
Chapter 2
Lie Groups and Lie Algebras: Representations
and Structure Theory

At least locally, fields in physics can be described by maps on spacetime with
values in vector spaces. Since symmetry groups in field theories act on fields, it
is important to understand (linear) actions of Lie groups and Lie algebras on vector
spaces, known as representations.

For example, we shall see that, in the Standard Model, three Dirac spinors
for each quark flavour are combined and form a vector in a representation space
C3 of the gauge group SU.3/ of quantum chromodynamics. Similarly, two left-
handedWeyl spinors, known as the left-handed electron and the left-handed electron
neutrino, are combined to form a vector in a representation space C2 of the gauge
group SU.2/ � U.1/ of the electroweak interaction.

It turns out that every Lie group and Lie algebra has a special representation,
known as the adjoint representation. The adjoint representation can be used to define
the Killing form, a canonical symmetric bilinear form on every Lie algebra. Both the
adjoint representation and the Killing form are important tools for the classification
of Lie algebras. The adjoint representation is also important in physics, because
gauge bosons correspond to fields on spacetime that transform under the adjoint
representation of the gauge group.

The purpose of this chapter is to describe representations of Lie groups and
Lie algebras in general as well as the structure of semisimple and compact Lie
algebras. We also discuss special scalar products on Lie algebras which will be
used in Sect. 7.3.1 to construct Lagrangians for gauge boson fields. We only cover
the basics of the representation and structure theory of Lie groups and Lie algebras.
Much more details can be found in the references mentioned at the beginning of
Chap. 1, which are also the references for this chapter.
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2.1 Representations

2.1.1 Basic Definitions

We begin with the basic concept of representations of Lie groups and Lie algebras.

Definition 2.1.1 LetG be a Lie group and V a vector space over the real or complex
numbers. Then a representation of G on V is a Lie group homomorphism

�WG �! GL.V/

to the Lie group GL.V/ of linear isomorphisms of V . One sometimes writes
GL.V/ D Aut.V/, the Lie group of linear automorphisms of V . The Lie group
GL.V/ is by definition isomorphic to a general linear group of the form GL.n;K/,
whereK D R;C and n is the dimension of V .

If the representation is clear from the context, we sometimes write

�.g/v D g � v D gv

for g 2 G; v 2 V . A representation � of a Lie group G is called faithful if � is
injective.
For a Lie group representation � the identities

�.gh/ D �.g/ ı �.h/

and

�
�
g�1� D �.g/�1

hold for all g; h 2 G. Note that the definition of a representation � requires that
the map � is a homomorphism in the algebraic sense and differentiable (in fact, by
Theorem 1.8.14 it suffices to demand that the map � is continuous).

Example 2.1.2 By Theorem 1.2.7 any compact Lie group has a faithful representa-
tion on some finite-dimensional, complex vector space.

Definition 2.1.3 Let �V ; �W be representations of a Lie group G on vector spaces
V and W. Then a morphism of the representations is a G-equivariant linear map
f WV ! W, so that

f .�V.g/v/ D �W.g/f .v/;

i.e.

f .gv/ D g f .v/ 8g 2 G; v 2 V:
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Such a map f is also called an intertwining map. An isomorphism or equivalence
of representations is a G-equivariant isomorphism.

Definition 2.1.4 Let �WG ! GL.V/ be a representation of a Lie group G. Suppose
that H � G is an embedded Lie subgroup. Then the restriction

�jHWH �! GL.V/

of the Lie group homomorphism � to H is a representation of H, called a restricted
representation.
We define representations of Lie algebras in a similar way.

Definition 2.1.5 Let g be a (real or complex) Lie algebra and V a vector space over
the real or complex numbers. Then a representation of g on V is a Lie algebra
homomorphism

�W g �! gl.V/ D End.V/

to the linear endomorphisms of V (linear maps V ! V). If the representation is
clear from the context, we sometimes write

�.X/v D X � v D Xv

for X 2 g; v 2 V . A representation � of a Lie algebra g is called faithful if � is
injective.
For a Lie algebra representation the following identity holds:

�.ŒX;Y�/ D �.X/ ı �.Y/ � �.Y/ ı �.X/ 8X;Y 2 g:

Example 2.1.6 By Ado’s Theorem 1.5.25 any Lie algebra has a faithful representa-
tion on some finite-dimensional vector space.

Remark 2.1.7 Note that if the Lie algebra is complex, then we require the represen-
tation �W g ! End.V/ to be a complex linear map.

Definition 2.1.8 Let �V ; �W be representations of a Lie algebra g on vector spaces
V and W. Then a morphism of the representations is a g-equivariant linear map
f WV ! W, so that

f .�V.X/v/ D �W.X/f .v/;

i.e.

f .Xv/ D Xf .v/ 8X 2 g; v 2 V:

Such a map f is also called an intertwining map. An isomorphism or equivalence
of representations is a g-equivariant isomorphism.
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Definition 2.1.9 Let �W g ! End.V/ be a representation of a Lie algebra g. Suppose
that h � g is a Lie subalgebra. Then the restriction

�jhW h �! End.V/

of the Lie algebra homomorphism � to h is a representation of h, called restricted
representation.

Remark 2.1.10 Unless stated otherwise we only consider representations of Lie
groups and Lie algebras on real and complex vector spaces and these vector spaces
are finite-dimensional.

Remark 2.1.11 Both types of homomorphisms are called representations, because
we represent elements in the Lie group or Lie algebra by linear maps on a vector
space, i.e. (after a choice of basis for the vector space) by matrices.

Representations of Lie groups and their associated Lie algebras are related:

Proposition 2.1.12 (Induced Representations) Let �WG ! GL.V/ be a represen-
tation of a Lie group G on a vector space V. Then the differential ��W g ! End.V/
is a representation of the Lie algebra g.

Proof The proof follows from Theorem 1.5.18, because the differential of a Lie
group homomorphism is a Lie algebra homomorphism. ut
With Theorem 1.7.16 we get the following commutative diagram:

End(V )

G GL(V )

exp exp

Note that the exponential map on the right is just the standard exponential map on
endomorphisms (defined in the same way as for matrices, using composition instead
of matrix multiplication). We can thus write the commutativity of the diagram as

�.expX/ D e��X 8X 2 g:

This means: if we know how a Lie algebra element X 2 g acts in a representation
on the vector space V , then we know how the group element expX 2 G acts on V .

Assuming Theorem 1.5.20 we get the following:

Corollary 2.1.13 (Integrability Theorem for Representations) Let G be a con-
nected and simply connected Lie group. Suppose �W g ! End.V/ is a representation
of the Lie algebra of G. Then there exists a unique representation �WG ! GL.V/
such that �� D �.
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The discussion in Example 1.5.21 shows that this may not hold if G is not simply
connected. In particular, if

�W so.2/ Š u.1/ �! End.V/

is a representation and X the generator of u.1/with exp.2�iX/ D 1, then a necessary
condition that � comes from a representation

�WU.1/ �! GL.V/

is that

e2� i�.X/ D IdV :

Example 2.1.14 For any constant k2Z there is a complex 1-dimensional
representation

�kWU.1/ �! U.1/ � GL.C/

z 7�! zk:

We say that these representations have winding number k. In the Standard Model
these representations appear in connection with the weak hypercharge gauge group
U.1/Y .

Example 2.1.15 The Lie groups GL.n;R/ (and GL.n;C/) have canonical represen-
tations on Rn (and Cn) by matrix multiplication on column vectors from the left.
These representations induce representations for all linear groups, called standard,
defining or fundamental representations (by a fundamental representationwe will
always mean the defining representation). There are similar, induced representations
of the corresponding Lie algebras.

Definition 2.1.16 A representation of a Lie group G (or Lie algebra g) on a vector
space V is called irreducible if there is no proper invariant subspace W � V ,
i.e. no vector subspaceW, different from 0 or V , such thatG�W � W (or g�W � W).
A representation is called reducible if it is not irreducible.

Example 2.1.17 The 0-dimensional and every 1-dimensional representation are
irreducible, because in these cases there are no proper vector subspaces at all.

Definition 2.1.18 A singlet representation is a representation of a Lie group or
Lie algebra on a 1-dimensional (real or complex) vector space. Similarly, a doublet
or triplet representation is a representation on a 2- or 3-dimensional vector space.
A representation of a Lie group or Lie algebra on an n-dimensional vector space
is sometimes denoted by n, in particular, if the dimension uniquely determines the
representation.
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Example 2.1.19 (Trivial Representations) Let G be a Lie group and V a real or
complex vector space. Then

�WG �! GL.V/

g 7�! IdV ;

where every group element gets mapped to the identity, is a representation, called a
trivial representation. It is irreducible precisely if V is 1-dimensional. Similarly, if
g is a Lie algebra, then

�W g �! End.V/

g 7�! 0

is a trivial representation. Again, it is irreducible precisely if V is 1-dimensional.
We will later study a class of Lie algebras where every representation is either trivial
or faithful, see Exercise 2.7.9.

It is a curious fact that the fundamental and trivial representations of SU.3/
and SU.2/, together with the winding number representations of U.1/ in
Example 2.1.14, suffice to describe allmatter particles (and the Higgs field) in
the Standard Model; see Sect. 8.5. The gauge bosons corresponding to these
gauge groups are described by the adjoint representation that we discuss in
Sect. 2.1.5.

Example 2.1.20 The fundamental representation of the Lie algebra su.2/ is an (irre-
ducible) doublet representation on the vector space C2. Recall from Example 1.5.32
that there exists an isomorphism su.2/ Š so.3/. The fundamental representation
of so.3/ thus also defines an (irreducible) triplet representation of su.2/ on R3 (and
C3). It can be proved that su.2/ has a unique (up to equivalence) irreducible complex
representation Vn of dimension nC1 for every natural number n � 0 (see, e.g. [24]).

Example 2.1.21 (The Heisenberg Lie Algebra and Quantum Mechanics) Recall
from Example 1.5.38 that the Heisenberg Lie algebra nil3 is a 3-dimensional real
Lie algebra spanned by vectors p; q; z with Lie brackets

Œq; p� D z;

Œq; z� D 0;

Œ p; z� D 0:

Let „ 2 R be some real number. A central representation of nil3 is a representation

nil3 �! End.V/
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on a complex vector space V such that z gets mapped to i„ � IdV . If we denote the
images of q and p in End.V/ by Oq and Op, then

ŒOq; Op� D i„
and the other two commutation relations are satisfied trivially (on the right-hand
side we do not write the identity map of V explicitly). This is the canonical
commutation relation of quantum mechanics.

2.1.2 Linear Algebra Constructions of Representations

There are several well-known constructions that yield new vector spaces from given
ones. If the given vector spaces carry a representation, then usually the new vector
spaces carry induced representations. We first recall the following notion from
complex linear algebra.

Definition 2.1.22 Let V be a complex vector space. Then we define the complex
conjugate vector space NV as follows:

1. As a set and abelian group NV D V .
2. Scalar multiplication is defined by

C � NV �! NV
.�; v/ 7�! N�v:

If f WV ! V is a complex linear map, then the same map (on the set NV D V)
is denoted by Nf W NV ! NV and is still complex linear. The identity map V ! NV is
complex antilinear.

Definition 2.1.23 Let V and W be real or complex vector spaces with
representations

�V WG �! GL.V/

�W WG �! GL.W/

of a Lie group G. Then there exist the following representations of G, where g 2 G
and v 2 V;w 2 W are arbitrary:

1. The direct sum representation �V˚W on V ˚ W, defined by

g.v;w/ D .gv; gw/:

2. The tensor product representation �V˝W on V ˝ W, defined by

g.v ˝ w/ D gv ˝ gw:
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3. The dual representation �V� on V�, defined by

.g�/.v/ D �
�
g�1v

�
; 8� 2 V�:

4. The exterior power representation ��kV on �kV , defined by

g.v1 ^ v2 ^ : : : ^ vk/ D gv1 ^ gv2 ^ : : : ^ gvk; 8v1 ^ v2 ^ : : : ^ vk 2 �kV:

5. The homomorphism space representation �Hom.V;W/ on Hom.V;W/, defined by

.g f /.v/ D g f
�
g�1v

�
; 8f 2 Hom.V;W/:

6. If V is a complex vector space, then the complex conjugate representation � NV
on NV is defined by

� NV.g/v D �V.g/v:

Suppose in addition that

�W WH �! GL.W/

is a representation of a Lie group H. Then there exists the following representation,
where h 2 H is arbitrary:

7. The (outer) tensor product representation �V ˝ �W on V ˝ W of the Lie group
G � H, defined by

.g; h/.v˝ w/ D gv ˝ hw;

for g 2 G; h 2 H.

It is easy to check that each of these maps is indeed a representation.

Remark 2.1.24 The direct sum representation �V ˚ �W on V ˚ W of the Lie group
G � H, defined by

.g; h/.v;w/ D .gv; hw/;

is less important, because it is can be reduced to the representations �V and �W , each
tensored with the trivial 1-dimensional representation.

Remark 2.1.25 If V is a complex representation space for a Lie group, we then get
in total four complex representations which have the same dimension as V: V , V�,
NV and NV�.
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The representations of the Lie group

G D SU.3/ � SU.2/ � U.1/

that appear in the Standard Model of elementary particles are direct sums of
outer tensor product representations of the form

U ˝ V ˝ W;

where U;V;W are certain representations of the factors SU.3/, SU.2/, U.1/
of G. See Sect. 8.5 for details.

Example 2.1.26 We describe these constructions using matrices. Consider the
column vector spaces V D Kn, W D Km where K D R;C. Representations �V and
�W of a Lie group G take values in the matrix Lie groups GL.n;K/ and GL.m;K/.
We can then identify the canonical representations of G on the vector spaces

V ˚ W; V�; Hom.V;W/; �2V� and NV (if V is complex)

with the following representations:

1. V ˚ W can be identified with KnCm. For a column vector .x; y/T 2 KnCm the
direct sum representation is given by

�V˚W.g/

�
x
y

�
D
�
�V.g/ 0

0 �W.g/

��
x
y

�
:

2. V� can be identified with a row vector space that we here denote by .Kn/�. For a
row vector s 2 .Kn/� the dual representation is given by

�V�.g/s D s � �V.g/�1:

3. Hom.V;W/ can be identified with the vector space Mat.m � n;K/. For a matrix
A 2 Mat.m � n;K/ the representation on the homomorphism space is given by

�Hom.V;W/.g/A D �W.g/ � A � �V .g/�1:

4. �2V� is the space of skew-symmetric, bilinear maps

�WV � V �! K
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and can be identified with so.n;K/, the space of skew-symmetric n�n-matrices,
by sending � to the matrix A with coefficients Aij D �.ei; ej/. The representation
on �2V� is then given by

��2V�.g/A D �
�V.g/

�1�T � A � �V.g/�1:

5. If V D Cn, then NV D Cn as an abelian group and every complex scalar (and
hence every complex matrix) acts as the complex conjugate. For a column vector
z 2 Cn the complex conjugate representation is given by

� NV .g/z D �V.g/ � z:

There are analogous constructions for representations of Lie algebras:

Definition 2.1.27 Let V and W be real or complex vector spaces with
representations

�V W g �! End.V/

�W W g �! End.W/

of a Lie algebra g. Then there exist the following representations of g, where X 2 g
and v 2 V;w 2 W are arbitrary:

1. The direct sum representation �V˚W on V ˚ W, defined by

X.v;w/ D .Xv;Xw/:

2. The tensor product representation �V˝W on V ˝ W, defined by

X.v ˝ w/ D .Xv/˝ w C v ˝ .Xw/:

3. The dual representation �V� on V�, defined by

.X�/.v/ D �.�Xv/; 8� 2 V�:

4. The exterior power representation ��kV on �kV , defined by

X.v1^v2^ : : :^vk/ D
kX

iD1
v1^ : : :^Xvi^ : : :^vk; 8v1^v2^ : : :^vk 2 �kV:

5. The homomorphism space representation �Hom.V;W/ on Hom.V;W/, defined by

.Xf /.v/ D Xf .v/C f .�Xv/; 8f 2 Hom.V;W/:
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6. If V is a complex vector space and g a real Lie algebra, then the complex
conjugate representation � NV on NV is defined by

� NV.X/v D �V.X/v:

Suppose in addition that

 W W h �! End.W/

is a representation of a Lie algebra h. Then there exists the following representation,
where Y 2 h is arbitrary:

7. The (outer) tensor product representation �V ˝ W on V˝W of the Lie algebra
g ˚ h, defined by

.X;Y/.v ˝ w/ D Xv ˝ w C v ˝ Yw;

for X 2 g;Y 2 h.

Remark 2.1.28 Perhaps the most interesting case in the proof that these maps define
representations is the dual representation for both Lie groups and Lie algebras. To
check that the formulas here define representations is the purpose of Exercise 2.7.1.

Both constructions are related:

Proposition 2.1.29 Let G and H be Lie groups with Lie algebras g and h. Let � be
any of the representations of G on V ˚ W, V ˝ W, V�, �kV, Hom.V;W/ or NV (or
of G � H on V ˝ W) from Definition 2.1.23. Then the induced representation �� of
g (or of g ˚ h) is the corresponding one from Definition 2.1.27.

Proof The proof follows by differentiating the representation of G (or of G � H).
ut

2.1.3 �The Weyl Spinor Representations of SL.2 ;C/

We discuss an extended example that is relevant for some theories in physics, like
the Standard Model or supersymmetry (see reference [146, Appendix A]). Let G D
SL.2;C/. As we will discuss in Sect. 6.8.2 in more detail, the group SL.2;C/ is
the (orthochronous) Lorentz spin group, i.e. the universal covering of the identity
component of the Lorentz group of 4-dimensional spacetime.

We denote by V D C2 the fundamental SL.2;C/-representation. Then we get
the following four complex doublet representations, where M 2 SL.2;C/ and
 2 C2:

1. The fundamental representation V:

 7�! M :
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2. The dual representation V�:

 T 7�!  TM�1:

3. The complex conjugate representation NV:
N 7�! NM N :

4. The dual of the complex conjugate representation NV�:

N T 7�! N T . NM/�1:

Here we denote the elements of the vector spaces V�, NV and NV� for clarity by  T ,
N and N T .

Remark 2.1.30 In physics the components of the vectors in the spaces V , V�, NV and
NV� are denoted by  ˛ ,  ˛ , N P̨ and N P̨ . We could denote these representations by 2,
2�, N2 and N2�.

Definition 2.1.31 In this situation the representation of SL.2;C/ on V is called the
left-handed Weyl spinor representation and the representation on NV� is called the
right-handed Weyl spinor representation. Both representations are also called
chiral spinor representations.
We want to show that the remaining two representations are isomorphic to the left-
and right-handedWeyl spinor representations.

Definition 2.1.32 We define

	 D
�
0 1

�1 0
�
:

Proposition 2.1.33 We have the following equivalent description of SL.2;C/:

SL.2;C/ D ˚
M 2 Mat.2 � 2;C/ j MT	M D 	

�
:

Proof The proof is an easy calculation; see Exercise 2.7.2. ut
Proposition 2.1.34 The map

f WV �! V�

 7�!  T	

is an isomorphism of representations. Similarly the map

Nf W NV �! NV�

N 7�! N T	

is an isomorphism of representations.
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Proof We only have to show SL.2;C/-equivariance of the maps. This follows by
applying Proposition 2.1.33:

f .M / D .M /T	

D  TMT	

D . T	/M�1

D f . /M�1

and

Nf . NM N / D . NM N /T	
D N T NMT	

D . N T	/ NM�1

D Nf . N / NM�1:

ut
See Sect. 6.8 and Lemma 8.5.5 for more details about these isomorphisms.

2.1.4 Orthogonal and Unitary Representations

It is often useful to consider representations compatible with a scalar product on
the vector space. Recall that a scalar product on a real vector space is called
Euclidean if it is bilinear, symmetric and positive definite. A scalar product on a
complex vector space is called Hermitian if it is sesquilinear (complex linear in the
second argument and complex antilinear in the first argument), conjugate symmetric
(exchanging the first and second argument changes the scalar product by complex
conjugation) and positive definite.

Definition 2.1.35 A representation �WG ! GL.V/ of a Lie groupG on a Euclidean
(or Hermitian) vector space .V; h� ; �i/ is called orthogonal (or unitary) if the scalar
product is G-invariant, i.e.

hgv; gwi D h�.g/v; �.g/wi D hv;wi;

for all g 2 G, v;w 2 V . Equivalently, the map � has image in the orthogonal
subgroup O.V/ (or the unitary subgroup U.V/) of the general linear group GL.V/,
determined by the scalar product h� ; �i.
In an orthogonal representation the group literally acts through rotations (and
possibly reflections) on a Euclidean vector space. There is a similar notion for
representations of Lie algebras.
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Definition 2.1.36 A representation �W g ! End.V/ of a real Lie algebra g on
a Euclidean (or Hermitian) vector space .V; h� ; �i/ is called skew-symmetric (or
skew-Hermitian) if it satisfies

hXv;wi C hv;Xwi D h�.X/v;wi C hv; �.X/wi D 0;

for all X 2 g, v;w 2 V . Equivalently, the map � has image in the orthogonal Lie
subalgebra o.V/ (or the unitary Lie subalgebra u.V/) of the general linear algebra
gl.V/, determined by the scalar product h� ; �i.
We can similarly define invariance of a form on a vector space under representations
of a Lie group or Lie algebra in the case where the form is not non-degenerate or
not positive definite.

Invariant scalar products for Lie group and Lie algebra representations are
related:

Proposition 2.1.37 (Scalar Products and Induced Representations) Let �WG !
GL.V/ be a representation of a Lie group G and h� ; �i a G-invariant Euclidean (or
Hermitian) scalar product on V, i.e. the representation � is orthogonal (or unitary).
Then the induced representation ��W g ! End.V/ of the Lie algebra g is skew-
symmetric (or skew-Hermitian).

Proof We have by Theorem 1.7.16

�.exp tX/ D exp.t��X/

and hence by Corollary 1.7.30

hv;wi D h�.exp tX/v; �.exp tX/wi
D hexp.t��X/v; exp.t��X/wi
D ˝

et��Xv; et��Xw
˛ 8t 2 R:

Differentiating both sides by t in t D 0 and using the product rule we get:

0 D h.��X/v;wi C hv; .��X/wi:

This implies the claim. ut
Let �W g ! End.V/ be a unitary representation of a real Lie algebra g on a complex
vector space V . Then �.X/ is a skew-Hermitian endomorphism for all X 2 g, hence
i�.X/ is Hermitian. This implies that the endomorphism i�.X/ can be diagonalized
with real eigenvalues (and �.X/ can be diagonalized with imaginary eigenvalues).

Definition 2.1.38 The eigenvalues of �i�.X/ are called charges of X 2 g in the
unitary representation �.
The minus sign in �i�.X/ is convention: we can write �.X/ as iAX , where AX is a
Hermitian operator, and the charges are the eigenvalues of AX .
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If h � g is an abelian subalgebra, then the operators i�.X/ for all X 2 h commute
and can be diagonalized simultaneously. This idea is related to the notion of weights
of a representation and used extensively in the classification of representations of
Lie algebras and Lie groups (in a certain sense, that can be made precise, irreducible
representations are thus determined by their charges).

Existence of Invariant Scalar Products

It is an important fact that representations of compact Lie groups always admit an
invariant scalar product.

Theorem 2.1.39 (Existence of Invariant Scalar Products for Representations
of Compact Lie Groups) Let G be a compact Lie group and �WG ! GL.V/ a
representation on a real (or complex) vector space. Then we can find a G-invariant
Euclidean (or Hermitian) scalar product on V, hence the given representation �
becomes orthogonal (or unitary) for this scalar product.
The proof uses the existence of an integral over differential forms 
 of top degree
n on oriented n-manifoldsM:

Z

M

 2 R; 
 2 ˝n.M/:

If �WM ! N is an orientation preserving diffeomorphism between oriented
n-manifolds, then we have the transformation formula

Z

N

 D

Z

M
��
 8
 2 ˝n.N/:

We now prove Theorem 2.1.39.

Proof Suppose G has dimension n and let X1; : : : ;Xn be a basis of TeG. We set QXi

for the corresponding right-invariant vector fields on G, defined by

QXi. p/ D DeRp.Xi/ 8p 2 G:

This basis has a dual basis of right-invariant 1-forms !1; : : : ; !n. Then the wedge
product


 D !1 ^ � � � ^ !n

is a nowhere vanishing, right-invariant differential form on G of top degree. We can
assume that the orientation of G coincides with the orientation defined by 
 , so that

Z

G

 > 0;
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which is finite, because G is compact. Let hh� ; �ii denote an arbitrary Euclidean (or
Hermitian) scalar product on V . We construct a new scalar product by averaging
this scalar product over the action of the group G:

hv;wi D
Z

G
�v;w
;

where �v;w is the smooth function

�v;wWG �! R

h 7�! hhhv; hwii

(here the representation � is implicit and we use that G is compact, so that this
integral is finite).

We claim that h� ; �i is a G-invariant Euclidean (or Hermitian) scalar product on
V: It is clear that h� ; �i is bilinear and symmetric (or sesquilinear and conjugate
symmetric in the complex case). For v ¤ 0 the function �v;v is strictly positive on
G. As a consequence the integral is

hv; vi � 0 8v 2 V

with equality only if v D 0. Therefore h� ; �i is a positive definite Euclidean (or
Hermitian) scalar product on G.

We finally show G-invariance of the new scalar product: Let g 2 G be fixed.
Then

R�
g�1�gv;gw D �v;w 8v;w 2 V:

This follows from a short calculation:

.R�
g�1�gv;gw/.h/ D �gv;gw.hg

�1/

D hhhg�1.gv/; hg�1.gw/ii
D �v;w.h/;

where we used that � (which is implicit) is a representation. This implies

R�
g�1 .�gv;gw
/ D �v;w
;
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because 
 is right-invariant. Since Rg�1 is an orientation preserving diffeomorphism
from G to G we get:

hgv; gwi D
Z

G
�gv;gw


D
Z

G
R�
g�1 .�gv;gw
/

D
Z

G
�v;w


D hv;wi

for all g 2 G and v;w 2 V . ut

Decomposition of Representations

The existence of an invariant scalar product for every representation of a compact
Lie group has an important consequence.

Theorem 2.1.40 (Decomposition of Representations) Let �WG ! GL.V/
be a representation of a Lie group G on a finite-dimensional real (or complex)
vector space V. Suppose that there exists a G-invariant Euclidean (or
Hermitian) scalar product on V (this is always the case, by Theorem 2.1.39,
if G is compact). Then V decomposes as a direct sum

.V; �/ D .V1; �1/˚ : : :˚ .Vm; �m/

of irreducible G-representations .Vi; �i/.

Proof The proof follows, because if W � V is a subspace with �.G/W � W, then
the orthogonal complement W? with respect to a G-invariant scalar product also
satisfies �.G/W? � W?. We have

.V; �/ D .W; �W/˚ .W?; �W?/:

We can thus continue splitting V until we arrive at irreducible representations (after
finitely many steps, since V is finite-dimensional). ut
Remark 2.1.41 One of the aims of representation theory for Lie groups G is to
understand irreducible representations and to decompose any given representation
(at least for compact G) into irreducible ones according to Theorem 2.1.40.
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For instance, for G D SU.2/, we can consider the tensor product representation
Vn ˝ Vm, where Vn;Vm are the irreducible complex representations of dimension
n C 1 and m C 1 mentioned in Example 2.1.20. The tensor product Vn ˝ Vm

is reducible under SU.2/ and its decomposition into irreducible summands Vk is
determined by the Clebsch–Gordan formula. This formula appears in quantum
mechanics in the theory of the angular momentum of composite systems.

Remark 2.1.42 One of the basic topics in Grand Unified Theories is to study
the restriction of representations of a compact Lie group G to embedded Lie
subgroups H � G. If the representation � of G is irreducible, it may happen
that the representation �jH of H is reducible and decomposes as a direct sum.
The actual form of the decomposition of a representation � under restriction
to a subgroup H � G is called the branching rule.

For instance, there exist certain 5- and 10-dimensional irreducible repre-
sentations of the Grand Unification group G D SU.5/ that decompose under
restriction to the subgroup H D SU.3/ � SU.2/ � U.1/ (more precisely,
to a certain Z6 quotient of this group; see Sect. 8.5.7) into the fermion
representations of the StandardModel. Details of this calculation can be found
in Sect. 9.5.4.

Remark 2.1.43 Suppose a Lie group G has a unitary representation on a complex
vector space V and e1; : : : ; en is some orthonormal basis for V . If we decompose
V into invariant, irreducible subspaces according to Theorem 2.1.40, then we can
choose an associated orthonormal basis f1; : : : ; fn, adapted to the decomposition of
V (spanning the G-invariant subspaces) and related to the original basis by a unitary
matrix. In general, the basis f fig will be different from feig.

In the Standard Model where G D SU.3/ � SU.2/ � U.1/ this is related to the
concept of quark mixing. The complex vector space V of fermions, which carries
a representation of G, has dimension 45 (plus the same number of corresponding
antiparticles) and is the direct sum of two G-invariant subspaces (sectors): a
lepton sector of dimension 9 (where we do not include the hypothetical right-
handed neutrinos) and a quark sector of dimension 36. Counting in this way, the
Standard Model thus contains at the most elementary level 90 fermions (particles
and antiparticles).

The quark sector has a natural basis of so-called mass eigenstates, given by the
quarks of six different flavours u, d, c, s, t, b, each one appearing in three different
colours and two chiralities (6 basis vectors for each flavour), yielding in total 36
quarks. However, the basis given by these flavours does not define a splitting into
subspaces invariant under SU.2/. The SU.2/-invariant subspaces are spanned by a
basis of so-calledweak eigenstates that can be obtained from the mass eigenstates by
a certain unitary transformation. The matrix of this unitary transformation is known
as theCabibbo–Kobayashi–Maskawa (CKM) matrix, which has to be determined by
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experiments. The CKMmatrix and quark mixing will be explained in more detail in
Sect. 8.8.2.

Unitary Representations of Non-Compact Lie Groups

It is an important fact that certain non-compact Lie groups do not admit non-
trivial finite-dimensional unitary representations according to the following theorem
(a proof can be found in [12, Chap. 8.1B]):

Theorem 2.1.44 A connected, simple, non-compact Lie group does not admit finite-
dimensional unitary complex representations except for the trivial representation.
See Definition 2.4.27 for the notion of simple Lie groups. For example, the Lie
group G D SL.2;C/ is simple and non-compact, hence every non-trivial unitary
representation of G is infinite-dimensional. This has important consequences for
quantum field theory, see Sect. B.2.4. Of course, SL.2;C/ admits non-trivial finite-
dimensional non-unitary representations, like the fundamental representation onC2.

2.1.5 The Adjoint Representation

We want to define a particularly important representation of a Lie group and its Lie
algebra. The vector space carrying the representation has the same dimension as the
Lie group or Lie algebra (we follow [142] in this subsection).

Recall that for an element g of a Lie groupG we defined the inner automorphism
(conjugation)

cg D Lg ı Rg�1 WG �! G

x 7�! gxg�1:

The differential .cg/�W g ! g is an automorphism of the Lie algebra g, in particular
a linear isomorphism.

Theorem 2.1.45 (Adjoint Representation of a Lie Group) The map

AdWG �! GL.g/

g 7�! Ad.g/ D Adg D .cg/�

is a Lie group homomorphism, i.e. a representation of the Lie group G on the
vector space g, called the adjoint representation or adjoint action of the
Lie group G. We sometimes write AdG instead of Ad.
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Proof Note that

cgh D cg ı ch 8g; h 2 G:

Hence

Adgh D .cgh/� D .cg/� ı .ch/� D Adg ı Adh:

This shows that Ad is a homomorphism in the algebraic sense. We have to show that
Ad is a smooth map. It suffices to show that for every v 2 g the map

Ad.�/vWG �! g

is smooth, because if we choose a basis for the vector space g, it follows that Ad
is a smooth matrix representation. The map Ad.�/v is equal to the composition of
smooth maps

G �! TG � TG �! T.G � G/ �! TG

given by

g 7�! ..g; 0/; .e; v// 7�! ..g; e/; .0; v// 7�! D.g;e/c.0; v/;

where we set

cWG � G �! G

.g; x/ 7�! gxg�1:

This implies the claim. ut
The following identity (whose proof is left as an exercise) is sometimes useful.

Proposition 2.1.46 Let G be a Lie group with Lie algebra g and � a representation
of G on a vector space V with induced representation �� of g. Then

��.AdgX/ ı �.g/ D �.g/ ı ��.X/ 8X 2 g:

Example 2.1.47 The adjoint representation is very simple in the case of abelian Lie
groups G: if G is abelian, then cg D IdG for all g 2 G and thus Adg D Idg for all
g 2 G, hence the adjoint representation is a trivial representation.
We consider a more general example: Let G � GL.n;K/ with K D R;C;H be a
closed subgroup of a general linear group with Lie algebra g. Fix Q 2 G.

Proposition 2.1.48 (Adjoint Representation of Linear Groups) The adjoint
action

AdQW g �! g
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is given by

AdQX D Q � X � Q�1;

where � denotes matrix multiplication and we identify elements Q 2 G and X 2 g
with matrices in the canonical way.

Proof Define a curve �.t/ D etX and take the derivative

AdQX D d

dt

ˇ
ˇ
ˇ̌
tD0

Q � �.t/ � Q�1 D Q � X � Q�1:

ut
In this situation, the Lie algebra g on which the adjoint representation acts is
naturally a vector space of matrices.

Example 2.1.49 We consider the adjoint representation of the Lie group SU.3/.
The Lie algebra su.3/ consists of the skew-Hermitian, tracefree matrices. As a real
vector space, su.3/ has dimension 8 and is spanned by i�a, with a D 1; : : : ; 8, where
�a are the Gell-Mann matrices from Example 1.5.33. We can define an explicit
isomorphism

R
8 �! su.3/

G 7�! X D
8X

aD1
iGa�a D i

0

B
@

G3 C 1p
3
G8 G1 � iG2 G4 � iG5

G1 C iG2 �G3 C 1p
3
G8 G6 � iG7

G4 C iG5 G6 C iG7 � 2p
3
G8

1

C
A :

On such a matrix X the group element Q 2 SU.3/ acts as

AdQX D Q � X � Q�1:

Using the isomorphismR8 Š su.3/ we could write this as an explicit representation
on R8.
The following observation is sometimes useful.

Lemma 2.1.50 (Adjoint Representation of Direct Product) Let G D H � K be
a direct product of Lie groups. Then the adjoint representation of G on g D h ˚ k is
the direct sum of the adjoint representations of H on h and K on k:

Ad.h;k/.X;Y/ D .AdhX;AdkY/ 8.h; k/ 2 H � K; .X;Y/ 2 h ˚ k:

Proof Let � be a curve in H through e, tangent to X 2 h. Then for .h; k/ 2 H � K

d

dt

ˇ
ˇ̌
ˇ
tD0

.h; k/.�.t/; e/
�
h�1; k�1� D d

dt

ˇ
ˇ̌
ˇ
tD0

�
h�.t/h�1; e

�

D .AdhX; 0/:

Similarly for a vector in k. ut
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Example 2.1.51 We consider the adjoint representation of the Standard Model Lie
group

H D SU.3/ � SU.2/ � U.1/:

We can write a group element Q 2 H as a block matrix

Q D
0

@
QSU.3/

QSU.2/

QU.1/

1

A ;

with QK 2 K for K D SU.3/;SU.2/;U.1/. We can similarly write the ele-
ments of the Lie algebra of H as a block matrix: with the notation from Exam-
ples 1.5.29, 1.5.32 and 1.5.33, the Lie algebra su.3/ is spanned by i�a, where �a
are the Gell-Mann matrices, the Lie algebra su.2/ is spanned by i
a, where 
a are
the Pauli matrices, and the Lie algebra u.1/ is spanned by i. We can then define an
isomorphism

R
8 ˚ R

3 ˚ R �! su.3/˚ su.2/˚ u.1/

.G;W;B/ 7�! X D
 

8X

aD1

iGa�a;

3X

aD1

iWa
a; iB

!

D i

0

BB
BBB
BBB
B
@

G3 C 1
p

3
G8 G1 � iG2 G4 � iG5

G1 C iG2 �G3 C 1
p

3
G8 G6 � iG7

G4 C iG5 G6 C iG7 � 2
p

3
G8

W3 W1 � iW2

W1 C iW2 �W3

B

1

CC
CCC
CCC
C
A

:

According to Lemma 2.1.50 the adjoint action is given by multiplication of block
matrices:

AdQX D Q � X � Q�1:

The representation AdH describes the representation of the gauge boson fields
in the Standard Model. The coefficients Ga, Wa and B (possibly with a
different normalization) are known as the gluon fields, weak gauge fields
and hypercharge gauge field; see Sect. 8.5.5 for more details.

Like any other representation of a Lie group, the adjoint representation of G
induces a representation of the associated Lie algebra.
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Theorem 2.1.52 (Adjoint Representation of a Lie Algebra) The map

adW g �! End.g/;

given by

ad D Ad�;

is a Lie algebra homomorphism, i.e. a representation of the Lie algebra g on
the vector space g, called the adjoint representation of the Lie algebra g. We
sometimes write adg instead of ad. We have the following commutative diagram
according to Theorem 1.7.16:

The map ad satisfies the formula

ad.X/.Y/ D adXY D ŒX;Y� 8X;Y 2 g:

Proof We only have to prove the formula adXY D ŒX;Y�. For left-invariant vector
fields X;Y on G, where X has flow �t, we have according to the commutative
diagram

adXY D d

dt

ˇ
ˇ̌
ˇ
tD0

Adexp tXYe

D d

dt

ˇ
ˇ̌
ˇ
tD0

.cexp tX/�Ye

D d

dt

ˇ
ˇ̌
ˇ
tD0

.Rexp�tX/�.Lexp tX/�Ye

D d

dt

ˇ̌
ˇ
ˇ
tD0

.Rexp�tX/�Yexp tX

D d

dt

ˇ̌
ˇ
ˇ
tD0

.��t/�Y�t.e/

D ŒX;Y�e:

Here we used Proposition 1.7.12 and Theorem A.1.46. ut
We can write the formula given by the commutative diagram as

AdexpX D eadX 8X 2 g:
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A direct consequence of Example 2.1.47 is the following:

Corollary 2.1.53 If G is an abelian Lie group, then the adjoint representation ad is
trivial, hence the Lie algebra g is abelian.
It can be shown that the converse also holds (for connected Lie groups), cf.
Exercise 2.7.7.

Remark 2.1.54 We can define for any Lie algebra g, even if it does not belong a
priori to a Lie group, the map

adW g �! End.g/;

by exactly the same formula

adXY D ŒX;Y� 8X;Y 2 g:

Then this map is a representation of g (by the Jacobi identity), again called the
adjoint representation.

Remark 2.1.55 One should be careful not to confuse the fundamental and the
adjoint representation for a linear group. In general, the dimensions are already
different. For example, in the case of SU.n/ the dimension of the fundamental
representation is n, while the adjoint representation has dimension n2 � 1. For a
linear group the fundamental representation acts canonically on a vector space of
column vectors, while the adjoint representation acts on a vector space of matrices.

Example 2.1.56 The homomorphism �W S3 ! SO.3/ from Example 1.3.8 is the
adjoint representation of S3 D SU.2/.

2.2 Invariant Metrics on Lie Groups

Since a Lie group G is a manifold, we can study metrics (Riemannian or pseudo-
Riemannian) on it. We are interested in particular in the following types of metrics.

Definition 2.2.1 Let s be a metric on a Lie group G.

1. The metric s is called

• left-invariant if L�
g s D s for all g 2 G

• right-invariant if R�
g s D s for all g 2 G.

Equivalently, either all left translations or all right translations are isometries.
2. The metric s is called bi-invariant if it is both left- and right-invariant.

It is clear that every metric induces a scalar product on g Š TeG. On the other hand,
given an arbitrary scalar product h� ; �i on g, it is easy to construct

• a left-invariant metric on G by

s.X;Y/ D hLg�1�.X/;Lg�1�.Y/i
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• a right-invariant metric on G by

s.X;Y/ D hRg�1�.X/;Rg�1�.Y/i;

for all g 2 G and X;Y 2 TgG.

However, in general we only get a bi-invariant metric in this way if G is abelian
(if G is not abelian, then Lg ¤ Rg for some g 2 G). Bi-invariant metrics have the
following characterization:

Theorem 2.2.2 (Bi-Invariant Metrics and Ad-Invariance) Let s be a left-
invariant metric on a Lie group G. Then s is bi-invariant if and only if the scalar
product h� ; �i on g defined by the metric s is Ad-invariant, i.e.

hAdgv;Adgwi D hv;wi

for all g 2 G and v;w 2 g.

Proof Let X and Y be vectors in TpG. Then we can calculate:

.R�
g s/p.X;Y/ D hL. pg/�1�Rg�.X/;L. pg/�1�Rg�.Y/i

D hAdg�1 ı Lp�1�.X/;Adg�1 ı Lp�1�.Y/i

and

sp.X;Y/ D hLp�1�.X/;Lp�1�.Y/i;

where in both equations we used that s is left-invariant. This implies the claim,
because Lp�1� is an isomorphism of vector spaces. ut
Theorem 2.2.3 (Ad-Invariant Scalar Products for Compact Lie Groups) Let G
be a compact Lie group. Then there exists a Euclidean (positive definite) scalar
product h� ; �i on the Lie algebra g which is Ad-invariant. The adjoint representation
is orthogonal with respect to this scalar product.

Proof This follows from Theorem 2.1.39, because Ad is a representation of the
compact Lie group G on the vector space g. ut

The existence of positive definite Ad-invariant scalar products on the Lie
algebra of compact Lie groups is very important in gauge theory, in particular,
for the construction of the gauge-invariant Yang–Mills Lagrangian; see
Sect. 7.3.1. We will study such scalar products in more detail in Sect. 2.5
after we have discussed the general structure of compact Lie groups. The

(continued)
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fact that these scalar products are positive definite is important from a
phenomenological point of view, because only then do the kinetic terms in the
Yang–Mills Lagrangian have the right sign (the gauge bosons have positive
kinetic energy [148]).

Here is a corollary to Theorem 2.2.2 and Theorem 2.2.3:

Corollary 2.2.4 Every compact Lie group admits a bi-invariant Riemannian
metric.

Remark 2.2.5 It can be shown that the geodesics of a bi-invariant metric on a Lie
group G through the neutral element e are of the form �.t/ D exp.tX/, with X 2 g.
The notions of exponential map for geodesics and Lie groups thus coincide for
bi-invariant Riemannian metrics.

2.3 The Killing Form

We want to consider a special Ad-invariant inner product on every Lie algebra g,
which in general is neither non-degenerate nor positive or negative definite. This is
the celebrated Killing form.

Theorem 2.3.1 Let g be a Lie algebra over K D R;C. The Killing form Bg on g
is defined by

BgW g � g �! K

.X;Y/ 7�! tr.adX ı adY/:

This is a K-bilinear, symmetric form on g.

Remark 2.3.2 Note that the Killing form for complex Lie algebras is also symmetric
and complex bilinear and not Hermitian.

Proof For Z 2 g we have

adX ı adY.Z/ D ŒX; ŒY;Z��:

In particular,Bg is indeed bilinear. To show that the Killing form is symmetric, recall
the definition of the trace tr. f / of a linear endomorphism f of a vector space V: If
v1; : : : ; vn is a basis of V and we define the representing matrix of f by

f .vj/ D
nX

iD1
fijvi;
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then

tr. f / D
nX

iD1
fii:

This number does not depend on the choice of basis for V: If �WV ! V is an
arbitrary isomorphism, then

tr
�
� ı f ı ��1� D tr. f /:

We also have

tr. f ı g/ D tr.g ı f /

for all endomorphisms f ; gWV ! V . This shows, in particular, that Bg is symmetric.
ut

Theorem 2.3.3 (Invariance of Killing FormUnder Automorphisms) Let 
 W g !
g be a Lie algebra automorphism of g. Then the Killing form Bg satisfies

Bg.
X; 
Y/ D Bg.X;Y/ 8X;Y 2 g:

If g is the Lie algebra of a Lie group G, this holds in particular for the automorphism

 D Adg with g 2 G arbitrary.

Proof Note that

adXY D ŒX;Y�:

Since 
 is a Lie algebra automorphism we have

ad
XY D Œ
X;Y� D 
.ŒX; 
�1Y� D 
 ı adX.

�1Y/:

Thus

ad
X D 
 ı adX ı 
�1:

We get for the Killing form:

Bg.
X; 
Y/ D tr.ad
X ı ad
Y/

D tr
�

 ı adX ı adY ı 
�1�

D Bg.X;Y/:

ut
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Corollary 2.3.4 The Killing form Bg defines a bi-invariant symmetric form on any
Lie group G.

Remark 2.3.5 We will determine in Sect. 2.4 when the Killing form is non-
degenerate or definite (in the case of a real Lie algebra).

Proposition 2.3.6 (ad Is Skew-Symmetric with Respect to the Killing Form)
Let g be a Lie algebra with Killing form Bg. Then

Bg.adXY;Z/C Bg.Y; adXZ/ D 0 8X;Y;Z 2 g:

Proof This follows from Theorem 2.3.3 and Proposition 2.1.37 if g is the Lie
algebra of a Lie group G. In the general case we use the formula

adadXY D adX ı adY � adY ı adX 8X;Y 2 g;

which follows from the Jacobi identity. The definition of the Killing form implies

Bg.adXY;Z/C Bg.Y; adXZ/ D tr.adX ı adY ı adZ/� tr.adY ı adZ ı adX/

D 0;

because the trace is invariant under cyclic permutations. ut

2.4 �Semisimple and Compact Lie Algebras

In this section we discuss some results concerning the general structure of Lie
algebras and Lie groups (we follow [83] and [153]). There are two elements that
play a key role in the theory of Lie algebras:

• The adjoint representation adg of the Lie algebra g, together with its invariant
subspaces, known as ideals.

• The Killing form Bg of g.

Both notions are related: the definition of the Killing form Bg involves the adjoint
representation adg and the adjoint representation is skew-symmetric with respect to
the Killing form.

The idea is to proceed in a similar way to Theorem 2.1.40 and try to
decompose g with the adjoint representation into irreducible, pairwise Bg-
orthogonal pieces. This works out particularly well for a type of Lie algebra
known as a semisimple Lie algebra. The next step is to classify the pieces
where the adjoint representation is irreducible. These are called simple Lie
algebras. We will discuss the classification for the simple Lie algebras coming
from compact Lie groups, which appear in physics as gauge groups.
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2.4.1 Simple and Semisimple Lie Algebras in General

Definition 2.4.1 Let g be a Lie algebra. For subsets a; b � g we define Œa; b� � g
as the set of all finite sums of elements of the form ŒX;Y� with X 2 a;Y 2 b.

Definition 2.4.2 Let g be a Lie algebra.

1. An ideal in g is a vector subspace a � g such that Œg; a� � a. Equivalently,

adga � a:

2. The center of g is defined as

z.g/ D fX 2 g j ŒX; g� � 0g:

3. The commutator of g is defined as Œg; g�.

The following is easy to check.

Lemma 2.4.3 For any Lie algebra the commutator is an ideal and the center is an
abelian ideal.

Proposition 2.4.4 The kernel of the adjoint representation of a Lie algebra g is the
center z.g/. The adjoint representation is faithful if and only if z.g/ D 0.

Proof We have adX � 0 if and only if ŒX; g� � 0. ut
This implies Ado’s Theorem 1.5.25 for Lie algebras with trivial center.

Definition 2.4.5 Let g be a Lie algebra.

1. The Lie algebra g is called simple if g is non-abelian and g has no non-trivial
ideals (different from 0 and g).

2. The Lie algebra g is called semisimple if g has no non-zero abelian ideals.

Simple Lie algebras are sometimes defined equivalently as follows:

Lemma 2.4.6 A Lie algebra g is simple if and only if g has dimension at least two
and g has no non-trivial ideals.

Proof If g is non-abelian, then it has dimension at least two. On the other hand, if g
is abelian and has dimension at least two, then g has non-trivial (abelian) ideals. ut
It is clear that every simple Lie algebra is semisimple.

Lemma 2.4.7 If g is simple, then Œg; g� D g.

Proof The commutator Œg; g� is an ideal, hence equal to g or 0. The second
possibility is excluded, because g is not abelian. ut
We can characterize simple Lie algebras as follows:

Proposition 2.4.8 (Criterion for Simplicity) A Lie algebra g is simple if and only
if g is non-abelian and the adjoint representation adg of g is irreducible.
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Proof The claim follows from the definition of an ideal. ut
We can also characterize semisimple Lie algebras (we only prove one direction
following [83]; the proof of the converse, which would take us too far afield, can
be found in [77, 83]):

Theorem 2.4.9 (Cartan’s Criterion for Semisimplicity) A Lie algebra g is
semisimple if and only if the Killing form Bg is non-degenerate.

Proof We only prove that the Killing form is degenerate if the Lie algebra is not
semisimple. Let a be a non-zero abelian ideal in g. We choose a complementary
vector space s with

g D a ˚ s:

Let X 2 a and Y 2 g be arbitrary elements. Then

ŒX; a� D 0;

ŒX; s� � a;

ŒY; a� � a:

Under the splitting g D a ˚ s, the endomorphisms adX and adY thus have the form

adX D
�
0 �
0 0

�
;

adY D
�� �
0 �

�
:

It follows that

adX ı adY D
�
0 �
0 0

�

and

Bg.X;Y/ D tr.adX ı adY/ D 0:

ut
Remark 2.4.10 In general, the Killing form of a semisimple Lie algebra is indefi-
nite, i.e. pseudo-Euclidean.
Assuming Cartan’s Criterion we can prove the following.

Theorem 2.4.11 (Structure of Semisimple Lie Algebras) If a Lie algebra g is
semisimple, then g is the direct sum

g D g1 ˚ : : :˚ gs

of ideals gi, each of which is a simple Lie algebra, and which are pairwise
orthogonal with respect to the Killing form.
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Proof We ultimately would like to apply Theorem 2.1.40 and decompose the adjoint
representation on g into irreducible summands, orthogonal with respect to the
Killing form. There is one problem which requires some work: the Killing form
B D Bg is non-degenerate, but not (positive or negative) definite. Therefore it is
not immediately clear that orthogonal complements of invariant subspaces lead to a
direct sum decomposition.

Let a be an ideal in g and

a? D fX 2 g j B.X;Y/ D 0 8Y 2 ag

the orthogonal complement with respect to the Killing form B. Then a? is also an
ideal in g, because

B.adga?; a/ D �B.a?; adga/ � B.a?; a/ D 0;

by Proposition 2.3.6. Furthermore, b D a \ a? is an abelian ideal in g: it is clear
that the intersection of two ideals is an ideal and

B.adbb; g/ D �B.b; adbg/ � B.b; b/ D 0:

This implies that b is abelian, because B is non-degenerate. Since g is semisimple,
it follows that a \ a? D 0.

This implies

g D a ˚ a?

and the restriction of the Killing form to a and a? (which is just the Killing form
on these Lie algebras) is non-degenerate. We can continue splitting the (finite-
dimensional) Lie algebra g in this fashion until we arrive at irreducible, non-abelian
(simple) ideals. ut
Remark 2.4.12 In addition to semisimple and abelian Lie algebras there are other
classes of Lie algebras, like solvable and nilpotent Lie algebras, which we have not
discussed in detail.

2.4.2 Compact Lie Algebras

We are particularly interested in compact Lie algebras, including compact simple
and compact semisimple Lie algebras.

Definition 2.4.13 A real Lie algebra g is called compact if it is the Lie algebra of
some compact Lie group.
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Remark 2.4.14 Even if g is compact, there could exist non-compact Lie groups
whose Lie algebra is also g. For example, the abelian Lie algebra u.1/ is the Lie
algebra of the compact Lie group U.1/ D S1 and of the non-compact Lie group R.

Example 2.4.15 Note that the abelian Lie algebraRn D u.1/˚: : :˚u.1/, for n � 1,
is compact, but neither simple nor semisimple.

Theorem 2.4.16 (Killing Form of Compact Lie Algebras) Suppose g is a com-
pact real Lie algebra. Then the Killing form Bg is negative semidefinite: We have

Bg.X;X/ D 0 8X 2 z.g/;

Bg.X;X/ < 0 8X 2 g n z.g/:

Proof We follow the proof in [14]. Since g is the Lie algebra of a compact Lie group
G, according to Theorem 2.2.3 there exists a positive definite scalar product h� ; �i on
g which is AdG-invariant. Let e1; : : : ; en be an orthonormal basis for g with respect
to this scalar product. We get

hadX ı adXY;Yi D �jjadXYjj2 8X;Y 2 g

for the associated norm jj � jj. This implies

Bg.X;X/ D tr.adX ı adX/

D
nX

iD1
hadX ı adXei; eii

D �
nX

iD1
jjadXeijj2

	 0:

Equality holds if and only if adX � 0 on g, i.e. X 2 z.g/. ut
Remark 2.4.17 Note as an aside that the notion of a bilinear, symmetric form being
(semi-)definite is only meaningful on real and not on complex vector spaces.

Corollary 2.4.18 Let g be a compact Lie algebra with trivial center, z.g/ D 0. Then
the Killing form Bg is negative definite.

Proof This follows from Theorem 2.4.16. ut
Remark 2.4.19 The following converse to Corollary 2.4.18 can be proved (see
[77]): if the Killing form of a real Lie algebra is negative definite, then it is compact
with trivial center. In particular, every Lie subalgebra of a compact Lie algebra is
compact.
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Corollary 2.4.20 Let g be a compact Lie algebra. Then the Killing form Bg is
negative definite if and only if g is semisimple.

Proof One direction follows from Corollary 2.4.18, because semisimple Lie alge-
bras have trivial center. The other direction follows from Theorem 2.4.9. ut
Theorem 2.4.21 (Decomposition of Compact Lie Algebras) Let g be a compact
Lie algebra with center z.g/. Then there exists an ideal h in g such that

g D z.g/˚ h:

The ideal h is a compact semisimple Lie algebra with negative definite Killing form.

Proof Choose a positive definite scalar product h� ; �i on g which is AdG-invariant.
Let h be the orthogonal complement

h D z.g/?

with respect to this scalar product. Then h is an ideal, because

hadgh; z.g/i D �hh; adgz.g/i D 0:

It is clear that

g D z.g/˚ h:

By Theorem 2.4.16 the Killing form is negative definite on h, which is thus compact
by Remark 2.4.19 and semisimple by Theorem 2.4.9. ut

Corollary 2.4.22 (Structure of Compact Lie Algebras) Let g be a compact
Lie algebra. Then g is a direct sum of ideals

g D u.1/˚ : : :˚ u.1/˚ g1 ˚ : : :˚ gs;

where the gi are compact simple Lie algebras.

Proof This follows from Theorem 2.4.11. The Lie algebras gi are compact by
Remark 2.4.19. ut
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Using considerable effort it is possible to classify simple Lie algebras, one of the
great achievements of 19th and 20th century mathematics. The result for compact
simple Lie algebras is the following (see [83] for a proof):

Theorem 2.4.23 (Killing–Cartan Classification of Compact Simple Lie
Algebras) Every compact simple Lie algebra is isomorphic to precisely one
of the following Lie algebras:

1. su.n C 1/ for n � 1.
2. so.2n C 1/ for n � 2.
3. sp.n/ for n � 3.
4. so.2n/ for n � 4.
5. An exceptional Lie algebra of type G2;F4;E6;E7;E8.

The families in the first four cases are also called An;Bn;Cn;Dn in this order.

Remark 2.4.24 The lower index n in the series An;Bn;Cn;Dn as well as in the
exceptional cases G2;F4;E6;E7;E8 is the rank of the corresponding compact Lie
group, i.e. the dimension of amaximal torus subgroup embedded in the Lie group.

Remark 2.4.25 The reason for the restrictions on n in the first four cases of the
classical Lie algebras is to avoid counting Lie algebras twice, because we have the
following isomorphisms (we only proved the first isomorphism in Sect. 1.5.5):

so.3/ Š su.2/ Š sp.1/;

sp.2/ Š so.5/;

so.6/ Š su.4/:

There is also the abelian Lie algebra

so.2/

and the semisimple Lie algebra

so.4/ Š su.2/˚ su.2/;

cf. Exercise 1.9.21.
The basic building blocks of all compact Lie algebras are thus

• abelian Lie algebras
• the four families of classical compact non-abelian Lie algebras
• five exceptional compact Lie algebras.
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In some sense, most compact Lie algebras are therefore classical or direct sums of
classical Lie algebras.

It is sometimes convenient to know that we can choose for a compact semisimple
Lie algebra a basis in such a way that the structure constants (see Definition 1.4.17)
have a nice form. Let g be a compact semisimple Lie algebra. According to
Corollary 2.4.20 the Killing form Bg is negative definite. Let T1; : : : ;Tn be an
orthonormal basis of g with respect to the Killing form:

Bg.Ta;Tb/ D �ıab 8a; b 2 f1; : : : ; ng:

Proposition 2.4.26 The structure constants fabc for a Bg-orthonormal basis fTag of
a semisimple Lie algebra g are totally antisymmetric:

fabc D �fbac D fbca D �facb 8a; b; c 2 f1; : : : ; ng:

Proof This is Exercise 2.7.11. ut

2.4.3 Compact Lie Groups

We briefly discuss the structure of compact Lie groups.

Definition 2.4.27 A connected Lie group G is called simple (or semisimple) if its
Lie algebra is simple (or semisimple).

Corollary 2.4.28 If G is simple, then AdG is an irreducible representation.

Proof The claim follows from Proposition 2.4.8 because an AdG-invariant subspace
in g is also adg-invariant. ut
A proof of the following theorem can be found in [77].

Theorem 2.4.29 (Structure of Compact Lie Groups) Let G be a compact con-
nected Lie group. Then G is a finite quotient of a product of the form

QG Š U.1/ � : : : � U.1/ � G1 � : : : � Gs;

where the Gi are compact simple Lie groups.
Compact simple Lie groups and the abelian Lie group U.1/ are therefore the
building blocks of all compact connected Lie groups.

2.5 �Ad-Invariant Scalar Products on Compact Lie Groups

We know from Theorem 2.2.3 that compact Lie algebras admit scalar products that
are invariant under the adjoint action. Such scalar products are important in gauge
theory: they are necessary ingredients to construct the gauge-invariant Yang–Mills
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action and are related to the notion of coupling constants. We discuss, in particular,
how to fix an Ad-invariant scalar product and how many different ones exist on a
given compact Lie algebra.

We first consider Ad-invariant scalar products on compact simple Lie algebras.
We need the following variant of a famous theorem of Schur.

Theorem 2.5.1 (Schur’s Lemma for Scalar Products) Let �WG ! GL.V/ be an
irreducible representation of a Lie group G on a real vector space V and h� ; �i1,
h� ; �i2 two G-invariant symmetric bilinear forms on V, so that h� ; �i2 is positive
definite. Then there exists a real number a 2 R such that

h� ; �i1 D ah� ; �i2:

Remark 2.5.2 The assumption that the group representation is irreducible is
important.

Proof We follow the proof in [153]. Let LWV ! V be the unique linear map defined
by (using non-degeneracy of the second scalar product)

hv;wi1 D hv;Lwi2 8v;w 2 V:

We have

hw;Lvi2 D hw; vi1
D hv;wi1
D hv;Lwi2;

hence L is self-adjoint with respect to the second scalar product. We can split V into
the eigenspaces of L which are orthogonal with respect to the second scalar product.
Since both bilinear forms are G-invariant we have

hgv; gLwi2 D hv;Lwi2
D hv;wi1
D hgv; gwi1
D hgv;L.gw/i2:

We conclude that �.g/ıL D Lı�.g/ for all g 2 G and thus the eigenspaces of L are
G-invariant. Since the representation � is irreducible, V itself must be an eigenspace
and hence L D a � IdV . This implies the claim. ut
Theorem 2.5.3 (Ad-Invariant Scalar Products on Compact Simple Lie Alge-
bras) Let G be a compact simple Lie group. Then there exists up to a positive
factor a unique Ad-invariant positive definite scalar product on the Lie algebra g.
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The negative of the Killing form is an example of such an Ad-invariant positive
definite scalar product.

Proof Existence follows from 2.2.3. Uniqueness follows from Corollary 2.4.28 and
Theorem 2.5.1. The claim about the Killing form follows fromCorollary 2.4.18. ut
Let T D U.1/ � : : : � U.1/ denote an n-dimensional torus and h� ; �it a positive
definite scalar product on its Lie algebra

R
n D t D u.1/˚ : : :˚ u.1/:

Since the adjoint representation of an abelian Lie group is trivial, any inner product
on an abelian Lie algebra is Ad-invariant. With respect to the standard Euclidean
scalar product on Rn, the scalar product h� ; �it is determined by a positive definite
symmetric matrix.

Theorem 2.5.4 (Ad-Invariant Scalar Products on General Compact Lie Alge-
bras) Let G be a compact connected Lie group of the form

G D U.1/ � : : : � U.1/ � G1 � : : : � Gs;

where the Gi are compact simple Lie groups. Let h� ; �ig be anAdG-invariant positive
definite scalar product on the Lie algebra g of G. Then h� ; �ig is the orthogonal direct
sum of:

1. a positive definite scalar product h� ; �it on the center t D u.1/˚ : : :˚ u.1/;
2. AdGi -invariant positive definite scalar products h� ; �igi on the Lie algebras gi.
Conversely, the direct sum of any positive definite scalar product h� ; �it on the
abelian Lie algebra t and anyAdGi -invariant positive definite scalar products h� ; �igi
on the simple Lie algebras gi is an AdG-invariant positive definite scalar product
on g.

Proof Let h� ; �ig be an AdG-invariant positive definite scalar product on the Lie
algebra g. We have to show that it decomposes as an orthogonal direct sum of scalar
products on the summands. For any fixed i D 1; : : : ; s we can write G D Gi � H
with a compact Lie group H. Fix an arbitrary Y 2 h and let

f W gi �! R

X 7�! hX;Yig:
Then f is a linear 1-form on gi and its kernel is a vector subspace of codimension
zero or one. Let g 2 Gi and X 2 gi. Then by Lemma 2.1.50

f .AdgX/ D hAdgX;Yig
D hAdgX;AdgYig
D hX;Yig
D f .X/:



120 2 Lie Groups and Lie Algebras: Representationsand Structure Theory

This implies that the kernel of f is AdGi -invariant. Since the adjoint representation
of Gi is irreducible by Corollary 2.4.28 and since dim gi > 1, the kernel of f cannot
have codimension 1. Therefore f must vanish identically.

This proves that the scalar product h� ; �ig on g decomposes as an orthogonal
direct sum of scalar products h� ; �igi on gi and h� ; �ih on h. The scalar product h� ; �ig
is AdG-invariant, hence h� ; �igi is AdGi -invariant and h� ; �ih is AdH-invariant. We
continue to split the scalar product h� ; �ih on h until the remaining Lie algebra is the
center.

Conversely, if h� ; �it is a scalar product on t D u.1/˚ : : :˚ u.1/ and h� ; �igi are
AdGi -invariant scalar products on gi, then the orthogonal direct sum

h� ; �ig D h� ; �it ˚ h� ; �ig1 ˚ : : :˚ h� ; �igs
is AdG-invariant by Lemma 2.1.50. ut
In the situation of Theorem 2.5.4 the AdG-invariant scalar product h� ; �ig on g is
determined by certain constants:

1. The scalar product h� ; �it is determined by a positive definite symmetric matrix
with respect to the standard Euclidean scalar product on Rn.

2. The scalar products h� ; �igi are determined by positive constants relative to some
fixed AdGi -invariant positive definite scalar product on the simple Lie algebras gi
(like the negative of the Killing form).

Definition 2.5.5 The constants that determine an AdG-invariant positive
definite scalar product on the compact Lie algebra g are called coupling
constants in physics.

Example 2.5.6

1. In the Standard Model, where G D SU.3/� SU.2/� U.1/, there are three
coupling constants, one for each factor.

2. In GUTs with a simple gauge group, like G D SU.5/ or G D Spin.10/,
there is only a single coupling constant.

2.6 �Homotopy Groups of Lie Groups

In this section we collect some results (without proofs) on the homotopy groups of
compact Lie groups. The following fact is elementary and can be found in textbooks
on topology:

Proposition 2.6.1 (Fundamental Group of Topological Groups) The fundamen-
tal group �1.G/ of any connected topological group G is abelian.
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Regarding the order of the fundamental group of Lie groups it can be shown that
(for a proof, see [24, Sect. V.7]):

Theorem 2.6.2 (Fundamental Group of Compact Semisimple Lie Groups) Let
G be a compact connected Lie group. Then �1.G/ is finite if and only if G is
semisimple. In particular, every compact simple Lie group has a finite fundamental
group.
The only-if direction follows from Theorem 2.4.29. As an example, it is possible
to calculate the fundamental group of the classical Lie groups (see, for example,
[129]).

Proposition 2.6.3 (Fundamental Groups of Classical Compact Groups) The
fundamental groups of the classical compact linear groups are:

1. Special orthogonal groups:

�1.SO.2// Š Z;

�1.SO.n// Š Z2 8n � 3:

2. Unitary groups (for all n � 1):

�1.U.n// Š Z:

3. Special unitary and symplectic groups (for all n � 1):

�1.SU.n// D 1;

�1.Sp.n// D 1:

We have the following result on the second homotopy group (for a proof, see again
[24, Sect. V.7]):

Theorem 2.6.4 (Second Homotopy Group of Compact Lie Groups) Let G be a
compact connected Lie group. Then �2.G/ D 0.
The next theorem on the third homotopy group was proved by M.R. Bott using
Morse theory [19]:

Theorem 2.6.5 (Third Homotopy Group of Compact Lie Groups) Let G be a
compact connected Lie group. Then �3.G/ is free abelian, i.e. isomorphic to Zr for
some integer r. If G is compact, connected and simple, then �3.G/ Š Z.
Combining Theorem 2.6.2 and Theorem 2.6.5 we get a topological criterion to
decide whether a compact Lie group is simple:

Corollary 2.6.6 (Topological Criterion for Simplicity) Let G be a compact
connected Lie group. Then G is simple if and only if �1.G/ is finite and �3.G/ Š Z.



122 2 Lie Groups and Lie Algebras: Representationsand Structure Theory

2.7 Exercises for Chap. 2

2.7.1 Verify that the dual representations on V� defined in Definition 2.1.23
and Definition 2.1.27 are indeed representations of the Lie group G and the Lie
algebra g.

2.7.2 Let

	 D
�
0 1

�1 0
�
:

Prove the following equivalent description of SL.2;C/:

SL.2;C/ D ˚
M 2 Mat.2 � 2;C/ j MT	M D 	

�
:

2.7.3

1. Let W Š C2 denote the fundamental representation of su.2/ and NW the complex
conjugate representation. Show that there exists a matrix A 2 GL.2;C/ such that

AMA�1 D NM 8M 2 su.2/:

Conclude that W and NW are isomorphic as su.2/-representations.
2. Let Vk Š C denote the representation of u.1/ with winding number k ¤ 0. Prove

that Vk and NVk are not isomorphic as u.1/-representations.
3. Let V Š C2 denote the fundamental representation of the real Lie algebra

sl.2;C/ and NV the complex conjugate representation. Prove that V and NV are
not isomorphic as sl.2;C/-representations.

4. Does the complex conjugate representation make sense for complex representa-
tions of complex Lie algebras, like the complex Lie algebra sl.2;C/?

Remark It can be shown that the fundamental representation of su.n/ for every
n � 3 is not isomorphic to its complex conjugate. The only other compact simple Lie
algebras which have complex representations not isomorphic to their conjugate are
so.4n C 2/ for every n � 1 (Weyl spinor representations) and E6 (a 27-dimensional
representation), see [104]. This is one of the reasons why Lie groups such as SU.5/,
Spin.10/ or E6 appear as gauge groups of Grand Unified Theories; see Sect. 8.5.3.

2.7.4 Determine the charges of the basis element �3 2 su.2/ in:

1. the fundamental representation of su.2/ on C2;
2. the representation of su.2/ on C3 via the isomorphism su.2/ Š so.3/ and the

complex fundamental representation of so.3/.

2.7.5

1. Consider the Lie group SU.2/ with the fundamental representation on C2.
Each of the basis vectors �1; �2; �3 of su.2/ from Example 1.5.32 generates
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a one-parameter subgroup isomorphic to U.1/. Determine the explicit branch-
ing rule for the fundamental representation on C2 under restriction to these
circle subgroups, i.e. determine the corresponding decomposition of C2 into
invariant complex subspaces together with the winding numbers of the induced
representations.

2. Do the same exercise with the complex representation of SU.2/ on C3 via the
universal covering SU.2/ ! SO.3/ and the complex fundamental representation
of SO.3/.

3. Do the same exercise for the Lie group SU.3/ with the fundamental represen-
tation on C3 and the circle subgroups generated by the basis vectors v1; : : : ; v8
of su.3/, where va D i�a

2
with the Gell-Mann matrices �a from Example 1.5.33

(cf. Exercise 1.9.26).

2.7.6 Consider the embedding

U.n/ ,! SO.2n/

from Exercise 1.9.10. Let V D C2n be the complex fundamental representation of
SO.2n/. Determine the branching rule of the representation V under restriction to
the subgroup U.n/ � SO.2n/. It may be helpful to first consider the case n D 1.

2.7.7 Let G be a Lie group. The center of G is defined as

Z.G/ D fg 2 G j gh D hg 8h 2 Gg:

Suppose that G is connected.

1. Prove that the center Z.G/ is the kernel of the adjoint representation AdG.
Conclude that Z.G/ is an embedded Lie subgroup in G with Lie algebra given by
the center z.g/ of g.

2. Prove that g is abelian if and only if G is abelian.
3. Prove that AdG is trivial if and only if G is abelian. Conclude that the left-

invariant and right-invariant vector fields on a connected Lie groupG coincide if
and only if G is abelian.

2.7.8 Consider the Lie algebra isomorphism of so.3/ with .R3;�/ from Exer-
cise 1.9.14.

1. Determine the symmetric bilinear form on R3 corresponding under this isomor-
phism to the Killing form Bso.3/.

2. Interpret the high school formula

z � .x � y/ D �y � .x � z/ 8x; y; z 2 R
3;

where � denotes the scalar product, in light of the first part of this exercise.
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2.7.9

1. Let g; h be Lie algebras and �W g ! h a Lie algebra homomorphism. Suppose
that g is simple. Show that � is either injective or the trivial homomorphism. In
particular, every representation of a simple Lie algebra is either faithful or trivial.

2. Show that every complex 1-dimensional representation of a semisimple Lie
algebra is trivial.

3. Show that every homomorphism from a connected semisimple Lie group to U.1/
is trivial. Find a non-trivial homomorphism from U.n/ to U.1/.

2.7.10 Let g be a real Lie algebra. The complexification of g is the complex Lie
algebra

gC D g ˝R C Š g ˚ ig

with the Lie bracket from g extendedC-bilinearly. Show that if gC is (semi-)simple,
then g is (semi-)simple.

Remark The following converses can be shown: If g is semisimple, then gC is
semisimple (this uses Theorem 2.4.9) and if g is compact simple, then gC is simple
(see [83]).

2.7.11 Prove Proposition 2.4.26: the structure constants fabc for a Bg-orthonormal
basis fTag of a semisimple Lie algebra g are totally antisymmetric:

fabc D �fbac D fbca D �facb 8a; b; c 2 f1; : : : ; ng:

2.7.12 Let �1; �2; �3 be the basis of the Lie algebra su.2/ from Example 1.5.32. Fix
an arbitrary, positive real number g > 0 and let

ˇa D g�a 2 su.2/ .a D 1; 2; 3/:

Define a unique positive definite scalar product h� ; �ig with associated norm jj � jjg on
su.2/ so that ˇ1; ˇ2; ˇ3 form an orthonormal basis. Determine the relation between
det.X/ and the norm jjXjjg for X 2 su.2/. Show that the scalar product h� ; �ig is
AdSU.2/-invariant.

2.7.13 Consider the Lie algebra su.2/.

1. Calculate the Killing form Bsu.2/ directly from the definition and determine the
constant g so that �Bsu.2/ D h� ; �ig, where h� ; �ig is the scalar product from
Exercise 2.7.12.

2. Fix an arbitrary, positive, real number � > 0 and set

F�W su.2/ � su.2/ �! R

.X;Y/ 7�! �tr.X � Y/;
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where tr denotes the trace and � the matrix product. Show that �F� is a negative
definite AdSU.2/-invariant scalar product on su.2/. Determine the constant � so
that F� D Bsu.2/.

2.7.14 Consider the Lie algebra sl.2;R/ with Killing form Bsl.2;R/. Show that there
exists a constant � 2 R such that

Bsl.2;R/.X;Y/ D �tr.X � Y/ 8X;Y 2 sl.2;R/;

where tr denotes the trace of the matrix and � the matrix product. Determine this
constant �. Is the Killing form Bsl.2;R/ definite? or non-degenerate?

2.7.15 Let K D R;C.

1. Show that the Killing form of the Lie algebra gl.n;K/ can be calculated as

Bgl.n;K/.X;Y/ D 2ntr.X � Y/ � 2tr.X/tr.Y/:

A suitable basis for gl.n;K/ to evaluate the trace on the left-hand side is given
by the elementary matrices Eij with a 1 at the intersection of the i-th row and j-th
column and zeros elsewhere.

2. Let h be an ideal in a Lie algebra g. Prove that for all X;Y 2 h

Bh.X;Y/ D Bg.X;Y/:

3. Show that the Killing form of the Lie algebra sl.n;K/ is equal to

Bsl.n;K/.X;Y/ D 2ntr.X � Y/:
Compare with Exercise 2.7.14.

2.7.16

1. Let g be a real Lie algebra and gC its complexification as in Exercise 2.7.10.
Under the canonical inclusion g � gC as the real part show that for all X;Y 2 g

Bg.X;Y/ D BgC.X;Y/:

2. Explain the difference between the results for the Killing form in Exercise 2.7.13
and Exercise 2.7.14, given the isomorphism of complex Lie algebras

su.2/C Š sl.2;C/ Š sl.2;R/C

from Exercise 1.9.18.
3. Show that every complex matrix A can be written uniquely as A D B C iC with

B;C skew-Hermitian. Conclude that

u.n/C Š gl.n;C/;

su.n/C Š sl.n;C/:
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4. Show that the Killing forms of the Lie algebras u.n/ and su.n/ can be calcu-
lated as

Bu.n/.X;Y/ D 2ntr.X � Y/ � 2tr.X/tr.Y/;

Bsu.n/.X;Y/ D 2ntr.X � Y/:

Compare with Exercise 2.7.13.

2.7.17 Consider the basis of su.3/ given by the elements i�a, where �a are the
Gell-Mann matrices from Example 1.5.33, with a D 1; : : : ; 8. Show that these basis
vectors are orthogonal with respect to the Killing form Bsu.3/ and determine
Bsu.3/.i�a; i�a/ for all a.

2.7.18

1. The rank of a compact Lie group G is the maximal dimension of an embedded
torus subgroup T � G. Prove that the rank of a product G � H of compact Lie
groups G and H is the sum of the ranks of G and H (you can assume without
proof that a connected abelian Lie group is a torus).

2. Classify compact semisimple Lie algebras of rank r D 1; 2; 3; 4, assuming
Theorem 2.4.23.
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