution approximates the Bayesian posterior

Pr(θ | D, α). Approximation θ̄ of the Bayesian posterior mean of θ.
Initialization: θ ∼ α(θ); θ̄ ← θ0; initialize preconditioner;
while not finished do

retrieve a data sample x and corresponding target y from D;
forward x through the network, and compute loss �(y|x);
backpropagate and compute gradient of loss: g ← ∂θ�(y|x) (for a minibatch:
let g be the average, not the sum, of individual gradients);

incorporate gradient of prior: g ← g + 1
N

Σ−1
0 (θ − θ0);

update preconditioner C using current sample and gradient g;
apply preconditioner: g ← Cg;

sample preconditioned noise: ξ ∼ N (0, C) = C1/2N (0, Id);

update parameters: θ ← θ − ηt g +
√

(2ηt/N) ξ;
update posterior mean: θ̄ ← (1 − μt)θ̄ + μtθ.

end

Algorithm 1. SGLD with a generic preconditioner C. For instance C may
be Id (Euclidean SGLD), a diagonal preconditioner such as RMSProp, the
inverse of a Fisher matrix approximation...

Data: Preconditioner C = D−1/2 with D a diagonal matrix of size dim(θ); decay
rate γt; regularizer ε ≥ 0.

Initialization: D ← diag(1);
Preconditioner update: Dii ← (1 − γt)Dii + γt g2

i with gi the components of
the gradient of the current sample;

Preconditioner application: gi ← (Dii + ε)−1/2 gi;

Preconditioned noise: ξi ← (Dii + ε)−1/4N (0, 1).

Algorithm 2. RMSProp routines for SGLD, similar to [LCCC16].

Data: Preconditioner C = J−1 with J the Fisher matrix; decay rate γt;
regularizer ε ≥ 0.

Initialization: J ← diag(1);
Preconditioner update: Synthesize output ỹ ∼ pθ(ỹ|x) given current model θ
and current input x (OP variant: just use ỹ = y from the dataset);
Compute gradient of loss for ỹ: ṽ ← ∂θ�(ỹ|x);

Update Fisher matrix: J ← (1 − γt)J + γtṽṽ�;
Preconditioner application: v ← (J + εId)−1v;

Preconditioned noise: ξ ← (J + εId)−1/2N (0, Id).

Algorithm 3. Routines for SGLD with full Fisher matrix.
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Data: Symmetric positive matrix J of which only the diagonal and first row are
known; regularizer ε ≥ 0.

Result: Sparse matrix A whose non-zero entries lie only on the diagonal and
first row, and such that (A�)−1A−1 has the same diagonal and first row
as J + εId.

A ← 0; A00 ← 1√
J00+ε

(Matrix indices start at 0);

Aii ← 1√
Jii−(A00J0i)2+ε

for each index i �= 0;

A0i ← −A2
00AiiJ0i for each index i �= 0;

return A;

Algorithm 4. Quasi-diagonal Cholesky decomposition.
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Abstract. Divergences (distances) which measure the similarity respec-
tively proximity between two probability distributions have turned out to
be very useful for several different tasks in statistics, machine learning,
information theory, etc. Some prominent examples are the Kullback-
Leibler information, – for convex functions φ – the Csiszar-Ali-Silvey
φ−divergences CASD, the “classical” (i.e., unscaled) Bregman distances
and the more general scaled Bregman distances SBD of [26,27]. By means
of 3D plots we show several properties and pitfalls of the geometries of
SBDs, also for non-probability distributions; robustness of corresponding
minimum-distance-concepts will also be covered. For these investigations,
we construct a special SBD subclass which covers both the often used
power divergences (of CASD type) as well as their robustness-enhanced
extensions with non-convex non-concave φ.

Keywords: φ−divergences · Power divergences · Scaled Bregman
distances · Robustness · Minimum distance estimation

1 Introduction and Results

As exemplary current state of the art, some divergences (distances,
(dis)similarity measures, discrepancy measures) between probability distribu-
tions have been successfully used for parameter estimation, goodness-of-fit test-
ing, various different machine learning tasks, procedures in information theory,
the detection of changes, pattern recognition, etc. Amongst them, let us men-
tion exemplarily that from a (strictly) convex function φ one can construct the
φ−divergences of [1,9], as well as the classical “unscaled” Bregman distances
(see e.g. [23]) which also include the density power divergences of [3]. Some
comprehensive coverages on their statistical use can e.g. be found in [4,22].
Machine learning applications are e.g. given in [5,8,11,18,21,29–31]. Recently,
[27] (cf. also [26]) introduced the concept of scaled Bregman distances (SBD),
which cover all the above-mentioned distances as special cases; see [12,13],
[15] for some applications of SBD to simultaneous parameter estimation and
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 460–469, 2017.
https://doi.org/10.1007/978-3-319-68445-1_54



3D Insights to Some Divergences for Robust Statistics and Machine Learning 461

goodness-of-fit investigations, and [14] for utilizations in robust change point
detections. Notice also [20] for indicating some potential applications of SBD
to machine learning tasks, in connection with v−conformal divergences; a spe-
cial sub-setup of the latter was also employed by [19]. In the present paper, we
visualize some interesting properties and pitfalls of the SBD geometries induced
by the involved divergence balls. To start with, let us assume that the mod-
eled respectively observed random data take values in a state space Y equipped
with a system A of admissible events (σ−algebra). On this, let us consider
the similarity/proximity of two probability distributions P,Q described by their
probability densities y �→ p(y) ≥ 0, y �→ q(y) ≥ 0 via P [A] =

∫
A

p(y) dλ(y),
Q[A] =

∫
A

q(y) dλ(y) (A ∈ A ), where λ is a fixed – maybe nonprobability –
distribution and one has the normalizations

∫
Y p(y) dλ(y) =

∫
Y q(y) dλ(y) = 1.

The set of all such probability distributions will be denoted by M 1
λ . We also

employ the set Mλ of all general – maybe nonprobability – distributions ν of
the form ν[A] =

∫
A

n(y) dλ(y) (A ∈ A ) with density y �→ n(y) ≥ 0 satisfying∫
Y n(y) dλ(y) < ∞. For instance, if λ is the counting distribution (attributing

the value 1 to each outcome y ∈ Y ) then p(·), q(·) are (e.g. binomial) probabil-
ity mass functions and n(·) is a (e.g. unnormalized-histogram-related) general
mass function; if λ is the Lebesgue measure on Y = R, then p(·), q(·) are (e.g.
Gaussian) probability density functions and n(·) is a general (possibly unnor-
malized) density function. In such a context, one can use the general concept
of distances (divergences, (dis)similarity measures) between distributions intro-
duced by [27] (see also [15,26]):

Definition 1. Let φ : (0,∞) �→ IR be a (for the sake of this paper) strictly
convex, differentiable function, continuously extended to t = 0. Its derivative is
denoted by φ′. The Bregman distance of the two probability distributions P,Q ∈
M 1

λ scaled by the general distribution W ∈ Mλ (with density w) is defined by

0 ≤ Bφ (P,Q ||W )

=
∫

Y

[
φ
( p(y)
w(y)

) − φ
( q(y)
w(y)

) − φ′( q(y)
w(y)

) · ( p(y)
w(y)

− q(y)
w(y)

)]
dW (y) (1)

=
∫

Y

w(y) · [
φ
( p(y)
w(y)

) − φ
( q(y)
w(y)

) − φ′( q(y)
w(y)

)·( p(y)
w(y)

− q(y)
w(y)

)]
dλ(y). (2)

To guarantee the existence of the integrals in (1), (2), the zeros of p(·), q(·), w(·)
have to be combined by proper conventions. Analogously, we define the scaled
Bregman distance Bφ (μ, ν ||W ) ≥ 0 of two general distributions μ, ν ∈ Mλ sca-
led by the general distribution W ∈ Mλ, where we additionally assume φ(t) ≥ 0.

The papers [26,27] show that if φ is (say) strictly convex on [0,∞), continuous
on (0,∞) with φ(1) = 0, then for the special case p(y) > 0, q(y) = w(y) > 0
(y ∈ Y ) the scaled Bregman distance (2) becomes

Bφ (P,Q ||Q) =
∫
Y q(y) · φ

(p(y)
q(y)

)
dλ(y) =: Dφ (P,Q) , (3)

which is nothing but the well-known φ−divergence between P and Q. The lat-
ter has been first studied by [9] as well as [1]; see e.g. also [28] for pitfalls on
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φ−divergences Dφ (μ, ν) between general distributions μ, ν ∈ Mλ, and [6] for
recent applications of the latter for bootstrapping purposes. For “generator”
φ(t) = φ1(t) := t log t + 1 − t ≥ 0 (t > 0) one ends up with the Kullback-Leibler
KL divergence Dφ1 (P,Q)1. The special choice φ(t) = φ0(t) := − log t+ t−1 ≥ 0
leads to the reversed KL divergence Dφ0 (P,Q) = Dφ1 (Q,P ), and the function
φ(t) = φα(t) := tα−1

α(α−1) − t−1
α−1 ≥ 0 (α ∈ IR\{0, 1}) generates the other power

divergences Dφα
(P,Q) (cf. [16,24]), where α = 2 gives the Pearson’s chi-square

divergence and α = 1/2 the squared Hellinger distance.
So far, φ has been (strictly) convex. However, notice that scaled Bregman

distances Bφ (P,Q ||W ) can also be used to construct φ̃−divergences D
˜φ (P,Q)

with non-convex non-concave generator φ̃ (this new approach contrasts e.g. the
construction method of [7,25]). Exemplarily, let φ := φα and W := W̃β,r(P,Q)
in terms of the “locally adaptive” scaling density w(y) = w̃β,r(p(y), q(y)) ≥ 0
defined by the r-th power mean w̃β,r(u, v) := (β ur + (1 − β) vr)1/r, β ∈ [0, 1],
r ∈ R\{0}, u ≥ 0, v ≥ 0. Accordingly, for α · (α − 1) �= 0 we derive the
corresponding scaled Bregman distance

Bφα(P, Q ||˜Wβ,r(P, Q)) =
∫

Y

w̃β,r(p(y),q(y))
1−α·{p(y)α+(α−1) q(y)α−α p(y) q(y)α−1}

α·(α−1)
dλ(y)

=
∫

Y q(y) ·
(

β·
(

p(y)
q(y)

)r
+1−β

)(1−α)/r·
{(

p(y)
q(y)

)α
+α−1−α· p(y)

q(y)

}

α·(α−1)
dλ(y) =: D

˜φα,β,r
(P, Q) (4)

where the generator ˜φα,β,r(t) := φα(t) · (β tr + 1− β)(1−α)/r

= (α · (α − 1))−1 · (tα + α − 1− α · t) · (β tr + 1− β
)(1−α)/r

> 0, t > 0, (5)

can be non-convex non-concave in t; see e.g. Fig. 1(d) which shows t �→ φ̃α,β,r(t)
for α = 7.5, β = 0.05, r = 7.5. Analogously, we construct the more general
Bφα

(μ, ν || W̃β,r(μ, ν)) =: D
˜φα,β,r

(μ, ν) for general distributions μ, ν. The sub-
case β = 0, α · (α − 1) �= 0, leads to the power divergences D

˜φα,0,r
(P,Q) =

Dφα
(P,Q) where the function t �→ φ̃α,0,r(t) = φα(t) is strictly convex. We shall

see in the RAF discussion in (6) below, that β �= 0 opens the gate to enhanced
robustness properties; interesting divergence geometries can be achieved, too.

Returning to the general context, with each scaled Bregman divergence
Bφ (·, · ||W ) one can associate a divergence-ball Bφ(P, ρ) with “center” P ∈ M 1

λ

and “radius” ρ ∈]0,∞[, defined by Bφ(P, ρ) := {Q ∈ M 1
λ : Bφ (P,Q ||W ) ≤ ρ},

whereas the corresponding divergence-sphere is given by Sφ(P, ρ) := {Q ∈
M 1

λ : Bφ (P,Q ||W ) = ρ}; see e.g. [10] for a use of some divergence balls
with strictly convex generators as a constraint in financial-risk related deci-
sions. Analogously, we define the general-distribution-versions B

g
φ(μ, ρ) := {ν ∈

Mλ : Bφ (μ, ν ||W ) ≤ ρ} and S
g
φ(μ,R) := {ν ∈ Mλ : Bφ (μ, ν ||W ) = ρ}.

Of course, the “geometry/topology” induced by these divergence balls and

1 Which is equal to Dφ̌1
(P, Q) with φ̌1(t) := t log t ∈ [−e−1, ∞[, but generally

Dφ1 (μ, ν) �= Dφ̌1
(μ, ν) where the latter can be negative and thus isn’t a distance.
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spheres is quite non-obvious. In order to help building up a corresponding intu-
ition, we concretely show several effects in the following, where for the sake of
brevity and preparation for the robustness investigations below we confine our-
selves to the flexible divergence family Bφα

(P,Q || W̃β,r(P,Q)) = D
˜φα,β,r

(P,Q)
and to P := Pε,θ0 = (1 − ε)Bin(2, θ0) + ε δ2, where ε ∈]0, 1[, δy denotes
Dirac’s distribution at y (i.e. δy[A] = 1 iff y ∈ A and δy[A] = 0 else), and
Bin(2, θ0) =: P̃ is a binomial distribution with parameters n = 2 and θ0 ∈]0, 1[
(which amounts to Y = {0, 1, 2}, p̃(0) = (1 − θ0)2, p̃(1) = 2θ0 · (1 − θ0),
p̃(2) = θ20). In other words, Pε,θ0 is a binomial distribution which is conta-
minated at the state y = 2 with percentage-degree ε ∈ ]0, 1[. For the visual-
ization of the divergence spheres Sφ(Pε,θ0 , ρ), all the involved probability dis-
tributions (say) P can be – as usual – identified with the 3D column-vectors
P

�= (p(0), p(1), p(2))′ of the corresponding three components of its probabil-
ity mass function. Thus, each (p(0), p(1), p(2))′ lies in the “probability sim-
plex” Π := {(π1, π2, π3)′ ∈ R

3 : π1 ≥ 0, π2 ≥ 0, π3 ≥ 0, π1 + π2 + π3 = 1}.
Analogously, each general distribution (say) ν can be identified with the 3D
column-vector ν

�= (n(0), n(1), n(2))′ of the corresponding three components of
its mass function. Hence, each (n(0), n(1), n(2))′ is a point in the first octant
Σ := {(σ1, σ2, σ3)′ ∈ R

3 : σ1 ≥ 0, σ2 ≥ 0, σ3 ≥ 0}.
Of course, data-derived randomness can enter this context – for instance –

in the following way: for index m ∈ τ := N let the generation of the m−th data
point be represented by the random variable Ym which takes values in the state
space Y . The associated family of random variables (Ym,m ∈ τ) is supposed to
be independent and identically distributed (i.i.d.) under the probability distrib-
ution Pε,θ0 . For each concrete sample (Y1, . . . , YN ) of size N one builds the corre-
sponding (random) empirical distribution P emp

N [ · ] := 1
N ·∑N

i=1 δYi
[·] which under

the correct model converges (in distribution) to Pε,θ0 as the sample size N tends
to ∞. Notice that the 3D vector (pemp

N (0), pemp
N (1), pemp

N (2))′ of the probability-
mass-function components (where pemp

N (y) := 1
N · #

{
i ∈ {1, . . . , N} : Yi = y

}
)

moves randomly in the probability simplex Π as N increases. However, for large
N one can (approximately) identify P emp

N � Pε,θ0 which we do in the following.
Within this special context, let us exemplarily explain the following effects:

Effect 1: divergence spheres Sφ(P, ρ) can take quite different kinds of shapes,
e.g. triangles (with rounded edges), rectangles (with rounded edges), and non-
convex non-concave “blobs”; this can even appear with fixed center P (= Pε,θ0)
when only the radius ρ changes; see Fig. 1(a)–(c). As comparative preparation
for other effects below, we draw θ0 �→ Pε,θ0 as an orange curve, as well as a
dark-blue curve which represents the set C := {Bin(2, θ) : θ ∈]0, 1[} of all
binomial distributions, and in Fig. 1(a)–(c) we aim for spheres (in red) which
are fully in the green-coloured probability simplex Π (i.e., no need for cutoff on
the Π−boundaries) and “on the left of C ”. Notice that we use viewing angles
with “minimal visual distortion”. The corresponding, interestingly shaped, “non-
simplex-restricted” spheres S

g
φ(Pε,θ0 , ρ) are plotted, too (cf. Fig. 1(e)–(g)).
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Effect 2: unlike Euclidean balls, even for fixed radius ρ the divergence spheres
Sφ(P, ρ) can quite shift their shape as the center P moves in the probability space
(e.g., along the orange “contamination” curve θ0 �→ Pε,θ0); see Fig. 1(h)–(i).

Effect 3: for fixed center P , increasing the radius ρ may lead to a quite nonlinear
growth of the divergence spheres Sφ(P, ρ) (with P = Pε,θ0); see Fig. 1(j)–(l).
Notice that the principal shape remains the same (as opposed to Effect 1).

Effect 4: for an i.i.d. sample (Y1, . . . , YN ) under the probability distribu-
tion P0, the corresponding minimum-distance parameter estimator is given
by any θ̂ from the possibly multi-valued set arg minθ∈Θ Bφ (P emp

N , Qθ ||W )
where C := {Qθ ∈ M 1

λ : θ ∈ Θ} is a parametric family of probabil-
ity distributions. At the same time the (distribution of the random) size of
minθ∈Θ Bφ (P emp

N , Qθ ||W ) is an indicator for the goodness-of-fit. To visualize
some corresponding robustness-concerning geometric effects, we confine ourselves
to the above-mentioned contamination context P0 = Pε,θ0 = (1− ε)Bin(2, θ0)+
ε δ2 and C := {Bin(2, θ) : θ ∈]0, 1[}, and to the special-SBD-subfamily minimiza-
tion (cf. (4)) arg minθ∈Θ D

˜φα,β,r
(P emp

N , Qθ). In fact, for the sake of brevity we
only consider in the following the (for large sample sizes N reasonable) determin-
istic proxy T (ε) := arg minθ∈Θ D

˜φα,β,r
(Pε,θ0 , Qθ), and discuss robustness against

contamination in terms of nearness of T (ε) to θ0 even for “large” contaminations
reflected by “large” ε; furthermore, we discuss abrupt changes of ε �→ T (ε). A
formal robustness treatment is given in terms of the RAF below (cf. (6)). As
can be seen from Fig. 1(m) for α = 0.05, β = 0 (and thus, D

˜φ0.05,0,r
(·, ·) is

the classical 0.05−power divergence independently of r �= 0) and θ0 = 0.08,
the function ε �→ T (ε) is quite robust for contamination percentage-degrees
ε ∈ [0, 0.45] (i.e. T (ε) ≈ θ0), but it exhibits a sharp breakdown at ε ≈ 0.46;
this contrasts the non-robust (“uniformly much steeper” but smooth) behaviour
in the case α = 1.0, β = 0 of minimum-Kullback-Leibler-divergence estimation
which is in one-to-one correspondence with the maximum likelihood estimation.
A plot which is similar to Fig. 1(m) was first shown by [17] (see also [2]) for
the squared Hellinger distance HD Dφ0.5 (·, ·) – which in our extended frame-
work corresponds to D

˜φ0.5,0,r
(·, ·) – for the larger, non-visualizable state space

Y = {0, 1, . . . , 12} and the contamination P0 := (1 − ε)Bin(12, 1
2 ) + ε δ12

2.
Because of our low-dimensional state space, we can give further geometric
insights to such robustness effects. Indeed, Fig. 1(n) respectively (o) show those
spheres Sφ0.05(P0.45,0.08, ρmin) respectively Sφ0.05(P0.46,0.08, ρ̃min) which touch
the binomial projection set C (i.e., the dark-blue coloured curve) for the “first
time” as the radius ρ grows. The corresponding respective touching points –
which represent the resulting estimated probability distributions Bin(2, T (0.45))
respectively Bin(2, T (0.46)) – are marked as red dots on the blue curve, and
are “very far apart”. This is also consistent with Fig. 1(p) respectively Fig. 1(q)
which show the functions ]0, 1[
 θ �→ D

˜φ0.05,0,r
(P0.45,0.08, Bin(2, θ)) respectively

2 Also notice that the HD together with θ0 = 0.5 does not exhibit such an effect for
our smaller 3-element-state space, due to the lack of outliers.
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]0, 1[
 θ �→ D
˜φ0.05,0,r

(P0.46,0.08, Bin(2, θ)) where one can see the “global switch-
ing between the two local-minimum values”. Furthermore, in Fig. 1(n) the red dot
lies “robustly close” to the green dot on the dark-blue curve which represents the
uncontaminated Bin(2, θ0) to be “found out”. This contrasts the corresponding
behaviour in Fig. 1(o) where the (only 1% higher) contamination-percentage-
degree is already in the non-robust range. Additionally, with our new divergence
family we can produce similar variants with non-convex divergence spheres (see
Figs. 1(r)-(t)) resp. with smoother (non-sharp) breakdown (“smooth-rolling-over
of the red dots”, see e.g. Figs. 1(u)-(w)). Further, e.g. “cascade-type”, transition
effects are omitted for the sake of brevity.
Due to the minimization step (in our discrete setup with scalar parameter θ)

0 = − ∂
∂θ Dφ (P,Qθ) = −∑

x∈X
∂
∂v

(
v · φ

(
p(x)

v

)) ∣
∣
∣
v=qθ(x)

· ∂
∂θ qθ(x)

=:
∑

x∈X aφ

(
p(x)
qθ(x)

− 1
)

· ∂
∂θ qθ(x) , with P = P emp

N � Pε,θ0 (6)

the robustness-degree of minimum-distance estimation by φ−divergences
Dφ (·, ·) can be quantified in terms of the residual adjustment function RAF
aφ(δ) := (δ+1) ·φ′ (δ + 1)−φ (δ + 1) with Pearson residual δ := u

v −1 ∈ [−1,∞[
(cf. [2,17]; see also its generalization to density-pair adjustment functions for
general scaled Bregman distances given in [15]). More detailed, for both large
δ (reflecting outliers) and small δ (reflecting inliers) the RAF aφ(δ) should ide-
ally be closer to zero (i.e. more dampening) than that of the Kullback-Leibler
(i.e. maximum-likelihood estimation) benchmark aφ1(δ) = δ. Concerning this,
for various different (α, β, r)−constellations our new divergences D

˜φα,β,r
(P,Q)

are much more robust against outliers and inliers even than the very-well-
performing negative-exponential-divergence NED DφNED

(P,Q) of [2,17] with
φ(t) = φNED(t) := exp(1 − t) + t − 2 (t > 0); see Fig. 1(x) for an exemplary
demonstration.

Concluding remarks: By means of exemplary 3D plots we have shown some
properties and pitfalls of divergence geometries. For this, we have used one spe-
cial case of scaled Bregman distances SBD – namely power-function-type genera-
tors and power-mean-type scalings – which can be represented as φ−divergences
with possibly non-convex non-concave generator φ; classical Csiszar-Ali-Silvey-
type power divergences are covered as a subcase, too. By exploiting the full flex-
ibility of SBD – e.g. those which are not rewriteable as φ−divergence – one can
construct further interesting geometric effects. Those contrast principally with
the geometric behaviour of the balls constructed from the Bregman divergences
with “global NMO-scaling” of [19] defined (in the separable setup) by

H(P ) ·∫Y
[
φ
( p(y)

H(P )

) − φ
( q(y)

H(Q)

) − φ′( q(y)
H(Q)

)·( p(y)
H(P ) − q(y)

H(Q)

)]
dλ(y) (7)

where H(P ) := H ((p(y))y∈Y ), H(Q) = H ((q(y))y∈Y ) are real-valued “global”
functionals of the (not necessarily probability) density functions p(·), q(·),
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Fig. 1. (a)–(c): divergence spheres Sφ(Pε,θ0 , ρ) (in red) for φ = ˜φα,β,r with θ0 = 0.32,
ε = 0.44, α = 7.5, β = 0.05, r = 7.5 and different radii ρ; the center Pε,θ0 is marked

as green dot on the orange curve. (d): non-convex non-concave t �→ ˜φα,β,r(t) with
α = 7.5, β = 0.05, r = 7.5 (in blue), its first (in magenta) and second derivative (in
green). (e)–(g): the to the plots (a)-(c) corresponding S

g
φ(Pε,θ0 , ρ) (in different viewing

angles) shown as blue surface. (h)-(i): divergence spheres Sφ(Pε,θ0 , ρ) for φ = ˜φα,β,r

with ε = 0.44, α = 3.35, β = 0.65, r = −6.31, radius ρ = 0.2 and different θ0. (j)-

(l): divergence spheres Sφ(Pε,θ0 , ρ) for φ = ˜φα,β,r with θ0 = 0.02, ε = 0.44, α = 7.5,
β = 0, arbitrary r (has no effect), and different radii ρ. (m): ε �→ T (ε) for α = 0.05,
β = 0, arbitrary r (no effect) and θ0 = 0.08 (dotted line is the KL case α = 1,
β = 0); (n)-(o): corresponding “minimizing” (touching) divergence spheres (in red)
for ε = .45 resp. ε = .46; (p)-(q): corresponding θ �→ D

˜φ0.05,0,r
(P0.45,0.08, Bin(2, θ))

resp. θ �→ D
˜φ0.05,0,r

(P0.46,0.08, Bin(2, θ)); (r): ε �→ T (ε) for α = 4, β = 0.35, r = 7.5

and θ0 = 0.08; (s)-(t): corresponding “minimizing” divergence spheres for ε = .45
resp. ε = .46; (u): ε �→ T (ε) for α = 2, β = 0.35, r = 7.5 and θ0 = 0.08; (v)-(w):
corresponding “minimizing” divergence spheres for ε = .45 resp. ε = .46; (x): residual
adjustment functions of KL divergence (in black), negative-exponential divergence (in
blue), and of D

˜φα,β,r
(·, ·) (in dotted red) with α = 10, β = 0.25, r = 10. (Color figure

online)
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Fig. 1. (continued)

e.g. H(P ) :=
∫
Y h(p(y))dλ(y) for some function h. Notice the very substan-

tial difference to SBD, i.e. to the Bregman divergences with the “local SV-
scaling” of [26,27] given in (2) (even in the locally adaptive subcase w(y) =
w̃β,r(p(y), q(y))). Amongst other things, this difference is reflected by the fact
that (under some assumptions) the “NMO-scaled” Bregman divergences can be
represented as unscaled Bregman distances with possibly non-convex generator
φ (cf. [19]) whereas some “SV-scaled” Bregman divergences can e.g. be repre-
sented as Csiszar-Ali-Silvey φ−divergences (which are never unscaled Bregman
distances except for KL) with non-convex non-concave generator φ := φ̃, cf. (4).
To gain further insights, it would be illuminating to work out closer connections
and differences between these two scaling-types – under duality, reparametriza-
tion, ambient-space aspects – and to incorporate further, structurally different
examples.
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30. Tsuda, K., Rätsch, G., Warmuth, M.: Matrix exponentiated gradient updates for
on-line learning and Bregman projection. J. Mach. Learn. Res. 6, 995–1018 (2005)

31. Wu, L., Hoi, S.C.H., Jin, R., Zhu, J., Yu, N.: Learning Bregman distance func-
tions for semi-supervised clustering. IEEE Trans. Knowl. Data Eng. 24(3), 478–491
(2012)



A Stochastic Look at Geodesics on the Sphere

Marc Arnaudon1,2(B) and Jean-Claude Zambrini1,2
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Abstract. We describe a method allowing to deform stochastically the
completely integrable (deterministic) system of geodesics on the sphere
S2 in a way preserving all its symmetries.
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1 Introduction

Free diffusions on a sphere S2 are important case studies in applications, for
instance in Biology, Physics, Chemistry, Image processing etc., where they are
frequently analysed with computer simulations. However, as for most diffusions
on curved spaces, no closed form analytical expressions for their probability
densities are available for such simulations. Another way to express the kind
of difficulties one faces is to observe that one cannot define Gaussian functions
on S2.

If, instead of free diffusions on S2 we consider their deterministic counterpart,
the classical geodesic flow, a famous integrable system whose complete solution
dates back to the 19th century, the situation is much simpler. Indeed, one can
use the conservation of angular momentum and energy to foliate the phase space
(the cotangent bundle of its configuration space).

We describe here a method allowing to construct free diffusions on S2 as
stochastic deformations of the classical geodesic flow, including a probabilistic
counterpart of its conservation laws.

2 Classical Geodesics

The problem of geodesic on the sphere S2 is a classical example of completely
integrable elementary dynamical system [1].

For a unit radius sphere and using spherical coordinates (qi) = (θ, φ) ∈
]0, π[×[0, 2π] where φ is the longitude, the Lagrangian L of the system is the
scalar defined on the tangent bundle TS2 of the system by

L(θ, φ, θ̇, φ̇) = (θ̇2 + sin2 θ φ̇2) (1)
c© Springer International Publishing AG 2017
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(where θ̇ = dθ
dt etc. ...), since it coincides with ds2 = gijdqidqj , here g = (gij) =[

1 0
0 sin2 θ

]
. The Euler-Lagrange equations

d

dt

( ∂L

∂q̇i

)
− ∂L

∂qi
i = 1, 2 (2)

in these coordinates are easily solved. They describe the dynamics of the
extremals (here minimal) curves of the action functional

SL[q(·)] =
∫ Q2

Q1

L(q, q̇)dt (3)

computed, for instance, between two fixed configurations Q1 = (θ1, φ1) and
Q2 = (θ2, φ2) in the configuration space. Those equations are

θ̈ = φ̇2 sin θ cos θ, φ̈ = −2θ̇φ̇ cotg θ (4)

Defining the Hamiltonian H : T ∗S2 → R as the Legendre transform of L, we
have H = 1

2gijpipj , where pi = ∂L
∂q̇i = gij q̇

j denote the momenta, here

H(θ, φ, pθ, pφ) =
1
2
(p2θ +

1
sin2 θ

p2φ), (5)

with pθ = θ̇, pφ = sin2 θφ̇.
It is clear that the energy H is conserved during the evolution. There are three

other first integrals for this system, corresponding to the three components of
the angular momentum L. They can be expressed as differential operators of the
form Xθ

j
∂
∂θ + Xφ

j
∂

∂φ , j = 1, 2, 3, namely

L1 = sin φ
∂

∂θ
+

cos φ

tan θ

∂

∂φ

L2 = − cos φ
∂

∂θ
+

sinφ

tan θ

∂

∂φ
, L3 = − ∂

∂φ
(6)

In geometrical terms, written as Lj = (Xθ
j ,Xφ

j ), j = 1, 2, 3, they are the
three Killing vectors for S2, forming a basis for the Lie algebra of the group of
isometries SO(3) of S2. L3 corresponds to the conservation of the momentum pφ.

The integrability of this dynamical system relies on the existence of the two
first integrals H and pφ. They allow to foliate the phase space by a two-parameter
family of two-dimensional tori. Let us recall that the list of first integrals of the
system is the statement of Noether’s Theorem, according to which the invariance
of the Lagrangian L under the local flow of vector field

v(1) = Xi(q, t)
∂

∂qi
+

dXi

dt

∂

∂q̇i
(7)

associated with the group of transformations

(qi, t) → (Qi
α = qi + αXi(q, t), τα = t + αT (t))
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for α a real parameter, provides a first integral along extremals of SL of the form

d

dt
(Xipi − TH) = 0. (8)

The coefficients Xi, T must, of course, satisfy some relations between them
called “determining equations” of the symmetry group of the system [2]. For
instance, for our geodesics on S2,

T = 1,X = (Xθ,Xφ) = (0, 0) corresponds to the conservation of the energy
H, and T = 0,X = (0,−1) to the conservation of pφ In fact, the three vectors
Xj must satisfy the Killing equations in the (θ, φ) coordinates,

∇θXφ
j + ∇φXθ

j = 0, j = 1, 2, 3 (9)

where ∇· denotes the covariant derivatives.

3 Stochastic Deformation of the Geodesics on the Sphere

Many ways to construct diffusions on S2 are known. In the spirit of K. Itô [3],
we want to deform the above classical dynamical system in a way preserving the
essential of its qualitative properties.

Let us start from the backward heat equation for the Laplace-Beltrami
“Hamiltonian” operator H (without potentials). in local coordinates (qi) it can
be written ∂η

∂t = Hη, where g = det(gij) and

H = −1
2
ΔLB = − 1

2
√

det g

∂

∂qi

(√
det g gij ∂

∂qj

)
. (10)

A more revealing form in terms of the Christoffel symbols of the Riemannian
connection is

− 1
2
ΔLB = −gij

2
∂2

∂qi∂qj
+

1
2
Γ i

jk(q)gjk(q)
∂

∂qi
. (11)

Indeed, the extra first order term, of purely geometric origin, will coincide
with the drift of the simplest diffusion on our manifold, the Brownian motion;
this was observed by K. Itô, as early as 1962 [3]. In our spherical case, one finds

Γ θ
jkgjk = −cotg θ, Γφ

jkgjk = 0. (12)

Now we shall consider general diffusions zi on S2 solving SDEs of the form

dzi(τ) = (Bi − 1
2
Γ i

jkgjk)dτ + dW i(τ), τ > t (13)

for Bi an unspecified vector field, where dW i(τ) = σi
kdβk(τ) with σi

k the square

root of gij , i.e. gij = σi
kσj

k, in our case σ =
[
1 0
0 1

sin θ

]
and β is a two dimensional

Wiener process.
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Here is the stochastic deformation of the extremality condition for dynamical
trajectories in terms of the classical action SL. It will be convenient to consider
SL as a function of starting configurations q at a time t. For convenience, we
shall add a final boundary condition to Su to SL.

Let SL(q, t) be defined now by SL(q, t) = − ln η(q, t), where η(q, t) is a posi-
tive solution of the backward heat equation for a (smooth) final boundary con-
dition Su(q), u > t. Let Bi in (13) be adapted to the increasing filtration Pτ ,
bounded but otherwise arbitrary. Then

SL(q, t) ≤ Eqt{
∫ u

t

1
2
BiBi(z(τ), τ)dτ + Su(z(u))} (14)

where Eqt denotes the conditional expectation given z(t) = q. The equality holds
on the extremal diffusion on S2, of drift

Bi(q, t) =
∂iη

η
(q, t) = −∇iSL. (15)

This means, on S2, that SL minimizes the r.h.s. functional of (14) for the
Lagrangian

L =
1
2
[(

∂θη

η
)2 + sin2 θ(

∂φη

η
)2] (16)

where, manifestly, (∂θη
η ) and (∂φη

η ) plays the roles of θ̇ and φ̇ in the deterministic
definition (1).

Let us observe that after the above logarithmic change of variable, it follows
from the backward heat equation that the scalar field SL solves

− ∂SL

∂t
+

1
2
‖∇SL‖2 − 1

2
∇i∇iSL = 0, (17)

with t < u and SL(q, u) = Su(q).
This is an Hamilton-Jacobi-Bellman equation, whose relation with heat equa-

tions is well known and used in stochastic control [4]. The Laplacian term rep-
resents the collective effects of the irregular trajectories τ → zi(τ) solving (13).

A second order in time dynamical law like (4) requires the definition of the
parallel transport of our velocity vector field Bi.

In [3] Itô had already mentioned that there is some freedom of choice in this,
involving the Ricci tensor Ri

k on the manifold. One definition is known today in
Stochastic Analysis as “Damped parallel transport” [5]. Then the generator of
the diffusion zi acting on a vector field V on S2 is given by

DtV
i =

∂V i

∂t
+ Bk∇kV i +

1
2
(ΔV )i (18)

where, instead of the Laplace-Beltrami operator, one has now

ΔV i = ∇k∇kV i + Ri
kV k (19)
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When acting on scalar fields ϕ, Dt reduces to the familiar form

Dtϕ =
∂ϕ

∂t
+ Bk∇kϕ +

1
2
∇k∇kϕ (20)

When ϕ = qk, Dtϕ
k = Bk(z(t), t) = −∇kSL, so the r.h.s. Lagrangian of (14)

is really 1
2‖Dtz‖2, for ‖ · ‖ the norm induced by the metric, as it should. For the

vector field Bi, we use (17) and the integrability condition ∂
∂t∇iSL = ∇i ∂SL

∂t ,
following from the definition of SL, to obtain

DtDtz
i = 0 (21)

i.e., the stochastic deformation of both O.D.E.s (4) when z(t) = (θ(t), φ(t)) solve
Eq. (13) namely, in our case,

dθ(t) =
(∂θη

η
+

cotgθ

2
)
dt + dW θ(t), dφ(t) =

1
sin2 θ

(∂φη

η

)
dt + dWφ(t) (22)

The bonus of our approach lies in the study of the symmetries of our stochas-
tic system. The symmetry group of the heat equation, in our simple case with
constant positive curvature, is generated by differential operators of the form [6]

N̂ = Xi(q)∇i + T
∂

∂t
+ α (23)

where T and α are constants, and the Xi are three Killing vectors on (S2, g).
Besides a one dimensional Lie algebra generated by the identity, another one
corresponds to T = 1 and X = (Xθ,Xφ) = (0, 0). This provides the conservation
of energy defined here, since SL = − ln η, by h(θ(t), φ(t)) = − 1

η
∂η
∂t or, more

explicitly,

h =
1
2
gijBiBj +

1
2
gij ∂

∂qi
Bj − 1

2
Γ i

jkgjkBi (24)

Using (20), one verifies that

Dth(z(t), t) = 0 (25)

in other words, h is a martingale of the diffusion z(t) extremal of the Action func-
tional in (14). This is the stochastic deformation of the corresponding classical
statement (8) when X = (0, 0), T = 1. Analogously, our (deformed) momentum
pφ is a martingale. In these conditions, one can define a notion of integrability for
stochastic systems (not along Liouville’s way, but inspired instead by Jacobi’s
classical approach) and show that, in this sense, our stochastic problem of geo-
desics on the sphere is as integrable as its deterministic counterpart. This will
be done in [7].

To appreciate better in what sense our approach is a stochastic deformation
of the classical problem of geodesics in S2, replace our metric (gij) by �(σij) for
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σij the Riemannian metric, where � is a positive constant, and take into account
that our underlying backward heat equation now becomes

∂η

∂t
= −�

2
ΔLBη (26)

then, one verifies easily that, when � → 0, Dt → d
dt , the Lagrangian of (14)

reduces to the classical one (1) and the conditional expectation of the action
(1) disappears. The Hamilton-Jacobi-Bellman equation (17) reduces to the one
of the classical dynamical system and our martingales to its first integrals. In
this respect, observe that general (positive) final conditions for Eq. (26) may
depend as well on �. They provide analogues of Lagrangian submanifolds in the
semiclassical limit of Schrödinger equation (Cf Appendix 11 of [13]).

We understand better, now, the role of the future boundary condition Su in
(1): when Su is constant, the extremal process z(·) coincides with the Brownian
motion on S2 but, of course, in general this is not the case anymore. Stochastic
deformation on a Riemannian manifold was treated in [8]. For another approach
c.f. [9].

In spite of what was shown here, our approach can be made invariant under
time reversal, in the same sense as our underlying classical dynamical system.
The reason is that the very same stochastic system can be studied as well with
respect to a decreasing filtration and an action functional on the time interval
[s, t], with an initial boundary condition S∗

s (q). This relates to the fact that to any
classical dynamical systems like ours are associated, in fact, two Hamilton-Jacobi
equations adjoint with respect to the time parameter. The same is true after
stochastic deformation. So, a time-adjoint heat equation, with initial positive
boundary condition, is involved as well. The resulting (“Bernstein reciprocal”)
diffusions, built from these past and future boundary conditions, are invariant
under time reversal on the time interval [s, u]. C.f. [10,12].

In particular, Markovian Bernstein processes are uniquely determined from
the data of two (stictly positive) probability densities at different times s and u,
here on S2. They solve a “Schrödinger’s optimization problem”, an aspect very
reminiscent of foundational questions of Mass Transportation theory [14]. The
close relations between this theory and our method of Stochastic Deformation
have been carefully analysed in [11], where many additional references can be
found as well.
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(1976)

14. Villani, C.: Optimal Transport, Old and New. Grundlehren der mathematischen
Wissenschaften. Springer, Heidelberg (2009)



Constructing Universal, Non-asymptotic
Confidence Sets for Intrinsic Means on the Circle

Matthias Glock and Thomas Hotz(B)

Institut für Mathematik, Technische Universität Ilmenau, 98684 Ilmenau, Germany
{matthias.glock,thomas.hotz}@tu-ilmenau.de

Abstract. We construct confidence sets for the set of intrinsic means on
the circle based on i.i.d. data which guarantee coverage of the entire latter
set for finite sample sizes without any further distributional assumptions.
Simulations demonstrate its applicability even when there are multiple
intrinsic means.
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1 Introduction

We are concerned with circular statistics, i.e. with the analysis of data which
take values on the unit circle S1. Such data occur often in practice, e.g. as
measurements of wind directions in meteorology or other data with a periodic
interpretation like times of the day at which patients are admitted to some
hospital unit. Good references for circular statistics which include many more
examples are [2,9,11], amongst others.

Here, we will focus on intrinsic means which are Fréchet means with respect
to the intrinsic distance on the circle. To be specific, we will henceforth assume
that X,X1, . . . , Xn (for some sample size n ∈ IN) are independent and iden-
tically distributed random variables taking values on the (unit) circle S1. For
convenience, we will think of angular measurements and identify S1 with (−π, π],
calculating modulo 2π whenever necessary, so that we can treat X,X1, . . . , Xn

as real-valued.
Of course, the circle is not a vector space so the population (or sample)

mean cannot be defined through integration (or averaging). But, following [3]
we observe that in a Euclidean space the mean is the unique minimiser of the
expected (or summed) squared distances to the random point (or the data).
Therefore, given a metric d on S1, we accordingly define the set of Fréchet
(population) means to be

M = argmin
μ∈S1

F (μ)

where F : S1 → [0,∞) is the Fréchet functional given by

F (μ) = E d(X,μ)2

for μ ∈ S1, i.e. M is the set of minimisers of F .
c© Springer International Publishing AG 2017
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There are two popular metrics being used on S1: if one embeds S1 as the
unit circle in C, {exp(ix) : x ∈ (−π, π]}, then the extrinsic (or chordal) distance
is given by | exp(ix)− exp(iy)| for x, y ∈ (−π, π]. On the other hand, there is the
intrinsic (or arc-length) distance d which is given by d(x, y) = min{|x−y+2πk| :
k ∈ ZZ} for x, y ∈ (−π, π]. A comparison between Fréchet means on the circle
with respect to these two metrics may be found in [5].

In this article, we are concerned with Fréchet means with respect to the latter,
intrinsic distance which are called intrinsic means, and we aim to construct a
confidence set C given X1, . . . , Xn which contains the set M of intrinsic means
with probability at least 1 − α for any pre-specified α ∈ (0, 1).

The analysis of intrinsic means on the circle is not trivial; the main reason
for this is the fact that for any x ∈ S1, the squared distance to that point, S1 �
μ �→ d(x, μ)2, is everywhere continuously differentiable except at the point x∗

“opposite” x which maximises the distance to x, i.e. at the cut-locus of x given by
x∗ = x+π for x ∈ (−π, 0] and x∗ = x−π for x ∈ (0, π]. Consequently, F need not
be everywhere differentiable. However, F is differentiable at any intrinsic mean
m ∈ M with a vanishing derivative there, F ′(m) = E2(X − m) = 0 (calculated
modulo 2π), while its cut-locus m∗ carries probability measure P(X = m∗) = 0
[10], cf. also [6].

Since intrinsic means are defined as minimisers of the Fréchet functional F ,
given data X1, . . . , Xn it would be natural to consider the minimisers of the
empirical Fréchet functional F̂n : S1 → [0,∞) with

F̂n(μ) = 1
n

∑n
i=1 d(Xi, μ)2 (1)

as M-estimators, i.e. the so-called empirical Fréchet means. Since F̂n(μ) con-
verges to F (μ) almost surely (a.s.) for every μ ∈ S1, one might expect the empir-
ical means to be close to the population means, and derive asymptotic confidence
sets based on the asymptotic (for n → ∞) behaviour of the empirical means. In
fact, one can prove the following result [6,12]: if M = {0} (unique population
mean), then any measurable selection of empirical Fréchet means μ̂n converges
a.s. to 0, and if the distribution of X features a continuous Lebesgue density f

in a neighbourhood of 0∗ = π with f(π) < 1
2π then μ̂n

D→ N
(
0, EX2

(
1−2πf(π)

)2

)

while in case f(π) = 1
2π a central limit theorem with a slower rate might hold.

In order to derive asymptotic confidence sets from this central limit theorem,
one would need to ensure that M contains only a single point which imposes a
restriction on the distribution of X, and that this distribution features a continu-
ous Lebesgue density smaller than 1

2π at the cut-locus of the intrinsic mean; both
conditions would e.g. be fulfilled for distributions with a unimodal density [5].
Then, one could either somehow estimate the asymptotic variance consistently
or use a bootstrap approach to obtain asymptotic confidence sets for the unique
intrinsic (population) mean, cf. [1] where this has been developed for distribu-
tions having no mass at an entire neighbourhood of the cut-locus.

This approach based on the asymptotic distribution of the empirical Fréchet
mean has several drawbacks, one being that it guarantees only an approximate
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coverage probability of 1 − α for finite sample sizes where the quality of the
approximation is usually unknown, and another one being that the assumptions
justifying this approach are difficult to check in practice. In particular, judging
whether they are fulfilled only by looking at an empirical Fréchet mean may be
quite misleading as the following example shows.

Example 1 (equilateral triangle). Let the distribution of X give equal weight
to 3 points forming an equilateral triangle, i.e. set P

(
X = − 2

3π
)

= P(X = 0) =
P

(
X = 2

3π
)

= 1
3 , see Fig. 1(a). It is easy to see that these very points form the

set of intrinsic means, i.e. M =
{− 2

3π, 0, 2
3π

}
in this case, cf. [5].

For a large sample, however, the empirical measure will comprise 3 different
weights with large probability, so that the empirical sample mean will be unique
and close to one of the point masses, opposite of which there is no mass at all.
Therefore, it will appear as if the assumptions for the central limit theorem are
fulfilled though they are not.

0

2π
3

− 2π
3

(a)

0

(b)

Fig. 1. (a) The distribution in Example 1 gives equal weight to the three (small, red)
points which also constitute M (thick, white points); an example confidence set from
Sect. 4 based on n = 10, 000 points and 1 − α = 90% is also shown (thick, blue line)
(b) The distribution in Example 2 comprises a point mass (small, red point) and a
segment with uniform density (medium, red line) opposite such that M is an entire
(thick, white) segment; an example confidence set from Sect. 4 based on n = 10, 000
points and 1 − α = 90% is also shown (thick, blue line) (Color figure online)

We do not know of any constructions of confidence sets for intrinsic means
which are applicable if there is more than one, let alone an entire segment of
intrinsic means as in the following example taken from [6, Example 1, case 0b].

Example 2 (point mass with uniform density at the cut locus). Let
the distribution of X comprise a point mass at 0 with weight 0.6 as well as a
Lebesgue continuous part with density 1

2π χ(−π,−0.6π]∪[0.6π,π] where χ denotes the
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characteristic function of the corresponding segment, see Fig. 1(b). A straight-
forward calculation shows that the set of intrinsic means is then given by
M = [−0.4π, 0.4π], see [6].

These examples ask for confidence sets which are both universal, i.e. they
require no distributional assumptions beside the observations being i.i.d., and
non-asymptotic, i.e. they guarantee coverage of M with probability at least 1−α
for any finite sample size n ∈ IN. Such confidence sets have been constructed
for extrinsic means, i.e. Fréchet means w.r.t. the extrinsic distance on the circle,
using geometric considerations for that particular distance in [7,8].

Our construction of such confidence sets for intrinsic means utilises mass
concentration inequalities to control both the empirical Fréchet functional F̂n

(Sect. 2) and its derivative (Sect. 3). We then provide simulation results for the
two examples above (Sect. 4) before finally discussing the results obtained as well
as further research (Sect. 5).

2 Controlling the Empirical Functional

For our first step, recall that at every point μ ∈ S1, the empirical Fréchet
functional F̂n(μ) = 1

n

∑n
i=1 d(Xi, μ)2 will be close to the population Fréchet

functional F (μ) = Ed(X,μ)2 by the law of large numbers; the deviation may be
quantified by a mass concentration inequality since S1 is compact, whence the
squared distance is bounded.

In fact, since S1 is compact and the squared distance is Lipschitz, it will
suffice to bound the difference between F̂n and F at finitely many points on a
regular grid (using the union bound) in order to estimate it uniformly on the
entire circle; we then may conclude with large probability that points where F̂n

is large cannot be intrinsic means. For this, we partition (−π, π] into J ∈ IN
intervals of identical length, Ij,J =

(−π + (j − 1) 2π
J ,−π + j 2π

J

]
for j = 1, . . . , J

whose closure is given by the closed balls with centers μj,J = −π + (2j − 1)π
J

and radius δJ = π
J .

In order to control the deviation of F̂n from F at each μj,J we employ Hoeff-
ding’s inequality [4]: if U1, . . . , Un, n ∈ IN are independent random variables
taking values in the bounded interval [a, b], −∞ < a < b < ∞, then

P
(|Ūn − EŪn| ≥ t

) ≤ 2 exp
(− 2nt2

(b−a)2

)
(2)

for any t ∈ [0,∞) where Ūn = 1
n

∑n
i=1 Ui.

Now fix some μ ∈ S1. Then, since the maximal (intrinsic) distance of two
points on the circle is π and EF̂n(μ) = F (μ), we obtain

P
(|F̂n(μ) − F (μ)| ≥ t

) ≤ 2 exp
(− 2nt2

π4

)

for any t ∈ [0,∞). Moreover, for any ν, x ∈ S1

|d(x, ν)2 − d(x, μ)2| =
(
d(x, ν) + d(x, μ)

) |d(x, ν) − d(x, μ)| ≤ 2πd(ν, μ)
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by the bound on d and the reverse triangle inequality, so the mapping S1 �
ν �→ d(x, ν)2 is Lipschitz with constant 2π for any fixed x ∈ S1. This implies
that F̂n and F are also Lipschitz with that very constant, so that F̂n − F is
Lipschitz with constant 4π. Therefore, bounding |F̂n(μ) − F (μ)| for μ ∈ Ij,J by
|F̂n(μj,J ) − F (μj,J )| + 4πδJ , the union bound gives

P
(
supμ∈S1 |F̂n(μ) − F (μ)| ≥ t + 4πδJ

) ≤ 2J exp
(− 2nt2

π4

)
.

If we want the right hand side to equal β ∈ (0, 1), we have to choose t =√
−π4

2n log
(

β
2J

)
which leads to

P
(
supμ∈S1 |F̂n(μ) − F (μ)| ≥

√
−π4

2n log
(

β
2J

)
+ 4π2

J

)
≤ β .

Since by definition F (m) = infμ∈S1 F (μ) for any intrinsic mean m ∈ M , the
triangle inequality gives

sup
m∈M

F̂n(m) − inf
μ∈S1

F̂n(μ) = sup
m∈M

F̂n(m) − F (m) + inf
μ∈S1

F (μ) − inf
μ∈S1

F̂n(μ)

≤ sup
m∈M

|F̂n(m) − F (m)| + sup
μ∈S1

|F̂n(μ) − F (μ)|

≤ 2 sup
μ∈S1

|F̂n(μ) − F (μ)| .

Thus, choosing β = α
2 , we have obtained our first confidence set for the set M

of intrinsic means:

Proposition 1. Let

C1 =
{

μ ∈ S1 : F̂n(μ) < inf
ν∈S1

F̂n(ν) + Δ1

}
(3)

where the critical value Δ1 > 0 is given by

Δ1 = π2
(√

− 2
n log

(
α
4J

)
+ 8

J

)
.

Then we have P(C1 ⊇ M) ≥ 1 − α
2 .

Note that J ∈ IN may be selected in advance by numerical optimisation such
that Δ1 becomes minimal.

Even in the most favourable situation, however, when P(X = 0) = 1, we a.s.
have F (μ) = F̂n(μ) = μ2 for any μ ∈ (−π, π], so that C1 has Lebesgue measure

of the order of
( log(n log n)

n

) 1
4 for large n (for J of the order of

√
n log n) which

would give a somewhat slow rate of convergence. This is due to the fact that F
itself behaves like a quadratic function at the minimum; this will be improved
upon by considering the derivative F ′ which behaves linearly at the minimum
where it vanishes.

Notwithstanding this problem, we observe that supμ∈S1 |F̂n(μ) − F (μ)| and
Δ1 converge to zero in probability when n tends to infinity, which shows that
C1 in a certain sense converges to M in probability, thus ensuring consistency
of our approach.
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3 Controlling the Derivative

Recall that F is differentiable at any intrinsic mean while F̂n is differentiable
except at points opposite observations which occur opposite an intrinsic mean
only with probability 0 [6]. If the derivative of F̂n exists, i.e. for any μ ∈ S1 with
μ∗ /∈ {X1, . . . , Xn}, it is given by

F̂ ′
n(μ) = 2

n

∑n
i=1[Xi − μ] (4)

where representatives for the Xi, i = 1, . . . , n need to be chosen in IR such that
[Xi − μ] ∈ (−π, π]. Otherwise, i.e. in case μ∗ ∈ {X1, . . . , Xn}, we simply define
F̂ ′

n(μ) by (4).
This is utilised as follows: partitioning (−π, π] into n disjoint intervals Ik,n,

k = 1, . . . , n (using the notation from Sect. 2), let K = {k : Ik,n ∩M �= ∅} be the
set of indices of intervals which contain an intrinsic mean and choose one intrinsic
mean mk ∈ M for every k ∈ K whence M ⊆ ∪k∈KIk,n. Since 2[Xi − mk] in (4)
takes values in [−2π, 2π], we can employ Hoeffding’s inequality (2) again to get

P
(|F̂ ′

n(mk)| ≥ t
) ≤ 2 exp

(− nt2

8π2

)

for any k ∈ K where we used EF̂ ′
n(mk) = 0. The union bound readily implies

P
(∃k ∈ K : infμ∈Ik,n∩M |F̂ ′

n(μ)| ≥ t
) ≤ 2|K| exp

(− nt2

8π2

)

where |K| is the cardinality of K; choosing t > 0 such that the right hand side
becomes α

2 then gives

P
(
∃k ∈ K : infμ∈Ik,n∩M |F̂ ′

n(μ)| ≥
√

− 8π2

n log
(

α
4|K|

)) ≤ α
2 . (5)

Unfortunately, K is not known in advance, but it can be estimated using the
confidence set C1 for M constructed in Sect. 2: let K̂ = {k : Ik,n ∩ C1 �= ∅}.
Then, whenever C1 ⊇ M we have K̂ ⊇ K, in particular |K̂| ≥ |K|, and thus
M ⊆ C1 ∩ ∪k∈K̂Ik,n. So, setting

C2 = ∪k∈K̂:infµ∈Ik,n∩C1 |F̂ ′
n(μ)|<Δ2

Ik,n (6)

with the critical value
Δ2 =

√
− 8π2

n log
(

α
4|K̂|

)

—which will then be larger than the one in (5) based on K— allows to finally
construct the desired confidence set:

Proposition 2. Let X1, . . . , Xn, n ∈ IN be independent and identically distrib-
uted random points on S1, and let α ∈ (0, 1) be given. Then, the confidence
set

C = C1 ∩ C2 (7)

based on the sets C1 and C2 constructed in (3) and (6) above, respectively, is
a (1 − α)-confidence set for the set M of intrinsic means, i.e. it fulfills P(C ⊇
M) ≥ 1 − α.
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4 Simulations

The construction of the confidence interval C in (7) has been implemented within
the statistical software package R [13]. For illustration, we show results for the
two examples introduced in Sect. 1.

We simulated Example 1 for sample sizes n = 102, 103, 104, 105, 106 and 1 −
α = 90%; for each simulation it was checked whether M was covered by C, and
the Lebesgue measure of C was computed. This was independently repeated
1, 000 times for each sample size. The result of one simulation for n = 104 is
shown in Fig. 1(a). Averages (and standard deviations) of the Lebesgue measure
of C computed over the repetitions for each sample size are reported in Table 1.

Table 1. Average Lebesgue measure of C over 1, 000 repetitions for different sample
sizes (rounded, ± standard deviation) of Example 1

n Avg. Lebesgue measure (± st. dev.)

102 6.25 (±0.07)

103 2.76 (±0.01)

104 0.94 (±0.00)

105 0.32 (±0.00)

106 0.11 (±0.00)

As Example 2 leads to numerically more involved calculations, it was sim-
ulated only for sample sizes n = 102, 103, 104, 105 and 1 − α = 90%; for each
simulation it was checked whether M was covered by C, and the Lebesgue mea-
sure of C was computed. This was consequently independently repeated only
100 times for each sample size. Since M has positive Lebesgue measure, averages
(and standard deviations) of the Lebesgue measure of C \M , i.e. the confidence
sets’ excess size, computed over the repetitions for each sample size are given in
Table 2.

Table 2. Average Lebesgue measure of C \M over 100 repetitions for different sample
sizes (rounded, ± standard deviation) of Example 2

n Avg. Lebesgue measure (± st. dev.)

102 2.63 (±0.30)

103 0.92 (±0.10)

104 0.31 (±0.03)

105 0.11 (±0.01)

In both simulation we found that M was covered in all simulations which
is to be expected since our use of mass concentration inequalities results in
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quite conservative confidence sets. This, however, may to a certain extent be the
price one has to pay in order to obtain non-asymptotic, universal confidence sets
guaranteeing coverage of all of M .

Nonetheless, we observe that the (excess) size of the confidence sets decreases
roughly (up to a log-factor) like n− 1

2 so the second step in our construction
had the desired effect to obtain confidence sets of a size usually obtained for
M -estimators while the first step was necessary to ensure consistency by also
removing local minimisers of F .

5 Discussion and Outlook

We would like to stress again that for both examples asymptotic confidence sets
cannot easily be constructed since neither example features a unique intrinsic
mean; indeed, to the best of our knowledge, the given construction is the first of
a confidence set for M applicable in such situations.

Of course, the given construction may be repeated for more general compact
metric spaces as long as one can construct the necessary grids of points at which
to control the functionals; carrying this out for other interesting spaces will be
left for further research. We also note that the construction may be improved
upon by taking the “variance of the estimator” into account; this corresponds
here to making usage of the knowledge about F when controlling F̂n.
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Abstract. The recent analysis on noncommutative geometry, showing
quantization of the volume for the Riemannian manifold entering the
geometry, can support a view of quantum mechanics as arising by a
stochastic process on it. A class of stochastic processes can be devised,
arising as fractional powers of an ordinary Wiener process, that repro-
duce in a proper way a stochastic process on a noncommutative geome-
try. These processes are characterized by producing complex values and
so, the corresponding Fokker–Planck equation resembles the Schrödinger
equation. Indeed, by a direct numerical check, one can recover the kernel
of the Schrödinger equation starting by an ordinary Brownian motion.
This class of stochastic processes needs a Clifford algebra to exist.

1 Introduction

A comprehension of the link between stochastic processes and quantum mechanics
can provide a better understanding of the role of space–time at a quantum grav-
ity level. Indeed, noncommutative geometry, in the way Connes, Chamseddine and
Mukhanov provided recently [1,2], seems to fit well the view that a quantized vol-
ume yields a link at a deeper level of the connection between stochastic processes
and quantum mechanics. This is an important motivation as we could start from a
reformulation of quantum mechanics to support or drop proposals to understand
quantum gravity and the fabric of space-time.

A deep connection exists between Brownian motion and binomial coefficients.
This can be established by recovering the kernel of the heat equation from the
binomial distribution for a random walk (Pascal–Tartaglia triangle) and applying
the theorem of central limit [3]. When an even smaller step in the random walk
is taken a Wiener process is finally approached. So, it is a natural question to ask
what would be the analogous of Pascal–Tartaglia triangle in quantum mechanics
[4]. This arises naturally by noting the apparent formal similarity between the
heat equation and the Schrödinger equation. But this formal analogy is some-
what difficult to understand due to the factor i entering into the Schrödinger
equation. An answer to this question hinges on a deep problem not answered
yet: Is there a connection between quantum mechanics and stochastic processes?
The formal similarity has prompted attempts to answer as in the pioneering
work of Edward Nelson [5] and in the subsequent deep analysis by Francesco
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 486–494, 2017.
https://doi.org/10.1007/978-3-319-68445-1_57
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Guerra and his group [6]. They dubbed this reformulation of quantum mechan-
ics as “stochastic mechanics”. This approach matches directly a Wiener process
to the Schrödinger equation passing through a Bohm-like set of hydrodynamic
equations and so, it recovers all the drawbacks of Bohm formulation. This view
met severe criticisms motivating some researchers to a substantial claim that “no
classical stochastic process underlies quantum mechanics” [7], showing contradic-
tion with predictions of quantum mechanics. Subsequent attempts to partially
or fully recover this view were proposed with non–Markovian processes [8] or
repeated measurements [9–11].

In this paper we will show that a new set of stochastic processes can be
devised, starting from noncommutative geometry, that can elucidate such a con-
nection [4,12]. We show how spin is needed also in the non-relativistic limit.
These processes are characterized by the presence of a Bernoulli process yield-
ing the values 1 and i, exactly as expected in the volume quantization in non-
commutative geometry. In this latter case, it appears that a stochastic process
on a quantized manifold is well represented by a fractional power of an ordi-
nary Wiener process when this is properly defined through a technique at dis-
crete time [13]. The kernel of the Schrödinger equation is numerically evaluated
through a Brownian motion.

A similar idea to use noncommutative geometry in stochastic processes was
proposed in [14] but there it was used to fix univocally the kinetic equation of a
real stochastic process.

2 Noncommutative Geometry and Quantization
of Volume

A noncommutative geometry, given by the triple (A,H,D) being A a set of
operators belonging to a ∗-algebra, H a Hilbert space and D a Dirac operator,
implies that the volume of the corresponding Riemann manifold is quantized with
two classes of unity of volume (1, i). This has been recently proved by Connes,
Chamseddine and Mukhanov [1,2]. The two classes of volume arise from the fact
that the Dirac operator should not be limited to Majorana (neutral) states in
the Hilbert space and so, we need to associate a charge conjugation operator J
to our triple. To complete the characterization of our geometry, we recall that
the algebra of Dirac matrices implies a γ5, the chirality matrix that changes
the parity of the states. For an ordinary Riemann manifold, the algebra A is
that of functions and is commuting. Remembering that [D, a] = iγ · ∂a, and
noting that, in four dimensions, x1, x2, x3, x4 are legal functions of A, it is
[D,x1][D,x2][D,x3][D,x4] = γ1γ2γ3γ4 = −iγ5. For generally chosen functions
in A, a0, a1, a2, a3, a4, . . . ad, summing over all the possible permutations
one has a Jacobian, we can define the chirality operator

γ =
∑

P

(a0[D, a1] . . . [D, ad]). (1)
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So, in four dimension this gives

γ = −iJ · γ5 = −i · det(e)γ5 (2)

being J the Jacobian, ea
μ the vierbein for the Riemann manifold and γ5 =

iγ1γ2γ3γ4 for d = 4, a well-known result. We used the fact that det(e) =
√

g,
being gμν the metric tensor. So, the definition of the chirality operator is propor-
tional to the factor determining the volume of a Riemannian orientable manifold.

In order to see if a Riemannian manifold can be properly quantized, instead
of functions we consider operators Y belonging to an operator algebra A′. These
operators have the properties

Y 2 = κI Y † = κY. (3)

This is a set of compact operators playing the role of coordinates as in the
Heisenberg commutation relations. We have to consider two sets of them Y+

and Y− as we expect a conjugation of charge operator C to exist such that
CAC−1 = Y † for a given operator or complex conjugation for a function. This
appears naturally out of a Dirac algebra of gamma matrices. So, a natural way
to write down the operators Y is by using an algebra of Dirac matrices ΓA such
that

{ΓA, ΓB} = 2δAB , (ΓA)∗ = κΓA (4)

with A,B = 1 . . . d + 1, then
Y = ΓAY A. (5)

We will have two different set of gamma matrices for Y+ and Y− that will have
independent traces. Using the charge conjugation operator C, we can define a
new coordinate

Z = 2ECEC−1 − I (6)

where E = (1+Y+)/2+(1+ iY−)/2 will project one or the other coordinate. We
recognize that the spectrum of Z is in (1, i) given Eq. (3). Now, we generalize
our equation for the chirality operator imposing a trace on Γ s both for Y+ and
Y−, normalized to the number of components, and we will have

1
n!

〈Z[D,Z] . . . [D,Z]〉 = γ. (7)

where we have introduced the average 〈. . .〉 that, in this case, reduces to matrix
traces. In order to see the quantization of the volume, let us consider a three
dimensional manifold and the sphere S

2. From Eq. (7) one has

VM =
∫

M

1
n!

〈Z[D,Z] . . . [D,Z]〉d3x (8)

and doing the traces one has

VM =
∫

M

(
1
2
εμνεABCY A

+ ∂μY B
+ ∂νY C

+ +
1
2
εμνεABCY A

− ∂μY B
− ∂νY C

−

)
d3x. (9)
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It is easy to see that this will yield [1,2]

det(ea
μ) =

1
2
εμνεABCY A

+ ∂μY B
+ ∂νY C

+ +
1
2
εμνεABCY A

− ∂μY B
− ∂νY C

− . (10)

The coordinates Y+ and Y− belongs to unitary spheres and the Dirac opera-
tor has a discrete spectrum being evaluated on a compact manifold, so we are
covering all the manifold with a large integer number of these spheres. Thus,
the volume is quantized as this condition requires. This can be extended to four
dimensions with some more work [1,2].

Differently from an ordinary stochastic process, a Wiener process on a quan-
tized manifold will yield the projection of the spectrum (1, i) of the coordinates
on the two kinds of spheres Y+, Y−. This will depend on the way a particle moves
on the manifold taking into account that the distribution of the two kinds of uni-
tary volumes is absolutely random. One can construct a process Φ such that,
against a toss of a coin, one gets 1 or i as outcome, assuming the distribution of
the unitary volumes is uniform. This can be written

Φ =
1 + B

2
+ i

1 − B

2
(11)

with B a Bernoulli process such that B2 = I producing the value ±1 depending
on the unitary volume hit by the particle and Φ2 = B. If we want to consider
the Brownian motion of the particle on such a manifold we should expect the
outcomes to be either Y+ or Y−. So, given the set of Γ matrices and the chirality
operator γ, the most general form for a stochastic process on the manifold can
be written down (summation on A is implied)

dY = ΓA · (κA + ξAdXA · BA + ζAdt + iηAγ5) · ΦA (12)

being κA, ξA, ζA, ηA arbitrary coefficients of this linear combination. The
Bernoulli processes BA and the Wiener process dXA cannot be independent.
Rather, the sign arising from the Bernoulli process is the same of that of the cor-
responding Wiener process. This equation provides the equivalent of the Eq. (3)
for the coordinates on the manifold. This is exactly the formula we will obtain
for the fractional powers of a Wiener process. It just represents the motion on a
quantized Riemannian manifold with two kinds of quanta. Underlying quantum
mechanics there appears to be a noncommutative geometry.

3 Powers of Stochastic Processes

We consider an ordinary Wiener W process describing a Brownian motion and
define the α-th power of it. We do a proof of existence by construction [13].
A Wiener process W is computed by the cumulative sum of the increments at
discrete steps Wi − Wi−1. Similarly, we will have the process (given α ∈ R

+)
with the formal definition

dX = (dW )α. (13)
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built through the Euler–Maruyama definition of a stochastic process [15] at
discrete times obtained by the cumulative sum

Xi = Xi−1 + (Wi − Wi−1)α. (14)

as done in computing a Wiener process with α = 1. A complete proof of existence
of these processes has been shown in [13].

4 “Square Root” Formula and Fokker–Planck Equation

Using Itō calculus to express the “square root” process with more elementary
stochastic processes [16], (dW )2 = dt, dW · dt = 0, (dt)2 = 0 and (dW )α = 0 for
α > 2, we could tentatively set

dX = (dW )
1
2

?=
(

μ0 +
1

2μ0
dW · sgn(dW ) − 1

8μ3
0

dt

)
· Φ 1

2
(15)

being μ0 �= 0 an arbitrary scale factor and

Φ 1
2

=
1 − i

2
sgn(dW ) +

1 + i

2
(16)

a Bernoulli process equivalent to a coin tossing that has the property (Φ 1
2
)2 =

sgn(dW ). This process is characterized by the values 1 and i and it is like the
Brownian motion went scattering with two different kinds of small pieces of
space, each one contributing either 1 or i to the process, randomly. This is
the same process seen for the noncommutative geometry in Eq. (11). We have
introduced the process sgn(dW ) that yields just the signs of the corresponding
Wiener process. Equation (15) is unsatisfactory for a reason, taking the square
yields

(dX)2 = μ2
0sgn(dW ) + dW (17)

and the original Wiener process is not exactly recovered. We find added a process
that has the effect to shift upward the original Brownian motion while retaining
the shape. We can fix this problem by using Pauli matrices. Let us consider two
Pauli matrices σi, σk with i �= k such that {σi, σk} = 0. We can rewrite the
above identity as

I ·dX = I ·(dW )
1
2 = σi

(
μ0 +

1
2μ0

dW · sgn(dW ) − 1
8μ3

0

dt

)
·Φ 1

2
+iσkμ0·Φ 1

2
(18)

and so, (dX)2 = dW as it should, after removing the identity matrix on both
sides. This idea generalizes easily to higher dimensions using γ matrices. We see
that we have recovered a similar stochastic process as in Eq. (12). This will be
extended to four dimensions below.

Now, let us consider a more general “square root” process where we assume
also a term proportional to dt. We assume implicitly the Pauli matrices simply
removing by hand the sgn process at the end of the computation. This forces
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to take μ0 = 1/2 when the square is taken, to recover the original stochastic
process, and one has

dX(t) = [dW (t) + βdt]
1
2 =

[
1

2
+ dW (t) · sgn(dW (t)) + (−1 + βsgn(dW (t)))dt

]
Φ 1

2
(t).

(19)
From the Bernoulli process Φ 1

2
(t) we can derive

μ = −1 + i

2
+ β

1 − i

2
σ2 = 2D = − i

2
. (20)

Then, we get a double Fokker–Planck equation for a free particle, being the
distribution function ψ̂ complex valued,

∂ψ̂

∂t
=

(
−1 + i

4
+ β

1 − i

2

)
∂ψ̂

∂X
− i

4
∂2ψ̂

∂X2
. (21)

This should be expected as we have a complex stochastic process and then two
Fokker–Planck equations are needed to describe it. We have obtained an equation
strongly resembling the Schrödinger equation for a complex distribution func-
tion. We can ask at this point if we indeed are recovering quantum mechanics.
In the following section we will perform a numerical check of this hypothesis.

5 Recovering the Kernel of the Schrödinger Equation

If really the “square root” process diffuses as a solution of the Schrödinger equa-
tion we should be able to recover the corresponding solution for the kernel

ψ̂ = (4πit)− 1
2 exp

(
ix2/4t

)
(22)

sampling the square root process. To see this we note that a Wick rotation,
t → −it, turns it into a heat kernel as we get immediately

K = (4πt)− 1
2 exp

(−x2/4t
)
. (23)

A Montecarlo simulation can be easily executed extracting the square root of
a Brownian motion and, after a Wick rotation, to show that a heat kernel is
obtained. We have generated 10000 paths of Brownian motion and extracted its
square root in the way devised in Sect. 3. We have evaluated the correspond-
ing distribution after Wick rotating the results for the square root. The Wick
rotation generates real results as it should be expected and a comparison can be
performed. The result is given in Fig. 1

The quality of the fit can be evaluated being μ̂ = 0.007347 with con-
fidence interval [0.005916, 0.008778], σ̂ = 0.730221 with confidence interval
[0.729210, 0.731234] for the heat kernel while one has μ̂ = 0.000178 with confi-
dence interval [−0.002833, 0.003189] and σ̂ = 1.536228 with confidence interval
[1.534102, 1.538360] for the Schrödinger kernel. Both are centered around 0 and
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Fig. 1. Comparison between the distributions of the Brownian motion and its square
root after a Wick rotation.

there is a factor ∼ 2 between standard deviations as expected from Eq. (21).
Both the fits are exceedingly good. Having recovered the Schrödinger kernel
from Brownian motion with the proper scaling factors in mean and standard
deviation, we can conclude that we are doing quantum mechanics: The “square
root” process describes the motion of a quantum particle. Need for Pauli matri-
ces, as shown in the preceding section, implies that spin cannot be neglected.

6 Square Root and Noncommutative Geometry

We have seen that, in order to extract a sort of square root of a stochastic process,
we needed Pauli matrices or, generally speaking, a Clifford algebra. This idea
was initially put forward by Dirac to derive his relativistic equation for fermions
and the corresponding algebra was proven to exist by construction as it also
happens for Pauli matrices. The simplest and non-trivial choice is obtained, as
said above, using Pauli matrices {σk ∈ C�3(C), k = 1, 2, 3} that satisfy

σ2
i = I σiσk = −σkσi i �= k. (24)

This proves to be insufficient to go to dimensions higher than 1+1 for Brownian
motion. The more general solution is provided by a Dirac algebra of γ matrices
{γk ∈ C�1,3(C), k = 0, 1, 2, 3} such that

γ2
0 = I γ2

1 = γ2
2 = γ2

3 = −I γiγk + γkγi = 2ηik (25)

being ηik the Minkowski metric. In this way one can introduce three differ-
ent Brownian motions for each spatial coordinates and three different Bernoulli
processes for each of them. The definition is now

dE =
3∑

k=1

iγk

(
μk +

1
2μk

|dWk| − 1
8μ3

k

dt

)
· Φ

(k)
1
2

+
3∑

k=1

iγ0γkμkΦ
(k)
1
2

(26)
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It is now easy to check that

(dE)2 = I · (dW1 + dW2 + dW3). (27)

The Fokker-Planck equations have a solution with 4 components, as now the
distribution functions are Dirac spinors. These are given by

∂Ψ̂

∂t
=

3∑

k=1

∂

∂Xk

(
μkΨ̂

)
− i

4
Δ2Ψ̂ (28)

being μk = − 1+i
4 + βk

1−i
2 . This implies that, the general formula for the square

root process implies immediately spin and antimatter for quantum mechanics
that now come out naturally.

7 Conclusions

We have shown the existence of a class of stochastic processes that can support
quantum behavior. This formalism could entail a new understanding of quantum
mechanics and give serious hints on the properties of space-time for quantum
gravity. This yields a deep connection with noncommutative geometry as formu-
lated by Alain Connes through the more recent proposal of space quantization
by Connes himself, Chamseddine and Mukhanov. This quantization of volume
entails two kinds of quanta implying naturally the unity (1, i) that arises in the
“square root” of a Wiener process. Indeed, a general stochastic process for a
particle moving on such a quantized volume corresponds to our formula of the
“square root” of a stochastic process on a 4-dimensional manifold. Spin appears
to be an essential ingredient, already at a formal level, to treat such fractional
powers of Brownian motion.

Finally, it should be interesting, and rather straightforward, to generalize
this approach to a Dirac equation on a generic manifold. The idea would be to
recover also Einstein equations as a fixed point solution to the Fokker-Planck
equations as already happens in string theory. Then they would appear as a the
result of a thermodynamic system at the equilibrium based on noncommutative
geometry. This is left for further study.

I would like to thank Alfonso Farina for giving me the chance to unveil some
original points of view on this dusty corner of quantum physics.
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Abstract. Recently, a method to dynamically define a divergence func-
tion D for a given statistical manifold (M , g , T ) by means of the
Hamilton-Jacobi theory associated with a suitable Lagrangian function L

on TM has been proposed. Here we will review this construction and lay
the basis for an inverse problem where we assume the divergence func-
tion D to be known and we look for a Lagrangian function L for which
D is a complete solution of the associated Hamilton-Jacobi theory. To
apply these ideas to quantum systems, we have to replace probability
distributions with probability amplitudes.

1 Introduction

In the field of information geometry, divergence functions are ubiquitous objects.
A divergence function D is a positive semi-definite two-point function defined on
M × M, where M is the manifold underlying the statistical model (M , g , T )
under study (see [1–3]), such that D(m1 ,m2) = 0 if and only if m1 = m2.
Roughly speaking, the value D(m1 ,m2) is interpreted as a “measure of dif-
ference” between the probability distributions parametrized by m1 and m2.
The exact meaning of this difference depends on the explicit model considered.
If we imbed classical probabilities in the space of quantum systems, i.e., we
replace probabilities with probability amplitudes, it is still possible to define
divergence functions and derive metric tensors for quantum states. For instance,
when M = P(H) is the space of pure states of a quantum system with Hilbert
space H, Wootter has shown (see [21]) that a divergence function D providing
a meaningful notion of statistical distance between pure states may be intro-
duced by means of the concepts of distinguishability and statistical fluctuations
in the outcomes of measurements. It turns out that this statistical distance coin-
cides with the Riemannian geodesic distance associated with the Fubini-Study
metric on the complex projective space. On the other hand, when M = Pn is
the manifold of positive probability measure on χ = {1, ..., n}, and D is the
Kullback-Leibler divergence function (see [1–3]), then the meaning of the “dif-
ference” between m1 and m2 as measured by D is related with the asymptotic
estimation theory for an empirical probability distribution extracted from inde-
pendent samples associated with a given probability distribution (see [1]). One of
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 495–502, 2017.
https://doi.org/10.1007/978-3-319-68445-1_58
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the main features of a divergence function D is the possibility to extract from it
a metric tensor g, and a skewness tensor T on M using an algorithm involving
iterated derivatives of D and the restriction to the diagonal of M × M (see
[1–3]). Given a statistical model (M , g , T ) there is always a divergence function
whose associated tensors are precisely g and T (see [17]), and, what is more,
there is always an infinite number of such divergence functions. In the context of
classical information geometry, all statistical models share the “same” metric g,
called the Fisher-Rao metric. This metric arise naturally when we consider M
as immersed in the space P (χ) of probability distributions on the measure space
χ, and, provided some additional requirements on symmetries are satisfied, it
is essentially unique (see [3,9]). This means that, once the statistical manifold
M ⊂ P (χ) is chosen, all the admissible divergence functions must give back the
Fisher-Rao metric g. On the other hand, different admissible divergence func-
tions lead to different third order symmetric tensors T . Quite interestingly, the
metric tensor g is no longer unique in the quantum context (see [20]).

In a recent work ([10]), a dynamical approach to divergence functions has
been proposed. The main idea is to read a divergence function D, or more gen-
erally, a potential function for a given statistical model (M , g , T ), as the Hamil-
ton principal function associated with a suitably defined Lagrangian function L
on TM by means of the Hamilton-Jacobi theory (see [7,11]). From this point of
view, a divergence function D becomes a dynamical object, that is, the function
D is no more thought of as some fixed kinematical function on the double of
the manifold of the statistical model, but, rather, it becomes the Hamilton prin-
cipal function associated with a Lagrangian dynamical system on the tangent
bundle of the manifold of the statistical model. In the variational formulation
of dynamics [11], the solutions of the equations of motion are expressed as the
critical points of the action functional:

I (γ) =
∫ tfin

tin

L (γ , γ̇) dt , (1)

where γ are curves on M with fixed extreme points m(tin) = min and m(tfin) =
mfin, and L is the Lagrangian function of the system. In order to avoid tech-
nical details, we will always assume that L is a regular Lagrangian (see [18]).
The evaluation of the action functional on a critical point γc gives a two-point
function1:

S (min ,mfin) = I(γc) , (2)

which is known in the literature as the Hamilton principal function. When a given
dynamics admits of alternative Lagrangian description, it is possible to integrate
alternative Lagrangians along the same integral curves and get different potential
functions. If the determinant of the matrix of the mixed partial derivatives of S
is different from zero, then it is possible to prove (see [11]) that S is a complete

1 In general, this function depends on the additional parameters tin and tfin, however
we will always take tin = 0 and tfin = 1.
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solution of the Hamilton-Jacobi equation for the dynamics:

H

(
x ,

∂S

∂x
, t

)
+

∂S

∂t
= 0 , (3)

where H is the Hamiltonian function ([8]) associated with the Lagrangian L.
In this case, S(min ,mfin) is called a complete solution for the Hamilton-Jacobi
theory. It turns out that the existence of a complete solution S forces the dynam-
ical system associated with the Lagrangian function L to be completely inte-
grable, that is, to adimit n = dim(M) functionally independent constants of
the motion which are transversal to the fibre of TM (see [7]). The main result
of [10] is to prove that, given any statistical model (M , g , T ), the Lagrangian
functions:

Lα =
1
2
gjk(x)vjvk +

α

6
Tjkl(x)vjvkvl , (4)

labelled by the one-dimensional real parameter α, are such that their associated
Hamilton principal functions are potential functions for (M , g , T ) in the sense
that they allow to recover g and T as follows:

∂2 Sα

∂xj
fin∂xk

in

∣∣∣∣∣
xin=xfin

= −gjk(x) , (5)

∂3Sα

∂xl
in∂xk

in∂xj
fin

∣∣∣∣∣
xin=xfin

− ∂3Sα

∂xl
fin∂xk

fin∂xj
in

∣∣∣∣∣
xin=xfin

= 2αTjkl(x) . (6)

The functions Sα are not in general fair divergence functions because they are
not positive-definite. However, the analysis of [10] clearly shows that we may add
terms of at least fourth order in the velocities to Lα and the resulting Hamilton
principal function will be again a potential function for (M , g , T ). Consequently,
we could keep adding terms of higher order in the velocities so that the resulting
potential function is actually a divergence function.

In this short contribution we want to formulate an inverse problem for the
Hamilton-Jacobi theory focused on some relevant situations in information geom-
etry. Specifically, we ask the following question: Given a fixed divergence function
D on M×M generating the statistical model (M , g , T ), is it possible to find a
Lagrangian function L on TM such that D is the Hamilton principal function S
of L? If the answer is yes, then we can analyze the associated dynamical system
and its physical interpretation in the context of the adopted model. In the fol-
lowing we will review a case in which the answer exist in full generality, namely,
the case of of self-dual statistical manifolds ([3]). An interesting example of such
a manifold is given by the space of pure states of quantum mechanics which will
be briefly discussed. The possibility to extend this ideas to relevant cases going
beyond self-dual statistical manifolds will be addressed in future works.
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2 Hamilton-Jacobi, Information Geometry,
and the Inverse Problem for Potential Functions

Self-dual statistical manifolds (see [3]) are statistical models for which the sym-
metric tensor T identically vanishes, so that the only connection available is the
self-dual Levi-Civita connection ∇g associated with the metric g, and a canonical
contrast function Dd is given by:

Dd(min ,mfin) =
1
2

d2(min ,mfin) , (7)

where d2(min ,mfin) is the square of the Riemannian geodesic distance associated
with the metric g on M. In this particular case, it turns out (see [10]) that the
family Lα of Lagrangian functions given in Eq. (4) provides a solution to the
inverse problem. Indeed, when T = 0, the family of Lagrangian functions Lα

collapses to a single Lagrangian which is the metric Lagrangian Lg =
1
2
gjkvjvk.

To prove that Lg actually solves the inverse problem for Sd in the case of self-dual
manifolds, let us recall that, if the manifold M is regular enough, the square of
Riemannian geodesic distance d2(min ,mfin) is given by:

d2(min ,mfin) =
(∫ 1

0

√
gjk(γg(t)) γ̇g

j γ̇g
k dt

)2

=
(∫ 1

0

√
2Lg(γg, γ̇g) dt

)2

(8)

where γg is a geodesics for g with fixed endpoints min and mfin, and where the
square root is introduced in order to ensure the invariance of the distance func-
tion under reparametrizations of γ. Geodesics curves are precisely the projection
of the integral curves of a vector field Γ on TM which is the dynamical vector
field associated with the Lagrangian function Lg = 1

2gjk vj vk by means of the
Euler-Lagrange equations stemming from the variational principle for the action
functional (1). Now, recall that the metric Lagrangian Lg, as well as all of its
functions F (Lg) with F analytic, give rise to the same dynamical trajectories
([18]) and are all constants of the motion for this dynamics. Consequently, we
can take

√
2Lg(γg, γ̇g) out of the integral in Eq. (8) so that we are left with:

Dd(min ,mfin) =
1
2
d2(min ,mfin) = Lg(γg, γ̇g) =

=
∫ 1

0

Lg(γg , γ̇g) dt = I(γg) = S(min ,mfin) , (9)

which means that the canonical divergence function of self-dual manifolds is
actually the Hamilton principal function of the metric Lagrangian Lg associated
with the metric tensor g.

A relevant example of self-dual manifold is given by the space P(H) of pure
states of a quantum system with Hilbert space H. We are here considering prob-
ability amplitudes instead of probability distributions. For simplicity, we limit
our case to the finite-dimensional case H ∼= C

n. The metric g on P(H) is the
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so-called Fubini-Study metric (see [8]). Apart from a constant conformal factor,
g is the unique metric on P(H) which is invariant under the canonical action of
the unitary group U(n) on P(H). The manifold P(H) is a homogeneous space
for the unitary group, specifically, it is P(H) ∼= U(n)/Uρψ

, where Uρψ
is the

istropy subgroup of the non-negative Hermitean matrix ρψ associated with a
pure state ψ with respect to the action ρψ �→ U† ρψ U for which the space of
pure states is a homogeneous space of the unitary group. Note that (P(H) , g) is
a Riemannian homogeneous manifold. We may exploit the homogeneous space
structure of P(H) in order to describe the Lagrangian function associated with
the metric tensor g by means of a degenerate Lagrangian function on the tangent
bundle of the unitary group. This is particularly useful since U(n) is a Lie group,
hence it is parallelizable, and thus a pair of global dual basis {Xj} and {θj} of,
respectively, vector fields and one-forms are available. Let us consider then a
fixed positive matrix ρψ associated with a fiducial pure state ψ, and consider
the following Lagrangian:

L(g , ġ) =
1
2
Tr

([
ρψ , g−1ġ

]2)
=

1
2
Gjkθ̇j θ̇k , (10)

where Gjk is a constant matrix, and θ̇j is the velocity-like function defined on
the tangent space of every Lie group (see [16]). It is clear that L is invariant with
respect to the tangent lift of the left action of U(n) on itself and with respect to
the tangent lift of the right action of the isotropy subgroup Uρψ

. Consequently,
L is the pullback to TU(n) of a Lagrangian function L on P(H). In order to
focus on the main stream of the paper, we will not enter into a full discussion
for this dynamical system. We simply state that, using the theory of degener-
ate Lagrangians ([15]), it is possible to prove that L is the metric Lagrangian
associated with the Fubini-Study metric, and that the dynamical trajectories
of the vector field Γ associated with L project down onto the geodesics of the
Fubini-Study metric on the space of quantum pure states. Specifically, writing
ρ0 = U†

0 ρψU0, we have:

γρ0,A(t) = e−[ρψ,A]t ρ0 e[ρψ,A]t, (11)

where A is a self-adjoint matrix. The dynamical vector field on TP(H) may be
seen as a family of vector fields on P(H) labelled by the matrix parameter A.
Once we select a member of this family, that is we fix A, we are left with a
vector field on the space of pure quantum state generating the unitary evolu-
tion associated with the Hamiltonian operator H = −ı[ρψ ,A]. These evolutions
have a clear physical meaning, indeed, they represent the dynamical evolution
of an isolated quantum system with energy operator H. The Hamilton principal
function for L is the pullback of the Hamilton principal function associated with
the Lagrangian function L on TP(H). Writing ρ1 = γρ0,A(1) we have:

S(ρ0 , ρ1) =
1
2
Tr

(
[ρψ , [ρψ ,A]]2

)
= Tr (ρψ A [A , ρψ]) . (12)
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For example, let us consider a two-level quantum system, for which the most
general pure state is:

ρ =
1
2

(
I + xjσj

)
, (13)

where I is the identity matrix, the σj ’s are the Pauli matrices, and δjkxjxk = 1.
We take ρψ = 1

2 (I + σ3). In this case, the isotropy subgroup U(2)ρψ
is equal

to U(1) × U(1), and thus P(H) is a two-dimensional sphere embedded in the
three-dimensional space R

3. The tensor g reads:

g = Gnkθn ⊗ θk = θ1 ⊗ θ1 + θ2 ⊕ θ2 . (14)

A direct computation shows that the dynamical trajectories are:

ρ(t) = cos(rt)ρ0 +
sin(rt)

r
[ρψ ,A] , (15)

where, r2 = (A1)2 + (A2)2. From this it follows that:

[ρ ,A] =
1√

1 − (δjk xj
0 xk

1)2
arccos

(
δjk xj

0 xk
1

)
[ρ0 , ρ1] , (16)

and thus:
S(ρ0 , ρ1) = arccos2

(
δjk xj

0 xk
1

)
. (17)

Going back to probability distributions, let us recall a particular case in
which the inverse problem formulated here has a positive solution (see [10]).
Consider the following family of exponential distributions on R

+ parametrized
by ξ ∈ R

+ = M:
p(x , ξ) = ξ e−xξ ξ, x > 0 . (18)

The Kullback-Leibler divergence function for this model is:

DKL(ξin , ξfin) =
∫ +∞

0

p(x , ξin) ln
(
p(x , ξin)
p(x , ξfin)

)
dx = ln

(
ξin
ξfin

)
+

ξfin
ξin

−1 . (19)

A direct computation shows that DKL is the Hamilton principal function asso-
ciated with the Lagrangian function:

LKL(ξ , v) = e
v
ξ − v

ξ
− 1 . (20)

In this case, it happens that the dynamical system associated with LKL and the
dynamical system associated with the metric Lagrangian Lg of this statistical
model are the same, that is, LKL and Lg are non gauge-equivalent alternative
Lagrangians (see [18]).
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3 Conclusions

We have seen how the inverse problem for divergence functions in the context
of Hamilton-Jacobi theory has a positive answer in the case of self-dual statis-
tical manifolds. In this case, the canonical divergence function D(m1 ,m2) =
1
2d2(m1 ,m2), where d2(m1 ,m2) is the Riemannian distance, is the Hamilton
principal function associated with the metric Lagrangian Lg. In the case when
M is the space of pure states of a finite-level quantum system, the metric g is
the Fubini-study metric and we have seen how to describe the metric Lagrangian
Lg by means of a degenerate Lagrangian L on the unitary group.

In general, both in classical and quantum information geometry, some well-
known divergence functions are relative entropies (see [3–5,12,19]), hence, a
positive answer to the inverse problem for such divergence functions brings in the
possibility of defining dynamical systems associated with relative entropies, and,
in accordance with the Hamilton-Jacobi theory, this points to the possibility of
looking at relative entropies as generators of canonical transformations. A more
thorough analysis of these situations will be presented in future works.

Finally, let us comment on the possible relation of this work with the recent
developments in Souriau’s Lie group thermodynamic. In this framework, a sort
of Hessian metric, called Souriau-Fisher metric, g is defined on a manifold M by
means of a function on M, the so-called Koszul-Vinberg Characteristic function
(see [6,13]). It is not possible to compare directly our procedure with the Koszul-
Vinberg Characteristic function generating the same statistical structure since
the latter is a function defined on M and not on M × M. Moreover, one has to
generalize the Hamilton-Jacobi approach along the lines explained in [14], Sect. 6.
This generalization amounts to replace R of the extended formalism with a Lie
Group (which could be the Galilei group or Poincarè group). The nontriviality
of the second cohomology group for the Galilei group would require to work with
suitable central extensions to apply the generalized theory. In Souriau’s theory,
the so-called Euler-Poincarè equations naturally appear. These equations are
equivalent to the equations of motion of a Lagrangian system with symmetries,
however, they are defined on the product of the configuration space with the
Lie algebra of the group of symmetries of the system rather than on the tangent
bundle of the configuration space. Furthermore, they may be derived starting
from a variational principle just like Euler-Lagrange equations. Consequently,
a possible relation between Hamilton principal function for the action (1) and
the Koszul-Vinberg Characteristic function will be possible when the Hamilton-
Jacobi theory is generalized to include a Lie group G instead of R.
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Abstract. The current work generalizes the author’s previous work on
the infinite-dimensional Alpha Log-Determinant (Log-Det) divergences
and Alpha-Beta Log-Det divergences, defined on the set of positive def-
inite unitized trace class operators on a Hilbert space, to the entire
Hilbert manifold of positive definite unitized Hilbert-Schmidt operators.
This generalization is carried out via the introduction of the extended
Hilbert-Carleman determinant for unitized Hilbert-Schmidt operators,
in addition to the previously introduced extended Fredholm determi-
nant for unitized trace class operators. The resulting parametrized family
of Alpha-Beta Log-Det divergences is general and contains many diver-
gences between positive definite unitized Hilbert-Schmidt operators as
special cases, including the infinite-dimensional generalizations of the
affine-invariant Riemannian distance and symmetric Stein divergence.

1 Introduction

The current work is a continuation and generalization of the author’s previous
work [7,9], which generalizes the finite-dimensional Log-Determinant divergences
to the infinite-dimensional setting. We recall that for the convex cone Sym++(n)
of symmetric, positive definite (SPD) matrices of size n × n, n ∈ N, the Alpha-
Beta Log-Determinant (Log-Det) divergence between A,B ∈ Sym++(n) is a
parametrized family of divergences defined by (see [3])

D(α,β)(A,B) =
1

αβ
log det

[
α(AB−1)β + β(AB−1)−α

α + β

]
, α > 0, β > 0, (1)

along with the limiting cases (α > 0, β = 0), (α = 0, β > 0), and (α = 0, β = 0).
This family contains many distance-like functions on Sym++(n), including

1. The affine-invariant Riemannian distance daiE [1], corresponding to

D(0,0)(A,B) =
1
2
d2aiE(A,B) =

1
2
|| log(B−1/2AB−1/2)||2F , (2)

where log(A) denotes the principal logarithm of A and || ||F denotes the
Frobenius norm, with ||A||F =

√
tr(A∗A). This is the geodesic distance asso-

ciated with the affine-invariant Riemannian metric [1,6,10,11].
c© Springer International Publishing AG 2017
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2. The Alpha Log-Det divergences [2], corresponding to D(α,1−α)(A,B), with

D(α,1−α)(A,B) =
1

α(1 − α)
log

[
det[αA + (1 − α)B]
det(A)α det(B)1−α

]
, 0 < α < 1, (3)

D(1,0)(A,B) = tr(A−1B − I) − log det(A−1B), (4)

D(0,1)(A,B) = tr(B−1A − I) − log det(B−1A). (5)

The case α = 1/2 gives the symmetric Stein divergence (also called the Jensen-
Bregman LogDet divergence), whose square root is a metric on Sym++(n) [13],
with D(1/2,1/2)(A,B) = 4d2stein(A,B) = 4[log det(A+B

2 ) − 1
2 log det(AB)].

Previous work. In [9], we generalized the Alpha Log-Det divergences between
SPD matrices [2] to the infinite-dimensional Alpha Log-Determinant divergences
between positive definite unitized trace class operators on an infinite-dimensional
Hilbert space. This is done via the introduction of the extended Fredholm deter-
minant for unitized trace class operators, along with the corresponding general-
ization of the log-concavity of the determinant for SPD matrices to the infinite-
dimensional setting. In [7], we present a formulation for the Alpha-Beta Log-Det
divergences between positive definite unitized trace class operators, generaliz-
ing the Alpha-Beta Log-Det divergences between SPD matrices as defined by
Eq. (1).

Contributions of this work. The current work is a continuation and gen-
eralization of [7,9]. In particular, we generalize the Alpha-Beta Log-Det diver-
gences in [7] to the entire Hilbert manifold of positive definite unitized Hilbert-
Schmidt operators on an infinite-dimensional Hilbert space. This is done by the
introduction of the extended Hilbert-Carleman determinant for unitized Hilbert-
Schmidt operators, in addition to the extended Fredholm determinant for uni-
tized trace class operators employed in [7,9]. As in the finite-dimensional setting
[3] and in [7,9], the resulting family of divergences is general and admits as spe-
cial cases many metrics and distance-like functions between positive definite
unitized Hilbert-Schmidt operators, including the infinite-dimensional affine-
invariant Riemannian distance in [5]. The proofs for all theorems stated in this
paper, along with many other results, are given in the arXiv preprint [8].

2 Positive Definite Unitized Trace Class
and Hilbert-Schmidt Operators

Throughout the paper, we assume that H is a real separable Hilbert space, with
dim(H) = ∞, unless stated otherwise. Let L(H) be the Banach space of bounded
linear operators on H. Let Sym++(H) ⊂ L(H) be the set of bounded, self-
adjoint, strictly positive operators on H, that is A ∈ Sym++(H) ⇐⇒ 〈x,Ax〉 > 0
∀x ∈ H, x 
= 0. Most importantly, we consider the set P(H) ⊂ Sym++(H) of self-
adjoint, bounded, positive definite operators on H, which is defined by

A ∈ P(H) ⇐⇒ A = A∗,∃MA > 0 such that 〈x,Ax〉 ≥ MA||x||2 ∀x ∈ H.
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We use the notation A > 0 ⇐⇒ A ∈ P(H). In the following, let Cp(H) denote
the set of pth Schatten class operators on H (see e.g. [4]), under the norm || ||p,
1 ≤ p ≤ ∞, which is defined by

Cp(H) = {A ∈ L(H) : ||A||p = (tr|A|p)1/p < ∞}, (6)

where |A| = (A∗A)1/2. The cases we consider in this work are: (i) the space
C1(H) of trace class operators on H, also denoted by Tr(H), and (ii) the space
C2(H) of Hilbert-Schmidt operators on H, also denoted by HS(H).

Extended (unitized) Trace Class Operators. In [9], we define the set of
extended (or unitized) trace class operators on H to be

TrX(H) = {A + γI : A ∈ Tr(H), γ ∈ R}. (7)

The set TrX(H) becomes a Banach algebra under the extended trace class norm

||A + γI||trX
= ||A||tr + |γ| = tr|A| + |γ|.

For (A + γI) ∈ TrX(H), its extended trace is defined to be

trX(A + γI) = tr(A) + γ, with trX(I) = 1. (8)

Extended (unitized) Hilbert-Schmidt Operators. In [5], the author con-
sidered the following set of extended (unitized) Hilbert-Schmidt operators

HSX(H) = {A + γI : A ∈ HS(H), γ ∈ R}. (9)

The set HSX(H) can be equipped with the extended Hilbert-Schmidt inner prod-
uct 〈 , 〉eHS, defined by

〈A + γI,B + μI〉eHS = 〈A,B〉HS + γμ = tr(A∗B) + γμ. (10)

along with the associated extended Hilbert-Schmidt norm

||A + γI||2eHS = ||A||2HS + γ2 = tr(A∗A) + γ2, with ||I||eHS = 1. (11)

Positive Definite Unitized Trace Class and Hilbert-Schmidt Operators.
The set of positive definite unitized trace class operators PC 1(H) ⊂ TrX(H) is
defined to be the intersection

PC 1(H) = TrX(H) ∩ P(H) = {A + γI > 0 : A∗ = A,A ∈ Tr(H), γ ∈ R}. (12)

The set of positive definite unitized Hilbert-Schmidt operators PC 2(H) ⊂
HSX(H) is defined to be the intersection

PC 2(H) = HSX(H) ∩ P(H) = {A + γI > 0 : A = A∗, A ∈ HS(H), γ ∈ R}.
(13)

We remark that in [7,9], we use the notations PTr(H) and Σ(H) to denote
PC 1(H) and PC 2(H), respectively. In the following, we refer to elements of
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PC 1(H) and PC 2(H) as positive definite trace class operators and positive
definite Hilbert-Schmidt operators, respectively.

In [5], it is shown that the set PC 2(H) assumes the structure of an infinite-
dimensional Hilbert manifold and can be equipped with the following Riemannian
metric. For each P ∈ PC 2(H), on the tangent space TP (PC 2(H)) ∼= HR =
{A + γI : A = A∗, A ∈ HS(H), γ ∈ R}, we define the following inner product

〈A + γI,B + μI〉P = 〈P−1/2(A + γI)P−1/2, P−1/2(B + μI)P−1/2〉eHS.

The Riemannian metric given by 〈 , 〉P then makes PC 2(H) an infinite-
dimensional Riemannian manifold. Under this Riemannian metric, the geodesic
distance between (A + γI), (B + μI) ∈ PC 2(H) is given by

daiHS[(A + γI), (B + μI)] = || log[(B + μI)−1/2(A + γI)(B + μI)−1/2]||eHS. (14)

Aim of this work. In [9], we introduce a parametrized family of divergences,
called Log-Determinant divergences, between operators in PC 1(H). In [7], we
generalize these to the Alpha-Beta Log-Determinant divergences on PC 1(H),
which include the distance daiHS as a special case. However, these divergences
are defined specifically on PC 1(H), which is a strict subset of the set of positive
definite Hilbert-Schmidt operators PC 2(H) when dim(H) = ∞. In this work,
we generalize the divergences in [7,9] to all of PC 2(H).

3 The Extended Hilbert-Carleman Determinant

We recall that for A ∈ Tr(H), the Fredholm determinant is (see e.g. [12])

det(I + A) =
∞∏

k=1

(1 + λk), (15)

where {λk}∞
k=1 are the eigenvalues of A. To define Log-Determinant divergences

between positive definite trace class operators in PC 1(H), in [9], we generalize
the Fredholm determinant to the extended Fredholm determinant, which, for an
extended trace class operator (A + γI) ∈ TrX(H), γ 
= 0, is defined to be

detX(A + γI) = γ det
(

A

γ
+ I

)
, when dim(H) = ∞,

(we refer to [9] for the derivation leading to this definition). In the case dim(H) <
∞, we define detX(A + γI) = det(A + γI), the standard matrix determinant.

The extended Fredholm determinant is not sufficient for dealing with posi-
tive definite Hilbert-Schmidt operators in PC 2(H). In order to do so, we intro-
duce the concept of extended Hilbert-Carleman determinant. We first recall the
Hilbert-Carleman determinant for operators of the form I + A, where A is a
Hilbert-Schmidt operator. Following [12], A ∈ L(H), consider the operator

Rn(A) =

[
(I + A) exp

(
n−1∑
k=1

(−A)k

k

)]
− I. (16)
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If A ∈ Cn(H), then Rn(A) ∈ C1(H). Thus the following quantity is well-defined

detn(I + A) = det(I + Rn(A)). (17)

In particular, for n = 1, we obtain R1(A) = A and thus det1(I+A) = det(I+A).
For n = 2, we have R2(A) = (I + A) exp(−A) − I and thus

det2(I + A) = det[(I + A) exp(−A)]. (18)

This is the Hilbert-Carleman determinant of I + A. For A ∈ Tr(H) = C1(H),

det2(I + A) = det(I + A) exp(−tr(A)). (19)

The Hilbert-Carleman determinant det2 is defined for operators of the form
A + I, A ∈ HS(H), but not for operators of the form A + γI, γ > 0, γ 
= 1. In
the following, we generalize det2 to handle these operators. We first have the
following generalization of the function R2(A) = (I + A) exp(−A) − I above.

Lemma 1. Assume that (A + γI) ∈ HSX(H), γ 
= 0. Define

R2,γ(A) = (A + γI) exp(−A/γ) − γI. (20)

Then R2,γ(A) ∈ Tr(H) and hence R2,γ(A)+γI = (A+γI) exp(−A/γ) ∈ TrX(H).

In particular, for γ = 1, we have R2,1(A) = R2(A). Motivated by Lemma1
and the definition of det2, we arrive at the following generalization of det2.

Definition 1 (Extended Hilbert-Carleman determinant). For (A+γI) ∈
HSX(H), γ 
= 0, its extended Hilbert-Carleman determinant is defined to be

det2X(A + γI) = detX[R2,γ(A) + γI] = detX[(A + γI) exp(−A/γ)]. (21)

If γ = 1, then we recover the Hilbert-Carleman determinant

det2X(A + I) = det[(A + I) exp(−A)] = det2(A + I). (22)

If (A + γI) ∈ TrX(H), then

det2X(A + γI) = detX(A + γI) exp(−tr(A)/γ). (23)

4 Infinite-Dimensional Log-Determinant Divergences
Between Positive Definite Hilbert-Schmidt Operators

The following divergence definition, when α > 0, β > 0, first stated in [7], for
(A+γI), (B+μI) ∈ PC 1(H), is in fact valid for all (A+γI), (B+μI) ∈ PC 2(H).
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Definition 2 (Alpha-Beta Log-Determinant divergences between pos-
itive definite Hilbert-Schmidt operators). Assume that dim(H) = ∞. Let
α > 0, β > 0, r 
= 0 be fixed. For (A + γI), (B + μI) ∈ PC 2(H), the (α, β)-Log-
Det divergence D

(α,β)
r [(A + γI), (B + μI)] is defined to be

D(α,β)
r [(A + γI), (B + μI)]

=
1

αβ
log

[(
γ

μ

)r(δ− α
α+β )

detX

(
α(Λ + γ

μI)r(1−δ) + β(Λ + γ
μI)−rδ

α + β

)]
, (24)

where Λ + γ
μI = (B + μI)−1/2(A + γI)(B + μI)−1/2, δ = αγr

αγr+βμr . Equivalently,

D(α,β)
r [(A + γI), (B + μI)]

=
1

αβ
log

[(
γ

μ

)r(δ− α
α+β )

detX

(
α(Z + γ

μI)r(1−δ) + β(Z + γ
μI)−rδ

α + β

)]
, (25)

where Z + γ
μI = (A + γI)(B + μI)−1.

In Definition 2, the quantity D
(α,β)
r [(A+ γI), (B +μI)] is finite ∀ (A+ γI), (B +

μI) ∈ PC 2(H) by Propositions 2 and 3 in [8]. For the motivation of the factor
( γ

μ )r(δ− α
α+β ) in Eqs. (24) and (25), see Theorem 1 in [9].

Finite-Dimensional Case. For γ = μ, we have

D(α,β)
r [(A + γI), (B + γI)]

=
1

αβ
log detX

(
α((A + γI)(B + γI)−1)

rβ
α+β + β((A + γI)(B + γI)−1)− rα

α+β

α + β

)
.

For A,B ∈ Sym++(n), we recover Eq. (1) by setting r = α + β and γ = 0.

Limiting Cases. While Definition 2 is stated using the extended Fredholm
determinant detX, the limiting cases (α > 0, β = 0) and (α = 0, β > 0) both
require the concept of the extended Hilbert-Carleman determinant det2X.

Theorem 1 (Limiting case α > 0, β → 0). Let α > 0 be fixed. Assume that
r = r(β) is smooth, with r(0) = r(β = 0). Then

lim
β→0

D(α,β)
r [(A + γI), (B + μI)] =

1
α2

[(
μ

γ

)r(0)

− 1

] (
1 + r(0) log

μ

γ

)
(26)

− 1
α2

(
μ

γ

)r(0)

log det2X([(A + γI)−1(B + μI)]r(0)).
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Theorem 2 (Limiting case α → 0, β > 0). Let β > 0 be fixed. Assume that
r = r(α) is smooth, with r(0) = r(α = 0). Then

lim
α→0

D(α,β)
r [(A + γI), (B + μI)] =

1
β2

[(
γ

μ

)r(0)

− 1

] (
1 + r(0) log

γ

μ

)
(27)

− 1
β2

(
γ

μ

)r(0)

log det2X([(B + μI)−1(A + γI)]r(0)).

Motivated by Theorems 1 and 2, the following is our definition of D
(α,0)
r [(A+

γI), (B + μI)] and D
(0,β)
r [(A + γI), (B + μI)], α > 0, β > 0.

Definition 3 (Limiting cases). Let α > 0, β > 0, r 
= 0 be fixed. For (A +
γI), (B + μI) ∈ PC 2(H), D

(α,0)
r [(A + γI), (B + μI)] is defined to be

D(α,0)
r [(A + γI), (B + μI)] =

1
α2

[(
μ

γ
)r − 1](1 + r log

μ

γ
) (28)

− 1
α2

(
μ

γ
)r log det2X([(A + γI)−1(B + μI)]r).

Similarly, the divergence D
(0,β)
r [(A + γI), (B + μI)] is defined to be

D(0,β)
r [(A + γI), (B + μI)] =

1
β2

[(
γ

μ
)r − 1](1 + r log

γ

μ
) (29)

− 1
β2

(
γ

μ
)r log det2X([(B + μI)−1(A + γI)]r).

The following shows that the square affine-invariant Riemannian distance
d2aiHS, as given in Eq. (14), corresponds to the limiting case (α = 0, β = 0).

Theorem 3 (Limiting case (0, 0)). Assume that (A + γI), (B + μI) ∈
PC 2(H). Assume that r = r(α) is smooth, with r(0) = 0, r′(0) 
= 0, and
r(α) 
= 0 for α 
= 0. Then

lim
α→0

D(α,α)
r [(A + γI), (B + μI)] =

[r′(0)]2

8
d2aiHS[(A + γI), (B + μI)]. (30)

In particular, for r = 2α,

lim
α→0

D
(α,α)
2α [(A + γI), (B + μI)] =

1
2
d2aiHS[(A + γI), (B + μI)]. (31)

The divergence D
(0,0)
0 = limα→0 D

(α,α)
2α is a member of a parametrized family

of symmetric divergences on PC 2(H), as shown by the following.

Theorem 4 (Symmetric divergences). The parametrized family D
(α,α)
2α [(A+

γI), (B + μI)], α ≥ 0, is a family of symmetric divergences on PC 2(H), with
α = 0 corresponding to the infinite-dimensional affine-invariant Riemannian dis-
tance above andα = 1/2 corresponding to the infinite-dimensional symmetric Stein
divergence, which is given by 1

4D
(1/2,1/2)
1 [(A + γI), (B + μI)].
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5 Properties of the Log-Determinant Divergences

Assume in the following that (A + γI), (B + μI) ∈ PC 2(H).

Theorem 5 (Positivity).

D(α,β)
r [(A + γI), (B + μI)] ≥ 0, (32)

D(α,β)
r [(A + γI), (B + μI)] = 0 ⇐⇒ A = B, γ = μ. (33)

Theorem 6 (Dual symmetry).

D(β,α)
r [(B + μI), (A + γI)] = D(α,β)

r [(A + γI), (B + μI)]. (34)

In particular, for β = α, we have

D(α,α)
r [(B + μI), (A + γI)] = D(α,α)

r [(A + γI), (B + μI)]. (35)

Theorem 7 (Dual invariance under inversion).

D(α,β)
r [(A + γI)−1, (B + μI)−1] = D

(α,β)
−r [(A + γI), (B + μI)] (36)

Theorem 8 (Affine invariance). For any (A+γI), (B+μI) ∈ PC 2(H) and
any invertible (C + νI) ∈ HSX(H), ν 
= 0,

D(α,β)
r [(C + νI)(A + γI)(C + νI)∗, (C + νI)(B + μI)(C + νI)∗]

= D(α,β)
r [(A + γI), (B + μI)]. (37)

Theorem 9 (Invariance under unitary transformations). For any (A +
γI), (B + μI) ∈ PC 2(H) and any C ∈ L(H), with CC∗ = C∗C = I,

D(α,β)
r [C(A + γI)C∗, C(B + μI)C∗] = D(α,β)

r [(A + γI), (B + μI)]. (38)
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Abstract. Ordinary Bregman divergences (distances) OBD are widely
used in statistics, machine learning, and information theory (see e.g.
[5,18]; [4,6,7,14–16,22,23,25]). They can be flexibilized in various differ-
ent ways. For instance, there are the Scaled Bregman divergences SBD of
Stummer [20] and Stummer and Vajda [21] which contain both the OBDs
as well the Csiszar-Ali-Silvey φ−divergences as special cases. On the
other hand, the OBDs are subsumed by the Total Bregman divergences
of Liu et al. [12,13], Vemuri et al. [24] and the more general Conformal
Divergences COD of Nock et al. [17]. The latter authors also indicated
the possibility to combine the concepts of SBD and COD, under the
name “Conformal Scaled Bregman divergences” CSBD. In this paper,
we introduce some new divergences between (non-)probability distribu-
tions which particularly cover the corresponding OBD, SBD, COD and
CSBD (for separable situations) as special cases. Non-convex generators
are employed, too. Moreover, for the case of i.i.d. sampling we derive the
asymptotics of a useful new-divergence-based test statistics.

Keywords: Bregman divergences (distances) · Total Bregman diver-
gences · Conformal divergences · Asymptotics of goodness-of-fit diver-
gence

1 Introduction and Results

Let us assume that the modeled respectively observed random data take val-
ues in a state space X (with at least two distinct values), equipped with a
system A of admissible events (σ−algebra). On this, we want to quantify the
divergence (distance, dissimilarity, proximity) D(P,Q) between two probabil-
ity distributions P , Q1. Since the ultimate purposes of a (divergence-based)

1 our concept can be analogously worked out for non-probability distributions (non-
negative measures) P, Q.

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 514–522, 2017.
https://doi.org/10.1007/978-3-319-68445-1_60
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statistical inference or machine learning task may vary from case to case, it
is of fundamental importance to have at hand a flexible, far-reaching toolbox
D := {Dφ,M1,M2,M3(P,Q) : φ ∈ Φ,M1,M2,M3 ∈ M } of divergences which
allows for goal-oriented situation-based applicability; in the following, we present
such a new toolbox, where the flexibility is controlled by various different choices
of a “generator” φ ∈ Φ, and scalings M1,M2,M3 ∈ M . In order to achieve this
goal, we use the following ingredients: (i) for the class F of all (measurable) func-
tions from Y = (0,∞) to R := R∪{∞}∪{−∞} and for fixed subclass U ⊂ F ,
the divergence-generator family Φ = ΦU is supposed to consist of all functions
φ ∈ F which are U −convex and for which the strict U −subdifferential ∂U φ|y0

is non-empty for all y0 ∈ Y . Typically, the family U contains (“approximat-
ing”) functions which are “less complicated” than φ. Recall that (see e.g. [19])
a function u : Y �→ R is called a strict U −subgradient of φ at a point y0 ∈ Y ,
if u ∈ U and φ(y) − φ(y0) ≥ u(y) − u(y0) for all y ∈ Y and the last inequality
is strict (i.e., >) for all y 	= y0; the set of all strict U −subgradients of φ at a
point y0 ∈ Y is called strict U −subdifferential of φ at y0 ∈ Y , and is denoted
by ∂U φ|y0 . In case of ∂U φ|y0 	= ∅ for all y0 ∈ Y , a function φ is characterized
to be U −convex if

φ(y)=max{u(y)+c : u ∈ U , c ∈ R, u(z)+c ≤ φ(z) for all z ∈ Y } for all y ∈ Y , (1)

and if furthermore the class U is invariant under addition of constants (i.e. if
U + const := {u+ c : u ∈ U , c ∈ R} = U ), then (1) can be further simplified to

φ(y) = max{u(y) : u ∈ U and u(z) ≤ φ(z) for all z ∈ Y } for all y ∈ Y

(“curved lower envelope” at y). The most prominent special case is the class
U = Ual of all affine-linear functions for which the divergence-generator family
Φ = ΦUal

is the class of all “usual” strictly convex lower semicontinuous functions
on (0,∞). (ii) As a second group of ingredients, the two probability distributions
P,Q are supposed to be described by their probability densities x �→ p(x) ≥ 0,
x �→ q(x) ≥ 0 via P [A] =

∫
A

p(x) dλ(x), Q[A] =
∫

A
q(x) dλ(x) (A ∈ A ), where

λ is a fixed – maybe nonprobability2 – distribution and one has the normal-
izations

∫
X p(x) dλ(x) =

∫
X q(x) dλ(x) = 1. The set of all such probability

distributions will be denoted by M 1
λ . We also employ the set Mλ of all general

– maybe nonprobability – distributions M of the form M [A] =
∫

A
m(x) dλ(x)

(A ∈ A ) with density x �→ m(x) ≥ 0. For instance, in the discrete setup where
X = Xcount has countably many elements and λ := λcount is the counting mea-
sure (i.e., λcount[{x}] = 1 for all x ∈ Xcount) then p(·), q(·) are (e.g. binomial)
probability mass functions and m(·) is a (e.g. unnormalized-histogram-related)
general mass function. If λ is the Lebesgue measure on X = R, then p(·), q(·)
are (e.g. Gaussian) probability density functions and m(·) is a general (possi-
bly unnormalized) density function. Within such a context, we introduce the
following framework of statistical distances:

2 sigma-finite.
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Definition 1. Let φ ∈ ΦU . Then the divergence (distance) of P,Q ∈ M 1
λ scaled

by M1,M2 ∈ Mλ and aggregated by M3 ∈ Mλ is defined by3

0 ≤ Dφ,M1,M2,M3 (P, Q)

:=

∫
X

[
inf

u∈∂U φ
∣∣ q(x)

m2(x)

(
φ
(

p(x)
m1(x)

)
− u

(
p(x)

m1(x)

)
− φ

(
q(x)

m2(x)

)
+ u

(
q(x)

m2(x)

)) ]
m3(x)dλ(x). (2)

To guarantee the existence of the integrals in (2) (with possibly infinite values),
the zeros of p, q,m1,m2,m3 have to be combined by proper conventions (taking
into account the limit of φ(y) at y = 0); the full details will appear elsewhere.

Notice that Dφ,M1,M2,M3(P,Q) ≥ 0, with equality iff p(x) = m1(x)
m2(x)

· q(x) for
all x (in case of absence of zeros). For the special case of the discrete setup
(Xcount, λcount), (2) becomes

0 ≤ Dφ,M1,M2,M3(P,Q)

:=
∑

x∈X

[
inf

u∈∂U φ
∣
∣ q(x)

m2(x)

(
φ
(

p(x)
m1(x)

)
−u

(
p(x)

m1(x)

)
−φ

(
q(x)

m2(x)

)
+u

(
q(x)

m2(x)

))]
m3(x).

In the following, we illuminate several special cases, in a “structured” manner:
(I) Let φ̃ be from the class Φ := ΦC1 ⊂ ΦUal

of functions φ̃ : (0,∞) �→ R which
are continuously differentiable with derivative φ̃′, strictly convex, continuously
extended to y = 0, and (say) satisfy φ̃(1) = 0. Moreover, let h : R �→ R be a
function which is strictly increasing on the range Rφ̃ of φ̃ and which satisfies
h(0) = 0 as well as h(z) < infs∈R

φ̃
h(s) for all z /∈ Rφ̃. For generator φ(y) :=

h(φ̃(y)) we choose U = Uh := {h(a + b · y) : a ∈ R, b ∈ R, y ∈ [0,∞)} to obtain

0 ≤ Dφ,M1,M2,M3(P,Q)

:=
∫

X

[
φ
(

p(x)
m1(x)

)
−h

(
φ̃
(

p(x)
m1(x)

)
+φ̃′

(
q(x)

m2(x)

)
·
(

p(x)
m1(x)

− q(x)
m2(x)

))]
m3(x)dλ(x). (3)

As a first example, take φ̃(y) := (y − 1)2/2 (y ≥ 0) with Rφ̃ = [0,∞) and

h(z) := (z−1)3+1 (z ∈ R). The generator φ(y) := h(φ̃(y)) = (0.5·y2−y−0.5)3+1
is a degree-6 polynomial which is neither convex nor concave in the classical
sense, and uy0(y) := h(φ̃(y0)+φ̃′(y0)·(y−y0)) = (y ·y0−y−0.5·(y0)2−0.5)3+1 ∈
Uh is a degree-3 polynomial being a strict Uh−subgradient of φ at y0 ≥ 0. As a
second example, let φ̃ ∈ ΦC1 have continuous second derivative and h be twice
continuously differentiable and strictly convex on Rφ̃ with h′(0) = 1 (in addition

to the above assumptions). Then, φ(y) := h(φ̃(y)) is in ΦC1 having strictly larger
curvature than φ̃ (except at y = 1). Especially, for h(z) := exp(z)−1 (z ∈ R) the
generator φ is basically strictly log-convex and the divergence in (3) becomes
∫

X

[
exp
(
φ̃
( p(x)

m1(x)

))− exp
(
φ̃
( q(x)

m2(x)

)) · exp
(
φ̃′( q(x)

m2(x)

) ·
(

p(x)
m1(x)

− q(x)
m2(x)

)) ]
dλ(x)

1/m3(x)
. (4)

3 in (2), we can also extend [. . .] to G([. . .]) for some nonnegative scalar function G
satisfying G(z) = 0 iff z = 0.
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(II) If φ itself is in the subclass Φ := ΦC1 ⊂ ΦUal
we obtain from (2)

0 ≤ Dφ,M1,M2,M3(P,Q)

=
∫

X

[
φ

(
p(x)

m1(x)

)
− φ

(
q(x)

m2(x)

)
− φ′

(
q(x)

m2(x)

)
·
(

p(x)
m1(x)

− q(x)
m2(x)

)]
m3(x)dλ(x). (5)

In contrast, if φ has a non-differentiable “cusp” at y0 = q(x)
m2(x)

, then one has to

take the smaller of the deviations (at y = p(x)
m1(x)

) from the right-hand respectively
left-hand tangent line at y0. Notice that in (5) one gets Dφ,M1,M2,M3(P,Q) =
Dφ̃,M1,M2,M3

(P,Q) for any φ̃(y) := φ(y)+c1+c2 ·y (y ∈ (0,∞)) with c1, c2 ∈ R.

In the subcase φ(y) := exp(φ̃(y)) − 1 of (I), the divergence in (5) becomes
∫

X

[
exp

(
φ̃
( p(x)

m1(x)

))−exp
(
φ̃
( q(x)

m2(x)

))·
(
1+φ̃′

(
q(x)

m2(x)

)
·
(

p(x)
m1(x)

− q(x)
m2(x)

))]
dλ(x)

1/m3(x)

which is larger than (4) which uses the additional information of log-convexity.
This holds analogously for the more general h leading to larger curvature.

(III) By further specializing φ ∈ ΦC1 , m1(x) = m2(x) =: m�(x), m3(x) =
m�(x) · H

(
(mg(x))x∈X

)
for some (measurable) function mg : X �→ [0,∞) and

some strictly positive scalar functional H thereupon, we deduce from (5)

0 ≤ Bφ,Mg ,H (P, Q | M�) := Dφ,M1,M2,M3 (P, Q) = H
(
(mg(x))x∈X

) ·
∫
X

[
φ
(

p(x)
m�(x)

)

−φ

(
q(x)

m�(x)

)
− φ′

(
q(x)

m�(x)

)
·
(

p(x)

m�(x)
− q(x)

m�(x)

)]
m�(x) dλ(x). (6)

The term H
(
(mg(x))x∈X

)
can be viewed as a “global steepness tun-

ing” multiplier of the generator φ, in the sense of Bφ,Mg,H (P,Q |M�) =
Bc·φ,Mg, (P,Q |M�) where 1 denotes the functional with constant value 1. This
becomes non-trivial for the subcase where the “global” density mg depends on
the probability distributions P ,Q of which we want to quantify the distance, e.g.
if Mg = Wg(P,Q) in the sense of mg(x) = wg(p(x), q(x)) ≥ 0 for some (measur-
able) “global scale-connector” wg : [0,∞)×[0,∞) �→ [0,∞] between the densities
p(x) and q(x). Analogously, one can also use “local” scaling distributions of the
form M� = W�(P,Q) in the sense that m�(x) = w�(p(x), q(x)) ≥ 0 (λ−a.a.
x ∈ X ) for some “local scale-connector” w� : [0,∞) × [0,∞) �→ [0,∞] between
the densities p(x) and q(x) (where w� is strictly positive on (0,∞) × (0,∞)).
Accordingly, (6) turns into

Bφ,Mg,H(P,Q |M�) = Bφ,Wg(P,Q),H(P,Q |W�(P,Q))

= H
(
(wg(p(x), q(x)))x∈X

) · ∫
X

[
φ
(

p(x)
w�(p(x),q(x))

)
− φ

(
q(x)

w�(p(x),q(x))

)
−

φ′
(

q(x)
w�(p(x),q(x))

)
·
(

p(x)
w�(p(x),q(x))

− q(x)
w�(p(x),q(x))

) ]
w�(p(x), q(x)) dλ(x). (7)
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In the discrete setup (Xcount, λcount), (7) leads to

Bφ,Mg,H (P,Q |M�) = Bφ,Wg(P,Q),H (P,Q |W�(P,Q))

= H
(
(wg(p(x), q(x)))x∈X

) · ∑
x∈X

[
φ
(

p(x)
w�(p(x),q(x))

)
− φ

(
q(x)

w�(p(x),q(x))

)
−

φ′
(

q(x)
w�(p(x),q(x))

)
·
(

p(x)
w�(p(x),q(x))

− q(x)
w�(p(x),q(x))

) ]
· w�(p(x), q(x)). (8)

Returning to the general setup, from (7) we can extract the following well-known,
widely used distances as special subcases of our universal framework:

(IIIa) Ordinary Bregman divergences OBD between probability distributions
(see e.g. Pardo and Vajda [18]):

∫
X [φ(p(x)) − φ(q(x)) − φ′(q(x)) · (p(x) − q(x))] dλ(x)

= Bφ, , (P,Q | I) = Bφ,Mg,H (P,Q |M�)

where Mg = I, M� = I means mg(x) = 1, m�(x) = 1 for all x.

(IIIb) Csiszar-Ali-Silvey φ−divergences CASD (cf. Csiszar [8], Ali and
Silvey [3]):

∫
X

[
q(x) · φ

(
p(x)
q(x)

)]
dλ(x) = Bφ, , (P,Q |Q) .

This includes in particular the Kullback-Leibler information divergence and
Pearson’s chisquare divergence (see Sect. 2 for explicit formulas).

(IIIc) Scaled Bregman divergences SBD (cf. Stummer [20], Stummer and
Vajda [21]):

∫

X

[

φ
( p(x)
m�(x)

) − φ
( q(x)
m�(x)

) − φ′( q(x)
m�(x)

)·
(

p(x)
m�(x)

− q(x)
m�(x)

)]

m�(x) dλ(x)

= Bφ, , (P,Q |M�).

The sub-setup m�(x) = w�(p(x), q(x)) ≥ 0 was used in Kißlinger and Stummer
[11] for comprehensive investigations on robustness; see also [9,10].

(IIId) Total Bregman divergences (cf. Liu et al. [12],[13], Vemuri et al. [24]):

1√
1+
∫
X

(φ′(q(x)))2dλ(x)
· ∫

X [φ(p(x)) − φ(q(x)) − φ′(q(x)) · (p(x) − q(x))] dλ(x)

= Bφ,Mto
g ,Hto (P,Q | I)

where M to
g := W to

g (P,Q) in the sense of mto
g (x) := wto

g (p(x), q(x)) := (φ′(q(x)))2,
and Hto

(
(h(x))x∈X

)
:= 1√

1+
∫
X

h(x) dλ(x)
. For example, for the special case of

the discrete setup (Xfin, λcount) where X = Xfin has only finitely (rather than
countably) many elements, Liu et al. [12],[13], Vemuri et al. [24] also deal with
non-probability vectors and non-additive aggregations and show that their total
Bregman divergences have the advantage to be invariant against certain trans-
formations, e.g. those from the special linear group (matrices whose determinant
is equal to 1, for instance rotations).
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(IIIe) Conformal divergences:

H
(
(wg(q(x)))x∈X

) · ∫
X [φ(p(x)) − φ(q(x)) − φ′(q(x)) · (p(x) − q(x))] dλ(x)

= Bφ,Wg(Q),H (P,Q | I) . (9)

For the special case of the finite discrete setup (Xfin, λcount), (9) reduces to the
conformal Bregman divergences of Nock et al. [17]; within this (Xfin, λcount)
they also consider non-probability vectors and non-additive aggregations.

(IIIf) Scaled conformal divergences:

H

((
wg

(
q(x)

m�(x)

))

x∈X

)

· ∫
X

[
φ
(

p(x)
m�(x)

)
− φ

(
q(x)

m�(x)

)

− φ′
(

q(x)
m�(x)

)
·
(

p(x)
m�(x)

− q(x)
m�(x)

) ]
m�(x) dλ(x) = Bφ,Wg(Q/M�),H(P,Q |M�) . (10)

In the special finite discrete setup (Xfin, λcount), (10) leads to the scaled con-
formal Bregman divergences indicated in Nock et al. [17]; within (Xfin, λcount)
they also employ non-probability vectors and non-additive aggregations.

(IIIg) Generalized Burbea-Rao divergences with β ∈ (0, 1):

H
(
(mg(x))x∈X

) · ∫
X

[
β · φ(p(x)) + (1 − β) · φ(q(x))

−φ(βp(x) + (1 − β)q(x))
]
dλ(x) = Bφ2,Mg,H

(
P,Q |M (β,φ)

�

)

where φ2(y) := (y−1)2/2 and M
(β,φ)
� =W

(β,φ)
� (P,Q) in the sense that m

(β,φ)
� (x)

= w
(β,φ)
� (p(x), q(x)) with w

(β,φ)
� (u, v) := (u−v)2

2·(β·φ(u)+(1−β)·φ(v)−φ(βu+(1−β)v)) . In
analogy with the considerations in (IIIe) above, one may call the special case
Bφ2,Wg(Q),H

(
P,Q |M (β,φ)

�

)
a conformal Burbea-Rao divergence.

To end up Sect. 1, let us mention that there is a well-known interplay between the
geometry of parameters for exponential families and divergences, in the setups
(IIIa)-(IIIe) (see e.g. [2],[4],[21],[9],[1],[17]). To gain further insights, it would be
illuminating to extend this to the context of Definition 1.

2 General Asymptotic Results for the Finite Discrete
Case

In this section, we deal with the above-mentioned setup (8) and assume addi-
tionally that the function φ ∈ ΦC1 is thrice continuously differentiable on
(0,∞], as well as that all three functions w�(u, v), w1(u, v) := ∂w�

∂u (u, v) and
w11(u, v) := ∂2w�

∂u2 (u, v) are continuous in all (u, v) of some (maybe tiny) neigh-
bourhood of the diagonal {(t, t) : t ∈ (0, 1)} (so that the behaviour for u ≈ v
is technically appropriate). In such a setup, we consider the following context:
for i ∈ N let the observation of the i−th data point be represented by the ran-
dom variable Xi which takes values in some finite space X := {x1, . . . , xs}
which has s := |X | ≥ 2 outcomes and thus, we choose the counting dis-
tribution λ := λcount as reference distribution (i.e., λcount[{xk}] = 1 for all
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k). Accordingly, let X1, . . . , XN represent a random sample of independent
and identically distributed observations generated from an unknown true dis-
tribution Pθtrue

which is supposed to be a member of a parametric family
PΘ := {Pθ ∈ M 1

λ : θ ∈ Θ} of hypothetical, potential candidate distributions
with probability mass function pθ. Here, Θ ⊂ R

� is a 
−dimensional parameter
set. Moreover, we denote by P := P emp

N := 1
N · ∑N

i=1 δXi
[·] the empirical dis-

tribution for which the probability mass function pemp
N consists of the relative

frequencies p(x) = pemp
N (x) = 1

N · #{i ∈ {1, . . . , N} : Xi = x} (i.e. the “his-
togram entries”). If the sample size N tends to infinity, it is intuitively plausible
that the divergence (cf. (8))

0 ≤ T φ
N (P emp

N , Pθ)

2N
:= Bφ,Wg(P

emp
N
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)
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N (x), pθ(x))

)
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)
·
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)
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)
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′
(

pθ(x)
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)
·
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− pθ(x)
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)]
· w�(p
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N (x), pθ(x))

=: H
((

wg(p
emp
N (x), pθ(x))

)
x∈X

)
· ζN =: ΥN · ζN (11)

between the data-derived empirical distribution P emp
N and the candidate model

Pθ converges to zero, provided that we have found the correct model in the
sense that Pθ is equal to the true data generating distribution Pθtrue

, and that
H

(
(wg(p

emp
N (x), pθ(x)))x∈X

)
converges a.s. to a constant aθ > 0. In the same

line of argumentation, Bφ,Wg(P
emp
N ,Pθ),H(P emp

N , Pθ |W�(P
emp
N , Pθ)) becomes close

to zero if Pθ is close to Pθtrue
. Notice that (say, for pemp

N and pθ without zeros)
the Kullback-Leibler divergence KL case with φ1(y) := y log y+1−y ≥ 0 (y > 0)

Bφ1, , (P emp
N , Pθ |Pθ) =

∑

x∈X

pθ(x) · φ1

(
pemp

N (x)
pθ(x)

)

=
∑

x∈X

pemp
N (x) · log

(
pemp

N (x)
pθ(x)

)

is nothing but the (multiple of the) very prominent likelihood ratio test statistics
(likelihood disparity); minimizing it over θ produces the maximum likelihood
estimate θ̂MLE . Moreover, by employing φ2(y) := (y − 1)2/2 the divergence

Bφ2, , (P emp
N , Pθ |Pθ) =

∑

x∈X

(pemp
N (x) − pθ(x))2

2pθ(x)

represents the (multiple of the) Pearson chi-square test statistics. Concerning
the above-mentioned conjectures where the sample size N tends to infinity, in
case of Pθtrue

= Pθ one can even derive the limit distribution of the divergence
test statistics Tφ

N (P emp
N , Pθ) in quite “universal generality”:

Theorem 1. Under the null hypothesis “H0: Pθtrue
= Pθ with pθ(x) > 0 for

all x ∈ X ” and the existence of a.s.−limN→∞ H
(
(wg(p

emp
N (x), pθ(x)))x∈X

)
=:

aθ > 0, the asymptotic distribution (as N → ∞) of

Tφ
N (P emp

N , Pθ) = 2N · Bφ,Wg(P
emp
N ,Pθ),H (P emp

N , Pθ |W�(P
emp
N , Pθ))
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has the following density fs∗4:

fs∗(y; γφ,θ) =
y

s∗
2 −1

2
s∗
2
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k=0

ck ·
(−y

2

)k

Γ
(
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2 + k

) , y ∈ [0,∞[ ,
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(
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j

)−0.5

and ck = 1
2k

k−1∑

r=0
cr

s∗∑
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(
γφ,θ

j

)r−k

(k ∈ N)

where s∗ := rank(ΣAΣ) is the number of the strictly positive eigenvalues
(γφ,θ

i )i=1,...,s∗ of the matrix AΣ = (c̄i · (δij − pθ(xj)))i,j=1,...,s consisting of

Σ = (pθ(xi) · (δij − pθ(xj))i,j=1,...,s

A =

⎛

⎝
aθ · φ′′

(
pθ(xi)

w(pθ(xi),pθ(xi))

)

w(pθ(xi), pθ(xi))
δij

⎞

⎠

i,j=1,...,s

c̄i = aθ · φ′′
(

pθ(xi)
w(pθ(xi), pθ(xi))

)

· pθ(xi)
w(pθ(xi), pθ(xi))

.

Here we have used Kronecker’s delta δij which is 1 iff i = j and 0 else.

In particular, the asymptotic distribution (as N → ∞) of TN := Tφ
N (P emp

N , Pθ)
coincides with the distribution of a weighted linear combination of standard-
chi-square-distributed random variables where the weights are the γφ,θ

i (i =
1, . . . , s∗). Notice that Theorem 1 extends a theorem of Kißlinger and Stummer
[11] who deal with the subcase (IIIc) of scaled Bregman divergences. The proof
of the latter can be straightforwardly adapted to verify Theorem 1, due to the
representation TN = ΥN ·(2N ·ζN ) in (11) and the assumption a.s.−limN→∞ ΥN =
aθ > 0. The details will appear elsewhere. Remarkably, within (IIIc) the limit
distribution of TN is even a parameter-free “ordinary” chi-square distribution
provided that the condition w(v, v) = v holds for all v (cf. [11]).

Acknowledgement. We are grateful to 3 referees for their useful suggestions.

References

1. Amari, S.-I.: Information Geometry and Its Applications. Springer, Tokyo (2016)
2. Amari, S.-I., Nagaoka, H.: Methods of Information Geometry. Oxford University

Press, Oxford (2000)
3. Ali, M.S., Silvey, D.: A general class of coefficients of divergence of one distribution

from another. J. Roy. Statist. Soc. B–28, 131–140 (1966)
4. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman diver-

gences. J. Mach. Learn. Res. 6, 1705–1749 (2005)
5. Basu, A., Shioya, H., Park, C.: Statistical Inference: The Minimum Distance App-

roach. CRC Press, Boca Raton (2011)

4 (with respect to the one-dim. Lebesgue measure).



522 W. Stummer and A.-L. Kißlinger

6. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning and Games. Cambridge Univer-
sity Press, Cambridge (2006)

7. Collins, M., Schapire, R.E., Singer, Y.: Logistic regression, AdaBoost and Bregman
distances. Mach. Learn. 48, 253–285 (2002)

8. Csiszar, I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf
den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar.
Acad. Sci. A–8, 85–108 (1963)

9. Kißlinger, A.-L., Stummer, W.: Some decision procedures based on scaled Bregman
distance surfaces. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085,
pp. 479–486. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40020-9 52

10. Kißlinger, A.-L., Stummer, W.: New model search for nonlinear recursive mod-
els, regressions and autoregressions. In: Nielsen, F., Barbaresco, F. (eds.) GSI
2015. LNCS, vol. 9389, pp. 693–701. Springer, Cham (2015). doi:10.1007/
978-3-319-25040-3 74

11. Kißlinger, A.-L., Stummer, W.: Robust statistical engineering by means of scaled
Bregman distances. In: Agostinelli, C., Basu, A., Filzmoser, P., Mukherjee, D.
(eds.) Recent Advances in Robust Statistics: Theory and Applications, pp. 81–
113. Springer, New Delhi (2016). doi:10.1007/978-81-322-3643-6 5

12. Liu, M., Vemuri, B.C., Amari, S.-I., Nielsen, F.: Total Bregman divergence and its
applications to shape retrieval. In: Proceedings 23rd IEEE CVPR, pp. 3463–3468
(2010)

13. Liu, M., Vemuri, B.C., Amari, S.-I., Nielsen, F.: Shape retrieval using hierarchical
total Bregman soft clustering. IEEE Trans. Pattern Anal. Mach. Intell. 34(12),
2407–2419 (2012)

14. Murata, N., Takenouchi, T., Kanamori, T., Eguchi, S.: Information geometry of
U-boost and Bregman divergence. Neural Comput. 16(7), 1437–1481 (2004)

15. Nock, R., Menon, A.K., Ong, C.S.: A scaled Bregman theorem with applications.
In: Advances in Neural Information Processing Systems 29 (NIPS 2016), pp. 19–27
(2016)

16. Nock, R., Nielsen, F.: Bregman divergences and surrogates for learning. IEEE
Trans. Pattern Anal. Mach. Intell. 31(11), 2048–2059 (2009)

17. Nock, R., Nielsen, F., Amari, S.-I.: On conformal divergences and their population
minimizers. IEEE Trans. Inf. Theory 62(1), 527–538 (2016)

18. Pardo, M.C., Vajda, I.: On asymptotic properties of information-theoretic diver-
gences. IEEE Trans. Inf. Theory 49(7), 1860–1868 (2003)

19. Pallaschke, D., Rolewicz, S.: Foundations of Mathematical Optimization. Kluwer
Academic Publishers, Dordrecht (1997)

20. Stummer, W.: Some Bregman distances between financial diffusion processes. Proc.
Appl. Math. Mech. 7(1), 1050503–1050504 (2007)

21. Stummer, W., Vajda, I.: On Bregman distances and divergences of probability
measures. IEEE Trans. Inf. Theory 58(3), 1277–1288 (2012)

22. Sugiyama, M., Suzuki, T., Kanamori, T.: Density-ratio matching under the Breg-
man divergence: a unified framework of density-ratio estimation. Ann. Inst. Stat.
Math. 64, 1009–1044 (2012)
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Abstract. Worldwide regulations oblige financial institutions to manage
and address model risk (MR) as any other type of risk. MR quantification
is essential not only in meeting these requirements but also for institu-
tion’s basic internal operative. In [5] the authors introduce a framework
for the quantification of MR based on information geometry. The frame-
work is applicable in great generality and accounts for different sources
of MR during the entire lifecycle of a model. The aim of this paper is to
extend the framework in [5] by studying its relation with the uncertainty
associated to the data used for building the model. We define a metric
on the space of samples in order to measure the data intrinsic distance,
providing a novel way to probe the data for insight, allowing us to work
on the sample space, gain business intuition and access tools such as per-
turbation methods.

Keywords: Model risk · Calibration · Sampling · Riemannian mani-
fold · Information geometry

1 Introduction

Financial models refer to simplifying mappings of reality that serve a specific
purpose by applying mathematical and economic theories to available data. They
include mathematical relations, a way to use data or judgment to compute the
parameters, and indications on how to apply them to practical issues, refer to [6].

Models focus on specific aspects of reality, degrading or ignoring the rest.
Understanding the limitations of the underlying assumptions and their material
consequences is essential from a MR perspective. Unrealistic assumptions, poor
selection of the model, wrong design, misuse or inadequate knowledge of its usage
may expose a financial institution to additional risks. MR refers to potential
losses institutions may incur as a consequence of decisions based on the output
of models.

In [5] the authors introduce a general framework for the quantification of MR
using information geometry, applicable to most modelling techniques currently
under usage in financial institutions. This framework copes with relevant aspects
of MR management such as usage, performance, mathematical foundations, cal-
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ibration or data. Differences between models are determined by the distance
under a Riemannian metric.1

In this framework, models are represented by particular probability distrib-
utions that belong to the set of probability measures M (the model manifold),
available for modelling. We assume that the examined model p0 is represented
by a probability distribution that can be uniquely parametrized using the n–
dimensional vector parameter θ0 = (θ10, . . . , θ

n
0 ) and can be described by the

probability distribution p0 = p(x, θ0), i.e. p0 ∈ M = {p(x, θ) : θ ∈ Θ ⊂ R
n}, a

differentiable manifold. selecting a particular p0 is equivalent to fixing a para-
meter setting θ0 ∈ Θ and induces M.

A nonlinear weight function K on M places a relative relevance to every
alternative model, and assigns the credibility of the underlying assumptions
that would make other models partially or relatively preferable to the nomi-
nal one, p0.2 Requiring K to be a smooth density function over M induces a
new absolutely continuous probability measure ζ with respect to the Riemannian
volume dv defined by

ζ(U) =
∫

U

dζ =
∫

U

Kdv(p), (1)

where U ⊆ M is an open neighborhood around p0 containing alternate models
that are not too far in a sense quantified by the relevance to (missing) properties
and limitations of the model (i.e., the uncertainty of the model selection).

The MR measure considers the usage of the model represented by some
predefined mapping f :M→R with p �→ f(p), the output function. MR is then
measured as a norm of an appropriate function of the output differences over a
weighted Riemannian manifold (K above) endowed with the Fisher–Rao metric
and the Levi–Civita connection:

Definition 1. Let (F , ‖·‖) be a Banach space of measurable functions f ∈ F
with respect to ζ with f as above. The model risk Z of f and p0 is given by

Z(f, p0) = ‖f − f(p0)‖ . (2)

This approach is used in [5] to quantify the MR by embedding M ↪→ M′ where
M′ = {p(x, θ) : θ ∈ Θ; dim(θ) ≥ dim(θ0)} is a Riemannian manifold containing
a collection of probability distributions created by varying θ0, adding properties
or considering data and calibration uncertainty (see [5] for more details and
examples).

The main objective of this paper is to deepen in the influence of data uncer-
tainty in MR by relating the data uncertainties with the model structure. Pulling

1 Distance in statistical manifolds has been applied in finance to assess the accuracy
of model approximation (for derivatives) or for quantitative comparison of models,
e.g. [2,3].

2 The particular K is depends on the model sensitivity, scenario analysis, relevance
of outcomes in decision making, business, intended purpose, or uncertainty of the
model foundations.
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back the model manifold metric introduces a consistent Riemannian structure
on the sample space that allows us to quantify MR, working with samples. In
practice it offers a computational alternative, eases application of business intu-
ition and assignment of data uncertainty, as well as insight on MR from the data
and the model perspectives.

The rest of the paper is organized as follows: Sect. 2 introduces the concept
of input data, and describes the MR that arises from data deficiencies. Also, it is
devoted to the sampling and the fitting processes. Section 3 introduces a metric
on the sample space, and its Riemannian structure. Quantification of MR in the
sample space is proposed in Sect. 4. Section 5 concludes followed by the technical
proofs in the Appendix.

2 Sample Space and Fitting Process

Important components of MR associated with the model are flaws in the input
data.3 Issues in financial data that affect consistency and availability of data
include backfilling data, availability for only a subset of the cross–section of the
subjects, or limited in time.

To assess the uncertainty in the data we move the setting for quantification of
MR into a sample space that will represent perturbed inputs and thus alternative
models in M with its own metric. Distance between samples should be defined
taking into account the information stored in the samples and their impact on
the model usage.

Let σ̄ : M → S̄ be a sampling process where S̄ is the sample space.4 Note
that a bunch of samples with different elements and varying sizes are associated
to the same distributions via σ̄. Conversely, some distributions may be connected
with the same sample via the fitting process (estimation, calibration). Thus, we
impose further conditions on σ̄ (see Eq. 3 below) that will be linked to the fitting
process: The sampled data needs to fit back to models in M and models need
to resemble the image in S̄.

In general, the fitting process refers to setting the model parameter values
so that the behaviour of the model matches features of the measured data in
as many dimensions as unknown parameters. Therefore, π̄ : S̄ → M associates
a probability distribution p(x, θ) = π̄(x) ∈ M to the sample x ∈ S̄. We will
assume that this map is a smooth immersion, i.e. a local embedding.5 Besides,
we want π̄ to be smooth in the samples: If a small change is applied to x, the
change in the parameters should be relatively small.

3 Main categories of financial data: time series, cross–sectional, panel data. Quality and
availability deficiencies include errors in definition, lack of historical depth, of critical
variables, insufficient sample, migration, proxies, sensitivity to expert judgment or
wrong interpretation.

4 Each sample, i.e. a collection of independent sample points of the probability distri-
bution, is a point in S̄. For example, each point in S̄ is a particular instance of the
portfolio of loans.

5 For any point x ∈ S, ∃U ⊂ S of x such that π̄ : U → M is an embedding.
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Based on π̄, we define a quotient space out of S̄ with the equivalence classes
containing samples that are equally valid with respect to the model manifold M.
Different samples, regardless of their sample size, will share the same relevant
information of the models for they give rise to the same probability distribution
through π̄.

Definition 2. Define the equivalence relation ∼ on the sample space S̄ by
declaring x ∼ x′ if p(x, θ(x)) = p(x′, θ′(x′)) where θ(·) is an estimator, i.e.
a mapping from the space of random variables to M. We denote S = S̄/∼=
{[x] : x ∈ S̄} the corresponding quotient space and the projection by δ : S̄ → S.

To guarantee consistency between samples and models, and to ensure unique-
ness and compatibility with the sampling process, we require π̄ and σ̄ with
Dom(σ̄) = M to satisfy

π̄σ̄π̄ = π̄. (3)

This in particular implies that not all samples are acceptable. For example,
samples with too few elements would not ensure the fitting process to work as
inverse of σ̄.6

Proposition 1. Given the fitting process π̄ as in Definition 2, the equivalence
relation x ∼ x′ if p(x, θ(x)) = p(x′, θ′(x′)) is well defined.

Proof. We assume π̄ : S̄ → M to be a regular embedding that satisfies Eq. 3.
Let ∼ be the relation induced by π̄: x ∼ y ⇔ π̄(x) = p(x, θ) = p(y, θ) = π̄(y). It
is easy to check that ∼ is reflexive, symmetric and transitive, i.e. an equivalence
relation on S.

By contradiction we prove that the equivalence relation is well–defined:
Assume that x ∈ [y] and x ∈ [z] but [y] �= [z]. Then ∀y′ ∈ [y], z′ ∈ [z]
we have x ∼ y′ and x ∼ z′. This implies that π̄(x) = π̄(y′) = p(x, θ) and
π̄(x) = π̄(z′) = p(x, θ), so π̄(y′) = π̄(z′). Since π̄σπ̄ = π̄ we have [y] = [z]. �

The fitting process π̄ is invariant under ∼ since π̄(x) = π̄(x′) whenever x ∼ x′,
and induces a unique function π on S, such that π̄ = π ◦ δ, and similarly for σ.

3 Choice of Metric on the Sample Space

To introduce a measure and a distance intrinsic to the data we define a metric
on S. Given Proposition 1 we endow the sample space with the rich structure of
the M by pulling back to S the geometric structure on M.

Let g be the Riemannian metric on M and π : S → (M, g) be a smooth
immersion (see footnote 7). Then the definition of the pullback of the metric

6 Many algorithms (Max. Likelihood, Method of Moments, Least Square or Bayesian
estimation) and calibration processes satisfy 3 when appropriate restrictions are
applied (if needed).
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π∗g = h acting on two tangent vectors u, v in TxS is h(u, v) = (π∗g)x(u, v) =
gπ(x)(π∗(u), π∗(v)), where π∗ : TxS → Tπ(x)M is the tangent (derivative) map.

Similarly, we can define a connection ∇∗ on the manifold S as the pullback
of the Levi–Civita connection ∇ on M. For X,Y ∈ Γ (TS) vector fields in
the tangent bundle, the pullback connection is given by ∇∗

XY = (π∗∇)XY .
The pullback connection exists and is unique, [4], therefore π∗∇ = ∇∗ for the
pullback metric h.

Theorem 1. As above, let π be the fitting process and σ the sampling process
such that

πσπ = π. (4)

Then S becomes a weighted Riemannian manifold through the pullback of π.

Proof: See Appendix.
Since (S, h) and (M, g) are both Riemannian manifolds and π : S → M is

a smooth immersion, for any x ∈ S there is an open neighbourhood U of x ∈ S
such that π(x) is a submanifold of M and π

∣∣
U

: U → π(U) is a diffeomorphism.
Every point x ∈ S has a neighbourhood U such that π

∣∣
U

is an isometry of U onto
an open subset of M and π is a local diffeomorphism. Hence, (S, h) is locally
isometric to (M, g).

In the neighbourhood on which π is an isometry, the probability measure ζ
defined on M given by Eq. 1 can be pulled back to S. The pullback measure of
ζ is a Riemannian measure π∗ζ on S with respect to the metric h given by

π∗ζ(f) := ζ(f ◦ σ), f ∈ C∞(M)

Assuming M being oriented, we can endow S with the pullback orientation via
the bundle isomorphism TS ∼= π∗(TM) over S, and therefore

∫
M ζ =

∫
S

π∗ζ.

Proposition 2. Let M be oriented manifold and π
∣∣
U

: U → π(U) be an isom-
etry. For any integrable function f on π(U) ⊂ M we have

∫
π(U)

fdζ =
∫

U

(π∗f)dπ∗ζ. (5)

Proof: See Appendix.
Theorem 1 and Proposition 2 show that in spite of the apparent differences

between S and M, one being a space of observations and the other being a
statistical manifold, they can be both endowed with the same mathematical
structure and become locally equivalent from a geometric point of view.

4 Quantification of Model Risk on the Sample Space

After pulling back the Riemannian structure from M to S, we can quantify MR
directly on S and introduce the sensitivity analysis to different perturbations in
the inputs.
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The model in previous sections was assumed to be some probability distribu-
tion p ∈ M, or the corresponding class of samples x ∈ S after the pullback. More
likely, a practitioner would define the model as some mapping f : M → R with
p �→ f(p), i.e. a model outputs some quantity. The associated pullback output
function is then given by F = π∗f, F : S → R, with F belonging to a Banach
space F ∈ (F , || · ||) with respect to π∗ζ. As an example, for the weighted Lq

norms ||F ||q = (
∫

S
|F |qd(π∗ζ))1/q, 1 ≤ q < ∞, the weighted Banach space would

be Lq(S, d(π∗ζ)) = {F : ||F ||q < ∞}.

Theorem 2. Let M be a model manifold with all alternative models relevant for
the quantification of MR. Through σ satisfying Eq. 4 and the projection δ : S̄ →
S, S can be endowed with the Riemannian structure via π∗. Letting (F , || · ||) be
a Sobolev space of measurable functions with measure π∗ζ, we get an equivalent
MR measure Z as in Definition 1 on S, i.e. F ∈ F , in the neighbourhood U of x0

where π is a diffeomorphism. The measure is given by Z(F, x0) = ||F − F (x0)||.
Proof: See Appendix.

The choice of a specific norm depends among other factors on the purpose of
the quantification. Two interesting examples are the Lq and Sobolev norms [1]:

1. Zq(F, x0) for F ∈ Lq(S, d(π∗ζ)) is the Lq norm Zq(F, x0) = ‖F − F (x0)‖q

defined just before Theorem2. Every choice of norm provides different infor-
mation of the model regarding the MR it induces. For instance, the L1 norm
represents the total relative change in the outputs across all relevant sam-
ple classes. The L∞ norm finds the relative worst–case error with respect to
p0, pointing to the sources with largest deviances (using the inverse of the
exponential map).

2. Zs,q(F, x0), f ∈ W s,q(S, d(π∗ζ)), is of interest when the rate of change is

relevant:7 ‖F − F (x0)‖s,q = (
∑

|k|≤s

∫
S

∣∣∣∇k
(
F − F (x0)

)∣∣∣qd(π∗ζ))1/q, where
∇ denotes the associated connections on the vector bundles.

5 Further Research

There are many directions for further research, apart from the quantification
of MR, both of theoretical and of practical interest. The framework can be
applied to sensitivity analysis by using the directional and total derivatives. It is
suitable for stress testing (regulatory and planification exercises), for validation
of approximations throughout the modeling process, testing model stability, or
applied in the MR management. The general methodology can be tailored and
made more efficient for specific risks and algorithms. We may also enlarge the
neighborhood around the model or adjoin new dimension to M8 that would
7 An example can be a derivatives model used not only for pricing but also for hedging.
8 As an example, consider P&L modeled by a normal distribution M = N (μ, σ).

To evaluate the impact of relaxing the assumption of symmetry we may introduce
skew, and so embed M into a larger manifold of skew–normal distributions, M̄ =
{p(x, μ, σ, s) : μ ∈ R, σ > 0, s ∈ R} where s is the shape parameter. For s = 0 we
recover the initial normal distribution.
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consider missing properties, additional information about model limitations, or
wrong underlying assumptions, for verification of model robustness and stability.
The framework may be extended using data sub–manifolds in the case of hidden
variables and/or incomplete data (suggested by one of the reviewers).

Acknowledgements. The authors express their gratitude to the reviewers for valu-
able comments. This research has been funded by EU in the HORIZON2020 program,
EID “Wakeupcall” (Grant agreement number 643945 inside MSCA-ITN-2014-EID).

6 Appendix

Proof of Theorem 1: π is a smooth immersion that satisfies πσπ = π. From the
definition of pullback, ∀x ∈ S and p = π(x) ∈ M, and ∀v1, v2 ∈ TxS tangent
vectors, π∗g(x)(v1, v2) = g(π(x))(Dxπ · v1,Dxπ · v2), so that π∗g is symmetric
and positive semi–definite for any map π. Thus, for v ∈ TxS, v �= 0, π∗g is a
Riemannian metric iff π∗g(x)(v, v) > 0 iff Dxπ · v �= 0 (since g is Riemannian)
iff ker Txπ = 0. In this case, π : (S, π∗g) → (M, g) is an isometric immersion.
Using π we can pull back all the extra structure defined on M required for the
quantification of MR, including the weight function and the Banach space of the
output functions. �

Proof of Proposition 2: It suffices to prove Eq. (5) for functions with compact
support. As π(U) is endowed with a canonical parametrization we only consider
f with supp f contained in a chart (apply partition of unity otherwise). Let
ψ be a chart on π(U) with the coordinates (θ1, . . . , θn). We can assume that
φ = π−1(ψ) is a chart on S with coordinates (y1, . . . , yn). By pushing forward
(y1, . . . , yn) to π(U), we can consider (y1, . . . , yn) as new coordinates in ψ. With
this identification of φ and ψ, π∗ becomes the identity. Hence, Eq. 5 amounts to
proving that π∗ζ and ζ coincide in ψ. Let gθ

ij be the components of the metric
g in ψ in coordinates (θ1, . . . , θn), and gx

kl the components of the metric g in ψ

in coordinates (y1, . . . , yn). Then gx
kl = gθ

ij · ∂θi/∂yk · ∂θj/∂yl. Let h̃kl be the
components of the metric h in φ in the coordinates (y1, . . . , yn). Since h = π∗g,
we have h̃kl = (π∗g)kl = gθ

ij · ∂θi/∂xk · ∂θj/∂xl, hence h̃kl = gx
kl. Since measures

π∗ζ and ζ have the same density function, say P , dζ = P
√

det gxdx1 · · · dxn =
P

√
det h̃dx1 · · · dxn = dπ∗ζ, which proves the identity of measures ζ and π∗ζ. �

Proof of Theorem 2: Recall that Z on M for p0 is Z(f, p0) =
∣∣∣∣f −f(p0)

∣∣∣∣ where
f ∈ (F , ||.||) is a measurable function belonging to a Banach space with respect
to ζ. We want to show that Z is equivalent to Z(F, x0) =

∣∣∣∣F − F (x0)
∣∣∣∣ defined

on S endowed with the pullback structure and measurable functions F = π∗f
belonging to a Sobolev space with respect to π∗ζ. The fitting process π represents
a smooth map π : S → M, and so provides a pullback of differential forms from
M to S. Namely, let Dxπ denote the tangent map of π at x ∈ S. The pullback of
any tensor ω ∈ T k(M), where T k(M) denotes the set of all C∞–covariant tensor
fields of order k on M by π, is defined at x ∈ S by (π∗ω)(x) = (Dxπ)∗(ω(x)).
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The pullback π∗ is a map from T k(M) to T k(S). The pullback respects exterior
products and differentiation:

π∗(ω ∧ η) = π∗ω ∧ π∗η, π∗(dω) = d(π∗ω), ω, η ∈ T (M)

Besides being a smooth map, π is an immersion, i.e. for each p ∈ M, there is
a neighborhood U of p such that π

∣∣∣U : U → π(U) is a diffeomorphism. Since S

and M are Riemannian manifolds with respective volume forms ζS and ζ, the
tangent map Dxπ : TxS → Tπ(x)M can be represented by an n × n matrix Φ
independent of the choice of the orthonormal basis. Following [8], the matrix Φ of
a local diffeomorphims π has n positive singular values, α1(x) ≥ · · · ≥ αn(x) > 0.
Similarly, the inverse map Tπ(x)(π−1) : Tπ(x)M → S is represented by the
inverse matrix Φ−1, whose singular values are the reciprocals of those for Φ,
i.e. β1(π(x)) ≥ · · · ≥ βn(π(x)) > 0 which satisfies βi(π(x)) = αn−i+1(x)−1, i.e.
βi = α−1

n−i+1 ◦ π−1, for i = 1, . . . , n. Then the pullback of the volume form on
M is given π∗ζ = (det Φ)ζS = (α1 . . . αn)ζS .

Since π is a local isometry on U , the linear map Dxπ : TxS → Tπ(x)M at each
point x ∈ U ⊂ S is an orthogonal linear isomorphism and so Dxπ is invertible
[7]. Then, the matrix Φ is orthogonal at every x ∈ S, which implies that the
singular values are α1 = · · · = αn = 1. So, π preserves the volume, i.e. ζS = π∗ζ,
and the orientation on a neighbourhood U around each point through the bundle
isomorphism TS ∼= π∗(TM). In [8], the authors provide a general inequality for
the Lq–norm of a pullback for an arbitrary k–form on Riemannian manifolds.
Given q, r ∈ [1,∞] such that 1/q + 1/r = 1, and some k = 0, . . . , n, suppose
that the product (α1 . . . αn−k)1/q(αn−k+1 . . . αn)−1/r is uniformly bounded on
S. Then, for any smooth k-form ω ∈ LqΛk(S),
∣
∣
∣

∣
∣
∣(α1 . . . αk)

1/r
(αk+1 . . . αn)

−1/q
∣
∣
∣

∣
∣
∣
−1

∞
||ω||q ≤ ||φ∗ω||q ≤

∣
∣
∣

∣
∣
∣(α1 . . . αn−k)

1/r
(αn−k+1 . . . αn)

−1/p
∣
∣
∣

∣
∣
∣∞

||ω||q

Similarly, for any η ∈ LqΛk(M),
∣
∣
∣

∣
∣
∣(β1 . . . βk)

1/r
(βk+1 . . . βn)

−1/q
∣
∣
∣

∣
∣
∣
−1

∞
||η||q ≤ ||π∗

η||q ≤
∣
∣
∣

∣
∣
∣(β1 . . . βn−k)

1/r
(βn−k+1 . . . βn)

−1/q
∣
∣
∣

∣
∣
∣∞

||η||q

For isometry, the singular values are α1 = · · · = αn = 1, so that the above stated
inequalities reduce to

||ω||q ≤ ||π∗ω||q ≤ ||ω||q and ||η||q ≤ ||π∗η||q ≤ ||η||q

for any ω ∈ LqΛk(S) and for any η ∈ LqΛk(M), respectively. This means that
π preserves the Lq norm for all r, and consequently the Sobolev norm since this
norm is a finite sum of Lq norms. �
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Abstract. Jeffrey’s divergence (JD), the symmetric Kullback-Leibler
(KL) divergence, has been used in a wide range of applications. In recent
works, it was shown that the JD between probability density functions
of k successive samples of autoregressive (AR) and/or moving average
(MA) processes can tend to a stationary regime when the number k of
variates increases. The asymptotic JD increment, which is the difference
between two JDs computed for k and k−1 successive variates tending to
a finite constant value when k increases, can hence be useful to compare
the random processes. However, interpreting the value of the asymptotic
JD increment is not an easy task as it depends on too many parameters,
i.e. the AR/MA parameters and the driving-process variances. In this
paper, we propose to compute the asymptotic JD increment between the
processes that have been normalized so that their powers are equal to 1.
Analyzing the resulting JD on the one hand and the ratio between the
original signal powers on the other hand makes the interpretation easier.
Examples are provided to illustrate the relevance of this way to operate
with the JD.

1 Introduction

Comparing stochastic processes such as autoregressive and/or moving-average
(AR, MA or ARMA) processes can be useful in many applications, from speech
processing to biomedical applications, from change detection to process classifi-
cation. Several ways exist: cepstral distance can be useful, for instance for EEG
classification [1]. Power spectrum comparison is also of interest. Several distances
have been proposed such as the COSH distance, the log spectral distance or the
Itakura-Saito distance. They have been widely used, especially in speech process-
ing [2]. Alternative solutions consist in measuring the dissimilarity between prob-
ability density functions (pdf) of data. In this case, divergences or distances can
be computed such as the Hellinger distance and the Bhattacharyya divergence.
The reader may refer to [3] for a comparative study between them. Metrics in
the information geometry can be also seen as dissimilarity measures. The reader

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 532–540, 2017.
https://doi.org/10.1007/978-3-319-68445-1_62
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may refer to [4] where the information geometry of AR-model covariance matri-
ces is studied. Alternatively, the practitioner often selects the Kullback-Leibler
(KL) divergence [5]. This is probably due to the fact that a ‘direct’ and ‘simple’
expression of the KL can be deduced for Gaussian pdf.

– When comparing autoregressive (AR) processes, a recursive way to deduce
the Jeffrey’s divergence (JD), which is the symmetric Kullback-Leibler (KL)
divergence, has been proposed in [6]. The approach has been also extended
to classify more than two AR processes in various subsets [7].

– When dealing with the comparison between moving-average (MA) processes,
we recently gave the exact analytical expressions of the JD between 1st-order
MA processes, for any MA parameter and any number of samples. Moreover,
the MA processes can be real or complex, noise-free or disturbed by additive
white Gaussian noises. For this purpose, we used the analytical expression of
each element of the tridiagonal-correlation-matrix inverse [8].

– Comparing AR and MA processes using the JD has been presented in [9] by
taking advantage of the expression of the correlation-matrix inverse [10].

In the above cases, some links with the Rao distance have been drawn [11]
when it was possible. It was for instance confirmed that the square of the Rao
distance was approximately twice the value of the JD, except when a 1st-order
MA process is considered whose zero is close to the unit-circle in the z-plane.

We also concluded that the JD tends to a stationary regime because the JD
increment, i.e. the difference between two JDs computed for k and k−1 successive
variates, tends to a constant value when k increases. This phenomenon was
observed for most cases, except for ARMA processes whose zeros are on the unit-
circle in the z-plane. In addition, we showed that the asymptotic JD increment
was sufficient to compare these random processes. This latter depends on the
process parameters. In practice, the comparison can operate with the following
steps: given the AR/MA parameters, the asymptotic JD increment is evaluated.
The computation cost is smaller and the JD is no longer sensitive to the choice
of k.

Nevertheless, interpreting the value of the asymptotic JD increment is not
necessarily easy especially because it is a function of all the parameters defining
the processes under study. For this reason, we propose to operate differently in
this paper. Instead of comparing two stochastic processes by using the asymp-
totic JD increment, we rather suggest computing the asymptotic JD increment
between the processes that have been normalized so that their powers are equal
to 1 and looking simultaneously at the ratio between the powers of the two orig-
inal processes. We will illustrate the benefit of this approach in the following
cases: when a 1st-order AR process is compared with a white noise and then
when two real 1st-order AR processes are compared. Note that due to the lack
of space, other illustrations based on MA processes cannot be presented.

This paper is organized as follows: in Sect. 2, we briefly recall the definitions
and properties of the AR processes. In Sect. 3, the expression of the JD is intro-
duced and our contributions are presented. Illustrations are then proposed. In
the following, Ik is the identity matrix of size k and Tr the trace of a matrix.
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The upper-script T denotes the transpose. xk1:k2 = (xk1 , ..., xk2) is the collection
of samples from time k1 to k2. l = 1, 2 is the label of the process under study.

2 Brief Presentation of the AR Processes

Let us consider the lth autoregressive (AR) process with order p. Its nth sample,
denoted as xl

n, is defined as follows:

xl
n = −

p∑

i=1

al
ix

l
n−i + ul

n (1)

where the driving process ul
n is white, Gaussian, zero-mean with variance σ2

u,l.
These wide-sense stationary processes are characterized by their correlation

functions, denoted as rAR,l,τ , with τ the lag. In addition, the Toeplitz covariance
matrices are denoted as QAR,l,k for l = 1, 2. Note that for 1st-order AR processes,

the correlation function satisfies: rAR,l,τ = (−al
1)

|τ|

1−(al
1)

2 σ2
u,l.

In addition, given (1), the AR processes can be seen as the outputs of fil-
ters whose inputs are zero-mean white sequences with unit-variances and with
transfer functions Hl(z) = σu,l

1∏p
i=1 (1−pl

iz
−1)

, where {pl
i}i=1,...,p are the poles.

The inverse filters are then defined by the transfer functions H−1
l (z).

3 Jeffrey Divergence Analysis

The Kullback-Leibler (KL) divergence between the joint pdf of k successive val-
ues of two random processes, denoted as p1(x1:k) and p2(x1:k), can be evaluated
to study the dissimilarities between the processes [12]:

KL
(1,2)
k =

∫
x1:k

p1(x1:k)ln

(
p1(x1:k)

p2(x1:k)

)
dx1:k (2)

If the real processes are Gaussian with means μ1,k and μ2,k and covariance
matrices Q1,k and Q2,k, it can be shown that the KL satisfies [13]:

KL
(1,2)
k =

1

2

[
Tr(Q−1

2,kQ1,k) − k − ln
detQ1,k

detQ2,k
+ (μ2,k − μ1,k)T Q2,k

−1(μ2,k − μ1,k)
]

(3)

As the KL is not symmetric, the Jeffrey’s divergence (JD) can be preferred:

JD
(1,2)
k =

1

2
(KL

(1,2)
k + KL

(2,1)
k ) (4)

For zero-mean processes and given (4), the JD can be expressed as follows:

JD
(1,2)
k = −k +

1

2

[
Tr(Q−1

2,kQ1,k) + Tr(Q−1
1,kQ2,k)

]
(5)

In the following, our purpose is to study the behavior of the JD when k increases.
Therefore, let us introduce the asymptotic JD increment defined by:

ΔJD(1,2) = −1 +
1

2
[ΔT2,1 + ΔT1,2] (6)
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with the asymptotic increments Tl,l′ of the trace -(l, l′) = (1, 2) or (2, 1)- :

ΔTl,l′ = lim
k→+∞

[
Tr(Q−1

l,k Ql′,k) − Tr(Q−1
l,k−1Ql′,k−1)

]
(7)

In the next section, we analyze the relevance of JD when comparing processes
that are normalized so that their powers are equal to 1.

4 Applications

4.1 JD Between a 1st-Order AR Process and a White Noise

By taking advantage of the inverse of the correlation matrix of a 1st-order AR
process [10], the asymptotic JD increment between a 1st-order AR process and
a white noise can be expressed as follows:

ΔJDk
(AR,WN) = −1 +

1

2
[ΔTWN,AR + ΔTAR,WN ] (8)

where

ΔTWN,AR =
σ2

u,1

σ2
u,2

1

(1 − (a1
1)

2)
and ΔTAR,WN =

σ2
u,2

σ2
u,1

(1 + (a1
1)

2
) (9)

Let us see if one can easily analyze the sensitivity of the JD with respect to the
process parameters. For this reason, (8) is first rewritten as follows:

ΔJD(AR,WN) = −1 +
1

2

[
1

Ru

1

(1 − (a1
1)

2)
+ Ru(1 + (a1

1)
2
)

]
(10)

with Ru =
σ2

u,2
σ2

u,1
. Then, let us express σ2

u,2 as σ2
u,1+δσ2

u and introduce the relative

difference between the noise-variances Δσ2
u = δσ2

u

σ2
u,1

. This leads to:

ΔJD(AR,WN) = −1 +
1

2
[

1

1 + Δσ2
u

1

(1 − (a1
1)

2)
+ (1 + Δσ2

u)(1 + (a1
1)

2
)] (11)

In Fig. 1, the asymptotic JD increment between an AR process and a white
noise is presented as a function of the AR parameter a1

1 and the relative difference
between the noise-variances Δσ2

u. This latter varies in the interval ]−1, 20] with
a step equal to 0.03. Only positive values of the AR parameter a1

1 are considered
because ΔJD(AR,WN) is an even function with respect to the AR parameter
in this case. In addition, the AR parameter varies with a step equal to 0.01.
Therefore, this illustration makes it possible to present a large set of situations
that could happen. Let us now give some comments about Fig. 1:

When the AR parameter is equal to zero, ΔJD(AR,WN) is only equal to 0
when Δσ2

u is equal to 0. Indeed, this amounts to comparing two zero-mean white
noises with the same variance. Then, assuming that Δσ2

u is still equal to zero,
ΔJD(AR,WN) is all the higher as the power spectral density (PSD) of the AR
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Fig. 1. Asymptotic JD increment as a function of the AR parameter and Δσ2
u

process is spikier, i.e. the modulus of the AR pole tends to 1. When Δσ2
u increases

or decreases, the phenomenon remains the same. From a theoretical point of
view, this is confirmed by calculating the derivative of ΔJD(AR,WN) with respect
to the AR parameter a1

1. However, the range of the values taken by ΔJD(AR,WN)

is different. One can also calculate the derivative of ΔJD(AR,WN) with respect
to Δσ2

u. In this case, one can notice that the minimum value of ΔJD(AR,WN) is

obtained when Δσ2
u =

√
1

1−(a1
1)

4 −1 and is equal to
√

1−(a1
1)

4

1−(a1
1)

2 −1. As a conclusion,

when looking at Fig. 1, ΔJD(AR,WN) takes into account the differences between
all the process parameters, but it is not easy to know whether the value that
is obtained is due to differences in terms of signal magnitudes and/or spectral
shapes. One value of ΔJD(AR,WN) is related to several situations.

Instead of using this criterion on the processes themselves, we suggest consid-
ering the ratio between the random processes on the one hand and the asymptotic
increment of the JD between the processes whose powers have been normalized
respectively by the square of their process, i.e. σu,1√

(1−(a1
1)

2)
and σu,2. It should be

noted that in practical cases, the signal powers can be easily estimated from the

data. In this case, ΔTWN,AR is divided by the power of the AR process σ2
u,1

(1−(a1
1)

2)

and multiplied by the power of the white noise σ2
u,2. Similarly, ΔTAR,WN is

divided by the power of the white noise σ2
u,2 and multiplied by the AR-process

power σ2
u,1

(1−(a1
1)

2)
. Therefore, given (8), it can be easily shown that the asymp-

totic increment of the JD between the normalized AR process (nAR) and the
normalized white noise (nWN) is equal to:

ΔJDk
(nAR,nWN) = −1 +

1

2

(
1 +

1 + (a1
1)

2

1 − (a1
1)

2

)
(12)

When a1
1 is equal to 0, both processes have a PSD that is flat and the asymptotic

increment of the JD between the unit-power processes is equal to 0. Meanwhile,
one can easily compare the powers of both non-normalized processes. When the
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Fig. 2. Asymptotic JD increment between a unit-power AR process and a unit-power
white noise as a function of the AR parameter

AR-parameter modulus increases, the PSD of the AR process tends to be spikier
and spikier whereas the PSD of the white noise is flat. In this case, the asymptotic
JD increment becomes larger and larger. It is also illustrated in Fig. 2.

By removing the influence of the noise variances in the asymptotic JD incre-
ment, it is easier to give an interpretation related to the spectral shapes of the
processes. Meanwhile, one can compare the powers of both processes.

4.2 JD Between Two 1st-Order AR Processes

In [6], we suggested using a recursive way to deduce the JD two 1st-order AR
processes:

ΔJD(AR1,AR2) = A + B (13)

with
{

A = −1 + 1
2
(Ru + 1

Ru
)

B =
(a2

1−a1
1)

2

2

[
1

1−(a1
1)

2
1

Ru
+ 1

1−(a2
1)

2 Ru

] (14)

By reorganizing the terms in (14), one has:

ΔJD(AR1,AR2) = −1 +
1

2
[ΔTAR1,AR2 + ΔTAR2,AR1 ] (15)

= −1 +
1

2
(Ru

1 − 2a1
1a

2
1 + (a1

1)
2

1 − (a2
1)

2
+

1

Ru

1 − 2a1
1a

2
1 + (a2

1)
2

1 − (a1
1)

2
)

where

ΔTAR1,AR2 = Ru
1 − 2a1

1a
2
1 + (a1

1)
2

1 − (a2
1)2

and ΔTAR2,AR1 =
1

Ru

1 − 2a1
1a

2
1 + (a2

1)
2

1 − (a1
1)2

)

(16)
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It should be noted that when Ru = 1, ΔJD(AR1,AR2) is a symmetric function of
the AR parameters:

ΔJD(AR1,AR2) =
(a2

1 − a1
1)

2

2
(

1

1 − (a2
1)

2
+

1

1 − (a1
1)

2
) (17)

In Fig. 3, ΔJD(AR1,AR2) is presented as a function of the AR parameters a1
1 and

a2
1 and for two different cases: Ru = 1, Ru = 3

2 . Note that the AR parameters
vary in the interval ] − 1, 1[ with a small step equal to 0.03. When Ru = 1,
ΔJD(AR1,AR2) is a symmetric function with respect to the AR parameters of
both processes. Nevertheless, when Ru �= 1, this is no longer true.

To help for interpretation, let us now normalize both processes respectively
by σu,1√

(1−(a1
1)

2)
and σu,2√

(1−(a2
1)

2)
so that the process powers become equal to 1.

Using (15), it can be easily shown that the asymptotic increment of the JD
between the normalized AR processes becomes equal to:

ΔJD(nAR1,nAR2) = −1 +
1

2
(
1 − 2a1

1a
2
1 + (a1

1)
2

1 − (a1
1)

2
+

1 − 2a1
1a

2
1 + (a2

1)
2

1 − (a2
1)

2
) (18)

= (a1
1 − a2

1)

(
a1
1

1 − (a1
1)

2
− a2

1

1 − (a2
1)

2

)

Fig. 3. Asymptotic JD increment between two AR processes as a function of the AR
parameters, where Ru = 1 and Ru = 3/2
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Fig. 4. Asymptotic JD increment between two unit-power AR processes as a function
of the AR parameters for any Ru

As depicted in Fig. 4 and according to (18), ΔJD(nAR1,nAR2) is equal to 0 when
the AR parameters are the same. In addition, it is a symmetric function with
respect to the AR parameters of both processes. Looking at the power ratio at
the same time is then a way to clearly see that the processes have the same
spectral shapes but their powers are not the same. This could not be pointed
out by only looking at the JD between non-normalized AR processes.

5 Conclusions

Interpreting the value of the asymptotic JD increment is not necessarily straight-
forward because the influences of the process parameters are mixed. To make the
interpretation easier, two criteria should rather be taken into account: the process
power ratio and the asymptotic increment of the JD between the processes that
are preliminary normalized so that their powers are equal to 1.
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Abstract. We explain how Itô Stochastic Differential Equations on
manifolds may be defined as 2-jets of curves and show how this relation-
ship can be interpreted in terms of a convergent numerical scheme. We
use jets as a natural language to express geometric properties of SDEs.
We explain that the mainstream choice of Fisk-Stratonovich-McShane
calculus for stochastic differential geometry is not necessary. We give a
new geometric interpretation of the Itô–Stratonovich transformation in
terms of the 2-jets of curves induced by consecutive vector flows. We
discuss the forward Kolmogorov equation and the backward diffusion
operator in geometric terms. In the one-dimensional case we consider
percentiles of the solutions of the SDE and their properties. In particu-
lar the median of a SDE solution is associated to the drift of the SDE in
Stratonovich form for small times.

1 Introduction

This paper is a summary of the preprint by Armstrong and Brigo (2016) [1] and
examines the geometry of stochastic differential equations using a coordinate
free approach. We suggest for the first time, to the best of our knowledge that
SDEs on manifolds can be interpreted as 2-jets of curves driven by Brownian
motion, and show convergence of a jet-based numerical scheme.

We will use the language of jets to give geometric expressions for many impor-
tant concepts that arise in stochastic analysis. These geometric representations
are in many ways more elegant than the traditional representations in terms of
the coefficients of SDEs. In particular we will give coordinate free formulations
of the following: Itô’s lemma; the diffusion operators; Itô SDEs on manifolds and
Brownian motion on Riemannian manifolds.

We discuss how our formulation is related to the Stratonovich formulation
of SDEs. We will prove that sections of the bundle of n-jets of curves in a
manifold correspond naturally to n-tuples of vector fields in the manifold. This
correspondence shows that Itô calculus and Stratonovich calculus can both be
interpreted as simply a choice of coordinate system for the space of sections
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of the bundle of n-jets of curves, and provides a new interpretation of the Itô-
Stratonovich transformation.

We will also see that the 2-jet defining an Itô SDE can help in studying
quantiles of the SDE solution. Moreover we will show that the drift vector of the
Stratonovich formulation can be similarly interpreted as a short-time approxima-
tion to the median. This observation is related to the coordinate independence of
2-jets and vector fields and the coordinate independence of the notion of median.

Coordinate free formulations of SDEs have been considered before. In par-
ticular SDEs have been described either in terms of “second order tangent vec-
tors/diffusors” and Schwartz morphism, see for example [7], or via the Itô bundle
of Belopolskaja and Dalecky, see for example [8] or the appendix in [4]. We briefly
explore the relationship of the jet approach with earlier approaches in the appen-
dix of [1], but in general we have replaced second order tangent vectors with the
more familiar and standard geometric concept of two jets.

We conclude by remarking that our work has numerous applications, includ-
ing a novel notion of optimal projection for SDEs [2,3] that allows to approxi-
mate in a given submanifold the solution of a SDE evolving on a larger space.
We already applied the new projection to stochastic filtering in [2].

2 SDEs as 2-jets and Itô-Stratonovich Transformation

Suppose that at every point x ∈ R
n we have an associated smooth curve γx : R →

R
n with γx(0) = x. Example: γE

(x1,x2)
(t) = (x1, x2)+t(−x2, x1)+3t2(x1, x2). This

specific example has zero derivatives with respect to t from the third derivative
on. We stop at second order in t in the example since this will be enough to
converge to classical stochastic calculus, but our theory is general. We have
plotted t �→ γE

x (t) in a grid of possible “centers” x = (x1, x2) in Fig. 1.
Given such a γ, a starting point x0, a Brownian motion Wt and a time step

δt we can define a discrete time stochastic process using the following recurrence
relation:

X0 := x0, Xt+δt := γXt
(Wt+δt − Wt) (1)

In Fig. 1 we have plotted the trajectories of process for γE , the starting point
(1, 0), a fixed realization of Brownian motion and a number of different time
steps. Rather than just plotting a discrete set of points for this discrete time
process, we have connected the points using the curves in γE

Xt
.

As the figure suggests, these discrete time stochastic processes (1) converge
in some sense to a limit as the time step tends to zero.

We will use the following notation for the limiting process:

Coordinate free SDE: Xt γXt
(dWt), X0 = x0. (2)

For the time being, let us simply treat Eq. (2) as a short-hand way of saying that
Eq. (1) converges in some sense to a limit. We will explore the limit question
shortly. Note that it will not converge for arbitrary γ’s but for nice γ such as γE

or more general γ’s with sufficiently good regularity.



Itô Stochastic Differential Equations as 2-Jets 545

δt = 0.2 × 2−7 δt = 0.2 × 2−9 δt = 0.2 × 2−11

Fig. 1. Discrete time trajectories for γE for a fixed Wt and X0 with different values
for δt

An important feature of Eq. (1) is that it makes no reference to the vector
space structure of Rn for our state space X. We could define the same identical
scheme in a manifold. We have maintained this in the formal notation used in
Eq. (2). By avoiding using the vector space structure on R

n we will be able to
obtain a coordinate free understanding of stochastic differential equations. Now,
using R

n coordinates if we are in an Euclidean space or a coordinate chart if
we are in a manifold, consider the (component-wise) Taylor expansion of γx. We
have:

γx(t) = x + γ′
x(0)t +

1
2
γ′′

x(0)t2 + Rxt3, Rx =
1
6
γ′′′

x (ξ), ξ ∈ [0, t],

where Rxt3 is the remainder term in Lagrange form. Substituting this Taylor
expansion in our Eq. (1) we obtain

δXt = γ′
Xt

(0)δWt +
1
2
γ′′

Xt
(0)(δWt)2 + RXt

(δWt)3, X0 = x0. (3)

Classic strocastic analysis and properties of Brownian motion suggests that we
can replace the term (δWt)2 with δt and we can ignore terms of order (δWt)3 and
above, see [1] for more details. So we expect that under reasonable conditions, in
the chosen coordinate system, the recurrence relation given by (1) and expressed
in coordinates by (3) will converge to the same limit as the numerical scheme:

δX̄t = γ ′̄
Xt

(0)δWt +
1
2
γ′′̄

Xt
(0)δt, X̄0 = x0. (4)

Defining a(X) := γ′′
X(0)/2 and b(X) := γ′

X(0) we have that this last equation
can be written as

δX̄t = a(X̄t)δt + b(X̄t)δWt. (5)

It is well known that this last scheme (Euler scheme) does converge in some
appropriate sense to a limit [10] and that this limit is given by the solution to
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the Itô stochastic differential equation:

dX̃t = a(X̃t) dt + b(X̃t)dWt, X̃0 = x0. (6)

In [1] we have proven the following

Theorem 1. Given the curved scheme (1), in any coordinate system where this
scheme can be expressed as (3) with the coordinate expression of h �→ γx(h)
smoothly varying in x with Lipschitz first and second derivatives with respect to
h, and with uniformly bounded third derivative with respect to h, we have that
the three schemes (3) (4) and (5) converge to the solution of the Itô SDE (6).
This solution depends only on the two-jet of the curve γ.

In which sense Eq. (1) and its limit are coordinate free? It is important to
note that the coefficients of Eq. (6) only depend upon the first two derivatives of
γ. We say that two smooth curves γ : R → R

n have the same k-jet (k ∈ N, k > 0)
if they are equal up to order O(tk) in one (and hence all) coordinate system.
The k-jet can then be defined for example as the equivalence class of all curves
that are equal up to order O(tk) in one and hence all coordinate systems. Other
definitions are possible, based on operators. Using the jets terminology, we say
that the coefficients of Eq. (6) (and (5)) are determined by the 2-jet of the curve
γ. Given a curve γx, we will write j2(γx) for the two jet associated with γx. This
is formally defined to be the equivalence class of all curves which are equal to
γx up to O(t2). Since we stated that, under reasonable regularity conditions, the
limit in the symbolic Eq. (2) depends only on the 2-jet of the driving curve, we
may rewrite Eq. (2) as:

Coordinate-free 2-jet SDE: Xt j2(γXt
)(dWt), X0 = x0. (7)

This may be interpreted either as a coordinate free notation for the classical Itô
SDE given by Eq. (6) or as a shorthand notation for the limit of the manifestly
coordinate-free process given by the discrete time Eq. (1). The reformulation of
Itô’s lemma in the language of jets we are going to present now shows explicitly
that also the first interpretation will be independent of the choice of coordinates.
The only issue one needs to consider are the bounds needed to ensure existence
of solutions. The details of transferring the theory of existence and uniqueness
of solutions of SDEs to manifolds are considered in, for example, [5–7,9]. As we
just mentioned, we can now give an appealing coordinate free version of Itô’s
formula. Suppose that f is a smooth mapping from R

n to itself and suppose
that X satisfies (1). It follows that f(X) satisfies (f(X))t+δt = (f ◦ γXt

)(δWt).
Taking the limit as δt → 0 we have:

Lemma 1 (Coordinate free Itô’s lemma). If the process Xt satisfies

Xt j2(γXt
)(dWt) then f(Xt) satisfies f(X)t j2(f ◦ γXt

)(dWt).

We can interpret Itô’s lemma geometrically as the statement that the transfor-
mation rule for jets under coordinate change is composition of functions.
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We now briefly summarize our discussion in [1] generalizing the theory to
SDEs driven by d independent Brownian motions Wα

t with α ∈ {1, 2, . . . , d}.
Consider jets of functions of the form γx : R

d → R
n. Just as before we can

consider the candidate 2-jet scheme as a difference equation of the form:

Xt+δt := γXt

(
δW 1

t , . . . , δW d
t

)
.

Again, the limiting behaviour of such difference equations will only depend upon
the 2-jet j2(γx) and can be denoted by (7), where it is now understood that
dWt is the vector Brownian motion increment. We obtain a straightforward
generalization of Theorem 1, showing that the 2-jet scheme above, in any well-
behaving coordinate system, converges in L2(P) to the classic Itô SDE with the
same coefficients (with Einstein summation convention):

dXi
t =

1
2
∂α∂βγidWα

t dW β
t + ∂αγi dWα

t =
1
2
∂α∂βγigαβ

E dt + ∂αγi dWα
t (8)

Here xα are the standard R
d orthonormal coordinates. Our equation should be

interpreted with the convention that dWα
t dW β

t = gαβ
E dt where gE is equal to 1 if

α equals β and 0 otherwise. We choose to write gE instead of using a Kronecker
δ because one might want to choose non orthonormal Rd coordinates and so it is
useful to notice that gE represents the symmetric 2-form defining the Euclidean
metric on R

d. Using a Kronecker δ would incorrectly suggest that this term
transforms as an endomorphism rather than as a symmetric 2-form.

Guided by the above discussion, we introduce the following

Definition 1 (Coordinate free Itô SDEs driven by Brownian motion).
A Ito SDE on a manifold M is a section of the bundle of 2-jets of maps Rd → M
together with d Brownian motions W i

t , i = 1, . . . , d.

Take now f : M → R. We can define a differential operator acting on functions
in terms of a 2-jet associated with γx as follows.

Definition 2 (Backward diffusion operator via 2-jets). The Backward dif-
fusion operator for the Itô SDE defined by the 2-jet associated with the map γx

is defined on suitable functions f as

Lγx
f :=

1
2
ΔE(f ◦ γx) =

1
2
∂α∂β(f ◦ γx)gαβ

E . (9)

Here ΔE is the Laplacian defined on R
d.

Lγx
acts on functions defined on M . In [1] we further express the forward

Kolmogorov or Fokker-Planck equation in terms of 2-jets, highlighting the
coordinate-free interpretation of the backward and forward diffusion operators.
Furthermore, we see that both the Itô SDE (8) and the backward diffusion oper-
ator use only part of the information contained in the 2-jet: only the diagonal
terms of ∂α∂βγi (those with α = β) influence the SDE and even for these terms it
is only their average value that is important. The same consideration applies to
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the backward diffusion operator. This motivates our definition of weakly equiva-
lent and strongly equivalent 2-jets given in [1], where weak equivalence is defined
between γ1 and γ2 if Lγ1

x
= Lγ2

x
, while strong equivalence requires, in addition,

the same 1-jets: j1(γ1) = j1(γ2). With strong equivalence, given the same real-
ization of the driving Brownian motions Wα

t , the solutions of the SDEs will
be almost surely the same (under reasonable assumptions to ensure pathwise
uniqueness). When the 2-jets are weakly equivalent, the transition probability
distributions resulting from the dynamics of the related SDEs are the same even
though the dynamics may be different for any specific realisation of the Brown-
ian motions. For this reason one can define a diffusion process on a manifold
as a smooth selection of a second order linear operator L at each point that
determines the transition of densities. A diffusion can be realised locally as an
SDE, but not necessarily globally.

Recall that the top order term of a quasi linear differential operator is called
its symbol. In the case of a second order quasi linear differential operator D which
maps R-valued functions to R-valued functions, the symbol defines a section of
S2T , the bundle of symmetric tensor products of tangent vectors, which we will
call gD. In local coordinates, if the top order term of D is Df = aij∂i∂jf+ lower
order, then gD is given by gD(Xi,Xj) = aijXiXj . We are using the letter g to
denote the symbol for a second order operator because, in the event that g is
positive definite and d = dim M , g defines a Riemannian metric on M . In these
circumstances we will say that the SDE/diffusion is non-singular. Thus we can
associate a canonical Riemannian metric gL to any non-singular SDE/diffusion.

Definition 3. A non-singular diffusion on a manifold M is called a Riemannian
Brownian motion if L(f) = 1

2ΔgL(f).

Note that given a Riemannian metric h on M there is a unique Riemannian
Brownian motion (up to diffusion equivalence) with gL = h. This is easily checked
with a coordinate calculation.

This completes our definitions of the key concepts in stochastic differential
geometry and indicates some of the important connections between stochastic
differential equations, Riemannian manifolds, second order linear elliptic opera-
tors and harmonic maps. We emphasize that all our definitions are coordinate
free and we have worked exclusively with Itô calculus. However, it is more con-
ventional to perform stochastic differential geometry using Stratonovich calcu-
lus. The justification usually given for this is that Stratonovich calculus obeys
the usual chain rule so the coefficients of Stratonovich SDEs can be interpreted
as vector fields. For example one can immediately see if the trajectories to a
Stratonovich SDE almost surely lie on particular submanifold by testing if the
coefficients of the SDE are all tangent to the manifold. We would argue that
the corresponding test for Itô SDEs is also perfectly simple and intuitive: one
checks whether the 2-jets lie in the manifold. As is well known, the probabilis-
tic properties of the Stratonovich integral are not as nice as the properties of
the Itô integral, and the use of Stratonovich calculus on manifolds comes at a
price. Our results allows us to retain the probabilistic advantages of Itô calculus
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while working directly with geometry. However, we will now further clarify the
relationship of our jets approach with Stratonovich calculus.

For simplicity, let us assume for a moment that the SDE driver is one dimen-
sional Brownian motion. Thus to define an SDE on a manifold, one must choose
a 2-jet of a curve at each point of the manifold. One way to specify a k-jet
of a curve at every point in a neighbourhood is to first choose a chart for the
neighbourhood and then consider curves of the form γx(t) = x +

∑k
i=1 ai(x)ti

where ai : Rn → R
n. As we have already seen in (1), these coefficient functions

ai depend upon the choice of chart in a relatively complex way. For example for
2-jets the coefficient functions are not vectors but instead transform according to
Itô’s lemma. We will call this the standard representation for a family of k-jets.

An alternative way to specify the k-jet of a curve at every point is to choose
k vector fields A1, . . . , Ak on the manifold. One can then define Φt

Ai
to be the

vector flow associated with the vector field Ai. This allows one to define curves at
each point x as γx(t) = Φtk

Ak
(Φtk−1

Ak−1
(. . . (Φt

A1
(x)) . . .)) where tk denotes the k-th

power of t. We will call this the vector representation for a family of k-jets. It is
not immediately clear that all k-jets of curves can be written in this way. In [1]
we prove that this is indeed the case. The standard and vector representations
simply give us two different coordinate systems for the infinite dimensional space
of families of k-jets. Let us apply this to SDEs seen as 2-jets.

Lemma 2. Suppose that a family of 2-jets of curves is given in the vector repre-
sentation as γx(t) = Φt2

A (Φt
B(x)) for vector fields A and B. Choose a coordinate

chart and let Ai, Bi be the components of the vector fields in this chart. Then
the corresponding standard representation for the family of 2-jets is (see [1] for
a proof) γx(t) = x + a(x)t2 + b(x)t with ai = Ai + 1

2
∂Bi

∂xj Bj , bi = Bi.

As we have already discussed, the standard representation of a 2-jet corresponds
to conventional Itô calculus. What we have just demonstrated is that the vector
representation of a 2-jet corresponds to Fisk–Stratonovich–McShane calculus [11]
(Stratonovich from now on). Moreover we have given a geometric interpretation
of how the coordinate free notion of a 2-jet of a curve is related to the vector
fields defining a Stratonovich SDE, and of the Itô-Stratonovich transformation.
A much richer discussion on Itô and Stratonovich SDEs, in relation to our result
above, and on why the Itô Stratonovich transformation is not enough to work
with SDE on manifolds is presented in [1].

We conclude with a new interpretation of the drift of one-dimensional
Stratonovich SDEs as median. This is part of more general results on quan-
tiles of SDEs solutions that are given in full detail in [1]. We begin by noticing
that the definition of the α-percentile depends only upon the ordering of R and
not its vector space structure. As a result, for continuous monotonic f and X
with connected state space, the median of f(X) is equal to f applied to the
median of X. If f is strictly increasing, the analogous result holds for the α
percentile. This has the implication that the trajectory of the α-percentile of
an R valued stochastic process is invariant under smooth monotonic coordinate
changes of R. In other words, percentiles have a coordinate free interpretation.
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The mean does not. This raises the question of how the trajectories of the per-
centiles can be related to the coefficients of the stochastic differential equation.
In [1] we calculate this relationship. We summarize the main results proven in
that paper for the one-dimensional SDE with non-vanishing diffusion term b:

dXt = a(Xt, t) dt + b(Xt, t)dWt, X0 = x0. (10)

Theorem 2. For small t, the α-th percentile of solutions to (10) is given by:

x0 + b0
√

tΦ−1(α) +
(

a0 − 1
2
b0b

′
0(1 − Φ−1(α)2)

)
t + O(t3/2) (11)

so long as the coefficients of (10) are smooth, the diffusion coefficient b never
vanishes, and further regularity conditions specified in [1] hold. In this formula
a0 and b0 denote the values of a(x0, 0) and b(x0, 0) respectively. In particular,
the median process is a straight line up to O(t

3
2 ) with tangent given by the drift

of the Stratonovich version of the Itô SDE (10). The Φ(1) and Φ(−1) percentiles
correspond up to O(t

3
2 ) to the curves γX0(±

√
t) where γX0 is any representative

of the 2-jet that defines the SDE in Itô form.

The theorem above has given us the median as a special case, and a link
between the median and the Stratonovich version of the SDE. By contrast the
mean process has tangent given by the drift of the Itô SDE as the Itô integral is
a martingale. In [1] we derive the mode interval equations too and discuss their
relationship with median and mean.
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Abstract. We introduce the notions of essential tangent space and
reduced Fisher metric and extend the classical Cramér-Rao inequal-
ity to 2-integrable (possibly singular) statistical models for general ϕ-
estimators, where ϕ is a V -valued feature function and V is a topological
vector space. We show the existence of a ϕ-efficient estimator on strictly
singular statistical models associated with a finite sample space and on
a class of infinite dimensional exponential models that have been discov-
ered by Fukumizu. We conclude that our general Cramér-Rao inequality
is optimal.

1 k-integrable Parametrized Measure Models
and the Reduced Fisher Metric

In this section we recall the notion of a k-integrable parametrized measure model
(Definitions 1, 3). Then we give a characterization of k-integrability (Theorem 1),
which is important for later deriving the classical Cramér-Rao inequalities from
our general Cramér-Rao inequality. Finally we introduce the notion of essential
tangent space of a 2-integrable parametrized measure model (Definition 4) and
the related notion of reduced Fisher metric.

Notations. For a measurable space Ω and a finite measure μ0 on Ω we denote

P(Ω) := {μ : μ a probability measure on Ω},

M(Ω) := {μ : μ a finite measure on Ω},

S(Ω) := {μ : μ a signed finite measure on Ω},

S(Ω,μ0) = {μ = φ μ0 : φ ∈ L1(Ω,μ0)}.

Hông Vân Lê—Speaker, partially supported by RVO: 6798584.

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 552–560, 2017.
https://doi.org/10.1007/978-3-319-68445-1_64



The Cramér-Rao Inequality on Singular Statistical Models 553

Definition 1 ([AJLS2016b, Definition 4.1]). Let Ω be a measurable space.

1. A parametrized measure model is a triple (M,Ω,p) where M is a (finite or
infinite dimensional) Banach manifold and p : M → M(Ω) ⊂ S(Ω) is a
Frechét-C1-map, which we shall call simply a C1-map.

2. The triple (M,Ω,p) is called a statistical model if it consists only of proba-
bility measures, i.e., such that the image of p is contained in P(Ω).

3. We call such a model dominated by μ0 if the image of p is contained in
S(Ω,μ0). In this case, we use the notation (M,Ω, μ0,p) for this model.

Let (M,Ω,p) be a parametrized measure model. It follows from [AJLS2016b,
Proposition 2.1] that for all ξ ∈ M the differential dξp(V ) is dominated by p(ξ).
Hence the logarithmic derivative of p at ξ in direction V [AJLS2016b, (4.2)]

∂V logp(ξ) :=
d{dξp(V )}

dp(ξ)
(1)

is an element in L1(Ω,p(ξ)). If measures p(ξ), ξ ∈ M , are dominated by μ0, we
also write

p(ξ) = p(ξ) · μ0 for some p(ξ) ∈ L1(Ω,p0). (2)

Definition 2 ([AJLS2016b, Definition 4.2]). We say that a parametrized model
(M,Ω, μ0,p) has a regular density function if the density function p : Ω×M → R

satisfying (2) can be chosen such that for all V ∈ TξM the partial derivative
∂V p(.; ξ) exists and lies in L1(Ω,μ0) for some fixed μ0.

If the model has a positive regular density function, we have

∂V logp(ξ) = ∂V log p. (3)

Next we recall the notion of k-integrability. On the set M(Ω) we define the
preordering μ1 ≤ μ2 if μ2 dominates μ1. Then (M(Ω),≤) is a directed set,
meaning that for any pair μ1, μ2 ∈ M(Ω) there is a μ0 ∈ M(Ω) dominating
both of them (e.g. μ0 := μ1 + μ2).

For fixed r ∈ (0, 1] and measures μ1 ≤ μ2 on Ω we define the linear embedding

ıμ1
μ2

: L1/r(Ω,μ1) −→ L1/r(Ω,μ2), φ �−→ φ

(
dμ1

dμ2

)r

.

Observe that

‖ıμ1
μ2

(φ)‖1/r =
∣∣∣∣
∫

Ω

|ıμ1
μ2

(φ)|1/r dμ2

∣∣∣∣
r

=
∣∣∣∣
∫

Ω

|φ|1/r dμ1

dμ2
dμ2

∣∣∣∣
r

=
∣∣∣∣
∫

Ω

|φ|1/r dμ1

∣∣∣∣
r

= ‖φ‖1/r. (4)
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It has been proved that ıμ1
μ2

is an isometry [AJLS2016b, (2.6)]. Moreover, ıμ1
μ2

ıμ2
μ3

=
ıμ1
μ3

whenever μ1 ≤ μ2 ≤ μ3. Then we define the space of r-th roots of measures
on Ω to be the directed limit over the directed set (M(Ω),≤)

Sr(Ω) := lim−→ L1/r(Ω,μ). (5)

By [AJLS2016b, (2.9)] the space Sr(Ω) is a Banach space provided with the
norm ||φ||1/r defined in (4).

Denote the equivalence class of φ ∈ L1/r(Ω,μ) by φμr, so that μr ∈ Sr(Ω)
is the equivalence class represented by 1 ∈ L1/r(Ω,μ).

In [AJLS2016b, Proposition 2.2], for r ∈ (0, 1] and 0 < k ≤ 1/r we defined a
map

π̃k : Sr(Ω) → Srk(Ω), φ · μr �→ sign(φ)|φ|kμrk.

For 1 ≤ k ≤ 1/r the map π̃k is a C1-map between Banach spaces [AJLS2016b,
(2.13)]. Using the same analogy, we set [AJLS2016b, (4.3)]

p1/k := π̃1/k ◦ p : M → S1/k(Ω) (6)

and

dξp1/k(V ) :=
1
k

∂V logp(ξ) p1/k(ξ) ∈ S1/k(Ω,p(ξ)). (7)

Definition 3 ([JLS2017a, Definition 2.6]). A parametrized measure model
(M,Ω,p) is called k-integrable, if the map p1/k from (6) is a Fréchet-C1-map.

The k-integrability of parametrized measure models can be characterized in
different ways.

Theorem 1 ([JLS2017a, Theorem 2.7]). Let (M,Ω,p) be a parametrized mea-
sure model. Then the model is k-integrable if and only if the map

V �−→ ‖dp1/k(V )‖k < ∞ (8)

defined on TM is continuous.

Thus, (M,Ω,p) is k-integrable if and only if the map dp1/k : M → S1/k(Ω)
from (7) is well defined (i.e., ∂V logp(ξ) ∈ Lk(Ω,p(ξ))) and continuous. In
particular, the definition of k-integrability in Definition 3 above is equivalent to
that in [AJLS2016b, Definition 4.4] and [AJLS2015, Definition 2.4].

Remark 1. 1. The Fisher metric g on a 2-integrable parametrized measure model
(M,Ω,p) is defined as follows for v, w ∈ TξM

gξ(v, w) := 〈∂v logp; ∂w logp〉L2(Ω,p(ξ)) = 〈dp1/2(v); dp1/2(w)〉S1/2(Ω) (9)
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2. The standard notion of a statistical model always assumes that it is dom-
inated by some measure and has a positive regular density function (e.g.
[Borovkov1998, p. 140, 147], [BKRW1998, p. 23], [AN2000, Sect. 2.1],
[AJLS2015, Definition 2.4]). In fact, the definition of a parametrized mea-
sure model or statistical model in [AJLS2015, Definition 2.4] is equivalent to
a parametrized measure model or statistical model with a positive regular
density function in the sense of Definition 2, see also [AJLS2016] for detailed
discussion.

Let (M,Ω,p) be a 2-integrable parametrized measure model. Formula (9)
shows that the kernel of the Fisher metric g at ξ ∈ M coincides with the ker-
nel of the map Λξ : TξM → L2(Ω,p(ξ)), V �→ ∂V (logp). In other words, the
degeneracy of the Fisher metric g is caused by the non-effectiveness of the para-
metrisation of the family p(ξ) by the map p. The tangent cone Tp(ξ)p(M) of the
image p(M) ⊂ S(Ω) is isomorphic to the quotient TξM/ ker Λx. This motivates
the following

Definition 4. ([JLS2017a, Definition 2.9]). The quotient T̂ξM := TξM/ ker Λξ

will be called the essential tangent space of M at ξ.

Clearly the Fisher metric g descends to a non-degenerated metric ĝ on T̂M ,
which we shall call the reduced Fisher metric.

Denote by T̂ ĝM the fiberwise completion of T̂M wrt the reduced Fisher
metric ĝ. Its inverse ĝ−1 is a well-defined quadratic form on the fibers of the
dual bundle T̂ ∗,ĝ−1

M , which we can therefore identify with T̂ ĝM .

2 The General Cramér-Rao Inequality

In this section we assume that (M,Ω,p) is a 2-integrable measure model. We
introduce the notion of a regular function on a measure space Ω (Definition 5),
state a rule of differentiation under integral sign (Proposition 1) and derive a
general Cramér-Rao inequality (Theorem 2).

We set for k ∈ N
+

Lk
M (Ω) := {f ∈ Lk(Ω,p(ξ)) for all ξ ∈ M}.

Definition 5. Let (M,Ω,p) be a parametrized measure model. We call an ele-
ment f ∈ Lk

M (Ω) regular if the function ξ �→ ‖f‖Lk(Ω,p(ξ)) is locally bounded,
i.e. if for all ξ0 ∈ M

lim sup
ξ→ξ0

‖f‖Lk(Ω,p(ξ)) < ∞.

The regularity of a function f is important for the validity of differentiation
under the integral sign.
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Proposition 1. Let k, k′ > 1 be dual indices, i.e. k−1 + k′−1 = 1, and let
(M,Ω,p) be a k′-integrable parametrized measure model. If f ∈ Lk

M (Ω) is regu-
lar, then the map

M −→ R, ξ �−→ Ep(ξ)(f) =
∫

Ω

f dp(ξ) (10)

is Gatêaux-differentiable, and for X ∈ TM the Gâteaux-derivative is

∂XEp(ξ)(f) = Ep(ξ)(f ∂X logp(ξ)) =
∫

Ω

f ∂X logp(ξ) dp(ξ). (11)

Let V be a topological vector space over the real field R, possibly infinite
dimensional. We denote by V M the vector space of all V -valued functions on
M . A V -valued function ϕ will stand for the coordinate functions on M , or in
general, a feature of M (cf. [BKRW1998]). Let V ∗ denote the dual space of V .
Later, for l ∈ V ∗ we denote the composition l◦ϕ by ϕl. This should be considered
as the l-th coordinate of ϕ.

Assume that (M,Ω,p) is a 2-integrable parametrized measure model. A
Gateaux-differentiable function f on M whose differential df vanishes on
ker dp ⊂ TP will be called a visible function.

Recall that an estimator is a map σ̂ : Ω → M . If k, k′ > 1 are dual indices,
i.e., k−1 + k′−1 = 1, and given a k′-integrable parametrized measure model
(M,Ω,p) and a function ϕ ∈ V M , we define

Lk
ϕ(M,Ω) := {σ̂ : Ω → M | ϕl ◦ σ̂ ∈ Lk

M (Ω) for all l ∈ V ∗}.

We call an estimator σ̂ ∈ Lk
ϕ(M,Ω) ϕ-regular if ϕl ◦ σ̂ ∈ Lk

M (Ω) is regular for
all l ∈ V ∗.

Any σ̂ ∈ Lk
ϕ(M,Ω) induces a V ∗∗-valued function ϕσ̂ on M by computing

the expectation of the composition ϕ ◦ σ̂ as follows

〈ϕσ̂(ξ), l〉 := Ep(ξ)(ϕl ◦ σ̂) =
∫

Ω

ϕl ◦ σ̂ dp(ξ) (12)

for any l ∈ V ∗. If σ̂ ∈ Lk
ϕ(M,Ω) is ϕ-regular, then Proposition 1 immediately

implies that ϕσ̂ : M → V ∗∗ is visible with Gâteaux-derivative

〈∂Xϕσ̂(ξ), l〉 =
∫

Ω

ϕl ◦ σ̂ · ∂X logp(ξ)p(ξ). (13)

Let pr : TM → T̂M denote the natural projection.

Definition 6. ([JLS2017a, Definition 3.8]). A section ξ �→ ∇ĝf(ξ) ∈ T̂ ĝ
ξ M will

be called the generalized Fisher gradient of a visible function f , if for all X ∈
TξM we have

df(X) = ĝ(pr(X),∇ĝf).

If the generalized gradient belongs to T̂M we will call it the Fisher gradient.
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We set (cf. [Le2016])

Lk
1(Ω) := {(f, μ)|μ ∈ M(Ω) and f ∈ Lk(Ω,μ)}.

For a map p : P → M(Ω) we denote by p∗(Lk
1(Ω)) the pull-back “fibration”

(also called the fiber product) P ×M(Ω) Lk
1(Ω).

Definition 7. ([JLS2017a, Definition 3.10]). Let h be a visible function on M .
A section

M → p∗(L2
1(Ω)), ξ �→ ∇hξ ∈ L2(Ω,p(ξ)),

is called a pre-gradient of h, if for all ξ ∈ M and X ∈ TξM we have

dh(X) = Ep(ξ)((∂X logp) · ∇hξ).

Proposition 2. ([JLS2017a, Proposition 3.12]).

1. Let (M,Ω,p) be a 2-integrable measure model and f ∈ L2
M (Ω,V ) is a regular

function. Then the section of the pullback fibration p∗(L2
1(Ω)) defined by ξ �→

f ∈ L2(Ω,p(ξ)) is a pre-gradient of the visible function Ep(ξ)(f).
2. Let (P,Ω,p) be a 2-integrable statistical model and f ∈ L2

P (Ω,V ). Then the
section of the pullback fibration p∗(L2

1(Ω)) defined by ξ �→ f − Ep(ξ)(f) ∈
L2(Ω,p(ξ)) is a pre-gradient of the visible function Ep(ξ)(f).

For an estimator σ̂ ∈ L2
ϕ(P,Ω) we define the variance of σ̂ w.r.t. ϕ to be the

quadratic form V ϕ
p(ξ)[σ̂] on V ∗ such that for all l, k ∈ V ∗ we have [JLS2017a,

(4.3)]

V ϕ
p(ξ)[σ̂](l, k) := Ep(ξ)[(ϕl ◦ σ̂ − Ep(ξ)(ϕl ◦ σ̂)) · (ϕk ◦ σ̂ − Ep(ξ)(ϕk ◦ σ̂))]. (14)

We regard ||dϕl
σ̂||2ĝ−1(ξ) as a quadratic form on V ∗ and denote the latter one by

(ĝϕ
σ̂)−1(ξ), i.e.

(ĝϕ
σ̂)−1(ξ)(l, k) := 〈dϕl

σ̂, dϕk
σ̂〉ĝ−1(ξ).

Theorem 2 (General Cramér-Rao inequality) ([JLS2017a, Theorem 4.4]).
Let (P,Ω,p) be a 2-integrable statistical model, ϕ a V -valued function on P and
σ̂ ∈ L2

ϕ(P,Ω) a ϕ-regular estimator. Then the difference V ϕ
p(ξ)[σ̂] − (ĝϕ

σ̂)−1(ξ) is
a positive semi-definite quadratic form on V ∗ for any ξ ∈ P .

Remark 2. Assume that V is finite dimensional and ϕ is a coordinate mapping.
Then g = ĝ, dϕl = dξl, and abbreviating bϕ

σ̂ as b, we write

(gϕ
σ̂)−1(ξ)(l, k) = 〈

∑
i

(
∂ξl

∂ξi
+

∂bl

∂ξi
)dξi,

∑
j

(
∂ξk

∂ξj
+

∂bk

∂ξj
)dξj〉g−1(ξ). (15)

Let D(ξ) be the linear transformation of V whose matrix coordinates are

D(ξ)l
k :=

∂bl

∂ξk
.
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Using (15) we rewrite the Cramér-Rao inequality in Theorem 2 as follows

Vξ[σ̂] ≥ (E + D(ξ))g−1(ξ)(E + D(ξ))T . (16)

The inequality (16) coincides with the Cramér-Rao inequality in [Borovkov1998,
Theorem 1.A, p. 147]. By Theorem 1, the condition (R) in [Borovkov1998, p. 140,
147] for the validity of the Cramér-Rao inequality is essentially equivalent to the
2-integrability of the (finite dimensional) statistical model with positive den-
sity function under consideration, more precisely Borokov ignores/excludes the
points x ∈ Ω where the density function vanishes for computing the Fisher
metric. Borovkov also uses the ϕ-regularity assumption, written as Eθ((θ∗)2) <
c < ∞ for θ ∈ Θ, see also [Borovkov1998, Lemma 1, p. 141] for a more precise
formulation. Classical versions of Cramér-Rao inequalities, as in e.g. [CT2006],
[AN2000], are special cases of the Cramér-Rao inequality in [Borovkov1998]. We
refer the reader to [JLS2017a] for comparison of our Cramér-Rao inequality with
more recent Cramér-Rao inequalities in parametric statistics.

3 Optimality of the General Cramér-Rao Inequality

To investigate the optimality of our general Cramér-Rao inequality we introduce
the following

Definition 8 ([JLS2017b]). Assume that ϕ is a V -valued function on P , where
(P,Ω,p) is a 2-integrable statistical model. A ϕ-regular estimator σ̂ ∈ L2

ϕ(P,Ω)
will be called ϕ-efficient, if V ϕ

p(ξ) = (ĝϕ
σ̂)−1(ξ) for all ξ ∈ P .

If a statistical model (P,Ω,p) admits a ϕ-efficient estimator, the Cramér-Rao
inequality is optimal on (P,Ω,p).

Example 1. Assume that (P ⊂ R
n, Ω ⊂ R

n,p) is a minimal full regular expo-
nential family, ϕ : P → R

n - the canonical embedding P → R
n, and σ̂ : Ω → P

- the mean value parametrization. Then it is well known that σ̂ is an unbi-
ased ϕ-efficient estimator, see e.g. [Brown1986, Theorem 3.6, p. 74]. Let S be
a submanifold in P and f : P ′ → P is a blowing-up of P along S, i.e. f is a
smooth surjective map such that ker df is non -trivial exactly at f−1(S). Then
(P ′, Ω,p ◦ f) is a strictly singular statistical model which admits an unbiased
ϕ-efficient estimator, since (P,Ω,p) admits unbiased ϕ-efficient estimator.

Example 2. Let Ωn be a finite set of n elements. Let A : Ωn → R
d
+ be a map,

where d ≤ m − 1. We define an exponential family PA(·|θ) ⊂ M(Ωm) with
parameter θ in R

d as follows.

PA(x|θ) = ZA(θ) · exp〈θ,A(x)〉, for θ ∈ R
d, and x ∈ Ωm. (17)

Here ZA(θ) is the normalizing factor such that PA(·|θ) · μ0 is a probability
measure, where μ0 is the counting measure on Ωm: μ0(xi) = 1 for xi ∈ Ωm.
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Denote Al(x) := 〈l, A(x)〉 for l ∈ (Rd)∗. We set

σ̂ : Ωn → R
d, x �→ log A(x) := (log A1(x), · · · , log Ad(x)),

ϕ : Rd → R
d
+ ⊂ R

d, θ �→ exp θ.

Then σ̂ is a (possibly biased) ϕ-efficient estimator [JLS2017b]. Using blowing-
up, we obtain strictly singular statistical models admitting (possibly biased)
ϕ-efficient estimators.

In [Fukumizu2009] Fukumizu constructed a large class of infinite dimensional
exponential families using reproducing kernel Hilbert spaces (RKHS). Assume
that Ω is a topological space and μ is a Borel probability measure such that
sppt(μ) = Ω. Let k : Ω × Ω → R be a continuous positive definite kernel on
Ω. It is known that for a positive definite kernel k on Ω there exists a unique
RKHS Hk such that

1. Hk consists of functions on Ω,
2. Functions of the form

∑m
i=1 aik(·, xi) are dense in Hk,

3. For all f ∈ Hk we have 〈f, k(·, x)〉 = f(x) for all x ∈ Ω,
4. Hk contains the constant functions c|Ω , c ∈ R.

For a given positive definite kernel k on Ω we set

k̂ : Ω → Hk, k̂(x) := k(·, x).

Theorem 3 ([JLS2017b]). Assume that Ω is a complete topological space and
μ is a Borel probability measure with sppt(μ) = Ω. Suppose that a kernel k on
Ω is bounded and satisfies the following relation whenever x, y ∈ Ω

k̂(x) − k̂(y) = c|Ω ∈ Hk =⇒ c|Ω = 0 ∈ Hk. (18)

Let
Pμ := {f ∈ L1(Ω,μ) ∩ C0(Ω)| f > 0 and

∫
Ω

fdμ = 1}.

Set
p : Pμ → M(Ω), f �→ f · μ0.

Then there exists a map ϕ : Pμ → Hk such that (Pμ, Ω,p) admits a ϕ-efficient
estimator.
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Abstract. We discuss an information-geometric framework for a regres-
sion model, in which the regression function accompanies with the pre-
dictor function and the conditional density function. We introduce the
e-geodesic and m-geodesic on the space of all predictor functions, of which
the pair leads to the Pythagorean identity for a right triangle spinned by
the two geodesics. Further, a statistical modeling to combine predictor
functions in a nonlinear fashion is discussed by generalized average, and
in particular, we observe the flexible property of the log-exp average.

1 Introducton

We discuss a framework of information geometry for a regression model to be
compatible with that for a probability density model. The framework consists of
three spaces of the regression, predictor and conditional density functions which
are connected in a one-to-one correspondence. In this way, the framework of
the regression analysis is more complicated than that only of a density func-
tion model. The key to build the new framework is to keep compatibility with
the information geometry established in the density function model such that
the dualistic pair of e-geodesic and m-geodesics plays a central role under the
information metric, cf. [1].

Let X be a p-dimensional explanatory vector and Y a response variable, in
which our interests are focused on an association of X with Y . Thus we write
the regression function by

μ(x) = E(Y |X = x). (1)

A major goal in the regression analysis is to make an inference on the regression
function, which is described by the conditional density function. The predictor
function models the conditional density function. We adopt the formulation of
the generalized linear model (GLM) to formulate more precisely the relation
among the regression, predictor and conditional density functions. GLM is a
standard model for the statistical regression analysis, which gives comprehensive
unification of Gaussian, Poisson, Gamma, logistic regression models and so forth,
cf [4]. We begin with a predictor function f(x) rather than the regression function
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 561–568, 2017.
https://doi.org/10.1007/978-3-319-68445-1_65
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μ(x). Because μ(x) is sometimes confined to be in a finite range as in a binary
regression, which implies that it is difficult to directly model μ(x) by a parameter
such as a linear model. Let F be the space of all predictor functions f(x)’s which
satisfy mild regularity conditions for the smoothness. In the formation of GLM,
f(x) and μ(x) are connected by a one-to-one function �, called the mean link
function such that μ(x) = �(f(x)). The conditional density function of Y given
X = x is assumed by

p(y|x, f) = exp{yϑ(f(x)) − ψ(ϑ(f(x)))}, (2)

where f ∈ F and ϑ(f) = (∂ψ/∂θ)−1(�(f)), called canonical link function.
Note that the canonical and mean parameters θ and μ are connected by
μ = (∂ψ/∂θ)(θ), which is a basic property in the exponential model (2).
Typically, if (2) is a Bernoulli distribution, then a logistic model is led to as
μ(x) = 1/(1+exp{−f(x)}), or equivalently f(x) = log{μ(x)/(1−μ(x))}. In the
standard framework we write a linear predictor function by

f(x) = β�x + α (3)

with the slope vector β and intercept α, in which the conditional density function
is reduced to a parametric model. Thus, the logistic model is written by

E(Y |X = x, α, β) =
1

1 + exp{−(β�x + α)} (4)

via the mean link function. In practice, the model density function (2) is often
added to a dispersion parameter in order to give a reasonable fitting to data
with overdispersion, however we omit this description for notational simplicity.
Based on this formulation, GLM has been expended to the hierarchy Bayesian
GLM and generalized additive model, see [4] for recent developments.

Unless we consider such a parametric form (3), then the conditional density
function is in a semiparametric model

P = {p(y|x, f) : f ∈ F}, (5)

where f is a nonparametric component in the exponential density model. We
give an information-geometric framework for F in association with this semi-
parametric model P. In reality, we like to explore more flexible form than the
linear predictor function (3). Let f0 and f1 be in F and φ a strictly increasing
function defined on R. Then we introduce a one-parameter family,

f
(φ)
t (x) = φ−1((1 − t)φ(f0(x)) + tφ(f1(x))) (6)

for t ∈ [0, 1]. We call f
(φ)
t φ-geodesic connecting between f0 and f1. It is noted

that, if f0 and f1 are both linear predictor functions as in (3) and φ is an identity
function, or φ(f) = f , then f

(φ)
t (x) is also a linear predictor function because

f
(φ)
t (x) = {(1 − t)β0 + tβ1}� + (1 − t)α0 + tα1

for fa(x) = β�
a x + αa with a = 0, 1.
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The φ-geodesic induces to a one-parameter density family p(y|x, f
(φ)
t ) in the

space P, which connects p(y|x, f0) with p(y|x, f1). Specifically, if we take the
canonical link function ϑ(f) as φ(f), then

f
(ϑ)
t (x) = ϑ−1((1 − t)ϑ(f0(x)) + tϑ(f1(x))), (7)

which induces to a conditional density function

p(y|x, f
(ϑ)
t ) = exp{yθt(x) − ψ(θt(x))}, (8)

where θt(x) = (1 − t)ϑ(f0(x)) + tϑ(f1(x)). This is nothing but the e-geodesic
connecting between p(y|x, f0) and p(y|x, f1) in P because we observe that

p(y|x, f
(ϑ)
t ) = ztp0(y|x)1−tp1(y|x)t, (9)

where zt is a normalizing factor and pa(y|x) = p(y|x, fa) for a = 0, 1. Back to the
standard case of GLM with the canonical link function. Then we have a linear
model θ(x) = β�x + α. If f0(x) and f1(x) is in the linear model, then f

(ϑ)
t (x) is

also in the linear model with θt(x) = {(1 − t)β0 + tβ1}�x + (1 − t)α0 + tα1 for
ϑ(fa(x)) = β�

a x + αa (a = 0, 1).
Alternatively, we can consider a connection between F and the space of

regression function, say R. If we take the mean link function �(f) as φ(f), then

f
(�)
t (x) = �−1((1 − t)�(f0(x)) + t�(f1(x))), (10)

which leads to the mixture geodesic

μ
(�)
t (x) = (1 − t)μ0(x) + tμ1(x) (11)

in R, where μa(x) = �(fa(x)) for a = 0, 1. Here we implicitly assume that
μ
(�)
t (x) = (1 − t)μ0(x) + tμ1(x) belongs to R for any f0(x) and f1(x) of F .

Through the discussion as given above, the canonical link function induces to
the exponential geodesic in P; the mean link function induces to the mixture
geodesic in R, see Fig. 1. Henceforth, we refer to (7) and (10) as e-geodesic and
m-geodesic in F , respectively.

We next discuss a triangle associated with three points in R. Let C1 = {ft :
t ∈ [0, 1]} and C2 = {gs : s ∈ [0, 1]} be curves intersecting when (s, t) = (1, 1), so
that g1 = f1, say f . Then C1 and C2 are said to orthogonally intersects at f if

E

{ ∂

∂t
�(ft(X))

∂

∂s
ϑ(gs(X))

}∣∣∣
(s,t)=(1,1)

= 0. (12)

The orthogonality is induced from that for curves of density functions defined by
the information metric, see [1]. We like to consider a divergence measure between
f and g be in F . Thus we define

DKL(f, g) = E{D̃KL(p(·|X, f), p(·|X, g))}, (13)

where D̃KL is the Kullback-Leibler divergence in P. Thus, we can write

DKL(f, g) = E[�(f(X)){ϑ(f(X)) − ϑ(g(X))} − ψ(ϑ(f(X))) + ψ(ϑ(g(X)))].

Hence, we can discuss the Pythagorean identity on F as in the space of density
functions.
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Fig. 1. The e-gedesic and m-geodesic in F are injectively connected with the e-gedesic
in R and the m-geodesic in P, respectively.

Proposition 1. Let f , g and h be in F . Consider two curves: one is the m-
geodesic connecting between f and g as

C(m) = {f
(�)
t (x) := �−1((1 − t)�(f(x)) + t�(g(x))) : t ∈ [0, 1]} (14)

and the other is the e-geodesic connecting between h and g as

C(e) = {h(ϑ)
s (x) := ϑ−1((1 − s)ϑ(h(x)) + sϑ(g(x))) : s ∈ [0, 1]}. (15)

Then the triangle induced by vertices f , g and h satisfies a Pythagorean identity

DKL(f, g) + DKL(g, h) = DKL(f, h) (16)

if and only if the curves defined in (14) and (15) orthogonally intersects at g.

Proof is easily confirmed by a fact that

E

{ ∂

∂t
�(f (�)

t (X))
∂

∂s
ϑ(h(ϑ)

s (X))
}∣∣∣

s=t=1
= DKL(f, h) − {DKL(f, g) + DKL(g, h)}.

We note that the orthogonality means the further identity:

DKL(f (�)
t , g) + DKL(g, h(ϑ)

s ) = DKL(f (�)
t , h(ϑ)

s ) (17)

for any (t, s) ∈ [0, 1]2.
In accordance with Proposition 1 the information geometry for the predictor

space F is induced from that for the density space P by way of that for the
regression space R, in which the distribution assumption (2) plays a central role
on the induction from P and R to F . If a regression function (1) is degenerated,
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or constant in x, then any predictor function should be so, which means that
both R and F are singletons, and P is just a one-parameter exponential family
such as a Gaussian, Bernoulli and Poisson distributions. In effect, R should be
sufficiently a rich space so that the richness can cover a flexible association of
the explanatory vector X with the response variable Y .

2 Log-Exp Means

We have discussed that a geometric property associated with the pair of e-
geodesic (7) and m-geodesic (10) as specific φ-geodesics in F . There is another
potential expansion of φ-geodesics which enables to flexibly modeling nonlinear
predictor functions in F .

Let fk(x) be a predictor function for k = 1, · · · ,K. Then we propose a
generalized mean as

f (φ)
τ,π (x) =

1
τ

φ−1
( K∑

k=1

πkφ
(
τfk(x)

))
(18)

for a generator function φ assumed to be strictly increasing, where τ is a shape
parameter and πk’s are proportions of the k-th predictor, so that

∑K
k=1 πk = 1.

Two properties of f
(φ)
τ,π (x) are observed as follows.

Proposition 2. Let f
(φ)
τ,π (x) be a generalized mean defined in (18). Then, the

following property holds:

min
1≤k≤K

fk(x) ≤ f (φ)
τ,π (x) ≤ max

1≤k≤K
fk(x) (19)

for any τ , and lim
τ→0

f (φ)
τ,π (x) =

K∑
k=1

πkfk(x).

We focus on another typical example of φ-geodesic than e-geodesic and m-
geodesic taking a choice as φ = exp such that

f (exp)
τ,π (x) =

1
τ

log
{ K∑

k=1

πk exp(τfk(x))
}

, (20)

we call log-exp mean, cf. the geometric mean for density functions discussed in
[3]. We observe specific behaviors with respect to τ as follows:

lim
τ→−∞ f (exp)

τ,π (x) = min
1≤k≤K

fk(x) and lim
τ→∞ f (exp)

τ,π (x) = max
1≤k≤K

fk(x). (21)

This suggests that the combined predictor function f
(exp)
τ,π (x) attains the two

bounds observed in (19) when τ goes to −∞ or ∞. In this way f
(exp)
τ,π (x) can

express flexible performance of the prediction via an appropriate selection for
the tuning parameter τ .
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3 Statistical Model of Log-Exp Means

We discuss a practical application of φ-geodesics focusing on the log-exp mean.
Typical candidates for K predictors are linear predictor functions, however it
would suffer from model identification as in a Gaussian mixture model. Further,
it is difficult to get any reasonable understanding for the association between
X and Y because we have got K different slope vectors and intercepts for the
explanatory vector. This problem is closely related with that of the multilayer
perceptron, in which the causality is confounding by several links among the mul-
tilayer components. As a solution of this problem we will discuss a parsimonious
model in the following subsection.

3.1 Parsimonious Model

We consider a parsimonious modeling for combing linear predictor functions to
keep the model identifiability as follows. Assume that the explanatory vector x
is partitioned into sub-vectors x(k) with k = 1, · · · ,K in unsupervised learning
manner, for example, K-means for an empirical dataset, so that

x = (x(1), · · · , x(K)). (22)

Then we employ fk(x) = β�
(k)x(k) + α for k, 1 ≤ k ≤ K such that

fτ (x, β, π, α) =
1
τ

log
[ K∑

k=1

πk exp{τ(β�
(k)x(k) + α)}

]
, (23)

where β = (β(1), · · · , β(K)), see [7] for detailed discussion. We note that α is the
threshold of the integrated predictor as

fτ (x, β, π, α) = fτ (x, β, π, 0) + α, (24)

cf. [5,6] for the log-sum-exp trick. We have a reasonable understanding similar
to the linear model (3) since

K∑
k=1

β�
(k)x(k) = β�x. (25)

Thus, the model (23) connects among K linear predictor functions in a flexibly
nonlinear manner including linear combination as discussed in Proposition 2.
In effect, we can assume for the proportions πk’s to be known because πk’s are
estimated in the preprocessing by the unsupervised learning like K-means. Then
we remark that the dimension of the model (23) is exactly equal to the linear
predictor model (3). Subsequently, we will take another parametrization as

fτ (x, β, γ) =
1
τ

log
[ K∑

k=1

exp{τ(β�
(k)x(k) + γk)}

]
, (26)

where γk = α + τ−1 log πk.
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We investigate a local behavior of (26). The gradient vectors are

∂

∂β(k)
fτ (x, β, γ) = wτ k(x, β, γ)x(k), (27)

∂

∂γk
fτ (x, β, γ) = wτ k(x, β, γ), (28)

where

wτ k(x, β, γ) =
exp{τ(β�

(k)x(k) + γk)}
∑K

�=1 exp{τ(β�
(�)x(�) + γ�)}

. (29)

We remark that

lim
τ→∞ wτ k(x, β, γ) =

{
1 if k = kmax

0 otherwise (30)

where kmax = argmax1≤k≤K β�
k x(k)+γk. On the other hand, if τ gos to −∞, then

wτ k(x, β, γ) converges to a weight vector degenerated at the index to minimize
β�

k x(k) + γk with respect to k. Taking a limit of τ into 0, wτ k(x, β, γ) becomes
the weight πk.

We discuss to incorporate the model (26) with the generalized linear model
(2). Let D = {(xi, yi) : 1 ≤ i ≤ n} be a data set. Then the log-likelihood function
is written by

LD(β, γ) =
n∑

i=1

{yiϑ(fτ (xi, β, γ))) − ψ(ϑ(fτ (xi, β, γ)))}. (31)

The gradient vector is given in a weighted form as

∂

∂β(k)
LD(β, γ) =

n∑
i=1

w̃τ (xi, β, γ)x(k){yi − �(fτ (xi, β, γ))}, (32)

∂

∂γ
LD(β, γ) =

n∑
i=1

w̃τ (xi, β, γ){yi − �(fτ (xi, β, γ))}, (33)

where

w̃τ (xi, β, γ) =
�′(fτ (xi, β, γ))wτ k(xi, β, γ)

var(ϑ(fτ (xi, β, γ)))
(34)

with var(θ) = (∂2/∂θ2)ψ(θ). Hence the MLE for (β, γ) can be obtained by a
gradient-type algorithm, or the Fisher score method in a straightforward manner.

4 Discussion

The framework of information geometry for a regression model utilizes the close
relation among three function spaces F , R and P with one-to-one correspon-
dence, where the e-geodesic and m-geodesic on F are induced from those in P
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and R, respectively. The information metric on P is naturally translated into
the space F taking the marginal expctation. Consider a parametric model

M = {fω(x) : ω ∈ Ω} (35)

embedded in F with a parameter vector ω. Then the e-connection and m-
connection on M are induced from those on the model

M̃ = {p(y|x, fω) : ω ∈ Ω} (36)

embedded in P. If we consider a divergence D than DKL, then another pair of
connections on M is associated, see [2] for detailed formulae.

The discussion in this paper strongly depends on the assumption for the condi-
tional density function p(y|x, f) as in (2) in accordance with GLM formulation. If
p(y|x, f) does not belong to such an exponential model but another type of model,
then the framework of the information geometry should be adapted. For example,
if p(y|x, f) is in a deformed exponential model, then the geometry is suggested by
the deformation. However, the structure is still valid including dually flatness and
Pythagorean relation associated with the canonical divergence.
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Abstract. We study the continuity of space translations on non-
parametric exponential families based on the exponential Orlicz space
with Gaussian reference density.

1 Introduction

On the Gaussian probability space (Rn,B,M · �), M being the standard
Gaussian density and � the Lebesgue measure, we consider densities of the form
eM (U) = exp (U − KM (U))·M , where U belongs to the exponential Orlicz space
L(cosh−1) (M), EM [U ] = 0, and KM (U) is constant [7,8]. An application to the
homogeneous Boltzmann equation has been discussed in [5].

The main limitation of the standard version of Information Geometry is its
inability to deal with the structure of the sample space as it provides a geometry
of the “parameter space” only. As a first step to overcome that limitation, we
want to study the effect of a space translation τh, h ∈ R

n, on the exponential
probability density eM (U). Such a model has independent interest and, moreover,
we expect such a study to convey informations about the case where the density
eM (U) admits directional derivatives.

The present note is devoted to the detailed discussion of the some results
concerning the translation model that have been announced at the IGAIA IV
Conference, Liblice CZ on June 2016. All results are given in Sect. 2, in particular
the continuity result in Proposition 4. The final Sect. 3 gives some pointers to
further research work to be published elsewhere.

2 Gauss-Orlicz Spaces and Translations

The exponential space L(cosh−1) (M) and the mixture space L(cosh−1)∗ (M) are
the Orlicz spaces associated the Young functions (cosh −1) and its convex con-
jugate (cosh −1)∗, respectively [6]. They are both Banach spaces and the second
one has the Δ2-property, because of the inequality

(cosh −1)∗(ay) ≤ max(1, a2)(cosh −1)∗(y), a, y ∈ R.

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 569–576, 2017.
https://doi.org/10.1007/978-3-319-68445-1_66
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The closed unit balls are{
f

∣∣∣∣
∫

φ(f(x)) M(x)dx ≤ 1
}

with φ = cosh −1 and φ = (cosh −1)∗, respectively. Convergence to 0 in norm of
a sequence gn, n ∈ N holds if, and only if, for all ρ > 0 one has

lim sup
n→∞

∫
φ(ρgn(x)) M(x)dx ≤ 1.

If 1 < a < ∞, the following inclusions hold

L∞(M) ↪→ L(cosh−1) (M) ↪→ La(M) ↪→ L(cosh−1)∗ (M) ↪→ L1(M),

and the restrictions to the ball ΩR = {x ∈ R
n||x| < R},

L(cosh−1) (M) → La(ΩR), L(cosh−1)∗ (M) → L1(ΩR),

are continuous.
The exponential space L(cosh−1) (M) contains all functions f ∈ C2(Rn;R)

whose Hessian is uniformly bounded in operator’s norm. In particular, it contains
all polynomials with degree up to 2, hence all functions which are bounded
by such a polynomial. The mixture space L(cosh−1)∗ (M) contains all random
variables f : Rd → R which are bounded by a polynomial, in particular, all
polynomials.

Let us review those properties of the exponential function on the space
L(cosh−1) (M) that justify our definition of non-parametric exponential model
as the set of densities eM (U) = exp (U − KM (U)) · M , where U has zero M -
expectation and belongs to the interior SM of the proper domain of the partition
functional ZM (U) = EM

[
eU

]
.

Proposition 1. 1. The functionals ZM and KM = log ZM are both convex.
2. The proper domain of both ZM and KM contains the open unit ball of

L(cosh−1) (M), hence its interior SM is nonempty.
3. The functions ZM and KM are both Fréchet differentiable on SM .

Proof. Statements 1–3 above are all well known. Nevertheless, we give the proof
of the differentiability. We have

0 ≤ exp (U + H) − exp (U) − exp (U) H =
∫ 1

0

(1 − s) exp (U + sH) H2 ds.

For all U,U + H ∈ SM , choose α > 1 such that αU ∈ SM . We have

0 ≤ ZM (U+H)−ZM (U)−EM [exp (U) H] =
∫ 1

0

(1−s)EM

[
exp (U + sH) H2

]
ds,

where the derivative term H �→ EM [exp (U) H] is continuous at U because

|EM [exp (U) H]| ≤ EM [exp (αU)]1/α
EM

[
|H|α/(α−1)

](α−1)/α

≤
const × EM [exp (αU)]1/α ‖H‖L(cosh −1)(M) .
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The remainder term is bounded by

|ZM (U + H) − ZM (U) − EM [exp (U) H]| =∫ 1

0

(1 − s)EM

[
exp (U + sH) H2

]
ds ≤

EM

[
eαU

]1/α
∫ 1

0

(1 − s)EM

[
exp

(
s

α

α − 1
H

)
H2 α

α−1

](α−1)/α

ds ≤

const × EM

[
H4 α

α−1
](α−1)/2α

∫ 1

0

(1 − s)EM

[
exp

(
s

2α

α − 1
H

)](α−1)/2α

ds.

We have

EM

[
exp

(
s

2α

α − 1
H

)]
≤ 2

(
EM

[
(cosh −1)

(
s

2α

α − 1
H

)
+ 1

])
≤ 4

if ‖H‖L(cosh −1)(M) ≤ (α − 1)/2α. Under this condition, we have

|ZM (U + H) − ZM (U) − EM [exp (U) H]| ≤
const × ‖H‖2L4α/(α−1)(M) ≤ const × ‖H‖2L(cosh −1)(M) ,

where the constant depends on U . �	
The space L(cosh−1) (M) is neither separable nor reflexive. However, we have

the following density property for the bounded point-wise convergence. The proof
uses a form of the Monotone-Class argument [3, 22.3]. Let Cc (Rn) and C∞

c (Rn)
respectively denote the space of continuous real functions with compact support
and its sub-space of infinitely-differentiable functions.

Proposition 2. For each f ∈ L(cosh−1) (M) there exists a nonnegative function
h ∈ L(cosh−1) (M) and a sequence fn ∈ C∞

c (Rn) with |fn| ≤ h, n = 1, 2, . . . ,
such that limn→∞ fn = f a.e. As a consequence, C∞

c (Rn) is weakly dense in
L(cosh−1) (M).

Proof. Before starting the proof, let us note that L(cosh−1) (M) is stable under
bounded a.e. convergence. Assume fn, h ∈ L(cosh−1) (M) with |fn| ≤ h,
n = 1, 2, . . . and limn→∞ fn = f a.e. By definition of h ∈ L(cosh−1) (M), for
α = ‖h‖−1

L(cosh −1)(M) we have the bound EM [(cosh −1)(αh)] ≤ 1. The sequence
of functions (cosh−1)(αfn), n = 1, 2, . . . , is a.e. convergent to (cosh −1)(αf)
and it is bounded by the integrable function (cosh−1)(αh). The inequality
EM [(cosh −1)(αf)] ≤ 1 follows now by dominated convergence and is equiv-
alent to ‖f‖L(cosh −1)(M) ≤ ‖h‖L(cosh −1)(M). By taking a converging sequences
(fn) in C∞

c (Rn) we see that the condition in the proposition is sufficient.
Conversely, let L be the set of all functions f ∈ L(cosh−1) (M) such that
there exists a sequence (fn)n∈N in Cc(Rn) which is dominated by a function
h ∈ L(cosh−1) (M) and converges to f point-wise. The set L contains the con-
stant functions and Cc(Rn) itself. The set L is a vector space: if f1, f2 ∈ L and
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both f1
n → f1 a.s. with

∣∣f1
n

∣∣ ≤ h1 and f2
n → f2 point-wise with

∣∣h2
n

∣∣ ≤ h2, then
α1f

1
n + α2f

2
n → α1f

1 + α2f
2 point-wise with

∣∣α1f
1
n + α2f

2
n

∣∣ ≤ |α1| h1 + |α2| h2.
Moreover, L is closed under the min operation: if f1, f2 ∈ L, with both f1

n → f1

with
∣∣g1n∣∣ ≤ h1 and f2

n → f2 with
∣∣g2n∣∣ ≤ h2, then f1

n ∧ f2
n → f1 ∧ f2 and∣∣f1

n ∧ f2
n

∣∣ ≤ h1 ∧ h2 ∈ L(cosh−1) (M). L is closed for the maximum too, because
f1 ∨f2 = − (

(−f1) ∧ (−f2)
)
. We come now to the application of the Monotone-

Class argument. As 1f>a = ((f − a) ∨ 0) ∧ 1 ∈ L, each element of L is the
point-wise limit of linear combinations of indicator functions in L. Consider the
class C of sets whose indicator belongs to L. C is a σ-algebra because of the
closure properties of L and contains all open bounded rectangles of Rn because
they are all of the form {f > 1} for some f ∈ Cc (Rn). Hence C is the Borel
σ-algebra and L is the set of Borel functions which are bounded by an ele-
ment of L(cosh−1) (M), namely L = L(cosh−1) (M). To conclude, note that each
g ∈ Cc (Rn) is the uniform limit of a sequence in C∞

c (Rn). The last statement
is proved by bounded convergence. �	

Let us discuss some consequences of this result. Let be given u ∈ SM and
consider the exponential family p(t) = exp (tu − KM (tu)) · M , t ∈] − 1, 1[.
From Proposition 2 we get a sequence (fn)n∈N in C∞

c (Rn) and a bound h ∈
L(cosh−1) (M) such that fn → u point-wise and |fn| , |u| ≤ h. As SM is open
and contains 0, we have αh ∈ SM for some 0 < α < 1. For each t ∈] − α, α[,
exp (tfn) → exp (tu) point-wise and exp (tf) ≤ exp (αh) with EM [E (αh)] < ∞.
It follows that KM (tfn) → K(tu), so that we have the point-wise convergence
of the density pn(t) = exp (tfn − KM (tfn)) · M to the density p(t). By Scheffé’s
lemma, the convergence holds in L1(Rn). In particular, for each φ ∈ C∞

c (Rn),
we have the convergence∫

∂iφ(x)pn(x; t) dx →
∫

∂iφ(x)p(x; t) dx, n → ∞.

for all t small enough. By computing the derivatives, we have∫
∂iφ(x)pn(x; t) dx = −

∫
φ(x)∂i

(
etfn(x)−KM (tfn)M(x)

)
dx =

∫
φ(x) (xi − t∂ifn(x)) pn(x; t) dx,

that is,
(Xi − t∂ifn) pn(t) → −∂ip(t)

in the sense of (Schwartz) distributions. It would be of interest to discuss the
possibility of the stronger convergence of pn(t) in L(cosh−1)∗ (M), but we do
follow this development here.

The norm convergence of the point-wise bounded approximation will not hold
in general. Consider the following example. The function f(x) = |x|2 belongs in
L(cosh−1) (M), but for the tails fR(x) = (|x| > R) |x|2 we have∫

(cosh −1)(ε−1fR(x)) M(x)dx ≥ 1
2

∫
|x|>R

eε−1|x|2 M(x)dx = +∞, if ε ≤ 2,
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hence there is no convergence to 0. However, the truncation of f(x) = |x| does
converge. This, together with Proposition 2, suggests the following variation of
the classical definition of Orlicz class.

Definition 1. The exponential class, C
(cosh−1)
c (M), is the closure of C∞

c (Rn)
in the space L(cosh−1) (M).

Proposition 3. Assume f ∈ L(cosh−1) (M) and write fR(x) = f(x)(|x| > R).
The following conditions are equivalent:

1. The real function ρ �→ ∫
(cosh −1)(ρf(x)) M(x)dx is finite for all ρ > 0.

2. f is the limit in L(cosh−1) (M)-norm of a sequence of bounded functions.
3. f ∈ C

(cosh−1)
c (M).

Proof. (1) ⇔ (2) This is well known, but we give a proof for sake of clarity. We can
assume f ≥ 0 and consider the sequence of bounded functions fn = f ∧ n,
n = 1, 2, . . . . We have for all ρ > 0 that limn→∞(cosh −1)(ρ(f − fn)) = 0
point-wise and (cosh −1)(ρ(f−fn))M ≤ (cosh −1)(ρ(f)M which is integrable
by assumption. Hence

0 ≤ lim sup
n→∞

∫
(cosh −1)(ρ(f(x) − fn(x)))M(x) dx ≤

∫
lim sup

n→∞
(cosh −1)(ρ(f(x) − fn(x)))M(x) dx = 0,

which in turn implies limn→∞ ‖f − fn‖L(cosh −1)(M) = 0. Conversely, observe
first that we have from the convexity of (cosh −1) that

2(cosh −1)(ρ(x + y)) ≤ (cosh −1)(2ρx) + (cosh −1)(2ρy).

It follows that, for all ρ > 0 and n = 1, 2, . . . , we have

2
∫

(cosh −1)(ρf(x))M(x) dx ≤
∫

(cosh −1)(2ρ(f(x) − fn(x)))M(x) dx +
∫

(cosh −1)(2ρfn(x))M(x) dx,

where the lim supn→∞ of the first term of the RHS is bounded by 1 because
of the assumption of strong convergence, while the second term is bounded
by (cosh −1)(2ρn). Hence the LHS is finite for all ρ > 0.
(2) ⇒ (3) Assume first f bounded and use Proposition 2 to find a point-wise
approximation fn ∈ C0(Rn), n ∈ N, of f together with a dominating function
|fn(x)| ≤ h(x), h ∈ L(cosh−1) (M). As f is actually bounded, we can assume
h to be equal to the constant bounding f . We have limn→∞(cosh −1)(ρ(f −
fn)) = 0 point-wise, and (cosh −1)(ρ(f − fn)) ≤ (cosh −1)(2ρh). By domi-
nated convergence we have limn→∞

∫
(cosh −1)(ρ(f(x)−fn(x)))M(x) dx = 0

for all ρ > 0, which implies the convergence limn→∞ ‖f − fn‖L(cosh −1)(M) = 0.
Because of (2), we have the desired result.
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(3) ⇒ (2) Obvious from Cc (Rn) ⊂ L∞(M). �	
We discuss now properties of translation operators in a form adapted to the

exponential space L(cosh−1) (M). Define τhf(x) = f(x − h), h ∈ R
n.

Proposition 4 (Translation by a vector)

1. For each h ∈ R
n, the mapping f �→ τhf is linear from L(cosh−1) (M) to itself

and ‖τhf‖L(cosh −1)(M) ≤ 2 ‖f‖L(cosh −1)(M) if |h| ≤ √
log 2.

2. The transpose of τh is defined on L(cosh−1)∗ (M) by 〈τhf, g〉M = 〈f, τ∗
hg〉M ,

f ∈ L(cosh−1) (M), and is given by τ∗
hg(x) = e−h·x+|h|2/2τ−hg(x). For the dual

norm, the bound ‖τ∗
hg‖L(cosh −1)(M)∗ ≤ 2 ‖g‖L(cosh −1)(M)∗ holds if |h| ≤ √

log 2.

3. If f ∈ C
(cosh−1)
c (M) then τhf ∈ C

(cosh−1)
c (M), h ∈ R

n and the mapping
R

n : h �→ τhf is continuous in L(cosh−1) (M).

Proof. 1. Let us first prove that τhf ∈ L(cosh−1) (M). It is enough to consider
the case ‖f‖L(cosh −1)(M) ≤ 1. For each ρ > 0, with Φ = cosh −1, we have

∫
Φ(ρτhf(x)) M(x)dx = e− 1

2 |h|2
∫

e−z·hΦ(ρf(z)) M(z)dz,

hence, using the elementary inequality Φ(u)2 ≤ Φ(2u)/2, we obtain∫
Φ(ρτhf(x)) M(x)dx ≤

e− 1
2 |h|2

(∫
e−2z·h M(z)dz

) 1
2

(∫
Φ2(ρf(z)) M(z)dz

) 1
2

≤

1√
2
e

|h|2
2

(∫
Φ(2ρf(z))M(z) dz

) 1
2

.

Take ρ = 1/2 to get EM

[
Φ

(
τh

1
2f(x)

)] ≤ e
|h|2
2 /

√
2, which in particular

implies f ∈ L(cosh−1) (M). Moreover, ‖τhf‖L(cosh −1)(M) ≤ 2 if e
|h|2
2 ≤ √

2.
2. The computation of τ∗

h is

〈τhf, g〉M =
∫

f(x − h)g(x) M(x)dx =
∫

f(x)g(x + h)M(x + h) dx

=
∫

f(x)e−h·x− |h|2
2 τ−hg(x) M(x)dx = 〈f, τ∗

hg〉M .

If |h| ≤ √
log 2,

‖τ∗
hg‖(L(cosh −1)(M))∗ = sup

{
〈τhf, g〉M

∣∣∣‖f‖L(cosh −1)(M) ≤ 1
}

≤

sup
{

‖τhf‖L(cosh −1)(M) ‖g‖(L(cosh −1)(M))∗

∣∣∣‖f‖L(cosh −1)(M) ≤ 1
}

≤
2 ‖g‖(L(cosh −1)(M))∗ .
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3. For each ρ > 0 we have found that

EM [Φ(ρτhf)] ≤ 1√
2
e

|h|2
2

(∫
Φ(2ρf(z))M(z) dz

) 1
2

where the right-end-side if finite for all ρ if f ∈ C
(cosh−1)
c (M). It follows that

τhf ∈ C
(cosh−1)
c (M). Recall that f ∈ Cc (Rn), implies τhf ∈ Cc (Rn) and

limh→0 τhf = f in the uniform topology. Let fn be a sequence in Cc (Rn)
that converges to f in L(cosh−1) (M)-norm. Let |h| ≤ √

log 2 and let A be
positive and Φ(A) = 1.

‖τhf − f‖L(cosh −1)(M) =

‖τh(f − fn) + (τhfn − fn) − (f − fn)‖L(cosh −1)(M) ≤
‖τh(f − fn)‖L(cosh −1)(M) + ‖τhfn − fn‖L(cosh −1)(M) + ‖f − fn‖L(cosh −1)(M) ≤

2 ‖f − fn‖L(cosh −1)(M) + A−1 ‖τhfn − fn‖∞ + ‖f − fn‖L(cosh −1)(M) ≤
3 ‖f − fn‖L(cosh −1)(M) + A−1 ‖τhfn − fn‖∞ ,

which implies the desired limit at 0. The continuity at a generic point follows
from the continuity at 0 and the semigroup property,

lim
k→h

‖τkf − τhf‖L(cosh −1)(M) = lim
k−h→0

‖τk−h(τhf) − τhf‖L(cosh −1)(M) = 0.

�	
We conclude by giving, without proof, the corresponding result for a trans-

lation by a probability measure μ, namely τμf(x) =
∫

f(x− y)μ(dy). We denote
by Pe the set of probability measures μ such that h �→ e

1
2 |h|2 is integrable for

example, μ could be a normal with variance σ2I and σ2 < 1, or μ could have a
bounded support.

Proposition 5 (Translation by a probability). Let μ ∈ Pe

1. The mapping f �→ τμf is linear and bounded from L(cosh−1) (M) to itself. If,
moreover,

∫
e|h|2/2 μ(dh) ≤ √

2, then its norm is bounded by 2.
2. If f ∈ C

(cosh−1)
c (M) then τμf ∈ C

(cosh−1)
c (M). The mapping Pe : μ �→ τμf

is continuous at δ0 from the weak convergence to the L(cosh−1) (M) norm.

We can use the previous proposition to show the existence of sequences of
mollifiers. A bump function is a non-negative function ω in C∞

c (Rn) such that∫
ω(x) dx = 1. It follows that

∫
λ−nω(λ−1x) dx = 1, λ > 0 and the family of

mollifiers ωλ(dx) = λ−nω(λ−1x)dx converges weakly to the Dirac mass at 0 as
λ ↓ 0, so that for all f ∈ C

(cosh−1)
c (M), the translations τωλ

f ∈ C∞
c (Rn) and

convergence to f in L(cosh−1) (M) holds for λ → 0.
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3 Conclusions

We have discussed the density for the bounded point-wise convergence of
the space of smooth functions C∞

c (Rn) in the exponential Orlicz space with
Gaussian weight L(cosh−1) (M). The exponential Orlicz class C

(cosh−1)
c (M) has

been defined as the norm closure of the space of smooth functions. The continuity
of translations holds in the latter space.

The continuity of translation is the first step in the study of differentiabil-
ity in the exponential Gauss-Orlicz space. The aim is to apply non-parametric
exponential models to the study of Hyvärinen divergence [4,5] and the projection
problem for evolution equations [1,2]. A preliminary version of the Gauss-Orlicz-
Sobolev theory has been published in the second part of [5].
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Abstract. Results on mixture and exponential connections by open arcs
are revised and used to prove additional duality properties of statistical
models.

Keywords: Exponential models · Mixture models · Orlicz spaces ·
Kullback-Leibler divergence · Dual systems

1 Introduction

In this paper we review some results on mixture and exponential connections by
arc and their relation to Orlicz spaces. These results are essentially contained in
our previous works, as well as in papers by Pistone and different coauthors.

We use some of them in order to prove a new theorem concerning the dual-
ity between statistical exponential models and Lebesgue spaces. Moreover, the
notions of connection by mixture and exponential arcs, as well as divergence
finiteness between two densities, are presented here in a unified framework.

The geometry of statistical models started with the paper of Rao [12] and
has been described in its modern formulation by Amari [1,2] and Amari and
Nagaoka [3]. Until the nineties, the theory was developed only in the parametric
case. The first rigorous infinite dimensional extension has been formulated by
Pistone and Sempi [11]. In that paper, using the Orlicz space associated to an
exponentially growing Young function, the set of positive densities is endowed
with a structure of exponential Banach manifold.

More recently, different authors have generalized this structure replacing the
exponential function with a new class of functions, called deformed exponentials
(see, e.g., Vigelis and Cavalcante [16]). However, the connection to open arcs has
not been investigated yet.

The geometry of nonparametric exponential models and its analytical proper-
ties in the topology of Orlicz spaces have been also studied in subsequent works,
such as Cena and Pistone [6] and Santacroce, Siri and Trivellato [14,15], among
others.

In the exponential framework, the starting point is the notion of maximal
exponential model centered at a given positive density p, introduced by Pistone

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 577–584, 2017.
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and Sempi [11]. One of the main result in Cena and Pistone [6] states that any
density belonging to the maximal exponential model centered at p is connected
by an open exponential arc to p and viceversa (by open, we essentially mean
that the two densities are not the extremal points of the arc). Further upgrades
of these statements have been proved in Santacroce, Siri and Trivellato [14,15].
In [14], the equivalence between the equality of the maximal exponential models
centered at two (connected) densities p and q and the equality of the Orlicz spaces
referred to the same densities is proved. In [15], another additional equivalent
condition, involving transport mappings, is given. Moreover, in the last paper,
it is also shown that exponential connection by arc is stable with respect to
projections and that projected densities belong to suitable sub-models.

The manifold setting of exponential models, introduced in Pistone and Sempi
[11], turns out to be well-suited for applications in physics as some recent papers
show (see, e.g., Lods and Pistone [9]). On the other hand, statistical exponen-
tial models built on Orlicz spaces have been exploited in several fields, such as
differential geometry, algebraic statistics, information theory and, very recently,
in mathematical finance (see Santacroce, Siri and Trivellato [15]).

In a large branch of mathematical finance convex duality is strongly used to
tackle portfolio optimization problems. In particular, the duality between Orlicz
spaces has been receiving a growing attention (see [4] among the others). In the
last section of this paper we prove a general duality result involving the vector
space generated by the maximal exponential model which could be well suited
for a financial framework.

2 Mixture and Exponential Arcs

Let (X ,F , μ) be a fixed probability space and denote with P the set of all
densities which are positive μ-a.s. and with Ep the expectation with respect to
pdμ, for each fixed p ∈ P.

Let us consider the Young function Φ1(x) = cosh(x) − 1, equivalent to the
more commonly used Φ2(x) = e|x| − |x| − 1.
Its conjugate function is Ψ1(y) =

∫ y

0
sinh−1(t)dt, which, in its turn, is equivalent

to Ψ2(y) = (1 + |y|) log(1 + |y|) − |y|.
Given p ∈ P, we consider the Orlicz space associated to Φ1, defined by

LΦ1(p) = {u measurable : ∃ α > 0 s.t. Ep(Φ1(αu)) < +∞} . (1)

Recall that LΦ1(p) is a Banach space when endowed with the Luxembourg norm

‖u‖Φ1,p = inf
{

k > 0 : Ep

(
Φ1

(u

k

))
≤ 1

}
. (2)

Finally, it is worth to note the following chain of inclusions:

L∞(p) ⊆ LΦ1(p) ⊆ La(p) ⊆ Lψ1(p) ⊆ L1(p), a > 1.
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Definition 1. p, q ∈ P are connected by an open exponential arc if there exists
an open interval I ⊃ [0, 1] such that one the following equivalent relations is
satisfied:

1. p(θ) ∝ p(1−θ)qθ ∈ P, ∀θ ∈ I;
2. p(θ) ∝ eθup ∈ P, ∀θ ∈ I, where u ∈ LΦ1(p) and p(0) = p, p(1) = q.

Observe that connection by open exponential arcs is an equivalence relation.
Let us consider the cumulant generating functional map defined on LΦ1

0 (p) =
{u ∈ LΦ1(p) : Ep(u) = 0}, by the relation Kp(u) = logEp(eu). We recall from
Pistone and Sempi [11] that Kp is a positive convex and lower semicontinuous
function, vanishing at zero, and that the interior of its proper domain, denoted

here by
◦

dom Kp, is a non empty convex set.
For every density p ∈ P, we define the maximal exponential model at p as

E(p) =
{

q = eu−Kp(u)p : u ∈
◦

dom Kp

}

⊆ P. (3)

We now state one of the central results of [6,14,15], which gives equivalent
conditions to open exponential connection by arcs, in a complete version, con-
taining all the recent improvements.

Theorem 1. (Portmanteau Theorem)
Let p, q ∈ P. The following statements are equivalent.

(i) q ∈ E(p);
(ii) q is connected to p by an open exponential arc;
(iii) E(p) = E(q);
(iv) log q

p ∈ LΦ1(p) ∩ LΦ1(q);
(v) LΦ1(p) = LΦ1(q);
(vi) q

p ∈ L1+ε(p) and p
q ∈ L1+ε(q), for some ε > 0;

(vii) the mixture transport mapping

m
U

q
p : LΨ1(p) −→ LΨ1(q) (4)

v → p

q
v

is an isomorphism of Banach spaces.

The equivalence of conditions (i) ÷ (iv) is proved in Cena and Pistone [6].
Statements (v) and (vi) have been added by Santacroce, Siri and Trivellato [14],
while statement (vii) by Santacroce, Siri and Trivellato [15]. It is worth noting
that, among all conditions of Portmanteau Theorem, (v) and (vi) are the most
useful from a practical point of view: the first one allows to switch from one
Orlicz space to the other at one’s convenience, while the second one permits to
work with Lebesgue spaces. On the other hand condition (vii), involving the
mixture transport mapping, could be a useful tool in physics applications of
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exponential models, as the recent research on the subject demonstrates (see, e.g.
Pistone [10], Lods and Pistone [9], Brigo and Pistone [5]). In these applications,
finiteness of Kullback-Leibler divergence, implied from Portmanteau Theorem,
is a desirable property.

Corollary 1. If q ∈ E(p), then the Kullback-Leibler divergences D(q‖p) and
D(p‖q) are both finite.

The converse of this corollary does not hold, as the counterexamples in
Santacroce, Siri and Trivellato [14,15] show.

In the following we introduce mixture connection between densities and study
its relation with exponential arcs.

Definition 2. We say that two densities p, q ∈ P are connected by an open
mixture arc if there exists an open interval I ⊃ [0, 1] such that p(θ) = (1−θ)p+θq
belongs to P, for every θ ∈ I.

The connection by open mixture arcs is an equivalence relation as well as in
the exponential case.

Given p ∈ P, we denote by M(p) the set of all densities q ∈ P which are
connected to p by an open mixture arc.

Theorem 2. Let p, q ∈ P. The following statements are equivalent.

(i) q ∈ M(p);
(ii) M(p) = M(q);
(iii) q

p , p
q ∈ L∞.

The previous theorem is the counterpart of Portmanteau Theorem for open
mixture arcs (Santacroce, Siri and Trivellato [14]).

From Theorems 1 and 2, it immediately follows that M(p) ⊆ E(p), while,
in general, the other inclusion does not hold. A counterexample is given in
Santacroce, Siri and Trivellato [14].

Moreover, in the same paper E(p) and M(p) are proved to be convex.
The following proposition restates some of the previous results concerning

densities either connected by open mixture or exponential arcs or with finite rel-
ative divergence. Assuming a different perspective, a new condition is expressed
in term of the ratios q

p and p
q which have to belong to L∞ or to its closure with

respect to a suitable topology.

Proposition 1. Let p, q ∈ P. The following statements are true.

(i) q ∈ M(p) if and only if q
p , p

q ∈ L∞;

(ii) q ∈ E(p) if and only if q
p ∈ L1+ε(p) = L∞ Φ1+ε,p

and p
q ∈ L1+ε(q) =

L∞ Φ1+ε,q
, for some ε > 0, where Φ1+ε(x) = x1+ε;

(iii) D(q‖p) < +∞ and D(p‖q) < +∞ if and only if q
p ∈ LΨ1(p) = L∞ Ψ1,p

and
p
q ∈ LΨ1(q) = L∞ Ψ1,q

.
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Proof. Since (i) and (ii) have been already discussed, we consider only condition
(iii). To prove it, we just need to observe that D(q‖p) < +∞ if and only if
q
p ∈ LΨ1(p) (Cena and Pistone [6]) and, that simple functions are dense in
LΨ1(p) (Rao and Ren [13]).

The next theorem states a closure result concerning densities belonging to
the open mixture model.

Theorem 3. For any p ∈ P the open mixture model M(p) is L1(μ)-dense in
the non negative densities P≥, that is M(p) = P≥, where the overline denotes
the closure in the L1(μ)-topology.

(See Santacroce, Siri and Trivellato [14] for the proof.)

Remark 1. Since M(p) ⊆ E(p), we immediately deduce that also E(p) is L1(μ)-
dense in P≥. The last result was already proved, by different arguments, in
Imparato and Trivellato [8].

As a consequence, the positive densities with finite Kullback-Leibler diver-
gence with respect to any p ∈ P is L1(μ)-dense in the set of all densities P≥.
This also corresponds to the choice ϕ(x) = x(log(x))+ in the following result,
proved in [14].

Proposition 2. Assume ϕ : (0,+∞) → (0,+∞) is a continuous function. Then
the set

Pϕ =
{

q ∈ P : Ep

(

ϕ

(
q

p

))

< +∞
}

is L1(μ)-dense in P≥.

3 Dual Systems

In this paragraph we show a new duality result concerning the linear space
generated by the maximal exponential model.

Let p ∈ P and define

U = ∩
q∈E(p)

L1(q), V = Lin{E(p)}.

Proposition 3. It holds

(i) LΦ1(p) ⊆ U
(ii) V ⊆ pLΨ1(p).

Proof. In order to prove (i) it is sufficient to observe that if u ∈ LΦ1(p), by (v)
of Portmanteau Theorem, u ∈ LΦ1(q) ⊆ L1(q) for any q ∈ E(p). With regard
to (ii), we consider v ∈ V . Since v =

∑

i∈F

αiqi, with F a finite set, αi ∈ R and

qi ∈ E(p), we have that
v

p
=

∑

i∈F

αi
qi

p
.

From Corollary 1 and of Proposition 1 (iii) we get qi

p ∈ LΨ1(p) and the conclusion
follows.
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The next result is our main contribution and shows that U and V are dual
spaces with the duality given by the bilinear map (u, v) → 〈u, v〉 = Eμ(uv) and
that the dual system is separated in both U and V (see Grothendieck [7] for a
standard reference on general dual systems). Therefore, if we endow U and V
with the weak topologies σ(U, V ) and σ(V,U), respectively, they become locally
convex Hausdorff topological vector spaces.

Theorem 4. The map

〈·, ·〉 : U×V −→ R

(u,v) −→ 〈u, v〉 = Eμ(uv)

is a well-defined bilinear form. Moreover, the two separation axioms are satisfied

(a.1) 〈u, v〉 = 0 ∀u ∈ U =⇒ v = 0 μ-a.s.
(a.2) 〈u, v〉 = 0 ∀v ∈ V =⇒ u = 0 μ-a.s..

Proof. The map 〈·, ·〉 is clearly well-defined by the definitions of U and V , and
its bilinearity trivially follows from the linearity of the expectation.

We first show statement (a.1) holds. We consider v ∈ V such that 〈u, v〉 = 0
∀u ∈ U . Since, ∀A ∈ F , 11A ∈ U , we immediately get 〈11A, v〉 = Eμ(11Av) = 0
and, therefore, v = 0, μ-a.s..
With regard to statement (a.2), let us suppose u ∈ U such that 〈u, v〉 = 0
∀v ∈ V . By definition (3) of maximal exponential model, if v ∈ E(p), then

v = ew−Kp(w)p, with w ∈
◦

dom Kp, from which 〈u, v〉 = e−Kp(w)
Ep(uew).

Then the hypothesis, restricted to E(p), becomes

Ep(uew) = 0, ∀w ∈
◦

dom Kp, (5)

from which we will deduce u = 0 μ-a.s..
In order to do this, we define A = {u > 0}, which we suppose not negligible,

without loss of generality. Let w̄ = c11A+d11Ac where the two constants c �= d are

chosen in order to have Ep(w̄) = 0. We check now that ±w̄ belong to
◦

dom Kp,
which is equivalent to ±w̄ belong to LΦ1

0 (p) and Ep(e(1+ε)(±w̄)) < +∞ for some
ε > 0.

In fact, it holds the stronger result

Ep(eαw̄) = eαc

∫

A

pdμ + eαd

∫

Ac

pdμ < +∞,

for any α ∈ R.
From condition (5) applied to w̄, that is Ep(uew̄) = 0, we deduce that
Ep(u11Ac) = −ed−c

Ep(u11A).
Similarly, from Ep(ue−w̄) = 0, we have that Ep(u11Ac) = −ec−d

Ep(u11A).
Since c �= d, it follows that Ep(u11A) = Ep(u11Ac) = 0 and, therefore, u = 0

μ-a.s..
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Remark 2. Note that E(p) is obviously contained in V ∩ P. The next example
shows that the inclusion is strict.

Example 1. Let X = (2,∞), endowed with the probability measure μ whose
Radon-Nikodym derivative with respect to the Lebesgue measure is 1

kx(log x)2

(k > 0 normalizing constant).
Define the densities p, q1 and q2 ∈ P where q1(x) = p(x) = 1 and q2(x) = x−1

cx
(c > 0 normalizing constant).

Since

Ep(q1+ε
2 ) = Eμ(q1+ε

2 ) =
∫ ∞

2

(
x − 1
cx

)1+ε 1
kx(log x)2

dx < ∞

and

Ep(q−ε
2 ) = Eμ(q−ε

2 ) =
∫ ∞

2

(
cx

x − 1

)ε 1
kx(log x)2

dx < ∞

we deduce that q2 ∈ E(p).
Define now q ∈ V by

q(x) :=
1

1 − c
q1(x) +

c

c − 1
q2(x) =

1
1 − c

+
c

c − 1
x − 1
cx

=
1

(1 − c)x
, ∀x ∈ X .

Let us observe that

c =
∫ ∞

2

x − 1
x

dμ(x) =
∫ ∞

2

x − 1
kx2(log x)2

dx = 1 −
∫ ∞

2

1
kx2(log x)2

dx,

which implies c ∈ (0, 1) and thus q > 0. Since 1/(1 − c) + c/(c − 1) = 1, we
immediately get q ∈ P.

On the other hand, since for every ε > 0, we get

Ep(q−ε) = Eμ(q−ε) = (1 − c)ε

∫ ∞

2

xε

kx(log x)2
dx = ∞,

we infer that q �∈ E(p).

4 Conclusions

In the paper, we review several results contained in our previous works, some-
times presenting them under different perspectives. We prove an original result
in Theorem 4, where a duality is stated between the intersection of L1(q), when
q ranges in a maximal exponential model, and the linear space generated by the
exponential model itself. The search for dual systems represents the preliminary
step to formulate minimax results, which are fundamental instruments for solv-
ing utility maximization problems through convex analysis. Thus, the duality
of Theorem 4 could be used in portfolio optimization when allowing for more
general set of strategies than the ones considered in the literature.
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Abstract. For data with non-Euclidean geometric structure, hypothesis
testing is challenging because most statistical tools, for example principal
component analysis (PCA), are specific for linear data with a Euclidean
structure. In the last 15 years, the subject has advanced through the
emerging development of central limit theorems, first for generalizations
of means, then also for geodesics and more generally for lower dimen-
sional subspaces. Notably, there are data spaces, even geometrically very
benign, such as the torus, where this approach is statistically not feasible,
unless the geometry is changed, to that of a sphere, say. This geometry is
statistically so benign that nestedness of Euclidean PCA, which is usu-
ally not given for the above general approaches, is also naturally given
through principal nested great spheres (PNGS) and even more flexible
than Euclidean PCA through principal nested (small) spheres (PNS). In
this contribution we illustrate applications of bootstrap two-sample tests
for the torus and its higher dimensional generalizations, polyspheres.

1 Introduction

For the characterization of complex biological and medical data, non-Euclidean
spaces often present the only satisfactory representation, say, for shape and
multi-directional information, which often play crucial roles in biological and
medical applications. As computation power surges, such data spaces have moved
into the scope of statistical analysis in recent years. We will concentrate here
on tori of arbitrary dimension and products of hyperspheres of any dimensions,
which we call polyspheres. Polyspheres occur in shape description by skeletal
representations (S-reps), cf. [10], while RNA backbones described by dihedral
angles are represented in torus data spaces [2].

Determining differences of populations at given confidence level based on
empirical quantities of two samples lies at the heart of statistics. A typical sta-
tistic by which one may distinguish two data sets is their mean value, but also
their variances, and in multivariate statistics covariances play a crucial part. In
this context, in the case of a Euclidean data space, principal component analysis
(PCA) has proven to be a valuable tool. However, for data on non-Euclidean
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spaces, like shape data or directional data, PCA is not applicable, as it relies on
the linearity of the underlying data space.

The very obvious approach to data on non-Euclidean manifolds consists of
applying linear statistics to a tangent space projection at a sample mean, via
the exponential map, say. However, such an approach disregards topology and
curvature, for tori and polyspheres, say, and may lead to a misrepresentation
of data variance. To preserve geometry and topology, approaches relying on
geodesics, like geodesic [4,5] and horizontal PCA [11], were developed. However,
like the intrinsic mean, also principal geodesics may fail to lie close to the data.
As an alternative that aims at higher data fidelity, backward nested families
of descriptors (BNFD) have been established. A prime example are principal
nested spheres (PNS) proposed by [8]. Recently, we have established asymptotics
of general nested descriptors in [7].

In polyspheres and tori, also the above presented intrinsic approaches face
severe problems, because almost all geodesics wind around indefinitely, so that
geodesic-based PCA-like methods approximate any data arbitrarily well. And the
very low-dimensional symmetry group allows only for a low dimensional back-
ward nested approach (cf. discussion in [6]). To overcome these limitations, we
have introduced a deformation method for polyspheres in [1] and more recently
have detailed the intricacies of a similar deformation method for tori in [2].

These deformation methods deform polyspheres and tori into a single high
dimensional sphere which naturally comes with an even richer set of canonical
subspaces than Euclidean PCA. While PNS was originally proposed for dimen-
sion reduction for skeletal representations, where it was only applied to the
individual spheres of the polysphere, we apply PNS to entire high dimensional
polyspheres, after deformation. Relying on the asymptotic theory and the two-
sample test proposed in [7], we perform two-sample tests in the setting of PNS
on deformed polyspheres in application to S-reps discrimination and on tori in
application to RNA discrimination.

2 Theoretical Framework

2.1 Principal Nested Spheres as Backward Nested Subspaces

We begin by demonstrating that principal nested great spheres (PNGS) as pre-
sented in [8] fit the setting of BNFDs as introduced in [7].

The data space of PNGS is Q = S
D. The parameter spaces are Grassmanni-

ans, where O(m,n) denote Stiefel manifolds and O(n) the orthogonal group

Pj = Gr(j + 1,D + 1) = O(D − j,D + 1)/O(D − j)
= O(D + 1)/(O(D − j) × O(j + 1))

because a j-dimensional subsphere of Sj ⊂ S
D ⊂ R

D+1 is defined by intersecting
with a j + 1-dimensional linear subspace R

j+1 ⊂ R
D+1 and the space of these

linear subspaces is precisely the Grassmannian.
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For any pj = [v] ∈ Pj using any representative v ∈ O(D−j,D+1), we define

Spj :=
{
[v′] = [v, vD−j+1]

∣
∣vT vD−j+1 = 0

} ⊂ Pj−1 .

Further, for any pj−1 = [v′] ∈ Spj with any representative v′ ∈ O(D+1−j,D+1)
we define a map, using the vector y ∈ R

D+1 for y ∈ pj ⊂ S
D ⊂ R

D+1

ρpj : pj × Sp → [0,∞) ρpj (y, pj−1) = arccos
(
yT (ID+1 − v′v′T )y

)
. (1)

Finally, we define projections using the above notation

πpj ,pj−1 : pj → pj−1, q �→ y =
(ID+1 − vD−j+1v

T
D−j+1)q

‖(ID+1 − vD−j+1vT
D−j+1)q‖

. (2)

For j ∈ {1, . . . , D − 2} a family

f = {pj , . . . , pD−1}, with pk−1 ∈ Spk , k = j + 1, . . . , D

is then a backward nested family of descriptors (BNFD) in the sense introduced
by [7] and the asymptotic theory is applicable correspondingly.

2.2 Sausage Transformation

We now explain the specific properties of the torus deformation which we intro-
duced in [2] in some detail. We rely on that publication for the following.

Let TD = (S1)×D be the D-dimensional unit torus and S
D = {x ∈ R

D+1 :
‖x‖ = 1} the D-dimensional unit sphere, D ∈ N. The definition of the deforma-
tion map P : TD −→ S

D defined in this section is based on comparing squared
Riemannian line elements. For ψk ∈ S

1, the squared line element of TD is given
by the squared Euclidean line element

ds2TD =
D∑

k=1

dψ2
k .

For SD, in polar coordinates φk ∈ (0, π) for k = 1, . . . , D−1 and φD ∈ S
1, whose

relation to embedding Euclidean coordinates xk is given by

x1 = cos φ1, ∀2 ≤ k ≤ D : xk =

⎛

⎝
k−1∏

j=1

sin φj

⎞

⎠ cos φk, xD+1 =

⎛

⎝
D∏

j=1

sin φj

⎞

⎠ ,

the spherical squared line element is given by

ds2
SD

= dφ2
1 +

D∑

k=2

⎛

⎝
k−1∏

j=1

sin2 φj

⎞

⎠ dφ2
k . (3)
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In fact, this squared line element is not defined for the full sphere since
φk ∈ (0, π) (k = 1, . . . , D − 1), i.e. the coordinate singularities of φk = 0, π
are excluded. Coordinate singularities appear because a hypersphere cannot be
covered by a single chart. In our construction, real singularities of P will coin-
cide with the coordinate singularities at φk = 0, π, resulting in a self-gluing as
explained below.

Following colloquial usage, we use the term distortion for the effects of defor-
mation in the following. The line element (3) features a factor

∏k−1
j=1 sin2 φj in

front of the squared line element dφ2
k. Thus, no distortion at all occurs for φ1, i.e.

distance along this angle corresponds directly to spherical distance. Conversely,
the distance along φD is distorted by all other angles. For this reason, we will
refer to φD as the innermost angle and to φ1 as the outermost angle in the
following. The amount of distortion can be qualitatively described as follows:

Remark 1. Near the equatorial great circle given by φk = π
2 (k = 1, . . . , D − 1)

the squared line element ds2 is nearly Euclidean. Distortions occur whenever
leaving the equatorial great circle. More precisely, distortions are higher when
angles φk with low values of the index k (outer angles) are close to zero or π,
than when angles φk with high values of the index k (inner angles) are close to
zero or π.

Definition 2 (Torus to Sphere Deformation). With a data-driven permu-
tation p of {1, . . . , D}, data-driven central angles μk (k = 1, . . . , D) and data-
driven scalings αk, all of which are described below, set

φk =
π

2
+ αp(k)(ψp(k) − μp(k)), k = 1, . . . , D (4)

where p(k) is the index k permuted by p and the difference (ψp(k) − μp(k)) is
taken modulo 2π such that it is in the range (−π, π].

For a thorough discussion of the free parameters, we refer to [2]. Here we
choose the scalings αk′ = 1 (k′ = 1, . . . , D − 1) and αD = 1, k′ = p(k). The
reference μk′ is chosen as follows. Let ψk′,gap the center of the largest gap between
neighboring ψk′ values of data points, then use its antipodal point μk′ = ψ∗

k′,gap.
The choice of the permutation pk is driven by analyses of the data spread

σ2
k =

n∑

i=1

(ψk,i − μk)2, k = 1, . . . , D (5)

for each angle, where ψk,i ∈ S
1 are the torus data and n is the number of

data points on TD. The angles are ordered by increasing data spread, such
that σ2

p(1) is minimal and σ2
p(D) is maximal. In view of Remark 1, the change

of distances between data points caused by the deformation factors sin2 φj in
Eq. (3) is minimized. Figure 1 illustrates the case D = 2.

In the following, we give a brief overview of the resulting deformation. Due
to periodicity on the torus, ψk = 0 is identified with ψk = 2π for all k =
1, . . . , D. In contrast, for all angles φk (k = 1, . . . , D − 1), φk = 0 denotes
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Fig. 1. Self-gluing of T 2: From a donut to a sausage. These operations are only
topological.

spherical locations different from φk = π. For a representation respecting the
torus’ topology, however, it is necessary to identify these locations accordingly.
Due to the spherical geometry, each of those regions is of dimension D − j − 1,
in which all angles vary except for j of the φ1, . . . , φD−1 which are set to fixed
values in {0, π}. In the topology of the torus, all those regions with a specific
choice of fixed angles are identified with one-another. In particular, there are
2(D − 1) such regions of highest dimension D − 2 on the sphere (where only one
angle is fixed to 0 or π), two of which are pairwise identified in the topology of
the torus. In fact, in the topology of the torus, each of these D − 1 regions of
highest dimension D−2 itself carries the topology of a torus of dimension D−2,
each glued to each other torus along a subtorus of dimension D − 3, and so on.
Thus the self-gluing of SD giving the topology of TD can be iteratively achieved
along a topological subsphere of dimension D − 2 which is suitably divided into
2(D − 1) regions that are pairwise identified by way of a torus, sharing common
boundaries which correspond to lower dimensional tori.

3 Applications

We apply the two-sample test put forth in [7] in two examples. The first example
compares two data sets of S-reps by applying PNGS on a deformed polysphere.
The second example is a cross-test between four RNA data sets, two tRNA
samples and two rRNA samples, where we apply PNGS on a deformed torus.

3.1 Discriminating S-Reps

The two S-rep data sets we compare are data sets of a toy model S-rep from [9],
each consisting of 66 spokes of unit length. Sample I corresponds to shapes of an
ellipsoid which is bent along its longest axis. Sample II corresponds to shapes of
an ellipsoid which is bent along and twisted around its longest axis. Since the
polysphere is mapped to an S

132 but either of the two samples only consists of
30 data, we proceed as follows.

The samples are pooled and mapped jointly to an S
132 using the deformation

outlined in our earlier work [1], then we perform PNGS until we are left with
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Fig. 2. S2 PNGS projections of the two S-rep samples compared here with PNGS S
1.

The PNGS up to S
5 was done jointly for the data sets and from that point PNGS was

conducted separately.

30 + 30 data points on an S
5. Finally, we apply our hypothesis test to PNGS on

the two data sets.
As determined in earlier work [1], the data variation is essentially at most

two-dimensional for these samples. Therefore, we focus on the comparison of the
subspaces up to dimension d = 2. The test clearly rejects with a p-value below
the accuracy of 10−3 for the nested mean. The p-value for the S

1 is 0.644 and
the value for the S

2 is 1.0, so these tests clearly do not reject.
The fact that the test does not reject for the S

2 suggests that the two-
dimensional projections of the S-rep data after deformation are compatible. The
S
1 fit for Sample II has very large variance, therefore the test does not reject.

The test for the nested mean rejects with 99% confidence and thus shows that
the two samples can clearly be distinguished.

3.2 Discriminating RNA

The RNA data sets we consider are sets of geometries of single residues which
are characterized in terms of 7 dihedral angles as displayed in Fig. 3.

The data sets considered here are subsets of the data set of 7544 residue
backbones used in [2,12]. We remove residues further than 50◦ in torus distance
from their nearest neighbor as outliers, leading to a set of 7544 residues. From
these we then pick the 1105 residues from tRNA structures and the 3989 residues
stemming from the two large rRNA data sets (with PDB codes 1s72 and 1xmq).
We jointly map all these data from T 7 to S

7 as elaborated above in Sect. 2. From
either of the two data sets on S

7 we then sample two disjoint random subsets of
500 residues each. We call these samples tRNA1, tRNA2, rRNA1, and rRNA2,
and we apply a PNGS hypothesis test on each pair of samples.
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Fig. 3. Part of an RNA backbone. Dihedral angles (Greek letters) are defined by three
bonds, the central bond carries the label; pseudo-torsion angles (bold Greek letters)
are defined by the pseudo-bonds between bold printed atoms (Fig. 3b). The subscript
“−” denotes angles of the neighboring residue. Figure 3a is reproduced from [3].

Table 1. Bootstrap PNGS p-values for pairs of similar samples. These tests are used
as control. We use B = 1000 bootstrap samples for all tests.

Dimension 0 1 2 3 4 5 6

tRNA1 vs tRNA2 0.168 1.0 1.0 1.0 0.969 0.544 0.5

rRNA1 vs rRNA2 0.668 1.0 1.0 1.0 0.628 0.280 0.838

Table 2. Bootstrap PNGS p-values for pairs of different samples. These tests distin-
guish rRNA from tRNA. We use B = 1000 bootstrap samples for all tests.

Dimension 0 1 2 3 4 5 6

tRNA1 vs rRNA1 0.003 1.0 0.932 0.999 0.134 0.008 0.070

tRNA1 vs rRNA2 0.001 1.0 0.690 0.537 0.267 0.048 0.021

tRNA2 vs rRNA1 < 0.001 1.0 1.0 0.985 0.405 0.007 0.415

tRNA2 vs rRNA2 < 0.001 0.999 0.999 0.378 0.244 0.029 0.377

The tRNAs are short chains with similar shapes, while the large ribosomal
complexes have a much more varied structure. As a consequence, we expect
tRNAs and rRNAs to feature different distributions of residue geometries. Fur-
thermore, we certainly expect visible differences in nested means. We therefore
focus on the nested mean p-values, although we list all p-values for completeness
in Tables 1 and 2.

The test results clearly conform with our expectation. The control tests dis-
played in Table 1 do not reject, which is expected for two random samples from a
larger common set. However, the null hypothesis of equal nested mean is always
rejected at 99% confidence level for the tests displayed in Table 2. This shows
that rRNA and tRNA feature different distributions of residue geometries.

The development of dimension reduction methods for RNA backbone shapes
is crucial for improving backbone fits to X-ray spectroscopy data. To improve
fits it is important to know which structural elements prevail for which types
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of RNA structures. Our torus-PCA presented here, applied to RNA structures,
provides a tool towards classification of structures on the smallest scale of a
single residue and our two-sample test allows uncovering significant differences
in different types of structures.

References

1. Eltzner, B., Jung, S., Huckemann, S.: Dimension reduction on polyspheres with
application to skeletal representations. In: Nielsen, F., Barbaresco, F. (eds.)
GSI 2015. LNCS, vol. 9389, pp. 22–29. Springer, Cham (2015). doi:10.1007/
978-3-319-25040-3 3

2. Eltzner, B., Huckemann, S.F., Mardia, K.V.: Deformed torus PCA with applica-
tions to RNA structure (2015). arXiv:1511.04993

3. Frellsen, J., Moltke, I., Thiim, M., Mardia, K.V., Ferkinghoff-Borg, J., Hamelryck,
T.: A probabilistic model of RNA conformational space. PLoS Comput. Biol. 5(6),
e1000406 (2009)

4. Huckemann, S., Hotz, T., Munk, A.: Intrinsic shape analysis: Geodesic principal
component analysis for Riemannian manifolds modulo Lie group actions (with
discussion). Stat. Sin. 20(1), 1–100 (2010)

5. Huckemann, S., Ziezold, H.: Principal component analysis for Riemannian mani-
folds with an application to triangular shape spaces. Adv. Appl. Probab. (SGSA)
38(2), 299–319 (2006)

6. Huckemann, S.F., Eltzner, B.: Polysphere PCA with applications. In: Proceedings
of the 33th LASR Workshop, pp. 51–55. Leeds University Press (2015). http://
www1.maths.leeds.ac.uk/statistics/workshop/lasr2015/Proceedings15.pdf

7. Huckemann, S.F., Eltzner, B.: Backward nested descriptors asymptotics with infer-
ence on stem cell differentiation (2017). arXiv:1609.00814

8. Jung, S., Dryden, I., Marron, J.: Analysis of principal nested spheres. Submitted
to Biometrika (2010)

9. Schulz, J., Jung, S., Huckemann, S., Pierrynowski, M., Marron, J., Pizer, S.M.:
Analysis of rotational deformations from directional data. J. Comput. Graph. Stat.
24(2), 539–560 (2015)

10. Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Appli-
cations. Springer, Heidelberg (2008)

11. Sommer, S.: Horizontal dimensionality reduction and iterated frame bundle devel-
opment. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp.
76–83. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40020-9 7

12. Wadley, L.M., Keating, K.S., Duarte, C.M., Pyle, A.M.: Evaluating and learn-
ing from RNA pseudotorsional space Quantitative validation of a reduced
representation for RNAstructure. J. Mol. Biol. 372(4), 942–957 (2007).
http://www.sciencedirect.com/science/article/pii/S0022283607008509

http://dx.doi.org/10.1007/978-3-319-25040-3_3
http://dx.doi.org/10.1007/978-3-319-25040-3_3
http://arxiv.org/abs/1511.04993
http://www1.maths.leeds.ac.uk/statistics/workshop/lasr2015/Proceedings15.pdf
http://www1.maths.leeds.ac.uk/statistics/workshop/lasr2015/Proceedings15.pdf
http://arxiv.org/abs/1609.00814
http://dx.doi.org/10.1007/978-3-642-40020-9_7
http://www.sciencedirect.com/science/article/pii/S0022283607008509


Fast Method to Fit a C1 Piecewise-Bézier
Function to Manifold-Valued Data Points:
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Abstract. We propose an analysis of the quality of the fitting method
proposed in [7]. This method fits smooth paths to manifold-valued data
points using C1 piecewise-Bézier functions. This method is based on
the principle of minimizing an objective function composed of a data-
attachment term and a regularization term chosen as the mean squared
acceleration of the path. However, the method strikes a tradeoff between
speed and accuracy by following a strategy that is guaranteed to yield
the optimal curve only when the manifold is linear. In this paper, we
focus on the sphere S

2. We compare the quality of the path returned
by the algorithms from [7] with the path obtained by minimizing, over
the same search space of C1 piecewise-Bézier curves, a finite-difference
approximation of the objective function by means of a derivative-free
manifold-based optimization method.

Keywords: Path fitting on Riemannian manifolds · Bézier functions ·
Optimization on manifolds

1 Introduction

We consider the problem of fitting an univariate C1 piecewise-Bézier curve to
manifold-valued data points. This problem is motivated by several applications
in engineering and the sciences, such as projection-based model order reduc-
tion of dynamical systems that depend on one parameter [10]. In that case, the
data points are projectors from the full state space to the reduced state space
and hence belong to a Grassmann manifold. In a recent paper, Gousenbourger
et al. [7] illustrated the benefits of this approach by estimating wind fields: the
task required to fit a curve to a set of data points belonging to the manifold of
p × p positive semidefinite (PSD) matrices of rank r. We also mention the case
of image denoising, as in Bergmann et al. [3], where one seeks a two-parameter
function fitting an image with manifold-valued pixels, or the blood vessels track-
ing in the eyes in Sanguinetti et al. [12] as an application to the sub-Riemannian
manifold SE(2).
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 595–603, 2017.
https://doi.org/10.1007/978-3-319-68445-1_69
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Fitting and interpolation on manifolds has been an active research topic in
the past few years. For instance Samir et al. [11] proposed a fitting method
where the search space is infinite-dimensional. In that paper, the fitting curve
B is discretized with a small stepsize and the objective function is minimized
with a manifold-valued gradient descent. An application in image processing
can be found in Su et al. [13]. In Absil et al. [1] (interpolation) or more recently
in Gousenbourger et al. [7] (fitting), the search space is restricted to a finite
dimensional space of C1 piecewise-Bézier functions.We also mention Machado
et al. [8] for the specific case of the sphere.

The method proposed in [7] seeks a C1 piecewise-Bézier curve as in [2]. It
also considers a smoothing objective function—a roughness penalty and a data-
fitting term—as in [11]. This approach has several advantages. With respect
to [2], interpolation is replaced by smoothing, which is more apt for noisy data.
Compared to [11], (i) it reduces the space complexity (instead of being dis-
cretized, the solution curve is represented by only a few Bézier control points on
the manifold) and (ii) it provides a very simple algorithm that only requires two
objects on the manifold: the Riemannian exponential and the Riemannian loga-
rithm. However, the proposed approach tends to be suboptimal for two reasons.
First, the search space is restricted to C1 piecewise-Bézier curves; and second,
the proposed computational method ensures optimality (within the restricted
search space) only if the manifold is flat.

The study of this second drawback is the subject of this paper: in particular,
we aim to evaluate the quality of the fitting curve obtained with the method
developed in [7] compared to a more accurate solution obtained with a more
general (but also slower) optimization tool (like, for instance, Manopt [5]).

The paper is organized as follows. We first recall some generalities on Bézier
curves and introduce the composite Bézier curve B we would like to fit to data
points (Sect. 2). In Sect. 3, we summarize the method from [7] and then introduce
a more accurate (but also less efficient) method based on a discretization. We
also look for an acceptable discretization stepsize. Finally, we present results on
the sphere S

2 in Sect. 4

2 Notations and Framework

We consider the case in which the data points {d0, . . . , dn} ⊂ M take values
on a manifold M and are associated with measurement parameters t0 ≤ t1 ≤
· · · ≤ tn. For simplicity, we will let ti = i, i = 0, . . . , n. We seek a composite
Bézier curve B : R → M such that B(ti) � di, i = 0, . . . , n. We note TaM
the (Euclidean) tangent space to M at a ∈ M; TM = ∪aTaM the tangent
bundle to M; 〈·, ·〉a, the inner product in the tangent space at a and from
which we deduce the norm of v ∈ TaM, ‖v‖M = 〈v, v〉a; expa (·) : TaM →
M : v �→ b = expa (v), the Riemannian exponential; loga (·) : M → TaM :
b �→ v = loga (b), the Riemannian logarithm which can be viewed as the inverse
Riemannian exponential. We also introduce the notation γa,b(t) for the shortest
geodesic between a = γa,b(0) and b = γa,b(1). We assume throughout that we
can compute these objects.
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2.1 Preliminaries on Bézier Curves

We first consider the trivial case where M = R
r to define the Bézier curve. A

Bézier curve of degree K ∈ N is a function β parametrized by K + 1 control
points {b0, . . . , bK} ⊂ R

r taking the form

βK(·; b0, . . . , bK) : [0, 1] → R
r, t �→ ∑K

j=0 bjBjK(t),

where BjK(t) =
(
K
j

)
tj(1−t)K−j are the Bernstein basis polynomials (also called

binomial functions) [6]. The first control point and the last one are interpo-
lated by construction while the position of the other control points models the
shape of the curve. More specifically, the quadratic and cubic Bézier curves are
respectively

β2(t; b0, b1, b2) = b0(1 − t)2 + 2b1(1 − t)t + b2t
2 (1)

β3(t; b0, b1, b2, b3) = b0(1 − t)3 + 3b1(1 − t)2t + 3b2(1 − t)t2 + b3t
3 (2)

One well-known way to generalize Bézier curves to a Riemannian manifold
M is via the De Casteljau algorithm. This algorithm, generalized to manifolds
by Popiel and Noakes [9, Sect. 2], only requires the Riemannian exponential and
logarithm and conserves the interpolation property of the first and last control
points.

2.2 Composite Bézier Function on Manifolds

We now consider a general manifold M. As illustrated in Fig. 1, the composite
Bézier function B ∈ M is a C1 composition of n Bézier curves, i.e.,

B : [0, n] → M, t �→ βi(t − i) on [i, i + 1], i = 0, . . . , n − 1,

where βi defines a piece of B associated to the endpoints {pi, pi+1} ⊂ M. The
control points of the (i − 1)th and ith piece of B defined on the left and right
of pi are noted {b−

i , b+i } ⊂ M, i = 1, . . . , n − 1. The first and last segments of
B are quadratic Bézier curves respectively noted β0(t) = β2(t; p0, b−

1 , p1) and
βn−1(t) = β2(t; pn−1, b

+
n−1, pn). All the other segments are cubic and denoted by

βi(t) = β3(t; pi, b
+
i , b−

i+1, pi+1). Note the use of the superscript to refer to the ith

segment of B while the subscript refers to the degree of the Bézier curve.
The continuity of B is trivial as B(i) = βi(i) = βi−1(i) = pi. Differen-

tiability is ensured by taking p1 = av[(b−
1 , b+1 ), ( 25 , 3

5 )], pi = av[(b−
i , b+i ), ( 12 , 1

2 )]
(i = 2, . . . , n−2) and pn−1 = av[(b−

n−1, b
+
n−1), (

3
5 , 2

5 )], where av[(x, y), (1−α, α)] =
expx (αlogx (y)) stands for the convex combination of x, y ∈ M with weight
α ∈ [0, 1]. A proof of these properties can be found in [1].

As stated in the introduction, we would ideally like B to minimize its mean
square acceleration and its fidelity to data points. Specifically,

min
pi,b

+
i ,b−

i

f(pi, b
+
i , b−

i ) = min
pi,b

+
i ,b−

i

n−1∑

i=0

∫ 1

0

‖β̈i(t)‖2Mdt

︸ ︷︷ ︸
“mean square acceleration”

+λ

n∑

i=0

d2(pi, di)

︸ ︷︷ ︸
“fidelity”

, (3)



598 P.-Y. Gousenbourger et al.

segment 0 segment 1 segment 2 segment 3 segment 4
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Fig. 1. Schematic representation of the composite Bézier function B(t): the data points
di are represented in red; the circled green ones are control points. The first and last
Bézier segments are quadratic Bézier functions while all the other segments are cubic
Bézier functions. (Color figure online)

where g̈(t) stands for the temporal covariant second derivative of g(t), under
continuity and differentiability constraints. The parameter λ > 0 adjusts the
balance between data fidelity and the “smoothness” of B. This balance tends to
the interpolation problem from [2] when λ → ∞.

3 Methods

In this section, we first summarize the method from [7] which is a generalization
of optimality conditions holding only when M = R

r. This generalization holds
for any manifold M if it is possible to compute the exponential map and the
logarithm map. In a second time, we introduce a version f̃Δτ of the objective f
(Eq. (3)) obtained by discretizing the time domain of the mean square accelera-
tion term with a step size Δτ . We determine experimentally Δτ for which f̃Δτ is
a sufficiently good approximation of f , i.e., the relative error between f̃Δτ and f
is small. Then, in Sect. 4, we will compare the solution from [7] to the minimizer
of f̃Δτ .

3.1 Summary of the optimality conditions from [7]

In [7], the problem (3) is not directly addressed on a manifold M. The (subop-
timal) solution is obtained in two steps.

Step 1. The problem is considered on M = R
r where d(·, ·) and ‖.‖M are the

classical Euclidean distance and norm, respectively. Hence (3) is a quadratic
function in the 2n variables p0, (b−

i , b+i )n−1
i=1 and pn. Therefore, its optimal-

ity conditions take the form of a linear system (A0 + λA1)x = λCd, where
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A0, A1 ∈ R
2n×2n and C ∈ R

2n×n+1 are matrices of coefficients, where x =
[x0, x1, . . . , x2n−1]T := [p0, b−

1 , b+1 , . . . , b+n−1, pn]T ∈ R
2n×r contains the 2n opti-

mization variables, and where d := [d0, . . . , dn]T ∈ R
n+1×r contains the data

points. The solution reads x = Q(λ)d, or

xj =
n∑

l=0

qjl(λ)dl, (4)

with Q(λ) ∈ R
2n×n+1, a matrix of coefficients depending on λ.

Step 2. Because (3) is invariant to translation on R
r, the conditions (4) can be

generalized to any Riemannian manifold. Indeed, xj −d�
j =

∑n
l=0 qjl(λ)(dl −d�

j ),
by translation with respect to a reference point d�

j . The generalization arises by
interpreting the Euclidean difference as a logarithm map on a general manifold
M. Thus, a simple and natural way to generalize (4) to M is

xj = expd�
j

(
n∑

l=0

qjl(λ)logd�
j
(dl)

)

. (5)

By default, d�
j := di when xj is one of the control points b−

i , b+i or pi.
Finally, the curve B is reconstructed using the De Casteljau algorithm

(as mentioned in Sect. 2).

3.2 Discretization of the Mean Square Acceleration on Manifolds

In comparison to Sect. 3.1, we here solve (3) directly on an arbitrary manifold
M. However, there is no simple expression of the Bézier curves βi on M, which
means that it is not possible to express its mean squared acceleration in general.
To overcome this difficulty, we replace f by a version f̃Δτ where the accelera-
tion of the curves is approached by a Riemannian second order finite difference
(generalized with the log map from the Euclidean finite differences as in [4]),
and the integration is replaced by a classical trapezoidal rule. The new objective
function f̃Δτ (pi, b

+
i , b−

i ) now reads

M−1∑

k=1

Δτ

∥
∥
∥
∥

logB(tk) (B(tk−1)) + logB(tk) (B(tk+1))
Δτ2

∥
∥
∥
∥

2

M
+ λ

n∑

i=0

d2(pi, di), (6)

where Δτ = n
M . As there is also no general expression of the Riemannian gradi-

ent of f̃Δτ with respect to p0, (b−
i , b+i )n−1

i=1 and pn, we solve this problem with a
Riemannian derivative-free optimization method, like the Particle Swarm Opti-
mization algorithm provided in Manopt [5].

As there is no exact solution of (3) on a general Riemannian manifold, there
is also no way to determine with precision the stepsize Δτ for which f̃Δτ is close
enough to f on M. To overcome this, we determine an acceptable Δτ on the
Euclidean space and then use this stepsize to optimize (6) on M. This behavior
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is illustrated in Fig. 2. We can see that a stepsize of Δτ � 10−2 is already
acceptable on the Euclidean space for f̃Δτ to approach f with a relative error of
less than 1%.

We will now use this stepsize to compare x∗, the solution (5) from Sect. 3.1,
to x̃∗, the solution obtained with (6).

10−5 10−4 10−3 10−2 10−1

0

5 · 10−2

0.1

‖f̃Δτ (x∗
Δτ )−fopt‖
fopt

Δτ

Fig. 2. On the Euclidean space, the continuous objective function (3) is approached by
its discretized version (6) when Δτ tends to be small. A stepsize of Δτ = 10−2 already
leads to a relative error of less than 1% on a random set of data points

4 Results

In this section, we evaluate the quality of the method from [7] (Sect. 3.1) on the
sphere S

2. To do so, we compare its solution x∗ with the solution x̃∗ obtained by
optimizing the discretized version of the objective function given in equation (6).
This comparison is easily extendable to other manifolds provided that the log
and exp map can be computed.

Data points and error evaluation. Consider the points a = [0, 0, 1]T and b =
[1, 0, 0]T and the geodesic γa,b : [0, 1] → M : t �→ γa,b(t). We construct S = 20
sets (indexed by m) of n ∈ {3, . . . , 10} data points (d̂m

i )n
i=1, m = 1, . . . , S aligned

and equispaced on the geodesic γa,b(t) and then slightly disturbed with a noise η.
Specifically,

d̂m
i =

dm
i + η

‖dm
i + η‖ , i = 1, . . . , n, m = 1, . . . , S,

such that dm
i = γa,b( i−1

n−1 ), and η ∼ N (0, (0.1)2), as shown on Fig. 3, left.
For each set m and each number of data points n, we compute x∗

m,n ∈ S
2×2n,

the solution from [7] given by Eq. (5), and x̃∗
m,n ∈ (S2)2n, the solution to the
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problem (6) with a discretization stepsize Δτ = 10−2. We evaluate the distance
εm,n of the objective value obtained with x∗

m,n and x̃∗
m,n in (6) as

εm,n =
f̃Δτ (x̃∗

m,n) − f̃Δτ (x∗
m,n)

f̃Δτ (x̃∗
m,n)

, (7)

with Δτ = 10−4.
Note that two different stepsizes are used to evaluate the relative distance ε:

a larger one (Δτ = 10−2) to compute x̃∗ and another one (Δτ = 10−4) to
evaluate the quality of the solutions. We chose a larger stepsize in the mini-
mization because solving (6) with a derivative free algorithm becomes less and
less tractable when Δτ decreases. However, f̃Δτ approaches the actual manifold-
valued objective function (3) when Δτ is small. Thus, we used a finer stepsize
the evaluate the quality of x∗ in (7).

Results. On Fig. 3 (right), we represent the mean E(n) and the standard devi-
ation of the distances (εm,n)S

m=1, for each number n of data points. We can
observe that the fast algorithm from [7] returns results close to the optimum in
the case of this geodesic-like proof of concept, even if still slightly suboptimal
(relative error of about 1% of the cost f̃). Indeed, this proof of concept might be
too easy as data points are chosen close to a geodesic and Fig. 3 (right) could be
so good only in this case. However, finding a solution to the discretized problem
with the particle-swarm optimization is less and less tractable for n growing and
Δτ decreasing. This is why the main advantage of [7] is its efficiency to compute
an acceptable solution to (3) in a very short computation time.

4 6 8 10

0

2

4

·10−2

n

E(
n
)

Fig. 3. Left - the data points (red) are a noisy version of points (black circles) aligned on
a geodesic (blue line). The Bézier curve computed via [7] based on the data points (red)
is in dashed line.Right - the fast algorithm from [7] returns solutions close to optimum.
The relative error E(n) is about 1% (solid) with a standard deviation (dashed) of 2%.
(Color figure online)
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5 Future Work

The seeked goal in this paper was to evaluate the suboptimality of the fitting
curve computed by the fast algorithm from [7]. We showed as a proof of concept
that the method proposed in [7] approaches x̃∗ with a very satisfactory small
relative error of 1% of the cost f̃ on the sphere S

2, when the data points lie close
to a geodesic.

Different pieces of work can be considered for the future. For instance, it
may be worth considering a more advanced configuration of the data points to
evaluate better the limits of the method. Estimating a theoretical upper bound
on |f(xopt)−f(x∗)|, where xopt is the actual (and not numerical) solution of (3)
is also left for future work. Furthermore, using a derivative-free optimization
tool appeared to be time-consuming: a gradient-based approach could be inves-
tigated, exploiting the iterative structure of the De Casteljau algorithm to app-
roach the gradient of a general Bézier curve on M.
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Abstract. Recently, there has been a strong ambition to translate mod-
els and algorithms from traditional image processing to non-Euclidean
domains, e.g., to manifold-valued data. While the task of denoising has
been extensively studied in the last years, there was rarely an attempt
to perform image inpainting on manifold-valued data. In this paper we
present a nonlocal inpainting method for manifold-valued data given on
a finite weighted graph. We introduce a new graph infinity-Laplace oper-
ator based on the idea of discrete minimizing Lipschitz extensions, which
we use to formulate the inpainting problem as PDE on the graph. Fur-
thermore, we derive an explicit numerical solving scheme, which we eval-
uate on two classes of synthetic manifold-valued images.

1 Introduction

Variational methods and partial differential equations (PDEs) play a key role for
both modeling and solving image processing tasks. When processing real world
data certain information might be missing due to structural artifacts, occlusions,
or damaged measurement devices. Reconstruction of missing image information
is known as inpainting task and there exist various variational models to perform
inpainting. One successful method from the literature is based on a discretiza-
tion of the ∞-Laplace operator [7]. This idea has been adapted to finite weighted
graphs in [10]. The graph model enables to perform local and nonlocal inpainting
within the same framework based on the chosen graph construction. Nonlocal
inpainting has the advantage of preserving structural features by using all avail-
able information in the given image instead of only local neighborhood values.

With the technological progress in modern data sensors there is an emerging
field of processing non-Euclidean data. We concentrate our discussion in the fol-
lowing on manifold-valued data, i.e., each data value lies on a Riemannian man-
ifold. Real examples for manifold-valued images are interferometric synthetic
aperture radar (InSAR) imaging [14], where the measured phase-valued data
may be noisy and/or incomplete. Sphere-valued data appears, e.g., in directional
analysis [13]. Another application is diffusion tensor imaging (DT-MRI) [3],
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 604–612, 2017.
https://doi.org/10.1007/978-3-319-68445-1_70
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where the diffusion tensors can be represented as 3 × 3 symmetric positive defi-
nite matrices, which also constitute a manifold. For such data, there were several
variational methods and algorithms proposed to perform image processing tasks,
see e.g., [2,4,9,12,17]. Recently, the authors generalized the graph p-Laplacian
for manifold-valued data, 1 ≤ p < ∞, in [5] and derived an explicit as well
as an semi-implicit iteration scheme for computing solutions to related partial
difference equations on graphs as mimetic approximation of continuous PDEs.
While the previous work concentrated on denoising, the present work deals with
the task of image inpainting of manifold-valued data. For this, we extend the
already defined family of manifold-valued graph p-Laplacians by a new operator,
namely the graph ∞-Laplacian for manifold valued data. We derive an explicit
numerical scheme to solve the corresponding PDE and illustrate its capabilities
by performing nonlocal inpainting of synthetic manifold-valued data.

The remainder of this paper is organized as follows: In Sect. 2 we introduce
the necessary notations of Riemannian manifolds, finite weighted graphs, and
manifold-valued vertex functions. In Sect. 3 we introduce a new graph ∞-Laplace
operator for manifold-valued data based on the idea of discrete minimizing Lip-
schitz extensions. Furthermore, we derive an explicit numerical scheme to solve
the corresponding PDE Δ∞f = 0 with suitable boundary conditions. In Sect. 4
we apply the proposed method to inpainting of synthetic manifold-valued images.
Finally, Sect. 5 concludes the paper.

2 Preliminaries

In this section we first introduce the needed theory and notations on Riemannian
manifolds in Sect. 2.1 and introduce finite weighted graphs in Sect. 2.2. We then
combine both concepts to introduce vertex functions and tangential edge func-
tions needed for the remainder of this paper in Sect. 2.3. For further details we
refer to [5].

2.1 Riemannian Manifolds

For a detailed introduction to functions on Riemannian manifolds we refer to,
e.g., [1,11]. The values of the given data lie in a complete, connected, m-dimen-
sional Riemannian manifold M with Riemannian metric 〈·, ·〉x : TxM×TxM →
R, where TxM is the tangent space at x ∈ M. In every tangent space TxM
the metric induces a norm, which we denote by ‖·‖x. The disjoint union of
all tangent spaces is called the tangent bundle TM := ∪̇x∈MTxM. Two points
x, y ∈ M can be joined by a (not necessarily unique) shortest curve γ �

x,y
: [0, L] →

M, where L is its length. This generalizes the idea of shortest paths from the
Euclidean space M = R

m, i.e., straight lines, to a manifold and induces the
geodesic distance denoted dM : M×M → R

+. A curve γ can be reparametrized
such that derivative vector field γ̇(t) := d

dtγ(t) ∈ Tγ(t)M has constant norm,
i.e., ‖γ̇ �

x,y
(t)‖γ �

x,y
(t) = 1, t ∈ [0, L]. The corresponding curve then has unit speed.

We employ another notation of a geodesic, namely γx,ξ, ξ ∈ TxM, x ∈ M, which
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denotes the locally unique geodesic fulfilling γx,ξ(0) = x and γ̇x,ξ(0) = ξ ∈ TxM.
This is unique due to the Hopf–Rinow Theorem, cf. [11, Theorem 1.7.1]. We
further introduce the exponential map expx : TxM → M as expx(ξ) = γx,ξ(1).
Let rx ∈ R

+ denote the injectivity radius, i.e., the largest radius such that expx

is injective for all ξ with ‖ξ‖x < rx. Furthermore, let

Dx :=
{
y ∈ M : y = expx ξ, for some ξ ∈ TxM with ‖ξ‖x < rx

}
.

Then the inverse map logx : Dx → TxM is called the logarithmic map and maps
a point y = γx,ξ(1) ∈ Dx to ξ.

2.2 Finite Weighted Graphs

Finite weighted graphs allow to model relations between arbitrary discrete data.
Both local and nonlocal methods can be unified within the graph framework by
using different graph construction methods: spatial vicinity for local methods like
finite differences, and feature similarity for nonlocal methods. A finite weighted
graph G = (V,E,w) consists of a finite set of indices V = {1, . . . , n}, n ∈ N,
denoting the vertices, a set of directed edges E ⊂ V × V connecting a subset of
vertices, and a nonnegative weight function w : E → R

+ defined on the edges of
a graph. For an edge (u, v) ∈ E, u, v ∈ V the node u is the start node, while
v is the end node. We also denote this relationship by v ∼ u. Furthermore, the
weight function w can be extended to all V × V by setting w(u, v) = 0 when
v �∼ u. The neighborhood N (u) := {v ∈ V : v ∼ u} is the set of adjacent nodes.

2.3 Manifold-Valued Vertex Functions and Tangential Edge
Functions

The functions of main interest in this work are manifold-valued vertex functions,
which are defined as

f : V → M, u → f(u),

The range of the vertex function f is the Riemannian manifold M. We denote
the set of admissible vertex functions by H(V ;M) := {f : V → M}. This set
can be equipped with a metric given by

dH(V ;M)(f, g) :=
(∑

u∈V

d2M(f(u), g(u))
) 1

2

, f, g ∈ H(V ;M).

Furthermore, we need the notion of a tangential vertex function. The space
H(V ; TM) consists of all functions H : V → TM, i.e., for each u ∈ V there
exists a value H(u) ∈ TxM for some x ∈ M.

3 Methods

In this section we generalize the ∞-Laplacian from the real-valued, continu-
ous case to the manifold-valued setting on graphs. We discuss discretizations of



Nonlocal Inpainting of Manifold-Valued Data on Finite Weighted Graphs 607

the ∞-Laplacian both for real-valued functions on bounded open sets and on
graphs in Sect. 3.1. We generalize these to manifold-valued functions on graphs
in Sect. 3.2 and state a corresponding numerical scheme in Sect. 3.3.

3.1 Discretizations of the ∞-Laplace Operator

Let Ω ⊂ R
d be a bounded, open set and let f : Ω → R be a smooth function.

Following [8] the infinity Laplacian of f at x ∈ Ω can be defined as

Δ∞f(x) =
(
(∇f)TΔf∇f

)
(x) =

d∑

j=1

d∑

k=1

∂f

∂xj

∂f

∂xk

∂2f

∂xjxk
(x). (1)

As discussed above, this operator is not only interesting in theory, but also has
applications in image processing [7], e.g., for image interpolation and inpainting.
Oberman discussed in [16] different possibilities for a consistent discretization
scheme of the infinity Laplacian defined in (1). One basic observation is that the
operator can be well approximated by the maximum and minimum values of the
function in a local ε-ball neighborhood, i.e.,

Δ∞f(x) =
1
ε2

(
min

y∈Bε(x)
f(y) + max

y∈Bε(x)
f(y) − 2f(x)

)
+ O(ε2). (2)

The approximation in (2) has inspired Elmoataz et al. [10] to propose a definition
of a discrete graph ∞-Laplacian operator for real-valued vertex functions, i.e.,

Δ∞f(u) = max
v∼u

|max(
√

w(u, v)(f(v) − f(u)), 0)|
− max

v∼u
|min(

√
w(u, v)(f(v) − f(u)), 0)|

(3)

Furthermore, Oberman uses in [16] the well-known relationship between solu-
tions of the homogeneous infinity Laplace equation −Δ∞f = 0 and absolutely
minimizing Lipschitz extensions to derive a numerical scheme based on the idea
of minimizing the discrete Lipschitz constant in a neighborhood.

3.2 The Graph ∞-Laplacian for Manifold-Valued Data

Instead of following the approach proposed by Elmoataz et al. in [10] we pro-
pose a new graph ∞-Laplace operator for manifold valued functions based on
the idea of computing discrete minimal Lipschitz extensions, i.e., for a vertex
function f ∈ H(V ;M) we define the graph ∞-Laplacian for manifold valued
data Δ∞ : H(V ;M) → H(V ;TM) in a vertex u ∈ V as

Δ∞f(u) :=

(√
w(u, v∗

1) logf(u) f(v∗
1) +

√
w(u, v∗

2) logf(u) f(v∗
2)

)

√
w(u, v∗

1) +
√

w(u, v∗
2)

(4)



608 R. Bergmann and D. Tenbrinck

for which the designated neighbors v∗
1 , v

∗
2 ∈ N (u) are characterized by maximiz-

ing the discrete Lipschitz constant in the local tangential plane Tf(u)M among
all neighbors, i.e.,

(v∗
1 , v

∗
2) = arg max

(v1,v2)∈N 2(u)

∥
∥
∥
√

w(u, v1) logf(u) f(v1) −
√

w(u, v2) logf(u) f(v2)
∥
∥
∥

f(u)

By means of the proposed operator in (4) we are interested in solving discrete
interpolation problems on graphs for manifold-valued data. Let U ⊂ V be a
subset of vertices of the finite weighted graph G = (V,E,w) and let f : V/U →
M be a given vertex function on the complement of U . The interpolation task
now consists in computing values of f on M for vertices u ∈ U in which f is
unknown. For this we solve the following PDE on a graph based on the proposed
operator in (4) with given boundary conditions:

{
Δ∞f(u) = 0 for all u ∈ U,

f(u) = g(u) for all u ∈ V/U.
(5)

3.3 Numerical Iteration Scheme

In order to numerically solve the PDE in (5) on a finite weighted graph we
introduce an artificial time variable t and derive a related parabolic PDE, i.e.,

⎧
⎪⎨

⎪⎩

∂f
∂t (u, t) = Δ∞f(u, t) for all u ∈ U, t ∈ (0,∞),
f(u, 0) = f0(u) for all u ∈ U,

f(u, t) = g(u, t) for all u ∈ V/U, t ∈ [0,∞).
(6)

We propose an explicit Euler time discretization scheme with sufficiently small
time step size τ > 0 to iteratively solve (6). Note that we proposed a similar
explicit scheme for the computation of solutions of the graph p-Laplacian oper-
ator for manifold-valued data in [5]. Using the notation fk(u) := f(u, kτ), i.e.
we discretize the time t in steps kτ , k ∈ N, an update for the vertex function f
can be computed by

fk+1(u) = expfk(u)

(
τΔ∞fk(u)

)
, (7)

for which the graph ∞-Laplacian is defined in (4) above.

4 Numerical Examples

We first describe our graph construction and details of our inpainting algorithm
in Sect. 4.1. We then consider two synthetic examples of manifold-valued data in
Sect. 4.2, namely directional image data and an image consisting of symmetric
positive matrices of size 2 × 2.
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4.1 Graph Construction and Inpainting Algorithm

We construct a nonlocal graph from a given manifold-valued image f ∈ Mm,n

as follows: we consider patches qi,j ∈ M2p+1,2p+1 of size 2p + 1 around
each pixel (i, j), i ∈ {1, . . . , m}, j ∈ {1, . . . , n} with periodic boundary condi-
tions. We denote for two patches qi,j and qi′,j′ the set I ⊂ {1, . . . , 2p + 1} ×
{1, . . . , 2p+1} as pixels that are known in both patches and compute di,j,i′,j′ :=
1

|I|dH(I;M)(qi,j , qi′,j′). For (i, j) ∈ {1, . . . , n} × {1, . . . , m} we introduce edges
to the pixels (i′, j′) with the k smallest patch distances. We define the weight
function as w(u, v) = e−d2

i,j,i′,j′/σ2

, where u = (i, j), v = (i′, j′) ∈ G with v ∼ u.
For computational efficiency we further introduce a search window size r ∈ N,
i.e., similar patches are considered within a window of size 2r + 1 around (i, j)
around i, j), a construction that is for example also used for non-local means [6].

We then solve the iterative scheme (6) with τ = 1
10 in (7) on all pixels (i, j)

that where initially unknown. We start with all border pixels, i.e., unknown
pixels with at least one known local neighbor pixel. We stop our scheme if the
relative change between two iterations falls below ε = 10−7 or after a maximum
of t = 1000 iterations. We then add all now border pixel to the active set we
solve the equation on and reinitialize our iterative scheme (7). We iterate this
algorithm until all unknown pixel have been border pixel and are hence now
known. Our algorithm is implemented in MathWorks MATLAB employing the
Manifold-valued Image Restoration Toolbox (MVIRT)1.

4.2 Inpainting of Directional Data

We investigate the presented algorithm for artificial manifold-valued data: first,
let M = S

2 be the unit sphere, i.e., our data items are directions in R
3. Its data

items are drawn as small three-dimensional arrows color-encoded by elevation,
i.e., the south pole is blue (dark), the north pole yellow (bright). The periodicity
of the data is slightly obstructed by two vertical and horizontal discontinuities
of jump height π

16 dividing the image into nine parts. The input data is given
by the lossy data, cf. Fig. 1a). We set the search window to r = 32, i.e., global
comparison of patches in the graph construction from Sect. 4.1. Using k = 25
most similar patches and a patch radius of p = 12, the iterative scheme (7) yields
Fig. 1b). The proposed methods finds a reasonable interpolation in the missing
pixels.

4.3 Inpainting of Symmetric Positive Definite Matrices

As a second example we consider an image of symmetric positive definite (s.p.d.)
matrices from R

2×2, i.e., M = P(2). These can be illustrated as ellipses using
their eigenvectors as main axes and their eigenvalues as their lengths and the
geodesic anisotropy index [15] in the hue colormap. The input data of 64 × 64

1 open source, http://www.mathematik.uni-kl.de/imagepro/members/bergmann/
mvirt/.

http://www.mathematik.uni-kl.de/imagepro/members/bergmann/mvirt/
http://www.mathematik.uni-kl.de/imagepro/members/bergmann/mvirt/
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(a) Lossy Input data. (b) Reconstruction,
k = 25, p = 12.

Fig. 1. Reconstruction of directional data f ∈ (S2)64×64 from lossy given data,
i. e. in (a) the original data is shown with missing data (the center). Using the k = 25
most similar patches and a patch radius of p = 12 leads to a reasonable reconstruction
in (b).

(a) Input data with missing
rectangle.

(b) Reconstruction, k = 5,
p = 6.

(c) Reconstruction, k = 25,
p = 6.

Fig. 2. Reconstruction of s.p.d. matrices f ∈ (P(2))64×64 of (a) a lossy image. Increas-
ing the number of neighbors from k = 5 in (b) to k = 25 in (c) broadens the center
feature and smoothens the discontinuity in the center.

pixel is missing a rectangular area, cf. Fig. 2a). We set again r = 32 for a global
comparison. Choosing k = 5, p = 6 yields a first inpainting result shown in
Fig. 2b) which preserves the discontinuity line in the center and introduces a
red area within the center bottom circular structure. Increasing the nonlocal
neighborhood to k = 25, cf. in Fig. 2c) broadens the red center feature and the
discontinuity gets smoothed along the center vertical line.



Nonlocal Inpainting of Manifold-Valued Data on Finite Weighted Graphs 611

5 Conclusion

In this paper we introduced the graph ∞-Laplacian operator for manifold-valued
functions by generalizing a reformulation of the ∞-Laplacian for real-valued
functions and using discrete minimizing Lipschitz extensions. To the best of
our knowledge, this generalization induced by our definition is even new for the
vector-valued ∞-Laplacian on images. This case is included within this frame-
work by setting e.g. M = R

3 for color images. We further derived an explicit
numerical scheme to solve the related parabolic PDE on a finite weighted graph.
First numerical examples using a nonlocal graph construction with patch-based
similarity measures demonstrate the capabilities and performance of the inpaint-
ing algorithm applied to manifold-valued images.

Despite an analytic investigation of the convergence of the presented scheme,
future work includes further development of numerical algorithms, as well as
properties of the ∞-Laplacian for manifold-valued vertex functions on graphs.
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Abstract. We introduce a family of orders on the set S+
n of positive-

definite matrices of dimension n derived from the homogeneous geometry
of S+

n induced by the natural transitive action of the general linear group
GL(n). The orders are induced by affine-invariant cone fields, which arise
naturally from a local analysis of the orders that are compatible with the
homogeneous structure of S+

n . We then revisit the well-known Löwner-
Heinz theorem and provide an extension of this classical result derived
using differential positivity with respect to affine-invariant cone fields.

1 Introduction

The question of how one can order the elements of a space in a consistent and
well-defined manner is of fundamental importance to many areas of applied
mathematics, including the theory of monotone functions and matrix means in
which the notion of order plays a defining role [1,6,8,9]. These concepts play
an important role in a wide variety of applications across information geometry
where one is interested in performing statistical analysis on sets of matrices. In
such applications, the choice of order relation is often taken for granted. This
choice, however, is of crucial significance since a function that is not monotone
with respect to one order, may be monotone with respect to another, in which
case powerful results from monotonicity theory would become relevant.

In this paper, we outline an approach to systematically generate orders on
homogeneous spaces, which form a class of nonlinear spaces that are ubiquitous
in many applications in information engineering and control theory. A homoge-
neous space is a manifold on which a Lie group acts transitively, in the sense that
any point on the manifold can be mapped onto any other point by an element of
a group of transformations that act on the space. The geometry of homogeneous
spaces, coupled with the observation that cone fields induce conal orders on con-
tinuous spaces [7], forms the basis for the approach taken in this paper. The aim
is to systematically generate cone fields that are invariant with respect to the
homogeneous geometry, thereby defining families of conal orders built upon the
underlying symmetries of the space.

The focus of this paper is on ordering the elements of the set of symmetric
positive-definite matrices S+

n of dimension n. Positive definite matrices arise in
numerous applications, including as covariance matrices in statistics and com-
puter vision, as variables in convex and semidefinite programming, as unknowns
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 613–620, 2017.
https://doi.org/10.1007/978-3-319-68445-1_71
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in fundamental problems in systems and control theory, as kernels in machine
learning, and as diffusion tensors in medical imaging. The space S+

n forms a
smooth manifold that can be viewed as a homogeneous space admitting a tran-
sitive action by the general linear group GL(n), which endows the space with
an affine-invariant geometry as reviewed in Sect. 2. In Sect. 3, this geometry is
used to construct affine-invariant cone fields and new partial orders on S+

n . In
Sect. 4, we discuss how differential positivity [5] can be used to study and char-
acterize monotonicity on S+

n with respect to the invariant orders introduced in
this paper. We also state a generalized version of the celebrated Löwner-Heinz
theorem [6,9] of operator monotonicity theory derived using this approach.

2 Homogeneous Geometry of S+
n

The set S+
n of symmetric positive definite matrices of dimension n has the struc-

ture of a homogeneous space with a transitive GL(n)-action. This follows by
noting that any Σ ∈ S+

n admits a Cholesky decomposition Σ = AAT for some
A ∈ GL(n). The Cauchy polar decomposition of the invertible matrix A yields
a unique decomposition A = PQ of A into an orthogonal matrix Q ∈ O(n) and
a symmetric positive definite matrix P ∈ Sn

+. Now note that if Σ has Cholesky
decomposition Σ = AAT and A has a Cauchy polar decomposition A = PQ,
then Σ = PQQT P = P 2. That is, Σ is invariant with respect to the orthogonal
part Q of the polar decomposition. Therefore, we can identify any Σ ∈ S+

n with
the equivalence class [Σ1/2] = Σ1/2 · O(n) in the quotient space GL(n)/O(n),
where Σ1/2 denotes the unique positive definite square root of Σ. That is,

S+
n

∼= GL(n)/O(n). (1)

The identification in (1) can also be made by noting the transitive action of
GL(n) on S+

n defined by

τA : Σ �→ AΣAT ∀A ∈ GL(n), ∀Σ ∈ S+
n . (2)

This action is said to be almost effective in the sense that ±I are the only
elements of GL(n) that fix every Σ ∈ S+

n . The isotropy group of this action at
Σ = I is precisely O(n), since τQ : I �→ QIQT = I if and only if Q ∈ O(n).
Once again, if Σ ∈ S+

n has Cholesky decomposition Σ = AAT and A has polar
decomposition A = PQ, then τA(I) = AIAT = P 2 = Σ.

A homogeneous space G/H is said to be reductive if there exists a subspace
m of the Lie algebra g of G such that g = h ⊕ m and Ad(H)m ⊆ m. Recall that
the Lie algebra gl(n) of GL(n) consists of the set Rn×n of all real n×n matrices
equipped with the Lie bracket [X,Y ] = XY −Y X, while the Lie algebra of O(n)
is o(n) = {X ∈ R

n×n : XT = −X}. Since any matrix X ∈ R
n×n has a unique

decomposition X = 1
2 (X −XT )+ 1

2 (X +XT ), as a sum of an antisymmetric part
and a symmetric part, we have gl(n) = o ⊕ m, where m = {X ∈ R

n×n : XT =
X}. Furthermore, since AdQ(S) = QSQ−1 = QSQT is a symmetric matrix for
each S ∈ m, we have AdO(n) = {QSQ−1 : Q ∈ O(n), S ∈ m} ⊆ m. Hence,
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S+
n = GL(n)/O(n) is indeed a reductive homogeneous space with reductive

decomposition gl(n) = o(n) ⊕ m.
The tangent space ToS

+
n of S+

n at the base-point o = [I] = I ·O(n) is identified
with m. For each Σ ∈ S+

n , the action τΣ1/2 : S+
n → S+

n induces the vector space
isomorphism dτΣ1/2 |I : TIS

+
n → TΣS+

n given by

dτΣ1/2

∣∣
I
X = Σ1/2XΣ1/2, ∀X ∈ m. (3)

The map (3) can be used to extend structures defined in ToS
+
n to structures

defined on the tangent bundle TS+
n through affine-invariance, provided that the

structures in ToS
+
n are AdO(n)-invariant. The AdO(n)-invariance is required to

ensure that the extension to TS+
n is unique and thus well-defined. For instance,

any homogeneous Riemannian metric on S+
n

∼= GL(n)/O(n) is determined by an
AdO(n)-invariant inner product on m. Any such inner product induces a norm
that is rotationally invariant and so can only depend on the scalar invariants
tr(Xk) where k ≥ 1 and X ∈ m. Moreover, as the inner product is a quadratic
function, ‖X‖2 must be a linear combination of (tr(X))2 and tr(X2). Thus, any
AdO(n)-invariant inner product on m must be a scalar multiple of

〈X,Y 〉m = tr(XY ) + μtr(X)tr(Y ), (4)

where μ is a scalar parameter with μ > −1/n to ensure positive-definiteness [12].
Therefore, the corresponding affine-invariant Riemannian metrics are generated
by (3) and given by

〈X,Y 〉Σ = 〈Σ−1/2XΣ−1/2, Σ−1/2Y Σ−1/2〉m
= tr(Σ−1XΣ−1Y ) + μtr(Σ−1X)tr(Σ−1Y ), (5)

for Σ ∈ S+
n and X,Y ∈ TΣS+

n . In the case μ = 0, (5) yields the most com-
monly used ‘natural’ Riemannian metric on S+

n , which corresponds to the Fisher
information metric for the multivariate normal distribution [4,13], and has been
widely used in applications such as tensor computing in medical imaging.

3 Affine-Invariant Orders

3.1 Affine-Invariant Cone Fields

A cone field K on S+
n smoothly assigns a cone K(Σ) ⊂ TΣS+

n to each point
Σ ∈ S+

n . We say that K is affine-invariant or homogeneous with respect to the
quotient geometry S+

n
∼= GL(n)/O(n) if(
dτ

Σ
1/2
2 Σ

−1/2
1

∣∣
Σ1

)
K(Σ1) = K(Σ2), (6)

for all Σ1, Σ2 ∈ S+
n . The procedure we will use for constructing affine-invariant

cone fields on S+
n is similar to the approach taken for generating the affine-

invariant Riemannian metrics in Sect. 2. We begin by defining a cone K(I) at I
that is AdO(n)-invariant:

X ∈ K(I) ⇔ AdQX = dτQX = QXQT ∈ K(I), ∀Q ∈ O(n). (7)
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Using such a cone, we generate a cone field via

K(Σ) = dτΣ1/2

∣∣
I
K(I) = {X ∈ TΣS+

n : Σ−1/2XΣ−1/2 ∈ K(I)}. (8)

The AdO(n)-invariance condition (7) is satisfied if K(I) has a spectral characteri-
zation; that is, we can check to see if any given X ∈ TIS

+
n

∼= m lies in K(I) using
only properties of X that are characterized by its spectrum. For instance, tr(X)
and tr(X2) are both properties of X that are spectrally characterized and indeed
AdO(n)-invariant. Furthermore, quadratic AdO(n)-invariant cones are defined by
inequalities on suitable linear combinations of (tr(X))2 and tr(X2).

Proposition 1. For any choice of parameter μ ∈ (0, n), the set

K(I) = {X ∈ TIS
+
n : (tr(X))2 − μtr(X2) ≥ 0, tr(X) ≥ 0}, (9)

defines an AdO(n)-invariant cone in TIS
+
n = {X ∈ R

n×n : XT = X}.
Proof. AdO(n)-invariance is clear since tr(X2) = tr(QXQT QXQT ) and tr(X) =
tr(QXQT ) for all Q ∈ O(n). To prove that (9) is a cone, first note that 0 ∈ K(I)
and for λ > 0, X ∈ K(I), we have λX ∈ K(I) since tr(λX) = λtr(X) ≥ 0 and

(tr(λX))2 − μtr((λX)2) = λ2[(tr(X))2 − μtr(X2)] ≥ 0. (10)

To show convexity, let X1,X2 ∈ K(I). Now tr(X1 + X2) = tr(X1) + tr(X2) ≥ 0,
and

(tr(X1 + X2))2 − μtr((X1 + X2)2) = [(tr(X1))2 − μtr(X2
1 )]

+ [(tr(X2))2 − μtr(X2
2 )] + 2[tr(X1)tr(X2) − μtr(X1X2)] ≥ 0,

(11)

since tr(X1X2) ≤ (tr(X2
1 ))

1
2 (tr(X2

2 ))
1
2 ≤ 1√

μ tr(X1) 1√
μ tr(X2), where the first

inequality follows by Cauchy-Schwarz. Finally, we need to show that K(I) is
pointed. If X ∈ K(I) and −X ∈ K(I), then tr(−X) = −tr(X) = 0. Thus,
(tr(X))2 − μtr(X2) = −μtr(X2) ≥ 0, which is possible if and only if all of the
eigenvalues of X are zero; i.e., if and only if X = 0. ��
The parameter μ controls the opening angle of the cone. If μ = 0, then (9)
defines the half-space tr(X) ≥ 0. As μ increases, the opening angle of the cone
becomes smaller and for μ = n (9) collapses to a ray. For any fixed μ ∈ (0, n),
we obtain a unique well-defined affine-invariant cone field given by

K(Σ) = {X ∈ TΣS+
n : (tr(Σ−1X))2 − μtr(Σ−1XΣ−1X) ≥ 0, tr(Σ−1X) ≥ 0}.

(12)
It should be noted that of course not all AdO(n)-invariant cones at I are

quadratic. Indeed, it is possible to construct polyhedral AdO(n)-invariant cones
that arise as the intersections of a collection of spectrally defined half-spaces in
TIS

+
n . The clearest example of such a construction is the cone of positive semi-

definite matrices in TIS
+
n , which of course itself has a spectral characterization

K(I) = {X ∈ TIS
+
n : λi(X) ≥ 0, i = 1, . . . , n}, where (λi(X)) denote the n real

eigenvalues of the symmetric matrix X.
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3.2 Visualization of Affine-Invariant Cone Fields on S+
2

It is well-known that the set of positive semidefinite matrices of dimension n
forms a cone in the space of symmetric n × n matrices. Moreover, S+

n forms the
interior of this cone. A concrete visualization of this identification can be made
in the n = 2 case, as shown in Fig. 1. The set S+

2 can be identified with the
interior of K = {(x, y, z) ∈ R

3 : z2 − x2 − y2 ≥ 0, z ≥ 0}, through the map
φ : S+

2 → K given by

φ :
(

a b
b c

)
�→ (x, y, z) =

(√
2b,

1√
2
(a − c),

1√
2
(a + c)

)
. (13)

x

y

z
z2 − x2 − y2 ≥ 0z ≥ 0

φ : S+
2 → K = {(x, y, z) ∈ R

3 : z2 − x2 − y2 ≥ 0, z ≥ 0}

S+
2 =

{ (
a b
b c

)
: ac − b2 > 0, a + c > 0

}

Fig. 1. Identification of S+
2 with the interior of the closed, convex, pointed cone K =

{(x, y, z) ∈ R
3 : z2 − x2 − y2 ≥ 0, z ≥ 0} in R

3.

Inverting φ, we find that a = 1√
2
(z+y), b = 1√

2
x, c = 1√

2
(z−y). Note that the

point (x, y, z) = (0, 0,
√

2) corresponds to the identity matrix I ∈ S+
2 . We seek

to arrive at a visual representation of the affine-invariant cone fields generated
from the AdO(n)-invariant cones (9) for different choices of the parameter μ. The
defining inequalities tr(X) ≥ 0 and (tr(X))2 − μtr(X2) ≥ 0 in TIS

+
2 take the

forms

δz ≥ 0, and
(

2
μ

− 1
)

δz2 − δx2 − δy2 ≥ 0, (14)

respectively, where (δx, δy, δz) ∈ T(0,0,
√
2)K

∼= TIS
+
2 . Clearly the translation-

invariant cone fields generated from this cone are given by the same equations
as in (14) for (δx, δy, δz) ∈ T(x,y,z)K ∼= Tφ−1(x,y,z)S

+
2 .

To obtain the affine-invariant cone fields, note that at Σ = φ−1(x, y, z) ∈ S+
2 ,

the inequality tr(Σ−1X) ≥ 0 takes the form

tr
[(

c −b
−b a

) (
δa δb
δb δc

)]
= c δa − 2b δb + a δc ≥ 0 (15)

⇔ z δz − x δx − y δy ≥ 0. (16)

Similarly, the inequality (tr(Σ−1X))2 − μtr(Σ−1XΣ−1X) ≥ 0 is given by

2(x δx + y δy − z δz)2−μ
[
(z2 + x2 − y2)δx2 + (z2 − x2 − y2)δy2

+ (x2 + y2 + z2)δz2 + 4xy δxδy − 4xz δxδz − 4yz δyδz] ≥ 0, (17)
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where (δx, δy, δz) ∈ T(x,y,z)K ∼= TΣS+
2 . In the case μ = 1, this reduces to

( 2
μ − 1)δz2 − δx2 − δy2 ≥ 0. That is, for μ = 1 the quadratic cone field generated

by affine-invariance coincides with the corresponding translation-invariant cone
field. Generally, however, affine-invariant and translation-invariant cone fields do
not agree, as depicted in Fig. 2. Each of the different cone fields in Fig. 2 induces
a distinct partial order on S+

n .

(a)

(b)

μ > 1 μ = 1 μ < 1

Fig. 2. Cone fields on S+
2 : (a) Quadratic affine-invariant cone fields for different choices

of the parameter µ ∈ (0, 2). (b) The corresponding translation-invariant cone fields.

3.3 The Löwner Order

The Löwner order is the partial order ≥L on S+
n defined by

A ≥L B ⇔ A − B ≥L O, (18)

where the inequality on the right denotes that A−B is positive semidefinite [2].
The definition in (18) is based on translations and the ‘flat’ geometry of S+

n . It
is clear that the Löwner order is translation invariant in the sense that A ≥L B
implies that A+C ≥L B+C for all A,B,C ∈ S+

n . From the perspective of conal
orders, the Löwner order is the partial order induced by the cone field generated
by translations of the cone of positive semidefinite matrices at TIS

+
n .

In the previous section, we gave an explicit construction showing that
the cone field generated through translations of the cone of positive semidef-
inite matrices at TIS

+
n coincides with the cone field generated through affine-

invariance in the n = 2 case. We will now show that this is a general result which
holds for all n. First note that the cone at TIS

+
n can be expressed as

K(I) = {X ∈ TIS
+
n : uT Xu ≥ 0 ∀u ∈ R

n, uT Xu = 0 ⇒ u = 0}, (19)

and the resulting translation-invariant cone field is simply given by

KT (Σ) = {X ∈ TΣS+
n : uT Xu ≥ 0 ∀u ∈ R

n, uT Xu = 0 ⇒ u = 0}. (20)
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The corresponding affine-invariant cone field is given by

KA(Σ) = {X ∈ TΣS+
n : uT Σ−1/2XΣ−1/2u ≥ 0 ∀u ∈ R

n,

uT Σ−1/2XΣ−1/2u = 0 ⇒ u = 0}, (21)

which is seen to be equal to KT by introducing the invertible transformation
ū = Σ−1/2u in (21). Thus we see that the Löwner order enjoys the special status
of being both affine-invariant and translation-invariant, even though its classical
definition is based on the ‘flat’ or translational geometry on S+

n .

4 Monotonicity on S+
n

Let f be a map of S+
n into itself. We say that f is monotone with respect to a

partial order ≥ on S+
n if f(Σ1) ≥ f(Σ2) whenever Σ1 ≥ Σ2. Such functions were

introduced by Löwner in his seminal paper [9] on operator monotone functions.
Since then operator monotone functions have been studied extensively and found
applications to many fields including electrical engineering, network theory, and
quantum information theory [3,10]. One of the most fundamental results in
operator theory is the Löwner-Heinz theorem [6,9] stated below.

Theorem 1 (Löwner-Heinz). If Σ1 ≥L Σ2 in S+
n and r ∈ [0, 1], then

Σr
1 ≥L Σr

2 . (22)

Furthermore, if n ≥ 2 and r > 1, then Σ1 ≥L Σ2 �⇒ Σr
1 ≥L Σr

2 .

There are several different proofs of the Löwner-Heinz theorem. See [2,6,9,
11], for instance. Most of these proofs are based on analytic methods, such as
integral representations from complex analysis. Instead we employ a geometric
approach to study monotonicity based on a differential analysis of the system.
One of the advantages of such an approach is that it is immediately applicable
to all of the conal orders considered in this paper, while providing a deeper
geometric insight into the behavior of the map under consideration. Recall that
a smooth map f : S+

n → S+
n is said to be differentially positive with respect to

a cone field K on S+
n if

δΣ ∈ K(Σ) ⇒ df |Σ(δΣ) ∈ K(f(Σ)), (23)

where df |Σ : TΣS+
n → Tf(Σ)S

+
n denotes the differential of f at Σ. Assuming

that ≥K is a partial order induced by K, then f is monotone with respect to ≥K
if and only if it is differentially positive with respect to K. Applying this to the
family of affine-invariant cone fields in (12), we arrive at the following extension
to the Löwner-Heinz theorem.

Theorem 2 (Generalized Löwner-Heinz). For any of the quadratic affine-
invariant orders (12) parameterized by μ, and r ∈ [0, 1], the map f(Σ) = Σr is
monotone on S+

n .
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This result suggests that the monotonicity of the map f : Σ �→ Σr for r ∈ (0, 1)
is intimately connected to the affine-invariant geometry of S+

n and not its trans-
lational geometry. The proof of Theorem 2 has been omitted from this abstract
due to length limitations. A more detailed treatment of the topics discussed here,
alongside new results and a proof of Theorem 2 will be provided in a subsequent
journal paper.

5 Conclusion

The choice of partial order is a key part of studying monotonicity of functions
that is often taken for granted. Invariant cone fields provide a geometric approach
to systematically construct ‘natural’ orders by connecting the geometry of the
state space to the search for orders. Coupled with differential positivity, invariant
cone fields provide an insightful and powerful method for studying monotonicity,
as shown in the case of S+

n .
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Abstract. We present a new regression method called geodesic least
squares (GLS), which is particularly robust against data and model
uncertainty. It is based on minimization of the Rao geodesic distance
on a probabilistic manifold. We apply GLS to Tully-Fisher scaling of the
total baryonic mass vs. the rotation velocity in disk galaxies and we show
the excellent robustness properties of GLS for estimating the coefficients
and the tightness of the scaling.

Keywords: Robust regression · Geodesic least squares · Rao geodesic
distance · Tully-Fisher scaling

1 Introduction

Many natural phenomena can be described by means of scaling laws, often in
the form of a power law, e.g. in astrophysics, fluid and plasma dynamics, biology,
geology, climatology and finance. However, in many application fields relatively
simple or outdated statistical techniques are frequently used to estimate power
laws. In the vast majority of cases, ordinary least squares (OLS) is applied to
estimate the exponents (coefficients) of the power law on a logarithmic scale,
despite its often poor performance in all but the simplest regression problems.
Indeed, in more realistic settings, particularly when the goal is extrapolation
of the scaling law, robustness is at least as important a quality compared to
goodness-of-fit. This can become an issue in the presence of model uncertainty,
heterogeneous data, atypical measurements (outliers) and skewed likelihoods [1].

Astrophysical data are often relatively complex from the statistical perspec-
tive and it has long been recognized that various assumptions of ordinary least
squares regression are not valid in many applications in the field. Accordingly,
several techniques from the domains of frequentist statistics and Bayesian prob-
ability theory have been applied to address the shortcomings of OLS. However,
presently most techniques are designed to address one or a few shortcomings
of OLS, but not all. In addition, judicious application of these techniques may
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 621–628, 2017.
https://doi.org/10.1007/978-3-319-68445-1_72
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require considerable expertise from the practitioner in statistics or probabil-
ity theory, which can be an issue in various physics-centered application fields.
Presently, in many application domains there is a need for a robust general-
purpose regression technique for estimating scaling laws.

For these reasons we have developed a new, robust regression method that is
simple to implement, called geodesic least squares regression (GLS). It is based on
minimization of the Rao geodesic distance between, on the one hand, the probabil-
ity distribution of the response variable predicted by the regression model, and, on
the other hand, a more data-driven distribution model of the response variable.
GLS has recently been tested and applied in the field of magnetic confinement
fusion [2,3], showing its enhanced robustness over various traditional methods.

In this contribution, we apply GLS regression to estimate a key scaling law in
astrophysics: the baryonic Tully-Fisher relation. This is a remarkably tight rela-
tion between the total baryonic mass of disk galaxies and their rotational velocity,
of great practical and theoretical significance in astrophysics and cosmology.

2 Geodesic Least Squares Regression

2.1 Principles of GLS

We here provide a brief overview of the GLS regression method. A more detailed
description can be found in [1]. Implicitly, GLS performs regression on a prob-
abilistic manifold characterized by the Fisher information. However, it is not
directly based on a manifold regression technique like geodesic regression [4],
where the relation between a manifold-valued response variable and a scalar
predictor variable is modeled as a geodesic curve on the manifold. Rather, the
idea behind GLS is to consider two different proposals for the distribution of
a real-valued response variable y, conditional on the real-valued predictor vari-
ables, all of which can be affected by uncertainty. On the one hand, there is
the distribution that one would expect if all assumptions were correct regarding
the deterministic component of the regression model (regression function) and
the stochastic component. We call this the modeled distribution. On the other
hand, we try to capture the distribution of y by relying as little as possible on
the model assumptions, and much more on the actual measurements of y. For
this we will use the term observed distribution. In this sense, GLS is similar to
minimum distance estimation (MDE), where the Hellinger distance is a popu-
lar similarity measure [5], but there are several differences. First and foremost,
GLS calculates the geodesic distance between each individual pair of modeled
and observed distributions of the response variable. This often corresponds to an
individual measurement point, together with an estimate of its error bar, pro-
vided by the experimentalist. The error bar estimate may have been obtained
from previous experiments, or from a time series obtained at fixed (or stationary)
values of the predictor variables. As such, each single data point is replaced by a
probability density function describing the distribution of the response variable
under fixed measured values of the predictor variables. In contrast, MDE usu-
ally considers a distance between a kernel density estimate of the distribution
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of residuals on the one hand, and the parametric model on the other hand, but
based on the entire data sample. Secondly, we explicitly model all parameters of
the modeled distribution, similar to the idea behind the link function in the gen-
eralized linear model. In the present work this will be accomplished by explicitly
modeling both the mean and standard deviation of the Gaussian modeled distri-
bution. A final difference is that we use the Rao geodesic distance as a similarity
measure.

2.2 The GLS Algorithm

We start from a parametric multiple regression model between m predictor vari-
ables ξj (j = 1, . . . , m) and a single response variable η, all assumed to be
infinitely precise. For n realizations of these variables, the regression model can
be written as follows:

ηi = f(ξi1, . . . , ξim, β1, . . . , βp) ≡ f({ξij}, {βk}), ∀i = 1, . . . , n. (1)

Here, f is the regression model function, in general nonlinear and characterized
by p parameters βk (k = 1, . . . , p). In regression analysis within the astronomy
community, it is customary to add a noise variable to the idealized relation (1).
This so-called intrinsic scatter serves to model the intrinsic uncertainty on the
theoretical relation, i.e. uncertainty not related to the measurement process. We
take another route for capturing model uncertainty, however.

In any realistic situation, we have no access to the quantities ξij and ηi.
Instead, a series of noisy measurements xij , resp. yi is acquired for the predictor
and response variables:

yi = ηi + εy,i, εy,i ∼ N (
0, σ2

y,i

)
,

xij = ξij + εx,ij , εx,ij ∼ N (
0, σ2

x,ij

)
.

We have assumed independent Gaussian noise, but this can be generalized to
any distribution. Also, in general the standard deviations are different for each
point. For instance, in many real-world situations, such as the one discussed in
this paper, there is a constant relative error on the measurements, so the standard
deviation can be modeled to be proportional to the measurement itself.

Under this model, the distribution of the variable y, conditional on measured
values xij of the m predictor variables (fixed i), as well as the parameters βk, is
given by

pmod(y|{xij}, {βk}) =
1√

2πσmod,i

exp

⎧
⎪⎨

⎪⎩
−1

2

[
yi − f

({xij}, {βk})]2

σ2
mod,i

⎫
⎪⎬

⎪⎭
. (2)

This is the modeled distribution, where we suppose that estimates of the stan-
dard deviations σx,ij and σy,i are available. The uncertainty on the predictor
variables propagates through the function f and adds to the conditional uncer-
tainty on the response variable, determined by σmod,i. We use standard Gaussian
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error propagation theory as a practical solution for this purpose. For example,
referring to f

({xij}, {βk})
as the modeled mean μmod,i, for a linear model we

have (with relabeled βk):

μmod,i ≡ β0 + β1xi1 + . . . + βmxim,

σ2
mod,i ≡ σ2

y,i + β2
1σ

2
x,i1 + . . . + β2

mσ2
x,im.

Relying on the maximum likelihood method, one would proceed to estimate
the parameters βk by maximizing (2), or, under the assumption of symmetry
of the likelihood distribution and homoscedasticity, by minimizing the sum of
squared differences (Euclidean distances) between each measured yi and pre-
dicted μmod,i. However, this assumes that the model is exact, specifically that
σmod,i is the only source of data variability. In order to take into account addi-
tional uncertainty sources, in particular model uncertainty, we therefore also
consider the observed distribution of y, relying on as few assumptions as pos-
sible regarding the regression model. Specifically, we replace each data point yi

by a distribution pobs(y|yi). In the context of the GLM, this is known as the
saturated model. In the present application, we choose again the normal dis-
tribution, but centered on each data point: N (

yi, σ
2
obs,i

)
, where σobs,i is to be

estimated from the data. The extra parameters σobs,i give the method added
flexibility, since they are not a priori required to equal σmod,i. As a result, GLS
is less sensitive to incorrect model assumptions. Choosing a Gaussian form for
both the modeled and observed distribution offers a computational advantage,
since the corresponding expression for the GD has a closed form [6]. Also, in
principle, σobs,i can be different for each point, although in practice it is clear
that we will need to introduce some sort of regularization to render the model
identifiable. In this paper we either assume σobs,i a constant sobs, or proportional
to the response variable, σobs,i = robs|ȳi|. The parameters sobs or robs have to
be estimated from the data. More complicated (parametrized) relations between
σobs,i and the response variable or other data would be possible too, but one
should be careful not to put too many restrictions on pobs, thereby defeating its
purpose.

GLS now proceeds by minimizing the total GD between, on the one hand, the
joint observed distribution of the n realizations of the variable y and, on the other
hand, the joint modeled distribution. Owing to the independence assumption
in this example, we can write this in terms of products of the corresponding
marginal distributions (including all dependencies and with γobs either sobs or
robs):

{
β̂k, γ̂obs

}

= argmin
βk,γobs∈R

GD2

[
n∏

i=1

pobs (y|yi, γobs) ,

n∏

i=1

pmod

(
y|{xij}, {βk}, σyi

, {σxij
})

]

= argmin
βk,γobs∈R

n∑

n=1

GD2
[
pobs (y|yi, γobs) , pmod

(
y|{xij}, {βk}, σyi

, {σxij
}) ]

. (3)
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Note that the parameters βk occur both in the mean and the variance of the mod-
eled distribution. The last equality in (3) entails a considerable simplification,
owing to the property that the squared GD between products of distributions
can be written as the sum of squared GDs between the corresponding factors [6].
Hence, the optimization procedure involves, on the level of each measurement,
matching not only yi with μmod,i, but also σobs,i with σmod,i, in a way dictated
by the geometry of the likelihood distribution. As will be shown in the exper-
iments, the result is that GLS is relatively insensitive to uncertainties in both
the stochastic and deterministic components of the regression model. The same
quality renders the method also robust against outliers.

In the experiments below, we employed a classic active-set algorithm to
carry out the optimization [7]. Furthermore, presently the GLS method does
not directly offer confidence (or credible) intervals on the estimated quantities.
Future work will address this issue in more detail, but for now error estimates
were derived by a bootstrap procedure. The bootstrapping involved creating,
from the measured data set, 100 artificial data sets of the same size, by resam-
pling with replacement. The regression analysis was then carried out on each of
the data sets and the mean and standard deviation, over all data sets, of each
estimated regression parameter were used as estimates of the parameter and its
error bar, respectively. This scheme typically results in rather conservative error
bars, which could possibly be narrowed down using more sophisticated methods.

Incidentally, forcing σobs,i ≡ σmod,i in (3), ∀ i, would take us back to standard
maximum likelihood estimation, since the Rao GD between two Gaussians p1 and
p2 with means yi, resp. f

({xij}, {βk})
, but with identical standard deviations

σi (fixed along the geodesic path), is precisely the Mahalanobis distance [8]:

GD(p1, p2) =

∣
∣yi − f

({xij}, {βk})∣∣

σi
.

3 Application of GLS to Tully-Fisher Scaling

3.1 The Baryonic Tully-Fisher Relation

The baryonic Tully-Fisher relation (BTFR) between the total (stellar + gaseous)
baryonic mass Mb of disk galaxies and their rotational velocity Vf is of funda-
mental importance in astrophysics and cosmology [9]. It is a remarkably simple
and tight empirical relation of the form

Mb = β0V
β1
f . (4)

The BTFR serves as a tool for determining cosmic distances, provides constraints
on galaxy formation and evolution models, and serves as a test for the Lambda
cold dark matter paradigm (ΛCDM) in cosmology. In this scaling problem, we
use data from 47 gas-rich galaxies, as plotted in Fig. 1 and detailed in [9]. The
data also contain estimates of the observational errors, which we treat here as
a single standard deviation. Figure 2 shows a scatter plot of σmod,i, which is
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Fig. 1. Baryonic mass Mb vs. rotation velocity Vf for 47 gas-rich galaxies and the fitted
BTFR using OLS, Bayesian inference and GLS. (a) On the logarithmic scale and (b)
on the original scale.

Table 1. Regression estimates for the BTFR parameters using loglinear and nonlinear
OLS, Bayesian inference and GLS.

Loglinear β̂0 β̂1 Nonlinear β̂0 β̂1

OLS 310 3.56 OLS 0.063 5.37

Bayes 160 3.72 Bayes 91 3.80

GLS 110 3.81 GLS 79 3.83

almost entirely determined by σMb
, vs. Mb for the 47 galaxies in the database.

This suggests a measurement error on the response variable proportional to Mb,
about 38%, i.e. a constant error bar on the logarithmic scale.

3.2 Regression Analysis

Owing to the power law character of most scaling laws, they are often estimated
by linear regression on a logarithmic scale. However, it is known that this may
lead to unreliable estimates, as the logarithm (heavily) distorts the distribution
of the data [1]. This is in particular the case when the estimation is done using
simple OLS or when there are outliers in the data. In contrast, we will show that
GLS regression produces consistent results on both the logarithmic and original
scales, demonstrating its robustness.

In view of the proportional error on Mb, the observed standard deviation in
GLS is modeled here as σobs,i = robsMb, with robs an unknown scale factor to
be estimated from the data using the optimization routine.

We compare the results of GLS regression with OLS and a standard Bayesian
method. For the latter we choose the likelihood given in (2), allowing uncertainty
on the standard deviation through a scale factor with a Jeffreys prior. We also
use uninformative prior distributions for the regression parameters.

The scalings obtained using the various methods are shown in Fig. 1a for the
case of linear regression on the logarithmic scale, and in Fig. 1b for power-law
regression on the original scale. The coefficient estimates are given in Table 1.
It is clear that GLS yields estimates that are much more consistent compared
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Table 2. Average regression estimates and 95% confidence intervals for the BTFR
using loglinear and nonlinear OLS, Bayesian inference and GLS, obtained from 100
bootstrap samples.

Loglinear β̂0 β̂1

OLS 360 ± 220 3.57 ± 0.15

Bayes 220 ± 220 3.72 ± 0.19

GLS 140 ± 82 3.80 ± 0.16

Nonlinear β̂0 β̂1

OLS (3.6 ± 6.2) × 103 4.56 ± 1.19

Bayes 130 ± 160 3.80 ± 0.21

GLS 390 ± 280 3.85 ± 0.18

Fig. 2. Plot of σMb (≈ σmod) and robsMb (= σobs) vs. Mb, as estimated by GLS.

to OLS. In particular, whereas the data point corresponding to the largest Vf

and Mb does not have the characteristics of an outlier on the logarithmic scale,
it may be considered as such on the original scale. The nonlinear OLS estimate
for the exponent β1 is heavily influenced by this point, causing the discrepancy
with the estimate on the logarithmic scale. Furthermore, the results of GLS are
verified by the Bayesian method.

Next, 100 bootstrap samples were created from the data, yielding average
parameter estimates and 95% confidence intervals on the basis of the OLS and
GLS results, shown in Table 2. Again, the enhanced robustness of GLS compared
to OLS stands out.

Finally, Fig. 2 shows the plot of σobs = robsMb vs. Mb, with the scale factor
robs (observed relative error) amounting to 63%. This is considerably larger
than the value of 38% predicted by the model, possibly indicating that the
scatter on the scaling law is not due to measurement error alone. This will be
an important area of further investigation, as it may provide evidence for the
ΛCDM vs. MOND cosmological models.

4 Conclusion

We have introduced geodesic least squares, a versatile and robust regression
method based on regression between probability distributions. Part of the
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strength of the method is its simplicity, allowing straightforward application
by users in various application fields, without the need for parameter tuning.
We have applied GLS to baryonic Tully-Fisher scaling, thereby demonstrating
the robustness of the method and providing an alternative means for testing
cosmological models based on the estimated intrinsic scatter.
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Abstract. This paper argues that a class of Riemannian metrics, called
warped metrics, plays a fundamental role in statistical problems involving
location-scale models. The paper reports three new results: (i) the Rao-
Fisher metric of any location-scale model is a warped metric, provided
that this model satisfies a natural invariance condition, (ii) the analytic
expression of the sectional curvature of this metric, (iii) the exact ana-
lytic solution of the geodesic equation of this metric. The paper applies
these new results to several examples of interest, where it shows that
warped metrics turn location-scale models into complete Riemannian
manifolds of negative sectional curvature. This is a very suitable situa-
tion for developing algorithms which solve problems of classification and
on-line estimation. Thus, by revealing the connection between warped
metrics and location-scale models, the present paper paves the way to
the introduction of new efficient statistical algorithms.

Keywords: Rao-fisher metric · Warped metric · Location-scale model ·
Sectional curvature · Geodesic equation

1 Introduction: Definition and Two Examples

This paper argues that a class of Riemannian metrics, called warped metrics,
is natural and useful to statistical problems involving location-scale models. A
warped metric is defined as follows [1]. Let M be a Riemannian manifold with
Riemannian metric ds2M . Consider the manifold M = M × (0 ,∞) , equipped
with the Riemannian metric,

ds2(z) = I0(σ) dσ2 + I1(σ) ds2M (x̄) (1)

where each z ∈ M is a couple (x̄ , σ) with x̄ ∈ M and σ ∈ (0 ,∞). The Rie-
mannian metric (1) is called a warped metric on M . The functions I0 and I1
have strictly positive values and are part of the definition of this metric.

The main claim of this paper is that warped metrics arise naturally as Rao-
Fisher metrics for a variety of location-scale models. Here, to begin, two examples
of this claim are given. Example 1 is classic, while Example 2, to our knowledge,
is new in the literature. As of now, the reader is advised to think of M as
a statistical manifold, where x̄ is a location parameter and σ is either a scale
parameter or a concentration parameter.
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 631–638, 2017.
https://doi.org/10.1007/978-3-319-68445-1_73



632 S. Said and Y. Berthoumieu

Example 1 (univariate normal model): Let M = R, with ds2M (x̄) = dx̄2 the
canonical metric of R . If each z = (x̄ , σ) in M is identified with the univariate
normal density of mean x̄ and standard deviation σ , then the resulting Rao-
Fisher metric on M is given by [2]

ds2(z) = σ−2 dσ2 +
1
2
σ−2 dx̄2 (2)

Example 2 (von Mises-Fisher model): let M = S 2 , the unit sphere with
ds2M = dθ2 its canonical metric induced from R

3 . Identify z = (x̄ , σ) in M with
the von Mises-Fisher density of mean direction x̄ and concentration parameter
σ [3]. The resulting Rao-Fisher metric on M is given by

ds2(z) =
(
σ−2 − sinh−2 σ

)
dσ2 + ( σ coth σ − 1 ) dθ2(x̄) (3)

Remark a: note that σ is a scale parameter in Example 1, but a concentration
parameter in Example 2. Accordingly, at σ = 0, the metric (2) becomes infinite,
while the metric (3) remains finite and degenerates to ds2(z)

∣
∣
σ=0

= (1/3) dσ2.
Thus, (3) gives a Riemannian metric on the larger Riemannian manifold M̂ =
R

3, which contains M, obtained by considering σ as a radial coordinate and
σ = 0 as the origin of R3. �

2 A General Theorem: From Rao-Fisher to Warped
Metrics

Examples 1 and 2 of the previous section are special cases of Theorem 1, given
here. To state this theorem, let (M,ds2M ) be an irreducible Riemannian homo-
geneous space, under the action of a group of isometries G [4]. Denote by g · x
the action of g ∈ G on x ∈ M . Then, assume each z = (x̄ , σ) in M can be
identified uniquely and regularly with a probability density p(x| z) = p(x| x̄ , σ)
on M , with respect to the Riemannian volume element, such that the following
property is verified,

p(g · x| g · x̄ , σ) = p(x| x̄ , σ) g ∈ G (4)

The densities p(x| x̄ , σ) form a statistical model on M , where x̄ is a location
parameter and σ can be chosen as either a scale or a concentration parameter,
(roughly, a scale parameter is the inverse of a concentration parameter).

In the statement of Theorem 1, �(z) = log p(x| z) and ∇x̄ �(z) denotes the
Riemannian gradient vector field of �(z), with respect to x̄ ∈ M . Moreover,
‖∇x̄�(z)‖ denotes the length of this vector field, as measured by the metric
ds2M .

Theorem 1 (warped metrics). The Rao-Fisher metric of the statistical model
{ p(x| z) ; z ∈ M} is a warped metric of the form (1), defined by

I0(σ) = Ez ( ∂σ�(z) )2 I1(σ) = Ez ‖∇x̄�(z)‖2 /
dim M (5)
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where Ez denotes expectation with respect to p(x| z) . Due to property (4), the
two expectations appearing in (5) do not depend on the parameter x̄, so I0 and
I1 are well-defined functions of σ.

Remark b: the proof of Theorem 1 cannot be given here, due to lack of space.
It relies strongly on the assumption that the Riemannian homogeneous space
M is irreducible. In particular, this allows the application of Schur’s lemma,
from the theory of group representations [5]. To say that M is an irreducible
Riemannian homogeneous space means that the following property is verified :
if Kx̄ is the stabiliser in G of x̄ ∈ M , then the isotropy representation k �→ dk|x̄
is an irreducible representation of Kx̄ in the tangent space Tx̄M . �

Remark c: if the assumption that M is irreducible is relaxed, then Theorem1
generalises to a similar statement, involving so-called multiply warped metrics.
Roughly, this is because a homogeneous space which is not irreducible, may still
decompose into a direct product of irreducible homogeneous spaces [4]. �

Remark d: statistical models on M which verify (4) often arise under an expo-
nential form,

p(x| x̄ , σ) = exp ( η · D(x , x̄) − ψ(η) ) (6)

where η = η(σ) is a natural parameter, and ψ(η) is the cumulant generating
function of the statistic D(x , x̄) . Then, for assumption (4) to hold, it is necessary
and sufficient that

D(g · x , g · x̄) = D(x , x̄) (7)

Both Examples 1 and 2 are of the form (6), as is Example 3, in the following
section, which deals with the Riemannian Gaussian model [6,7]. �

3 Curvature Equations and the Extrinsic Geometry of M

For each σ ∈ (0 ,∞) , there is an embedding of M into M , as the surface
M × {σ} . This embedding yields an extrinsic geometry of M , given by the first
and second fundamental forms [8].

The first fundamental form is the restriction of the metric ds2 of M to the
tangent bundle of M . This will be denoted ds2M (x|σ) for x ∈ M . It is clear from
(1) that

ds2M (x|σ) = I1(σ) ds2M (x) (8)

This extrinsic Riemannian metric on M is a scaled version of its intrinsic
metric ds2M . It induces an extrinsic Riemannian distance given by

d 2(x , y|σ) = I1(σ) d 2(x , y) x , y ∈ M (9)

where d(x , y) is the intrinsic Riemannian distance, induced by the metric ds2M .
The extrinsic distance (9) is a generalisation of the famous Mahalanobis

distance. In fact, replacing in Example 1 yields the classical expression of the
Mahalanobis distance d 2(x , y) = |x − y|2/2σ2. The significance of this distance
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can be visualised as follows: if σ is a dispersion parameter, the extrinsic distance
between two otherwise fixed points x , y ∈ M will decrease as σ increases, as
if the space M were contracting, (for a concentration parameter, there is an
expansion, rather than a contraction).

The second fundamental form is given by the tangent component of the
covariant derivative of the unit normal to the surface M ×{σ} . This unit normal

is ∂r where r is the vertical distance coordinate, given by dr/dσ = I
1
2
0 (σ) . Using

Koszul’s formula [9], it is possible to express the second fundamental form,

S(v) =
1
2

(
∂rI1

/
I1

)
v (10)

for any v tangent to M . Knowledge of the second fundamental form is valuable,
as it yields the relationship between extrinsic and intrinsic curvatures of M .

Proposition 1 (curvature equations). Let KM and KM denote the sectional
curvatures of M and M . The following are true

KM(u , v) =
(

1
/

I1

)
KM (u , v) − 1

4

(
∂rI1

/
I1

)2

(11)

KM(u , ∂r ) = −
(

∂ 2
r I

1
2
1

/
I

1
2
1

)
(12)

for any linearly independent u , v tangent to M .

Remark e: here, Eq. (11) is the Gauss curvature equation. Roughly, it shows
that embedding M into M adds negative curvature. Eq. (12) is the mixed cur-
vature equation. If the intrinsic sectional curvature KM is negative, then (11)
and (12) show that the sectional curvature KM of M is negative if and only if

I
1
2
1 is a convex function of the vertical distance r . �

Return to example 1: here, M = R is one-dimensional, so the Gauss equa-
tion (11) does not provide any information. The mixed curvature equation gives
the curvature of the two-dimensional manifold M. In this equation, ∂r = σ ∂σ ,
and it follows that

KM(u , ∂r ) = − 1 (13)

so M has constant negative curvature. In fact, it was observed long ago that the
metric (2) is essentially the Poincaré half-plane metric [2]. �

Return to example 2: in Example 2, M = S2 so KM ≡ 1 is constant. It
follows from the Gauss equation that each sphere S2×{σ} has constant extrinsic
curvature, equal to

KM∣
∣
σ

=
(

1
/

I1

)
− 1

4

(
∂rI1

/
I1

)2

(14)
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Upon replacing the expressions of I1 and ∂r based on (3), this is found to be
strictly negative for σ > 0,

KM∣
∣
σ

< 0 for σ > 0 (15)

Thus, the Rao-Fisher metric (3) induces a negative extrinsic curvature on
each spherical surface S2 × {σ} . In fact, by studying the mixed curvature equa-
tion (12), it is seen the whole manifold M equipped with the Rao-Fisher metric
(3) is a manifold of negative sectional curvature. �

Example 3 (Riemannian Gaussian model): A Riemannian Gaussian distri-
bution may be defined on any Riemannian symmetric space M of non-positive
curvature. It is given by the probability density with respect to Riemannian
volume

p(x| x̄ , σ) = Z−1(σ) exp
[

−d 2(x , x̄)
2σ2

]
(16)

where the normalising constant Z(σ) admits a general expression, which was
given in [7]. If M is an irreducible Riemannian symmetric space, then Theorem1
above applies to the Riemannian Gaussian model (16), leading to a warped
metric with

I0(σ) = ψ′′(η) I1(σ) = 4η2 ψ′(η)
/

dim M (17)

where η = −1/2σ2 and ψ(η) = log Z(σ). The result of Eq. (17) is here published
for the first time. Consider now the special case where M is the hyperbolic plane.
The analytic expression of I0 and I1 can be found from (17) using

Z(σ) = Const. σ × eσ2/4 × erf(σ/2) (18)

which was derived in [6]. Here, erf denotes the error function. Then, replacing
(17) in the curvature equations (11) and (12) yields the same result as for Exam-
ple 2: the manifold M equipped with the Rao-Fisher metric (17) is a manifold
of negative sectional curvature. �

Remark f (a conjecture): based on the three examples just considered, it
seems reasonable to conjecture that warped metrics arising from Theorem 1 will
always lead to manifolds M of negative sectional curvature. �

4 Solution of the Geodesic Equation: Conservation Laws

If the assumptions of Theorem 1 are slightly strengthened, then an analytic solu-
tion of the geodesic equation of the Riemannian metric (1) on M can be obtained,
by virtue of the existence of a sufficient number of conservation laws. To state this
precisely, let 〈·, ·〉M and 〈·, ·〉M denote respectively the scalar products defined
by the metrics ds2M and ds2.

Two kinds of conservation laws hold along any affinely parameterised geodesic
curve γ(t) in M, with respect to the metric ds2 . These are conservation of energy



636 S. Said and Y. Berthoumieu

and conservation of moments [10]. If the geodesic γ(t) is expressed as a couple
(σ(t) , x(t) ) where σ(t) > 0 and x(t) ∈ M , then the energy of this geodesic is

E = I0(σ) σ̇2 + I1(σ) ‖ẋ‖2 (19)

where the dot denotes differentiation with respect to t , and ‖ẋ‖ the Riemannian
length of ẋ as measured by the metric ds2M .

On the other hand, if ξ is any element of the Lie algebra of the group of
isometries G acting on M , the corresponding moment of the geodesic γ(t) is

J(ξ) = I1(σ) 〈 ẋ , Xξ 〉M (20)

where Xξ is the vector field on M given by Xξ(x) = d
dt

∣
∣
t=0

etξ ·x . The equation
of the geodesic γ(t) is given as follows.

Proposition 2 (conservation laws and geodesics). For any geodesic γ(t),
its energy E and its moment J(ξ) for any ξ are conserved quantities, remaining
constant along this geodesic. If M is an irreducible Riemannian symmetric space,
the equation of the geodesic γ(t) is the following,

x(t) = Expx(0)

[( ∫ t

0

I1(σ(0))
I1(σ(s))

ds

)
ẋ(0)

]
(21)

t = ±
∫ σ(t)

σ(0)

I
1
2
0 (σ) dσ

√
E − V (σ)

(22)

where Exp denotes the Riemannian exponential mapping of the metric ds2M

on M , and V (σ) is the function V (σ) = J0 × I1(σ(0))
/

I1(σ) , with J0 =

I1(σ(0)) ‖ẋ(0)‖2 .
Remark g: under the assumption that M is an irreducible Riemannian symmet-
ric space, the second part of Proposition 2, stating the equations of x(t) and σ(t)
is a corollary of the first part, stating the conservation of energy and moment. The
proof, as usual not given due to lack of space, relies on a technique of lifting the
geodesic equation to the Lie algebra of the group of isometries G. �

Remark h: Here, Eq. (21) states that x(t) describes a geodesic curve in the
space M , with respect to the metric ds2M , at a variable speed equal to

I1(σ(0))
/

I1(σ(t)) . Equation (22) states that σ(t) describes the one-dimensional

motion of a particle of energy E and mass 2I0(σ), in a potential field V (σ). �

Remark i (completeness of M): From Eq. (22) it is possible to see that any
geodesic γ(t) in M is defined for all t > 0, if and only if the following conditions
are verified ∫

0

I
1
2
0 (σ) dσ = ∞

∫ ∞
I

1
2
0 (σ) dσ = ∞ (23)
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where the missing integration bounds are arbitrary. The first condition ensures
that γ(t) may not escape to σ = 0 within a finite time, while the second condi-
tion ensures the same for σ = ∞. The two conditions (23), taken together, are
necessary and sufficient for M to be a complete Riemannian manifold. �

Return to Example 2: for the von Mises-Fisher model of Example 2, the
second condition in (23) is verified, but not the first. Therefore, a geodesic γ(t)
in M may escape to σ = 0 within a finite time. However, γ(t) is also a geodesic
in the larger manifold M̂ = R

3 , which contains σ = 0 as its origin. If γ(t) arrives
at σ = 0 at some finite time, it will just go through this point and immediately
return to M. In fact, M̂ is a complete Riemannian manifold which has M as
an isometrically embedded submanifold. �

5 The Road to Applications: Classification
and Estimation

The theoretical results of the previous chapters have established that warped
metrics are natural statistical objects arising in connection with location-scale
models, which are invariant under some group action. Precisely, Theorem1 has
stated that warped metrics appear as Rao-Fisher metrics for all location-scale
models which verify the group invariance condition (4).

Analytical knowledge of the Rao-Fisher metric of a statistical model is poten-
tially useful to many applications. In particular, to problems of classification and
efficient on-line estimation. However, in order for such applications to be realised,
it is necessary for the Rao-Fisher metric to be well-behaved. Propositions 2 and
3 in the above seem to indicate such a good behavior for warped metrics on
location-scale models.

Indeed, as conjectured in Remark f, the curvature equations of Proposition 2
would indicate that the sectional curvature of these warped metrics is always
negative. Then, if the conditions for completeness, given in Remark i based on
Proposition 3, are verified, the location-scale models equipped with these warped
metrics appear as complete Riemannian manifolds of negative curvature. This
is a favourable scenario, (which at least holds for the von Mises-Fisher model of
Example 2), under which many algorithms can be implemented.

For classification problems, it becomes straightforward to find the analytic
expression of Rao’s Riemannian distance, and to compute Riemannian centres
of mass, whose existence and uniqueness will be guaranteed. These form the
building blocks of many classification methodologies.

For efficient on-line estimation, Amari’s natural gradient algorithm turns out
to be identical to the stochastic Riemannian gradient algorithm, defined using
the Rao-Fisher metric. Then, analytical knowledge of the Rao-Fisher metric,
(which is here a warped metric), and of its completeness and curvature prop-
erties, yields an elegant formulation of the natural gradient algorithm, and a
geometrical means of proving its efficiency and understanding its convergence
properties.
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Abstract. Comparative convexity is a generalization of ordinary con-
vexity based on abstract means instead of arithmetic means. We define
and study the Bregman divergences with respect to comparative con-
vexity. As an example, we consider the convexity induced by quasi-
arithmetic means, report explicit formulas, and show that those Bregman
divergences are equivalent to conformal ordinary Bregman divergences
on monotone embeddings.
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1 Introduction: Convexity, Jensen and Bregman
Divergences

Convexity allows one to define classes of dissimilarity measures parameterized
by functional generators. Let F : X → R be a real-valued function. Burbea and
Rao [8] studied the Jensen difference for F ∈ C as such a family of dissimilarities:

JF (p, q):=
F (p) + F (q)

2
− F

(
p + q

2

)
. (1)

A dissimilarity D(p, q) is proper iff D(p, q) ≥ 0 with equality iff p = q. It fol-
lows from the strict midpoint convex property of F that JF is proper. Nowadays,
these Jensen differences are commonly called Jensen Divergences (JD), where
a divergence is a smooth dissimilarity measure inducing a dual geometry [2].
One can further define the proper skewed Jensen divergences for α ∈ (0, 1),
see [15,20]:

JF,α(p : q):=(1 − α)F (p) + αF (q) − F ((1 − α)p + αq), (2)

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 639–647, 2017.
https://doi.org/10.1007/978-3-319-68445-1_74



640 F. Nielsen and R. Nock

with JF,α(q : p) = JF,1−α(p : q). The “:” notation emphasizes the fact that the
dissimilarity may be asymmetric. Another popular class of dissimilarities are the
Bregman Divergences [6] (BDs):

BF (p : q):=F (p) − F (q) − (p − q)�∇F (q), (3)

where ∇F denotes the gradient of F . Let J ′
F,α(p : q):= 1

α(1−α)JF,α(p : q) denote
the scaled skew JDs. Then it was proved that BDs can be obtained as limit cases
of skew JDs [15,20]:

BF (p : q) = lim
α→0+

J ′
F,α(p : q), BF (q : p) = lim

α→1−
J ′

F,1−α(p : q).

2 Jensen and Bregman Divergences with Comparative
Convexity

2.1 Comparative Convexity

The branch of comparative convexity [14] studies classes CM,N of (M,N)-strictly
convex functions F that satisfies the following generalized strict midpoint convex
inequality:

F ∈ CM,N ⇔ F (M(p, q)) < N(F (p), F (q)), ∀p, q ∈ X , (4)

where M and N are two abstract means defined on the domain X and codomain
R, respectively. When M = N = A, the arithmetic mean, we recover the ordinary
convexity.

An abstract mean M(p, q) aggregates two values to produce an intermedi-
ate quantity that satisfies the innerness property [7]: min{x, y} ≤ M(x, y) ≤
max{x, y}. There are many families of means. For example, the family of power

means Pδ (Hölder means [10]) is defined by: Pδ(x, y) =
(

xδ+yδ

2

) 1
δ

. The arith-
metic, harmonic and quadratic means are obtained for δ = 1, δ = −1, and δ = 2,
respectively. To get a continuous family of power means for δ ∈ R, we define for
δ = 0, P0(x, y) =

√
xy, the geometric mean. Notice that power means satisfy the

innerness property, and include in the limit cases the minimum and maximum
values: limδ→−∞ Pδ(x, y) = min{x, y} and limδ→∞ Pδ(x, y) = max{x, y}. More-
over, the power means are ordered, Pδ(x, y) ≤ Pδ′(x, y) for δ′ ≥ δ, a property
generalizing the well-known inequality of arithmetic and geometric means [7].

There are many ways to define parametric family of means [7]: For example,
let us cite the Stolarksy, Lehmer and Gini means, with the Gini means including
the power means. Means can also be parameterized by monotone functions: Let
us cite the quasi-arithmetic means [9,11,13], the Lagrange means [4], the Cauchy
means [12], etc.
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2.2 Generalized Skew Jensen Divergences

We shall introduce univariate divergences for X ⊂ R in the remainder. Multivari-
ate divergences for X ⊂ R

d can be built from univariate divergences component-
wise.

Definition 1 (Comparative Convexity Jensen Divergence). The Com-
parative Convexity Jensen Divergence (ccJD) is defined for a midpoint (M,N)-
strictly convex function F : I ⊂ R → R by:

JM,N
F (p, q):=N(F (p), F (q))) − F (M(p, q)) (5)

It follows from the strict midpoint (M,N)-convexity that the ccJDs are
proper: JM,N

F (p, q) ≥ 0 with equality iff p = q.
To define generalized skew Jensen divergences, we need (i) to consider

weighted means, and (ii) to ensure that the divergence is proper. This restrict
weighted means to be regular:

Definition 2 (Regular mean). A mean M is said regular if it is (i) symmetric
(M(p, q) = M(q, p)), (ii) continuous, (iii) increasing in each variable, and (iv)
homogeneous (M(λp, λq) = λM(p, q),∀λ > 0).

Power means are regular: They belong to a broader family of regular means,
the quasi-arithmetic means. A quasi-arithmetic mean is defined for a continuous
and strictly increasing function f : I ⊂ R → J ⊂ R as:

Mf (p, q):=f−1

(
f(p) + f(q)

2

)
. (6)

These means are also called Kolmogorov-Nagumo-de Finetti means [9,
11,13]. By choosing f(x) = x, f(x) = log x or f(x) = 1

x , we
obtain the Pythagorean arithmetic, geometric, and harmonic (power) means,
respectively. A quasi-arithmetic weighted mean is defined by Mf (p, q; 1 −
α, α):=f−1 ((1 − α)f(p) + αf(q)) for α ∈ [0, 1]. Let Mα(p, q):=M(p, q; 1 − α, α)
denote a shortcut for a weighted regular mean.

A continuous function F satisfying the (M,N)-midpoint convex property for
regular means M and N is (M,N)-convex (Theorem A of [14]):

Nα(F (p), F (q)) ≥ F (Mα(p, q)),∀p, q ∈ X ,∀α ∈ [0, 1]. (7)

Thus we can define a proper divergence for a strictly (M,N)-convex function
when considering regular weighted means:

Definition 3 (Comparative Convexity skew Jensen Divergence). The
Comparative Convexity skew α-Jensen Divergence (ccsJD) is defined for a
strictly (M,N)-convex function F ∈ CM,N : I → R by:

JM,N
F,α (p : q):=Nα(F (p), F (q)) − F (Mα(p, q)), (8)

where M and N are regular weighted means, and α ∈ (0, 1).
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For regular weighted means, we have JM,N
F,α (q, p) = JM,N

F,1−α(p : q) since the
weighted means satisfy Mα(p, q) = M1−α(q, p). This generalized ccsJD can be
extended to a positively weighted set of values by defining a notion of diversity [8]
as:

Definition 4 (Comparative Convexity Jensen Diversity Index). Let
{(wi, xi)}n

i=1 be a set of n positive weighted values so that
∑n

i=1 wi = 1. Then the
Jensen diversity index with respect to the strict (M,N)-convexity of a function
F for regular weighted means is:

JM,N
F (x1, . . . , xn;w1, . . . , wn):=N({(F (xi), wi)}i) − F (M({(xi, wi)}i)).

When both means M and N are set to the arithmetic mean, this diversity
index has also been called the Bregman information [3] in the context of k-means
clustering.

2.3 Generalized Bregman Divergences

By analogy to the ordinary setting, let us define the (M,N)-Bregman diver-
gence as the limit case of a scaled skew (M,N)-ccsJDs. Let J ′M,N

F,α (p : q) =
1

α(1−α)J
M,N
F,α (p : q).

Definition 5 ((M,N)-Bregman divergence). For regular weighted means M
and N , the (M,N)-Bregman divergence is defined for a strictly (M,N)-convex
function F : I → R by

BM,N
F (p : q) := lim

α→1−
J ′M,N

F,α (p : q). (9)

It follows from the symmetry J ′
F,α(p : q) = J ′

F,1−α(q : p) that we get the
reverse Bregman divergence as: BM,N

F (q : p) = limα→0+ J ′M,N
F,α (p : q).

Note that a generalization of Bregman divergences has also been studied
by Petz [18] to get generalized quantum relative entropies when considering
the arithmetic weighted means: Petz defined the Bregman divergence between
two points p and q of a convex set C sitting in a Banach space for a given
function F : C → B(H) (Banach space induced by a Hilbert space H) as:
BF (p : q):=F (p)−F (q)− limα→0+

1
α (F (q +α(p−q))−F (q)). This last equation

can be rewritten in our framework as BF (p : q) = limα→1− 1
1−αJA,A

F,α (p, q).
In general, we need to prove that (i) when the limits exists, (ii) the (M,N)-

Bregman divergences are proper: BM,N
F (q : p) ≥ 0 with equality iff p = q.

3 Quasi-arithmetic Bregman Divergences

Let us report direct formulas for the generalized Bregman divergences defined
with respect to comparative convexity when using regular quasi-arithmetic
means. Let ρ and τ be two continuous differentiable functions defining the quasi-
arithmetic means Mρ and Mτ , respectively.
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3.1 A Direct Formula

By definition, a function F ∈ Cρ,τ is (ρ, τ)-convex iff Mτ (F (p), F (q))) ≥
F (Mρ(p, q)). This (ρ, τ)-midpoint convexity property with the continuity of
F yields the more general definition of (ρ, τ)-convexity Mτ,α(F (p), F (q))) ≥
F (Mρ,α(p, q)), α ∈ [0, 1]. Let us study the generalized Bregman Divergences
Bρ,τ

F obtained when taking the limit:

Bρ,τ
F (q : p):= lim

α→0

Mτ,α(F (p), F (q))) − F (Mρ,α(p, q))
α(1 − α)

. (10)

for Mρ,α and Mτ,α two quasi-arithmetic weighted means obtained for continuous
and monotonic functions ρ and τ , respectively.

We state the generalized Bregman divergence formula obtained with respect
to quasi-arithmetic comparative convexity:

Theorem 1 (Quasi-arithmetic Bregman divergences). Let F : I ⊂ R →
R be a real-valued strictly (ρ, τ)-convex function defined on an interval I for two
strictly monotone and differentiable functions ρ and τ . The Quasi-Arithmetic
Bregman divergence (QABD) induced by the comparative convexity is:

Bρ,τ
F (p : q) =

τ(F (p)) − τ(F (q))
τ ′(F (q))

− ρ(p) − ρ(q)
ρ′(q)

F ′(q),

= κτ (F (q) : F (p)) − κρ(q : p)F ′(q), (11)

where

κγ(x : y) =
γ(y) − γ(x)

γ′(x)
. (12)

Proof. By taking the first-order Taylor expansion of τ−1(x) at x0, we get
τ−1(x) �x0 τ−1(x0) + (x − x0)(τ−1)′(x0). Using the property of the deriva-
tive of an inverse function, (τ−1)′(x) = 1

(τ ′(τ−1)(x)) , it follows that the first-order
Taylor expansion of τ−1(x) is τ−1(x) � τ−1(x0)+(x−x0) 1

(τ ′(τ−1)(x0))
. Plugging

x0 = τ(p) and x = τ(p) + α(τ(q) − τ(p)), we get a first-order approximation of
the weighted quasi-arithmetic mean Mτ when α → 0:

Mα(p, q) � p +
α(τ(q) − τ(p))

τ ′(p)
. (13)

For example, when τ(x) = x (i.e., arithmetic mean), we have Aα(p, q) �
p + α(q − p), when τ(x) = log x (i.e., geometric mean), we obtain Gα(p, q) �
p + αp log q

p , and when τ(x) = 1
x (i.e., harmonic mean) we get Hα(p, q) �

p + α(p − p2

q ). For the regular power means, we have Pα(p, q) � p + α qδ−pδ

δpδ−1 .
These are first-order weighted mean approximations obtained for small values
of α.

Now, consider the comparative convexity skewed Jensen Divergence defined
by Jτ,ρ

F,α(p : q) = (Mτ,α(F (p), F (q)) − F (Mρ,α(p, q))), and apply a first-order
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Taylor expansion to get F (Mτ,α(p, q))) � F
(
p + α(τ(q)−τ(p))

τ ′(p)

)
� F (p) +

α(τ(q)−τ(p))
τ ′(p) F ′(p). Thus it follows that the Bregman divergence for quasi-

arithmetic comparative convexity is Bρ,τ
F (q : p) = limα→0 J ′

τ,ρ,α(p : q) =
τ(F (q))−τ(F (p))

τ ′(F (p)) − ρ(q)−ρ(p)
ρ′(p) F ′(p), and the reverse Bregman divergence Bρ,τ

F (p :
q) = limα→1

1
α(1−α)J

τ,ρ
α (p : q) = limα→0

1
α(1−α)J

τ,ρ
α (q : p).

Since power means are regular quasi-arithmetic means, we get the following
family of power mean Bregman divergences:

Corollary 1 (Power Mean Bregman Divergences). For δ1, δ2 ∈ R\{0}
with F ∈ CPδ1 ,Pδ2

, we have the family of Power Mean Bregman Divergences
(PMBDs):

Bδ1,δ2
F (p : q) =

F δ2(p) − F δ2(q)
δ2F δ2−1(q)

− pδ1 − qδ1

δ1qδ1−1
F ′(q) (14)

A sanity check for δ1 = δ2 = 1 let us recover the ordinary Bregman diver-
gence.

3.2 Quasi-arithmetic Bregman Divergences Are Proper

Appendix A proves that a function F ∈ Cρ,τ iff G = Fρ,τ = τ ◦ F ◦ ρ−1 ∈ C.
We still need to prove that QABDs are proper: Bρ,τ

F (p : q) ≥ 0 with equality
iff p = q. Defining the ordinary Bregman divergence on the convex generator
G(x) = τ(F (ρ−1(x))) for a (ρ, τ)-convex function with G′(x) = τ(F (ρ−1(x)))′ =

1
(ρ′(ρ−1)(x))F

′(ρ−1(x))τ ′(F (ρ−1(x))), we get an ordinary Bregman divergence
that is, in general, different from the generalized quasi-arithmetic Bregman diver-
gence Bρ,τ

F : BG(p : q) = Bρ,τ
F (p : q) with:

BG(p : q) = τ(F (ρ−1(p))) − τ(F (ρ−1(q))) − (p − q)
F ′(ρ−1(q))τ ′(F (ρ−1(q)))

(ρ′(ρ−1)(q))

A sanity check shows that BG(p : q) = Bρ,τ
F (p : q) when ρ(x) = τ(x) = x

(since we have the derivatives ρ′(x) = τ ′(x) = 1).
Let us notice the following remarkable identity:

Bρ,τ
F (p : q) =

1
τ ′(F (q))

BG(ρ(p) : ρ(q)). (15)

This identity allows us to prove that QABDs are proper divergences.

Theorem 2 (QABDs are proper). The quasi-arithmetic Bregman diver-
gences are proper divergences.

Proof.. BG is a proper ordinary BD, τ ′ > 0 a positive function since τ is a strictly
increasing function, and ρ(p) = ρ(q) iff p = q since ρ is strictly monotonous. It
follows that 1

τ ′(F (q))BG(ρ(p) : ρ(q)) ≥ 0 with equality iff p = q.
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3.3 Conformal Bregman Divergences on Monotone Embeddings

A closer look at Eq. 15 allows one to interpret the QABDs Bρ,τ
F (p : q) as

conformal divergences. A conformal divergence [2,16,17] Dκ(p : q) of a diver-
gence D(p : q) is defined by a positive conformal factor function κ as follows:
Dκ(p : q) = κ(q)D(p : q). An example of Bregman conformal divergence is the
total Bregman divergence [19] with κ(q) = 1√

1+‖∇F (q)‖2
.

Property 1 (QABDs as conformal BDs). The quasi-arithmetic Bregman diver-
gence Bρ,τ

F (p : q) amounts to compute an ordinary Bregman conformal diver-
gence in the ρ-embedded space:

Bρ,τ
F (p : q) = κ(ρ(q))BG(ρ(p) : ρ(q)), (16)

with conformal factor κ(x) = 1
τ ′(F (ρ−1(x))) > 0.

4 Concluding Remarks

We have introduced generalized (M,N)-Bregman divergences as limit of scaled
skew (M,N)-Jensen divergences for regular M and N means. Regular means
include power means, quasi-arithmetic means, Stolarsky means, etc. But not
all means are regular: For example, the Lehmer mean L2(x, y) = x2+y2

x+y is not
increasing and therefore not regular. We reported closed-form expression for
quasi-arithmetic (ρ, τ)-Bregman divergences, prove that those divergences are
proper, and show that they can be interpreted as conformal ordinary Breg-
man divergences on a monotone embedding [21]. This latter observation further
let us extend usual Bregman divergence results to quasi-arithmetic Bregman
divergences (eg., conformal Bregman k-means [19], conformal Bregman Voronoi
diagrams [5]).

A Quasi-arithmetic to Ordinary Convexity Criterion

Lemma 1 ((ρ, τ)-convexity ↔ ordinary convexity [1]). Let ρ : I → R and
τ : J → R be two continuous and strictly monotone real-valued functions with
τ increasing, then function F : I → J is (ρ, τ)-convex iff function G = Fρ,τ =
τ ◦ F ◦ ρ−1 is (ordinary) convex on ρ(I).

Proof. Let us rewrite the (ρ, τ)-convexity midpoint inequality as follows:

F (Mρ(x, y)) ≤ Mτ (F (x), F (y)),

F

(
ρ−1

(
ρ(x) + ρ(y)

2

))
≤ τ−1

(
τ(F (x)) + τ(F (y))

2

)
,

Since τ is strictly increasing, we have:

(τ ◦ F ◦ ρ−1)
(

ρ(x) + ρ(y)
2

)
≤ (τ ◦ F )(x) + (τ ◦ F )(y)

2
. (17)
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Let u = ρ(x) and v = ρ(y) so that x = ρ−1(u) and y = ρ−1(v) (with
u, v ∈ ρ(I)). Then it comes that:

(τ ◦ F ◦ ρ−1)
(

u + v

2

)
≤ (τ ◦ F ◦ ρ−1)(u) + (τ ◦ F ◦ ρ−1)(v)

2
. (18)

This last inequality is precisely the ordinary midpoint convexity inequality
for function G = Fρ,τ = τ ◦ F ◦ ρ−1. Thus a function F is (ρ, τ)-convex iff
G = τ ◦ F ◦ ρ−1 is ordinary convex, and vice-versa.
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Abstract. For Markov chains with transition probabilities pij , the
Shannon entropy rate is well-known to be equal to the sum of the
−∑j pij log pij weighted by the stationary distribution. This expression
derives from the chain rule specific to Shannon entropy. For an ergodic
Markov chain, the stationary distribution is the limit of the marginal
distributions of the chain.

Here a weighted expression for the Rényi entropy rate is derived from
a chain rule, that involves escort distributions of the chain, specific to
Rényi entropy. Precisely, the rate is equal to the logarithm of a weighted
sum of the −∑j ps

ij , where s is the parameter of Rényi entropy. The
weighting distribution is the normalized left eigenvector of the maxi-
mum eigenvalue of the matrix (ps

ij). This distribution, that plays the
role of the stationary distribution for Shannon entropy, is shown to be
the limit of marginals of escort distributions of the chain.

1 Introduction

Originally, the concept of entropy S(m) of a probability measure m on a finite
or denumerable set has been introduced by Shannon, by setting

S(m) = −
∑

i∈E

mi log mi.

It constitutes a measure of information – or uncertainty – of the distribution m
in the sense that it is minimal when m is a Dirac measure and, for a finite set
E, maximal if m is uniform. Apart from information theory to which it gave
birth, it is an essential tool in all scientific fields involving probability measures,
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such as signal processing, computer science, probability and statistics. A large
toolbox has been developed; see e.g., [3].

Due to the diversity of applications and constraints specific to each domain,
alternative measures of information have been developed since. Rényi entropy
functionals, depending on a parameter s > 0, are an important instance of such
measures. They are defined by R1(m) = S(m) and

Rs(m) =
1

1 − s
log

(
∑

i∈E

ms
i

)
, s �= 1.

A related toolbox has been developed too; see [13]. Further, the Rényi entropy of
a random variable is the entropy of its distribution. Thus, Rs(Xn

0 ) = Rs(mn
0 ) for

any random vector Xn
0 = (X0, . . . , Xn−1) with distribution mn

0 . For a random
sequence X = (Xn)n≥0, the usual notion of averaging per time unit leads – when
the limit exists – to the Rényi entropy rate

Hs(X) = lim
n→∞

1
n
Rs(Xn

0 ),

The entropy rate H = H1 associated to Shannon entropy was originally defined
in [15] for an ergodic – homogeneous aperiodic irreducible – Markov chain with
a finite state space E as the sum of the entropies of the transition distributions
pi = (pij)j∈E weighted by the probability of occurrence of each state i ∈ E
according to the stationary distribution π of the chain, namely

H(X) = −
∑

i∈E

πi

∑

j∈E

pij log pij , (1)

where pij = P(Xn = j|Xn−1 = i). This expression, which has a direct interpre-
tation in terms of dynamics of the chain, has allowed for a complete toolbox to
be developed around Shannon entropy rate, including probability and statistical
results. The convergence of 1

nS(Xn
0 ) to (1) is proven in [15] for ergodic finite

chains. The proof, based on the chain rule specific to Shannon entropy, has since
been extended to the denumerable case, and then under hypotheses weakened
in many directions; see [6].

For ergodic Markov chains, the Shannon entropy rate is also known to be
given by

H(X) = λ′(1), (2)

where λ(s) denotes the dominant eigenvalue of the perturbated matrix

P (s) = (ps
ij)(i,j)∈E2 , s > 0. (3)

The Rényi entropy rate for s > 0 of finite state space ergodic Markov chains is
shown in [12] to be well-defined and given by

Hs(X) = (1 − s)−1 log λ(s), s �= 1. (4)
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An attempt to extend this expression to denumerable Markov chains has been
proposed in [10], based on positive operator theory. Unfortunately, some neces-
sary conditions on the involved operator are not checked by the authors, making
their proof inaccurate. We refer to [5] for a correct statement and proof of (4)
for denumerable Markov chains. Still, no closed form weighted expression sim-
ilar to (1) exists when s �= 1. The aim of the present paper is to fill this gap.
Precisely, we will show that, under technical assumptions to be specified,

Hs(X) =
1

1 − s
log

⎡

⎣
∑

i∈E

ui(s)
∑

j∈E

ps
ij

⎤

⎦ , (5)

where u(s) denotes the normalized left eigenvector of P (s) associated to the
dominant eigenvalue λ(s). The proof will be based on a functional identity satis-
fied by Rényi entropy. This identity, strongly related to the escort distributions
of the marginals of the chain, is seemingly closed to the chain rule satisfied by
Shannon entropy.

Escort distributions have initially been introduced in [2]. The escort distrib-
utions of a probability distribution m = (mi)i∈E on a finite or denumerable set
E are m∗s = (m∗s

i )i∈E , for s ∈ R, with

m∗s
i =

ms
i∑

j∈E ms
j

, i ∈ E,

whenever
∑

j∈E ms
j is finite. They provide a tool for zooming at different parts

of m, or for adapting m to constraints through their ability to scan its structure.
They also constitute the geodesics of information geometry with respect to an
affine connection naturally induced by the Kullback-Leibler divergence; see [1,4,
16], and also [8] for an application to hypothesis testing. The escort distributions
of a random variable are the escort distributions of its distribution, in short
escorts. The chain rule for Rényi entropy is based on escorts. Further, we will
show that the eigenvector u(s) is closely linked to the asymptotic behavior of
the escorts of the marginals of the Markov chain.

The paper is organized as follows. Since they constitute the keystone of the
present paper, the chain rules for Shannon and Rényi entropies are recalled in
Sect. 2. In Sect. 3, the asymptotic behavior of the sequence (P (s)n)n together
with the existence and uniqueness of u(s), are considered. In Sect. 4, links
between u(s) and the asymptotic behavior of escorts of marginal distributions
of the Markov chain are highlighted. Finally, the weighted expression for Rényi
entropy (5) is derived in Sect. 5.

2 Chain Rules for Shannon and Rényi entropies

The convergence of the normalized marginal entropies S(Xn
0 )/n to (1) has been

derived in [15, Theorem 5], from the so-called chain rule satisfied by Shannon
entropy

S(X,Y ) = S(X) + S(Y |X), (6)
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for any pair of random variables X, Y taking values in finite or denumerable
sets E and F . Here S(Y |X) denotes the so-called conditional entropy of Y given
X, i.e., the entropy of the distribution of Y conditional to X weighted by the
distribution mX of X,

S(Y |X) = −
∑

i∈E

mX(i)
∑

j∈F

P(Y = j|X = i) logP(Y = j|X = i).

Weighting by escort distributions of X instead of the distribution of X itself
yields a sort of chain rule for Rényi entropy; see the axiomatics in [11]. Precisely,
supposing that

∑
j∈E P(X = j)s is finite,

Rs(X,Y ) = Rs(X) + Rs(Y |X), (7)

with

Rs(Y |X) =
1

1 − s
log

⎡

⎣
∑

i∈E

m∗s
X (i)

∑

j∈F

P(Y = j|X = i)s

⎤

⎦ .

Therefore, adapting the original proof of the weighted expression of Shan-
non entropy rate in order to obtain a similar expression for Rényi entropy
rate requires to study the escorts of the marginals of the Markov chains. The
main tool in this aim is the perturbation P (s) given by (3) of the transition
matrix P = (pij)(i,j)∈E2 .

3 The Eigenvectors of the Perturbated Transition Matrix

For finite ergodic Markov chains, the matrix P (s) is positive, irreducible and
aperiodic so that the Perron-Frobenius theorem applies. A unique positive dom-
inant – with maximal modulus – eigenvalue λ(s) exists, with a spectral gap,
namely

|λ(s)| > sup{|λ| : λ eigenvalue of P (s), λ �= λ(s)}.

Left and right positive eigenvectors associated to λ(s) for P (s) exist, say u(s)
and v(s) such that

tu(s).P (s) = λ(s)tu(s) and P (s).v(s) = λ(s)v(s). (8)

Moreover they can be normalized so that
∑

i∈E ui(s) = 1 and
∑

i∈E ui(s)vi(s) = 1.
For denumerable ergodic Markov chains, a positive eigenvalue with maximal

modulus λ(s) again generally exists for P (s). Still, a sequence of eigenvalues con-
verging to λ(s) may exist, hindering the existence of a spectral gap. Additional
assumptions are thus required. Sufficient conditions for the operator u �→ tu.P (s)
to be compact on �1 = {u = (ui)i∈E :

∑
i∈E |ui| < ∞}, and hence for the exis-

tence of a spectral gap, are proposed in the following proposition whose proof
can be found in [5]. Moreover, the asymptotic behavior of P (s)n is also derived.
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Proposition 1. Let X = (Xn)n∈N be an ergodic Markov chain with finite or
denumerable state space E, transition matrix P = (pij)(i,j)∈E2 and initial dis-
tribution μ = (μi)i∈E satisfying the following assumptions:

C1. sup(i,j)∈E2 pij < 1;
C2. ∃σ0 < 1 such that ∀s > σ0, both supi∈E

∑
j∈E ps

ij and
∑

i∈E μs
i are finite;

C3. ∀ε > 0 and ∀s > σ0, ∃A ⊂ E finite such that supi∈E

∑
j∈E\A ps

ij < ε.

Then, for s > σ0, the perturbed matrix P (s) defined by (3) has a unique
positive eigenvalue λ(s) with maximum modulus and a spectral gap. Positive left
and right eigenvectors u(s) and v(s) exist for λ(s), and can be chosen such that∑

i∈E ui(s) = 1 and
∑

i∈E ui(s)vi(s) = 1.
Moreover, for all s > σ0, a positive real number ρ(s) < 1 exists such that

P (s)n = λ(s)nC(s) + O�1((ρ(s)λ(s))n), n ∈ N
∗, (9)

where C(s) = v(s).tu(s).

Proposition 1 clearly induces the following property
∑

in0 ∈En

mn
0 (i0)

s = tμs.P (s)n−1.1 = λ(s)n−1c(s) + O((ρ(s)λ(s))n−1), n ∈ N
∗, (10)

where μs = (μs
i )i∈E and c(s) = tμs.C(s).1 = tμs.v(s). This key property is called

the quasi-power property in [7]. It is naturally satisfied for any finite ergodic
Markov chain, since its transition matrix and initial distribution obviously satisfy
conditions C1 to C3 with σ0 = −∞. In the denumerable case, condition C1
ensures mixing between the states of the chain, avoiding some very probable
paths to asymptotically capture the chain. Condition C2 insures that tu.P (s) ∈
�1 for any u ∈ �1. Condition C3 forbids the probability mass to escape to infinity.

4 Escort Distributions and Left Eigenvectors

Up to our knowledge, escort distributions of random vectors or sequences have
never been studied in the literature. Clearly, we do not aim here at studying
them in a comprehensive way. We will establish a few properties linked to ergodic
Markov chains, interesting in their own and that will finally yield the weighted
closed form expression of Rényi entropy rates.

First, the escort distribution of a random vector with independent compo-
nents is equal to the product of the escort distributions of its components. In
mathematical words, for n independent random variables Xn

0 = (X0, . . . , Xn−1),

m∗s
Xn

0
=

n−1⊗

k=0

m∗s
Xk

, (11)

for all s > 0 such that the escort distributions exist. If, in addition, Xn
0 are inde-

pendent and identically distributed (i.i.d.) with common distribution m, then
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m∗s
Xn

0
= (m∗s)⊗n. Such a random vector can be viewed as the n first components

of an i.i.d. sequence and hence, as a Markov chain X whose transition matrix
P has all rows equal to m. Then, provided that

∑
i∈E ms

i is finite, its pertur-
bation P (s) has only two eigenvalues, first 0, and second λ(s) =

∑
i∈E ms

i with
multiplicity 1. Easy computation yield tm∗s.P (s) = λ(s)tm∗s, meaning that the
escort distribution m∗s of m is equal to the normalized left eigenvector u(s)
of P (s).

For dependent random sequences, in particular Markov chains, (11) is not
true anymore. Still, the escorts of the marginals of the chain converge to u(s).

Proposition 2. Let the assumptions of Proposition 1 be satisfied. Let u(s) be
defined by (8). For any n ∈ N

∗, let mXn
0
denote the distribution of Xn

0 and m∗s
Xn

0
its escorts.

Then, the n-th marginal of m∗s
Xn

0
converges to u(s) as n goes to infinity.

Proof. Thanks to C2,
∑

i∈E m∗s
Xn

0
= tμs.P (s)n−1.1 is finite and the escort m∗s

Xn
0

is
well-defined for s > σ0. Let marginn(m∗s

Xn
0
) denote its n-th marginal distribution.

We have

tmarginn(m∗s
Xn

0
) =

tμs.P (s)n−1

tμs.P (s)n−1.1
.

Thanks to (9),
tμs.P (s)n−1 = λ(s)n−1c(s)tu(s) + O�1((ρ(s)λ(s))n−1),

where c(s) = tμs.v(s). Together with (10), this implies that

tmarginn(m∗s
Xn

0
) =

λ(s)n−1c(s)tu(s) + O�1((ρ(s)λ(s))n−1)
λ(s)n−1c(s) + O((ρ(s)λ(s))n−1)

= tu(s) + o�1(1),

and the result follows. 
�
Note that no clear relationship exists between the limit u(s) of the n-th

marginal of the escort distribution and the escort distribution of the asymptotic
distribution of the chain. First of all, they are not equal, and hence, limit and
escort are not commuting operators in general.

5 Weighted Expression for Rényi Entropy Rates

We can now state and prove the main result of the paper.

Theorem 1. Under the assumptions of Proposition 1, the Rényi entropy rate of
the ergodic Markov chain X is

Hs(X) =
1

1 − s
log

⎡

⎣
∑

i∈E

ui(s)
∑

j∈E

ps
ij

⎤

⎦ , s > σ0, s �= 1, (12)

H1(X) = −
∑

i∈E

πi

∑

j∈E

pij log pij . (13)
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Proof. Let s > σ0, with s �= 1. Applying (7) recursively yields

Rs(Xn
0 ) = Rs(Xn−1|Xn−1

0 ) + Rs(Xn−1
0 ) = Rs(X0) +

n−1∑

k=1

Rs(Xk|Xk
0). (14)

Iterated use of the Markov property yields

Rs(Xk|Xk
0) =

1
1 − s

log

⎡

⎣
∑

ik0∈Ek

m∗s
Xk

0
(ik0)

∑

ik∈E

ps
ik−1ik

⎤

⎦

=
1

1 − s
log

⎛

⎝
∑

i∈E

⎡

⎣
∑

ik−1
0 ∈Ek−1

m∗s
Xk

0
(ik−1

0 , i)

⎤

⎦
∑

j∈E

ps
ij

⎞

⎠ .

Since the sum
∑

ik−1
0

m∗s
Xk

0
(ik−1

0 , i) is the k–th marginal distribution of m∗s
Xk

0
,

Proposition 2 applies to show that it converges to ui(s). Finally,

Rs(Xk|Xk
0) −−−−→

k→∞
1

1 − s
log

⎡

⎣
∑

i∈E

ui(s)
∑

j∈E

ps
ij

⎤

⎦ ,

so that (14) yields

1
n
Rs(Xn

0 ) −−−−→
n→∞

1
1 − s

log

⎡

⎣
∑

i∈E

ui(s)
∑

j∈E

ps
ij

⎤

⎦ .

For s = 1, R1(Xn
0 ) = S(Xn

0 ) and hence (13) is classical. 
�
An obvious analogy exists between (12) and (13). The left eigenvector u(s)

plays in (12) the role of the stationary distribution π of the chain in (13); if s = 1,
then u(1) = π is the stationary distribution of X. The stationary distribution π is
the asymptotic limit of the marginal distribution of the chain, while Proposition 2
provides an analogous asymptotic interpretation of u(s).

Further, thanks to normalization,
∑

i∈E u′
i(s) = 0, so that (12) tends to (13)

as s tends to 1, proving that Hs is a continuous function of s > 0.
Note that if X is an i.i.d. sequence with common distribution m, then all

n-th marginals of m∗s
Xn

0
are m∗s = u(s); see (11). Thus, Rs(Xn|Xn−1

0 ) does not
depend on n and equals

Rs(Xn|Xn−1
0 ) =

1
1 − s

log

⎛

⎝
∑

i∈E

m∗s
i

∑

j∈E

ms
j

⎞

⎠ = Rs(m).

This expresses the well-known additivity of Rényi entropy for independent vari-
ables. Therefore, the Rényi entropy rate of any i.i.d. sequence reduces to the
Rényi entropy of the common distribution, namely Hs(X) = Rs(m).
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6 General Entropy Functionals

A huge class of entropy functionals is defined by setting

Sh,ϕ(m) = h(
∑

i∈E

ϕ(mi)).

In all cases of interest, ϕ : [0, 1] → R+ and h : R+ → R, with either ϕ concave
and h increasing or ϕ convex and h decreasing. Moreover h and ϕ behave such
that Sh,ϕ takes only non-negative values, and h(z) is finite for all z ∈ R+. See
[14], and also [5].

Rényi entropy is the unique (h, ϕ)-entropy satisfying (7) as well as Shannon
entropy is the unique one satisfying the chain rule (6); see [11]. Up to our knowl-
edge, no tractable functional identity of this sort exists for the others, making
this approach hard to extend.

An alternative consists in studying the asymptotic behavior of the entropy
Sh,ϕ(mn

0 ) of the marginals of the chain through analytic combinatoric tech-
niques and then derive the related entropy rate. So doing, [5] proves that the
entropy rates Sh,ϕ(X) = limn→∞ 1

nSh,ϕ(Xn
0 ) of ergodic Markov chains X, are

degenerated (equal 0 or ±∞), for all (h, ϕ)-entropy functionals except Shannon
and Rényi. Indeed, the normalizing term n appears to be badly adapted to other
(h, ϕ)-entropy functionals. Through rescaling by a suitable normalizing sequence,
[7] defines non-degenerated entropy rates Sh,ϕ,r(X) = limn→∞ 1

rn
Sh,ϕ(Xn

0 ).
Closed form expressions are obtained for ergodic Markov chains as functions
of λ(s) or λ′(s), thus extending (2) and (4). In the continuation of [7], weighted
closed form expressions similar to (12) and (13) are to be derived for all (h, ϕ)-
entropy functionals in [9].

Obtaining weighted closed form expressions for divergences between Markov
chains would be a relevant further step, as well as the statement of properties in
geometry of information linked to generalized entropy and divergence rates.
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Abstract. In signal processing, the detection error probability of a ran-
dom quantity is a fundamental and often difficult problem. In this work,
we assume that we observe under the alternative hypothesis a noisy ten-
sor admitting a Tucker decomposition parametrized by a set of ortho-
normal factor matrices and a random core tensor of interest with fixed
multilinear ranks. The detection of the random entries of the core tensor
is hard to study since an analytic expression of the error probability is not
tractable. To cope with this difficulty, the Chernoff Upper Bound (CUB)
on the error probability is studied for this tensor-based detection prob-
lem. The tightest CUB is obtained for the minimal error exponent value,
denoted by s�, that requires a costly numerical optimization algorithm.
An alternative strategy to upper bound the error probability is to con-
sider the Bhattacharyya Upper Bound (BUB) by prescribing s� = 1/2.
In this case, the costly numerical optimization step is avoided but no
guarantee exists on the tightness optimality of the BUB. In this work, a
simple analytical expression of s� is provided with respect to the Signal
to Noise Ratio (SNR). Associated to a compact expression of the CUB,
an easily tractable expression of the tightest CUB is provided and stud-
ied. A main conclusion of this work is that the BUB is the tightest bound
at low SNRs but this property is no longer true at higher SNRs.

1 Introduction

The theory of tensor decomposition is an important research topic (see for
instance [1,2]). They are useful to extract relevant information confined into
a small dimensional subspaces from a massive volume of measurements while
reducing the computational cost. In the context where the measurements are
naturally modeled according to more than two axes of variations, i.e., in the
case of tensors, the problem of obtaining a low rank approximation faces a num-
ber of practical and fundamental difficulties. Indeed, even if some aspects of the
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tensor algebra can be considered as mature, several “obvious” algebraic con-
cepts in the matrix case such as decomposition uniqueness, rank, or the notions
of singular and eigen-values remain active and challenging research areas [3].
The Tucker decomposition [4] and the HOSVD (High-Order SVD) [5] are two
popular decompositions being an alternative to the Canonical Polyadic decom-
position [6]. In this case, the notion of tensorial rank is no longer relevant and
an alternative rank definition is used. Specifically, it is standard to use the mul-
tilinear ranks defined as the set of strictly positive integers {R1, R2, R3} where
Rp is the usual rank (in the matrix sense) of the p-th mode or unfolding matrix.
Its practical construction is non-iterative and optimal in the sense of the Eckart-
Young theorem at each mode level. This approach is interesting because it can
be computed in real time [7] or adaptively [8]. Unfortunately, it is shown that the
fixed (multilinear) rank tensor based on this procedure is generally suboptimal
in the Fröbenius norm sense [5]. In other words, there does not exist a gener-
alization of the Eckart-Young theorem for tensor of order strictly greater than
two. Despite of this theoretical singularity, we focus our effort in the detection
performance of a given multilinear rank tensor following the Tucker model with
orthonormal factor matrices, leading to the HOSVD. It is important to note
that the detection theory for tensors is an under-studied research topic. To the
best of our knowledge, only the publication [9] tackles this problem in the con-
text of RADAR multidimensional data detection. A major difference with this
publication is that their analysis is dedicated to the performance of a low rank
detection after matched filtering. More specifically, the goal is to decompose a
3-order tensor X of size N1 × N2 × N3 into a core tensor denoted by S of size
R1 × R2 × R3 and into three rank-Rp orthonormal factor matrices {Φ1,Φ2,Φ3}
each of size Np × Rp with Rp < Np, ∀p. For zero-mean independent Gaussian
core and noise tensors, a key discriminative parameter is the Signal to Noise
Ratio defined by SNR = σ2

s/σ2 where σ2
s and σ2 are the variances of the vec-

torized core and noise tensors, respectively. The binary hypothesis test can be
described under the null hypothesis H0 : SNR = 0 (i.e., only the noise is present)
and the alternative hypothesis H1 : SNR �= 0 (i.e., there exists a signal of inter-
est). First note that the exact derivation of the analytical expression of the error
probability is not tractable in an analytical way even in the matrix case [10]. To
tackle this problem, we adopt an information-geometric characterization of the
detection performance [11,12].

2 Chernoff Information Framework

2.1 The Bayes’ Detection Theory

Let Pr(Hi) be the a priori hypothesis probability with Pr(H0) + Pr(H1) = 1.
Let pi(y) = p(y|Hi) and Pr(Hi|y) be the i-th conditional and the posterior
probabilities, respectively. The Bayes’ detection rule chooses the hypothesis Hi

associated with the largest posterior probability Pr(Hi|y). Introduce the indica-
tor hypothesis function according to

φ(y) ∼ Bernou(α),
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where Bernou(α) stands for the Bernoulli distribution of success probability
α = Pr(φ(y) = 1) = Pr(H1). Function φ(y) is defined on X → {0, 1} where
X is the data-set enjoying the following decomposition X = X0 ∪ X1 where
X0 = {y : φ(y) = 0} = X \ X1 and

X1 = {y : φ(y) = 1}

=
{
y : Ω(y) = log

Pr(H1|y)
Pr(H0|y)

> 0
}

=
{
y : Λ(y) = log

p1(y)
p0(y)

> log τ

}

in which τ = 1−α
α , Ω(y) is the log posterior-odds ratio and Λ(y) is the log-

likelihood ratio. The average error probability is defined as

P (N)
e = E{Pr(Error|y)}, (1)

with

Pr(Error|y) =
{

Pr(H0|y) if y ∈ X1,
Pr(H1|y) if y ∈ X0.

2.2 Chernoff Upper Bound (CUB)

Using the fact that min {a, b} ≤ asb1−s with s ∈ (0, 1) and a, b > 0 in Eq. (1),
the minimal error probability is upper bounded as follows

P (N)
e ≤ α

τs
·
∫

X
p0(y)1−sp1(y)sdy =

α

τs
· exp[−μs], (2)

where the Chernoff s-divergence is defined according to

μs = − log MΛ(y|H0)(s),

with MΛ(y|H0)(s) the M oment Generating Function (mgf) of the log-likelihood
ratio under the null hypothesis.

The Chernoff Upper Bound (CUB) of the error probability is given by

P (N)
e ≤ α

τs
· exp[−μs] = α · exp[−rs] (3)

where

rs = μs + s log τ

is the exponential decay rate of the CUB. Assume that an optimal value of s
denoted by s� ∈ (0, 1) exists then the tightest CUB verifies

P (N)
e ≤ α · exp[−rs� ] < α · exp[−rs].
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The above condition is equivalent to maximize the exponential decay rate, i.e.,

s� = arg max
s∈(0,1)

rs. (4)

Finally using Eqs. (3) and (4), we obtain the Chernoff Upper Bound. The
Bhattacharyya Upper Bound (BUB) is obtained by Eq. (3) by fixing s = 1/2
instead of solving Eq. (4). The two bounds verify the following inequality relation:

P (N)
e ≤ α · exp[−rs� ] ≤ α · exp

[
−r 1

2

]
.

Note that in many encountered problems, the two hypothesis are assumed to
be equi-probable, i.e., α = 1/2 and τ = 1. Then the exponential decay rate is in
this scenario given by the Chernoff s-divergence since rs = μs and the tightest
CUB is

P (N)
e ≤ 1

2
exp[−μs� ].

3 Tensor Detection with Orthonormal Factors

3.1 Binary Hypothesis Test Formulation for Random Tensors

Tucker Model with Orthonormal Factors. Assume that the multidimen-
sional measurements follow a noisy 3-order tensor of size N1 ×N2 ×N3 given by

Y = X + N
where N is the N1 × N2 × N3 is the noise tensor where each entry is centered
i.i.d. Gaussian, i.e. [N ]n1,n2,n3 ∼ N (0, σ2) and

X = S ×1 Φ1 ×2 Φ2 ×3 Φ3

is the N1 × N2 × N3 “data” tensor following a Tucker model of (R1, R2, R3)-
multilinear rank. Matrices {Φ1,Φ2,Φ3} are the three orthonormal factors each
of size Np × Rp with Np > Rp. These factors are for instance involved in the
Higher-Order SVD (HOSVD) [5] with ΦT

p Φp = IRp
and Πp = ΦpΦ

T
p a Np ×Np

orthogonal projector on the range space of Φp. The R1 × R2 × R3 core tensor is
given by

S = X ×1 ΦT
1 ×2 ΦT

2 ×3 ΦT
3 . (5)

Formulating the Detection Test. We assume that each entry of the core
tensor is centered i.i.d. Gaussian, i.e. [S]r1,r2,r3 ∼ N (0, σ2

s ). Let Yn be the n-th
frontal N1 × N2 slab of the 3-order tensor Y , the vectorized tensor expression is
defined according to

y =
[
(vecY1)T . . . (vecYN3)

T
]T = x + n ∈ R

N×1
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where N = N1 · N2 · N3, n is the vectorization of the noise tensor N and

x = Φs

with s the vectorization of the core tensor S and

Φ = Φ3 ⊗ Φ2 ⊗ Φ1

is a N × R structured matrix with R = R1 · R2 · R3.
In this framework, the associated equi-probable binary hypothesis test for

the detection of the random signal, s, is
{H0 : y

∣∣Φ, σ2 ∼ N (
0,Σ0 = σ2IN

)
,

H1 : y
∣∣Φ, σ2 ∼ N

(
0,Σ1 = σ2 (SNR · Π + IN )

)

where SNR = σ2
s/σ2 is the signal to noise ratio and Π = Π3 ⊗ Π2 ⊗ Π1 is

an orthogonal projector. The performance of the detector of interest is quite
often difficult to determine analytically [10]. As a consequence, we adopt the
methodology of the CUB to upper bound it.

Geometry of the Expected Log-Likelihood Ratio. Consider p(y
∣∣Ĥ) =

N (0,Σ) associated to the estimated hypothesis Ĥ. The expected log-likelihood
ratio over y

∣∣Ĥ is given by

E
y
∣∣ĤΛ(y) =

∫
X

p(y
∣∣Ĥ) log

p1(y)
p0(y)

dy

=
∫

X
p(y

∣∣Ĥ) log

⎡
⎣p(y

∣∣Ĥ)
p0(y)

·
(

p(y
∣∣Ĥ)

p1(y)

)−1
⎤
⎦ dy

= KL(Ĥ,H0) − KL(Ĥ,H1)

where the Kullback-Leibler pseudo-distances are

KL(Ĥ,H0) =

∫
X
p(y
∣∣Ĥ) log

p(y
∣∣Ĥ)

p0(y)
dy, KL(Ĥ,H1) =

∫
X
p(y
∣∣Ĥ) log

p(y
∣∣Ĥ)

p1(y)
dy.

The corresponding data-space for hypothesis H1 is

X1 = {y : Λ(y) > τ ′}

with

Λ(y) = yT (Σ−1
0 − Σ−1

1 )y =
1
σ2

yT Φ
(
ΦT Φ + SNR · I

)−1

ΦT y

τ ′ = log
det(Σ0)
det(Σ1

) = − log det (SNR · Π + IN )
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where det(·) stands for the determinant. Thus, the alternative hypothesis is
selected, i.e., Ĥ = H1 if

E
y
∣∣ĤΛ(y) =

1
σ2

Tr
{(

ΦT Φ + SNR · I
)−1

ΦT ΣΦ

}
> τ ′

or equivalently

KL(Ĥ,H0) > τ ′ + KL(Ĥ,H1).

4 Tightest CUB

4.1 Derivation of the Bound

Theorem 1. Let c = R/N < 1. The Chernoff s-divergence for the above test is
given by

μs =
c

2
((1 − s) · log(SNR + 1) − log (SNR · (1 − s) + 1)) .

Proof. According to [13], the Chernoff s-divergence for the above test is given by

μs =
1 − s

2N
log det (SNR · Π + I) − 1

2N
log det (SNR · (1 − s)Π + I) .

Using λ{Π} = {1, . . . , 1︸ ︷︷ ︸
R

, 0, . . . , 0︸ ︷︷ ︸
N−R

} in the above expression yields Theorem 1.

Theorem 2. 1. The Chernoff s-divergence is a strictly convex function and
admits an unique minimizer given by

s� =
1

SNR

(
1 + SNR − 1

ψ(SNR)

)
(6)

where ψ(SNR) = log(SNR+1)
SNR .

2. The tightest CUB for the (R1, R2, R3)-multilinear rank orthonormal Tucker
decomposition of Eq. (5) is given by

μs� =
c

2

(
1 − ψ(SNR) + log ψ(SNR)

)
.

Proof. The proof is straightforward and thus omitted due to the lack of space.

4.2 Analysis in Typical Limit Regimes

We can identify the two following limit scenarii:

– At low SNR, the tightest divergence, denoted by μs� , coincides with the diver-
gence μ1/2 associated with the BUB. Indeed, the optimal value in (6) admits
a second-order approximation for SNR 
 1 according to

s�≈1 +
1

SNR

(
1 −

(
1 +

SNR
2

))
=

1
2
.
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– At contrary for SNR � 1, we have s� ≈ 1. So, the BUB is a loose bound in
this regime.

To illustrate our analysis, on Fig. 1, the optimal s value obtained thanks
to a numerical optimization of Eq. (4) using the divergence given in Theorem1
and the analytical solution reported in Eq. (6) are plotted. We can check that
the predicted analytical optimal s-value is in agreement with the approximated
numerical one. We also verify the s-value in the low and high SNR regimes. In
particular, for high SNRs, the optimal value is far from 1/2.

-40 -30 -20 -10 0 10 20 30 40
SNR [dB]

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

s

Numerical optim.
Analytical solution

s 0.5 (BUB)

s 1

Fig. 1. Optimal s-value vs SNR in dB for a (3, 3, 3)-multilinear rank tensor X of
size 4 × 4 × 4: The exact analytical formula is in full agreement with the numerical
approximation scheme.

5 Conclusion

Performance detection in terms of the minimal Bayes’ error probability for multi-
dimensional measurements is a fundamental problem at the heart of many chal-
lenging applications. Interestingly, this tensor detection problem has received
little attention so far. In this work, we derived analytically a tightest upper
bound on the minimal Bayes’ error probability for the detection of a random
core tensor denoted by S given a N1 × N2 × N3 noisy observation tensor X fol-
lowing an orthonormal Tucker model with a (R1, R2, R3)-multilinear rank with
Rp < Np, ∀p. In particular, we showed that the tightest upper bound in the
high SNR regime is not the Bhattacharyya upper bound.
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and Stein-Type Densities
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Abstract. A Stein-type density function is defined as a stationary point
of the free-energy functional over a fiber that consists of probability
densities obtained by coordinate-wise transformations of a given density.
It is shown that under some conditions there exists a unique Stein-type
density in each fiber. An application to rating is discussed.

Keywords: Coordinate-wise transformation · Copositivity · Copula ·
Free-energy functional · Optimal transport · Positive dependence · Stein-
type density

1 Introduction

Let V (x) be a continuous function of x ∈ R
d. Consider a minimization problem

of the free-energy functional

E(p) = EV (p) =
∫

p(x) log p(x)dx +
∫

p(x)V (x)dx (1)

over a restricted set of probability density functions p(x) on R
d. The functional

E(p) is, as is well known, the Lagrange function for maximizing entropy under
given moment

∫
p(x)V (x)dx. Equation (1) is also discussed in the theory of

optimal transport (e.g. [7,15]).
We first recall the solution of the unconstrained problem.

Lemma 1. Let Z =
∫

e−V (x)dx. If Z < ∞, then the functional E is minimized
at q(x) = e−V (x)/Z. If Z = ∞, then E is not bounded from below.

Proof. If Z < ∞, we have E(p) = KL(p, q) − log Z, where KL(p, q) denotes the
Kullback-Leibler divergence. Therefore E(p) is minimized at p = q. If Z = ∞,
then E(pn) → −∞ as n → ∞ for pn(x) ∝ e−V (x)I[−n,n]d(x). ��

Now consider a set of probability densities obtained by coordinate-wise trans-
formations of a given density p0(x). Here a coordinate-wise transformation
means

T (x) = (T1(x1), . . . , Td(xd)), T ′
i (xi) > 0. (2)

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 665–672, 2017.
https://doi.org/10.1007/978-3-319-68445-1_77
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If p0 is pushed forward by T , then the resultant probability density is

p(x) = (T�p0)(x) = p0(T−1
1 (x1), . . . , T−1

d (xd))
d∏

i=1

(T−1
i )′(xi).

We will call the set {p = T�p0 | T satisfies (2)} a fiber. It is widely known
that each fiber has a unique copula density, which plays an important role in
dependence modeling (e.g. [9]).

Our problem is to minimize E over the fiber, even if Z =
∫

e−V (x)dx = ∞.
In Theorem 1, it is shown that the stationary condition of E over the fiber is∫

f(xi)∂iV (x)p(x)dx =
∫

f ′(xi)p(x)dx, ∀f ∈ C1(R). (3)

This equation is applied to a rating problem in Sect. 5. The following definition
is a generalization of that in [13].

Definition 1 (Stein-type density). A d-dimensional probability density func-
tion p(x) is called a Stein-type density with respect to V if it satisfies (3).

The Stein-type density is named after the Stein identity (see e.g. [2,14])
∫

f(x)xφ(x)dx =
∫

f ′(x)φ(x)dx,

that characterizes the standard normal density function φ(x) = e−x2/2/
√

2π.
The Stein identity corresponds to d = 1 and V (x) = x2/2 in (3).

The remainder of the present paper is organized as follows. In Sect. 2, we
describe the unique existence theorem on the constrained minimization prob-
lem, where the proof of existence is more challenging. In Sect. 3, we provide
sufficient conditions for existence. In Sect. 4, examples of Stein-type densities
are shown. In Sect. 5, we briefly discuss an application to rating. Throughout
the paper, we assume that the density functions are continuous and positive
over R

d. Otherwise, more careful treatment is necessary.

2 Main Result

Suppose that V (x) satisfies the following condition:

V (x) = ψ(x1 + · · · + xd), ψ : non-negative, convex, lim
x→±∞

ψ(x) = ∞. (4)

The last condition is called coercive. For example, V (x) = |x1+ · · ·+xd| satisfies
the condition. Note that Z =

∫
e−V (x)dx = ∞ when d ≥ 2.

As a referee pointed out, the restriction that V is a function of the sum can
be relaxed. However we assumed it to make the description simpler.

Under Eq. (4), we can restrict the domain of E to

P =
{

p |
∫

x1p1(x1)dx1 = · · · =
∫

xdpd(xd)dxd

}
(5)
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without loss of generality, where pi denotes the i-th marginal of p. Indeed, E(p) is
invariant under the translation xi �→ xi +ai for any constants ai with

∑
i ai = 0.

Note that the translation is a coordinate-wise transformation.
For each p ∈ P, let Tcw(p) be the set of coordinate-wise transformations such

that T�p ∈ P. Then the p-fiber is defined by

Fp = {T�p | T ∈ Tcw(p)}.

If p is not specified explicitly, we call it a fiber. The space P is the disjoint union
of fibers. In the context of optimal transport, each fiber is a totally-geodesic
subspace of the L2-Wasserstein space (e.g. [15]).

Stein-type densities are characterized by the following theorem. It holds for
any convex function V (x) without the restriction (4).

Theorem 1 (Characterization). Let V be a convex function on R
d. Then

the following two conditions on p ∈ P are equivalent to each other:

(i) p is Stein-type,
(ii) the functional E restricted to the p-fiber is minimized at p.

Proof. The proof relies on McCann’s displacement convexity [7]. For each p,

E(T�p) =
∫

(T�p)(x) log(T�p)(x)dx +
∫

(T�p)(x)V (x)dx

=
∫

p(x) log
1∏

i T ′
i (xi)

dx +
∫

p(x)V (T (x))dx,

that is a convex functional of T . Thus it suffices to check the stationary condition.
Consider a coordinate-wise transformation T t(x) = x + tf(xi)ei parameterized
by t, where f is any function and ei is the i-th unit vector. Then we have

d

dt
E((T t)�p)

∣∣∣∣
t=0

= −
∫

pi(xi)f ′(xi)dxi +
∫

p(x)f(xi){∂iV (x)}dx.

Then the stationary condition (d/dt)E((T t)�p)|t=0 = 0 is equivalent to (3). ��

To state the main result, we define additional symbols. For each p ∈ P,
denote the product of the marginal densities of p by p⊥(x) =

∏d
i=1 pi(xi).

Definition 2 (Copositivity). For each p ∈ P, define

β(p) = βV (p) = inf
T∈Tcw(p)

∫
V (T (x))p(x)dx∫

V (T (x))p⊥(x)dx
.

If β(p) > 0, p is called copositive with respect to V .

It is shown that β(p) takes a common value in each fiber and that β(p) ∈ [0, 1].
Sufficient conditions for copositivity are discussed in Sect. 3. On the other hand,
there is a positive density function that is not copositive [13].

The following theorem is our main result. The result for ψ(x) = x2/2 is
proved in [13]. In that case, the theorem is interpreted as a non-linear analogue
of the diagonal scaling theorem on matrices established by [6].
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Theorem 2 (Existence and uniqueness). Let V satisfy Eq. (4). Assume
that p0 ∈ P is copositive. Then there exists a unique Stein-type density in the
p0-fiber.

Proof. The uniqueness is a consequence of the displacement convexity used in
the proof of Theorem1, where strict convexity holds under the restriction (5).

Now prove the existence in line with [13]. By Theorem 1, it is enough to
show that the functional E|Fp0

restricted to the p0-fiber has its minimum. For
that purpose, we prove that E|Fp0

is bounded from below, and each sublevel set
{p ∈ Fp0 | E(p) ≤ M} is tight (refer to [7] for details). Note that E itself is not
bounded from below.

Let p = T�p0 with T ∈ Tcw(p0). The assumption on copositivity of p0 implies∫
V (x)p(x)dx ≥ β

∫
V (x)p⊥(x)dx,

where β = β(p) = β(p0) > 0. Hence we obtain

E(p) =
∫

p(x) log
p(x)

p⊥(x)
dx +

∫
p(x) log p⊥(x)dx +

∫
V (x)p(x)dx

≥
∫

p(x) log p⊥(x)dx + β

∫
V (x)p⊥(x)dx

=
d∑

i=1

∫
pi(xi) log pi(xi)dxi + β

∫
V (x)p⊥(x)dx.

Therefore the problem is essentially reduced to the independent case p = p⊥.
By using Jensen’s inequality for V (x) = ψ(

∑
i xi), we have∫

V (x)p⊥(x)dx ≥
∫

ψ(xi + (d − 1)c)pi(xi)dxi

for each i, where c = c(p) =
∫

xjpj(xj)dxj does not depend on the index j due
to the definition of P. By combining these results, we obtain

E(p) ≥
d∑

i=1

{∫
pi(xi) log pi(xi)dxi +

β

d

∫
ψ(xi + (d − 1)c)pi(xi)dxi

}
.

Define a probability density

q(x) =
e− β

2d ψ(x+(d−1)c)

A
, A =

∫
e− β

2d ψ(x)dx < ∞,

to obtain∫
pi(xi) log pi(xi)dxi +

β

d

∫
ψ(xi + (d − 1)c)pi(xi)dxi

=
∫

pi(xi) log
pi(xi)
q(xi)

dxi − log A +
β

2d

∫
ψ(xi + (d − 1)c)pi(xi)dxi

≥ − log A +
β

2d

∫
ψ(xi + (d − 1)c)pi(xi)dxi.
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Then, putting α = −d log A, we have

E(p) ≥ α +
β

2d

d∑
i=1

∫
ψ(xi + (d − 1)c)pi(xi)dxi (6)

≥ α +
β

2
ψ(dc) (Jensen’s inequality) (7)

≥ α. (8)

By (8), E|Fp0
is bounded from below. Define the sublevel set PM = {p ∈ Fp0 |

E(p) ≤ M} for a fixed M . Equation (7) implies that, if p ∈ PM , then ψ(dc) is
bounded from above and therefore c is contained in a bounded interval [−C,C].
Now a function defined by

ψ∗(x) = min
c∈[−C,C]

ψ(x + (d − 1)c)

is coercive. In addition, the inequality (6) shows that
∫

ψ∗(xi)pi(xi)dxi is
bounded from above. Therefore we deduce that PM is tight. This completes
the proof. ��

For an independent density p(x) =
∏d

i=1 pi(xi), it is obvious that β(p) = 1
from the definition. Therefore we have the following corollary. This is interpreted
as a variational Bayes method [1] except that

∫
e−V (x)dx = ∞.

Corollary 1. Let V satisfy (4). Then there is a unique independent Stein-type
density.

3 Sufficient Conditions for Copositivity

In this section, we discuss sufficient conditions for copositivity (see Definition 2).
The notion of positive dependence plays a central role.

A function f : Rd → R is called super-modular if for any x,y ∈ R
d,

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y).

Here x∨y and x∧y are coordinate-wise maximum and minimum, respectively.
For smooth functions f , the super-modularity is equivalent to

∂2f

∂xi∂xj
≥ 0, i �= j.

The following lemma is straightforward.

Lemma 2. Let V (x) = ψ(x1+ · · ·+xd) with a convex function ψ. Then for any
coordinate-wise transformation T (x), the composite function V (T (x)) is super-
modular.

Although there are a number of variants of positive dependence, we use only
three of them. Refer to [11] for further information.
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Definition 3 (Positive dependence). Let p(x) be a probability density func-
tion on R

d. Then

1. p(x) is called MTP2 (multivariate totally positive of order 2) if

p(x ∨ y)p(x ∧ y) ≥ p(x)p(y)

for all x and y in R
d. In other words, log p(x) is super-modular.

2. p(x) is said to be associated if
∫

φ(x)ψ(x)p(x)dx ≥
∫

φ(x)p(x)dx
∫

ψ(x)p(x)dx

for any increasing functions φ, ψ : Rd → R.
3. p(x) is called PSMD (positive super-modular dependent) if

∫
φ(x)p(x)dx ≥

∫
φ(x)p⊥(x)dx

for any super-modular function φ. Recall that p⊥(x) =
∏

i pi(xi).

These variants of positive dependence have the following implications. The
first implication is called the FKG inequality [5].

Lemma 3 ([3,5]). MTP2 ⇒ associated ⇒ PSMD.

MTP2 is relatively easy to confirm whereas association is interpretable. A
Gaussian distribution is MTP2 (resp. PSMD) if and only if all the partial corre-
lation coefficients (resp. all the correlation coefficients) are non-negative [8,10].
Graphical models with the MTP2 property are discussed in [4].

PSMD meets our purpose as follows.

Theorem 3. Let V (x) satisfy (4). If p is PSMD, then p is copositive.

Proof. For any T ∈ Tcw(p), Lemma 2 implies that V (T (x)) is super-modular.
Therefore if p is PSMD, then

∫
V (T (x))p(x)dx ≥

∫
V (T (x))p⊥(x)dx,

which means β(p) = 1. ��

We also provide two other sufficient conditions for copositivity. Each of them
holds for any non-negative V (x), and its proof is straightforward.

Lemma 4. If p0(x) is copositive and there exist constants M, δ > 0 such that
δ ≤ p(x)/p0(x) ≤ M for all x, then p(x) is also copositive.

Lemma 5. If there exists δ > 0 such that p(x)/p⊥(x) ≥ δ for all x, then p(x)
is copositive. This condition holds if and only if the copula density (e.g. [9])
corresponding to p(x) is greater than or equal to the constant δ.
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4 Examples of Stein-Type Densities

Let V (x) = ψ(x1 + · · · + xd). First, by integral-by-parts formula, Eq. (3) is
equivalent to(∑

i

∂ip(x)

)
+ ψ′(x1 + · · · + xd)p(x) = r(x),

∫
Rd−1

r(x)dx−i = 0, (9)

When r(x) is given, the partial differential equation (9) is solved by the charac-
teristic curve method. In particular, if r(x) = 0, the general solution is

p(x) =
1
Z

e−ψ(x1+···+xd)q(Q	x), (10)

where Z is the normalizing constant, Q is a matrix such that (1/
√

d,Q) is an
orthogonal matrix, and q is an arbitrary (d − 1)-dimensional density function.

However, for given p0 ∈ P, it is generally difficult to find a Stein-type density
that belongs to the p0-fiber. The case for ψ(x) = x2/2 is investigated in [13].
Here we give another example.

Example 1. Let d = 2 and V (x1, x2) = |x1 + x2|. Then the independent Stein-
type density has the marginals

pi(xi) =
1

4 cosh2(xi/2)
=

exi

(exi + 1)2
, i = 1, 2.

This is a logistic distribution. One can directly confirm (9).

5 Application to Rating

Suppose that a d-dimensional density p(x) denotes a distribution of students’
marks on d subjects. We make a rule to determine the general score of each
student. An answer is given as follows.

Fix a convex function ψ. Typically ψ(x) = x2/2 or ψ(x) = |x|. As long as p is
copositive, Theorem 2 implies that there exists a coordinate-wise transformation
T such that T�p is Stein-type. In particular, we obtain

∫
p(x)f(xi)ψ′(T1(x1) + · · · + Td(xd))dx > 0 (11)

for any increasing function f . Then we can use T1(x1) + · · · + Td(xd) as the
general score of x. Refer to [12] for relevant information.

Example 2. Let ψ(x) = |x|. Consider a probability density function

p(x1, x2) =
0.1
4

e−|x1+0.1x2|{e−|x1−0.1x2−1| + e−|x1−0.1x2+1|}.

A map T (x1, x2) = (x1, 0.1x2) attains the Stein-type density due to (10). The
following contingency tables show that, under the law p, the signs of x1 and
x1+x2 have negative correlation whereas those of x1 and x1+0.1x2 have positive.



672 T. Sei

x1 + x2 < 0 x1 + x2 > 0
x1 < 0 0.198 0.302
x1 > 0 0.302 0.198

x1 + 0.1x2 < 0 x1 + 0.1x2 > 0
x1 < 0 0.342 0.158
x1 > 0 0.158 0.342

Indeed (11) implies that the sign of xi − a for any i and a ∈ R has positive
correlation with the sign of the general score.

As referees pointed out, the general score depends on the choice of the poten-
tial ψ. A natural choice would be ψ(x) = x2/2 because then the scores x1, . . . , xd

are transformed into normal quantiles if they are independent. On the other
hand, if one concerns the “passing point” of a particular grading, the potential
ψ(x) = |x| seems more preferable as seen in Example 2.
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Abstract. This paper introduces a novel algorithm for the online esti-
mate of the Riemannian mixture model parameters. This new approach
counts on Riemannian geometry concepts to extend the well-known Tit-
terington approach for the online estimate of mixture model parameters
in the Euclidean case to the Riemannian manifolds. Here, Riemannian
mixtures in the Riemannian manifold of Symmetric Positive Definite
(SPD) matrices are analyzed in details, even if the method is well suited
for other manifolds.

Keywords: Riemannian mixture estimation · Information geometry ·
Online EM algorithm

1 Introduction

Information theory and Riemannian geometry have been widely developed in the
recent years in a lot of different applications. In particular, Symmetric Positive
Definite (SPD) matrices have been deeply studied through Riemannian geome-
try tools. Indeed, the space Pm of m × m SPD matrices can be equipped with
a Riemannian metric. This metric, usually called Rao-Fisher or affine-invariant
metric, gives it the structure of a Riemannian manifold (specifically a homo-
geneous space of non-positive curvature). SPD matrices are of great interest
in several applications, like diffusion tensor imaging, brain-computer interface,
radar signal processing, mechanics, computer vision and image processing [1–5].
Hence, it is very useful to develop statistical tools to analyze objects living in the
manifold Pm. In this paper we focus on the study of Mixtures of Riemannian
Gaussian distributions, as defined in [6]. They have been successfully used to
define probabilistic classifiers in the classification of texture images [7] or Elec-
troencephalography (EEG) data [8]. In these examples mixtures parameters are
estimated through suitable EM algorithms for Riemannian manifolds. In this
paper we consider a particular situation, that is the observations are observed
one at a time. Hence, an online estimation of the parameters is needed. Follow-
ing the Titterington’s approach [9], we derive a novel approach for the online
estimate of parameters of Riemannian Mixture distributions.
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 675–683, 2017.
https://doi.org/10.1007/978-3-319-68445-1_78
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The paper is structured as follows. In Sect. 2 we describe the Riemannian
Gaussian Mixture Model. In Sect. 3, we introduce the reference methods for
online estimate of mixture parameters in the Euclidean case, and we describe
in details our approach for the Riemannian framework. For lack of space, some
equation’s proofs will be omitted. Then, in Sect. 4, we present some simulations
to validate the proposed method. Finally we conclude with some remarks and
future perspectives in Sect. 5.

2 Riemannian Gaussian Mixture Model

We consider a Riemannian Gaussian Mixture model g(x; θ) =
∑K

k=1 ωkp(x;ψk),
with the constraint

∑K
k=1 ωk = 1. Here p(x;ψk) is the Riemannian Gaussian dis-

tribution studied in [6], defined as p(x;ψk) = 1
ζ(σk)

exp
(
−d2

R(x,xk)

2σ2
k

)
, where x is a

SPD matrix, xk is still a SPD matrix representing the center of mass of the kth
component of the mixture, σk is a positive number representing the dispersion
parameter of the kth mixture component, ζ(σk) is the normalization factor, and
dR(·, ·) is the Riemannian distance induced by the metric on Pm. g(x; θ) is also
called incomplete likelihood. In the typical mixture model approach, indeed, we
consider some latent variables Zi, categorical variables over {1, ...,K} with para-
meters {ωk}K

k=1, assuming Xi|Zi = k ∼ p(·, ψk). Thus, the complete likelihood
is defined as f(x, z; θ) =

∑K
k=1 ωkp(x;ψk)δz,k, where δz,k = 1 if z = k and 0

otherwise. We deal here with the problem to estimate the model parameters,
gathered in the vector θ = [ω1, x1, σ1, ..., ωK , xK , σK ]. Usually, given a set of N

i.i.d. observations χ = {xi}N
i=1, we look for θ̂MLE

N , that is the MLE of θ, i.e. the
maximizer of the log-likelihood l(θ;χ) = 1

N

∑N
i=1 log

∑K
k=1 ωkp(xi;ψk).

To obtain θ̂MLE
N , EM or stochastic EM approaches are used, based on the

complete dataset χc = {(xi, zi)}N
i=1, with the unobserved variables Zi. In this

case, average complete log-likelihood can be written:

lc(θ; χc) =
1

N

N∑

i=1

log
K∏

k=1

(ωkp(xi; ψk))δzi,k =
1

N

N∑

i=1

K∑

k=1

δzi,k log(ωkp(xi; ψk)). (1)

Here we consider a different situation, that is the dataset χ is not available
entirely, rather the observations are observed one at a time. In this situation
online estimation algorithms are needed.

3 Online Estimation

In the Euclidean case, reference algorithms are the Titterington’s algorithm,
introduced in [9], and the Cappé-Moulines’s algorithm presented in [10].

We focus here on Titterington’s approach. In classic EM algorithms, the
Expectation step consists in computing Q(θ; θ̂(r), χ) = E

̂θ(r) [lc(θ;χc)|χ], and
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then, in the Maximization step, in maximizing Q over θ. These steps are per-
formed iteratively and at each iteration r an estimate θ̂(r) of θ is obtained exploit-
ing the whole dataset. In the online framework, instead, the current estimate will
be indicated by θ̂(N), since in this setting, once x1, x2, ..., xN are observed we
want to update our estimate for a new observation xN+1. Titterington approach
corresponds to the direct optimization of Q(θ; θ̂(N), χ) using a Newton algorithm:

θ̂(N+1) = θ̂(N) + γ(N+1)I−1
c (θ̂(N))u(xN+1; θ̂(N)), (2)

where {γ(N)}N is a decreasing sequence, the Hessian of Q is approximated
by the Fisher Information matrix Ic for the complete data I−1

c (θ̂(N)) =
−E

̂θ(N) [
log f(x,z;θ)

∂θ∂θT ], and the score u(xN+1; θ̂(N)) is defined as u(xN+1; θ̂(N)) =
∇
̂θ(N) log g(xN+1; θ̂(N)) = E

̂θ(N) [∇̂θ(N) log f(xN+1; θ̂(N))|xN+1] (where last
equality is presented in [10]).

Geometrically speaking, Tittetington algorithm consists in modifying the cur-
rent estimate θ̂(N+1) adding the term ξ(N+1) = γ(N+1)I−1

c (θ̂(N))u(xN+1; θ̂(N)).
If we want to consider parameters belonging to Riemannian manifolds, we have
to suitably modify the update rule. Furthermore, even in the classical frame-
work, Titterington update does not necessarily constraint the estimates to be in
the parameters space. For instance, the weights could be assume negative values.
The approach we are going to introduce solves this problem, and furthermore is
suitable for Riemannian Mixtures.

We modify the update rule, exploiting the Exponential map. That is:

θ̂(N+1) = Exp
̂θ(N)(ξ(N+1)), (3)

where our parameters become θk = [sk, xk, ηk]. Specifically, s2k = wk → s =
[s1, ..., sK ] ∈ S

K−1 (i.e., the sphere), xk ∈ P (m) and ηk = − 1
2σ2

k
< 0.

Actually we are not forced to choose the exponential map, in the update
formula (3), but we can consider any retraction operator. Thus, we can generalize
(3) in θ̂(N+1) = R

̂θ(N)(ξ(N+1)).
In order to develop a suitable update rule, we have to define I(θ) and the score

u() in the manifold, noting that every parameter belongs to a different manifold.
Firstly we note that the Fisher Information matrix I(θ) can be written as:

I(θ) =

⎛

⎝
I(s)

I(x)
I(η)

⎞

⎠ .

Now we can analyze separately the update rule for s, x, and η. Since they belong
to different manifold the exponential map (or the retraction) will be different,
but the philosophy of the algorithm is still the same.

For the update of weights sk, the Riemannian manifold considered is the
sphere SK−1, and, given a point s ∈ S

K−1, the tangent space TsS
K−1 is identified

as TsS
K−1 = {ξ ∈ R

K : ξT s = 0}. We can write the complete log-likelihood only
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in terms of s: l(x, z; s) = log f(x, z; s) =
∑K

k=1 log s2kδz,k. We start by evaluating
I(s), that will be a K × K matrix of the quadratic form

Is(u,w) = E[〈u, v(z, s)〉〈v(z, s), w〉], (4)

for u,w elements of the tangent space in s, and v(z, s) is the Riemannian gra-
dient, defined as v(z, s) = ∂l

∂s − (
∂l
∂s , s

)
s. In this case we obtain ∂l

∂sk
= 2 δz,k

sk
→

v(z, sk) = 2
(

δz,k
sk

− sk

)
. It is easy to see that the matrix of the quadratic form

has elements

Ikl(s) = E[vk(z, s)vl(z, s)] = E

[

4

(

δz,k

sk

− sk

)(

δz,l

sl

− sl

)]

= E

[

4

(

δz,kδz,l

sksl

− sl

sk

δz,k − sk

sl

δz,l + sksl

)]

= 4(δkl − sksl − sksl + sksl) = 4(δkl − sksl).

Thus, the Fisher Information matrix I(s) applied to an element ξ of the
tangent space results to be I(s)ξ = 4ξ, hence I(s) corresponds to 4 times
the identity matrix. Thus, if we consider update rule (3), we have ξ(N+1) =
γ(N+1)

4 u(xN+1; θ̂(N)). We have to evaluate u(xN+1; θ̂(N)). We proceed as follows:

uk(xN+1; ̂θ
(N)

) = E[vk(z, s)|xN+1] = E

[

2

(

δz,k

sk

− sk

)

|xN+1

]

= 2

(

hk(xN+1; ̂θ
(N))

sk

− sk

)

,

where hk(xN+1; θ̂(N)) ∝ s2kp(xN+1; θ̂
(N)
k ). Thus we obtain

ŝ(N+1) = Expŝ(N)

(
γ(N+1)

2

(
h1(xN+1;̂θ

(N))

ŝ
(N)
1

− ŝ
(N)
1 , ..., hK(xN+1;̂θ

(N))

ŝ
(N)
K

− ŝ
(N)
K

))

= Expŝ(N)

(
ξ(N+1)

)
. (5)

Considering the classical exponential map on the sphere (i.e., the geodesic),
the update rule (5) becomes

ŝ
(N+1)
k = ŝ

(N)
k cos(‖ξ(N+1)‖) +

γ(N+1)

2

(
hk

ŝ
(N)
k

− ŝ
(N)
k

)

‖ξ(N+1)‖ sin(‖ξ(N+1)‖). (6)

Actually, as anticipated before, we are not forced to used the exponential
map, but we can consider other retractions. In particular, on the sphere, we
could consider the “projection” retraction Rx(ξ) = x+ξ

‖x+ξ‖ , deriving update rule
accordingly.

For the update of barycenters xk we have, for every barycenter xk, k =
1, ...,K, an element of Pm, the Riemannian manifold of m × m SPD matrices.
Thus, we derive the update rule for a single k.

First of all we have to derive expression (4). But this expression is true only
for irreducible manifolds, as the sphere. In the case of Pm we have to introduce
some theoretical results. Let M a symmetric space of negative curvature (like
Pm), it can be expressed as a product M = M1 × · · · × MR, where each Mr
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is an irreducible space [11]. Now let x an element of M, and v, w elements of
the tangent space TxM. We can write x = (x1, ..., xR), v = (v1, ..., vR) and
w = (w1, ..., wR). We can generalize (4) by the following expression:

Ix(u,w) =
R∑

r=1

E[〈ur, vr(xr)〉x〈vr(xr), wr〉x], (7)

with vr(xr) = ∇xl(x) being the Riemannian score. In our case Pm = R× SPm,
where SPm represents the manifold of SPD matrices with unitary determinant,
while R takes into account the part relative to the determinant. Thus, if x ∈ Pm,
we can consider the isomorphism φ(x) = (x1, x2) with x1 = log det x ∈ R and
x2 = e−x1/mx ∈ SPm, (det x2 = 1). The idea is to use the procedure adopted to

derive ŝ(N+1), for each component of x̂
(N+1)

k . Specifically we proceed as follows:

– we derive I(xk) through formula (7), with components Ir.

– we derive the Riemannian score u(xN+1; θ̂(N)) = E
[
v(xN+1, zN+1; x̂

(N)

k ,

σ̂
(N)
k )|xN+1

]
, with components ur.

– for each component r = 1, 2 we evaluate ξ
(N+1)
r = γ(N+1)I−1

r ur

– we update each component
(
x̂
(N+1)

k

)

r
= Exp(

̂x
(N)
k

)

r

(
ξ
(N+1)
r

)
and we could

use φ−1(·) to derive x̂
(N+1)

k if needed.

We start deriving I(xk) for the complete model (see [12] for some derivations):

Ixk
(u, w) = E [〈u, v(x, z;xk, σk)〉〈v(x, z;xk, σk), w〉] = E

[
δz,k

σ4
k

〈u,Logxk
x〉〈Logxk

x, w〉
]
=

= E

[
δz,k

σ4
k

I(u, w)

]
=

ωk

σ4
k

2∑
r=1

ψ′
r(ηk)

dim(Mr)
〈ur, wr〉(xk)r

, (8)

where ψ(ηk) = log ζ as a function of ηk = − 1
2σ2

k
, and we have the result

introduced in [13] that says that if x ∈ M is distributed with a Riemannian
Gaussian distribution on M, xr is distributed as a Riemannian Gaussian dis-
tribution on Mr and ζ(σk) =

∏R
r=1 ζr(σk). In our case ζ1(σk) =

√
2πmσ2

k

(ψ1(ηk) = 1
2 log(−πm

ηk
)), and then we obtain ζ2(σk) = ζ(σk)

ζ1(σk)
easily, since ζ(σk)

has been derived in [6,8]. From (8), we observe that for both components r = 1, 2
the Fisher Information matrix is proportional to the identity matrix with a coef-
ficient ωk

σ4
k

ψ′
r(ηk)

dim(Mr)
.

We derive now the Riemannian score u(xN+1; θ̂
(N)
k ) ∈ T

̂x
(N)
k

P (m):

u(xN+1; θ̂
(N)
k ) = E

[
v(x, z; x̂

(N)

k , σ̂
(N)
k )|xN+1

]
=

hk(xN+1; θ̂(N))
σ̂2(N)

k

Log
̂x
(N)
k

xN+1.
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In order to find u1 and u2 we have simply to apply the Logarithmic map of
Riemannian manifold M1 and M2, which in our case are R and SPm, respec-
tively, to the component 1 and 2 of xN+1 and x̂

(N)

k :

u1 =
hk(xN+1; θ̂(N))

σ̂2(N)

k

(
(x̂

(N)

k )1 − (xN+1)1
)

u2 =
hk(xN+1; θ̂

(N))

σ̂2(N)
k

(
x̂
(N)
k

)1/2

2
log

((
x̂
(N)
k

)−1/2

2
(xN+1)2

(
x̂
(N)
k

)−1/2

2

)(
x̂
(N)
k

)1/2

2

Expliciting ψ′
r(ηk), specifically ψ′

1(ηk) = − 1
2ηk

= σ2
k and ψ′

2(ηk) = ψ′(ηk) + 1
2ηk

,
we can easily apply the Fisher Information matrix to ur. In this way we can
derive ξ

(N+1)
1 = γ(N+1)I−1

1 (θ̂(N))u1 and ξ
(N+1)
2 = γ(N+1)I−1

2 (θ̂(N))u2. We are
now able to obtain the update rules through the respective exponential maps:

(
x̂
(N+1)

k

)

1
=

(
x̂
(N)

k

)

1
− ξ

(N+1)
1 (9)

(
x̂
(N+1)

k

)

2
=

(
x̂
(N)

k

)1/2

2
exp

((
x̂
(N)

k

)−1/2

2
ξ
(N+1)
2

(
x̂
(N)

k

)−1/2

2

) (
x̂
(N)

k

)1/2

2
(10)

For the update of dispersion parameters σk, we consider ηk = − 1
2σ2

k
. Thus,

we consider a real parameter, and then our calculus will be done in the clas-
sical Euclidean framework. First of all we have l(x, z; ηk) = log f(x, z; ηk) =
∑K

k=1 δz,k

(−ψ(ηk) + ηkd2R(x, xk)
)
. Thus, we can derive v(x, z; ηk) = ∂l

∂ηk
=

δz,k(−ψ′(ηk) + d2R(x, xk)). Knowing that I(ηk) = ωkψ′′(ηk), we can evaluate
the score:

u(xN+1; θ̂
(N)) = E[v(x, z; ηk)|xN+1] = hk(xN+1; θ̂

(N))
(
d2R

(
xN+1, x̂

(N)
k

)
− ψ′(η̂(N)

k )
)

.

(11)
Hence we can obtain the updated formula for the dispersion parameter

η̂
(N+1)
k = η̂

(N)
k + γ(N+1) hk(xN+1; θ̂(N))

ω̂
(N)
k ψ′′(η̂(N)

k )

(
d2R

(
xN+1, x̂

(N)

k

)
− ψ′(η̂(N)

k )
)

, (12)

and, obviously σ̂2
k
(N+1) = − 1

2η̂
(N+1)
k

.

4 Simulations

We consider here two simulation frameworks to test the algorithm described in
this paper.

The first framework corresponds to the easiest case. Indeed we consider only
one mixture component (i.e., K = 1). Thus, this corresponds to a simple online
mean and dispersion parameter estimate for a Riemannian Gaussian sample.
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We consider matrices in P3 and we analyze three different simulations corre-
sponding to three different value of the barycenter x1:

x1 =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ; x1 =

⎛

⎝
1 0.8 0.64

0.8 1 0.8
0.64 0.8 1

⎞

⎠ ; x1 =

⎛

⎝
1 0.3 0.09

0.3 1 0.3
0.09 0.3 1

⎞

⎠

The value of dispersion parameter σ is taken equal to 0.1 for the three simu-
lations. We analyze different initial estimates θ̂in, closer to the true values at
the beginning, and further at the end. We focus only on the barycenter, while
the initial estimate for σ corresponds to the true value. We consider two dif-
ferent initial values for each simulation. Specifically for case (a), dR(x1, x̂

(0)

1 ) is
lower, varying between 0.11 and 0.14. For case (b) it is greater, varying between
1.03 and 1.16. For every simulation we generate Nrep = 100 samples, each one
of N = 100 observations. Thus at the end we obtain Nrep different estimates
(x̂1r, σ̂r) for every simulation and we can evaluate the mean m and standard
deviation s of the error, where the error is measured as the Riemannian dis-
tance between x̂1r and x1 for the barycenter, and as |σ − σ̂| for the dispersion
parameter. The results are summarized in Table 1.

Table 1. Mean and standard deviation of the error for the first framework

Simulation mx1 sx1 mσ sσ

1 0.0308 0.0092 0.0097 0.0556

2 0.0309 0.0098 0.0117 0.0570

3 0.0308 0.0096 0.0047 0.0051

In the second framework we consider the mixture case, in particular K = 2.
The true weight are 0.4 and 0.6, while σ1 = σ2 = 0.1. The true barycenters are:

x1 =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ x2 =

⎛

⎝
1 0.7 0.49

0.7 1 0.7
0.49 0.7 1

⎞

⎠

We make the initial estimates varying from the true barycenters to some SPD
different from the true ones. In particular we analyze three cases. Case (a),

where dR(x1, x̂
(0)

1 ) = dR(x2, x̂
(0)

2 ) = 0; case (b), where dR(x1, x̂
(0)

1 ) = 0.2 and

dR(x2, x̂
(0)

2 ) = 0.26; case (c), where dR(x1, x̂
(0)

1 ) = dR(x2, x̂
(0)

2 ) = 0.99. The
results obtained are shown in Table 2. In both frameworks it is clear that we can
obtain very good results when starting close to the real parameter values, while
the goodness of the estimates becomes weaker as the starting points are further
from real values.
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Table 2. Mean and standard deviation of the error for the second framework

mw sw mx1 sx1 mσ1 sσ1 mx2 sx2 mσ2 sσ2

Case a 0.059 0.077 0.078 0.078 0.142 0.172 0.051 0.050 0.071 0.241

Case b 0.089 0.114 0.119 0.136 0.379 0.400 0.100 0.109 0.265 0.325

Case c 0.515 0.090 1.035 0.215 0.455 0.230 0.812 0.292 0.184 0.323

5 Conclusion

This paper has addressed the problem of the online estimate of mixture model
parameters in the Riemannian framework. In particular we dealt with the case of
mixtures of Gaussian distributions in the Riemannian manifold of SPD matrices.
Starting from a classical approach proposed by Titterington for the Euclidean
case, we extend the algorithm to the Riemannian case. The key point was that to
look at the innovation part in the step-wise algorithm as an exponential map, or
a retraction, in the manifold. Furthermore, an important contribution was that
to consider Information Fisher matrix in the Riemannian manifold, in order to
implement the Newton algorithm. Finally, we presented some first simulations to
validate the proposed method. We can state that, when the starting point of the
algorithm is close to the real parameters, we are able to estimate the parameters
very accurately. The simulation results suggested us the next future work needed,
that is to investigate on the starting point influence in the algorithm, to find some
ways to improve convergence towords the good optimum. Another perspective is
to apply this algorithm on some real dataset where online estimation is needed.
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Abstract. Cox multiple scattering processes on hyperspheres are a class
of doubly stochastic Poisson processes that can be used to describe scat-
tering phenomenon in Physics (optics, micro-waves, acoustics, etc.). In
this article, we present an EM (Expectation Maximization) technique to
estimate the concentration parameter of a Compound Cox process with
values on hyperspheres. The proposed algorithm is based on an approx-
imation formula for multiconvolution of von Mises Fisher densities on
spheres of any dimension.

Keywords: Multiple scattering processes · Hyperspheres · von Mises
Fisher distribution · Compound Cox processes · Characteristic function ·
Parametric estimation · Expectation maximization

1 Introduction

We consider isotropic multiple scattering processes taking values on hyper-
spheres Sm−1. The elements of Sm−1 are vectors of unit length in R

m, i.e.
Sm−1 =

{
x ∈ R

m;
(∑m

i=1 x2
i

)1/2 = 1
}

with xi, i = 1, . . . , m the components
of x. Multiple scattering phenomena occur in many areas of Physics, and the
studied model here consists of elastic multiple scattering in any dimension. This
means that the description of the wave/particle encountering multiple scattering
can be performed by modeling of the direction of propagation only (no energy
loss). In such situation, one can consider that the trajectory of one particle is
simply a random walk on an hypersphere.

In this work, we introduce a Compound Cox process model for multiple scat-
tering in possibly dynamically varying media, and propose an estimation algo-
rithm for the concentration parameter of the scatterers density. This density mod-
els the way a heterogeneity scatters the particle/wave, and is based on von Mises
Fisher distribution (vMF). The concentration parameter of the vMF is thus a
parameter of interest to describe a random medium and we propose an Expecta-
tion Maximisation procedure to infer this parameter, given a set of observations
at a time t of the output vector in Sm−1 of the multiple scattering process.
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 684–691, 2017.
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The model used in this work was introduced originally in [1]. The estimation
technique here has computational advantages compared to the one proposed in
[2] and is an alternate to the one studied in [3].

2 von Mises Fisher Random Walk on Sm−1

A multiple scattering process is made up of an infinite number of contributions
from random walks of finite different lengths. In this section, we give the pdf and
characteristic function expressions for a random walk on hypersphere Sm−1.
These results are detailed in [1], and summarized here for use in Sect. 4.

An isotropic random walk on Sm−1 consists of a sequence of vectors starting
at x0, with element after k steps given by:

xk = Rkxk−1 = RkRk−1 . . .R1x0 (1)

where Ri, i = 1, . . . , k is the rotation associated with the ith step. The sequence
of unit vectors x0, . . . ,xk is isotropic and obeys the Markov property condition.
This means that the conditional pdf f(xk|xk−1, . . . ,x0) is given by:

f(xk|xk−1, . . . ,x0) = gk,k−1(xT
k−1xk) (2)

which is only a function of the cosine of the angle between xk−1 and xk.
In directional statistics, the von Mises Fisher (vMF) distribution is amongst

the most popular [4], thanks to its similarity with the normal distribution on the
real line. Here, we consider the vMF distribution on Sm−1, denoted Mm(μ, κ),
with pdf given by:

f(x;μ, κ) =
κm/2−1

(2π)m/2Im/2−1(κ)
eκµT x, (3)

where Iν(·) is the modified Bessel function [5, p. 374], μ ∈ S
m−1 is the mean

direction and κ ≥ 0 is the concentration parameter: the larger the value of κ,
the more concentrated is the distribution about the mean direction μ. The vMF
random walk with concentration parameter κ is thus defined like:

xk|xk−1 ∼ Mm(xk−1, κ),

Indeed, this random walk is unimodal with mode μ ≡ x0 as demonstrated in [1].
In order to provide an expression of the pdf of xn, the position of the random
walker after n steps on the hypersphere, we first introduce an approximation
formula for the multiple convolution of vMF pdf over Sm−1.

2.1 Convolution of vMF Pdfs

Consider a vMF isotropic n-step random walk of over Sm−1, then:

fn(xn;μ) = (gn,n−1 � · · · � g1,0) (xn) (4)



686 F. Chatelain et al.

where f(xk|xk−1) = gk,k−1(xT
k xk−1) for k = 1, . . . , n, x0 ≡ μ is the ini-

tial direction and where � represents the convolution over the double coset
SO(m − 1)\SO(m)/SO(m − 1) [1]. The pdf fn(xn;μ) is unimodal (see [1] for
proof and details) with mode μ and rotationally invariant with respect to μ. As
it is well known in directional statistics [4], the vMF distribution is not stable
by convolution. Here, we make use of the approximation introduced in [1, The-
orem 4.1] for the multiconvolution of vMF pdf s with identical mean direction
μ ∈ Sm−1 and concentration parameter κ. In the high concentration asymptotic
case of large κ and small n, i.e. n/κ → 0, a n-step vMF random walk xn is
distributed as Mm(μ, κ̃n) with:

κ̃n =
κ − 1/2

n
+ 1/2 (5)

the equivalent concentration parameter. As a consequence, it is possible to
approximate the Fourier series (i.e. the characteristic function) of fn(xn;μ)
based on the multiconvolution n-step random walk vMF. First, recall that a
vMF pdf f ∈ L1(SO(m − 1)\SO(m)/SO(m − 1),R) can be written as:

f(x;μ, κ) =
∑
�≥0

βm,�f̂�(κ)P�(μT x) (6)

where the normalisation constant βm,� is given by:

βm,� =
1

ωm−1

(2� + m − 2)Γ (� + m − 2)
�!Γ (m − 1)

for all � ≥ 0 with ωm−1 = 2 πm/2

Γ (m/2) the area of the (m − 1)-dimensional sphere
S

m−1. The basis elements P�(μT x) are the Legendre polynomials of order � in
dimension m, taken at x and with respect to μ, the symmetry axis of f . The
coefficients f̂�(κ) are given by [6]:

f̂�(κ) = E
[
P�(μT x)

]
=

I�+ν(κ)
Iν(κ)

(7)

with ν = m/2 − 1 for κ > 0 and � ≥ 0.
In the case of a isotropic n-step multiconvolution, the coefficients of the

Fourier series of the pdf given in (4), denoted f̂⊗n
� can be approximated by:

f̂⊗n
� = f̃n

� + O

((n

κ

)3
)

(8)

as n/κ → 0, where f̃n
� are the Legendre coefficients of asymptotic distribution

Mm(μ, κ̃n) given in (5).
Thus the Fourier series of a n-step random walk can be expressed using the

asymptotic approximation introduced in this Section. In the sequel, we will make
use of the high concentration asymptotic approximation to derive an expression
for the pdf of a compound Cox process on Sm−1.
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3 vMF Multiple Scattering Process on Sm−1

The study of multiple scattering processes on manifolds has been originally moti-
vated by their usage in describing the behaviour of waves/particles propagat-
ing through a random medium [1,7]. Here, we consider the case of a multiple
scattering process occurring in R

m, where the direction of propagation of the
wave/particle is a unit vector x ∈ Sm−1. Now assuming that during the propaga-
tion, the wave/particle encounters a random number of scatterers, then the direc-
tion of propagation after a time t, denoted xt, consists of a mixture of weighted
n-steps random walks with n = 0, . . . ,∞ and with weights being the probabil-
ity of having n scattering events during the elapsed time t, i.e. P(N(t) = n).
The process N(t) is called the counting process. When the time between two
scattering events follows an exponential law, xt is a Compound Poisson process
with weights equal to e−λt(λt)n/n! and λ the Poisson intensity parameter. The
parameter λ can be related to the mean free path of the random medium [7]. In
the sequel, we consider the more general case where the Poisson process N(t)
is no more homogeneous, i.e. its intensity parameter is a random process Λ(t).
N(t) is then called a Cox process [8]. It is well known [9] that it that case, the
probability P(N(t) = n) takes the form:

P(N(t) = n) = Pn

[
fΛ(t)

]
=

∫ ∞

0

e−λt(λt)n

n!
fΛ(t)(λt)dλt (9)

where Pn

[
fΛ(t)

]
is the Poisson transform of the pdf fΛ(t). It is then possible to

give the expression of the pdf of xt in the case where the n-steps random walks
are vMFs. Using the high concentration approximation introduced in (8), for a
given intensity distribution of Λ(t), in the limit of large κ, one gets:

f(xt;μ, κ) � P0

[
fΛ(t)

]
δµ(xt) +

∑
n≥1

Pn

[
fΛ(t)

]
f(xt;μ, κ̃n) (10)

where f(· ;μ, κ̃n) is the vMF pdf of the n-step random walk, i.e. Mm(μ, κ̃n)1.
Note that this expression is valid if there exists a > 0 such that E[Λ(t)a] < +∞.
In practical applications, it is required that only a small number of scattering
events that weakly pertubate the direction of propagation occurred, for the ran-
dom medium to be identified. The high concentration approximation used here
fits exactly this framework. The high concentration approximation in (10) will
be used in Sect. 4 for estimation purpose.

3.1 Compound Cox Process with Gamma Intensity Distribution

Thus for a given t > 0, the intensity of the Poisson process is now assumed to
be Gamma distributed, i.e. Λ(t) ∼ G(rt, p) where rt > 0 is a fixed and known
1 Here we make use of a notation abuse by expressing f(xt;μ, κ) as a sum of dirac
measure and a pdf. It has to be understood the following way: when x = μ, it equals
the dirac mass, and for other cases it equals the density function.
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shape parameter and p > 0 is an unknown scale parameter. This means that the
density of the mixing process reads

fΛ(t)(x) =
xrt−1

Γ (rt)prt
e− x

p , (11)

for all x ≥ 0. In this case the counting process N(t) for the scattering events
obeys a negative binomial NB(rt, q) distribution with stopping-time rt and suc-
cess probability q = p/(p + 1):

Pr (N(t) = n) = Pn [fΛt
] =

Γ (n + rt)
n!Γ (rt)

pk

(p + 1)n+rt
, (12)

for all n ∈ N.
In this case the high concentration distribution given in (10) is still valid and

the Poisson transform masses are given in (12).

4 Estimation

The distribution of the multiple scattering process yields a likelihood function
which is a product of Fourier series. This function is quite expensive to calcu-
late. In such situations, approximate Bayesian computation (ABC) is a popular
likelihood-free method that can be used to perform Bayesian inference, as shown
in [2], at a price of a high computational cost.

However the asymptotic expression (10) allows us to model the multiple
scattering process as a (infinite) mixture model of vMF distributions. As a con-
sequence, it becomes quite straightforward to apply classical procedures to esti-
mate the parameters of this multiple scattering process. Such procedures include
expectation-maximization (EM) algorithm, or Gibbs sampling in a Bayesian
framework. One benefit of these standard estimation methods is the possibility
to reduce significantly the computational burden w.r.t. likelihood-free methods
such as ABC.

4.1 EM Algorithm

In this work, we derive an EM algorithm in order to estimate the parameters
of vMF compound Cox process when the intensity of the Poisson process is
Gamma distributed. Observations are assumed to be made at a given time t.
Let x = (x1, . . . xN ) be a sample of N independent observations in Sm−1 from a
vMF multiple scattering process with known initial direction μ and whose inten-
sity Λ(t) is Gamma distributed as defined in (11). The vector of the unknown
parameter of the multiple scattering process to be estimated is θ = (p, κ), where
p is related to the intensity of the Poisson process, and κ is the concentration
parameter of the vMF distribution given in (3). In order to derive the EM equa-
tions, we can introduce the following binary latent variables for all 1 ≤ i ≤ N ,
n ≥ 0,
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zi,n =

{
1 if N(t) = n for the sample xi,

0 otherwise.

Then the log-likelihood of the complete data (x,z), where z is the set of all the
zin, can be (approximately) computed based on the high concentration distrib-
ution (10) as

�(θ;x,z) �
N∑

i=1

∑
n≥0

zin log [Pn [fΛt
] f(xi;μ, κ̃n)],

with by convention f(xi;μ, κ̃0) = δµ(xi).

E Step. Given x and a current estimate of the parameter vector θ(α) =(
p

(α)
, κ(α)

)
, the conditional expected value of the log-likelihood reads

Q
(
θ|θ(α)

)
=

N∑
i=1

∑
n≥0

ti,n log [Pn [fΛt
] f(xi;μ, κ̃n)], (13)

where ti,n = E
[
zi,n|x,θ(α)

]
= Pr

(
zi,n = 1|x,θ(α)

)
for all 1 ≤ i ≤ N , n ≥ 0.

Using Bayes rule, it comes that

ti,n =
Pn [fΛt

] f(xi;μ, κ̃
(α)
n )∑

l≥0 Pl [fΛt
] f(xi;μ, κ̃

(α)
l )

, (14)

where κ̃
(α)
n = κ(α)−1/2

n +1/2 as defined in (5) and Pn [fΛt
] is obtained by replacing

the scale parameter p by its current value p(α) in (12).

M Step. In order to maximize Q
(
θ|θ(α)

)
, it is useful to note that this objec-

tive function is separable w.r.t. the two parameters p and κ and can thus be
maximized independently.

The scale parameter p is obtained by maximizing p 
→ ∑N
i=1

∑
n≥0

ti,n log Pn [fΛt
], where the negative binomial masses Pn [fΛt

] are given in (12).
This has the same form as a weighted maximum likelihood estimator for a nega-
tive binomial distribution. Moreover the negative binomial distribution NB(rt, p)
with fixed stopping-time parameter rt describes a natural exponential family
with mean parameter equal to rtp. Thus it comes directly that

p(α+1) =
1
rt

1
N

N∑
i=1

∑
n≥0

nti,n. (15)

The concentration parameter κ is obtained by maximizing

κ 
→ Q
(
θ|θ(α)

)
=

N∑
i=1

∑
n≥1

ti,n
(
log cm (κ̃n) + κ̃nμT xi

)
+ constant,



690 F. Chatelain et al.

where cm(κ) = κm/2−1

(2π)m/2Im/2−1(κ)
is the vMF normalizing constant, and κ̃n

depends on κ as defined in (5). By differentiating this function w.r.t. κ, we
obtain the following score function

v(κ) =
N∑

i=1

∑
n≥1

ti,n
−Am(κ̃n) + μT xi

n
,

where Am(κ) = −c′
m(κ)

cm(κ) = Im/2(κ)

Im/2−1(κ) . For a fixed direction μ the distribution

of the scalar μT y, where y is vMF distributed as Mm(μ, κ), describes a nat-
ural exponential family on the set κ > 0. Thus the associated log-likelihood is
strictly concave w.r.t. κ and v(κ) is monotonically decreasing as a positively
weighted sum of monotonically decreasing function. This shows that the value
that maximizes κ 
→ Q

(
θ|θ(α)

)
is the unique zero of v(κ). Unfortunately there

is no tractable closed-form expression of this zero. However, similarly to maxi-
mum likelihood procedures for vMF distributions [10], it is possible to perform
one Newton’s iteration to improve the objective criterion Q

(
θ|θ(α)

)
. Indeed

such improvement ensures, as a standard property of EM algorithm, that the
marginal likelihood of the observations x is improved. This yields the following
update rule

κ(α+1) = κ(α) − v(κ(α))
v′(κ(α))

, (16)

where v′(κ) = −∑
n≥1

A′
m(κ̃n)
n2

∑N
i=1 ti,n is the derivative of the score function

v(κ). Moreover A′
m(κ) can be efficiently computed using A′

m(κ) = 1−Am(κ)2 −
m−1

κ Am(κ) as shown in [4].
Note finally that the EM algorithm can be initialized by using method of

moment estimates as defined in [3].

4.2 Simulation Results

Several simulations have been conducted on synthetic data to evaluate the sta-
tistical performances of the estimates given by the EM procedure.

Note that in practice, to compute the EM equations and thus to implement
the EM algorithm, we can truncate the infinite series in (14), (15) and (16) to
compute the probabilities ti,n and the updated estimates. This can be done by
introducing a tolerance parameter ε > 0 and the associated index upper bound
Lε = arg minL∈N

∑L
l=0 Pl [fΛt

] > 1 − ε. Thus it comes that

ti,n ≈ Pn [fΛt
] f(xi;μ, κ̃

(α)
n )∑Lε

l=0 Pl [fΛt
] f(xi;μ, κ̃

(α)
l )

, (17)

for 0 ≤ n ≤ Lε, and ti,n ≈ 0 for n > Lε.
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Table 1. Performances of EM estimates (p̂, κ̂) as a function of the true parameters
p and κ, from 1000 Monte-Carlo runs, for a vMF multiple scattering process with
G(rt, p) mixing distribution (rt = 1). Sample size is N = 1000, and samples belong to
S2 (m = 3).

p 1 2 3 5 10

p̂ κ̂ p̂ κ̂ p̂ κ̂ p̂ κ̂ p̂ κ̂

κ = 20 bias 0.011 0.275 0.025 0.447 0.043 0.695 0.141 1.386 0.330 2.996

stdev 0.059 1.288 0.121 1.281 0.195 1.344 0.327 1.313 0.752 1.496

κ = 50 bias 0.007 0.425 0.022 0.624 0.042 0.975 0.151 1.914 0.437 3.433

stdev 0.059 3.011 0.125 3.063 0.193 3.241 0.337 3.564 0.752 3.966

κ = 100 bias 0.007 0.502 0.020 0.898 0.041 1.168 0.129 2.743 0.446 5.097

stdev 0.060 6.297 0.124 6.198 0.190 6.660 0.336 6.971 0.756 8.132

κ = 200 bias 0.007 1.477 0.021 2.178 0.042 2.792 0.140 5.519 0.484 9.486

stdev 0.058 12.28 0.123 12.55 0.199 13.54 0.319 13.80 0.749 15.58

The biases and the standard deviations of EM estimates are reported in
Table 1. These numerical results underline the accuracy of the EM estimators
based on the high concentration approximation even when the ratio κ/p is not
very large, e.g. κ/p ≥ 2.
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Abstract. Maximum likelihood estimator (MLE) is a well known esti-
mator in statistics. The popularity of this estimator stems from its
asymptotic and universal properties. While asymptotic properties of
MLEs on Euclidean spaces attracted a lot of interest, their studies on
manifolds are still insufficient. The present paper aims to give a uni-
fied study of the subject. Its contributions are twofold. First it proposes
a framework of asymptotic results for MLEs on manifolds: consistency,
asymptotic normality and asymptotic efficiency. Second, it extends pop-
ular testing problems on manifolds. Some examples are discussed.

Keywords: Maximum likelihood estimator · Consistency · Asymptotic
normality · Asymptotic efficiency of MLE · Statistical tests on manifolds

1 Introduction

Density estimation on manifolds has many applications in signal and image
processing. To give some examples of situations, one can mention

Covariance matrices: In recent works [1–5], new distributions called Gaussian
and Laplace distributions on manifolds of covariance matrices (positive definite,
Hermitian, Toeplitz, Block Toeplitz...) are introduced. Estimation of parameters
of these distributions has led to various applications (image classification, EEG
data analysis, etc.).

Stiefel and Grassmann manifolds: These manifolds are used in various appli-
cations such as pattern recognition [6–8] and shape analysis [9]. Among the most
studied density functions on these manifolds, one finds the Langevin, Bingham
and Gaussian distributions [10]. In [6–8], maximum likelihood estimations of the
Langevin and Gaussian distributions are applied for tasks of activity recognition
and video-based face recognition.

Lie groups: Lie groups arise in various problems of signal and image process-
ing such as localization, tracking [11,12] and medical image processing [13]. In
[13], maximum likelihood estimation of new distributions on Lie groups, called
Gaussian distributions, is performed and applications are given in medical image
processing. The recent work [4] proposes new Gaussian distributions on Lie
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 692–700, 2017.
https://doi.org/10.1007/978-3-319-68445-1_80
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groups and a complete program, based on MLE, to learn data on Lie groups
using these distributions.

The present paper is structured as follows. Section 2 focuses on consistency
of MLE on general metric spaces. Section 3 discusses asymptotic normality and
asymptotic efficiency of MLE on manifolds. Finally Sect. 4 presents some hypoth-
esis tests on manifolds.

2 Consistency

In this section it is shown that, under suitable conditions, MLEs on general met-
ric spaces are consistent estimators. The result given here may not be optimal.
However, in addition to its simple form, it is applicable to several examples of
distributions on manifolds as discussed below.

Let (Θ, d) denote a metric space and let M be a measurable space with μ
a positive measure on it. Consider (Pθ)θ∈Θ a family of distributions on M such
that Pθ(dx) = f(x, θ)μ(dx) and f > 0.

If x1, · · · , xn are independent random samples from Pθ0 , a maximum likeli-
hood estimator is any θ̂n which solves

max
θ

Ln(θ) = Ln(θ̂n) where Ln(θ) =
1
n

n∑

i=1

log f(xi, θ)

The main result of this section is Theorem 1 below. The notation Eθ[g(x)] stands
for

∫
M g(y)f(y, θ)μ(dy).

Theorem 1. Assume the following assumptions hold for some θ0 ∈ Θ.

(1) For all x, f(x, θ) is continuous with respect to θ.
(2) Eθ0 [| log f(x, θ)|] < ∞ for all θ, L(θ) = Eθ0 [log f(x, θ)] is continuous on Θ

and uniquely maximized at θ0.
(3) For all compact K of Θ,

Q(δ) := Eθ0 [sup{| log f(x, θ) − log f(x, θ′)| : θ, θ′ ∈ K, d(θ, θ′) ≤ δ}]

satisfies limδ→0 Q(δ) = 0.
Let x1, · · · , xn, · · · be independent random samples of Pθ0 . For every compact
K of Θ, the following convergence holds in probability

lim
n→∞ sup

θ∈K
|Ln(θ) − L(θ)| = 0

Assume moreover
(4) There exists a compact K0 ⊂ Θ containing θ0 such that

Eθ0 [| sup{log f(x, θ) : θ ∈ Kc
0}|] < ∞

and

Eθ0 [sup{log f(x, θ) : θ ∈ Kc
0}] < L(θ0)
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Then, whenever θ̂n exists and is unique for all n, it satisfies θ̂n converges to
θ0 in probability.

Proof. Since L is a deterministic function, it is enough to prove, for every com-
pact K,

(i) Convergence of finite dimensional distributions: (Ln(θ1), · · · , Ln(θp)) weakly
converges to (L(θ1), · · · , L(θp)) for any θ1, · · · , θp ∈ K.

(ii) Tightness criterion: for all ε > 0,

lim
δ→0

lim sup
n→∞

P
(

sup
θ,θ′∈K,d(θ,θ′)<δ

|Ln(θ) − Ln(θ′)| > ε
)

= 0

Fact (i) is a consequence of the first assumption in (2) and the strong law of
large numbers (SLLN). For (ii), set F = {(θ, θ′) ∈ K2, d(θ, θ′) < δ} and note

P
(
sup
F

|Ln(θ) − Ln(θ′)| > ε
) ≤ P(Qn(δ) > ε)

where Qn(δ) = 1
n

∑n
i=1 supF | log f(xi, θ) − log f(xi, θ

′)|. By assumption (3),
there exists δ0 > 0 such that Q(δ) ≤ Q(δ0) < ε for all δ ≤ δ0. An application of
the SLLN shows that, for all δ ≤ δ0, limn Qn(δ) = Q(δ) and consequently

lim sup
n→∞

P(Qn(δ) > ε) = lim sup
n→∞

P(Qn(δ) − Q(δ) > ε − Q(δ)) = 0

This proves fact (ii). Assume (4) holds. The bound

P(θ̂n /∈ K0) ≤ P(sup
Kc

0

Ln(θ) > sup
K0

Ln(θ)) ≤ P(sup
Kc

0

Ln(θ) > Ln(θ0))

and the inequality supθ∈Kc
0
Ln(θ) ≤ 1

n

∑n
i=1 supθ∈Kc

0
log f(xi, θ) give

P(θ̂n /∈ K0) ≤ P

(
1
n

n∑

i=1

sup
θ∈Kc

0

log f(xi, θ) > Ln(θ0)
)

By the SLLN, lim supn P(θ̂n /∈ K0) ≤ 1{Eθ0 [supθ∈Kc
0
log f(x,θ)]≥L(θ0)} = 0. With

K0(ε) := {θ ∈ K0 : d(θ, θ0) ≥ ε}, one has

P(d(θ̂n, θ0) ≥ ε) ≤ P(θ̂n ∈ K0(ε)) + P(θ̂n /∈ K0)

where P(θ̂n ∈ K0(ε)) ≤ P(supK0(ε) Ln > Ln(θ0)). Since Ln converges to L uni-
formly in probability on K0(ε), supK0(ε) Ln converges in probability to supK0(ε) L

and so lim supn P(d(θ̂n, θ0) ≥ ε) = 0 using assumption (2).

2.1 Some Examples

In the following some distributions which satisfy assumptions of Theorem1 are
given. More examples will be discussed in a forthcoming paper.
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(i) Gaussian and Laplace distributions on Pm. Let Θ = M = Pm be
the Riemannian manifold of symmetric positive definite matrices of size m × m
equipped with Rao-Fisher metric and its Riemannian distance d called Rao’s
distance. The Gaussian distribution on Pm as introduced in [1] has density with
respect to the Riemannian volume given by f(x, θ) = 1

Zm(σ) exp
(− d2(x,θ)

2σ2

)
where

σ > 0 and Zm(σ) > 0 is a normalizing factor only depending on σ.
Points (1) and (3) in Theorem1 are easy to verify. Point (2) is proved in

Proposition 9 [1]. To check (4), define O = {θ : d(θ, θ0) > ε} and note

Eθ0 [sup
O

(−d2(x, θ))] ≤ Eθ0 [sup
O

(−d2(x, θ))12d(x,θ0)≤ε−1] (1)

By the triangle inequality −d2(x, θ) ≤ −d(x, θ0)2 + 2d(θ, θ0)d(x, θ0) − d2(θ, θ0)
and consequently (1) is smaller than

Eθ0 [sup
O

(2d(θ, θ0)d(x, θ0) − d2(θ, θ0))12d(x,θ0)≤ε−1]

But if 2d(x, θ0) ≤ ε − 1 and d(θ, θ0) > ε,

2d(θ, θ0)d(x, θ0) − d2(θ, θ0) < d(θ, θ0)(ε − 1 − ε) < −ε

Finally (1) ≤ −ε and this gives (4) since K0 = Oc is compact.
Let x1, · · · , xn, · · · , ... be independent samples of f(·, θ0). The MLE based on

these samples is the Riemannian mean θ̂n = argminθ

∑n
i=1 d2(xi, θ). Existence

and uniqueness of θ̂n follow from [14]. Theorem 1 shows the convergence of θ̂n

to θ0. This convergence was proved in [1] using results of [15] on convergence of
empirical barycenters.

(ii) Gaussian and Laplace distributions on symmetric spaces.
Gaussian distributions can be defined more generally on Riemannian symmet-
ric spaces [4]. MLEs of these distributions are consistent estimators [4]. This
can be recovered by applying Theorem1 as for Pm. In the same way, it can
be checked that Laplace distributions on Pm [2] and symmetric spaces satisfy
assumptions of Theorem 1 and consequently their estimators are also consistent.
Notice, for Laplace distributions, MLE coincides with the Riemannian median
θ̂n = argminθ

∑n
i=1 d(xi, θ).

3 Asymptotic Normality and Asymptotic Efficiency
of the MLE

Let Θ be a smooth manifold with dimension p equipped with an affine connection
∇ and an arbitrary distance d. Consider M a measurable space equipped with
a positive measure μ and (Pθ)θ∈Θ a family of distributions on M such that
Pθ(dx) = f(x, θ)μ(dx) and f > 0.

Consider the following generalization of estimating functions [16].

Definition 1. An estimating form is a function ω : M × Θ −→ T ∗Θ such
that for all (x, θ) ∈ M × Θ, ω(x, θ) ∈ T ∗

θ Θ and Eθ[ω(x, θ)] = 0 or equivalently
Eθ[ω(x, θ)Xθ] = 0 for all Xθ ∈ TθΘ.
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Assume l(x, θ) = log(f(x, θ)) is smooth in θ and satisfies appropriate
integrability conditions, then differentiating with respect to θ, the identity∫

M f(x, θ)μ(dx) = 1, one finds ω(x, θ) = dl(x, θ) is an estimating form.
The main result of this section is the following

Theorem 2. Let ω : M × Θ −→ T ∗Θ be an estimating form. Fix θ0 ∈ Θ and
let (xn)n≥1 be independent samples of Pθ0 . Assume

(i) There exist (θ̂N )N≥1 such that
∑N

n=1 ω(xn, θ̂N ) = 0 for all N and θ̂N con-
verges in probability to θ0.

(ii) For all u, v ∈ Tθ0Θ, Eθ0 [|∇ω(x, θ0)(u, v)|] < ∞ and there exists
(ea)a=1,··· ,p a basis of Tθ0Θ such that the matrix A with entries Aa,b =
Eθ0 [∇ω(x, θ0)(ea, eb)] is invertible.

(iii) The function R(δ) =

Eθ0 [ sup
t∈[0,1],θ∈B(θ0,δ)

|∇ω(x, γ(t))(ea(t), eb(t)) − ∇ω(x, θ0)(ea, eb)|]

satisfies limδ→0 R(δ) = 0 where (ea, a = 1 · · · , p) is a basis of Tθ0Θ as in
(ii) and ea(t), t ∈ [0, 1] is the parallel transport of ea along γ the unique
geodesic joining θ0 and θ̄.

Let Logθ(θ̂N ) =
∑p

a=1 Δaea be the decomposition of Logθ(θ̂N ) in the basis
(ea)a=1,··· ,p. The following convergence holds in distribution as N −→ ∞

√
N(Δ1, · · · ,Δp)T ⇒ N (0, (A†)−1ΓA−1)

where Γ is the matrix with entries Γa,b = Eθ0 [ω(x, θ0)ea.ω(x, θ0)eb].

Proof. Take V a small neighborhood of θ0 and let γ : [0, 1] −→ V be the unique
geodesic contained in V such that γ(0) = θ0 and γ(1) = θ̂N . Let (ea, a = 1 · · · , p)
be a basis of Tθ0Θ as in (ii) and define ea(t), t ∈ [0, 1] as the parallel transport of
ea along γ: Dea(t)

dt = 0, t ∈ [0, 1], ea(0) = ea where D is the covariant derivative
along γ. Introduce

ωN (θ) =
N∑

n=1

ω(xn, θ) and Fa(t) = ωN (γ(t))(ea(t))

By Taylor formula, there exists ca ∈ [0, 1] such that

Fa(1) = Fa(0) + F ′
a(ca) (2)

Note Fa(1) = 0, Fa(0) = ωN (θ0)(ea) and F ′
a(t) = (∇ωN )(γ′(t), ea(t)) =∑

b Δb(∇ωN )(eb(t), ea(t)). In particular, F ′
a(0) =

∑
b Δb(∇ωN )(eb, ea). Divid-

ing (2) by
√

N , gives

− 1√
N

ωN (θ0)(ea) =
1√
N

∑

b

Δb(∇ωN )(eb(ca), ea(ca)) (3)
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Define Y N =
(
− 1√

N
ωN (θ0)(e1), · · · ,− 1√

N
ωN (θ0)(ep)

)†
and let AN be the

matrix with entries AN (a, b) = 1
N (∇ωN )(ea(ca), eb(ca)). Then (3) writes as

Y N = (AN )†(
√

NΔ1, · · · ,
√

NΔp)†. Since Eθ0 [ω(x, θ0)] = 0, by the central limit
theorem, Y N converges in distribution to a multivariate normal distribution with
mean 0 and covariance Γ . Note

AN
a,b =

1
N

(∇ωN )(ea, eb) + RN
a,b

where RN
a,b = 1

N (∇ωN )(ea(ca), eb(ca)) − 1
N (∇ωN )(ea, eb). By the SLLN and

assumption (ii), the matrix BN with entries BN (a, b) = 1
N (∇ωN )(ea, eb) con-

verges almost surely to the matrix A. Note |RN
a,b| is bounded by

1
N

N∑

n=1

sup
t∈[0,1]

sup
θ∈B(θ0,δ)

|∇ω(xn, γ(t))(ea(t), eb(t)) − ∇ω(xn, θ0)(ea, eb)|

By the SLLN, for δ small enough, the right-hand side converges to R(δ) defined
in (iii). The convergence in probability of θ̂N to θ0 and assumption (iii) show
that RN

a,b → 0 in probability and so AN converges in probability to A. By
Slutsky lemma ((A†

N )−1, YN ) converges in distribution to ((A†)−1,N (0, Γ )) and
so (A†

N )−1YN converges in distribution to (A†)−1N (0, Γ ) = N (0, (A†)−1ΓA−1).

Remark 1 on ω = dl. For ω an estimating form, one has Eθ[ω(x, θ)] = 0.
Taking the covariant derivative, one gets Eθ[dl(U)ω(V )] = −Eθ[∇ω(U, V )] for
all vector fields U, V . When ω = dl, this writes Eθ[ω(U)ω(V )] = −Eθ[∇ω(U, V )].
In particular Γ = Eθ0 [dl ⊗ dl(ea, eb)] = −A and A† = A = Eθ0 [∇(dl)(ea, eb)] =
Eθ0 [∇2l(ea, eb)] where ∇2 is the Hessian of l. The limit matrix is therefore equal
to Fisher information matrix Γ−1 = −A−1. This yields the following corollary.

Corollary 1. Assume Θ = (M, g) is a Riemannian manifold and let d be the
Riemannian distance on Θ. Assume ω = dl satisfies the assumptions of The-
orem2 where ∇ is the Levi-Civita connection on Θ. The following convergence
holds in distribution as N → ∞.

Nd2(θ̂N , θ0) ⇒
p∑

i=1

X2
i

where X = (X1, · · · ,Xp)T is a random variable with law N (0, I−1) with I(a, b) =
Eθ0 [∇2l(ea, eb)].

The next proposition is concerned with asymptotic efficiency of MLE. It states
that the lower asymptotic variance for estimating forms satisfying Theorem2 is
attained for ω0 = dl.

Take ω an estimating from and consider the matrices E,F,G,H with
entries Ea,b = Eθ0 [dl(θ0, x)eadl(θ0, x)eb], Fa,b = Eθ0 [dl(θ0, x)eaω(θ0, x)eb] =
−Aa,b, Ga,b = Fb,a, Ha,b = Eθ0 [ω(θ0, x)eaω(θ0, x)eb] = Γa,b. Recall E−1 is the
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limit distribution when ω0 = dl. Note M =
(

E F
G H

)
is symmetric. When ω = dl,

it is furthermore positive but not definite.

Proposition 1. If M is positive definite, then E−1 < (A†)−1ΓA−1.

Proof. Since M is symmetric positive definite, the same also holds for its inverse.
By Schur inversion lemma, E − FH−1G is symmetric positive definite. That is
E > FH−1G or equivalently E−1 < (A†)−1ΓA−1.

Remark 2. As an example, it can be checked that Theorem 2 is satisfied by ω =
dl of the Gaussian and Laplace distributions discussed in paragraph Sect. 2.1.
For the Gaussian distribution on Pm, this result is proved in [1]. More examples
will be given in a future paper.

Remark 3 on Cramér-Rao lower bound. Assume Θ is a Riemannian
manifold and θ̂n defined in Theorem 2 (i) is unbiased: E[Logθ0

(θ̂n)] = 0. Consider
(e1, · · · , ep) an orthonormal basis of Tθ0Θ and denote by a = (a1, · · · , ap) the
coordinates in this basis of Logθ0

(θ̂n). Smith [17] gave an intrinsic Cramér-Rao
lower bound for the covariance C(θ0) = E[aaT ] as follows

C ≥ F−1 + curvature terms (4)

where F = (Fi,j = E[dL(θ0)eidL(θ0)ej ], i, j ∈ [1, p]) is Fisher information
matrix and L(θ) =

∑N
i=1 log f(xi, θ). Define L the matrix with entries Li,j =

E[dl(θ0)eidl(θ0)ej ] where l(θ) = log f(x1, θ). By multiplying (4) by
√

n, one gets,
with y =

√
na,

E[yyT ] ≥ L−1 + n × curvature terms

It can be checked that as n → ∞, n × curvature terms → 0. Recall y converges
in distribution to N (0, (A†)−1ΓA−1). Assume it is possible to interchange limit
and integral, from Theorem2 one deduces (A†)−1ΓA−1 ≥ L−1 which is similar
to Proposition 1.

4 Statistical Tests

Asymptotic properties of MLE have led to another fundamental subject in sta-
tistics which is testing. In the following, some popular tests on Euclidean spaces
are generalized to manifolds.

Let Θ,M and f be as in the beginning of the previous section.

Wald and score tests. Given x1, · · · , xn independent samples of f(., θ) where
θ is unknown, consider the test H0 : θ = θ0. Define the Wald test statistic for
H0 by

QW = n(Δ1, · · · ,Δp)I(θ0)(Δ1, · · · ,Δp)T
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where I(θ0) is Fisher matrix with entries I(θ0)(a, b) = −Eθ0 [∇2l(ea, eb)] and
Δ1, · · · ,Δp, (ea)a=1:p are defined as in Theorem 2.

Continuing with the same notations, the score test is based on the statistic

QS = U(θ0)T I(θ0)U(θ0)

where U(θ0) = (U1(θ0), · · · , Up(θ0)), (Ua(θ0))a=1:p are the coordinates of
∇θ0 l(θ0,X) in the basis (ea)a=1:p and l(θ,X) =

∑n
i=1 log(f(xi, θ)).

Theorem 3. Assume ω = dl satisfies conditions of Theorem2. Then, under
H0 : θ = θ0, QW (respectively QS) converges in distribution to a χ2 distribution
with p = dim(Θ) degrees of freedom. In particular, Wald test (resp. the score
test) rejects H0 when QW (resp. QS) is larger than a chi-square percentile.

Because of the lack of space, the proof of this theorem will be published in a
future paper. One can also consider a generalization of Wilks test to manifolds.
An extension of this test to the manifold Pm appeared in [1].
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Abstract. Directional densities were introduced in the pioneering work
of von Mises, with the definition of a rotationally invariant probability
distribution on the circle. It was further generalized to more complex
objects like the torus or the hyperbolic space. The purpose of the present
work is to give a construction of equivalent objects on surfaces with
genus larger than or equal to 2, for which an hyperbolic structure exists.
Although the directional densities on the torus were introduced by several
authors and are closely related to the original von Mises distribution,
allowing more than one hole is challenging as one cannot simply add more
angular coordinates. The approach taken here is to use a wrapping as in
the case of the circular wrapped Gaussian density, but with a summation
taken over all the elements of the group that realizes the surface as a
quotient of the hyperbolic plane.

Keywords: Directional densities · Hyperbolic geometry · von Mises
probability distributions

1 Introduction

Estimating probability densities by the means of kernels is a basic procedure in
non-parametric statistics. For finite dimensional vector spaces, the choice of the
kernel bandwidth is the critical point, while the kernel itself is not as important.
When dealing with manifolds, it is no longer the case, since the kernel must be
well defined as a density on the manifold itself. A classical case arises when data
of interest belong to a unit sphere, that yields the von Mises-Fischer distribution.
It relies on the embedding of the unit sphere S

d−1 in R
d to build a kernel that

depends on the inner product 〈x, y〉 of the radial unit vectors associated to a
couple of points (x, y) of Sd−1. It is obviously invariant by rotation, as applying
an isometry will not change the inner product. Since 〈x, y〉 is also cos θ, with
θ the angle between x and y, it can be seen as a function of the geodetic dis-
tance d(x, y) on the sphere. Finally, it has the maximum entropy property, which
makes it similar to the normal distribution (in fact, the normal distribution is a
limiting case of the von Mises-Fischer, the other being the uniform distribution).
Spherical distributions have numerous applications in statistics, as many data
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 701–708, 2017.
https://doi.org/10.1007/978-3-319-68445-1_81
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can be interpreted as directions in R
d. Attempts was made to generalize them to

the d-dimensional torus [6] to obtain multivariate von Mises distributions. Here,
the approach taken is somewhat different, since the primary goal was to build
a density that is only invariant coordinate-wise. The existence of an angular
coordinate system on the d-dimensional torus is the basis of the construction:
rotation invariance in each coordinate is gained just by using angle differences
in the overall distribution. An interpretation using the geodesic distance on the
embedded surface is no longer possible. While not strictly compliant with the
geometer’s view of a torus density, the multivariate von Mises-Fischer distrib-
ution has still a geometrical interpretation. If we restrict our attention to the
two-dimensional case, T2 admits a flat structure, with universal covering space
R

2 and fundamental domain a rectangle. It can be obtain as the quotient of R2

by a group G generated by two translations, respectively parallel to the x and
y axis. The most natural density for such an object will be a wrapped R

2 heat
kernel, namely a sum of the form p(x, y, t) =

∑
g∈G k(x, gy, t) with k the heat

kernel on R
2 and x the point at which the density is centered. It turns out that,

due to the commutativity of the two translations and the particular shape of the
R

2 heat kernel, it boils down to a product of wrapped normal densities. Recall-
ing that the one-dimensional von Mises distribution is an approximation of the
wrapped normal and is rotation invariant, one can think of the multivariate von
Mises density as a product of two densities invariant by the respective actions
of the two translation cyclic groups.

The purpose of the present work is to introduce a class of probability dis-
tributions on orientable surfaces of genus larger than 1 and endowed with an
hyperbolic structure, that may be used as kernels for non-parametric density
estimates or to generate random data on such surfaces. By analogy with the
multivariate von Mises distribution on the d-dimensional torus, the proposed
density will approximate the wrapped heat kernel on the surface in the limit of
time parameter going to 0. Furthermore, invariance of the density with respect to
the action of a primitive element, similar to rotation invariance, will be enforced.

The overall procedure will closely mimic the construction of the multivariate
von Mises distribution, starting with a representation of the surface as a quotient
of the hyperbolic space H2 by a group G of hyperbolic isometries. The heat kernel
is obtained readily as a wrapped sum of heat kernels on H

2 over the elements
of G. Using the property that the centralizer of an hyperbolic element is an
infinite cyclic group with generator a primitive element, the wrapped kernel can
be written in such a way that an equivalent to a wrapped one dimensional kernel
appears.

2 Directional Densities: A Brief Survey

Directional densities are roughly speaking probability distributions depending on
angular parameters. One of the most commonly used is the von Mises-Fischer on
the unit sphere S

d−1 of Rd, that depend on two parameters μ ∈ S
d−1 and κ > 0,
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respectively called the mean and concentration. Its value at a point x ∈ S
d−1 is

given by:

p(x;μ, κ) =
κd/2−1

(2π)d/2
Id/2−1(κ)

exp (κ 〈μ, x〉) , (1)

where Ik stands for the modified Bessel function of order k and x, μ are given
as unit vectors in R

d. It enjoys many properties, like infinite divisibility [4] and
maximal entropy [5]. It has been generalized to other Riemannian manifolds
like the d-dimensional torus Td, on which it becomes the multivariate von Mises
distribution [6]:

p(θ;μ, κ, Λ) ∝ exp
(

〈κ, c(θ, μ)〉 +
1
2
s(θ, μ)T Λ s(θ, μ)

)

, (2)

where θ, μ are d-dimensional vectors of angles, κ is a d-dimensional vector of pos-
itive real numbers and Λ is a d×d symmetric, positive definite matrix describing
the covariance between the angular parameters. The terms c(θ, μ), s(θ, μ) occur-
ring in the expression are given by:

c(θ, μ)T = (cos(θ1 − μ1), . . . , cos(θd − μd)) , (3)
s(θ, μ)T = (sin(θ1 − μ1), . . . , sin(θd − μd)) . (4)

Another generalization is made in [1] and, with a different approach in [3], to
the hyperbolic d-dimensional space H

d. Following the later, the starting point is
the hyperbolic Brownian motion defined as a diffusion on H

d with infinitesimal
generator:

x2
d

2

(
d∑

i=1

∂2

∂x2
i

)

− (d − 2)xd

2
∂

∂xd
, (5)

where all the coordinates are given in the half-space model of Hd:

H
d = {x1, . . . , xd : xi ∈ R, i = 1, . . . , d − 1, xd ∈ R

+}.

In the sequel, only the case d = 2 will be considered, as the primary object of
interest are surfaces. It is convenient to represent the half-space model of H2 in
C, with z = x1+ ix2. The 2-dimensional hyperboloid embedded in R

3 associated
with H

2 is given by:

{(x1, x2, x3) : x2
1 + x2

2 − x2
3 = −1}. (6)

It admits hyperbolic coordinates:

x1 = sinh(r) cos(θ), x2 = sinh(r) sin(θ), x3 = cosh(r) (7)

that transforms to the unit disk model as:

u =
sinh(r) cos(θ)
1 + cosh(r)

, v =
sinh(r) sin(θ)
1 + cosh(r)

(8)
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where θ and r are the angular and radius coordinates. Finally, using a complex
representation z = u+ iv and the Möbius mapping z → i(1−z)/(1+z), it comes
the expression of the half-plane coordinates:

x =
sinh(r) sin(θ)

cosh(r) + sinh(r) cos(θ)
, y =

1
cosh(r) + sinh(r) cos(θ)

. (9)

The hyperbolic Von Mises distribution is then defined, for a given r > 0, as the
density of the first exit on the circle of center i and radius r of the hyperbolic
Brownian motion starting at i. Its expression is given in [3] as:

pvm(r, θ) =
1

2πP 0−ν(cosh(r))
(cosh(r) + sinh(r) cos(θ))−ν (10)

where P 0
−ν is the Legendre function of the first kind with parameters 0,−ν, that

acts as a normalizing constant to get a true probability density. The parameter
ν is similar to the concentration used in the classical Von Mises distribution.

3 Closed Geodesics and Wrapping

A classical circular density is the wrapped (centered) Gaussian distribution:

pwg(θ;σ) =
1√
2πσ

∑

k∈Z

exp(−(θ + 2kπ)/(2σ2)) (11)

It is clearly a periodic distribution with period 2π, with σ acting as an inverse
concentration parameter. Von Mises densities can approximate the circular
wrapped Gaussian density quite well when the concentration is large enough.
It worth notice that the wrapped Gaussian can be seen as a circular heat kernel
K(θ, t) = pwg(θ, σ2/2), with the angular parameter θ being interpreted as a dis-
tance on the unit circle. The starting point for defining an equivalent of the von
Mises distributions on surfaces is the wrapping formula given above. First of all,
only compact orientable surfaces of genus g larger that 1 will be considered, as
the case of the sphere or the torus is already covered. It is a classical result in
hyperbolic geometry that such a surface M can be endowed with an hyperbolic
structure that is obtained as the quotient of the hyperbolic plane by a group G of
hyperbolic isometries. Any non-trivial element of G is conjugate to an isometry
of hyperbolic type and in turn to a scaling acting as: z �→ q2z, q2 	= 0, 1. It is
quite interesting to note that this is exactly the case considered in [3] for the
definition of the Brownian motion with drift in H

2, the drift component being
an hyperbolic isometry.

The first possible definition of a directional density on an orientable surface of
genus g > 1 will be to use kH2(x, y, t), the heat kernel on H

2, as an analogous of
the Gaussian heat kernel, and to consider its wrapping over all possible elements
in G. The expression of kH2 is given by [8]:

KH2(x, y, t) =
√

2e− t
4

(4πt)3/2

∫ ∞

d(x,y)

se− s2
4t

√
cosh s − cosh d(x, y)

ds (12)
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with d(x, y) the hyperbolic distance between x, y. Please note that KH2(x, y, t)
can be written using the hyperbolic distance only as:

KH2(x, y, t) = kH2(d(x, y), t)

The group G admits an hyperbolic polygon with 4g sides as fundamental
region in H

2. For any g ∈ G, its length is defined to be l(g) = infx d(x, gx),
or using the conjugacy class of g: l(g) = infx d(x, kgk−1) where k runs over G.
Elements of G with non zero length are conjugate to hyperbolic elements in
SL(2,R) (elliptic and parabolic ones are associated to rotations and translation
in H

2 so that the length can be made arbitrary small), and are thus conjugate to
a scaling x �→ λ2x. Furthermore, a conjugacy class represents a free homotopy
class of closed curves, that contains a unique minimal geodesic whose length is
l(g), where g is a representative element.

M can be identified with the quotient H2/G so that one can define a wrapped
heat kernel on M by the formula:

KM : (x, y, t) ∈ M2 × R
+ �→

∑

g∈G

KH2(x, gy, t) (13)

KM is clearly invariant by the left action of G and is symmetric since:

KM (x, y, t) =
∑

g∈G

kH2(d(x, gy), t) (14)

=
∑

g∈G

kH2(d(g−1x, y), t) =
∑

g∈G

kH2(d(y, g−1x), t) (15)

= KM (y, x, t) (16)

Finally, primitive elements in G (i.e. those p ∈ G that cannot be written as
a non trivial power of another element) play a central role in the sum defining
KM . For p a primitive element, let Gp denote its centralizer in G. The conjugacy
classes in G are all of the form gpng−1, g ∈ G/Gp with p primitive and n ∈ Z.
The wrapped kernel can then be rewritten as:

KM (x, y, t) =
∑

p

∑

g∈G/Gp

∑

n∈Z

KH2(gx, pngy, t) (17)

where p runs through the primitive elements of G.
It indicates that the kernel KM can be understood as a sum of elementary

wrapped kernels associated to primitive elements, namely those k̃p defined by:

k̃p(x, y, t) =
∑

n∈Z

KH2(x, pny, t) (18)

with p primitive. Finally, p being hyperbolic, it is conjugate to a scaling, so it is
enough to consider kernels of the form:

k̃p(x, y, t) =
∑

n∈Z

KH2(x, (λ2)ny, t) (19)
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with λ > 1 a real number. To each primitive element p, a simple closed mini-
mal geodesic loop is associated, which projects onto the axis of the hyperbolic
transformation p. In the Poincaré half-plane model, such a loop unwraps onto
the segment of the imaginary axis that lies between i and iλ2. It is easily seen
that the action of the elements pn, n ∈ Z will give rise to a tiling of the posi-
tive imaginary axis with segments of the form [λ2n, λ2(n+1)[. This representation
allows a simple interpretation of the elementary wrapped kernels k̃p, where the
wrapping is understood as a winding.

4 Von Mises Like Distributions

The wrapped kernels are most natural from the viewpoint of surfaces as quotient
spaces, since the group action appears directly within the definition. However,
it quite difficult to use them for the purpose of density estimation: even with
truncated expansions, it requires quite a huge amount of computation. In the
case of circular data, the usual von Mises distribution behaves much like the
wrapped Gaussian, but does not involves a summation. The same is true for the
generalized multivariate von Mises (2). As mentioned in the introduction, it is
invariant under the action of the two generating translations. Using the same
principle, a distribution invariant under the action of a primitive element will
be used in place of the wrapped sum defining the elementary kernels (19).

Since any primitive element is conjugate to a scaling λ2, it is natural to seek
after a distribution on a simple hyperbolic surface that is obtained from the
quotient of the hyperbolic half-plane by the cyclic group ξλ generated by λ2. A
fundamental domain for its action is the subset of C defined as:

{z = x + iy, x ≥ 0, 1 ≤ y < λ2}
In the quotient, the upper line y = λ2 will be identified with the lower line y = 1,
yielding an hyperbolic cylinder.

It is convenient to use an exponential coordinate system in order to allow
for a simple invariant expression. For a given z = x + iy in the hyperbolic
half plane, let x = uev, y = ev. The hyperbolic distance between two elements
z1 = (u1, v1), z2 = (u2, v2) is given by:

cosh d(z1, z2) = 1 +
|z1 − z2|2
2�z1�z2

= 1 + (u1e
v1−v2

2 − u2e
v2−v1

2 ) + 2 sinh2

(
v1 − v2

2

)

= (u1e
v1−v2

2 − u2e
v2−v1

2 ) + cosh(v1 − v2)

If the second term in the sum is considered only, it remains |v1 − v2|, which is
similar to the angle difference in the case of the multivariate von Mises density.
This fact can be made explicit when considering points (y1, y2) located on the y
axis only. In such a case, the hyperbolic distance between them is easily seen to
be l = | log(y2/y1)|. Letting L = 2 log(λ), we have the following result:
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Theorem 1. The wrapped kernel k̃p(y1, y2, t) = k̃p(l, t) is periodic of period L,
with Fourier coefficient of order p given by:

ap(t) =
√

π

2
1
L

e−t/8

∫ ∞

0

v−1/2K ip2π
L

(v)θv(t)dv

where K is the modified bessel function and θv is:

θv(t) =
v√
2π3t

∫ ∞

0

e(π
2−b2)/2te−v cosh b sinh(b) sin(πb/t)db

Proof (Sketch). The starting point is the hyperbolic heat kernel representation
given in [7]:

k(r, t) =
e−t/8

√
2π

∫ ∞

0

v−1/2 exp(−v cosh r)θv(t)dv

By wrapping it, it appears the periodic function:
∑

n∈Z

e−v cosh(l+nL)

whose fourier coefficients can be expressed using the modified bessel function
K ip2π

L
(v). The technical part is the use of asymptotics of K to legitimate the

summation.

The fourier series expansion of the wrapped kernel has quickly decreasing coef-
ficients, so that it is well approximated by the first term. Please note that the
wrapped distance may be interpreted as an angular distance on the circle after
scaling by 2π/l, and due to the previous remark, it gives rise to a standard one
dimensional (circular) von Mises kernel depending on the wrapped hyperbolic
distance between the two points.

Unlike the flat torus case, the hyperbolic translations induced by primitive
elements will not commute, so that summation is much more intricate. The
way the computation must be performed is currently under study to obtain if
possible the most tractable expression. However, it can be organized in such a
way to make appear the multivariate von Mises distribution (2) on the angular
parameters associated to primitive elements, the correlation matrix Λ in the
expression being related to the commutation relations between the corresponding
primitive elements.

5 Conclusion and Future Work

The extension of directional statistics to surfaces of genus larger than 1, endowed
with an hyperbolic structure, can be performed using a special kind of angular
parameters. Writing the surface as the quotient of the hyperbolic space by a
group G of hyperbolic isometry, one can construct an invariant kernel by sum-
ming over the translates of an element. Using the primitive elements of G, the
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summation can be split in such a way that the innermost sum can be under-
stood as a wrapped kernel on an hyperbolic cylinder. This allows to replace it by
a standard directional kernel depending on an angular parameter. Proceeding
further in the sum, the summation over the elements of the conjugacy classes
will yield a multivariate directional density, with correlated components.

The practical computation of such a density is still difficult due to the fact
that all the possible combinations between primitive elements must be consid-
ered. An approximation can be made by neglecting those words in G involving
more that a given number of terms: this makes senses as the kernels considered
must decay very fast. An important part of the future developments will be ded-
icated to the computational aspect as it is one of the key points for being able
to use the densities on real data.

The second aspect that needs to be addressed is the shape of the kernel
itself. Due to the fact that important parameters may be reduced to angles, the
initial approach was to use the already available multivariate von Mises. Since
it is known that the choice of the kernel is of secondary importance in classical
settings, the same may be expected here. However, if one wants to get some
extra properties, like maximum entropy, an especially tailored distribution will
be needed. The possibility of defining it using the Abel transform [2]of kernels
on R is currently investigated.
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Abstract. Recently, Riemannian Gaussian distributions were defined
on spaces of positive-definite real and complex matrices. The present
paper extends this definition to the space of positive-definite quaternion
matrices. In order to do so, it develops the Riemannian geometry of the
space of positive-definite quaternion matrices, which is shown to be a
Riemannian symmetric space of non-positive curvature. The paper gives
original formulae for the Riemannian metric of this space, its geodes-
ics, and distance function. Then, it develops the theory of Riemannian
Gaussian distributions, including the exact expression of their probabil-
ity density, their sampling algorithm and statistical inference.
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1 Introduction

The Riemannian geometry of the spaces Pn and Hn , respectively of n × n
positive-definite real and complex matrices, is well-known to the information
science community [1,2]. These spaces have the property of being Riemannian
symmetric spaces of non-positive curvature [3,4],

Pn = GL(n,R)/O(n) Hn = GL(n,C)/U(n)

where GL(n,R) and GL(n,C) denote the real and complex linear groups, and
O(n) and U(n) the orthogonal and unitary groups. Using this property, Rie-
mannian Gaussian distributions were recently introduced on Pn and Hn [5,6].
The present paper introduces the Riemannian geometry of the space Qn of n×n
positive-definite quaternion matrices, which is also a Riemannian symmetric
space of non-positive curvature [4],

Qn = GL(n,H)/Sp(n)
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 709–716, 2017.
https://doi.org/10.1007/978-3-319-68445-1_82
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where GL(n,H) denotes the quaternion linear group, and Sp(n) the compact
symplectic group. It then studies Riemannian Gaussian distributions on Qn.
The main results are the following : Proposition 1 gives the Riemannian metric
of the space Qn, Proposition 2 expresses this metric in terms of polar coordinates
on the space Qn, Proposition 3 uses Proposition 2 to compute the moment gener-
ating function of a Riemannian Gaussian distribution on Qn, and Propositions
4 and 5 describe the sampling algorithm and maximum likelihood estimation
of Riemannian Gaussian distributions on Qn. Motivation for studying matrices
from Qn comes from their potential use in multidimensional bivariate signal
processing [7].

2 Quaternion Matrices, GL(H) and Sp(n)

Recall the non-commutative division algebra of quaternions, denoted H, is made
up of elements q = q0 + q1 i + q2 j + q3 k where q0, q1, q2, q3 ∈ R, and the
imaginary units i, j, k satisfy the relations [8]

i2 = j2 = k2 = ijk = −1 (1)

The real part of q is Re(q) = q0 , its conjugate is q̄ = q0 − q1 i − q2 j − q3 k and
its squared norm is |q|2 = qq̄ . The multiplicative inverse of q �= 0 is given by
q−1 = q̄/|q|2 .

The set Mn(H) consists of n × n quaternion matrices A [9]. These are arrays
A = (Aij ; i, j = 1, . . . , n) where Aij ∈ H. The product C = AB of A,B ∈
Mn(H) is the element of Mn(H) with

Cij =
n∑

l=1

AilBlj (2)

A quaternion matrix A is said invertible if it has a multiplicative inverse A−1

with AA−1 = A−1A = I where I is the identity matrix. The conjugate-transpose
of A is A† which is a quaternion matrix with A†

ij = Āji .
The rules for computing with quaternion matrices are quite different from the

rules for computing with real or complex matrices [9]. For example, in general,
tr(AB) �= tr(BA), and (AB)T �= B TAT where T denotes the transpose. For the
results in this paper, only the following rules are needed [9],

(AB)−1 = B−1A−1 (AB)† = B†A† Re tr(AB) = Re tr(BA) (3)

GL(n,H) consists of the set of invertible quaternion matrices A ∈ Mn(H). The
subset of A ∈ GL(n,H) such that A−1 = A† is denoted Sp(n) ⊂ GL(n,H).

It follows from (3) that GL(n,H) and Sp(n) are groups under the operation of
matrix multiplication, defined by (2). However, one has more. Both these groups
are real Lie groups. Usually, GL(n,H) is called the quaternion linear group, and
Sp(n) the compact symplectic group. In fact, Sp(n) is a compact connected Lie
subgroup of GL(n,H) [10].
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The Lie algebras of these two Lie groups are given by

gl(n,H) = Mn(H) sp(n) =
{
X ∈ gl(n,H) |X + X† = 0

}
(4)

with the bracket operation [X,Y ] = XY − Y X. The Lie group exponential is
identical to the quaternion matrix exponential

exp(X) =
∑

m≥0

Xm

m!
X ∈ gl(n,H) (5)

For A ∈ GL(n,H) and X ∈ gl(n,H), let Ad(A) · X = AXA−1 . Then,

A exp(X)A−1 = exp ( Ad(A) · X ) (6)

as can be seen from (5).

3 The Space Qn and its Riemannian metric

The space Qn consists of all quaternion matrices S ∈ Mn(H) which verify S = S†

and
n∑

i,j=1

x̄i Sij xj > 0 for all non-zero (x1 , . . . , xn) ∈ H
n (7)

In other words, Qn is the space of positive-definite quaternion matrices. Note
that, due to the condition S = S†, the sum in (7) is a real number.

Define now the action of GL(n,H) on Qn by A ·S = ASA† for A ∈ GL(n,H)
and S ∈ Qn . This is a left action, and is moreover transitive. Indeed [9], each
S ∈ Qn can be diagonalized by some K ∈ Sp(n),

S = K exp(R)K−1 = exp ( Ad(K) · R ) ; R real diagonal matrix (8)

where the second equality follows from (6). Thus, each S ∈ Qn can be written
S = AA† for some A ∈ GL(n,H), which is the same as S = A · I.

For A ∈ GL(n,H), note that A · I = I iff AA† = I, which means that
A ∈ Sp(n). Therefore, as a homogeneous space under the left action of GL(n,H),

Qn = GL(n,H) /Sp(n) (9)

The space Qn is a real differentiable manifold. In fact, if pn is the real vector
space of X ∈ gl(n,H) such that X = X†, then it can be shown Qn is an open
subset of pn . Therefore, Qn is a manifold, and for each S ∈ Qn the tangent
space TSQn may be identified with pn. Moreover, Qn can be equipped with a
Riemannian metric as follows.

Define on gl(n,H) the Sp(n)-invariant scalar product

〈X|Y 〉 = Re tr(XY †) X,Y ∈ gl(n,H) (10)

For u, v in TSQn � pn , let

(u, v)S =
〈
(A−1)u(A−1)† | (A−1)v(A−1)† 〉

(11)

where A is any element of GL(n,H) such that S = A · I .
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Proposition 1 (Riemannian metric)

(i) For each S ∈ Qn , formula (11) defines a scalar product on TSQn � pn ,
which is independent of the choice of A.

(ii) Moreover,
(u, v)S = Re tr

(
S−1uS−1v

)
(12)

which yields a Riemannian metric on Qn.
(iii) This Riemannian metric is invariant under the action of GL(n,H) on Qn.

The proof of Proposition 1 only requires the fact that (11) is a scalar product
on pn, and application of the rules (3). It is here omitted for lack of space.

4 The Metric in Polar Coordinates

In order to provide analytic expressions in Sects. 5 and 6, we now introduce
the expression of the Riemannian metric (12) in terms of polar coordinates.
For S ∈ Qn, the polar coordinates of S are the pair (R,K) appearing in the
decomposition (8). It is an abuse of language to call them coordinates, as they
are not unique. However, this terminology is natural and used quite often in the
literature [5,6].

The expression of the metric (12) in terms of the polar coordinates (R,K)
is here given in Proposition 2. This requires the following notation. For i, j =
1 , . . . , n, let θij be the quaternion-valued differential form on Sp(n),

θij(K) =
n∑

l=1

K†
il dKlj (13)

Note that, by differentiating the identity K†K = I, it follows that θij = −θ̄ji .
Proposition 2 expresses the length element corresponding to the Riemannian
metric (12).

Proposition 2 (the metric in polar coordinates). In terms of the polar
coordinates (R,K), the length element corresponding to the Riemannian metric
(12) is given by,

ds2(R,K) =
n∑

i=1

dr2i + 8
∑

i<j

sinh2 (|ri − rj |/2) | θij |2 (14)

where ri denote the diagonal elements of the matrix R.

The proof of this proposition cannot be given here, due to lack of space.
Proposition 2 is valuable to understanding the Riemannian geometry of the

space Qn. Precisely, it can be used to infer, with almost no calculation, the
expressions of geodesics and of distance, on this space. Indeed, it becomes clear
from (14) that the shortest curve connecting the identity I ∈ Qn to a diagonal
(and therefore real) element a ∈ Qn, is given by t �→ at for t ∈ [0, 1]. Using this
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simple result, and the fact that the metric (12) is invariant under the action of
GL(n,H) on Qn, the equation of the minimising geodesic curve γ(t) connecting
two elements S,Q ∈ Qn can be obtained,

γ(t) = S
1
2

(
S− 1

2 QS− 1
2

)t
S

1
2 (15)

Accordingly, the distance between S and Q is

d(S,Q) =
∥∥∥log

(
S− 1

2 QS− 1
2

)∥∥∥ (16)

where ‖ · ‖ is the norm corresponding to the scalar product (10).
In (15) and (16) matrix functions, such as elevation to a power and logarithm,

are computed via the decomposition (8), where the functions are applied to the
diagonal matrix exp(R).

5 Riemannian Gaussian Distributions on Qn

It is possible to define Riemannian Gaussian distributions on any Riemannian
symmetric space of non-positive curvature [6]. This is indeed the case of the
space Qn , as can be seen from its representation (9) as a quotient space, by
consulting the tables which classify irreducible Riemannian symmetric spaces of
type III [4].

Accordingly, it is possible to define Riemannian Gaussian distributions on
Qn. Precisely, a Riemannian Gaussian distribution on Qn with Riemannian
barycentre S̆ ∈ Qn and dispersion parameter σ > 0 has the following proba-
bility density

p(S| S̆, σ) =
1

Z(σ)
exp

[
−d 2(S, S̆)

2σ2

]
(17)

with respect to the Riemannian volume element of Qn, here denoted dv. In this
probability density, d(S, S̆) is the Riemannian distance given by (16).

The first step to understanding this definition is computing the normalising
constant Z(σ). This is given by the integral,

Z(σ) =
∫

Qn

exp

[
−d 2(S, S̆)

2σ2

]
dv(S) (18)

As shows in [6], this does not depend on S̆, and therefore it is possible to take
S̆ = I. From the decomposition (8) and formula (16), it follows that

d 2(S, I) =
n∑

i=1

r2i (19)

Given this simple expression, it seems reasonable to pursue the computation of
the integral (18) in polar coordinates. This is achieved in the following Propo-
sition 3. For the statement, write the quaternion-valued differential form θij of
(13) as θij = θaij + θbij i + θcij j + θdij k where θaij , θ

b
ij , θ

c
ij , θ

d
ij are real-valued.
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Proposition 3 (normalising constant)

(i) In terms of the polar coordinates (R,K), the Riemannian volume element
dv(S) corresponding to the Riemannian metric (12) is given by

dv(R,K) = 8n(n−1)
∏

i<j

sinh4 (|ri − rj |/2)
n∏

i=1

dri
∧

i<j

θaij
∧

i<j

θbij
∧

i<j

θcij
∧

i<j

θdij

(20)
(ii) The integral Z(σ) appearing in (18) is given by

Z(σ) = Const. ×
∫

Rn

exp

(
− 1

2σ2

n∑

i=1

r2i

)
∏

i<j

sinh4 (|ri − rj |/2)
n∏

i=1

dri

(21)

This proposition is a corollary of Proposition 2. Formula (20) is a straightforward
consequence of formula (14). Furthermore, (21) is an immediate application of
(19) and (20).

6 Sampling and Inference

The present section describes two aspects of Riemannian Gaussian distributions
on Qn : (i) sampling from these distributions, (ii) maximum likelihood estimation
of these distributions.

The first of these aspects is given in Proposition 4 below. This relies on the
use of polar coordinates (R,K) which appear in the decomposition (8).

Proposition 4 (Gaussian distribution in polar coordinates). Let K and
r be independent random variables, with their values in Sp(n) and R

n respec-
tively. Assume K is uniformly distributed on Sp(n), and r has the following
probability density, with respect to the Lebesgue measure on R

n,

p(r1 , . . . , rn) ∝ exp

(
− 1

2σ2

n∑

i=1

r2i

)
∏

i<j

sinh4 (|ri − rj |/2) (22)

If S is given by (8), where the matrix R has diagonal elements ri , then S has
a Riemannian Gaussian distribution (17) with Riemannian barycentre S̆ = I
and dispersion parameter σ. Moreover, for any S̆ ∈ Qn and A ∈ GL(n,H) such
that A · I = S̆, if Q = A · S then Q has Riemannian Gaussian distribution with
Riemannian barycentre S̆ and dispersion parameter σ.

Proposition 4 provides a sampling algorithm for Riemannian Gaussian distribu-
tions on Qn. Indeed, the proposition states that in order to obtain Q with Rie-
mannian Gaussian distribution of barycentre S̆ and dispersion σ, it is enough to
know how to sample S from a Riemannian Gaussian distribution with barycen-
tre I. In turn, this is done using polar coordinates, through decomposition (8).
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In this decomposition, K must be sampled from a uniform distribution on
Sp(n), and R with diagonal elements ri from the multivariate density (22).
Sampling from a uniform distribution on Sp(n) can be achieved as follows : let Z
be an n × n quaternion matrix whose elements are independent normal proper
quaternion random variables [11], and write Z = KP for the polar decomposition
of Z [9]. Then, K has a uniform distribution on Sp(n). On the other hand, sam-
pling from the multivariate density (22) can be carried out using a Metropolis-
Hastings algorithm, which is included in most statistical software [12].

Consider now maximum likelihood estimation of Riemannian Gaussian
distributions. This is given by the following Proposition 5. This proposition
brings out the important role of the function Z(σ) defined by (18) and (21).
Precisely, this is the moment generating function of the Riemannian Gaussian
distribution (17). If η = −1/2σ2 and ψ(η) = log Z(σ), then ψ(η) is a strictly con-
vex function, which is the cumulant generating function of the distribution (17).

Proposition 5 (Maximum likelihood estimation). Let S1 , . . . , SN be
independent samples from a Riemannian Gaussian distribution with density
(17). Based on these samples, the maximum likelihood estimate of S̆ is the sample
Riemannian barycentre ŜN ,

ŜN = argminS∈Qn

N∑

i=1

d 2(Si, S) (23)

where the distance d(Si, S) is given by (16). Moreover, the maximum likelihood
estimate of η = −1/2σ2 is η̂N ,

η̂N = ( ψ′ )−1

(
1
N

N∑

i=1

d 2(Si, ŜN )

)
(24)

where ( ψ′ )−1 is the reciprocal function of ψ′, the derivative of ψ.

Proposition 5 indicates how the maximum likelihood estimates ŜN and η̂N can
be computed. First, ŜN is the sample Riemannian barycentre of S1 , . . . , SN . Its
existence and uniqueness are guaranteed by the fact that QN is a Riemannian
manifold of non-positive curvature. In practice, it can be computed using a
Riemannian gradient descent algorithm [13,14]. Once ŜN has been obtained,
η̂N is found by direct application of (24). This only requires knowledge of the
cumulant generating function ψ(η), which can be tabulated using the Monte
Carlo method of [15].
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Abstract. Most of the parametric families of distributions on manifold
are constituted of radial distributions. The main reason is that quanti-
fying the anisotropy of a distribution on a manifold is not as straightfor-
ward as in vector spaces and usually leads to numerical computations.
Based on a simple definition of the covariance on manifolds, this paper
presents a way of constructing anisotropic distributions on the hyper-
bolic space whose covariance matrices are explicitly known. The app-
roach remains valid on every manifold homeomorphic to vector spaces.

1 Introduction

Probability density estimation on Riemannian manifolds is the subject of several
recent studies. The different approaches can be separated into two categories,
the parametric and non-parametric ones. The context of Riemannian manifolds
brings difficulties of two kinds. Firstly, the theoretical results about distributions
and the convergence of estimators known for random variables valued in R

n have
to be adapted to the case of random variables valued in Riemannian manifolds,
see [1–3,8,9,12–15]. Secondly, the construction of probability distribution and
of density estimators should require a reasonable amount of computational com-
plexity, see [8,12,13,16–18]. A generalization of the Gaussian distribution on
manifolds was proposed in [8]. Although the expression of the proposed law is
hard to compute on general manifolds, expressions of radial Gaussians on sym-
metric spaces can be found in [12–14]. On isotropic spaces, an isotropic density
is simply a radial density. The anisotropy of a density can be evaluated with the
notion of covariance proposed in [8].

In this paper, we are interested in the construction of anisotropic distribu-
tions on the hyperbolic space. The problem of anisotropic normal distributions
on manifold have been addressed in [19] through anisotropic diffusion. The con-
struction is valid on arbitrary manifolds but requires important computations.
The hyperbolic space is a very particular Riemannian manifold: it is at the same
time isotropic and diffeomorphic to a vector space. These two specificities signif-
icantly ease the construction of probability distributions and probability density
estimators. Generally, it is difficult to control the covariance of a distribution on
a Riemannian manifold, e.g. the covariance of the Gaussian law proposed in [8].
We propose a simple way of constructing distributions whose covariance is fully
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 717–724, 2017.
https://doi.org/10.1007/978-3-319-68445-1_83
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controlled. The method is derived from the density kernel proposed by [1]. These
distributions can be used in the non parametric kernel density estimator but also
to design mixture models for parametric density estimation.

The paper is organised as follows. Section 2 is a very brief introduction to
the hyperbolic plane. Section 3 reviews some general facts about probabilities
on Riemannian manifolds. Section 4 describes how to built anisotropic density
functions on the hyperbolic space.

2 The Hyperbolic Space

The hyperbolic geometry results of a modification of the fifth Euclid’s postulate
on parallel lines. In two dimensions, given an line D and a point p /∈ D, the
hyperbolic geometry is an example where there are at least two lines going
through p, which do not intersect D. Let us consider the open unit disk of the
Euclidean plane endowed with the Riemannian metric:

ds2
D

= 4
dx2 + dy2

(1 − x2 − y2)2
(1)

where x and y are the Cartesian coordinates. The unit disk D endowed with
dsD is called the Poincaré disk and is a model of the two-dimensional hyperbolic
geometry. The construction is generalized to higher dimensions. Let ISO be the
isometry group of D. It can be shown that:

– D is homogeneous: ∀p, q ∈ D,∃φ ∈ ISO, φ(p) = q, points are indistinguish-
able.

– D is isotropic: for any couple of geodesics γ1 and γ2 going through a point
p ∈ D, there exists φ ∈ ISO such that φ(p) = p and φ(γ1) = γ2. In other
words, directions are indistinguishable.

– the Riemannian exponential applications are bijective.
– D has a constant negative curvature.

Let x denote the coordinates of elements of TpD in an orthogonal basis. x
is mapped to a point on D by the Riemannian exponential application noted
expp and form thus a chart of D. This chart is called an exponential chart at the
point p.

Given a reference point p the point of polar coordinates (r, α) of the hyper-
bolic space is defined as the point at distance r of p on the geodesic with initial
direction α ∈ S

1. Since the hyperbolic space is isotropic, the expression of the
metric in polar coordinates only depends on r,

ds2 = dr2 + sinh(r)2dα2, (2)

see [10,11].
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3 Distributions on D

3.1 Densities

The metric of a Riemannian manifold provides a measure of volumes vol. In a
chart, if G is the matrix of the metric, the density of vol with respect to the
Lebesgue measure of the chart is

dvol

dLeb
= |det(

√
G)|

where
√

G is the matrix square root of G. Let μ be a measure on M. If μ has
a density f with respect to the Lebesgue measure of a chart, then the density
with respect to the Riemannian volume measure is given by

dμ

dvol
=

dμ

dLeb

dLeb

dvol
=

1
|det(

√
G)|f. (3)

3.2 Intrinsic Means

Given a distribution μ, the variance at p be defined by

σ2(p) =
∫
D

d(p, .)2dμ.

When the variance is finite everywhere, its minima are called mean points. The
hyperbolic space is a Cartan-Hadamar manifold, that is to say it is complete,
simply connected and of negative curvature. On Cartan-Hadamar manifolds,
when the variance is finite everywhere, the mean exists and is unique, see [8]
corollary 2. It is achieved at p such that

∫
TpD

xdμ̃ = 0,

where μ̃ is the image of the measure μ by the inverse of the exponential appli-
cation at p.

3.3 Covariance on Manifold

The covariance of a random vector is the matrix formed by the covariance of its
coordinates. In a vector space the coordinates of a vector are given in terms of
projection on the corresponding axis. On a Riemannian manifold the notions of
projection on a geodesic usually do not lead to explicit expressions. Even if it
does not conserve all the properties of the covariance of vectors, when possible,
the simplest generalisation to manifolds is to take the Euclidean covariance after
lifting the distribution on a tangent space by the inverse of the exponential map,
see [8]. Since on the hyperbolic space the exponential application a bijection, it
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is always possible to lift distributions on tangent spaces. Given a distribution μ
and a orthogonal basis of TpD, the covariance at p ∈ D is thus defined as

Σp(μ) =
∫

TpD

xxtdμ̃

This definition of covariance was used to define a notion of principal geodesic
analysis on manifolds in [20]. It can be noted that the covariance at the point p
is a point in TD ⊗ TD.

4 Constructing Anisotropic Distributions

The author of [8] proposes a generalization of Gaussian distributions on man-
ifolds as the distribution that maximizes the entropy given its barycenter and
covariance. This generalization leads to a density of the form,

N(p,Γ )(expp(x)) = k. exp
(

−xtΓx

2

)

Given p and the covariance matrix Σp, the main difficulties are to obtain expres-
sions of the normalizing factor k and of the concentration matrix Γ . Since hyper-
bolic space is homogenous, k and Γ only depend on the matrix Σp. The expres-
sion of k and Γ when Σp is a (positive) multiple of the identity matrix can be
found in [12]. However, it is difficult to obtain these relations when Σp is not
diagonal.

It might be interesting to define parametric families of distributions whose
means and covariances can easily be controlled, even if they do not verify the
same statistical properties as the Gaussian distributions. Let K : R+ → R+ be
a function such that,

i.
∫
R2 K(‖y‖) dy = 1

ii.
∫
R2 ‖y‖2K(‖y‖) dy = 2

Given Γ a symmetric positive definite matrix, we have then
∫
R2

1√
det(Γ )

K(
√

xtΓ−1x)dx = 1.

Let p be a point in D. Set an orthonormal basis of the tangent space TpD and
consider the distribution νp,Γ on TpD whose density with respect to the Lebesgue
measure of TpD is given by 1√

det(Σ)
K(

√
xtΓ−1x), where x and Γ are expressed

in the reference basis. Let μp,Γ = expp∗(νp,Γ ) be the pushforward measure of
νp,Γ by the Riemannian exponential at p.

Theorem 1. p is the unique mean of μp,Γ .
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Proof. It can be checked that μp,Γ has a finite variance everywhere. Moreover,
∫

TpD

√
Γ−1x

1√
det Γ

K(
√

xtΓ−1x) dx = 0.

The integrability of the function can be deduced from i and ii and the nullity
from its symmetry. Therefore according to Sect. 3.2 p is the unique mean of μp,Γ .

Theorem 2. The covariance Σp of μp,Γ at p and the concentration matrix Γ
are equal.

Proof. In the reference basis, making use of ii with the change of variables y =√
Γ−1x

Σp =
∫
R2

xxt 1√
det(Γ )

K(
√

xtΓ−1x)dx

= Γ 1/2

∫
R2

yytK(
√

yty)dyΓ 1/2

= Γ 1/2

(∫
R

∫ 2π

0

r2
(

cos(θ)
sin(θ)

)(
cos(θ)
sin(θ)

)t

K(r)rdrdθ

)
Γ 1/2

= Γ 1/2

(
1
2

∫
R

r2IK(r)2πrdr

)
Γ 1/2

= Γ 1/2I

(
1
2

∫
R2

‖y‖2K(‖y‖) dy

)
Γ 1/2

= Γ.

The tangent space TpD endowed with the reference basis provides a para-
metrization of the hyperbolic space. By definition, the density of μp,Γ in this
parametrization is given by 1√

det(Σ)
K(

√
xtΣ−1x). In order to obtain the den-

sity with respect to the Riemannian measure this term should be multiplied by
the density of the Lebesgue measure of the parametrization with respect to the
Riemannian measure, see Eq. 3. In an adapted orthonormal basis of TpD, Eq. 2
leads to the following expression of the matrix of the metric,

G =

(
1 0
0 sinh(r)2

r2

)
.

Thus,

det(
√

G) =
sinh(r)

r
.

Equation 3 leads to the density ratio,

dx

dvol
(x) =

||x||
sinh(||x||) ,
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where dx is the Lebesgue measure induced by the reference basis. Recall that in
this parametrization, the Euclidean norm of x is the distance between expp(x)
and p. The density of μp,Γ with respect to the Riemannian measure is given by

f(expp(x)) =
||x||

sinh(||x||)√det(Σ)
K

(√
xtΣ−1x

)
.

Figure 1 shows the level lines when K is Gaussian.

Fig. 1. In this example K(x) = 1√
2π

e−x2
and Σ has 1 and 1

4
as eigenvalues. The level

lines of the corresponding density f are flattened circle but are not ellipses.

5 Estimating the Mean and the Covariance

Let the function K and the distribution μp,Γ be as defined in Sect. 4. Given a set
of draws drawn from this distribution it is important to have estimators of the
two parameters: the mean and the covariance. In order to estimate the unknown
parameters (p,Σp) given a set of independent samples (p1, .., pn), it is usual to
try to maximize the likelihood function. The log-likelihood of a set of samples is
defined as

L(p1, .., pn; (p̂, Σ̂)) =
∑

i

log

⎛
⎝ ||xi||

sinh(||xi||)
√

det(Σ̂)
K

(√
xt

iΣ̂
−1xi

)⎞
⎠

=
∑

i

log

⎛
⎝ ||xi||

sinh(||xi||)
√

det(Σ̂)

⎞
⎠ + log

(
K

(√
xt

iΣ̂
−1xi

))
.
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The major difficulty is that it is not possible to optimize the mean and the covari-
ance separately. Thus there might not be explicit expressions of the maximum
likelihood. However, the mean and the covariance have natural estimators. It is
already known that the empirical barycenter is a strongly consistent estimator
of the barycenter, see [21] Theorem 2.3.

Given an estimate of the barycenter, it is possible to compute the empirical
covariance in the corresponding tangent plane,

Σ̂p̂ =
1
N

∑
xix

t
i (4)

Using a similar construction as the Sasakian metric, see [22], the vector bundle
TD⊗TD can be endowed with a Riemannian metric. Although we do not prove
it in this paper, we are convinced that almost surely

d((p̂, Σ̂p̂), (p,Σ)) −→
n→+∞ 0,

where d is the Riemannian distance on TD ⊗ TD.

6 Conclusion

In this paper we proposed a set of parametric families of anisotropic distribu-
tions on the hyperbolic plane. The main interest of these distributions is that
the covariance matrix and concentration matrix are equal. The empirical mean
and covariance provide thus simple estimators of the parameters of the distrib-
ution. Working with anisotropic distributions is expected to reduce the number
of distributions used in mixture models and thus to reduce the computational
complexity of the parameter estimation of the mixture models. On the one hand,
our future work will focus on deriving convergence rates of the estimation of the
covariance. On the other hand, we will study the use of these distributions in
problems of radar signal classification.
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Abstract. This paper is devoted to the problem of blob detection in
manifold-valued images. Our solution is based on new definitions of blob
response functions. We define the blob response functions by means of
curvatures of an image graph, considered as a submanifold. We call the
proposed framework Riemannian blob detection. We prove that our app-
roach can be viewed as a generalization of the grayscale blob detection
technique. An expression of the Riemannian blob response functions
through the image Hessian is derived. We provide experiments for the
case of vector-valued images on 2D surfaces: the proposed framework is
tested on the task of chemical compounds classification.

Keywords: Blob detection · Image processing · Manifold-valued
images · Vector-valued images · Differential geometry

1 Introduction

Blob detection [1] is a widely used method of keypoints detection in grayscale
images. Informally speaking, blob detection aims to find ellipse-like regions of
different sizes with similar intensity inside. Blobs are sought as local extremums
of a blob response function. Several color blob detection algorithms were pro-
posed in [2,3]. Blob detection has applications in 3D face recognition, object
recognition, panorama stitching, 3D scene modeling, tracking, action recogni-
tion, medical images processing, etc.

Our goal is to propose a blob detection framework for the general setting of
an image being a map between Riemannian manifolds. Our approach is based
on a definition of blob response functions by means of image graph curvatures.
Furthermore, we derive the expression of Riemannian blob response functions
through image Hessian. This expression shows that Riemannian blob detection
coincides with the classical blob detection framework for the grayscale case. Also
this expression provides a more convenient way to calculate Riemannian blob
response functions for vector- and manifold-valued images.

Research of connections between image processing methods and image graph
geometry is of its own interest. This research helps deeply understand traditional
methods, provides insights and gives natural generalizations of classical methods
c© Springer International Publishing AG 2017
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to vector-valued and manifold-valued images [4–6]. Connections between the blob
response functions and image graph curvatures were mentioned in papers [7,8].
Our work is the first to accurately analyze this question in the general setting.

Contributions:

1. We are the first to provide a blob detection framework for the general set-
ting of an image being a map between manifolds. This framework can be
viewed as a generalization of grayscale blob detection. Our framework pro-
vides blob response functions for the previously uncovered problems: blob
detection in color images on manifold domain and blob detection in manifold-
valued images (both on Euclidian and manifold domains).

2. We are the first to analyze connections between the blob response functions
and curvatures of image graph both for Euclidian and manifold domains.

3. The experiments on the task of chemical compounds classification show the
effectiveness of our approach for the case of vector-valued images on 2d sur-
faces.

2 The Problem Introduction

Blob detection was firstly proposed for grayscale images on 2D Euclidian
domain [1]. In [9] blob detection was generalized to 2D surfaces. Several
approaches to generalization of blob detection to color case were proposed in
[2,3]. However, these approaches are based on global or local conversion of a
color image to the grayscale, so they can’t be used for manifold-valued images.

Consider a grayscale image I(x) : X → R on a smooth 2-dimensional mani-
fold X. The blob detection framework by [9] is as follows:

1. Calculate the scale-space L(x, t) : X ×R+ → R. L(x, t) is the solution of the
heat equation on the surface ∂tL(x, t) = −ΔLBL(x, t), L(x, 0) = I(x), where
ΔLB is the Laplace-Beltrami operator;

2. Choose a blob response function and calculate it:

the determinant blob response : BRdet(x, t) = det HL(x, t) or (1)

the trace blob response : BR tr (x, t) = tr HL(x, t), (2)

where HL is the Hessian of L(x, t) as a function of x with fixed t;
3. Find blobs centers and scales as C = {(x, t) = arg minx,t B̃R(x, t) or (x, t) =

arg maxx,t B̃R(x, t)}, where B̃R = t BR tr or B̃R = t2 BRdet. Find the blobs
radii as s =

√
2t.

For the general case of a map between manifolds I(x) : X → Y the Hessian is
the covariant differential of the differential: HL = ∇dL,HL ∈ T ∗X ⊗T ∗X ⊗TY .
Consider the straightforward generalization of the blob detection stages:
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1. Scale-space calculation. L(x, t) is calculated as the solution of ∂tL(x, t) =
− tr HL(x, t), L(x, 0) = I(x). Methods of manifold-valued PDEs solution for
different cases are discussed in the papers [5,10,11] and others. These methods
are out of scope of our work.

2. Blob response calculation. The determinant blob response BRdet = det HL

is not defined.
3. Blobs centers calculation. We can’t find maximums or minimums of the trace

blob response because it is not scalar-valued: BR tr = trHL ∈ TY .

We see that there is no straightforward generalization of the blob response
functions to the manifold-valued case. How can the problem of blob response
generalization be solved? Our key ideas are the following:

1. Consider the image graph Gr as a submanifold embedded in X × Y . The
grayscale and manifold-valued cases differ only by a co-dimension of the
embedding. Then a formulation of the blob response through notions defined
for all co-dimensions will give an immediate generalization to the manifold-
valued case.

2. What notions to use? The scalar and the mean curvatures are defined for all
co-dimensions and are close to the determinant and the trace of the image
Hessian respectively if tangent planes to Gr and to X are “close”.

3 The Proposed Method

3.1 Used Notations

All functions and manifolds here and further are considered to be smooth. Con-
sider m- and n-dimensional manifolds X and Y . Denote the (n+m)-dimensional
manifold X ×Y as E. Consider the isometric embeddings ix(y) = id(x, y) : Y →
E, iy(x) = id(x, y) : X → E. Further we identify X (resp. Y ) and related notions
with iy(X) (resp. ix(Y )). The letters i, j, k, l (resp. α, β, γ) are used as indices
for notions related to X (resp. Y ). The set {ei} (resp. {eα}) is an orthonormal
basis of TxX (resp. TyY ).

For a map f(x) : X → Y its graph Grf is an n-dimensional manifold embed-
ded in E. Denote the Hessian of f as Hf . Let μY , μ ∈ R+, be the manifold Y
with the metric μGY . For a map f : X → Y denote μf : X → μY .

We analyze a manifold-valued image I(x) : X → Y . Denote L(x, t) : X ×
R+ → R the solution of the heat equation ∂tL(x, t) = −ΔLBL(x, t), L(x, 0) =
I(x), where ΔLB is the Laplace-Beltrami operator.

For a manifold N and its submanifold M denote the mean curvature of M as
hN

M , its scalar curvature as rM , an exponential map from TmM to N as expN
M .

Subscripts and superscripts are omitted when they are clear from a con-
text. The definitions of used differential geometric notions can be found in text-
books [12].
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3.2 Main Definitions and Theorems

Definition 1. The scalar blob response is defined as:

BRscalar = lim
μ→0

1
μ2

(
rGrµL

− rexpX×µY
GrµL

)
,

the mean blob response is defined as:

BRmean = lim
μ→0

1
μ

hX×μY
GrµL

.

The next theorem connects BRscalar and BRmean with the scale-space
Hessian. The obtained expression provides a more convenient way for calculation
of the Riemannian blob response functions.

Theorem 1. Let Hij = HL(ei, ej), Hα(, ) = 〈HL(, ), eα〉Y . Then

BRscalar =
n∑

i,j=1

(
〈Hij ,Hji〉Y − 〈Hii,Hjj〉Y

)
,

BRmean = ‖( tr H1, . . . , tr Hm)‖Y .

The next corollary from Theorem1 states that for the grayscale case Rie-
mannian blob detection coincides with usual blob detection. This corollary allows
to consider our method as a generalization of grayscale blob detection.

Corollary 1. Let dim(X) = 2. Then the scalar blob response is equal to the
determinant blob response (1):

BRscalar = BRdet,

the mean blob response is equal to the trace blob response (2):

BRmean = BR tr .

3.3 Proof of the Theorem1

Additional Notations. Consider maps y = f(x) : X → Y , f̃(x) : X → E,
f̃(x) = (x, f(x)) = ỹ. {e

′
i = df̃(ei)} is a basis (not orthonormal) of TỹGrf ,

{e
′
α : (e

′
α, e

′
i)E = 0∀i∀α} is a basis of Tỹ(Grf )⊥. Then {e

′
i, e

′
α} is a basis of TỹE.

For a manifold M denote its metric as g(, )M or 〈, 〉M , the Levi-Civita con-
nection as ∇M , a connection on a vector bundle E over M as ∇E .

Denote as P V (resp. P U
V ) an orthogonal (resp. along a subspace U) projection

on a subspace V .
Some minor formal details of the proofs are omitted due to the space con-

straints.
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Proposition 1. Let f : X → Y , u, v ∈ TxX. Then Hf (u, v) = ∇f∗TY
v df(u)

−df(∇X
v u). If f is injective then Hf (u, v) = ∇Y

df(v)df(u) − df(∇X
v u).

Proof. Consider the Hessian Hf as Hf : TX ⊗ TX → f∗TY , then Hf (u, v) =∑m
α=1 ∇v(df(u, eα))eα. We apply the Leibniz rule to this expression and obtain

the first statement. Recall that if f is injective then df is an isomorphism between
f∗TY and TY . This gives the second statement. ��
Lemma 1. Let u, v ∈ TxX. Let ∇f̃(X) be the connection on Grf induced by the
isomorphism f̃ . Let II be the second fundamental form of the submanifold Grf

of E with respect to the connection ∇f̃(X). Then Hf̃ (u, v) = II(df̃(u),df̃(v)).

Proof. As f̃ is injective, by Proposition 1: Hf̃ (u, v) = ∇Y
df̃(v)

df̃(u) − df̃(∇X
v u)

= ∇Y
df̃(v)

df̃(u) − ∇f̃(X)

df̃(v)
df̃(u) = II(du,dv). ��

Proposition 2. Let u, v ∈ TxX, 0 ∈ TxX, Hf (u, v) ∈ Tf(x)Y . Then Hf̃ (u, v)
= (0,Hf (u, v)).

Proof. By Proposition 1: Hf̃ (u, v) = ∇f̃∗(X×Y )
v df̃(u) − df̃(∇X

v u).
Recall that ∇X×Y

(u1,u2)
(v1, v2) = (∇X

u1
v1,∇Y

u2
v2). Then

∇f̃∗(X×Y )
v (diy,df)(u) − (diy(∇X

v u),df(∇X
v u))

= (∇X
v (diyu),∇Y

df(v)(dfu)) − (∇X
v u,df(∇X

v u))
= (0,∇Y

df(v)(dfu) − df(∇X
v u)) = (0,Hf (u, v)). ��

Proposition 3. Let IIf̃ be the second fundamental form of the submanifold Grf

of E with respect to the connection ∇f̃(X) and IIE be the second fundamental
form with respect to the connection ∇Grf induced by ∇E. Let u, v ∈ TỹGrf .
Then IIE(u, v) = P TỹGr⊥

f
IIf̃ (u, v).

Proof. By properties of a second fundamental form of a normalized manifold:
IIE(u, v) = P TỹGr⊥

f
∇E

u v and ∃N ⊂ TỹE : IIf̃ (u, v) = P TỹGrf

N ∇E
u v. Then by

simple operations with vectors we obtain the lemma proposition.

Lemma 2. IIGrf
(e

′
i, e

′
j) =

∑m
α,β=1 Hα

ijg
′αβe

′
β .

Proof. P TỹGr⊥
f

eα = g
′αβe

′
β . Then IIGrf

(e
′
i, e

′
j) = (from Proposition 3 and

Lemma 1) = P TỹGr⊥
f

Hf̃ (ei, ej) = (by Proposition 2) P TỹGr⊥
f
Hα

fijeα =∑m
α,β=1 Hα

ijg
′αβe

′
β . ��

Proposition 4. Consider {e
′
i} as a basis of TỹGrf . dF is the matrix of df in

the basis {ei, eα} and E is the n × n unit matrix.
Then: the induced metric g

′
ij on Grf has the matrix E+dFT dF ; the induced

metric on Grμf has the matrix E + μ2dFT dF ; the covariant induced metric on
Grμf has the matrix E − μ2dFT dF + o(μ2); Hμf = μHf .
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Lemma 3. limμ→0
1

μ2

(
rGrµf

−rexpX×µY
Grµf

)
=

∑n
i,j=1

(
〈Hij ,Hji〉Y −〈Hii,Hjj〉Y

)
.

Proof. Write the Gauss equation, the scalar curvature definition and apply
Lemma 2: rGrf

− rexpE
Grf

= g
′ikg

′jl
∑m

α,β=1 g
′αβ

(
Hα

ikHα
jl − Hα

ilH
α
jk

)
. Then sub-

stitute μf for f as μ tends to 0, apply Proposition 4 and obtain the needed
equality. ��
Lemma 4. limμ→0

1
μhX×μY

Grµf
= ‖( tr H1, . . . , tr Hm)‖Y .

Proof. hE
Grf

2 = (by Lemma 2)
∑m

γ,δ=1 g
′iig

′iig
′
αβg

′αγHγ
fiig

′βδHδ
fii. For μf :

limμ→0
1
μhX×μY

Grµf
= (by Prop. 4) limμ→0

(∑
i,α Hα

fiiH
α
fii + o(1)

) 1
2

=

‖( tr H1, . . . , tr Hm)‖Y ��
Theorem 1 follows from Lemmas 3 and 4. The formulation of Theorem 1 is

obtained by substitution of f with L.

4 The Experiments

Experimental Setup. We apply our blob detection framework to a chemical
compounds classification problem, called also the QSAR problem [13]. The task
is to distinguish active and non-active compounds using their structure. Each
compound is represented by a triangulated molecular surface [14] and several
physico-chemical and geometrical properties on the surface. So an input data
element can be modeled as a 2-dimensional manifold X with a vector-valued
function f(x) : X → Rm. We use the following properties: the electrostatic and
the steric potentials, the Gaussian and the mean curvatures. These properties
are calculated in each triangulation vertex.

Implementation. We use Riemannian blob detection for the construction of
descriptor vectors. The procedure is the following:

1. Detect blobs by our method in each compound surface;
2. Form pairs of blobs on each surface;
3. Transform the blobs pairs into vectors of fixed length by using the bag of

words approach [15].

The Riemannian blob response functions are calculated for each triangulation
vertex v. The procedure is the following:

1. Find the directional derivatives ∂zj
Li by the finite differences approximation,

where zj are the directions from v to its neighbour vertices.
2. Find the differential dL = (dLi) by solving the overdetermined linear system

dL(Z) = ∂zj
Li, Z is a matrix which columns are vectors zj .

3. Find the covariant derivatives of the differential in the neighbour directions,
i.e. find ∇X

zj
dL for each j as by ∇X

zj
dL = P TxX(∇R3

zj
dL). ∇R3

zj
dL are found

by the finite differences approximation.
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Fig. 1. A molecular surface with
BRscalar on it and found centers
(denoted by white color) of blobs
of radii 3.

Table 1. The results: the cross-validation of the
models, based on feature vectors built by the blob
detection methods.

BRscalar Naive BRmean Adapt. [3]

glik 1.0 0.954 0.975 1.0

pirim 0.99 0.96 0.97 0.98

sesq 1.0 0.98 0.976 1.0

bzr 0.992 0.971 0.975 0.983

er lit 0.98 0.961 0.956 0.98

cox2 0.991 0.967 0.985 0.986

4. Find the covariant differential ∇XdL by solving the overdetermined linear
system ∇XdL(Z) = ∇X

zj
dL, Z is a matrix which columns are vectors zj .

∇XdL = {Hα
ij} is obtained. Calculate BRscalar(x, t) =

∑m
α=1 det Hα,

BRmean(x, t) = ‖ tr Hα‖.

The Results. An example of the algorithm result is presented in Fig. 1. We
compare the prediction models built on the base of the following blob detection
methods:

1. Riemannian blob detection with BRscalar as a blob response function;
2. A naive method of applying blob detection to each channel separately;
3. Riemannian blob detection with BRmean as a blob response function. It coin-

cides with the method [2], adapted to the case of 2D surface;
4. The method of adaptive neighbourhood projection [3]. It is adapted by us to

the case of 2D surface.

The feature reduction SVM [17] is used for construction of the prediction model.
The cross-validation functional [16] is used as an index of the performance qual-
ity. The test data is the following: 3 datasets (bzr, er lit, cox2) from [18], 3
datasets (glik, pirim, sesq) from Russian Oncology Science Center. The results
are presented in Table 1.

Riemannian blob detection with BRscalar as a blob response function is the
best performing method. This shows the effectiveness of our approach. This
particular method for vector-valued functions on 2D surfaces wasn’t presented
in the literature before.

5 Conclusion and Future Work

We propose the Riemannian framework for blob detection in manifold-valued
images. This framework is based on the definition of the blob response functions
by means of the image graph curvatures. Our approach gives new methods for the
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uncovered problems and coincides with classical blob detection for the grayscale
case. The experiments results show the effectiveness of the proposed approach.
The next direction for the research is a generalization of our framework to the
case of sections of non-trivial fiber bundles. In particular, such generalization
will cover an important case of tangent vector fields.

Acknowledgments. The authors want to thank Dr. Alexey Malistov for valuable
discussions and for a help with the article editing.
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Abstract. This paper introduces a novel local model for the classifica-
tion of covariance matrices: the co-occurrence matrix of covariance matri-
ces. Contrary to state-of-the-art models (BoRW, R-VLAD and RFV),
this local model exploits the spatial distribution of the patches. Start-
ing from the generative mixture model of Riemannian Gaussian distrib-
utions, we introduce this local model. An experiment on texture image
classification is then conducted on the VisTex and Outex TC000 13 data-
bases to evaluate its potential.

Keywords: Co-occurrence matrix · Riemannian Gaussian distribu-
tions · Classification · Covariance matrix

1 Introduction

Material image classification from texture contents is to assign one or more cat-
egory labels to an image. It is one of the most fundamental problems in a wide
range of applications such as industrial inspection [1], image retrieval [2], medical
imaging [3,4], remote sensing [5,6], object recognition, and facial recognition [7–
9]. In the general framework of image classification, feature coding techniques
for bag-of-features methodologies have proven their efficiency in the recent lit-
erature. From a given feature space, bag-of-features techniques consist of first
generating a codebook composed by a finite set of codewords, also called dic-
tionary, followed by a coding step which associate to each image an activation
map.

In the context of texture analysis, recent works [10–14] proposed compact
and discriminative representations from localized structured descriptors in the
form of region covariances, i.e. symmetric positive definite (SPD) matrices or
local covariance matrices (LCM). Considering the intrinsic Riemannian geome-
try properties of the SPD matrix space, this paper aims at providing a compet-
itive study of different coding techniques based on LCM codewords for texture
classification.
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 736–744, 2017.
https://doi.org/10.1007/978-3-319-68445-1_85
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The paper is structured as follows. Section 2 introduces the general workflow
for the classification based on local descriptors. Then, Sects. 3 and 4 focuses
on two of its main steps, namely the dictionary learning and the coding steps.
Finally, Sect. 5 presents an experiment on texture images databases to evaluate
the potential of the proposed coding model.

2 General Workflow

Figure 1 presents the general workflow for the classification methods based on
local features.

Fig. 1. Classification workflow for local features based methods.

1. During the first step (called feature extraction), some low level features are
computed from each element in the database. These descriptors are often
computed on patches and as a result, a set of feature vectors (or signature) is
obtained for each element in the database. These features can be covariance
matrices characterizing for example the color or spatial dependencies.

2. The second step consists in the codebook creation. For that, a clustering algo-
rithm such as the k-means or expectation maximization (EM) one is applied
on the training set. By using these algorithms, the set is partitioned into a
predefined number of clusters, each of them being described by parameters,
such as the cluster’s centroid, the dispersion and the associated weight. These
estimated parameters are called codewords and are grouped in a codebook.

3. The third step is the coding stage. During this step, each signature set is
projected onto the codebook space. For that, various approaches have been
proposed in the literature for features being covariance matrices such as the
bag of Riemannian words model (BoRW) [12], the Riemannian vectors of
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locally aggregated descriptors (R-VLAD) [13] and the Riemannian Fisher vec-
tors (RFV) [14]. Inspired by the concept of gray-level co-occurrences matrices
(GLCM), the main contribution of the paper is to propose a novel coding app-
roach which exploits the spatial arrangement between the extracted covari-
ance matrices.

4. After the coding step, a post-processing step is classically applied, consist-
ing in two possible normalizations, namely the �2 [15] and power normaliza-
tions [16]. These post-processing are respectively used to minimize the influ-
ence of the background information on the image signature and to correct the
independence assumption made on the patches.

5. For the final classification stage, the test image is labeled to the class of the
most similar training observation. In practice, classifiers such as k-nearest
neighbors, support vector machine or random forest are generally employed.

The next two sections focus on the second and third step of this general
workflow.

3 Dictionary Learning

Let M = {Mn}n=1:N , with Mn ∈ Pm, be a sample of N i.i.d observations
modeled as a mixture of K Riemannian Gaussian distributions. Under the inde-
pendence assumption, the probability density function (pdf) of M is given by:

p(M|θ) =
N∏

n=1

p(Mn|θ) =
N∏

n=1

K∑

k=1

�kp(Mn|M̄k, σk), (1)

where p(Mn|M̄k, σk) is the Riemannian Gaussian density (RGD) defined on
the manifold Pm of m × m real, symmetric and positive definite matrices [17].
The pdf of the RGD, with respect to the Riemannian volume element, has been
introduced in [17] as:

p(M|M̄, σ) =
1

Z(σ)
exp

{
− d2(M, M̄)

2σ2

}
, (2)

where Z(σ) is the normalization factor independent of the centroid M̄ and d(·)
is the Riemannian distance given by d(M1,M2) =

[∑
i(ln λi)2

] 1
2 , with λi, i =

1, . . . ,m being the eigenvalues of M−1
1 M2.

The codebook is hence composed by the K codewords which are the distri-
bution parameters of each component in the mixture model defined in (1), i.e.
the mixture weight �k, the centroid M̄k and the dispersion parameter σk. In
practice, the parameters of the mixture model are estimated by considering an
intrinsic k-means algorithm or an EM algorithm. For more information on the
implementation of the EM algorithm, the interested reader is referred to [18].

In the experimental part, in order to ensure that each class is represented by
a set of codewords, a within-class strategy is adopted to estimate the codebook.
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This means that a mixture model is learned for each class in the training set,
and the final codebook is obtained by concatenating each codewords (from all
the classes).

Once the codebook is created, a coding step is used to encode each image
in the database. For that, different strategies can be adopted such as the bag of
Riemannian words (BoRW) [12], the Riemannian vectors of locally aggregated
descriptors (R-VLAD) [13], the Riemannian Fisher vectors (RFV) [14] and the
Co-occurrences of covariances (CoC). The next section describes each of these
strategies.

4 Coding Step

Let M = {Mn}n=1:N , with Mn ∈ Pm, be a sample of N i.i.d covariance matri-
ces. The aim of the coding step is to project this set M onto the codebook
elements.

4.1 Bag of Riemannian Words (BoRW)

The bag of words (BoW) models is probably one of the most conventional meth-
ods used to encode an image. This approach is used in a wide variety of appli-
cations in computer vision and signal and image processing. But, when features
are living in a non-Euclidean space such as the Riemannian manifold Pm of
m × m covariance matrices, this model should be readapted. For that the so-
called bag of Riemannian words (BoRW) [12] and log-Euclidean bag of words
(LE-BoW) [19] models have been introduced.

In these models, the data space is partitioned in K Voronöı regions by max-
imizing the corresponding pdf. Then, each observation Mn is assigned to the
cluster k, k = 1, . . . ,K according to:

arg max
k

�k p(Mn|M̄k, σk), (3)

where p(Mn|M̄k, σk) is the RGD pdf given in (2). In practice, the homoscedas-
ticity assumption is generally considered (i.e. σk = σ ∀k ∈ [1,K]) and the code-
words are assumed to be equiprobable (i.e. �k = 1/K). Further on, for each
image in the dataset, its signature is determined by computing the histogram of
the number of occurrences of each codeword.

The BoRW model is a simple but effective method. Nevertheless, it suffer
from a major drawback, it only counts the number of local descriptors assigned
to each Voronöı region. In order to increase the classification performances, some
authors have proposed some models which include second order statistics. This
is the case for the R-VLAD and RFV models which are presented next.
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4.2 Riemannian Vectors of Locally Aggregated Descriptors
(R-VLAD)

The Riemannian version of the VLAD descriptors, called Riemannian Vectors of
Locally Aggregated Descriptors (R-VLAD), has been developed in [13]. For each
cluster ck, k ∈ [1,K], a vector containing the differences between the cluster’s
centroid M̄k and each element Mi in that cluster is computed. Next, the sum
of differences concerning each cluster ck is determined:

vk =
∑

Mi∈ck

LogM̄k
Mi, (4)

where Log(·) is the Riemannian logarithm mapping [20]. This model assumes
two hypotheses:

– an hard assignment scheme, this means that each observation Mi belongs
only to one cluster ck.

– the homoscedasticity assumption, that is σk = σ ,∀k = 1, . . . , K

In order to relax these two assumptions, the Riemannian Fisher vectors model
has been introduced in [14].

4.3 Riemannian Fisher Vectors (RFV)

Starting from the generative model introduced in (1), the RFV model is obtained
by computing the derivative of the log-likelihood of the mixture model with
respect to the distribution parameters [14].

∂ log p(M|θ)
∂M̄k

=
N∑

n=1

γk(Mn) σ−2
k LogM̄k

(Mn), (5)

∂ log p(M|θ)
∂σk

=
N∑

n=1

γk(Mn)
{

− Z ′(σk)
Z(σk)

+
d2(Mn, M̄k)

σ3
k

}
, (6)

∂ log p(M|θ)
∂αk

=
N∑

n=1

[γk(Mn) − �k] , (7)

where Z ′(σ) is the derivative of the normalizing factor Z(σ) with respect to the
dispersion parameter σ. The term γk(Mn) corresponds to the contribution of
each observation Mn to the cluster ck, it is defined by:

γk(Mn) =
�k p(Mn|M̄k, σk)∑K

j =1 �j p(Mn|M̄j , σj)
, (8)

Note that the following parametrization of the weights in the mixture model
is used in order to ensure the positivity and sum to one constraints of the weights

�k =
exp(αk)

∑K
j=1 exp(αj)

. (9)
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As explained in [14], R-VLAD features are a particular case of RFV features.
They are retrieved from the RFV when only the derivative with respect to M̄k

is considered (5) and when the two hypotheses recalled in Sect. 4.2 are assumed.

4.4 Co-occurrences of Covariances (CoC)

These three models (BoRW, R-VLAD and RFV) have shown promising results,
but all of these methods do not exploit one main characteristic: the spatial
distribution of the patches. Inspired by the concept of GLCM to texture analysis,
we introduce a novel coding approach: the co-occurrences of covariances (CoC).

For a dictionary of K codewords, the K × K co-occurrence matrix of covari-
ance matrices for an image I describes the spatial interactions between the covari-
ance matrices Mn computed on patches separated from a distance (Δx,Δy). The
element CΔx,Δy

(k, l) of this co-occurrence matrix contains the number of times
a covariance matrix which belongs to the codeword l occurs in the neighborhood
NΔx,Δy

a covariance matrix which belongs to the codeword k:

CΔx,Δy
(k, l) =

∑

Mn∈M

∑

Mp∈NΔx,Δy (Mn)

{
1 if Mn ∈ ck and Mp ∈ cl

0 otherwise. (10)

Once the co-occurrence matrices are computed, the proximity between two
CoC C1 and C2 is computed as their intersection by:

K∑

k=1

K∑

l=1

min
(
C1

Δx,Δy
(k, l), C2

Δx,Δy
(k, l)

)
(11)

This similarity measure is then used in the classification procedure.

5 Application to Texture Image Classification

In this section, we present an application to texture image classification. The
aim of this part is to evaluate the potential of the four coding models presented
in Sect. 4: BoRW, R-VLAD, RFV and CoC.

For this experiment, two databases are considered: the VisTex [21] database
and the Outex TC000 13 [22] database. The VisTex database is composed by
40 texture classes. Each class is represented by a set of 64 images of size 64 × 64
pixels. The Outex TC000 13 database contains 68 texture classes, where each
class is represented by a set of 20 images of size 128× 128 pixels. For both data-
bases, the feature extraction and classification steps shown in Fig. 1 are similar.
We consider the same protocol as the one presented in [14]. First, covariance
matrices are computed on sliding patches of size 15×15 pixels. These covariance
matrices describe the interaction between the image intensities I(x, y) and the
norms of the first and second order derivatives of I(x, y) in both directions x and
y [10]. Then, once the images are encoded with one of the four presented model
(BoRW, R-VLAD, RFV or CoC), an SVM classifier with a Gaussian kernel is
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used for the final classification step. In practice, the dispersion parameter of this
kernel is optimized by using a cross validation procedure on the training set.

Table 1 presents the classification results in term of overall accuracy obtained
on the VisTex and Outex TC000 13 databases for the four coding models. For the
RFV model, the contribution of each parameter (centroid, dispersion, weight) is
analyzed. For example, the row “RFV: �” shows the classification accuracy when
only the derivatives with respect to the weights are considered to calculate the
RFV (see (7)), . . . For the CoC model, an 8-neighborhood with a displacement
of two pixels between the patches is considered. As observed in Table 1, the best
classification results are observed for the proposed CoC model which exploits the
spatial distribution of the patches. A significant gain of about 1% is observed on
both VisTex and Outex TC000 13 databases compared to other state-of-the-art
coding models (BoRW, R-VLAD and RFV).

Table 1. Classification results on the VisTex and Outex databases in terms of overall
accuracy.

Method VisTex Outex TC000 13

BoRW [12] 86.87 ± 1.56 83.86 ± 1.41

R-VLAD [13] 87.91 ± 0.74 83.13 ± 1.50

RFV: � [14] 89.42 ± 0.63 84.97 ± 0.87

RFV: σ [14] 79.32 ± 1.38 76.75 ± 1.48

RFV: M̄ [14] 87.77 ± 0.84 84.20 ± 0.65

RFV: σ, � [14] 82.13 ± 1.19 79.35 ± 1.39

RFV: M̄, � [14] 88.73 ± 0.89 84.57 ± 0.54

RFV: M̄, σ [14] 89.43 ± 0.79 84.01 ± 0.65

RFV: M̄, σ, � [14] 89.80 ± 0.57 84.22 ± 0.62

CoC 91.08 ± 0.61 85.19 ± 0.97

6 Conclusion

This paper has introduced a novel local model for image classification on the
manifold of covariance matrices. Based on the concept of co-occurrence matrices,
this local model exploits the spatial distribution of the patches, allowing to
improve the classification performances compared to standard coding models
(BoRW, R-VLAD and RFV).

Further works will concern the extension of such coding model to fuzzy co-
occurrence matrices [23].
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Abstract. Eigenvector expansions and perspective projections are used
to decompose a space of positive functions into a product of a half-axis
and a solid unit ball. This is then used to construct a conical coordi-
nate system where one component measures the distance to the origin, a
radial measure of the distance to the axis and a unit vector describing the
position on the surface of the ball. A Lorentz group is selected as sym-
metry group of the unit ball which leads to the Mehler-Fock transform
as the Fourier transform of functions depending an the radial coordinate
only. The theoretical results are used to study statistical properties of
edge magnitudes computed from databases of image patches. The con-
structed radial values are independent of the orientation of the incoming
light distribution (since edge-magnitudes are used), they are indepen-
dent of global intensity changes (because of the perspective projection)
and they characterize the second order statistical moment properties of
the image patches. Using a large database of images of natural scenes
it is shown that the generalized extreme value distribution provides
a good statistical model of the radial components. Finally, the visual
properties of textures are characterized using the Mehler-Fock trans-
form of the probability density function of the generalized extreme value
distribution.

1 Introduction and Overview

Many applications are based on measurements which have only positive values.
Length, weight and age/duration are some common examples. In the following
we will consider a theoretical framework in which a signal s is an element in a
Hilbert space H. We also have a number of subspaces Hk, (k = 1, . . . K) and ck

is the length of the projection of s in Hk. Being a length measurement (and
assuming that the signal is never perfect) we assume that for all k the ck are
positive. In the following the space H is the finite-dimensional vector space of
gray value distributions on a collections of pixels. The subspaces Hk are given
by the irreducible representations of the underlying symmetry group of the pixel
grid. Descriptions of group representations can be found in [2–4,8,9,13]. Apply-
ing principal component analysis (PCA) and using the Perron-Frobenius theorem
one can introduce a conical coordinate system in which the first coordinate corre-
sponds to the first eigenvector coefficient. Using perspective projection along this
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 745–753, 2017.
https://doi.org/10.1007/978-3-319-68445-1_86
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axis shows that the remaining coordinates describe a solid unit ball. The angular
part of the new system can be analyzed with the help of spherical techniques
like expansion in surface harmonics whereas the radial part can be studied with
the help of the Mehler-Fock-Transform (MFT) which corresponds to the Fourier
transform in the case where the underlying transformation group is the group
of hyperbolic rotations. Three-dimensional color spaces (such as the common
RGB-system) have the same structure. Here the main axis of the cone describes
the gray colors and the projection the intensity. The solid ball is the unit disk
where the radius measures saturation and the angle corresponds to hue.

In the second contribution of this paper the conical framework is used to
investigate statistical properties of image patches from calibrated images taken
in a habitat similar to the one in which the human eye developed. The con-
struction leads to texture descriptors which are orientation invariant (due to
the usage of the edge-magnitudes) and independent of overall intensity changes
(because the perspective projection). They are also independent of the distribu-
tions between the higher order eigenvectors since only the radial variation in the
unit ball is analyzed. The results show that the family of generalized-extreme-
value distributions (GEV’s) provide a class of probability distributions that give
good fitting results for these measurements.

In the third contribution the group of hyperbolic rotations is used as natural
class of transformations acting on the radial variable. This is a one-parameter
subgroup of the Lorentz group and the corresponding Fourier transform in this
variable is the Mehler-Fock transform. The study of the relation between the
visual properties of a patch and the properties of the MFT are the topic of the
final experiments.

2 Conical Structure of Positive Signals

Fourier related techniques (like the continuous Fourier transform (CFT), the dis-
crete (DFT) and the fast Fourier transform (FFT)) are some of the most powerful
signal processing tools. For images whose pixels are located on a square grid the
corresponding symmetry group is the dihedral group D(4) and the Fourier trans-
form are the dihedral filters. A special class of dihedral filters corresponds to the
traditional edge detectors in low-level image processing. These edge filters come
in pairs and correspond to the two-dimensional irreducible representations of the
dihedral group. The magnitude of a pair of such filter results corresponds to the
projection length mentioned above. In the following the space of all gray value
distributions on a 5× 5 window is used. Its dimension is 25, the six edge detector
pairs span a 12-dimensional subspace and define six edge magnitudes. Applica-
tion of the dihedral filtering results thus for every pixel x in a six-dimensional
vector f (x) with non-negative elements (the value zero requires all underlying
pixel values to be zero).

Next the 6-D (local) mean vector m (x) and the 6×6 matrix C (x) of (local)
second order moments of f (x) are computed. The matrix C (x) is symmetric,
positive-definite and positive and the Perron-Frobenius theorem shows that the
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eigenvector b0(x) belonging to the highest eigenvalue has only positive entries.
At pixel x a new coordinate system b0(x),b1(x), . . . ,b5(x) is defined spanned by
the eigenvectors of C (x) (ordered by the value of the eigenvalues). This gives the
expansion of the vector f (x) =

∑5
k=0〈f (x),bk(x)〉bk(x) =

∑5
k=0 ck(x)bk(x),

where 〈., .〉 denotes the scalar product.
The vectors f (x) and b0(x) have both positive entries and their scalar

product is therefore positive and the ratios qk(x) = ck(x)
c0(x)

, k = 1, 2 are well-
defined. Eigenvectors are orthogonal and the eigenvectors bk(x), k > 0 must
have negative elements. In general one can expect that c0(x) > 0 will be “big”
and |ck(x)|, k > 0 will be “small”. Furthermore, the values qk(x) are invariant
under scaling of the original pixel values. If q(x) denotes the vector contain-
ing these ratios then it is assumed that its norm is bounded by some value R
independent of x. This is the case for all examples used later. Therefore polar
coordinates (ρ(x) , θ(x)) with (q1(x) , q2(x)) = (Rρ(x) cos θ(x) , Rρ(x) sin θ(x))
can be used.

The result describes f (x) in the coordinate system (c0(x) , ρ(x) , θ(x)) where
c0(x) measures the projection along the mean-direction, ρ(x) is the distance
from the mean-vector in the space spanned by the second and third eigenvector
and θ(x) depends on the relation between the second and third eigenvector.
In human color perception this corresponds to a characterization in terms of
intensity c0(x), saturation ρ(x) and hue θ(x) (more information can be found
in [10,11]). This construction is not limited to the analysis of the first three
eigenvector coefficients. Using more then three components only leads to the
replacement of the angular variable by spherical coordinates.

3 The Action of the Group SU(1, 1)

In a group theoretical context the groups used so far are: the group D(4) related
to the sensor array. The scaling group R

+ acting by multiplication on c0(x) and
the group SU(1, 1) acting on the points on the unit disk. The details of this
constructions are as follows: points on the unit disk are complex variables z and
the group SU(1, 1) is defined as the 2 × 2 matrices with complex elements:

SU(1, 1) =
{
M =

(
a b

b a

)

, a, b ∈ C, |a|2 − |b|2 = 1
}

(1)

The group operation is the usual matrix multiplication and the group acts as
a transformation group on the open unit disk D (consisting of all points z ∈ C

with |z| < 1) as the Möbius transforms:

(M, z) =
((

a b

b a

)

, z

)

�→ M〈z〉 =
az + b

bz + a
, z ∈ D (2)

with (M1M2)〈z〉 = M1〈M2〈z〉〉 for all matrices and all points. The notation M
will be used when the group elements are represented as matrices. Otherwise the
symbol g is used. An ordinary three-dimensional rotation can be written as a
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product of three rotations around the coordinate axes. A similar decomposition
holds also for the group SU(1, 1) . Denoting the three parameters by ψ, τ, ϕ the
decomposition is given as:

g(ϕ, τ, ψ) = g(ϕ, 0, 0)g(0, τ, 0)g(0, 0, ψ) =
(

cosh τ
2 ei(ϕ+ψ)/2 sinh τ

2 ei(ϕ−ψ)/2

sinh τ
2 e−i(ϕ−ψ)/2 cosh τ

2 e−i(ϕ+ψ)/2

)

(3)
Introducing the two one-parameter subgroups

K =
{
g(ϕ, 0, 0) =

(
eiϕ/2 0

0 e−iϕ/2

)

: −2π ≤ ϕ < 2π
}

(4)

A =
{
g(0, τ, 0) =

(
cosh τ

2 sinh τ
2

sinh τ
2 cosh τ

2

)

: τ ∈ R
}
. (5)

shows that g(ϕ, 0, 0), g(0, 0, ψ) ∈ K and g(0, τ, 0) ∈ A. This is known as the
Cartan or the polar decomposition of the group and the ψ, τ, ϕ are the Cartan
coordinates.

The elements in K are rotations and leave the origin fixed. For a general
element in SU(1, 1) the Cartan decomposition gives:

g(ϕ, τ, ψ)〈0〉 = g(ϕ, 0, 0)g(0, τ, 0)g(0, 0, ψ)〈0〉 = tanh
τ

2
eiϕ.

This shows that D = SU(1, 1) /K and functions on the unit disk are functions
on the group that are independent of the last argument of the Cartan decompo-
sition.

Next consider two points on the unit disk, corresponding to group elements
g = g(ϕ0, τ0, 0) and h = g(ϕ1, τ1, 0). The difference between these two elements
is given by h−1g with its own decomposition h−1g = g(ϕ, τ, 0) with g(ϕ, τ, 0) =
g(ϕ1, τ1, 0)−1g(ϕ0, τ0, 0) = g(0,−τ1, 0)g(ϕ1 − ϕ0, τ0, 0). In [17], (vol. 1, p. 271)
the following relation between the parameters of the three group elements is
derived:

cosh τ = cosh τ1 cosh τ0 + sinh τ1 sinh τ0 cos(ϕ1 − ϕ0). (6)

For SU(1, 1) the role of the exponential function is played by the associated
Legendre functions (zonal or Mehler functions, [17], p. 324) of order m and
degree α = −1/2 + iκ. They are defined as (see Eq.(7)):

Pm
α (cosh τ) =

1
2π

Γ (α + m + 1)
Γ (α + 1)

∫ 2π

0

(sinh τ cos θ + cosh τ)α eimθ dθ (7)

and satisfy the addition formula ([17], p. 327)

Pα(cosh τl cosh τ0 + sinh τl sinh τ0 cos θ)=
∑

m∈Z

P−m
α (cosh τl)Pm

α (cosh τ0) e−imθ.

(8)
The transform for SU(1, 1) corresponding to the Fourier transform is the

Mehler-Fock transform. The following theorem shows that a large class of func-
tions are combinations of the associated Legendre functions:
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Theorem 1 (Mehler-Fock Transform; MFT). For a function k defined on
the interval [1,∞) define its transform c as:

c(κ) =
∫ ∞

0

k (cosh τ)P−1/2+iκ (cosh τ) sinh τ dτ (9)

Then k can be recovered by the inverse transform:

k (cosh τ) =
∫ ∞

0

κ tanh(πκ)P−1/2+iκ (cosh τ)c(κ) dκ (10)

Details about the transform, special cases and its applications can be found
in [14], Sect. 7.6, [1,7,15,17]. The MFT also preserves the scalar product (Par-
seval relation): using the parametrization x = cosh τ and defining cn(κ) =∫ ∞
1

fn(x)P1/2+iκ(x) dx gives (see [14] (7.6.16) and (7.7.1)):

∫ ∞

0

c1(κ)c2(κ)κ tanh(πκ) dκ =
∫ ∞

1

f1(x)f2(x) dx (11)

One possible application of the MFT in statistics is the application as a
tool to study parametric probability distributions. Using its connection to group
convolutions it can also be used to simplify kernel density estimators of densities
defined on the positive half-axis. In the following it will be used to investigate
generalized-extreme-value distribution based models of natural image statistics.
Kernel-density estimators will be discussed elsewhere.

4 Implementation

An implementation of the transform has to take into account at least three prob-
lems: (1) the computation of the associated Legendre functions, (2) numerical
evaluation of infinite integrals and (3) sampling schemes in the signal and trans-
form domain. The definition of the associated Legendre functions using Eq. (7) is
not useful, instead the relations to other special functions can be used (see [6,12]).
In the following the LegendreP function in Mathematica is used. Computation of
the infinite integrals involved is difficult in general. In the experiments the den-
sity functions of the generalized-extreme-value distribution are used. For these
functions the quantiles are known and the integration domain selected extends
to the maximum value of the 0.99 quantiles for all distributions in the database.
Sampling is another factor to be taken into account. Since the main underlying
structure is the one-parameter group A a linear sampling scheme in the signal
and the transform domain is chosen. Integrals are computed as scalar products
of vectors. The results were compared to the application of numerical integra-
tion methods (NIntegrate in Mathematica) which confirmed the reliability of
the results for the functions involved in this study. In all the numerical results
reported in the following a matrix of size 101 × 301 was used where 301 sam-
pling points were used to sample the pdfs and 101 points sampling the transform
domain. The range of the transform domain was determined manually.
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5 The Botswana Dataset

Statistical properties of images are of interest in the study of biological vision
systems and technical applications such as image restoration and image classifi-
cation and compression (see [5] for a review of natural image statistics research).

The following experiments make use of a large database of natural images1

and described in [16]). Some of the main characteristics of the database are
the following: it contains 5677 calibrated natural images, collected in a single
environment: a savanna habitat in Botswana which is thought to be similar
to the environment where the human eye evolved. The images in the database
are organized in 103 folders (albums) containing images of a common theme.
There are 61 albums characterized as scenes and 42 albums showing objects.
The original images were taken with a Nikon D70 camera which was calibrated
to take into account the optical and signal processing properties of the camera.
The images in the LMS format were downloaded. They represent the input to
the long/medium/short wavelength sensitive cones in the human retina and the
M-channel which is most important for lightness perception was used.

The raw images are filtered with the six edge-detection filter pairs and the
results combined in the six dimensional vector with the edge-magnitude values.
Then the outer product is computed at every pixel and the (matrix valued) image
is filtered with a Gaussian filter kernel of size 15 × 15. The result is a matrix
valued image with the empirical second-order moments. Next the (normalized)
projection variables ρ(x) are computed and converted to hyperbolic form. For
every image the 128 × 128 patch at the center of the image is selected. Pixels with
zero-valued first eigenvectors (produced by constant 5× 5 patches) are ignored
and only patches with more than 500 valid measurements were evaluated. This
resulted in 5560 patches used in the following. The quality of the fitting was
measured with the adjusted R-Squared value and the lowest values found was
0.9623. The mean value over all 5560 patches was 0.998.

As illustration an example with an R-Squared value nearest to the mean value
of 0.998 is selected. In Fig. 1 the original scene (cd20A, DSC-0055), the selected
patch, the image of the group parameters in the projection, the histogram and
the GEV-fitting and finally the MFT of the distribution are shown.

The next three figures illustrate the effect of an operation similar to low-pass
filtering in traditional signal processing. Here the first 10 MFT coefficients were
extracted. Then the scalar product (see Eq. 11) in the transform domain was
used to compute the length of the projection of a patch in this MFT-region. The
patches were then ordered and in Fig. 2 the patches, the values of the projections
and three distributions are shown. The left and the middle column show 3× 5
patches. The patches on top are the five patches with lowest projection value
in the MFT-bands, the patches in the middle correspond to positions 251 to
255 and the lowest five are number 4001 to 4005. The pixel values in these
images are all scaled such that the 0.9 quantile of the values in all patches
has maximum gray value. The left column (Fig. 2(a)) with the original patches

1 Available at http://tofu.psych.upenn.edu/∼upennidb.

http://tofu.psych.upenn.edu/~upennidb
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Fig. 1. Scene (cd02A; DSC-0055-LMS)

show that the projection eliminates global intensity changes: Some parts of the
patches are almost black and others have maximum gray value. The patches in
the center of the figure (Fig. 2(b)) show that low contributions to the lower MFT
channels correspond to low filter values (high probability of low edge magnitude
responses) and the patches at the top are therefore more homogeneous than
the others. The plot in the right column (Fig. 2(c)) shows the histograms and
the fitted GEV-distributions for the three left-most patches. This illustrates the
strength of the GEV-approach since the shapes of the three distributions vary
widely and the locations of the distributions indicate the increasing value of the
projection values of the three images.
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Fig. 2. Bandpass filtering

6 Summary and Conclusions

Symmetry-based methods entered the study of positive signals at several levels:
first the representation theory of the symmetry group of the sensor is used to split
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the signal space into different components. Then the lengths of the projections
in the different subspaces form another signal space of positive signals which in
turn can be represented as a product of a half-line and a unit ball. The half-axis
is related to scaling operations modeled by the scaling group and the unit-ball
can be analyzed with the help of Lorentz groups. The description here is only an
illustration of how group theoretical tools can be used to analyze the properties
of signal spaces. Other applications, for example the study of kernel-density
estimators and the usage of the full Lorentz group, are under investigation and
will be presented elsewhere.
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Abstract. Isoperimetric inequalities form a very intuitive yet powerful
characterization of the connectedness of a state space, that has proven
successful in obtaining convergence bounds. Since the seventies they form
an essential tool in differential geometry [1,2], graph theory [3,4] and
Markov chain analysis [5,6,8]. In this paper we use isoperimetric inequal-
ities to construct a bound on the convergence time of any local proba-
bilistic evolution that leaves its limit distribution invariant. We illustrate
how this general result leads to new bounds on convergence times beyond
the explicit Markovian setting, among others on quantum dynamics.

This paper is concerned with the discrete-time spreading of a distribution along
the edges of a graph. In essence we establish that even by exploiting global
information about the graph and allowing a very general use of this information,
this spreading can still not be accelerated beyond the conductance bound. Before
providing more ample context, we start with a motivating example ascribed to
Eugenio Calabi, but which came to our attention through the seminal 1969 paper
by Jeff Cheeger [1]. Whereas the original example concerns differential geometry,
we will apply it to a graph setting.

Consider a locality structure (discrete geometry) prescribed by the “dumb-
bell” graph family Kn − Kn shown in Fig. 1, consisting of two complete graphs
over n nodes, connected by a single edge. The diameter of this graph, being
the “longest shortest path” between any two nodes, is three. However, a random
walk over this graph converging to the uniform distribution has an expected con-
vergence time in O(n2). This convergence time can be improved with a “global
design” but without violating locality of the evolution, by adding some memory
to the walker. In Fig. 1, the system designer has superimposed a cycle (dashed
line) over the dumbbell graph. By adding subnodes that allow to conditionally
select different subflows through the graph (formally we “lift” the walk [9]),
the walker can be restricted to walk along this cycle. Using this cycle, we can
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 754–762, 2017.
https://doi.org/10.1007/978-3-319-68445-1_87
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Fig. 1. (solid line) Dumbbell graph Kn − Kn for n = 6. (dashed line) superimposed
cycle of length 4n in a construction towards faster mixing.

impose a strategy by Diaconis, Holmes and Neal [9,16] to efficiently speed-up
mixing over this cycle: let the walker cycle in the same direction with a probabil-
ity 1−1/n, and switch direction with probability 1/n. This way the walk will mix
over the graph in O(n), i.e. quadratically faster than the original random walk.
But this is still order n times slower than the diameter. Nevertheless, we show in
our paper that this improvement is the best possible for any local probabilistic
process that leaves the target distribution invariant. So mixing in diameter time
may be possible, but not without loosening any of these constraints.

1 Problem Description and Main Result

Consider a graph G with nodes V and edges E ⊆ V × V. We use the convention
that (i, i) ∈ E ∀i ∈ V. We define “states” X as probability distributions over V.
Given an initial state X0, some system “→” propagates it over t time steps as
X0

t→ Xt. For a subset W ⊆ V and a state X, we define X(W) the probability
of W according to X, and X|W as the state X conditioned on being in W. We
call N (W) the neighborhood of W ⊆ V, i.e., the nodes outside W that have an
edge going to W. We impose the following fundamental properties.

– linear initialization: X0
t→ Xt, X̃0

t→ X̃t ⇒ pX0+(1-p)X̃0
t→ pXt+(1-p)X̃t

– locality: ∀X0, t ≥ 0,W ⊆ V : Xt+1(W) ≤ Xt(W) + Xt(N (W))
– invariance: X0

+ ∞−→ Π ∀X0 ⇒ Π t→ Π

The last property states that the unique steady state distribution of the system
must be invariant as an initial condition. The second property expresses that
probability weight can only flow along an edge at each time, without referring
to details of the system mapping “→”. The first property is natural as the input
is a probability distribution. The point however is that the general process “→”
may e.g. contain hidden states, and we here impose a linear initialization with
the hidden states as well (see example below).

Our theorem presents a bound on the convergence of a system “→” that
obeys these conditions towards its steady state Π. Explicitly, let τ be a time
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step such that ‖Xt −Π‖1 ≤ 1/2 for all t ≥ τ . In discrete geometry, given a graph
G and a limit distribution Π, the isoperimetric measure Φ, which we also call the
“conductance” [18], can be defined as:

Φ = max
P

Φ(P ), Φ(P ) = min
W⊆V : Π(W)≤1/2

[P ◦ (Π|W)] (V \ W).

The maximization is over all stochastic matrices P acting on R
|V| that obey the

locality of G and for which P ◦Π = Π. In other words, “P◦” is the most basic type
of system “→” satisfying our requirements: it is time-invariant and memoryless
(“Markov”). If Π is the uniform distribution, then Φ is upper bounded by the
edge expansion of G, which is 1/n for the dumbbell graph. We establish the
following “conductance bound” for any more complicated system.

Theorem 1. If a system is linear, local and invariant, then τ ≥ 1/(8Φ).

So for the dumbbell graph with Π the uniform distribution, we find τ ≥ n/8 for
any linear, local and invariant system.

Mixing on graph structures has drawn much interest for sampling algorithms,
see e.g. perfect matching [15], or the Metropolis-Hastings algorithm used a lot in
statistical mechanics. Bounds similar to Thm.1 have originally been proven by
Cheeger [1] and Buser [2] in a differential geometry setting, and by Fiedler [4],
Dodziuk [8] and Alon [3] in a discrete geometry and graph setting. In Markov
chain analysis, early uses trace back to Aldous [5], Lawler and Sokal [6] and
Mihail [7]. More recent examples are by Chen, Lovász and Pak [9] who used a
similar bound to prove that a restricted class of extended Markov chains called
“lifted Markov chains” can at most quadratically accelerate convergence, and by
Aharonov et al. [10] to (loosely) bound the convergence speed of certain quantum
processes.

Our result allows to improve known mixing bounds, e.g. for quantum
processes, and to generalize bounds beyond usual Markov chain settings, e.g. by
including nonlinear decision rules. Examples are briefly discussed after the proof.

2 Proof

Our proof essentially comes down to two steps:

– locality implies particular simulability: the locality condition implies that the
dynamics can always be described using (time- and state-dependent) local
stochastic matrices. This is not entirely trivial in such generality.

– bound for extended Markov chains: we rather straightforwardly combine these
matrices in an extended Markov chain model, for which we can prove the
bound along standard lines.

2.1 Locality Implies Simulability

A stochastic matrix P is local if the system X0 → Xt = P t ◦ X0 is local. It
is not hard to check that this coincides with the traditional definition, where
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locality means Pi,j = 0 whenever (i, j) /∈ E . The following Lemma kind of proves
the converse. Its proof is inspired by a related result of Scott Aaronson [17],
establishing the lemma for quantum systems whose evolution is governed by a
local unitary matrix.

Lemma 1. If “→” is a local system, then for every pair (X0, t) with t > 0 there
exists a local stochastic matrix P (t,X0) such that X0

t→ Xt = P (t,X0) ◦ Xt−1.

Proof. Call Y = Xt−1 and Z = Xt. We make a digression to flows over capaci-
tated networks [11] and consider the one shown in Fig. 2. The network consists
of a source node s, a sink node t, and two copies of the graph nodes V and V ′.
Node s is connected to any node i ∈ V with capacity Y (i), any node i ∈ V is
connected with capacity 1 to any node j ∈ V ′ iff (i, j) ∈ E (else the nodes are
not connected), and any node j ∈ V ′ is connected to node t with capacity Z(j).
If this network can route a steady flow of value 1 from node s to node t, then
the fraction of Y (i) that is routed from i ∈ V towards j ∈ V ′ directly defines
Pj,i(t,X0), as Z(j) =

∑
i∈V Pj,i(t,X0)Y (i) and so P (t,X0) ◦ Y = Z.

Fig. 2. Capacitated network construction used in Lemma 1.

The max-flow-min-cut theorem [11] states that the maximum steady flow
which can be routed from node s to node t is equal to the minimum cut value of
the graph, where a cut value is the sum of the capacities of a set of edges that
disconnects s from t.

It is clear that cutting all edges arriving at t disconnects the graph, with a
cut value of 1, whereas cutting any middle edge between V and V ′ gives a cut
value ≥ 1. So the minimum cut need involve no such middle edge. Let us try to
not cut the edges from W ⊆ V ′ to t. To block any flow from s to t while keeping
all middle edges, we must then cut the edges from s to all the l ∈ V which have
an edge to W. This corresponds to all l ∈ W ∪ N (W). The value of this cut is
thus

1 − ∑
j∈W Z(j) +

∑
j∈W Y (j) +

∑
j∈N (W) Y (j) .

Recalling that Y = Xt−1 and Z = Xt, locality imposes
∑

j∈W Z(j) ≤ ∑
j∈W Y (j) +

∑
j∈N (W) Y (j) ,
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from which follows that the minimum cut value is ≥ 1. According to the previous
arguments, this concludes the proof. �

2.2 Bound for “extended” Markov Chains

On the basis of these P (t,X0), we show how to construct a local Markov chain
with at most twice the convergence time τ of our original system “→”. Thereto,
we first define a closely related system

t� ≡ iterate τ→ (namely floor(t/τ) times, plus tmodτ steps of it) .

By construction, “�” has the same convergence time τ as “→”, it has the
same limit and it obeys the same locality and invariance conditions. We will now
build a standard, time-invariant Markov chain that simulates the system “�”.

To this end we first extend our state space: the original node set V is lifted to
V̂ = (V; {0, . . . , τ−1};V). From the perspective of a random walker, the first item
contains its starting position, the second item a clock variable, and the last item
its current position. In matrix form, with ⊗ representing the Kronecker product
and ·† the transpose, we now build the transition matrix M for a Markov chain
on V̂ as follows:

M =
∑

i∈V

τ−2∑

t=0

eie
†
i ⊗ et+1e

†
t ⊗ P (t, ei) +

∑

i,j∈V
eje

†
i ⊗ e0e

†
τ−1 ⊗ eje

†
jP (τ − 1, ei).

Here ei is the unit vector with 1 at index i, and P (t, ei) denotes the transition
matrix obtained by Lemma 1 for X0 = ei, i.e., initial weight concentrated at
node i ∈ V. This Markov chain simulates the “�” system in the following sense:
when we locally initialize it in the state

v[X0] =
∑

i∈V

X0(i)ei ⊗ e0 ⊗ ei ,

the distribution over the subsets (V; {0, . . . , τ − 1}; i) of the resulting state
M tv[X0] at time t exactly corresponds to Xt resulting from X0 � Xt.

A priori our Markov chain only simulates “�” for special initial states of the
form v[X0] over V̂. The following lemma shows that in fact when starting from
an arbitrary distribution over V̂, it takes at most twice the time to converge to
‖Xt − Π‖1 ≤ 1/2 (over sets as just mentioned).

Lemma 2. If → has a convergence time τ , then the Markov chain M on V̂ has
a convergence time at most 2τ over the subsets { (V; {0, . . . , τ − 1}; i) : i ∈ V }.
Proof. Consider an arbitrary initial state ei ⊗ eT ⊗ ek for the Markov chain M .
After τ − T steps, this state will necessarily have evolved to one of the special
initial states of the form v[X0], for some X0. By construction, the distribution
of this state over the subsets { (V; {0, . . . , τ − 1}; i) : i ∈ V } will then simulate
the evolution X0

t� Xt, which converges to ‖Xt − Π‖1 ≤ 1/2 for all t ≥ τ . Note
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indeed that � and → are equivalent over the first τ time steps, and furthermore
by invariance, iterating → via � will never increase ‖Xt − Π‖1. Hence the
Markov chain will have converged after τ − T + τ ≤ 2τ steps at most. We have
thus proved the convergence time for initial states with all weight concentrated
on one element of V̂. By linearity, this also proves the convergence time for
arbitrary initial states. �

The last element of the proof is a lower bound on τ for standard Markov
chains. It essentially follows from a result by Chen, Lovász and Pak [9], stating
that a class of extended Markov chains called “lifted Markov chains” that con-
verge over V̂ can converge at best in order 1/Φ, with Φ the conductance of the
original graph. Our Markov chain M does not exactly fit into this framework,
because it is periodic on V̂ and only its projection onto V via the subsets of
Lemma (2) will converge. The proof can however be adapted to this case. Due
to space constraints we must refer the reader to [20] for a detailed proof, and we
here only provide the statement:

Lemma 3. The convergence time of M over the sets { (V; {0, . . . , τ −1}; i) : i ∈
V } is lower bounded by 1/(4Φ).

By combining Lemmas 2 and 3, we obtain that 2τ must be larger than 1/(4Φ)
and hence τ larger than 1/(8Φ), as stated in the main theorem.

3 Examples

We now discuss a few examples to illustrate the generality of our result. Note
that the mathematical result is not restricted to cases where Xt represents a
probability distribution. It can apply to any situation where Xt remains positive,
bounded and preserves the sum of its components. Such dynamics can appear in
flow dynamics and e.g. average consensus algorithms for weight distribution [13].
In such settings our result might suggest how e.g. relaxing the linearity constraint
is necessary for beating the conductance bound.

3.1 Time-Inhomogeneous Markov Chains and Cesaro Mixing

The bound clearly includes time-varying Markov chains (that satisfy invariance),
as appear in the proof. Practical examples of such processes can be found in [21],
and in [22] for card shuffling. The difficulty to analyze the convergence time of
such processes is explicitly stated. Our paper thus provides a clear bound on the
maximal achievable acceleration by exploiting the time-inhomogeneity degree of
freedom in mixing algorithms.

Cesaro mixing [19] using a stochastic matrix P is defined by the system
X0

t→ Xt = 1
t+1

∑t
k=0 P kX0. There appears to be no obvious way to write

this as a Markov chain. However, one can show that Cesaro mixing satisfies
our assumptions, so Thm.1 allows to directly bound the mixing time of such
processes.
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3.2 Processes with State-Dependent or Nonlocal Decision Rules

The locality condition concerns how much probability weight is transferred at
each step, but not how the decision about this transfer is taken. The latter is
constrained by linearity. In this sense, our result directly bounds any attempts
at adapting fast converging nonlinear algorithms e.g. from consensus, towards
truly probabilistic Markov chains where linearity is natural. Consider a nonlinear
update rule from consensus, like:

Xt+1 = P (Zt)Xt .

In [14], Zt is a static function of the weight differences on the respective links,
e.g. the weight associated to link (i, j) in P (Z) is a function of Xt(i) − Xt(j).
Our framework would even admit Zt being a dynamic function of X, possibly
nonlinear, taking values in any space, and would not even require that it is based
on local values of X only: e.g. the weight associated to link (i, j) in P (Z) might
be a function of some Xt(k) where node k is totally elsewhere in the graph.

Such update rule is in general not linear in X0, but one may attempt to adapt
it in this sense in the hope of designing e.g. stochastic automata that improve
mixing over standard Markov chains. For instance, one might imagine a system
that distinguishes, in memory, each part of Xt that has started from a different
node at X0. Once this is done, we are free to choose the evolution (possibly
nonlinear, nonlocal) for each of these X0-indexed parts, postulating that the full
Xt consists of their linear combination. One might thus wonder whether such
heuristic approach could lead to faster mixing on e.g. the dumbbell graph. Our
result implies that — provided also invariance is required — such acceleration
attempts are all limited to the conductance bound.

3.3 Finite-Time Convergence

Consider the following algebraic problem, related to finite-time convergence [23]
and the inverse eigenvalue problem [24]:

What is the minimal number of symmetric stochastic matrices over a graph
G whose product has all but one eigenvalue equal to zero?

From Theorem 1 it follows that this number is bounded by 1/(8Φ). To see this,
note that a set of local, symmetric, stochastic matrices {P (l), 1 ≤ l ≤ T} over a
graph G defines a linear and local system by X0

t→ Xt = (Πt
l=1P (l)) X0 for t ≤ T .

The system is also invariant as the matrix product leaves the all-ones vector 1
invariant: 1 t→ 1. If the product ΠT

l=1P (l) has all but one eigenvalue equal
to zero, the remaining eigenvalue necessarily being 1 with eigenvector 1, then
necessarily the system has converged: X0

T→ 1/‖X0‖1,∀X0 and so τ ≤ T . By
Theorem 1 the convergence of any linear, local and invariant system is bounded,
specifically stating that T ≥ 1/(8Φ).
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3.4 Quantum Walks

The convergence properties of quantum processes spreading over localized state
spaces play a role both in physics (e.g. transport of excitations in photosynthesis
[12]) and in quantum computation (e.g. quantum random walks [10]).

A discrete-time quantum walk is (although to our knowledge this has never
been said explicitly) the generalization of a lifted walk, by keeping coherences
among the node options. Denote by ρ the quantum state, i.e. a positive definite
“density matrix” with trace one, whose diagonal represents probabilities over
V̂ = {(i, z)} where i ∈ V is a graph node and z is a possible auxiliary degree of
freedom (see introductory example [16], coined quantum walks [10], or Sect. 2.1).
A general quantum walk follows:

ρt+1 = Ψ ◦ ρt

where Ψ is a completely positive trace-preserving map; most popular is the
unitary quantum walk, where Ψ ◦ρt = UρtU

†, with U a unitary matrix satisfying
the locality of the graph G, exactly as P does for a Markov chain and M does
in Sect. 2.1. If ρt would remain diagonal, this would correspond exactly to a
lifted Markov chain [9]. Authors have been wondering for some time whether the
additional information contained in the off-diagonal elements of ρt (“quantum
coherences”) might allow faster mixing. In [10] a conductance bound is given for
unitary quantum walks and within a factor of the graph degree; but such factor
becomes dominant for e.g. the dumbbell graph.

As will be further worked out in a future publication, quantum walks do
satisfy the conditions of this paper, for most reasonable initializations. Then our
result improves the bound of [10], both by generalizing it to non-unitary walks
and by getting rid of the degree-dependent factor. Quantum walks indeed sat-
isfy locality, including the hidden (complex) variables representing coherences.
Linearity trivially holds, except if one allows to initialize the walk with nonlocal
coherences already. In other words, since ρ0 would necessarily be block-diagonal
when all the initial weight is concentrated on a single node, introducing off-
diagonal initial blocks when starting with a distribution over nodes would break
linearity — and by Thm.1, this would be necessary to potentially beat the con-
ductance bound.
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Abstract. The translation of brain activity into user command, through
Brain-Computer Interfaces (BCI), is a very active topic in machine learn-
ing and signal processing. As commercial applications and out-of-the-
lab solutions are proposed, there is an increased pressure to provide
online algorithms and real-time implementations. Electroencephalogra-
phy (EEG) systems offer lightweight and wearable solutions, at the
expense of signal quality. Approaches based on covariance matrices have
demonstrated good robustness to noise and provide a suitable representa-
tion for classification tasks, relying on advances in Riemannian geometry.
We propose to equip the minimum distance to mean (MDM) classifier
with a new family of means, based on the inductive mean, for block-online
classification tasks and to embed the inductive mean in an incremental
learning algorithm for online classification of EEG.

1 Introduction

Real-time recording and decoding of brain signals allow to control a large vari-
ety of systems, such as wheelchairs, exoskeletons, robotic arms or other types
of Brain-Computer Interface (BCI) devices [3]. With electroencephalography
(EEG), the brain signal is recorded at the surface of the head (on the scalp),
offering a simple setup that does not require surgery as it is the case for invasive
recording methods. The signal quality of EEG is lower than with invasive meth-
ods and the recording is very sensitive to noise, nonetheless possible applications
offer promising results [11]. As technologies and signal processing techniques are
more and more mature, out-of-the-lab applications and commercial systems are
the focus of growing interests [3]. These applications and systems rely on a small
number of electrodes for recording and low-cost hardware for signal processing.
Thus the denoising and classification algorithms should work online and with a
reasonable computational load. One of the most challenging issues with EEG-
based BCI is to harness the individual variability of brain signals, which could
change from hour-to-hour for a user and are highly variable from one user to the
other.

Among all the methods considered in the literature for EEG signal process-
ing, the ones relying on covariance matrices were shown numerically to achieve
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good performances [12]. In this approach, a portion of the EEG signal is repre-
sented by a covariance matrix, whose elements correspond to the covariance of
the signals recorded with different electrodes, possibly filtered around different
frequencies. The fact that covariance matrices belong to a non-Euclidean space
– the manifold of symmetric positive definite (SPD) matrices – calls for efficient
classifiers adapted to that geometry.

In this paper, we work with the Minimum Distance to Mean (MDM) classifier,
initially proposed in [2]. This classifier assigns covariance matrices to the class
with the closest mean. The classification results were shown to depend heavily
on the mean and distance definition used, and many possibilities were compared
in [5]. In the following we will distinguish the offline setting, where the classifier’s
parameters are selected and evaluated using all available data, the block-online
setting, where the classifier is parametrized on a first batch of data (usually the
beginning of a session) and evaluated on another batch of data (the rest of the
session), and the online setting, where there is no data available beforehand from
the user and the classifier is assessed directly on new data. We equip here this
classifier with a new family of means based on the so-called inductive mean,
which has the main advantage of being computed incrementally, a key prop-
erty when working in an online setting. This property was already used in [4]
for k-means clustering. We show numerically that the use of these new means
achieves a classification accuracy in a block-online framework comparable to the
most accurate nonparametric mean: the Riemannian barycenter with respect to
the affine-invariant metric (less than 1% of difference on average), while their
computation cost is lower. We also propose a variant of the online classification
algorithm proposed in [6]. In our algorithm, the means of the classes are adapted
online, following an incremental learning scheme. Starting from classes learned
with other users, the goal is to enable the algorithm to progressively fit with the
observed data of a new user.

The paper is organized as follows. Section 2 is devoted to block-online classi-
fication: we define the MDM classifier and the family of means we use, and com-
pare numerically the classification results with other state-of-the-art methods.
In Sect. 3, we present our incremental learning algorithm for online classification.

2 Offline and Block-Online Classification of EEG

The proposed approaches are applied on steady-state visual evoked potentials
(SSVEP), that is brain responses to visual stimuli, but are valid on other kinds
of BCI stimuli. In a SSVEP experiment, blinking LEDs are placed at different
locations in the visual field of a user. The LEDs are blinking at F different
frequencies (freq1, . . . , freqF ). The subject is either asked to focus on one specific
blinking LED (with a known frequency) or to focus on a location without LED
(resting state). The blinking LED elicit induced oscillations in the brain, which
are visible in the EEG. The goal is to determine based on the EEG if the user
is focusing on a blinking LED and if so, on which one.

We summarize in Algorithm 1 the block-online classification method pro-
posed in [5]. Each time that the user is asked to focus on a stimulus, the portion
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of the EEG recording following the cue onset (the time at which the user was
instructed to focus on the blinking LED) is first transformed into a covariance
matrix and then classified using the MDM classifier. The means of the classes
are estimated beforehand, based on a collection of labelled data, according to
the offline training scheme detailed in Algorithm 2.

Algorithm 1. Block-online classification - MDM algorithm
Inputs: Σ̄(k), the mean of the class k, for k = 1, . . . , K (obtained using Algo-
rithm 2) and an unlabelled EEG trial X ∈ R

C×N (with C the number of electrodes
and N the number of time samples).
Output: k̂, the predicted label of X.

1: Compute Σ̂, an estimate of the covariance matrix of X (see Sect. 2.1).
2: Define the class label associated to trial X as k̂ = argmink=1,...,K δ(Σ̂, Σ̄(k)), where

δ(Σ1, Σ2) = ||Σ−1/2
1 Σ2Σ

−1/2
1 ||F is the Riemannian distance between Σ1 and Σ2.

Algorithm 2. Offline training
Inputs : Xi ∈ R

C×N , for i = 1, . . . , l, a set of labelled EEG trials, and I(k),
k = 1, . . . , K, the set of indices of trials belonging to class k.
Output: Σ̄(k), the mean of the class k, for k = 1, . . . , K.

1: Compute Σ̂i, an estimate of the covariance matrix of Xi, for i = 1, . . . , l (see
Sect. 2.1).

2: For k = 1 : K do
3: Compute the center of class Σ̄(k) = μ({Σ̂i|i ∈ I(k)}) (see Sect. 2.2).

2.1 Estimation of Covariance Matrices

Algorithms 1 and 2 require to estimate the covariance matrix of an EEG trial
X ∈ R

C×N , where N is the number of time samples and C the number of
electrodes. The signal X is first band-pass filtered around the F frequencies
used in the experiment, to yield an extended signal as follows:

X ∈ R
C×N → XExt =

[
XT

freq1
, . . . , XT

freqF

]T ∈ R
FC×N .

The covariance matrix Σ ∈ PCF of the signal XExt, with PCF the set of SPD
matrices of size CF ×CF , is then estimated using the Schäfer estimator [10]. We
refer the reader to [6] for more information regarding the choice of the estimator.

2.2 Inductive Means and Sequences

The training of the classifier also relies on the definition of a mean μ on the
set of SPD matrices. Several means were already considered in [5]. Among the
non-parametric means, the Riemannian barycenter with respect to the affine-
invariant metric was shown numerically to provide the most accurate classifica-
tion results (we will use the shortcut “Riemannian barycenter” in the rest of the
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paper, implying that we work here with the affine-invariant metric). However, its
computation is rather costly. To remedy this problem, another family of means
was proposed in [8]. These means are based on the inductive mean (see [9]).

The inductive mean of a set of SPD matrices Σ1, . . . , Σl ∈ PCF is defined as:

M Ind(Σ1, . . . , Σl) =
(((

Σ1# 1
2
Σ2

)
# 1

3
Σ3

)
. . . # 1

l
Σl

)
, (1)

where A#sB = A
1
2 (A− 1

2 BA− 1
2 )sA

1
2 , with s ∈ [0, 1], is the (unique) point located

on the geodesic from A to B, at a distance sδ(A,B) of A.
If all the matrices pairwise commute, then the Riemannian barycenter

and the inductive mean coincide. Otherwise, the inductive mean looses the
property of invariance under permutation: in general, M Ind(Σ1, . . . , Σl) �=
M Ind(Σπ(1), . . . ,Σπ(l)), where π is a permutation of (1, . . . , l). Moreover, in [8],
the authors illustrate numerically that the inductive mean M Ind(Σ1, . . . , Σl)
tends to overemphasize the last data points (i.e., Σl, Σl−1, . . . ). To remedy this,
they developed an inductive sequence (XInd

j )j=1,2,..., i.e., an extension of the
inductive mean in which each element XInd

jl , with j = 1, 2, . . . and l the total
number of matrices, is defined as:

XInd
jl = M Ind

⎛

⎜
⎝π

⎛

⎜
⎝Σ1, Σ2, . . . , Σl, . . . , Σ1, Σ2, . . . , Σl︸ ︷︷ ︸

j×l elements

⎞

⎟
⎠

⎞

⎟
⎠ (2)

where π is a shuffling operator. The sequence (XInd
j )j=1,2,... converges to the Rie-

mannian barycenter, and the shuffling improves the convergence rate by reducing
the bias mentioned above.

2.3 Experimental Results for Block-Online Classification

Table 1 compares block-online classification accuracy and computation times for
several mean definitions. Our validation is performed on the same datasets as
in [5]. These datasets were obtained in a SSVEP experiment with three frequen-
cies (13, 17, or 21 Hz). This is thus a classification task with four classes (one
for each frequency and one for the resting class). For each subject, the recorded
session is made of several batches (from 2 to 5), one batch consisting in 32 trials
(i.e., the responses to 32 stimuli, 8 for each class). As in [5], we used, for each
subject, the last batch as validation set and all other batches as training set. We
refer the reader to [5] for more detail regarding the experimental protocol.

We compare inductive means with the Euclidean mean, the Log-Euclidean
mean and the Riemannian barycenter (estimated using a steepest descent algo-
rithm). For comparison, we also provide results obtained with a state-of-the-art
method not based on covariance matrices: the SVM algorithm with CCA fil-
tering used in [5]. The last row of Table 1 presents the average performances
obtained with the different means. It indicates that the inductive mean is a nice
trade-off between the Log-Euclidean mean, which is cheaper to compute but
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Table 1. Performances obtained for block-online classification. Each row of the table
corresponds to one subject. The computation times recorded are the average times
needed to compute the mean of the covariance matrices of a given class in the training
set of the subject. They are larger for the subjects 7, 10 and 12 since the number of
matrices to average were bigger for those subjects (their training sets were made of
respectively 2, 3 and 4 batches instead of one for the other subjects).

CCA + MDM

SVM [7] Euclidean LogEuclid. Riem. Baryc. Ind. Mean Ind. Seq. XInd
2l Ind. Seq. XInd

5l

acc(%) acc(%) t(ms) acc(%) t(ms) acc(%) t(ms) acc(%) t(ms) acc(%) t(ms) acc(%) T(ms)

S1 54.68 53.12 0.6 71.88 15 73.44 74 70.31 15 73.44 20 73.44 54

S2 37.50 43.75 0.5 78.12 16 79.69 77 78.12 11 78.12 19 78.12 43

S3 89.06 67.19 0.7 85.94 18 85.94 72 85.94 16 85.94 23 85.94 60

S4 79.69 54.69 0.5 84.38 13 87.50 68 87.50 11 87.50 22 87.50 42

S5 50.00 37.50 0.6 62.50 16 68.75 63 67.19 11 68.75 21 68.75 44

S6 87.50 34.38 0.5 84.38 18 85.94 69 84.38 11 85.94 19 85.94 49

S7 77.08 60.42 0.9 87.50 29 88.54 131 89.58 27 89.58 39 89.58 99

S8 73.44 67.19 0.7 90.62 18 92.19 71 92.19 16 92.19 24 92.19 46

S9 60.94 57.81 0.6 70.31 13 70.31 69 70.31 15 70.31 23 70.31 56

S10 67.97 38.28 1.2 75.00 43 80.47 179 78.91 38 78.91 67 80.47 137

S11 71.88 48.44 0.8 60.94 18 65.62 82 64.06 16 64.06 22 65.62 47

S12 95.63 71.25 1.5 96.25 58 96.88 216 96.88 49 96.88 86 96.88 198

Avg 70.45 52.83 0.8 78.98 23 81.27 97 80.45 20 80.97 32 81.23 73

also less accurate, and the Riemannian barycenter, which is more accurate but
considerably more costly. Inductive sequences improve further the accuracy, but
become also more costly.

Observe finally that Algorithms 1 and 2 are only suitable for block-online
classification, and require to know the cue onsets, i.e., the time at which the
stimuli are applied to the subject. Those requirements will be relaxed in the
online classification approach presented in the next section.

3 Online Classification Using Inductive Means

In most cases, cue onsets are not available. The goal is then to detect parts of
the EEG signal corresponding with a high probability to a given stimulus. Based
on the incremental definition of the inductive mean, we propose a variant of the
online classification algorithm detailed in [6]. Indeed, conversely to most other
means, including the Riemannian barycenter, the inductive mean of N + 1 data
points can be easily computed from the inductive mean of N points:

M Ind(Σ1, . . . , ΣN+1) = M Ind(Σ1, . . . , ΣN )# 1
N+1

ΣN+1.

It is then possible to update the means of the classes ‘on-the-fly’ in the classifica-
tion algorithm. The complete classification scheme is presented in Algorithm 3.
It works as follows. The algorithm scans the EEG signal, considering successive
frames of size w, the starting times of two successive frames being separated
by Δn samples. The covariance matrix of the current frame is estimated and
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classified using the MDM classifier. The most recurrent class among the last D
ones is considered to be the current class. If the confidence in this decision is
high enough (see Sect. 3.1), the class is returned and the mean of the class is
updated. Otherwise, the algorithm moves immediately to the next frame. It is of
tremendous importance to avoid that possible misclassifications move the means
of the classes in an erroneous direction. To this aim, we added in Algorithm 3 a
filtering step, following similar ideas as in the Riemannian potato [1]. The mean
of the class is updated at most once per trial (i.e., per different stimulus), in the
direction of the ‘best’ covariance matrix scanned in the trial.

Algorithm 3. Online classification
Inputs : Σ̄(k) ∈ PFC , the mean of class k, for all class k = 1, . . . , K (offline
training, or default initialisation based on data available from other subjects), d̄k

the average distance between the training matrices belonging to class k and Σ̄(k),
a EEG recording X (n) ∈ R

C , n = 0, . . . , N , hyperparameters w, Δn, D, s.
Output: Classification decisions k̂(n).

1: Initialisation: Σbest = Σ̄(1), dbest = ∞, kcur = −1, k̂(n) = −1 ∀n (default value,
meaning no decision).

2: For d = 0, . . . , �N−w
Δn

� do
3: Xd := X (dΔn, . . . , dΔn + w)
4: Compute Σ̂d, an estimate of the covariance matrix of Xd, and classify it:

k∗
d := argmin

k=1,...,K
δ(Σ̂d, Σ̄(k)).

5: If d ≥ D then find most recurrent class among D last classifications:

k̄ := argmax
k=1,...,K

ρ(k) with ρ(k) :=
#{k∗

j = k}j=d,d−1,...,d−D+1

D
.

6: Evaluate confidence criterion C (see Sect. 3.1)
7: If C = true then
8: If kcur > 0 and k̄ �= kcur (we left previous class) and dbest ≤ d̄kcur

then update previous class:

9: Σ̄(kcur) := Σ̄(kcur)# α
s+α

Σ̂best with α := 1 − δ(Σ̄(kcur),Σ̂best)

d̄kcur

10: s := s + 1, Σbest := Σ̂d, dbest := δ(Σ̄(k̄), Σ̂d)

11: elseif δ(Σ̄(k̄), Σ̂d) ≤ dbest, improve current estimates:

12: Σbest := Σ̂d, dbest := δ(Σ̄(k̄), Σ̂d)
13: kcur := k̄
14: k̂(n) := k̄ for n ∈ [dΔn, dΔn + w]

3.1 Confidence Criterion

Similarly as in [6], a confidence criterion is used in Algorithm 3 to discard unre-
liable classifications. Two conditions have to be encountered for this criterion to
be satisfied. The first one verifies that the current classification decision is consis-
tent with previous classifications: the class k̄ should have been chosen among the
D previous classes with a proportion larger than or equal to given threshold ϑ, i.e.,

ρ(k̄) ≥ ϑ . (3)
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The second condition is related to the displacement of the covariance matri-
ces: those should be in the direction of the mean of the class. Otherwise, we
might expect that a new stimulus has been applied, and that the covariance
matrices is moving away from the mean of the old class, to get closer to the
mean of the new class. Hence, the relative distances to means should on average
decrease on the last D frames:

d∑

j=d−D+2

(δrelk̄ (j) − δrelk̄ (j − 1)) ≤ 0 with δrelk̄ (d) =
δ(Σ̂d, Σ̄

(k̄))
K∑

k=1

δ(Σ̂d, Σ̄
(k))

. (4)

If conditions (3) and (4) are satisfied, the confidence criterion is satisfied, i.e.,
C = true, otherwise C = false.

3.2 Numerical Results for Online Classification

The main interest of Algorithm 3 is that it allows to progressively update the
user’s means of the classes. To illustrate this, we used EEG batches from the three
first subjects to initialize the centers of the classes and we run Algorithm 3 to
perform classification on all the batches of the other users. In Fig. 1, we compare
the results obtained using Algorithm 3 with those obtained when the means of
the classes are not updated, i.e. removing lines 10 to 12 in Algorithm 3, for the
two subjects with the highest number of batches available, that is 5 for subject
12 and 4 for subject 10. Hyperparameters were set empirically to w = 2.6s,
Δn = 0.2s, D = 5, s = 8, ϑ = 0.7. For subject 12, the classification accuracy
improves with the batches, compared to the version with frozen means of the
classes. However, this is not the case for subject 10: despite the use of the filtering
step, some misclassification resulted in the displacement of the mean of one

Fig. 1. Classification results of Algorithm 3 on the two subjects for which the largest
number of recordings are available.
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class in an erroneous direction, which alters subsequent classification decisions.
Unfortunately, the low number of recordings per subject makes it difficult to
obtain a reliable measure of the performance of our online algorithm. Further
work should therefore aim at assessing the performance of the algorithm on larger
datasets. Other filtering strategies can also be investigated for Algorithm 3, as
well as the influence of the hyperparameters on the classification results.
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Abstract. We study a data-driven sub-Riemannian (SR) curve opti-
mization model for connecting local orientations in orientation lifts of
images. Our model lives on the projective line bundle R

2 × P 1, with
P 1 = S1/∼ with identification of antipodal points. It extends previous
cortical models for contour perception on R

2×P 1 to the data-driven case.
We provide a complete (mainly numerical) analysis of the dynamics of
the 1st Maxwell-set with growing radii of SR-spheres, revealing the cut-
locus. Furthermore, a comparison of the cusp-surface in R

2 × P 1 to its
counterpart in R

2 ×S1 of a previous model, reveals a general and strong
reduction of cusps in spatial projections of geodesics. Numerical solutions
of the model are obtained by a single wavefront propagation method
relying on a simple extension of existing anisotropic fast-marching or
iterative morphological scale space methods. Experiments show that the
projective line bundle structure greatly reduces the presence of cusps.
Another advantage of including R

2 × P 1 instead of R
2 × S1 in the wave-

front propagation is reduction of computational time.

Keywords: Sub-Riemannian geodesic · Tracking · Projective line
bundle

1 Introduction

In image analysis extraction of salient curves such as blood vessels, is often
tackled by first lifting the image data to a new representation defined on the
higher dimensional space of positions and directions, followed by a geodesic
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tracking [1–3] in this lifted space [4–6]. Benefits of such approaches are that
one can generically deal with complex structures such as crossings [4,6,7], bifur-
cations [8], and low-contrast [5,6,9], while accounting for contextual alignment
of local orientations [5,6]. The latter can be done in the same way as in cortical
models of visual perception of lines [10–13], namely via sub-Riemannian (SR)
geometry on the combined space of positions and orientations. In these corti-
cal models, it is sometimes stressed [12] that one should work in a projective
line bundle R

2 × P 1 with a partition of equivalence classes P 1 := S1/∼ with
n1 ∼ n2 ⇔ n1 = ±n2. Furthermore, in the statistics of line co-occurrences in
retinal images the same projective line bundle structure is crucial [14]. Also, for
many image analysis applications the orientation of an elongated structure is
a well defined characteristic of a salient curve in an image, in contrast to an
artificially imposed direction.

At first sight the effect of the identification of antipodal points might seem
minor as the minimizing SR geodesic between two elements in R

2×P 1 is obtained
by the minimum of the two minimizing SR geodesics in R

2×S1 that arise (twice)
by flipping the directions of the boundary conditions. However, this appearance
is deceptive, it has a rather serious impact on geometric notions such as (1) the
1st Maxwell set (where two distinct geodesics with equal length meet for the
first positive time), (2) the cut-locus (where a geodesic looses optimality), (3)
the cusp-surface (where spatial projections of SR geodesics show a cusp). Besides
an analysis of the geometric consequences in Sects. 2, 3 and 4, we show that the
projective line bundle provides a better tracking with much less cusps in Sect. 5.

2 The Projective Line Bundle Model

The projective line bundle PT(R2) is a quotient of Lie group SE(2), and one can
define a sub-Riemannian structure (SR) on it. The group SE(2) = R

2
� SO(2)

of planar roto-translations is identified with the coupled space of positions and
orientations R

2 × S1, and for each g = (x, y, θ) ∈ R
2 × S1 ∼= SE(2) one has

Lgg
′ = g � g′ = (x′ cos θ + y′ sin θ + x,−x′ sin θ + y′ cos θ + y, θ′ + θ). (1)

Via the push-forward (Lg)∗ one gets the left-invariant frame {A1,A2,A3} from
the Lie-algebra basis {A1, A2, A3} = {∂x|e , ∂θ|e , ∂y|e} at the unity e = (0, 0, 0):

A1 = cos θ ∂x + sin θ ∂y, A2 = ∂θ, A3 = − sin θ ∂x + cos θ ∂y.

Let C : SE(2) → R
+ denote a smooth cost function strictly bounded from below.

The SR-problem on SE(2) is to find a Lipschizian curve γ : [0, T ] → SE(2), s.t.

γ̇(t) = u1(t)A1|γ(t) + u2(t)A2|γ(t), γ(0) = g0, γ(T ) = g1,

l(γ(·)) :=
T∫

0

C(γ(t))
√

ξ2|u1(t)|2 + |u2(t)|2 dt → min,
(2)

with controls u1, u2 : [0, T ] → R are in L∞[0, T ], boundary points g0, g1 are
given, ξ > 0 is constant, and terminal time T > 0 is free.
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Thanks to reparametrization invariance the SR distance can be defined as

d(g0, g1) = min
γ ∈ Lip([0, 1], SE(2)),

γ̇ ∈ Δ|γ , γ(0) = g0, γ(1) = g1

∫ 1

0

√
Gγ(τ)(γ̇(τ), γ̇(τ)) dτ, (3)

with Gγ(τ)(γ̇(τ), γ̇(τ)) = C2(γ(τ))
(
ξ2|u1(τT )|2 + |u2(τT )|2), τ = t

T ∈ [0, 1], and
Δ := span{A1,A2} with dual Δ∗ = span{cos θ dx + sin θ dy,dθ}. The projec-
tive line bundle PT(R2) is a quotient PT(R2) = SE(2)/∼ with identification
(x, y, θ) ∼ (x, y, θ+π). The SR distance in PT(R2) ∼= R

2 ×P 1 = R
2 × R/{πZ} is

d(q0, q1) := min{d(g0, g1) , d(g0 � (0, 0, π), g1 � (0, 0, π)),
d(g0, g1 � (0, 0, π)) , d(g0 � (0, 0, π), g1)}

= min { d(g0, g1) , d(g0 � (0, 0, π), g1)}
(4)

for all qi = (xi, yi, θi) ∈ PT(R2), gi = qi = (xi, yi, θi) ∈ SE(2), i ∈ {0, 1}.
Equation (4) is due to γ∗

g0→g1
(τ) = γ∗

g̃1→g̃0
(1−τ), with g̃i := gi�(0, 0, π), with

γ∗
g0→g1

a minimizing geodesic from g0 = (x0, θ0) to g1 = (x1, θ1), and has 2
consequences:

(1) One can account for the PT(R2) structure in the building of the distance
function before tracking takes place, cf. Proposition 1 below.
(2) It affects cut-locus, the first Maxwell set (Propositions 2 and 3), and cusps
(Proposition 4).

We apply a Riemannian limit [8, Theorem 2] where d is approximated by Rie-
mannian metric d

ε
induced by Gε

q(q̇, q̇) := Gq(q̇, q̇) + C2(q) ξ2

ε2 |−ẋ sin θ + ẏ cos θ|2
for q̇ = (ẋ, ẏ, θ̇), q = (x, y, θ), 0 < ε � 1, and use SR gradient G−1

q dW (q) :=
G−1

q PΔ∗dW (q)= A1W (q)
ξ2C2(q) A1|q+ A2W (q)

C2(q) A2|q for steepest descent on W = d(·, e).
Proposition 1. Let q �= e be chosen such that there exists a unique minimizing
geodesic γ∗

ε : [0, 1] → PT(R2) of d
ε
(q, e) for ε ≥ 0 sufficiently small, that does

not contain conjugate points (i.e. the differential of the exponential map of the
Hamiltonian system is non-degenerate along γ∗

ε , cf. [15]). Then τ 
→ d(e, γ∗
0 (τ))

is smooth and γ∗
0 (τ) is given by γ∗

0 (τ) = γ∗
b (1 − τ) with

{
γ̇∗

b (τ) = −W (q) (G−1
γ∗
b (τ)

dW )(γ∗
b (τ)), τ ∈ [0, 1]

γ∗
b (0) = q,

(5)

with W (q) the viscosity solution of the following boundary value problem:
⎧
⎨

⎩

Gq

( G−1
q dW (q), G−1

q dW (q)
)

= 1 for q �= e,
W (x, y, π) = W (x, y, 0), for all (x, y) ∈ R

2,
W (0, 0, 0) = W (0, 0, π) = 0.

(6)

Proof. By [8, Theorems 2 and 4], (extending [7, Theorem 3.2] to non-uniform
cost) we get minimizing SR geodesics in SE(2) by intrinsic gradient descent on
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W . The 2nd condition in (6) is due to P 1 = S1/∼, the 3rd is due to (4). When
applying [8, Theorem 4] we need differentiability of the SR distance. As our
assumptions exclude conjugate and Maxwell-points, this holds by [16, Theorem
11.15]. �

At least for ε = 0 and C = 1 the assumption in Proposition 1 on conjugate points
is obsolete by [17] and [7, Theorem 3.2, Appendix D].

3 Analysis of Maxwell Sets for C = 1

A sub-Riemannian sphere is a set of points equidistant from e. A sphere of radius
R centred at e is given by S(R) =

{
q ∈ PT(R2) | d(e, q) = R

}
. We define (the

first) Maxwell point as a point in PT(R2) connected to e by multiple SR length
minimizers. I.e. its multiplicity is >1. All Maxwell points form a Maxwell set:

M =
{
q ∈ PT(R2) | ∃ γ1, γ2 ∈ Lip([0, 1],PT(R2)), s. t. γ̇i ∈ Δ|γi ,

γi(0) = e, γi(1) = q, for i = 1, 2, and γ1 �= γ2, l(γ1) = l(γ2) = d(e, q)
}
.

The set M is a stratified manifold M =
⋃

i Mi. We aim for maximal dimension
strata: dim(Mi) = 2.

Fig. 1. Maxwell set and its intersection (right image) with the SR sphere in Fig. 2. The
folds on the Green surface are in M1, the intersections of the Green surface with Red
and Blue surface are in M2, the intersection of the Red and Blue surface is in M3.
(Color figure online)

Proposition 2. Let W (q) = d(e, q) and let W SE(2)(g) = d(e, g). The Maxwell
set M is given by M =

⋃3
i=1 Mi, see Fig. 1, where

– M1 is a part of local component of Maxwell set Exp(MAX2) in SE(2), see
[18, Theorem 5.2], restricted by the condition tMAX

1 = W (γ(tMAX
1 ));

– M2 is given by W SE(2)(g) = W SE(2)(g � (0, 0, π));
– M3 is a part of global component of Maxwell set Exp(MAX5) in SE(2), see

[18, Theorem 5.2], restricted by the condition tMAX
1 = W (γ(tMAX

1 )).
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Proof. There are two possible reasons for PT(R2) � q = g/∼ be a Maxwell point:
(1) if g is a Maxwell point in SE(2), s.t. W SE(2)(g) = W (q) (i.e. W SE(2)(g) ≤
W SE(2)(g � (0, 0, π))); (2) if q is a (new) Maxwell point induced by the quotient
(i.e. q is a root of W SE(2)(g) = W SE(2)(g � (0, 0, π))). Strata M1, M3 follow
from Exp(MAX2), Exp(MAX5) [18], while M2 is induced by P 1 = S1/∼. Set
M3 is in θ = 0, as Exp(MAX5) is in θ = π, which is now identified with θ = 0.

Proposition 3. The maximal multiplicity ν of a Maxwell point on a SR sphere
depends on its radius R. Denote MR = M ∩ S(R) and MR

i = Mi ∩ S(R). One
has the following development of Maxwell set as R increases, see Figs. 2 and 3:

1. if 0 < R < π
2 then S(R) is homeomorphic to S2 and it coincides with SR

sphere in SE(2), MR = MR
1 and ν = 2;

2. if R = π
2 then S(R) is homeomorphic to S2 glued at one point, MR =

MR
1 ∪ MR

2 , MR
1 ∩ MR

2 = ∅, and ν = 2;
3. if π

2 < R < R then S(R) is homeomorphic to T 2, MR = MR
1 ∪ MR

2 , MR
1 ∩

MR
2 = ∅ and ν = 2;

4. if R = R ≈ 17
18π then S(R) is homeomorphic to T 2, MR = MR

1 ∪ MR
2 , and

MR
1 intersects MR

2 at four (conjugate) points, ν = 2;
5. if R < R < R̃ then S(R) is homeomorphic to T 2, MR = MR

1 ∪ MR
2 , and

MR
1 intersects MR

2 at four points, where ν = 3;
6. if R = R̃ ≈ 10

9 π then S(R) is homeomorphic to T 2, M = MR
1 ∪ MR

2 ∪ MR
3 ,

MR
1 = MR

3 , and MR
2 intersects MR

1 at two points, where ν = 4;
7. if R > R̃ then S(R) is homeomorphic to T 2, MR = MR

2 ∪ MR
3 and MR

2

intersects MR
3 at four points, where ν = 3.

Fig. 2. Evolution of the 1st Maxwell set as the radius R of the SR-spheres increases.

Remark 1. Results in [19, Sect. 4] imply that R̃ can be computed from the
system:

R̃/2 = K(k1) = k2 p1(k2),
K(k1) − E(k1)

k1
√

1 − k2
2

=
p1(k2) − E(p1(k2), k2)

dn(p1(k2), k2)
, (7)
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Fig. 3. SR length minimizers ending at the points indicated at Fig. 2.

where K(k) and E(k) are complete elliptic integrals of the 1st and 2nd kind;
E(u, k) = E(am(u, k), k), while E(v, k) is the incomplete elliptic integral of the
2nd kind and am(u, k) is the Jacobian amplitude; p1(k) is the first positive root
of cn(p, k)(E(p, k) − p) − dn(p, k)sn(p, k) = 0; and sn(p, k), cn(p, k), dn(p, k) are
Jacobian elliptic functions. Solving (7), we get R̃ ≈ 1.11545π ≈ 10/9π. Radius
R is s.t. S(R̄) hits the 1st conjugate set and can be computed as well (see item
2 of Fig. 3).

4 Set of Reachable End Conditions by Cuspless Geodesics

A cusp point x(t0) on a spatial projection of a (SR) geodesic t 
→ (x(t), θ(t)) in
R

2 × S1 is a point where the only spatial control switches sign, i.e. u1(t0) :=
ẋ(t0) cos θ(t0) + ẏ(t0) sin θ(t0) = 0 and (u1)′(t0) �= 0. In fact, the 2nd condition
(u1)′(t0) �= 0 is obsolete [8, Appendix C]. The next proposition shows that the
occurrence of cusps is greatly reduced in R

2 × P 1.
Let R ⊂ R

2 × S1 denote the set of endpoints that can be connected to the
origin e = (0, 0, 0) by a SR geodesic γ : [0, T ] → R

2 × S1 whose spatial control
u1(t) > 0 for all t ∈ [0, T ]. Let R̃ ⊂ R

2 ×P 1 denote the set of endpoints that can
be connected to e by a SR geodesic γ : [0, T ] → R

2 × S1 whose spatial control
u1(t) does not switch sign for all t ∈ [0, T ]. Henceforth, such a SR geodesic whose
spatial control u1(·) does not switch sign will be called ‘cuspless’ geodesic.

Proposition 4. The set of reachable end-conditions in R
2 × P 1 via ‘cuspless’

SR geodesics departing from e = (0, 0, 0) is given by

R̃ = {(x, y, θ) ∈ PT(R2)|(x, y, θ) ∈ R or (x, y, θ + π) ∈ R
or (−x, y,−θ) ∈ R or (−x, y,−θ + π) ∈ R or x = y = 0}.

(8)

Proof. A point (x, y, θ) ∈ R
2×P 1 can be reached with a ‘cuspless’ SR geodesic if

(1) (x, y, θ) ∈ R
2
�S1 can be reached with a ‘cuspless’ SR geodesic in SE(2) or (2)

if (−x, y,−θ) can be reached with a ‘cuspless’ SR geodesic in SE(2). Recall from
[20, Theorem 7] that (x, y, θ) ∈ R ⇒ (x ≥ 0 and (x, y) �= (0, 0)). If x ≥ 0 and
(x, y) �= (0, 0), the first option holds if (x, y, θ) ∈ R, and the second option holds
if (x, y, θ+π) ∈ R. If x < 0, the endpoint can only be reached by a ‘cuspless’ SR
geodesic in SE(2) with a negative spatial control function u1 < 0. Here we rely
on symmetry (x, y, θ) 
→ (−x, y,−θ) ⇒ (x(t), y(t), θ(t)) 
→ (−x(t), y(t),−θ(t)))
that holds for SR geodesics (x(·), y(·), θ(·)) in SE(2). For the control u1 in (2),
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this symmetry implies u1(t) 
→ −u1(t). By [20, Theorem 10] one has (x, y, θ) ∈
R ⇒ (x, y, θ + π) /∈ R, and points with x = y = 0 are not in R [20, Remark 5.5]
so all ‘or’ conditions in (8) are exclusive. �

Set R yields a single cone field of reachable angles in x > 0, see [20,
Fig. 14, Theorem 9]. By Proposition 4, set R̃ is a union of 2 such cone fields
that is also reflected to x < 0.

5 Practical Advantages in Vessel Tracking

Distance W (q) can be numerically obtained by solving the eikonal PDE of Eq. (6)
via similar approaches as was previously done for the SE(2) case. E.g., via an
iterative upwind scheme [7], or a fast marching (FM) solver [21] in which case
the SR metric tensor is approximated by an anisotropic Riemannian metric
tensor [22]. A gradient descent (cf. Eq. (5)) on W then provides the SR geodesics.

We construct the cost function C in the same way as in [7]: (1) a retinal image
is lifted via the orientation score transform using cake wavelets [23]; (2) vessels
are enhanced via left-invariant Gaussian derivatives using A3; (3) a cost func-
tion is constructed via C = 1

1+λVp , with V the max-normalized vessel enhanced
orientation score, and with λ and p respectively a “cost-strength” and contrast
parameter. We use the same data and settings (λ = 100, p = 3 and ξ = 0.01) as
in [7], and perform vessel tracking on 235 vessel segments. For the results on all
retinal image patches, see http://erikbekkers.bitbucket.io/PTR2.html.

Figure 4 shows the results on three different vessel segments with comparison
between SR geodesics in SE(2) and PT(R2). As expected, with the PT(R2) model
we always obtain the SE(2) geodesic with minimum SR length (cf. Eq. (4)).
This has the advantage that overall we encounter less cusps in the tracking.
Additionally, the PT(R2) model is approximately four times faster since now
we only have to consider half of the domain R

2 × S1, and by Proposition 1
we only run once (instead of twice). The average computation time via FM
for constructing W with the SE(2) model for 180 × 140 pixel patches is 14.4 s,
whereas for the PT(R2) model this is only 3.4 s. The rightmost image in Fig. 4
shows an exceptional case in which the reversed boundary condition (red arrow)
is preferred as this leads to a geodesic with only one cusp instead of two.

Fig. 4. Data-adaptive SR geodesics in SE(2) (in green and red-dashed) compared to
SR geodesics in PT(R2) (in blue). For the SE(2) case we specify antipodal boundary
conditions since the correct initial and end directions are not known a priori. (Color
figure online)

http://erikbekkers.bitbucket.io/PTR2.html
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6 Conclusion

We have shown the effect of including the projective line bundle structure SR
in optimal geodesic tracking (Proposition 1), in SR geometry (Proposition 2),
and in Maxwell-stratification (Proposition 3), and in the occurrence of cusps in
spatially projected geodesics (Proposition 4). It supports our experiments that
show benefits of including such a projective line bundle structure: A better vessel
tracking algorithm with a reduction of cusps and computation time. As the
cusp-free model without reverse gear [8] also benefits [8, Fig. 12] from PT(R2)-
structure, we leave the Maxwell stratification of this combined model for future
work.
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Abstract. In this paper, we propose a new edge-based active contour
model for image segmentation and curve evolution by an asymmetric
Finsler metric and the corresponding minimal paths. We consider the
edge anisotropy information and the balloon force term to build a Finsler
metric comprising of a symmetric quartic term and an asymmetric lin-
ear term. Unlike the traditional geodesic active contour model where the
curve evolution is carried out by the level set framework, we search for
a more robust optimal curve by solving an Eikonal partial differential
equation (PDE) associated to the Finsler metrics. Moreover, we present
an interactive way for geodesics extraction and closed contour evolu-
tion. Compared to the level set-based geodesic active contour model,
our model is more robust to spurious edges, and also more efficient in
numerical solution.

1 Introduction

Active contours model or the snakes model [1] was proposed by Kass et al. for
boundary detection. The basic idea is to extract a sequence of time-dependent
curves to minimize the curve-based energy where the limit of these curves denotes
the boundary of an object. The snakes energy involves a potential function P

such that Esnake(γ) =
∫ 1

0

(
η1‖γ′(v)‖2 + η2‖γ′′‖2 + P (γ(v))

)
dv, where η1 and η2

are two constants. A curve γ ∈ H2([0, 1], Ω) lies at an open domain Ω ⊂ R
2 with

H2 is a Sobolev space. The terms ‖γ′‖ and ‖γ′′‖ are respective the first- and
second-order derivatives of the path γ. In the past decades, a series of approaches
have been devoted to overcome the drawbacks of the snakes model [1] such as
the initialization sensitivity and the dependence of the parameterization.

The geodesic active contours (GAC) model [2,3] reformulated the snakes
energy Esnake and removed the second-order derivative ‖γ′′‖ from Esnake. The
GAC model leads to important theoretical results. However, in its basic for-
mulation, the geodesic metric is actually an isotropic Riemannian metric which
cannot take into account the curve orientation. In [4,5], the authors extended
the isotropic metric to the anisotropic case and the Finslerian case. The curve
evolution is originally carried out based on the level set framework [6] and the

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 782–790, 2017.
https://doi.org/10.1007/978-3-319-68445-1_90
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Euler-Lagrange equation. Such a curve evolutional strategy costs expensive com-
putation time and known to be sensitive to noise and spurious edges due to the
numerous undesired local minimums. Cohen and Kimmel [7] proposed an effi-
ciently minimal path model, which can be naturally used for open curve detec-
tion. For object segmentation, more efforts [8–10] have been devoted to for closed
contours detection which are used to delineate object boundaries.

In this paper, we propose a new curve evolution scheme based on the Eikonal
interpretation framework of a general regional active contour energy [10]. The
main contribution lies at the construction of a Finsler metric induced from the
balloon force [11] and the anisotropic edge information. In contrast to [10], our
method mainly depends on the anisotropic edge saliency information and balloon
force, which is insensitive to gray levels inhomogeneities.

2 Background on Minimal Path and Eikonal PDE

Let �([0, 1], Ω) be the collection of all Lipschitz continuous curves γ : [0, 1] → Ω.
We denote by S+

2 the collection of 2 × 2 symmetric positive definite matrices. A
norm ‖u‖M is defined by

√
〈u, Mu〉, where M ∈ S+

2 .
Cohen and Kimmel [7] proposed an Eikonal PDE-based method to globally

minimize the following geodesic energy LIso(γ) :=
∫ 1

0
(P(γ(t))+ ε)‖γ′(t)‖ dt with

ε > 0 a constant used for minimal geodesic regularization. The geodesic dis-
tance map U associated to a source s is defined as Us(x) := min{LIso(γ); γ ∈
�([0, 1], Ω)}, which is the viscosity solution to the isotropic Eikonal PDE [7]

‖∇U(x)‖ = P(x) + ε, ∀x ∈ Ω\{s}, and U(s) = 0. (1)

A general Finsler metric F : Ω × R
2 → R

+ is a positive, 1-homogeneous, and
potentially asymmetric function [4,12], based on which the curve length asso-
ciated to the Finsler metric F is defined by LF(γ) :=

∫ 1

0
F(γ(t), γ′(t)) dt. The

Finsler Eikonal PDE [12–15] associated to LF can be expressed by

sup
‖v‖=1

〈∇U(x),v〉
F(x,v)

= 1, ∀x ∈ Ω\{s}, ∀u ∈ R
2, and U(s) = 0. (2)

We consider the Randers metric [16], a special Finsler metric with the form of

F(x,u) = ‖u‖M(x) + 〈ω(x), u〉, ∀x ∈ Ω, ∀u ∈ R
2, (3)

where M : Ω → S+
2 is a positive symmetric definite tensor field and ω : Ω → R

2

is a vector field. The tensor field M and the vector field ω should satisfy

〈ω(x),M−1(x)ω(x)〉 < 1, ∀x ∈ Ω, (4)

to ensure the positivity of F [13,16].
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3 Edge-Based Balloon Eikonal Active Contours

Geodesic interpretation of an edge-based balloon energy. Let χB be the
characteristic function of a region B ⊂ Ω. The balloon force [11] was designed
as external force for active contours by minimizing the region-based term [17]

Eballoon(χB) =
∫

Ω

χB(x)dx =
∫

B

dx, (5)

where B ⊂ R
2 is the interior region of a close path γB ∈ �([0, 1], Ω).

A complete edge-based active contour energy E can be defined by the sum-
mation of an anisotropic edge-based term and a balloon term

E(γB) =
∫ 1

0

‖γ′
B(v)‖Me(γA(v)) dv + α Eballoon(χB), (6)

where Me : Ω → S+
2 is an edge-based tensor field and α < 0 is a constant.

Let g ⊂ Ω be a fixed shape and let Ug be a tubular neighbourhood of a
curve γg such that Ug := {x ∈ Ω; minv∈[0,1] ‖x − γg(v)‖ < r} where r ∈ R

+ is a
constant. Denoting by g′ = g\Ug that is entirely determined by Ug

1. We define
an admissible shape set Φ(Ug) := {B ⊂ Ω; γB ∈ �([0, 1], Ug), g′ ⊂ B}.

In the course of curve evolution, let γBk
(k > 0) be the resulting curve in the

k-th step. We note Uk as the tubular neighbour of γBk
. Our goal is to find an

optimal curve γBk+1 such that Bk+1 ∈ Φ(Uk). This can be done by solving

inf
A∈Φ(Uk)

E(γA) = inf
A∈Φ(Uk)

{∫ 1

0

‖γ′
A(v)‖Me(γA(v))dv + α

∫

A

dx
}

. (7)

For any shape A ∈ Φ(Uk), one has the following equations

E(γA) =
∫ 1

0

‖γ′
A(v)‖Me(γA(v)) dv + α

∫

A

dx

=
∫ 1

0

‖γ′
A(v)‖Me(γA(v)) dv + α

∫

A

χUk
(x) dx + CBk

, (8)

where CBk
= α

∫
A\Uk

dx is a constant associated to the shape Bk. We consider
a vector field ak that satisfies the following divergence equation

divak = α χUk
(9)

1 This is because g′ is the bounded connected component of Ω\Ug .
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and suppose that ωk(x) = Rak(x), ∀x ∈ Ω, where R is the clockwise rotation
matrix with angle π/2. We rewrite Eq. (8) by removing the constant CBk

∫ 1

0

‖γ′
A(v)‖Me(γA(v))dv + α

∫

A

χUk
(x) dx

=
∫ 1

0

‖γ′
A(v)‖Me(γA(v))dv +

∫ 1

0

〈
ak

(
γA(v)

)
,N (v)

〉
‖γ′

A(v)‖dv (10)

=
∫ 1

0

‖γ′
A(v)‖Me(γA(v))dv +

∫ 1

0

〈
ωk

(
γA(v)

)
, T (v)

〉
‖γ′

A(t)‖dt

=
∫ 1

0

Fk(γA(v), γ′
A(v))dv, (11)

where T = R N is the clockwise tangent of γ with the reality that γ′ = T ‖γ′‖.
The function Fk is defined by

Fk(x,u) = ‖u‖Me(x) + 〈ωk(x),u〉. (12)

For a given shape Bk, the problem (7) is equivalent to

inf
A∈Φ(Uk)

∫ 1

0

Fk(γA(v), γ′
A(v))dv, (13)

where the shape A is the interior region of the path γA. Note that the formu-
lation (11) was first used in [10] for geodesic energy interpretation of a general
region-based energy. Here we use it to convert the balloon force energy to a
geodesic energy by a Finsler metic Fk. The crucial point for the curve length
energy (11) is the construction of the vector ωk in Eq. (9). As discussed in [10],
we solve the following PDE-constrained problem

min
{∫

Uk

‖ωk(x)‖2dx
}

, s.t. divωk = α χUk
, (14)

in an optimization-then-discretization manner to obtain the vector field ωk.

A new robust Finsler Metric. The tensor field Me can be expressed by
its eigenvalues λi and eigenvectors νi such that Me(·) =

∑
i λi(·)νi(·)νT

i (·)
following that 1 ≤ λ1(·) ≤ λ2(·). The eigenvalues λi are computed according to
the Frobenius norm of the gradient ∇(Gσ ∗I) of a color image I : Ω → R

3, where
∇(Gσ ∗ I) is a Jacobian matrix with size 2 × 3 and Gσ is a Gaussian filter with
variance σ. Letting g be the Frobenius norm of the gradient ∇(Gσ ∗ I), one has

λ1(·) = exp
(
β1 (‖g‖∞ − g(·))

)
, λ2(·) = exp

(
β2 g(·)

)
λ1(·),

where β1 and β2 are two positive constants. The vector ν1(·) is the eigenvector
of ∇(Gσ ∗ I)(·) corresponding to the smaller eigenvalue. Thus ν1(x) is collinear
to the edge orientation at x. The vector ν2(·) is the remaining eigenvector of
∇(Gσ ∗ I)(·). In this case, β2 controls the anisotropy of the tensor filed Me.
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If x is far from the boundaries, one has λ1(x) ≈ λ2(x) � 1, leading to an
approximately isotropic tensor Me(x) and high metric cost at x. In contrast, if
x is near a boundary, one has λ2(x) � 1 and λ1(x) ≈ 1 corresponding to an
highly anisotropic tensor Me(x).

To obey the positive constraint (4), we should ensure that infx ‖ωk(x)‖ < 1.
We make use of a non-linear map to construct a new vector field ω̃ such that

ω̃k(x) =
(
1 − exp(−α̃ ‖ωk(x)‖)

)
ωk(x)/‖ωk(x)‖, (15)

where α̃ is a positive parameter. The Finsler metric Fk in Eq. (12) thus becomes

F̃k(·,u) = ‖u‖Me(·) + 〈ω̃(·),u〉. (16)

Since the balloon force is only used to drive the curves outward, the use of the
reconstructed Finsler metric F̃ will not modify the goal that F services for [10].

Interactive Segmentation. A curve concatenation operator can be defined by

Γ (v) = (Γ1 � Γ2)(v) =

{
Γ1(2v), if 0 ≤ v < 1

2 ,

Γ2(2v − 1), if 1
2 ≤ v < 1,

where Γ, Γ1, Γ2 ∈ �([0, 1], Ω) are clockwise paths.
Considering a collection {pi}i≤m of m (m ≥ 3) user-provided control points

distributed in a clockwise order along an object boundary. We aim to search
for a closed contour to delineate the target object boundary. This can be done
by concatenating a set of minimal paths associated to the metric Fk, each of
which links a pair of successive landmark points {pi,pi+1}. In Fig. 1a, we show
three control points denoted by red dots. During the curve evolution, in the k-th
iteration, we denote by Ci,k the paths between each pair of successive control
points pi and pi+1 for i < m, and by Cm,k the path linking pm to p1. A
closed contour γBk

, indicating the exterior boundary of the shape Bk, can be
concatenated by γBk

= �m
i=1 Ci,k. Let Uk be the tubular neighbourhood of γBk

.
One can identify a subregion �i ⊂ Uk for each path Ci,k

�i := {x ∈ U ; d(x, Ci,k) < d(x, Cj,k), ∀j �= i} ∪ {Ci,k(0), Ci,k(1)}.

p2

p3

p1

p2

p3

p1

p2

p3

p1

Fig. 1. Illustration for the procedure of interactive image segmentation. Column 1
Control points pi (red dots) and tubular neighbourhood (gray region). Column 2
Separated tubular subregions. Column 3 Extracted minimal paths (solid black curves)
between successive control points. (Color figure online)
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In Fig. 1b, we illustrated each subregion �i by different colours.
Within each region �i, we take pi as the source point to compute the geodesic

distance map Upi
with respect to the metric F via the solution to the Eikonal

PDE (1). Then a minimal path Ci,k+1 is obtained by using Upi
and the gradient

descent ODE (2). The desired closed contour γBk+1 can be concatenated by

γBk+1 = �m
i=1Ci,k+1, (17)

and the shape Bk+1 can be simply identified as the interior region of γBk+1 .
Once we obtain γBk+1 , the vector field ω̃k+1 and metrics F̃k+1 can be updated
using Eqs. (15) and (16), respectively. We illustrate the course of the interactive
segmentation in Fig. 2, where the proposed model can converge to the desired
object boundary in only 4 steps. The curve evolution can be terminated when
the Hausdorff distance between two curves γBk

and γBk+1 is small enough.

Remark. The path Ci,k is actually a globally minimizing curve in the domain
�i with respect to the Finsler metric F̃k, which leads the proposed method to be
insensitive to spurious edges and noise. Moreover, the definition of �i guarantees
the extracted closed contour γBk+1 (see Eq. (17)) to be a simple curve since each
pair of subregions �i and �j has only one intersection point.

Fig. 2. Evolution course of the interactive image segmentation scheme. Column 1
Initialization. Red dots are the control points. Columns 2–5 Segmentation results
from the first iteration to the fourth iteration. (Color figure online)

4 Experimental Results

In Fig. 3, we show the curve evolution results by setting the tensor field Me ≡ Id,
where Id is the identity matrix. These contours (blue curves) inflate outward in
the course of the curve evolution due to the balloon force (negative value of α).
In this experiment the control points pi (red dots) have been fixed. Moreover,
as an option, these control points can be resampled in each iteration (for details
we refer to [10]). In this case, the contours (blue curves) will tend to appear as a
circle and will expand indefinitely since there is no edges to stop the evolution.
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Fig. 3. Curve evolution with Me ≡ Id. Column 1 Control points and initial contour.
Columns 2-3 Evolution results on different iterations. (Color figure online)

Fig. 4. Image segmentation results. Column 1 Initializations. Red dots are user-
specified control points. Column 2 Edge saliency map. Column 3 Segmentation from
GAC model. Column 4 Segmentation from the proposed model. (Color figure online)

We compare our method to the GAC model [2]. The gradient flow of the
GAC model with respect to a level set function2 ψ can be expressed by

ψt = ‖∇ψ‖div(f ∇ψ/‖∇ψ‖) + c f ‖∇ψ‖, (18)

where f(·) = exp(−β2g(·)) and g is defined as the Frobenius norm of the gradient
∇(Gσ ∗ I). The term c f‖∇ψ‖ with c < 0 services as the adaptive balloon force

2 We use the distance preserving method [18] to avoid level set reinitialization.
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such that the curves will go outward in the flatten region where the edge indicator
f(·) � 0. In columns 3 and 4 of Fig. 4, we show the comparison results of
the GAC model and our method, where the corresponding initializations are
illustrated in column 1. We also show the edge saliency map in column 2. One
can see that the proposed model can successfully catch the desired boundaries. In
each tubular subregions �i, our method can find the robust and globally (w.r.t
�i) minimizing curve. In the column 3 of the GAC results, some portions of
the contours leak outside the boundaries due to the constant c for the adaptive
balloon force in Eq. (18). At the same time, some parts of the contours fall
into unexpected local minimums that are inside the objects. We can claim that
compared to the GAC model, the main advantages of the proposed method are
the robust optimality and the use of the user-specified control points.

5 Conclusion

In this paper, we propose a new edge-based active contour model based on the
Finsler Eikonal PDE. The basic idea is to convert the balloon regional term
as a curve energy via an asymmetric Finsler metric including the anisotropic
edge information. The proposed model is able to blend the benefits from the
global optimality of minimal path framework, the efficiency of the fast marching
method and the user intervention. Experiments show that our model indeed
obtains promising results.
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Abstract. We consider a two player game, where a first player has to
install a surveillance system within an admissible region. The second
player needs to enter the monitored area, visit a target region, and then
leave the area, while minimizing his overall probability of detection. Both
players know the target region, and the second player knows the surveil-
lance installation details. Optimal trajectories for the second player are
computed using a recently developed variant of the fast marching algo-
rithm, which takes into account curvature constraints modeling the sec-
ond player vehicle maneuverability. The surveillance system optimization
leverages a reverse-mode semi-automatic differentiation procedure, esti-
mating the gradient of the value function related to the sensor location
in time O(N ln N).

Keywords: Anisotropic fast-marching · Motion planning · Sensors
placement · Game theory · Optimization

1 Introduction

This paper presents a proof of concept numerical implementation of a motion
planning algorithm related to a two player game. A first player selects, within an
admissible class Ξ, an integral cost function on paths, which takes into account
their position, orientation, and possibly curvature. The second player selects a
path, within an admissible class Γ , with prescribed endpoints and an interme-
diate keypoint. The players objective is respectively to maximize and minimize
the path cost

C(Ξ, Γ ) := sup
ξ∈Ξ

inf
γ∈Γ

C(ξ, γ), where C(ξ, γ) :=

∫ T (γ)

0

Cξ(γ(t), γ′(t), γ′′(t)) dt, (1)

This work has been supported by the 662107-SWARMs-ECSEL-2014-1 European
project.

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 791–800, 2017.
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where the path γ is parametrized at unit Euclidean speed, and the final time
T (γ) is free. From a game theoretic point of view, this is a non-cooperative zero-
sum game, where player Ξ has no information and player Γ has full information
over the opponent’s strategy.

The game (1) typically models a surveillance problem [17], and
exp(−C(Ξ,Γ )) is the probability for player Γ to visit a prescribed keypoint
without being detected by player Ξ. For instance player Ξ is responsible for
the installation of radar [1] or sonar detection systems [17], and would like to
prevent vehicles sent by player Γ from spying on some objectives without being
detected.

The dependence of the cost Cξ w.r.t. the path tangent γ′(t) models the varia-
tion of a measure of how detectable the target is (radar cross section, directivity
index, etc.) w.r.t. the relative positions and orientations of the target and sensor.
The dependence of Cξ on the path curvature γ′′(t) models the airplane maneu-
verability constraints, such as the need to slow down in tight turns [9], or even
a hard bound on the path curvature [8].

Strode [17] has shown the interplay of motion planning and game theory in
a similar setting, on a multistatic sonar network use case, but using isotropic
graph-based path planning. The same year, Barbaresco [2] used fast-marching
for computing threatening paths toward a single radar, but without taking into
account curvature constraints and without considering a game setting.

The main contributions of this paper are as follows:

1. Anisotropy and curvature penalization: Strategy optimization for player Γ is
an optimal motion planning problem, with a known cost function. This is
addressed by numerically solving a generalized eikonal PDE posed on a two
or three dimensional domain, and which is strongly anisotropic in the pres-
ence of a curvature penalty and a detection measurement that depends on
orientation. A Fast-Marching algorithm, relying on recent adaptive stencils
constructions, based on tools from lattice geometry, is used for that pur-
pose [9,12,13]. In contrast, the classical fast marching method [14] used in [5]
is limited to cost functions Cξ(γ(t)) independent of the path orientation γ′(t)
and curvature γ′′(t).

2. Gradient computation for sensors placement: Strategy optimization for player
Ξ is typically a non-convex problem, to which various strategies can be
applied, yet gradient information w.r.t. the variable ξ ∈ Ξ is usually of help.
For that purpose, we implement efficient differentiation algorithms, forward
and reverse, for estimating the gradient of the value function of player Ξ

∇ξC(ξ, Γ ), where C(ξ, Γ ) := inf
γ∈Γ

C(ξ, γ). (2)

Reverse mode differentiation reduced the computation cost of ∇ξC(ξ, Γ ) from
O(N2), as used in [5], to O(N lnN), where N denotes the number of dis-
cretization points of the domain. As a result, we can reproduce examples
from [5] with computation times reduced by several orders of magnitude, and
address complex three dimensional problems.
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Due to space constraints, this paper is focused on problem modeling and
numerical experiments, rather than on mathematical aspects of wellposedness
and convergence analysis. Free and open source codes for reproducing (part of)
the presented numerical experiments are available on the first author’s webpage1.

2 Mathematical Background of Trajectory Optimization

We describe in this section the PDE formalism, based on generalized eikonal
equations, used to compute the value function minγ∈Γ C(ξ, γ) of the second
player, where ξ is known and fixed. Their discretization is discussed in Sect. 3.
We distinguish two cases, depending on whether the path local cost function
Cξ(x, ẋ, ẍ) appearing in (1) depends on the last entry ẍ, i.e. on path curvature.

2.1 Curvature Independent Cost

Let Ω ⊂ E := R
2 be a bounded domain, and let the source set Υ and target set

Θ be disjoint subsets of Ω. For each x ∈ Ω, let Γx denote the set of all paths
γ ∈ C1([0, T ], Ω), where T = T (γ) is free, such that γ(0) ∈ Υ , γ(T ) = x and
∀t ∈ [0, T ], ‖γ′(t)‖ = 1. The problem description states that the first player needs
to go from Υ to Θ and back, hence its set of strategies is Γ =

⋃
x∈Θ Γ+

x × Γ−
x ,

where Γ+
x = Γ−

x := Γx, and

C(ξ, Γ ) = inf
x∈Θ

u+
ξ (x) + u−

ξ (x), where u±
ξ (x) := inf

γ∈Γ±
x

C±(ξ, γ). (3)

Here and below, the symbol “±” must be successively replaced with “+” and
then “−”. We denoted by C± the path cost defined in terms of the local cost
Cξ(x,±ẋ). In practice though, we only consider symmetric local costs, obeying
Cξ(x, ẋ) = Cξ(x,−ẋ), hence the forward and return paths are identical and we
denote uξ := u+

ξ = u−
ξ . Define the 1-homogenous metric Fξ : Ω × E → [0,∞],

the Lagrangian Lξ and the Hamiltonian Hξ by

Fξ(x, ẋ) := ‖ẋ‖Cξ(x, ẋ/‖ẋ‖), Lξ :=
1
2
F2

ξ , Hξ(x, x̂) := sup
ẋ∈E

〈x̂, ẋ〉 − Lξ(x, ẋ).

Here and below, symbols denoting tangent vectors are distinguished with a
“dot”, e.g. ẋ, and co-vectors with a “hat”, e.g. x̂. Under mild assumptions [3],
the function uξ : Ω → R is the unique viscosity solution to a generalized eikonal
equation ∀x ∈ Ω \ Υ, Hξ(x,∇xuξ(x)) = 1/2, ∀x ∈ Υ, uξ(x) = 0, with out-
flow boundary conditions on ∂Ω. The discretization of this PDE is discussed
in Sect. 3. We limit in practice our attention to Isotropic costs Cξ(x), and
Riemannian costs Cξ(x, ẋ) =

√〈ẋ,Mξ(x)ẋ〉 where Mξ(x) is symmetric positive
definite, for which efficient numerical strategies have been developed [11,12].

1 github.com/Mirebeau/HamiltonianFastMarching.

http://github.com/Mirebeau/HamiltonianFastMarching
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2.2 Curvature Dependent Cost

Let Ω ⊂ R
2 × S

1 be a bounded domain, within the three dimensional space of
all positions and orientations. As before, let Υ,Θ ⊂ Ω. For all x ∈ Ω let Γ±

x be
the collection of all γ ∈ C2([0, T ], Ω), such that η := (γ,±γ′) satisfies η(0) ∈ Υ ,
η(T ) = x and ∀t ∈ [0, T ], ‖γ′(t)‖ = 1. Since the first player needs to go from Υ
to Θ and back, its set of strategies is Γ =

⋃
x∈Θ Γ+

x × Γ−
x . Equation (3) holds,

where C± denotes the path cost defined in terms of the local cost Cξ(p,±ṗ, p̈).
Consider the 1-homogeneous metric F±

ξ : TΩ → [0,∞], defined on the tan-
gent bundle to Ω ⊂ R

2 × S
1 by

F±
ξ ((p, n), (ṗ, ṅ)) :=

{
+∞ if ṗ �= ‖ṗ‖n,

‖ṗ‖Cξ(p, n,±ṅ/‖ṗ‖) else,

where p ∈ R
2, n ∈ S

1 is a unit vector, and the tangent vector satisfies ṗ ∈ R
2, ṅ ⊥

n. This choice is motivated by the fact that
∫ T

0
F±

ξ (η(t), η′(t))dt is finite iff η :

[0, T ] → Ω is of the form (γ,±γ′), and then it equals
∫ T

0
Cξ(γ(t),±γ′(t), γ′′(t))dt.

Introducing the Lagrangian L±
ξ = 1

2 (F±
ξ )2 on TΩ, and its Legendre-Fenchel

dual the Hamiltonian H±
ξ , one can again under mild assumptions characterize u±

ξ

as the unique viscosity solution to the generalized eikonal PDE H±
ξ (x,∇u±

ξ (x)) =
1/2 with appropriate boundary conditions [3]. In practice, we choose cost func-
tions of the form Cξ(p, ṗ, p̈) = C◦

ξ (p, ṗ)C�(|p̈|), where C� is the Reeds-Shepp car or
Dubins car [8] curvature penalty, with respective labels � = RS and D, namely

CRS(κ) :=
√

1 + ρ2κ2, CD(κ) :=

{
1 if |ρκ| ≤ 1,

+∞ otherwise,

where ρ > 0 is a parameter which has the dimension of a curvature radius.
The Dubins car can only follow paths which curvature radius is ≤ ρ, whereas
the Reeds-Shepp car (in the sense of [9] and without reverse gear), can
rotate into place if needed. The Hamiltonian then has the explicit expression
H((p, n), (p̂, n̂)) = 1

2C0
ξ (p, n)−2H∗(n, (p̂, n̂)) where HRS = 1

2 (〈p̂, n〉2+ + ‖n̂/ρ‖2)
and HD = 1

2 max{0, 〈p̂, n〉 + ‖n̂/ρ‖}2.

3 Discretization of Generalized Eikonal Equations

We construct a discrete domain X by intersecting the computational domain
with an orthogonal grid of scale h > 0: X = Ω ∩ (hZ)d, where d = 2 for the
curvature independent models, and d = 3 for the other models which are posed
on R

2×(R/2πZ) —using the angular parametrization S
1 ∼= R/2πZ (in the latter

periodic case, 2π/h must be an integer). We design weights cξ(x, y), x, y ∈ X
such that for any tangent vector ẋ at x ∈ Ω one has

Hξ(x, ẋ) ≈ h−2
∑

y∈X

c2ξ(x, y)〈x − y, ẋ〉2+, (4)
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where a+ := max{0, a} (expression (4) is typical, although some models require
a slight generalization). The weights cξ(x, y) are non-zero for only few (x, y) ∈ X
at distance ‖x − y‖ = O(h). Their construction exploits the additive structure
of the discretization grid X and relies on techniques from lattice geometry [16],
see [9,12,13] for details. The generalized eikonal PDE Hξ(x,∇xuξ(x)) = 1/2,
which solution uξ(x) should be regarded as a distance map, is discretized as

∑

y∈X

c2ξ(x, y)(Uξ(x) − Uξ(y))2+ = h2/2, (5)

with adequate boundary conditions. The solution Uε : X → R to this system of
equations is computed in a single pass with O(N ln N) complexity [14], using a
variant of the Fast-Marching algorithm. This is possible since the l.h.s. of (5) is
a non-decreasing function of the positive parts of the finite differences (Uξ(x) −
Uξ(y))y∈X . Note that the eikonal PDE discretization (5), based on upwind finite
differences, differs from the semi-Lagrangian approach [15], which can also be
solved in a single pass but is usually less efficient due to the large cardinality and
radius of its stencils. Image segmentation techniques relying on the numerical
solutions to anisotropic eikonal PDEs were proposed in [6] using Riemannian
metrics, and in [4,7] based on the reversible Reeds-Shepp car and Euler elastica
curvature penalized models respectively. However these early works rely on non-
causal discretizations, which have super-linear complexity O(N1+1/d) where the
unspecified constant is large for strongly anisotropic and non-uniform metrics.
This alternative approach yields (much) longer solve times, incompatible our
application - where strongly anisotropic three dimensional eikonal PDEs are
solved as part of an inner loop of an optimization procedure.

To be able to use the gradient to solve the problem (1), we need to differ-
entiate the cost C(ξ, Γ ) w.r.t. the first player strategy ξ ∈ Ξ. In view of (3),
this only requires the sensitivity of the discrete solution values Uξ(x∗) at the few
points x∗ ∈ X ∩ Θ, w.r.t to variations in the weights cξ(x, y), x, y ∈ X. For that
purpose we differentiate (5) w.r.t. ξ at an arbitrary point x ∈ X \ Υ , and obtain

∑

y∈X

ωξ(x, y) (dUξ(x) − dUξ(y) + (Uξ(x) − Uξ(y)) d ln cξ(x, y)) = 0,

where ωξ(x, y) := c2ξ(x, y)(Uξ(x) − Uξ(y))+. Therefore

dUξ(x) =
∑

y∈X

αξ(x, y)dUξ(y) +
∑

y∈X

βξ(x, y)dcξ(x, y), (6)

where αξ(x, y) := ωξ(x, y)/
∑

y ωξ(x, y), and βξ(x, y) := αξ(x, y)/cξ(x, y). We
first choose x = x∗ in (6), and then recursively eliminate the terms dUξ(y) by
applying the same formula at these points, except for points in the source set
y ∈ Υ for which one uses the explicit expression dUξ(y) = 0 (since Uξ(y) = 0
is in this case independent of ξ). This procedure terminates: indeed, whenever
dUξ(x) depends on dUξ(y) in (6), one has αξ(x, y) > 0, thus ω(x, y) > 0, hence
Uξ(x) > Uξ(y). It is closely related to automatic differentiation by reverse accu-
mulation [10], and has the modest complexity O(N).
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4 Numerical Results

The chosen physical domain R is the rectangle [0, 2]×[0, 1] minus some obstacles,
as illustrated on Fig. 1. Source point is (0.2, 0.5) and target keypoint (1.8, 0.5).
The computational domain is thus Ω = R for curvature independent models and
Ω = R × S

1 for curvature dependent models, which is discretized on a 180 × 89
or 180 × 89 × 60 grid.

No intervention from the first player. The cost function is Cξ(p, ṗ, p̈) = C∗(|p̈|),
where C∗(κ) is respectively 1,

√
1 + ρ2κ2 and (1 if ρκ ≤ 1, otherwise +∞), with

ρ := 0.3. The differences between the three models are apparent: the curvature
independent model uses the same path forward and back; the Reeds-Shepp car
spreads some curvature along the way but still makes an angle at the target
point; the Dubins car maintains the radius of curvature below the bound ρ,
and its trajectory is a succession of straight and circular segments. A referee
notes that following an optimal trajectory for the Dubins model is dangerous in
practice, since any small deviation is typically impossible to correct locally, and
may drive into an obstacle; these trajectories are also easier to detect due to the
large circular arc motions.

Curvature independent Reeds Shepp car, forward only Dubins car

Fig. 1. Shortest path from the blue point (left) to the red keypoint (right) and back.
(Color figure online)

Next we study three games where player one aims to detect player two along
its way from the source set Υ to the target Θ and back, using different means. If
the first player does not intervene, see Fig. 1, or if its strategy is not optimized,
see Fig. 3, then there is typically a unique optimal path (optimal loop in our
games) for player two. In contrast, an interesting qualitative property of the
optimal strategy ξ ∈ Ξ for the first player is that it has a large number of
optimal responses from player two, see Fig. 4, in some cases even a continuum,
see Fig. 2 (bottom) and [5]. This is typical of two player games.

Fresh paint based detection. In this toy model, see Fig. 2, the first player spreads
some fresh paint over the domain, and the second player is regarded as detected
if he comes back covered in it from his visit to the keypoint. The cost function
is Cξ(p, ṗ, p̈) = ξ(p)C∗(|p̈|), where ξ : R → R+ is the fresh paint density, decided
by the first player, and C∗(κ) is as above. For wellposedness, we impose upper
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Curvature independent Reeds Shepp car, forward only Dubins car

Fig. 2. Top: Optimal distribution of paint, to mark a path from the blue point (left)
to the red keypoint (right) and back. Bottom: Geodesic density at the optimal paint
distribution. (Color figure online)

and lower bounds on the paint density, namely 0.1 ≤ ξ(p) ≤ 1, and subtract
the paint supply cost

∫
R

ξ(p)dp to (1). The main interest of this specific game,
also considered in [5], is that C(ξ, Γ ) is concave w.r.t. ξ ∈ Ξ. The observed
optimal strategy for player Ξ is in the curvature independent case to make some
“fences” of paint between close obstacles, and in the curvature penalized models
to deposit paint at the edges of obstacles, as well as along specific circular arcs
for the Dubins model.

Visual detection. The first player places some cameras, e.g. with 360-degree
field of view and mounted at the ceiling, which efficiency at detecting the second
player decreases with distance and is blocked by obstacles, see Fig. 3. The cost
function is

Cξ(p, ṗ, p̈) = C∗(κ)
∑

q∈ξ
[p,q]⊂R

1
‖q − p‖2 , (7)

where ξ ∈ Ξ is a subset of R with prescribed cardinality, two in our experiments.
The green arrows on Fig. 3 originate from the current (non optimal) camera
position, and point in the direction of greatest growth ∇C(ξ, Γ ) for the first
player objective function.

Radar based detection. The first player places some radars on the domain
R = [0, 2] × [0, 1], here devoid of obstacles, and the second player has to fly
by undetected. The cost function is

Cξ(p, ṗ, p̈) = C∗(|p̈|)
√
√
√
√

∑

q∈ξ

〈ṗ, npq〉2 + δ2〈ṗ, n⊥
pq〉

‖p − q‖4 (8)

where npq := (q−p)/‖q−p‖. The first player strategy ξ contains the positions of
three radars, constrained to lie in the subdomain [0.4, 1.6]× [0, 1]. The parameter
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Curvature independent Reeds Shepp forward Dubins car

Curvature independent Reeds Shepp forward Dubins car

Fig. 3. Field of view of the cameras (black gradients), optimal furtive paths (red lines),
local direction of improvement of the camera position (green arrows). (Color figure
online)

δ is set to 1 for an isotropic radar cross section (RCS), or to 0.2 for an anisotropic
RCS. In the latter case a plane showing its side to radar is five times less likely
to be detected than a plane showing its nose or back, at the same position.
Green arrows on Fig. 4 point from the original position to the (locally) optimized
position for player Ξ. At this position, several paths are optimal for player Γ ,
shown in red on Fig. 4.

Curvature independent Reeds Shepp forward Dubins car

Curvature independent Reeds Shepp forward Dubins car

Fig. 4. Optimal radar placement with an isotropic (top) or anisotropic (bottom) radar
cross section.

Computational cost. On a standard Laptop computer (2.7 Ghz, 16 GB ram),
optimizing the second player objective, by solving a generalized eikonal equation,
takes ≈1 s in the curvature dependent case, and ≈ 60 times less in the curvature
independent case thanks to the absence of angular discretization of the domain.
Optimizing the first player objective takes ≈100 L-BFGS iterations, each one
taking at most 8 s. For the stability of the minimization procedure, the problems
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considered were slightly regularized by the use of soft-minimum functions and
by “blurring” the target keypoint over the 3 × 3 box of adjacent pixels.

5 Conclusion

We have modeled a motion planning problem that minimize an anisotropic prob-
ability of detection, taking into account navigation constraints while computing
the gradient of the value function related to the sensors location. This model is
thus useful for surveillance applications modeled as a two-player zero-sum game
involving a target that tries to avoid detection.
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Abstract. We introduce a class of paths defined in terms of two
deformed exponential functions. Exponential paths correspond to a spe-
cial case of this class of paths. Then we give necessary and sufficient
conditions for any two probability distributions being path connected.

1 Introduction

In Non-parametric Information Geometry, many geometric structures can be
defined in terms of paths connecting probability distributions. It is shown in
[1,5,6] that two probability distributions are connected by an open expo-
nential path (or exponential arc) if and only if they belong to the same
exponential family. Exponential paths are the auto-parallel curves w.r.t. the
exponential connection. Using deformed exponential functions, we can define an
analogue version of exponential paths. A deformed exponential ϕ : R → [0,∞) is
a convex function such that limu→−∞ ϕ(u) = 0 and limu→∞ ϕ(u) = ∞. Eguchi
and Komori in [3] introduced and investigated a class of paths defined in terms
of deformed exponential functions. In the present paper we extend the defini-
tion of paths given in [3], and then we show equivalent conditions for any two
probability distributions being path connected.

Throughout the text, (T,Σ, μ) denotes the σ-finite measure space on which
probability distributions (or probability density functions) are defined. All prob-
ability distributions are assumed to have positive density w.r.t. the underlying
measure μ. In other words, they belong to the collection Pμ = {p ∈ L0 :

∫
T

pdμ =
1 and p > 0}, where L0 is the space of all real-valued, measurable functions on
T , with equality μ-a.e.

Let us fix a positive, measurable function u0 : T → (0,∞). Given two prob-
ability distributions p and q in Pμ, a ϕ1/ϕ2-path (or ϕ1/ϕ2-arc) is a curve

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 801–808, 2017.
https://doi.org/10.1007/978-3-319-68445-1_92
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in Pμ defined by α �→ ϕ1(αϕ−1
2 (p) + (1 − α)ϕ−1

2 (q) + κ(α)u0). The constant
κ(α) := κ(α; p, q) ∈ R is introduced so that

∫

T

ϕ1(αϕ−1
2 (p) + (1 − α)ϕ−1

2 (q) + κ(α)u0)dμ = 1. (1)

We use the word “ϕ-path” in the place of “ϕ/ϕ-path” (i.e., if ϕ1 = ϕ2 = ϕ). The
case where ϕ1 = ϕ2 = ϕ and u0 = 1 was analyzed by Eguchi and Komori in [3].
Exponential paths correspond to ϕ1(·) and ϕ2(·) equal to exp(·), and u0 = 1.
A ϕ1/ϕ2-path can be seen as a ϕ1-path connecting ϕ1(ϕ−1

2 (p) + κ(1)u0) and
ϕ1(ϕ−1

2 (q)+κ(0)u0). Unless ϕ1 = ϕ2 = ϕ, a ϕ1/ϕ2-path does not connect p and
q. We can use κ(α) to define the divergence

D(α)(p ‖ q) = − 1
α

κ(0) − 1
1 − α

κ(1) +
1

α(1 − α)
κ(α).

This divergence for ϕ1 = ϕ2 = ϕ is related to a generalization of Rényi diver-
gence, which was introduced by the authors in [2]. If ϕ1(·) and ϕ2(·) are equal
to exp(·), and u0 = 1, then D(α)(· ‖ ·) reduces to Rényi divergence.

The main goal of this notes is to give necessary an sufficient conditions for
the existence of κ(α) in (1) for every p, q ∈ Pμ and α ∈ [0, 1].

Proposition 1. Assume that the measure μ is non-atomic. Let ϕ1, ϕ2 : R →
(0,∞) be two positive, deformed exponential functions, and let u0 : T → (0,∞) be
a positive, measurable function. Fix any α ∈ (0, 1). For every pair of probability
distributions p and q in Pμ, there exists a constant κ(α) := κ(α; p, q) satisfying
(1) if, and only if,

∫

T

ϕ1(c + λu0)dμ < ∞, for all λ ≥ 0, (2)

for each measurable function c : T → R satisfying
∫

T
ϕ2(c)dμ < ∞.

A proof of this proposition is shown in the next section. Using some results
involved in the proof of Proposition 1, we give an equivalent criterion for the
existence of u0 satisfying condition (2) for ϕ1 = ϕ2 = ϕ. As consequence, there
may exist functions ϕ1 = ϕ2 = ϕ for which we cannot find u0 satisfying (2), a
result which was shown in [2] (Example 2).

2 Results

We begin by showing an equivalent criterion for condition (2).

Proposition 2. Two deformed exponential functions ϕ1, ϕ2 : R → [0,∞) and
a measurable function u0 : T → (0,∞) satisfy condition (2) if, and only if, for
each λ > 0, we can find α ∈ (0, 1) and a measurable function c : T → R∪ {−∞}
such that

∫
T

ϕ1(c)dμ < ∞ and

αϕ1(u) ≤ ϕ2(u − λu0(t)), for all u ≥ c(t), (3)

for μ-a.e. t ∈ T .
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The proof of Proposition 2 requires a preliminary result.

Lemma 1. Suppose that, for each λ > 0, we cannot find α ∈ (0, 1) and a
measurable function c : T → R ∪ {−∞} such that

∫
T

ϕ1(c)dμ < ∞ and

αϕ1(u) ≤ ϕ2(u − λu0(t)), for all u ≥ c(t). (4)

Then there exist sequences {λn}, {cn} and {An} of positive numbers λn ↓ 0,
measurable functions, and pairwise disjoint, measurable sets, respectively, such
that

∫

An

ϕ1(cn)dμ = 1 and
∫

An

ϕ2(cn − λnu0)dμ ≤ 2−n, for all n ≥ 1. (5)

Proof. Let {λ′
m} be a sequence of positive numbers λ′

m ↓ 0. For each m ≥ 1, we
define the function

fm(t) = sup{u ∈ R : 2−mϕ1(u) > ϕ2(u − λ′
mu0(t))},

where we use the convention sup ∅ = −∞. We will verify that fm is measurable.
For each rational number r, define the measurable sets

Em,r = {t ∈ T : 2−mϕ1(r) > ϕ2(r − λ′
mu0(t))}

and the simple functions um,r = rχEm,r
. Let {ri} be an enumeration of the

rational numbers. For each m, k ≥ 1, consider the non-negative, simple functions
vm,k = max1≤i≤k um,ri

. Moreover, denote Bm,k =
⋃k

i=1 Em,ri
. By the continuity

of ϕ1(·) and ϕ2(·), it follows that vm,kχBm,k
↑ fm as k → ∞, which shows that

fm is measurable. Since (4) is not satisfied, we have that
∫

T
ϕ1(fm)dμ = ∞ for

all m ≥ 1. In virtue of the Monotone Convergence Theorem, for each m ≥ 1,
we can find some km ≥ 1 such that the function vm = vm,km

and the set
Bm = Bm,km

satisfy
∫

Bm
ϕ1(vm)dμ ≥ 2m. Clearly, we have that ϕ1(vm)χBm

<

∞ and 2−mϕ1(vm)χBm
≥ ϕ2(vm − λ′

mu0)χBm
. By Lemma 8.3 in [4], there

exist an increasing sequence {mn} of indices and a sequence {An} of pairwise
disjoint, measurable sets such that

∫
An

ϕ1(vmn
)dμ = 1. Clearly,

∫
An

ϕ2(vmn
−

λ′
mn

u0)dμ ≤ 2−mn . Denoting λn = λ′
mn

, cn = vmn
, we obtain (5).

Proof (Proposition 2). Assume that ϕ1(·), ϕ2(·) and u0 satisfy condition (2).
Suppose that expression (3) does not hold. Let {λn}, {cn} and {An} be as stated
in Lemma 1. Then we define c = c0χT\A +

∑∞
n=1(cn − λnu0)χAn

, where A =⋃∞
n=1 An and c0 : T → R is any measurable function such that

∫
T\A

ϕ2(c0)dμ <

∞. In view of (5), we have

∫

T

ϕ2(c)dμ =
∫

T\A

ϕ2(c0)dμ +
∞∑

n=1

∫

An

ϕ2(cn − λnu0)dμ

≤
∫

T\A

ϕ2(c0)dμ +
∞∑

n=1

2−n < ∞.
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Given any λ > 0, we take n0 ≥ 1 such that λ ≥ λn for all n ≥ n0. Then we can
write

∫

T

ϕ1(c + λu0)dμ ≥
∞∑

n=n0

∫

An

ϕ1(cn + (λ − λn)u0)dμ

≥
∞∑

n=n0

∫

An

ϕ1(cn)dμ =
∞∑

n=1

1 = ∞. (6)

which is a contradiction to condition (2).
Conversely, suppose that expression (3) holds for a given λ > 0. Let c̃ : T → R

be any measurable function satisfying
∫

T
ϕ2(c̃)dμ < ∞. Denote A = {t : c̃(t) +

λu0 ≥ c(t)}. We use inequality (3) to write

α

∫

T

ϕ1(c̃ + λu0)dμ ≤ α

∫

A

ϕ1(c̃ + λu0)dμ + α

∫

T\A

ϕ1(c)dμ

≤
∫

A

ϕ2(c̃)dμ +
∫

T\A

ϕ2(c − λu0)dμ < ∞.

Thus, condition (2) follows.

Before we give a proof of Proposition 1, we show the following technical result.

Lemma 2. Let ϕ1, ϕ2 : R → (0,∞) be positive, deformed exponential functions,
and c̃ : T → R a measurable function such that

∫
A

ϕi(c̃)dμ < 1, for i = 1, 2,
where A and B = T \ A are measurable sets such that μ(A) > 0 and μ(B) > 0.
Fix any α ∈ (0, 1). Then we can find measurable functions b1, b2 : T → R for
which p = ϕ2(c1) and q = ϕ2(c2) are in Pμ, where c1 = c̃χA + b1χB and
c2 = c̃χA + b2χB, and

∫

T

ϕ1(αϕ−1
2 (p) + (1 − α)ϕ−1

2 (q)) < 1. (7)

In addition, we assume b1χB = b2χB.

Proof. Let {Bn} be a sequence of measurable sets such that B =
⋃∞

n=1 Bn and
0 < μ(Bn) < ∞. For each n ≥ 1, we select measurable sets Cn and Dn such
that Bn = Cn ∪ Dn and μ(Cn) = μ(Dn) = 1

2μ(Bn). Let {γ
(1)
n } and {γ

(2)
n } be

sequences of positive numbers satisfying

∞∑

n=1

γ(1)
n < 1 −

∫

A

ϕ1(c̃)dμ, and
∞∑

n=1

γ(2)
n = 1 −

∫

A

ϕ2(c̃)dμ.

Then we take βn ∈ R and θn > 0 such that

ϕ2(βn) + ϕ2(−θn) = 2
γ
(2)
n

μ(Bn)
(8)
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and

ϕ1(αβn − (1 − α)θn) + ϕ1(−αθn + (1 − α)βn) ≤ 2
γ
(1)
n

μ(Bn)
. (9)

Numbers βn and θn satisfying (8) and (9) exist because ϕ1(·) and ϕ2(·) are
positive, and βn < ϕ−1

2 (2γ
(2)
n /μ(Bn)). Let us define

b1 =
∞∑

n=1

βnχCn
− θnχDn

and

b2 =
∞∑

n=1

−θnχCn
+ βnχDn

.

From these choices, it follows that

∫

B

ϕ2(b1)dμ =
∞∑

n=1

ϕ2(βn)μ(Cn) + ϕ2(−θn)μ(Dn)

=
∞∑

n=1

[ϕ2(βn) + ϕ2(−θn)]
μ(Bn)

2

=
∞∑

n=1

γ(2)
n = 1 −

∫

A

ϕ1(c̃)dμ,

which implies that
∫

T
ϕ2(c1) = 1, where c1 = c̃χA + b1χB. Similarly, we have

that
∫

T
ϕ2(c2) = 1, where c2 = c̃χA + b2χB. On the other hand, we can write

∫

B

ϕ1(αb1 + (1 − α)b2)

=
∞∑

n=1

ϕ1(αβn − (1 − α)θn)μ(Cn) + ϕ1(−αθn + (1 − α)βn)μ(Dn)

=
∞∑

n=1

[ϕ1(αβn − (1 − α)θn) + ϕ1(−αθn + (1 − α)βn)]
μ(Bn)

2

≤
∞∑

n=1

γ(1)
n < 1 −

∫

A

ϕ1(c̃)dμ,

from which expression (7) follows.

Finally we can present a proof of Proposition 1.

Proof (Proposition 1). Because ϕ2(·) is convex, it follows that
∫

T
ϕ2(c)dμ < ∞,

where c = αϕ−1
2 (p)+(1−α)ϕ−1

2 (q). Condition (2) along with the Monotone Con-
vergence Theorem and the continuity of ϕ1(·) implies the existence and unique-
ness of κ(α).
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Conversely, assume the existence of κ(α) in (1) for every p, q ∈ Pμ. We begin
by showing that

∫

T

ϕ1(c − λu0)dμ < ∞, for all λ ≥ 0, (10)

for every measurable function c : T → R such that
∫

T
ϕ2(c)dμ < ∞. If expres-

sion (10) does not hold, then for some measurable function c : T → R with∫
T

ϕ2(c)dμ < ∞, and some λ0 ≥ 0, we have

⎧
⎪⎪⎨

⎪⎪⎩

∫

T

ϕ1(c − λu0)dμ < ∞, for λ0 ≤ λ,

∫

T

ϕ1(c − λu0)dμ = ∞, for 0 ≤ λ < λ0,

(11)

or ⎧
⎪⎪⎨

⎪⎪⎩

∫

T

ϕ1(c − λu0)dμ < ∞, for λ0 < λ,

∫

T

ϕ1(c − λu0)dμ = ∞, for 0 ≤ λ ≤ λ0.

(12)

Notice that expression (11) with λ0 = 0 corresponds to (10). So in (11) we
assume that λ0 > 0. Let {Tn} be a sequence of non-decreasing, measurable sets
with 0 < μ(Tn) < μ(T ) and μ(T \ ⋃∞

n=1 Tn) = 0. Define En = Tn ∩ {c − λ0u0 ≤
n}, for each n ≥ 1. Clearly, the sequence {En} is non-decreasing and satisfies
μ(En) < ∞ and μ(T \ ⋃∞

n=1 En) = 0.
If expression (11) is satisfied for λ0 > 0, we select a sufficiently large n0 ≥ 1

such that
∫

T\En0
ϕi(c − λ0u0)dμ < 1, for i = 1, 2. Denote A := T \ En0 and

B := En0 . According to Lemma 2, we can find measurable functions for which
p = ϕ2(c1) and q = ϕ2(c2) are in Pμ, where c1 = (c − λ0u0)χA + b1χB+ and
c2 = (c − λ0u0)χA + b2χB , and inequality (7) is satisfied. For any λ > 0, we can
write

∫

T

ϕ1(αϕ−1
2 (p) + (1 − α)ϕ−1

2 (q) + λu0) ≥
∫

B

ϕ1(c − (λ0 − λ)u0)dμ

=
∫

T

ϕ1(c − (λ0 − λ)u0)dμ −
∫

An0

ϕ1(c − (λ0 − λ)u0)dμ = ∞.

By this expression and inequality (7), we conclude that the constant κ(α) as
defined by (1) cannot be found.

Now suppose that (12) is satisfied. Let {λn} be a sequence in (λ0,∞) such
that λn ↓ λ0. We define inductively an increasing sequence {kn} ⊆ N as follows.
Choose k0 ≥ 1 such that

∫
T\Ek0

ϕ1(c − λ1u0)dμ ≤ 2−2. Given kn−1 we select
some kn > kn−1 such that

∫

Ekn\Ekn−1

ϕ1(c − λ0u0)dμ ≥ 1
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and ∫

T\Ekn

ϕ1(c − λn+1u0)dμ ≤ 2−(n+2).

Let us denote An = Ekn
\ Ekn−1 for n ≥ 1. Notice that the sets An are pairwise

disjoint. Take n0 > 1 such that
∫

A
ϕ2(c)dμ < 1, where A =

⋃∞
n=n0

An. Now we
define c̃ =

∑∞
n=n0

(c − λnu0)χAn
. As a result of these choices, it follows that

∫

A

ϕ1(c̃)dμ =
∞∑

n=n0

∫

An

ϕ(c − λnu0)dμ ≤
∞∑

n=n0

2−n0 < 1

and ∫

A

ϕ2(c̃)dμ <

∫

A

ϕ2(c)dμ < 1.

Denote B = T \ A. In view of Lemma 2, there exist measurable functions
b1, b2 : T → R such that p = ϕ2(c1) and q = ϕ2(c2) are in Pμ, where
c1 = c̃χA + b1χB and c2 = c̃χA + b2χB , and inequality (7) is satisfied. Con-
sequently, if the constant κ(α) as defined in (1) exists, then k(α) > 0. Fixed
arbitrary λ > 0, we take n1 ≥ n0 such that λn − λ ≤ λ0 for all n ≥ n1. Observ-
ing that

∫
An

ϕ1(c − λ0u0)dμ ≥ 1, we can write
∫

T

ϕ1(αϕ−1
2 (p) + (1 − α)ϕ−1

2 (q) + λu0)dμ ≥
∫

A

ϕ1(c̃ + λu0)dμ

≥
∞∑

n=n1

∫

An

ϕ1(c − (λn − λ)u0)dμ ≥
∞∑

n=n1

1 = ∞,

which shows that κ(α) cannot be found.
Suppose that condition (2) is not satisfied. By Proposition 2 and Lemma 1, we

can find sequences {λn}, {cn} and {An} of positive numbers λn ↓ 0, measurable
functions, and pairwise disjoint, measurable sets, respectively, such that

∫

An

ϕ1(cn)dμ = 1 and
∫

An

ϕ2(cn − λnu0)dμ ≤ 2−n, for all n ≥ 1.

By expression (10), we can conclude that
∑∞

n=n0

∫
An

ϕ1(cn−λnu0)dμ < ∞. Then
we can take some n0 > 1 for which the function c̃ =

∑∞
n=n0

(cn − λnu0)χAn

satisfies
∫

A
ϕi(c̃)dμ < 1, for i = 1, 2, where A =

⋃∞
n=n0

An. Let us denote
B = T \ A. From (2), there exist measurable functions b1, b2 : T → R such
that p = ϕ2(c1) and q = ϕ2(c2) belong to Pμ, where c1 = c̃χA + b1χB and
c2 = c̃χA + b2χB, and inequality (7) holds. Given any λ > 0, take n1 ≥ n0 such
that λ ≥ λn for all n ≥ n1. Then we can write

∫

T

ϕ1(αϕ−1
2 (p) + (1 − α)ϕ−1

2 (q) + λu0)dμ ≥
∫

A

ϕ1(c̃ + λu0)dμ

≥
∞∑

n=n1

∫

An

ϕ1(cn + (λ − λn)u0)dμ ≥
∞∑

n=n1

∫

An

ϕ1(cn)dμ = ∞.
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This expression and inequality (7) imply that the constant κ(α) as defined by
(1) cannot be found. Therefore, condition (2) have to be satisfied.

The next result is a consequence of Proposition 2.

Proposition 3. Let ϕ : R → [0,∞) be a deformed exponential. Then we can
find a measurable function u0 : R → (0,∞) for which condition (2) holds for
ϕ1 = ϕ2 = ϕ if, and only if,

lim sup
u→∞

ϕ(u)
ϕ(u − λ0)

< ∞, for some λ0 > 0. (13)

Proof. By Proposition 2 we can conclude that the existence of u0 implies (13).
Conversely, assume that expression (13) holds for some λ0 > 0. In this case,
there exists M ∈ (1,∞) and c ∈ R such that ϕ(u)

ϕ(u−λ0)
≤ M for all u ≥ c. Let

{λn} be any sequence in (0, λ0] such that λn ↓ 0. For each n ≥ 1, define

cn = sup{u ∈ R : αϕ(u) > ϕ(u − λn)}, (14)

where α = 1/M and we adopt the convention sup ∅ = −∞. From the choice
of {λn} and α, it follows that −∞ ≤ cn ≤ c. We claim that ϕ(cn) ↓ 0. If the
sequence {cn} converges to some c > −∞, the equality αϕ(cn) = ϕ(cn − λn)
implies αϕ(c) = ϕ(c) and then ϕ(c) = 0. In the case cn ↓ −∞, it is clear
that ϕ(cn) ↓ 0. Let {Tk} be a sequence of pairwise disjoint, measurable sets
with μ(Tk) < ∞ and μ(T \ ⋃∞

k=1 Tk) = 0. Thus we can select a sub-sequence
{cnk

} such that
∑∞

k=1 ϕ(cnk
)μ(Tk) < ∞. Let us define c =

∑∞
k=1 cnk

χTk
and

u0 =
∑∞

k=1 λnk
χTk

. From (14) it follows that αϕ(u) ≤ ϕ(u − u0(t)), for all
u ≥ c(t). Proposition 2 implies that ϕ(·) and u0 satisfy condition (2).
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Abstract. In 1985, Amari [1] introduced an interesting manifold, i.e.,
statistical manifold in the context of information geometry. The geom-
etry of such manifolds includes the notion of dual connections, called
conjugate connections in affine geometry, it is closely related to affine
geometry. A statistical structure is a generalization of a Hessian one, it
connects Hessian geometry.

In the present paper, we study CR-statistical submanifolds in holo-
morphic statistical manifolds. Some results on totally umbilical CR-
statistical submanifolds with respect to ∇ and ∇∗

in holomorphic sta-
tistical manifolds with constant holomorphic curvature are obtained.

Keywords: CR-statistical submanifolds · Holomorphic statistical man-
ifolds · Totally umbilical submanifolds

1 Introduction

In 1978, A. Bejancu [3] introduced the notion of a CR-submanifold of Kaehler
manifolds with complex structure J . CR submanifolds arise as a natural general-
ization of both holomorphic and totally real submanifolds in complex geometry.
Since then such submanifolds have been investigated extensively by many geome-
ters and many interesting results were obtained. On the other hand, statistical
manifolds are abstract generalizations of statistical models. Even if a statistical
manifold is treated as a purely geometric object, however, the motivation for
the definitions is inspired from statistical models. Geometry of statistical mani-
folds lies at the confluence of some research areas such as information geometry,
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affine differential geometry, and Hessian geometry. Beyond expectations, sta-
tistical manifolds are familiar to geometers and many interesting results were
obtained [2,10,11,14]. In 2004, Kurose [9] defined their complex version, i.e.,
holomorphic statistical manifolds. It is natural for geometers to try to build the
submanifold theory and the complex manifold theory of statistical manifolds.
Recently, Furuhata and Hasegawa [7] studied CR-statistical submanifold the-
ory in holomorphic statistical manifolds. Motivated by their work, we wish to
give some more results on CR-statistical submanifolds of holomorphic statistical
manifolds, which are new objects originating from information geometry.

Our work is structured as follows: Sect. 2 is devoted to preliminaries. Section 3
deals with some basic results in holomorphic statistical manifolds. In Sect. 4,
we give complete classification of totally umbilical CR-statistical submanifolds
with respect to ∇ and ∇∗

in holomorphic statistical manifolds with constant
holomorphic curvature.

2 Preliminaries

This section is fully devoted to a brief review of several fundamental notions,
formulas and some definitions which are required later.

Definition 1 [7]. A statistical manifold is a Riemannian manifold
(
M, g

)
of

dimension (n+ k), endowed with a pair of torsion-free affine connections ∇ and
∇∗

satisfying

Zg(X,Y ) = g(∇ZX,Y ) + g(X, ∇∗
ZY )

for any X,Y,Z ∈ Γ (TM). It is denoted by
(
M, g,∇,∇∗)

. The connections ∇ and
∇∗

are called dual connections on M and it is easily shown that (∇∗
)∗ = ∇. If(∇, g

)
is a statistical structure on M , then

(∇∗
, g

)
is also a statistical structure.

Let
(
M, g

)
be a Riemannian manifold and M a submanifold of M . If(

M,∇, g
)

is a statistical manifold, then we call
(
M,∇, g

)
a statistical subman-

ifold of
(
M, g

)
, where ∇ is an affine connection on M and the Riemannian

metric for M and M is denoted by the same symbol g. Let ∇ be an affine con-
nection on M . If

(
M, g,∇)

is a statistical manifold and M a submanifold of M ,
then

(
M,∇, g

)
is also a statistical manifold with the induced connection ∇ and

induced metric g.
In the geometry of Riemannian submanifolds [15], the fundamental equations

are the Gauss and Weingarten formulas and the equations of Gauss, Codazzi
and Ricci. In our case, for any X,Y ∈ Γ (TM) and V ∈ Γ (T⊥M), Gauss and
Weingarten formulas are, respectively, defined by [7]

∇XY = ∇XY + σ(X,Y ), ∇∗
XY = ∇∗

XY + σ∗(X,Y ),

∇XV = −AV(X) + DXV, ∇∗
XV = −A∗

V(X) + D∗
XV,

}

(1)
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where ∇ and ∇∗
(respectively, ∇ and ∇∗) are the dual connections on M (respec-

tively, on M), σ and σ∗ are symmetric and bilinear, called the imbedding curva-
ture tensor of M in M for ∇ and the imbedding curvature tensor of M in M for
∇∗

, respectively. Since σ and σ∗ are bilinear, we have the linear transformations
AV and A∗

V , defined by [7]

g(σ(X,Y ),V) = g(A∗
V(X), Y ),

g(σ∗(X,Y ),V) = g(AV(X), Y )

}
(2)

for any X,Y ∈ Γ (TM) and V ∈ Γ (T⊥M).
Let R and R be the curvature tensor fields of ∇ and ∇, respectively. The

corresponding Gauss, Codazzi and Ricci equations, respectively, are given by [7]

R(X,Y,Z,W ) =R(X,Y,Z,W ) + g(σ(X,Z), σ∗(Y,W ))
− g(σ∗(X,W ), σ(Y,Z)),

R(X,Y,Z,N ) =g((∇Xσ)(Y,Z),N ) − g((∇Y σ)(X,Z),N ),

R(X,Y,N , Z) =g((∇Y A)N X,Z) − g((∇XA)N Y,Z),

R(X,Y,N ,V) =R⊥(X,Y,N ,V) + g(σ(Y,AN X, V) − g(σ(X, AN Y,V)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3)

for any X,Y,Z,W ∈ Γ (TM) and N ,V ∈ Γ (T⊥M).
Similarly, R and R are the curvature tensor fields of ∇ and ∇, respec-

tively and duals of all equations in (3) can be obtained for the connections
∇∗

and ∇∗ [7].

Definition 2 [7,8]. Let M be a submanifold of a statistical manifold M . Then
M is said to be a

(A) totally geodesic with respect to ∇ if σ = 0.
(A∗) totally geodesic with respect to ∇∗

if σ∗ = 0.
(B) totally tangentially umbilical with respect to ∇ if σ(X,Y ) = g(X,Y )H for

any X,Y ∈ Γ (TM). Here H is the mean curvature vector of M in M for ∇.
(B∗) totally tangentially umbilical with respect to ∇∗

if σ∗(X,Y ) = g(X,Y )H∗

for any X,Y ∈ Γ (TM). Here H∗ is the mean curvature vector of M in M

for ∇∗
.

(C) totally normally umbilical with respect to ∇ if AN X = g(H,N )X for any
X ∈ Γ (TM) and N ∈ Γ (T⊥M).

(C∗) totally normally umbilical with respect to ∇∗
if A∗

N X = g(H∗,N )X for
any X ∈ Γ (TM) and N ∈ Γ (T⊥M).

Definition 3 [7]. Let
(
M,J , g

)
be a Kähler manifold and ∇ be an affine con-

nection on M . Then
(
M,∇, g,J )

is said to be a holomorphic statistical manifold
if

(
M,∇, g

)
is a statistical manifold and a 2−form ω on M , given by

ω(X,Y ) = g(X,J Y )

for any X,Y ∈ Γ (TM), is a ∇−parallel, i.e., ∇ω = 0.
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Let
(
M,J , g

)
be a holomorphic statistical manifold. Then [7]

∇X(J Y ) = J ∇∗
XY (4)

for any X,Y ∈ Γ (TM), where ∇∗
is the dual connection of ∇ with respect to g.

Remark 1. A holomorphic statistical manifold (M,∇, g,J ) is nothing but a spe-
cial Kähler manifold if ∇ is flat.

For any vector field X ∈ Γ (TM) and V ∈ Γ (T⊥M), respectively, we put [15]

J X = GX + LX and J V = CV + BV, (5)

where GX = tan(J X), LX = nor(J X), CV = tan(J V ) and BV = nor(J V ).
It is easy to see that [15]

g(GX,Y ) = −g(X,GY ), g(BV,N ) = −g(V,BN ) and g(LX,N ) = −g(X,CN ) (6)

for any X,Y ∈ Γ (TM) and V,N ∈ Γ (T⊥M).

Definition 4 [7]. A holomorphic statistical manifold M of constant holomorphic
curvature k ∈ R is said to be a holomorphic statistical space form M(k) if the
following curvature equation holds

R(X,Y )Z =
k

4
{
g(Y,Z)X − g(X,Z)Y + g(J Y,Z)J X

−g(J X,Z)J Y + 2g(X, J Y )J Z
}
. (7)

for any X,Y,Z ∈ Γ (TM).

The statistical version of definition of CR-submanifold as follows:

Definition 5 [7]. A statistical submanifold M is called a CR-statistical sub-
manifold in a holomorphic statistical manifold M of dimension 2m ≥ 4 if M
is CR-submanifold in M , i.e., there exists a differentiable distribution D : x →
Dx ⊆ TxM on M satisfying the following conditions:

(A) D is holomorphic, i.e., J Dx = Dx ⊂ TxM for each x ∈ M , and

(B) the complementary orthogonal distribution D⊥ : x → D⊥
x ⊆ TxM is totally

real, i.e., J D⊥
x ⊂ T⊥

x M for each x ∈ M .

Remark 2 [7]. If D �= 0 and D⊥ �= 0, then M is said to be proper.

Remark 3 [7]. CR-statistical submanifolds are characterized by the condition
LG = 0.

Definition 6 [7]. A statistical submanifold M of a holomorphic statistical man-
ifold M is called holomorphic (L = 0 and C = 0) if the almost complex structure
J of M carries each tangent space of M into itself whereas it is said to be totally
real (G = 0) if the almost complex structure J of M carries each tangent space
of M into its corresponding normal space.
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For a CR-statistical submanifold M we shall denote by μ the orthogonal
complementary subbundle of J D⊥ in T⊥M , we have [7]

T⊥M = J D⊥ ⊕ μ. (8)

3 Some Basic Results in Holomorphic Statistical
Manifolds

In this section, we propose some basic results which are based on DXLY =
L∇∗

XY :

Theorem 1. Let M be a statistical submanifold of a holomorphic statistical
manifold M . Then DXLY = L∇∗

XY holds if and only if A∗
N GY = −ABN Y for

any X,Y ∈ Γ (TM) and N ∈ Γ (T⊥M).

Proof. From Lemma 5(7.40) of [7], we have

σ(X,GY ) + DXLY = L∇∗
XY + Bσ∗(X,Y ).

In the light of (6) and (2), we get

g(A∗
NGY,X) = −g(ABN Y,X)

for any X,Y ∈ Γ (TM) and N ∈ Γ (T⊥M). This proves our theorem.

The following theorem shall be required to prove some results in the next
section:

Theorem 2. Let M be a statistical submanifold of a holomorphic statistical
manifold M . If DXLY = L∇∗

XY holds, then the curvature tensor R∗ and
the normal curvature tensor R⊥ satisfy LR∗(X,Y )Z = R⊥(X,Y )LZ for any
X,Y,Z ∈ Γ (TM).

Proof. Since, we have assumed that DX(LY ) = L∇∗
XY for any X,Y ∈ Γ (TM).

Therefore, we derive the following:

LR∗(X,Y )Z = L
(∇∗

X∇∗
Y Z − ∇∗

Y ∇∗
XZ − ∇∗

[X,Y ]Z
)

= DXDY LZ − DY DXLZ − D[X,Y ]LZ

= R⊥(X,Y )LZ

for any X,Y,Z ∈ Γ (TM). This proves our assertion.
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4 Classification of Totally Umbilical CR-Statistical
Submanifolds

Chen [5] studied totally umbilical submanifolds in the case of spaces of constant
curvature. Also, Chen and Ogiue [6] considered such immersions in complex
space forms. Blair and Vanhecke [4] considered in Sasakian space forms. In 2002,
Kurose [8] studied totally tangentially umbilical and totally normally umbilical
in statistical manifolds. In this section, we study a special class of CR-statistical
submanifolds which is totally umbilical CR-statistical submanifolds with respect
to ∇ and ∇∗

in holomorphic statistical manifolds.

Theorem 3. Let M be a CR-statistical submanifold in a holomorphic statistical
manifold M . If M is totally umbilical with respect to ∇ and ∇∗

such that J H∗ ∈
Γ (μ), then we have either

(A) M is a totally geodesic with respect to ∇∗
, or

(B) dim D ≥ 2.

Proof. For any X,Y ∈ Γ (D), we have

∇XJ Y = ∇XGY.

By our assumption, last relation takes the following form:

J ∇∗
XY + g(Y,X)J H∗ = ∇XGY + g(X,GY )H. (9)

Taking inner product with J H∗ on both sides of (9), we obtain

g(Y,X)||H∗||2 = g(X,GY )g(J H∗,H). (10)

Interchanging the role of X and Y in above equation, we get

g(X,Y )||H∗||2 = g(Y,GX)g(J H∗,H). (11)

Combining both Eqs. (10) and (11), we find that

g(X,Y )||H∗||2 = 0. (12)

From (12), we conclude that H∗ = 0 or g(X,Y ) for any X,Y ∈ Γ (D) which
shows that M is totally geodesic with respect to ∇∗

or dim D ≥ 2, respectively.
This completes the proof of the theorem.

Theorem 4. Let M be a CR-statistical submanifold in a holomorphic statistical
manifold M . If M is totally umbilical with respect to ∇ and ∇∗

, then, for any
X ∈ Γ (D⊥), we have

(A) DXH ∈ J D⊥, or
(B) DXH = 0,
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(A∗) D∗
XH∗ ∈ J D⊥, or

(B∗) D∗
XH∗ = 0.

Proof. For any X ∈ Γ (D⊥) and Y,Z ∈ Γ (D), we have the following [7]:

J R
∗
(X,Y )Z = R(X,Y )J Z

GR
∗
(X,Y )Z + LR

∗
(X,Y )Z = g(Y,GZ)DXH, (13)

where we have used Codazzi equation for a totally tangentially umbilical sub-
manifold. Taking inner product on both sides of (13) with N ∈ Γ (μ) and putting
Y = GZ, we arrive at

||Z||2g(DXH,N ) = 0. (14)

Similarly, we can easily obtain dual of (14), i.e.,

||Z||2g(D∗
XH∗,N ) = 0, (15)

where we have used Codazzi equation for a totally normally umbilical subman-
ifold. From (14), we conclude that DXH ∈ J D⊥ or DXH = 0. And (15) gives
D∗

XH∗ ∈ J D⊥ or D∗
XH∗ = 0. This completes the proof of the theorem.

For CR-statistical submanifolds in holomorphic statistical space forms, we
have the followings:

Theorem 5. Let M be a CR-statistical submanifold in a holomorphic statistical
space form M(k). If M is totally umbilical with respect to ∇ and ∇∗

such that
DXH = 0 and D∗

XH∗ = 0 for any X ∈ Γ (D⊥), then

(A) k = 0, or
(B) dim D ≥ 2, or
(C) H and H∗ are perpendicular to JD⊥, or
(D) M is totally geodesic with respect to ∇ and ∇∗

.

Proof. From Proposition 3(7.33) of [7] and (7), we have

(∇Xσ)(Y,Z) − (∇Y σ)(X,Z) + (∇∗
Xσ∗)(Y,Z) − (∇∗

Y σ∗)(X,Z)

= 2
{

k

4
[
g(GY,Z)LX − g(GX,Z)LY + 2g(X,GY )LZ

]
}

(16)

for any X,Y,Z ∈ Γ (TM). Now we evaluate (16) for Z = GW, W, Y ∈ Γ (D)
and X ∈ Γ (D⊥), we get

(∇Xσ)(Y,GW ) − (∇Y σ)(X,GW ) + (∇∗
Xσ∗)(Y,GW ) − (∇∗

Y σ∗)(X,GW )

=
k

4

[
g(GY,GW )LX

]
.

By virtue of Codazzi equation for a totally umbilical with respect to ∇ and ∇∗
,

we arrive at k
4

[
g(Y,W )LX

]
= 0. If we take inner product with H (respectively,

H∗) on both sides of above relation, then we conclude that k = 0 or dim D ≥ 2 or
both H and H∗ are perpendicular to JD⊥ or M is totally geodesic with respect
to ∇ and ∇∗

. This completes our proof.
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Theorem 6. Let M be a proper CR-statistical submanifold in a holomorphic
statistical space form M(k). If M is totally umbilical with respect to ∇ and ∇∗

such that DXLY = L∇∗
XY for any Y ∈ Γ (D⊥) and X ∈ Γ (D), then we have

(A) k = 0, or
(B) dim D⊥ ≥ 2.

Proof. From Theorem 2, 4th equation of (3) and its dual, we can easily get
k
4

[
g(Y,Z)GX

]
= 0 for any Y,Z ∈ Γ (D⊥) and X ∈ Γ (D). Thus, we get k = 0

or dim D⊥ ≥ 2. This completes our proof.

An immediate consequence of Theorem 6 as follows:

Corollary 1. Let M be a proper CR-statistical submanifold in a holomorphic
statistical space form M(k). If M is totally geodesic with respect to ∇ and ∇∗

such that DXLY = L∇∗
XY for any Y ∈ Γ (D⊥) and X ∈ Γ (D), then we have

(A) k = 0, or
(B) dim D⊥ ≥ 2.
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Abstract. We introduce the dynamical distance geometry problem
(dynDGP), where vertices of a given simple weighted undirected graph
are to be embedded at different times t. Solutions to the dynDGP can
be seen as motions of a given set of objects. In this work, we focus our
attention on a class of instances where motion inter-frame distances are
not available, and reduce the problem of embedding every motion frame
as a static distance geometry problem. Some preliminary computational
experiments are presented.

1 Introduction

Given a simple weighted undirected graph G, the Distance Geometry Problem
(DGP) asks whether there exists an embedding of the graph into a Euclidean
space R

K so that the distances between embedded vertices correspond to the
weights assigned to the edges of G [10]. There is a growing interest in this
problem, as it is shown by the increasing number of books and journal collections
on this topic (see for example [11,12], other publications are currently under
production). However, in most of the published material on this topic, the DGP
is presented as a static problem, and there is only a little mention to its potential
extension to dynamical applications. This paper presents a preliminary step
toward the study of dynamical DGPs.

We focus our attention on the class of problems where the instances can be
represented by employing a graph G whose vertex set V × T is the product of
two sets: a set V representing predefined objects, and a set T ⊂ N of temporal
values. The vertex {v, t} ∈ V ×T represents a given object v at a certain instant
t (in the following, we will use the notation vt for the vertex {v, t} of G). The
edge set E contains edges {uq, vt}, whose weights provide information about
the distance between two vertices u and v at times q and t, respectively. In this
context, a possible embedding for G is one of the possible motions for the objects
in V that are compatible with the distance constraints in G.

Let G = (V × T,E, d) be therefore a simple weighted undirected graph rep-
resenting an instance of the dynamical DGP (dynDGP). The function

d : {uq, vt} ∈ E −→ (δ,π) ∈ R+ × R+,

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 821–829, 2017.
https://doi.org/10.1007/978-3-319-68445-1_94
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assigns pairs of nonnegative real values to every pair of vertices of V ×T belonging
to the edge set of G. The nonnegative value δ is the distance between u and v
at times q and t, respectively, while π is a nonnegative value representing the
“importance” of the distances δ (higher values indicate higher importance). We
also refer to π as the priority level of the distance δ.

From a given instance of the dynDGP, we can extract some meaningful sub-
instances. For example, the subgraph G[{v} × T ] corresponds to the trajectory
of one vt for different times t. Moreover, the subgraph G[V × {t}], induced by
the set product between V and only one temporal value, gives a “classical” DGP
instance for a fixed time t. In this context, a possible embedding of G[V ×{t}] is
a candidate frame at time t of a motion which is an embedding for G. Let Et be
the edge set of the induced subgraph G[V ×{t}]. The set Ê = E \

⋃

t∈T

Et contains

all edges that relate vertices at different times t. In this work, we will make the
assumption that Ê = ∅. As a consequence, with a little abuse of notation, we
will use the notation δ

t
uv for indicating the distance between u and v at time t.

We will use a similar notation πt
uv for the priorities of such distances. We will

omit the time t when not relevant.
Our approach to this class of the dynDGP is to solve, for every time t ∈ T ,

a classical DGP on the sub-instance G[V × {t}]. For solving the sub-instances
G[V × {t}], we consider the optimization problem proposed in [6], which solves
DGPs where priorities are associated to the available distances. We tackle this
optimization problem with a non-monotone spectral gradient method [1,2,16],
and obtain a fluid motion even in absence of distances in the subset Ê.

The rest of the paper is organized as follows. We will provide the details
of the optimization problem to be solved for every sub-instance G[V × {t}] in
Sect. 2, while Sect. 3 will present the non-monotone spectral gradient method.
In Sect. 4, we will propose some computational experiments on a set of motions
from which we derived instances of the dynDGP such that Ê = ∅. Finally, Sect. 5
concludes the paper with a short discussion on some applications that can be
modeled by a dynDGP.

2 An Optimization Problem with Priorities on Distances

Let G = (V × T,E, d) be an instance of the dynDGP such that Ê = ∅. In these
hypotheses, there are no distances in E that relate vertices uq and vt such that
the times q and t are different (see Introduction). Therefore, we can split our
dynDGP instance in a sequence of static DGPs represented by the subgraphs
G[V ×{t}], for each time t, without losing any information. In order to guarantee
a smooth variation for the positions assigned to the vertices vt, we consider,
for increasing time values t, the solution found when solving the sub-instance
G[V × {t − 1}] as an initial approximation for the sub-instance G[V × {t}].

As already described in the Introduction, we suppose that our graphs G
have two kinds of weights assigned to the edges. The weight δ

t
uv is a numerical

approximation of the distance between the vertices ut and vt at the same time
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t; the weight πt
uv represents the priority on the distance δ

t
uv. In fact, since our

distances δ
t
uv may be not precise, and we have no a priori information on the error

they may carry, it is fundamental to coupled them with the priority levels πt
uv.

This way, even if the distance matrix [δuv] is not a Euclidean distance matrix
(EDM), we can seek an embedding where distances having a higher priority are
privileged. This approach is also justified by some of the potential applications
of the dynDGP (see Conclusions).

For solving every sub-instance G[V ×{t}], we consider the optimization prob-
lem proposed by Glunt et al. in [6]. Let n = |V ×{t}| = |V | and recall that Et is
the edge set of the induced subgraph G[V × {t}]. At each time t, we seek a set
of positions {xt

1, x
t
2, . . . , x

t
n} ∈ R

K for the vertices in V × {t}, which minimizes
the following objective function:

σ(X) =
1
2

∑

{u,v}∈Et

πuv(‖xu − xv‖ − δuv)2,

where X = [x1 x2 . . . xn]T ∈ R
n×K is a matrix representation of the set of

positions for the vertices, with xv a column vector. Notice that we omitted the
time t because it is supposed to be fixed in every subgraph. The variables defined
in the following and derived from X are supposed to inherit the same matrix
structure.

As shown in [5], the function σ(X) is differentiable at X if and only if ‖xu −
xv‖ > 0 for all {u, v} ∈ Et such that πuv δuv > 0. In such a case, the gradient
can be written as ∇ σ(X) = 2(WX − B(X)X), where the matrix W = [wuv] is
defined as

wuv =

⎧
⎨

⎩

−πuv, ifu �= v,∑

w �=u

πuw otherwise,

and B(X) = [buv(X)] is a function of X and is defined as

buv(X) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− πuv δuv

‖xu − xv‖ , ifu �= v and ‖xu − xv‖ > 0,

0, ifu �= v and ‖xu − xv‖ = 0,
−

∑

w �=u

buw(X), otherwise.

In [6], Glunt et al. have proposed a pure spectral gradient method for the
solution of this optimization problem. This method does not require line search,
but convergence was established only for strictly convex quadratic functions. In
order to ensure global convergence from arbitrary starting points, we consider
the non-monotone line search strategy initially proposed by Grippo, Lampariello
and Lucidi in [7] and subsequently by Zhang and Hager in [16]. Although the
gradient ∇ σ(X) may not be continuous when ‖xu −xv‖ = 0, we did not observe
numerical instabilities in our computational experiments within the required
tolerance in the stopping criteria.
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3 A Non-monotone Spectral Gradient Method

For a general unconstrained optimization problem, where f is a continuously
differentiable objective function, iterative methods produce a sequence of points
{Xk}k∈N where each Xk+1 is generated from Xk by applying the formula
Xk+1 = Xk + αk Dk, where Dk gives the search direction in the domain of the
objective function, and αk is the step that is performed from Xk in the direction
Dk. Since −∇f(Xk) provides the direction of steepest decrease of the objective
function from Xk, it is common that Dk is proportional to −∇f(Xk). When f
is twice continuously differentiable, Newton-type methods use directions of the
form Dk = −H−1

k ∇f(Xk), where Hk is an approximation for the Hessian of
f [14].

Since the work of Barzilai and Borwein [1], the use of spectral gradient meth-
ods have been employed with success in large scale optimization [3]. In such meth-
ods, Hk = µkI, for µk > 0, where I is the identity matrix. As proposed in [1,6],
we adopt µk = 〈Yk−1, Sk−1〉/〈Sk−1, Sk−1〉, where Yk−1 = ∇f(Xk) − ∇f(Xk−1),
Sk−1 = Xk −Xk−1 and 〈A,B〉 denotes the inner product, computed as the trace
of B�A.

The choice of the step αk is crucial in a line search: when it is too short,
further improvements may be possible on the objective function value; when it
is too long, the best objective function values may be missed during the step. In
monotone searches, it is imposed that f(Xk+1) < f(Xk), for every k. However, it
seems reasonable to combine a non-monotone line search strategy with a spectral
gradient method, because in the latter the objective function does not generally
decrease monotonically.

For the optimization problem presented in Sect. 2, for every sub-instance
G[V × {t}], we employed the spectral gradient method with the non-monotone
line search method proposed by Zhang and Hager [16]. The main steps
are sketched in Algorithm 1. For this particular line search, global convergence
was proved for smooth and non-convex functions, and R-linear convergence was
proved for strongly convex functions.

In Algorithm 1, we have used the classical choice for µk with safeguards
µmin = 10−4 and µmax = 104 in order to guarantee a positive bounded sequence
{µk}. The iterations are stopped when ‖∇ σ(Xk)‖ < ε = 10−8. At line 11, the
algorithm attempts to perform an initial step α = 1. While the non-monotone
Armijo condition is not satisfied (with γ = 10−4), the value of α is divided by 2.
Following the non-monotone line search in [16], by setting ηk = 0 one obtains
a classical monotone line-search whereas ηk = 1 (used in the our experiments)
implies a non-monotone line search where Ck corresponds to the average of
objective function values over all previous iterations.

Concerning the starting point, for t = 1, we randomly select the vertex
positions for X0 and center this realization around the origin. For all other
t > 0, X0 is set to the solution obtained for the sub-instance G[V ×{t−1}]. One
interesting remark about Algorithm 1 is that if X0 is centered, then all iterates
are centered due to the forms of B(X) and W [6]. For more information about
the algorithm, the reader is referred to the publications cited above.



An Approach to Dynamical Distance Geometry 825

Algorithm 1. The non-monotone spectral gradient method.
1: NonmonotoneSpectralGradient (X0, µmin, µmax, ε, γ, ηk)
2: set k = 0, Q0 = 1, C0 = σ(X0);
3: while (‖∇ σ(X)‖ > ε) do
4: evaluate σ(Xk) and ∇ σ(Xk);
5: if (k = 0) then
6: set D0 = −∇ σ(X0); go to line 11;
7: end if
8: let Yk−1 = ∇ σ(Xk) − ∇ σ(Xk−1); let Sk−1 = Xk − Xk−1;

9: let µk = min
(
µmax,max

(
µmin,

〈Yk−1,Sk−1〉
〈Sk−1,Sk−1〉

))
;

10: let Dk = − 1
µk

∇ σ(Xk);
11: let αk = 1;
12: while (σ(Xk + αk Dk) > Ck + γ αk〈∇ σ(Xk), Dk〉) do
13: let αk = αk /2;
14: end while
15: let Xk+1 = Xk + αk Dk; let Qk+1 = ηk Qk + 1; let Ck+1 = (ηk QkCk +

σ(Xk+1))/Qk+1;
16: let k = k + 1;
17: end while

4 Computational Experiments

We present some computational experiments on a set of artificially generated
instances of the dynDGP. All codes were written in Matlab 2016b and the exper-
iments were carried out on an Intel Core 2 Duo @ 2.4 GHz with 2 GB RAM,
running Mac OS X.

We mainly focus on two kinds of motions, both defined in a two-dimensional
Euclidean space. The cascade motion is an animation consisting of 8 points
initially placed at the top of a [0, 1] × [0, 1] domain and subsequently moving
downwards in the direction of the x axis in a cascade fashion. Two of such
points are fixed during the motion, in order to avoid to define frames with
almost constant inter-point distances. We refer to the second motion that we
consider as the black-hole motion. Only one vertex remains steady in the center
of a [0, 1] × [0, 1] domain, while the others, initially located around the boarders
of the domain, tend to come closer and closer to the steady vertex. All considered
motions are composed by 100 frames. The reader can make reference to the first
and third column in Fig. 1 for having a better understanding of the described
motions.

The two motions were initially generated by defining the trajectories of the
coordinates of their 8 vertices in the two-dimensional space. From these trajec-
tories, we generated two instances of the dynDGP such that the corresponding
graph G has an edge set E for which Ê = ∅. We were able to solve the inverse
problem, i.e. the one of reconstructing the trajectories from the distance infor-
mation in G, by solving the optimization problem presented in Sect. 2, with the
method described in Sect. 3. The quality of the found solutions is measured with
the function
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Fig. 1. Some selected frames of the obtained motions, for both instances cascade and
black-hole, without and with some modifications on the original distances (τ = 3.0 and
d0 = 0.4). The segments mark the distances with highest priorities. When no distances
are modified, they all have the same priority.
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MDE(X) =
∑

{u,v}∈Et

| ||xu − xv|| − δuv |
δuv

,

which has maximal values 4 · 10−6 and 8 · 10−10, respectively, for the cascade
and black-hole motions (see Fig. 1, first and third columns).

We also consider instances of the dynDGP with modified distances. Given
a graph G obtained from a known motion, we wish to control this motion by
imposing a new set of distance constraints. In our cascade motion, we impose that
the distance δ

t
uv between two particular vertices increases by a factor τ ∈ [0, 3]

during the motion (δtuv ← τ δ
t
uv, for all t). In the black-hole motion, we impose

instead that the distance δ
t
uv between the steady vertex and any other is always

greater than a given threshold d0 > 0 (δtuv ← max(d0, δtuv)).
In both cases, these modifications on the original distances concern a small

percentage of distances. Therefore, the optimization process may tend to opti-
mize the original and “genuine” distances while ignoring the new ones, because
they would only increase a relatively small number of terms in the objective
function. The use of the weights πt

uv on the distances δ
t
uv becomes therefore

fundamental: in our experiments with modified distances, we give two levels of
priorities to the distances. Higher priority is given to the modified distances,
i.e. πt

uv = 1 (πt
uv is instead set to 0.5 when the corresponding distance value is

not modified).
Table 1 shows the smallest and the largest values for the MDE function for

all frames t composing the obtained motions. This table shows an increase of the
MDE values when the values of τ and d0 are larger: this was expected because
the perturbation on the original distances becomes more and more significant. It
is important to remark that the MDE values may become smaller when assigning
no priorities to the distances, but then, as mentioned above, the obtained motions
may not satisfy the newly introduced distance constraints. In this context, the
analysis of the motion by a viewer, rather than the measure of a quality index
such as the MDE, is often preferred for validating the results (see Fig. 1, second
and forth columns).

Table 1. Computational experiments with different values for τ and d0, for both
instances cascade and black-hole. The smallest and the largest MDE values over the
frames at time t of the obtained motions are reported.

Cascade Black-hole

τ MDEmin MDEmax d0 MDEmin MDEmax

1.0 2.4035e-09 4.5095e-06 0.0 1.0637e-16 8.0183e-10

1.4 0.0113 0.0608 0.1 8.0183e-10 0.1518

1.8 0.0245 0.0416 0.2 8.0183e-10 0.1518

2.0 0.0315 0.0504 0.3 1.7766e-08 0.1518

3.0 0.0639 0.1016 0.4 0.0503 0.1518
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5 Conclusions

We introduced the dynDGP where an embedding represents a motion of a given
set of objects that satisfies the distance constraints in the graph G. We focused
our attention on problems where no inter-frame distance information is given,
and proposed to formulate an optimization problem for the identification of every
frame of the motion, where the distance values are coupled with priority levels.

This work is motivated by various emerging real-life applications. In char-
acter animation, for example, motions are generally simulated by modifying
pre-recorded motions [13], and an attempt to perform this modification through
distance constraints was already proposed in [9]. In air-traffic control, the posi-
tions of a set of flying airplanes needs to be predicted so that some distance
constraints are satisfied, which are defined for guaranteeing collision avoidance
(see for example the recent work in [15]). Similarly, in crowd simulations, one
is interested in simulating a crowd motion in different situations, where dis-
tances between pairs of pedestrians can be estimated and exploited for the
simulations [4].

The formulation of these applications as a dynDGP, as well as the applica-
bility of the proposed method for the computation of the motions, will be the
subject of future research. Notice that our assumption Ê = ∅ may not be feasible
for all these applications: our method may need to be extended and adapted to
the different situations.

Acknowledgments. This work was partially supported by an INS2I-CNRS 2016
“PEPS” project. The authors are thankful to Franck Multon and Ludovic Hoyet for
the fruitful discussions.
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Abstract. Distance Geometry puts the concept of distance at its center.
The basic problem in distance geometry could be described as drawing
an edge-weighted undirected graph in R

K for some given K such that
the positions for adjacent vertices have distance which is equal to the
corresponding edge weight. There appears to be a lack of exact methods
in this field using any other norm but �2. In this paper we move some
first steps using the �1 and �∞ norms: we discuss worst-case complexity,
propose mixed-integer linear programming formulations, and sketch a
few heuristic ideas.

Keywords: Distance geometry · Norms · Mathematical programming

1 Introduction

We discuss the following basic problem in Distance Geometry (DG)

Distance Geometry Problem (DGP). Given an integer K > 0 and a
simple, edge-weighted, undirected graph G = (V,E, d), where d : E → R+,
determine whether there exists a realization function x : V → R

K such
that:

∀{i, j} ∈ E ‖xi − xj‖ = dij , (1)

where ‖ · ‖ is either the �1 or the �∞ norm. We assume all along that, without
loss of generality, G is connected, otherwise it suffices to realize the disconnected
components independently.

Most existing work concerning the DGP focuses on the �2 (or Euclidean)
norm, the only exception being [4] on �∞ norm DGPs. In this paper, we move
some steps forward in the direction of the �1 and �∞ norms, which we call
linearizable norms, since their unit spheres are polyhedral.

DG in the �2 norm recently received a lot of attention [7,14] due to its
widespread use in engineering and science applications, such as, for example,
finding the structure of proteins from Nuclear Magnetic Resonance (NMR) inter-
atomic distances [20] and many others. It was shown in [18] that the DGP (with
the Euclidean norm and K = 1) is NP-hard, by reduction from Partition.
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The limited attention to DG in other norms stems from a scarcity of appli-
cations. Yet, recently, we were made aware of applications for both of the lin-
earizable norms. The DGP with the �1 norm arises in the positioning of mobile
sensors in urban areas [2]. The DGP with the �∞ or with the �1 can be used in
order to fill a hypercube with a pre-fixed number of “well-distributed” points,
which is relevant in the design of experiments [5,19].

The rest of this paper is organized as follows. We recall some notions relating
to linearizable norms in Sect. 2. We propose two new formulations for linearizable
norms in Sect. 3, and prove that the DGP in linearizable norms is NP-complete
for any K. Lastly, we sketch some new ideas for solving the linearizable norm
DGP using heuristics in Sect. 4.

2 Known Results for �1 and �∞ Norms

Complexity: Since the �1, �2, �∞ norms coincide for K = 1, the reduction from
the Partition problem given in [18] shows that the DGP is NP-complete for
these three norms in K = 1. Since a realization in one dimension can be embed-
ded isometrically in any number of dimensions, this shows by inclusion that the
DGP is NP-hard for these three norms. We show in Theorem 1 that the �1 and
�∞ norm variants are also NP-complete for K > 1. This strikes a remarkable
difference with the Euclidean norm DGP, for which the status of membership in
NP is currently unknown [1].

Isometric embeddings: For the �∞ norm, the isometric embedding problem
can be solved in a very elegant way [10]: any finite metric (X, d) with X =
{x1, . . . , xn} can be embedded in R

n using the �∞ norm by means of the Fréchet
embedding: ∀i, j ≤ n T (xi) = (d(xi, x1), . . . , d(xi, xn)). The proof is short and
to the point: for any i, j ≤ n we have:

‖T (xi) − T (xj)‖∞ = max
k≤n

|d(xi, xk) − d(xj , xk)| ≤ max
k≤n

d(xi, xj) = d(xi, xj)

by the triangle inequality on the given metric d. Moreover, the maximum over
k of |d(xi, xk) − d(xj , xk)| is obviously achieved when k ∈ {i, j}, in which case
|d(xi, xk) − d(xj , xk)| = d(xi, xj). So we have ‖T (xi) − T (xj)‖∞ = d(xi, xj) as
claimed. We remark that (X, d) need not be given explicitly: the distance matrix
is enough. We also remark that a Fréchet embedding can be constructed for any
given square symmetric matrix A: if the Fréchet embedding of A is infeasible
w.r.t. A, it means that A is not a valid distance matrix.

For the �1 norm no such general result is known. It is known that �2 metric
spaces consisting of n points can be embedded in a vector space of O(n) dimen-
sions in �1 norm almost isometrically [16, Sect. 2.5] (the “almost” refers to a mul-
tiplicative distortion measure of the form: (1 − ε)‖x‖2 ≤ ‖T (x)‖1 ≤ (1 + ε)‖x‖2
for some ε ∈ (0, 1)).
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3 MILP Formulations for Linearizable Norms

The DGP is a nonlinear feasibility problem. As such, it can be modelled by means
of Mathematical Programming (MP), which is a formal language for describing
optimization problems. When the norm is linearizable, it is possible to replace
nonlinear functions by piecewise linear forms, which are routinely modelled in
MP using binary variables and linear forms. This yields MPs of the Mixed-Integer
Linear Programming (MILP) class. A convenient feature of MILP is that solution
technology is very advanced — MILP solvers are currently at the forefront for
their generality and empirical efficiency. To the best of our knowledge, no MILP
formulations have ever been proposed for the DGP in linearizable norms. We
give here two MILP formulations for �1 and �∞ norms.

We first re-write Eq. (1) as follows: min
x

∑

{i,j}∈E

| ‖xi − xj‖p − dij |, for p ∈
{1,∞}. Obviously, even if the unconstrained optimization problem above always
has a feasible solution, it has global optimal value zero if and only if the global
optimum is a solution of Eq. (1). The MILP formulations below can be solved
using any off-the-shelf MILP solver, such as, e.g., CPLEX [13].

The �1 norm. For p = 1 we write:

min
x

∑

{i,j}∈E

∣
∣
∣
∣
∣
∣

∑

k≤K

|xik − xjk| − dij

∣
∣
∣
∣
∣
∣
. (2)

The MILP reformulation we propose is the following:

min
x,s,t,z

∑

{i,j}∈E

sij

∀{i, j} ∈ E −sij ≤ ∑

k≤K

(t+ijk + t−ijk) − dij ≤ sij

∀k ≤ K, {i, j} ∈ E t+ijk − t−ijk = xik − xjk

∀k ≤ K, {i, j} ∈ E t+ijk ≤ dijzijk
∀k ≤ K, {i, j} ∈ E t−ijk ≤ dij(1 − zijk)

∀k ≤ K
∑

i∈V

xik = 0

∀{i, j} ∈ E sij ∈ [0, dij ]
∀k ≤ K, {i, j} ∈ E t+ijk, t

−
ijk ∈ [0, dij ]

∀k ≤ K, {i, j} ∈ E zijk ∈ {0, 1}.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

Additional variables sij ≥ 0, for each {i, j} ∈ E, are non-negative decision
variables sij ≥ 0 that represent the outermost absolute value of (2) thanks to
the well known fact that min |f | is equivalent to min

f̂≥0
f̂ subject to −f̂ ≤ f ≤

f̂ . Moreover, additional slack and surplus variables t+, t− were introduced to
reformulate the innermost absolute value terms. In order to do this, they are
subject to complementarity constraints t+ijk t−ijk = 0, ∀k ≤ K, {i, j} ∈ E, that
in (3) were linearized by adding binary variables z and the two sets of standard
“big-M” constraints that links the t and the z variables.
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Note that, as each realization can be translated at will, constraint
∑

i∈V xi =
0 can be safely added. It means that we can, without loss of generality, impose
that the barycenter is zero this is not necessary but it is useful in practice, see [6]
for detailed empirical results. Again for practical efficiency, we let U =

∑

{i,j}∈E

dij

and use it to bound x, so that for each i ∈ V and k ≤ K, we have xik ∈ [−U,U ].

Proposition 1. Equation (3) is a valid formulation for the DGP using the �1
norm.

The �∞ norm. For p = ∞ we write: min
x

∑

{i,j}∈E

∣
∣
∣
∣max
k≤K

|xik − xjk| − dij

∣
∣
∣
∣.

The MILP reformulation that we propose is the following:

min
x,w,z,s,t

∑

{i,j}∈E

sij

∀{i, j} ∈ E, k ∈ K t+ijk + t−ijk − dij ≤ sij
∀{i, j} ∈ E, k ∈ K t+ijk + t−ijk + sij ≥ dijwijk

∀{i, j} ∈ E
∑

k≤K

wijk ≥ 1

∀k ≤ K, {i, j} ∈ E t+ijk − t−ijk = xik − xjk

∀k ≤ K, {i, j} ∈ E t+ijk ≤ dijzijk
∀k ≤ K, {i, j} ∈ E t−ijk ≤ dij(1 − zijk)

∀k ≤ K
∑

i∈V

xik = 0

∀{i, j} ∈ E sij ∈ [0, dij ]
∀k ≤ K, {i, j} ∈ E t+ijk, t

−
ijk ∈ [0, dij ]

∀k ≤ K, {i, j} ∈ E wijk, zijk ∈ {0, 1}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

where the outermost and the innermost absolute values are reformulated as
before and the barycenter constraint is added.

At this point similarities with the �1 norm stop. Note that the first three set of
constraints model the linearization of constraints −sij ≤ max

k≤K
(t+ijk + t−ijk)−dij ≤

sij , ∀{i, j} ∈ E. The center and right-hand-side can be reformulated as the first
set of constraints. The left-hand-side and the center is more complicated as it
corresponds to a non-convex constraint. In order to linearize it, we need to add
auxiliary binary variables w and the second and third set of constraints, which
express the fact that at least one out of K components satisfies the constraint
(that component being the maximum, of course).

Proposition 2. Equation (4) is a valid formulation for the DGP using the �∞
norm.

The DGP with linearizable norms is in NP. Our MILP formulations make
it easy to prove the following.
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Theorem 1. The DGP in linearizable norms is NP-complete.

Proof. It was already remarked in Sect. 2 that the DGP in linearizable norms is
NP-hard by reduction from Partition to the DGP in K = 1, where the three
norm �1, �2, �∞ coincide. Now by Propositions 1 and 2 we know that certificates
to the DGP in linearizable norms are rational for rational input, since the MP
formulations in (3) and (4) can be solved by a Branch-and-Bound (BB) algo-
rithm, each node of which involves the solution of a Linear Program (LP), which
is known to be in NP. Simple BB implementations will continue branching until
the incumbent, found by solving the LP at some node, is proven optimal. So the
certificate (solution) provided by the BB is polynomially sized, as claimed. 	


3.1 Computational Results

Both formulations (Eqs. (3) and (4)) belong to the MILP class, and can be solved
by several existing MILP solvers. We employ CPLEX 12.6.2 [13] on a MacBook
Pro mid-2015 running Darwin 15.5.0 on a (virtual) quad-core i7 at 3.1 GHz with
16 GB RAM.

We generated a set of (feasible) random DGP instances in both norms as
follows: for each cardinality value n = |V | of the vertex set of G ranging over
{10, 15, 20, 25, 30, 35, 40} we sampled n points in the plane, bounded by a box.
We then added a Hamiltonian cycle to the edge set, in order to guarantee con-
nectedness. Lastly, we add the remaining edges with an Erdős-Rényi generation
process [8] having probability s ranging over {0.1, 0.2, 0.3, 0.5, 0.8}. This yields
35 instances per norm p ∈ {1,∞}.

We deployed CPLEX on these 70 instances with a time limit of 10 min
enforced on the “wall clock”, meaning the actual elapsed time. We used this
measure instead of the user time since CPLEX exploits all four processor cores,
which means that the system time taken for parallel execution tasks is essen-
tial. Since the running time is limited, we do not always find feasible solutions.
We evaluate the error by employing two well known measures: the scaled Mean
Distance Error (MDE) and the scaled Largest Distance Error (LDE).

MDE(x) =
1

|E|
∑

{i,j}∈E

|‖xi − xj‖p − dij |
dij

, LDE(x) = max
{i,j}∈E

|‖xi − xj‖p − dij |
dij

.

Intuitively, the scaled MDE gives an idea of the percentual average discrepancy
of the given realization from the given data. The scaled LDE gives an idea of the
percentual average worst error over all edges. Obviously, the LDE is generally
higher than the MDE.

The detailed results are not reported for lack of space. For each instance we
computed scaled MDE and LDE scores, and compared the wall clock CPU time
taken by CPLEX running on Eqs. (3) and (4).

From these results, it appears clear that DGP instances for linearizable norms
can be solved in practice up to at least n = 40, though the densest instances
are more difficult with the �∞ norm. A good �1 norm solution (with MDE and
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LDE smaller than 10−4) has been obtained using CPLEX on Eq. (3) for a 50
vertex instance with s = 0.8 in just over 304 s of wall clock time, but no solution
was obtained within 10 min of wall clock time for a 60 vertex instance and
s = 0.8. This seems to indicate the need for heuristic methods (discussed below)
to address larger instance sizes.

4 Heuristic Ideas

In this section we provide some ideas to design heuristic methods for the DGP
problem with �∞ and �1 norm and report computational results.

4.1 Solving the DMCP in the �∞ Norm

A problem related to DGP, the Distance Matrix Completion Problem
(DMCP), asks whether a partially defined matrix can be completed to a (full)
distance matrix in a specified norm. Although a solution of the DMCP is a
distance matrix, finding the missing distance values usually entails finding a
realization that is consistent with the given values: this realization is then used to
compute the missing entries in the given partial matrix. In this sense, realizations
provide certificates for both DGP and DMCP. In the DMCP, however, differently
from the DGP, the dimensionality K of the embedding space is not given —
realizations into R

K for any K > 0 will provide a feasibility certificate for DMCP
instances.

In the following we propose a heuristic for DMCP that will be the starting
point for a heuristic for DGP. Our first proposal concerns the exploitation of the
Fréchet embedding to “approximately solve” the DMCP (rather than the DGP)
in the �∞ norm. Our algorithm works as follows:

1. let A′ be the n × n weighted adjacency matrix of G, where off-diagonal zeros
are to be considered as “unspecified entries”

2. complete A′ to a full symmetric matrix A using the Floyd-Warshall all-
shortest-paths algorithm [17]

3. output the realization x : V → R
n given by the Fréchet embedding xi = Ai

for each i ∈ V .

By “approximately solve” we mean that the output realization x is generally
not going to be a valid certificate for the given DMCP instance, but that its
MDE and LDE error measures are hopefully going to be low enough. The worst-
case complexity of this heuristic is dominated by the Floyd-Warshall algorithm,
which is generally O(n3). Experimentally, we found that this heuristic is useless
for sparse graphs (where the reconstruction of A′ has the highest chances of
being wrong), but is both fast and successful for dense graphs, notably those
with s = 0.8, which represented the hardest instances in the tests. This heuristic
took 2.42 s to find all realizations for 17 random graphs obtained with s = 0.8
and n varying in {5 + 5� | 1 ≤ � ≤ 17}. The cumulative scaled MDE over
all instances is 0.019, with cumulative scaled LDE at 9.61 mostly due to one
bad outlier. Overall, it found MDE and LDE smaller than 10−4 for 11 over 17
instances. In conclusion, it is both fast and effective.
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4.2 Solving the DGP in the �∞ Norm

The second idea turns the above heuristic into a method for solving DGP in
�∞ norm for a given dimensionality K: it consists in selecting the K columns
from the realization x ∈ R

n×n obtained in Sect. 4.1 which best match the given
distances. For this purpose, we solve the following MILP (based on Eq. (4)):

min
w,y,s

∑

{i,j}∈E

sij

∀{i, j} ∈ E, k ≤ n |xik − xjk|yk − sij ≤ dij
∀{i, j} ∈ E, k ≤ n |xik − xjk|yk + sij ≥ dijwijk

∀{i, j} ∈ E
∑

k≤K

wijk ≥ 1
∑

k≤n

yk = K

∀{i, j} ∈ E sij ∈ [0, dij ]
∀k ≤ K, {i, j} ∈ E wijk, yk ∈ {0, 1}.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

In Eq. (5), note that x are no longer decision variables, but constants (output
of the Fréchet heuristic for the DMCP). The new decision variables y ∈ {0, 1}n
decide whether coordinate k should be in the realization in R

K or not. Since
solving MILP takes exponential time, and we would like the heuristic to be fast,
we set a 120 s time limit on CPLEX. For instances up to n = 70 with s fixed at
0.8, the average scaled MDE error is non-negligible but still acceptable (around
0.18) while the average scaled LDE is disappointingly close to 0.9. However,
this heuristic allows us to solve instances which the MP formulations of Sect. 3
cannot solve.

4.3 Solving the DGP in the �1 Norm

At first, we tested a Variable Neighbourhood Search (VNS) [12] type algorithm
with neighbourhoods defined by centers given by infeasible realization x′, and
radii given by the maximum number of coordinates of x′ that are allowed to
change during a BB search. This constraint is enforced by a Local Branching
(LB) [9] mechanism added to Eq. (3). The centers are computed using the prob-
abilistic constructive heuristic proposed in [15], which extends the concept of
Fréchet embeddings to sets. Unfortunately, this idea yielded very poor results,
both quality-wise and in terms of CPU time. We only report it to prevent other
researchers from pursuing this same direction.

The second idea we tested is based on alternating solutions between two
continuous reformulations of Eq. (2), denoted A (Eq. (2) with | · | replaced by√

(·)2 + ε) and B ((3) with nonlinear complementarity constraints): we ran-
domly sample an infeasible realization as a starting point for A, then use A’s
solution as a starting point to B. We repeat this loop, updating the “best solu-
tion found so far”, until a CPU time-based termination condition (set to 600s)
becomes true. We used SNOPT [11] to solve A and IPOPT [3] to solve B. The
results, obtained on 85 instances with n ∈ {10, 15, 20, . . . , 90} of any density



Distance Geometry in Linearizable Norms 837

s ∈ {0.1, 0.2, 0.3, 0.5, 0.8}, count 13 failures (generally instances with high den-
sity where SNOPT had convergence issues) and 8 feasible realizations (scaled
MDE/LDE scores < 10−4). If we consider only the results for the instances
ended with no failures, overall, this heuristic displayed average scaled MDE and
LDE of 0.13 and 1.16.
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Abstract. In this work we study a Poisson patterns of fixed and mobile
nodes distributed on straight lines designed for 2D urban wireless net-
works. The particularity of the model is that, in addition to capturing
the irregularity and variability of the network topology, it exploits self-
similarity, a characteristic of urban wireless networks. The pattern obeys
to “Hyperfractal” measures which show scaling properties corresponding
to an apparent dimension larger than 2. The hyperfractal pattern is best
suitable for capturing the traffic over the streets and highways in a city.
The scaling effect depends on the hyperfractal dimensions. Assuming
radio propagation limited to streets, we prove results on the scaling of
routing metrics and connectivity graph.

1 Introduction

The modeling of topology of ad hoc wireless networks makes extensive use of sto-
chastic geometry. Uniform Poisson spatial models have been successfully applied
to the analysis of wireless networks which exhibit a high degree of random-
ness [1,2]. Other modeling of networks such as lattice structures like Manhattan
grid [6] are often used for their high degree of regularity.

We recently introduced new models based on fractal repartition [3,4] which
are proven to model successfully an environment displaying self-similarity char-
acteristics. Results have shown, [4], that a limit of the capacity in a network with
a non-collaborative protocol is inversely proportional to the fractal dimension of
the support map of the terminals. In the model of [4], the nodes have locations
defined as a Poisson shot inside a fractal subset, for example a Cantor set.

By definition, a fractal set has a dimension smaller than the Euclidean dimen-
sion of the embedding vector space; it can be arbitrary smaller. In this work we
study a recently introduced model [5], which we named “Hyperfractal”, for the
ad hoc urban wireless networks. This model is focused on the self-similarity of the
topology and captures the irregularity and variability of the nodes distribution.
The hyperfractal model is a Poisson shot model which has support a measure
with scaling properties instead of a pure fractal set. It is a kind of generalization
of fractal Poisson shot models, and in our cases it will have a dimension that is
larger than the dimension of the underlying Euclidean space and this dimension
can be arbitrarily large. This holds for every case of our urban traffic models.

c© Springer International Publishing AG 2017
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A novel aspect is that the radio model now comprises specific phenomenons
such as the “urban canyon” propagation effect, a characteristic property of
metropolitan environments with tall or medium sized buildings.

Using insights from stochastic geometry and fractal geometry, we study scal-
ing laws of information routing metrics and we prove by numerical analysis and
simulations the accuracy of our expressions.

The papers is organized as follows. Section 2 reminds the newly introduced
geometrical model and its basic properties. Section 3 gives results on the con-
nectivity graph and information routing metrics that are validated through sim-
ulations in Sect. 4.

2 System Model and Geometry

Let us briefly remind the new model we introduced in a recent work [5] and its
basic properties. The map is assumed to be the unit square and it is divided into
a grid of streets similar to a Manhattan grid but with an infinite resolution. The
horizontal (resp vertical streets) streets have abscissas (resp. ordinates) which
are integer multiple of inverse power of two. The number of binary digits after
the coma minus indicates the level of the street, starting with the street with
abscissas (resp ordinate) 1/2 being at level 0. Notice that these two streets make
a central cross.

This model can be modified and generalized by taking integer multiple of
inverse power of any other number called the street-arity, the street-arity could
change with the levels, the central cross could be an initial grid of main streets,
etc.. Figure 1 shows a map of Indianapolis as an example. It could also model
the pattern of older cities in the ancient world. In this case, the model would
display a similar hierarchical street distribution but plugged into a more chaotic
geometric pattern instead that of the grid pattern.

2.1 Hyperfractal Mobile Nodes Distribution

The process of assigning points to the streets is performed recursively, in itera-
tions, similar to the process for obtaining the Cantor Dust.

The two streets of level 0 form a central cross which splits the map in exactly
4 quadrants. We denote by probability p′ the probability that the mobile node is
located on the cross according to a uniform distribution and q′ the complemen-
tary probability. With probability q′/4, it is located in one the four quadrants.
The assignation procedure recursively continues and it stops when the mobile
node is assigned to a cross of a level m ≥ 0. A cross of level m consists of two
intersecting segments of streets of level m. An example of a decreasing density
in the street assignment process performed in L = 4 steps is given in Fig. 2.

Taking the unit density for the initial map, the density of mobile nodes in a
quadrant is q′/4. Let μH be the density of mobile nodes assigned on a street of
level H. It satisfies:

μH = (p′/2)(q′/2)H (1)
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Fig. 1. Indianapolis
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Fig. 2. Hyperfractal support

The measure (understood in the Lebesgue meaning) which represents the
actual density of mobile nodes in the map has strong scaling properties. The
most important one is that the map as a whole is identically reproduced in each
of the four quadrants but with a weight q′/4 instead of 1. Thus the measure
has a structure which recalls the structure of a fractal set, such as the Cantor
map. A crucial difference lies in the fact that its dimension, dm, is in fact greater
than 2, the dimension of the underlying Euclidean space. Indeed, considering the
map in only half of its length consists into considering the same map but with
a reduced weight by a factor q′/4. One obtains:

(
1
2

)dm

= q′/4 thus dm =
log( 4

q′ )

log 2
> 2 (2)

This property can only be explained via the concept of measure. Notice that
when p′ → 0 then dm → 2 and the measure tends to the uniform measure in the
unit square (weak convergence).

2.2 Canyon Effect and Relays

Due to the presence of buildings, the radio wave can hardly propagate beyond
the streets borders. Therefore, we adopt the canyon propagation model where
the signal emitted by a mobile node propagates only on the axis where it stands
on. Considering the given construction process, the probability that a mobile
node is placed in an intersection tends to zero and mobiles positioned on two
different streets will never be able to communicate. Therefore, one needs to add
relays in some street crossings in order to guarantee connectivity and packet
delivery.

We again make use of a hyperfractal process to select the intersections where
a relay will be placed. We denote by p a fixed probability and q = 1 − p the
complementary probability. A run for selecting a street crossing requires two
processes: the in-quadrant process and the in-segment process. The selection
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starts with the in-quadrant process as follows. (i) With probability p2, the selec-
tion is the central crossing of the two streets of level 0; (ii) with probability
p(q/2), the relay is placed in one of the four street segments of level 0 starting
at this point: North, South, West or East, and the process continues on the seg-
ment with the in-segment process. Otherwise, (iii) with probability (q/2)2, the
relay is placed in one of the four quadrants delimited by the central cross and
the in-quadrant process recursively continues.

The process of placing the relays is illustrated in Fig. 3. We perform M
independent runs of selection. If one crossing is selected several times (e.g. the
central crossing), only one relay will be installed in the respective crossing. This
reduction will mean that the number of actually placed relays will be much
smaller than M .

Some basics results following the construction process and shown in [5] are
as following. The relay placement is hyperfractal with dimension dr:

dr = 2
log(2/q)

log 2
. (3)

Let p(H,V ) be the probability that the run selects a crossing of two streets, one
horizontal street of level H and one vertical street of level V . There are 2H+V

of such crossings. We have:

p(H,V ) = p2(q/2)H+V . (4)

Thus the probability that such crossing is selected to host a relay is 1 −
(1 − p(H,V ))M which is equivalent to 1 − exp(−Mp(H,V )) when M is large.
From now, we assume that the number of crossing selection run is a Poisson
random variable of mean ρ, and the probability that a crossing hosts a relay is
now exactly 1 − exp(−Mp(H,V )).

The average number of relays on a streets of level H is denoted by LH(ρ)
and satisfies the identity:

LH(ρ) =
∑
V ≥0

2V (1 − exp(−p(H,V )ρ)) . (5)

The average total number of relays in the city, R(ρ), has the expression:

R(ρ) =
∑

H,V ≥0

2H+V (1 − exp(−p(H,V )ρ)) (6)

Furthermore:
R(ρ) = O(ρ2/dr log ρ) (7)

A complete Hyperfractal map containing both mobile nodes and relays is
presented in Fig. 4.
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Fig. 3. Relay placement procedure
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Fig. 4. Mobiles and relays

3 Routing

The routing table will be computed according to a minimum cost path over a cost
matrix [tij ] where tij represents the cost of directly transmitting a packet from
node i to node j. The min cost path from node i to node j which optimizes the
relaying nodes (either mobile nodes or fixed relays) is denoted mij and satisfies:

mij = min
k

{mik + tkj} , ∀(i, j), (8)

Furthermore, we study here the nearest neighbor routing scenario considering
the canyon effect. In this strategy the next relay is always a next neighbor on
an axis, i.e. there exist no other nodes between the transmitter and the receiver.
Thus ⎧⎪⎨

⎪⎩
tij = 1 if nodes i and j are aligned

and �k such that d(i, j) = d(i, k) + d(k, j)
tij = ∞ otherwise

Due to the canyon effect some nodes can be disconnected from the rest of the
network, several connected components may appear and some routes may not
exist. In the case node i and node j cannot communicate mij = ∞. Therefore,
a very important implication in the routing process has the connectivity of the
hyperfractal. Next, we study this connectivity by looking at the properties of
the giant component.

3.1 Giant Component

We restrict our analysis to the giant component of the network. Following the
construction process which assigns a relay in the central cross with high prob-
ability, the giant component will be formed around this relay with coordinates
[12 , 1

2 ].

Theorem 1. The fraction of mobile nodes in the giant component tends to 1
when ρ → ∞ and the average number of mobile nodes outside the giant compo-
nent is O(Nρ−2(dm−2)/dr ) when ρ → ∞.
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Remark: For a configuration where dm − 2 > dr/2, the average number of
mobile nodes outside the giant component tends to zero when ρ = O(N).

Let us now sketch a proof that will show the validity of Theorem 1.

Proof. Given a horizontal line of level H, the probability that the line is con-
nected to the vertical segment in the central cross is 1 − e−ρp2(q/2)H .

On each line of level H the density of mobiles is (p′/2)(q′/2)H .
Furthermore, there are 2H of such lines intersecting each of the lines forming

the central cross. We multiply by 2 and obtain g(ρ), the cumulated density of
lines connected to the central cross with a single relay:

g(ρ) = 2
∑
H≥1

2H(p′/2)(q′/2)H(1 − e−ρp2(q/2)H ) (9)

The quantity g(ρ) is a lower bound of the fraction of mobile nodes connected
to the central cross. It is indeed a lower bound as a line can be connected to the
central cross via a sequence of relays, while above we consider the lines which
are connected via a single relay. The fraction of nodes connected to the central
nodes including those nodes in the central relay (which are in density 2p) is
therefore lower bounded by the quantity 2p + g(ρ).

Let E(ρ,N) be the average number of mobile nodes outside the giant com-
ponent. We have E(ρ,N) ≤ Ne(ρ) represented with an harmonic sum:

e(ρ) = 1 − 2p − g(ρ) = 2
∑
H≥1

2H(p′/2)(q′/2)He−ρp2(q/2)H (10)

The Mellin Transform e∗(s) of e(ρ) is:

e∗(s) =
∫ ∞

0
e(ρ)ρs−1dρ = Γ (s)2

∑
H≥1

2H(
p′

2
)(

q′

2
)H(p2(q/2)H)−s =

p′q′( p
2q
2

)−s

1− q′( q
2
)−s

Γ (s) (11)

The Mellin transform is defined for R(s) > 0 and has s a simple pole at
s0 = log(1/q′)

log(2/q) = −2(dm−2)
dr

.

Using the inverse Mellin transform e(ρ) = 1
2iπ

∫ c+i∞
c−i∞ e∗(s)ρ−sds for any given

number c within the definition domain of e∗(s), following the similar analysis
as with the expressions used for mobile fractal dimension from Eq. 2 and relay
fractal dimension from Eq. 3, one gets e(ρ) = O(ρ−s0) which proves the theorem.

Notice than when s0 > 1 we have E(ρ,N) → 0. Therefore, the connectivity
graph tends to contain all the nodes.

3.2 Routing on the Giant Component

Let us now remind shortly a result on routing from [5] performed on the giant
component. In the context of nearest neighbor routing strategy, the following
holds:
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Theorem 2. The average number of hops in a Hyperfractal of N mobile nodes
and hyperfractal dimensions of mobile nodes and relays dm and dr is:

DN = O
(
N1− 2

(1+1/dm)dr

)
(12)

Proof. Mobile node mH on a line of level H sends a packet to mV , on a line
of level V as in Fig. 5(a) [5]. The dominant case is V = H = 0. As lines H and
V have high density of population, the packet will be diverted by following a
vertical line of level x > 0 with a much lower density. A similar phenomenon
happens towards mobile mV . We will consider [5] that x = y.

V

mH

mV

x

y

mH

mV

y

a) b)

Fig. 5. Routing in a Hyperfractal (a) intermediate levels x and y, (b)extra intermediate
levels

For changing direction in the route, it is mandatory that a relay exists at
the crossing. Let L(a, b) be the average distance between a random mobile node
on a street of level a to the first relay to a street of level b. Every crossing
between streets of level a and b is independent and holds a relay with probability
1 − exp(−ρp(a, b)). Since such crossings are regularly spaced by interval 2−a

we get:

L(a, b) ≤ 2−a

1 − exp(−ρp(a, b))
. (13)

Let us assume that the two streets of level x have a relay at their intersec-
tion. In this case, the average number of traversed nodes is upper bounded by
2Nμ0L(x, 0) + 2Nμx.

In [5], the authors showed that the probability that there exists a valid relay
at level x street intersection is very low, therefore an intermediate level (see
Fig. 5b) has to be added. Given the probabilities of existence of relays and the
densities of lines computed according to the logic described in Sect. 2, the order of
the number of nodes that the packet hops on towards its destination is obtained
to be as [5]: The minimized value of the number of hops is, thus:

DN = O(Nρ− 2
(1+1/dm)dr ) (14)
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4 Numerical Results

The configuration studies is chosen as to validate the constraint given by The-
orem 1, dm − 2 > dr

2 , dm = dr = 3, N = ρ = 200, 300, 400, 500, 800, 1200, 1600
nodes.

Figure 6 illustrates the variation of fraction of mobile nodes that are not
included in the giant component. As claimed by Theorem 1, the fraction
decreases with the increase of number of mobiles. Furthermore, the actual num-
ber of mobiles comprised in the giant component nodes follows the scaling law
O(N

1
3 ) as shown in Fig. 7.
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5 Conclusion

This work studies routing properties and scaling of a recently introduced geo-
metrical model for wireless ad-hoc networks, called “Hyperfractal”. This model
which is best fit for urban wireless networks as it captures not only the irreg-
ularity and variability of the node configuration but also the self-similarity of
the topology. We showed here that the connectivity properties of the Hyperfrac-
tal exhibits good properties, supporting the Hyperfractal as a new topology for
urban ad-hoc wireless networks.
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Abstract. A stochastic approach to resolution is explored that uses information
distances computed from the geometry of data models characterized by the
Fisher information in cases with spatial-temporal measurements for multiple
parameters. Stochastic resolution includes probability of resolution at
signal-to-noise ratio (SNR) and separation of targets. The probability of reso-
lution is assessed by exploiting different information distances in likelihood
ratios. Taking SNR into account is especially relevant in compressive sensing
(CS) due to its fewer measurements. Our stochastic resolution is also compared
with actual resolution from sparse-signal processing that is nowadays a major
part of any CS sensor. Results demonstrate the suitability of the proposed
analysis due to its ability to include crucial impacts on the performance guar-
antees: array configuration or sensor design, SNR, separation and probability of
resolution.

Keywords: Resolution � Information geometry � Compressive sensing � Radar

1 Introduction

Resolution is primarily described by the minimum distance between two objects that
still can be resolved (e.g. [1]). Stochastic resolution has been introduced [2] by
including the Cramér-Rao bound (CRB). The stochastic approach was extended with
the probability of resolution at a given separation and signal-to-noise ratio (SNR)
obtained via an asymptotic generalized likelihood ratio (GLR) test based on Euclidean
distances [3]. Information resolution have also been explored with an arbitrary test [4].
For completeness of the stochastic approach, information geometry (IG, [5–9]) and
compressive sensing (CS, [10, 11]) are combined due to their focus on information
content [12–15]. In [13, 14], the Fisher-Rao information distance is recognized in the
asymptotic GLR. In [15], links to other information distances and tighter resolution
bounds have been obtained that we expand here to multiple parameters.

In the IG-based resolution analysis, the Fisher information metric (FIM) is
employed for computing resolution bounds or information resolution. The stochastic
analysis is crucial when using fewer measurements what is typical for compressive data
acquisition in the front-end of a CS sensor (e.g. [10]). In the back-end, the analysis
provides metrics for the high-resolution performance of sparse-signal processing (SSP).
In radar, SSP can be seen as a model-based refinement of existing processing (e.g.
[16]). Despite substantial CS research during last decade (e.g. [10, 11]), complete
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guarantees of CS-radar resolution performance have not been developed yet. Both IG
and CS can improve existing sensors due to their focus on the information content in
measurements rather than the sensing bandwidth only.

The resolution ability is primarily given by the Rayleigh distance determined by the
sensing bandwidth from sensor design. In array processing, this deterministic resolu-
tion relies on the sensor wavelength and the array size. The stochastic resolution
analysis includes also SNR available from the data acquisition. Moreover, besides the
sensor design, it also involves targets of interest with their SNR and separation. In [13,
14], we assess the probability of resolution at a given SNR and separation by applying
the Fisher-Rao information distances in the asymptotic distribution of the GLR.

In this paper and in [15], we extend the stochastic resolution analysis with tighter
resolution bounds obtained via an LR test with different types of information distances.
In Sect. 2, modeling of radar measurements and their SSP are summarized. In Sect. 3,
our stochastic resolution analysis is explained and expanded to multiple parameters. In
Sect. 4, numerical results from the stochastic resolution analysis and from SSP are
compared. In the end, conclusions are drawn and future work indicated.

2 Data Modelling and SSP

The data models in array processing and in SSP needed in Sect. 3 are given here.
In a linear array (LA) of Ms antenna elements, a measurement yi at time t from a

single point-target (in a far field) at an array-element position li measured in
half-wavelength units (and centered, i.e.

P
i li = 0), i ¼ 1; 2; . . .;Ms, is given by:

yi ¼ aejliu þ zi ¼ a0ai u; 0ð Þþ zi ¼ mi uð Þþ zi ¼ mi hð Þþ zi ð1Þ

where a is a target echo at time t, u is an angle parameter (containing the target azimuth
u, u ¼ psinuÞ, ai u; 0ð Þ is the model function (at zero Doppler) and zi is
complex-Gaussian receiver noise with zero mean and variance c, zi �CN 0; cð Þ. The
target echo a is assumed to have constant nonrandom amplitude a0 (so-called SW0,
[17]), and thus, the input SNR equal to a0j j2=c. Thus, yi �CN mi hð Þ; cð Þ, h ¼ u½ �.

Doppler v is included by modeling a in yi from (1) at times tl (normalized by
sampling interval Dt) from an LA of size Mt (during coherent processing), as follows:

yi;l ¼ a0e
j liuþ tlvð Þ þ zi;l ¼ a0ai;l u; vð Þþ zi;l ¼ mi;l hð Þþ zi;l ð2Þ

where v is a frequency shift (from the narrowband assumption of the Doppler effect),
v ¼ 4pfv0Dt=c with f , v0 and c being the carrier frequency, constant target velocity and
the propagation speed, respectively. The noise zi;l and the echo a0 are as in (1).

In SSP, data in (1) or (2) form a vector y, y 2 C
M , y�CN m hð Þ; cIMð Þ, given by:

y ¼ Axþ z ¼ m hð Þþ z ð3Þ

where A 2 C
MxN is a sensing matrix over the M spatial and temporal observations,

M ¼ MsMt, and for N parameter pairs un; vnð Þ, n ¼ 1; 2; . . .;N, x 2 C
N is a sparse
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angle-Doppler profile of multiple targets, and z 2 C
M is the receiver-noise vector,

z�CN 0; cIMð Þ. The usual SSP, e.g. LASSO [18], applies as:

xssp ¼ argminx yk � Axk2 þgkxk1 ð4Þ

where the l1-norm xk k1 promotes sparsity, the l2-norm y� Axk k minimizes the errors,
and a parameter g regulates the two tasks. In radar, the parameter g is closely related to
the detection threshold (e.g. [16, 19, 21]). SSP in (4) relies on incoherence of A and
sparsity, i.e. only K nonzeros (or targets) in x, K\M�N (e.g. [10]). The mutual
coherence j Að Þ is an incoherence measure, j Að Þ ¼ max

i;j;i6¼j
aHi aj
�� �� where an is an n th

column of A, ank k ¼ 1; n ¼ 1; 2; . . .;N:
In radar signal processing, a sensing matrix A is intrinsically deterministic and its

incoherence is also intrinsically strong because of the physics of radar sensing.
Moreover, the model matrices for different parameters are mutually incoherent by their
physical nature. Namely, typical radar data models employ shifts in time (for range),
shifts in frequency (for Doppler) and shifts in phase (for angles) that are correctly
isolated by the underlying physics.

In array processing, the sensing matrix A from (3) is an IFFT matrix, i.e. j Að Þ ¼ 0
when M ¼ N. Accordingly, with a uniform LA of size Ms, the grid cell Du is 2p=Ms

large. With regular sampling over a coherent processing interval of length TCPI (each
Dt), the grid cell Dv is 2p=TCPI large. Such a grid-cell size can be called the Nyquist
grid-cell size. Fewer measurements or smaller grid cells make j Að Þ increase.

3 Stochastic Resolution Analysis

The stochastic resolution analysis is presented gradually by introducing our approach in
a simpler LA case as in [15], and completing it with a joint angle-Doppler case.

In an LA whose measurement yi is modeled at position li as in (1), the FIM G uð Þ
for unknown u and Gaussian pdf p yjuð Þ of y can be written as (e.g. [14, 20]):

G uð Þ ¼ �E
@2 ln p yjuð Þ

@u2

� �
¼ 2

a0j j2
c

@a uð Þ
@u

����
����
2

¼ 2SNR lk k2¼ Gu ð5Þ

In joint LAs whose measurement yi;l is modeled at position li and at time tl, as in

(2), the FIM G hð Þ, h ¼ u v½ �T, Gi;l � 2 aj j2
c Re @a hð Þ

@hi

h iH
@a hð Þ
@hl

� �
, is given by (e.g. [14]):

G
u
v

� �� 	
¼ 2

a0j j2
c

MtGu Gu;v

Gv;u MsGv

� �
¼ 2SNR

Mt lk k2 P
i;l
litlP

i;l litl Ms tk k2

2
4

3
5 ¼ Gu;v ð6Þ

where
P

i;l litl is zero because the positions li and the times tl are centered (to restrict
the influence of positions to the FIM), i.e.

P
i li ¼ 0 and

P
l tl ¼ 0, respectively.
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The FIM G hð Þ is typically applied in the accuracy analysis to the accuracy bounds
such as e.g. so-called Cramer-Rao bound (CRB) of the mean squared error (MSE) of an

unbiased estimator ĥ of h, i.e. MSE ĥ

 �

�CRB hð Þ ¼ G hð Þ½ ��1 (e.g. [19]).

In addition, we have been exploring how the FIM G hð Þ can also be used to compute
resolution bounds based on information distances between p yjhð Þ and p yjhþ dhð Þ
when the parameters h change a bit by dh (e.g. [13–15]). Among many information
distances available in IG [6], we start with the Fisher-Rao information distance ([5],
FRID) because it is directly related to the Riemann distance and the basic infinitesimal
Fisher-Rao metric ds, ds2 ¼ dhTG hð Þdh. Moreover, most information (pseudo-)dis-
tances from IG such as e.g. the Kullback-Leibler (KL) divergence and Bhattacharyya
(BT) distance, reduce to simple functions of ds and of FRID, especially, in the case of
Gaussian-distributed measurements.

A FRID dh (related to h) is a geodesic computed from the integrals of ds over
possible curves of integration on the statistical manifold, given by:

dh � min
# tð Þ

Z1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_# tð ÞTG # tð Þð Þ _# tð Þ

q
dt

where # tð Þ are coordinates of an integration path parameterized by t, t 2 01½ �. The
coordinates are computed from the geodesic equations [5] written as:

€#k tð Þþ
X

i;j
Ck
ij
_#i tð Þ _#j tð Þ ¼ 0; Ck

ij ¼
X

l
Gkl @Gi;l

@hj
þ @Gj;l

@hi
þ @Gi;j

@hk

� 	

where Ck
ij is a connection coefficient and Gkl an element from the inverse of the FIM

G hð Þ, i; j; k; l ¼ 1, 2,… dim hð Þ:
In the LA case from (5), dim hð Þ ¼ 1 and the integration curve is a line given by:

# tð Þ ¼ dutþ u, t 2 01½ �, because the connection coefficient C1
11 equals zero as G uð Þ is

constant w.r.t. u, G uð Þ � Gu, i.e. €# tð Þ ¼ 0. Accordingly, the FRID du between p yjuð Þ
and p yjuþ duð Þ on the 1D statistical manifold is given by:

du ¼ Z1

0

ffiffiffiffiffiffi
Gu

p
du dt ¼ ffiffiffiffiffiffi

Gu
p

du ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2SNR

p
lduk k: ð7Þ

In the joint case from (6), G hð Þ is also constant w.r.t. h, G hð Þ � Gu;v, i.e. €# tð Þ ¼ 0,
so that the FRID du;v between p yju; vð Þ and p yjuþ du; vþ dvð Þ is given by:

du;v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du dv½ �Gu;v du dv½ �T

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SNR Mt lduk k2 þMs tdvk k2


 �r
ð8Þ

The FRID du:v contains separations du and dv in a weighted form rather than
directly as in the norm: dhk k � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

du2 þ dv2
p

. This weighting makes a FRID, e.g. here
du or du:v, have no unit because each dh is actually normalized with the Rayleigh
distance.
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Next we derive the resolution bounds (or the information resolution) from the FRID
dh as the probability that two targets can be resolved at a separation dh and an SNR:

In some early work on IG [5], Rao proposed a test of a resolution hypothesis
H1 : dh 6¼ 0 and its alternative H0 : dh ¼ 0, with a test statistic w from N 0; 1ð Þ, w ¼
d=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRLB d½ �p

; by using a FRID d as the distance between populations p yjhð Þ and
p yjhþ dhð Þ. The test with w can only suggest a true H1 when H0 is rejected.

In our resolution analysis [13–15], we quantify the resolution potential when there
are two close targets, i.e. we prefer assessing H1 : dh 6¼ 0. Hence, in [13–15], we tested
the same hypotheses via the likelihood ratio (LR), LR ¼ p yjh; hþ dhð Þ=p yjhð Þ, first at
the maximum likelihood (ML) estimate dĥml, i.e. so-called the generalized LR (GLR).
A statistic ln GLR is asymptotically v2-distributed with a number of degrees of free-
dom equal to dim hð Þ, and the parameter e, given by ([21] in 6):

ln GLR!a ln GLRa ¼ dĥ
T
MLG hþ dĥML


 �
dĥML � v2e;dim hð Þ ð9Þ

In [13, 14], e from (9), e ¼ dhTG hþ dhð Þdh � dhTGhdh (as in 6 from [21]), is
linked to the FRID dh from (7) or (8) as: e ¼ d2h . To assess the probability of resolution
Pres;FRID, the statistic lnGLRa is tested as follows:

Pres;FRID ¼ P ln GLRa [ qjH1f g; ln GLRa � v2e;dim hð Þ: ð10Þ

where q is a threshold from the inverse central v2-distribution (under H0) at a proba-
bility of false alarms Pfa, q ¼ v2;inv0;dim hð Þ(PfaÞ:

In [14], we had noticed that dh and the resolution bounds from (10) were too
optimistic. Therefore, we started investigating another FRID dm hð Þ related to the mean
m hð Þ of measurements. In [15], the FRID dm hð Þ with a single h as in (1) gives tighter
resolution bounds because radar models are nonlinear w.r.t. h, while FRID dh can be
interpreted as the Taylor expansion. Here we expand the analysis to multiple param-
eters in h as required in (2). The FRID dm hð Þ between CN m hð Þ; cIMð Þ and
CN m hþ dhð Þ; cIMð Þ with different means, dm ¼ m hþ dhð Þ �m hð Þ, but the same
covariance matrix is equal to the Mahalanobis distance [5], as follows:

dm hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmHGmdm

p
¼ dmk k=

ffiffiffiffiffiffiffiffi
c=2

p
6¼ dh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dhHGhdh

q
ð11Þ

where Gm is the FIM about the mean, Gm ¼ 2IM=c. The FRID dm hð Þ would be equal to
dh only if m hð Þ would be affine transformation of h what is not a case in radar.
However, the basic infinitesimal metric ds hð Þ is always invariant to different parame-
terization. E.g., if m ¼ m hð Þ, ds2 mð Þ ¼ ds2 hð Þ because Gh ¼ dm=dhj j2Gm. Regarding
links to CS, we can note that the cross-correlations from the coherence j Að Þ make
dm hð Þ decrease, dm hð Þ ¼ dm=k k

ffiffiffiffiffiffiffiffi
c=2

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SNR 1� Re aH hð Þa hþ dhð Þf gð Þp

:
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Next we explored the LR test at the true separation dh with the equivalent
hypotheses being aimed for detecting dm, expressed as [15]:

H0 : y ¼ 2m hð Þþ z ¼ y0
H1 : y ¼ m hð Þþm hþ dhð Þþ z ¼ y0 þ dm

ð12Þ

where measurements y contain responses from two point-targets separated by dh:
The test statistic ln LR is derived and linked to dm hð Þ, as follows:

ln LR ¼ 2Re y� 2m hð Þ½ �Hdm �
=c�Nðd2m hð Þ; d

2
m hð Þ ð13Þ

as Gaussian distributed with mean and variance equal to d2m hð Þ. Moreover, ln LR can be

tested directly, with no need for an asymptotic lnGLR. Note also that we end up at a
normal distribution, ln LR=dm hð Þ �N dm hð Þ; 1

� �
, like in a test from [5], w�N 0; 1ð Þ, but

via different tests and different test statistics.
The test statistic ln LR from (13), is tested against a threshold qm at Pfa,

qm ¼ N�1 0; d2m hð Þ;Pfa


 �
, to assess the probability of resolution Pres;FRIDm given by:

Pres;FRIDm ¼ P ln LR[ qmjH1f g ln LR�N d2m hð Þ; d
2
m hð Þ


 �
ð14Þ

In cases with Gaussian-distributed measurements y, we can extend (14) with other
information (pseudo-) distances such as the KL divergence dKL and BT distance dBT,
because they are directly related to dm hð Þ. Moreover, dKL and dBT between p yjhð Þ and
p yjhþ dhð Þ are also related to the LR, and can be easily derived as follows:

dKL ¼ EH1 ln LR½ � ¼ d2m hð Þ and dBT ¼ � ln EH0

ffiffiffiffiffiffiffi
LR

ph i
¼ d2m hð Þ=4 ð15Þ

Finally, the FRID-based probabilities Pres;FRID and Pres;FRIDm are compared with the
resolution from SSP whose probability Pres;SSP is assessed numerically from xSSP in (4)
for two point-targets in cells i and j, i 6¼ j, by:

Pres;SSP ¼ P xSSP;i 6¼ 0
� � ^ xSSP;j 6¼ 0

� �jH1
 � ð16Þ

where g is related to Pfa as: g2 ¼ �clnPfa � v2;inv0;2 Pfað Þ=2 (e.g. [16, 19, 21]).

4 Numerical Results

The stochastic resolution analysis presented in Sect. 3 is demonstrated with numerical
tests with spatial and temporal measurements for joint angle-Doppler processing of two
close equal point-targets at different SNRs. Measurements are acquired from joint
uniform LAs (ULAs) of size Ms in space and of size Mt in time. For the sake of
simplicity, the sizes are equal, Ms ¼ Mt, and moreover, lk k2¼ tk k2.
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The measurements y from (3) contain responses from two point-targets separated
by du or dv, y ¼ aa u; vð Þþ aa uþ du; vþ dvð Þþ z. The angle-Doppler estimation grid
of size N is Nyquist, i.e. without up-sampling, N ¼ MsMt. The targets are placed in the
middle of the estimation grid, and separated in u or v by the IFFT bin size, i.e. du
equals 2p

Ms
or dv equals 2p

Mt
. The amplitude a0 is nonrandom, a0j j2¼c SNR. The noise

variance c is kept constant, c = 1. For the thresholds q, qm and g in (10), (14) and (16),
respectively, Pfa is set to 0.000001 (as typically low in radar).

The FRID-based probabilities Pres;FRID and Pres;FRIDm from (10) and (14) are
assessed by computing the true e and dm hð Þ from (9) and (11), respectively. The
probability Pres;SSP from (16) is assessed numerically from a sufficient number of noise
runs. The SSP optimization from (4) is performed with yall1 [22].

In Fig. 1, the different information (pseudo-)distances du, dm uð Þ, and dKL and dBT
from (8), (11) and (15), respectively, are shown in the same test case. While du grows
linearly with du, dm uð Þ reaches its maximum quite fast (at around 1.4 Nyquist cell) and
stays around that value despite the growing separation du. The same tendency holds
also for dKL and dBT (as given in (15), dKL and dBT are squared versions of dm uð Þ).

In Fig. 2, the resolution probabilities are shown in the same test case from
angle-Doppler processing. The SSP resolution Pres;SSP is quite far from the resolution
bounds given by the FRID-based probabilities Pres;FRID and Pres;FRIDm. In addition, at a
bit larger separation (Fig. 2, right), Pres;FRID increases clearly while Pres;FRIDm as well as
Pres;SSP remain realistic, i.e. nearly the same. This behavior agrees with related infor-
mation distances such as du and dm uð Þ in Fig. 1.

Fig. 1. Information distances from (8), (11) and (15) in a test case from (1) with a uniform linear
array of size equal to 10, and two point-targets separated by du (expressed in Nyquist cells).
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5 Conclusions

A stochastic resolution analysis was presented that enables computing resolution
bounds based on information distances between complex-Gaussian distributions of
measurements with multiple parameters. The bounds are expressed for an array con-
figuration as the probability of resolution at a given separation and SNR of targets, and
assessed via an LR test by exploiting the Fisher-Rao distance (FRID) in the distribution
of the LR. In Gaussian cases, the KL divergence and Bhattacharyya distance are also
applicable as directly related to the FRID and the LR. The IG-based LR test provides
tight resolution bounds for the SSP resolution. The IG approach to resolution analysis
enables us also to conclude that the stochastic resolution analysis is appropriate in (but
not limited to) radar because of the sensitivity to the crucial features in the performance
guarantees: array configuration or sensor design as well as SNR, separation and
probability of resolution.

In future work, this stochastic resolution analysis based on IG is being further
interpreted and applied to fewer measurements from sparse sensing in the front-end and
to all radar parameters: range, Doppler and angles. In addition, incorporating the
geometry of the Laplacian manifold related to sparsity, and also links to the importance
of information distances in the information theory are being explored.

Fig. 2. Resolution bounds Pres;FRID and Pres;FRIDm (green squares and diamonds) from (10) and
(14), respectively, and SSP resolution Pres;SSP from (16) (blue circles) in a test case with joint
uniform LAs of equal size in space and time, Ms ¼ Mt ¼ 10, and two point-targets separated in
angle u by du equal to one, and in Doppler v by dv equal to zero (left) and one (right). (Color
figure online)
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Abstract. We introduced two novel classes of Hölder divergences and
Hölder pseudo-divergences that are both invariant to rescaling, and that
both encapsulate the Cauchy-Schwarz divergence and the skew Bhat-
tacharyya divergences. We review the elementary concepts of those para-
metric divergences, and perform a clustering analysis on two synthetic
datasets. It is shown experimentally that the symmetrized Hölder diver-
gences consistently outperform significantly the Cauchy-Schwarz diver-
gence in clustering tasks.

1 Introduction

To build dissimilarity measures between p and q in a common domain, one can
use bi-parametric inequalities (Mitrinovic et al. 2013) lhs(p, q) ≤ rhs(p, q), and
measure the inequality tightness. When lhs(p, q) > 0, a dissimilarity can be
constructed by the log-ratio gap:

D(p : q) = − log
(

lhs(p, q)
rhs(p, q)

)
= log

(
rhs(p, q)
lhs(p, q)

)
≥ 0. (1)

Notice that this divergence construction allows one to consider the equivalence
class of scaled inequalities: λ × lhs(p, q) ≤ λ × rhs(p, q),∀λ > 0. Following this
divergence construction principle, we defined Hölder divergences based on the
Hölder’s inequality, and presented the basic properties of this divergence fam-
ily (Nielsen et al. 2017). In this paper, we further extend the empirical clus-
tering study with respect to Hölder divergences, and show that symmetrized
Hölder divergences consistently outperform significantly the Cauchy-Schwarz
divergence (Hasanbelliu et al. 2014). We build Hölder divergences that are invari-
ant by rescaling: These divergences D are called projective divergences and sat-
isfy the property D(λp : λ′q) = D(p : q),∀λ, λ′ > 0.

The term “Hölder divergence” was coined previously based on the definition
of the Hölder score (Kanamori et al. 2014; Kanamori 2014): The score-induced
Hölder divergence D(p : q) is a proper gap divergence that yields a scale-invariant
divergence. A key difference with our work is that this score-induced divergence

c© Springer International Publishing AG 2017
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https://doi.org/10.1007/978-3-319-68445-1_98
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is not projective and does not include the Cauchy-Schwarz (CS) divergence,
while our definition is projective and includes the CS divergence.

This paper is organized as follows: Sect. 2 reviews the definition of Hölder
pseudo divergence and Hölder proper divergence. Section 3 gives algorithms for
clustering based on Hölder divergences, and presents the experimental clustering
results. Section 4 concludes this work.

2 Hölder Divergences: Definitions and Properties

Let (X ,F , μ) be a measurable space where μ is the Lebesgue measure, and let
Lγ(X , μ) denote the space of functions with their γ-th power of absolute value
Lebesgue integrable, for any γ > 0. When γ ≥ 1, this is a Lebesgue space but we
consider the wider scope of γ > 0 in this work. Hölder’s inequality states that
‖pq‖1 ≤ ‖p‖α‖q‖β for conjugate exponents α > 0 and β > 0 (satisfying 1

α + 1
β =

1), p ∈ Lα(X , μ) and q ∈ Lβ(X , μ). Let p(x) ∈ Lασ(X , μ) and q(x) ∈ Lβτ (X , μ)
be positive measures where σ > 0 and τ > 0 are prescribed parameters. We
define (Nielsen et al. 2017) a tri-parametric family of divergences as follows:

Definition 1 (Hölder pseudo-divergence). The Hölder pseudo-divergence
(HPD) between p(x) and q(x) is the log-ratio-gap:

DH
α,σ,τ (p : q) := − log

⎛
⎝

∫
X p(x)σq(x)τdx(∫

X p(x)ασdx
) 1

α
(∫

X q(x)βτdx
) 1

β

⎞
⎠ .

The non-negativeness follows straightforwardly from Hölder’s inequality (1889).
However the symmetry, the triangle-inequality, and the law of indiscernibles (self
distance equals to zero) are not satisfied for HPDs. Therefore these dissimilarity
measures are said to belong to a broader class of “pseudo-divergences”.

In order to have a proper divergence with the law of the indiscernibles, we
note that the equality DH

α,σ,τ (p : q) = 0 holds if and only if p(x)ασ ∝ q(x)βτ

(almost everywhere). To make this equality condition to be p(x) = q(x) (ae.) for
probability distributions, we take γ := ασ = βτ.

Let p(x) and q(x) be positive measures in Lγ(X , μ) for a prescribed scalar
value γ > 0. Let α, β > 0 be conjugate exponents. We define (Nielsen et al. 2017)
a bi-parametric divergence family, which is a sub-family of HPD that satisfies
both non-negativeness and law of the indiscernibles as follows:

Definition 2 (Proper Hölder divergence). The proper Hölder divergence
(HD) between two densities p(x) and q(x) is:

DH
α,γ(p : q) = DH

α, γ
α , γ

β
(p : q) := − log

( ∫
X p(x)γ/αq(x)γ/βdx

(
∫

X p(x)γdx)1/α(
∫

X q(x)γdx)1/β

)
.

Notice that DH is used to denote both HPD and HD. One has to check the
number of subscripts to distinguish between these two pseudo and proper cases.
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An important fact about Hölder divergences is that they encapsulate
both the Cauchy-Schwarz divergence and the one-parameter family of skew
Bhattacharyya divergences (Nielsen and Boltz 2011). In the definition of HD,
setting α = β = γ = 2 yields the CS divergence:

DH
2,2(p : q) = DH

2,1,1(p : q) = CS(p : q) := − log

⎛
⎝

∫
X p(x)q(x)dx

(∫
X p(x)2dx

) 1
2
(∫

X q(x)2dx
) 1

2

⎞
⎠.

In the definition of HD, setting γ = 1 yields the skew Bhattacharyya divergences:

DH
α,1(p : q) = DH

α, 1
α , 1

β
(p : q) = − log

∫
X

p(x)1/αq(x)1/βdx := B1/α(p : q).

It is easy to check from Definition 1 that the HPD is a projective divergence
which is invariant to scaling of its parameter densities:

DH
α,σ,τ (λp : λ′q) = DH

α,σ,τ (p : q) (∀λ, λ′ > 0).

Figure 1 illustrates the relationships between those divergence families.

Projective divergence

ecnegrevid-oduespredlöH DH
α,σ,τ

)reporp(ecnegrevidredlöH DH
α,γ

skew Bhattacharyya
divergence (proper)

B1/α

Cauchy-Schwarz (CS)
divergence (proper)

Fig. 1. Hölder proper divergence (bi-parametric) and Hölder improper pseudo-
divergence (tri-parametric) encompass the Cauchy-Schwarz divergence and the skew
Bhattacharyya divergences.

By definition, the HPD is asymmetric and satisfies the reference duality:

DH
α,σ,τ (p : q) = DH

β,τ,σ(q : p),

for conjugate exponents α and β. Similarly, the HD satisfies:

DH
α,γ(p : q) = DH

β,γ(q : p).

The HPD and the HD admit closed-form formulas for exponential family
distributions. For example, consider p(x) = exp(θ�

p t(x) − F (θp)) and q(x) =
exp(θ�

q t(x) − F (θq)), where t(x) is a vector of sufficient statistics, and F (θ) is
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the convex cumulant generating function. Then from straightforward derivations,
the symmetrized Hölder divergence is:

SH
α,γ(p : q) :=

1
2

(
DH

α,γ(p : q) + DH
α,γ(q : p)

)

=
1
2

[
F (γθp) + F (γθq) − F

(
γ

α
θp +

γ

β
θq

)
− F

(
γ

β
θp +

γ

α
θq

)]
.

This SH
α,γ has the key advantage that its centroid can be solved efficiently

using the concave-convex procedure (CCCP) (Nielsen and Boltz 2011). Con-
sider a set of fixed densities {θ1, · · · , θn} with positive weights {w1, · · · , wn}
(
∑n

i=1 wi = 1) of the same exponential family. The symmetrized HD centroid
with respect to α, γ > 0 is defined as:

Oα,γ := arg min
θ

n∑
i=1

wiS
H
α,γ(θi : θ)

= arg min
θ

n∑
i=1

wi

[
F (γθ) − F

(
γ

α
θi +

γ

β
θ

)
− F

(
γ

β
θi +

γ

α
θ

)]
. (2)

Because F (θ) is a strictly convex function, the energy function to be minimized
in Eq. (2) is the difference between two convex functions. Setting the derivatives
to zero, we get the CCCP iterations given by:

Ot+1
α,γ =

1
γ

(∇F )−1

[
n∑

i=1

wi

(
1
β

∇F

(
γ

α
θi +

γ

β
Ot

α,γ

)
+

1
α

∇F

(
γ

β
θi +

γ

α
Ot

α,γ

))]
,

where ∇F and (∇F )−1 are forward and reverse transformations between the
natural parameters and the dual expectation parameters, respectively.

3 Clustering Based on Symmetric Hölder Divergences

Given a set of densities {p1, · · · , pn}, we can perform variational k-means
(Nielsen and Nock 2015) clustering based on SH

α,γ . The cost function is the Hölder
information:

E :=
n∑

i=1

SH
α,γ(pi : Oli), (3)

where O1, · · · , OL are the cluster centers and li ∈ {1, · · · , L} is the cluster label
of pi. Algorithm 1 presents a revision of the clustering algorithm given in (Nielsen
et al. 2017) with k-means++ initialization (Arthur and Vassilvitskii 2007).

We investigate two different datasets. The first (Nielsen et al. 2017) consists of
n random 2D Gaussians with two or three clusters. In the first cluster, the mean
of each Gaussian G(μ,Σ) has the prior distribution μ ∼ G((−2, 0), I); the covari-
ance matrix is obtained by first generating σ1 ∼ Γ (7, 0.01), σ2 ∼ Γ (7, 0.003),
where Γ means a gamma distribution with prescribed shape and scale, then
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Algorithm 1. Hölder variational k-means.
Input: p1, · · · , pn; number of clusters L; 1 < α ≤ 2; γ > 0
Output: A clustering scheme assigning each pi to a label in {1, · · · , L}

1 Randomly pick one center O1 ∈ {pi}n
i=1, then sequentially pick Ok (2 ≤ k ≤ L)

with probability proportional to mink−1
j=1 SH

α,γ(pi : Oj)

2 while not converged do
3 for i = 1, . . . , n do
4 Assign li = arg minl SH

α,γ(pi : Ol)

5 for l = 1, . . . , L do
/* Carry CCCP iterations until the current center improves the

former cluster Hölder information */

6 Compute the centroid Ol = arg minO

∑
i:li=l SH

α,γ(pi : O);

7 return {li}n
i=1;

rotating the covariance matrix diag(σ1, σ2) so that the resulting Gaussian has
a “radial direction” with respect to the center (−2, 0). The second and third
clusters are similar to the first cluster with the only difference being that their
μ’s are centered around (2, 0) and (0, 2

√
3), respectively.

The second dataset consists of multinomial distributions in Δ9, the 9D
probability simplex. The dataset presents two or three clusters. For each clus-
ter, we first pick a random center (c0, · · · , cd) based on the uniform distribu-
tion in Δ9. Then we randomly generate a distribution (p0, · · · , pd) based on
pi = exp(log ci+σεi)∑d

i=0 exp(log ci+σεi)
, where σ > 0 is a noise level parameter, and each εi

follows independently a standard Gaussian distribution. We repeat generating
random samples for each cluster center, and make sure that different clusters
have almost the same number of samples.

Our clustering algorithm involves two additional hyper-parameters γ and α
as compared with standard k-means clustering. Therefore it is meaningful to
study how these two hyper-parameters affect the performance. We extend the
experiments reported previously (Nielsen et al. 2017) (where α = γ is applied for
simplicity) with a grid of α and γ values. Notice that the reference duality gives
SH

α,γ = SH
β,γ for conjugate exponents α and β. Therefore we assume 1 < α ≤ 2

without loss of generality. If we choose α = γ = 2, then SH
α,γ becomes the CS

divergence, and Algorithm 1 reduces to traditional CS clustering.
We performed clustering experiments by setting the number of clusters

k ∈ {2, 3} and setting the sample size n ∈ {50, 100}. Tables 1 and 2 show the
clustering accuracy measured by the Normalized Mutual Information (NMI).
The large variance of the clustering accuracy is because different runs are based
on different random datasets. We see that the symmetric Hölder divergence can
give strikingly better clustering as compared to CS clustering. An empirical range
of well-performed parameter values is given by γ ∈ [0.5, 1.5] and α ∈ (1, 2]. In
practice, one has to setup a configuration grid and apply cross-validation to find
the best α and γ values.
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Table 1. Performance in NMI (mean±std) when clustering 2D Gaussians based on
1000 independent runs for each configuration. Bold numbers indicate the best obtained
performance. The boxed numbers are given by the Cauchy-Schwarz (CS) clustering.

(a) k = 2; n = 50

α = 1.01 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

γ = 0.25 0.91 ± 0.10 0.89 ± 0.13 0.86 ± 0.14 0.85 ± 0.14 0.85 ± 0.15 0.85 ± 0.16
γ = 0.5 0.92± 0.09 0.86 ± 0.16 0.84 ± 0.17 0.84 ± 0.17 0.82 ± 0.19 0.82 ± 0.17
γ = 0.75 0.92± 0.10 0.85 ± 0.16 0.83 ± 0.17 0.82 ± 0.18 0.82 ± 0.19 0.81 ± 0.18
γ = 1 0.92± 0.10 0.84 ± 0.18 0.81 ± 0.20 0.82 ± 0.18 0.82 ± 0.20 0.81 ± 0.20

γ = 1.5 0.92± 0.10 0.82 ± 0.18 0.80 ± 0.20 0.81 ± 0.19 0.81 ± 0.19 0.80 ± 0.21

γ = 2 0.92± 0.10 0.81 ± 0.20 0.82 ± 0.19 0.80 ± 0.21 0.80 ± 0.20 0.81 ± 0.20

(b) k = 2; n = 100

α = 1.01 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

γ = 0.25 0.91 ± 0.07 0.88 ± 0.08 0.87 ± 0.09 0.86 ± 0.10 0.86 ± 0.10 0.86 ± 0.10
γ = 0.5 0.91 ± 0.07 0.87 ± 0.12 0.85 ± 0.11 0.85 ± 0.13 0.84 ± 0.14 0.84 ± 0.12
γ = 0.75 0.91 ± 0.07 0.86 ± 0.11 0.84 ± 0.13 0.84 ± 0.13 0.84 ± 0.14 0.84 ± 0.14
γ = 1 0.92± 0.07 0.86 ± 0.12 0.83 ± 0.15 0.83 ± 0.13 0.83 ± 0.14 0.84 ± 0.12

γ = 1.5 0.92± 0.07 0.84 ± 0.14 0.83 ± 0.14 0.83 ± 0.15 0.83 ± 0.14 0.83 ± 0.13

γ = 2 0.91 ± 0.08 0.84 ± 0.14 0.82 ± 0.15 0.83 ± 0.14 0.83 ± 0.14 0.83 ± 0.14

(c) k = 3; n = 50

α = 1.01 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

γ = 0.25 0.88 ± 0.12 0.83 ± 0.14 0.81 ± 0.15 0.80 ± 0.15 0.79 ± 0.14 0.80 ± 0.15
γ = 0.5 0.88 ± 0.12 0.80 ± 0.15 0.77 ± 0.16 0.77 ± 0.15 0.77 ± 0.15 0.76 ± 0.16
γ = 0.75 0.89± 0.12 0.80 ± 0.14 0.77 ± 0.15 0.76 ± 0.16 0.75 ± 0.15 0.76 ± 0.16
γ = 1 0.88 ± 0.12 0.78 ± 0.15 0.76 ± 0.16 0.75 ± 0.16 0.75 ± 0.16 0.76 ± 0.15

γ = 1.5 0.88 ± 0.13 0.76 ± 0.16 0.76 ± 0.16 0.76 ± 0.15 0.76 ± 0.16 0.76 ± 0.16

γ = 2 0.88 ± 0.12 0.76 ± 0.16 0.75 ± 0.16 0.74 ± 0.16 0.75 ± 0.16 0.76 ± 0.16

(d) k = 3; n = 100

α = 1.01 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

γ = 0.25 0.89± 0.08 0.84 ± 0.11 0.82 ± 0.12 0.82 ± 0.11 0.82 ± 0.11 0.82 ± 0.12
γ = 0.5 0.89± 0.08 0.83 ± 0.11 0.81 ± 0.12 0.79 ± 0.12 0.78 ± 0.14 0.79 ± 0.13
γ = 0.75 0.89± 0.09 0.81 ± 0.12 0.79 ± 0.13 0.78 ± 0.13 0.77 ± 0.14 0.78 ± 0.14
γ = 1 0.88 ± 0.10 0.80 ± 0.12 0.78 ± 0.14 0.78 ± 0.14 0.78 ± 0.13 0.78 ± 0.13

γ = 1.5 0.89± 0.09 0.78 ± 0.13 0.77 ± 0.14 0.77 ± 0.14 0.76 ± 0.14 0.77 ± 0.14

γ = 2 0.89± 0.09 0.78 ± 0.13 0.77 ± 0.13 0.77 ± 0.14 0.77 ± 0.13 0.78 ± 0.13
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Table 2. Performance in NMI (mean±std) when clustering multinomial distributions
in Δ9 based on 1000 independent runs for each configuration. Bold numbers indicate
the best obtained performance. The boxed numbers are given by the Cauchy-Schwarz
(CS) clustering.

(a) k = 2; n = 50

α = 1.01 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

γ = 0.25 0.93± 0.14 0.93± 0.15 0.93± 0.13 0.93± 0.15 0.92 ± 0.16 0.93± 0.13
γ = 0.5 0.91 ± 0.16 0.92 ± 0.15 0.90 ± 0.18 0.91 ± 0.17 0.91 ± 0.16 0.91 ± 0.16
γ = 0.75 0.87 ± 0.20 0.86 ± 0.21 0.87 ± 0.20 0.87 ± 0.20 0.88 ± 0.19 0.88 ± 0.19
γ = 1 0.83 ± 0.23 0.83 ± 0.23 0.83 ± 0.23 0.82 ± 0.24 0.81 ± 0.23 0.82 ± 0.23

γ = 1.5 0.75 ± 0.26 0.71 ± 0.28 0.72 ± 0.27 0.70 ± 0.28 0.71 ± 0.28 0.71 ± 0.28

γ = 2 0.68 ± 0.28 0.65 ± 0.29 0.64 ± 0.29 0.62 ± 0.29 0.62 ± 0.30 0.61 ± 0.30

(b) k = 2; n = 100

α = 1.01 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

γ = 0.25 0.93 ± 0.12 0.93 ± 0.12 0.93 ± 0.11 0.93 ± 0.12 0.94± 0.11 0.93 ± 0.12
γ = 0.5 0.92 ± 0.14 0.91 ± 0.14 0.92 ± 0.13 0.91 ± 0.15 0.92 ± 0.14 0.91 ± 0.14
γ = 0.75 0.89 ± 0.16 0.88 ± 0.16 0.89 ± 0.17 0.89 ± 0.16 0.88 ± 0.16 0.89 ± 0.15
γ = 1 0.83 ± 0.20 0.84 ± 0.19 0.84 ± 0.19 0.83 ± 0.19 0.84 ± 0.19 0.84 ± 0.19

γ = 1.5 0.77 ± 0.24 0.74 ± 0.25 0.74 ± 0.23 0.73 ± 0.24 0.74 ± 0.23 0.74 ± 0.24

γ = 2 0.70 ± 0.26 0.67 ± 0.26 0.65 ± 0.27 0.64 ± 0.27 0.63 ± 0.27 0.63 ± 0.27

(c) k = 3; n = 50

α = 1.01 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

γ = 0.25 0.87± 0.16 0.87± 0.16 0.87± 0.16 0.87± 0.15 0.87± 0.16 0.86 ± 0.16
γ = 0.5 0.84 ± 0.17 0.84 ± 0.17 0.84 ± 0.17 0.83 ± 0.17 0.84 ± 0.17 0.84 ± 0.18
γ = 0.75 0.80 ± 0.18 0.79 ± 0.18 0.79 ± 0.18 0.78 ± 0.19 0.79 ± 0.18 0.78 ± 0.19
γ = 1 0.73 ± 0.20 0.72 ± 0.20 0.73 ± 0.20 0.73 ± 0.20 0.72 ± 0.20 0.71 ± 0.21

γ = 1.5 0.65 ± 0.21 0.63 ± 0.20 0.61 ± 0.19 0.59 ± 0.20 0.59 ± 0.20 0.60 ± 0.20

γ = 2 0.57 ± 0.20 0.55 ± 0.20 0.53 ± 0.19 0.51 ± 0.18 0.52 ± 0.18 0.51 ± 0.18

(d) k = 3; n = 100

α = 1.01 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

γ = 0.25 0.90± 0.13 0.88 ± 0.14 0.88 ± 0.14 0.88 ± 0.13 0.89 ± 0.13 0.89 ± 0.12
γ = 0.5 0.87 ± 0.14 0.86 ± 0.14 0.86 ± 0.15 0.86 ± 0.14 0.86 ± 0.14 0.86 ± 0.14
γ = 0.75 0.82 ± 0.16 0.82 ± 0.17 0.83 ± 0.15 0.82 ± 0.16 0.82 ± 0.16 0.82 ± 0.16
γ = 1 0.77 ± 0.18 0.77 ± 0.17 0.77 ± 0.18 0.75 ± 0.18 0.76 ± 0.18 0.76 ± 0.18

γ = 1.5 0.66 ± 0.19 0.63 ± 0.19 0.64 ± 0.19 0.63 ± 0.19 0.63 ± 0.19 0.63 ± 0.19

γ = 2 0.57 ± 0.18 0.56 ± 0.18 0.54 ± 0.18 0.53 ± 0.18 0.53 ± 0.19 0.53 ± 0.18

This hints that one should use instead the general Hölder divergence to
replace CS in similar clustering applications (Hasanbelliu et al. 2014; Rami et al.
2016). Although one faces the problem of tuning the parameters α and γ, Hölder
divergences can potentially give much better results.
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4 Conclusion

We experimentally confirmed the usefulness of the novel parametric Hölder
classes of statistical divergences and pseudo-divergences. In general one should
use Hölder clustering instead of Cauchy-Schwarz clustering to get much bet-
ter results. These new concepts can open up new insights and applications in
statistics and information sciences.

Reproducible source code is available online at:
https://www.lix.polytechnique.fr/∼nielsen/HPD/.
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Abstract. We introduce the notion of normal Jacobi operator of
Codazzi type for real hypersurfaces in the complex quadric Qm. The
normal Jacobi operator of Codazzi type implies that the unit normal
vector field N becomes A-principal or A-isotropic. Then according to
each case, we give a non-existence theorem of real hypersurfaces in Qm

with normal Jacobi operator of Codazzi type.

Keywords: Normal Jacobi operator of Codazzi type · A-isotropic · A-
principal · Kähler structure · Complex conjugation · Complex quadric

1 Introduction

In the complex projective space CPm+1 and the quaternionic projective space
QPm+1 some classifications related to the Ricci tensor and the structure Jacobi
operator were investigated by Kimura [10,11], Pérez and Suh [17–19], Pérez
and Santos [14], and Pérez, Santos and Suh [15,16], respectively. Some exam-
ples of Hermitian symmetric space of rank 2 are G2(Cm+2) = SUm+2/S(U2Um)
and G∗

2(C
m+2) = SU2,m/S(U2Um), which are said to be complex two-plane

Grassmannians and complex hyperbolic two-plane Grassmannians, respectively
(see [23–25]). These are viewed as Hermitian symmetric spaces and quaternionic
Kähler symmetric spaces equipped with the Kähler structure J and the quater-
nionic Kähler structure J.

The classification problems of real hypersurfaces in the complex two-plane
Grassmannian SUm+2/S(U2Um) with certain geometric conditions were mainly
investigated by Jeong et al. [6], Jeong, Machado, Pérez and Suh [7,8] and Suh
[23–25], where the classification of commuting and parallel Jacobi operator, con-
tact hypersurfaces, parallel Ricci tensor, and harmonic curvature for real hyper-
surfaces in complex two-plane Grassmannians were extensively studied. More-
over, in [26] we have asserted that the Reeb flow on a real hypersurface in
SU2,m/S(U2Um) is isometric if and only if M is an open part of a tube around
a totally geodesic SU2,m−1/S(U2Um−1) ⊂ SU2,m/S(U2Um).

As another kind of Hermitian symmetric space with rank 2 of compact type
different from the above ones, we can give the example of complex quadric
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 864–871, 2017.
https://doi.org/10.1007/978-3-319-68445-1_99
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Qm = SOm+2/SOmSO2, which is a complex hypersurface in complex projective
space CPm+1 (see Klein [9], and Smyth [21]). The complex quadric can also be
regarded as a kind of real Grassmann manifold of compact type with rank 2
(see Kobayashi and Nomizu [12]). Accordingly, the complex quadric admits two
important geometric structures, a complex conjugation structure A and a Kähler
structure J , which anti-commute with each other, that is, AJ = −JA. Then for
m≥2 the triple (Qm, J, g) is a Hermitian symmetric space of compact type with
rank 2 and its maximal sectional curvature is equal to 4 (see Klein [9] and
Reckziegel [20]).

In addition to the complex structure J there is another distinguished geomet-
ric structure on Qm, namely a parallel rank two vector bundle A which contains
an S1-bundle of real structures, that is, complex conjugations A on the tan-
gent spaces of Qm. This geometric structure determines a maximal A-invariant
subbundle Q of the tangent bundle TM of a real hypersurface M in Qm as
follows:

Q = {X∈TzM |AX∈TzM for all A∈A}.

Moreover, the derivative of the complex conjugation A on Qm is defined by

(∇̄XA)Y = q(X)JAY

for any vector fields X and Y on M and q denotes a certain 1-form defined on M .
Recall that a nonzero tangent vector W ∈ T[z]Q

m is called singular if it is
tangent to more than one maximal flat in Qm. There are two types of singu-
lar tangent vectors for the complex quadric Qm (see Berndt and Suh [2] and
Reckziegel [20]):

• If there exists a conjugation A ∈ A such that W ∈ V (A)(the (+1)-eigenspace
of a conjugation A in T[z]Q

m), then W is singular. Such a singular tangent
vector is called A-principal.

• If there exists a conjugation A ∈ A and orthonormal vectors X,Y ∈ V (A)
such that W/||W || = (X + JY )/

√
2, then W is singular. Such a singular

tangent vector is called A-isotropic.

When we consider a real hypersurface M in the complex quadric Qm, under
the assumption of some geometric properties the unit normal vector field N of
M in Qm can be either A-isotropic or A-principal (see [27,28]). In the first case,
where N is A-isotropic, Suh has shown in [27] that M is locally congruent to a
tube over a totally geodesic CP k in Q2k. In the second case, when the unit normal
N is A-principal, he proved that a contact hypersurface M in Qm is locally
congruent to a tube over a totally geodesic and totally real submanifold Sm in
Qm (see [28]).

Jacobi fields along geodesics of a given Riemannian manifold M̄ satisfy a well
known differential equation. Naturally the classical differential equation inspires
the so-called Jacobi operator. That is, if R̄ is the curvature operator of M̄ , the
Jacobi operator with respect to X at z ∈ M̄ , is defined by

(R̄XY )(z) = (R̄(Y,X)X)(z)



866 I. Jeong et al.

for any Y ∈ TzM̄ . Then R̄X becomes a symmetric endomorphism of the tangent
bundle TM̄ of M̄ , that is, R̄X ∈ End(TzM̄). Clearly, each tangent vector field X
to M̄ provides a Jacobi operator with respect to X (see Pérez and Santos [14],
and Pérez, Santos and Suh [15,16]). From such a view point, for a real hypersur-
face M in Qm with unit normal vector field N the normal Jacobi operator R̄N

is defined by
R̄N = R̄( ·, N)N ∈ End (TzM), z ∈ M,

where R̄ denotes the curvature tensor of Qm. Of course, the normal Jacobi
operator R̄N is a symmetric endomorphism of TzM (see Jeong, Kim and Suh [6],
Jeong, Machado, Pérez and Suh [7,8]). We introduce the notion of parallelism
with respect to the normal Jacobi operator R̄N of M in M̄ . It is defined by
(∇XR̄N )Y = 0 for all tangent vector fields X and Y on M . This has a geometric
meaning that the eigenspaces of R̄N are parallel, that is, invariant under any
parallel displacements along any curves on M in M̄ . Using this notion, specially,
in [6] they gave a non-existence theorem for Hopf hypersurfaces with parallel
normal Jacobi operator in G2(Cm+2). Moreover, Suh [30] gave a non-existence
theorem for the case of a Hopf hypersurface with parallel normal Jacobi operator
in Qm. Here M is called Hopf if the Reeb vector field ξ defined by ξ = −JN is
principal, that is, Sξ = αξ, where S is the shape operator of M associated with
the unit normal N .

As a generalized notion of parallel normal Jacobi operator, in this paper
we want to introduce the definition of the normal Jacobi operator of Codazzi
type from the view point of exterior derivative (see Besse [2], and Derdzinski
and Shen [3]). Let E be a vector bundle over a manifold M̄ . For any section
ω of

∧p
M̄

⊗
E the exterior derivative d∇ω is the section of

∧p+1
M̄

⊗
E such

that for X0, · · ·,Xp in TzM̄ , z ∈ M̄ , extended to vector fields X̃0, · · ·, X̃p in a
neighborhood as follows:

(d∇ω)(X0, · · ·,Xp) =
∑

i
(−1)i∇Xi

(ω(X̃0, · · ·, ˆ̃Xi, · · ·, X̃p))

+
∑

i�=j
(−1)i+jω([X̃i, X̃j ], X̃0, · · ·, ˆ̃Xi, · · ·, ˆ̃Xj , · · ·, X̃p).

In case of the normal Jacobi operator R̄N , then the exterior derivative of the
normal Jacobi operator gives

(d∇R̄N )(X,Y ) = ∇X(R̄NY ) − ∇Y (R̄NX) − R̄N ([X,Y ])
= (∇XR̄N )Y − (∇Y R̄N )X.

Now we apply above equation to R̄N , which is a tensor field of type (1, 1) on a
real hypersurface M in M̄ . The normal Jacobi operator R̄N of M in M̄ is said
to be of Codazzi type if the normal Jacobi operator R̄N satisfies d∇R̄N = 0, that
is, the normal Jacobi operator is closed with respect to the exterior derivative
d∇ related to the induced connection ∇. Then by the above formula we have the
following

(∇XR̄N )Y = (∇Y R̄N )X
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for any X,Y ∈ TzM , z ∈ M . Related to this definition, Machado, Pérez, Jeong,
and Suh considered the case of a real hypersurface in G2(Cm+2) and gave a
non-existence theorem as follows.

Remark 1. There does not exist any connected Hopf real hypersurface in com-
plex two-plane Grassmannians G2(Cm+2), m ≥ 3, whose normal Jacobi operator
is of Codazzi type if the distribution D or the D⊥-component of the Reeb vector
field is invariant under the shape operator (see [13]).

Remark 2. Many geometers have studied the various tensor of Codazzi type
(1,1), for example the shape operator, the structure Jacobi operator Rξ :=
R( ·, ξ)ξ ∈ End(TM), Ricci tensor etc., on a real hypersurface M in G2(Cm+2)
(see [4,22,25] and so on). In particular, in [22] the third author deal with the
parallelism for the shape operator on M . But we know that the proofs contain
for the case of Codazzi type with respect to the shape operator.

On the other hand, the Ricci operator Ric of M in Qm is said to be of
harmonic curvature if the Ricci operator Ric satisfies

(∇XRic)Y = (∇Y Ric)X

for any X,Y ∈TzM , z∈M . In the study of real hypersurfaces in the complex
quadric Qm we considered some notions of parallel Ricci tensor or more gener-
ally, harmonic curvature, that is, ∇Ric = 0 or (∇XRic)Y = (∇Y Ric)X respec-
tively(see Suh [28,29]). But from the assumptions of Ricci parallel or harmonic
curvature, it was difficult for us to derive the fact that either the unit normal N
is A-isotropic or A-principal. So in [1,28] and [29] we gave a classification with
the further assumption of A-isotropic. But fortunately, when we consider the
normal Jacobi operator R̄N of Codazzi type, first we can assert that the unit
normal vector field N becomes either A-isotropic or A-principal.

Theorem 1. Let M be a Hopf real hypersurface in Qm, m ≥ 3, with normal
Jacobi operator of Codazzi type. Then the unit normal vector field N is singular,
that is, N is A-isotropic or A-principal. ��

Then motivated by such a result, next we give a non-existence theorem for
Hopf hypersurfaces in the complex quadric Qm with normal Jacobi operator of
Codazzi type as follows:

Theorem 2. There does not exist any Hopf real hypersurface in Qm, m ≥ 3
with normal Jacobi operator of Codazzi type. ��

2 Outline of Proofs

It is well known that complex quadric Qm = SOm+2/SOmSO2 is a com-
pact Kählelr manifold with the metric and complex structure induced from
CPm+1 with constant holomorphic sectional curvature 4. Moreover it becomes a
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Hermitian symmetric space of rank 2 being equipped with both a complex struc-
ture J and a real structure (or complex conjugation) A satisfying AJ = −JA
and TrA = TrJA = 0.

Hence by the equation of Gauss, the curvature tensor R̄(X,Y )Z for a complex
hypersurface Qm in CPm+1 induced from the curvature tensor R̃ of CPm+1 can
be described in terms of the complex structure J and the complex conjugation
A ∈ A as follows:

R̄(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(JY,Z)JX − g(JX,Z)JY

− 2g(JX, Y )JZ + g(AY,Z)AX − g(AX,Z)AY

+ g(JAY,Z)JAX − g(JAX,Z)JAY

+ g(SY,Z)SX − g(SX,Z)SY

(1)

for any X,Y,Z ∈ TzQ
m, z ∈ Qm.

From the induced almost contact metric structure (φ, ξ, η, g) of M let us put

JX = φX + η(X)N, JN = −ξ

AX = BX + ρ(X)N

for any vector field X ∈ TzQ
m, z ∈ M , ρ(X) = g(AX,N), where BX and

ρ(X)N respectively denote the tangential and normal component of the vector
field AX. Moreover, it follows that Aξ = Bξ + ρ(ξ)N and ρ(ξ) = g(Aξ,N) = 0.
Then it follows that

AN = AJξ = −JAξ = −JBξ = −(φBξ + η(Bξ)N).

By virtue of the equation of Gauss and (1), the normal Jacobi operator R̄N

of M can be described in terms of the complex structure J and the complex
conjugations A ∈ A as follows:

R̄N (Y ) = Y + 3η(Y )ξ + g(AN,N)BY + g(AY,N)φAξ − g(AY, ξ)Aξ

for any Y ∈ TzM , z ∈ M . Now the derivative of the normal Jacobi operator R̄N

is given by
(∇XR̄N )Y = ∇X(R̄N (Y )) − R̄N (∇XY ),

where ∇ denotes the Riemannian connection defined on M in Qm.
Now let us consider the following formula for the connection ∇̄ on Qm and

any tangent vector fields X and Y on M

∇̄X(AY ) − A∇XY = (∇̄XA)Y + A∇̄Y − A∇XY

= q(X)JAY + Aσ(X,Y )
= q(X)JAY + g(SX, Y )AN,

where q denotes a certain 1-form defined on M in the introduction, and σ(X,Y )
denotes the normal part of ∇̄XY . From this, together with normal Jacobi oper-
ator of Codazzi type for any tangent vector fields X and Y on M in Qm, it
follows that
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0 = (∇XR̄N )Y − (∇Y R̄N )X
= 3{g(φSX, Y ) − g(φSY,X)}ξ + 3{η(Y )φSX − η(X)φSY }

− 2g(ASX,N)AY + 2g(ASY,N)AX

+ g(AN,N){q(X)JAY − q(Y )JAX}
− {q(X)g(JAY,N) − q(Y )g(JAX,N)}AN

+ g(AY, SX)AN − g(AX,SY )AN

− g(AY,N){(∇̄XA)N + A∇̄XN}
+ g(AX,N){(∇̄Y A)N + A∇̄Y N}
− {g(∇̄X(AY ) − A∇XY, ξ) − g(∇̄Y (AX) − A∇Y X, ξ)}Aξ

− {g(AY, φSX + σ(X, ξ)) − g(AX,φSY + σ(Y, ξ))}Aξ

− g(AY, ξ){(∇̄XA)ξ + A∇̄Xξ}
+ g(AX, ξ){(∇̄Y A)ξ + A∇̄Y ξ}.

(2)

Using this equation, we can prove following lemma.

Lemma 1. Let M be a Hopf real hypersurface in Qm, m ≥ 3, with normal
Jacobi operator of Codazzi type. Then the unit normal vector field N is either
A-isotropic or q(ξ) = −g(AN,N)q(Aξ).

By Lemma 1, we can assert the following

Lemma 2. Let M be a Hopf real hypersurface in Qm, m ≥ 3, with normal
Jacobi operator of Codazzi type. Then the unit normal vector field N is singular,
that is, N is either A-isotropic or A-principal.

Proof. When g(AN,N) = 0, we have proved that the unit normal N is A-
isotropic. Now let us consider the case that g(AN,N) 	= 0. Then by Lemma 1,
we know that

αg(AN,N)2 = 0.

Here, if the Reeb function α 	=0, then g(AN,N) = 0 also gives that the unit
normal vector field N is A-isotropic.

When the Reeb function α is vanishing, that is, the equation

Y α = (ξα)η(Y ) − 2g(ξ,AN)g(Y,Aξ) + 2g(Y,AN)g(ξ,Aξ)

becomes
g(Y, (AN)T )g(ξ,Aξ) = 0,

where we have used g(ξ,AN) = 0 and the vector field (AN)T denotes the tan-
gential component of the vector field AN .

Since in the second case we have assumed that N is not A-isotropic, we know
g(ξ,Aξ) 	= 0. So it follows that (AN)T = 0. This means that

AN = (AN)T + g(AN,N)N = g(AN,N)N.
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Then it implies that

N = A2N = g(AN,N)AN = g2(AN,N)N.

This gives that g(AN,N) = ±1. So g(AN,N) = cot 2t = ±1 implies t = 0 or π
2 .

Accordingly, we should have t = 0, that is, g(AN,N) = 1. Then we can take the
unit normal N such that AN = N . So the unit normal vector field N becomes
A-principal, that is, AN = N . ��

Then motivated by such a result, we give a non-existence for real hypersur-
faces in the complex quadric Qm with normal Jacobi operator of Codazzi type
as Theorem 1 given in Sect. 1 (see [5]).

Usually, normal Jacobi operator of Codazzi type is a generalization of parallel
normal Jacobi operator R̄N of M in Qm, that is, ∇XR̄N = 0 for any tangent
vector field X on M . The parallelism of normal Jacobi operator has a geometric
meaning that every eigen spaces of the normal Jacobi operator R̄N are parallel
along any direction on M in Qm. Then naturally, by Theorem 1 we give the
following:

Corollary 1. [30] There do not exist any Hopf real hypersurfaces in Qm, m ≥ 3
with parallel normal Jacobi operator.
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Abstract. We develop a geometric framework for Newton-type equa-
tions on the infinite-dimensional configuration space of probability den-
sities. It can be viewed as a second order analogue of the “Otto calculus”
framework for gradient flow equations. Namely, for an n-dimensional
manifold M we derive Newton’s equations on the group of diffeomor-
phisms Diff(M) and the space of smooth probability densities Dens(M),
as well as describe the Hamiltonian reduction relating them. For exam-
ple, the compressible Euler equations are obtained by a Poisson reduc-
tion of Newton’s equation on Diff(M) with the symmetry group of
volume-preserving diffeomorphisms, while the Hamilton–Jacobi equation
of fluid mechanics corresponds to potential solutions. We also prove that
the Madelung transform between Schrödinger-type and Newton’s equa-
tions is a symplectomorphism between the corresponding phase spaces
T ∗Dens(M) and PL2(M,C). This improves on the previous symplec-
tic submersion result of von Renesse [1]. Furthermore, we prove that
the Madelung transform is a Kähler map provided that the space of
densities is equipped with the (prolonged) Fisher–Rao information met-
ric and describe its dynamical applications. This geometric setting for
the Madelung transform sheds light on the relation between the clas-
sical Fisher–Rao metric and its quantum counterpart, the Bures met-
ric. In addition to compressible Euler, Hamilton–Jacobi, and linear and
nonlinear Schrödinger equations, the framework for Newton equations
encapsulates Burgers’ inviscid equation, shallow water equations, two-
component and µ-Hunter–Saxton equations, the Klein–Gordon equation,
and infinite-dimensional Neumann problems.
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