
Appendix B
Background on Special Relativity and Quantum
Field Theory

B.1 Basics of Special Relativity

We very briefly recall some basic concepts from special relativity. A very good
introduction to the physics and mathematics of special relativity can be found in
[95], covering much more than we need.

Special relativity is formulated on Minkowski spacetime M D R
4 with a

pseudo-Riemannian metric known as Minkowski metric � given by (we use units
where the speed of light c D 1)

��� D �.@�; @�/ D
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This choice of signs .C; �; �; �/ is called the West Coast metric. Sometimes the
East Coast metric with signature .�; C; C; C/ is used instead. The x� are the
standard coordinates on R4, also written as

x0 D t; x1 D x; x2 D y; x3 D z

or x� D .t; x/. Coordinate systems (charts) on Minkowski spacetime correspond
to reference frames of moving observers. All inertial systems (unaccelerated
orthonormal reference frames, also called Lorentz frames) with the same origin
.0; 0/ are related by Lorentz transformations

x0� D ��
�x

�:
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Here the Einstein summation convention is understood and � is a matrix preserving
the metric �

�.�v; �w/ D �.v;w/ 8v;w 2 R
4;

also written as

�T�� D �

or

��� ��
���

� D ���:

If the origins are different, then the coordinate transformations between inertial
systems are given by Poincaré transformations

x0� D ��
�x

� C a�;

where a� 2 R
4 is a constant vector. Poincaré transformations are affine transforma-

tions.
Since the Minkowski distance between two points is independent of the chosen

inertial frame, two points with distance zero (lightlike) in one frame have the same
distance zero in any other Lorentz frame, meaning that the speed of light c D 1 is
the same in any inertial frame.

The basis vectors of Lorentz frames transform as

e0
� D �

��1
��

�
e�;

so that the vector �x�e� is invariant:

�x0�e0
� D �x���

�

�
��1

��

�
e�

D �x�e�:

The same vector a on spacetime can be expressed in the frame e� or the frame e0
�:

a�e� D a D a0�e0
�:

This implies that

a0� D ��
�a

�:

Similarly, a 1-form ! can be expressed in the frame dx� or the frame dx0�:

!�dx
� D ! D !0

�dx
0�:
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This implies that

!0
� D �

��1
��

�
!�:

If a is a vector with components a� in the frame e� and we set

a� D ���a
�;

then a� transforms as the components of a 1-form. Similarly, if we define the matrix
��� as the inverse of the matrix ��� (in the Minkowski case this is the same matrix)
and if !� are the components of a 1-form in the frame dx�, then

!� D ���!�

transforms as the components of a vector. This is the idea behind lowering and
raising indices, which can be extended to arbitrary tensors.

Let u 2 R
4 be the velocity vector of a particle of mass m > 0. Going to the rest

frame of the particle, the vector u has components u D .1; 0/ D .1; 0; 0; 0/, which
implies that �.u; u/ D 1 independent of the chosen frame. In any frame we define
the 4-momentum

mu D .E; p/;

where E is the energy and p the 3-momentum of the particle in that frame. Then
�.u; u/ D 1 implies

m2 D E2 � p2:

If we introduce again the speed of light c, then �.u; u/ D c2,

mu D
�
E

c
; p

�
;

and

m2c4 D E2 � p2c2:

Relativistic theories of physics are theories formulated in Minkowski spacetime
whose laws are invariant under Poincaré transformations. This means that the
laws of physics are independent of where and when experiments are performed
(invariance under space and time translations), how the experiments are oriented
in space (invariance under rotations) and whether they are performed in different
inertial systems moving with constant velocity (invariance under Lorentz boosts).
For example, the principle of relativity claims that the laws of physics are the same
here and in the Andromeda galaxy, they are the same now and in 1 million years and



628 B Background on Special Relativity and Quantum Field Theory

they are the same on board two spacecrafts flying with arbitrary, constant velocities
in different directions.

B.2 A Short Introduction to Quantum Field Theory

From classical gravity and electromagnetism we are used to thinking of matter
as particles and interactions as carried by fields. However, according to quantum
field theory, matter and interactions can both be described by particles and fields.
Quantum field theory can be thought of as a unification of the concepts of classical
fields and point particles and thus as a unification (in some sense) of interactions and
matter (supersymmetric quantum field theories are a unification of both concepts in
an even stronger sense). The remarkable consequences of this approach are that
forces between matter particles can be reduced to couplings between different types
of fields and that symmetry groups, such as gauge symmetries, can act through
representations on both interaction and matter fields.

In the following sections we briefly want to discuss the basics of quantum field
theory and the relation between particles and fields. Our intention is to give a short
overview and interpretation, without any calculations or trying to be mathematically
rigorous. We also assume a basic familiarity with quantum mechanics.

B.2.1 Quantum Field Theory and Quantum Mechanics

Quantum field theory (QFT) is a quantum theory, in some sense similar to quantum
mechanics (QM):

• A quantum system has a Hilbert space V with a Hermitian scalar product h�j�i.
Elements of the vector space V are state vectors (states) jvi (we normalize these
vectors to unit norm).We think of the state of the system as being time-dependent
jv; ti (Schrödinger picture). However, we can equivalently think of the states
as being time-independent and instead the operators as being time-dependent
(Heisenberg picture, usually preferred in QFT).

• We cannot measure the state of a system directly, we can only measure the value
of observables, described by Hermitian operators A on V . If jvi is an eigenvector
of A with eigenvalue a,

Ajvi D ajvi;

and we measure the observable A if the system is in the state jvi, then the
value is the eigenvalue a. For an arbitrary state jwi, the expectation value of
the observable A is related to hwjAjwi.
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• We are also interested in transition amplitudes between states, given by
scalar products hwjvi. The amplitudes determine transition probabilities (the
probability that the system in the state jvi is found after a measurement in the
state jwi) by taking the absolute value squared of this complex number.

• There is a Hermitian Hamiltonian operator H which determines the evolution
of states between times t0 and t (by convention t0 D 0): we define the unitary
operator

U.t; 0/ D e� i
„
Ht;

where „ is the Planck constant (note that the exponential of a skew-Hermitian
operator is unitary). Then time evolution of states is given by

jv; ti D U.t; 0/jv; 0i:

One of our aims is to determine the time evolution operator U.t; 0/. Ideally we
would like to diagonalize H, i.e. find an eigenbasis for H of states jni of energy
En,

Hjni D Enjni;

because such states have a very simple time evolution:

jn; ti D e�iEntjn; 0i;

where e�iEnt 2 U.1/ is just a complex number of absolute value 1. In general, in
an interacting theory, this will be practically impossible.

• We can change from the Heisenberg picture to the Schrödinger picture and vice
versa as follows: the Schrödinger-type operator is the Heisenberg-type operator
taken at t0 D 0:

AS D AH.0/:

The time evolution of the Heisenberg-type operator is then given by the
Hamiltonian:

AH.t/ D e
i
„
HtASe

� i
„
Ht:

So far everything should be familiar from QM. We now discuss what is peculiar
about QFT.
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B.2.2 Free Quantum Field Theory on 0-Dimensional Space

Suppose that space is 0-dimensional and consists only of a single point. A real-
valued field at this point is just a time dependent real number 	.t/. The simplest
type of quadratic Lagrangian for this field is

L D 1

2
. P	/2 � 1

2
m2	2:

This Lagrangian is known as the harmonic oscillator. The Euler–Lagrange equa-
tion for this Lagrangian is the ordinary differential equation

R	 C m2	 D 0:

The Hilbert space of the associated quantum theory can be described as follows: let

H D
1M
nD0

C:

The basis states corresponding to this direct sum decomposition are denoted by

jni; n D 0; 1; 2; 3; : : :

The vector spaceH is the Hilbert space of the harmonic oscillator.

• The states jni are eigenvectors for the Hamiltonian H with energy En growing
linearly with n. These states are interpreted as the discrete set of different
vibrational modes of the field at the point.

• There is a Hermitian number operator N (an observable) whose eigenvectors
are jni with eigenvalue n:

Njni D njni:

B.2.3 Free Quantum Field Theory on d-Dimensional Space

Free quantum field theories (and to a certain degree, weakly interacting, perturbative
quantum field theories) have an interpretation in terms of particles.

Canonical Quantization

We consider the case of field theories on d-dimensional Euclidean space (for
simplicity we assume d D 3). A real-valued field is now a real function 	.t; x/
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depending on time t and the space coordinate x. The simplest type of quadratic
Lagrangian for this field is the Klein–Gordon Lagrangian.

L D 1

2
.@�	/.@�	/ � 1

2
m2	2: (B.1)

The Euler–Lagrange equation for this Lagrangian is the linear wave equation

@�@�	 C m2	 D 0;

called the Klein–Gordon equation.
The Hilbert space of the associated quantum field theory can be described as

follows: let V1 be the Hilbert space of a single free bosonic particle. It is spanned by
the basis states jpi D j1pi, where p 2 R

3 is the momentum of the particle, related
to its energy by m2 D E2 � p2. In these states the particle is totally delocalized in
position space. States where the particle is localized both in momentum and position
space with a certain minimal width (given by Heisenberg’s uncertainty principle)
can be obtained as linear combinations of the states jpi, called wave packets.

A general construction in quantum theory implies that the Hilbert space of n
indistinguishable particles of the same type is given by

Vn D SymnV1:

n-particle states are thus (linear combinations of) symmetrized tensor products of
1-particle states. We then form the (bosonic) Fock space

F D Sym�V1 D
1M
nD0

SymnV1

that contains states with an arbitrary number of particles. It turns out that the Fock
space F is a suitable Hilbert space for the quantum field theory described by the
Klein–Gordon Lagrangian (B.1).

• A basis for the Fock space is given by states

jnp1 ; : : : ; npri; npi D 0; 1; 2; 3; : : : ;

where pi 2 R
3 are vectors and npi is the number of particles of momentum pi.

The total number of particles in this state is

n D
rX

iD0

npi :
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• These states are eigenvectors of the Hamiltonian H with energy growing linearly
with the numbers npi and they again correspond to different vibrational modes of
the field.

• The basis state j0i of the 1-dimensional space V0 Š C, where all npi are zero, is
called the vacuum. The vacuum is the unique eigenstate of the Hamiltonian of
eigenvalue 0.

• For every vector p there is a Hermitian number operator Np with eigenvectors

Npjnp; np1 ; : : : ; npri D npjnp; np1 ; : : : ; npri; where pi ¤ p 8i D 1; : : : ; r:

The number operator is an observable which returns the number of particles of a
given momentum in a given quantum state.

• The classical field 	.x/ becomes in the QFT a field of Schrödinger-type operators
O	.x/, depending on the space point x (more precisely, an operator-valued
distribution), that all act on the same Hilbert space V . This field O	 of operators is
called the quantum field. Together with the adjoint quantum field O	
 it creates
and annihilates particles in the point x, i.e. adds or removes these particles from
the state in the Hilbert space. In the Heisenberg picture the field depends on the
point .t; x/ in spacetime.

Similarly, the Fock space V for a free fermionic field can be generated using
antisymmetrized tensor products:

F D ��V1 D
1M
nD0

�nV1:

In this case the numbers np can only take the values 0 or 1.

These descriptions of the Fock spaces make it clear that the Hilbert space
in quantum field theory is infinite-dimensional in two ways: the one-particle
space V1 is infinite-dimensional because the vector space R

3 of momenta p
has infinitely many elements (this is related to the fact that space is continuous
and infinitely extended). In addition there is the infinite direct sum over the
number of particles N 2 N0 that we already encountered in the case of
quantum mechanics of the harmonic oscillator (for the harmonic oscillator
the vector space corresponding to V1 is 1-dimensional).

B.2.4 Unitary Representation of the Poincaré Group

As one of the general axioms of QFT on 4-dimensional Minkowski spacetime we
assume that the Hilbert space of the quantum theory carries a unitary representa-
tion of the universal covering group SL.2;C/ Ë R

1;3 of the Poincaré group. Note
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that the non-compact simple Lie group SL.2;C/ does not admit non-trivial finite-
dimensional unitary representations according to Theorem 2.1.44.

B.2.5 Interacting Quantum Field Theories

A typical question in QFT is to calculate scattering amplitudes: Suppose we send
in an (idealized) collider a total number of n particles with certain momenta pi and
want to determine the probability that we find after collision n0 particles with certain
momenta p0

j. This process is governed by the laws of quantum theory: in general we
can only calculate a probability for the process or transition to happen, we cannot
predict the outcome completely, even if we know the initial state exactly. Since the
numbers n and n0 as well as the types of particles and their momenta can be different,
certain particles get created and others annihilated in the scattering process.1

To describe interacting QFTs, like the 	4-theory with Lagrangian

L D 1

2
.@�	/.@�	/ � 1

2
m2	2 � 1

4Š
�	4;

we make the following assumptions, known as the interaction picture:

• The Hilbert space V of the interacting theory is the same Hilbert space as in
the free theory (the Fock space). The Schrödinger-type field operators (operator-
valued distributions) are also the same as in the free theory.

• The Hamiltonian H can be calculated from the LagrangianL of the field theory,
expressed through the fields, that we collectively denote by 	. The Hamiltonian
of the interacting theory is of the form

H D H0 C HI;

where H0 is the Hamiltonian of the free theory and HI is the interaction
part. Since the Hamiltonian H of the interacting theory is different from the
Hamiltonian H0 of the free theory, we expect the vacuum state j˝i of the
interacting theory to be different from the vacuum state j0i of the free theory,
even though both states (under our assumption) are elements of the same Fock
space V .

• The time-dependence of the Heisenberg-type field operators will be different
in the free and interacting theories, because the Hamiltonians are different.
One considers two types of time-dependent quantum fields: the Heisenberg
picture field is given the time evolution according to the full Hamiltonian H
and the interaction picture field is given the time evolution according to the free
Hamiltonian H0.

1Bound states, like atoms and hadrons, are described in QFTs using other methods.
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Scattering of particles in a collider can now be described as follows. We assume that
for time t ! �1 in the distant past and for time t0 ! C1 in the distant future
the particles are far apart and can be considered as free. We can then think of the
collections of particles that we send into and get out of the collider as states in the
Hilbert space V:

jv; ti D jnp1 ; : : : ; npr ; ti;
jv0; t0i D jnp01

; : : : ; np0s ; t
0i:

We want to calculate the scalar product

hv0; t0jU.t0; t/jv; ti:

If we know these scalar products, we can calculate the transition amplitudes between
any two states, because the momentum states form a basis for the Hilbert space.
Since the time evolution operatorU is defined via the HamiltonianH, it follows that
the scalar product for different ingoing and outgoing states will be non-zero only if
the action of H on particle states creates and annihilates certain particles.

More precisely, in a free field theory the Hamiltonian is quadratic in the fields
	 and can be diagonalized. The eigenbasis is just given by the particle momentum
states

jnp1 ; : : : ; npri

which are fixed by the action of H up to multiplication by the eigenvalue (the total
energy E of the collection of particles). It follows that in a free field theory particles
do not get created or annihilated. The transition amplitude between different particle
momentum states is zero and all scattering processes are trivial: we get the same
particles with the same momenta out that we sent into the collider. The vibrational
modes of the field described by these states are constant, independent of time.

In an interacting theory the Hamiltonian contains anharmonic terms, i.e. terms
of order three or higher in the fields 	. Such Hamiltonians lead to non-trivial
creation and annihilation of particles and thus to non-trivial scattering processes.
Heuristically, the vibrational modes of the fields change with time and, since the
fields are coupled and the corresponding equations of motion are non-linear wave
equations, the vibrations of one field can start vibrations of another field.

The description so far assumed that the Hilbert space and the action of the
Schrödinger-type field operators are the same for the interacting theory as for
the free theory, only the vacuum state and the Hamiltonian have changed. This
assumption is merely a first approximation and actually not consistent, according
to Haag’s Theorem: Schrödinger-type quantum fields for a free and an interacting
theory cannot be the same; see, for example, [116, p. 391]. To define quantum field
theories in a mathematically rigorous way is the aim of constructive quantum field
theory (CQFT) and algebraic quantum field theory (AQFT).
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B.2.6 Path Integrals

Transition amplitudes can also be calculated using path integrals. Path integrals
for interacting theories, in particular, gauge theories, are more convenient than
canonical quantization. The path integral approach to quantum theory was originally
developed by P.A.M. Dirac and R.P. Feynman.

To understand the idea of path integrals, recall that standard integrals are integrals
of functions over finite-dimensional vector spaces (or finite-dimensionalmanifolds).
Path integrals are integrals of functions (also called functionals) over infinite-
dimensional vector spaces (or infinite-dimensional manifolds). These vector spaces
arise naturally as the spaces of all fields of a certain type on spacetime, i.e. the
space C1.M;W/, where M is spacetime and W is the vector space in which the
field 	 takes values (more generally, we could consider the space of all sections of
a vector bundle over M). Path integrals over the infinite-dimensional vector space
C1.M;W/ can be approximated by standard integrals over a finite-dimensional
vector space if spacetime is replaced by a lattice with finite lattice spacing a > 0

(and finite extension).
The path integrals that appear in QFT are of the form

G.x1; : : : ; xn/ D 1

N

Z
D	 	.x1/ : : : 	.xn/ exp

�
i

„
Z
M
L .	/ dvol

�
;

called Green’s functions or correlators. Here x1; : : : ; xn 2 M are points in
spacetime, 	 is the field,D	 is the path integral measure on the space C 1.M;W/

and L is the Lagrangian of the field theory. The number N is a normalization
constant. It is clear that (say for a complex scalar field 	, taking value in the complex
numbersW D C) for fixed points x1; : : : ; xn the map

FWC 1.M;C/ �! C

	 7�! 	.x1/ : : : 	.xn/ exp

�
i

„
Z
M
L .	/ dvol

�

is a function (functional) on the vector space C1.M;C/. The path integral

G.x1; : : : ; xn/ D 1

N

Z
D	 F.	/

is the integral of this function over the infinite-dimensional space C1.M;C/.
Notice that the field 	 here is the classical field, not the quantum field of

operators. The approach to QFT using path integrals is independent of the approach
using Hilbert spaces and quantum fields. However, it can be shown that if one knows
all the Green’s functions, then the Hilbert space together with the quantumfields can
be reconstructed (this is known as theWightman Reconstruction Theorem).
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In general, it is very difficult to calculate or even define these path integrals
precisely. Usually, this can only be done in the case of the free field with a quadratic
Lagrangian L . Scattering amplitudes can be calculated from Green’s functions
using the LSZ reduction formula, named after H. Lehmann, K. Symanzik and
W. Zimmermann.

B.2.7 Series Expansions

The actual calculation of scattering amplitudes is a formidable task and often can
only be done approximately, using power series expansions. In general, the Green’s
functions are functions of the coupling constant(s) g and the Planck constant „:

G D G.x1; : : : ; xn; g; „/:

There are mainly two types of series expansions:

Perturbation Theory

Perturbation theory works if the coupling constant g is small so that the full
LagrangianL is a small perturbation

L D L0 C gLint

of the free LagrangianL0. The Green’s functions forL0 are known and the Green’s
functions forL can be calculated in a series expansion in orders of g, by expanding
the exponential

exp

�
ig

„
Z
M
Lint.	/ dvol

�

in a power series in orders of g and then interchanging the path integral and
the infinite sum (this step is mathematically not justified [50]). The terms in the
power series expansion are described by Feynman diagrams. With the order of g
increasing in each step by 1, the terms in the series expansion for a process with
fixed external lines (in-coming and out-going particles) are called leading order
(LO), next-to-leading order (NLO), next-to-next-to-leading order (NNLO), and
so on.
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In perturbation theory, the full interacting Lagrangian is treated as a small
perturbation of the free Lagrangian. Since the states of a free quantum
field have an interpretation in terms of particles, it makes sense to think of
perturbation theory as describing (weakly) interacting particles. Feynman
diagrams, that depict these interactions, are the hallmark of perturbative
quantum field theory.

Internal lines in Feynman diagrams represent intermediate virtual particles
which are off-shell, i.e. do not satisfy the mass energy relation m2 D E2 � p2 (even
though momentum and energy are conserved at each vertex). In contrast to the in-
and out-state particles, virtual particles are therefore not “real” particles and cannot
be detected (the photons that mediate interactions between electrons are different
from the photons that we can see or detect with cameras).

A problem of perturbation theory is that the perturbation expansion in orders
of the coupling constant g actually converges only for g D 0, i.e. the radius of
convergence of the power series is zero (there is an argument due to Freeman Dyson
that a QFT cannot be well-defined for negative values of the coupling constant g,
hence the expansion around g D 0 must have radius of convergence equal to zero).
This implies that the perturbation expansion only makes sense as an asymptotic
expansion: up to a certain optimal order of g the series expansion approximates the
Green’s function better and better, but then, adding terms of higher order, the series
expansion starts getting worse and eventually diverges.

Semi-Classical Approximation

Semi-classical approximation can be used if the Planck constant „ is a (relatively)
small number. The power series for the Green’s functions is then an expansion
in orders of „. The lowest term of order zero is the classical contribution and
terms in higher order of „ are quantum corrections. In Feynman diagrams the
classical contribution corresponds to tree diagrams, whereas quantum corrections
correspond to loop diagrams. With respect to path integrals the semi-classical
approximation is an expansion around the critical points of the Lagrangian, i.e. the
classical solutions of the field equations (for „ ! 0 the path integral localizes at
these classical solutions).

Non-Perturbative Quantum Field Theories

Note that we do not claim that the Green’s functions are analytic in g or „.
Most smooth functions are, of course, not analytic, because analytic functions are
determined everywhere in their domain of definition by their values in an arbitrarily
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small neighbourhood of the center of expansion. The series expansions in QFT will
therefore only be approximately accurate for small values of g and „ and unusable
if these parameters are large. In particular, if g is large, the QFT is called non-
perturbative.

The term non-perturbative is essentially a synonym for non-analytic. Non-
perturbative effects in QFT will typically become dominant if the coupling
constant g is large. The particle interpretation breaks down (at least for the
fundamental fields) for strongly interacting, non-perturbative QFTs.

B.2.8 Renormalization

The calculation of the contribution of Feynman diagrams with loops2 involves
certain integrals that can diverge and lead to infinite Green’s functions. The idea
of renormalization is to absorb the infinities that occur in the Green’s functions
into the parameters (in particular, the masses and coupling constants), which then
become infinite themselves, while the Green’s functions become finite. For this to
work the parameters have to go in “the right way” to infinity, so that the Green’s
functions stay finite. More precisely, the parameters are no longer constants, but
certain functions of a cutoff, and go to infinity when the cutoff is removed, whereas
the Green’s functions remain finite.

Alternatively, renormalization can be understood as adding to the original
Lagrangian of the field theory a countertermLagrangian that cancels the divergences
of the Green’s functions. If we include terms (interactions) of the same form as
the counterterms in the original Lagrangian, then adding counterterms is equivalent
to a renormalization of parameters. A QFT is called renormalizable if finitely
many counterterms are needed to cancel the divergences and non-renormalizable
if infinitely many counterterms are needed. Non-renormalizable theories contain
infinitely many different types of interactions and infinitely many parameters, but
can still be useful (cf. [125, Sect. 21.2.2]).

The process of renormalization can be explained with a classical analogy, first
observed by M. Abraham and H. Lorentz: the electric field of a charged point
particle is of the form

E.r/ D ˛r
r3

2Only loop diagrams require renormalization.



B.2 A Short Introduction to Quantum Field Theory 639

where ˛ ¤ 0 is some constant and r is the radial vector. The energy density u of the
electric field is proportional to jEj2, hence of the form

u.r/ D ˇ

r4

with a constant ˇ ¤ 0. It follows that the total energy of the field is

Z
R3

ˇ

r4
dvol D 4�ˇ

Z 1

0

1

r2
dr:

This integral, when extended all the way to 0, is infinite. It follows that a charged
point particle, like an electron, has an infinite energy in its electric field. If this
energy is added to the bare rest mass of the electron via E D mc2, corresponding
to an electromagnetic mass, the total mass becomes infinite, which seems like a
contradiction.

The idea is to set the bare (unobservable) rest mass mB of the electron equal
to �1, so that when we add the infinite energy due to the electric field the total
(observable) mass m becomes finite. We define a cutoff  > 0 and set

I./ D 4�ˇ

Z 1



1

r2
dr;

which is finite for all  > 0. This is called regularization of the divergent integral.
We also define

mB./ D m � I./

c2
;

where m is the observed mass of the electron, known from experiments. This is
called renormalization of the mass. The bare mass is thus a function of the cutoff
 and goes to �1 if we let  ! 0. However, the total mass is now

mB./ C I./

c2

which is constant and equal to the finite mass m for all  > 0. We see that we have
hidden the infinity from the divergent integral I.0/ in the renormalization of the
mass mB.

In general, the divergences encountered in QFTs can be traced to two aspects
of space: space is continuous (leading to UV divergences) and space is infinitely
extended (leading to IR divergences). Both aspects imply that QFTs, which describe
time-dependent fields defined on space, have to deal with systems with infinitely
many degrees of freedom, the crucial difference to QM. A QFT can be regularized
by introducing cutoffs: a UV cutoff essentially means to reduce space to a lattice
with finite lattice spacing a > 0 (corresponding to an upper cutoff on the norm jpj
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of the momentum) and an IR cutoff means to consider the theory in a finite volume
V < 1 of space (corresponding to a discrete set of momenta). Both regularizations
together reduce the QFT to a system with finitely many degrees of freedom (in
continuous time), essentially a version of QM.

B.2.9 Further Reading

Introductory accounts of quantum field theory are [51] and [86]. Extensive discus-
sions from a physics point of view can be found, for example, in [124, 125, 132]
and [143–145]. Mathematically rigorous discussions can be found in the classic
references [17, 69, 134] and in [38, 45, 82]. Perturbation theory, semi-classical
approximation and renormalization are very well and comprehensibly explained
from a mathematical point of view in the lecture notes [50].
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