
Appendix A
Background on Differentiable Manifolds

From a mathematical point of view, gauge theories are described by a spacetime M
together with certain fibre bundles (principal bundles, associated vector bundles,
spinor bundles) over M. Spacetime and fibre bundles are assumed to have the
structure of differentiable manifolds. Differentiable manifolds in turn are certain
topological spaces that essentially have the property of being locally Euclidean,
i.e. locally look like an open set in some Rn, and that have a differentiable structure,
so that we can define differentiable maps (and their derivatives), vector fields,
differential forms, etc. on them.

We briefly sketch the definitions of these concepts. More details can be found
in any textbook on differentiable manifolds or differential geometry, like [84] and
[142].

A.1 Manifolds

A.1.1 Topological Manifolds

Topological manifolds are topological spaces with certain additional structures.
They are a first step towards differentiable manifolds, which are the main spaces
that we will consider in this book.

Definition A.1.1 An n-dimensional topological manifold, also called a topologi-
cal n-manifold, is a topological spaceM such that:

1. M is locally Euclidean, i.e. locally homeomorphic to Rn. This means that around
every point p 2 M there exists an open neighbourhood U � M that is
homeomorphic to some open set V � R

n (both open sets with the subspace
topology).
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604 A Background on Differentiable Manifolds

2. M is Hausdorff.
3. M has a countable basis for its topology.

The local homeomorphisms �WM � U ! V � R
n (and sometimes the subsets U)

are called charts or local coordinate systems for M. Axiom (a) says that we can
cover the whole manifold M by charts. Note that the dimension n is assumed to be
the same over the whole manifold. Axiom (c) is of a technical nature and usually
can be neglected for our purposes. We often denote an n-manifold byMn.

Example A.1.2 The simplest topological n-manifold isM D R
n itself. We can cover

M by one chart �WRn ! R
n, given by the identity.

Example A.1.3 Another example of a topological n-manifold is the n-sphere M D
Sn for n � 0. We define

Sn D fx 2 R
nC1 j jjxjj D 1g:

Here jjxjj denotes the Euclidean norm. We endow Sn with the subspace topology
of RnC1. It follows that Sn is Hausdorff, compact and has a countable basis for its
topology.

We thus only have to cover Sn by charts that define local homeomorphisms to
R

n. A very useful choice are two charts given by stereographic projection. We
think of Rn as the hyperplane fxnC1 D 0g in R

nC1. We then project a point x in
UN D Sn n fNg, where N is the north pole

N D .0; : : : ; 0;C1/ 2 Sn � R
nC1;

along the line through N and x onto the hyperplane Rn. It is easy to check that this
defines a map

�N WUN �! R
n

x 7�! 1

1 � xnC1
.x1; : : : ; xn/:

Similarly projection through the south pole

S D .0; : : : ; 0;�1/ 2 Sn � R
nC1

defines a map on US D Sn n fSg, given by

�SWUS �! R
n

x 7�! 1

1C xnC1
.x1; : : : ; xn/:
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We can check that �N and �S are bijective, continuous and have continuous inverses.
Therefore they are homeomorphisms. They define two charts that cover Sn and
hence the n-sphere is shown to be a topological manifold.

A.1.2 Differentiable Structures and Atlases

Suppose we have two topological manifoldsM andN and a continuousmap f WM !
N between them. We want to define what it means that f is differentiable. To do so
we first have to define a differentiable (or smooth) structure on both manifolds.

Definition A.1.4 Let M be a topological n-manifold. Suppose .U; �/ and .V;  /
are two charts of M. We call these charts compatible if the change of coordinates
(or coordinate transformation), given by the map

 ı ��1WRn � �.U \ V/ �!  .U \ V/ � R
n;

is a smooth diffeomorphism between open subsets of Rn, i.e. the homeomorphism
 ı ��1 and its inverse are infinitely differentiable.

Definition A.1.5 Let A be a set of charts that coverM. We call A an atlas if any
two charts in A are compatible. We call A a maximal atlas (or differentiable
structure) if the following holds: Any chart of M that is compatible with all charts
in A belongs to A . It can be checked that any given atlas for M is contained in a
unique maximal atlas.

Definition A.1.6 A topological manifoldM together with a maximal atlas is called
a differentiable (or smooth)manifold.

Example A.1.7 The topological manifold R
n is a differentiable manifold: We have

one chart .Rn; Id/, where IdWRn ! R
n is the identity. Since we only have a single

chart, there are no non-trivial changes of coordinates. Therefore A D f.Rn; Id/g
forms an atlas that induces a unique differentiable structure on R

n (the standard
differentiable structure).

Example A.1.8 Recall that we defined on the n-sphere Sn two charts .UN ; �N/ and
.US; �S/. We want to show that these two charts are compatible and hence form an
atlas. This atlas is contained in a unique maximal atlas that defines a differentiable
structure on the n-sphere (the standard structure).

We first have to calculate the inverse of the chart mappings: We have

��1
N WRn �! UN

y 7�!
�

2y

1C jjyjj2 ;
jjyjj2 � 1
1C jjyjj2

�
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and

��1
S WRn �! US

y 7�!
�

2y

1C jjyjj2 ;
1 � jjyjj2
1C jjyjj2

�
:

Since

�N.UN \ US/ D �S.UN \ US/ D R
n n f0g

we get

�S ı ��1
N WRn n f0g ! R

n n f0g

with

�S ı ��1
N .y/ D �S

�
2y

1C jjyjj2 ;
jjyjj2 � 1

1C jjyjj2
�

D y

jjyjj2 :

A similar calculation shows that

�N ı ��1
S .y/ D y

jjyjj2 :

Since these maps are infinitely differentiable, it follows that the charts .UN ; �N/ and
.US; �S/ are compatible and define a smooth structure on the n-sphere Sn.

Remark A.1.9 In certain dimensions n there exist exotic spheres, which are differ-
entiable structures on the topological manifold Sn not diffeomorphic to the standard
structure. The first examples have been described by Milnor and Kervaire.

Remark A.1.10 From now we consider only smooth manifolds.

Example A.1.11 It is possible to extend the definition of smooth manifolds to
include manifolds M with boundary @M. We usually consider only manifolds
without boundary, even though most concepts in this book also make sense for
manifolds with boundary.

Definition A.1.12 A manifold M is called closed if it is compact and without
boundary.

Definition A.1.13 A manifold M is called oriented if it has an atlas A of charts
f.Ui; �i/g such that the differential D�i. p/.�j ı ��1

i / (represented by the Jacobi
matrix) of any change of coordinates has positive determinant at each point.
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A.1.3 Differentiable Mappings

We can now define the notion of a differentiable map between differentiable
manifolds.

Definition A.1.14 Let Mm and Nn be differentiable manifolds and f WM ! N a
continuous map. Let p 2 M be a point and .V;  / a chart of N around f . p/. Since
f is continuous, there exists a chart .U; �/ around p such that f .U/ � V . We call f
differentiable at p if the map

 ı f ı ��1WRm � �.U/ �!  .V/ � R
n

is infinitely differentiable (in the usual sense) at �. p/ as a map between open subsets
of Rn.

Remark A.1.15 The property of a map f being differentiable at a point p does not
depend on the choice of charts, precisely because all changes of coordinates are
diffeomorphisms: if f is differentiable at p for one pair of charts, then it is also
differentiable for all other pairs.

Definition A.1.16 We call a continuous map f WM ! N differentiable if it is
differentiable at every p 2 M. We call f a diffeomorphism if it is a homeomorphism
such that f and f�1 are differentiable.

Remark A.1.17 All differentiable maps between manifolds in the following will be
infinitely differentiable (smooth), also called C1.

Example A.1.18 It is a nice exercise to show that the involution

iW Sn �! Sn

x 7�! �x

is a diffeomorphism.

A.1.4 Products of Manifolds

Let Mm and Nn be differentiable manifolds. Then the Cartesian product XmCn D
Mm � Nn canonically has the structure of a differentiable manifold of dimension
m C n. We have to define charts for X: Let .U; �/ and .V;  / be local charts for M
and N. Then .U � V; � �  / is a local chart for X, where

� �  WU � V �! R
m � R

n

.x; y/ 7�! .�.x/;  .y//:

It can easily be checked that with this definition the changes of coordinates are
smooth.
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A.1.5 Tangent Space

SupposeMn is a differentiable manifold and p 2 M is a point. An important notion
is that of the tangent space TpM of the manifold at the point p. This is something
that only exists on smooth manifolds and not on topologicalmanifolds.

How can we define such a tangent space? To get some intuition, we can first
consider the case of a submanifold M � R

d of some Euclidean space. The standard
definition is that the tangent space in p 2 M is the subspace of Rd consisting of all
tangent vectors to differentiable curves through p:

TpM D f P�.0/ 2 R
d j � W .��; �/ ! M differentiable; �.0/ D pg:

The problem with general manifolds is that they are a priori not embedded in any
surrounding space, so this notion of tangent vector does not work. However, what
we can do, is that instead of taking the tangent vectors in the surrounding space,
we take the full set of curves through p in the manifoldM and define on this set an
equivalence relation that identifies two of them, ˛ and ˇ, if in a chart �WM � U !
R

n they have the same tangent vector in p:

˛ � ˇ , P.� ı ˛/.0/ D P.� ı ˇ/.0/:
To be equivalent in this sense does not depend on the choice of charts: If we choose
another chart  WM � V ! R

n around p, then the tangent vectors in the charts �
and  are related by a linear map, the differential D�. p/. ı ��1/ of the change of
coordinates. Since the tangent vectors of ˛ and ˇ in chart � are identical, they will
thus still be identical in chart  . With this equivalence relation we can therefore set:

Definition A.1.19 The tangent space of a smooth manifoldMn at a point p 2 M is
defined by

TpM D f� j � W .��; �/ ! M differentiable; �.0/ D pg=�:

For the equivalence class of the curve � inM we write

Œ�� D P�.0/ D d

dt

ˇ̌
ˇ̌
tD0

�.t/

and call this a tangent vector.

Proposition A.1.20 At any point p 2 Mn the tangent space TpM has the structure
of a real n-dimensional vector space.

Proof Let �WU ! R
n be a chart around p. We set

Dp�WTpM �! R
n

Œ�� 7�! P.� ı �/.0/:
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It can be shown that this is a bijection. We define the vector space structure on
TpM so that this map becomes a vector space isomorphism. This structure does
not depend on the choice of chart: If  WV ! R

n is another chart around p, then
the following diagram is commutative, where D�.p/. ı ��1/ is a vector space
isomorphism:

Hence the identity between TpM and TpM defined with the respective vector space
structures is a vector space isomorphism. ut
Definition A.1.21 The set

TM D
[
p2M

f pg � TpM

is called the tangent bundle ofM.
In Sect. 4.5 it is shown that the tangent bundle is an example of a vector bundle over
M with fibres TpM.

A.1.6 Differential of a Smooth Map

Let f WM ! N be a smooth map between differentiable manifolds. With the tangent
space at hand, we can now define the differential of f .

Definition A.1.22 The differentialDpf of the map f at a point p 2 M is defined by

Dpf WTpM �! Tf . p/N

Œ�� 7�! Œ f ı ��:

Equivalently,

Dpf WTpM �! Tf . p/N

P�.0/ 7�! P.f ı �/.0/:

The differential is a well-defined (independent of choice of representatives for Œ��)
linear map between the tangent spaces.
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For a vector X 2 TpM we sometimes write

f�X D .Dpf /.X/:

The differential satisfies the so-called chain rule.

Proposition A.1.23 The following chain rule holds for the differential: If f WX ! Y
and gWY ! Z are differentiable maps, then g ı f is differentiable and at any point
p 2 X

Dp.g ı f / D Df . p/g ı Dpf :

Corollary A.1.24 The differential Dpf of a diffeomorphism f WM ! N is at every
point p 2 M a linear isomorphism of tangent spaces.

Definition A.1.25 Let f WM ! N be a differentiable map between manifolds.

• A point p 2 M is called a regular point of f if the differential Dpf is surjective
onto Tf . p/N.

• A point q 2 N is called a regular value of f if each point p in the preimage
f�1.q/ � M is a regular point.

• The map f is called a submersion if every point p 2 M is regular.
• The map f is called an immersion if the differential Dpf is injective at every

point p 2 M.

Remark A.1.26 Every point of N that is not in the image f .M/ is automatically a
regular value, because the condition is empty.

Theorem A.1.27 (Sard’s Theorem) For any differentiable map f WM ! N
between smooth manifolds M and N the set of regular values is dense in N.
The following theorem shows that a map f has a certain normal form in a
neighbourhood of a regular point.

Theorem A.1.28 (Regular Point Theorem) Let p be a regular point of the map f .
Then there exist charts .U; �/ of M around p and .V;  / of N around f . p/ with

• �. p/ D 0

•  .f . p// D 0

• f .U/ � V

such that the map  ı f ı ��1 has the form

 ı f ı ��1.x1; : : : ; xnCk/ D .x1; : : : ; xn/;

where dimM D n C k and dimN D n.

Remark A.1.29 The theorem says that in suitable charts the map f is given by the
standard projection of Rm D R

n � R
k onto Rn.
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A.1.7 Immersed and Embedded Submanifolds

There are two notions of submanifolds which need to be distinguished.

Definition A.1.30 LetM be a smooth manifold.

1. An immersed submanifold ofM is the image of an injective immersion f WN !
M from a manifold N toM.

2. An embedded submanifold ofM is the image of an injective immersion f WN !
M from a manifold N toM which is a homeomorphism onto its image.

In both cases, the set f .N/ is endowed with the topology and manifold structure
making f WN ! f .N/ a diffeomorphism. The difference between embedded and
immersed submanifolds f .N/ � M is whether the topology on f .N/ coincides with
the subspace topology on f .N/ inherited fromM or not.
An embedded submanifold can be characterized equivalently as follows:

Proposition A.1.31 A subset K of an m-dimensional manifold M is an embedded
submanifold of dimension k if and only if around each point p 2 K there exists a
chart .U; �/ of M such that

�jU\K WU \ K �! �.U/\ �
R

k � f0g� � R
m:

Such a chart is also called a submanifold chart or flattener for K.
The regular point theorem implies:

Theorem A.1.32 (Regular Value Theorem) Let q 2 N be a regular value of a
smooth map f WM ! N and L D f�1.q/ the preimage of q. Then L is an embedded
submanifold of M of dimension

dimL D dimM � dimN:

A.1.8 Vector Fields

Let Mn be a smooth manifold. A vector field on M is a map X that assigns to each
point p 2 M a tangent vector Xp 2 TpM in a smooth way. To make this precise let
�WM � U ! �.U/ � R

n be a chart. We set

TU D
[
p2U

f pg � TpM

for the tangent bundle of U and define the map

D�WTU �! �.U/ � R
n

. p; v/ 7�! .�. p/;Dp�.v//:

The map D� is on each fibre f pg � TpM of TU an isomorphism onto f�. p/g � R
n.
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Definition A.1.33 A vector field X onM is a map XWM ! TM such that:

1. Xp D X. p/ 2 TpM for all p 2 M.
2. The map X is differentiable in the following sense: For any chart .U; �/ the lower

horizontal map in the following diagram

is differentiable (this is just a standard vector field on �.U/ � R
n).

A particularly important set of vector fields is defined by a chart.

Definition A.1.34 Let .U; �/ be a chart forM. Then we define at every point p 2 U
the following vectors:

@

@x�
. p/ D .Dp�/

�1.e�/; 8� D 1; : : : ; n;

where e1; : : : ; en is the standard basis of Rn. We also write

@� D @

@x�
:

For a fixed index �, as p varies, the vectors @�. p/ form a smooth vector field @� on
U. We call the vector fields @� basis vector fields or coordinate vector fields onU.

Lemma A.1.35 At each point p 2 U the vectors @1. p/; : : : @n. p/ form a basis for
the tangent space TpM.

Proof This is clear, because Dp�WTpM ! R
n is an isomorphism of vector spaces.

ut
Proposition A.1.36 Every smooth vector field X on M can be written on U as

XjU D
nX

�D1
X�@� � X�@�

where X1; : : : ;XnWU ! R are smooth real-valued functions on U, called the
components of X with respect to the basis f@�g.
Remark A.1.37 The second equality in this proposition is an example of the so-
called Einstein summation convention.
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A.1.9 Integral Curves

LetM be a smooth manifold and X a smooth vector field onM.

Definition A.1.38 A curve � W I ! M, where I � R is an open interval around 0, is
called an integral curve for X through p 2 M if

�.0/ D p and P�.t/ D X�.t/ 8t 2 I:

The theory of ordinary differential equations (ODEs) applied in a chart forM shows
that:

Theorem A.1.39 For every point q 2 M there exists an interval Iq around 0 and a
unique curve �qW Iq ! M which is an integral curve for X.
Using a theorem on the behaviour of solutions to ODEs under variation of the initial
condition we get:

Theorem A.1.40 For all p 2 M there exists an open neighbourhood U of p in M
and an open interval I around 0 such that the integral curves �q are defined on I for
all q 2 U. The map

�U WU � I �! M

.q; t/ 7�! �q.t/

is differentiable and is called the local flow of X.

Theorem A.1.41 Let M be a closed manifold (compact and without boundary).
Then there exists a global flow of X which is a smooth map

�WM � R �! M

.q; t/ 7�! �q.t/:

The map

�t D �.	; t/WM �! M

is a diffeomorphism for all t 2 R.

A.1.10 The Commutator of Vector Fields

Let X be a smooth vector field on the manifoldM.

Definition A.1.42 The Lie derivative LX is the map

LX WC1.M/ �! C1.M/;
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defined by

.LXf /. p/ D .Dpf /.Xp/

for all f 2 C1.M/ and p 2 M.
The Lie derivative LX is the directional derivative of a smooth function along the
vector field X: If � is a curve through p such that P�.0/ D Xp, then

.LXf /. p/ D P.f ı �/.0/:

Proposition A.1.43 The Lie derivative is a derivation, i.e.

1. LX is R-linear
2. LX satisfies the Leibniz rule:

LX.f 	 g/ D .LXf / 	 g C f 	 .LXg/ 8f ; g 2 C1.M/:

Using the Lie derivative we can define the so-called commutator of vector fields.

Theorem A.1.44 Let X and Y be smooth vector fields on M. Then there exists a
unique vector field ŒX;Y� on M, called the commutator of X and Y, such that

LŒX;Y� D LX ı LY � LY ı LX : (A.1)

If in a local chart .U; �/ the vector fields are given by

X D X�@� and Y D Y�@�;

then ŒX;Y� is given by

ŒX;Y� D
�
X�
@Y�

@x�
� Y�

@X�

@x�

�
@�: (A.2)

Theorem A.1.45 The set of vector field X.M/ together with the commutator is an
(infinite-dimensional) Lie algebra, i.e. for all X;Y;Z 2 X.M/ we have:

• antisymmetry:

ŒY;X� D �ŒX;Y�

• R-bilinearity:

ŒaX C bY;Z� D aŒX;Z�C bŒY;Z� 8a; b 2 R
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• Jacobi identity:

ŒX; ŒY;Z�� C ŒY; ŒZ;X�� C ŒZ; ŒX;Y�� D 0:

We can calculate the commutator ŒX;Y� using the flow of X:

Theorem A.1.46 Let X and Y be smooth vector fields on M, �t the flow of X and
p 2 M a point. Then

ŒX;Y�p D d

dt

ˇ̌
ˇ̌
tD0

.��t/�Y�t. p/:

Note that .��t/�Y�t. p/ is a smooth curve in TpM.

A.1.11 Vector Fields Related by a Smooth Map

Definition A.1.47 Let M and N be smooth manifolds and �WM ! N a smooth
map. Suppose that X is a vector field onM and Y a vector field on N. Then Y is said
to be �-related to X if

Y�. p/ D .Dp�/.Xp/ 8p 2 M:

Lemma A.1.48 Let M and N be smooth manifolds, �WM ! N a smooth map.
Suppose that X and Y are vector fields on M and N and that Y is �-related to X.
Then

.LYf / ı � D LX.f ı �/ 8f 2 C1.N/:

Proposition A.1.49 Let M and N be smooth manifolds and �WM ! N a smooth
map. Suppose that X0 is �-related to X and Y 0 is �-related to Y. Then ŒX0;Y 0� is
�-related to ŒX;Y�.

Definition A.1.50 If �WM ! N is a diffeomorphism and X is a smooth vector field
onM, then we define a smooth vector field ��X on N, called the pushforward of X
under �, by

.��X/�.p/ D .Dp�/.Xp/:

Note that ��X is the unique vector field on N that is �-related to X.

Corollary A.1.51 If �WM ! N is a diffeomorphism, then

Œ��X; ��Y� D ��ŒX;Y�

for all vector fields X and Y on M.
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A.1.12 Distributions and Foliations

We consider some concepts related to distributions and foliations on manifolds (we
follow [142] where proofs and more details can be found). Let M be a smooth
manifold of dimension n.

Definition A.1.52 A distribution D of rank k on M is a collection of vector
subspaces Dp � TpM of dimension k for all p 2 M which vary smoothly over
M, i.e. each p 2 M has an open neighbourhoodU � M so that DjU is spanned by k
smooth vector fields X1; : : : ;Xk on U.
An equivalent definition is that D is a subbundle of rank k of the tangent bundle TM.

Definition A.1.53 A distribution is called involutive or integrable if for all vector
fields X;Y on M with Xp;Yp 2 Dp for all p 2 M, the vector field ŒX;Y� on M again
satisfies ŒX;Y�p 2 Dp for all p 2 M.

Definition A.1.54 A foliation F of rank k on M is a decomposition of M into
k-dimensional immersed submanifolds, called leaves, which locally have the fol-
lowing structure: around each point p 2 M there exists a coordinate neighbourhood
diffeomorphic to R

n such that the leaves of the foliation decompose R
n into

R
k � R

n�k, with the leaves given by the affine subspaces Rk � fxg for all x 2 R
n�k.

It is clear that the tangent spaces to the leaves of a foliation define a distribution. In
fact, we have:

Theorem A.1.55 (Frobenius Theorem) A distribution D defines a foliation F if
and only if D is integrable.
The following statement is Theorem 1.62 in [142].

Theorem A.1.56 Let f WN ! M be a smooth map between manifolds, H a
foliation on M and H � M a leaf of H . Suppose that f has image in H. Then
f WN ! H is smooth.
This theorem is clear if H is an embedded submanifold of M and only non-trivial if
H is an immersed submanifold.

A.2 Tensors and Forms

A.2.1 Tensors and Exterior Algebra of Vector Spaces

We recall some notions from linear algebra. Let V denote an n-dimensional real
vector space.

Definition A.2.1 We set

V� D f� j �WV ! R is linearg
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for the dual space of V . The dual space V� is itself an n-dimensional real vector
space. We call the elements � 2 V� 1-forms on V .
If fe�g is a basis for V we get a dual basis f!�g for V� defined by

!�.e�/ D ı��; 8�; � D 1; : : : ; n;

where ı�� is the standard Kronecker delta. Just as we decompose any vector X 2 V
in the basis fe�g as

X D X�e�

we can decompose any 1-form � 2 V� as

� D ��!
�:

(Note the Einstein summation convention in both cases.)

Definition A.2.2 A tensor of type .l; k/ is a multilinear map

TWV� � 	 	 	 � V�„ ƒ‚ …
l

�V � 	 	 	 � V„ ƒ‚ …
k

�! R:

In particular, a .0; 1/-tensor is a 1-form and a .1; 0/-tensor is a vector. The set of all
.l; k/-tensors forms a vector space.
We are interested in a particular class of tensors on a vector space V .

Definition A.2.3 We call a .0; k/-tensor

�WV � 	 	 	 � V„ ƒ‚ …
k

�! R

a k-form on V if � is alternating, i.e. totally antisymmetric:

�.: : : ; v; : : : ;w; : : :/ D ��.: : : ;w; : : : ; v; : : :/

for all insertions of vectors into �, where only the vectors v and w are interchanged.
The set of k-forms on V forms a vector space denoted by 	kV�.

Remark A.2.4 It follows that for k-forms �

�.: : : ; v; : : : ; v; : : :/ D 0 8v 2 V

and

�.v1; v2; : : : ; vk/ D 0
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whenever the vectors v1; v2; : : : ; vk are linearly dependent. In particular, every k-
form on V vanishes identically if k is larger than the dimension of V .

Definition A.2.5 Let � be a k-form and � an l-form. Then the wedge product of
� ^ � is the .k C l/-form defined by

.� ^ �/.X1; : : : ;XkCl/

D 1

kŠlŠ

X

2SkCl

sgn.
/�
�
X
.1/; : : : ;X
.k/

� 	 � �
X
.kC1/; : : : ;X
.kCl/

�
:

Here SkCl denotes the set of permutations of f1; 2; : : : ; kC lg. It can be checked that
� ^ � is indeed a k C l-form.

Example A.2.6 Let ˛; ˇ be 1-forms on V . Then

.˛ ^ ˇ/.X;Y/ D ˛.X/ˇ.Y/ � ˛.Y/ˇ.X/

for all vectors X;Y 2 V .

Lemma A.2.7 Let V be a vector space of dimension n and f!�g a basis for V�.
Then the set of k-forms

!�1 ^ 	 	 	 ^ !�k ; with 1 
 �1 < �2 < : : : < �k 
 n;

is a basis for the vector space of k-forms.

A.2.2 Tensors and Differential Forms on Manifolds

Let M be an n-dimensional smooth manifold. We want to extend the notion of
tensors and forms on vector spaces to tensors and forms on M. One possibility is
to first define certain vector bundles and then tensors and forms as smooth sections
of these bundles. However, since we define vector bundles in Sect. 4.5, we use here
another, equivalent definition for tensors.

Remark A.2.8 In the following all functions and vector fields onM are smooth.

Definition A.2.9 We denote by C1.M/ the ring of all smooth functions f WM ! R.
We also denote by X.M/ the set of all smooth vector fields onM. The set X.M/ is a
real vector space and module over C 1.M/ by point-wise multiplication.
We can now define:

Definition A.2.10 A 1-form � on the manifoldM is a map

�WX.M/ �! C 1.M/
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that is linear over C1.M/, i.e.

�.X C Y/ D �.X/C �.Y/;

�.f 	 X/ D f 	 �.X/

for all vector fields X;Y 2 X.M/ and functions f 2 C1.M/. We denote the set of
all 1-forms onM by˝1.M/, which is a real vector space and module over C1.M/.
The following can be proved:

Proposition A.2.11 The value of �.X/. p/ for a 1-form � and vector field X at a
point p 2 M depends only on Xp. Hence if Y is another vector field on M with
Yp D Xp, then �.X/. p/ D �.Y/. p/.
A proof of this proposition can be found in [142, p. 64]. Similarly we set:

Definition A.2.12 A tensor T of type .l; k/ onM is a map

TW˝1.M/ � 	 	 	 �˝1.M/„ ƒ‚ …
l

�X.M/ � 	 	 	 � X.M/„ ƒ‚ …
k

�! C 1.M/

that is C 1.M/-linear in each entry. A k-form or differential form ! on M is a
.0; k/-tensor

!WX.M/ � 	 	 	 � X.M/„ ƒ‚ …
k

�! C1.M/

that is in addition alternating (totally antisymmetric). We denote the set of k-forms
onM by˝k.M/.

Remark A.2.13 An argument similar to the proof of Proposition A.2.11 shows that
tensors and k-forms on manifolds have well-defined values at every point p 2 M.
We can therefore insert, for example, in a k-form ! 2 ˝k.M/ vectors X1; : : : ;Xk in
the tangent space TpM at any point p 2 M and get a real number. We can also speak
unambiguously of the value of a tensor or form at a point.

Remark A.2.14 We can define the wedge product ^ of forms as before by replacing
in the definition vectors by vector fields on the manifold. The wedge product is then
a map

^W˝k.M/ �˝ l.M/ �! ˝kCl.M/:

A.2.3 Scalar Products and Metrics on Manifolds

We consider the following definition from linear algebra.
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Definition A.2.15 A scalar product on the vector space V is a symmetric non-
degenerate .0; 2/-tensor g on V:

g.v;w/ D g.w; v/ 8v;w 2 V (symmetric)

g.v; 	/ ¤ 0 2 V� 8v ¤ 0 2 V (non-degenerate):

The scalar product g is called Euclidean if it is positive definite

g.v; v/ � 0 8v 2 V

g.v; v/ > 0 8v ¤ 0

and pseudo-Euclidean otherwise.
We can do the same construction on manifolds.

Definition A.2.16 A metric on a smooth manifold M is a .0; 2/-tensor g which is
a scalar product at each point p 2 M. The metric is called Riemannian if the scalar
products gp are Euclidean and pseudo-Riemannian if the scalar products gp are
pseudo-Euclidean, for all p 2 M.
It can be shown using partitions of unity that every smooth manifold admits a
Riemannian metric (but not necessarily a pseudo-Riemannian metric).

A.2.4 The Levi-Civita Connection

Let .M; g/ be a pseudo-Riemannian manifold. The Levi-Civita connection is a
metric and torsion-free, covariant derivative on the tangent bundle of the manifold,
i.e. a map

rWX.M/ � X.M/ �! X.M/

.X;Y/ 7�! rXY

with the following properties:

1. r is R-linear in both X and Y.
2. r is C 1.M/-linear in X and satisfies

rX.fY/ D .LXf /Y C frXY 8f 2 C1.M/;X;Y 2 X.M/:

3. r is metric, i.e.

LXg.Y;Z/ D g.rXY;Z/C g.Y;rXZ/ 8X;Y;Z 2 X.M/:

4. r is torsion-free, i.e.

rXY � rYX D ŒX;Y� 8X;Y 2 X.M/:
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The Levi-Civita connection can be calculated with the following Koszul formula:

2g.rXY;Z/ D LXg.Y;Z/C LYg.X;Z/� LZg.X;Y/

� g.ŒX;Z�;Y/ � g.ŒY;Z�;X/C g.ŒX;Y�;Z/:

A.2.5 Coordinate Representations

We saw above that we can represent every vector field X on a chart neighbourhoodU
by XjU D X�@�, where X� are certain functions on U, called components. We want
to decompose in a similar way tensors and forms on U. In the physics literature
tensors and forms are often given in terms of their components in coordinate
systems.

Definition A.2.17 Let U be a chart neighbourhood. We define the set of dual 1-
forms dx�, for � D 1; : : : ; n, by dx�.@�/ D ı

�
� at each point p 2 U.

Proposition A.2.18 Let � be a 1-form on M. Then we can decompose � on U as
�jU D ��dx� for certain smooth functions �� on M. Similarly, we can decompose
a k-form ! as

!jU D
X

1��1<���<�k�n

!�1:::�kdx
�1 ^ 	 	 	 ^ dx�k ;

with smooth functions !�1:::�k .
Note that these functions, corresponding to the components, depend on the choice
of the chart .U; �/, while the objects themselves (vectors fields, k-forms) are
independent of charts.

A.2.6 The Pullback of Forms on Manifolds

Let ! 2 ˝k.N/ be a k-form on a manifold N and f WM ! N a smooth map.

Definition A.2.19 The pullback of ! under f is the k-form f �! 2 ˝k.M/ on M
defined by

.f �!/.X1; : : : ;Xk/ D !.f�X1; : : : ; f�Xk/

for all tangent vectors X1; : : : ;Xk 2 TpM and all p 2 M.

Proposition A.2.20 The pullback defines a map f �W˝k.N/ �! ˝k.M/. We have

f �.! ^ �/ D .f �!/ ^ .f ��/
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for all ! 2 ˝k.N/; � 2 ˝ l.N/ and

.g ı f /� D f � ı g�

for all smooth maps f WM ! N; gWN ! Q.
The second property follows from the chain rule for the differential of the map gı f .

A.2.7 The Differential of Forms on Manifolds

The differential is a very important map on forms on a manifold that raises the
degree by one.

Theorem A.2.21 Let M be a smooth manifold. Then there is a unique map

dW˝k.M/ �! ˝kC1.M/

for every k � 0, called the differential or exterior derivative, that satisfies the
following properties:

1. d is R-linear.
2. For a function f 2 ˝0.M/ D C1.M/ and a vector field X 2 X.M/ we have

df .X/ D LXf .
3. d2 D d ı d D 0W˝k.M/ ! ˝kC2.M/.
4. d satisfies the following Leibniz rule:

d.˛ ^ ˇ/ D d˛ ^ ˇ C .�1/k˛ ^ dˇ

for all ˛ 2 ˝k.M/; ˇ 2 ˝ l.M/.

The proof of this fundamental theorem can be found in any book on differential
geometry. Let .U; �/ be a local chart. If we assume that the differential d has these
properties, then it follows that the differential is given on functions f by

df D @f

@x�
dx�

and on˝k.M/ by

d! D d
X

1��1<:::<�k�n

!�1:::�k dx
�1 ^ 	 	 	 dx�k

D
X

1��1<:::<�k�n

nX
�D1

@!�1:::�k

@x�
dx� ^ dx�1 ^ 	 	 	 dx�k :
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The defining properties of the differential d imply for 1-forms and 2-forms:

Proposition A.2.22 1. Let ˛ 2 ˝1.M/ be a 1-form. Then

d˛.X;Y/ D LX.˛.Y// � LY.˛.X// � ˛.ŒX;Y�/ 8X;Y 2 X.M/:

2. Let ˇ 2 ˝2.M/ be a 2-form. Then

dˇ.X;Y;Z/ D LX.ˇ.Y;Z//C LY .ˇ.Z;X//C LZ.ˇ.X;Y//

� ˇ.ŒX;Y�;Z/ � ˇ.ŒY;Z�;X/ � ˇ.ŒZ;X�;Y/ 8X;Y;Z 2 X.M/:

The differential is natural under pullback:

Proposition A.2.23 If f WM ! N is a smooth map and ! 2 ˝k.N/, then d.f �!/ D
f �d!.
LetM be a compact oriented n-dimensional manifold and 
 2 ˝n.M/ a form of top
degree. Then there is a well-defined integral

Z
M

 2 R:

The integral can also be defined ifM is non-compact and 
 has compact support.

Theorem A.2.24 (Stokes’ Theorem)

1. Let M be a compact n-dimensional oriented manifold with boundary @M and
! 2 ˝n�1.M/. Then (with a suitable orientation of the boundary)

Z
M
d! D

Z
@M
!:

2. Let M be an n-dimensional oriented manifold (not necessarily compact) without
boundary and ! 2 ˝n�1.M/ an .n � 1/-form with compact support. Then

Z
M
d! D 0:
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