
Chapter 4
Fibre Bundles

What is gauge theory? It is not an overstatement to say that gauge theory is
ultimately the theory of principal bundles and associated vector bundles. Besides
full gauge theories, it also proves beneficial in certain situations to study the theory
only involving principal bundles, sometimes called Yang–Mills theory. In physics,
an example of a full gauge theory would be quantum chromodynamics (QCD), the
theory of quarks, gluons and their interactions, while pure Yang–Mills theory would
be a theory only of gluons, also called gluodynamics. Even such a simplified theory
is very interesting – the Clay Millennium Prize Problem [37] on the mass gap, for
instance, is a problem concerning the spectrum of glueballs in pure quantum Yang–
Mills theory.

With the background knowledge of Lie groups, Lie algebras, representations and
group actions, we will now study fibre bundles in general and more specifically
principal bundles, vector bundles and associated bundles, which together form the
core or the “stage” of gauge theories.

Fibre bundles can be thought of as twisted, non-trivial products between a base
manifold and a fibre manifold. Principal and vector bundles are fibre bundles whose
fibres are, respectively, Lie groups and vector spaces, so that the bundle admits
a special type of bundle atlas, preserving some of the additional structure of the
fibres.

The fundamental geometric object in a gauge theory is a principal bundle
over spacetime with structure group given by the gauge group. The fibres of a
principal bundle are sometimes thought of as an internal space at every space-
time point, not belonging to spacetime itself. The gauge group acts at every
spacetime point on the internal space in a simply transitive way. Connections
on principal bundles, that we discuss in Chap. 5, correspond to gauge fields,
whose particle excitations in the associated quantum field theory are the gauge
bosons that transmit interactions. Matter fields in the Standard Model, like quarks
and leptons, or scalar fields, like the Higgs field, correspond to sections of
vector bundles associated to the principal bundle (and twisted by spinor bun-
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194 4 Fibre Bundles

dles in the case of fermions). The ultimate reason for the interaction between
matter fields and gauge fields is that both are related to the same principal
bundle.

Fibre bundles are indispensable in gauge theory and physics in the situation
where spacetime, the base manifold, has a non-trivial topology. This happens,
for example, in string theory where spacetime is typically assumed to be a
product R4 � K of Minkowski spacetime with a compact Riemannian manifold
K. It also happens if we compactify (Euclidean) spacetime R

4 to the 4-sphere
S4. In these situations, fields on spacetime often cannot be described simply by
a map to a fixed vector space, but rather as sections of a non-trivial vector
bundle.

Even in the case where the fibre bundles are trivial, for example, in the case
of principal bundles and vector bundles over contractible manifolds like R

n, there
is still a small, but important difference between a trivial fibre bundle and the
choice of an actual trivialization. We will see that this is similar to the difference
in special relativity between Minkowski spacetime and the choice of an inertial
system.

Fibre bundles are not only important in physics, but for a variety of rea-
sons also in differential geometry and differential topology: many non-trivial
manifolds can be constructed as (total spaces of) fibre bundles and numerous
structures on manifolds, such as vector fields, differential forms and metrics,
are defined using bundles. Mathematically, we are especially interested in the
construction of non-trivial fibre bundles (trivial bundles are just globally prod-
ucts). We discuss the following methods that (potentially) yield non-trivial bun-
dles:

• Mapping tori (Example 4.1.5) and the clutching construction (Sect. 4.6) yield
fibre bundles over the circle S1 and higher-dimensional spheres Sn.

• Principal group actions define principal bundles (Sect. 4.2.2; specific exam-
ples are the famous Hopf fibrations and principal bundles over homogeneous
spaces).

• Actions of the structure group G of a principal bundle P ! M on another
manifold F (the general fibre) yield associated fibre bundles (Sect. 4.7) over M.
In particular, all vector bundles can be obtained in this way.

• The tangent bundle TM and frame bundle Fr.M/ of smooth manifolds M are
specific examples of vector and principal bundles.

• In general, every fibre bundle can be constructed using a cocycle of transition
functions (Exercise 4.8.9).

This chapter, like the previous one, contains many definitions and concepts. I
hope that there are sufficiently many examples to illustrate the definitions and
balance the exposition. References for this chapter for fibre bundles in general are
[14, 84, 133] and [136] as well as [5, 25, 39, 74] and [78] for vector bundles in
particular.
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4.1 General Fibre Bundles

4.1.1 Definition of Fibre Bundles

Before we begin with the definition of fibre bundles, we consider two very general
notions: suppose �W E ! M is a surjective differentiable map between smooth
manifolds (occasionally we will consider the following notions even in the case
of a surjective map �W E ! M between sets).

Definition 4.1.1

1. Let x 2 M be an arbitrary point. The (non-empty) subset

Ex D ��1.x/ D ��1 .fxg/ � E

is called the fibre of � over x.
2. For a subset U � M we set

EU D ��1.U/ � E:

We can think of EU as the part of E “above” U. It is clear that EU is the union of
all fibres Ex, where x 2 U.

3. A differentiable map sW M ! E such that

� ı s D IdM

is called a (global) section of � . A differentiable map sW U ! E, defined on
some open subset U � M, satisfying

� ı s D IdU

is called a local section.

Note that a differentiable map sW U ! E is a (local) section of �W E ! U if and only
if s.x/ 2 Ex for all x 2 U.

For a general surjective map, the fibres Ex and Ey over points x ¤ y 2 M
can be very complicated and different, in particular, they may not be embedded
submanifolds of E and even when they are, they may not be diffeomorphic. The
simplest example where these properties do hold is a product E D M � F with �
given by the projection onto the first factor.

Fibre bundles are an important generalization of products E D M � F and can
be understood as twisted products. The fibres of a fibre bundle are still embedded
submanifolds and are all diffeomorphic. However, the fibration in general is only
locally trivial, i.e. locally a product, and not globally. We shall see later in
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Corollary 4.2.9 and Corollary 4.5.12 that if the topology of M is trivial (i.e. M is
contractible), then certain types of fibre bundles over M (like principal and vector
bundles) are always globally trivial. If M has a non-trivial topology (for example, if
M is a sphere Sn), this may not be the case.

Consider, for instance, the Hopf action of S1 D U.1/ on S3, introduced in
Definition 3.3.1. This is a free action, i.e. the orbit of every point in S3 is
an embedded S1 and the quotient space S3=U.1/ of this action is the smooth
manifold CP1 Š S2.

However, it is clear (e.g. by considering fundamental groups) that S3 cannot
be diffeomorphic to S2 � S1. We will see in Example 4.2.14 that S3 really is
the total space of a non-trivial S1-bundle over S2. We denote this bundle by

S1 �! S3
��! S2

or

S1 S3

S2

This is the celebrated Hopf fibration. The total space S3 is simply connected
even though the fibres S1 are not. This is possible, because the fibre bundle is
globally non-trivial.

General fibre bundles are defined as follows.

Definition 4.1.2 Let E;F;M bemanifolds and�W E ! M a surjective differentiable
map. Then .E; �;MI F/ is called a fibre bundle (or locally trivial fibration or
locally trivial bundle) if the following holds: For every x 2 M there exists an open
neighbourhood U � M around x such that � restricted to EU can be trivialized,
i.e. there exists a diffeomorphism

�UW EU �! U � F

such that

pr1 ı �U D �;
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hence the following diagram commutes:

EU U F

U

U

pr1

We also write

F E

M

or

F �! E
��! M

to denote a fibre bundle. We call

• E the total space
• M the base manifold
• F the general fibre
• � the projection
• .U; �U/ a local trivialization or bundle chart.

See Fig. 4.1.

Remark 4.1.3 The classic references [133] and [81] use the term fibre bundle in a
more restrictive sense; see Remark 4.1.15.
It is easy to see, using a local trivialization .U; �U/, that the fibre

Ex D ��1.x/

Fig. 4.1 Fibre bundle
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is an embedded submanifold of the total space E for every x 2 M and the map �Ux

defined by

�Ux D pr2 ı �UjEx W Ex �! F

is a diffeomorphism between the fibre over x 2 U and the general fibre.
Note that in a local trivialization the map

�UW EU �! U � F

is a diffeomorphism and

pr1W U � F �! U

is a submersion (its differential is everywhere surjective). This implies that the
projection �W E ! M of a fibre bundle is always a submersion. The Regular Value
Theorem A.1.32 then shows again that the fibres Ex D ��1.x/ are embedded
submanifolds of E.

Example 4.1.4 (Trivial Bundle) Let M and F be arbitrary smooth manifolds and
E D M � F. Then � D pr1 defines a fibre bundle

F M F

M

pr1

This bundle is called trivial.

Example 4.1.5 (Mapping Torus) We discuss an example where the idea of a fibre
bundle as a “twisted product” becomes very apparent. Let F be a manifold and
�W F ! F a diffeomorphism. We construct a fibre bundle E� as follows: Take

F � Œ0; 1�

modulo the equivalence relation defined by

.x; 0/ � .�.x/; 1/:

The quotient E� D .F � Œ0; 1�/ = � is a fibre bundle over the circle S1 with general
fibre F:

F E

S1
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The bundle E� is called themapping toruswith general fibre F andmonodromy �.
See Remark 4.6.4 for more details. We can think of the bundle E� as being obtained
by gluing the two ends of F � Œ0; 1� together using the diffeomorphism �.

If � is the identity, then the mapping torus is a trivial bundle, but if � is not the
identity, the mapping torus may be non-trivial. For example, for the fibre F D S1 we
can do the construction with � the identity of S1, in which case E� is diffeomorphic
to the torus T2, and with � the reflection z 7! Nz on S1 � C, in which case E� is
diffeomorphic to the Klein bottle. Since the Klein bottle is not diffeomorphic to T2,
the second example is a non-trivial S1-bundle over S1.

The clutching construction that we discuss in Sect. 4.6 is a generalization of the
mapping torus construction which yields fibre bundles

F Ef

Sn

over spheres of arbitrary dimension.

4.1.2 Bundle Maps

Definition 4.1.6 Let F ! E
�! M and F0 ! E0 � 0

! M be fibre bundles over the
manifold M. A bundle map or bundle morphism of these bundles is a smooth map
HW E ! E0 such that

� 0 ı H D �;

i.e. such that the following diagram commutes:

E E

M

H

A bundle isomorphism is a bundle map which is a diffeomorphism. If such an
isomorphism exists, we write E Š E0.

Remark 4.1.7 Note that a morphism HW E ! E0 maps a point in the fibre of E over
x 2 M to a point in the fibre of E0 over the same point x. A bundle map therefore
covers the identity of M. We could consider more general bundle maps between
bundles over different manifoldsM and N that cover a given smooth map f W M ! N.
It is clear that a bundle isomorphism induces a diffeomorphism between the fibres
of E and E0 over any x 2 M.
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Definition 4.1.8 Fibre bundles isomorphic to a trivial bundle as in Example 4.1.4
are also called trivial.
It is more difficult to construct non-trivial fibre bundles. The mapping tori defined in
Example 4.1.5 are for many choices of .F; �/ non-trivial bundles. We will discuss
other examples of (potentially) non-trivial bundles in Sect. 4.2.2 and Sect. 4.6.

Remark 4.1.9 Let F ! E
�! M be a fibre bundle. The existence of a local

trivialization over U � M then means that the restricted bundle

�jEU W EU �! U

is isomorphic to the trivial bundle

pr1W U � F �! U:

This in hindsight justifies why fibre bundles are called locally trivial.
Isomorphic bundles have diffeomorphic general fibres. The converse is not true
in general: There may exist non-isomorphic bundles whose general fibres are
diffeomorphic. In particular, as we shall see later in detail, there exist bundles not
(globally) isomorphic to a trivial bundle.

We can characterize trivial bundles as follows:

Proposition 4.1.10 (Trivial Bundles and Projections onto the General Fibre)
Let F ! E

�! M be a fibre bundle. Then the bundle is isomorphic to a trivial
bundle if and only if there exists a smooth map � W E ! F such that the restrictions

� jEx W Ex �! F

are diffeomorphisms for all x 2 M.

Proof If the bundle is trivial

F E M F

M

pr1

we can set � D pr2.
Conversely, assume that a map � W E ! F exists which restricts to a diffeomor-

phism on each fibre. Consider the map

HW E �! M � F

p 7�! .�. p/; �. p//:
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Then H is a smooth with

pr1 ı H D �:

The map H is bijective, because it maps Ex bijectively onto F.
We have to show that H is a diffeomorphism.We claim that the differential of H

is an isomorphism for every point p 2 E. Since the dimensions of E and M�F agree
(this follows from the existence of local trivializations for E), it suffices to show that
the differential is surjective for every p 2 E. The details are left as an exercise. ut

4.1.3 Bundle Atlases

Definition 4.1.11 A bundle atlas for a fibre bundle

F E

M

is an open covering fUigi2I of M together with bundle charts

�iW EUi �! Ui � F:

Definition 4.1.12 Let f.Ui; �i/gi2I be a bundle atlas for a fibre bundleF ! E
�! M.

If Ui \ Uj ¤ ;, we define the transition functions by

�j ı ��1
i j.Ui\Uj/�FW .Ui \ Uj/ � F �! .Ui \ Uj/ � F:

The transition functions are diffeomorphisms. These maps have a special structure,
because they preserve fibres: For every x 2 Ui \ Uj we get a diffeomorphism

�jx ı ��1
ix W F �! F:

The maps

�jiW Ui \ Uj �! Diff.F/

x 7�! �jx ı ��1
ix

into the group of diffeomorphisms of F are also called transition functions. See
Fig. 4.2.
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Fig. 4.2 Transition functions

Lemma 4.1.13 (Cocycle Conditions) The transition functions f�jigi;j2I satisfy the
following equations:

�ii.x/ D IdF for x 2 Ui;

�ij.x/ ı �ji.x/ D IdF for x 2 Ui \ Uj;

�ik.x/ ı �kj.x/ ı �ji.x/ D IdF for x 2 Ui \ Uj \ Uk:

The third equation is called the cocycle condition.

Proof Follows immediately from the definitions. ut
Remark 4.1.14 Exercise 4.8.9 shows that a bundle can be (re-)constructed from
its transition functions using a suitable quotient space. The three properties of
Lemma 4.1.13 ensure the existence of a certain equivalence relation, used in the
construction of this quotient space.
A bundle atlas is very similar to an atlas of charts for a manifold. One difference is
that in the case of charts for a manifold we demand that the images of the charts are
open sets in a Euclidean space Rn. In the case of charts for a bundle the images are
of the form U � F. In both cases the transition functions are smooth. In the case of
a bundle atlas, the transition functions have an additional special structure, because
they preserve fibres.
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Table 4.1 Comparison between notions for manifolds and fibre bundles

Manifold Fibre bundle

Coordinate chart Bundle chart

Coordinate transformation Transition functions

Atlas Bundle atlas

Trivial manifold with only one chart: Rn Trivial bundle with only one bundle chart:
M � F

Non-trivial manifold needs at least two
charts (like Sn)

Non-trivial bundle needs at least two
bundle charts (like a non-trivial bundle
over Sn)

We can compare the definitions of general manifolds and general fibre bundles
as in Table 4.1.

Remark 4.1.15 Some references, such as [133] and [81], use the term fibre bundle
more restrictively. If the topological definition in these books is transferred to a
smooth setting, the definition amounts to assuming that the transition functions of a
bundle atlas are smooth maps to a Lie group G, acting smoothly as a transformation
group on the fibre F, instead of maps to the full diffeomorphism group Diff.F/ of
the fibre:

�jiW Ui \ Uj �! G

x 7�! �jx ı ��1
ix :

Equivalently, a fibre bundle is with this definition always an associated bundle in the
sense of Remark 4.7.8.

4.1.4 �Pullback Bundle

We want to show that we can pull back a bundle via a map between the base
manifolds. Suppose

F E

M

M

is a fibre bundle.
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Lemma 4.1.16 (Restriction of Bundle over Submanifold in the Base) If W � M
is an embedded submanifold, then the restriction

F EW

W

M

is a fibre bundle.

Proof Let f.Ui; �i/gi2I be a bundle atlas for the fibre bundle F ! E ! M with
bundle charts

�iW EUi �! Ui � F:

Then the sets Vi D Ui \ W form an open covering of W and

 i D �ijEVi
W EVi �! Vi � F

are bundle charts for the restriction of E over W. ut
Suppose f W N ! M is a differentiable map from some manifold N to M. We set

f �E D f.x; e/ 2 N � E j f .x/ D �M.e/g

and

�N W f �E �! N

.x; e/ 7�! x:

Theorem 4.1.17 (Pullback Bundles) The map �N with

F f E

N

N

is a fibre bundle over N, called the pullback of E under f .

Proof We have an obvious fibre bundle

F N E

N M

N M IdN M
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The graph

�f D f.x; f .x// 2 N � M j x 2 Ng

is an embedded submanifold of N � M. Therefore the restriction

F

f

is a fibre bundle by Lemma 4.1.16. Note that

.x; e/ 2 ��1
N�M.�f / , �.e/ D f .x/:

Hence as a set

��1
N�M.�f / D f �E;

which defines a smooth structure on f �E, and we have a fibre bundle

F f E

f

There exists a diffeomorphism

� W�f �! N

.x; f .x// 7�! x:

We can define a bundle over N using the projection � ı �N�M :

F f E

f N

But

� ı �N�M.x; e/ D �.x; �.e// D x D �N.x; e/;

hence

� ı �N�M D �N :
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This shows that

F f E

N

N

is a fibre bundle. ut
Remark 4.1.18 Note that the pullback bundle f �E has the same general fibre F as
the bundle E. The fibre of f �E over a point x 2 N is canonically diffeomorphic to
the fibre of E over f .x/ 2 M via the map

�
f �E

�
x �! Ef .x/

.x; e/ 7�! e:

Remark 4.1.19 It is not difficult to show that the pull-back of a trivial bundle is
always trivial. The pull-back of a non-trivial bundle may be non-trivial or trivial,
depending on the situation; see Exercise 4.8.2.

4.1.5 Sections of Bundles

We want to study sections of fibre bundles. This is particularly simple in the case of
trivial bundles.

Definition 4.1.20 Let

F E

M

be a fibre bundle. We denote the set of smooth global sections sW M ! E by � .E/
and the set of smooth local sections sW U ! E, for U � M open, by � .U;E/.
It is easy to see that for a trivial bundle E there is a 1-to-1 correspondence between
sections of E and maps from the base manifold M to the general fibre F. This
implies:

Corollary 4.1.21 (Existence of (Local) Sections)

1. Every trivial fibre bundle has smooth global sections (for example, under the
above correspondence, we could take constant maps from the base M to the fibre
F).

2. Every fibre bundle has smooth local sections, since every fibre bundle is locally
trivial.
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Note that non-trivial fibre bundles can, but do not need to have smooth global
sections (for example, vector bundles, to be discussed later, always have global
sections, but principal bundles in general do not). In particular, for a non-trivial
bundle, a map from the base manifold to the general fibre usually does not define a
section.

4.2 Principal Fibre Bundles

Principal fibre bundles are a combination of the concepts of fibre bundles and
group actions: they are fibre bundles which also have a Lie group action so that
both structures are compatible in a certain sense. Principal bundles together with
so-called connections play an important role in gauge theory. Generally speaking,
principal bundles are the primary place where Lie groups appear in gauge theories
(Lie groups also appear as global symmetry groups, like the flavour or chiral
symmetry in QCD; see Sect. 9.1).

4.2.1 Definition of Principal Bundles

We consider again the Hopf action of S1 on S3, introduced in Definition 3.3.1,
with quotient space equal to CP

1 Š S2. If we accept for the moment that S3

is the total space of an S1-bundle over S2,

S1 S3

S2

(we will prove this in Example 4.2.14), then we can say the following: there
is an action of the Lie group S1 on the total space S3 of the bundle which
preserves the fibres and is simply transitive on them. In addition we will show
that there is a special type of bundle atlas for the Hopf fibration which is
compatible with this S1-action.

This leads us to the following definition:

Definition 4.2.1 Let

G P

M
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be a fibre bundle with general fibre a Lie group G and a smooth action P � G ! P
on the right. Then P is called a principal G-bundle if:

1. The action of G preserves the fibres of � and is simply transitive on them,
i.e. the action restricts to

Px � G �! Px

and the orbit map

G �! Px

g 7�! p � g

is a bijection, for all x 2 M; p 2 Px.
2. There exists a bundle atlas of G-equivariant bundle charts �iW PUi ! Ui � G,

satisfying

�i. p � g/ D �i. p/ � g 8p 2 PUi ; g 2 G;

where on the right-hand side G acts on .x; a/ 2 Ui � G via

.x; a/ � g D .x; ag/:

We also call such an atlas a principal bundle atlas for P and the charts in a
principal bundle atlas principal bundle charts.

The group G is called the structure group of the principal bundle P.

There are two features that distinguish a principal bundle P ! M from a
standard fibre bundle whose general fibre is a Lie group G:

1. there exists a right G-action on P, simply transitive on each fibre Px, for
x 2 M;

2. the bundle P has a principal bundle atlas.

If P ! M is a principal G-bundle and g 2 G, then we denote as before by rg the
right translation

rgW P �! P

p 7�! p � g:
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The fibre Px is a submanifold of the total space P for every x 2 M and the orbit map

G �! Px

g 7�! p � g

is an embedding for all p 2 Px, according to Corollary 3.8.10, because the stabilizer
Gp D feg is trivial.
Example 4.2.2 The trivial bundle

G M G

M

pr1

has the canonical structure of a principal G-bundle with G-action

.M � G/ � G �! M � G

.x; h; g/ 7�! .x; hg/

and the principal bundle atlas consisting of only one bundle chart

IdW M � G �! M � G:

Example 4.2.3 If G ! P
�! M is a principal bundle and f W N ! M a smooth map,

then the pullback f �P has the canonical structure of a principal G-bundle over N
(this is Exercise 4.8.4).
Transition functions for a principal bundle atlas have a special form:

Proposition 4.2.4 (Transition Functions of Principal Bundles) Let P ! M be
a principal G-bundle and f.Ui; �i/gi2I a principal bundle atlas for P. Then the
transition functions take values in the subgroup G of Diff.G/,

�jiW Ui \ Uj �! G � Diff.G/

x 7�! �jx ı ��1
ix

where an element g 2 G acts as a diffeomorphism on G through left multiplication,

g.h/ D g � h:

Proof For x 2 Ui \ Uj we have a diffeomorphism

�jx ı ��1
ix W G �! G:
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We set

g D �jx ı ��1
ix .e/:

Then by equivariance of the bundle charts

�jx ı ��1
ix .h/ D g � h:

This implies the claim. ut
The following criterion sometimes simplifies the task of showing that a group action
on a manifold P defines a principal bundle (we follow [14, Theorem 2.4]).

Theorem 4.2.5 (Principal Bundles Defined via Local Sections) Let G be a
Lie group and �W P ! M a smooth surjective map between manifolds with a
smooth action P � G ! P on the right. Then P is a principal G-bundle if and
only if the following holds:

1. The action of G preserves the fibres of � and is simply transitive on them.
2. There exists an open covering fUigi2I of M together with local sections

siW Ui ! P of the map � .

Remark 4.2.6 Recall that we defined in Sect. 4.1.1 the notion of a section for any
smooth surjective map, not only for fibre bundles.

Proof Suppose that �W P ! M is a principal bundle. Choose a principal bundle atlas
f.Ui; �i/g for P with

�iW PUi �! Ui � G:

Then the following maps are local sections

siW Ui �! P

x 7�! ��1
i .x; e/;

where e 2 G is the neutral element.
Conversely, suppose that an open covering fUigi2I with sections siW Ui ! P is

given. According to the following lemma these sections define charts in a principal
bundle atlas for P. ut
Lemma 4.2.7 Let G be a Lie group and �W P ! M a smooth surjective map
between manifolds with a smooth action P � G ! P on the right. Suppose that the
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action of G preserves the fibres of � and is simply transitive on them. Let sW U ! P
be a local section for � . Then

tW U � G �! PU

.x; g/ 7�! s.x/ � g

is a G-equivariant diffeomorphism.

Proof Let sW U ! P be a local section of the surjective map �W P ! M. We have to
show that

tW U � G �! PU

.x; g/ 7�! s.x/ � g

is a G-equivariant diffeomorphism. It is clear that t is smooth, because the local
section s is smooth and the G-action on P is smooth. The map t is also G-equivariant
by the definition of group actions and it is bijective: the reason is that the map

t.x; �/W G �! Px

g 7�! s.x/ � g

is bijective for every fixed x 2 U, since the G-action on P is simply transitive on
the fibres. The set PU D ��1.U/ is an open subset of P. Since t is smooth and
surjective, Sard’s Theorem A.1.27 implies that

dimP D dimPU � dimM C dimG:

It remains to show that the differential of t is injective in each point .x; g/ 2 U � G.
Then t is a diffeomorphism.

The differential

D.x;g/tW TxM � TgG �! Ts.x/�gP

is given according to Proposition 3.5.4 by

D.x;g/t.X;Y/ D Dx.rg ı s/.X/C A�G.Y/s.x/�g:

We set

s0 D rg ı s:
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The map

TgG �! Ts0.x/Px

Y 7�! A�G.Y/s0.x/

is an isomorphism, because the action of G is simply transitive on the fibre Px,
cf. Corollary 3.2.12. We consider the map

TxM �! Ts0.x/P

X 7�! Dxs0.X/:

Note that s0 is also a local section of P over U, since

� ı s0 D IdU:

The chain rule shows that

Ds0.x/� ı Dxs0 D IdTxM:

This implies that Dxs0 is injective and the image of Dxs0 intersected with Ts0.x/Px �
kerDs0.x/� is zero. We conclude that D.x;g/t is injective. ut
A proof of the following theorem can be found in [81, Chap. 4, Corollary 10.3].

Theorem 4.2.8 (Principal Bundles and Homotopy Equivalences) Let f W M ! N
be a smooth homotopy equivalence between manifolds and G a Lie group. Then the
pullback f � is a bijection between isomorphism classes of principal G-bundles over
N and principal G-bundles over M.
In particular we get:

Corollary 4.2.9 (Principal Bundles over Contractible Manifolds Are Trivial) If
M is a contractible manifold and G a Lie group, then every principal G-bundle over
M is trivial. This holds, in particular, if M D R

n for some n.

4.2.2 �Principal Bundles Defined by Principal Group Actions

Recall from Definition 3.7.24 that a smooth right action of a Lie group G on a
manifold P is called principal if the action is free and the map

� W P � G �! P � P

. p; g/ 7�! . p; pg/

is closed. We want to show as an application of Theorem 4.2.5 that principal Lie
group actions define principal bundles.
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Theorem 4.2.10 (Principal Lie Group Actions Define Principal Bundles) Let˚
be a principal right action of a Lie group G on a manifold P. Then P=G is a smooth
manifold and

G P

P G

is a principal bundle with structure group G.

Proof According to Theorem 3.7.25 the topological space P=G has the unique
structure of a smooth manifold so that �W P ! P=G is a submersion. In particular,
by Lemma 3.7.4, the projection � admits local sections

siW Ui �! P:

The claim then follows from Theorem 4.2.5. ut
Corollary 4.2.11 (Free Actions by Compact Lie Groups Define Principal Bun-
dles) Let G be a compact Lie group acting freely on a smooth manifold P. Then
P=G is a smooth manifold and

G P

P G

is a principal G-bundle.

Proof This follows from Corollary 3.7.29. ut
We can also prove the following converse to Theorem 4.2.10.

Theorem 4.2.12 (Principal Bundles Define Principal Actions) Let

G P

M

be a principal G-bundle. Then the right action of G on P is principal.

Proof The G-action on P is free by the definition of principal bundles. If G is
compact, then the claim follows from Corollary 3.7.29. In the general case, consider
the map

� W P � G �! P � P

. p; g/ 7�! . p; p � g/:

We have to show that � is closed.
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Let A � P�G be a closed subset and .. pi; qi//i2N 2 �.A/ a sequence converging
to . p; q/ 2 P � P. There exist uniquely determined gi 2 G such that qi D pi � gi,
where . pi; gi/ 2 A and

�. pi; gi/ D . pi; qi/:

We want to show that the sequence .gi/i2N converges in G.
Let �. p/ D x and U � M be an open neighbourhood of x with a principal bundle

chart

�W PU �! U � G:

There exists an integer N such that for all i � N the pi are contained in PU. Then we
can write

�. pi/ D .xi; hi/;

�.qi/ D .xi; higi/;

�. p/ D .x; h/;

with certain xi 2 U and hi; h 2 G. Since qi ! q and xi ! x, it follows that

�.q/ D �
x; h0�

for some h0 2 G. Since hi ! h and higi ! h0, it follows that the sequence

gi D h�1
i .higi/

converges in G to

g D h�1h0:

The set A is closed, hence . p; g/ 2 A. We have q D p � g and we conclude that . p; q/
is in �.A/. ut
Corollary 4.2.13 Principal bundles with structure group G correspond precisely to
principal G-actions.

Example 4.2.14 (Hopf Fibration) Let

S2nC1 D
(

.w0; : : : ;wn/ 2 C
nC1
ˇ
ˇ
ˇ

nX

iD0
jwij2 D 1

)
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be a sphere of odd dimension. Consider the Lie group S1 D U.1/ � C (unit circle).
It acts on the sphere S2nC1 via

S2nC1 � S1 �! S2nC1

.w; 	/ 7�! w	:

This is the Hopf action fromDefinition 3.3.1. The quotient S2nC1=U.1/ of this action
can be identified with the complex projective space CPn. Corollary 4.2.11 implies
that

S1 S 2n+1

CP
n

is a principal S1-bundle, called the Hopf fibration or Hopf bundle.
To give an alternative proof of this statement, we can also apply Theorem 4.2.5

directly (we follow [14, Example 2.7]). We have to find an open covering of CPn

together with local sections (the first condition in the theorem is clearly satisfied,
because the action of S1 on S2nC1 is free). We set

�.w0; : : : ;wn/ D Œw0 W : : : W wn� 2 CP
n

and define for i D 0; : : : ; n

Ui D fŒw� D Œw0 W : : : W wn� 2 CP
n j wi ¤ 0g:

The subset Ui is open in CP
n, since � is an open map by Lemma 3.7.11. We also

set

vi.Œw�/ D
�

w0
wi
; : : : ;

wi�1
wi

; 1;
wiC1
wi

; : : : ;
wn

wi

�
2 C

nC1 n f0g

and

siW Ui �! S2nC1

Œw� 7�! vi.Œw�/

jjvi.Œw�/jj :

These are well-defined local sections for the canonical projection �:

� ı si D IdUi ;

since si.Œw�/ is a complex multiple of w. Therefore we see again that S1 ! S2nC1 �!
CP

n is a principal fibre bundle.
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It is clear (considering fundamental groups, for example) that S2nC1 is not
diffeomorphic to CP

n � S1. The Hopf fibration is thus an example of a non-trivial
(principal) fibre bundle.

Similar arguments for the standard action of the Lie group S3 � H on S4nC3 �
H

nC1 lead to a Hopf fibration

S3 S 4n+3

HP
n

over the quaternionic projective spaceHP
n (there is also a principalZ2-bundle Sn !

RP
n over real projective space). Special cases of this construction are the Hopf

fibrations (see Exercise 3.12.9)

S1 S3

S2

and

S3 S7

S4

We consider another class of examples of principal bundles. Let G be a Lie group
and H � G a closed subgroup, acting smoothly on G by right translations:

˚ W G � H �! G

.g; h/ 7�! gh:

According to Corollary 3.7.35 there is a (unique) smooth structure on the quotient
space G=H, so that �W G ! G=H is a submersion.

Theorem 4.2.15 (The Canonical Principal Bundles over Homogeneous Spaces)
If G is a Lie group and H � G a closed subgroup, then

H G

G/H

is a principal bundle with structure group H.
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Proof This follows from Theorem 4.2.10. We can also verify the conditions of
Theorem 4.2.5 directly. The first condition is clearly satisfied, because the action
of H on G is free. By Lemma 3.7.4 there exist smooth local sections

siW Ui �! G

for the canonical projection �W G ! G=H, where the open subsets Ui � G=H cover
G=H. This proves the claim. ut
Example 4.2.16 (Principal Bundles over Homogeneous Spheres) From Exam-
ple 3.8.11 we get the following principal bundles over spheres:

O    −1 O

S n−1

S SO

S n−1

O     −1

U U

S 2n−1

−1

SU SU

S 2n−1

−1

Sp Sp

S 4n−1

−1

In particular, we get the following principal sphere bundles over spheres:

S1 SO

S 2

3
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S1 U

S3

2

S3 SU

S5

3

S3 Sp

S7

2

From the examples in Sect. 3.9 we also get principal bundles over the Stiefel and
Grassmann manifolds, such as

O O− k n

and

and similarly for the complex and quaternionic Stiefel and Grassmann manifolds.
According to the results in Sect. 3.10.4 there is a principal bundle

G2

and according to Exercise 3.12.16 there is a principal bundle

G2

S6
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4.2.3 Bundle Morphisms, Reductions of the Structure Group
and Gauges

We define homomorphisms of principal bundles as follows:

Definition 4.2.17 Suppose G ! P
�! M and G0 ! P0 � 0

! M are principal bundles
over the same base manifold M and f W G ! G0 is a Lie group homomorphism. Then
a bundle morphism between P and P0 is an f -equivariant smooth bundle map
HW P ! P0, i.e.

� 0 ı H D �

and

H. p � g/ D H. p/ � f .g/ 8p 2 P; g 2 G:

Given the principal G0-bundle P0 and the homomorphism f W G ! G0, the principal
G-bundle P together with the bundle morphism HW P ! P0 is also known as an
f -reduction of P0.

If f W G ! G0 is an embedding, then H is called a G-reduction of P0 and the
image of H is called a principal G-subbundle of P0. If G D G0, f D IdG and H is a
G-equivariant bundle isomorphism, then H is called a bundle isomorphism.

A principal G-bundle isomorphic to the trivial bundle in Example 4.2.2 is also
called trivial.
As before in the case of general bundles we could consider morphisms between
principal bundles over different base manifolds M and N that cover a smooth map
from M to N.

The following notion is especially relevant in gauge theory.

Definition 4.2.18 Let �W P ! M be a principal bundle. A global gauge for
the principal bundle is a global section sW M ! P. Similarly, a local gauge is
a local section sW U ! P defined on an open subset U � M.

Any local gauge defines a local trivialization of a principal bundle:

Theorem 4.2.19 (Gauges Correspond to Trivializations) Let

G P

M



220 4 Fibre Bundles

be a principal G-bundle and sW U ! P a local gauge. Then

tW U � G �! PU

.x; g/ 7�! s.x/ � g

is a G-equivariant diffeomorphism. In particular, if sW M ! G is a global gauge,
then the principal bundle is trivial, with trivialization given by the inverse of t:

t�1W P �! M � G:

Proof This follows from Lemma 4.2.7. ut
Remark 4.2.20 Note that for this construction to work we need the G-action on P.
The result would not hold if we just had a fibre bundle with fibre G.

Remark 4.2.21 Theorem 4.2.19 has the following interpretation, see Table 4.2: A
local gauge defines a local trivialization of a principalG-bundle, i.e. an identification
��1.U/ Š U � G. A choice of local gauge thus corresponds to the choice of a
local coordinate system for a principal bundle in the fibre direction. This can be
compared, in special relativity, to the choice of an inertial system for Minkowski
spacetime M, which defines an identification M Š R

4.
Of course, different choices of gauges are possible, leading to different trivial-

izations of the principal bundle, just as different choices of inertial systems lead
to different identifications of spacetime with R

4. The idea of gauge theory is that
physics should be independent of the choice of gauge. This can be compared to the
theory of relativity which says that physics is independent of the choice of inertial
system.

Note that, if we consider principal bundles over Minkowski spacetimes R4, it
does not matter for this discussion that principal bundles over Euclidean spaces
are always trivial by Corollary 4.2.9. What matters is the independence of the
actual choice of trivialization, i.e. the choice of (global) gauge. Even on a trivial
principal bundle there are non-trivial gauge transformations. This is very similar to
special relativity, where spacetime is trivial, i.e. isometric to R

4 with a Minkowski
metric, but what matters is the independence of the actual trivialization, i.e. the
choice of inertial system. Transformations between inertial systems are called
Lorentz transformations, transformations between (local) gauges are called gauge
transformations.

Table 4.2 Comparison between notions for special relativity and gauge theory

Manifold Trivialization
Transformations
and invariance

Special relativity Spacetime M M Š R
4 via inertial

system
Lorentz

Gauge theory Principal bundle
P ! M

P Š M � G via
choice of gauge

Gauge
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4.3 �Formal Bundle Atlases

We briefly return to the case of general fibre bundles. We are sometimes in the
following situation: We have a manifold M, a set E and a surjective map �W E ! M.
However, we do not a priori have a topology or the structure of a smooth manifold
on E. Under which circumstances can we define such structures, so that �W E ! M
becomes a smooth fibre bundle?

Example 4.3.1 Let M be a smooth manifold of dimension n. The tangent space TpM
is an n-dimensional vector space for all p 2 M. Let TM be the disjoint union

TM D P[
p2M

TpM

with the obvious projection �W TM ! M. How do we define the structure of a
smooth manifold on the set TM, such that TM becomes a fibre bundle over M,
with fibres given by TpM? We can also define for each tangent space TpM the dual
vector space T�

p M or the exterior algebra 
kT�
p M. How do we construct smooth

fibre bundles that have these vector spaces as fibres?
The following notion is useful in this context (we follow [14, Sect. 2.1]).

Definition 4.3.2 Let M and F be manifolds, E a set and �W E ! M a surjective
map.

1. Suppose U � M is open and

�U W EU �! U � F

is a bijection with

pr1 ı �U D �jEU :

Then we call .U; �U/ a formal bundle chart for E.
2. A family f.Ui; �i/gi2I of formal bundle charts, where fUigi2I is an open covering

of M, is called a formal bundle atlas for E.
3. We call the charts in a formal bundle atlas f.Ui; �i/gi2I smoothly compatible if

all transition functions

�j ı ��1
i j.Ui\Uj/�FW .Ui \ Uj/ � F �! .Ui \ Uj/ � F;

for Ui \ Uj ¤ ;, are smooth maps (i.e. diffeomorphisms).

We then have:

Theorem 4.3.3 (Formal Bundle Atlases Define Fibre Bundles) Let M and F be
manifolds, E a set and �W E ! M a surjective map. Suppose that f.Ui; �i/gi2I is a
formal bundle atlas for E of smoothly compatible charts. Then there exists a unique
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topology and a unique structure of a smooth manifold on E such that

F E

M

is a smooth fibre bundle with smooth bundle atlas f.Ui; �i/gi2I .
The proof consists of several steps. We first define a topology on E: consider the
bijections

�iW EUi �! Ui � F:

We define a subset O � E to be open if and only if

�i.O \ EUi/

is open in Ui � F for all i 2 I.

Lemma 4.3.4 (The Topology on E Defined by a Formal Bundle Atlas) This
defines a topology on E which is Hausdorff and has a countable base. It is the
unique topology on E such that all formal bundle charts �iW EUi ! Ui � F are
homeomorphisms.

Proof We first show that this defines a topology on E: it is clear that ; and E are
open. It is also easy to see that arbitrary unions and finite intersections of open sets
are open.

By definition the maps �i are open. Suppose that O � EUi and �i.O/ is open.
Then for all j 2 I

�j.O \ EUj/ D �
�j ı ��1

i

� �
�i.O \ EUj \ EUi/

�

D �
�j ı ��1

i

� �
�i.O/\ .Uj \ Ui/ � F

�
:

It follows that O is open in E and that �iW EUi ! Ui � F is a homeomorphism.
Since M and F are Hausdorff, it is not difficult to show that the topology on E is

Hausdorff, by considering for arbitrary points p; q 2 E first the case �. p/ ¤ �.q/
with �. p/ 2 Ui, �.q/ 2 Uj and then the case �. p/ D �.q/ 2 Ui.

To show that the topology on E has a countable base we choose a countable base
fVjgj2J for the topology of M and a countable base fWkgk2K for the topology of
F. Without loss of generality we can assume that the family fUigi2I is countable,
without changing the topology of E. Let O � E be an arbitrary open set and p 2 O
a point. Then p 2 O \ EUi for some i and there exist j 2 J and k 2 K such that

p 2 ��1
i .Vj � Wk/ � O \ EUi :
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This shows that the countable family

f��1
i .Vj � Wk/gi2I;j2J;k2K

of open sets of E forms a base.
The uniqueness statement for the topology of E is clear. ut

We can now finish the proof of Theorem 4.3.3.

Proof To define a smooth structure on E, we first define the smooth structure on EUi

such that the homeomorphism

�iW EUi �! Ui � F

is a diffeomorphism. Then this defines a smooth structure on E, because the
transition functions

�j ı ��1
i j.Ui\Uj/�FW .Ui \ Uj/ � F �! .Ui \ Uj/ � F

are diffeomorphisms. This is the unique smooth structure on E so that �W E ! M
is a smooth fibre bundle with general fibre F and f.Ui; �i/gi2I is a smooth bundle
atlas. ut

4.4 �Frame Bundles

We want to apply Theorem 4.3.3 to define so-called frame bundles. Let M be a
smooth, n-dimensional manifold. For a point p 2 M we define the set of all bases of
TpM

FrGL.M/p D f.v1; : : : ; vn/ basis of TpMg

and define the disjoint union

FrGL.M/ D P[
p2M

FrGL.M/p:

There is a natural projection �WFrGL.M/ ! M and an action

FrGL.M/ � GL.n;R/ �! FrGL.M/;

given by

.v1; : : : ; vn/ � A D
 

nX

iD1
viAi1; : : : ;

nX

iD1
viAin

!

; 8.v1; : : : ; vn/ 2 FrGL.M/p;A 2 GL.n;R/:
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Theorem 4.4.1 (Frame Bundles) The projection � and the action of GL.n;R/
define the structure of a principal GL.n;R/-bundle

M

This bundle is called the frame bundle of the manifold M.

Proof We defined FrGL.M/ so far only as a set. It is clear that the action of GL.n;R/
preserves the fibres of � and is simply transitive on them. Let .Ui;  i/ be a local
manifold chart for M,

 iW Ui �! R
n:

Then

siW Ui �! FrGL.M/Ui

p 7�! .@x1 ; : : : ; @xn/ . p/

is a local section for � . We have

si. p/ D �
.Dp i/

�1e1; : : : ; .Dp i/
�1en

�
:

We define the inverse of a formal bundle chart by

��1
i W Ui � GL.n;R/ �! FrGL.M/Ui

. p;A/ 7�! si. p/ � A:

The transition functions are

�j ı ��1
i W .Ui \ Uj/ � GL.n;R/ �! .Ui \ Uj/ � GL.n;R/

with

�j ı ��1
i . p;A/ D �

p;D i. p/
�
 j ı  �1

i

� � A
�
:

These maps are smooth, because the transition functions  j ı  �1
i are smooth.

This shows that the maps �i are smoothly compatible formal bundle charts and by
Theorem 4.3.3 there exists a manifold structure on FrGL.M/ such that � becomes a
fibre bundle with general fibre GL.n;R/.
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The GL.n;R/-action is smooth (by considering the action in the bundle charts)
and the (inverse) bundle charts ��1

i are GL.n;R/-equivariant:

��1
i .. p;A/ � B/ D si. p/.A � B/ D ��1

i . p;A/ � B 8B 2 GL.n;R/:

Therefore �WFrGL.M/ ! M is a principal GL.n;R/-bundle over M. ut
Remark 4.4.2 (Orthogonal Frame Bundles) If .M; g/ is an n-dimensional Rieman-
nian manifold, we can define a principal O.n/-bundle

M

whose fibre over p 2 M consists of the set of orthonormal bases in TpM. If M is in
addition oriented, then there is also a principal SO.n/-bundle

M

defined using oriented orthonormal bases. There are similar constructions of
orthonormal frame bundles for pseudo-Riemannian manifolds.

Remark 4.4.3 A frame, i.e. a basis of a tangent space to a manifold, is in physics
often called a vielbein, in particular in the case of an orthonormal frame to a
Lorentz manifold (the word “vielbein” is German and means “many-leg”. It is a
generalization of the word tetrad in the 4-dimensional case.)

Definition 4.4.4 Let G be a Lie group.A principalG-subbundle of the frame bundle
FrGL.M/ of a smooth manifold M, i.e. a G-reduction of the frame bundle, is called
a G-structure on M.
In particular, a Riemannian metric on Mn defines an O.n/-structure and, together
with an orientation, an SO.n/-structure on M.

4.5 Vector Bundles

We consider another class of fibre bundles, called vector bundles, that are ubiquitous
in differential geometry and gauge theory. The prototype of a vector bundle is the
tangent bundle TM of a smooth manifold M. Moreover, in physics, matter fields in
gauge theories are described classically by sections of vector bundles. In addition to
[14] we follow in this section [25, 74] and [78].



226 4 Fibre Bundles

4.5.1 Definitions and Basic Concepts

Let K be the field R or C.

Definition 4.5.1 A fibre bundle

V E

M

is called a (real or complex) vector bundle of rank m if:

1. The general fibre V and every fibre Ex, for x 2 M, are m-dimensional vector
spaces overK.

2. There exists a bundle atlas f.Ui; �i/gi2I for E such that the induced maps

�ixW Ex �! V

are vector space isomorphisms for all x 2 Ui. We call such an atlas a vector
bundle atlas for E and the charts in a vector bundle atlas vector bundle charts.
See Fig. 4.3.

A vector bundle of rank 1 is called a line bundle.

There are two features that distinguish a vector bundle E ! M from a
standard fibre bundle whose general fibre is a vector space V:

1. the vector space structure on each fibre Ex, for x 2 M;
2. the bundle E has a vector bundle atlas.

x

Ex

K
m

E

M zero sectionU
( )

EU

Fig. 4.3 Vector bundle
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The vector space structure on each fibre implies that we can add any two sections
of a vector bundle E and multiply sections with a scalar or a smooth function on the
base manifold M with values in K.

Example 4.5.2 The simplest example of a vector bundle is the trivial bundle M �
K

m, often denoted by K
m. It has the canonical vector space structure on each fibre

f pg�K
m, for p 2 M, and the vector bundle atlas consisting of only one bundle chart

IdW M � K
m �! M � K

m:

Here is a more interesting example:

Example 4.5.3 (The Tangent Bundle of a Smooth Manifold) We want to show that
the tangent bundle of a smooth manifold is canonically a smooth real vector bundle.
Let M be a smooth manifold of dimension n. We define the set

TM D P[
p2M

TpM

with the canonical projection �W TM ! M. We claim that TM has the structure of
a smooth real vector bundle of rank n over M: First, the general fibre Rn and each
fibre TpM are n-dimensional real vector spaces. If

 iW Ui �! �i.Ui/ � R
n

is a local manifold chart for M, then

�iW TMUi �! Ui � R
n

. p; v/ 7�! . p;Dp i.v//

is a formal bundle chart for TM. These formal bundle charts are smoothly compati-
ble, because

�j ı ��1
i W .Ui \ Uj/ � R

n �! .Ui \ Uj/ � R
n

. p;w/ 7�! �
p;Dp

�
 j ı  �1

i

�
w
�

is a smooth map. By Theorem 4.3.3, �W TM ! M has the structure of a smooth fibre
bundle with general fibre diffeomorphic to R

n. Since the bundle charts .Ui; �i/ are
linear isomorphisms on each fibre, the bundle TM is a vector bundle of rank n.

Remark 4.5.4 Note that sections of TM are the same as vector fields on M:

� .TM/ D X.M/:
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Transition functions for a vector bundle atlas have a special form:

Proposition 4.5.5 (Transition Functions of Vector Bundles) Let E ! M be a
K-vector bundle of rank m and f.Ui; �i/gi2I a vector bundle atlas for E. Then the
transition functions take values in the subgroup GL.m;K/ of Diff .Km/,

�jiW Ui \ Uj �! GL.m;K/ � Diff .Km/

x 7�! �jx ı ��1
ix :

The following definition applies only to real vector bundles.

Definition 4.5.6 A real vector bundle E ! M of rank m is called orientable if it
admits a vector bundle atlas f.Ui; �i/gi2I such that all transition functions map to

�jiW Ui \ Uj �! GLC.m;R/;

where GLC.m;R/ denotes the subgroup of invertible matrices with positive deter-
minant.
Clearly, if E ! M is a complex vector bundle of rank m, then forgetting the complex
structure it defines an underlying real rank 2m vector bundle ER ! M. The bundle
ER is always orientable, because the identification C

m D R
2m as real vector spaces

induces an embedding GL.m;C/ � GLC.2m;R/ by Exercise 1.9.10.
There is a notion of a homomorphism between vector bundles over the same

manifold.

Definition 4.5.7 Let V ! E
�E! M and W ! F

�F! M be vector bundles over M
over the same field K.

1. A smooth bundle map LW E ! F, satisfying �F ı L D �E , is called a vector
bundle homomorphism if the restriction to a fibre

LjEx W Ex �! Fx

is a linear map for all x 2 M. A vector bundle homomorphism which is
injective (surjective) on each fibre is called a vector bundle monomorphism
(epimorphism). If LW E ! E is a homomorphism, then L is also called a vector
bundle endomorphism.

2. A vector bundle isomorphism is a vector bundle homomorphism which is a
diffeomorphism of the total spaces and an isomorphism on each fibre. A vector
bundle is called trivial if it is isomorphic to the trivial bundle. If the tangent
bundle TM of a manifold M is trivial, then M is called parallelizable.

Remark 4.5.8 According to Exercise 4.8.5, a vector bundle homomorphism which
is an isomorphism on each fibre is a vector bundle isomorphism.
As before, we could consider vector bundle homomorphisms between vector
bundles over different base manifolds M and N that cover a smooth map from M
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to N. It is not difficult to prove with Remark 4.5.8 that a vector bundle E ! M of
rank m is trivial if and only if it has m global sections

v1; : : : ; vmW M �! E;

such that v1.x/; : : : ; vm.x/ form a basis of the fibre Ex, for all x 2 M.

Remark 4.5.9 (Sections of Vector Bundles) Note that (contrary to principal fibre
bundles) vector bundles always admit global sections: the section that is equal to
zero everywhere on M is a trivial example (the fibres of a vector bundle are vector
spaces, so there is a canonical element, namely 0. The fibres of a principal bundle
are only diffeomorphic to a Lie group, so the neutral element e is not a canonical
element in a fibre.) However, in the case of a vector bundle it is not clear that there
are sections without zeros, and even if this is the case, it is not clear that there are m
sections which form a basis in each fibre.

Example 4.5.10 (Parallelizable Spheres) We want to show that the spheres S0, S1,
S3 and S7 are parallelizable. This is trivial for S0, which consists only of two points.
We consider S1 as the unit sphere in C. For x 2 S1, the vector ix 2 C is orthogonal
to x with respect to the standard Euclidean scalar product:

Re hx; ixi D Re ijjxjj2 D 0;

where hz;wi D Nzw is the standard Hermitian scalar product on C. This implies that

S1 � R �! TS1 � TCjS1

.x; t/ 7�! .x; tix/

is a trivialization of TS1.
Similarly, we can consider S3 as the unit sphere in H. Then

S3 � R
3 �! TS3 � THjS3

.x; t1; t2; t3/ 7�! .x; t1ix C t2 jx C t3kx/

is a trivialization of TS3.
Finally, we consider S7 as the unit sphere in the octonions O. The octonions

O Š R
8 are spanned by e0; e1; : : : ; e7, where

e20 D e0; e2i D �e0 8i D 1; : : : ; 7:

The map

S7 � R
7 �! TS7 � TOjS7

.x; t1; t2; : : : ; t7/ 7�! .x; t1e1x C t2e2x C : : :C t7e7x/

is a trivialization of TS7.
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It is a deep theorem due to J.F. Adams [2] that S0, S1, S3 and S7 are the only
spheres which are parallelizable. This is related to the fact that division algebras
exist only in dimension 1, 2, 4 and 8. A proof using K-theory can be found in [74].
See also Exercise 6.13.8.
A proof of the following theorem can be found in [5, 74] and [81].

Theorem 4.5.11 (Vector Bundles and Homotopy Equivalences) Let f W M ! N
be a smooth homotopy equivalence between manifolds. Then the pullback f � is a
bijection between isomorphism classes of vector bundles over N and vector bundles
over M of the same rank and over the same field K.
In particular, we get:

Corollary 4.5.12 (Vector Bundles over Contractible Manifolds Are Trivial) If
M is a contractible manifold, then every vector bundle over M is trivial. This holds,
in particular, if M D R

n for some n.

4.5.2 Linear Algebra Constructions for Vector Bundles

A useful fact is that we can construct new vector bundles from given ones by
applying linear algebra constructions fibrewise: suppose E;F are vector bundles
over M over the same field K. Then there exist canonically defined vector bundles

E ˚ F; E ˝ F; E�; 
kE; Hom.E;F/

over M. If K D C there also exists a complex conjugate vector bundle NE. The fibres
of these vector bundles are given by

.E ˚ F/x D Ex ˚ Fx;

and similarly in the other cases. This follows from Theorem 4.3.3, because local
vector bundle charts for E and F can be combined to yield smoothly compatible
formal vector bundle charts for the set E ˚ F, defining the structure of a smooth
vector bundle on E ˚ F ! M. Similarly in the other cases.

Purely linear algebraic constructions, such as the direct sum and tensor
product of vector spaces, extend to smooth vector bundles and yield new
vector bundles with canonically defined smooth bundle structures.

Example 4.5.13 Consider the tangent bundle TM ! M. Then there exist canoni-
cally associated vector bundles T�M and 
kT�M over M. Sections of 
kT�M are
k-forms on M:

� .
kT�M/ D ˝k.M/:
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More generally, for a vector bundle E ! M, sections of the bundle
kT�M ˝ E are
k-forms on M with values in E, i.e. elements of ˝k.M;E/: If ! 2 ˝k.M;E/, then
at a point x 2 M

!xW TxM � : : : � TxM �! Ex

is multilinear and alternating. This generalizes the notion of vector space-valued
forms in Sect. 3.5.1 to forms which have values in a vector bundle. One sometimes
calls 
kT�M ˝ E the bundle of k-forms over M twisted with E.
We want to define the concept of vector subbundle (following [25]):

Definition 4.5.14 Let �W E ! M be aK-vector bundle of rankm. A subset F � E is
called a vector subbundle of rank k if each point p 2 M has an open neighbourhood
U together with a vector bundle chart .U; �/ of E such that

�.EU \ F/ D U � K
k � U � K

m;

where Kk is the vector subspace Kk � f0g � K
m. It follows that F is an embedded

submanifold of E and �jFW F ! M has the canonical structure of a K-vector bundle
of rank k over M.

Example 4.5.15 (Normal Bundle of Spheres) For n ¤ 0; 1; 3; 7 the sphere Sn does
not have a trivial tangent bundle according to Adams’ Theorem mentioned in
Example 4.5.10. However, the normal bundle �.Sn/ of Sn in R

nC1 is trivial for
any n � 0: The normal bundle is defined as

�.Sn/ D f.x; u/ 2 Sn � R
nC1 j u ? TxSng;

with projection onto the first factor. It is clear that the normal bundle is a real line
bundle. The following map is a trivialization of �.Sn/:

Sn � R �! �.Sn/

.x; t/ 7�! .x; tx/:

Note that

TSn ˚ �.Sn/ D TRnC1jSn :

We conclude that the sum of a non-trivial vector bundle (the tangent bundle to the
sphere) and a trivial vector bundle (the normal bundle) can be trivial. One says that
the tangent bundle of the sphere Sn is stably trivial: It becomes trivial after taking
the direct sum with a trivial bundle (here a trivial line bundle). Both TSn and �.Sn/

are vector subbundles of the trivial bundle TRnC1jSn . Note that this also means that
a trivial vector bundle can have non-trivial subbundles.
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Definition 4.5.16 Let E ! M be a K-vector bundle over M. A (Euclidean or
Hermitian) bundle metric is a metric on each fibre Ex that varies smoothly with
x 2 M. More precisely, it is a section

h� ; �i 2 � .E� ˝ E�/ .K D R/

or

h� ; �i 2 � . NE� ˝ E�/ .K D C/

which defines in each point x 2 M a non-degenerate symmetric (K D R) or
Hermitian (K D C) form

h� ; �ixW Ex � Ex �! K:

Proposition 4.5.17 (Existence of Bundle Metrics) Every K-vector bundle over a
manifold M admits a positive definite bundle metric.

Proof This follows by a partition of unity argument, because a convex combination
of positive definite metrics on a vector space is still a positive definite metric. ut
For associated vector bundles we will give a more explicit construction of bundle
metrics in Proposition 4.7.12.

Example 4.5.18 The tangent bundle TM of any submanifold Mm � R
n has a bundle

metric induced from the standard Euclidean scalar product on R
n. In particular,

TSn�1 has a canonical bundle metric.

Proposition 4.5.19 (Orthogonal Complement of a Vector Subbundle) Let E !
M be a vector bundle with a positive definite bundle metric and F � E a vector
subbundle. Then the orthogonal complement F? is a vector subbundle of E and
F ˚ F? is isomorphic to E.

Proof This is Exercise 4.8.16. ut
The following is clear.

Proposition 4.5.20 (Transition Functions of Vector Bundles with a Metric) Let
E ! M be a K-vector bundle of rank m with a positive definite bundle metric.
Choosing local trivializations given by orthonormal bases it follows that there exists
a vector bundle atlas f.Ui; �i/gi2I with transition functions of the form

�jiW Ui \ Uj �! O.m/ .K D R/

or

�jiW Ui \ Uj �! U.m/ .K D C/:
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If the bundle is real and orientable, then we can find a vector bundle atlas such that

�jiW Ui \ Uj �! SO.m/:

If E ! M is a real (complex) vector bundle of rank m with a positive definite bundle
metric, then the set consisting of all vectors of length 1 in each fibre forms the unit
sphere bundle S.E/ ! M, which is a smooth Sm�1-bundle (S2m�1-bundle) over M.

4.6 �The Clutching Construction

We want to describe a construction that yields (all) vector bundles over spheres Sn.
The idea of this so-called clutching construction is to glue together trivial vector
bundles over the northern and southern hemisphere of Sn along the equator (we
follow [74]).

Let Sn be the unit sphere in R
nC1, where n � 1. We define the north and south

pole

NC D .0; : : : ; 0;C1/ 2 Sn;

N� D .0; : : : ; 0;�1/ 2 Sn

and the open sets

UC D Sn n fNCg;
U� D Sn n fN�g:

Both UC and U� are diffeomorphic to R
n via the stereographic projection;

cf. Example A.1.8. Let f be any smooth map

f W Sn�1 �! GL.k;K/;

where we think of Sn�1 � Sn as the equator of Sn and K D R;C. Such a map is
called a clutching function. We write

x D .x1; : : : ; xn/ 2 R
n;

z D xnC1 2 R:

Let p denote the following retraction of the intersection UC \ U� onto the equator:

pW UC \ U� �! Sn�1

.x; z/ 7�! x

jjxjj :
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Here

jjxjj2 D x21 C : : :C x2n

is the Euclidean norm. Note that this map is well-defined, because x ¤ 0 on UC \
U�. We use the retraction to extend the clutching function to a smooth map on
UC \ U�:

Nf D f ı pW UC \ U� �! GL.k;K/:

Definition 4.6.1 Let Ef D QE= � be the quotient set of the disjoint union

QE D �
U� � K

k
� P[�

UC � K
k
�

by identifying

.x; z; v/ 2 .U� \ UC/ � K
k � U� � K

k

with

.x; z; Nf .x; z/ � v/ 2 .UC \ U�/ � K
k � UC � K

k:

Theorem 4.6.2 (Vector Bundle over a Sphere Defined by a Clutching Function)
Via the projection

�W Ef �! Sn

Œx; z; v� 7�! .x; z/

the set Ef has a canonical structure of a K-vector bundle of rank k over the
sphere Sn:

K
k E f

S n

Proof (See also Exercise 4.8.9.) Note that the map � is well-defined on the quotient
set Ef and surjective onto Sn. Let � denote the quotient map

� W �U� � K
k
� P[�

UC � K
k
� �! Ef :
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The map � decomposes into injective maps �˙ on U˙ �K
k. For .x; z;w/ 2 U˙ �K

k

define

Œx; z;w�˙ D �˙.x; z;w/:

Then

Œx; z; v�� D �
x; z; Nf .x; z/ � v�C :

The maps

�˙W Ef U
˙

�! U˙ � K
k

Œx; z; v� 7�! ��1˙ .Œx; z; v�˙/

are well-defined formal bundle charts. We want to show that these formal bundle
charts are smoothly compatible: We calculate

�C ı ��1� .x; z; v/ D ��1C ı ��.x; z; v/

D ��1C Œx; z; v��

D ��1C
�
x; z; Nf .x; z/ � v�C

D .x; z; Nf .x; z/ � v/;

which is a smooth map. It follows from Theorem 4.3.3 that �W Ef ! Sn has the
structure of a fibre bundle. Since the bundle charts �C; �� are linear isomorphisms
on each fibre, it follows that �W Ef ! Sn is a vector bundle with general fibre Kk.

ut
The following can be shown, see [5] or [74]:

Theorem 4.6.3 (Vector Bundles over Spheres and Homotopy Classes of Clutch-
ing Functions)

1. Every complex vector bundle over Sn of rank k is isomorphic to a bundle Ef for
a certain clutching function f W Sn�1 ! U.k/, unique up to homotopy.

2. Similarly, every orientable real vector bundle over Sn of rank k is isomorphic
to a bundle Ef for a certain clutching function f W Sn�1 ! SO.k/, unique up to
homotopy.

Every vector bundle over a sphere can be constructed using a clutching function,
because by Corollary 4.5.12 every vector bundle over Sn is trivial over UC and U�.
Given an arbitrary K-vector bundle E ! Sn of rank k we obtain an associated
clutching function as follows:

• Let E˙ denote the restrictions of E to U˙. Choose vector bundle trivializations

h˙W E˙ �! U˙ � K
k:
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• Consider

hC ı h�1� W Sn�1 � K
k �! Sn�1 � K

k:

This map is a linear isomorphism on each fibre and defines the clutching function

f W Sn�1 �! GL.k;K/:

The clutching functions in Theorem 4.6.3 can be taken to have image in U.k/ or
SO.k/, because there are deformation retractions

GL.k;C/ �! U.k/;

GLC.k;R/ �! SO.k/:

Complex and real orientable vector bundles over Sn are therefore essentially
classified by the homotopy groups �n�1.U.k// and �n�1.SO.k//.

Remark 4.6.4 (Clutching Construction for Arbitrary Fibres) Let F be a smooth
manifold and

f W Sn�1 �! Diff.F/

a “smooth” map, again called a clutching function (the precise formulation in the
general case is not completely trivial, because we did not define a smooth structure
on the diffeomorphism group Diff.F/). A similar construction to the one above
yields a fibre bundle

F E f

Sn

over Sn with general fibre F. The mapping torus construction in Example 4.1.5 can
be seen as a special case of the clutching construction for n D 1: If �W F ! F is the
monodromy of the mapping torus, we choose

f W S0 �! Diff.F/

�1 7�! IdF

C1 7�! �:
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Example 4.6.5 (Exotic 7-Spheres) Another very nice application appears in
Milnor’s classic paper [94], where certain exotic7-spheres (homeomorphic but
not diffeomorphic to S7) are defined as S3-bundles over S4, using the clutching
construction with clutching function

fhjW S3 �! SO.4/ � DiffC.S3/

given by

fhj.u/ � v D uhvu j:

Here u; v 2 S3 D Sp.1/ and h; j 2 Z. For certain values of the integers h and
j, the S3-bundle over S4 determined by the clutching function fhj is an exotic
7-sphere.

Milnor’s paper started the field known as differential topology and led to
an extensive investigation of exotic spheres of arbitrary dimension. The study
of the smooth topology of general 4-manifolds, using Donaldson theory and
later Seiberg–Witten theory, also belongs to the field of differential topology.

4.7 Associated Vector Bundles

In Chap. 2 we studied the theory of Lie group representations. We now want
to combine this theory with the theory of principal bundles from the present
chapter.

We said before that principal bundles are the place where Lie groups appear
in gauge theories. Associated vector bundles, which we discuss in this section,
are precisely the place where representations on vector spaces are built into
gauge theories. We can summarize this in the following diagram:

Lie groups (gauge groups) Representations on vector spaces

Principal bundles Associated vector bundles (matter fields)

Connections (gauge fields) Covariant derivatives (interaction/coupling)

The third row will be explained in Chap. 5.
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For example, in the Standard Model, one generation of fermions is described by
associated complex vector bundles of rank 8 for left-handed fermions and rank 7 for
right-handed fermions, associated to representations of the gauge group SU.3/ �
SU.2/ � U.1/. Taking particles and antiparticles together we get two associated
complex vector bundles of rank 15 (right-handed and left-handed) which are related
by complex conjugation. The complete fermionic content of the Standard Model is
described by the direct sum of three copies of these vector bundles (a complex vector
bundle of rank 90), corresponding to the three generations. These constructions will
be described in detail in Sect. 8.5.1.

4.7.1 Basic Concepts

As an introduction, consider again the Hopf fibration

S1 S3

S2

We are interested in the complex representations of S1 on C with winding
number k 2 Z:


kW S1 �! U.1/

z 7�! zk

Our aim is to define an associated bundle

� k D S3 �
k C:

This will be a complex line bundle over S2

C

S2

whose transition functions are given by the transition functions of the Hopf
fibration composed with the group homomorphism 
k.
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The general definition is the following: Let K denote the field R or C. We then
associate to each principal G-bundle

G P

M

P

and each representation


W G �! GL.V/

of the structure group G on a K-vector space V of dimension k a vector bundle
E ! M with fibres isomorphic to V .

Lemma 4.7.1 Let P be a principal G-bundle and 
 a representation of the Lie group
G on a K-vector space V. Then the map

.P � V/ � G �! P � V

. p; v; g/ 7�! . p; v/ � g D �
p � g; 
.g/�1v

�

defines a free principal right action of the Lie group G on the product manifold
P � V. In particular, the quotient space E D .P � V/=G is a smooth manifold such
that the projection P � V ! E is a submersion.

Proof It is clear that

.P � V/ � G �! P � V

is a right action, which is free since the action of G on P is free. If G is compact, then
the claim follows from Corollary 3.7.29. In the general case, the action is principal
by an argument very similar to the one in the proof of Theorem 4.2.12. ut
Theorem 4.7.2 (Associated Vector Bundle Constructed as a Quotient) Let P be
a principal G-bundle and 
 a representation of the Lie group G on a K-vector space
V. Then the quotient space E D .P � V/=G has the structure of a K-vector bundle
over M, with projection

�EW E �! M

Œ p; v� 7�! �P. p/

and fibres

Ex D .Px � V/=G
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isomorphic to V. The vector space structure on the fibre Ex over x 2 M is defined by

	Œ p; v�C �Œ p;w� D Œ p; 	v C �w�; 8p 2 P; v;w 2 V; 	; � 2 K;

where �P. p/ D x.

Proof It is clear that �E is well-defined and that V is isomorphic to the fibres Ex via
v 7! Œ px; v� with a fixed px 2 Px. We need to find a vector bundle atlas for E. Let
.U; �U/ be a bundle chart for the principal bundle P:

�U W PU �! U � G

p 7�! .�P. p/; ˇU. p//:

We set

 U W EU �! U � V

Œ p; v� 7�! .�P. p/; 
.ˇU. p//v/:

Since P � V ! E is a submersion, the map  U is smooth. It is a diffeomorphism
with smooth inverse

 �1
U W U � V �! EU

.x; v/ 7�! �
��1

U .x; e/; v
�
:

Its restriction to each fibre Ex is a linear isomorphism to the vector space V . Thus
 U defines a chart in a vector bundle atlas for E. ut

Definition 4.7.3 The vector bundle

E D P �
 V D .P � V/=G

is called the vector bundle associated to the principal bundle P and the
representation 
 on V:

V P V

M

The group G (or its image 
.G/ � GL.V/) is known as the structure group
of E.
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Remark 4.7.4 Note that in the definition of the vector space structure on the
fibres Ex,

	Œ p; v�C �Œ p;w� D Œ p; 	v C �w�;

we have to choose both representatives with the same point p in the fibre of P over
x 2 M.

Example 4.7.5 For every principal G-bundle P ! M and every vector space V , the
vector bundle associated to the trivial homomorphism


W G �! GL.V/

g 7�! IdV

is a trivial vector bundle. See Exercise 4.8.20.
It is useful in applications to have a suitable description of local sections of an
associated vector bundle.

Proposition 4.7.6 (Local Sections of Associated Vector Bundles) Let P be a
principal bundle and E D P �
 V an associated vector bundle. Let sW U ! P
be a local gauge. Then there is a 1-to-1 relation between smooth sections � W U ! E
and smooth maps f W U ! V, given by

�.x/ D Œs.x/; f .x/� 8x 2 U:

In particular, the local gauge defines a preferred isomorphism between V and every
fibre Ex over x 2 U.

Proof If f W U ! V is a smooth map, then

U �! P � V

x 7�! .s.x/; f .x//

is smooth and hence � W U ! E is smooth. The map � is a section, because

�E ı �.x/ D �P ı s.x/ D x:

Conversely, let � W U ! E be a smooth section. Since Ex D .Px � V/=G and the
action of G on Px is simply transitive, there is a unique f .x/ 2 V such that

�.x/ D Œs.x/; f .x/�:
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We have to show that f W U ! V is smooth: Define a bundle chart �U of the principal
bundle using the section s:

��1
U W U � G �! PU

.x; g/ 7�! s.x/ � g:

Then with the notation in the proof of Theorem 4.7.2 we have ˇU.s.x// D e and

 U ı �.x/ D  U.Œs.x/; f .x/�/

D .x; 
.ˇU.s.x///f .x//

D .x; f .x//:

Since  U and � are smooth, it follows that f is smooth. ut

Matter fields in physics are described by smooth sections of vector bundles E
associated to principal bundles P via representations of the gauge group G on
a vector space V (in the case of fermions the associated bundle E is twisted in
addition with a spinor bundle S, i.e. the bundle is S ˝E). It follows that, given
a local gauge of the gauge bundle P, the section in E corresponds to a unique
local map from spacetime into the vector space V .

In particular, since principal bundles on R
n are trivial by Corollary 4.2.9,

we can describe matter fields on a spacetime diffeomorphic to R
n by unique

maps from R
n into a vector space, once a global gauge for the principal

bundle has been chosen. A (local) trivialization of the gauge bundle thus
determines a unique (local) trivialization of all associated vector bundles.

Definition 4.7.7 Let E D P �
 V be an associated vector bundle. If the representa-
tion


�W g �! End.V/

is non-trivial, then the sections of E are called charged.
This term will be explained in more detail in Sect. 5.9.

Remark 4.7.8 (Associated Fibre Bundles with Arbitrary Fibres) Given a principal
bundle P ! M with structure group G, a manifold F and a smooth left action

� W G � F �! F

.g; v/ 7�! g � v
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a similar construction using the quotient

P �� F D .P � F/=G

under the G-action

.P � F/ � G �! P � F

. p; v; g/ 7�! �
p � g; g�1 � v�

yields an associated fibre bundle

F P F

M

with structure group given by the image of G in the diffeomorphism group Diff.F/,
determined by the action � .

Example 4.7.9 (Flat Bundles) Here is an example of the construction in
Remark 4.7.8. Let M and F be manifolds and

 W�1.M/ �! Diff.F/

a group homomorphism. This defines an action of the (discrete) group �1.M/ on F.
The universal covering

�M W QM �! M

can be considered as a principal bundle with discrete structure group �1.M/. The
associated fibre bundle

F M̃ F

M

is called the flat bundle with holonomy  . In the case of M D S1 this yields again
the mapping torus from Example 4.1.5. More generally, for M D Tn, a collection of
n pairwise commuting diffeomorphisms

fiW F �! F; i D 1; : : : ; n
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defines a flat bundle

F E

T n

4.7.2 Adapted Bundle Atlases for Associated Vector Bundles

We discuss a specific type of bundle atlas for associated vector bundles. Let P ! M
be a principal G-bundle and E D P �
 V an associated vector bundle, where 
W G !
GL.V/ is a representation. We choose a principal bundle atlas f.Ui; �i/gi2I for P,
determined by local gauges siW Ui ! P.

Definition 4.7.10 The principal bundle atlas for P defines an adapted bundle atlas
for E with local trivializations

 iW EUi �! Ui � V

whose inverses are given by

 �1
i .x; v/ D Œsi.x/; v�:

Proposition 4.7.11 (Adapted Bundle Atlases and the Structure Group) Sup-
pose the transition functions of the principal bundle charts for P are given by

�ji D �j� ı ��1
i� W Ui \ Uj �! G:

Then the transition functions for the adapted bundle atlas for E are

 ji D  j� ı  �1
i� W Ui \ Uj �! GL.V/

x 7�!  ji.x/ D 
.�ji.x//:

The transition functions of E thus have image in the subgroup 
.G/ � GL.V/, where
G is the structure group of P.

Proof We have

si.x/ D sj.x/ � �ji.x/:

This implies

 �1
ix .v/ D Œsj.x/ � �ji.x/; v�

D  �1
jx ı 
.�ji.x//.v/:
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Therefore

 ji.x/ D  jx ı  �1
ix D 
.�ji.x//:

ut

4.7.3 Bundle Metrics on Associated Vector Bundles

It is often important to consider bundle metrics on an associated vector bundle. We
can construct such metrics as follows: let �PW P ! M be a principal bundle with
structure group G, 
W G ! GL.V/ a representation and E ! M the associated
vector bundle E D P �
 V .

Proposition 4.7.12 (Bundle Metrics on Associated Vector Bundles from G-
Invariant Scalar Products) Suppose that h� ; �iV is a G-invariant scalar product
on V. Then the bundle metric h� ; �iE on the associated vector bundle E given by

hŒ p; v�; Œ p;w�iEx D hv;wiV ;

for arbitrary p 2 Px, is well-defined.

Proof This is an easy calculation choosing two different representatives for the
vectors in the fibre Ex. ut

4.7.4 Examples

Example 4.7.13 (From Vector Bundles to Principal Bundles and Back) We claim
that every vector bundle has the structure of an associated vector bundle for
some principal bundle. We first consider the tangent bundle TM: Let M be an n-
dimensional smooth manifold and consider the frame bundle

FrGL

M

Let


GLWGL.n;R/ � R
n �! R

n

be the standard representation, given by matrix multiplication from the left on
column vectors. Then there exists an isomorphism of vector bundles

TM Š FrGL.M/ �
GL R
n:
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An isomorphism is given by

HWFrGL.M/ �
GL R
n �! TM

Œ.v1; : : : ; vn/; .x1; : : : ; xn/� 7�!
nX

iD1
vixi:

It is easy to check that the map H is well-defined and a bundle isomorphism.
Choosing a Riemannian metric g on M we can define the orthonormal frame

bundle FrO.M/. Using the standard representation 
O of O.n/ on Rn we get another
vector bundle isomorphism

TM Š FrO.M/ �
O R
n:

Similarly, every real vector bundle E of rank n is associated to a principal GL.n;R/-
bundle (and a principal O.n/-bundle), defined using frames in the fibres of E. If E is
orientable, it is associated to a principal SO.n/-bundle. Similar statements hold for
complex vector bundles with principal GL.n;C/- and U.n/-bundles.
We get:

Proposition 4.7.14 Let E ! M be a real or complex vector bundle. Then E is
associated to some principal O.n/- or U.n/-bundle P ! M.
In particular, the vector bundles over spheres that we defined in Sect. 4.6 using the
clutching construction are associated vector bundles. Note that the structure as an
associated vector bundle is not unique: as we saw above in the case of the frame
bundle, the same vector bundle can be associated to principal bundles with different
Lie groups.

We can use our constructions of principal bundles over spheres, projective spaces,
and Stiefel and Grassmann manifolds to define associated vector bundles over those
manifolds.

Example 4.7.15 Recall the principal bundle

SO

Sn−1

from Example 4.2.16. Then any representation of SO.n � 1/ on a real or complex
vector space defines an associated vector bundle over the sphere Sn�1. A similar
construction works for any of the other principal bundles over spheres given in
Example 4.2.16. Alternatively, these bundles can also be realized (up to isomor-
phism) by the clutching construction.
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The construction also applies to the principal bundles over Stiefel and Grassmann
manifolds, like

and

These examples can be generalized: start with any smooth homogeneous space G=H
and consider the canonical principal bundle

H G

G/H

according to Theorem 4.2.15. Then representations of H define associated vector
bundles over G=H, known as homogeneous vector bundles.

Example 4.7.16 Let

S1 S2n+1

CP
n

be the Hopf fibration. We want to study complex line bundles associated to this
principal S1-bundle. For k 2 Z consider the homomorphism


kW S1 �! U.1/

z 7�! zk

of winding number k. Then the associated bundle

� k D S2nC1 �
k C
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is a complex line bundle. The bundle �0 is trivial and � k is isomorphic to

� k Š �1 ˝ : : :˝ �1
„ ƒ‚ …

k factors

.k > 0/

and

� k Š �1� ˝ : : :˝ �1�
„ ƒ‚ …

jkj factors
.k < 0/:

See Exercise 4.8.21.
Similarly, using representations of SU.2/ Š S3 we can define vector bundles

associated to the quaternionic Hopf fibration

S3 S4n+3

HP
n

Example 4.7.17 (Adjoint Bundle) An important general example of an asso-
ciated vector bundle is the following: let

G P

M

be a principal bundle with structure group G. Consider the adjoint representa-
tion

AdW G �! GL.g/:

Then the associated vector bundle

Ad.P/ D P �Ad g

is called the adjoint bundle. Its general fibre is isomorphic to the vector space
underlying the Lie algebra g:

Ad

M
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4.8 Exercises for Chap. 4

4.8.1 The Möbius strip can be defined as the submanifold

M D
n�

ei�; rei�=2
� ˇ̌
ˇ� 2 Œ0; 2��; r 2 Œ�1; 1�

o
� S1 � C:

The projection �W M ! S1 is defined as � D pr1jM .

1. Show that �W M ! S1 is a fibre bundle with general fibre Œ�1; 1� (here we
consider a small generalization of the notion of a fibre bundle to manifolds with
boundary).

2. Prove that the boundary @M is connected and that the bundle � is not trivial.
3. Prove that the image of any smooth section sW S1 ! M intersects the zero section

zW S1 ! M; z.˛/ D .˛; 0/.

Hint: Note that the map S1 ! S1; ei� 7! ei�=2 is not well-defined.

4.8.2 Let �W M ! S1 denote the Möbius strip from Exercise 4.8.1 and consider the
map fnW S1 ! S1; fn.z/ D zn for n 2 Z.

1. Show that the pull-back bundle f �
n M is isomorphic to the bundleMn ! S1 defined

by

Mn D
n�

ei ; rein =2
� ˇˇ
ˇ 2 Œ0; 2��; r 2 Œ�1; 1�

o
� S1 � C

(with projection onto the first factor).
2. Determine those n 2 Z for which f �

n M is trivial and those for which it is non-
trivial.

4.8.3 (Fibre Sum) Suppose that F ! E ! M and F0 ! E0 ! M0 are two
fibre bundles over n-dimensional manifolds M and M0. Let D and D0 be embedded
open n-discs in M and M0 together with trivializations F � D and F0 � D0 of the
fibrations over D and D0. We assume that F and F0 are diffeomorphic and choose a
diffeomorphism

�W F �! F0:

We write D and D0 minus the centre 0 as Sn�1 � .0; 1/ and fix a diffeomorphism
r from .0; 1/ to .0; 1/ which reverses orientation. Let � W Sn�1 ! Sn�1 be the
diffeomorphism which reverses the sign of one of the coordinates on Sn�1 � R

n.
Consider the diffeomorphism

 W F � .D n 0/ �! F0 � .D0 n 0/
.x; v; t/ 7�! .�.x/; �.v/; r.t//:
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The fibre sum E# E0 is defined by gluing together the manifolds M n F and M0 n F0
along the diffeomorphism  . Prove that E# E0 is a smooth fibre bundle over the
connected sum M#M0 with general fibre F.

4.8.4 Let G ! P
�! M be a principal bundle and f W N ! M a smooth map between

manifolds. Prove that the pullback f �P has the canonical structure of a principal G-
bundle over N.

4.8.5
1. Let F ! E

�! M and F0 ! E0 �! M be fibre bundles and HW E ! E0 a bundle
morphism. Suppose that H maps every fibre of E diffeomorphically onto a fibre
of E0. Show that H is a diffeomorphism and hence a bundle isomorphism.

2. Let G ! P
�! M and G0 ! P0 �! M be principal bundles and f W G ! G0 a Lie

group isomorphism. Show that every f -equivariant bundle morphism HW P ! P0
is a diffeomorphism.

4.8.6 (From [14]) We consider the Hopf bundle

S1 S3

S2

The total space S3 of this bundle admits two different S1-actions: The standard action

S3 � S1 �! S3;

.w; 	/ 7�! w	

and the reversed action

S3 � S1 �! S3;

.w; 	/ 7�! w	�1:

Both actions endow the same fibre bundle S1 ! S3
�! S2 with the structure of a

principal bundle. Prove that these principal bundles are not isomorphic as principal
bundles.

4.8.7 Recall the definition of lens spaces from Example 3.7.33. Show that the lens
space L. p; 1/ is the total space of a principal fibre bundle over S2 with structure
group S1.
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4.8.8 Show that there is a canonical free O.k/-action on the Stiefel manifold Vk.R
n/

and that this defines a principal O.k/-bundle

4.8.9 We want to discuss another way to construct fibre bundles. Let M, F be
smooth manifolds and fUigi2I an open covering of M together with diffeomorphisms

�jiW .Ui \ Uj/ � F �! .Ui \ Uj/ � F

whenever Ui \ Uj ¤ ;, satisfying

pr1 ı �ji D pr1:

We also write �ji.x/ D �ji.x;�/ for x 2 Ui \ Uj. Let QE be the disjoint union

QE D P[
i2I

Ui � F:

1. Show that

.x; v/ � .x0; v0/ , 9i; j 2 I W x D x0 2 Ui \ Uj and v0 D �ji.x/v

defines an equivalence relation on QE if and only if the �ji satisfy the three
conditions of Lemma 4.1.13.

2. Show that if the �ji satisfy the conditions of Lemma 4.1.13, then the quotient set

E D QE= �

has the canonical structure of a smooth fibre bundle over M with general fibre F
and transition functions �ji.

4.8.10 Prove that the principal bundle

SO

Sn−1

from Example 4.2.16 is isomorphic to the frame bundle FrSO.Sn�1/.
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4.8.11 Prove that a subset F � E is a subbundle of the vector bundle E if and only
if F is the image of a vector bundle monomorphism to E.

4.8.12 Prove that

E D f.U; v/ 2 Grk.K
n/ � K

n j v 2 Ug;

with projection onto the first factor, defines a K-vector bundle over the Grassmann
manifold Grk.K

n/ of rank k. This bundle is called the tautological vector bundle.
Particular examples, for k D 1, are the tautological line bundles over RPn�1 and
CP

n�1.

4.8.13 We denote by L ! S1 the infinite Möbius strip, defined by

L D
n�

ei�; rei�=2
� ˇˇ̌
� 2 Œ0; 2��; r 2 R

o
� S1 � C:

It follows from Exercise 4.8.1 that this is a non-trivial, real line bundle over the
circle. Prove that the real vector bundle L ˚ L ! S1 is trivial.

4.8.14 Let L ! S1 be the infinite Möbius strip.

1. Show that under the diffeomorphism S1 Š RP
1 the infinite Möbius strip is

isomorphic to the tautological line bundle over RP1.
2. Prove that the tautological line bundle over RPn is non-trivial for all n � 1.

4.8.15 Let E ! M be a real vector bundle of rank m. Show that E is orientable if
and only if 
mE is trivial.

4.8.16 Let E ! M be a K-vector bundle of rank m with a positive definite
(Euclidean or Hermitian) bundle metric. Suppose that F � E is a vector subbundle.
Prove that the orthogonal complementF? is a vector subbundle of E and that F˚F?
is isomorphic to E.

4.8.17 Determine the clutching function of the tangent bundle TS2 ! S2 geometri-
cally as follows:

1. Draw two disks in the plane and label them N and S. Draw on the boundary circle
of disk N four points a; b; c; d counter-clockwise with 90ı between consecutive
points. Draw on the boundary circle of disk S corresponding points a; b; c; d, such
that the disks under identification of the boundary circles yield a sphere S2.

2. Draw in the center of disk N an orthonormal basis and label the vectors 1 and 2.
Parallel transport this basis to the points a; b; c; d. Take these bases and draw the
matching bases on the S side in the points a; b; c; d. Call these bases I.

3. Take the basis at the point a on disk S and parallel transport it to the center of
disk S. Then parallel transport this basis from the center to the points b; c; d. Call
these bases II.
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4. Determine how bases I twist against bases II and thus determine the clutching
function, i.e. the degree of the map

f W S1 �! SO.2/ Š S1:

To fix the sign of the degree, you probably need at least one more point at 45ı
between a and b, for example.

What do you get if you do something similar for TS3 ! S3 by realizing S3 as two
solid cubes identified along their six faces?

4.8.18 Determine the clutching function of the tautological complex line bundle
E ! CP

1 Š S2. The total space of the line bundle is

E D ˚
.Œz�;wz/ 2 CP

1 � C
2 j z ¤ 0;w 2 C

�

and CP1 is covered by

UC D fŒz W 1� 2 CP
1 j z 2 Cg;

U� D fŒ1 W z� 2 CP
1 j z 2 Cg:

4.8.19 Determine the clutching functions in the sense of Remark 4.6.4 for the Hopf
fibrations

S1 S3

S2

and

S3 S7

S4

4.8.20 Let

G P

M

be a principal G-bundle and 
W G ! GL.V/, 
iW G ! GL.Vi/, for i D 1; 2,
representations. Let

E D P �
 V; Ei D P �
i Vi
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be the associated vector bundles. Show that the dual bundle E�, the direct sum
E1 ˚ E2 and the tensor product E1 ˝ E2 are isomorphic to vector bundles associated
to P. Determine the corresponding representations of G and the vector bundle
isomorphisms. Show that the vector bundle associated to the trivial representation
is trivial.

4.8.21 (From [14]) Let

C

CP
n

be the complex line bundle defined in Example 4.7.16.

1. Prove that �0 is trivial and �1 is isomorphic to the tautological line bundle.
2. Prove that ��k Š � k� for all k 2 Z and

� k Š �1 ˝ : : :˝ �1
„ ƒ‚ …

k factors

.k > 0/:

4.8.22 Let E ! M be a complex vector bundle of rank n � 2. Show that E is
associated to a principal SU.n/-bundle overM if and only if
nE is a trivial complex
line bundle.

4.8.23 Let E D P�
V be an associated vector bundle and ˛ a section of the adjoint
bundle Ad.P/. Prove that ˛ defines a canonical endomorphism of the vector bundle
E.

4.8.24 Let M D G=H be a smooth homogeneous space and consider the canonical
principal H-bundle

Suppose that 
W H ! GL.V/ is a representation with associated homogeneous
vector bundle
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1. Prove that there exists a canonical smooth left action of the Lie group G on the
total space E. Show that this action maps fibres of E by linear isomorphisms onto
fibres of E and that any given fibre of E can be mapped by a group element onto
any other fibre.

2. Identify the space � .E/ of sections of the vector bundle E over the manifold M
with a suitable vector subspace MapH.G;V/ of the vector space Map.G;V/.

Remark The representation of G on � .E/, induced by this construction from the
representation of the closed subgroup H on V , is denoted by IndG

H.V/.

4.8.25 (From [30]) Let M D G=H be a smooth homogeneous space and consider
the canonical principal H-bundle

Prove that the tangent bundle TM is isomorphic to the homogeneous vector bundle
over M, defined by the representation 
 of H on the vector space g=h, given by


.h/Œv� D ŒAdhv� 8h 2 H; Œv� 2 g=h;

where Ad denotes the adjoint representation of G.
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