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Preface

With the discovery of a new particle, announced on 4 July 2012 at CERN,
whose properties are “consistent with the long-sought Higgs boson” [31], the final
elementary particle predicted by the classical Standard Model of particle physics
has been found. The aim of this book is to explain the mathematical background as
well as some of the details of the Standard Model. It is directed both at students of
mathematics, who are interested in applications of gauge theory in physics, and at
students of physics, who would like to understand more of the mathematics behind
the Standard Model.

The book is based on my lecture notes for graduate courses held at the University
of Stuttgart and the LMU Munich in Germany. A selection of the material can be
covered in one semester. Prerequisites are an introductory course on manifolds and
differential geometry as well as some basic knowledge of special relativity, sum-
marized in the appendix. The first six chapters of the book treat the mathematical
framework of gauge theories, in particular Lie groups, Lie algebras, representations,
group actions, fibre bundles, connections and curvature, and spinors. The following
three chapters discuss applications in physics: the Lagrangians and interactions in
the Standard Model, spontaneous symmetry breaking, the Higgs mechanism of mass
generation, and some more advanced and modern topics like neutrino masses, CP
violation and Grand Unification.

The background in mathematics covered in the first six chapters of the book
is much more extensive than strictly needed to understand the Standard Model. For
example, the Standard Model is formulated on 4-dimensional Minkowski spacetime,
over which all fibre bundles can be trivialized and spinors have a simple explicit
description. However, this book is also intended as an introduction to modern
theoretical physics as a whole, and some of the topics (for instance, on spinors or
non-trivial fibre bundles) may be useful to students who plan to study topics such as
supersymmetry or superstring theory. Depending on the time, the interests and the
prior knowledge of the reader, he or she can take a shortcut and immediately start
at the chapters on connections, spinors or Lagrangians, and then go back if more
detailed mathematical knowledge is required at some point.
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viii Preface

Since we focus on the Standard Model, several topics related to gauge theory and
fibre bundles could not be covered, such as characteristic classes, holonomy theory,
index theorems, monopoles and instantons as well as applications of gauge theory
in pure mathematics, like Donaldson and Seiberg–Witten theory. For those topics a
number of textbooks exist, some of which can be found in the bibliography.

An interesting and perhaps underappreciated fact is that a substantial number
of phenomena in particle physics can be understood by analysing representations
of Lie groups and by rewriting or rearranging Lagrangians. Examples of such
phenomena, which we are going to study, are:

• symmetries of Lagrangians
• interactions between fields corresponding to elementary particles (quarks, lep-

tons, gauge bosons, Higgs boson), determined by the Lagrangian
• the Higgs mechanism of mass generation for gauge bosons as well as the mass

generation for fermions via Yukawa couplings
• quark and neutrino mixing
• neutrino masses and the seesaw mechanism
• CP violation
• Grand Unification

On the other hand, if precise predictions about scattering or decay of particles should
be made or if explicit formulas for quantum effects, such as anomalies and running
couplings, should be derived, then quantum field calculations involving Green’s
functions, perturbation theory and renormalization are necessary. These calculations
are beyond the scope of this book, but a number of textbooks covering these topics
can be found in the physics literature.

The references I used during the preparation of the book are listed in each chapter
and may be useful to the reader for further studies (this is only a selection of
references that I came across over the past several years, sometimes by chance,
and there are many other valuable books and articles in this field).

It is not easy to make a recommendation on how to fit the chapters of the book
into a lecture course, because it depends on the prior knowledge of the audience. A
rough guideline could be as follows:

• One-semester course: Often lecture courses on differentiable manifolds contain
sections on Lie groups, Lie algebras and group actions. If these topics can be
assumed as prior knowledge, then one could cover in gauge theory the unstarred
sections of Chaps. 4 to 7 and as much as possible of Chap. 8, perhaps going back
to Chaps. 1 to 3 if specific results are needed.

• Two-semester course: Depending on the prior knowledge of the audience, one
could cover in the first semester Chaps. 4 to 6 in more detail and in the second
semester Chaps. 7 to 9. Or one could cover in the first semester Chaps. 1 to 5 and
in the second semester Chaps. 6 to 8 (and as much as possible of Chap. 9).

Munich, Germany Mark J.D. Hamilton
July 2017
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Conventions

We collect some conventions that are used throughout the book.

General

• Sections and subsections marked with a � in front of the title contain additional
or advanced material and can be skipped on a first reading. Occasionally these
sections are used in later chapters.

• A word in italics is sometimes used for emphasis, but more often to denote terms
that have not been defined so far in the text, like gauge boson, or to denote
standard terms, like skew field, whose definition can be found in many textbooks.
A word in boldface is usually used for definitions.

• Diffeomorphisms of manifolds and isomorphisms of vector spaces, groups, Lie
groups, algebras and bundles are denoted by Š.

• We often use the Einstein summation convention by summing over the same
indices in an expression, without writing the symbol

P
(we also sum over two

lower or two upper indices).
• If A is a set, then IdAW A ! A denotes the identity map.
• A disjoint union of sets is denoted by P[ or PS.
• The symbols Re and Im denote the real and imaginary part of a complex number

(and sometimes of a quaternion).

Linear Algebra

• We denote by Mat.n � m;R/ the set of n � m-matrices with entries in a ring R.
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xii Conventions

• n � n-unit matrices
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are denoted by In or I.
• The conjugate of a complex number or quaternion q is denoted by Nq and

occasionally by q�. The conjugate NA of a complex or quaternionic matrix A is
defined by conjugating each entry: . NA/ij D Aij.

• The transpose of a matrix A is denoted by AT . A matrix is called symmetric if
AT D A and skew-symmetric or antisymmetric if AT D �A. For a complex or
quaternionic matrix A we set A� D . NA/T . A complex or quaternionic matrix A is
called Hermitian if A� D A and skew-Hermitian if A� D �A.

Note that the Dirac conjugate  of a spinor  , defined in Definition 6.7.15,
has a special meaning and is in general not equal to  � or  �.

• For a matrix A we denote by det.A/ the determinant and by tr.A/ the trace.
• In K

n, where K D R;C;H, we denote by e1; e2 : : : ; en the standard basis vectors
with n entries
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:

• If f W V ! W is a linear map between vector spaces, we sometimes write fv
instead of f .v/ for a vector v 2 V to reduce the number of brackets in formulas.

Groups

• The neutral element of a group G is usually denoted by e 2 G (if it is not a matrix
group, where the neutral element is usually denoted by I).

• By a group without preceding words like “topological” or “Lie” we mean a group
in the algebraic sense, without the additional structure of a topological space or
smooth manifold.

• We usually write the group operation as � (multiplication). Occasionally, we write
the operation for abelian groups as C (addition). The neutral element is then
sometimes denoted by 1 or 0, respectively.



Conventions xiii

Manifolds

• All manifolds in this book are smooth (C1), unless stated otherwise.
• On a manifold M we denote by C1.M/ the set of smooth functions on M with

values in R and by C1.M;W/ the set of smooth functions with values in a vector
space W.

• The differential of a smooth map f W M ! N between manifolds M and N at a
point p 2 M is denoted by Dpf or f� (push forward). If gW N ! Q is another
smooth map, then the chain rule in p 2 M is

Dp.g ı f / D Df .p/g ı Dpf

or simply

.g ı f /� D g� ı f�:

• If X is a vector field on a manifold M and p 2 M a point, then we denote by Xp

or X.p/ the value of X in p.
• By a curve � through a point p in a manifold M tangent to a vector X 2 TpM we

mean a smooth curve � W I ! M, defined on an open interval I around 0, such that
�.0/ D p and P�.0/ D d

dt

ˇ
ˇ
tD0 �.t/ D X.

• Suppose f is a real or complex-valued function on a manifold M, p 2 M a point
and X 2 TpM a tangent vector. Then we denote the directional derivative of
f along X by .LXf /.p/, df .X/ or Dpf .X/. The same notation is used if f takes
values in a real or complex vector space.

Diagrams

Feynman diagrams can be read with time increasing from left to right. Arrows
on fermion lines indicate particle-flow and point in the direction of momentum-
flow for particles, but opposite to the direction of momentum-flow for antiparticles
[125, Sect. 9.2]. The Feynman diagrams in this book have been prepared with
feynMF/feynMP. Commutative diagrams have been prepared with TikZ and func-
tion plots with MATLAB.
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Part I
Mathematical Foundations



Chapter 1
Lie Groups and Lie Algebras: Basic Concepts

Gauge theories are field theories of physics involving symmetry groups. Symmetry
groups are groups of transformations that act on something and leave something
(possibly something else) invariant. For example, symmetry groups can act on
geometric objects (by rotation, translation, etc.) and leave those objects invariant.
For the symmetries relevant in field theories, the groups act on fields and leave the
Lagrangian or the action (the spacetime integral over the Lagrangian) invariant.

Concerning symmetry groups or groups in general we can make a basic
distinction, without being mathematically precise for the moment: groups can be
discrete or continuous. Both types of symmetry groups already occur for elementary
geometric objects. Equilateral triangles and squares, for example, appear to have
discrete symmetry groups, while other objects, such as the circle S1, the 2-sphere
S2 or the plane R

2 with a Euclidean metric, have continuous symmetry groups. A
deep and less obvious fact, that we want to understand over the course of this book,
is that similar symmetry groups play a prominent role in the classical and quantum
field theories describing nature.

From a mathematical point of view, continuous symmetry groups can be concep-
tualised as Lie groups. By definition, Lie groups are groups in an algebraic sense
which are at the same time smooth manifolds, so that both structures – algebraic
and differentiable – are compatible. As a mathematical object, Lie groups capture
the idea of a continuous group that can be parametrized locally by coordinates, so
that the group operations (multiplication and inversion) are smooth maps in those
coordinates. Lie groups also cover the case of discrete, i.e. 0-dimensional groups,
consisting of a set of isolated points.

In theoretical physics, Lie groups like the Lorentz and Poincaré groups, which are
related to spacetime symmetries, and gauge groups, defining internal symmetries,
are important cornerstones. The currently accepted Standard Model of elementary
particles, for instance, is a gauge theory with Lie group

SU.3/ � SU.2/ � U.1/:

© Springer International Publishing AG 2017
M.J.D. Hamilton, Mathematical Gauge Theory, Universitext,
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There are also Grand Unified Theories (GUTs) based on Lie groups like SU.5/. We
shall see in later chapters that the specific kind of Lie group in a gauge theory (its
dimension, whether it is abelian or not, whether it is simple or splits as a product
of several factors, and so on) is reflected in interesting ways in the physics. For
example, in the case of the Standard Model, it turns out that:

• The fact that there are 8 gluons, 3 weak gauge bosons and 1 photon is related
to the dimensions of the Lie groups SU.3/ and SU.2/ � U.1/ (the SU.5/ Grand
Unified Theory has 12 additional gauge bosons).

• The fact that the strong, weak and electromagnetic interactions have different
strengths (coupling constants) is related to the product structure of the gauge
group SU.3/� SU.2/� U.1/ (GUTs built on simple Lie groups like SU.5/ have
only a single coupling constant).

• The fact that gluons interact directly with each other while photons do not is
related to the fact that SU.3/ is non-abelian while U.1/ is abelian.

Our main mathematical tool to construct non-trivial Lie groups will be Cartan’s
Theorem, which shows that any subgroup (in the algebraic sense) of a Lie group,
which is a closed set in the topology, is already an embedded Lie subgroup.

Besides Lie groups, Lie algebras play an important role in the theory of
symmetries. Lie algebras are vector spaces with a bilinear, antisymmetric product,
denoted by a bracket Œ� ; ��, satisfying the Jacobi identity. As an algebraic object, Lie
algebras can be defined independently of Lie groups, even though Lie groups and
Lie algebras are closely related: the tangent space to the neutral element e 2 G of a
Lie group G has a canonical structure of a Lie algebra. This means that Lie algebras
are in some sense an infinitesimal, algebraic description of Lie groups. Depending
on the situation, it is often easier to work with linear objects, such as Lie algebras,
than with non-linear objects like Lie groups. Lie algebras are also important in gauge
theories: connections on principal bundles, also known as gauge boson fields, are
(locally) 1-forms on spacetime with values in the Lie algebra of the gauge group.

In this chapter we define Lie groups and Lie algebras and describe the relations
between them. In the following chapter we will study some associated concepts,
like representations (which are used to define the actions of Lie groups on fields)
and invariant metrics (which are important in the construction of the gauge invariant
Yang–Mills Lagrangian). We will also briefly discuss the structure of simple and
semisimple Lie algebras.

Concerning symmetries, we will study in this chapter Lie groups as symmetry
groups of vector spaces and certain structures (scalar products and volume forms)
defined on vector spaces (in Chap. 3 on group actions we will study Lie groups
as symmetry groups of manifolds). Symmetry groups of vector spaces are more
generic than it may seem: it can be shown as a consequence of the Peter–Weyl
Theorem that any compact Lie group can be realized as a group of rotations of some
finite-dimensional Euclidean vector space Rm (i.e. as an embedded Lie subgroup of
SO.m/).
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We can only cover a selection of topics on Lie groups. The main references for
this and the following chapter are [24, 83, 142] and [153], where more extensive
discussions of Lie groups and Lie algebras can be found. Additional references are
[14, 34, 70, 77] and [129].

1.1 Topological Groups and Lie Groups

We begin with a first elementary mathematical concept that makes the idea of a
continuous group precise.

Definition 1.1.1 A topological group G is a group which is at the same time a
topological space so that the map

G � G �! G

.g; h/ 7�! g � h�1

is continuous, where G � G has the canonical product topology determined by the
topology of G.

Remark 1.1.2 Here and in the following we shall mean by a group just a group in
the algebraic sense, without the additional structure of a topological space or smooth
manifold.
We usually set e for the neutral element in G. An equivalent description of
topological groups is the following.

Lemma 1.1.3 A group G is a topological group if and only if it is at the same time
a topological space so that both of the maps

G � G �! G

.g; h/ 7�! g � h

G �! G

g 7�! g�1;

called multiplication and inversion, are continuous.

Proof Suppose that multiplication and inversion are continuous maps. Then the map

G � G �! G � G

.g; h/ 7�! �
g; h�1�
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is continuous and hence also the composition of this map followed by multiplication.
This shows that

G � G �! G

.g; h/ 7�! g � h�1

is continuous, hence the group G is a topological group.
Conversely, assume that G is a topological group. Then the map

G �! G � G �! G

g 7�! .e; g/ 7�! e � g�1 D g�1

is continuous and hence the map

G � G �! G � G �! G

.g; h/ 7�! �
g; h�1� 7�! g � �h�1��1 D g � h

is also continuous. This proves the claim. ut
The concept of topological groups is a bit too general to be useful for our purposes.
In particular, general topological spaces can be very complicated and do not have
to be, for example, locally Euclidean, like topological manifolds. We now turn to
the definition of Lie groups, which is the type of continuous groups we are most
interested in.

Definition 1.1.4 A Lie group G is a group which is at the same time a
manifold so that the map

G � G �! G

.g; h/ 7�! g � h�1

is smooth, where G � G has the canonical structure of a product manifold
determined by the smooth structure of G.

Remark 1.1.5 Note that we only consider Lie groups of finite dimension.

Remark 1.1.6 Here and in the following we mean by a manifold a smooth
manifold, unless stated otherwise.
Of course, every Lie group is also a topological group. We could define Lie groups
equivalently as follows.
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Lemma 1.1.7 A group G is a Lie group if and only if it is at the same time a
manifold so that both of the maps

G � G �! G

.g; h/ 7�! g � h

G �! G

g 7�! g�1

are smooth.

Proof The proof is very similar to the proof of Lemma 1.1.3. ut
A Lie group is thus a second countable, Hausdorff, topological group that can be
parametrized locally by finitely many coordinates in a smoothly compatible way, so
that multiplication and inversion depend smoothly on the coordinates.

Remark 1.1.8 (Redundancy in the Definition of Lie Groups) A curious fact about
Lie groups is that it suffices to check that multiplication is smooth, because then
inversion is automatically smooth (see Exercise 1.9.5).

Remark 1.1.9 (Hilbert’s Fifth Problem) It was shown by Gleason [65], Mont-
gomery and Zippin [97] in 1952 that a topological group, which is also a topological
manifold, has the structure of a Lie group. This is the solution to one interpretation
of Hilbert’s fifth problem (see [135] for more details). We will not prove this theorem
(the existence of a smooth structure), but we will show in Corollary 1.8.17 that on
a topological group, which is a topological manifold, there is at most one smooth
structure that turns it into a Lie group.

We will see in Sect. 1.5 that there is a deeper reason why we want symmetry
groups to be smooth manifolds: only in this situation can we canonically
associate to a group a Lie algebra, which consists of certain left-invariant
smooth vector fields on the group. Vector fields are only defined on smooth
manifolds (they need tangent spaces and a tangent bundle to be defined).
This explains why we are particularly interested in groups having a smooth
structure.

We consider some simple examples of Lie groups (more examples will follow later,
in particular, in Sect. 1.2.2).

Example 1.1.10 Euclidean space R
n with vector addition is an n-dimensional Lie

group, since addition

.x; y/ 7�! x C y
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and inversion

x 7�! �x

for x; y 2 R
n are linear and hence smooth. The Lie group R

n is connected, non-
compact and abelian.

Remark 1.1.11 Euclidean spaces R
n can also carry other (non-abelian) Lie group

structures besides the abelian structure coming from vector addition. For example,

Nil3 D
8
<

:

0

@
1 x y
0 1 z
0 0 1

1

A 2 Mat.3 � 3;R/
ˇ
ˇ
ˇ
ˇ
ˇ
x; y; z 2 R

9
=

;

with matrix multiplication is an example of a (so-called nilpotent), non-abelian Lie
group structure on R

3, also known as the Heisenberg group.

Example 1.1.12 Every countable group G with the manifold structure as a discrete
space, i.e. a countable union of isolated points, is a 0-dimensional Lie group,
because every map G � G ! G is smooth (locally constant). A discrete group
is compact if and only if it is finite. In particular, the integers Z and the finite cyclic
groups Zk D Z=kZ for k 2 N are discrete, abelian Lie groups. The Lie group Z2

can be identified with the 0-sphere

S0 D fx 2 R j jxj D 1g D f˙1g

with multiplication induced from R.

Example 1.1.13 The circle

S1 D fz 2 C j jzj D 1g

is a 1-dimensional Lie group with multiplication induced from C: multiplication on
C is quadratic and inversion on C

� D C n f0g is a rational function in real and
imaginary parts, thus smooth. Both maps restrict to smooth maps on the embedded
submanifold S1 � C. The Lie group S1 is connected, compact and abelian.

Example 1.1.14 The following set of matrices together with matrix multiplication
is a Lie group:

SO.2/ D
(�

cos˛ � sin˛
sin˛ cos˛

�

2 Mat.2 � 2;R/
ˇ
ˇ
ˇ
ˇ
ˇ
˛ 2 R

)

:
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As a manifold SO.2/ Š R=2�Z Š S1. We have

�
cos˛ � sin ˛
sin˛ cos˛

�

�
�

cosˇ � sinˇ
sinˇ cosˇ

�

D
�

cos.˛ C ˇ/ � sin.˛ C ˇ/

sin.˛ C ˇ/ cos.˛ C ˇ/

�

and

�
cos˛ � sin˛
sin ˛ cos˛

��1
D
�

cos.�˛/ � sin.�˛/
sin.�˛/ cos.�˛/

�

;

showing that multiplication and inversion are smooth maps and that SO.2/ is closed
under these operations. The Lie group SO.2/ is one of the simplest examples of a
whole class of Lie groups, known as matrix or linear Lie groups (the Heisenberg
group is another example). The Lie group SO.2/ is isomorphic to S1.
We want to generalize the examples of the Lie groups S0 and S1 and show that the
3-sphere S3 also has the structure of a Lie group. This is a good opportunity to
introduce (or recall) in a short detour the skew field of quaternions H.

1.1.1 Normed Division Algebras and the Quaternions

The real and complex numbers are known from high school and the first mathemat-
ics courses at university. There are, however, other types of “higher-dimensional”
numbers, which are less familiar, but still occur in mathematics and physics. It is
useful to consider the following, general, algebraic notions (a nice reference is [8]):

Definition 1.1.15

1. A real algebra is a finite-dimensional real vector space A with a bilinear map

A � A �! A

.a; b/ 7�! a � b

and a unit element 1 2 A such that 1 � a D a D a � 1 for all a 2 A. In particular,
the multiplication on A is distributive, but in general not associative.

2. We call the algebra A normed if there is a norm jj � jj on the vector space A such
that jjabjj D jjajj � jjbjj.

3. We call the algebra A a division algebra if ab D 0 implies that either a D 0 or
b D 0.

4. The algebra has multiplicative inverses if for any non-zero a 2 A there is an
a�1 2 A such that aa�1 D a�1a D 1.

It follows that every normed algebra is a division algebra and every associative
division algebra has multiplicative inverses (this is not true in general for non-
associative division algebras).
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The following is a classical theorem due to Hurwitz.

Theorem 1.1.16 (Hurwitz’s Theorem on Normed Division Algebras) There are
only four normed real division algebras:

1. The real numbers R of dimension 1.
2. The complex numbers C of dimension 2.
3. The quaternions H of dimension 4.
4. The octonions O of dimension 8.

We want to describe the quaternions in this section and leave the (non-associative)
octonions to Exercise 3.12.15.

Recall that there is an algebra structure on the vector space R
2, so that this

vector space becomes a field, called the complex numbers C: the multiplication
is associative and commutative. Furthermore, every non-zero element of C has a
multiplicative inverse.

The complex plane is spanned as a real vector space by the basis vectors 1 and
i, with i2 D �1. By distributivity this determines the product of any two complex
numbers. We define the conjugate of a complex number z D a C ib as Nz D a � ib
and the norm squared as jjzjj2 D zNz D a2 C b2. The multiplicative inverse of a
non-zero complex number is then

z�1 D Nz
jjzjj2 :

We also have

jjuvjj D jjujj � jjvjj

for all complex numbers u; v 2 C, so that C is a normed division algebra.
There is a similar construction of an algebra structure on the vector space R

4,
so that this vector space becomes a skew field, called the quaternions H: the
multiplication is associative and every non-zero element of H has a multiplicative
inverse. However, the multiplication is not commutative. As a real vector space H is
spanned by the basis vectors 1, i, j and k. The product satisfies

i2 D j2 D k2 D ijk D �1:

Using associativity of multiplication this determines all possible products among the
basis elements i; j; k and thus by distributivity the product of any two quaternions.
We have

ij D �ji D k;

jk D �kj D i;

ki D �ik D j;
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showing in particular that the product is not commutative. The products among i, j
and k can be memorized with the following diagram:

i

k j

We define the real quaternions by

ReH D fa D a1 2 H j a 2 Rg

and the imaginary quaternions by

ImH D fbi C cj C dk 2 H j b; c; d 2 Rg:

We also define the conjugate of a quaternion w D a C bi C cj C dk as

Nw D a � bi � cj � dk

and the norm squared as

jjwjj2 D a2 C b2 C c2 C d2 D w Nw D Nww:

The multiplicative inverse of a non-zero quaternion is then

w�1 D Nw
jjwjj2 :

We also have

jjwzjj D jjwjj � jjzjj

for all w; z 2 H, so that H is a normed division algebra.

Remark 1.1.17 One has to be careful with division of quaternions: the expression
z
w for z;w 2 H is not well-defined, even for w ¤ 0, since multiplication is not
commutative. One rather has to write zw�1 or w�1z.
Multiplication of quaternions defines a group structure on the 3-sphere:

Example 1.1.18 The 3-sphere

S3 D fw 2 H j jjwjj D 1g

of unit quaternions is a 3-dimensional embedded submanifold of H Š R
4 and a Lie

group with multiplication induced from H. As a Lie group S3 is connected, compact
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and non-abelian (it contains, in particular, the elements 1; i; j; k 2 H). The 3-sphere
and thus the quaternions have an interesting relation to the rotation group SO.3/
of R3, to be discussed in Example 1.3.8.

Remark 1.1.19 We shall see in Exercise 3.12.15 that there is an algebra structure
on the vector space R

8, so that this vector space becomes a normed division
algebra, called the octonions O. This multiplication induces a multiplication on
S7. However, the multiplication does not define a group structure on S7, because it
is not associative.

1.1.2 �Quaternionic Matrices

Certain properties of matrices with quaternionic entries cannot be proved in the
same way as for matrices with real or complex entries, because the quaternions are
only a skew field. In particular, it is not immediately clear how to make sense of the
inverse and a determinant for quaternionic square matrices. Even if this is possible,
it is not clear that such a determinant would have the nice properties we expect of it,
like multiplicativity and the characterization of invertible matrices as those of non-
zero determinant. Since we are going to consider groups of quaternionic matrices
as examples of Lie groups, like the so-called compact symplectic group Sp.n/, we
would like to fill in some of the details in this section (we follow the exposition in
[83, Sect. I.8] and [152]). Like any section with a star � this section can be skipped
on a first reading.

Definition 1.1.20 We denote by Mat.m � n;H/ the set of all m � n-matrices with
entries in H.
The set Mat.m � n;H/ is an abelian group with the standard addition of matrices.
We can also define right and left multiplication with elements q 2 H:

Mat.m � n;H/� H �! Mat.m � n;H/

.A; q/ 7�! Aq

and

H � Mat.m � n;H/ �! Mat.m � n;H/

.q;A/ 7�! qA:

This gives Mat.m � n;H/ the structure of a right or left module over the quaternions
H; we call this a right or left quaternionic vector space (since H is not
commutative, left and right multiplication differ). In particular, the spaces of row
and column vectors, denoted by H

n, each have the structure of a right and left
quaternionic vector space.
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We can define matrix multiplication

Mat.m � n;H/� Mat.n � p;H/ �! Mat.m � p;H/

.A;B/ 7�! A � B

in the standard way, where we have to be careful to preserve the ordering in the
products of the entries. All of the constructions so far work in exactly the same way
for matrices over any ring.

We now restrict to quaternionic square matrices Mat.n � n;H/. It is sometimes
useful to have a different description of such matrices. The following is easy to see:

Lemma 1.1.21 Let q 2 H be a quaternion. Then there exist unique complex
numbers q1; q2 2 C such that

q D q1 C jq2:

Let A 2 Mat.n � n;H/ be a quaternionic square matrix. Then there exist unique
complex square matrices A1;A2 2 Mat.n � n;C/ such that

A D A1 C jA2:

Definition 1.1.22 For a matrix A D A1CjA2 2 Mat.n�n;H/, with A1;A2 complex,
we define the adjoint to be the complex square matrix

�A D
�

A1 �A2
A2 A1

�

2 Mat.2n � 2n;C/:

Example 1.1.23 For the special case of a quaternion q D q1Cjq2 2 H with q1; q2 2
C, considered as a 1 � 1-matrix, we get

�q D
�

q1 �q2
q2 q1

�

:

The quaternions H are sometimes defined as the subset of Mat.2 � 2;C/ consisting
of matrices of this form.

Remark 1.1.24 Another definition of the adjoint, used in [152], is to write A D
A1 C A2 j with A1;A2 complex and define

�A D
�

A1 A2
�A2 A1

�

:

We continue to use our Definition 1.1.22, which seems to be more standard.
Using the adjoint we get the following identification of Mat.n � n;H/ with a subset
of Mat.2n � 2n;C/.
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Proposition 1.1.25 (QuaternionicMatrices as a Subspace of ComplexMatrices)
We define an element J 2 Mat.2n � 2n;C/ by

J D
�
0 In

�In 0

�

:

Then J�1 D �J and the image of the injective map

�W Mat.n � n;H/ �! Mat.2n � 2n;C/

A 7�! �A

consists of the set

im� D ˚
X 2 Mat.2n � 2n;C/ j JXJ�1 D X

�
:

The proof is a simple calculation. The following proposition can also be verified
by a direct calculation, where for the second property we use that Cj D jC for a
complex matrix C:

Proposition 1.1.26 (Properties of the Adjoint) The adjoints of quaternionic n�n-
matrices A;B satisfy

�ACB D �A C �B

�AB D �A�B

tr.�A/ D 2Re.tr.A//:

Corollary 1.1.27 If quaternionic n � n-matrices A;B satisfy AB D I, then BA D I.

Proof If AB D In, then

�A�B D �AB D I2n:

Hence by a property of the inverse of complex matrices

�BA D �B�A D I2n

and thus BA D In. ut
We can therefore define:

Definition 1.1.28 A matrix A 2 Mat.n � n;H/ is called invertible if there exists a
matrix B 2 Mat.n � n;H/ with AB D I D BA. The matrix B is called the inverse
of A.

Corollary 1.1.29 A matrix A 2 Mat.n � n;H/ is invertible if and only if its adjoint
�A is invertible.
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Proof If A is invertible, then �A is invertible by Proposition 1.1.26. Conversely,
assume that �A is invertible. We can write ��1

A in the form

��1
A D

�
B1 B2
B3 B4

�

for some complex n � n-matrices B1; : : : ;B4. Then

A1B1 � A2B3 D In;

A2B1 C A1B3 D 0:

Setting

B D B1 C jB3 2 Mat.n � n;H/

we get

AB D A1B1 C jA2B1 C A1jB3 C jA2jB3

D .A1B1 � A2B3/C j.A2B1 C A1B3/

D In:

We conclude that A is invertible with inverse B. ut
Definition 1.1.30 The determinant of a quaternionic matrix A 2 Mat.n � n;H/ is
defined by

det.A/ D det.�A/:

Remark 1.1.31 Note that the determinant is not defined for matrices over a general
non-commutative ring.
The determinant on Mat.n � n;H/ has the following property.

Proposition 1.1.32 (Quaternionic Determinant Is Real and Non-negative) The
determinant of a matrix A 2 Mat.n � n;H/ is real and non-negative, det.A/ � 0.

Proof According to Proposition 1.1.25

J�AJ�1 D �A

for all A 2 Mat.n � n;H/. Since det.J/ D 1 we get

det.�A/ D det
�
J�AJ�1� D det .�A/;

hence det.�A/ 2 R.
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The proof that det.A/ is non-negative is more involved. Any quaternionic matrix
A 2 Mat.n � n;H/ can be brought to the form

�
Ik 0

0 0

�

for some k � n by applying elementary row and column operations. The
corresponding elementary quaternionic matrices E act by left or right multiplication
on A, thus the adjoint �E acts by left or right multiplication on �A. The elementary
matrix E for switching two rows (columns) or adding a row (column) to another one
are real, thus

�E D
�

E 0

0 E

�

and det.�E/ D det.E/2 D 1. It remains to consider the elementary matrix E that
multiplies a row (column) by a non-zero quaternion a. Writing a D a1 C ja2 with
a1; a2 complex, the elementary matrix E is of the form E D E1 C jE2 with

E1 D

0

B
B
B
B
B
B
B
B
B
B
B
@

1
: : :

1

a1
1
: : :

1

1

C
C
C
C
C
C
C
C
C
C
C
A

; E2 D

0

B
B
B
B
B
B
B
B
B
B
B
@

0
: : :

0

a2
0
: : :

0

1

C
C
C
C
C
C
C
C
C
C
C
A

and

�E D
�

E1 �E2
E2 E1

�

:

Interchanging twice a pair of rows and twice a pair of columns we can bring �E to
the following form, without changing det.�E/:

�0
E D

0

B
B
B
B
B
@

a1 �Na2
a2 Na1

1
: : :

1

1

C
C
C
C
C
A

:
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It follows that

det.�E/ D det.�0
E/ D ja1j2 C ja2j2 > 0:

This proves the claim, since �A is the product of matrices of non-negative determi-
nant. ut
Remark 1.1.33 A second, independent proof of the second assertion in Proposi-
tion 1.1.32 uses that the subset GL.n;H/ of invertible matrices in Mat.n � n;H/
is connected, cf. Theorem 1.2.22. Therefore its image under the determinant is
contained in RC. The claim then follows, because GL.n;H/ is dense in Mat.n �
n;H/.

Example 1.1.34 According to Exercise 1.9.8 the determinant of a matrix

.a/ 2 Mat.1 � 1;H/; with a 2 H;

is equal to

det.a/ D jjajj2:

The next corollary follows from what we have shown above.

Corollary 1.1.35 (Properties of the Quaternionic Determinant) The determi-
nant is a smooth map

detW Mat.n � n;H/ �! R;

where Mat.n � n;H/ has the manifold structure of R4n2 . For all matrices A;B 2
Mat.n � n;H/ the following identity holds:

det.AB/ D det.A/ det.B/:

A matrix A 2 Mat.n � n;H/ is invertible if and only if det.A/ ¤ 0.
The determinant of quaternionic matrices, defined above via the adjoint, therefore
has at least some of the expected properties.

Remark 1.1.36 Note that the determinant of quaternionic matrices does not define
an H-multilinear, alternating map on H

n � : : : � H
n (n factors).

1.1.3 Products and Lie Subgroups

There are certain well-known constructions that yield new groups (and manifolds)
from given groups (manifolds). Some of these constructions are compatible for
both groups and manifolds and can be employed to generate new Lie groups from
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known ones. We discuss two important examples of such constructions: products
and subgroups.

Proposition 1.1.37 (Products of Lie Groups) Let G and H be Lie groups. Then
the product manifold G � H with the direct product structure as a group is a Lie
group, called the product Lie group.

Proof This follows, because the maps

G � H �! G � H

.g; h/ 7�! �
g�1; h�1�

and

.G � H/ � .G � H/ �! G � H

.g1; h1; g2; h2/ 7�! .g1g2; h1h2/

are smooth. ut
Example 1.1.38 The n-torus

Tn D S1 � � � � � S1„ ƒ‚ …
n

is a compact, abelian Lie group. Similarly multiple (finite) products of copies
of S3 and S1 are compact Lie groups. A particularly interesting case is S3 � S3,
because it can be identified with the Lie group Spin.4/, to be defined in Chap. 6 (see
Example 6.5.17).

Definition 1.1.39 Let G be a Lie group.

1. An immersed Lie subgroup of G is the image of an injective immersion �W H !
G from a Lie group H to G such that � is a group homomorphism.

2. An embedded Lie subgroup of G is the image of an injective immersion
�W H ! G from a Lie group H to G such that � is a group homomorphism
and a homeomorphism onto its image.

We call the map � a Lie group immersion or Lie group embedding, respectively.
In both cases, the set �.H/ is endowed with the topology, manifold structure
and group structure such that �W H ! �.H/ is a diffeomorphism and a group
isomorphism. Then �.H/ is a Lie group itself. The difference between embedded
and immersed Lie subgroups �.H/ � G is whether the topology on �.H/ coincides
with the subspace topology on �.H/ inherited from G or not. The group structure
on �.H/ is in both cases the subgroup structure inherited from G.
An embedded Lie subgroup can be described equivalently as an embedded sub-
manifold which is at the same time a subgroup. Most of the time we will consider
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embedded Lie subgroups (immersed Lie subgroups appear naturally in Sect. 1.6).
Note the following:

Proposition 1.1.40 If �W H ! G is a Lie group immersion where H is compact,
then � is a Lie group embedding.

Proof Since H is compact and G is Hausdorff, it follows that the injective
immersion �W H ! G is a closed map, hence a homeomorphism onto its image. ut
Hence immersed Lie subgroups which are not embedded can only be non-compact.

Example 1.1.41 Consider the Lie group G D S1 and an element x D e2� i˛ 2 S1

with ˛ 2 R. The number ˛ is rational if and only if there exists an integer N such
that N˛ is an integer. This happens if and only if xN D 1. Hence if ˛ is rational,
then x generates an embedded Lie subgroup in S1, isomorphic to the finite cyclic
group ZK , where K is the smallest positive integer such that K˛ is an integer. If ˛ is
irrational, then x generates an immersed Lie subgroup in S1, isomorphic to Z.

Example 1.1.42 Similarly, consider the Lie group G D T2, which we think of as
being obtained by identifying opposite sides of a square Œ�1; 1� � Œ�1; 1�. It can
be shown that the straight lines on the square of rational slope through the neutral
element e D .0; 0/ define embedded Lie subgroups, diffeomorphic to S1, while
the straight lines of irrational slope through .0; 0/ define immersed Lie subgroups,
diffeomorphic to R.

Example 1.1.43 The sets K� D K n f0g of invertible elements, for K D R;C;H,
together with multiplication are Lie groups of dimension 1; 2; 4, respectively. The
spheres S0; S1; S3 are embedded Lie subgroups of codimension 1.
The proof of the following (non-trivial) theorem is deferred to Sect. 1.8.

Theorem 1.1.44 (Cartan’s Theorem, Closed Subgroup Theorem) Let G
be a Lie group and suppose that H � G is a subgroup in the algebraic sense.
Then H is an embedded Lie subgroup if and only if H is a closed set in the
topology of G.

By a closed subgroup of a Lie group G we always mean a subgroup which is a
closed set in the topology of G. The difficult part in the proof of this theorem is to
show that a closed subgroup of a Lie group is an embedded submanifold. Cartan’s
Theorem allows us to construct many new interesting Lie groups by realizing them
as closed subgroups of given Lie groups.

Remark 1.1.45 Groups can also be constructed by taking the quotient of a group G
by a normal subgroup H. However, for a Lie group G and a subgroup H, the quotient
space G=H will not be a smooth manifold in general (at least not canonically). We
will show in Sect. 3.8.3 that if H is a closed subgroup of a Lie group G, then G=H
is indeed a smooth manifold. In this case, if H is normal, then G=H will again be a
Lie group.
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1.2 Linear Groups and Symmetry Groups of Vector Spaces

The most famous class of examples of Lie groups are the general linear groups
GL.n;K/ over the real, complex and quaternionic numbers K as well as the
following groups:

Definition 1.2.1 A closed subgroup of a general linear group is called a linear
group or matrix group.
By Cartan’s Theorem 1.1.44 linear groups are embedded Lie subgroups and, in
particular, Lie groups themselves. We are especially going to study the following
families of linear groups, which are called classical Lie groups:

• the special linear groups in the real, complex and quaternionic case
• the (special) orthogonal group in the real case
• the (special) unitary group in the complex case
• the compact symplectic group (also called the quaternionic unitary group) in

the quaternionic case
• the real pseudo-orthogonal groups for indefinite scalar products, like the

Lorentz group.

The general linear groups are the (maximal) symmetry groups of vector spaces.
The families of linear groups above arise as automorphism groups of certain
structures on vector spaces. They can also be understood as isotropy groups in
certain representations of the general linear groups.

There are two classes of Lie groups we are interested in which are not (at least a
priori) linear:

• the exceptional compact Lie groups G2;F4;E6;E7;E8 (we will discuss G2 in
detail in Sect. 3.10)

• the spin groups, which are certain double coverings of (pseudo-)orthogonal
groups.

All Lie groups that we will consider belong to one of these classes or are products
of such Lie groups. Most linear groups are non-abelian and certain classes of linear
groups – the (special) orthogonal, (special) unitary and symplectic groups – are
compact. Lie groups like the Lorentz group and its spin group are not compact.

There are several reasons why linear groups are important, in particular with
regard to compact Lie groups:

1. First, it is possible to prove that any compact Lie group is isomorphic as a Lie
group to a linear group, see Theorem 1.2.7. In particular, the compact exceptional
Lie groups and the compact spin groups are isomorphic to linear groups.

2. Secondly, there is a classification theorem which shows that (up to finite
coverings) any compact Lie group G is isomorphic to a product

G D G1 � : : : � Gr
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of compact Lie groups, all of which belong to the classes mentioned above
(classical linear, spin and exceptional Lie groups); see Theorem 2.4.23 and
Theorem 2.4.29 for the classification of compact Lie groups.

Even though the classical linear groups look quite special, they are thus of general
significance, in particular for gauge theories with compact gauge groups.

Spin groups, such as the universal covering of the Lorentz group and its higher-
dimensional analogues, are also important in physics, because they are involved in
the mathematical description of fermions.

Finally, the exceptional Lie groups appear in several places in physics: E6, for
example, is the gauge group of certain Grand Unified Theories, E8 plays a role in
heterotic string theory and G2 is related to M-theory compactifications.

Remark 1.2.2 It is an interesting fact that there are non-compact Lie groups which
are not isomorphic to linear groups. One example is the universal covering of the
Lie group SL.2;R/ (see [70, Sect. 5.8] for a proof).

1.2.1 Isomorphism Groups of Vector Spaces

The simplest and fundamental linear groups, perhaps already known from a course
on linear algebra, are the general linear groups themselves. Let K D R;C;H.

Definition 1.2.3 For n � 1 the general linear group is defined as the group of
linear isomorphisms of Kn:

GL.n;K/ D fA 2 Mat.n � n;K/ j A is invertibleg;

where Mat.n�n;K/ denotes the ring of n�n-matrices with coefficients in K. Group
multiplication in GL.n;K/ is matrix multiplication.
For K D H we act with matrices on the left of the right vector space Hn, so that the
maps are indeed H-linear:

A.vq/ D .Av/q 8A 2 Mat.n � n;H/; v 2 H
n; q 2 H:

The following alternative description of the general linear group follows immedi-
ately:

Proposition 1.2.4 The general linear group is given by

GL.n;K/ D fA 2 Mat.n � n;K/ j det.A/ ¤ 0g:

Clearly, for n D 1, we have

GL.1;K/ D K
�:

We first consider the real general linear group.
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Proposition 1.2.5 (The Real General Linear Group Is a Lie Group) GL.n;R/
is a non-compact n2-dimensional Lie group. It is not abelian for n � 2.

Proof It is clear by properties of the determinant that GL.n;R/ is a group in the
algebraic sense.

Note that by continuity of the determinant, GL.n;R/ is an open subset of

Mat.n � n;R/ Š R
n2 :

In particular, GL.n;R/ is a smooth manifold of dimension n2. Multiplication of
two matrices A;B is quadratic in their coordinates, hence a smooth map. According
to Remark 1.1.8 this shows that GL.n;R/ is indeed a Lie group (we can also
see directly that inversion of a matrix is, by Cramer’s rule, a rational map in the
coordinates, hence smooth).

The manifold GL.n;R/, as a subset of R
n2 with the Euclidean norm, is not

bounded, because it contains the unbounded set of diagonal matrices of the form
rIn with r 2 R

� D R n f0g (these elements actually define a subgroup of the general
linear group, isomorphic to R

�). By Heine–Borel, GL.n;R/ is not compact.
To show that GL.n;R/ is not abelian for n � 2, note that GL.n;R/ contains the

subgroup H isomorphic to GL.2;R/, consisting of matrices of the form

�
A 0

0 In�2

�

; A 2 GL.2;R/:

It therefore suffices to show that GL.2;R/ is not abelian: it is easy to find two
matrices in GL.2;R/ which do not commute. ut
Using similar arguments it can be shown:

Proposition 1.2.6 (Complex and Quaternionic General Linear Groups Are Lie
Groups) Over the complex numbers and quaternions we have:

1. GL.n;C/ is a non-compact 2n2-dimensional Lie group. It is not abelian for
n � 2.

2. GL.n;H/ is a non-compact 4n2-dimensional Lie group. It is not abelian for
n � 1.

As an application of the Peter–Weyl Theorem, the following can be shown (for a
proof, which is beyond the scope of this book, see [24, 83, 129]):

Theorem 1.2.7 (Compact Lie GroupsAre Linear) Let G be a compact Lie group.
Then there exists a smooth, injective group homomorphism � of G into a general
linear group GL.n;C/ for some n.
According to Corollary 1.8.18 the map � is a Lie group isomorphism onto a linear
group (see Sect. 1.3 for the formal definition of Lie group homomorphisms and
isomorphisms).
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The Peter–Weyl Theorem shows that every compact Lie group can be
considered as a linear group. If we assume this result, we shall see later as
a consequence of Theorem 2.1.39 that a compact Lie group G can even be
embedded as a closed subgroup in a unitary group U.n/ for some n and thus in
the rotation group SO.2n/ by Exercise 1.9.10. As a consequence any compact
Lie group G can be literally thought of as a group whose elements are rotations
on some R2n.

Remark 1.2.8 By comparison, recall that Cayley’s Theorem says that any finite
group of order n can be embedded as a subgroup of the symmetric group Sn.

1.2.2 Automorphism Groups of Structures on Vector Spaces

We want to consider specific classes of linear groups that arise as automorphism
groups of certain structures on vector spaces.

Definition 1.2.9 We define the following scalar products:

1. On R
n the standard Euclidean scalar product

hv;wi D vTw D
nX

kD1
vkwk:

2. On C
n the standard Hermitian scalar product

hv;wi D v�w D
nX

kD1
vkwk:

3. On H
n the standard symplectic scalar product

hv;wi D v�w D
nX

kD1
vkwk:

Here

v D

0

B
B
B
@

v1
v2
:::

vn

1

C
C
C
A
; w D

0

B
B
B
@

w1
w2
:::

wn

1

C
C
C
A

are column vectors in R
n, Cn and H

n, respectively.
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Definition 1.2.10 Let K D R;C;H. We define the standard volume form vol on
V D K

n by

volW V � : : : � V �! K

.v1; : : : ; vn/ 7�! det.v1; : : : ; vn/;

where .v1; : : : ; vn/ is the n � n-matrix with columns v1; : : : ; vn.

Remark 1.2.11 For K D R;C this form is K-multilinear and alternating, but not for
K D H.

Definition 1.2.12 Let n � 1.

1. The special linear groups for K D R;C;H are defined as the automorphism
groups of the standard volume forms:

SL.n;K/ D fA 2 GL.n;K/ j vol.Av1; : : : ;Avn/ D vol.v1; : : : ; vn/ 8v1; : : : ; vn 2 K
ng:

2. The orthogonal, unitary and (compact) symplectic (also called quaternionic
unitary) groups are defined as the automorphism groups of the standard
Euclidean, Hermitian and symplectic scalar products:

O.n/ D fA 2 GL.n;R/ j hAv;Awi D hv;wi 8v;w 2 R
ng;

U.n/ D fA 2 GL.n;C/ j hAv;Awi D hv;wi 8v;w 2 C
ng;

Sp.n/ D fA 2 GL.n;H/ j hAv;Awi D hv;wi 8v;w 2 H
ng:

3. The special orthogonal and special unitary groups are defined as

SO.n/ D O.n/\ SL.n;R/;

SU.n/ D U.n/\ SL.n;C/:

These Lie groups are called classical groups.

Remark 1.2.13 There are additional classes of classical groups, called (non-
compact) symplectic groups, which are defined as automorphism groups of
skew-symmetric forms. We will not consider these Lie groups in the subsequent
discussions.

Remark 1.2.14 In the physics literature the Lie group Sp.n/ is sometimes denoted
by USp.n/ (and occasionally by Sp.2n/ or USp.2n/). For example, [149] uses the
notation Sp.n/, whereas [90] uses the notation Sp.2n/ and [138] uses the notation
USp.2n/. We continue to use the notation Sp.n/.
It is often useful to have the following alternative description of these groups.
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Proposition 1.2.15 (Matrix Description of Classical Groups) Let n � 1.

1. The special linear groups are given by

SL.n;K/ D fA 2 Mat.n � n;K/ j det.A/ D 1g:

2. The orthogonal, unitary and symplectic groups are given by

O.n/ D ˚
A 2 Mat.n � n;R/ j A � AT D I

�
;

U.n/ D ˚
A 2 Mat.n � n;C/ j A � A� D I

�
;

Sp.n/ D ˚
A 2 Mat.n � n;H/ j A � A� D I

�
;

where AT denotes the transpose of A and A� D . NA/T .
3. The special orthogonal and special unitary groups are given by

SO.n/ D ˚
A 2 Mat.n � n;R/ j A � AT D I; det.A/ D 1

�
;

SU.n/ D ˚
A 2 Mat.n � n;C/ j A � A� D I; det.A/ D 1

�
:

Proof

1. For A 2 Mat.n�n;K/ and column vectors v1; : : : ; vn 2 K
n the following identity

holds:

vol.Av1; : : : ;Avn/ D det.A/ � vol.v1; : : : ; vn/:

This follows because as matrices

.Av1; : : : ;Avn/ D A � .v1; : : : ; vn/

and the determinant is multiplicative: det.AB/ D det.A/ det.B/. This implies the
formula for SL.n;K/.

2. A matrix A 2 GL.n;R/ satisfies

hAv;Awi D hv;wi 8v;w 2 R
n

if and only if

vT
�
ATA

�
w D vTw 8v;w 2 R

n:

Choosing v D ei;w D ej this happens if and only if ATA D I and thus AAT D I.
The complex and quaternionic case follow similarly.

3. This is clear by the results above.
ut



26 1 Lie Groups and Lie Algebras: Basic Concepts

We did not define a quaternionic special unitary group, because it turns out that
there is no difference between such a group and the quaternionic unitary group.
This follows from the next proposition.

Proposition 1.2.16 Let A 2 Sp.n/. Then det.A/ D 1.

Proof Let A D A1 C jA2 2 Mat.n � n;H/ with A1;A2 complex. According to
Proposition 1.1.32 the determinant of A is real and non-negative. We have

A� D A�1 � jAT
2

and

�A� D �
�
A:

Thus for A 2 Sp.n/

1 D det.I/ D det.�A/ det
�
�
�
A

�
D j det.�A/j2 D .det.A//2:

Therefore det.A/ D 1. ut
We now want to prove the main result in this subsection.

Theorem 1.2.17 (Classical Groups Are Linear) The special linear, (spe-
cial) orthogonal, (special) unitary and symplectic groups are closed sub-
groups of general linear groups, i.e. linear groups. They have the following
properties:

1. The special linear groups have dimension

dim SL.n;R/ D n2 � 1;

dim SL.n;C/ D 2n2 � 2;
dim SL.n;H/ D 4n2 � 1:

These Lie groups are not compact for n � 2.
2. The orthogonal, unitary and symplectic groups have dimension

dim O.n/ D 1

2
n.n � 1/;

dim U.n/ D n2;

dim Sp.n/ D 2n2 C n:

(continued)
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Theorem 1.2.17 (continued)
These Lie groups are compact for all n � 1.

3. The special orthogonal and special unitary groups have dimension

dim SO.n/ D 1

2
n.n � 1/;

dim SU.n/ D n2 � 1:

These Lie groups are compact for all n � 1.

Proof

• Closed subgroups: It is clear that all of these subsets are subgroups of general
linear groups. The maps

detW Mat.n � n;K/ �! K;

for K D R;C, and

detW Mat.n � n;H/ �! R

are continuous (polynomial in the coordinates), hence the preimages det�1.1/
are closed subsets. This shows that SL.n;K/ is a closed subgroup of the general
linear group GL.n;K/. Similarly, the map

Mat.n � n;R/ �! Mat.n � n;R/

A 7�! A � AT

is continuous (quadratic in the coordinates), hence the preimage of I is a closed
subset. This shows that O.n/ and the intersection SO.n/ D O.n/\ SL.n;R/ are
closed subgroups of the general linear group GL.n;R/. Similarly for U.n/, SU.n/
and Sp.n/.

• Compactness: To show that SL.n;K/ is not compact for n � 2 it suffices to
show that the subgroup SL.2;K/ is not compact. This follows by considering the
unbounded subset of matrices of the form

�
1 a
0 1

�

2 SL.2;K/; a 2 R:

To show that O.n/ and hence SO.n/ are compact it suffices to show by Heine–
Borel that O.n/ is a bounded subset of the Euclidean space

Mat.n � n;R/ Š R
n2 :
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Let A 2 O.n/. For fixed i D 1; : : : ; n we have

1 D �
AAT

�
ii

D A2i1 C A2i2 C : : :C A2in;

hence jAijj � 1 for all indices i; j. This implies the claim. Compactness of U.n/,
SU.n/ and Sp.n/ follows similarly.

• Dimensions of special linear groups: Finally we calculate the dimensions. We
claim that the smooth map

detW Mat.n � n;K/ �! K

for K D R;C has 1 as a regular value. This implies again that SL.n;R/ and
SL.n;C/ are smooth manifolds and also the formulas n2 � 1 and 2n2 � 2 for the
dimensions (the argument for SL.n;H/ is slightly different and is given below).

To prove the claim, let A 2 SL.n;K/ for K D R;C and write A as

A D .v1; v2; : : : ; vn/;

where the vi are column vectors in K
n. For a 2 K fixed consider the curve

C.t/ D ..1C at/v1; v2; : : : ; vn/

in Mat.n � n;K/. Then C.0/ D A and since the determinant is multilinear

det C.t/ D .1C at/ det A D .1C at/;

thus

d

dt

ˇ
ˇ
ˇ
ˇ
tD0

det C.t/ D a:

This shows that the differential of the determinant is surjective in every A 2
SL.n;K/ and 1 is a regular value.

We now prove the formula for the dimension of SL.n;H/. We want to show
that

detW Mat.n � n;H/ �! R

has 1 as a regular value. This implies that SL.n;H/ is a smooth manifold of
dimension 4n2 � 1. Let A D A1 C jA2 2 SL.n;H/ with A1;A2 complex, written
in terms of complex column vectors as

A1 D .v1; v2; : : : ; vn/;

A2 D .w1;w2; : : : ;wn/:
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For b 2 R consider the curve

D.t/ D ..1C bt/v1; v2; : : : ; vn/C j..1C bt/w1;w2; : : : ;wn/

in Mat.n � n;H/. Then D.0/ D A and the adjoint of D.t/ is

�D.t/ D
�
.1C bt/v1 v2 : : : vn �.1C bt/ Nw1 � Nw2 : : : � Nwn

.1C bt/w1 w2 : : : wn .1C bt/ Nv1 Nv2 : : : Nvn

�

with determinant

det D.t/ D det�D.t/ D .1C bt/2 det�A D .1C bt/2:

It follows that

d

dt

ˇ
ˇ
ˇ
ˇ
tD0

det D.t/ D 2b:

This shows that the differential of the determinant is surjective in every A 2
SL.n;H/ and 1 is a regular value.

• Dimensions of O.n/, U.n/ and Sp.n/: To calculate the dimension of the
orthogonal group O.n/ consider the map

f W Mat.n � n;R/ �! Sym.n;R/

A 7�! A � AT ;

where Sym.n;R/ denotes the space of symmetric, real n � n-matrices. Then
O.n/ D f �1.I/. The differential of this map at a point A 2 O.n/ in the direction
X 2 Mat.n � n;R/ is

.DA f /.X/ D XAT C AXT :

Let B 2 Sym.n;R/ and set

X D 1

2
BA:

Then .DA f /.X/ D B and thus I is a regular value of f . This shows that O.n/ is a
smooth manifold of dimension

dim O.n/ D dim Mat.n � n;R/� dim Sym.n;R/

D n2 � 1

2
n.n C 1/

D 1

2
n.n � 1/:
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We can calculate the dimensions of U.n/ and Sp.n/ in a similar way, utilizing for
K D C;H the map

f W Mat.n � n;K/ �! Herm.n;K/

A 7�! A � A�;

where Herm.n;K/ denotes the space of Hermitian n � n-matrices (the set of all
matrices B with B� D B). Again I is a regular value and thus U.n/ and Sp.n/ are
smooth manifolds of dimension

dimR Mat.n � n;K/ � dimR Herm.n;K/ D kn2 �
�
1

2
k.n � 1/n C n

�

D 1

2
kn.n C 1/� n;

where k D 2; 4 for K D C;H. This implies

dim U.n/ D n2

and

dim Sp.n/ D 2n2 C n:

• Dimensions of SO.n/ and SU.n/: We claim that SO.n/ is a submanifold of
codimension zero in O.n/. The determinant on O.n/ has values in fC1;�1g,

detW O.n/ �! fC1;�1g:

This map obviously has 1 as a regular value.
Similarly, we claim that SU.n/ is a submanifold of codimension one in U.n/.

The determinant on U.n/ has values in S1,

detW U.n/ �! S1:

We claim that this map has 1 as a regular value. Let A 2 SU.n/, written in terms
of complex column vectors as

A D .v1; v2; : : : ; vn/:

For ˛ 2 R consider the curve

C.t/ D �
ei˛tv1; v2; : : : ; vn

�
:
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It is easy to check that C.t/ is a curve in U.n/ and

det C.t/ D ei˛t det A D ei˛t

with

d

dt

ˇ
ˇ
ˇ
ˇ
tD0

det C.t/ D i˛:

This proves the claim.
ut

Example 1.2.18 It follows directly from the matrix description that

SL.1;R/ D SL.1;C/ D f1g;
SL.1;H/ D S3

and

O.1/ D S0;

U.1/ D S1;

Sp.1/ D S3:

We also saw that

SO.2/ D
(�

cos˛ � sin ˛
sin˛ cos˛

�

2 Mat.2 � 2;R/
ˇ
ˇ
ˇ
ˇ
ˇ
˛ 2 R

)

and it is not difficult to check that

SU.2/ D
(�

a �Nb
b Na

�

2 Mat.2 � 2;C/
ˇ
ˇ
ˇ
ˇ
ˇ
a; b 2 C; jaj2 C jbj2 D 1

)

:

We will discuss less trivial identifications between Lie groups, like SU.2/ Š S3,
after we have defined the notion of a Lie group isomorphism.

Remark 1.2.19 Some of the linear groups appear directly in gauge theories: For
instance, as mentioned before, the gauge group of the current Standard Model of
particle physics is the product

SU.3/ � SU.2/ � U.1/:

There are Grand Unified Theories based on Lie groups like SU.5/ and SO.10/ (or
rather its universal covering group Spin.10/).
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Remark 1.2.20 (Classical Linear Groups as Isotropy Groups) Note that GL.n;K/
and its subgroups act canonically on the (column) vector space K

n by matrix
multiplication from the left. This is an example of a representation, called the
fundamental representation. We will consider representations in more detail in
Sect. 2.1.

Representations are special classes of group actions, see Chap. 3. It is not difficult
to see that the linear groups can be realized as isotropy groups of certain elements
in suitable representation spaces of the general linear groups. Representations and
isotropy groups will also be used in Sect. 3.10 to define the exceptional Lie group
G2 as an embedded Lie subgroup of GL.7;R/.

1.2.3 Connectivity Properties of Linear Groups

Proposition 1.2.21 (Connected Components of Lie Groups) Let G be a Lie
group. Then all connected components of G are diffeomorphic to the connected
component Ge of the neutral element e 2 G. In particular, all connected components
have the same dimension.

Proof Let g 2 G and denote the connected component of G containing g by Gg.
Consider the left translation, given by

LgW Ge �! G

x 7�! gx

restricted to the connected component Ge containing e. The image of this smooth
map is connected and contains g, therefore the image is contained in Gg. By the
same argument

Lg�1 W Gg �! G

has image contained in Ge. It follows that

LgW Ge �! Gg

is a diffeomorphism and thus all connected components of G are diffeomorphic. ut
We want to understand how many connected components the classical Lie groups
have.

Theorem 1.2.22 (Connected Components of Classical Groups) Let n � 1.

1. The Lie group GL.n;R/ has two connected components GL.n;R/˙, determined
by the sign of the determinant. The Lie groups GL.n;C/ and GL.n;H/ are
connected.

2. The special linear groups SL.n;K/ are connected for all K D R;C;H.
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3. The Lie group O.n/ has two connected components O.n/˙, determined by the
sign of the determinant. The Lie group SO.n/ D O.n/C is connected.

4. The Lie groups U.n/, SU.n/ and Sp.n/ are connected.

There are direct proofs for these assertions that the reader can find in the literature.
We chose to give a different argument using homogeneous spaces in Sect. 3.8.3,
which is conceptually clearer and simpler. The proof with homogeneous spaces
utilizes certain actions of the classical groups on K

n n f0g and spheres Sm.
The assertions then follow by induction over n from the corresponding (trivial)
statements for the groups with n D 1.

The number of connected components of a Lie group G can be identified with
the number of elements of the homotopy group �0.G/. In Sect. 2.6 we will discuss
higher homotopy groups of Lie groups.

1.3 Homomorphisms of Lie Groups

Lie groups have two structures: the algebraic structure of a group and the smooth
structure of a manifold. A homomorphism between Lie groups should be compatible
with both structures.

Definition 1.3.1 Let G and H be Lie groups. A map �W G ! H which is smooth
and a group homomorphism, i.e.

�.g1 � g2/ D �.g1/ � �.g2/ 8g1; g2 2 G;

is called a Lie group homomorphism. The map � is called a Lie group isomor-
phism if it is a diffeomorphism and a homomorphism (hence an isomorphism) of
groups. A Lie group isomorphism �W G ! G is called a Lie group automorphism
of G.

Remark 1.3.2 We will show in Theorem 1.8.14 as an application of Cartan’s
Theorem that continuous group homomorphisms �W G ! H between Lie groups
are automatically smooth, hence Lie group homomorphisms.

Remark 1.3.3 Occasionally we will call a Lie group homomorphism just a homo-
morphism if the meaning is clear from the context.
We consider some examples of Lie group homomorphisms.

Example 1.3.4 Let G and H be Lie groups. The constant map

�W G �! H

g 7�! e

is always a Lie group homomorphism, called the trivial homomorphism.
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Example 1.3.5 Consider R with addition and the Lie group S1. Then

�WR �! S1

x 7�! eix

is a surjective homomorphism of Lie groups. The kernel of this map is

��1.1/ D 2�Z:

Taking products, there is a similar surjective homomorphism R
n ! Tn.

Example 1.3.6 It is easy to check that the map

�W S1 �! SO.2/

ei˛ 7�!
�

cos˛ � sin ˛
sin˛ cos˛

�

is an isomorphism of Lie groups.

Example 1.3.7 We have

S3 D fw 2 H j jjwjj2 D w Nw D 1g
D fx C yi C uj C vk 2 H j x2 C y2 C u2 C v2 D 1g:

We also have

SU.2/ D
	�

a �Nb
b Na

�

2 Mat.2 � 2;C/
ˇ
ˇ
ˇ jaj2 C jbj2 D 1




:

It can be checked that the map

�W S3 �! SU.2/

x C yi C uj C vk 7�!
�

x C iy �u � iv
u � iv x � iy

�

is an isomorphism of Lie groups. This follows from a direct calculation or from
Proposition 1.1.26.

Example 1.3.8 (Universal Covering of SO.3/) We define a Lie group homomor-
phism

�W S3 �! SO.3/
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in the following way: Let w 2 H be a unit quaternion, jjwjj D 1, and consider the
map

�wWH �! H

z 7�! wzw�1:

This is an R-linear isomorphism of the 4-dimensional real vector space H. Since

jjwzw�1jj D jjwjj � jjzjj � jjwjj�1 D jjzjj;

the map �w is orthogonal with respect to the standard Euclidean scalar product on
H Š R

4. The map �w clearly fixes

ReH D fx 2 H j x 2 Rg

and therefore restricts to an orthogonal isomorphism

�.w/ D �wjImHW ImH �! ImH

on the orthogonal complement

ImH D ReH? D fyi C uj C vk 2 H j y; u; v 2 Rg:

This shows that �.w/ 2 O.3/. Since the map �W S3 ! O.3/ is continuous, S3 is
connected and �.1/ D I, it follows that � has image in the connected component
SO.3/ and hence defines a map

�W S3 �! SO.3/:

It can be checked that this map is a surjective homomorphism of Lie groups with
kernel fC1;�1g, cf. Exercise 1.9.20. The homomorphism � defines a connected
double covering of SO.3/ by S3 (this is the universal covering of SO.3/, since S3 is
simply connected).

1.4 Lie Algebras

Lie algebras are of similar importance for symmetries and gauge theories as Lie
groups. We will begin with the general definition of Lie algebras and describe in the
next section their relation to Lie groups.
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Definition 1.4.1 A vector space V together with a map

Œ � ; � �W V � V �! V

is called a Lie algebra if the following hold:

1. Œ � ; � � is bilinear.
2. Œ � ; � � is antisymmetric:

Œv;w� D �Œw; v� 8v;w 2 V:

3. Œ � ; � � satisfies the Jacobi identity:

Œu; Œv;w�� C Œv; Œw; u�� C Œw; Œu; v�� D 0 8u; v;w 2 V:

The map Œ � ; � �W V � V ! V is called the Lie bracket. We will only consider
Lie algebras defined on real or complex vector spaces. Unless stated otherwise
the vector spaces underlying Lie algebras are finite-dimensional.

We collect some examples to show that Lie algebras occur quite naturally (we
discuss many more examples in Sect. 1.5.5).

Example 1.4.2 (Abelian Lie Algebras) Every real or complex vector space with
the trivial Lie bracket Œ � ; � � � 0 is a Lie algebra. Such Lie algebras are called
abelian. Every 1-dimensional Lie algebra is abelian, because the Lie bracket is
antisymmetric.

Example 1.4.3 (Lie Algebra of Matrices) The vector space V D Mat.n � n;K/ of
square matrices with K D R;C is a real or complex Lie algebra with bracket defined
by the commutator of matrices A;B:

ŒA;B� D A � B � B � A:

The only axiom that has to checked is the Jacobi identity. This example is very
important, because the Lie algebras of linear groups have the same Lie bracket,
cf. Corollary 1.5.26. It even follows from Ado’s Theorem 1.5.25 that any finite-
dimensional Lie algebra can be embedded into such a matrix Lie algebra.

Example 1.4.4 (Lie Algebra of Endomorphisms) In the same way the vector space
V D End.W/ of endomorphisms (linear maps) on a real or complex vector space
W is a real or complex Lie algebra with Lie bracket defined by the commutator of
endomorphisms f ; g:

Œ f ; g� D f ı g � g ı f :



1.4 Lie Algebras 37

Example 1.4.5 (Lie Algebra Defined by an Associative Algebra) Even more gener-
ally, let A be any associative algebra with multiplication �. Then the commutator

Œa; b� D a � b � b � a

defines a Lie algebra structure on A.

Example 1.4.6 (Cross Product on R
3) The vector space R3 is a Lie algebra with the

bracket given by the cross product:

Œv;w� D v � w:

Again, the only axiom that has to be checked is the Jacobi identity. We will identify
.R3;�/ with a classical Lie algebra in Exercise 1.9.14.

Example 1.4.7 (Lie Algebra of Vector Fields on a Manifold) Let M be a differen-
tiable manifold and X.M/ the real vector space of smooth vector fields on M. It
follows from Theorem A.1.45 that X.M/ together with the commutator of vector
fields is a real Lie algebra, which is infinite-dimensional if the dimension of M is at
least one.
As in the case of Lie groups we have two constructions that yield new Lie algebras
from given ones.

Definition 1.4.8 Let .V; Œ � ; � �/ be a Lie algebra. A vector subspace W � V is called
a Lie subalgebra if for all w;w0 2 W the Lie bracket Œw;w0� is an element of W.

Example 1.4.9 Every 1-dimensional vector subspace of a Lie algebra V is an
abelian subalgebra.

Example 1.4.10 From the geometric interpretation of the cross product it follows
that .R3;�/ does not have 2-dimensional Lie subalgebras.

Example 1.4.11 (Intersection of Lie Subalgebras) If W1;W2 � V are Lie subalge-
bras, then the intersection W1 \ W2 is again a Lie subalgebra of V .

Definition 1.4.12 Let .V; Œ � ; � �V/ and .W; Œ � ; � �W/ be Lie algebras over the same
field. Then the direct sum Lie algebra is the vector space V ˚ W with the Lie
bracket

�
v ˚ w; v0 ˚ w0� D �

v; v0�
V

˚ �
w;w0�

W
:

Remark 1.4.13 Note that if V;W are Lie subalgebras in a Lie algebra Q which are
complementary as vector spaces, so that Q D V ˚ W, it does not follow in general
that Q D V ˚ W as Lie algebras. For v; v0 2 V;w;w0 2 W we have

�
v C w; v0 C w0� D �

v; v0�C �
w;w0�C �

v;w0�C �
w; v0� ;
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hence we need in addition

ŒV;W� D 0:

We finally want to define homomorphisms between Lie algebras.

Definition 1.4.14 Let .V; Œ � ; � �V/ and .W; Œ � ; � �W/ be Lie algebras. A linear map
 W V ! W is called Lie algebra homomorphism if

Œ .x/;  .y/�W D  .Œx; y�V / 8x; y 2 V:

A Lie algebra isomorphism is a bijective homomorphism. An automorphism of a
Lie algebra V is a Lie algebra isomorphism  W V ! V .

Example 1.4.15 Let V and W be Lie algebras over K. The constant map

 W V �! W

X 7�! 0

is always a Lie algebra homomorphism, called the trivial homomorphism.

Example 1.4.16 The injection iW W ,! V of a Lie subalgebra into a Lie algebra is
of course a Lie algebra homomorphism.
The following notion appears, in particular, in physics:

Definition 1.4.17 Let V be a Lie algebra over K and T1; : : : ;Tn a vector space basis
for V . Then we can write

ŒTa;Tb� D
nX

cD1
fabcTc;

where the coefficients fabc 2 K are called structure constants for the given basis
fTag.
Because of bilinearity the structure constants determine all commutators between
elements of V . The structure constants are antisymmetric in the first two indices

fabc D �fbac 8a; b; c

and satisfy the Jacobi identity

fabd fdce C fbcdfdae C fcadfdbe D 0 8a; b; c; e

(here we use the Einstein summation convention and sum over d). Conversely, every
set of n�n�n numbers fabc 2 K satisfying these two conditions define a Lie algebra
structure on V D K

n.
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1.5 From Lie Groups to Lie Algebras

So far we have discussed Lie groups and Lie algebras as two independent notions.
We now want to turn to a well-known construction that yields for every Lie group
an associated Lie algebra, which can be thought of as an infinitesimal or linear
description of the Lie group.

Recall that for every smooth manifold M, the set of smooth vector fields X.M/
on M with the commutator forms a Lie algebra, which is infinite-dimensional if
dim M � 1. We could associate to a Lie group G the Lie algebra X.G/ of all
vector fields on G. However, as an infinite-dimensional Lie algebra this is somewhat
difficult to handle. It turns out that for a Lie group G there exists a canonical finite-
dimensional Lie subalgebra g in X.G/ which has the same dimension as the Lie
group G itself. This will be the Lie algebra associated to the Lie group G.

1.5.1 Vector Fields Invariant Under Diffeomorphisms

We first consider a very general situation. Let M be a smooth manifold and 	 an
arbitrary set of diffeomorphisms from M to M.

Definition 1.5.1 We define the set of vector fields on M invariant under 	 by

A	 .M/ D fX 2 X.M/ j ��X D X 8� 2 	 g:

We have:

Proposition 1.5.2 For every set 	 of diffeomorphisms of M, the set A	 .M/ is a Lie
subalgebra in the Lie algebra X.M/ with the commutator.

Proof Suppose 	 D f�g consists of a single diffeomorphism. If X;Y 2 Af�g.M/
and a; b 2 R, then

��.aX C bY/ D a��X C b��Y

D aX C bY

and

��ŒX;Y� D Œ��X; ��Y�

D ŒX;Y�

according to Corollary A.1.51. Hence Af�g.M/ is a Lie subalgebra of X.M/. The
claim for a general set 	 of diffeomorphisms then follows from

A	 .M/ D
\

�2	
Af�g.M/: ut
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1.5.2 Left-Invariant Vector Fields

We now consider the case of a Lie group G. There exist special diffeomorphisms on
G that are defined by group elements g 2 G.

Definition 1.5.3 For g 2 G we set:

LgW G �! G

h 7�! g � h

RgW G �! G

h 7�! h � g

cgW G �! G

h 7�! g � h � g�1:

These maps are called left translation, right translation and conjugation by g,
respectively.

Example 1.5.4 For G D R
n with vector addition and a 2 R

n we have

LaWRn �! R
n

x 7�! a C x

RaWRn �! R
n

x 7�! x C a:

This explains the names left and right translation.
The following properties are easy to check:

Lemma 1.5.5 (Properties of Translations and Conjugation) For all g 2 G we
have:

1. The inverses of left and right translations are given by

L�1
g D Lg�1 R�1

g D Rg�1 :

The inverse of conjugation is given by

c�1
g D cg�1 :

In particular, Lg, Rg and cg are diffeomorphisms of G.
2. Lg and Rh commute for all g; h 2 G.
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3. cg D Lg ı Rg�1 D Rg�1 ı Lg.
4. The conjugations cg for g 2 G are Lie group automorphisms of G, called inner

automorphisms.

Remark 1.5.6 Note that left translation Lg and right translation Rg are not Lie group
homomorphisms for g ¤ e, because

Lg.e/ D Rg.e/ D g ¤ e:

Example 1.5.7 If G is abelian, then Lg D Rg for all g 2 G and cg D IdG for all
g 2 G. Each of these two properties characterizes abelian Lie groups.
We now set:

Definition 1.5.8 A vector field X 2 X.G/ on a Lie group G is called left-invariant
if Lg�X D X for all g 2 G. In other words, the set of left-invariant vector fields on
G is A	 .G/, where 	 is the set of all left translations.
We get with Proposition 1.5.2:

Theorem 1.5.9 (The Lie Algebra of a Lie Group) The set of left-invariant
vector fields together with the commutator Œ � ; � � of vector fields on the Lie
group G forms a Lie subalgebra

L.G/ D g

in the Lie algebra X.G/ of all vector fields on G. We call g the Lie algebra of
(or associated to) G.

Remark 1.5.10 We could also define the Lie algebra of a Lie group with right-
invariant vector fields. Using left-invariant vector fields is just the standard con-
vention.

Remark 1.5.11 We defined Lie algebras in general on vector spaces over arbitrary
fields. The Lie algebra of a Lie group, however, is always a real Lie algebra.
As mentioned before, vector fields, their flows and the commutator are only defined
on smooth manifolds. This is the reason why only Lie groups have an associated Lie
algebra and not other types of groups.

We want to show that there is a vector space isomorphism between the Lie
algebra g and the tangent space TeG.

Definition 1.5.12 Let G be a Lie group with neutral element e and associated Lie
algebra g. We define the evaluation map

evW g �! TeG

X 7�! Xe:
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Lemma 1.5.13 The evaluation map is a vector space isomorphism.

Proof The evaluation map is clearly linear. To construct the inverse of a vector
x 2 TeG under the map ev define a vector field X on G by

Xh D .DeLh/x; h 2 G:

To show that X is smooth, consider the multiplication map


W G � G �! G

.h; g/ 7�! hg

with differential

D
W TG � TG �! TG

..h;Y/; .g;X// 7�! .DgLh/.X/C .DhRg/.Y/:

Then the following map is smooth

G �! TG

h 7�! D
..h; 0/; .e; x// D .DeLh/x

which is just the vector field X.
The vector field X is also left-invariant, because

.DhLg/Xh D .De.Lg ı Lh//x D .DeLgh/x D Xgh

for all g 2 G and thus Lg�X D X. The map

TeG �! g

x 7�! X

is the inverse of ev. ut
We can therefore think of the tangent space TeG of the Lie group G at the neutral
element e as having the structure of the Lie algebra g. In particular, we get:

Corollary 1.5.14 The Lie algebra of a Lie group is finite-dimensional with dimen-
sion equal to the dimension of the Lie group. Furthermore, a left-invariant (or
right-invariant) vector field on a Lie group is completely determined by its value
at one point.
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It is a non-trivial theorem that any abstract real Lie algebra can be realized by the
construction above (for a proof, see [77, 83]):

Theorem 1.5.15 (Lie’s Third Theorem) Every finite-dimensional real Lie algebra
is isomorphic to the Lie algebra of some connected Lie group.
Lie’s Third Theorem was proved in this form by Élie Cartan. Note that there may
be different, non-isomorphic Lie groups with isomorphic Lie algebras: a trivial
example is given by the Lie groups .R;C/ and .S1; �/ whose Lie algebras are one-
dimensional and hence abelian. The orthogonal and spin groups provide another
example, to be discussed in Chap. 6.

1.5.3 Induced Homomorphisms

Just as we get for every Lie group an associated Lie algebra, we get for every
homomorphism between Lie groups a homomorphism between the associated Lie
algebras.

Definition 1.5.16 Let G;H be Lie groups and �W G ! H a homomorphism of Lie
groups. If X is a left-invariant vector field on G, we can uniquely define a left-
invariant vector field ��X on H by

ev.��X/ D .��X/e D .De�/.Xe/:

This defines a map

��W g �! h;

called the differential or induced homomorphism of the homomorphism �.

Remark 1.5.17 Here are two remarks concerning this definition:

1. Note that �.e/ D e for a homomorphism, so that ��X 2 h is well-defined.
2. As the notation of the theorem indicates, the push-forward on vector fields is

defined in the case of Lie groups not only for diffeomorphisms, but also for Lie
group homomorphisms acting on left-invariant vector fields. This definition is
possible, because left-invariant vector fields on Lie groups are determined by
their value at one point.

Theorem 1.5.18 (The Differential Is a Lie Algebra Homomorphism) The differ-
ential ��W g ! h of a Lie group homomorphism �W G ! H is a homomorphism of
Lie algebras.

Proof We have to show that

Œ��X; ��Y� D ��ŒX;Y� 8X;Y 2 g:
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By Proposition A.1.49 this will follow if we can show that ��X is �-related to X,
i.e. that

.��X/�.g/ D .Dg�/.Xg/ 8g 2 G:

We have

.��X/�.g/ D .DeL�.g/ ı De�/.Xe/

D De.L�.g/ ı �/.Xe/

D De.� ı Lg/.Xe/

D .Dg�/.Xg/;

because ��X and X are left-invariant and � is a homomorphism. This proves the
claim. ut
Note that it is essential for this argument that the map � is a Lie group homomor-
phism.

Corollary 1.5.19 Let H � G be an immersed or embedded Lie subgroup. Then
h � g is a Lie subalgebra.

Proof The inclusion iW H ,! G is a homomorphism of Lie groups and an immersion.
Thus the induced inclusion i�W h ,! g is an injective homomorphism of Lie algebras.

ut
We can ask whether it is possible to reverse these relations:

• If G is a Lie group with Lie algebra g and h � g a Lie subalgebra, does there
exist a Lie subgroup H in G whose Lie algebra is h?

• If �W g ! h is a Lie algebra homomorphism between the Lie algebras of Lie
groups G and H, does there exist a Lie group homomorphism  W G ! H
inducing � on Lie algebras?

Both questions are related to the concept of integration from a linear object on
the level of Lie algebras to a non-linear object on the level of Lie groups. We
shall answer the first question in Sect. 1.6 and briefly comment here, without proof,
on the second question. The following theorem specifies a sufficient condition
for the existence of a Lie group homomorphism inducing a given Lie algebra
homomorphism (for a proof, see [77, 142]):

Theorem 1.5.20 (Integrability Theorem for Lie Algebra Homomorphisms) Let
G be a connected and simply connected Lie group, H a Lie group and �W g ! h a
Lie algebra homomorphism. Then there exists a unique Lie group homomorphism
 W G ! H such that  � D �.

Example 1.5.21 Without the condition that G is simply connected this need not
hold: every Lie algebra homomorphism �W so.2/ ! h induces a unique Lie group
homomorphism  WR ! H. However, � does not always induce a Lie group
homomorphism SO.2/ ! H (see the discussion after Corollary 2.1.13).
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Similarly there are homomorphisms so.n/ ! h for n � 3 (so-called spinor
representations, see Sect. 6.5.2) that do not integrate to homomorphisms SO.n/ !
H (it can be shown that SO.n/ has fundamental group Z2 for n � 3).

1.5.4 The Lie Algebra of the General Linear Groups

We have defined the Lie algebra associated to a Lie group, but so far we have
not seen any explicit examples of this construction. In this and the subsequent
subsection we want to study the Lie algebra associated to the linear groups,
i.e. closed subgroups of the general linear groups. We can understand the structure
of the corresponding Lie algebras by Corollary 1.5.19 once we have understood the
structure of the Lie algebra of the general linear groups.

Theorem 1.5.22 (Lie Algebra of General Linear Groups) The Lie algebra of
the general linear group GL.n;R/ is gl.n;R/ D Mat.n � n;R/ and the Lie bracket
on gl.n;R/ is given by the standard commutator of matrices:

ŒX;Y� D X � Y � Y � X 8X;Y 2 gl.n;R/:

An analogous result holds for the Lie algebra gl.n;K/ of GL.n;K/ for K D C;H.
We want to prove this theorem. The Lie group G D GL.n;R/ is an open subset of
R

n2 , therefore we can canonically identify the tangent space at the unit element I,

TIGL.n;R/ D gl.n;R/ D g;

with the vector space

R
n2 D Mat.n � n;R/:

Lemma 1.5.23 If X 2 Mat.n � n;R/ D g, then the associated left-invariant vector
field QX on G is given by

QXA D A � X; 8A 2 G;

where � denotes matrix multiplication.

Proof To show this, let �X be an arbitrary curve in G through e and tangent to X.
Then

QXA D .DeLA/.X/

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

LA.�X.t//
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D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

A � �X.t/

D A � X:

The last equality sign in this calculation can be understood by considering each
entry of the time-dependent matrix A � �X.t/ separately. ut
Lemma 1.5.24 Let QX; QY be vector fields on an open subset U of a Euclidean space
R

N and �QX; �QY curves tangent to QX and QY at a point p 2 U. Then

� QX; QY�
p

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

QY�
QX.t/ � d

dt

ˇ
ˇ
ˇ
ˇ
tD0

QX�
QY .t/:

Proof Let e1; : : : ; eN be the standard basis of the Euclidean space and write

QX D
NX

kD1
QXkek;

QY D
NX

kD1
QYkek:

Then, because of Œek; el� D 0, we get

� QX; QY�
p

D
NX

k;lD1

� QXk � .Lk QYl/ � QYk � .Lk QXl/
�

el

D
NX

lD1

�
LQX QYl � LQY QXl

�
. p/el

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

QY�
QX.t/ � d

dt

ˇ
ˇ
ˇ
ˇ
tD0

QX�
QY .t/:

ut
We can now prove Theorem 1.5.22.

Proof Since GL.n;R/ is an open subset of a Euclidean space, we can calculate the
commutator of the vector fields QX; QY at the point I by

� QX; QY�
I

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

QY�
QX.t/ � d

dt

ˇ
ˇ
ˇ
ˇ
tD0

QX�
QY .t/

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

�
�QX.t/ � Y

� � d

dt

ˇ
ˇ
ˇ
ˇ
tD0

�
�QY.t/ � X

�

D X � Y � Y � X:
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This proves the assertion. ut
We would like to mention the following conceptually interesting theorem concern-
ing Lie algebras (for the proof in a special case, see Proposition 2.4.4; the general
proof can be found in [77, 83]).

Theorem 1.5.25 (Ado’s Theorem) Let g be a finite-dimensional Lie algebra over
K D R;C. Then there exists an injective Lie algebra homomorphism of g into
gl.n;K/ for some n.
As a consequence of Ado’s Theorem every Lie algebra g over K is isomorphic to a
Lie subalgebra of gl.n;K/ for some n.

We will later show in Theorem 1.6.4 that for a given Lie group G, every Lie
subalgebra h � g is the Lie algebra of a connected Lie subgroup H � G. Therefore
Lie’s Third Theorem 1.5.15 follows from Ado’s Theorem 1.5.25 and Theorem 1.6.4,
applied to some general linear group GL.n;R/.

1.5.5 The Lie Algebra of the Linear Groups

As a corollary to Theorem 1.5.22 and Corollary 1.5.19 we get:

Corollary 1.5.26 (Lie Algebra of Linear Groups) If the Lie algebra of an
embedded or immersed Lie subgroup of GL.n;K/ is identified in the canonical way
with a Lie subalgebra of Mat.n � n;K/, then the Lie bracket on the Lie subalgebra
is the standard commutator of matrices.
As simple as this corollary may seem, it is in fact very useful. In general it can be
quite difficult to calculate the commutator of two vector fields on a given manifold.
Corollary 1.5.26 shows that this is very easy for left-invariant vector fields on Lie
subgroups of general linear groups.

Theorem 1.5.27 (Lie Algebras of Classical Groups) We can identify the
Lie algebras of the classical groups with the following real Lie subalgebras
of the Lie algebra Mat.n � n;K/.

1. The Lie algebras of the special linear groups are:

sl.n;R/ D fM 2 Mat.n � n;R/ j tr.M/ D 0g;
sl.n;C/ D fM 2 Mat.n � n;C/ j tr.M/ D 0g;
sl.n;H/ D fM 2 Mat.n � n;H/ j Re.tr.M// D 0g:

(continued)
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Theorem 1.5.27 (continued)
2. The Lie algebras of the orthogonal, unitary and symplectic groups are:

o.n/ D fM 2 Mat.n � n;R/ j M C MT D 0g;
u.n/ D fM 2 Mat.n � n;C/ j M C M� D 0g;

sp.n/ D fM 2 Mat.n � n;H/ j M C M� D 0g:

3. The Lie algebras of the special orthogonal and special unitary groups are:

so.n/ D o.n/;

su.n/ D fM 2 Mat.n � n;C/ j M C M� D 0; tr.M/ D 0g:

Remark 1.5.28 We can check directly that these subsets of Mat.n � n;K/ are real
vector subspaces and closed under the commutator; see Exercise 1.9.16.
We prove Theorem 1.5.27.

Proof

1. Let K D R;C and suppose that A 2 sl.n;K/. We shall show in Sect. 1.7 (without
using the results here) that etA 2 SL.n;K/ and that

1 D det
�
etA
� D etr.A/t

for all t 2 R. We get

0 D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

etr.A/t D tr.A/;

hence

sl.n;K/ � fM 2 Mat.n � n;K/ j tr.M/ D 0g:

Since we already know the dimension of SL.n;K/ from Theorem 1.2.17, the
assertion follows by calculating the dimension of the subspace on the right of
this inclusion.

The claim for sl.n;H/ follows, because under the adjoint map �, the group
SL.n;H/ gets identified according to Proposition 1.1.25 with the submanifold

˚
X 2 Mat.2n � 2n;C/ j JXJ�1 D X; det.X/ D 1

�
:

The tangent space to the neutral element I is contained in

˚
A 2 Mat.2n � 2n;C/ j JAJ�1 D A; tr.A/ D 0

�
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which corresponds under � to

fM 2 Mat.n � n;H/ j Re.tr.M// D 0g;

since

tr.�M/ D 2Re.tr.M//

by Proposition 1.1.26. The claim follows by a similar dimension argument as
before.

2. If A.t/ is a curve in O.n/ through I with PA.0/ D M, then A.t/A.t/T D I, hence

0 D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

A.t/A.t/T D M C MT ;

i.e. M is skew-symmetric. The claim then follows by comparing the dimensions
of O.n/ and the vector space of skew-symmetric matrices. The cases of u.n/ and
sp.n/ follow similarly.

3. The case of su.n/ is clear by a similar dimension argument as before. The case
of so.n/ follows, because if M 2 o.n/, then automatically tr.M/ D 0.

ut
Example 1.5.29 The Lie algebra u.1/ has dimension 1 and is equal to ImC,
spanned by i.

Example 1.5.30 The Lie algebra so.2/ has dimension 1 and consists of the skew-
symmetric 2 � 2-matrices. A basis is given by the rotation matrix

r D
�
0 �1
1 0

�

:

The Lie algebra so.2/ is isomorphic to u.1/, because both are 1-dimensional and
abelian.

Example 1.5.31 The Lie algebra so.3/ has dimension 3 and consists of skew-
symmetric 3 � 3-matrices. A basis is given by the rotation matrices

r1 D
0

@
0 0 0

0 0 �1
0 1 0

1

A r2 D
0

@
0 0 1

0 0 0

�1 0 0

1

A r3 D
0

@
0 �1 0
1 0 0

0 0 0

1

A :

These matrices satisfy

Œra; rb� D �abcrc;

where �abc is totally antisymmetric in a; b; c with �123 D 1.
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Example 1.5.32 The Lie algebra su.2/ has dimension 3 and consists of the
skew-Hermitian 2�2-matrices of trace zero. We consider the Hermitian Pauli
matrices:

�1 D
�
0 1

1 0

�

�2 D
�
0 �i
i 0

�

�3 D
�
1 0

0 �1
�

:

Then a basis for su.2/ is given by the matrices

�a D � i

2
�a a D 1; 2; 3:

The commutators of these matrices are

Œ�a; �b� D �abc�c:

The map

so.3/ �! su.2/

ra 7�! �a

is a Lie algebra isomorphism.

Example 1.5.33 The Lie algebra su.3/ has dimension 8 and consists of the
skew-Hermitian 3�3-matrices of trace zero. We consider the Hermitian Gell-
Mann matrices:

1 D
0

@
0 1 0

1 0 0

0 0 0

1

A 2 D
0

@
0 �i 0
i 0 0
0 0 0

1

A 3 D
0

@
1 0 0

0 �1 0
0 0 0

1

A

4 D
0

@
0 0 1

0 0 0

1 0 0

1

A 5 D
0

@
0 0 �i
0 0 0

i 0 0

1

A

6 D
0

@
0 0 0

0 0 1

0 1 0

1

A 7 D
0

@
0 0 0

0 0 �i
0 i 0

1

A 8 D 1p
3

0

@
1 0 0

0 1 0

0 0 �2

1

A :

(continued)
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Example 1.5.33 (continued)

Then a basis for su.3/ is given by the matrices ia
2

for a D 1; : : : ; 8. The
matrices ia for a D 1; 2; 3 span a Lie subalgebra, isomorphic to su.2/.

Example 1.5.34 The Lie algebra sp.1/ has dimension 3 and is equal to ImH,
spanned by the imaginary quaternions i; j; k. If we set

e1 D i

2
; e2 D j

2
; e3 D k

2
;

then

Œea; eb� D �abcec:

The map

sp.1/ �! su.2/

ea 7�! �a

is a Lie algebra isomorphism.

Example 1.5.35 The Lie algebra sl.1;H/ is equal to sp.1/.

Example 1.5.36 The Lie algebra sl.2;R/ has dimension 3 and consists of the real
2 � 2-matrices of trace zero. A basis is given by the matrices

H D
�
1 0

0 �1
�

X D
�
0 1

0 0

�

Y D
�
0 0

1 0

�

;

with commutators

ŒH;X� D 2X;

ŒH;Y� D �2Y;

ŒX;Y� D H:

Example 1.5.37 The Lie algebra sl.2;C/ has dimension 6 and consists of the
complex 2 � 2-matrices of trace zero. It is also a complex Lie algebra of complex
dimension 3. A complex basis is given by the same matrices H;X;Y as above for
sl.2;R/. In analogy to the quantum angular momentum and quantum harmonic
oscillator, X is sometimes called the raising operator and Y the lowering operator.
According to Exercise 1.9.18, as a complex Lie algebra, sl.2;C/ is isomorphic to
the complex Lie algebra su.2/˝R C.
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The Lie algebra sl.2;C/ plays a special role in physics, because as a real Lie
algebra it is isomorphic to the Lie algebra of the Lorentz group of 4-dimensional
spacetime (see Sect. 6.8.2).

Example 1.5.38 (The Heisenberg Lie Algebra) The Lie algebra of the Heisenberg
group Nil3 is

nil3 D
8
<

:

0

@
0 a b
0 0 c
0 0 0

1

A 2 Mat.3 � 3;R/
ˇ
ˇ
ˇ
ˇ
ˇ
a; b; c 2 R

9
=

;
:

A basis is given by the matrices

q D
0

@
0 1 0

0 0 0

0 0 0

1

A ; p D
0

@
0 0 0

0 0 1

0 0 0

1

A ; z D
0

@
0 0 1

0 0 0

0 0 0

1

A ;

satisfying

Œq; p� D z;

Œq; z� D 0;

Œ p; z� D 0:

We see that z commutes with every element in the Lie algebra nil3, i.e. z is a central
element. Furthermore,

Œnil3; Œnil3; nil3�� D 0;

so that nil3 is an example of a nilpotent Lie algebra.

1.6 �From Lie Subalgebras to Lie Subgroups

Let G be a Lie group with Lie algebra g. In this section we want to show that
there exists a 1-to-1 correspondence between Lie subalgebras of g and connected
(immersed or embedded) Lie subgroups of G (we follow [142]). We need some
background on distributions and foliations that can be found in Sect. A.1.12.

Definition 1.6.1 Let h � g be a Lie subalgebra. If we consider g as the set of
left-invariant vector fields on G, then h is a distribution on G, denoted by H .
Equivalently, if we think of g as the tangent space TeG and h � TeG as a vector
subspace, then the distribution H is defined by

Hp D Lp�h 8p 2 G:
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Lemma 1.6.2 The distribution H associated to a Lie subalgebra h � g is
integrable.

Proof Let V1; : : : ;Vd be left-invariant vector fields on G defined by a vector space
basis for h. Then Vi is a section of H for all i D 1; : : : ; d and since h is a subalgebra,
the commutators ŒVk;Vl� are again sections of H . If X and Y are arbitrary sections
of H , then there exist functions fi; gi on G such that

X D
dX

kD1
fkVk;

Y D
dX

kD1
gkVk:

We get

ŒX;Y� D
"

dX

kD1
fkVk;

dX

lD1
glVl

#

D
dX

k;lD1
. fkglŒVk;Vl�C fk.LVk gl/Vl � gl.LVl fk/Vk/ :

This is a section of H . Thus the distribution H is integrable. ut
Definition 1.6.3 For a Lie subalgebra h � g, let H denote the maximal connected
leaf of the foliation H through the neutral element e 2 G.

Theorem 1.6.4 (The Immersed Lie Subgroup Defined by a Lie Subalgebra)
The immersed submanifold H is the unique, connected, immersed Lie subgroup of
G with Lie algebra h.

Remark 1.6.5 The subgroup H is sometimes called the integral subgroup associ-
ated to the Lie algebra h.

Proof We first show that H is a subgroup in the algebraic sense: Let g 2 H. Since
H is left-invariant, we have

Lg�1�H D H ;

hence Lg�1H is a connected leaf of H , containing g�1g D e. By maximality of H
we have

Lg�1H � H:

Hence if g; h 2 H, then g�1h 2 H, showing that H is a subgroup.
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We want to show that the group operations on H are smooth with respect to the
manifold structure. The map

H � H �! G

.g; h/ 7�! gh�1

is smooth and has image in H. Since H is the leaf of a foliation, it follows from
Theorem A.1.56 that

H � H �! H

.g; h/ 7�! gh�1

is smooth. We prove the remaining statement on the uniqueness of H below. ut
It remains to show that H is the unique connected immersed Lie subgroup with Lie
algebra h. We need the following:

Proposition 1.6.6 (Connected Lie Groups Are Generated by Any Open Neigh-
bourhood of the Neutral Element) Let G be a connected Lie group and U � G
an open neighbourhood of e. Then

G D
1[

nD1
Un;

where

Un D U � U � � � U„ ƒ‚ …
n factors

:

Proof This follows from Exercise 1.9.4. ut
Here is an immediate consequence.

Corollary 1.6.7 Let K and K0 be Lie groups, where K0 is connected. Suppose
that �W K ! K0 is a Lie group homomorphism, so that �.K/ contains an open
neighbourhood of e 2 K0. Then � is surjective. In particular, if K � K0 is an open
subgroup, then K D K0.
We now prove the uniqueness part in Theorem 1.6.4.

Proof Let K be another connected, immersed Lie subgroup with Lie algebra h.
Then K must also be a connected leaf of the foliation H through e 2 G, hence
by maximality of H we get K � H. The differential of the inclusion iW K ,! H is an
isomorphism at every point, hence K � H is an open subgroup. The assertion then
follows from Corollary 1.6.7. ut
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Example 1.6.8 According to Example 1.1.42 the 1-dimensional Lie subalgebras of
the Lie algebra of the torus T2 define embedded Lie subgroups if they have rational
slope in R

2 and immersed Lie subgroups if they have irrational slope.

1.7 The Exponential Map

We saw above that the tangent space TeG of a Lie group G at the neutral element
e 2 G has the structure of a Lie algebra g. In this section we want to study the
famous exponential map from g to G, which is defined using integral curves of left-
invariant vector fields (we follow [14, Sect. 1.2] for the construction).

1.7.1 The Exponential Map for General Lie Groups

For the following statements some background on integral curves and flows of
vector fields can be found in Sect. A.1.9.

Theorem 1.7.1 (Integral Curves of Left-Invariant Vector Fields) Let G be a Lie
group and g its Lie algebra. Let

�XWR 	 I �! G

t 7�! �X.t/

denote the maximal integral curve of a left-invariant vector field X 2 g through the
neutral element e 2 G. Then the following holds:

1. �X is defined on all of R.
2. �X WR ! G is a homomorphism of Lie groups, i.e.

�X.s C t/ D �X.s/ � �X.t/ 8s; t 2 R:

3. �sX.t/ D �X.st/ for all s; t 2 R.

Definition 1.7.2 The homomorphism �XWR ! G is called the one-parameter
subgroup of the Lie group G determined by the left-invariant vector field X.
We prove Theorem 1.7.1 in a sequence of steps. Let

�XWR 	 I D .tmin; tmax/ �! G

denote the maximal integral curve of the vector field X through e, satisfying

�X.0/ D e; P�X.t/ D X�X.t/:
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Lemma 1.7.3 For all s; t 2 I with s C t 2 I the following identity holds:

�X.s C t/ D �X.s/ � �X.t/:

Proof Let g D �X.s/ 2 G. Consider the smooth curves

�W I �! G

t 7�! g � �X.t/

and

Q�W .tmin � s; tmax � s/ �! G

t 7�! �X.s C t/:

It is easy to show that both � and Q� are integral curves of X with �.0/ D Q�.0/ D g.
Hence by the uniqueness of integral curves (which is a theorem about the uniqueness
of solutions to ordinary differential equations) we have

�X.s/ � �X.t/ D �X.s C t/ 8t 2 I \ .tmin � s; tmax � s/:

This implies the claim. ut
Lemma 1.7.4 We have tmax D 1 and tmin D �1.

Proof Suppose tmax < 1 and set ˛ D minftmax; jtminjg < 1. Consider the curve

� W
�

�˛
2
;
3˛

2

�

�! G

t 7�! �X

�˛

2

�
�X

�
t � ˛

2

�
:

It is easy to check that � is an integral curve of X with �.0/ D e. However,

3˛

2
> tmax

by construction, hence � is an extension of �X , contradicting the choice of tmax. This
shows that tmax D 1 and similarly tmin D �1. ut
Lemma 1.7.5 �sX.t/ D �X.st/ for all s; t 2 R.

Proof Fix s 2 R and consider the curve

ıWR �! G

t 7�! �X.st/:
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Fig. 1.1 Exponential map

It is easy to show that ı is an integral curve of the vector field sX with ı.0/ D e.
Hence by uniqueness �X.st/ D �sX.t/. ut
Definition 1.7.6 Let �XWR ! G denote the integral curve through e 2 G for an
element X 2 g. Then we define the exponential map

expW g �! G

X 7�! exp.X/ D exp X D �X.1/:

See Fig. 1.1.

Remark 1.7.7 The reason for the name exponential map will become apparent in
Sect. 1.7.3. Note that by definition the exponential map of the Lie group G maps the
Lie algebra g to the connected component Ge of the neutral element e. Elements in
other connected components can never be in the image of the exponential map.

Example 1.7.8 The simplest example is the exponential map of the abelian Lie
group G D R

n with vector addition. We can canonically identify the Lie algebra
g with R

n. Then the exponential map is the identity map, since the left-invariant
vector fields on G are the constant (parallel) vector fields. In this particular case, the
exponential map is therefore a diffeomorphism between the Lie algebra and the Lie
group.

Proposition 1.7.9 (Properties of the Exponential Map) The exponential map has
the following properties, explaining the name one-parameter subgroup:

1. exp.0/ D e
2. exp..s C t/X/ D exp.sX/ � exp.tX/
3. exp.�X/ D .exp X/�1

for all X 2 g and s; t 2 R.

Proof This is an exercise. ut
Remark 1.7.10 One-parameter subgroups are the immersed or embedded Lie sub-
groups determined as in Theorem 1.6.4 by 1-dimensional (abelian) subalgebras of g.
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Definition 1.7.11 Let X be a left-invariant vector field on a Lie group G. Then we
denote its flow through a point p 2 G by �X

t . p/ or �t. p/. It is characterized by

�0. p/ D p;
d

dt

ˇ
ˇ
ˇ
ˇ
tDs

�t. p/ D X�s.p/ 8s 2 R:

The one-parameter subgroup �X.t/ determined by X is in this notation �t.e/.

Proposition 1.7.12 (Relation Between the Flow and the Exponential Map) Let
G be a Lie group and X a left-invariant vector field. Then its flow �t. p/ through a
point p 2 G is defined for all t 2 R,

�WR � G �! G

.t; p/ 7�! �t. p/;

and given by

�t. p/ D p � exp tX D Rexp tX. p/ D Lp.exp tX/:

Proof Define �t. p/ for all t 2 R by the right-hand side. It is clear that

�0. p/ D p � exp.0/ D p:

Furthermore,

d

dt

ˇ
ˇ
ˇ
ˇ
tDs

�t. p/ D d

d�

ˇ
ˇ
ˇ
ˇ
�D0

Lp.exp sX � exp �X/

D DeLp exp sX.Xe/

D Xp exp sX

D X�s. p/;

since X is left-invariant. This implies the claim by uniqueness of solutions of
ordinary differential equations. ut
Remark 1.7.13 Integral curves of vector fields are defined for all times usually only
on compact manifolds. It is a special property of Lie groups that integral curves
of left-invariant vector fields are defined for all times, even on non-compact Lie
groups.
We want to prove a property of the exponential map that is sometimes useful in
applications.

Proposition 1.7.14 (Exponential Map Is a Local Diffeomorphism) Under the
canonical identifications

T0g Š g; TeG Š g;
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the differential of the exponential map

D0 expW g �! g

is the identity map. In particular, there exist open neighbourhoods V of 0 in g and
U of e in G such that

exp jV W V �! U

is a diffeomorphism.

Proof Let X 2 g and �.t/ D tX the associated curve in g. Then P�.0/ D X and

D0 exp.X/ D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

exp.tX/ D X:

ut
Remark 1.7.15 In general, the exponential map is neither injective nor surjective
and hence not a global diffeomorphism between the Lie algebra and the Lie group
(of course, the exponential map can only be a diffeomorphism if the Lie group itself
is not compact and diffeomorphic to a vector space). See Corollary 1.7.20 for a
situation when the exponential map is surjective. It is known that the exponential
map is a diffeomorphism in the case of simply connected nilpotent Lie groups (see
[83] for a proof).

Recall from Theorem 1.5.18 that every homomorphism between Lie groups
induces a homomorphism between Lie algebras. The exponential map behaves
nicely with respect to these homomorphisms.

Theorem 1.7.16 (Induced Homomorphisms on Lie Algebras and the Exponen-
tial Map) Let  W G ! H be a homomorphism between Lie groups and  �W g ! h
the induced homomorphism on Lie algebras. Then

 .exp X/ D exp. �X/ 8X 2 g;

i.e. the following diagram commutes:

Proof Consider the curve �.t/ D  .exp tX/ for t 2 R. Then

�.0/ D  .e/ D e
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and

P�.t/ D Dexp tX 

�
d

ds

ˇ
ˇ
ˇ
ˇ
sDt

exp sX

�

D Dexp tX 
�
Xexp tX

�

D De. ı Lexp tX/ .Xe/

D De.L .exp tX/ ı  / .Xe/

D . �X/�.t/:

Here we used that  is a homomorphism and X left-invariant. We conclude that � is
the (unique) integral curve of the left-invariant vector field  �X through e 2 H and
therefore

exp. �X/ D �.1/ D  .exp X/:

ut
Corollary 1.7.17 (Exponential Map for Embedded Lie Subgroups) Let G be a
Lie group and H � G an embedded Lie subgroup with exponential maps

expGW g �! G;

expH W h �! H:

Then for X 2 h � g the following identity holds

expG.X/ D expH.X/:

Proof This follows from Theorem 1.7.16 with the embedding iW H ,! G. ut
The following generalization of Theorem 1.7.1 to time-dependent vector fields is

sometimes useful in applications.

Theorem 1.7.18 (Integral Curves of Time-Dependent Vector Fields on Lie
Groups) Suppose that G is a Lie group and xW Œ0; 1� ! g a smooth map. Let X.t/
denote the associated left- (or right-)invariant time-dependent vector field on G.
Then there exists a unique smooth integral curve gW Œ0; 1� ! G such that

g.0/ D e;

Pg.t/ D X.t/ 8t 2 Œ0; 1�:

Proof We only indicate the idea of the proof in the case of a left-invariant vector
field X.t/. Details can be found in [14] and are left as an exercise. Let Z be the



1.7 The Exponential Map 61

vector field on G � R defined by

Z.g;s/ D .Xg.s/; 1/ 2 T.g;s/.G � R/:

On the interval Œ0; ı�, for ı > 0 small enough, there exist integral curves .g.t/; t/
and .h.t/; t C ı/ of Z with g.0/ D h.0/ D e. Then

g.t/ D g.ı/ � h.t � ı/ 8t 2 Œı; 2ı�

defines an extension of g.t/ to an integral curve of X on Œ0; 2ı�. ut

1.7.2 �The Exponential Map of Tori

It is important to understand the exponential map of the torus Tn, because compact
Lie groups always contain embedded Lie subgroups isomorphic to tori (see
Exercise 1.9.11 for explicit examples of tori contained in the classical groups).

Proposition 1.7.19 (Exponential Map of Tori) The exponential map of every
torus Tn is surjective.

Proof This follows, because according to Example 1.7.8 the exponential map of Rn

is surjective. ut
Every element of a compact connected Lie group G is contained in some embedded
torus subgroup (for a proof, see [24, Sect. IV.1]). Then Corollary 1.7.17 implies:

Corollary 1.7.20 (Exponential Map of Compact Connected Lie Groups) The
exponential map of a compact connected Lie group G is surjective.

Remark 1.7.21 As Exercise 1.9.27 shows, this is not true in general for non-
compact connected Lie groups like SL.2;R/. See Exercise 1.9.28 for a statement
which is true in the general case.

Example 1.7.22 Every one-parameter subgroup of SO.3/ is given by the subgroup
of rotations around a common axis in R

3 (see Example 1.7.32). Corollary 1.7.20
then implies that any rotation of R3 can be obtained from the identity by rotating
around a fixed axis by a certain angle.
The following assertion was discussed in Example 1.1.42.

Proposition 1.7.23 (Embedded and Immersed One-Parameter Subgroups) A
torus of dimension at least two has both embedded and immersed one-parameter
subgroups.

Corollary 1.7.24 Every Lie group G that contains a torus of dimension at least two
has both embedded and immersed one-parameter subgroups.

Example 1.7.25 The Lie groups SO.4/ and SU.3/ contain embedded tori of
dimension two and thus immersed one-parameter subgroups. The Lie groups SO.3/
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and SU.2/, on the other hand, only contain embedded tori of dimension one. It can
be shown that every one-parameter subgroup of SO.3/ and SU.2/ is closed, hence
isomorphic to S1 (cf. Exercise 1.9.25 for the case of SU.2/).

This is intuitively clear for SO.3/, because the one-parameter subgroups are
rotations around a fixed axis and thus return to the identity after a rotation by
2� . The result can also be interpreted for SO.4/: we can define an embedded Lie
subgroup T2 D SO.2/�SO.2/ in SO.4/ as those rotations which preserve a splitting
of R

4 into two orthogonal planes R
2 ˚ R

2 and only rotate each plane in itself.
If the velocities of the two rotations have an irrational ratio, then both rotations
never return at the same time to the identity. This corresponds to an immersed one-
parameter subgroup of SO.4/.

1.7.3 �The Matrix Exponential

In this section we want to determine the exponential map for the linear groups. Let
K D R;C;H.

Definition 1.7.26 Let A 2 Mat.n � n;K/ be a square matrix. Then we set

eA D
1X

kD0

1

kŠ
Ak:

Lemma 1.7.27 (Convergence of Exponential Series) For any square matrix A 2
Mat.n � n;K/ the series

P1
kD0 1

kŠA
k converges in each entry.

Proof Let jj � jj denote the Euclidean norm on K
n. Define the operator norm of a

matrix M 2 Mat.n � n;K/ by

jjMjj D sup
jjxjj�1

jjMxjj:

Then jj � jj is indeed a norm on the vector space of square matrices and satisfies
jjMNjj � jjMjj � jjNjj. Since the exponential series for real numbers converges, it
follows that the exponential series

P1
kD0 1

kŠA
k is Cauchy and hence converges. ut

Lemma 1.7.28 (Exponential of a Sum for Commuting Matrices) If matrices
A;B 2 Mat.n � n;K/ commute, AB D BA, then

eACB D eAeB:

In particular, e�A is the inverse of eA, so that eA 2 GL.n;K/.

Proof This is Exercise 1.9.23. ut
The following is immediate.



1.7 The Exponential Map 63

Theorem 1.7.29 For every A 2 Mat.n � n;K/ the map

�AWR �! GL.n;K/

t 7�! etA

is smooth and satisfies

�A.0/ D I;
d

dt

ˇ
ˇ
ˇ
ˇ
tDs

�A.t/ D �A.s/A 8s 2 R:

We get:

Corollary 1.7.30 (Exponential Map of Linear Group Is Matrix Exponential)
Let

A 2 gl.n;K/ D Mat.n � n;K/:

Then

exp.A/ D eA

where exp on the left denotes the canonical exponential map from Lie algebra to Lie
group. The same formula holds for the exponential map of any linear group.

Proof For A 2 Mat.n � n;K/ let QA denote the associated left-invariant vector field
on GL.n;K/. According to Lemma 1.5.23, QA is given at a point P 2 GL.n;K/ by

QAP D PA:

This shows that the map

�AWR �! GL.n;K/

from Theorem 1.7.29 is the integral curve of the vector field QA through I. The first
claim now follows by Definition 1.7.6 of the exponential map. The second claim
concerning linear groups follows by Corollary 1.7.17. ut
Example 1.7.31 The simplest non-trivial case of this theorem is the exponential
map

expW u.1/ Š iR �! U.1/ Š S1

i˛ 7�! ei˛:
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Example 1.7.32 A slightly less trivial example is the matrix exponential of tr, where
t 2 R and

r D
�
0 �1
1 0

�

is the generator of so.2/ from Example 1.5.30. It is easy to see that

r2n D .�1/nI

and thus

r2nC1 D .�1/nr

for all n � 0. Hence

etr D
1X

nD0

tn

nŠ
rn

D
1X

nD0

.�1/n
.2n/Š

t2n

�
1 0

0 1

�

C
1X

nD0

.�1/n
.2n C 1/Š

t2nC1
�
0 �1
1 0

�

D
�

cos t � sin t
sin t cos t

�

2 SO.2/:

This is just the matrix for a rotation in R
2 by an angle t. Similarly the matrix

exponential of tr3, with

r3 D
0

@
0 �1 0
1 0 0

0 0 0

1

A

one of the generators of so.3/ from Example 1.5.31, is

etr3 D
0

@
cos t � sin t 0
sin t cos t 0

0 0 1

1

A 2 SO.3/;

which is the matrix for a rotation in R
3 around the z-axis. Rotations around other

axes in R
3 are given by one-parameter subgroups conjugate to the one defined by

r3, showing that all one-parameter subgroups of SO.3/ are closed.
The proof of the following well-known formula uses that the determinant is

multilinear in the columns of a matrix and thus only holds for real and complex
matrices.
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Theorem 1.7.33 (Determinant of Matrix Exponential) Let A 2 Mat.n � n;K/
where K D R or C. Then

det
�
eA
� D etr.A/:

Proof We first calculate the differential DI det. Let X D .x1; : : : ; xn/ be an arbitrary
n � n-matrix with column vectors xi 2 K

n. We have by multilinearity and
antisymmetry of the determinant

det.I C .0; : : : ; 0; xi; 0 : : : ; 0// D det

0

B
B
B
B
B
B
B
B
B
B
B
@

1 x1i

: : :

1 x.i�1/i
.1C xii/

x.iC1/i 1
: : :

xni 1

1

C
C
C
C
C
C
C
C
C
C
C
A

D 1C xii:

Then

.DI det/.X/ D
nX

iD1
.DI det/.0; : : : ; 0; xi; 0 : : : ; 0//

D
nX

iD1

d

dt

ˇ
ˇ
ˇ
ˇ
tD0

det.I C .0; : : : ; 0; txi; 0 : : : ; 0//

D
nX

iD1
xii

D tr.X/:

Consider the curve

� WR �! R

t 7�! det
�
etX
�
:

Then

�.0/ D 1
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and for all s 2 R

d

dt

ˇ
ˇ
ˇ
ˇ
tDs

�.t/ D det
�
esX
� d

d�

ˇ
ˇ
ˇ
ˇ
�D0

det
�
e�X
�

D det
�
esX
�
.DI det/.X/

D det
�
esX
�

tr.X/

D �.s/tr.X/:

The unique solution of this differential equation for �.t/ is

�.t/ D etr.X/t:

This implies the assertion with t D 1. ut
Example 1.7.34 Let

D D

0

B
B
B
@

d1
d2
: : :

dn

1

C
C
C
A

be a real or complex diagonal matrix. Then

eD D

0

B
B
B
@

ed1

ed2

: : :

edn

1

C
C
C
A

and the equation

det
�
eD
� D ed1 � � � edn D ed1C:::Cdn D etr.D/

is trivially satisfied. The same argument works for upper triangular matrices.
Using Theorem 1.7.16 we can write the statement of Theorem 1.7.33 as follows:

Corollary 1.7.35 The determinant

detW GL.n;K/ �! K
�

A 7�! det.A/
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is a group homomorphism with differential given by the trace

det� D trW Mat.n � n;K/ �! K

X 7�! tr.X/:

Notice that the trace is indeed a Lie algebra homomorphism to the abelian Lie
algebra K.

1.8 �Cartan’s Theorem on Closed Subgroups

Our aim in this section is to prove Cartan’s Theorem 1.1.44 (we follow [14, 24]
and [142]). This theorem is important, because we used it, for example, to show
that closed subgroups of the general linear groups are embedded Lie subgroups.
We will also employ it later to show that isotropy groups of Lie group actions on
manifolds are embedded Lie subgroups. The proof of Cartan’s Theorem is one of
the more difficult proofs in this book and follows from a sequence of propositions.
One direction is quite easy.

Let G be a Lie group.

Definition 1.8.1 Let H � G be a subset. A chart  W U ! R
n of G such that

 .U \ H/ D  .U/ \ �f0g � R
k
�

for some k < n is called a submanifold chart or flattener for H around p.

Proposition 1.8.2 Let H � G be an embedded Lie subgroup. Then H is a closed
subset in the topology of G.

Proof Suppose that H � G is an embedded Lie subgroup. In a submanifold chart U
of G around e for the embedded submanifold H, the set H \ U is closed in U.

Suppose y is a point in the closure NH and let xn be a sequence in H converging to
y. Then x�1

n y is a sequence in G converging to e. Hence for sufficiently large index
n, the element x D xn 2 H satisfies x�1y 2 U and thus y 2 xU.

Since the group operations on G are continuous, the closure NH is a subgroup of
G. It follows that y 2 NH \ xU and x�1y 2 NH \ U D H \ U. Thus y 2 H and H is
closed. ut
The converse statement is more difficult. Assume from now on that H � G is a
subgroup in the algebraic sense, which is a closed set in the topology of G. To show
that H is a k-dimensional embedded Lie subgroup of the n-dimensional Lie group
G, we have to find around every point p 2 H a chart  W U ! R

n of G which is a
submanifold chart for H around p. The following argument shows that it suffices to
find a submanifold chart for H around e.
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Proposition 1.8.3 (Submanifold Charts) Let �W U ! R
n be a submanifold chart

for H around e 2 H. Suppose p 2 H. Then

�p D � ı Lp�1 W Lp.U/ �! R
n

is a submanifold chart for H around p. Here Lp denotes left translation on G by p.

Proof Note that

Lp.H/ D H;

since H is a subgroup of G, hence

Lp.U/\ H D Lp.U \ H/:

This implies

�p.Lp.U/\ H/ D �.U \ H/

and

�p.Lp.U/\ H/ D �p.Lp.U//\ �f0g � R
k
�
:

ut
We want to find a submanifold chart for H around e. It turns out that we first have
to find a candidate for the Lie algebra of the subgroup H.

Proposition 1.8.4 (The Candidate for the Lie Algebra of H) Let H � G be a
subgroup in the algebraic sense which is a closed set in the topology of G. Then

h D fX 2 g j exp tX 2 H 8t 2 Rg

is a vector subspace of g.
To prove Proposition 1.8.4 note that if X 2 h, then sX 2 h for all s 2 R, since we
can choose t0 D ts 2 R. It remains to show that if X;Y 2 h, then X C Y 2 h. We
have to understand terms of the form

exp.t.X C Y//:

This is the purpose of the following proposition.

Proposition 1.8.5 (Special Case of the Baker–Campbell–Hausdorff Formula)
Let G be a Lie group with Lie algebra g. Then for arbitrary vectors X;Y 2 g we
have

exp.tX/ � exp.tY/ D exp
�
t.X C Y/C O

�
t2
�� 8jtj < �;
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where � > 0 is small enough and O.t2/ is some function of t such that O.t2/=t2 stays
finite as t ! 0.

Proof According to Proposition 1.7.14 the exponential map is a diffeomorphism
from an open neighbourhood V of 0 in g onto an open neighbourhood W of e
in G. We can thus introduce so-called normal coordinates on W: Choose a basis
.v1; : : : ; vn/ for the vector space g. Then there is a unique chart .W; �/ of G around
e with

�W G 	 W �! R
n

such that

�.exp.x1v1 C : : :C xnvn// D .x1; : : : ; xn/:

Let

�.exp.tX// D tx;

�.exp.tY// D ty:

Let 
 denote group multiplication in G:


W G � G �! G

.g; h/ 7�! g � h:

Utilizing the chart � this induces a map

Q
WRn � R
n 	 QU �! R

n;

where QU is a small open neighbourhood of .0; 0/. The map Q
 is defined by

Q
 D � ı 
 ı ���1 � ��1� :

We then have to show that

Q
.tx; ty/ D �.exp.tX/ � exp.tY//

D t.x C y/C O.t2/:

This follows from the Taylor formula for Q
 since


.e; e/ D e
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hence

Q
.0; 0/ D 0

and

D.e;e/
.u; 0/ D u D D.e;e/
.0; u/ 8u 2 TeG

hence

D.0;0/ Q
.w; 0/ D w D D.0;0/ Q
.0;w/ 8w 2 T0R
n:

ut
We will use this proposition in the following special form.

Corollary 1.8.6 (Lie Product Formula) For arbitrary vectors X;Y 2 g and all
t 2 R

lim
n!1

�

exp
tX

n
exp

tY

n

�n

D exp.t.X C Y//:

Proof This follows from Proposition 1.8.5 with the general formula exp.Z/n D
exp.nZ/ for any Z 2 g. ut
We can now finish the proof of Proposition 1.8.4.

Proof If X;Y 2 h, then

�

exp
tX

n
exp

tY

n

�n

2 H 8n 2 N; t 2 R;

since H is a subgroup of G. Corollary 1.8.6 together with the assumption that H is a
closed subset implies exp.t.X C Y// 2 H for all t 2 R and thus X C Y 2 h. ut

Let h be the vector subspace of g from Proposition 1.8.4 and m an arbitrary
complementary vector subspace of g, so that

g D h ˚ m:

We now start to construct the submanifold chart for H around e. We fix an arbitrary
norm jj � jj on the vector space g.

Proposition 1.8.7 (Choice of the Open Subset Vm � m) There exists an open
neighbourhood Vm � m of 0 in m, so that

exp.Vm n f0g/\ H D ;:
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Proof Suppose that for every open neighbourhood Vm of 0 in m we have

exp.Vm n f0g/\ H ¤ ;:

Then there exists a non-zero sequence .Zn/n2N in m converging to 0 so that
exp.Zn/ 2 H. Let K denote the set

K D fZ 2 m j 1 � jjZjj � 2g

and choose for every n 2 N a positive integer cn 2 N such that cnZn 2 K. Since
K is a compact set, we can assume (after passing to a subsequence) that .cnZn/n2N
converges to some Z 2 K. Then

Zn

jjZnjj D cnZn

jjcnZnjj
n!1�! Z

jjZjj :

Since exp.Zn/ 2 H for all n 2 N we get with Lemma 1.8.8 below that Z 2 h.
However, Z 2 K � m and m is complementary to h, therefore Z D 0. This
contradicts that 1 � jjZjj � 2. ut
In the proof we used the following lemma.

Lemma 1.8.8 Let .Zn/n2N be a sequence of non-zero vectors in g with exp.Zn/ 2 H
and Zn ! 0 as n ! 1. Suppose that the limit

W D lim
n!1

Zn

jjZnjj
exists. Then

exp.tW/ 2 H 8t 2 R

and thus W 2 h.

Proof Let t 2 R be fixed and define

cn D maxfk 2 Z j kjjZnjj < tg:

We claim that

lim
n!1 cnjjZnjj D t:

Note that

cnjjZnjj < t � .cn C 1/jjZnjj D cnjjZnjj C jjZnjj:
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This implies the claim, because Zn ! 0. We get

exp

�

cnjjZnjj � Zn

jjZnjj
�

�! exp.tW/:

However,

exp

�

cnjjZnjj � Zn

jjZnjj
�

D exp.cnZn/ D exp.Zn/
cn 2 H:

Since H is a closed subset it follows that exp.tW/ 2 H. ut
The following map will be the (inverse of the) submanifold chart.

Lemma 1.8.9 (Definition of the Map F) The map

FW g D h ˚ m �! G

X C Y 7�! exp X � exp Y

is smooth and its differential at 0 is the identity. Thus F is a local diffeomorphism
on a neighbourhood of 0.

Proof The differential of F maps

D0FW T0g Š g �! TeG Š g:

We will show that this map is the identity. For X 2 h we have

D0F.X/ D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

F.tX/

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

exp.tX/ � exp.0/

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

exp.tX/

D X:

A similar argument applies for X 2 m. ut
Proposition 1.8.10 (The Map F Defines a Submanifold Chart) Let

FW g D h ˚ m �! G

X C Y 7�! exp X � exp Y
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be the map from Lemma 1.8.9. Then there exists a small neighbourhood V of 0 in g
such that F.V/ D U is an open neighbourhood of e in G and

F�1jUW U �! V

is a submanifold chart for H around e.

Proof According to Lemma 1.8.9 we can choose an open neighbourhood

V D Vm � Vh � m ˚ h

of 0 in g so that

FjV W V �! U D F.V/

is a diffeomorphism. According to Proposition 1.8.7 we can choose Vm small
enough such that

; D exp.Vm n f0g/\ H:

Note that exp.Y/ 2 H for all Y 2 h, hence

; D F
�
.Vm n f0g/� Vh

� \ H;

and

; D �
.Vm n f0g/� Vh

� \ F�1.H/:

We conclude that

F�1.U \ H/ � f0g � Vh

and thus

F�1.U \ H/ D f0g � Vh: (1.1)

This implies the claim. ut
With Proposition 1.8.3 this finishes the proof of Cartan’s Theorem. From the proof
we see:

Corollary 1.8.11 (The Lie Algebra of an Embedded Lie Subgroup) Let H � G
be as in Cartan’s Theorem 1.1.44. Then the Lie algebra of H is given by

h D fX 2 g j exp.tX/ 2 H 8t 2 Rg:
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Proof We denote the Lie algebra of H for the moment by L.H/. It is clear that
L.H/ � h. We know from Proposition 1.8.4 that h is a vector subspace in g and
from Eq. (1.1) that h has the same dimension as H. This implies the claim. ut
We collect some consequences of Cartan’s Theorem:

Theorem 1.8.12 (Kernel of Lie Group Homomorphism) Let �W G ! K be a Lie
group homomorphism. Then H D ker� is an embedded Lie subgroup of G with Lie
algebra h D ker��.

Proof It is clear that H is a subgroup of G and closed, because H D ��1.e/. By
Cartan’s Theorem 1.1.44, H is an embedded Lie subgroup of G.

Let X be an element in the Lie algebra h of H. Then exp tX 2 H for all t 2 R,
hence

�.exp tX/ D e 8t 2 R:

This implies that

��X D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

�.exp tX/ D 0:

Conversely, let X 2 g with ��X D 0. Then

d

dt

ˇ
ˇ
ˇ
ˇ
tD0

�.exp tX/ D 0:

This implies for all s 2 R

d

dt

ˇ
ˇ
ˇ
ˇ
tDs

�.exp tX/ D d

d�

ˇ
ˇ
ˇ
ˇ
�D0

�.exp sX/�.exp �X/

D DeL�.exp sX/
d

d�

ˇ
ˇ
ˇ
ˇ
�D0

�.exp �X/

D 0:

Therefore, the curve �.exp tX/ is constant and equal to �.e/ D e. This implies
exp tX 2 H for all t 2 R and thus X 2 h. ut
Proposition 1.8.13 (Image of Compact Lie Group Under Homomorphism) Let
�W G ! H be a Lie group homomorphism. If G is compact, then the image of � is
an embedded Lie subgroup of H.

Proof This is clear, because the image of � is compact, hence closed. ut
Theorem 1.8.14 (Continuous Group Homomorphisms Between Lie Groups
Are Smooth) Let �W G ! K be a continuous group homomorphism between Lie
groups. Then � is smooth and thus a Lie group homomorphism.
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We use the following lemma from topology, whose proof is left as an exercise.

Lemma 1.8.15 Let X;Y be topological spaces and f W X ! Y a map. Define the
graph of f by

	f D f.x; f .x// 2 X � Y j x 2 Xg:

If Y is Hausdorff and f continuous, then 	f is closed in the product topology of
X � Y.
We also need the following.

Lemma 1.8.16 Let  W K ! G be a Lie group homomorphism, which is a
homeomorphism. Then  is a diffeomorphism, hence a Lie group isomorphism.

Proof It suffices to show that �W k ! g is injective, because K and G have the same
dimension. Suppose h ¤ 0 is the kernel of  � and H the kernel of  . According
to Theorem 1.8.12 the subalgebra h is the Lie algebra of H and thus H ¤ feg. This
shows that  is not injective and hence not a homeomorphism. ut
We now prove Theorem 1.8.14.

Proof The graph 	� � G � H is a closed subgroup of the Lie group G � H, thus an
embedded Lie subgroup by Cartan’s Theorem 1.1.44. The projection pr1W G � H !
G restricts to a smooth homeomorphism

pW	� �! G

on the embedded submanifold 	� with continuous inverse

p�1W G �! 	�

g 7�! .g; �.g//:

It follows by Lemma 1.8.16 that p is a diffeomorphism and thus

� D pr2 ı p�1

is a smooth map. ut
Corollary 1.8.17 (Uniqueness of Smooth Lie Group Structure) Let G be a
topological manifold which is a topological group. Then there is at most one smooth
structure on G so that G is a Lie group.

Proof Suppose G0 and G00 are smooth Lie group structures on G. The identity map

IdGW G0 �! G00

is a group isomorphism and a homeomorphism. By Theorem 1.8.14 this map is a
diffeomorphism. ut
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Corollary 1.8.18 (Embeddings of Compact Lie Groups) Let G;H be Lie groups,
G compact, and �W G ! H an injective Lie group homomorphism. Then � is a Lie
group embedding, i.e. a Lie group isomorphism onto its image, an embedded Lie
subgroup of H.

Proof Since G is compact, the image of � is compact, hence closed in H. This
shows that the image of � is an embedded Lie subgroup by Cartan’s Theorem 1.1.44.
Moreover, �W G ! �.G/ is a closed map, hence a homeomorphism. Lemma 1.8.16
implies that � is an isomorphism onto its image. ut

1.9 Exercises for Chap. 1

1.9.1 Let G be a topological group and Ge the connected component containing the
neutral element e. Prove that Ge is a normal subgroup of G.

1.9.2 (From [135]) Let G be a topological group which is locally Euclidean. Prove
that G is Hausdorff.

1.9.3 Let G be a connected topological group and H � G an open subgroup. Prove
that H D G.

1.9.4 Let G be a connected topological group and U � G an open neighbourhood
of e. Prove that the set

W D
1[

nD1
Un;

where

Un D U � U � � � U„ ƒ‚ …
n factors

;

contains an open subgroup of G. Deduce that W D G.

1.9.5 (From [129]) Let G be a group which is at the same time a manifold so that
the multiplication map


W G � G �! G

.g; h/ 7�! g � h

is smooth.
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1. Show that the multiplication map 
 is a submersion.
2. Prove that the map

G �! G

g 7�! g�1

is smooth and therefore G is a Lie group.

1.9.6 Prove Proposition 1.1.25 that realizes the space Mat.n�n;H/ of quaternionic
matrices via the adjoint as a subspace of the space Mat.2n � 2n;C/ of complex
matrices.

1.9.7 Prove Proposition 1.1.26 on the properties of the adjoint for quaternionic
matrices.

1.9.8 Show that the determinant of a matrix .a/ 2 Mat.1 � 1;H/ with a 2 H is
equal to

det.a/ D jjajj2:

1.9.9 Show that every Lie group homomorphism �W S1 ! R between the Lie
groups .S1; �/ and .R;C/ is the constant map to 0 2 R.

1.9.10

1. Find an explicit Lie group embedding

O.n/ ,! SO.n C 1/:

2. Write A 2 Mat.n � n;C/ as A D A1 C iA2 with A1;A2 real matrices and find Lie
group embeddings

GL.n;C/ ,! GLC.2n;R/

and

U.n/ ,! SO.2n/:

3. Identify the image of Sp.n/ in Mat.2n � 2n;C/ under the adjoint map � and find
a Lie group embedding

Sp.n/ ,! U.2n/:
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1.9.11 Let Tn denote the torus of dimension n.

1. Find Lie group embeddings

Tn ,! U.n/;

Tn�1 ,! SU.n/;

Tn ,! Sp.n/:

2. Find Lie group embeddings

Tn ,! SO.2n/;

Tn ,! SO.2n C 1/:

1.9.12 Find an explicit Lie group homomorphism

�W SU.3/ � SU.2/ � U.1/ �! SU.5/

with discrete kernel.

1.9.13 Show that the Lie group homomorphisms from Example 1.3.7 and Exam-
ple 1.3.8 together give a Lie group homomorphism W SU.2/ ! SO.3/ equal to

 

 
x C iy �u � iv
u � iv x � iy

!

D

0

B
@

x2 C y2 � u2 � v2 �2xv C 2yu 2xu C 2yv
2xv C 2yu x2 � y2 C u2 � v2 �2xy C 2uv

�2xu C 2yv 2xy C 2uv x2 � y2 � u2 C v2

1

C
A :

Deduce that

 

�
ei˛=2 0

0 e�i˛=2

�

D
0

@
1 0 0

0 cos˛ � sin ˛
0 sin ˛ cos˛

1

A 8˛ 2 R:

1.9.14 Recall that according to Example 1.4.6 the vector space R
3 is a Lie algebra

with bracket given by the cross product:

Œv;w� D v � w; 8v;w 2 R
3:

Find an explicit isomorphism of .R3;�/ with the Lie algebra so.3/.

1.9.15 Prove that for n � 1 the sphere S2n does not admit the structure of a Lie
group.

1.9.16 (From [24]) Consider the Lie algebras g of the classical linear groups G
from Theorem 1.5.27.
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1. Show directly that the subsets of Mat.n � n;K/ defined in Theorem 1.5.27 are
real vector subspaces and closed under the commutator of matrices.

2. Show also by a direct calculation that these subsets are closed under the following
map:

X 7�! g � X � g�1;

where X 2 g is an element of the Lie algebra and g 2 G an element of
the corresponding linear group (we will identify this map with the adjoint
representation in Sect. 2.1.5).

1.9.17

1. Prove that there are, up to isomorphism, only two 2-dimensional real Lie
algebras.

2. Show that sl.2;R/ is not isomorphic to su.2/.

1.9.18 The Lie algebra su.2/ is spanned as a real vector space by the matrices
�1; �2; �3 from Example 1.5.32. The Lie algebra sl.2;C/ is spanned as a complex
vector space by the matrices H;X;Y from Example 1.5.36.

1. Show that the matrices �1; �2; �3 are a complex basis for sl.2;C/ and express this
basis in terms of H;X;Y.

2. Show that as complex Lie algebras sl.2;C/ is isomorphic to su.2/˝R C, where
the Lie bracket on the right is the complex linear extension of the Lie bracket of
su.2/.

1.9.19 Consider the Lie group U.n/ with Lie algebra u.n/.

1. Find an explicit Lie algebra isomorphism

u.n/ Š u.1/˚ su.n/:

2. Find an explicit group isomorphism

U.n/ Š .U.1/ � SU.n//=Zn;

where Zn � U.1/ � SU.n/ is a normal subgroup.

1.9.20 Recall that

SU.2/ D
(�

a �Nb
b Na

�

2 Mat.2 � 2;C/
ˇ
ˇ
ˇ
ˇ
ˇ
a; b 2 C; jaj2 C jbj2 D 1

)

:

We identify quaternions u C jv 2 H, where u; v 2 C, with the following matrices:

H Š
(�

u �Nv
v Nu

�

2 Mat.2 � 2;C/
ˇ
ˇ
ˇ
ˇ
ˇ
u; v 2 C

)

:
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Consider the following isomorphism of real vector spaces:

R
3 Š iR � C �! ImH

x D .ic; v/ 7�! X D
�

ic �Nv
v �ic

�

:

The Euclidean norm of an element x 2 R
3 is given by jjxjj2 D det X. Under this

identification we set:

SU.2/ � R
3 �! R

3

.A;X/ 7�! AXA�:

1. Prove that this map is well-defined and yields a homomorphism

�W SU.2/ �! SO.3/

of Lie groups.
2. Show that � is surjective and that its kernel consists of fI;�Ig.

1.9.21 (From [98]) We identify the Lie group SU.2/ and the quaternions H with
subsets of the complex 2� 2-matrices as in Exercise 1.9.20. Consider the following
isomorphism of real vector spaces:

R
4 Š C

2 �! H

x D .u; v/ 7�! X D
�

u �Nv
v Nu

�

:

The Euclidean norm of an element x 2 R
4 Š C

2 is given by jjxjj2 D det X. Under
this identification we set:

SU.2/ � SU.2/ � R
4 �! R

4

.A�;AC;X/ 7�! A� � X � A�C;

where � denotes matrix multiplication.

1. Prove that this map is well-defined and yields a homomorphism

 W SU.2/ � SU.2/ ! SO.4/

of Lie groups.
2. Show that  is surjective with kernel f.I; I/; .�I;�I/g.
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1.9.22 Prove that every Lie group homomorphism �W S1 ! S1 is of the form

�.z/ D zk

for some k 2 Z.

1.9.23 Show that if matrices A;B 2 Mat.n � n;K/ with K D R;C;H commute,
AB D BA, then

eACB D eAeB:

1.9.24 Calculate exp.s�a/ 2 SU.2/ for s 2 R and the basis �1; �2; �3 of the Lie
algebra su.2/ from Example 1.5.32.

1.9.25 Consider the Lie group SU.2/ with Lie algebra su.2/.

1. Show that every element X 2 su.2/ can be written as

X D �2rA � �3 � A�1

with r 2 R, A 2 SU.2/ and

�3 D �1
2

�
i 0
0 �i

�

2 su.2/:

2. Prove that every one-parameter subgroup of SU.2/ is closed, i.e. its image is
isomorphic to U.1/.

1.9.26 Consider the Lie algebra su.3/ from Example 1.5.33 with the basis
v1; : : : ; v8, where va D ia

2
and a are the Gell-Mann matrices.

1. Prove that the following three sets of basis vectors

fv1; v2; v3g;
fv4; v5; ˛v3 C ˇv8g;
fv6; v7; �v3 C ıv8g;

where ˛; ˇ; �; ı are certain real numbers, span Lie subalgebras of su.3/ isomor-
phic to su.2/. Determine ˛; ˇ; �; ı.

2. Prove that the one-parameter subgroups generated by each of the basis vectors
v1; : : : ; v8 are closed.
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1.9.27 (From [24]) Consider a matrix

A D
�

a b
c �a

�

2 sl.2;R/:

1. Calculate eA and tr
�
eA
�
.

2. Prove that the exponential map expW sl.2;R/ ! SL.2;R/ is not surjective.

1.9.28

1. Let G be a connected Lie group. Show that every group element g 2 G is of the
form

g D exp.X1/ � exp.X2/ � � � exp.Xn/

for finitely many vectors X1; : : : ;Xn in the Lie algebra g of G.
2. Let �W G ! H be a Lie group homomorphism, where G is connected. Suppose

that the induced Lie algebra homomorphism ��W g ! h is trivial. Prove that � is
trivial.

1.9.29 (From [77])

1. Calculate the k-th power of the nilpotent matrix

N D

0

B
B
B
B
B
@

0 1 0 0 � � � 0
� 0 1 0 � � � �
� � � � � �
0 � � � � � � 1
0 � � � � � � 0

1

C
C
C
C
C
A

2 Mat.n � n;C/:

2. Calculate the k-th power of a Jordan block matrix In C N with  2 C.
3. Calculate etA for a matrix A in Jordan normal form and t 2 R.

1.9.30 (From [77]) Let A 2 Mat.n � n;C/.

1. Use Exercise 1.9.29 to show that the set

˚
etA j t 2 R

�

is bounded in Mat.n � n;C/ if and only if A is diagonalizable with purely
imaginary eigenvalues.

2. Show that eA D I if and only if A is diagonalizable with all eigenvalues contained
in 2�iZ.



Chapter 2
Lie Groups and Lie Algebras: Representations
and Structure Theory

At least locally, fields in physics can be described by maps on spacetime with
values in vector spaces. Since symmetry groups in field theories act on fields, it
is important to understand (linear) actions of Lie groups and Lie algebras on vector
spaces, known as representations.

For example, we shall see that, in the Standard Model, three Dirac spinors
for each quark flavour are combined and form a vector in a representation space
C
3 of the gauge group SU.3/ of quantum chromodynamics. Similarly, two left-

handed Weyl spinors, known as the left-handed electron and the left-handed electron
neutrino, are combined to form a vector in a representation space C

2 of the gauge
group SU.2/ � U.1/ of the electroweak interaction.

It turns out that every Lie group and Lie algebra has a special representation,
known as the adjoint representation. The adjoint representation can be used to define
the Killing form, a canonical symmetric bilinear form on every Lie algebra. Both the
adjoint representation and the Killing form are important tools for the classification
of Lie algebras. The adjoint representation is also important in physics, because
gauge bosons correspond to fields on spacetime that transform under the adjoint
representation of the gauge group.

The purpose of this chapter is to describe representations of Lie groups and
Lie algebras in general as well as the structure of semisimple and compact Lie
algebras. We also discuss special scalar products on Lie algebras which will be
used in Sect. 7.3.1 to construct Lagrangians for gauge boson fields. We only cover
the basics of the representation and structure theory of Lie groups and Lie algebras.
Much more details can be found in the references mentioned at the beginning of
Chap. 1, which are also the references for this chapter.
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2.1 Representations

2.1.1 Basic Definitions

We begin with the basic concept of representations of Lie groups and Lie algebras.

Definition 2.1.1 Let G be a Lie group and V a vector space over the real or complex
numbers. Then a representation of G on V is a Lie group homomorphism

�W G �! GL.V/

to the Lie group GL.V/ of linear isomorphisms of V . One sometimes writes
GL.V/ D Aut.V/, the Lie group of linear automorphisms of V . The Lie group
GL.V/ is by definition isomorphic to a general linear group of the form GL.n;K/,
where K D R;C and n is the dimension of V .

If the representation is clear from the context, we sometimes write

�.g/v D g � v D gv

for g 2 G; v 2 V . A representation � of a Lie group G is called faithful if � is
injective.
For a Lie group representation � the identities

�.gh/ D �.g/ ı �.h/

and

�
�
g�1� D �.g/�1

hold for all g; h 2 G. Note that the definition of a representation � requires that
the map � is a homomorphism in the algebraic sense and differentiable (in fact, by
Theorem 1.8.14 it suffices to demand that the map � is continuous).

Example 2.1.2 By Theorem 1.2.7 any compact Lie group has a faithful representa-
tion on some finite-dimensional, complex vector space.

Definition 2.1.3 Let �V ; �W be representations of a Lie group G on vector spaces
V and W. Then a morphism of the representations is a G-equivariant linear map
f W V ! W, so that

f .�V.g/v/ D �W.g/f .v/;

i.e.

f .gv/ D g f .v/ 8g 2 G; v 2 V:
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Such a map f is also called an intertwining map. An isomorphism or equivalence
of representations is a G-equivariant isomorphism.

Definition 2.1.4 Let �W G ! GL.V/ be a representation of a Lie group G. Suppose
that H � G is an embedded Lie subgroup. Then the restriction

�jHW H �! GL.V/

of the Lie group homomorphism � to H is a representation of H, called a restricted
representation.
We define representations of Lie algebras in a similar way.

Definition 2.1.5 Let g be a (real or complex) Lie algebra and V a vector space over
the real or complex numbers. Then a representation of g on V is a Lie algebra
homomorphism

�W g �! gl.V/ D End.V/

to the linear endomorphisms of V (linear maps V ! V). If the representation is
clear from the context, we sometimes write

�.X/v D X � v D Xv

for X 2 g; v 2 V . A representation � of a Lie algebra g is called faithful if � is
injective.
For a Lie algebra representation the following identity holds:

�.ŒX;Y�/ D �.X/ ı �.Y/ � �.Y/ ı �.X/ 8X;Y 2 g:

Example 2.1.6 By Ado’s Theorem 1.5.25 any Lie algebra has a faithful representa-
tion on some finite-dimensional vector space.

Remark 2.1.7 Note that if the Lie algebra is complex, then we require the represen-
tation �W g ! End.V/ to be a complex linear map.

Definition 2.1.8 Let �V ; �W be representations of a Lie algebra g on vector spaces
V and W. Then a morphism of the representations is a g-equivariant linear map
f W V ! W, so that

f .�V.X/v/ D �W.X/f .v/;

i.e.

f .Xv/ D Xf .v/ 8X 2 g; v 2 V:

Such a map f is also called an intertwining map. An isomorphism or equivalence
of representations is a g-equivariant isomorphism.
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Definition 2.1.9 Let �W g ! End.V/ be a representation of a Lie algebra g. Suppose
that h � g is a Lie subalgebra. Then the restriction

�jhW h �! End.V/

of the Lie algebra homomorphism � to h is a representation of h, called restricted
representation.

Remark 2.1.10 Unless stated otherwise we only consider representations of Lie
groups and Lie algebras on real and complex vector spaces and these vector spaces
are finite-dimensional.

Remark 2.1.11 Both types of homomorphisms are called representations, because
we represent elements in the Lie group or Lie algebra by linear maps on a vector
space, i.e. (after a choice of basis for the vector space) by matrices.

Representations of Lie groups and their associated Lie algebras are related:

Proposition 2.1.12 (Induced Representations) Let �W G ! GL.V/ be a represen-
tation of a Lie group G on a vector space V. Then the differential ��W g ! End.V/
is a representation of the Lie algebra g.

Proof The proof follows from Theorem 1.5.18, because the differential of a Lie
group homomorphism is a Lie algebra homomorphism. ut
With Theorem 1.7.16 we get the following commutative diagram:

End(V )

G GL(V )

exp exp

Note that the exponential map on the right is just the standard exponential map on
endomorphisms (defined in the same way as for matrices, using composition instead
of matrix multiplication). We can thus write the commutativity of the diagram as

�.exp X/ D e��

X 8X 2 g:

This means: if we know how a Lie algebra element X 2 g acts in a representation
on the vector space V , then we know how the group element exp X 2 G acts on V .

Assuming Theorem 1.5.20 we get the following:

Corollary 2.1.13 (Integrability Theorem for Representations) Let G be a con-
nected and simply connected Lie group. Suppose �W g ! End.V/ is a representation
of the Lie algebra of G. Then there exists a unique representation �W G ! GL.V/
such that �� D �.
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The discussion in Example 1.5.21 shows that this may not hold if G is not simply
connected. In particular, if

�W so.2/ Š u.1/ �! End.V/

is a representation and X the generator of u.1/with exp.2�iX/ D 1, then a necessary
condition that � comes from a representation

�W U.1/ �! GL.V/

is that

e2� i�.X/ D IdV :

Example 2.1.14 For any constant k 2Z there is a complex 1-dimensional
representation

�kW U.1/ �! U.1/ � GL.C/

z 7�! zk:

We say that these representations have winding number k. In the Standard Model
these representations appear in connection with the weak hypercharge gauge group
U.1/Y .

Example 2.1.15 The Lie groups GL.n;R/ (and GL.n;C/) have canonical represen-
tations on R

n (and C
n) by matrix multiplication on column vectors from the left.

These representations induce representations for all linear groups, called standard,
defining or fundamental representations (by a fundamental representation we will
always mean the defining representation). There are similar, induced representations
of the corresponding Lie algebras.

Definition 2.1.16 A representation of a Lie group G (or Lie algebra g) on a vector
space V is called irreducible if there is no proper invariant subspace W � V ,
i.e. no vector subspace W, different from 0 or V , such that G�W � W (or g�W � W).
A representation is called reducible if it is not irreducible.

Example 2.1.17 The 0-dimensional and every 1-dimensional representation are
irreducible, because in these cases there are no proper vector subspaces at all.

Definition 2.1.18 A singlet representation is a representation of a Lie group or
Lie algebra on a 1-dimensional (real or complex) vector space. Similarly, a doublet
or triplet representation is a representation on a 2- or 3-dimensional vector space.
A representation of a Lie group or Lie algebra on an n-dimensional vector space
is sometimes denoted by n, in particular, if the dimension uniquely determines the
representation.
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Example 2.1.19 (Trivial Representations) Let G be a Lie group and V a real or
complex vector space. Then

�W G �! GL.V/

g 7�! IdV ;

where every group element gets mapped to the identity, is a representation, called a
trivial representation. It is irreducible precisely if V is 1-dimensional. Similarly, if
g is a Lie algebra, then

�W g �! End.V/

g 7�! 0

is a trivial representation. Again, it is irreducible precisely if V is 1-dimensional.
We will later study a class of Lie algebras where every representation is either trivial
or faithful, see Exercise 2.7.9.

It is a curious fact that the fundamental and trivial representations of SU.3/
and SU.2/, together with the winding number representations of U.1/ in
Example 2.1.14, suffice to describe all matter particles (and the Higgs field) in
the Standard Model; see Sect. 8.5. The gauge bosons corresponding to these
gauge groups are described by the adjoint representation that we discuss in
Sect. 2.1.5.

Example 2.1.20 The fundamental representation of the Lie algebra su.2/ is an (irre-
ducible) doublet representation on the vector space C2. Recall from Example 1.5.32
that there exists an isomorphism su.2/ Š so.3/. The fundamental representation
of so.3/ thus also defines an (irreducible) triplet representation of su.2/ on R

3 (and
C
3). It can be proved that su.2/ has a unique (up to equivalence) irreducible complex

representation Vn of dimension nC1 for every natural number n � 0 (see, e.g. [24]).

Example 2.1.21 (The Heisenberg Lie Algebra and Quantum Mechanics) Recall
from Example 1.5.38 that the Heisenberg Lie algebra nil3 is a 3-dimensional real
Lie algebra spanned by vectors p; q; z with Lie brackets

Œq; p� D z;

Œq; z� D 0;

Œ p; z� D 0:

Let „ 2 R be some real number. A central representation of nil3 is a representation

nil3 �! End.V/
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on a complex vector space V such that z gets mapped to i„ � IdV . If we denote the
images of q and p in End.V/ by Oq and Op, then

ŒOq; Op� D i„
and the other two commutation relations are satisfied trivially (on the right-hand
side we do not write the identity map of V explicitly). This is the canonical
commutation relation of quantum mechanics.

2.1.2 Linear Algebra Constructions of Representations

There are several well-known constructions that yield new vector spaces from given
ones. If the given vector spaces carry a representation, then usually the new vector
spaces carry induced representations. We first recall the following notion from
complex linear algebra.

Definition 2.1.22 Let V be a complex vector space. Then we define the complex
conjugate vector space NV as follows:

1. As a set and abelian group NV D V .
2. Scalar multiplication is defined by

C � NV �! NV
.; v/ 7�! Nv:

If f W V ! V is a complex linear map, then the same map (on the set NV D V)
is denoted by Nf W NV ! NV and is still complex linear. The identity map V ! NV is
complex antilinear.

Definition 2.1.23 Let V and W be real or complex vector spaces with
representations

�V W G �! GL.V/

�W W G �! GL.W/

of a Lie group G. Then there exist the following representations of G, where g 2 G
and v 2 V;w 2 W are arbitrary:

1. The direct sum representation �V˚W on V ˚ W, defined by

g.v;w/ D .gv; gw/:

2. The tensor product representation �V˝W on V ˝ W, defined by

g.v ˝ w/ D gv ˝ gw:
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3. The dual representation �V� on V�, defined by

.g/.v/ D 
�
g�1v

�
; 8 2 V�:

4. The exterior power representation ��kV on �kV , defined by

g.v1 ^ v2 ^ : : : ^ vk/ D gv1 ^ gv2 ^ : : : ^ gvk; 8v1 ^ v2 ^ : : : ^ vk 2 �kV:

5. The homomorphism space representation �Hom.V;W/ on Hom.V;W/, defined by

.g f /.v/ D g f
�
g�1v

�
; 8f 2 Hom.V;W/:

6. If V is a complex vector space, then the complex conjugate representation � NV
on NV is defined by

� NV.g/v D �V.g/v:

Suppose in addition that

�W W H �! GL.W/

is a representation of a Lie group H. Then there exists the following representation,
where h 2 H is arbitrary:

7. The (outer) tensor product representation �V ˝ �W on V ˝ W of the Lie group
G � H, defined by

.g; h/.v˝ w/ D gv ˝ hw;

for g 2 G; h 2 H.

It is easy to check that each of these maps is indeed a representation.

Remark 2.1.24 The direct sum representation �V ˚ �W on V ˚ W of the Lie group
G � H, defined by

.g; h/.v;w/ D .gv; hw/;

is less important, because it is can be reduced to the representations �V and �W , each
tensored with the trivial 1-dimensional representation.

Remark 2.1.25 If V is a complex representation space for a Lie group, we then get
in total four complex representations which have the same dimension as V: V , V�,
NV and NV�.
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The representations of the Lie group

G D SU.3/ � SU.2/ � U.1/

that appear in the Standard Model of elementary particles are direct sums of
outer tensor product representations of the form

U ˝ V ˝ W;

where U;V;W are certain representations of the factors SU.3/, SU.2/, U.1/
of G. See Sect. 8.5 for details.

Example 2.1.26 We describe these constructions using matrices. Consider the
column vector spaces V D K

n, W D K
m where K D R;C. Representations �V and

�W of a Lie group G take values in the matrix Lie groups GL.n;K/ and GL.m;K/.
We can then identify the canonical representations of G on the vector spaces

V ˚ W; V�; Hom.V;W/; �2V� and NV (if V is complex)

with the following representations:

1. V ˚ W can be identified with K
nCm. For a column vector .x; y/T 2 K

nCm the
direct sum representation is given by

�V˚W.g/

�
x
y

�

D
�
�V.g/ 0

0 �W.g/

��
x
y

�

:

2. V� can be identified with a row vector space that we here denote by .Kn/�. For a
row vector s 2 .Kn/� the dual representation is given by

�V�.g/s D s � �V.g/
�1:

3. Hom.V;W/ can be identified with the vector space Mat.m � n;K/. For a matrix
A 2 Mat.m � n;K/ the representation on the homomorphism space is given by

�Hom.V;W/.g/A D �W.g/ � A � �V .g/
�1:

4. �2V� is the space of skew-symmetric, bilinear maps

W V � V �! K
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and can be identified with so.n;K/, the space of skew-symmetric n � n-matrices,
by sending  to the matrix A with coefficients Aij D .ei; ej/. The representation
on �2V� is then given by

��2V�.g/A D �
�V.g/

�1�T � A � �V.g/
�1:

5. If V D C
n, then NV D C

n as an abelian group and every complex scalar (and
hence every complex matrix) acts as the complex conjugate. For a column vector
z 2 C

n the complex conjugate representation is given by

� NV .g/z D �V.g/ � z:

There are analogous constructions for representations of Lie algebras:

Definition 2.1.27 Let V and W be real or complex vector spaces with
representations

�V W g �! End.V/

�W W g �! End.W/

of a Lie algebra g. Then there exist the following representations of g, where X 2 g
and v 2 V;w 2 W are arbitrary:

1. The direct sum representation �V˚W on V ˚ W, defined by

X.v;w/ D .Xv;Xw/:

2. The tensor product representation �V˝W on V ˝ W, defined by

X.v ˝ w/ D .Xv/˝ w C v ˝ .Xw/:

3. The dual representation �V� on V�, defined by

.X/.v/ D .�Xv/; 8 2 V�:

4. The exterior power representation ��kV on �kV , defined by

X.v1^v2^ : : :^vk/ D
kX

iD1
v1^ : : :^Xvi ^ : : :^vk; 8v1^v2^ : : :^vk 2 �kV:

5. The homomorphism space representation �Hom.V;W/ on Hom.V;W/, defined by

.Xf /.v/ D Xf .v/C f .�Xv/; 8f 2 Hom.V;W/:
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6. If V is a complex vector space and g a real Lie algebra, then the complex
conjugate representation � NV on NV is defined by

� NV.X/v D �V.X/v:

Suppose in addition that

 W W h �! End.W/

is a representation of a Lie algebra h. Then there exists the following representation,
where Y 2 h is arbitrary:

7. The (outer) tensor product representation �V ˝ W on V ˝W of the Lie algebra
g ˚ h, defined by

.X;Y/.v ˝ w/ D Xv ˝ w C v ˝ Yw;

for X 2 g;Y 2 h.

Remark 2.1.28 Perhaps the most interesting case in the proof that these maps define
representations is the dual representation for both Lie groups and Lie algebras. To
check that the formulas here define representations is the purpose of Exercise 2.7.1.

Both constructions are related:

Proposition 2.1.29 Let G and H be Lie groups with Lie algebras g and h. Let � be
any of the representations of G on V ˚ W, V ˝ W, V�, �kV, Hom.V;W/ or NV (or
of G � H on V ˝ W) from Definition 2.1.23. Then the induced representation �� of
g (or of g ˚ h) is the corresponding one from Definition 2.1.27.

Proof The proof follows by differentiating the representation of G (or of G � H).
ut

2.1.3 �The Weyl Spinor Representations of SL.2 ;C/

We discuss an extended example that is relevant for some theories in physics, like
the Standard Model or supersymmetry (see reference [146, Appendix A]). Let G D
SL.2;C/. As we will discuss in Sect. 6.8.2 in more detail, the group SL.2;C/ is
the (orthochronous) Lorentz spin group, i.e. the universal covering of the identity
component of the Lorentz group of 4-dimensional spacetime.

We denote by V D C
2 the fundamental SL.2;C/-representation. Then we get

the following four complex doublet representations, where M 2 SL.2;C/ and
 2 C

2:

1. The fundamental representation V:

 7�! M :
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2. The dual representation V�:

 T 7�!  T M�1:

3. The complex conjugate representation NV:

N 7�! NM N :
4. The dual of the complex conjugate representation NV�:

N T 7�! N T . NM/�1:

Here we denote the elements of the vector spaces V�, NV and NV� for clarity by  T ,
N and N T .

Remark 2.1.30 In physics the components of the vectors in the spaces V , V�, NV and
NV� are denoted by  ˛ ,  ˛ , N P̨ and N P̨ . We could denote these representations by 2,
2�, N2 and N2�.

Definition 2.1.31 In this situation the representation of SL.2;C/ on V is called the
left-handed Weyl spinor representation and the representation on NV� is called the
right-handed Weyl spinor representation. Both representations are also called
chiral spinor representations.
We want to show that the remaining two representations are isomorphic to the left-
and right-handed Weyl spinor representations.

Definition 2.1.32 We define

� D
�
0 1

�1 0
�

:

Proposition 2.1.33 We have the following equivalent description of SL.2;C/:

SL.2;C/ D ˚
M 2 Mat.2 � 2;C/ j MT�M D �

�
:

Proof The proof is an easy calculation; see Exercise 2.7.2. ut
Proposition 2.1.34 The map

f W V �! V�

 7�!  T�

is an isomorphism of representations. Similarly the map

Nf W NV �! NV�

N 7�! N T�

is an isomorphism of representations.
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Proof We only have to show SL.2;C/-equivariance of the maps. This follows by
applying Proposition 2.1.33:

f .M / D .M /T�

D  T MT�

D . T�/M�1

D f . /M�1

and

Nf . NM N / D . NM N /T�
D N T NMT�

D . N T�/ NM�1

D Nf . N / NM�1:

ut
See Sect. 6.8 and Lemma 8.5.5 for more details about these isomorphisms.

2.1.4 Orthogonal and Unitary Representations

It is often useful to consider representations compatible with a scalar product on
the vector space. Recall that a scalar product on a real vector space is called
Euclidean if it is bilinear, symmetric and positive definite. A scalar product on a
complex vector space is called Hermitian if it is sesquilinear (complex linear in the
second argument and complex antilinear in the first argument), conjugate symmetric
(exchanging the first and second argument changes the scalar product by complex
conjugation) and positive definite.

Definition 2.1.35 A representation �W G ! GL.V/ of a Lie group G on a Euclidean
(or Hermitian) vector space .V; h� ; �i/ is called orthogonal (or unitary) if the scalar
product is G-invariant, i.e.

hgv; gwi D h�.g/v; �.g/wi D hv;wi;

for all g 2 G, v;w 2 V . Equivalently, the map � has image in the orthogonal
subgroup O.V/ (or the unitary subgroup U.V/) of the general linear group GL.V/,
determined by the scalar product h� ; �i.
In an orthogonal representation the group literally acts through rotations (and
possibly reflections) on a Euclidean vector space. There is a similar notion for
representations of Lie algebras.



96 2 Lie Groups and Lie Algebras: Representationsand Structure Theory

Definition 2.1.36 A representation �W g ! End.V/ of a real Lie algebra g on
a Euclidean (or Hermitian) vector space .V; h� ; �i/ is called skew-symmetric (or
skew-Hermitian) if it satisfies

hXv;wi C hv;Xwi D h�.X/v;wi C hv; �.X/wi D 0;

for all X 2 g, v;w 2 V . Equivalently, the map � has image in the orthogonal Lie
subalgebra o.V/ (or the unitary Lie subalgebra u.V/) of the general linear algebra
gl.V/, determined by the scalar product h� ; �i.
We can similarly define invariance of a form on a vector space under representations
of a Lie group or Lie algebra in the case where the form is not non-degenerate or
not positive definite.

Invariant scalar products for Lie group and Lie algebra representations are
related:

Proposition 2.1.37 (Scalar Products and Induced Representations) Let �W G !
GL.V/ be a representation of a Lie group G and h� ; �i a G-invariant Euclidean (or
Hermitian) scalar product on V, i.e. the representation � is orthogonal (or unitary).
Then the induced representation ��W g ! End.V/ of the Lie algebra g is skew-
symmetric (or skew-Hermitian).

Proof We have by Theorem 1.7.16

�.exp tX/ D exp.t��X/

and hence by Corollary 1.7.30

hv;wi D h�.exp tX/v; �.exp tX/wi
D hexp.t��X/v; exp.t��X/wi
D ˝

et�
�

Xv; et�
�

Xw
˛ 8t 2 R:

Differentiating both sides by t in t D 0 and using the product rule we get:

0 D h.��X/v;wi C hv; .��X/wi:

This implies the claim. ut
Let �W g ! End.V/ be a unitary representation of a real Lie algebra g on a complex
vector space V . Then �.X/ is a skew-Hermitian endomorphism for all X 2 g, hence
i�.X/ is Hermitian. This implies that the endomorphism i�.X/ can be diagonalized
with real eigenvalues (and �.X/ can be diagonalized with imaginary eigenvalues).

Definition 2.1.38 The eigenvalues of �i�.X/ are called charges of X 2 g in the
unitary representation �.
The minus sign in �i�.X/ is convention: we can write �.X/ as iAX , where AX is a
Hermitian operator, and the charges are the eigenvalues of AX .
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If h � g is an abelian subalgebra, then the operators i�.X/ for all X 2 h commute
and can be diagonalized simultaneously. This idea is related to the notion of weights
of a representation and used extensively in the classification of representations of
Lie algebras and Lie groups (in a certain sense, that can be made precise, irreducible
representations are thus determined by their charges).

Existence of Invariant Scalar Products

It is an important fact that representations of compact Lie groups always admit an
invariant scalar product.

Theorem 2.1.39 (Existence of Invariant Scalar Products for Representations
of Compact Lie Groups) Let G be a compact Lie group and �W G ! GL.V/ a
representation on a real (or complex) vector space. Then we can find a G-invariant
Euclidean (or Hermitian) scalar product on V, hence the given representation �
becomes orthogonal (or unitary) for this scalar product.
The proof uses the existence of an integral over differential forms � of top degree
n on oriented n-manifolds M:

Z

M
� 2 R; � 2 ˝n.M/:

If �W M ! N is an orientation preserving diffeomorphism between oriented
n-manifolds, then we have the transformation formula

Z

N
� D

Z

M
��� 8� 2 ˝n.N/:

We now prove Theorem 2.1.39.

Proof Suppose G has dimension n and let X1; : : : ;Xn be a basis of TeG. We set QXi

for the corresponding right-invariant vector fields on G, defined by

QXi. p/ D DeRp.Xi/ 8p 2 G:

This basis has a dual basis of right-invariant 1-forms !1; : : : ; !n. Then the wedge
product

� D !1 ^ � � � ^ !n

is a nowhere vanishing, right-invariant differential form on G of top degree. We can
assume that the orientation of G coincides with the orientation defined by � , so that

Z

G
� > 0;
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which is finite, because G is compact. Let hh� ; �ii denote an arbitrary Euclidean (or
Hermitian) scalar product on V . We construct a new scalar product by averaging
this scalar product over the action of the group G:

hv;wi D
Z

G
�v;w�;

where �v;w is the smooth function

�v;wW G �! R

h 7�! hhhv; hwii

(here the representation � is implicit and we use that G is compact, so that this
integral is finite).

We claim that h� ; �i is a G-invariant Euclidean (or Hermitian) scalar product on
V: It is clear that h� ; �i is bilinear and symmetric (or sesquilinear and conjugate
symmetric in the complex case). For v ¤ 0 the function �v;v is strictly positive on
G. As a consequence the integral is

hv; vi � 0 8v 2 V

with equality only if v D 0. Therefore h� ; �i is a positive definite Euclidean (or
Hermitian) scalar product on G.

We finally show G-invariance of the new scalar product: Let g 2 G be fixed.
Then

R�
g�1�gv;gw D �v;w 8v;w 2 V:

This follows from a short calculation:

.R�
g�1�gv;gw/.h/ D �gv;gw.hg�1/

D hhhg�1.gv/; hg�1.gw/ii
D �v;w.h/;

where we used that � (which is implicit) is a representation. This implies

R�
g�1 .�gv;gw�/ D �v;w�;
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because � is right-invariant. Since Rg�1 is an orientation preserving diffeomorphism
from G to G we get:

hgv; gwi D
Z

G
�gv;gw�

D
Z

G
R�

g�1 .�gv;gw�/

D
Z

G
�v;w�

D hv;wi

for all g 2 G and v;w 2 V . ut

Decomposition of Representations

The existence of an invariant scalar product for every representation of a compact
Lie group has an important consequence.

Theorem 2.1.40 (Decomposition of Representations) Let �W G ! GL.V/
be a representation of a Lie group G on a finite-dimensional real (or complex)
vector space V. Suppose that there exists a G-invariant Euclidean (or
Hermitian) scalar product on V (this is always the case, by Theorem 2.1.39,
if G is compact). Then V decomposes as a direct sum

.V; �/ D .V1; �1/˚ : : :˚ .Vm; �m/

of irreducible G-representations .Vi; �i/.

Proof The proof follows, because if W � V is a subspace with �.G/W � W, then
the orthogonal complement W? with respect to a G-invariant scalar product also
satisfies �.G/W? � W?. We have

.V; �/ D .W; �W/˚ .W?; �W?
/:

We can thus continue splitting V until we arrive at irreducible representations (after
finitely many steps, since V is finite-dimensional). ut
Remark 2.1.41 One of the aims of representation theory for Lie groups G is to
understand irreducible representations and to decompose any given representation
(at least for compact G) into irreducible ones according to Theorem 2.1.40.
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For instance, for G D SU.2/, we can consider the tensor product representation
Vn ˝ Vm, where Vn;Vm are the irreducible complex representations of dimension
n C 1 and m C 1 mentioned in Example 2.1.20. The tensor product Vn ˝ Vm

is reducible under SU.2/ and its decomposition into irreducible summands Vk is
determined by the Clebsch–Gordan formula. This formula appears in quantum
mechanics in the theory of the angular momentum of composite systems.

Remark 2.1.42 One of the basic topics in Grand Unified Theories is to study
the restriction of representations of a compact Lie group G to embedded Lie
subgroups H � G. If the representation � of G is irreducible, it may happen
that the representation �jH of H is reducible and decomposes as a direct sum.
The actual form of the decomposition of a representation � under restriction
to a subgroup H � G is called the branching rule.

For instance, there exist certain 5- and 10-dimensional irreducible repre-
sentations of the Grand Unification group G D SU.5/ that decompose under
restriction to the subgroup H D SU.3/ � SU.2/ � U.1/ (more precisely,
to a certain Z6 quotient of this group; see Sect. 8.5.7) into the fermion
representations of the Standard Model. Details of this calculation can be found
in Sect. 9.5.4.

Remark 2.1.43 Suppose a Lie group G has a unitary representation on a complex
vector space V and e1; : : : ; en is some orthonormal basis for V . If we decompose
V into invariant, irreducible subspaces according to Theorem 2.1.40, then we can
choose an associated orthonormal basis f1; : : : ; fn, adapted to the decomposition of
V (spanning the G-invariant subspaces) and related to the original basis by a unitary
matrix. In general, the basis f fig will be different from feig.

In the Standard Model where G D SU.3/ � SU.2/ � U.1/ this is related to the
concept of quark mixing. The complex vector space V of fermions, which carries
a representation of G, has dimension 45 (plus the same number of corresponding
antiparticles) and is the direct sum of two G-invariant subspaces (sectors): a
lepton sector of dimension 9 (where we do not include the hypothetical right-
handed neutrinos) and a quark sector of dimension 36. Counting in this way, the
Standard Model thus contains at the most elementary level 90 fermions (particles
and antiparticles).

The quark sector has a natural basis of so-called mass eigenstates, given by the
quarks of six different flavours u, d, c, s, t, b, each one appearing in three different
colours and two chiralities (6 basis vectors for each flavour), yielding in total 36
quarks. However, the basis given by these flavours does not define a splitting into
subspaces invariant under SU.2/. The SU.2/-invariant subspaces are spanned by a
basis of so-called weak eigenstates that can be obtained from the mass eigenstates by
a certain unitary transformation. The matrix of this unitary transformation is known
as the Cabibbo–Kobayashi–Maskawa (CKM) matrix, which has to be determined by
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experiments. The CKM matrix and quark mixing will be explained in more detail in
Sect. 8.8.2.

Unitary Representations of Non-Compact Lie Groups

It is an important fact that certain non-compact Lie groups do not admit non-
trivial finite-dimensional unitary representations according to the following theorem
(a proof can be found in [12, Chap. 8.1B]):

Theorem 2.1.44 A connected, simple, non-compact Lie group does not admit finite-
dimensional unitary complex representations except for the trivial representation.
See Definition 2.4.27 for the notion of simple Lie groups. For example, the Lie
group G D SL.2;C/ is simple and non-compact, hence every non-trivial unitary
representation of G is infinite-dimensional. This has important consequences for
quantum field theory, see Sect. B.2.4. Of course, SL.2;C/ admits non-trivial finite-
dimensional non-unitary representations, like the fundamental representation on C

2.

2.1.5 The Adjoint Representation

We want to define a particularly important representation of a Lie group and its Lie
algebra. The vector space carrying the representation has the same dimension as the
Lie group or Lie algebra (we follow [142] in this subsection).

Recall that for an element g of a Lie group G we defined the inner automorphism
(conjugation)

cg D Lg ı Rg�1 W G �! G

x 7�! gxg�1:

The differential .cg/�W g ! g is an automorphism of the Lie algebra g, in particular
a linear isomorphism.

Theorem 2.1.45 (Adjoint Representation of a Lie Group) The map

AdW G �! GL.g/

g 7�! Ad.g/ D Adg D .cg/�

is a Lie group homomorphism, i.e. a representation of the Lie group G on the
vector space g, called the adjoint representation or adjoint action of the
Lie group G. We sometimes write AdG instead of Ad.
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Proof Note that

cgh D cg ı ch 8g; h 2 G:

Hence

Adgh D .cgh/� D .cg/� ı .ch/� D Adg ı Adh:

This shows that Ad is a homomorphism in the algebraic sense. We have to show that
Ad is a smooth map. It suffices to show that for every v 2 g the map

Ad.�/vW G �! g

is smooth, because if we choose a basis for the vector space g, it follows that Ad
is a smooth matrix representation. The map Ad.�/v is equal to the composition of
smooth maps

G �! TG � TG �! T.G � G/ �! TG

given by

g 7�! ..g; 0/; .e; v// 7�! ..g; e/; .0; v// 7�! D.g;e/c.0; v/;

where we set

cW G � G �! G

.g; x/ 7�! gxg�1:

This implies the claim. ut
The following identity (whose proof is left as an exercise) is sometimes useful.

Proposition 2.1.46 Let G be a Lie group with Lie algebra g and � a representation
of G on a vector space V with induced representation �� of g. Then

��.AdgX/ ı �.g/ D �.g/ ı ��.X/ 8X 2 g:

Example 2.1.47 The adjoint representation is very simple in the case of abelian Lie
groups G: if G is abelian, then cg D IdG for all g 2 G and thus Adg D Idg for all
g 2 G, hence the adjoint representation is a trivial representation.
We consider a more general example: Let G � GL.n;K/ with K D R;C;H be a
closed subgroup of a general linear group with Lie algebra g. Fix Q 2 G.

Proposition 2.1.48 (Adjoint Representation of Linear Groups) The adjoint
action

AdQW g �! g



2.1 Representations 103

is given by

AdQX D Q � X � Q�1;

where � denotes matrix multiplication and we identify elements Q 2 G and X 2 g
with matrices in the canonical way.

Proof Define a curve �.t/ D etX and take the derivative

AdQX D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

Q � �.t/ � Q�1 D Q � X � Q�1:

ut
In this situation, the Lie algebra g on which the adjoint representation acts is
naturally a vector space of matrices.

Example 2.1.49 We consider the adjoint representation of the Lie group SU.3/.
The Lie algebra su.3/ consists of the skew-Hermitian, tracefree matrices. As a real
vector space, su.3/ has dimension 8 and is spanned by ia, with a D 1; : : : ; 8, where
a are the Gell-Mann matrices from Example 1.5.33. We can define an explicit
isomorphism

R
8 �! su.3/

G 7�! X D
8X

aD1
iGaa D i

0

B
@

G3 C 1p
3
G8 G1 � iG2 G4 � iG5

G1 C iG2 �G3 C 1p
3
G8 G6 � iG7

G4 C iG5 G6 C iG7 � 2p
3
G8

1

C
A :

On such a matrix X the group element Q 2 SU.3/ acts as

AdQX D Q � X � Q�1:

Using the isomorphism R
8 Š su.3/ we could write this as an explicit representation

on R
8.

The following observation is sometimes useful.

Lemma 2.1.50 (Adjoint Representation of Direct Product) Let G D H � K be
a direct product of Lie groups. Then the adjoint representation of G on g D h ˚ k is
the direct sum of the adjoint representations of H on h and K on k:

Ad.h;k/.X;Y/ D .AdhX;AdkY/ 8.h; k/ 2 H � K; .X;Y/ 2 h ˚ k:

Proof Let � be a curve in H through e, tangent to X 2 h. Then for .h; k/ 2 H � K

d

dt

ˇ
ˇ
ˇ
ˇ
tD0

.h; k/.�.t/; e/
�
h�1; k�1� D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

�
h�.t/h�1; e

�

D .AdhX; 0/:

Similarly for a vector in k. ut
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Example 2.1.51 We consider the adjoint representation of the Standard Model Lie
group

H D SU.3/ � SU.2/ � U.1/:

We can write a group element Q 2 H as a block matrix

Q D
0

@
QSU.3/

QSU.2/

QU.1/

1

A ;

with QK 2 K for K D SU.3/;SU.2/;U.1/. We can similarly write the ele-
ments of the Lie algebra of H as a block matrix: with the notation from Exam-
ples 1.5.29, 1.5.32 and 1.5.33, the Lie algebra su.3/ is spanned by ia, where a

are the Gell-Mann matrices, the Lie algebra su.2/ is spanned by i�a, where �a are
the Pauli matrices, and the Lie algebra u.1/ is spanned by i. We can then define an
isomorphism

R
8 ˚ R

3 ˚ R �! su.3/˚ su.2/˚ u.1/

.G;W;B/ 7�! X D
 

8X

aD1

iGaa;

3X

aD1

iWa�a; iB

!

D i

0

B
B
B
B
B
B
B
B
B
@

G3 C 1
p

3
G8 G1 � iG2 G4 � iG5

G1 C iG2 �G3 C 1
p

3
G8 G6 � iG7

G4 C iG5 G6 C iG7 � 2
p

3
G8

W3 W1 � iW2

W1 C iW2 �W3

B

1

C
C
C
C
C
C
C
C
C
A

:

According to Lemma 2.1.50 the adjoint action is given by multiplication of block
matrices:

AdQX D Q � X � Q�1:

The representation AdH describes the representation of the gauge boson fields
in the Standard Model. The coefficients Ga, Wa and B (possibly with a
different normalization) are known as the gluon fields, weak gauge fields
and hypercharge gauge field; see Sect. 8.5.5 for more details.

Like any other representation of a Lie group, the adjoint representation of G
induces a representation of the associated Lie algebra.
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Theorem 2.1.52 (Adjoint Representation of a Lie Algebra) The map

adW g �! End.g/;

given by

ad D Ad�;

is a Lie algebra homomorphism, i.e. a representation of the Lie algebra g on
the vector space g, called the adjoint representation of the Lie algebra g. We
sometimes write adg instead of ad. We have the following commutative diagram
according to Theorem 1.7.16:

The map ad satisfies the formula

ad.X/.Y/ D adXY D ŒX;Y� 8X;Y 2 g:

Proof We only have to prove the formula adXY D ŒX;Y�. For left-invariant vector
fields X;Y on G, where X has flow �t, we have according to the commutative
diagram

adXY D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

Adexp tXYe

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

.cexp tX/�Ye

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

.Rexp �tX/�.Lexp tX/�Ye

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

.Rexp �tX/�Yexp tX

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

.��t/�Y�t.e/

D ŒX;Y�e:

Here we used Proposition 1.7.12 and Theorem A.1.46. ut
We can write the formula given by the commutative diagram as

Adexp X D eadX 8X 2 g:
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A direct consequence of Example 2.1.47 is the following:

Corollary 2.1.53 If G is an abelian Lie group, then the adjoint representation ad is
trivial, hence the Lie algebra g is abelian.
It can be shown that the converse also holds (for connected Lie groups), cf.
Exercise 2.7.7.

Remark 2.1.54 We can define for any Lie algebra g, even if it does not belong a
priori to a Lie group, the map

adW g �! End.g/;

by exactly the same formula

adXY D ŒX;Y� 8X;Y 2 g:

Then this map is a representation of g (by the Jacobi identity), again called the
adjoint representation.

Remark 2.1.55 One should be careful not to confuse the fundamental and the
adjoint representation for a linear group. In general, the dimensions are already
different. For example, in the case of SU.n/ the dimension of the fundamental
representation is n, while the adjoint representation has dimension n2 � 1. For a
linear group the fundamental representation acts canonically on a vector space of
column vectors, while the adjoint representation acts on a vector space of matrices.

Example 2.1.56 The homomorphism �W S3 ! SO.3/ from Example 1.3.8 is the
adjoint representation of S3 D SU.2/.

2.2 Invariant Metrics on Lie Groups

Since a Lie group G is a manifold, we can study metrics (Riemannian or pseudo-
Riemannian) on it. We are interested in particular in the following types of metrics.

Definition 2.2.1 Let s be a metric on a Lie group G.

1. The metric s is called

• left-invariant if L�
g s D s for all g 2 G

• right-invariant if R�
g s D s for all g 2 G.

Equivalently, either all left translations or all right translations are isometries.
2. The metric s is called bi-invariant if it is both left- and right-invariant.

It is clear that every metric induces a scalar product on g Š TeG. On the other hand,
given an arbitrary scalar product h� ; �i on g, it is easy to construct

• a left-invariant metric on G by

s.X;Y/ D hLg�1�.X/;Lg�1�.Y/i
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• a right-invariant metric on G by

s.X;Y/ D hRg�1�.X/;Rg�1�.Y/i;

for all g 2 G and X;Y 2 TgG.

However, in general we only get a bi-invariant metric in this way if G is abelian
(if G is not abelian, then Lg ¤ Rg for some g 2 G). Bi-invariant metrics have the
following characterization:

Theorem 2.2.2 (Bi-Invariant Metrics and Ad-Invariance) Let s be a left-
invariant metric on a Lie group G. Then s is bi-invariant if and only if the scalar
product h� ; �i on g defined by the metric s is Ad-invariant, i.e.

hAdgv;Adgwi D hv;wi

for all g 2 G and v;w 2 g.

Proof Let X and Y be vectors in TpG. Then we can calculate:

.R�
g s/p.X;Y/ D hL. pg/�1�Rg�.X/;L. pg/�1�Rg�.Y/i

D hAdg�1 ı Lp�1�.X/;Adg�1 ı Lp�1�.Y/i

and

sp.X;Y/ D hLp�1�.X/;Lp�1�.Y/i;

where in both equations we used that s is left-invariant. This implies the claim,
because Lp�1� is an isomorphism of vector spaces. ut
Theorem 2.2.3 (Ad-Invariant Scalar Products for Compact Lie Groups) Let G
be a compact Lie group. Then there exists a Euclidean (positive definite) scalar
product h� ; �i on the Lie algebra g which is Ad-invariant. The adjoint representation
is orthogonal with respect to this scalar product.

Proof This follows from Theorem 2.1.39, because Ad is a representation of the
compact Lie group G on the vector space g. ut

The existence of positive definite Ad-invariant scalar products on the Lie
algebra of compact Lie groups is very important in gauge theory, in particular,
for the construction of the gauge-invariant Yang–Mills Lagrangian; see
Sect. 7.3.1. We will study such scalar products in more detail in Sect. 2.5
after we have discussed the general structure of compact Lie groups. The

(continued)



108 2 Lie Groups and Lie Algebras: Representationsand Structure Theory

fact that these scalar products are positive definite is important from a
phenomenological point of view, because only then do the kinetic terms in the
Yang–Mills Lagrangian have the right sign (the gauge bosons have positive
kinetic energy [148]).

Here is a corollary to Theorem 2.2.2 and Theorem 2.2.3:

Corollary 2.2.4 Every compact Lie group admits a bi-invariant Riemannian
metric.

Remark 2.2.5 It can be shown that the geodesics of a bi-invariant metric on a Lie
group G through the neutral element e are of the form �.t/ D exp.tX/, with X 2 g.
The notions of exponential map for geodesics and Lie groups thus coincide for
bi-invariant Riemannian metrics.

2.3 The Killing Form

We want to consider a special Ad-invariant inner product on every Lie algebra g,
which in general is neither non-degenerate nor positive or negative definite. This is
the celebrated Killing form.

Theorem 2.3.1 Let g be a Lie algebra over K D R;C. The Killing form Bg on g
is defined by

BgW g � g �! K

.X;Y/ 7�! tr.adX ı adY/:

This is a K-bilinear, symmetric form on g.

Remark 2.3.2 Note that the Killing form for complex Lie algebras is also symmetric
and complex bilinear and not Hermitian.

Proof For Z 2 g we have

adX ı adY.Z/ D ŒX; ŒY;Z��:

In particular, Bg is indeed bilinear. To show that the Killing form is symmetric, recall
the definition of the trace tr. f / of a linear endomorphism f of a vector space V: If
v1; : : : ; vn is a basis of V and we define the representing matrix of f by

f .vj/ D
nX

iD1
fijvi;
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then

tr. f / D
nX

iD1
fii:

This number does not depend on the choice of basis for V: If �W V ! V is an
arbitrary isomorphism, then

tr
�
� ı f ı ��1� D tr. f /:

We also have

tr. f ı g/ D tr.g ı f /

for all endomorphisms f ; gW V ! V . This shows, in particular, that Bg is symmetric.
ut

Theorem 2.3.3 (Invariance of Killing FormUnder Automorphisms) Let � W g !
g be a Lie algebra automorphism of g. Then the Killing form Bg satisfies

Bg.�X; �Y/ D Bg.X;Y/ 8X;Y 2 g:

If g is the Lie algebra of a Lie group G, this holds in particular for the automorphism
� D Adg with g 2 G arbitrary.

Proof Note that

adXY D ŒX;Y�:

Since � is a Lie algebra automorphism we have

ad�XY D Œ�X;Y� D �.ŒX; ��1Y� D � ı adX.�
�1Y/:

Thus

ad�X D � ı adX ı ��1:

We get for the Killing form:

Bg.�X; �Y/ D tr.ad�X ı ad�Y/

D tr
�
� ı adX ı adY ı ��1�

D Bg.X;Y/:

ut
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Corollary 2.3.4 The Killing form Bg defines a bi-invariant symmetric form on any
Lie group G.

Remark 2.3.5 We will determine in Sect. 2.4 when the Killing form is non-
degenerate or definite (in the case of a real Lie algebra).

Proposition 2.3.6 (ad Is Skew-Symmetric with Respect to the Killing Form)
Let g be a Lie algebra with Killing form Bg. Then

Bg.adXY;Z/C Bg.Y; adXZ/ D 0 8X;Y;Z 2 g:

Proof This follows from Theorem 2.3.3 and Proposition 2.1.37 if g is the Lie
algebra of a Lie group G. In the general case we use the formula

adadXY D adX ı adY � adY ı adX 8X;Y 2 g;

which follows from the Jacobi identity. The definition of the Killing form implies

Bg.adXY;Z/C Bg.Y; adXZ/ D tr.adX ı adY ı adZ/� tr.adY ı adZ ı adX/

D 0;

because the trace is invariant under cyclic permutations. ut

2.4 �Semisimple and Compact Lie Algebras

In this section we discuss some results concerning the general structure of Lie
algebras and Lie groups (we follow [83] and [153]). There are two elements that
play a key role in the theory of Lie algebras:

• The adjoint representation adg of the Lie algebra g, together with its invariant
subspaces, known as ideals.

• The Killing form Bg of g.

Both notions are related: the definition of the Killing form Bg involves the adjoint
representation adg and the adjoint representation is skew-symmetric with respect to
the Killing form.

The idea is to proceed in a similar way to Theorem 2.1.40 and try to
decompose g with the adjoint representation into irreducible, pairwise Bg-
orthogonal pieces. This works out particularly well for a type of Lie algebra
known as a semisimple Lie algebra. The next step is to classify the pieces
where the adjoint representation is irreducible. These are called simple Lie
algebras. We will discuss the classification for the simple Lie algebras coming
from compact Lie groups, which appear in physics as gauge groups.
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2.4.1 Simple and Semisimple Lie Algebras in General

Definition 2.4.1 Let g be a Lie algebra. For subsets a; b � g we define Œa; b� � g
as the set of all finite sums of elements of the form ŒX;Y� with X 2 a;Y 2 b.

Definition 2.4.2 Let g be a Lie algebra.

1. An ideal in g is a vector subspace a � g such that Œg; a� � a. Equivalently,

adga � a:

2. The center of g is defined as

z.g/ D fX 2 g j ŒX; g� � 0g:

3. The commutator of g is defined as Œg; g�.

The following is easy to check.

Lemma 2.4.3 For any Lie algebra the commutator is an ideal and the center is an
abelian ideal.

Proposition 2.4.4 The kernel of the adjoint representation of a Lie algebra g is the
center z.g/. The adjoint representation is faithful if and only if z.g/ D 0.

Proof We have adX � 0 if and only if ŒX; g� � 0. ut
This implies Ado’s Theorem 1.5.25 for Lie algebras with trivial center.

Definition 2.4.5 Let g be a Lie algebra.

1. The Lie algebra g is called simple if g is non-abelian and g has no non-trivial
ideals (different from 0 and g).

2. The Lie algebra g is called semisimple if g has no non-zero abelian ideals.

Simple Lie algebras are sometimes defined equivalently as follows:

Lemma 2.4.6 A Lie algebra g is simple if and only if g has dimension at least two
and g has no non-trivial ideals.

Proof If g is non-abelian, then it has dimension at least two. On the other hand, if g
is abelian and has dimension at least two, then g has non-trivial (abelian) ideals. ut
It is clear that every simple Lie algebra is semisimple.

Lemma 2.4.7 If g is simple, then Œg; g� D g.

Proof The commutator Œg; g� is an ideal, hence equal to g or 0. The second
possibility is excluded, because g is not abelian. ut
We can characterize simple Lie algebras as follows:

Proposition 2.4.8 (Criterion for Simplicity) A Lie algebra g is simple if and only
if g is non-abelian and the adjoint representation adg of g is irreducible.
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Proof The claim follows from the definition of an ideal. ut
We can also characterize semisimple Lie algebras (we only prove one direction
following [83]; the proof of the converse, which would take us too far afield, can
be found in [77, 83]):

Theorem 2.4.9 (Cartan’s Criterion for Semisimplicity) A Lie algebra g is
semisimple if and only if the Killing form Bg is non-degenerate.

Proof We only prove that the Killing form is degenerate if the Lie algebra is not
semisimple. Let a be a non-zero abelian ideal in g. We choose a complementary
vector space s with

g D a ˚ s:

Let X 2 a and Y 2 g be arbitrary elements. Then

ŒX; a� D 0;

ŒX; s� � a;

ŒY; a� � a:

Under the splitting g D a ˚ s, the endomorphisms adX and adY thus have the form

adX D
�
0 

0 0

�

;

adY D
�
 

0 


�

:

It follows that

adX ı adY D
�
0 

0 0

�

and

Bg.X;Y/ D tr.adX ı adY/ D 0:

ut
Remark 2.4.10 In general, the Killing form of a semisimple Lie algebra is indefi-
nite, i.e. pseudo-Euclidean.
Assuming Cartan’s Criterion we can prove the following.

Theorem 2.4.11 (Structure of Semisimple Lie Algebras) If a Lie algebra g is
semisimple, then g is the direct sum

g D g1 ˚ : : :˚ gs

of ideals gi, each of which is a simple Lie algebra, and which are pairwise
orthogonal with respect to the Killing form.
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Proof We ultimately would like to apply Theorem 2.1.40 and decompose the adjoint
representation on g into irreducible summands, orthogonal with respect to the
Killing form. There is one problem which requires some work: the Killing form
B D Bg is non-degenerate, but not (positive or negative) definite. Therefore it is
not immediately clear that orthogonal complements of invariant subspaces lead to a
direct sum decomposition.

Let a be an ideal in g and

a? D fX 2 g j B.X;Y/ D 0 8Y 2 ag

the orthogonal complement with respect to the Killing form B. Then a? is also an
ideal in g, because

B.adga?; a/ D �B.a?; adga/ � B.a?; a/ D 0;

by Proposition 2.3.6. Furthermore, b D a \ a? is an abelian ideal in g: it is clear
that the intersection of two ideals is an ideal and

B.adbb; g/ D �B.b; adbg/ � B.b; b/ D 0:

This implies that b is abelian, because B is non-degenerate. Since g is semisimple,
it follows that a \ a? D 0.

This implies

g D a ˚ a?

and the restriction of the Killing form to a and a? (which is just the Killing form
on these Lie algebras) is non-degenerate. We can continue splitting the (finite-
dimensional) Lie algebra g in this fashion until we arrive at irreducible, non-abelian
(simple) ideals. ut
Remark 2.4.12 In addition to semisimple and abelian Lie algebras there are other
classes of Lie algebras, like solvable and nilpotent Lie algebras, which we have not
discussed in detail.

2.4.2 Compact Lie Algebras

We are particularly interested in compact Lie algebras, including compact simple
and compact semisimple Lie algebras.

Definition 2.4.13 A real Lie algebra g is called compact if it is the Lie algebra of
some compact Lie group.
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Remark 2.4.14 Even if g is compact, there could exist non-compact Lie groups
whose Lie algebra is also g. For example, the abelian Lie algebra u.1/ is the Lie
algebra of the compact Lie group U.1/ D S1 and of the non-compact Lie group R.

Example 2.4.15 Note that the abelian Lie algebraRn D u.1/˚: : :˚u.1/, for n � 1,
is compact, but neither simple nor semisimple.

Theorem 2.4.16 (Killing Form of Compact Lie Algebras) Suppose g is a com-
pact real Lie algebra. Then the Killing form Bg is negative semidefinite: We have

Bg.X;X/ D 0 8X 2 z.g/;

Bg.X;X/ < 0 8X 2 g n z.g/:

Proof We follow the proof in [14]. Since g is the Lie algebra of a compact Lie group
G, according to Theorem 2.2.3 there exists a positive definite scalar product h� ; �i on
g which is AdG-invariant. Let e1; : : : ; en be an orthonormal basis for g with respect
to this scalar product. We get

hadX ı adXY;Yi D �jjadXYjj2 8X;Y 2 g

for the associated norm jj � jj. This implies

Bg.X;X/ D tr.adX ı adX/

D
nX

iD1
hadX ı adXei; eii

D �
nX

iD1
jjadXeijj2

� 0:

Equality holds if and only if adX � 0 on g, i.e. X 2 z.g/. ut
Remark 2.4.17 Note as an aside that the notion of a bilinear, symmetric form being
(semi-)definite is only meaningful on real and not on complex vector spaces.

Corollary 2.4.18 Let g be a compact Lie algebra with trivial center, z.g/ D 0. Then
the Killing form Bg is negative definite.

Proof This follows from Theorem 2.4.16. ut
Remark 2.4.19 The following converse to Corollary 2.4.18 can be proved (see
[77]): if the Killing form of a real Lie algebra is negative definite, then it is compact
with trivial center. In particular, every Lie subalgebra of a compact Lie algebra is
compact.
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Corollary 2.4.20 Let g be a compact Lie algebra. Then the Killing form Bg is
negative definite if and only if g is semisimple.

Proof One direction follows from Corollary 2.4.18, because semisimple Lie alge-
bras have trivial center. The other direction follows from Theorem 2.4.9. ut
Theorem 2.4.21 (Decomposition of Compact Lie Algebras) Let g be a compact
Lie algebra with center z.g/. Then there exists an ideal h in g such that

g D z.g/˚ h:

The ideal h is a compact semisimple Lie algebra with negative definite Killing form.

Proof Choose a positive definite scalar product h� ; �i on g which is AdG-invariant.
Let h be the orthogonal complement

h D z.g/?

with respect to this scalar product. Then h is an ideal, because

hadgh; z.g/i D �hh; adgz.g/i D 0:

It is clear that

g D z.g/˚ h:

By Theorem 2.4.16 the Killing form is negative definite on h, which is thus compact
by Remark 2.4.19 and semisimple by Theorem 2.4.9. ut

Corollary 2.4.22 (Structure of Compact Lie Algebras) Let g be a compact
Lie algebra. Then g is a direct sum of ideals

g D u.1/˚ : : :˚ u.1/˚ g1 ˚ : : :˚ gs;

where the gi are compact simple Lie algebras.

Proof This follows from Theorem 2.4.11. The Lie algebras gi are compact by
Remark 2.4.19. ut
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Using considerable effort it is possible to classify simple Lie algebras, one of the
great achievements of 19th and 20th century mathematics. The result for compact
simple Lie algebras is the following (see [83] for a proof):

Theorem 2.4.23 (Killing–Cartan Classification of Compact Simple Lie
Algebras) Every compact simple Lie algebra is isomorphic to precisely one
of the following Lie algebras:

1. su.n C 1/ for n � 1.
2. so.2n C 1/ for n � 2.
3. sp.n/ for n � 3.
4. so.2n/ for n � 4.
5. An exceptional Lie algebra of type G2;F4;E6;E7;E8.

The families in the first four cases are also called An;Bn;Cn;Dn in this order.

Remark 2.4.24 The lower index n in the series An;Bn;Cn;Dn as well as in the
exceptional cases G2;F4;E6;E7;E8 is the rank of the corresponding compact Lie
group, i.e. the dimension of a maximal torus subgroup embedded in the Lie group.

Remark 2.4.25 The reason for the restrictions on n in the first four cases of the
classical Lie algebras is to avoid counting Lie algebras twice, because we have the
following isomorphisms (we only proved the first isomorphism in Sect. 1.5.5):

so.3/ Š su.2/ Š sp.1/;

sp.2/ Š so.5/;

so.6/ Š su.4/:

There is also the abelian Lie algebra

so.2/

and the semisimple Lie algebra

so.4/ Š su.2/˚ su.2/;

cf. Exercise 1.9.21.
The basic building blocks of all compact Lie algebras are thus

• abelian Lie algebras
• the four families of classical compact non-abelian Lie algebras
• five exceptional compact Lie algebras.
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In some sense, most compact Lie algebras are therefore classical or direct sums of
classical Lie algebras.

It is sometimes convenient to know that we can choose for a compact semisimple
Lie algebra a basis in such a way that the structure constants (see Definition 1.4.17)
have a nice form. Let g be a compact semisimple Lie algebra. According to
Corollary 2.4.20 the Killing form Bg is negative definite. Let T1; : : : ;Tn be an
orthonormal basis of g with respect to the Killing form:

Bg.Ta;Tb/ D �ıab 8a; b 2 f1; : : : ; ng:

Proposition 2.4.26 The structure constants fabc for a Bg-orthonormal basis fTag of
a semisimple Lie algebra g are totally antisymmetric:

fabc D �fbac D fbca D �facb 8a; b; c 2 f1; : : : ; ng:

Proof This is Exercise 2.7.11. ut

2.4.3 Compact Lie Groups

We briefly discuss the structure of compact Lie groups.

Definition 2.4.27 A connected Lie group G is called simple (or semisimple) if its
Lie algebra is simple (or semisimple).

Corollary 2.4.28 If G is simple, then AdG is an irreducible representation.

Proof The claim follows from Proposition 2.4.8 because an AdG-invariant subspace
in g is also adg-invariant. ut
A proof of the following theorem can be found in [77].

Theorem 2.4.29 (Structure of Compact Lie Groups) Let G be a compact con-
nected Lie group. Then G is a finite quotient of a product of the form

QG Š U.1/ � : : : � U.1/ � G1 � : : : � Gs;

where the Gi are compact simple Lie groups.
Compact simple Lie groups and the abelian Lie group U.1/ are therefore the
building blocks of all compact connected Lie groups.

2.5 �Ad-Invariant Scalar Products on Compact Lie Groups

We know from Theorem 2.2.3 that compact Lie algebras admit scalar products that
are invariant under the adjoint action. Such scalar products are important in gauge
theory: they are necessary ingredients to construct the gauge-invariant Yang–Mills
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action and are related to the notion of coupling constants. We discuss, in particular,
how to fix an Ad-invariant scalar product and how many different ones exist on a
given compact Lie algebra.

We first consider Ad-invariant scalar products on compact simple Lie algebras.
We need the following variant of a famous theorem of Schur.

Theorem 2.5.1 (Schur’s Lemma for Scalar Products) Let �W G ! GL.V/ be an
irreducible representation of a Lie group G on a real vector space V and h� ; �i1,
h� ; �i2 two G-invariant symmetric bilinear forms on V, so that h� ; �i2 is positive
definite. Then there exists a real number a 2 R such that

h� ; �i1 D ah� ; �i2:

Remark 2.5.2 The assumption that the group representation is irreducible is
important.

Proof We follow the proof in [153]. Let LW V ! V be the unique linear map defined
by (using non-degeneracy of the second scalar product)

hv;wi1 D hv;Lwi2 8v;w 2 V:

We have

hw;Lvi2 D hw; vi1
D hv;wi1
D hv;Lwi2;

hence L is self-adjoint with respect to the second scalar product. We can split V into
the eigenspaces of L which are orthogonal with respect to the second scalar product.
Since both bilinear forms are G-invariant we have

hgv; gLwi2 D hv;Lwi2
D hv;wi1
D hgv; gwi1
D hgv;L.gw/i2:

We conclude that �.g/ı L D L ı�.g/ for all g 2 G and thus the eigenspaces of L are
G-invariant. Since the representation � is irreducible, V itself must be an eigenspace
and hence L D a � IdV . This implies the claim. ut
Theorem 2.5.3 (Ad-Invariant Scalar Products on Compact Simple Lie Alge-
bras) Let G be a compact simple Lie group. Then there exists up to a positive
factor a unique Ad-invariant positive definite scalar product on the Lie algebra g.
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The negative of the Killing form is an example of such an Ad-invariant positive
definite scalar product.

Proof Existence follows from 2.2.3. Uniqueness follows from Corollary 2.4.28 and
Theorem 2.5.1. The claim about the Killing form follows from Corollary 2.4.18. ut
Let T D U.1/ � : : : � U.1/ denote an n-dimensional torus and h� ; �it a positive
definite scalar product on its Lie algebra

R
n D t D u.1/˚ : : :˚ u.1/:

Since the adjoint representation of an abelian Lie group is trivial, any inner product
on an abelian Lie algebra is Ad-invariant. With respect to the standard Euclidean
scalar product on R

n, the scalar product h� ; �it is determined by a positive definite
symmetric matrix.

Theorem 2.5.4 (Ad-Invariant Scalar Products on General Compact Lie Alge-
bras) Let G be a compact connected Lie group of the form

G D U.1/ � : : : � U.1/ � G1 � : : : � Gs;

where the Gi are compact simple Lie groups. Let h� ; �ig be an AdG-invariant positive
definite scalar product on the Lie algebra g of G. Then h� ; �ig is the orthogonal direct
sum of:

1. a positive definite scalar product h� ; �it on the center t D u.1/˚ : : :˚ u.1/;
2. AdGi -invariant positive definite scalar products h� ; �igi on the Lie algebras gi.

Conversely, the direct sum of any positive definite scalar product h� ; �it on the
abelian Lie algebra t and any AdGi -invariant positive definite scalar products h� ; �igi

on the simple Lie algebras gi is an AdG-invariant positive definite scalar product
on g.

Proof Let h� ; �ig be an AdG-invariant positive definite scalar product on the Lie
algebra g. We have to show that it decomposes as an orthogonal direct sum of scalar
products on the summands. For any fixed i D 1; : : : ; s we can write G D Gi � H
with a compact Lie group H. Fix an arbitrary Y 2 h and let

f W gi �! R

X 7�! hX;Yig:
Then f is a linear 1-form on gi and its kernel is a vector subspace of codimension
zero or one. Let g 2 Gi and X 2 gi. Then by Lemma 2.1.50

f .AdgX/ D hAdgX;Yig
D hAdgX;AdgYig
D hX;Yig
D f .X/:
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This implies that the kernel of f is AdGi -invariant. Since the adjoint representation
of Gi is irreducible by Corollary 2.4.28 and since dim gi > 1, the kernel of f cannot
have codimension 1. Therefore f must vanish identically.

This proves that the scalar product h� ; �ig on g decomposes as an orthogonal
direct sum of scalar products h� ; �igi on gi and h� ; �ih on h. The scalar product h� ; �ig
is AdG-invariant, hence h� ; �igi is AdGi -invariant and h� ; �ih is AdH-invariant. We
continue to split the scalar product h� ; �ih on h until the remaining Lie algebra is the
center.

Conversely, if h� ; �it is a scalar product on t D u.1/˚ : : :˚ u.1/ and h� ; �igi are
AdGi -invariant scalar products on gi, then the orthogonal direct sum

h� ; �ig D h� ; �it ˚ h� ; �ig1 ˚ : : :˚ h� ; �igs

is AdG-invariant by Lemma 2.1.50. ut
In the situation of Theorem 2.5.4 the AdG-invariant scalar product h� ; �ig on g is
determined by certain constants:

1. The scalar product h� ; �it is determined by a positive definite symmetric matrix
with respect to the standard Euclidean scalar product on R

n.
2. The scalar products h� ; �igi are determined by positive constants relative to some

fixed AdGi -invariant positive definite scalar product on the simple Lie algebras gi

(like the negative of the Killing form).

Definition 2.5.5 The constants that determine an AdG-invariant positive
definite scalar product on the compact Lie algebra g are called coupling
constants in physics.

Example 2.5.6

1. In the Standard Model, where G D SU.3/� SU.2/� U.1/, there are three
coupling constants, one for each factor.

2. In GUTs with a simple gauge group, like G D SU.5/ or G D Spin.10/,
there is only a single coupling constant.

2.6 �Homotopy Groups of Lie Groups

In this section we collect some results (without proofs) on the homotopy groups of
compact Lie groups. The following fact is elementary and can be found in textbooks
on topology:

Proposition 2.6.1 (Fundamental Group of Topological Groups) The fundamen-
tal group �1.G/ of any connected topological group G is abelian.
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Regarding the order of the fundamental group of Lie groups it can be shown that
(for a proof, see [24, Sect. V.7]):

Theorem 2.6.2 (Fundamental Group of Compact Semisimple Lie Groups) Let
G be a compact connected Lie group. Then �1.G/ is finite if and only if G is
semisimple. In particular, every compact simple Lie group has a finite fundamental
group.
The only-if direction follows from Theorem 2.4.29. As an example, it is possible
to calculate the fundamental group of the classical Lie groups (see, for example,
[129]).

Proposition 2.6.3 (Fundamental Groups of Classical Compact Groups) The
fundamental groups of the classical compact linear groups are:

1. Special orthogonal groups:

�1.SO.2// Š Z;

�1.SO.n// Š Z2 8n � 3:

2. Unitary groups (for all n � 1):

�1.U.n// Š Z:

3. Special unitary and symplectic groups (for all n � 1):

�1.SU.n// D 1;

�1.Sp.n// D 1:

We have the following result on the second homotopy group (for a proof, see again
[24, Sect. V.7]):

Theorem 2.6.4 (Second Homotopy Group of Compact Lie Groups) Let G be a
compact connected Lie group. Then �2.G/ D 0.
The next theorem on the third homotopy group was proved by M.R. Bott using
Morse theory [19]:

Theorem 2.6.5 (Third Homotopy Group of Compact Lie Groups) Let G be a
compact connected Lie group. Then �3.G/ is free abelian, i.e. isomorphic to Z

r for
some integer r. If G is compact, connected and simple, then �3.G/ Š Z.
Combining Theorem 2.6.2 and Theorem 2.6.5 we get a topological criterion to
decide whether a compact Lie group is simple:

Corollary 2.6.6 (Topological Criterion for Simplicity) Let G be a compact
connected Lie group. Then G is simple if and only if �1.G/ is finite and �3.G/ Š Z.
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2.7 Exercises for Chap. 2

2.7.1 Verify that the dual representations on V� defined in Definition 2.1.23
and Definition 2.1.27 are indeed representations of the Lie group G and the Lie
algebra g.

2.7.2 Let

� D
�
0 1

�1 0
�

:

Prove the following equivalent description of SL.2;C/:

SL.2;C/ D ˚
M 2 Mat.2 � 2;C/ j MT�M D �

�
:

2.7.3

1. Let W Š C
2 denote the fundamental representation of su.2/ and NW the complex

conjugate representation. Show that there exists a matrix A 2 GL.2;C/ such that

AMA�1 D NM 8M 2 su.2/:

Conclude that W and NW are isomorphic as su.2/-representations.
2. Let Vk Š C denote the representation of u.1/ with winding number k ¤ 0. Prove

that Vk and NVk are not isomorphic as u.1/-representations.
3. Let V Š C

2 denote the fundamental representation of the real Lie algebra
sl.2;C/ and NV the complex conjugate representation. Prove that V and NV are
not isomorphic as sl.2;C/-representations.

4. Does the complex conjugate representation make sense for complex representa-
tions of complex Lie algebras, like the complex Lie algebra sl.2;C/?

Remark It can be shown that the fundamental representation of su.n/ for every
n � 3 is not isomorphic to its complex conjugate. The only other compact simple Lie
algebras which have complex representations not isomorphic to their conjugate are
so.4n C 2/ for every n � 1 (Weyl spinor representations) and E6 (a 27-dimensional
representation), see [104]. This is one of the reasons why Lie groups such as SU.5/,
Spin.10/ or E6 appear as gauge groups of Grand Unified Theories; see Sect. 8.5.3.

2.7.4 Determine the charges of the basis element �3 2 su.2/ in:

1. the fundamental representation of su.2/ on C
2;

2. the representation of su.2/ on C
3 via the isomorphism su.2/ Š so.3/ and the

complex fundamental representation of so.3/.

2.7.5

1. Consider the Lie group SU.2/ with the fundamental representation on C
2.

Each of the basis vectors �1; �2; �3 of su.2/ from Example 1.5.32 generates
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a one-parameter subgroup isomorphic to U.1/. Determine the explicit branch-
ing rule for the fundamental representation on C

2 under restriction to these
circle subgroups, i.e. determine the corresponding decomposition of C

2 into
invariant complex subspaces together with the winding numbers of the induced
representations.

2. Do the same exercise with the complex representation of SU.2/ on C
3 via the

universal covering SU.2/ ! SO.3/ and the complex fundamental representation
of SO.3/.

3. Do the same exercise for the Lie group SU.3/ with the fundamental represen-
tation on C

3 and the circle subgroups generated by the basis vectors v1; : : : ; v8
of su.3/, where va D ia

2
with the Gell-Mann matrices a from Example 1.5.33

(cf. Exercise 1.9.26).

2.7.6 Consider the embedding

U.n/ ,! SO.2n/

from Exercise 1.9.10. Let V D C
2n be the complex fundamental representation of

SO.2n/. Determine the branching rule of the representation V under restriction to
the subgroup U.n/ � SO.2n/. It may be helpful to first consider the case n D 1.

2.7.7 Let G be a Lie group. The center of G is defined as

Z.G/ D fg 2 G j gh D hg 8h 2 Gg:

Suppose that G is connected.

1. Prove that the center Z.G/ is the kernel of the adjoint representation AdG.
Conclude that Z.G/ is an embedded Lie subgroup in G with Lie algebra given by
the center z.g/ of g.

2. Prove that g is abelian if and only if G is abelian.
3. Prove that AdG is trivial if and only if G is abelian. Conclude that the left-

invariant and right-invariant vector fields on a connected Lie group G coincide if
and only if G is abelian.

2.7.8 Consider the Lie algebra isomorphism of so.3/ with .R3;�/ from Exer-
cise 1.9.14.

1. Determine the symmetric bilinear form on R
3 corresponding under this isomor-

phism to the Killing form Bso.3/.
2. Interpret the high school formula

z � .x � y/ D �y � .x � z/ 8x; y; z 2 R
3;

where � denotes the scalar product, in light of the first part of this exercise.
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2.7.9

1. Let g; h be Lie algebras and �W g ! h a Lie algebra homomorphism. Suppose
that g is simple. Show that � is either injective or the trivial homomorphism. In
particular, every representation of a simple Lie algebra is either faithful or trivial.

2. Show that every complex 1-dimensional representation of a semisimple Lie
algebra is trivial.

3. Show that every homomorphism from a connected semisimple Lie group to U.1/
is trivial. Find a non-trivial homomorphism from U.n/ to U.1/.

2.7.10 Let g be a real Lie algebra. The complexification of g is the complex Lie
algebra

gC D g ˝R C Š g ˚ ig

with the Lie bracket from g extended C-bilinearly. Show that if gC is (semi-)simple,
then g is (semi-)simple.

Remark The following converses can be shown: If g is semisimple, then gC is
semisimple (this uses Theorem 2.4.9) and if g is compact simple, then gC is simple
(see [83]).

2.7.11 Prove Proposition 2.4.26: the structure constants fabc for a Bg-orthonormal
basis fTag of a semisimple Lie algebra g are totally antisymmetric:

fabc D �fbac D fbca D �facb 8a; b; c 2 f1; : : : ; ng:

2.7.12 Let �1; �2; �3 be the basis of the Lie algebra su.2/ from Example 1.5.32. Fix
an arbitrary, positive real number g > 0 and let

ˇa D g�a 2 su.2/ .a D 1; 2; 3/:

Define a unique positive definite scalar product h� ; �ig with associated norm jj � jjg on
su.2/ so that ˇ1; ˇ2; ˇ3 form an orthonormal basis. Determine the relation between
det.X/ and the norm jjXjjg for X 2 su.2/. Show that the scalar product h� ; �ig is
AdSU.2/-invariant.

2.7.13 Consider the Lie algebra su.2/.

1. Calculate the Killing form Bsu.2/ directly from the definition and determine the
constant g so that �Bsu.2/ D h� ; �ig, where h� ; �ig is the scalar product from
Exercise 2.7.12.

2. Fix an arbitrary, positive, real number  > 0 and set

FW su.2/ � su.2/ �! R

.X;Y/ 7�! tr.X � Y/;
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where tr denotes the trace and � the matrix product. Show that �F is a negative
definite AdSU.2/-invariant scalar product on su.2/. Determine the constant  so
that F D Bsu.2/.

2.7.14 Consider the Lie algebra sl.2;R/ with Killing form Bsl.2;R/. Show that there
exists a constant  2 R such that

Bsl.2;R/.X;Y/ D tr.X � Y/ 8X;Y 2 sl.2;R/;

where tr denotes the trace of the matrix and � the matrix product. Determine this
constant . Is the Killing form Bsl.2;R/ definite? or non-degenerate?

2.7.15 Let K D R;C.

1. Show that the Killing form of the Lie algebra gl.n;K/ can be calculated as

Bgl.n;K/.X;Y/ D 2ntr.X � Y/ � 2tr.X/tr.Y/:

A suitable basis for gl.n;K/ to evaluate the trace on the left-hand side is given
by the elementary matrices Eij with a 1 at the intersection of the i-th row and j-th
column and zeros elsewhere.

2. Let h be an ideal in a Lie algebra g. Prove that for all X;Y 2 h

Bh.X;Y/ D Bg.X;Y/:

3. Show that the Killing form of the Lie algebra sl.n;K/ is equal to

Bsl.n;K/.X;Y/ D 2ntr.X � Y/:

Compare with Exercise 2.7.14.

2.7.16

1. Let g be a real Lie algebra and gC its complexification as in Exercise 2.7.10.
Under the canonical inclusion g � gC as the real part show that for all X;Y 2 g

Bg.X;Y/ D BgC.X;Y/:

2. Explain the difference between the results for the Killing form in Exercise 2.7.13
and Exercise 2.7.14, given the isomorphism of complex Lie algebras

su.2/C Š sl.2;C/ Š sl.2;R/C

from Exercise 1.9.18.
3. Show that every complex matrix A can be written uniquely as A D B C iC with

B;C skew-Hermitian. Conclude that

u.n/C Š gl.n;C/;

su.n/C Š sl.n;C/:
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4. Show that the Killing forms of the Lie algebras u.n/ and su.n/ can be calcu-
lated as

Bu.n/.X;Y/ D 2ntr.X � Y/ � 2tr.X/tr.Y/;

Bsu.n/.X;Y/ D 2ntr.X � Y/:

Compare with Exercise 2.7.13.

2.7.17 Consider the basis of su.3/ given by the elements ia, where a are the
Gell-Mann matrices from Example 1.5.33, with a D 1; : : : ; 8. Show that these basis
vectors are orthogonal with respect to the Killing form Bsu.3/ and determine
Bsu.3/.ia; ia/ for all a.

2.7.18

1. The rank of a compact Lie group G is the maximal dimension of an embedded
torus subgroup T � G. Prove that the rank of a product G � H of compact Lie
groups G and H is the sum of the ranks of G and H (you can assume without
proof that a connected abelian Lie group is a torus).

2. Classify compact semisimple Lie algebras of rank r D 1; 2; 3; 4, assuming
Theorem 2.4.23.



Chapter 3
Group Actions

There are different ways in which Lie groups can act as transformation or symmetry
groups on geometric objects. One possibility, that we discussed in Chap. 2, is
the representation of Lie groups on vector spaces. A second possibility, studied
in this chapter, is Lie group actions on manifolds. Both concepts are related: A
representation is a linear action of the group where the manifold is a vector space.
Conversely, an action on a manifold can be thought of as a non-linear representation
of the group. More precisely, a linear representation of a group corresponds to a
homomorphism into the general linear group of a vector space. A group action then
corresponds to a homomorphism of the group into the diffeomorphism group of a
manifold.

Even though we are most interested in Lie group actions on manifolds, it is useful
to consider more general types of actions: actions of groups on sets and actions of
topological groups on topological spaces. We will also introduce several standard
notions related to group actions, like orbits and isotropy groups. In the smooth case,
if a Lie group G acts on a manifold M, then there is an induced infinitesimal action
of the Lie algebra g, defining so-called fundamental vector fields on M. This map
can be understood as the induced Lie algebra homomorphism from the Lie algebra
of G to the Lie algebra of the diffeomorphism group Diff.M/.

In the case of smooth actions of a Lie group G on a manifold M, the interesting
question arises under which conditions the quotient space M=G again admits the
structure of a smooth manifold. The main (and rather difficult) result that we prove
in this context is Godement’s Theorem, which gives a necessary and sufficient
condition that quotient spaces under general equivalence relations are smooth
manifolds. The smooth structure on the quotient space is defined using so-called
slices for the equivalence classes.

It turns out that the quotient space of a Lie group action admits the structure of a
smooth manifold in particular in the following cases:

• A compact Lie group G acting smoothly and freely on a manifold M.
• A closed subgroup H of a Lie group G acting on G by right (or left) translations.
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Both cases can be used to construct new and interesting smooth manifolds. In the
second case, if the closed subgroup H acts on the right on G, then there is an
additional left action of G on the quotient manifold G=H. This action is transitive
and G=H is an example of a homogeneous space. We will study homogeneous
spaces in detail in all of the three cases of group actions on sets, topological spaces
and manifolds and prove that any homogeneous space is of the form G=H.

We finally apply the theory of group actions to construct the exceptional compact
simple Lie group G2, which plays an important part in M-theory, a conjectured
theory of quantum gravity in 11 dimensions, and derive some of its properties.

General references for this chapter are [14, 24] and [142].

3.1 Transformation Groups

In this section we define group actions and study their basic properties. Since many
statements in this section are quite elementary, we designate some of the proofs as
exercises.

Before we begin with the formal definitions, let us consider some basic examples
to get a bird’s eye view of group actions. The simplest example is perhaps the
canonical left action of the general linear group GL.V/ on a vector space V , given
by the map

˚ W GL.V/ � V �! V

. f ; v/ 7�! ˚. f ; v/ D f .v/:
(3.1)

A representation of a group G on V then corresponds to a group homomorphism

�W G �! GL.V/;

defining a linear action of G on V .

We would like to extend this idea to other types of actions. Suppose that

• M is a set and S.M/ the symmetric group of all bijections M ! M; or
• M is a topological space and Homeo.M/ the homeomorphism group of M;

or
• M is a manifold and Diff.M/ the diffeomorphism group of M.

Replacing V by M and GL.V/ by S.M/ (Homeo.M/, Diff.M/) in Eq. (3.1) we
get canonical actions of these automorphism groups on M. Actions of a group
G on M are then given by homomorphisms � of G into these groups and thus

(continued)
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correspond to non-linear representations of G on M (which in the case for
Homeo.M/ and Diff.M/ should in some sense be continuous and smooth).

In each of these cases, the images of the group G under the homomor-
phisms � define subgroups of GL.V/, S.M/, Homeo.M/ and Diff.M/ that are
usually easier to handle than the full automorphism groups themselves (which
in the case of the diffeomorphism group, for example, are infinite-dimensional
if dim M � 1).

An explicit example of a Lie group action on a manifold is the famous Hopf
action of S1 D U.1/ on S3 defined by the map

˚ W S3 � S1 �! S3

.v;w; / 7�! .v;w/ �  D .v;w/;

where S3 is the unit sphere in C
2 and S1 the unit circle in C (this is an example of

a right action). It is clear that the map is well-defined, i.e. it preserves the 3-sphere,
and it is smooth. The map also has the following properties:

1. .v;w/ � . � 
/ D ..v;w/ � / � 

2. .v;w/ � 1 D .v;w/

for all .v;w/ 2 S3 and ;
 2 S1. We shall see that these are the defining properties
of group actions, ensuring that we obtain a homomorphism into the diffeomorphism
group. In the case of the Hopf action we can think of it as a homomorphism

�W S1 �! Diff.S3/:

The Hopf action will also be an important example in subsequent chapters.
We shall later study properties of this and other actions. For example, we can fix

a point .v0;w0/ 2 S3 and consider its orbit under the action:

S1 �! S3

 7�! .v0;w0/ � :

In this case, the orbit map is injective for all .v0;w0/ 2 S3 and the Hopf action is
therefore called free.

3.2 Definition and First Properties of Group Actions

We now come to the formal definition of group actions.
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Definition 3.2.1 A left action of a group G on a set M is a map

˚ W G � M �! M

.g; p/ 7�! ˚.g; p/ D g � p D gp

satisfying the following properties:

1. .g � h/ � p D g � .h � p/ for all p 2 M and g; h 2 G.
2. e � p D p for all p 2 M.

The group G is called a transformation group of M.
We can think of a group action as moving a point p 2 M around in M as we vary
the group element g 2 G. This is very similar to the concept of a representation of
a group on a vector space, where a vector is moved around as we vary the group
element.

If G is a topological group, M a topological space and ˚ continuous, then ˚ is
called a continuous left action. Similarly, if G is a Lie group, M a smooth manifold
and ˚ is smooth, then ˚ is called a smooth left action. Here G � M carries the
canonical product structure as a topological space or smooth manifold.

Similarly right actions of a group G on a set M are defined as a map

˚ W M � G �! M

. p; g/ 7�! ˚. p; g/ D p � g D pg

satisfying the following properties:

1. p � .g � h/ D . p � g/ � h for all p 2 M and g; h 2 G.
2. p � e D p for all p 2 M.

There is, of course, also the notion of a continuous or smooth right action (most of
the following statements hold for both left and right actions). We can turn every left
action into a right action (and vice versa):

Proposition 3.2.2 Let

˚ W G � M �! M

.g; p/ 7�! g � p

be a left action of a group G on a set M. Then

M � G �! M

. p; g/ 7�! p 
 g D g�1 � p

defines a right action of G on M.

Proof This is Exercise 3.12.1. ut
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A group action ˚ is a map with two entries: a group element g 2 G and a point
p 2 M. It is useful to consider the maps that we obtain if we fix one of the entries
and let only the other one vary.

Definition 3.2.3 Let ˚ W G � M ! M be a left action. For g 2 G we define the left
translation by

lgW M �! M

p 7�! g � p:

Similarly, for a right action ˚ W M � G ! M and g 2 G we define the right
translation by

rgW M �! M

p 7�! p � g:

For p 2 M the orbit map is given by

�pW G �! M

g 7�! g � p

for a left action and

�pW G �! M

g 7�! p � g

for a right action.
It is clear that for a continuous (smooth) left action the left translations lg for all
g 2 G and the orbit maps �p for all p 2 M are continuous (smooth) maps. The
reason is that in the smooth case the map lg is given by the composition of smooth
maps

M �! G � M �! M

p 7�! .g; p/ 7�! g � p

and �p is given by the composition

G �! G � M �! M

g 7�! .g; p/ 7�! g � p:

The continuous case and the case of right actions follow similarly.
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We could define left translations as above for any map ˚ W G � M ! M even if
˚ does not satisfy a priori the axioms of a left action. It is easy to see that group
actions are then characterized by the fact that all left translations lg for g 2 G are
bijections of M and

�W G �! S.M/

g 7�! lg

is a group homomorphism. In the case of a continuous (smooth) left action, the left
translations define a group homomorphism

�W G �! Homeo.M/

and

�W G �! Diff.M/;

respectively, into the group of homeomorphisms (diffeomorphisms) of M. Note
that, as we said before, a continuous (smooth) group action is more than just a
group homomorphism into the homeomorphism (diffeomorphism) group, because
the group homomorphism has to be in addition continuous (smooth) in the argument
g 2 G (one could make this precise by defining a topology or smooth structure
on the homeomorphism and diffeomorphism groups, which in general are infinite-
dimensional).

Here are some additional concepts for group actions (we define them in the
general case for group actions on sets, but they apply verbatim for continuous and
smooth group actions).

Definition 3.2.4 Let ˚ be a left action of a group G on a set M.

1. The orbit of G through a point p 2 M is

Op D G � p D fg � p j g 2 Gg:

The orbit is the image of the orbit map (see Fig. 3.1).
2. The fixed point set of a group element g 2 G is the set

Mg D f p 2 M j g � p D pg:

3. The isotropy group or stabilizer of a point p 2 M is

Gp D fg 2 G j g � p D pg:

In physics, isotropy groups are also called little groups. It is an easy exercise to
show that the isotropy group Gp is indeed a subgroup of G for all p 2 M.
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Fig. 3.1 Orbit of a group
action

M
p

p

g · p

There are analogous definitions for right actions.

Remark 3.2.5 We shall see later in Corollary 3.8.10 that for a smooth action of a Lie
group G on a manifold M the orbit Op through every point p 2 M is an (immersed
or embedded) submanifold of M.

Lemma 3.2.6 (Two Orbits Are Either Disjoint or Identical) Let ˚ be an action
of a group G on a set M and p 2 M an arbitrary point. If q 2 Op, then Oq D Op.
Hence the orbits of two points in M are either disjoint or identical.
This means that orbits which intersect in one point are already identical.

Proof Suppose ˚ is a left action. Then q is of the form q D g � p for some g 2 G.
We get

Oq D G � q D .G � g/ � p D G � p;

because the right translation RgW G ! G is a bijection. ut
Remark 3.2.7 We can also phrase this differently: The relation

p � q , 9g 2 G W q D g � p

for p; q 2 M defines an equivalence relation on M and the orbits of G are precisely
the equivalence classes. M is therefore the disjoint union of the orbits of G.

Definition 3.2.8 Let ˚ be an action of a group G on a set M. Then the following
subset of the powerset of M

M=G D fOp � M j p 2 Mg

is called the space of orbits or the quotient space of the action.
Note that the subsets Op of M become elements (points) in M=G. If we think of the
subset Op as a point in M=G, we also denote it by Œp� or Np. The map

�W M �! M=G

p 7�! Œp�
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is called the canonical projection. If x 2 M=G, then a point p 2 M with Œp� D x is
called a representative of x.

Concerning isotropy groups we can say the following.

Proposition 3.2.9 (Isotropy Groups Are (Closed) Subgroups) Let ˚ be an
action of a group G on M and let p 2 M be any point. If the group action is
continuous on a Hausdorff space M or smooth on a manifold M, then the stabilizer
Gp is a closed subgroup of G. In particular, in the smooth case the stabilizer Gp is
an embedded Lie subgroup of G by Cartan’s Theorem 1.1.44.

Proof This is an exercise. ut
Suppose �W G ! S.M/ is the group homomorphism induced from a group action.
Then

ker� D
\

p2M

Gp:

In particular, for continuous actions on Hausdorff spaces or smooth actions on
manifolds, the normal subgroup ker� is closed in G.

We want to compare the isotropy groups of points on the same G-orbit. Suppose
p; q are points in M on the same G-orbit. It is easy to check that there exists an
element g 2 G such that

cg.Gp/ D g � Gp � g�1 D Gq:

In particular, the isotropy groups Gp and Gq are isomorphic.
In the case of a smooth action of a Lie group G we call the Lie algebra gp of the

stabilizer Gp of a point p 2 M the isotropy subalgebra. The following description
of the isotropy subalgebra is useful in applications.

Proposition 3.2.10 (The Isotropy Subalgebra and the Orbit Map) Let ˚ be a
smooth action of a Lie group G on a manifold M. Fix a point p 2 M and let �p

denote the orbit map

�pW G �! M

as before. Then the kernel of the differential

De�pW g �! TpM

is equal to the isotropy subalgebra gp.

Proof We assume that the action is on the left, the case of right actions follows
similarly. If X 2 gp, then exp.tX/ 2 Gp for all t 2 R and therefore

�p.exp.tX// D exp.tX/ � p D p 8t 2 R:
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This implies that X is in the kernel of the differential De�p. Conversely, suppose that
X is in the kernel of De�p. Then

d

d�

ˇ
ˇ
ˇ
ˇ
�D0

.exp.�X/ � p/ D 0:

This implies

d

dt

ˇ
ˇ
ˇ
ˇ
tDs

.exp.tX/ � p/ D d

d�

ˇ
ˇ
ˇ
ˇ
�D0

.exp.sX/ � exp.�X/ � p/

D Dplexp.sX/

�
d

d�

ˇ
ˇ
ˇ
ˇ
�D0

exp.�X/ � p

�

D 0 8s 2 R:

Therefore, the curve exp.tX/ � p is constant and equal to exp.0/ � p D p. This implies
that exp.tX/ 2 Gp for all t 2 R and thus X 2 gp by Corollary 1.8.11. ut
Definition 3.2.11 Let ˚ be an action of a group G on a set M. We distinguish three
cases, depending on whether the orbit map is surjective, injective or bijective for
every p 2 M.

1. The action is called transitive if the orbit map is surjective for every p 2 M. In
other words, M consists of only one orbit, M D Op for every p 2 M. We then
call M a homogeneous space for G.

2. The action is called free if the orbit map is injective for every p 2 M.
3. The action is called simply transitive if it is both transitive and free, i.e. if the

orbit map for every p 2 M is a bijection from G onto M.

We leave it as an exercise to show the following properties of G-actions on M:

1. The orbit map is surjective for one p 2 M if and only if it is surjective for all
p 2 M.

2. The action is transitive if and only if M=G consists of precisely one point.
3. The orbit map of a point p 2 M is injective if and only if the isotropy group of p

is trivial, Gp D feg.
4. The action is free if and only if g � p ¤ p for all p 2 M, g ¤ e 2 G. Hence

the action is free if and only if all points in M have trivial isotropy group or,
equivalently, all group elements g ¤ e have empty fixed point set.

As a consequence of Proposition 3.2.10 we see:

Corollary 3.2.12 (Orbit Maps of Smooth Free Actions) If ˚ is a smooth free
action of a Lie group G on a manifold M, then the orbit maps �pW G ! M are
injective immersions for every point p 2 M. If G is compact, then the orbit maps are
embeddings.
In the case of a free action of a compact Lie group G each orbit is therefore an
embedded submanifold diffeomorphic to G.
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Definition 3.2.13 An action ˚ is called faithful or effective if the induced
homomorphism �W G ! S.M/ is injective.
It is not difficult to see that if one point in M has trivial isotropy group, then the
action is faithful. We can always make a group action faithful by passing to the
induced action of the quotient group G=ker�.

It is sometimes important to compare actions of a group G on two sets M and N.
In particular, we would like to have a notion of isomorphism of group actions.

Definition 3.2.14 Let˚ W G�M ! M and � W G�N ! N be left actions of a group
G on sets M and N. Then a G-equivariant map f W M ! N is a map such that

f .g � p/ D g � f . p/ 8p 2 M; g 2 G:

If G is a topological (Lie) group and the actions continuous (smooth), we demand in
addition that f is continuous (smooth). A G-equivariant bijection (homeomorphism,
diffeomorphism) is called an isomorphism of G-actions. There are analogous
definitions in the case of right actions.

3.3 Examples of Group Actions

We discuss some common examples of group actions, in particular, smooth actions
of Lie groups on manifolds.

It is quite easy to define group actions of discrete abelian groups on manifolds:
Any diffeomorphism f W M ! M defines a smooth group action

Z � M �! M

.k; p/ 7�! k � p D f k. p/:

If f happens to be periodic, f n D IdM for some integer n, then this defines a smooth
group action of the cyclic group Zn D Z=nZ:

Zn � M �! M

.Œk�; p/ 7�! Œk� � p D f k. p/:

If f1; : : : ; fm are pairwise commuting diffeomorphisms of M, then

Z
m � M �! M

.k1; : : : ; km; p/ 7�! .k1; : : : ; km/ � p D f k1
1 ı : : : ı f km

m . p/

is a smooth group action.
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An example of a simply transitive action is to take M D G for an arbitrary group
G and let G act on itself by left (and right) translations:

˚ W G � G �! G

.g; h/ 7�! g � h:

Another type of action that is easy to define is given by group representations.
Let �W G ! GL.V/ be a representation of a Lie group G on a real (or complex)
vector space V . Then

˚ W G � V �! V

.g; v/ 7�! g � v D �.g/v

is a smooth left action on the manifold V (which is diffeomorphic to a Euclidean
space). Such an action is called linear. We can also define a smooth right action by

˚ W V � G �! V

.v; g/ 7�! v � g D �.g/�1v:

Note that it is important to take the inverse of �.g/�1, otherwise the first property of
a right action is in general not satisfied (see Exercise 3.12.1).

In both cases, the orbit of 0 2 V consists only of one point,

G � 0 D f0g

and thus the isotropy group of 0 is all of G,

G0 D G:

For a non-zero vector v ¤ 0 the isotropy group in general will be a proper subgroup
of G,

Gv ¨ G:

This is the basic mathematical idea behind symmetry breaking (from the full group
G to the subgroup Gv), one of the centrepieces of the Standard Model that we discuss
in Chap. 8.

For a linear representation, the homomorphism induced by the action has image
in GL.V/

� D �W G �! GL.V/:

The action is faithful if and only if the representation is faithful.
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Suppose in addition that V Š R
n and the representation � is orthogonal. Then �

has image in O.n/ and the action maps the unit sphere Sn�1 in R
n around the origin

to itself. We therefore get a smooth left action

G � Sn�1 �! Sn�1

.g; v/ 7�! �.g/v:

Similarly, if V Š C
n and the representation � is unitary, so that it has image in U.n/,

then the action preserves the unit sphere S2n�1 in C
n. We get a smooth left action

G � S2n�1 �! S2n�1

.g; v/ 7�! �.g/v:

Finally, assume that V Š H
n and the representation � is quaternionic unitary, by

which we mean that � has image in Sp.n/. Then the action preserves the standard
symplectic scalar product (see Definition 1.2.9) and induces a smooth left action on
the unit sphere S4n�1 in H

n:

G � S4n�1 �! S4n�1

.g; v/ 7�! �.g/v:

In each case we can similarly define right actions, using the inverses �.g/�1. These
actions on spheres are again called linear.

An important special case of this construction is the following:

Definition 3.3.1 Consider the groupsR�, C� and H
� of non-zero real, complex and

quaternionic numbers. We define for K D R;C;H the following linear right actions
by scalar multiplication:

K
nC1 n f0g � K

� �! K
nC1 n f0g:

These actions are free and induce the following free linear right actions of the groups
of real, complex and quaternionic numbers of unit norm on unit spheres:

Sn � S0 �! Sn

S2nC1 � S1 �! S2nC1

S4nC3 � S3 �! S4nC3

.x; / 7�! x:

These actions are called Hopf actions. The most famous example is the action of S1

on S3 that we already considered at the beginning of Sect. 3.1.
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Note that S0 Š Z2, S1 Š U.1/ and S3 Š SU.2/. We shall see later in Example 3.7.34
that the quotient spaces under these free actions are smooth manifolds

RP
n D Sn=Z2

CP
n D S2nC1=U.1/

HP
n D S4nC3=SU.2/

of dimension n, 2n, 4n, called real, complex and quaternionic projective space.
We consider another example of linear actions on spheres.

Theorem 3.3.2 (Linear Transitive Actions of Classical Groups) The defining
(fundamental) representations of O.n/, SO.n/, U.n/, SU.n/ and Sp.n/ define the
following linear transitive actions on spheres with associated isotropy groups of the
vector e1:

1. O.n/-action on Sn�1 with isotropy group

�
1 0

0 O.n � 1/
�

Š O.n � 1/:

Similarly, there is an

2. SO.n/-action on Sn�1 with isotropy group isomorphic to SO.n � 1/.
3. U.n/-action on S2n�1 with isotropy group isomorphic to U.n � 1/.
4. SU.n/-action on S2n�1 with isotropy group isomorphic to SU.n � 1/.
5. Sp.n/-action on S4n�1 with isotropy group isomorphic to Sp.n � 1/.

For K D R;C;H the defining (fundamental) representations of GL.n;K/ and
SL.n;K/ define the following linear transitive actions with associated isotropy
groups of the vector e1:

6. GL.n;K/-action on K
n n f0g with isotropy group

�
1 K

n�1
0 GL.n � 1;K/

�

:

7. GL.n;R/C-action on R
n n f0g with isotropy group

�
1 R

n�1
0 GL.n � 1;R/C

�

:

8. SL.n;K/-action on K
n n f0g with isotropy group

�
1 K

n�1
0 SL.n � 1;K/

�

:
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Proof This is an exercise. The case of SL.n;H/ uses the following lemma. ut
Lemma 3.3.3 For A 2 Mat.m � m;H/ and v 2 H

m the following equation holds:

det

�
1 v

0 A

�

D det.A/:

Proof This is an exercise. ut
We saw above that from a representation of a group on a vector space, we

sometimes get group actions on other manifolds, in particular on spheres. We now
show that from smooth actions on manifolds we also get representations on certain
vector spaces.

Let ˚ W G � M ! M be a smooth (left) action of a Lie group G on a manifold M.
Let p 2 M be a point and Gp its isotropy subgroup. By Proposition 3.2.9 the isotropy
group Gp is an embedded Lie subgroup of G. The differential of the left translation
lg is a map

lg� D DplgW TpM �! TpM;

for all g 2 Gp. This is an isomorphism with inverse lg�1�.

Theorem 3.3.4 (Isotropy Representation) The map

�pW Gp �! GL.TpM/

g 7�! lg�

is a representation of the isotropy group Gp on TpM, called the isotropy represen-
tation.

Proof We follow [142]. For g; h 2 G we calculate

�p.gh/ D Dplgh

D Dp.lg ı lh/

D �p.g/ ı �p.h/;

where we used the chain rule. Hence �p is a group homomorphism. We want to
show that �p is smooth. Let v 2 TpM be arbitrary and fixed. Then the map �p.�/v is
the composition of smooth maps

Gp �! TGp � TM �! T.G � M/ �! TM

given by

g 7�! ..g; 0/; . p; v// 7�! ..g; p/; .0; v// 7�! D.g;p/˚.0; v/:
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It follows that �p is a smooth homomorphism, hence a representation. ut
We get an analogous isotropy representation for right actions using the differential
of right translations. Here is an almost trivial example of this construction.

Example 3.3.5 Let G be a Lie group, � a G-representation on a vector space V and
˚ W G � V ! V the induced linear action. Then the isotropy group of 0 2 V is all of
G,

G0 D G;

and the isotropy representation on T0V Š V can be identified with � itself

�0 D �;

because the action is linear.
Here is a more interesting example:

Example 3.3.6 Every Lie group G acts on itself on the left by conjugation:

G � G �! G

.g; h/ 7�! cg.h/ D ghg�1:

The isotropy group of e 2 G is the full group G,

Ge D G;

and the isotropy representation on TeG Š g is the adjoint representation

�e D AdG:

The adjoint representation can thus be seen as a special case of the general
construction of isotropy representations.

3.4 Fundamental Vector Fields

Suppose a Lie group G acts smoothly on a manifold M. We want to discuss a
construction that defines for every vector in the Lie algebra g a certain vector field
on M. These vector fields correspond to an infinitesimal action of g on M (the
construction only works for smooth Lie group actions on manifolds).
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We can think of this from an abstract point of view as follows: if f W G ! H is a
Lie group homomorphism, then we saw in Sect. 1.5.3 that there is an induced
Lie algebra homomorphism

f�W g �! h:

Suppose now that the Lie group G acts smoothly on a manifold M. We know
that this action corresponds to a homomorphism

�W G �! Diff.M/;

where � is in a certain sense smooth. We can ask whether there is again an
induced homomorphism on the level of Lie algebras.

We first have to determine the Lie algebra of the diffeomorphism group
Diff.M/: note that if Y is a vector field on M, then its flow generates a 1-
parameter family of diffeomorphisms of M. If we think of the flow of Y as
an exponential map applied to Y, it is clear that the Lie algebra of Diff.M/
consists of the Lie algebra X.M/ of vector fields on M with the standard
commutator (this is plausible even if we do not formally define Diff.M/ as
an infinite-dimensional Lie group). Given a Lie group action of G on M we
therefore look for an induced Lie algebra homomorphism

��W g �! X.M/:

For example, in the case of the Hopf action

˚ W S3 � U.1/ �! S3

.v;w; / 7�! .v;w/

it follows from the definition below that the induced homomorphism

��W u.1/ Š iR �! X.S3/

is given by

��.ix/.v;w/ D .ivx; iwx/

with x 2 R. Here ��.ix/ is indeed a tangent vector field on S3.
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Definition 3.4.1 Let G be a Lie group and M a manifold. Suppose that M �G ! M
is a right action. For X 2 g we define the associated fundamental vector field QX on
M by

QXp D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

. p � exp.tX//:

If we denote by �p the orbit map for the right action,

�pW G �! M

g 7�! p � g;

then

QXp D .De�p/.Xe/:

Similarly, suppose that G�M ! M is a left action. Then we define the fundamental
vector field by

QXp D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

.exp.�tX/ � p/

for p 2 M. If we denote by �0
p the following orbit map for the left action,

�0
pW G �! M

g 7�! g�1 � p;

then

QXp D .De�
0
p/.Xe/:

The minus sign in the definition of the fundamental vector field for left actions has
a reason that will become clear in Proposition 3.4.4.

The formula for the fundamental vector fields has the following interpretation:
recall that vectors X in the Lie algebra define one-parameter subgroups, given by
exp.tX/ with t 2 R. The action of such a subgroup on a point p 2 M defines a curve
in M and the fundamental vector field in p is given as the velocity vector of this
curve at t D 0 (up to the sign in the case of left actions).

Example 3.4.2 Let �W G ! GL.V/ be a representation of a Lie group G on a vector
space V . The representation defines a left action

˚ W G � V �! V:
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Let ��W g ! End.V/ be the induced representation of the Lie algebra. For X 2 g,
the fundamental vector field QX is then given by

QXv D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

.exp.�tX/ � v/

D ���.X/.v/ 8v 2 V:

Here are some properties of fundamental vector fields.

Proposition 3.4.3 (Fundamental Vector Fields of Free Actions) Let G be a Lie
group acting on a smooth manifold M. If the action is free, then the map

��W g �! X.M/

X 7�! QX

is injective.

Proof This follows from Proposition 3.2.10. ut
Proposition 3.4.4 (Fundamental Vector Fields Define Lie Algebra Homomor-
phism) Let G be a Lie group acting on a manifold M on the right or left. The map

��W g �! X.M/

X 7�! QX

that associates to a Lie algebra element the corresponding fundamental vector field
on M is a Lie algebra homomorphism, i.e. it is an R-linear map such that

AŒX;Y� D Œ QX; QY� 8X;Y 2 g:

In particular, the set of all fundamental vector fields is a Lie subalgebra of the Lie
algebra of all vector fields on M.

Proof We prove the claim if G acts on the left on M. The proof for right actions
follows similarly. Fix a point p 2 M and let �0

p denote the following orbit map

�0
pW G �! M

g 7�! g�1 � p:

The second definition of QX,

QXp D .De�
0
p/.Xe/

shows that the map
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��W g �! X.M/

X 7�! QX

is linear.
We want to show that the left-invariant vector field X 2 g and QX 2 X.M/ are

�0
p-related. For this we have to show that

QX�0

p.a/ D .Da�
0
p/.Xa/

for all a 2 G. We have, since X is a left-invariant vector field on G,

.Da�
0
p/.Xa/ D .Da�

0
p/.DeLa/

�
d

dt

ˇ
ˇ
ˇ
ˇ
tD0

exp.tX/

�

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

�
exp.�tX/

�
a�1 � p

��

D QXa�1p

D QX�0

p.a/:

The claim now follows from Proposition A.1.49. ut
Remark 3.4.5 The reason why we defined in Definition 3.4.1 the fundamental
vector field for left actions with a minus sign in exp.�tX/ is so that

AŒX;Y� D Œ QX; QY�

holds for all X;Y 2 g. If we defined the fundamental vector field for left actions
with exp.tX/ instead (this is sometimes done in the literature), then we would get a
minus sign here:

AŒX;Y� D �Œ QX; QY� 8X;Y 2 g;

because on the left-hand side we have to change the sign once and on the right-hand
side twice.
It is sometimes useful to know how fundamental vector fields behave under right
or left translations on the manifold. It will turn out that even though fundamental
vector fields are defined using the group action, they are in general not invariant
under the action.

Proposition 3.4.6 (Action of Right and Left Translations on Fundamental
Vector Fields) Suppose a Lie group G acts on a manifold M. Let X 2 g and
g 2 G.

1. If G acts on the right on M, then
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rg�. QX/ D QY;

where

Y D Adg�1X 2 g:

2. If G acts on the left on M, then

lg�. QX/ D QZ;

where

Z D AdgX 2 g:

Proof We prove the statement for right actions, the statement for left actions follows
similarly. At a point p 2 M we calculate

.rg�. QX//p D .Dpg�1rg/. QXpg�1 /

D .Dpg�1rg/

�
d

dt

ˇ
ˇ
ˇ
ˇ
tD0

pg�1 � exp.tX/

�

D .De�p/

�
d

dt

ˇ
ˇ
ˇ
ˇ
tD0

˛g�1 .exp tX/

�

;

with the orbit map

�pW G �! M

g 7�! p � g:

On the other hand

Y D Adg�1X

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

˛g�1 .exp tX/:

This implies the claim by the second definition of the fundamental vector field. ut
Corollary 3.4.7 (Translations of Fundamental Vector Fields Are Fundamental)
For a right (left) action of a Lie group G on a manifold M the right (left) translations
of fundamental vector fields are again fundamental vector fields. If the Lie group G
is abelian, then the fundamental vector fields are invariant under all right (left)
translations.



3.5 The Maurer–Cartan Form and the Differential of a Smooth Group Action 147

3.5 The Maurer–Cartan Form and the Differential
of a Smooth Group Action

3.5.1 Vector Space-Valued Forms

Recall from Definition A.2.3 that a k-form on a real vector space V is defined as an
alternating multilinear map

W V � � � � � V„ ƒ‚ …
k

�! R:

The vector space of all k-forms on V is denoted by �kV�.
Suppose W is another real vector space. Then we define a k-form on V with

values in W as an alternating, multilinear map

W V � � � � � V„ ƒ‚ …
k

�! W:

The vector space of all k-forms on V with values in W can be identified with the
tensor product�kV� ˝ W.

Similarly we defined k-forms on a smooth manifold as alternating C1.M/-
multilinear maps

WX.M/ � � � � � X.M/
„ ƒ‚ …

k

�! C1.M/

and we defined˝k.M/ as the set of all k-forms on M; see Definition A.2.12.
We now define

C1.M;W/

as the set of all smooth maps from M into the vector space W (the vector space W
has a canonical structure of a manifold, so that smooth maps into W are defined). A
k-form on M with values in W is then an alternating C1.M/-multilinear map

WX.M/ � � � � � X.M/
„ ƒ‚ …

k

�! C 1.M;W/:

The set of all k-forms on M with values in W can be identified with ˝k.M;W/ D
˝k.M/˝R W. One also calls the forms in ˝k.M;W/ twisted with W.

Remark 3.5.1 Note that there is no canonical wedge product of forms on a vector
space or a manifold with values in a vector space W, because there is in general
no canonical product W � W ! W (an exception is forms with values in W D C,
where there is indeed a canonical wedge product).
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3.5.2 The Maurer–Cartan Form

The following notion of a vector space-valued form on a Lie group is useful for
studying group actions and principal bundles. Let G be a Lie group with Lie
algebra g.

Definition 3.5.2 The Maurer–Cartan form 
G 2 ˝1.G; g/ is the 1-form on G
with values in g defined by

.
G/g.v/ D .DgLg�1 /.v/ 2 TeG Š g

for all g 2 G and v 2 TgG. The Maurer–Cartan form is also called the canonical
form or structure form.
The Maurer–Cartan form thus associates to a tangent vector v at the point g 2 G the
unique left-invariant vector field X on G whose value at g is Xg D v (equivalently,
the generating vector of this vector field at e 2 G).

Proposition 3.5.3 (Invariance of Maurer–Cartan Form Under Translations)
The Maurer–Cartan form has the following invariance properties under left and
right translations:

L�
g
G D 
G;

R�
g
G D Adg�1 ı 
G;

for all g 2 G.

Proof We calculate for all h 2 G and v 2 ThG:

.R�
g
G/h.v/ D .
G/hg.DhRg/.v/

D .DhgLg�1h�1 /.DhRg/.v/

D .De˛g�1 /.DhLh�1 /.v/

D Adg�1 .
G/h.v/:

The statement for Lg follows similarly. ut

3.5.3 The Differential of a Smooth Group Action

Recall that a smooth (right) action of a Lie group is a map˚ W M�G ! M satisfying
certain axioms. It is sometimes useful to determine the differential of this map in a
given point .x; g/ 2 M � G. The formula for this differential involves the Maurer–
Cartan form.
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Proposition 3.5.4 (The Differential of a Smooth Group Action) Let G be a Lie
group acting smoothly on the right on a manifold M,

˚ W M � G �! M:

Then under the canonical identification

T.x;g/M � G Š TxM ˚ TgG;

the differential of the map ˚ is given by

D.x;g/˚ W TxM ˚ TgG �! TxgM

.X;Y/ 7�! .Dxrg/.X/C A
G.Y/xg;

where rg denotes right translation and 
G denotes the Maurer–Cartan form.

Proof Let �xW G ! M denote the orbit map

�x.g/ D xg:

Let x.t/ be a curve in M tangent to X and g.t/ a curve in G tangent to Y. Then

D.x;g/˚.X;Y/ D D.x;g/˚.X; 0/C D.x;g/˚.0;Y/

D D.x;g/˚.Px.0/; 0/C D.x;g/˚.0; Pg.0//
D .Dxrg/.X/C .Dg�x/.Y/:

Let y 2 g denote the left-invariant vector field corresponding to Y. Then y D 
G.Y/.
In the proof of Proposition 3.4.4 we saw that

.Dg�x/.Y/ D Qy�x.g/

(we proved the statement for left actions, but the corresponding statement also holds
for right actions). This proves the claim. ut

3.6 Left or Right Actions?

In general there is no difference whether we assume that a group action is a left or
right action. However, when we discuss homogeneous spaces in Sect. 3.8, there will
be two different actions at the same time, which have to be compatible. We therefore
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make the following conventions:

• If we are interested in quotient spaces M=G, we take the G-action on M to be a
right action. In particular, if H � G is a subgroup and we want to consider G=H,
then H acts on G on the right. When we consider principal bundles in Chap. 4,
we will take the G-action on the principal bundle to be a right action as well. For
example, the Hopf actions introduced in Definition 3.3.1 are right actions whose
quotient spaces are the projective spaces.

• If we are interested in homogeneous spaces, i.e. spaces M with a transitive group
action, we will take the G-action on M to be a left action. For example, the linear
transitive actions on spheres introduced in Theorem 3.3.2 are left actions.

Usually we are not interested in the quotient space of a transitive group action,
because it consists only of a single point, so that both cases do not overlap.
Occasionally one encounters situations in the literature where we have a right G-
action on M with quotient space M=G and a non-transitive left K-action on M=G.
Then it makes sense to consider the quotient space KnM=G under the left K-action
(we will not consider such quotients in the following).

3.7 �Quotient Spaces

An important objective in the study of group actions is to understand the
quotient space of a given action. In this section we are specifically interested
in the following question: Suppose that G is a Lie group acting smoothly on a
manifold M. Under which circumstances does the quotient set M=G have the
structure of a smooth manifold?

This question has many applications, because it is possible to construct
new and interesting manifolds as quotients of this form (like projective spaces
and lens spaces, to name only two examples). For instance, in the case of the
Hopf action

˚ W S3 � U.1/ �! S3

.v;w; / 7�! .v;w/;

which is a free action, it can be shown that the quotient space S3=U.1/ is a
smooth manifold diffeomorphic to CP

1 Š S2.

It is useful to study the question of quotients in greater generality: we first
consider quotients of manifolds (and topological spaces) under arbitrary equivalence
relations and later the case of the equivalence relation defined by group actions.
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We follow [130] for smooth manifolds and the excellent exposition in [139] in the
general case. An additional reference is [89].

3.7.1 Quotient Spaces Under Equivalence Relations on
Topological Spaces

Suppose X is a set and � an equivalence relation on X. We can describe �
equivalently by a subset R � X � X so that

x � y , .x; y/ 2 R:

The equivalence class of an element x 2 X is the subset

Œx� D fy 2 X j y � xg:

As subsets of X, equivalence classes of two elements x; x0 2 X are either disjoint or
identical. We denote by X=R the space of equivalence classes, called the quotient
space

X=R D fŒx� j x 2 Xg:

We have the canonical projection

�W X �! X=R

x 7�! Œx�:

We now specialize to the case when X is a topological space. Then we define on X=R
the usual quotient topology by setting U � X=R open if and only if ��1.U/ � X is
open. It is easy to check that this indeed defines a topology on X=R. The canonical
projection �W X ! X=R is continuous. The following is well-known:

Lemma 3.7.1 A map f W X=R ! Y from a quotient space to another topological
space is continuous if and only if f ı � is continuous:

We are first interested in the following question: under which conditions is the
quotient space X=R Hausdorff? The answer is given by the following lemma.
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Lemma 3.7.2 (Hausdorff Property of Quotient Spaces Under Equivalence
Relations) Let X be a topological space.

1. If X=R is Hausdorff, then R � X � X is closed.
2. If �W X ! X=R is open and R � X � X is closed, then X=R is Hausdorff.

Remark 3.7.3 Note that we do not need to assume that X is Hausdorff.

Proof We use in the proof the following standard fact from point set topology: a
topological space Y is Hausdorff if and only if the diagonal

� D f.y; y/ 2 Y � Y j y 2 Yg
is a closed subset in Y � Y. In the following, we denote by � the diagonal in the
space X=R � X=R.

1. The map

� � �W X � X �! X=R � X=R

is continuous. Since X=R is Hausdorff, the diagonal � is closed, hence the
preimage .� � �/�1.�/ is closed. We have

.x; y/ 2 .� � �/�1.�/ , .x; y/ 2 R:

Hence R D .� � �/�1.�/ is closed in X � X.
2. The map � � � is open and .X � X/ n R is open, hence its image in X=R � X=R

is open. We have

.Œx�; Œ y�/ 2 .� � �/..X � X/ n R/ , Œx� ¤ Œ y�

, .Œx�; Œ y�/ 2 .X=R � X=R/ n�:

It follows that � is closed and X=R is Hausdorff.
ut

3.7.2 Quotient Spaces Under Equivalence Relations on
Manifolds

We now consider the case of an equivalence relation R on a smooth manifold M and
we would like to determine when the quotient space M=R is a smooth manifold.
It is useful to demand that the smooth structure has the additional property that
�W M ! M=R is a submersion. Consider the following lemma.

Lemma 3.7.4 (Surjective Submersions Admit Local Sections) Let pW M ! N
be a surjective submersion between smooth manifolds. Then p admits smooth local
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sections, i.e. for each x 2 N there exists an open neighbourhood U � N of x and a
smooth map sW U ! M such that p ı s D IdU.

Proof This follows from the normal form theorem for submersions (see Theo-
rem A.1.28), because locally submersions are projections. ut
The following lemma is very useful in applications.

Lemma 3.7.5 (Smoothness of Maps Out of the Target Space of a Surjec-
tive Submersion) Let pW M ! N be a surjective submersion. Then a map
f W N ! Q is smooth if and only if f ı pW M ! Q is smooth. Moreover, f is a
submersion if and only if f ı p is a submersion and f is surjective if and only
if f ı p is surjective.

Proof If f is smooth, then f ı p is smooth. Conversely, assume that f ı p is smooth.
Let x 2 N and U � N an open neighbourhood of x with a smooth section sW U ! M
for p. On U we have p ı s D IdU , hence

. f ı p/ ı s D f :

Thus f is smooth on U and therefore on all of N.
The claim about submersions and surjectivity is clear, because p and its differen-

tial are surjective. ut
Corollary 3.7.6 Let M be a manifold and pW M ! N a surjective map to a set N.
Then N admits at most one structure of a smooth manifold so that p is a submersion.

Proof Suppose N1 and N2 are structures of smooth manifolds on N so that p is a
submersion in both cases. By Lemma 3.7.5 the identity map IdN W N1 ! N2 is a
diffeomorphism.

ut
Corollary 3.7.7 (Uniqueness of Smooth Manifold Structure on Quotient
Spaces) Let M be a smooth manifold and R an equivalence relation on M. Then
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there exists at most one smooth structure on M=R so that �W M ! M=R is a
submersion.

Remark 3.7.8 Lemma 3.7.5 and Corollary 3.7.7 are the reasons why the smooth
structure on M=R should have the property that �W M ! M=R is a submersion.
We assume from now on that M is a smooth manifold and R an equivalence relation
on M. We first derive a necessary condition for M=R to be a smooth manifold such
that � is a submersion.

Lemma 3.7.9 Let M=R have the structure of a smooth manifold so that �W M !
M=R is a surjective submersion. Then R is a closed embedded submanifold of M�M
and the restrictions of the projections

prijRW R �! M

are surjective submersions, for i D 1; 2.

Proof The graph of the projection

	 D f.x; �.x// 2 M � M=R j x 2 Mg

is a closed embedded submanifold of M � M=R and

F D IdM � �W M � M �! M � M=R

is a submersion. Therefore F�1.	 / is a closed embedded submanifold of M � M.
We have

.x; y/ 2 F�1.	 / , .x; �.y// 2 	
, �.x/ D �.y/

, .x; y/ 2 R:

This shows that R is a closed embedded submanifold of M � M.
The map FjRW R ! 	 is a surjective submersion. The projection pr1j	 W	 ! M

is also a surjective submersion, because

pr1j	 ı .IdM; �/ D IdMW M �! M:

It follows that

pr1j	 ı FjRW R �! M

is a smooth surjective submersion. This map is equal to pr1jR. The claim for pr2jR

follows by symmetry of the equivalence relation. ut
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It is a non-trivial fact that the converse also holds.

Theorem 3.7.10 (Godement’s Theorem on the Manifold Structure of
Quotient Spaces) Let R be an equivalence relation on a manifold M.
Suppose that R is a closed embedded submanifold of M�M and pr1jRW R ! M
a surjective submersion. Then M=R has a unique structure of a smooth
manifold such that the canonical projection �W M ! M=R is a surjective
submersion.

The proof of Godement’s Theorem, which is not easy and quite technical, is
deferred to Sect. 3.11. We first want to derive some consequences of it.

3.7.3 Quotient Spaces Under Continuous Group Actions

We begin more generally by considering the case of a topological group G acting
continuously on the right on a topological space X. The map defining the action is

˚ W X � G �! X:

We would like to determine under which conditions the quotient space X=G is
Hausdorff (we do not need to assume that X itself is Hausdorff).

Lemma 3.7.11 The canonical projection �W X ! X=G is open.

Proof Let U be an open subset of x. We have to show that ��1.�.U// is open in X.
However,

��1.�.U// D
[

g2G

U � g

and each of the sets U � g is open, because right translations are homeomorphisms.
ut

Corollary 3.7.12 (Hausdorff Property of Quotient Spaces Under Continuous
Group Actions) The quotient space X=G is Hausdorff if and only if the map

� W X � G �! X � X

.x; g/ 7�! .x; xg/

has closed image.
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Proof According to Lemma 3.7.2 and since �W X ! X=G is open, the space X=G is
Hausdorff if and only if the equivalence relation R � X � X is closed. We have

.x; y/ 2 R , 9g 2 GW y D xg:

This shows that R is equal to the image of the map � . ut
Let G be a topological group and H � G a subgroup with the subspace topology.
Then H acts continuously on the right on G via right translations

˚ W G � H �! G

.g; h/ 7�! gh:

We get a topological quotient space G=H.

Corollary 3.7.13 (Hausdorff Property of G=H) Let G be a topological group and
H � G a subgroup. Then G=H is Hausdorff if and only if H is a closed set in the
topology of G.

Proof According to Corollary 3.7.12 we have to show that the image of

� W G � H �! G � G

.g; h/ 7�! .g; gh/

is closed if and only if H is closed. Consider the map

TW G � G �! G � G

.g; g0/ 7�! .g; gg0/:

This map is a homeomorphism and we have � D TjG�H . Hence the image of � is
closed in G � G if and only if G � H is closed in G � G. This happens if and only if
H is closed in G. ut
As an aside we note the following result, which is useful in applications such as
Example 3.8.11 (we follow [34] and [142] in the proof).

Proposition 3.7.14 (Connectedness of G and G=H) Let G be a topological group
and H � G a closed subgroup. Suppose that H is connected. Then G=H is connected
if and only if G is connected.

Proof If G is connected, then G=H is connected, because the canonical projection
�W G ! G=H is surjective and continuous.

Conversely, suppose that G=H is connected and

G D U [ V;
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where U;V are open non-empty subsets of G. We have to show that U and V cannot
be disjoint.

By Lemma 3.7.11 the sets �.U/ and �.V/ are open and non-empty in G=H with

G=H D �.U/[ �.V/:

Since G=H is connected there exists an element

Œg� 2 �.U/\ �.V/:

Because of G D U [ V we get

Og D gH D .gH \ U/[ .gH \ V/:

By construction gH \ U, gH \ V are open and non-empty in gH. Since gH is
connected, the claim follows. ut

3.7.4 Proper Group Actions

We consider some topological notions that are useful in applications to group
actions.

Definition 3.7.15 A topological space X is called locally compact if every point in
X has a compact neighbourhood.

Lemma 3.7.16 Let X be a locally compact Hausdorff space. Then a subset A � X
is closed if and only if the intersection of A with any compact subset of X is compact.

Proof If A is closed, then the intersection with any compact subset of X is compact.
Conversely, assume that A \ K is compact for every compact subset K � X. Let
x 2 X n A. Since X is locally compact, there exists an open neighbourhood U � X
of x contained in a compact subset K � X. By assumption, C D A \ K is compact,
hence closed in X, since X is Hausdorff. Then U n C D U \ .X n C/ is an open
neighbourhood of x contained in X n A. This implies the claim. ut
Definition 3.7.17 A continuous map f W X ! Y between topological spaces is called
proper if the preimage f �1.K/ of every compact subset K � Y is compact in X.

Lemma 3.7.18 Let f W X ! Y be a continuous proper map between topological
spaces, where Y is locally compact Hausdorff. Then f is a closed map.

Proof Let A � X be a closed set. By Lemma 3.7.16 we have to show that f .A/\ K
is compact for every compact subset K � Y. However,

f .A/ \ K D f
�
A \ f �1.K/

�
:
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Since f is proper, the set f �1.K/ is compact and thus A\ f �1.K/ and f
�
A \ f �1.K/

�

are compact. This implies the claim. ut
Lemma 3.7.19 Let f W X ! Y be a closed continuous map between topological
spaces such that f �1.y/ is compact for all y 2 Y. Then f is proper.

Proof The proof is left as an exercise. ut
We consider the following type of group actions.

Definition 3.7.20 A continuous action of a topological group G on a topological
space X is called proper if the map

� W X � G �! X � X

.x; g/ 7�! .x; xg/

is proper.

Corollary 3.7.21 (Map � Is Closed If Action Is Proper) Let X � G ! X be a
continuous, proper action of a topological group G on a topological space X, where
X is locally compact Hausdorff. Then the map

� W X � G �! X � X

.x; g/ 7�! .x; xg/

is closed. In particular, X=G is Hausdorff.

Proof This follows from Lemma 3.7.18 and Corollary 3.7.12. ut
Here is a general situation in which group actions are proper.

Proposition 3.7.22 (Actions of Compact Topological Groups Are Proper) Let
X � G ! X be a continuous action of a topological group G on a Hausdorff space
X. Suppose that G is compact. Then the action is proper.

Proof Let K � X � X be a compact subset. Then

L D pr1.K/

is a compact subset of X. If �.x; g/ D .x; xg/ 2 K, then x 2 L, hence

��1.K/ D ��1.K/\ .L � G/:

However,��1.K/ is closed in X�G and L�G is compact, hence��1.K/ is compact.
ut

Corollary 3.7.23 Let X � G ! X be a continuous action of a topological group G
on a locally compact Hausdorff space X. Suppose that G is compact. Then X=G is
Hausdorff.
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3.7.5 Quotient Spaces Under Smooth Group Actions

We have now arrived at the central topic in this section: to determine under which
conditions the quotient of a smooth action of a Lie group on a smooth manifold is
again a smooth manifold.

Definition 3.7.24 We call a smooth right action of a Lie group G on a manifold M
principal if the action is free and the map

� W M � G �! M � M

. p; g/ 7�! . p; pg/

is closed.

Theorem 3.7.25 (Manifold Structure on Quotient Spaces Under Principal
Actions of Lie Groups) Suppose that ˚ is a principal right action of the Lie
group G on the manifold M. Then M=G has a unique structure of a smooth manifold
such that �W M ! M=G is a submersion.

Proof Since the action of G on M is free, the map � is injective. We want to show
that � is an immersion: by Proposition 3.5.4 the differential of � is given by

D.x;g/.X;Y/ D
�

X; .Dxrg/.X/C A
G.Y/xg

�
:

If D.x;g/.X;Y/ D .0; 0/, then X D 0 and A
G.Y/xg D 0. From Proposition 3.4.3 we
get 
G.Y/ D 0, hence Y D 0. This proves that the differential of � is injective.

Since � is a closed injective map, it is a homeomorphism onto its image R and
thus an embedding. Hence R is a closed embedded submanifold of M�M. According
to Theorem 3.7.10 it remains to show that pr1jRW R ! M is a submersion. However,

pr1jR ı � W M � G �! M

is just pr1W M � G ! M and thus a submersion. This implies the claim. ut
Corollary 3.7.26 (The Differential of the Projection �W M ! M=G) Suppose
that ˚ is a principal right action of the Lie group G on the manifold M. Then the
dimension of the quotient manifold M=G is given by

dim.M=G/ D dim M � dim G:

In particular, the kernel of the differential

Dp�W TpM �! TŒp�M=G

at a point p 2 M is equal to the tangent space TpOp of the G-orbit through p.
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Proof The claim about the dimension of M=G follows from the proof of Theo-
rem 3.7.10. The second claim then follows from Corollary 3.2.12. ut
Remark 3.7.27 For a free action of a Lie group G on a manifold M the preimage
��1. p; q/ of every point . p; q/ 2 M � M is either empty or consists of a single
element (and is thus a compact set). Lemma 3.7.19 implies that principal Lie group
actions on manifolds are proper. Together with Corollary 3.7.21 we conclude that
principal actions are equivalent to free proper Lie group actions on manifolds.
We formulate this as follows:

Corollary 3.7.28 (Free Proper Actions of Lie Groups Are Equivalent to Princi-
pal Actions) Suppose that M � G ! M is a smooth free action of a Lie group G
on a manifold M. Then the action is principal if and only if it is proper.
Proposition 3.7.22 then implies:

Corollary 3.7.29 (Free Actions of Compact Lie Groups Are Principal) Suppose
that M � G ! M is a smooth free action of a compact Lie group G on a manifold
M. Then the action is principal.
We get the following corollary, which is very useful in applications.

Corollary 3.7.30 (Quotients Under Free Actions of Compact Lie Groups)
Let G be a compact Lie group acting smoothly and freely on a manifold M.
Then M=G has a unique structure of a smooth manifold such that �W M !
M=G is a submersion.

Proof This follows from Theorem 3.7.25 and Corollary 3.7.29. ut
Remark 3.7.31 (Fundamental Groups) If in the situation of Corollary 3.7.30 the
manifolds M and G are connected, it follows from Exercise 3.12.6 that �� maps
the fundamental group of M surjectively onto the fundamental group of M=G. In
particular, if M is simply connected, then M=G is simply connected.

Example 3.7.32 (Quotients Under Free Actions of Finite Groups) Finite groups
with the discrete topology are compact. Hence if a finite group G acts freely and
smoothly on a manifold M, then the quotient M=G is a smooth manifold such that
the canonical projection is a submersion.

Example 3.7.33 (Lens Spaces) Let p > 0 be an integer and ˛ D e2� i=p 2 S1 the
corresponding root of unity. Let q ¤ 0 be an integer coprime to p. We consider the
following smooth action of Zp D Z=pZ on the unit sphere S3 � C

2:

S3 � Zp �! S3

.z1; z2; Œk�/ 7�! .z1; z2/ � Œk� D �
z1˛

k; z2˛
kq
�
:
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This action is free: if z1 ¤ 0 and z1˛k D z1, then Œk� D 0. If z2 ¤ 0 and z2˛kq D z2,
then again Œk� D 0, because q is coprime to p. According to Example 3.7.32 the
quotient

L. p; q/ D S3=Zp

under this action is a smooth 3-dimensional manifold. These manifolds are called
lens spaces.

Example 3.7.34 (Projective Spaces Are Smooth Manifolds) The projective spaces

RP
n D Sn=Z2;

CP
n D S2nC1=U.1/;

HP
n D S4nC3=SU.2/

are quotients of manifolds under smooth free actions of compact Lie groups and
therefore smooth manifolds such that the canonical projections are submersions.
Let G be a Lie group and H � G a closed subgroup. According to Cartan’s
Theorem 1.1.44 the subgroup H is an embedded Lie subgroup of G. There is a
smooth right action of H on G by right translations

˚ W G � H �! G

.g; h/ 7�! gh:

Corollary 3.7.35 (Manifold Structure on G=H) Let G be a Lie group and
H � G a closed subgroup. Then the right action of H on G is principal and
G=H has a unique structure of a smooth manifold such that �W G ! G=H is
a submersion.

Proof It is clear that the orbit maps

�gW H �! G

h 7�! gh

are injective, hence the action is free. According to Theorem 3.7.25 it remains to
show that the map

� D IdG � ˚ W G � H �! G � G

.g; h/ 7�! .g; gh/
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is closed. As in the proof of Corollary 3.7.13 we consider the map

TW G � G �! G � G

.g; g0/ 7�! .g; gg0/:

This map is a diffeomorphism with � D TjG�H . If A � G � H is closed, then A is
closed in G � G, since H is closed in G. This implies that �.A/ D T.A/ is closed in
G � G. ut
Corollary 3.7.36 Let G be a Lie group and H � G a closed subgroup. Then the
dimension of the quotient manifold G=H is given by

dim.G=H/ D dim G � dim H:

In particular, the kernel of the differential

De�W TeG �! TŒe�G=H

is equal to the Lie algebra h of H.

Proof This follows from Corollary 3.7.26. ut

3.8 �Homogeneous Spaces

Recall that a set M together with a transitive action of a group G is called a
homogeneous space. An example is the transitive action of SO.n/ on the sphere Sn�1
with isotropy group isomorphic to SO.n � 1/, cf. Theorem 3.3.2. In this section we
study the structure of homogeneous spaces for actions of groups, topological groups
and Lie groups. We are most interested in the case of Lie group actions, but the other
two cases are useful as a warm-up. We will show that every homogeneous space
is, up to isomorphism of group actions, of the form G=H, where H is a suitable
subgroup of G.

3.8.1 Groups and Homogeneous Spaces

Let G be any group and H � G a subgroup. Then H acts on the right on G. We get
a quotient space G=H of orbits, also called left cosets.

Definition 3.8.1 We define a map

˚ W G � G=H �! G=H

.g; Œa�/ 7�! g � Œa� D Œga�:
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Note that G acts on the left on the set of left cosets G=H.
We want to show that ˚ is indeed a group action.

Proposition 3.8.2 (˚ Is a Transitive Left Action of G on G=H)

1. The map ˚ is a well-defined, transitive group action of G on the set G=H.
2. The isotropy group of Œe� 2 G=H is equal to H. Therefore the isotropy group of

any point in G=H is isomorphic to H.

Proof This is an easy exercise. ut
We now consider an arbitrary transitive group action of G on a set M. We want to
show that up to an equivariant bijection this group action is of the form above.

Proposition 3.8.3 (Structure of Transitive Group Actions on Sets) Let G�M !
M be a transitive left action of a group G on a set M. Fix an arbitrary point p 2 M
and let Gp denote the isotropy group of p. Then Gp � G is a subgroup and

f W G=Gp �! M

Œa� 7�! a � p

is a well-defined G-equivariant bijection.

Proof Another easy exercise. ut
This implies that every homogeneous G-space is of the form G=H for some
subgroup H � G (not only as a set, but as the space of an action). We will show in
the following subsections that this result essentially still holds in the continuous and
smooth category.

3.8.2 Topological Groups and Homogeneous Spaces

Let G be a topological group and H � G a subgroup with the subspace topology.
Consider the quotient space G=H with the subspace topology. According to
Proposition 3.8.2 we get a transitive group action

˚ W G � G=H �! G=H

.g; Œa�/ 7�! g � Œa� D Œga�:

Proposition 3.8.4 (˚ Is a Continuous Action for Topological Groups) Suppose
G is a topological group and H � G a subgroup. Then the transitive group action

˚ W G � G=H �! G=H

is continuous.
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Proof Multiplication in G followed by projection onto G=H is continuous,

G � G �! G �! G=H:

This implies, by the definition of the quotient topology on G=H, that the group
action

˚ W G � G=H �! G=H

is continuous. ut
According to Corollary 3.7.13 the space G=H is Hausdorff if and only if H is a
closed subset in G. We now consider the case of an arbitrary transitive continuous
group action.

Proposition 3.8.5 (Structure of Transitive Continuous Group Actions on Topo-
logical Spaces) Let G � M ! M be a transitive continuous left action of a
topological group G on a Hausdorff space M. Fix an arbitrary point p 2 M and
let Gp denote the isotropy group of p. Then Gp � G is a closed subgroup and

f W G=Gp �! M

Œa� 7�! a � p

is a well-defined continuous G-equivariant bijection between Hausdorff spaces. If
G is compact, then f is a homeomorphism.

Proof The isotropy group Gp is closed in G by Proposition 3.2.9 (here we need that
M is Hausdorff). It is clear by Proposition 3.8.3 that f is a well-defined equivariant
bijection. It is also clear from the definition of the quotient topology that f is
continuous. The final statement follows, because a continuous bijection from a
compact space to a Hausdorff space is a homeomorphism. ut
Remark 3.8.6 In general, if G is non-compact, the map f is not a homeomorphism.

3.8.3 Lie Groups and Homogeneous Spaces

We now come to the case that we are most interested in: G is a Lie group and
H � G a closed subgroup. By Corollary 3.7.35 the quotient G=H has a unique
structure of a smooth manifold such that �W G ! G=H is a submersion. According
to Proposition 3.8.2 we get a transitive group action

˚ W G � G=H �! G=H

.g; Œa�/ 7�! g � Œa� D Œga�:
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Proposition 3.8.7 (˚ Is a Smooth Action for Lie Groups) Suppose G is a Lie
group and H � G a closed subgroup. Then the transitive group action

˚ W G � G=H �! G=H

is smooth.

Proof Multiplication in G followed by projection onto G=H is smooth,

G � G �! G �! G=H:

By Lemma 3.7.5 the map

˚ W G � G=H �! G=H

is smooth. ut
We can now determine the structure of smooth manifolds that are homogeneous
under the action of a Lie group.

Theorem 3.8.8 (Structure of Transitive Smooth Group Actions on Manifolds)
Let G � M ! M be a transitive smooth left action of a Lie group G on a manifold
M. Fix an arbitrary point p 2 M and let Gp denote the isotropy group of p. Then
Gp � G is a closed subgroup and

f W G=Gp �! M

Œa� 7�! a � p

is a well-defined G-equivariant diffeomorphism between manifolds.

Proof It follows from Proposition 3.8.5 that f is well-defined, continuous, bijective
and G-equivariant. By Corollary 3.7.35 the quotient space G=Gp is a smooth
manifold. It remains to show that f is smooth and a diffeomorphism.

The map f is smooth by Lemma 3.7.5, because the orbit map

�pW G �! M

a 7�! a � p

is smooth. To show that f is a diffeomorphism it suffices to show that the differential
of f is an isomorphism at every point of G=Gp. By G-equivariance of f we have

f .Œga�/ D g � f .Œa�/:

Since left translations are diffeomorphisms of G=Gp and M, the differential of f is
an isomorphism at every point of G=Gp if and only if it is an isomorphism at Œe�.
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We first show that the differential of f is injective at Œe�: let U � G=Gp be an
open neighbourhood of Œe� and sW U ! G a local section with � ı s D IdU , where
�W G ! G=Gp is the canonical projection. Without loss of generality s.Œe�/ D e.
Then f D �p ı s and

DŒe� f D De�p ı DŒe�s:

We also have

IdTŒe�G=Gp D De� ı DŒe�s:

This shows that DŒe�s is injective and its image is a complementary subspace to the
kernel of De� , which is the Lie algebra gp of Gp according to Corollary 3.7.36. The
kernel of De�p is also equal to gp according to Proposition 3.2.10. This implies that
the differential DŒe� f is injective.

To show that DŒe� f is surjective it suffices to show by G-equivariance that DŒa� f
is surjective at some point Œa� 2 G=Gp. This follows from the next lemma. ut
Lemma 3.8.9 Let f W X ! Y be a surjective smooth map between manifolds. Then
there exists a point x 2 X such that Dx f is surjective.

Proof According to Sard’s Theorem A.1.27 there exists a regular value y 2 Y of f .
Since f is surjective, there exists an x 2 X with f .x/ D y. Then x is a regular point
f , i.e. the differential Dx f is surjective. ut
Along the way we have shown the following more general result.

Corollary 3.8.10 (The Orbit Map Induces an Injective Immersion of G=Gp into
M) Let G � M ! M be a smooth left action of a Lie group G on a manifold M, not
necessarily transitive. Fix a point p 2 M. Then

f W G=Gp �! M

Œa� 7�! a � p

is an injective immersion of the manifold G=Gp into M whose image is the orbit Op

of p. In particular, if the Lie group G is compact, then the orbit Op is an embedded
submanifold of M, diffeomorphic to G=Gp.

Example 3.8.11 In Theorem 3.3.2 we saw that the standard representation of O.n/
on R

n induces a transitive action of O.n/ on the unit sphere Sn�1 with isotropy
group of a point e1 2 Sn�1 isomorphic to the subgroup O.n � 1/. Theorem 3.8.8
then implies that the orbit map descends to a diffeomorphism

O.n/=O.n � 1/
Š�! Sn�1:
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In a similar way we get diffeomorphisms

SO.n/=SO.n � 1/
Š�! Sn�1;

U.n/=U.n � 1/
Š�! S2n�1;

SU.n/=SU.n � 1/
Š�! S2n�1;

Sp.n/=Sp.n � 1/
Š�! S4n�1:

We also get diffeomorphisms

GL.n;K/=
�
GL.n � 1;K/� K

n�1� Š�! K
n n f0g;

GL.n;R/C=
�
GL.n � 1;R/C � R

n�1� Š�! R
n n f0g;

SL.n;K/=
�
SL.n � 1;K/� K

n�1� Š�! K
n n f0g:

Note that the group structure on GL.n � 1;K/ � K
n�1 and SL.n � 1;K/ � K

n�1 is
not the direct product structure.
We can now prove Theorem 1.2.22 on the connected components of the classical
linear groups (the idea for this proof is from [34] and [142]).

Proof Let G be a Lie group and H � G a closed connected subgroup. According
to Proposition 3.7.14 the quotient manifold G=H is connected if and only if G is
connected. We apply this inductively to the homogeneous spaces in Example 3.8.11.
We do the case of SO.n/ explicitly, the other cases are left as an exercise. It is
clear that SO.1/ D f1g is connected. Since Sn�1 is connected for all n � 2, the
diffeomorphism

SO.n/=SO.n � 1/
Š�! Sn�1

shows that SO.n/ is connected for all n � 2. ut
The following fact is sometimes useful:

Corollary 3.8.12 (Smooth Structure on Sets with a Transitive Lie Group
Action) Suppose that M is a set and G � M ! M a transitive left action of a
Lie group G on M with closed isotropy group Gp, for some p 2 M. Then

f W G=Gp �! M

Œa� 7�! a � p

is a bijection. The set M can be given a unique structure of a smooth manifold, so
that f becomes a diffeomorphism. If G is compact, then M is compact.
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We conclude that in this situation we get the manifold structure on M for free,
without the (sometimes difficult) task of defining a topology and an atlas of
smoothly compatible charts for M.

3.9 �Stiefel and Grassmann Manifolds

We discuss two examples of compact homogeneous spaces where the manifold
structure is defined by Corollary 3.8.12.

Example 3.9.1 (Stiefel Manifolds) Let K D R;C;H and consider positive integers
k � n. The Stiefel manifold Vk.K

n/ is defined as the set of ordered k-tuples
of orthonormal vectors in K

n with respect to the standard Euclidean (Hermitian,
symplectic) scalar product on R

n (Cn, Hn) from Definition 1.2.9:

Vk.K
n/ D f.v1; : : : ; vk/ j vi 2 K

n; hvi; vjiKn D ıijg:

We consider the case K D R in detail. The group O.n/ acts on the set Vk.R
n/ via

A � .v1; : : : ; vk/ D .Av1; : : : ;Avk/:

Since we can complete the vectors v1; : : : ; vk to an orthonormal basis of R
n and

O.n/ acts transitively on orthonormal bases, it follows that the action of O.n/ on
Vk.R

n/ is also transitive. The isotropy group of the point

p D .e1; : : : ; ek/ 2 Vk.R
n/

is equal to

O.n/p D
	�

Ek 0

0 A

� ˇ
ˇ
ˇA 2 O.n � k/




Š O.n � k/:

This holds, because if C 2 O.n/ satisfies C � p D p, then C is of the form

C D
�

Ek B
0 A

�

and CCT D E implies AAT D E and BAT D 0, hence A 2 O.n � k/ and B D 0.
It follows that the real Stiefel manifold admits the structure of a compact manifold
given by

Vk.R
n/ D O.n/=O.n � k/:
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In particular, Vk.R
n/ has dimension

dim Vk.R
n/ D dim O.n/� dim O.n � k/

D dim o.n/� dim o.n � k/

D 1

2
n.n � 1/� 1

2
.n � k/.n � k � 1/

D nk � 1

2
k.k C 1/:

Similarly, it can be shown that

Vk.C
n/ D U.n/=U.n � k/;

Vk.H
n/ D Sp.n/=Sp.n � k/:

It follows that the complex and quaternionic Stiefel manifolds are connected for all
k � n. For real Stiefel manifolds and k < n this follows from Exercise 3.12.12.

Example 3.9.2 (Grassmann Manifolds) Let K D R;C;H and consider non-
negative integers k � n. The Grassmann manifold or Grassmannian Grk.K

n/

is defined as the set of k-dimensional vector subspaces in K
n:

Grk.K
n/ D fU � K

n j U is a k-dimensional vector subspaceg:

We consider the case K D R. The group O.n/ acts on the set Grk.R
n/ via

A � U D fAu 2 R
n j u 2 Ug:

This action is transitive, since we can choose a basis for U and the action of O.n/
on Vk.R

n/ is transitive. The isotropy group of

p D span.e1; : : : ; ek/ 2 Grk.R
n/

is equal to

O.n/p D
	�

A 0

0 B

� ˇ
ˇ
ˇA 2 O.k/;B 2 O.n � k/




Š O.k/ � O.n � k/:

It follows that the real Grassmannian Grk.R
n/ admits the structure of a compact

manifold given by

Grk.R
n/ D O.n/=.O.k/ � O.n � k//:
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Note that there is a diffeomorphism

Grn�k.R
n/ Š Grk.R

n/:

The dimension of Grk.R
n/ is equal to

dim Grk.R
n/ D dim Vk.R

n/� dim O.k/

D nk � 1

2
k.k C 1/� 1

2
k.k � 1/

D k.n � k/:

Similarly, it can be shown that

Grk.C
n/ D U.n/=.U.k/ � U.n � k//;

Grk.H
n/ D Sp.n/=.Sp.k/ � Sp.n � k//:

There are diffeomorphisms

Gr1.K
nC1/ Š KP

n

for K D R;C;H.

3.10 �The Exceptional Lie Group G2

In this section we discuss the compact simple exceptional Lie group G2. In
particular, we want to show that G2 has dimension 14. This is a nice application
of homogeneous spaces and Stiefel manifolds. We follow the paper [26] by Robert
Bryant.

Besides being mathematically interesting, the Lie group G2 plays an important
role in M-theory, a conjectured supersymmetric theory of quantum gravity in 11
dimensions, which is related to the superstring theories in dimension 10. If M-
theory is a realistic theory of nature, with 4-dimensional spacetime, 7 of the 11
dimensions have to be very small (compactified). The vacuum or background of the
theory is thus of the form R

4 � K, where R
4 is Minkowski spacetime and K is a

compact Riemannian 7-manifold. Moreover, for the background to be a solution of
the supergravity equations of motion, preserving one supersymmetry in dimension 4
(the most interesting case from a phenomenological point of view), the Riemannian
metric on the 7-dimensional compact manifold K has to have holonomy group
equal to G2 (assuming that the flux is set to zero). The first compact examples of
Riemannian manifolds with holonomy equal to G2 were constructed by Dominic
Joyce.
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A Riemannian metric has holonomy group G2 precisely if the 7-manifold admits
a certain type of 3-form that is parallel with respect to the Levi-Civita connection.
We will introduce the linear model of the 3-form on a vector space of dimension
seven and define G2 as its isotropy group.

3.10.1 Definition of the 3-Form � and the Lie Group G2

We need some preparations: Let V D R
7 with the standard Euclidean scalar product

h� ; �i and standard orthonormal basis fejg. Let f!ig denote the dual basis of V�,
defined by

!i.ej/ D ıi
j :

We use a shorthand notation for wedge products of the !i. For example,

!123 D !1!23 D !1 ^ !2 ^ !3:

Definition 3.10.1 We define a 3-form � 2 �3V� by:

� D !123 C !1.!45 C !67/C !2.!46 � !57/� !3.!47 C !56/:

Remark 3.10.2 The peculiar form of � will be justified in Exercise 3.12.15. Other
choices, however, are possible and lead to equivalent descriptions of G2.
The group GL.7;R/ acts on the column vector space V on the left via the
standard representation. There is an induced representation on �kV� defined by
(cf. Definition 2.1.23):

.g˛/.v1; : : : ; vk/ D ˛
�
g�1v1; : : : ; g�1vk

�
g 2 GL.7;R/; vi 2 V:

We think of this representation as a left action of GL.7;R/ on �kV�.

Definition 3.10.3 We define G2 � GL.7;R/ as the isotropy group of the 3-form �:

G2 D GL.7;R/� D fg 2 GL.7;R/ j g� D �g:
This is a closed embedded Lie subgroup of GL.7;R/.

3.10.2 G2 as a Compact Subgroup of SO.7/

Definition 3.10.4 For x 2 V we denote by xy� (contraction of � with x) the 2-form
on V defined by

.xy�/.y; z/ D �.x; y; z/ 8y; z 2 V:
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The following map is very useful in the study of the Lie group G2.

Definition 3.10.5 We set

bW V � V �! �7V�

.x; y/ 7�! b.x; y/ D 1

6
.xy�/ ^ .yy�/^ �:

Here are some properties of the map b.

Proposition 3.10.6 The map b is symmetric and bilinear. It is G2-equivariant,
i.e. we have

b.gx; gy/ D g.b.x; y// 8g 2 G2 x; y 2 V:

A calculation shows that

b.x; y/ D hx; yi � vol;

where vol D !1234567 is the standard volume form of V.

Proof It is clear that b is symmetric and bilinear. For g 2 G2 and x; y; z 2 V we
calculate

..gx/y�/.y; z/ D �.gx; y; z/

D �
�
gx; gg�1y; gg�1z

�

D �
g�1�

� �
x; g�1y; g�1z

�

D �
�
x; g�1y; g�1z

�

D .xy�/
�
g�1y; g�1z

�

D .g.xy�//.y; z/:

Therefore

.gx/y� D g.xy�/

and

b.gx; gy/ D 1

6
..gx/y�/^ ..gy/y�/^ �

D 1

6
.g.xy�//^ .g.yy�//^ g�

D g.b.x; y//:
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The final property can be proved by a (tedious) direct calculation using the explicit
form of �. Because of symmetry and bilinearity of b it suffices to show that

b.ei; ej/ D ıij � vol 8i � j 2 f1; : : : ; 7g:

We have

e1y� D !23 C !45 C !67;

e2y� D �!13 C !46 � !57;

e3y� D !12 � !47 � !56;
e4y� D �!15 � !26 C !37;

e5y� D !14 C !27 C !36;

e6y� D �!17 C !24 � !35;

e7y� D !16 � !25 � !34:

We then calculate all 28 wedge products of the form

.eiy�/ ^ .ejy�/ ^ �

with i � j. For example,

.e1y�/ ^ .e1y�/ ^ � D 6 � vol;

.e1y�/ ^ .e2y�/ ^ � D 0:

The claim then follows from these calculations. ut
Corollary 3.10.7 (G2 Is a Compact Subgroup of SO.7/) The following identity
holds

hgx; gyi D .det g/�1 � hx; yi 8g 2 G2; x; y 2 V;

and

det g D 1 8g 2 G2:

In particular, G2 preserves the standard scalar product and orientation on V and is
thus a compact embedded Lie subgroup of SO.7/.
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Proof For any g 2 GL.7;R/ we have

.gvol/.e1; : : : ; e7/ D vol
�
g�1e1; : : : ; g�1e7

�

D det
�
g�1I

�

D .det g/�1;

hence

gvol D .det g/�1 � vol:

By Proposition 3.10.6 this implies for all g 2 G2

hgx; gyivol D b.gx; gy/

D g.b.x; y//

D hx; yigvol

D .det g/�1hx; yivol:

Therefore

hgx; gyi D .det g/�1 � hx; yi 8g 2 G2; x; y 2 V:

Consider the matrix gTg. We have

.gTg/ij D hgei; geji D .det g/�1ıij;

hence

gTg D .det g/�1I7:

Calculating the determinant on both sides we get

.det g/2 D det
�
gTg

�

D .det g/�7;

hence

.det g/9 D 1

and

det g D 1 8g 2 G2:
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We get

hgx; gyi D hx; yi 8g 2 G2

and with det g D 1 it follows that G2 is a subgroup of SO.7/. Since G2 is a closed
subgroup and SO.7/ is compact, it follows that G2 is compact. ut

3.10.3 An SU.2/-Subgroup of G2

Definition 3.10.8 Let PW V � V ! V be the map defined by

hP.x; y/; zi D �.x; y; z/ 8x; y; z 2 V:

Proposition 3.10.9 The map P is antisymmetric, bilinear and G2-equivariant. We
have P.e1; e2/ D e3.

Proof The first two properties are clear. The third property follows because the
standard scalar product on V is G2-invariant and � is G2-invariant. The final claim
follows immediately from the definition of �. ut
Consider the action

G2 � V2
�
R
7
� �! V2

�
R
7
�

.g; v1; v2/ 7�! g � .v1; v2/ D .gv1; gv2/:

This is the restriction of the standard action of O.7/ on the Stiefel manifold V2
�
R
7
�
.

Definition 3.10.10 Let H � G2 denote the isotropy group of the point p D
.e1; e2/ 2 V2

�
R
7
�

under this action.
Since P is G2-equivariant and P.e1; e2/ D e3 we have He3 D e3. Therefore H is the
subgroup of G2 defined by

Hei D ei 8i D 1; 2; 3

and the action of H restricts to an action on the orthogonal complement

W D span.e4; e5; e6; e7/:

Lemma 3.10.11 The Lie group H is isomorphic to the subgroup of SO.4/, acting
on W and fixing the 2-forms

ˇ1 D !45 C !67;

ˇ2 D !46 � !57;
ˇ3 D !47 C !56:
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Proof This follows, because H � G2 and G2 fixes the 3-form �. ut
Proposition 3.10.12 (H Is Isomorphic to SU.2/) The Lie group H is isomorphic
to the subgroup of SO.4/, acting on W and fixing the complex structure

Je4 D e5;

Je6 D e7

and the complex volume form

� D .!4 C i!5/ ^ .!6 C i!7/:

Hence H is isomorphic to SU.2/.

Proof Since

� D ˇ2 C iˇ3;

an element g 2 SO.4/ fixes � if and only if it fixes both ˇ2 and ˇ3. For any vector
v 2 W we have

Jv D .vyˇ1/� ;

where 
 denotes the vector dual to the 1-form with respect to the standard scalar
product on W. It follows that g 2 SO.4/ fixes J if and only if it fixes ˇ1. ut

3.10.4 The Dimension of G2

Corollary 3.10.13 (Upper Bound on the Dimension of G2) The action of G2

on the Stiefel manifold V2
�
R
7
�

induces an injective immersion of G2=SU.2/ into
V2.R7/. In particular,

dim G2 � 14

with equality if and only if the action of G2 on V2
�
R
7
�

is transitive.

Proof The first claim follows from Corollary 3.8.10. We have

dim V2
�
R
7
� D 7 � 2 � 1

2
2 � 3 D 11;

according to the calculation in Example 3.9.1. Since dim SU.2/ D 3 and the map

f W G2=SU.2/ �! V2
�
R
7
�
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has injective differential, the second claim follows. The third claim follows since
in the case of equality the map f is a submersion, hence has open image, and the
image is closed, since G2 is compact (it can be shown that V2

�
R
7
�

is connected,
cf. Exercise 3.12.12). ut
Lemma 3.10.14 (Lower Bound on the Dimension of G2) The action of GL.7;R/
on �3V� induces an injective immersion

hW GL.7;R/=G2 �! �3V�

Œg� 7�! g � �:

Hence dim G2 � 14, with equality if and only if the map h has open image.

Proof The first claim again follows from Corollary 3.8.10. The second claim
follows from

dim GL.7;R/ D 7 � 7 D 49;

dim�3V� D
 
7

3

!

D 7 � 6 � 5
1 � 2 � 3 D 35:

ut
Collecting our results, we get the following theorem:

Theorem 3.10.15 (G2 Has Dimension 14) The Lie group G2 has dimension 14.
It acts transitively on the Stiefel manifold V2

�
R
7
�
. In particular, the standard

representation of G2 on V D R
7 is irreducible. Moreover, the GL.7;R/-orbit of

� in �3V� is open.

Remark 3.10.16 (G2 Is a Simple Lie Group) A calculation of the homotopy groups
of G2, using the fibration

shows that

�0.G2/ D 0; �1.G2/ D 0; �3.G2/ D Z:

Hence G2 is connected, simply connected and simple, cf. Corollary 2.6.6. The
details of this calculation can be found in [26].



178 3 Group Actions

3.11 �Godement’s Theorem on the Manifold Structure
of Quotient Spaces

In this section we want to prove Godement’s Theorem 3.7.10. We continue to follow
[130] and [139]. Let R be an equivalence relation on a manifold M. Suppose that
R is a closed embedded submanifold of M � M and pr1jRW R ! M a surjective
submersion. By symmetry of equivalence relations it follows that pr2jRW R ! M is
also a surjective submersion. We endow M=R with the quotient topology.

3.11.1 Preliminary Facts

We want to prove two preliminary facts: we first show that the quotient M=R is
Hausdorff.

Lemma 3.11.1 (The Quotient Space Is Hausdorff) The canonical projection
�W M ! M=R is open and M=R is Hausdorff.

Proof Suppose U � M is open. We claim that

��1.�.U// D pr1..M � U/\ R/:

This holds because x 2 ��1.�.U// if and only if there exists a y 2 U such that
.x; y/ 2 R. Since pr1jR is a submersion and .M � U/ \ R is open in R, the set
��1.�.U// is an open subset of M, hence �.U/ is an open subset of M=R by
the definition of the quotient topology. This proves that � is an open map. The
claim about the Hausdorff property follows from Lemma 3.7.2, because R is by
assumption a closed subset of M � M. ut
We denote the equivalence class of a point x 2 M under the equivalence relation R
by Œx�. We want to show that equivalence classes are embedded submanifolds of M.

Lemma 3.11.2 (Equivalence Classes Are Embedded Submanifolds of M) Every
equivalence of R is a closed embedded submanifold of M of dimension dim R �
dim M.

Proof We can write

Œx� D pr1
�
.pr2jR/

�1.fxg/� ;

because

.pr2jR/
�1.fxg/ D f.y; x/ 2 M � M j y � xg:

Since pr2jRW R ! M is a submersion, the subset K D .pr2jR/
�1.fxg/ is an embedded

submanifold of R of dimension dim R � dim M. However, K is contained in M � fxg
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on which pr1 is a diffeomorphism onto M. Therefore Œx� D pr1.K/ is an embedded
submanifold of M of dimension dim R � dim M. ut

3.11.2 The Slice Theorem

Our task is to show that the quotient space M=R has the structure of a smooth
manifold. To define charts for M=R we construct so-called slices for the equivalence
relation on open neighbourhoods for any point of M. In a second step we will then
construct slices for saturated open neighbourhoods, which are the main tools needed
to define the manifold structure on M=R.

Definition 3.11.3 Let U � M be an open neighbourhood. Then a slice for
the intersection of the equivalence classes of R with U is a closed embedded
submanifold S � U together with a surjective submersion qW U ! S such that
for every x 2 U the set Œx� \ U intersects S precisely in the single point q.x/.

Theorem 3.11.4 (Slice Theorem) Every point in M has an open neighbourhood
U � M with a slice .S; q/ for the intersection of the equivalence classes of R with
U.
To prove the theorem fix a 2 M and let S0 be any submanifold of M through a of
dimension dim M � dimŒa� and transverse to the submanifold Œa�. This means that

TaS ˚ TaŒa� D TaM:

We will show that we can find an open neighbourhood U of a in M such that S D
S0 \ U is a slice.

Lemma 3.11.5 Consider

Z D .pr2jR/
�1 �S0� :

Then Z is a submanifold of R through .a; a/ of dimension dim Z D dim M and
pr1jZW Z ! M is a local diffeomorphism around .a; a/.

Proof Since pr2jR is a submersion, it is clear that Z is a submanifold of R with

dim R � dim Z D dim M � dim S0 D dimŒa� D dim R � dim M:

Hence dim Z D dim M. We have

Z D .M � S0/\ R:

Since a 2 S0 and a � a, it follows that .a; a/ 2 Z.
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It remains to show that the differential of pr1jZ in .a; a/ is an isomorphism onto
TaM. We consider the following submanifolds of Z through .a; a/:

Œa� � fag and the diagonal�S0 � S0 � S0:

The tangent spaces to these submanifolds are given by

TaŒa�˚ 0 and �TaS0 :

These tangent spaces have zero intersection and their dimensions are dimŒa� and
dim S0 D dim M � dimŒa� D dim Z � dimŒa�. Hence

T.a;a/Z D .TaŒa�˚ 0/˚�TaS0 :

The image of T.a;a/Z under the differential of pr1jZ is

TaŒa�C TaS0 D TaM;

hence the differential of pr1jZ is surjective and thus an isomorphism. ut
Note that

pr2jZW Z �! S0

is a submersion. By Lemma 3.11.5 we can choose open neighbourhoods O and U0
of a 2 M such that

pr1jZ\.O�O/W Z \ .O � O/ �! U0

is a diffeomorphism. Let s denote the inverse of this diffeomorphism and

q D pr2jZ ı s:

Then q is a submersion of U0 onto an open subset of S0 \ O.
Our aim is to shrink U0 to U so that S D S0 \ U is a slice together with the

restriction of q. Note that

s.x/ D .x; q.x// 2 Z \ .O � O/ 8x 2 U0:

In particular, U0 � O.

Lemma 3.11.6 Let x 2 S0 \ U0. Then s.x/ D .x; x/ and q.x/ D x. In particular, if
y 2 U0 and q.y/ 2 U0, then q.q.y// D q.y/.

Proof We have �S0 � R, hence �S0 � Z. Thus

.x; x/ 2 �S0 \ .U0 � U0/ � Z \ .O � O/:
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Moreover,

pr1.x; x/ D x D pr1 ı s.x/;

since s is the inverse of pr1jZ\.O�O/. Since pr1jZ\.O�O/ is injective, this implies
s.x/ D .x; x/ and thus q.x/ D x.

Finally, if y 2 U0 and q.y/ 2 U0, then x D q.y/ 2 S0 \ U0 and the claim follows.
ut

Lemma 3.11.7 Let

U D U0 \ q�1.U0 \ O/;

S D S0 \ U:

Then U and S together with the restriction of q to U satisfy the requirements of
Theorem 3.11.4.

Proof Clearly U is an open neighbourhood of a in M, because a 2 U0 and a 2 S0,
hence q.a/ D a 2 U0 \ O by Lemma 3.11.6. We also have S � U. Suppose x 2 U.
Then x 2 U0 and q.x/ 2 U0 \ O. Thus q.q.x// D q.x/ 2 U0 \ O and therefore
q.x/ 2 U by definition of U. But also q.x/ 2 S0 by definition of q, hence q.x/ 2 S.
Therefore the restriction of q to U defines a submersion

qW U �! S:

If x 2 S, then x 2 S0 \ U0 and q.x/ D x by Lemma 3.11.6. This implies that q is
surjective.

Finally, suppose that x 2 U and y 2 Œx� \ S. Then

.x; y/ 2 ..M � S/\ R/\ .O � O/ � Z \ .O � O/;

because U0 � O. Thus

.x; y/ D s.x/ D .x; q.x//;

hence y D q.x/. This proves the final requirement for the slice .S; q/. ut
Definition 3.11.8 If V � M is a subset, then we denote the restriction of R to V by
RV . As a subset of M �M we have RV D .V �V/\R. We denote by �V W V ! V=RV

the canonical projection.

Corollary 3.11.9 (Slice for Open Subset Defines Local Manifold Structure on
Quotient) Every point in M has an open neighbourhood U � M such that
U=RU has the structure of a smooth manifold and �U W U ! U=RU is a surjective
submersion.
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Proof Let U � M be an open subset with a slice .S; q/. Then the map qW U ! S
induces a bijection

NqW U=RU �! S:

We give U=RU the structure of a smooth manifold such that Nq is a diffeomorphism.
Then �U D Nq�1 ı q is a surjective submersion. ut

3.11.3 Slices for Saturated Neighbourhoods and Proof of
Godement’s Theorem

Definition 3.11.10 A subset V � M is called saturated if

V D ��1.�.V//:

Equivalently, V is a union of equivalence classes. If U is an arbitrary subset of M,
then V D ��1.�.U// is saturated.
We want to show that every point of M is contained in a saturated open neighbour-
hood with a slice. This is the main fact that we need to prove that M=R has the
structure of a smooth manifold.

Corollary 3.11.11 (Slices for Saturated Open Subsets) Let U � M be an open
subset with a slice .S; q/ and V the saturated open subset V D ��1.�.U//. Then
there exists a surjective submersion q0W V ! S so that .S; q0/ is a slice for V.

Proof It is clear that U � V . Let jW U ,! V be the inclusion. We claim that there is
a well-defined map

NjW U=RU �! V=RV

and that this map is a bijection. The map is well-defined, because if x; y 2 U are
equivalent, then they are equivalent in V . The map is also injective. Finally, the map
is surjective, because if x 2 V , then there exists a y 2 U with .x; y/ 2 R.

Using the bijection NqW U=RU ! S from the proof of Corollary 3.11.9, we get a
well-defined map q0W V ! S:
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The map q0 has the following property: for x 2 V , there exists a y 2 U such that
Œx� D Œ y�, i.e.

Nj�1.Œx�/ D Œ y�:

Then

q0.x/ D Nq ı Nj�1.Œx�/
D q.y/:

This implies, since S � U,

Œx� \ S D Œx� \ U \ S

D Œ y� \ U \ S

D fq.y/g
D fq0.x/g:

Hence Œx� intersects S precisely in the point q0.x/.
Since U � V , the map q0 is surjective. It remains to show that q0 is a submersion.

We claim that there is a commutative diagram

where the arrows on the left, right and top are submersions. The arrow on the right
is a submersion, because .S; q/ is a slice and the arrows on the top and on the left
are submersions, because pr1jR; pr2jRW R ! M are submersions. To show that the
diagram is commutative, let .x; y/ 2 .M � U/ \ R. Then x � y and x 2 V . The
statement then is

q0.x/ D q.y/;

which we showed above. Lemma 3.7.5 then proves that q0 is a submersion. ut
Corollary 3.11.12 (Slice for Open Saturated Subset Defines Local Manifold
Structure on Quotient) Let V � M be an open subset with a slice .S; q0/. Then
V=RV has the structure of a smooth manifold so that �V W V ! V=RV is a surjective
submersion.
We can now finish the proof of Godement’s Theorem 3.7.10.
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Proof We have shown that there exists a covering of M by open saturated sets Vi

so that the open sets Wi D Vi=RVi � M=R have the structure of a smooth manifold
with

�iW Vi �! Wi

being surjective submersions. Suppose Vi \ Vj ¤ ;. By Lemma 3.11.13 below we
have to show that the manifold structures on Wi \Wj induced from Wi and Wj are the
same, i.e. the identity map between the open subsets Wi\Wj � Wi and Wi\Wj � Wj

is a diffeomorphism. Since Vi and Vj are saturated, we have

�.Vi \ Vj/ D �.Vi/\ �.Vj/ D Wi \ Wj:

The manifold structure induced from Vi and Vj on Vi \ Vj are the same. Since � is
for each of these structures a submersion from Vi \ Vj onto Wi \ Wj, it follows from
Corollary 3.7.7 that the induced manifold structures on Wi \ Wj are the same. It is
then also clear that

�W M �! M=R

is a surjective submersion. ut
We used (a slight generalization of) the following lemma, whose proof is clear:

Lemma 3.11.13 Let X be a topological space, W1;W2 � X open and

�1W W1 �! U1

�2W W2 �! U2

homeomorphisms onto open subsets U1;U2 of R
n. Define the unique smooth

structure on Wi such that �i becomes a diffeomorphism, for i D 1; 2. Then the
change of charts

�2 ı ��1
1 W�1.W1 \ W2/ �! �2.W1 \ W2/

is a diffeomorphism if and only if

IdW W1 	 W1 \ W2 �! W1 \ W2 � W2

is a diffeomorphism.
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3.12 Exercises for Chap. 3

3.12.1 Prove Proposition 3.2.2. Find an example of a left action

G � M �! M

.g; p/ 7�! g � p

so that

M � G �! M

. p; g/ 7�! p 
 g D g � p

does not define a right action of G on M.

3.12.2 Let M be a Hausdorff space with a continuous left action of a topological
group G. For a subset K � G consider the fixed point set

MK D f p 2 M j K � p D pg:

Prove the following:

1. If K D fkg contains only one element, then MK is a closed subset of M.
2. MK is a closed subset of M for arbitrary subsets K � G.

3.12.3 The Lie group G D SU.2/ � U.1/ acts on C
2 via

�
A; ei˛

� � v D ei˛Av;

where Av denotes multiplication of the matrix A 2 SU.2/ with the column vector
v 2 C

2. Let

p D
�
0

v0

�

2 C
2;

where v0 2 R, v0 ¤ 0.

1. Determine the isotropy subalgebra gp and the isotropy subgroup Gp. Which
standard Lie group is Gp isomorphic to?

2. Determine the orbit Op of p under the action of G. Which standard manifold is
Op diffeomorphic to?

In the electroweak gauge theory the Higgs field takes values in C
2. The vector p is

known as a vacuum vector. The isotropy group Gp is called the unbroken subgroup.
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3.12.4 We consider S3 with the Hopf action:

S3 � S1 �! S1

�
z; ei˛

� 7�! zei˛:

We identify

R
4 �! C

2

.x1; y1; x2; y2/ 7�! .x1 C iy1; x2 C iy2/:

Let s denote the stereographic projection of S3 through the point .0; 1/ 2 S3:

sW S3 n f.0; 1/g �! R
3

.x1; y2; x2; y2/ 7�! 1

1 � x2
.x1; y1; y2/:

Let �iW S1 ! S3, for i D 1; 2; 3, denote the orbit maps of the points

p1 D .1; 0/; p2 D 1p
2
.1; 1/; p3 D .0; 1/

on S3 under the Hopf action. Consider the images

�i D s ı �iW S1 �! R
3; i D 1; 2

�3 D s ı �3WR Š S1 n f1g �! R
3

of these curves under the stereographic projection. Determine and sketch �1, �2,
�3 (for �2 it may be helpful to rotate the coordinate system, so that �2 lies in a
coordinate plane.) Show that �1 and �2 are circles and �3 is a line. The circle �1
spans a flat disk in R

3. Show that �2 intersects this disk transversely in one point.
This means that �1; �2 and hence �1; �2 are linked.

Remark It is possible to show that all orbits of the Hopf action on S3 are linked
pairwise.

3.12.5 The aim of this exercise is to verify two propositions on fundamental vector
fields in a special case with a direct calculation. The standard representation of the
Lie group SU.2/ on C

2 induces a left-action

SU.2/ � C
2 �! C

2:
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We fix the vectors

�a D � i�a

2
2 su.2/; a D 1; 2; 3:

1. Determine the fundamental vector fields Q�a on C
2 and show by direct calculation

that

Œ Q�a; Q�b� D AŒ�a; �b� 8a; b 2 f1; 2; 3g;

without using Proposition 3.4.4.
2. Let

A D
�

r �Nr
r Nr

�

2 SU.2/; r D 1

2
� 1

2
i:

Calculate directly lA�. Q�1/ and compare with QZ, where Z D AdA�1, without using
Proposition 3.4.6.

3.12.6 (From [23]) Let G be a compact Lie group acting smoothly and freely on a
manifold M. Let �W M ! M=G be the canonical projection.

1. Prove that for every smooth curve � W I ! M=G, defined on an interval I, there
exists a smooth lift N� W I ! M with � ı N� D � .

2. Suppose that M is connected and at least one of the orbits of G on M is
connected (e.g. G is connected). Prove that �� maps the fundamental group of
M surjectively onto the fundamental group of M=G. In particular, if M is simply
connected, then M=G is simply connected.

3.12.7 Let G and H be topological groups and M and N topological spaces. Suppose
that G acts continuously on the right on M and H acts continuously on the right
on N. Let �W G ! H be a group homomorphism. Suppose that f W M ! N is �-
equivariant, i.e.

f . p � g/ D f . p/ � �.g/ 8p 2 M; g 2 G:

Prove the following:

1. If f is continuous, then f induces a continuous map f� W M=G ! N=H.
2. If � is an isomorphism and f a homeomorphism, then f� is a homeomorphism.

3.12.8 Use Exercise 3.12.7 to prove the following facts about lens spaces:

1. There exists a homeomorphism L. p; q/ ! L. p;�q/.
2. If qr � 1 mod p, then there exists a homeomorphism L. p; q/ ! L. p; r/.
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Remark According to a theorem of Reidemeister there exists a homeomorphism
between lens spaces L. p; q1/ and L. p; q2/ only in these two cases, their combina-
tion, or in the trivial case q1 D q2.

3.12.9

1. Show that CP1 can be covered by two charts diffeomorphic to C and that CP1 is
diffeomorphic to S2.

2. Prove that HP
1 is diffeomorphic to S4.

3.12.10 Consider complex projective space CP
n D S2nC1=S1. Show that there is a

transitive left action of SU.n C 1/ on CP
n with isotropy group isomorphic to U.n/.

Deduce that there is a diffeomorphism

CP
n Š SU.n C 1/=U.n/:

3.12.11 Prove that there is a diffeomorphism RP
3 Š SO.3/.

3.12.12 Show that for k < n the real and complex Stiefel manifolds can be written
as homogeneous spaces

Vk.R
n/ D SO.n/=SO.n � k/;

Vk.C
n/ D SU.n/=SU.n � k/:

Deduce that for k < n the real Stiefel manifolds Vk.R
n/ are connected.

3.12.13 Consider the half-plane

H D fz 2 C j Im z > 0g:

1. Show that the map

SL.2;R/ � H �! H

.A; z/ 7�! az C b

cz C d
;

for

A D
�

a b
c d

�

2 SL.2;R/

is well-defined and defines a left-action of SL.2;R/ on H.
2. Prove that this action is transitive and that the action defines a diffeomorphism

between H and SL.2;R/=SO.2/.
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3.12.14 (From [57]) According to Exercise 1.9.10 the group SO.2n/ has a sub-
group isomorphic to U.n/. We would like to identify the homogeneous space
SO.2n/=U.n/.

1. Let

J0 D
�
0 �In

In 0

�

2 Mat.2n � 2n;R/:

Show that the subgroup

H D fA 2 SO.2n/ j AJ0 D J0Ag

of SO.2n/ is isomorphic to U.n/ (compare with Exercise 1.9.10).
2. Consider the set

J C �
R
2n
� D ˚

J 2 SO.2n/ j J2 D �I2n
�
:

This is the set of almost complex structures on R
2n, compatible with the scalar

product and the orientation. The group SO.2n/ acts on J C �
R
2n
�

by conjugation

SO.2n/ � J C �
R
2n
� �! J C �

R
2n
�

.A; J/ 7�! AJA�1:

Prove that this action is transitive.
3. Conclude that SO.2n/=U.n/ Š J C �

R
2n
�
.

Remark It can be shown that SO.4/=U.2/ Š S2 and SO.6/=U.3/ Š CP
3.

3.12.15 Let V D R
7 with standard scalar product h� ; �i and let PW V �V ! V denote

the antisymmetric, bilinear G2-equivariant map from Definition 3.10.8.

1. Let x; y 2 V be arbitrary vectors. Show that there exists an element g 2 G2 such
that (at the same time)

gx D x1e1;

gy D y1e1 C y2e2;

with real coefficients x1; y1; y2.
2. Use the first part of this exercise to prove the identity

hP.x; y/;P.x; y/i D hx; xihy; yi � hx; yi2 8x; y 2 V:

3. Let

O D Re0 ˚ V Š R
8
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and define an R-bilinear multiplication � on O by

e0 � e0 D e0;

e0 � x D x D x � e0;

x � y D �hx; yie0 C P.x; y/;

for all x; y 2 V . Let .� ; �/ denote the scalar product on O so that e0; e1; e2; : : : ; e7
are orthonormal, with associated norm jj � jj. Prove that

jjz � wjj2 D jjzjj2jjwjj2 8z;w 2 O:

Hence O is a real normed division algebra of dimension 8, known as the
octonions.

4. Prove that

.gx/ � .gy/ D g.x � y/ 8g 2 G2; x; y 2 V:

5. For

z D x0e0 C x 2 O

with x0 2 R and x 2 V define the conjugate

Nz D x0e0 � x:

Show that

z � Nz D Nz � z D jjzjj2e0:

This implies that every non-zero octonion has a multiplicative inverse.
6. Calculate .e1�e2/�e4 and e1�.e2�e4/ and show that the octonions are not associative.

3.12.16 (From [27]) We continue with the notation from Exercise 3.12.15.

1. Use the first part of Exercise 3.12.15 to prove the identity

P.x;P.x; y// D �hx; xiy C hx; yix 8x; y 2 V:

2. Let x 2 V be an arbitrary vector of norm 1 and Vx the orthogonal complement
of Rx in V . Then Vx is a real 6-dimensional vector subspace of V . Prove that
multiplication of octonions defines a linear map

JxW Vx �! Vx

v 7�! x � v

with J2x D �Id, i.e. a complex structure on Vx.
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3. Let S6 be the unit sphere in V . Show that the restriction of the action of SO.7/
on S6 to the subgroup G2 is transitive with isotropy group isomorphic to SU.3/.
Conclude that S6 can be realized as a homogeneous space

S6 Š G2=SU.3/:

Remark Since the rank of the Lie group G2 is 2, it does not contain Lie subgroups
isomorphic to SU.n/ for n � 4.

3.12.17 (From [73]) We continue with the notation from Exercise 3.12.15. Our aim
is to show that G2 contains a certain Lie subgroup isomorphic to SO.4/.

1. Consider on ImH ˚ H Š R
7 the representation of Sp.1/ � Sp.1/ given by

.q1; q2/ � .a; b/ D .Nq1aq1; q1b Nq2/:

Show that this representation defines an embedding of

SO.4/ Š .Sp.1/ � Sp.1//=Z2

into SO.7/ (compare with Exercises 1.9.20 and 1.9.21).
2. Identify V with ImH ˚ H via the embeddings

i 7! e1; j 7! e2; k 7! e3 on ImH

and

1 7! e4; i 7! e5; j 7! e6; k 7! e7 on H:

Prove that the embedding SO.4/ ,! SO.7/ D SO.V/ above has image in G2 (for
example, by showing that the Lie algebra sp.1/˚ sp.1/ maps to the Lie algebra
g2 of G2).

3.12.18 (From [73]) We continue with the notation from Exercises 3.12.15
and 3.12.17. A 3-dimensional oriented real vector subspace U � V is called
associative if the restriction �jU is positive, i.e. a volume form, where � denotes
the 3-form from the definition of the Lie group G2. Let G.�/ denote the set of all
associative subspaces of V .

1. Show that the action of G2 on V induces an action of G2 on G.�/.
2. Let U � V be an associative subspace and x; y 2 U orthonormal. Prove that the

vectors x; y; x � y span U. Show that the action of G2 on G.�/ is transitive.
3. Show that the isotropy group H of U0 D span.e1; e2; e3/ 2 G.�/ contains the

subgroup SO.4/ � G2 from Exercise 3.12.17.
4. Let h 2 H. Show that there exists an element k 2 SO.4/ such that

g D kh D .Id; g2/ 2 SO.ImH/ � SO.H/
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with g2.1/ D 1. Show that for q 2 ImH we can write with multiplication of
octonions

.0; q/ D .q; 0/ � .0; 1/ 2 ImH ˚ H D V:

Conclude that g2 D Id, hence H D SO.4/ and

G.�/ Š G2=SO.4/:



Chapter 4
Fibre Bundles

What is gauge theory? It is not an overstatement to say that gauge theory is
ultimately the theory of principal bundles and associated vector bundles. Besides
full gauge theories, it also proves beneficial in certain situations to study the theory
only involving principal bundles, sometimes called Yang–Mills theory. In physics,
an example of a full gauge theory would be quantum chromodynamics (QCD), the
theory of quarks, gluons and their interactions, while pure Yang–Mills theory would
be a theory only of gluons, also called gluodynamics. Even such a simplified theory
is very interesting – the Clay Millennium Prize Problem [37] on the mass gap, for
instance, is a problem concerning the spectrum of glueballs in pure quantum Yang–
Mills theory.

With the background knowledge of Lie groups, Lie algebras, representations and
group actions, we will now study fibre bundles in general and more specifically
principal bundles, vector bundles and associated bundles, which together form the
core or the “stage” of gauge theories.

Fibre bundles can be thought of as twisted, non-trivial products between a base
manifold and a fibre manifold. Principal and vector bundles are fibre bundles whose
fibres are, respectively, Lie groups and vector spaces, so that the bundle admits
a special type of bundle atlas, preserving some of the additional structure of the
fibres.

The fundamental geometric object in a gauge theory is a principal bundle
over spacetime with structure group given by the gauge group. The fibres of a
principal bundle are sometimes thought of as an internal space at every space-
time point, not belonging to spacetime itself. The gauge group acts at every
spacetime point on the internal space in a simply transitive way. Connections
on principal bundles, that we discuss in Chap. 5, correspond to gauge fields,
whose particle excitations in the associated quantum field theory are the gauge
bosons that transmit interactions. Matter fields in the Standard Model, like quarks
and leptons, or scalar fields, like the Higgs field, correspond to sections of
vector bundles associated to the principal bundle (and twisted by spinor bun-
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dles in the case of fermions). The ultimate reason for the interaction between
matter fields and gauge fields is that both are related to the same principal
bundle.

Fibre bundles are indispensable in gauge theory and physics in the situation
where spacetime, the base manifold, has a non-trivial topology. This happens,
for example, in string theory where spacetime is typically assumed to be a
product R4 � K of Minkowski spacetime with a compact Riemannian manifold
K. It also happens if we compactify (Euclidean) spacetime R

4 to the 4-sphere
S4. In these situations, fields on spacetime often cannot be described simply by
a map to a fixed vector space, but rather as sections of a non-trivial vector
bundle.

Even in the case where the fibre bundles are trivial, for example, in the case
of principal bundles and vector bundles over contractible manifolds like R

n, there
is still a small, but important difference between a trivial fibre bundle and the
choice of an actual trivialization. We will see that this is similar to the difference
in special relativity between Minkowski spacetime and the choice of an inertial
system.

Fibre bundles are not only important in physics, but for a variety of rea-
sons also in differential geometry and differential topology: many non-trivial
manifolds can be constructed as (total spaces of) fibre bundles and numerous
structures on manifolds, such as vector fields, differential forms and metrics,
are defined using bundles. Mathematically, we are especially interested in the
construction of non-trivial fibre bundles (trivial bundles are just globally prod-
ucts). We discuss the following methods that (potentially) yield non-trivial bun-
dles:

• Mapping tori (Example 4.1.5) and the clutching construction (Sect. 4.6) yield
fibre bundles over the circle S1 and higher-dimensional spheres Sn.

• Principal group actions define principal bundles (Sect. 4.2.2; specific exam-
ples are the famous Hopf fibrations and principal bundles over homogeneous
spaces).

• Actions of the structure group G of a principal bundle P ! M on another
manifold F (the general fibre) yield associated fibre bundles (Sect. 4.7) over M.
In particular, all vector bundles can be obtained in this way.

• The tangent bundle TM and frame bundle Fr.M/ of smooth manifolds M are
specific examples of vector and principal bundles.

• In general, every fibre bundle can be constructed using a cocycle of transition
functions (Exercise 4.8.9).

This chapter, like the previous one, contains many definitions and concepts. I
hope that there are sufficiently many examples to illustrate the definitions and
balance the exposition. References for this chapter for fibre bundles in general are
[14, 84, 133] and [136] as well as [5, 25, 39, 74] and [78] for vector bundles in
particular.



4.1 General Fibre Bundles 195

4.1 General Fibre Bundles

4.1.1 Definition of Fibre Bundles

Before we begin with the definition of fibre bundles, we consider two very general
notions: suppose �W E ! M is a surjective differentiable map between smooth
manifolds (occasionally we will consider the following notions even in the case
of a surjective map �W E ! M between sets).

Definition 4.1.1

1. Let x 2 M be an arbitrary point. The (non-empty) subset

Ex D ��1.x/ D ��1 .fxg/ � E

is called the fibre of � over x.
2. For a subset U � M we set

EU D ��1.U/ � E:

We can think of EU as the part of E “above” U. It is clear that EU is the union of
all fibres Ex, where x 2 U.

3. A differentiable map sW M ! E such that

� ı s D IdM

is called a (global) section of � . A differentiable map sW U ! E, defined on
some open subset U � M, satisfying

� ı s D IdU

is called a local section.

Note that a differentiable map sW U ! E is a (local) section of �W E ! U if and only
if s.x/ 2 Ex for all x 2 U.

For a general surjective map, the fibres Ex and Ey over points x ¤ y 2 M
can be very complicated and different, in particular, they may not be embedded
submanifolds of E and even when they are, they may not be diffeomorphic. The
simplest example where these properties do hold is a product E D M � F with �
given by the projection onto the first factor.

Fibre bundles are an important generalization of products E D M � F and can
be understood as twisted products. The fibres of a fibre bundle are still embedded
submanifolds and are all diffeomorphic. However, the fibration in general is only
locally trivial, i.e. locally a product, and not globally. We shall see later in



196 4 Fibre Bundles

Corollary 4.2.9 and Corollary 4.5.12 that if the topology of M is trivial (i.e. M is
contractible), then certain types of fibre bundles over M (like principal and vector
bundles) are always globally trivial. If M has a non-trivial topology (for example, if
M is a sphere Sn), this may not be the case.

Consider, for instance, the Hopf action of S1 D U.1/ on S3, introduced in
Definition 3.3.1. This is a free action, i.e. the orbit of every point in S3 is
an embedded S1 and the quotient space S3=U.1/ of this action is the smooth
manifold CP

1 Š S2.
However, it is clear (e.g. by considering fundamental groups) that S3 cannot

be diffeomorphic to S2 � S1. We will see in Example 4.2.14 that S3 really is
the total space of a non-trivial S1-bundle over S2. We denote this bundle by

S1 �! S3
��! S2

or

S1 S3

S2

This is the celebrated Hopf fibration. The total space S3 is simply connected
even though the fibres S1 are not. This is possible, because the fibre bundle is
globally non-trivial.

General fibre bundles are defined as follows.

Definition 4.1.2 Let E;F;M be manifolds and�W E ! M a surjective differentiable
map. Then .E; �;MI F/ is called a fibre bundle (or locally trivial fibration or
locally trivial bundle) if the following holds: For every x 2 M there exists an open
neighbourhood U � M around x such that � restricted to EU can be trivialized,
i.e. there exists a diffeomorphism

�UW EU �! U � F

such that

pr1 ı �U D �;
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hence the following diagram commutes:

EU U F

U

U

pr1

We also write

F E

M

or

F �! E
��! M

to denote a fibre bundle. We call

• E the total space
• M the base manifold
• F the general fibre
• � the projection
• .U; �U/ a local trivialization or bundle chart.

See Fig. 4.1.

Remark 4.1.3 The classic references [133] and [81] use the term fibre bundle in a
more restrictive sense; see Remark 4.1.15.
It is easy to see, using a local trivialization .U; �U/, that the fibre

Ex D ��1.x/

Fig. 4.1 Fibre bundle

x

Ex
F

E

M

EU

( )
U
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is an embedded submanifold of the total space E for every x 2 M and the map �Ux

defined by

�Ux D pr2 ı �UjEx W Ex �! F

is a diffeomorphism between the fibre over x 2 U and the general fibre.
Note that in a local trivialization the map

�UW EU �! U � F

is a diffeomorphism and

pr1W U � F �! U

is a submersion (its differential is everywhere surjective). This implies that the
projection �W E ! M of a fibre bundle is always a submersion. The Regular Value
Theorem A.1.32 then shows again that the fibres Ex D ��1.x/ are embedded
submanifolds of E.

Example 4.1.4 (Trivial Bundle) Let M and F be arbitrary smooth manifolds and
E D M � F. Then � D pr1 defines a fibre bundle

F M F

M

pr1

This bundle is called trivial.

Example 4.1.5 (Mapping Torus) We discuss an example where the idea of a fibre
bundle as a “twisted product” becomes very apparent. Let F be a manifold and
�W F ! F a diffeomorphism. We construct a fibre bundle E� as follows: Take

F � Œ0; 1�

modulo the equivalence relation defined by

.x; 0/ � .�.x/; 1/:

The quotient E� D .F � Œ0; 1�/ = � is a fibre bundle over the circle S1 with general
fibre F:

F E

S1
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The bundle E� is called the mapping torus with general fibre F and monodromy �.
See Remark 4.6.4 for more details. We can think of the bundle E� as being obtained
by gluing the two ends of F � Œ0; 1� together using the diffeomorphism �.

If � is the identity, then the mapping torus is a trivial bundle, but if � is not the
identity, the mapping torus may be non-trivial. For example, for the fibre F D S1 we
can do the construction with � the identity of S1, in which case E� is diffeomorphic
to the torus T2, and with � the reflection z 7! Nz on S1 � C, in which case E� is
diffeomorphic to the Klein bottle. Since the Klein bottle is not diffeomorphic to T2,
the second example is a non-trivial S1-bundle over S1.

The clutching construction that we discuss in Sect. 4.6 is a generalization of the
mapping torus construction which yields fibre bundles

F Ef

Sn

over spheres of arbitrary dimension.

4.1.2 Bundle Maps

Definition 4.1.6 Let F ! E
�! M and F0 ! E0 � 0

! M be fibre bundles over the
manifold M. A bundle map or bundle morphism of these bundles is a smooth map
HW E ! E0 such that

� 0 ı H D �;

i.e. such that the following diagram commutes:

E E

M

H

A bundle isomorphism is a bundle map which is a diffeomorphism. If such an
isomorphism exists, we write E Š E0.

Remark 4.1.7 Note that a morphism HW E ! E0 maps a point in the fibre of E over
x 2 M to a point in the fibre of E0 over the same point x. A bundle map therefore
covers the identity of M. We could consider more general bundle maps between
bundles over different manifolds M and N that cover a given smooth map f W M ! N.
It is clear that a bundle isomorphism induces a diffeomorphism between the fibres
of E and E0 over any x 2 M.
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Definition 4.1.8 Fibre bundles isomorphic to a trivial bundle as in Example 4.1.4
are also called trivial.
It is more difficult to construct non-trivial fibre bundles. The mapping tori defined in
Example 4.1.5 are for many choices of .F; �/ non-trivial bundles. We will discuss
other examples of (potentially) non-trivial bundles in Sect. 4.2.2 and Sect. 4.6.

Remark 4.1.9 Let F ! E
�! M be a fibre bundle. The existence of a local

trivialization over U � M then means that the restricted bundle

�jEU W EU �! U

is isomorphic to the trivial bundle

pr1W U � F �! U:

This in hindsight justifies why fibre bundles are called locally trivial.
Isomorphic bundles have diffeomorphic general fibres. The converse is not true
in general: There may exist non-isomorphic bundles whose general fibres are
diffeomorphic. In particular, as we shall see later in detail, there exist bundles not
(globally) isomorphic to a trivial bundle.

We can characterize trivial bundles as follows:

Proposition 4.1.10 (Trivial Bundles and Projections onto the General Fibre)
Let F ! E

�! M be a fibre bundle. Then the bundle is isomorphic to a trivial
bundle if and only if there exists a smooth map � W E ! F such that the restrictions

� jEx W Ex �! F

are diffeomorphisms for all x 2 M.

Proof If the bundle is trivial

F E M F

M

pr1

we can set � D pr2.
Conversely, assume that a map � W E ! F exists which restricts to a diffeomor-

phism on each fibre. Consider the map

HW E �! M � F

p 7�! .�. p/; �. p//:
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Then H is a smooth with

pr1 ı H D �:

The map H is bijective, because it maps Ex bijectively onto F.
We have to show that H is a diffeomorphism. We claim that the differential of H

is an isomorphism for every point p 2 E. Since the dimensions of E and M�F agree
(this follows from the existence of local trivializations for E), it suffices to show that
the differential is surjective for every p 2 E. The details are left as an exercise. ut

4.1.3 Bundle Atlases

Definition 4.1.11 A bundle atlas for a fibre bundle

F E

M

is an open covering fUigi2I of M together with bundle charts

�iW EUi �! Ui � F:

Definition 4.1.12 Let f.Ui; �i/gi2I be a bundle atlas for a fibre bundle F ! E
�! M.

If Ui \ Uj ¤ ;, we define the transition functions by

�j ı ��1
i j.Ui\Uj/�FW .Ui \ Uj/ � F �! .Ui \ Uj/ � F:

The transition functions are diffeomorphisms. These maps have a special structure,
because they preserve fibres: For every x 2 Ui \ Uj we get a diffeomorphism

�jx ı ��1
ix W F �! F:

The maps

�jiW Ui \ Uj �! Diff.F/

x 7�! �jx ı ��1
ix

into the group of diffeomorphisms of F are also called transition functions. See
Fig. 4.2.
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x

Ex

EUi EUj

(
)(

)
Ui

Uj

E

M

F F

Fig. 4.2 Transition functions

Lemma 4.1.13 (Cocycle Conditions) The transition functions f�jigi;j2I satisfy the
following equations:

�ii.x/ D IdF for x 2 Ui;

�ij.x/ ı �ji.x/ D IdF for x 2 Ui \ Uj;

�ik.x/ ı �kj.x/ ı �ji.x/ D IdF for x 2 Ui \ Uj \ Uk:

The third equation is called the cocycle condition.

Proof Follows immediately from the definitions. ut
Remark 4.1.14 Exercise 4.8.9 shows that a bundle can be (re-)constructed from
its transition functions using a suitable quotient space. The three properties of
Lemma 4.1.13 ensure the existence of a certain equivalence relation, used in the
construction of this quotient space.
A bundle atlas is very similar to an atlas of charts for a manifold. One difference is
that in the case of charts for a manifold we demand that the images of the charts are
open sets in a Euclidean space R

n. In the case of charts for a bundle the images are
of the form U � F. In both cases the transition functions are smooth. In the case of
a bundle atlas, the transition functions have an additional special structure, because
they preserve fibres.
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Table 4.1 Comparison between notions for manifolds and fibre bundles

Manifold Fibre bundle

Coordinate chart Bundle chart

Coordinate transformation Transition functions

Atlas Bundle atlas

Trivial manifold with only one chart: Rn Trivial bundle with only one bundle chart:
M � F

Non-trivial manifold needs at least two
charts (like Sn)

Non-trivial bundle needs at least two
bundle charts (like a non-trivial bundle
over Sn)

We can compare the definitions of general manifolds and general fibre bundles
as in Table 4.1.

Remark 4.1.15 Some references, such as [133] and [81], use the term fibre bundle
more restrictively. If the topological definition in these books is transferred to a
smooth setting, the definition amounts to assuming that the transition functions of a
bundle atlas are smooth maps to a Lie group G, acting smoothly as a transformation
group on the fibre F, instead of maps to the full diffeomorphism group Diff.F/ of
the fibre:

�jiW Ui \ Uj �! G

x 7�! �jx ı ��1
ix :

Equivalently, a fibre bundle is with this definition always an associated bundle in the
sense of Remark 4.7.8.

4.1.4 �Pullback Bundle

We want to show that we can pull back a bundle via a map between the base
manifolds. Suppose

F E

M

M

is a fibre bundle.
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Lemma 4.1.16 (Restriction of Bundle over Submanifold in the Base) If W � M
is an embedded submanifold, then the restriction

F EW

W

M

is a fibre bundle.

Proof Let f.Ui; �i/gi2I be a bundle atlas for the fibre bundle F ! E ! M with
bundle charts

�iW EUi �! Ui � F:

Then the sets Vi D Ui \ W form an open covering of W and

 i D �ijEVi
W EVi �! Vi � F

are bundle charts for the restriction of E over W. ut
Suppose f W N ! M is a differentiable map from some manifold N to M. We set

f �E D f.x; e/ 2 N � E j f .x/ D �M.e/g

and

�N W f �E �! N

.x; e/ 7�! x:

Theorem 4.1.17 (Pullback Bundles) The map �N with

F f E

N

N

is a fibre bundle over N, called the pullback of E under f .

Proof We have an obvious fibre bundle

F N E

N M

N M IdN M
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The graph

	f D f.x; f .x// 2 N � M j x 2 Ng

is an embedded submanifold of N � M. Therefore the restriction

F

f

is a fibre bundle by Lemma 4.1.16. Note that

.x; e/ 2 ��1
N�M.	f / , �.e/ D f .x/:

Hence as a set

��1
N�M.	f / D f �E;

which defines a smooth structure on f �E, and we have a fibre bundle

F f E

f

There exists a diffeomorphism

� W	f �! N

.x; f .x// 7�! x:

We can define a bundle over N using the projection � ı �N�M :

F f E

f N

But

� ı �N�M.x; e/ D �.x; �.e// D x D �N.x; e/;

hence

� ı �N�M D �N :
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This shows that

F f E

N

N

is a fibre bundle. ut
Remark 4.1.18 Note that the pullback bundle f �E has the same general fibre F as
the bundle E. The fibre of f �E over a point x 2 N is canonically diffeomorphic to
the fibre of E over f .x/ 2 M via the map

�
f �E

�
x �! Ef .x/

.x; e/ 7�! e:

Remark 4.1.19 It is not difficult to show that the pull-back of a trivial bundle is
always trivial. The pull-back of a non-trivial bundle may be non-trivial or trivial,
depending on the situation; see Exercise 4.8.2.

4.1.5 Sections of Bundles

We want to study sections of fibre bundles. This is particularly simple in the case of
trivial bundles.

Definition 4.1.20 Let

F E

M

be a fibre bundle. We denote the set of smooth global sections sW M ! E by 	 .E/
and the set of smooth local sections sW U ! E, for U � M open, by 	 .U;E/.
It is easy to see that for a trivial bundle E there is a 1-to-1 correspondence between
sections of E and maps from the base manifold M to the general fibre F. This
implies:

Corollary 4.1.21 (Existence of (Local) Sections)

1. Every trivial fibre bundle has smooth global sections (for example, under the
above correspondence, we could take constant maps from the base M to the fibre
F).

2. Every fibre bundle has smooth local sections, since every fibre bundle is locally
trivial.
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Note that non-trivial fibre bundles can, but do not need to have smooth global
sections (for example, vector bundles, to be discussed later, always have global
sections, but principal bundles in general do not). In particular, for a non-trivial
bundle, a map from the base manifold to the general fibre usually does not define a
section.

4.2 Principal Fibre Bundles

Principal fibre bundles are a combination of the concepts of fibre bundles and
group actions: they are fibre bundles which also have a Lie group action so that
both structures are compatible in a certain sense. Principal bundles together with
so-called connections play an important role in gauge theory. Generally speaking,
principal bundles are the primary place where Lie groups appear in gauge theories
(Lie groups also appear as global symmetry groups, like the flavour or chiral
symmetry in QCD; see Sect. 9.1).

4.2.1 Definition of Principal Bundles

We consider again the Hopf action of S1 on S3, introduced in Definition 3.3.1,
with quotient space equal to CP

1 Š S2. If we accept for the moment that S3

is the total space of an S1-bundle over S2,

S1 S3

S2

(we will prove this in Example 4.2.14), then we can say the following: there
is an action of the Lie group S1 on the total space S3 of the bundle which
preserves the fibres and is simply transitive on them. In addition we will show
that there is a special type of bundle atlas for the Hopf fibration which is
compatible with this S1-action.

This leads us to the following definition:

Definition 4.2.1 Let

G P

M



208 4 Fibre Bundles

be a fibre bundle with general fibre a Lie group G and a smooth action P � G ! P
on the right. Then P is called a principal G-bundle if:

1. The action of G preserves the fibres of � and is simply transitive on them,
i.e. the action restricts to

Px � G �! Px

and the orbit map

G �! Px

g 7�! p � g

is a bijection, for all x 2 M; p 2 Px.
2. There exists a bundle atlas of G-equivariant bundle charts �iW PUi ! Ui � G,

satisfying

�i. p � g/ D �i. p/ � g 8p 2 PUi ; g 2 G;

where on the right-hand side G acts on .x; a/ 2 Ui � G via

.x; a/ � g D .x; ag/:

We also call such an atlas a principal bundle atlas for P and the charts in a
principal bundle atlas principal bundle charts.

The group G is called the structure group of the principal bundle P.

There are two features that distinguish a principal bundle P ! M from a
standard fibre bundle whose general fibre is a Lie group G:

1. there exists a right G-action on P, simply transitive on each fibre Px, for
x 2 M;

2. the bundle P has a principal bundle atlas.

If P ! M is a principal G-bundle and g 2 G, then we denote as before by rg the
right translation

rgW P �! P

p 7�! p � g:
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The fibre Px is a submanifold of the total space P for every x 2 M and the orbit map

G �! Px

g 7�! p � g

is an embedding for all p 2 Px, according to Corollary 3.8.10, because the stabilizer
Gp D feg is trivial.

Example 4.2.2 The trivial bundle

G M G

M

pr1

has the canonical structure of a principal G-bundle with G-action

.M � G/ � G �! M � G

.x; h; g/ 7�! .x; hg/

and the principal bundle atlas consisting of only one bundle chart

IdW M � G �! M � G:

Example 4.2.3 If G ! P
�! M is a principal bundle and f W N ! M a smooth map,

then the pullback f �P has the canonical structure of a principal G-bundle over N
(this is Exercise 4.8.4).
Transition functions for a principal bundle atlas have a special form:

Proposition 4.2.4 (Transition Functions of Principal Bundles) Let P ! M be
a principal G-bundle and f.Ui; �i/gi2I a principal bundle atlas for P. Then the
transition functions take values in the subgroup G of Diff.G/,

�jiW Ui \ Uj �! G � Diff.G/

x 7�! �jx ı ��1
ix

where an element g 2 G acts as a diffeomorphism on G through left multiplication,

g.h/ D g � h:

Proof For x 2 Ui \ Uj we have a diffeomorphism

�jx ı ��1
ix W G �! G:
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We set

g D �jx ı ��1
ix .e/:

Then by equivariance of the bundle charts

�jx ı ��1
ix .h/ D g � h:

This implies the claim. ut
The following criterion sometimes simplifies the task of showing that a group action
on a manifold P defines a principal bundle (we follow [14, Theorem 2.4]).

Theorem 4.2.5 (Principal Bundles Defined via Local Sections) Let G be a
Lie group and �W P ! M a smooth surjective map between manifolds with a
smooth action P � G ! P on the right. Then P is a principal G-bundle if and
only if the following holds:

1. The action of G preserves the fibres of � and is simply transitive on them.
2. There exists an open covering fUigi2I of M together with local sections

siW Ui ! P of the map � .

Remark 4.2.6 Recall that we defined in Sect. 4.1.1 the notion of a section for any
smooth surjective map, not only for fibre bundles.

Proof Suppose that �W P ! M is a principal bundle. Choose a principal bundle atlas
f.Ui; �i/g for P with

�iW PUi �! Ui � G:

Then the following maps are local sections

siW Ui �! P

x 7�! ��1
i .x; e/;

where e 2 G is the neutral element.
Conversely, suppose that an open covering fUigi2I with sections siW Ui ! P is

given. According to the following lemma these sections define charts in a principal
bundle atlas for P. ut
Lemma 4.2.7 Let G be a Lie group and �W P ! M a smooth surjective map
between manifolds with a smooth action P � G ! P on the right. Suppose that the
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action of G preserves the fibres of � and is simply transitive on them. Let sW U ! P
be a local section for � . Then

tW U � G �! PU

.x; g/ 7�! s.x/ � g

is a G-equivariant diffeomorphism.

Proof Let sW U ! P be a local section of the surjective map �W P ! M. We have to
show that

tW U � G �! PU

.x; g/ 7�! s.x/ � g

is a G-equivariant diffeomorphism. It is clear that t is smooth, because the local
section s is smooth and the G-action on P is smooth. The map t is also G-equivariant
by the definition of group actions and it is bijective: the reason is that the map

t.x; �/W G �! Px

g 7�! s.x/ � g

is bijective for every fixed x 2 U, since the G-action on P is simply transitive on
the fibres. The set PU D ��1.U/ is an open subset of P. Since t is smooth and
surjective, Sard’s Theorem A.1.27 implies that

dim P D dim PU � dim M C dim G:

It remains to show that the differential of t is injective in each point .x; g/ 2 U � G.
Then t is a diffeomorphism.

The differential

D.x;g/tW TxM � TgG �! Ts.x/�gP

is given according to Proposition 3.5.4 by

D.x;g/t.X;Y/ D Dx.rg ı s/.X/C A
G.Y/s.x/�g:

We set

s0 D rg ı s:
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The map

TgG �! Ts0.x/Px

Y 7�! A
G.Y/s0.x/

is an isomorphism, because the action of G is simply transitive on the fibre Px,
cf. Corollary 3.2.12. We consider the map

TxM �! Ts0.x/P

X 7�! Dxs0.X/:

Note that s0 is also a local section of P over U, since

� ı s0 D IdU:

The chain rule shows that

Ds0.x/� ı Dxs0 D IdTxM:

This implies that Dxs0 is injective and the image of Dxs0 intersected with Ts0.x/Px �
ker Ds0.x/� is zero. We conclude that D.x;g/t is injective. ut
A proof of the following theorem can be found in [81, Chap. 4, Corollary 10.3].

Theorem 4.2.8 (Principal Bundles and Homotopy Equivalences) Let f W M ! N
be a smooth homotopy equivalence between manifolds and G a Lie group. Then the
pullback f � is a bijection between isomorphism classes of principal G-bundles over
N and principal G-bundles over M.
In particular we get:

Corollary 4.2.9 (Principal Bundles over Contractible Manifolds Are Trivial) If
M is a contractible manifold and G a Lie group, then every principal G-bundle over
M is trivial. This holds, in particular, if M D R

n for some n.

4.2.2 �Principal Bundles Defined by Principal Group Actions

Recall from Definition 3.7.24 that a smooth right action of a Lie group G on a
manifold P is called principal if the action is free and the map

� W P � G �! P � P

. p; g/ 7�! . p; pg/

is closed. We want to show as an application of Theorem 4.2.5 that principal Lie
group actions define principal bundles.
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Theorem 4.2.10 (Principal Lie Group Actions Define Principal Bundles) Let˚
be a principal right action of a Lie group G on a manifold P. Then P=G is a smooth
manifold and

G P

P G

is a principal bundle with structure group G.

Proof According to Theorem 3.7.25 the topological space P=G has the unique
structure of a smooth manifold so that �W P ! P=G is a submersion. In particular,
by Lemma 3.7.4, the projection � admits local sections

siW Ui �! P:

The claim then follows from Theorem 4.2.5. ut
Corollary 4.2.11 (Free Actions by Compact Lie Groups Define Principal Bun-
dles) Let G be a compact Lie group acting freely on a smooth manifold P. Then
P=G is a smooth manifold and

G P

P G

is a principal G-bundle.

Proof This follows from Corollary 3.7.29. ut
We can also prove the following converse to Theorem 4.2.10.

Theorem 4.2.12 (Principal Bundles Define Principal Actions) Let

G P

M

be a principal G-bundle. Then the right action of G on P is principal.

Proof The G-action on P is free by the definition of principal bundles. If G is
compact, then the claim follows from Corollary 3.7.29. In the general case, consider
the map

� W P � G �! P � P

. p; g/ 7�! . p; p � g/:

We have to show that � is closed.
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Let A � P�G be a closed subset and .. pi; qi//i2N 2 �.A/ a sequence converging
to . p; q/ 2 P � P. There exist uniquely determined gi 2 G such that qi D pi � gi,
where . pi; gi/ 2 A and

�. pi; gi/ D . pi; qi/:

We want to show that the sequence .gi/i2N converges in G.
Let �. p/ D x and U � M be an open neighbourhood of x with a principal bundle

chart

�W PU �! U � G:

There exists an integer N such that for all i � N the pi are contained in PU. Then we
can write

�. pi/ D .xi; hi/;

�.qi/ D .xi; higi/;

�. p/ D .x; h/;

with certain xi 2 U and hi; h 2 G. Since qi ! q and xi ! x, it follows that

�.q/ D �
x; h0�

for some h0 2 G. Since hi ! h and higi ! h0, it follows that the sequence

gi D h�1
i .higi/

converges in G to

g D h�1h0:

The set A is closed, hence . p; g/ 2 A. We have q D p � g and we conclude that . p; q/
is in �.A/. ut
Corollary 4.2.13 Principal bundles with structure group G correspond precisely to
principal G-actions.

Example 4.2.14 (Hopf Fibration) Let

S2nC1 D
(

.w0; : : : ;wn/ 2 C
nC1
ˇ
ˇ
ˇ

nX

iD0
jwij2 D 1

)
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be a sphere of odd dimension. Consider the Lie group S1 D U.1/ � C (unit circle).
It acts on the sphere S2nC1 via

S2nC1 � S1 �! S2nC1

.w; / 7�! w:

This is the Hopf action from Definition 3.3.1. The quotient S2nC1=U.1/ of this action
can be identified with the complex projective space CP

n. Corollary 4.2.11 implies
that

S1 S 2n+1

CP
n

is a principal S1-bundle, called the Hopf fibration or Hopf bundle.
To give an alternative proof of this statement, we can also apply Theorem 4.2.5

directly (we follow [14, Example 2.7]). We have to find an open covering of CPn

together with local sections (the first condition in the theorem is clearly satisfied,
because the action of S1 on S2nC1 is free). We set

�.w0; : : : ;wn/ D Œw0 W : : : W wn� 2 CP
n

and define for i D 0; : : : ; n

Ui D fŒw� D Œw0 W : : : W wn� 2 CP
n j wi ¤ 0g:

The subset Ui is open in CP
n, since � is an open map by Lemma 3.7.11. We also

set

vi.Œw�/ D
�

w0
wi
; : : : ;

wi�1
wi

; 1;
wiC1
wi

; : : : ;
wn

wi

�

2 C
nC1 n f0g

and

siW Ui �! S2nC1

Œw� 7�! vi.Œw�/

jjvi.Œw�/jj :

These are well-defined local sections for the canonical projection �:

� ı si D IdUi ;

since si.Œw�/ is a complex multiple of w. Therefore we see again that S1 ! S2nC1 �!
CP

n is a principal fibre bundle.
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It is clear (considering fundamental groups, for example) that S2nC1 is not
diffeomorphic to CP

n � S1. The Hopf fibration is thus an example of a non-trivial
(principal) fibre bundle.

Similar arguments for the standard action of the Lie group S3 � H on S4nC3 �
H

nC1 lead to a Hopf fibration

S3 S 4n+3

HP
n

over the quaternionic projective space HP
n (there is also a principalZ2-bundle Sn !

RP
n over real projective space). Special cases of this construction are the Hopf

fibrations (see Exercise 3.12.9)

S1 S3

S2

and

S3 S7

S4

We consider another class of examples of principal bundles. Let G be a Lie group
and H � G a closed subgroup, acting smoothly on G by right translations:

˚ W G � H �! G

.g; h/ 7�! gh:

According to Corollary 3.7.35 there is a (unique) smooth structure on the quotient
space G=H, so that �W G ! G=H is a submersion.

Theorem 4.2.15 (The Canonical Principal Bundles over Homogeneous Spaces)
If G is a Lie group and H � G a closed subgroup, then

H G

G/H

is a principal bundle with structure group H.
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Proof This follows from Theorem 4.2.10. We can also verify the conditions of
Theorem 4.2.5 directly. The first condition is clearly satisfied, because the action
of H on G is free. By Lemma 3.7.4 there exist smooth local sections

siW Ui �! G

for the canonical projection �W G ! G=H, where the open subsets Ui � G=H cover
G=H. This proves the claim. ut
Example 4.2.16 (Principal Bundles over Homogeneous Spheres) From Exam-
ple 3.8.11 we get the following principal bundles over spheres:

O    −1 O

S n−1

S SO

S n−1

O     −1

U U

S 2n−1

−1

SU SU

S 2n−1

−1

Sp Sp

S 4n−1

−1

In particular, we get the following principal sphere bundles over spheres:

S1 SO

S 2

3
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S1 U

S3

2

S3 SU

S5

3

S3 Sp

S7

2

From the examples in Sect. 3.9 we also get principal bundles over the Stiefel and
Grassmann manifolds, such as

O O− k n

and

and similarly for the complex and quaternionic Stiefel and Grassmann manifolds.
According to the results in Sect. 3.10.4 there is a principal bundle

G2

and according to Exercise 3.12.16 there is a principal bundle

G2

S6
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4.2.3 Bundle Morphisms, Reductions of the Structure Group
and Gauges

We define homomorphisms of principal bundles as follows:

Definition 4.2.17 Suppose G ! P
�! M and G0 ! P0 � 0

! M are principal bundles
over the same base manifold M and f W G ! G0 is a Lie group homomorphism. Then
a bundle morphism between P and P0 is an f -equivariant smooth bundle map
HW P ! P0, i.e.

� 0 ı H D �

and

H. p � g/ D H. p/ � f .g/ 8p 2 P; g 2 G:

Given the principal G0-bundle P0 and the homomorphism f W G ! G0, the principal
G-bundle P together with the bundle morphism HW P ! P0 is also known as an
f -reduction of P0.

If f W G ! G0 is an embedding, then H is called a G-reduction of P0 and the
image of H is called a principal G-subbundle of P0. If G D G0, f D IdG and H is a
G-equivariant bundle isomorphism, then H is called a bundle isomorphism.

A principal G-bundle isomorphic to the trivial bundle in Example 4.2.2 is also
called trivial.
As before in the case of general bundles we could consider morphisms between
principal bundles over different base manifolds M and N that cover a smooth map
from M to N.

The following notion is especially relevant in gauge theory.

Definition 4.2.18 Let �W P ! M be a principal bundle. A global gauge for
the principal bundle is a global section sW M ! P. Similarly, a local gauge is
a local section sW U ! P defined on an open subset U � M.

Any local gauge defines a local trivialization of a principal bundle:

Theorem 4.2.19 (Gauges Correspond to Trivializations) Let

G P

M
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be a principal G-bundle and sW U ! P a local gauge. Then

tW U � G �! PU

.x; g/ 7�! s.x/ � g

is a G-equivariant diffeomorphism. In particular, if sW M ! G is a global gauge,
then the principal bundle is trivial, with trivialization given by the inverse of t:

t�1W P �! M � G:

Proof This follows from Lemma 4.2.7. ut
Remark 4.2.20 Note that for this construction to work we need the G-action on P.
The result would not hold if we just had a fibre bundle with fibre G.

Remark 4.2.21 Theorem 4.2.19 has the following interpretation, see Table 4.2: A
local gauge defines a local trivialization of a principal G-bundle, i.e. an identification
��1.U/ Š U � G. A choice of local gauge thus corresponds to the choice of a
local coordinate system for a principal bundle in the fibre direction. This can be
compared, in special relativity, to the choice of an inertial system for Minkowski
spacetime M, which defines an identification M Š R

4.
Of course, different choices of gauges are possible, leading to different trivial-

izations of the principal bundle, just as different choices of inertial systems lead
to different identifications of spacetime with R

4. The idea of gauge theory is that
physics should be independent of the choice of gauge. This can be compared to the
theory of relativity which says that physics is independent of the choice of inertial
system.

Note that, if we consider principal bundles over Minkowski spacetimes R
4, it

does not matter for this discussion that principal bundles over Euclidean spaces
are always trivial by Corollary 4.2.9. What matters is the independence of the
actual choice of trivialization, i.e. the choice of (global) gauge. Even on a trivial
principal bundle there are non-trivial gauge transformations. This is very similar to
special relativity, where spacetime is trivial, i.e. isometric to R

4 with a Minkowski
metric, but what matters is the independence of the actual trivialization, i.e. the
choice of inertial system. Transformations between inertial systems are called
Lorentz transformations, transformations between (local) gauges are called gauge
transformations.

Table 4.2 Comparison between notions for special relativity and gauge theory

Manifold Trivialization
Transformations
and invariance

Special relativity Spacetime M M Š R
4 via inertial

system
Lorentz

Gauge theory Principal bundle
P ! M

P Š M � G via
choice of gauge

Gauge



4.3 �Formal Bundle Atlases 221

4.3 �Formal Bundle Atlases

We briefly return to the case of general fibre bundles. We are sometimes in the
following situation: We have a manifold M, a set E and a surjective map �W E ! M.
However, we do not a priori have a topology or the structure of a smooth manifold
on E. Under which circumstances can we define such structures, so that �W E ! M
becomes a smooth fibre bundle?

Example 4.3.1 Let M be a smooth manifold of dimension n. The tangent space TpM
is an n-dimensional vector space for all p 2 M. Let TM be the disjoint union

TM D P[
p2M

TpM

with the obvious projection �W TM ! M. How do we define the structure of a
smooth manifold on the set TM, such that TM becomes a fibre bundle over M,
with fibres given by TpM? We can also define for each tangent space TpM the dual
vector space T�

p M or the exterior algebra �kT�
p M. How do we construct smooth

fibre bundles that have these vector spaces as fibres?
The following notion is useful in this context (we follow [14, Sect. 2.1]).

Definition 4.3.2 Let M and F be manifolds, E a set and �W E ! M a surjective
map.

1. Suppose U � M is open and

�U W EU �! U � F

is a bijection with

pr1 ı �U D �jEU :

Then we call .U; �U/ a formal bundle chart for E.
2. A family f.Ui; �i/gi2I of formal bundle charts, where fUigi2I is an open covering

of M, is called a formal bundle atlas for E.
3. We call the charts in a formal bundle atlas f.Ui; �i/gi2I smoothly compatible if

all transition functions

�j ı ��1
i j.Ui\Uj/�FW .Ui \ Uj/ � F �! .Ui \ Uj/ � F;

for Ui \ Uj ¤ ;, are smooth maps (i.e. diffeomorphisms).

We then have:

Theorem 4.3.3 (Formal Bundle Atlases Define Fibre Bundles) Let M and F be
manifolds, E a set and �W E ! M a surjective map. Suppose that f.Ui; �i/gi2I is a
formal bundle atlas for E of smoothly compatible charts. Then there exists a unique
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topology and a unique structure of a smooth manifold on E such that

F E

M

is a smooth fibre bundle with smooth bundle atlas f.Ui; �i/gi2I .
The proof consists of several steps. We first define a topology on E: consider the
bijections

�iW EUi �! Ui � F:

We define a subset O � E to be open if and only if

�i.O \ EUi/

is open in Ui � F for all i 2 I.

Lemma 4.3.4 (The Topology on E Defined by a Formal Bundle Atlas) This
defines a topology on E which is Hausdorff and has a countable base. It is the
unique topology on E such that all formal bundle charts �iW EUi ! Ui � F are
homeomorphisms.

Proof We first show that this defines a topology on E: it is clear that ; and E are
open. It is also easy to see that arbitrary unions and finite intersections of open sets
are open.

By definition the maps �i are open. Suppose that O � EUi and �i.O/ is open.
Then for all j 2 I

�j.O \ EUj/ D �
�j ı ��1

i

� �
�i.O \ EUj \ EUi/

�

D �
�j ı ��1

i

� �
�i.O/\ .Uj \ Ui/ � F

�
:

It follows that O is open in E and that �iW EUi ! Ui � F is a homeomorphism.
Since M and F are Hausdorff, it is not difficult to show that the topology on E is

Hausdorff, by considering for arbitrary points p; q 2 E first the case �. p/ ¤ �.q/
with �. p/ 2 Ui, �.q/ 2 Uj and then the case �. p/ D �.q/ 2 Ui.

To show that the topology on E has a countable base we choose a countable base
fVjgj2J for the topology of M and a countable base fWkgk2K for the topology of
F. Without loss of generality we can assume that the family fUigi2I is countable,
without changing the topology of E. Let O � E be an arbitrary open set and p 2 O
a point. Then p 2 O \ EUi for some i and there exist j 2 J and k 2 K such that

p 2 ��1
i .Vj � Wk/ � O \ EUi :
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This shows that the countable family

f��1
i .Vj � Wk/gi2I;j2J;k2K

of open sets of E forms a base.
The uniqueness statement for the topology of E is clear. ut

We can now finish the proof of Theorem 4.3.3.

Proof To define a smooth structure on E, we first define the smooth structure on EUi

such that the homeomorphism

�iW EUi �! Ui � F

is a diffeomorphism. Then this defines a smooth structure on E, because the
transition functions

�j ı ��1
i j.Ui\Uj/�FW .Ui \ Uj/ � F �! .Ui \ Uj/ � F

are diffeomorphisms. This is the unique smooth structure on E so that �W E ! M
is a smooth fibre bundle with general fibre F and f.Ui; �i/gi2I is a smooth bundle
atlas. ut

4.4 �Frame Bundles

We want to apply Theorem 4.3.3 to define so-called frame bundles. Let M be a
smooth, n-dimensional manifold. For a point p 2 M we define the set of all bases of
TpM

FrGL.M/p D f.v1; : : : ; vn/ basis of TpMg

and define the disjoint union

FrGL.M/ D P[
p2M

FrGL.M/p:

There is a natural projection �W FrGL.M/ ! M and an action

FrGL.M/ � GL.n;R/ �! FrGL.M/;

given by

.v1; : : : ; vn/ � A D
 

nX

iD1
viAi1; : : : ;

nX

iD1
viAin

!

; 8.v1; : : : ; vn/ 2 FrGL.M/p;A 2 GL.n;R/:
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Theorem 4.4.1 (Frame Bundles) The projection � and the action of GL.n;R/
define the structure of a principal GL.n;R/-bundle

M

This bundle is called the frame bundle of the manifold M.

Proof We defined FrGL.M/ so far only as a set. It is clear that the action of GL.n;R/
preserves the fibres of � and is simply transitive on them. Let .Ui;  i/ be a local
manifold chart for M,

 iW Ui �! R
n:

Then

siW Ui �! FrGL.M/Ui

p 7�! .@x1 ; : : : ; @xn/ . p/

is a local section for � . We have

si. p/ D �
.Dp i/

�1e1; : : : ; .Dp i/
�1en

�
:

We define the inverse of a formal bundle chart by

��1
i W Ui � GL.n;R/ �! FrGL.M/Ui

. p;A/ 7�! si. p/ � A:

The transition functions are

�j ı ��1
i W .Ui \ Uj/ � GL.n;R/ �! .Ui \ Uj/ � GL.n;R/

with

�j ı ��1
i . p;A/ D �

p;D i. p/
�
 j ı  �1

i

� � A
�
:

These maps are smooth, because the transition functions  j ı  �1
i are smooth.

This shows that the maps �i are smoothly compatible formal bundle charts and by
Theorem 4.3.3 there exists a manifold structure on FrGL.M/ such that � becomes a
fibre bundle with general fibre GL.n;R/.
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The GL.n;R/-action is smooth (by considering the action in the bundle charts)
and the (inverse) bundle charts ��1

i are GL.n;R/-equivariant:

��1
i .. p;A/ � B/ D si. p/.A � B/ D ��1

i . p;A/ � B 8B 2 GL.n;R/:

Therefore �W FrGL.M/ ! M is a principal GL.n;R/-bundle over M. ut
Remark 4.4.2 (Orthogonal Frame Bundles) If .M; g/ is an n-dimensional Rieman-
nian manifold, we can define a principal O.n/-bundle

M

whose fibre over p 2 M consists of the set of orthonormal bases in TpM. If M is in
addition oriented, then there is also a principal SO.n/-bundle

M

defined using oriented orthonormal bases. There are similar constructions of
orthonormal frame bundles for pseudo-Riemannian manifolds.

Remark 4.4.3 A frame, i.e. a basis of a tangent space to a manifold, is in physics
often called a vielbein, in particular in the case of an orthonormal frame to a
Lorentz manifold (the word “vielbein” is German and means “many-leg”. It is a
generalization of the word tetrad in the 4-dimensional case.)

Definition 4.4.4 Let G be a Lie group. A principal G-subbundle of the frame bundle
FrGL.M/ of a smooth manifold M, i.e. a G-reduction of the frame bundle, is called
a G-structure on M.
In particular, a Riemannian metric on Mn defines an O.n/-structure and, together
with an orientation, an SO.n/-structure on M.

4.5 Vector Bundles

We consider another class of fibre bundles, called vector bundles, that are ubiquitous
in differential geometry and gauge theory. The prototype of a vector bundle is the
tangent bundle TM of a smooth manifold M. Moreover, in physics, matter fields in
gauge theories are described classically by sections of vector bundles. In addition to
[14] we follow in this section [25, 74] and [78].
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4.5.1 Definitions and Basic Concepts

Let K be the field R or C.

Definition 4.5.1 A fibre bundle

V E

M

is called a (real or complex) vector bundle of rank m if:

1. The general fibre V and every fibre Ex, for x 2 M, are m-dimensional vector
spaces over K.

2. There exists a bundle atlas f.Ui; �i/gi2I for E such that the induced maps

�ixW Ex �! V

are vector space isomorphisms for all x 2 Ui. We call such an atlas a vector
bundle atlas for E and the charts in a vector bundle atlas vector bundle charts.
See Fig. 4.3.

A vector bundle of rank 1 is called a line bundle.

There are two features that distinguish a vector bundle E ! M from a
standard fibre bundle whose general fibre is a vector space V:

1. the vector space structure on each fibre Ex, for x 2 M;
2. the bundle E has a vector bundle atlas.

x

Ex

K
m

E

M zero sectionU
( )

EU

Fig. 4.3 Vector bundle
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The vector space structure on each fibre implies that we can add any two sections
of a vector bundle E and multiply sections with a scalar or a smooth function on the
base manifold M with values in K.

Example 4.5.2 The simplest example of a vector bundle is the trivial bundle M �
K

m, often denoted by K
m. It has the canonical vector space structure on each fibre

f pg�K
m, for p 2 M, and the vector bundle atlas consisting of only one bundle chart

IdW M � K
m �! M � K

m:

Here is a more interesting example:

Example 4.5.3 (The Tangent Bundle of a Smooth Manifold) We want to show that
the tangent bundle of a smooth manifold is canonically a smooth real vector bundle.
Let M be a smooth manifold of dimension n. We define the set

TM D P[
p2M

TpM

with the canonical projection �W TM ! M. We claim that TM has the structure of
a smooth real vector bundle of rank n over M: First, the general fibre R

n and each
fibre TpM are n-dimensional real vector spaces. If

 iW Ui �! �i.Ui/ � R
n

is a local manifold chart for M, then

�iW TMUi �! Ui � R
n

. p; v/ 7�! . p;Dp i.v//

is a formal bundle chart for TM. These formal bundle charts are smoothly compati-
ble, because

�j ı ��1
i W .Ui \ Uj/ � R

n �! .Ui \ Uj/ � R
n

. p;w/ 7�! �
p;Dp

�
 j ı  �1

i

�
w
�

is a smooth map. By Theorem 4.3.3, �W TM ! M has the structure of a smooth fibre
bundle with general fibre diffeomorphic to R

n. Since the bundle charts .Ui; �i/ are
linear isomorphisms on each fibre, the bundle TM is a vector bundle of rank n.

Remark 4.5.4 Note that sections of TM are the same as vector fields on M:

	 .TM/ D X.M/:
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Transition functions for a vector bundle atlas have a special form:

Proposition 4.5.5 (Transition Functions of Vector Bundles) Let E ! M be a
K-vector bundle of rank m and f.Ui; �i/gi2I a vector bundle atlas for E. Then the
transition functions take values in the subgroup GL.m;K/ of Diff .Km/,

�jiW Ui \ Uj �! GL.m;K/ � Diff .Km/

x 7�! �jx ı ��1
ix :

The following definition applies only to real vector bundles.

Definition 4.5.6 A real vector bundle E ! M of rank m is called orientable if it
admits a vector bundle atlas f.Ui; �i/gi2I such that all transition functions map to

�jiW Ui \ Uj �! GLC.m;R/;

where GLC.m;R/ denotes the subgroup of invertible matrices with positive deter-
minant.
Clearly, if E ! M is a complex vector bundle of rank m, then forgetting the complex
structure it defines an underlying real rank 2m vector bundle ER ! M. The bundle
ER is always orientable, because the identification C

m D R
2m as real vector spaces

induces an embedding GL.m;C/ � GLC.2m;R/ by Exercise 1.9.10.
There is a notion of a homomorphism between vector bundles over the same

manifold.

Definition 4.5.7 Let V ! E
�E! M and W ! F

�F! M be vector bundles over M
over the same field K.

1. A smooth bundle map LW E ! F, satisfying �F ı L D �E , is called a vector
bundle homomorphism if the restriction to a fibre

LjEx W Ex �! Fx

is a linear map for all x 2 M. A vector bundle homomorphism which is
injective (surjective) on each fibre is called a vector bundle monomorphism
(epimorphism). If LW E ! E is a homomorphism, then L is also called a vector
bundle endomorphism.

2. A vector bundle isomorphism is a vector bundle homomorphism which is a
diffeomorphism of the total spaces and an isomorphism on each fibre. A vector
bundle is called trivial if it is isomorphic to the trivial bundle. If the tangent
bundle TM of a manifold M is trivial, then M is called parallelizable.

Remark 4.5.8 According to Exercise 4.8.5, a vector bundle homomorphism which
is an isomorphism on each fibre is a vector bundle isomorphism.
As before, we could consider vector bundle homomorphisms between vector
bundles over different base manifolds M and N that cover a smooth map from M
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to N. It is not difficult to prove with Remark 4.5.8 that a vector bundle E ! M of
rank m is trivial if and only if it has m global sections

v1; : : : ; vmW M �! E;

such that v1.x/; : : : ; vm.x/ form a basis of the fibre Ex, for all x 2 M.

Remark 4.5.9 (Sections of Vector Bundles) Note that (contrary to principal fibre
bundles) vector bundles always admit global sections: the section that is equal to
zero everywhere on M is a trivial example (the fibres of a vector bundle are vector
spaces, so there is a canonical element, namely 0. The fibres of a principal bundle
are only diffeomorphic to a Lie group, so the neutral element e is not a canonical
element in a fibre.) However, in the case of a vector bundle it is not clear that there
are sections without zeros, and even if this is the case, it is not clear that there are m
sections which form a basis in each fibre.

Example 4.5.10 (Parallelizable Spheres) We want to show that the spheres S0, S1,
S3 and S7 are parallelizable. This is trivial for S0, which consists only of two points.
We consider S1 as the unit sphere in C. For x 2 S1, the vector ix 2 C is orthogonal
to x with respect to the standard Euclidean scalar product:

Re hx; ixi D Re ijjxjj2 D 0;

where hz;wi D Nzw is the standard Hermitian scalar product on C. This implies that

S1 � R �! TS1 � TCjS1

.x; t/ 7�! .x; tix/

is a trivialization of TS1.
Similarly, we can consider S3 as the unit sphere in H. Then

S3 � R
3 �! TS3 � THjS3

.x; t1; t2; t3/ 7�! .x; t1ix C t2 jx C t3kx/

is a trivialization of TS3.
Finally, we consider S7 as the unit sphere in the octonions O. The octonions

O Š R
8 are spanned by e0; e1; : : : ; e7, where

e20 D e0; e2i D �e0 8i D 1; : : : ; 7:

The map

S7 � R
7 �! TS7 � TOjS7

.x; t1; t2; : : : ; t7/ 7�! .x; t1e1x C t2e2x C : : :C t7e7x/

is a trivialization of TS7.
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It is a deep theorem due to J.F. Adams [2] that S0, S1, S3 and S7 are the only
spheres which are parallelizable. This is related to the fact that division algebras
exist only in dimension 1, 2, 4 and 8. A proof using K-theory can be found in [74].
See also Exercise 6.13.8.
A proof of the following theorem can be found in [5, 74] and [81].

Theorem 4.5.11 (Vector Bundles and Homotopy Equivalences) Let f W M ! N
be a smooth homotopy equivalence between manifolds. Then the pullback f � is a
bijection between isomorphism classes of vector bundles over N and vector bundles
over M of the same rank and over the same field K.
In particular, we get:

Corollary 4.5.12 (Vector Bundles over Contractible Manifolds Are Trivial) If
M is a contractible manifold, then every vector bundle over M is trivial. This holds,
in particular, if M D R

n for some n.

4.5.2 Linear Algebra Constructions for Vector Bundles

A useful fact is that we can construct new vector bundles from given ones by
applying linear algebra constructions fibrewise: suppose E;F are vector bundles
over M over the same field K. Then there exist canonically defined vector bundles

E ˚ F; E ˝ F; E�; �kE; Hom.E;F/

over M. If K D C there also exists a complex conjugate vector bundle NE. The fibres
of these vector bundles are given by

.E ˚ F/x D Ex ˚ Fx;

and similarly in the other cases. This follows from Theorem 4.3.3, because local
vector bundle charts for E and F can be combined to yield smoothly compatible
formal vector bundle charts for the set E ˚ F, defining the structure of a smooth
vector bundle on E ˚ F ! M. Similarly in the other cases.

Purely linear algebraic constructions, such as the direct sum and tensor
product of vector spaces, extend to smooth vector bundles and yield new
vector bundles with canonically defined smooth bundle structures.

Example 4.5.13 Consider the tangent bundle TM ! M. Then there exist canoni-
cally associated vector bundles T�M and �kT�M over M. Sections of �kT�M are
k-forms on M:

	 .�kT�M/ D ˝k.M/:



4.5 Vector Bundles 231

More generally, for a vector bundle E ! M, sections of the bundle�kT�M ˝ E are
k-forms on M with values in E, i.e. elements of ˝k.M;E/: If ! 2 ˝k.M;E/, then
at a point x 2 M

!xW TxM � : : : � TxM �! Ex

is multilinear and alternating. This generalizes the notion of vector space-valued
forms in Sect. 3.5.1 to forms which have values in a vector bundle. One sometimes
calls �kT�M ˝ E the bundle of k-forms over M twisted with E.
We want to define the concept of vector subbundle (following [25]):

Definition 4.5.14 Let �W E ! M be a K-vector bundle of rank m. A subset F � E is
called a vector subbundle of rank k if each point p 2 M has an open neighbourhood
U together with a vector bundle chart .U; �/ of E such that

�.EU \ F/ D U � K
k � U � K

m;

where K
k is the vector subspace K

k � f0g � K
m. It follows that F is an embedded

submanifold of E and �jFW F ! M has the canonical structure of a K-vector bundle
of rank k over M.

Example 4.5.15 (Normal Bundle of Spheres) For n ¤ 0; 1; 3; 7 the sphere Sn does
not have a trivial tangent bundle according to Adams’ Theorem mentioned in
Example 4.5.10. However, the normal bundle �.Sn/ of Sn in R

nC1 is trivial for
any n � 0: The normal bundle is defined as

�.Sn/ D f.x; u/ 2 Sn � R
nC1 j u ? TxSng;

with projection onto the first factor. It is clear that the normal bundle is a real line
bundle. The following map is a trivialization of �.Sn/:

Sn � R �! �.Sn/

.x; t/ 7�! .x; tx/:

Note that

TSn ˚ �.Sn/ D TRnC1jSn :

We conclude that the sum of a non-trivial vector bundle (the tangent bundle to the
sphere) and a trivial vector bundle (the normal bundle) can be trivial. One says that
the tangent bundle of the sphere Sn is stably trivial: It becomes trivial after taking
the direct sum with a trivial bundle (here a trivial line bundle). Both TSn and �.Sn/

are vector subbundles of the trivial bundle TRnC1jSn . Note that this also means that
a trivial vector bundle can have non-trivial subbundles.



232 4 Fibre Bundles

Definition 4.5.16 Let E ! M be a K-vector bundle over M. A (Euclidean or
Hermitian) bundle metric is a metric on each fibre Ex that varies smoothly with
x 2 M. More precisely, it is a section

h� ; �i 2 	 .E� ˝ E�/ .K D R/

or

h� ; �i 2 	 . NE� ˝ E�/ .K D C/

which defines in each point x 2 M a non-degenerate symmetric (K D R) or
Hermitian (K D C) form

h� ; �ixW Ex � Ex �! K:

Proposition 4.5.17 (Existence of Bundle Metrics) Every K-vector bundle over a
manifold M admits a positive definite bundle metric.

Proof This follows by a partition of unity argument, because a convex combination
of positive definite metrics on a vector space is still a positive definite metric. ut
For associated vector bundles we will give a more explicit construction of bundle
metrics in Proposition 4.7.12.

Example 4.5.18 The tangent bundle TM of any submanifold Mm � R
n has a bundle

metric induced from the standard Euclidean scalar product on R
n. In particular,

TSn�1 has a canonical bundle metric.

Proposition 4.5.19 (Orthogonal Complement of a Vector Subbundle) Let E !
M be a vector bundle with a positive definite bundle metric and F � E a vector
subbundle. Then the orthogonal complement F? is a vector subbundle of E and
F ˚ F? is isomorphic to E.

Proof This is Exercise 4.8.16. ut
The following is clear.

Proposition 4.5.20 (Transition Functions of Vector Bundles with a Metric) Let
E ! M be a K-vector bundle of rank m with a positive definite bundle metric.
Choosing local trivializations given by orthonormal bases it follows that there exists
a vector bundle atlas f.Ui; �i/gi2I with transition functions of the form

�jiW Ui \ Uj �! O.m/ .K D R/

or

�jiW Ui \ Uj �! U.m/ .K D C/:
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If the bundle is real and orientable, then we can find a vector bundle atlas such that

�jiW Ui \ Uj �! SO.m/:

If E ! M is a real (complex) vector bundle of rank m with a positive definite bundle
metric, then the set consisting of all vectors of length 1 in each fibre forms the unit
sphere bundle S.E/ ! M, which is a smooth Sm�1-bundle (S2m�1-bundle) over M.

4.6 �The Clutching Construction

We want to describe a construction that yields (all) vector bundles over spheres Sn.
The idea of this so-called clutching construction is to glue together trivial vector
bundles over the northern and southern hemisphere of Sn along the equator (we
follow [74]).

Let Sn be the unit sphere in R
nC1, where n � 1. We define the north and south

pole

NC D .0; : : : ; 0;C1/ 2 Sn;

N� D .0; : : : ; 0;�1/ 2 Sn

and the open sets

UC D Sn n fNCg;
U� D Sn n fN�g:

Both UC and U� are diffeomorphic to R
n via the stereographic projection;

cf. Example A.1.8. Let f be any smooth map

f W Sn�1 �! GL.k;K/;

where we think of Sn�1 � Sn as the equator of Sn and K D R;C. Such a map is
called a clutching function. We write

x D .x1; : : : ; xn/ 2 R
n;

z D xnC1 2 R:

Let p denote the following retraction of the intersection UC \ U� onto the equator:

pW UC \ U� �! Sn�1

.x; z/ 7�! x

jjxjj :
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Here

jjxjj2 D x21 C : : :C x2n

is the Euclidean norm. Note that this map is well-defined, because x ¤ 0 on UC \
U�. We use the retraction to extend the clutching function to a smooth map on
UC \ U�:

Nf D f ı pW UC \ U� �! GL.k;K/:

Definition 4.6.1 Let Ef D QE= � be the quotient set of the disjoint union

QE D �
U� � K

k
� P[�

UC � K
k
�

by identifying

.x; z; v/ 2 .U� \ UC/ � K
k � U� � K

k

with

.x; z; Nf .x; z/ � v/ 2 .UC \ U�/ � K
k � UC � K

k:

Theorem 4.6.2 (Vector Bundle over a Sphere Defined by a Clutching Function)
Via the projection

�W Ef �! Sn

Œx; z; v� 7�! .x; z/

the set Ef has a canonical structure of a K-vector bundle of rank k over the
sphere Sn:

K
k E f

S n

Proof (See also Exercise 4.8.9.) Note that the map � is well-defined on the quotient
set Ef and surjective onto Sn. Let � denote the quotient map

� W �U� � K
k
� P[�

UC � K
k
� �! Ef :
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The map � decomposes into injective maps �˙ on U˙ �K
k. For .x; z;w/ 2 U˙ �K

k

define

Œx; z;w�˙ D �˙.x; z;w/:

Then

Œx; z; v�� D �
x; z; Nf .x; z/ � v�C :

The maps

�˙W Ef U
˙

�! U˙ � K
k

Œx; z; v� 7�! ��1˙ .Œx; z; v�˙/

are well-defined formal bundle charts. We want to show that these formal bundle
charts are smoothly compatible: We calculate

�C ı ��1� .x; z; v/ D ��1C ı ��.x; z; v/

D ��1C Œx; z; v��

D ��1C
�
x; z; Nf .x; z/ � v�C

D .x; z; Nf .x; z/ � v/;

which is a smooth map. It follows from Theorem 4.3.3 that �W Ef ! Sn has the
structure of a fibre bundle. Since the bundle charts �C; �� are linear isomorphisms
on each fibre, it follows that �W Ef ! Sn is a vector bundle with general fibre Kk.

ut
The following can be shown, see [5] or [74]:

Theorem 4.6.3 (Vector Bundles over Spheres and Homotopy Classes of Clutch-
ing Functions)

1. Every complex vector bundle over Sn of rank k is isomorphic to a bundle Ef for
a certain clutching function f W Sn�1 ! U.k/, unique up to homotopy.

2. Similarly, every orientable real vector bundle over Sn of rank k is isomorphic
to a bundle Ef for a certain clutching function f W Sn�1 ! SO.k/, unique up to
homotopy.

Every vector bundle over a sphere can be constructed using a clutching function,
because by Corollary 4.5.12 every vector bundle over Sn is trivial over UC and U�.
Given an arbitrary K-vector bundle E ! Sn of rank k we obtain an associated
clutching function as follows:

• Let E˙ denote the restrictions of E to U˙. Choose vector bundle trivializations

h˙W E˙ �! U˙ � K
k:
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• Consider

hC ı h�1� W Sn�1 � K
k �! Sn�1 � K

k:

This map is a linear isomorphism on each fibre and defines the clutching function

f W Sn�1 �! GL.k;K/:

The clutching functions in Theorem 4.6.3 can be taken to have image in U.k/ or
SO.k/, because there are deformation retractions

GL.k;C/ �! U.k/;

GLC.k;R/ �! SO.k/:

Complex and real orientable vector bundles over Sn are therefore essentially
classified by the homotopy groups �n�1.U.k// and �n�1.SO.k//.

Remark 4.6.4 (Clutching Construction for Arbitrary Fibres) Let F be a smooth
manifold and

f W Sn�1 �! Diff.F/

a “smooth” map, again called a clutching function (the precise formulation in the
general case is not completely trivial, because we did not define a smooth structure
on the diffeomorphism group Diff.F/). A similar construction to the one above
yields a fibre bundle

F E f

Sn

over Sn with general fibre F. The mapping torus construction in Example 4.1.5 can
be seen as a special case of the clutching construction for n D 1: If �W F ! F is the
monodromy of the mapping torus, we choose

f W S0 �! Diff.F/

�1 7�! IdF

C1 7�! �:
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Example 4.6.5 (Exotic 7-Spheres) Another very nice application appears in
Milnor’s classic paper [94], where certain exotic7-spheres (homeomorphic but
not diffeomorphic to S7) are defined as S3-bundles over S4, using the clutching
construction with clutching function

fhjW S3 �! SO.4/ � DiffC.S3/

given by

fhj.u/ � v D uhvu j:

Here u; v 2 S3 D Sp.1/ and h; j 2 Z. For certain values of the integers h and
j, the S3-bundle over S4 determined by the clutching function fhj is an exotic
7-sphere.

Milnor’s paper started the field known as differential topology and led to
an extensive investigation of exotic spheres of arbitrary dimension. The study
of the smooth topology of general 4-manifolds, using Donaldson theory and
later Seiberg–Witten theory, also belongs to the field of differential topology.

4.7 Associated Vector Bundles

In Chap. 2 we studied the theory of Lie group representations. We now want
to combine this theory with the theory of principal bundles from the present
chapter.

We said before that principal bundles are the place where Lie groups appear
in gauge theories. Associated vector bundles, which we discuss in this section,
are precisely the place where representations on vector spaces are built into
gauge theories. We can summarize this in the following diagram:

Lie groups (gauge groups) Representations on vector spaces

Principal bundles Associated vector bundles (matter fields)

Connections (gauge fields) Covariant derivatives (interaction/coupling)

The third row will be explained in Chap. 5.
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For example, in the Standard Model, one generation of fermions is described by
associated complex vector bundles of rank 8 for left-handed fermions and rank 7 for
right-handed fermions, associated to representations of the gauge group SU.3/ �
SU.2/ � U.1/. Taking particles and antiparticles together we get two associated
complex vector bundles of rank 15 (right-handed and left-handed) which are related
by complex conjugation. The complete fermionic content of the Standard Model is
described by the direct sum of three copies of these vector bundles (a complex vector
bundle of rank 90), corresponding to the three generations. These constructions will
be described in detail in Sect. 8.5.1.

4.7.1 Basic Concepts

As an introduction, consider again the Hopf fibration

S1 S3

S2

We are interested in the complex representations of S1 on C with winding
number k 2 Z:

�kW S1 �! U.1/

z 7�! zk

Our aim is to define an associated bundle

� k D S3 ��k C:

This will be a complex line bundle over S2

C

S2

whose transition functions are given by the transition functions of the Hopf
fibration composed with the group homomorphism �k.
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The general definition is the following: Let K denote the field R or C. We then
associate to each principal G-bundle

G P

M

P

and each representation

�W G �! GL.V/

of the structure group G on a K-vector space V of dimension k a vector bundle
E ! M with fibres isomorphic to V .

Lemma 4.7.1 Let P be a principal G-bundle and � a representation of the Lie group
G on a K-vector space V. Then the map

.P � V/ � G �! P � V

. p; v; g/ 7�! . p; v/ � g D �
p � g; �.g/�1v

�

defines a free principal right action of the Lie group G on the product manifold
P � V. In particular, the quotient space E D .P � V/=G is a smooth manifold such
that the projection P � V ! E is a submersion.

Proof It is clear that

.P � V/ � G �! P � V

is a right action, which is free since the action of G on P is free. If G is compact, then
the claim follows from Corollary 3.7.29. In the general case, the action is principal
by an argument very similar to the one in the proof of Theorem 4.2.12. ut
Theorem 4.7.2 (Associated Vector Bundle Constructed as a Quotient) Let P be
a principal G-bundle and � a representation of the Lie group G on a K-vector space
V. Then the quotient space E D .P � V/=G has the structure of a K-vector bundle
over M, with projection

�EW E �! M

Œ p; v� 7�! �P. p/

and fibres

Ex D .Px � V/=G
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isomorphic to V. The vector space structure on the fibre Ex over x 2 M is defined by

Œ p; v�C 
Œ p;w� D Œ p; v C 
w�; 8p 2 P; v;w 2 V; ; 
 2 K;

where �P. p/ D x.

Proof It is clear that �E is well-defined and that V is isomorphic to the fibres Ex via
v 7! Œ px; v� with a fixed px 2 Px. We need to find a vector bundle atlas for E. Let
.U; �U/ be a bundle chart for the principal bundle P:

�U W PU �! U � G

p 7�! .�P. p/; ˇU. p//:

We set

 U W EU �! U � V

Œ p; v� 7�! .�P. p/; �.ˇU. p//v/:

Since P � V ! E is a submersion, the map  U is smooth. It is a diffeomorphism
with smooth inverse

 �1
U W U � V �! EU

.x; v/ 7�! �
��1

U .x; e/; v
�
:

Its restriction to each fibre Ex is a linear isomorphism to the vector space V . Thus
 U defines a chart in a vector bundle atlas for E. ut

Definition 4.7.3 The vector bundle

E D P �� V D .P � V/=G

is called the vector bundle associated to the principal bundle P and the
representation � on V:

V P V

M

The group G (or its image �.G/ � GL.V/) is known as the structure group
of E.
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Remark 4.7.4 Note that in the definition of the vector space structure on the
fibres Ex,

Œ p; v�C 
Œ p;w� D Œ p; v C 
w�;

we have to choose both representatives with the same point p in the fibre of P over
x 2 M.

Example 4.7.5 For every principal G-bundle P ! M and every vector space V , the
vector bundle associated to the trivial homomorphism

�W G �! GL.V/

g 7�! IdV

is a trivial vector bundle. See Exercise 4.8.20.
It is useful in applications to have a suitable description of local sections of an
associated vector bundle.

Proposition 4.7.6 (Local Sections of Associated Vector Bundles) Let P be a
principal bundle and E D P �� V an associated vector bundle. Let sW U ! P
be a local gauge. Then there is a 1-to-1 relation between smooth sections � W U ! E
and smooth maps f W U ! V, given by

�.x/ D Œs.x/; f .x/� 8x 2 U:

In particular, the local gauge defines a preferred isomorphism between V and every
fibre Ex over x 2 U.

Proof If f W U ! V is a smooth map, then

U �! P � V

x 7�! .s.x/; f .x//

is smooth and hence � W U ! E is smooth. The map � is a section, because

�E ı �.x/ D �P ı s.x/ D x:

Conversely, let � W U ! E be a smooth section. Since Ex D .Px � V/=G and the
action of G on Px is simply transitive, there is a unique f .x/ 2 V such that

�.x/ D Œs.x/; f .x/�:
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We have to show that f W U ! V is smooth: Define a bundle chart �U of the principal
bundle using the section s:

��1
U W U � G �! PU

.x; g/ 7�! s.x/ � g:

Then with the notation in the proof of Theorem 4.7.2 we have ˇU.s.x// D e and

 U ı �.x/ D  U.Œs.x/; f .x/�/

D .x; �.ˇU.s.x///f .x//

D .x; f .x//:

Since  U and � are smooth, it follows that f is smooth. ut

Matter fields in physics are described by smooth sections of vector bundles E
associated to principal bundles P via representations of the gauge group G on
a vector space V (in the case of fermions the associated bundle E is twisted in
addition with a spinor bundle S, i.e. the bundle is S ˝E). It follows that, given
a local gauge of the gauge bundle P, the section in E corresponds to a unique
local map from spacetime into the vector space V .

In particular, since principal bundles on R
n are trivial by Corollary 4.2.9,

we can describe matter fields on a spacetime diffeomorphic to R
n by unique

maps from R
n into a vector space, once a global gauge for the principal

bundle has been chosen. A (local) trivialization of the gauge bundle thus
determines a unique (local) trivialization of all associated vector bundles.

Definition 4.7.7 Let E D P �� V be an associated vector bundle. If the representa-
tion

��W g �! End.V/

is non-trivial, then the sections of E are called charged.
This term will be explained in more detail in Sect. 5.9.

Remark 4.7.8 (Associated Fibre Bundles with Arbitrary Fibres) Given a principal
bundle P ! M with structure group G, a manifold F and a smooth left action

� W G � F �! F

.g; v/ 7�! g � v
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a similar construction using the quotient

P �� F D .P � F/=G

under the G-action

.P � F/ � G �! P � F

. p; v; g/ 7�! �
p � g; g�1 � v�

yields an associated fibre bundle

F P F

M

with structure group given by the image of G in the diffeomorphism group Diff.F/,
determined by the action � .

Example 4.7.9 (Flat Bundles) Here is an example of the construction in
Remark 4.7.8. Let M and F be manifolds and

 W�1.M/ �! Diff.F/

a group homomorphism. This defines an action of the (discrete) group �1.M/ on F.
The universal covering

�M W QM �! M

can be considered as a principal bundle with discrete structure group �1.M/. The
associated fibre bundle

F M̃ F

M

is called the flat bundle with holonomy  . In the case of M D S1 this yields again
the mapping torus from Example 4.1.5. More generally, for M D Tn, a collection of
n pairwise commuting diffeomorphisms

fiW F �! F; i D 1; : : : ; n
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defines a flat bundle

F E

T n

4.7.2 Adapted Bundle Atlases for Associated Vector Bundles

We discuss a specific type of bundle atlas for associated vector bundles. Let P ! M
be a principal G-bundle and E D P �� V an associated vector bundle, where �W G !
GL.V/ is a representation. We choose a principal bundle atlas f.Ui; �i/gi2I for P,
determined by local gauges siW Ui ! P.

Definition 4.7.10 The principal bundle atlas for P defines an adapted bundle atlas
for E with local trivializations

 iW EUi �! Ui � V

whose inverses are given by

 �1
i .x; v/ D Œsi.x/; v�:

Proposition 4.7.11 (Adapted Bundle Atlases and the Structure Group) Sup-
pose the transition functions of the principal bundle charts for P are given by

�ji D �j� ı ��1
i� W Ui \ Uj �! G:

Then the transition functions for the adapted bundle atlas for E are

 ji D  j� ı  �1
i� W Ui \ Uj �! GL.V/

x 7�!  ji.x/ D �.�ji.x//:

The transition functions of E thus have image in the subgroup �.G/ � GL.V/, where
G is the structure group of P.

Proof We have

si.x/ D sj.x/ � �ji.x/:

This implies

 �1
ix .v/ D Œsj.x/ � �ji.x/; v�

D  �1
jx ı �.�ji.x//.v/:



4.7 Associated Vector Bundles 245

Therefore

 ji.x/ D  jx ı  �1
ix D �.�ji.x//:

ut

4.7.3 Bundle Metrics on Associated Vector Bundles

It is often important to consider bundle metrics on an associated vector bundle. We
can construct such metrics as follows: let �PW P ! M be a principal bundle with
structure group G, �W G ! GL.V/ a representation and E ! M the associated
vector bundle E D P �� V .

Proposition 4.7.12 (Bundle Metrics on Associated Vector Bundles from G-
Invariant Scalar Products) Suppose that h� ; �iV is a G-invariant scalar product
on V. Then the bundle metric h� ; �iE on the associated vector bundle E given by

hŒ p; v�; Œ p;w�iEx D hv;wiV ;

for arbitrary p 2 Px, is well-defined.

Proof This is an easy calculation choosing two different representatives for the
vectors in the fibre Ex. ut

4.7.4 Examples

Example 4.7.13 (From Vector Bundles to Principal Bundles and Back) We claim
that every vector bundle has the structure of an associated vector bundle for
some principal bundle. We first consider the tangent bundle TM: Let M be an n-
dimensional smooth manifold and consider the frame bundle

FrGL

M

Let

�GLW GL.n;R/ � R
n �! R

n

be the standard representation, given by matrix multiplication from the left on
column vectors. Then there exists an isomorphism of vector bundles

TM Š FrGL.M/ ��GL R
n:
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An isomorphism is given by

HW FrGL.M/ ��GL R
n �! TM

Œ.v1; : : : ; vn/; .x1; : : : ; xn/� 7�!
nX

iD1
vixi:

It is easy to check that the map H is well-defined and a bundle isomorphism.
Choosing a Riemannian metric g on M we can define the orthonormal frame

bundle FrO.M/. Using the standard representation �O of O.n/ on R
n we get another

vector bundle isomorphism

TM Š FrO.M/ ��O R
n:

Similarly, every real vector bundle E of rank n is associated to a principal GL.n;R/-
bundle (and a principal O.n/-bundle), defined using frames in the fibres of E. If E is
orientable, it is associated to a principal SO.n/-bundle. Similar statements hold for
complex vector bundles with principal GL.n;C/- and U.n/-bundles.
We get:

Proposition 4.7.14 Let E ! M be a real or complex vector bundle. Then E is
associated to some principal O.n/- or U.n/-bundle P ! M.
In particular, the vector bundles over spheres that we defined in Sect. 4.6 using the
clutching construction are associated vector bundles. Note that the structure as an
associated vector bundle is not unique: as we saw above in the case of the frame
bundle, the same vector bundle can be associated to principal bundles with different
Lie groups.

We can use our constructions of principal bundles over spheres, projective spaces,
and Stiefel and Grassmann manifolds to define associated vector bundles over those
manifolds.

Example 4.7.15 Recall the principal bundle

SO

Sn−1

from Example 4.2.16. Then any representation of SO.n � 1/ on a real or complex
vector space defines an associated vector bundle over the sphere Sn�1. A similar
construction works for any of the other principal bundles over spheres given in
Example 4.2.16. Alternatively, these bundles can also be realized (up to isomor-
phism) by the clutching construction.
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The construction also applies to the principal bundles over Stiefel and Grassmann
manifolds, like

and

These examples can be generalized: start with any smooth homogeneous space G=H
and consider the canonical principal bundle

H G

G/H

according to Theorem 4.2.15. Then representations of H define associated vector
bundles over G=H, known as homogeneous vector bundles.

Example 4.7.16 Let

S1 S2n+1

CP
n

be the Hopf fibration. We want to study complex line bundles associated to this
principal S1-bundle. For k 2 Z consider the homomorphism

�kW S1 �! U.1/

z 7�! zk

of winding number k. Then the associated bundle

� k D S2nC1 ��k C
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is a complex line bundle. The bundle �0 is trivial and � k is isomorphic to

� k Š �1 ˝ : : :˝ �1
„ ƒ‚ …

k factors

.k > 0/

and

� k Š �1� ˝ : : :˝ �1�
„ ƒ‚ …

jkj factors

.k < 0/:

See Exercise 4.8.21.
Similarly, using representations of SU.2/ Š S3 we can define vector bundles

associated to the quaternionic Hopf fibration

S3 S4n+3

HP
n

Example 4.7.17 (Adjoint Bundle) An important general example of an asso-
ciated vector bundle is the following: let

G P

M

be a principal bundle with structure group G. Consider the adjoint representa-
tion

AdW G �! GL.g/:

Then the associated vector bundle

Ad.P/ D P �Ad g

is called the adjoint bundle. Its general fibre is isomorphic to the vector space
underlying the Lie algebra g:

Ad

M
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4.8 Exercises for Chap. 4

4.8.1 The Möbius strip can be defined as the submanifold

M D
n�

ei�; rei�=2
� ˇˇ
ˇ� 2 Œ0; 2��; r 2 Œ�1; 1�

o
� S1 � C:

The projection �W M ! S1 is defined as � D pr1jM .

1. Show that �W M ! S1 is a fibre bundle with general fibre Œ�1; 1� (here we
consider a small generalization of the notion of a fibre bundle to manifolds with
boundary).

2. Prove that the boundary @M is connected and that the bundle � is not trivial.
3. Prove that the image of any smooth section sW S1 ! M intersects the zero section

zW S1 ! M; z.˛/ D .˛; 0/.

Hint: Note that the map S1 ! S1; ei� 7! ei�=2 is not well-defined.

4.8.2 Let �W M ! S1 denote the Möbius strip from Exercise 4.8.1 and consider the
map fnW S1 ! S1; fn.z/ D zn for n 2 Z.

1. Show that the pull-back bundle f �
n M is isomorphic to the bundle Mn ! S1 defined

by

Mn D
n�

ei ; rein =2
� ˇˇ
ˇ 2 Œ0; 2��; r 2 Œ�1; 1�

o
� S1 � C

(with projection onto the first factor).
2. Determine those n 2 Z for which f �

n M is trivial and those for which it is non-
trivial.

4.8.3 (Fibre Sum) Suppose that F ! E ! M and F0 ! E0 ! M0 are two
fibre bundles over n-dimensional manifolds M and M0. Let D and D0 be embedded
open n-discs in M and M0 together with trivializations F � D and F0 � D0 of the
fibrations over D and D0. We assume that F and F0 are diffeomorphic and choose a
diffeomorphism

�W F �! F0:

We write D and D0 minus the centre 0 as Sn�1 � .0; 1/ and fix a diffeomorphism
r from .0; 1/ to .0; 1/ which reverses orientation. Let � W Sn�1 ! Sn�1 be the
diffeomorphism which reverses the sign of one of the coordinates on Sn�1 � R

n.
Consider the diffeomorphism

 W F � .D n 0/ �! F0 � .D0 n 0/
.x; v; t/ 7�! .�.x/; �.v/; r.t//:
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The fibre sum E# E0 is defined by gluing together the manifolds M n F and M0 n F0
along the diffeomorphism  . Prove that E# E0 is a smooth fibre bundle over the
connected sum M#M0 with general fibre F.

4.8.4 Let G ! P
�! M be a principal bundle and f W N ! M a smooth map between

manifolds. Prove that the pullback f �P has the canonical structure of a principal G-
bundle over N.

4.8.5
1. Let F ! E

�! M and F0 ! E0 �! M be fibre bundles and HW E ! E0 a bundle
morphism. Suppose that H maps every fibre of E diffeomorphically onto a fibre
of E0. Show that H is a diffeomorphism and hence a bundle isomorphism.

2. Let G ! P
�! M and G0 ! P0 �! M be principal bundles and f W G ! G0 a Lie

group isomorphism. Show that every f -equivariant bundle morphism HW P ! P0
is a diffeomorphism.

4.8.6 (From [14]) We consider the Hopf bundle

S1 S3

S2

The total space S3 of this bundle admits two different S1-actions: The standard action

S3 � S1 �! S3;

.w; / 7�! w

and the reversed action

S3 � S1 �! S3;

.w; / 7�! w�1:

Both actions endow the same fibre bundle S1 ! S3
�! S2 with the structure of a

principal bundle. Prove that these principal bundles are not isomorphic as principal
bundles.

4.8.7 Recall the definition of lens spaces from Example 3.7.33. Show that the lens
space L. p; 1/ is the total space of a principal fibre bundle over S2 with structure
group S1.
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4.8.8 Show that there is a canonical free O.k/-action on the Stiefel manifold Vk.R
n/

and that this defines a principal O.k/-bundle

4.8.9 We want to discuss another way to construct fibre bundles. Let M, F be
smooth manifolds and fUigi2I an open covering of M together with diffeomorphisms

�jiW .Ui \ Uj/ � F �! .Ui \ Uj/ � F

whenever Ui \ Uj ¤ ;, satisfying

pr1 ı �ji D pr1:

We also write �ji.x/ D �ji.x;�/ for x 2 Ui \ Uj. Let QE be the disjoint union

QE D P[
i2I

Ui � F:

1. Show that

.x; v/ � .x0; v0/ , 9i; j 2 I W x D x0 2 Ui \ Uj and v0 D �ji.x/v

defines an equivalence relation on QE if and only if the �ji satisfy the three
conditions of Lemma 4.1.13.

2. Show that if the �ji satisfy the conditions of Lemma 4.1.13, then the quotient set

E D QE= �

has the canonical structure of a smooth fibre bundle over M with general fibre F
and transition functions �ji.

4.8.10 Prove that the principal bundle

SO

Sn−1

from Example 4.2.16 is isomorphic to the frame bundle FrSO.Sn�1/.
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4.8.11 Prove that a subset F � E is a subbundle of the vector bundle E if and only
if F is the image of a vector bundle monomorphism to E.

4.8.12 Prove that

E D f.U; v/ 2 Grk.K
n/ � K

n j v 2 Ug;

with projection onto the first factor, defines a K-vector bundle over the Grassmann
manifold Grk.K

n/ of rank k. This bundle is called the tautological vector bundle.
Particular examples, for k D 1, are the tautological line bundles over RPn�1 and
CP

n�1.

4.8.13 We denote by L ! S1 the infinite Möbius strip, defined by

L D
n�

ei�; rei�=2
� ˇˇ
ˇ� 2 Œ0; 2��; r 2 R

o
� S1 � C:

It follows from Exercise 4.8.1 that this is a non-trivial, real line bundle over the
circle. Prove that the real vector bundle L ˚ L ! S1 is trivial.

4.8.14 Let L ! S1 be the infinite Möbius strip.

1. Show that under the diffeomorphism S1 Š RP
1 the infinite Möbius strip is

isomorphic to the tautological line bundle over RP1.
2. Prove that the tautological line bundle over RPn is non-trivial for all n � 1.

4.8.15 Let E ! M be a real vector bundle of rank m. Show that E is orientable if
and only if �mE is trivial.

4.8.16 Let E ! M be a K-vector bundle of rank m with a positive definite
(Euclidean or Hermitian) bundle metric. Suppose that F � E is a vector subbundle.
Prove that the orthogonal complement F? is a vector subbundle of E and that F˚F?
is isomorphic to E.

4.8.17 Determine the clutching function of the tangent bundle TS2 ! S2 geometri-
cally as follows:

1. Draw two disks in the plane and label them N and S. Draw on the boundary circle
of disk N four points a; b; c; d counter-clockwise with 90ı between consecutive
points. Draw on the boundary circle of disk S corresponding points a; b; c; d, such
that the disks under identification of the boundary circles yield a sphere S2.

2. Draw in the center of disk N an orthonormal basis and label the vectors 1 and 2.
Parallel transport this basis to the points a; b; c; d. Take these bases and draw the
matching bases on the S side in the points a; b; c; d. Call these bases I.

3. Take the basis at the point a on disk S and parallel transport it to the center of
disk S. Then parallel transport this basis from the center to the points b; c; d. Call
these bases II.
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4. Determine how bases I twist against bases II and thus determine the clutching
function, i.e. the degree of the map

f W S1 �! SO.2/ Š S1:

To fix the sign of the degree, you probably need at least one more point at 45ı
between a and b, for example.

What do you get if you do something similar for TS3 ! S3 by realizing S3 as two
solid cubes identified along their six faces?

4.8.18 Determine the clutching function of the tautological complex line bundle
E ! CP

1 Š S2. The total space of the line bundle is

E D ˚
.Œz�;wz/ 2 CP

1 � C
2 j z ¤ 0;w 2 C

�

and CP
1 is covered by

UC D fŒz W 1� 2 CP
1 j z 2 Cg;

U� D fŒ1 W z� 2 CP
1 j z 2 Cg:

4.8.19 Determine the clutching functions in the sense of Remark 4.6.4 for the Hopf
fibrations

S1 S3

S2

and

S3 S7

S4

4.8.20 Let

G P

M

be a principal G-bundle and �W G ! GL.V/, �iW G ! GL.Vi/, for i D 1; 2,
representations. Let

E D P �� V; Ei D P ��i Vi
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be the associated vector bundles. Show that the dual bundle E�, the direct sum
E1 ˚ E2 and the tensor product E1 ˝ E2 are isomorphic to vector bundles associated
to P. Determine the corresponding representations of G and the vector bundle
isomorphisms. Show that the vector bundle associated to the trivial representation
is trivial.

4.8.21 (From [14]) Let

C

CP
n

be the complex line bundle defined in Example 4.7.16.

1. Prove that �0 is trivial and �1 is isomorphic to the tautological line bundle.
2. Prove that ��k Š � k� for all k 2 Z and

� k Š �1 ˝ : : :˝ �1
„ ƒ‚ …

k factors

.k > 0/:

4.8.22 Let E ! M be a complex vector bundle of rank n � 2. Show that E is
associated to a principal SU.n/-bundle over M if and only if�nE is a trivial complex
line bundle.

4.8.23 Let E D P��V be an associated vector bundle and ˛ a section of the adjoint
bundle Ad.P/. Prove that ˛ defines a canonical endomorphism of the vector bundle
E.

4.8.24 Let M D G=H be a smooth homogeneous space and consider the canonical
principal H-bundle

Suppose that �W H ! GL.V/ is a representation with associated homogeneous
vector bundle
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1. Prove that there exists a canonical smooth left action of the Lie group G on the
total space E. Show that this action maps fibres of E by linear isomorphisms onto
fibres of E and that any given fibre of E can be mapped by a group element onto
any other fibre.

2. Identify the space 	 .E/ of sections of the vector bundle E over the manifold M
with a suitable vector subspace MapH.G;V/ of the vector space Map.G;V/.

Remark The representation of G on 	 .E/, induced by this construction from the
representation of the closed subgroup H on V , is denoted by IndG

H.V/.

4.8.25 (From [30]) Let M D G=H be a smooth homogeneous space and consider
the canonical principal H-bundle

Prove that the tangent bundle TM is isomorphic to the homogeneous vector bundle
over M, defined by the representation � of H on the vector space g=h, given by

�.h/Œv� D ŒAdhv� 8h 2 H; Œv� 2 g=h;

where Ad denotes the adjoint representation of G.



Chapter 5
Connections and Curvature

We said in the introduction to Chap. 4 that principal bundles and associated vector
bundles are the stage for gauge theories. From a mathematical and physical point
of view it is very important that we can define on principal bundles certain fields,
known as connection 1-forms. At least locally (after a choice of local gauge)
we can interpret connection 1-forms as fields on spacetime (the base manifold)
with values in the Lie algebra of the gauge group. These fields are often called
gauge fields and correspond in the associated quantum field theory to gauge
bosons. Every connection 1-form A defines a curvature 2-form F which can be
identified with the field strength of the gauge field. Connection and curvature can
be seen as generalizations of the classical potential A
 and field strength F
� in
electromagnetism, which is a U.1/-gauge theory, to possibly non-abelian gauge
groups.

Pure gauge theory, also known as Yang–Mills theory, involves only the gauge
field A and its curvature F. Additional matter fields, like fermions or scalars, can
be introduced using associated vector bundles. The crucial point is that connections
(the gauge fields) define a covariant derivative on these associated vector bundles,
leading to a coupling between gauge fields and matter fields (if the matter fields
are charged, i.e. the vector bundles are associated to a non-trivial representation
of the gauge group). In a gauge-invariant Lagrangian this results in terms of order
higher than two in the matter and gauge fields, which are interpreted as interactions
between the corresponding particles.

In non-abelian gauge theories, like quantum chromodynamics (QCD), there are
also terms in the Lagrangian of order higher than two in the gauge fields themselves,
coming from a quadratic term in the curvature that appears in the Yang–Mills
Lagrangian. This implies a direct interaction between gauge bosons (the gluons in
QCD) that does not occur in abelian gauge theories like quantum electrodynamics
(QED). The difficulties that are still present nowadays in trying to understand the
quantum version of non-abelian gauge theories, like quantum chromodynamics, can
ultimately be traced back to this interaction between gauge bosons.

© Springer International Publishing AG 2017
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Although in this book we are mainly interested in applications of gauge theories
to physics, gauge theories are also very influential in pure mathematics, for example,
the Donaldson and Seiberg–Witten theories of 4-manifolds and Chern–Simons
theory of 3-manifolds (see Exercise 5.15.16 for an introduction to the Chern–
Simons action).

References for this chapter are [14, 39] and [84].

5.1 Distributions and Connections

Definition 5.1.1 A distribution on a manifold M is a vector subbundle of the
tangent bundle TM.
This notion of distributions is not related to the concept of distributions in
analysis. Connections on principal bundles P, sometimes also called Ehresmann
connections, are defined as certain distributions on the total space of the principal
bundle.

5.1.1 The Vertical Tangent Bundle

We first want to show that on the total space of every principal bundle there is a
canonical vertical bundle. Let

G P

M

be a principal G-bundle. For a point x 2 M we have the fibre

��1.x/ D Px � P

over x, which is an embedded submanifold of P. Let p 2 Px be a point in the fibre.

Definition 5.1.2 The vertical tangent space Vp of the total space P in the point p
is the tangent space Tp.Px/ to the fibre.

Proposition 5.1.3 (Vertical Tangent Bundle) For all p 2 P the vertical tangent
space has the following properties:

1. Vp D ker Dp� .
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2. The map

��W g �! Vp

X 7�! QXp;

where QX is the fundamental vector field associated to X 2 g, determined by the
G-action on P, is a vector space isomorphism between g and Vp.

3. The set of all vertical tangent spaces Vp for p 2 P forms a smooth distribution
on P, called the vertical tangent bundle V. Its rank is equal to the dimension
of G. The distribution V is globally trivial as a vector bundle, with trivialization
given by

P � g �! V

. p;X/ 7�! QXp:

4. The vertical tangent bundle is right-invariant, i.e.

rg�
�
Vp
� D Vp�g 8g 2 G:

Proof

1. We have

Dp�.Y/ D 0 8Y 2 Vp;

because we can write Y as the tangent vector to a curve in Px, which maps under
� to the constant point x 2 M. Hence

Vp � ker Dp�:

Since �W P ! M is a submersion, it follows from the Regular Value Theo-
rem A.1.32 that

dim ker Dp� D dim P � dim M

D dim G

D dim Px:

This implies the claim.
2. It is clear that this map has image in Vp and considering dimensions it suffices to

show that the map is injective. This follows from Proposition 3.4.3.
3. This is clear by 2.
4. This follows because according to Proposition 3.4.6 rg�. QX/ D QY, with Y D

Adg�1X 2 g.
ut
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5.1.2 Ehresmann Connections

Let P ! M be a principal G-bundle.

Definition 5.1.4 A horizontal tangent space in p 2 P is a subspace Hp of TpP
complementary to the vertical tangent space Vp, so that

TpP D Vp ˚ Hp:

Note that horizontal tangent spaces are not defined uniquely (if the dimensions of G
and M are positive).
The following should be clear:

Proposition 5.1.5 Let Hp be a horizontal tangent space at p 2 P, �. p/ D x. Then

Dp�W Hp �! TxM

is a vector space isomorphism.

Definition 5.1.6 Let H be a distribution on P consisting of horizontal tangent
spaces. Then H is called an Ehresmann connection or a connection on P if it
is right-invariant, i.e.

rg�
�
Hp
� D Hp�g 8p 2 P; g 2 G:

The distribution H is also called horizontal tangent bundle given by the connec-
tion.
Right-invariance of an Ehresmann connection means that along a fibre Px the
horizontal subspaces are mutually “parallel” (with respect to right translation along
the fibre). In particular, all Hp along a fibre Px are determined by fixing a single Hp0
for some p0 2 Px, since the G-action is transitive on the fibres of P. Right-invariance
of a connection can also be seen as a symmetry property: The right action of the
gauge group G on P induces a natural right action on TP and Ehresmann connections
are invariant under this action.

Example 5.1.7 (Connections on the Trivial Bundle) Let

G M G

M

pr

be the trivial principal G-bundle. Then the vertical subspaces are given by

V.x;g/ D T.x;g/.fxg � G/ Š TgG:
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We can choose

H.x;g/ D T.x;g/.M � fgg/ Š TxM:

It is clear that this defines a horizontal subspace complementary to the vertical
subspace. Furthermore, the collection of all of these horizontal subspaces are right-
invariant and hence define a connection on the trivial bundle, called the canonical
flat connection.
It can also be shown that every non-trivial principal bundle has a connection (see
Exercise 5.15.1 for a proof in the case of compact structure groups).

Notice that connections are not unique (if dim M; dim G � 1), not even in the
case of trivial principal bundles (all connections that appear in the Standard Model
over Minkowski spacetime, for example, are defined on trivial principal bundles).

5.2 Connection 1-Forms

In this section we study an equivalent description of connections using differential
forms.

5.2.1 Basic Definitions

Recall that we defined in Sect. 3.5.1 the notion of differential forms on a manifold
with values in a vector space. We now need this notion to define so-called connection
1-forms.

Definition 5.2.1 A connection 1-form or connection on a principal G-
bundle �W P ! M is a 1-form A 2 ˝1.P; g/ on the total space P with the
following properties:

1. r�
g A D Adg�1 ı A for all g 2 G.

2. A
� QX� D X for all X 2 g, where QX is the fundamental vector field associated

to X.

A connection 1-form is also called a gauge field on P.
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At a point p 2 P, a connection 1-form is thus a linear map

ApW TpP �! g:

Recall that Adg�1 is a linear isomorphism of g onto itself. This shows that the
composition Adg�1 ı A is well-defined and again an element of ˝1.P; g/.

We want to show that the notion of connection 1-forms is completely equivalent
to the notion of Ehresmann connections on a principal bundle as defined in
Sect. 5.1.2.

Theorem 5.2.2 (Correspondence Between Ehresmann Connections and Con-
nection 1-Forms) There is a bijective correspondence between Ehresmann con-
nections on a principal G-bundle �W P ! M and connection 1-forms:

1. Let H be an Ehresmann connection on P. Then

Ap
� QXp C Yp

� D X;

for p 2 P, X 2 g and Yp 2 Hp, defines a connection 1-form A on P.
2. Let A 2 ˝1.P; g/ be a connection 1-form on P. Then

Hp D ker Ap

defines an Ehresmann connection H on P.

Proof

1. We have to verify the conditions defining a connection 1-form. It is clear that

A
� QX� D X 8X 2 g:

We want to calculate r�
g A. We have shown in Proposition 3.4.6 that rg�

� QX� D
QZ, where Z D Adg�1X. Note that rg�Yp is horizontal if Yp is horizontal by the
definition of Ehresmann connections. Therefore

.r�
g A/p

� QXp C Yp
� D Ap�g

� QZp�g C rg�Yp
�

D Z

D Adg�1 ı Ap
� QXp C Yp

�
:

This implies the claim.
2. We have to verify that H is a horizontal right-invariant distribution on P. We

first show that H is a subbundle of TP: using a basis fTag for the Lie algebra g
we can write A D P

a AaTa, where Aa 2 ˝1.P/ are real-valued 1-forms. Since
A. QX/ D X for all X 2 g, it follows that Aa. QTb/ D ıab. In particular, the 1-forms
Aa are linearly independent in each point p 2 P. Let g be a Riemannian metric
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on P and Za the vector fields g-dual to the 1-forms Aa. The fZag are linearly
independent and span a subbundle � of TP of rank dim g. It follows that H is the
g-orthogonal complement of � in TP and hence a distribution.

To verify that H is horizontal, we first show that Hp \ Vp D f0g: Let Y 2
ker Ap \ Vp. Then Y is equal to a fundamental vector, hence Y D QXp for some
X 2 g. But then

0 D Ap.Y/ D X;

hence Y D 0.
Furthermore, the 1-form Ap is surjective onto g, hence

dim ker Ap D dim TpP � dim g D dim TpP � dim Vp:

Thus TpP D ker Ap ˚ Vp and Hp is horizontal. To check that H is right-invariant,
let Y 2 Hp. Then

Ap�g.rg�Y/ D .r�
g A/p.Y/

D Adg�1 .Ap.Y//

D 0:

This shows rg�Y 2 Hp�g and hence the claim.
ut

Example 5.2.3 Let G be a Lie group and H � G a closed subgroup. By
Theorem 4.2.15

H G

G H

is an H-principal bundle. Suppose there exists a vector subspace m � g such that

g D h ˚ m; Ad.H/m � m:

The homogeneous space is then called reductive. In this situation we can define a
canonical connection 1-form A on the bundle G ! G=H. See Exercise 5.15.6 for
details.
We describe another explicit example of a connection 1-form in the following
subsection.
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5.2.2 �A Connection 1-Form on the Hopf Bundle S3 ! S2

In this subsection we follow reference [14, Example 3.3]. We consider the Hopf
bundle

and think of S1 as the unit circle in C with Lie algebra iR. If Y D iy 2 iR, then
exp.Y/ D eiy 2 S1. We also think of S3 as the unit sphere in C

2 with tangent spaces

T.z0;z1/S
3 D f.X0;X1/ 2 C

2 j Nz0X0 C Nz1X1 D 0g:

We define 1-forms ˛j; N̨ j 2 ˝1.S3;C/ by

˛j.X0;X1/ D Xj;

N̨ j.X0;X1/ D NXj:

Proposition 5.2.4 (Connection 1-Form on the Hopf Bundle) The 1-form A on S3,
given by

A.z0;z1/ D 1

2
.Nz0˛0 � z0 N̨0 C Nz1˛1 � z1 N̨1/ ;

has values in iR and is a connection 1-form for the Hopf bundle.

Proof It is clear that A has values in iR, since NA D �A. We check the defining
properties of connection 1-forms. Since S1 is abelian, we have Adg�1 D Id for all
g 2 S1. We therefore have to show that

r�
g A D A 8g 2 S1:

We fix a tangent vector X 2 T.z0;z1/S
3, given by the velocity vector

X D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

.z0.t/; z1.t// D .X0;X1/

of a suitable curve in S3. Then

rg�X D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

.z0.t/g; z1.t/g/

D .X0g;X1g/:
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Hence

.r�
g A/.z0;z1/.X/ D A.z0g;z1g/.X0g;X1g/

D 1

2

�Nz0 NgX0g � z0g NX0 Ng C Nz1 NgX1g � z1g NX1 Ng
�

D 1

2

�Nz0X0 � z0 NX0 C Nz1X1 � z1 NX1
�

D A.z0;z1/.X0;X1/;

where we used that gNg D 1.
We also have to show that

A. QY/ D Y

for all Y in the Lie algebra of S1. Let Y D iy, with y 2 R. Then the associated
fundamental vector field is given by

QY.z0;z1/ D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

.z0 exp.ity/; z1 exp.ity// D .iz0y; iz1y/:

This implies

A.z0;z1/. QY/ D 1

2
.Nz0iz0y C z0i Nz0y C Nz1iz1y C z1i Nz1y/

D iy.jz0j2 C jz1j2/
D Y;

since .z0; z1/ 2 S3. ut
See Exercise 7.9.9 for a generalization of this construction to the Hopf bundle S7 !
S4 with structure group SU.2/.

5.3 Gauge Transformations

Let �W P ! M be a principal G-bundle.

Definition 5.3.1 A (global) gauge transformation is a bundle automorphism
of P, i.e. a diffeomorphism f W P ! P which preserves the fibres of P and is G-
equivariant:

1. � ı f D � .
2. f . p � g/ D f . p/ � g for all p 2 P and g 2 G.
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Under composition of diffeomorphisms the set of all gauge transformations forms a
group that we denote by G .P/ or Aut.P/. A local gauge transformation is a bundle
automorphism on the principal G-bundle �W PU ! U, where U � M is an open set.
We sometimes prefer to call gauge transformations in this sense bundle automor-
phisms and leave the name gauge transformations to physical gauge transformations
that we introduce later. Notice that whether a bundle automorphism f is global or
local is not related to the question of whether f is constant or non-constant in some
sense. We will later call gauge transformations rigid if they are constant in a specific
way.

Depending on the context one sometimes calls G or G .P/ D Aut.P/ the gauge
group of the principal bundle P. The group G .P/ is infinite-dimensional if both the
dimensions of M and G are at least 1.

The group Aut.P/ of bundle automorphisms is one of the places in differential
geometry where an infinite-dimensional group appears naturally. Gauge
theories, which are field theories invariant under all gauge transformations,
in this regard have the huge symmetry group Aut.P/. The diffeomorphism
group Diff.M/ of spacetime M plays a comparable role in general relativity.

5.3.1 Bundle Automorphisms as G-Valued Maps on P

We would like to give another, equivalent description of bundle automorphisms (we
follow [14, Sect. 3.5]).

Definition 5.3.2 We denote by C1.P;G/G the following set of maps from P to G:

C1.P;G/G D ˚
� W P ! G smooth

ˇ
ˇ�. p � g/ D cg�1 .�. p// D g�1�. p/g

�
;

where cg�1 is conjugation by g�1. This set is a group under pointwise multiplication:

.� 0 � �/. p/ D � 0. p/ � �. p/:

The neutral element is given by the constant map on P with value e 2 G.

Proposition 5.3.3 (Correspondence Between Bundle Automorphisms and G-
Valued Maps) The map

G .P/ �! C1.P;G/G

f 7�! �f
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with �f defined by

f . p/ D p � �f . p/ 8p 2 P;

is a well-defined group isomorphism. We can therefore identify the group of bundle
automorphisms G .P/ with C1.P;G/G.

Proof Since f . p/ is in the same fibre as p, there exists a unique g 2 G such that
f . p/ D p � g. This g we call �f . p/.

We first have to show that �f is an element of C 1.P;G/G: It is not difficult to
show that �f is a smooth map from P to G. We have

. p � g/�f . p � g/ D f . p � g/

D f . p/ � g

D . p � �f . p// � g:

This implies that

g � �f . p � g/ D �f . p/ � g 8g 2 G;

and thus �f 2 C1.P;G/G.
The inverse of the map above is given by

C1.P;G/G �! G .P/

� 7�! f�

with f� defined by

f� . p/ D p � �. p/ 8p 2 P:

We only have to show that f� is a bundle automorphism. It is clear that f� . p/ is in the
same fibre as p, hence f� is a bundle map. It is easy to check that f� is G-equivariant
and that f �1

� D f��1 , hence f� is a diffeomorphism. Thus f� 2 G .P/.
Finally, we can check that �f 0ıf D �f 0 � �f , hence the map defines a group

isomorphism between G .P/ and C1.P;G/G. ut
In the special case when the structure group G is abelian we have a simpler
description.

Proposition 5.3.4 (Bundle Automorphisms for Abelian Structure Groups) If
the Lie group G is abelian, then there is a group isomorphism

C1.M;G/ �! C1.P;G/G

� 7�! ��
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where C 1.M;G/ denotes the set of smooth maps from M to G (a group under
pointwise multiplication) and �� is defined by

�� D � ı �;

where �W P ! M is the projection.

Proof This is Exercise 5.15.2. ut
Corollary 5.3.5 For principal Tn-bundles P ! M there is an isomorphism of the
group of bundle automorphisms G .P/ with the group of smooth maps from M to Tn.

5.3.2 Physical Gauge Transformations

In physics, gauge transformations are often defined as maps on the base manifold M
to the structure group G, even for non-abelian Lie groups G. We discuss the relation
of this notion to our definition of gauge transformations as bundle automorphisms.

Definition 5.3.6 Let �W P ! M be a principal G-bundle. A physical gauge
transformation is a smooth map � W U ! G, defined on an open subset U � M.
The set of all physical gauge transformations on U forms a group C1.U;G/ with
pointwise multiplication. A rigid physical gauge transformation is a constant map
� W U ! G. The rigid physical gauge transformations form a group isomorphic to G.

Proposition 5.3.7 (Physical Gauge Transformations and Bundle Automor-
phisms) Let sW U ! P be a local section. Then s defines a group isomorphism

C1.PU;G/
G �! C1.U;G/

� 7�! �� D � ı s:

The inverse of this map is given by

C1.U;G/ �! C1.PU;G/
G

� 7�! ��

where

��.s.x/ � g/ D g�1�.x/g 8x 2 U; g 2 G:

Proof The proof is left as an exercise. ut
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The upshot is that after a choice of local gauge s on U we can identify local
bundle automorphisms on the principal G-bundle PU ! U with physical
gauge transformations on U.

5.3.3 The Action of Bundle Automorphisms on Associated
Vector Bundles

Bundle automorphisms on a principal bundle have the important property that they
act on every associated vector bundle. Let �PW P ! M be a principal G-bundle and
�EW E D P �� V ! M an associated vector bundle.

Theorem 5.3.8 (Action of Bundle Automorphisms on Associated Bundles) The
group of bundle automorphisms of the principal bundle acts on the associated vector
bundle through bundle isomorphisms via

G .P/ � E �! E

. f ; Œ p; v�/ 7�! f � Œ p; v� D Œf . p/; v� D Œ p � �f . p/; v�:

Proof We only have to show that the action is well-defined: If Œ p0; v0� D Œ p; v�, then
p0 D p � g and v0 D �.g/�1v for some g 2 G, so that

�
f . p0/; v0� D �

f . p � g/; �.g/�1v
�

D �
f . p/ � g; �.g/�1v

�

D Œf . p/; v�:

ut
We can also describe this action in the language of physics:

Theorem 5.3.9 (Action of Physical Gauge Transformations on Associated Bun-
dles) Let sW U ! P be a local gauge and ˚ W U ! E a local section. We write the
section with respect to the local gauge as

˚.x/ D Œs.x/; �.x/� 8x 2 U;

where �W U ! V is a smooth map. Suppose f is a local bundle automorphism of P
over U and �f W U ! G the associated physical gauge transformation. Then

. f � ˚/.x/ D Œs.x/; �.�f .x//�.x/�:

Proof This is a simple calculation. ut
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As a consequence the action of a local bundle automorphism on a local section
˚ of E is given by the action of the physical gauge transformation on the vector-
valued map �. In physics one writes the action of a physical gauge transformations
� W U ! G on a field �W U ! V as

�.x/ 7�! �.x/ � �.x/:

The more general notion of bundle automorphism above has the advantage that
it also works for non-trivial principal bundles and associated vector bundles,
independent of the choice of (local) gauge.

Remark 5.3.10 There is a simple, but profound, difference between gauge theories
and general relativity (Edward Witten [150] attributes this insight to Bryce DeWitt).
In gauge theories the group of symmetries, the gauge group G .P/, acts through
bundle automorphisms, i.e. it preserves all points on the base manifold M. This is
related to the fact that gauge theories describe local interactions (the interactions
occur in single spacetime points). In general relativity, however, the group of
symmetries, the diffeomorphism group Diff.M/, acts by moving points around
in M. If the diffeomorphism invariance holds in quantum gravity on the level of
Green’s functions (correlators), then they must be constant, in striking contrast to
the behaviour of Green’s functions in Poincaré invariant quantum field theories.

It is nowadays thought that gravity cannot be described by a local quantum field
theory of point particles and that a theory of quantum gravity must be fundamentally
non-local. This leads to alternatives such as string theory, where the graviton
and other particles are no longer 0-dimensional point particles, but 1-dimensional
strings.

5.4 Local Connection 1-Forms and Gauge Transformations

Let �W P ! M be a principal G-bundle and A 2 ˝1.P; g/ a connection 1-form. It is
very useful to consider the following notion.

Definition 5.4.1 Let sW U ! P be a local gauge of the principal bundle on an
open subset U � M. Then we define the local connection 1-form (or local
gauge field) As 2 ˝1.U; g/, determined by s, by

As D A ı Ds D s�A:

The local connection 1-form is thus defined on an open subset in the base
manifold M and can be considered as a “field on spacetime” in the usual sense.

(continued)
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Definition 5.4.1 (continued)
If we have a manifold chart on U and f@
g
D1;:::;n are the local coordinate
basis vector fields on U, we set

A
 D As.@
/:

We can also choose in addition a basis feag of the Lie algebra g and then
expand

A
 D
dimgX

aD1
Aa

ea:

The real-valued fields Aa

 2 C1.U;R/ and the corresponding real-valued

1-forms Aa
s 2 ˝1.U/ are called (local) gauge boson fields.

A principal bundle can have many local gauges and it is interesting to determine
how the local connection 1-forms transform as we change the local gauge. Let
siW Ui ! P and sjW Uj ! P be local gauges with Ui \ Uj ¤ ;. Recall from the
proof of Proposition 4.7.11 that

si.x/ D sj.x/ � gji.x/ 8x 2 Ui \ Uj;

where

gjiW Ui \ Uj �! G

is the smooth transition function between the associated local trivializations. We can
consider gji as a physical gauge transformation between the local gauges si and sj.

We have local connection 1-forms

Ai D Asi 2 ˝1.Ui; g/;

Aj D Asj 2 ˝1.Uj; g/:

We want to calculate the relation between Ai and Aj. Recall that the Maurer–Cartan
form 
G 2 ˝1.G; g/ was defined as


G.v/ D DgLg�1 .v/
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for v 2 TgG. We set


ji D g�
ji
G 2 ˝1.Ui \ Uj; g/:

Then we have:

Theorem 5.4.2 (Transformation of Local Gauge Fields Under Changes of
Gauge) With the notation above, the local connection 1-forms transform as

Ai D Adg�1
ji

ı Aj C 
ji

on Ui \ Uj. If G � GL.n;K/ is a matrix Lie group, then

Ai D g�1
ji � Aj � gji C g�1

ji � dgji;

where � denotes matrix multiplication, g�1
ji denotes the inverse in G and dgji is

the differential of each component of the function gjiW Ui \ Uj ! G � K
n�n. In

particular, if G is abelian, then

Ai D Aj C 
ji D Aj C g�1
ji � dgji:

Proof Let x 2 Ui \ Uj and Z 2 TxM. We set

X D Dxsj.Z/ 2 Tsj.x/P;

Y D Dxgji.Z/ 2 Tgji.x/G:

With the group action

˚ W P � G �! P

. p; g/ 7�! p � g

we calculate by Proposition 3.5.4 and the chain rule

Dxsi.Z/ D Dx
�
˚ ı .sj; gji/

�
.Z/

D Dsj.x/rgji.x/.X/C A
G.Y/si.x/

D Dsj.x/rgji.x/.X/C A
ji.Z/si.x/:

Therefore, by the defining properties of a connection 1-form A,

Ai.Z/ D A.Dxsi.Z//

D A
�

Dsj.x/rgji.x/.X/C A
ji.Z/si.x/

�
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D
�

r�
gji.x/A

�
.X/C 
ji.Z/

D Adg�1
ji .x/ ı Aj.Z/C 
ji.Z/:

To prove the second claim recall from Proposition 2.1.48 that for a matrix Lie group

Adg�1a D g�1 � a � g;

for all g 2 G and a 2 g, and 
G.v/ D g�1 � v for v 2 TgG, hence


ji.Z/ D 
G
�
Dxgji.Z/

� D g�1
ji � dgji.Z/:

ut
Remark 5.4.3 In physics one considers connection 1-forms usually only in the local
sense as g-valued 1-forms Ai on open subset Ui of M together with the transfor-
mation rule given by Theorem 5.4.2. The mathematical concept of connections on
principal bundles clarifies the invariant geometric object behind this transformation
principle.
A very similar argument implies the following global statement:

Theorem 5.4.4 (Transformation of Connections Under Bundle Automor-
phisms) Let P ! M be a principal bundle and A 2 ˝1.P; g/ a connection
1-form on P. Suppose that f 2 G .P/ is a global bundle automorphism. Then f �A is
a connection 1-form on P and

f �A D Ad��1
f

ı A C ��
f 
G:

Proof This is Exercise 5.15.3. ut
Theorem 5.4.4 corresponds to the “active” point of view for gauge transformations
(symmetries are related to the behaviour under certain bundle automorphisms),
while Theorem 5.4.2 corresponds to the “passive” point of view (symmetries are
implicit in the behaviour under coordinate transformations).

5.5 Curvature

5.5.1 Curvature 2-Forms

Let �W P ! M be a principal G-bundle and A 2 ˝1.P; g/ a connection 1-form on
P. Let H be the associated horizontal vector bundle, defined as the kernel of A. We
have

TP D V ˚ H



274 5 Connections and Curvature

and set

�H W TP �! H

for the projection onto the horizontal vector bundle.

Definition 5.5.1 The 2-form F 2 ˝2.P; g/, defined by

F.X;Y/ D dA.�H.X/; �H.Y// 8X;Y 2 TpP; p 2 P

is called the curvature 2-form or curvature of the connection A. We sometimes
write FA to emphasize the dependence on A.
Here are some simple properties of the curvature.

Proposition 5.5.2 The following identities hold:

1. r�
g F D Adg�1 ı F for all g 2 G.

2. QXyF D 0 for all X 2 g, where QXy denotes insertion of the vector field QX.

Proof

1. Note that

rg�Hp D Hp�g;

rg�Vp D Vp�g:

Hence

�H ı rg� D rg� ı �H

on TpP, since both sides evaluated on X D Xh CXv 2 TpP, where Xh is horizontal
and Xv is vertical, are equal to rg�.Xh/. We now calculate for vectors X;Y 2 TpP:

.r�
g F/p.X;Y/ D dA.�H ı rg�.X/; �H ı rg�.Y//

D .r�
g dA/.�H.X/; �H.Y//

D d
�
Adg�1 ı A

�
.�H.X/; �H.Y//

D Adg�1 ı F.X;Y/:

2. This is clear, because �H. QX/ D 0.
ut
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5.5.2 The Structure Equation

Definition 5.5.3 Let P be a manifold and g a Lie algebra. For � 2 ˝k.P; g/ and
� 2 ˝ l.P; g/ we define Œ�; �� 2 ˝kCl.P; g/ by

Œ�; ��.X1; : : : ;XkCl/ D 1

kŠlŠ

X

�2SkCl

sgn.�/Œ�.X�.1/; : : : ;X�.k//; �.X�.kC1/; : : : ;X�.n/�;

where the commutators on the right are the commutators in the Lie algebra g. In the
literature one also finds the notation � ^ � or Œ� ^ �� for Œ�; ��.
If we expand in a vector space basis fTag for the Lie algebra g

� D
dimgX

aD1
�a ˝ Ta;

� D
dimgX

aD1
�a ˝ Ta;

with �a; �a standard real-valued k- and l-forms, then the definition is equivalent to

Œ�; �� D
dim gX

a;bD1
�a ^ �b ˝ ŒTa;Tb�:

Most of the time we need the definition only for 1-forms �; � 2 ˝1.P; g/, where we
have

Œ�; ��.X;Y/ D Œ�.X/; �.Y/� � Œ�.Y/; �.X/�;
and

Œ�; ��.X;Y/ D 2Œ�.X/; �.Y/�:

We can now state the following important formula for the curvature 2-form.

Theorem 5.5.4 (Structure Equation) The curvature form F of a connection
form A satisfies

F D dA C 1

2
ŒA;A�:



276 5 Connections and Curvature

We need the following lemma:

Lemma 5.5.5 Let X D QV be a fundamental vector field and Y a horizontal vector
field on P. Then the commutator ŒX;Y� is horizontal.

Proof The flow of X is given by �t D rexp.tV/. This implies by Theorem A.1.46

ŒX;Y�p D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

��t�Yp�exp.tV/ 2 Hp;

since Yp�exp.tV/ 2 Hp�exp.tV/ and ��t� preserves the horizontal tangent bundle. ut
We can now prove Theorem 5.5.4.

Proof We check the formula by inserting X;Y 2 TpP on both sides of the equation,
where we distinguish the following three cases:

1. Both X and Y are vertical: Then X and Y are fundamental vectors,

X D QVp;

Y D QWp;

for certain elements V;W 2 g. We get

F.X;Y/ D dA.�H.X/; �H.Y// D 0:

On the other hand we have

1

2
ŒA;A�.X;Y/ D ŒA.X/;A.Y/� D ŒV;W�:

The differential dA of a 1-form A is given according to Proposition A.2.22 by

dA.X;Y/ D LX.A.Y// � LY.A.X//� A.ŒX;Y�/;

where we extend the vectors X and Y to vector fields in a neighbourhood of p. If
we choose the extension by the fundamental vector fields QV and QW, then

dA.X;Y/ D LX.W/� LY.V/� ŒV;W�

D �ŒV;W�;

since V and W are constant maps from P to g and we used that Œ QV ; QW� D AŒV;W�
according to Proposition 3.4.4. This implies the claim.

2. Both X and Y are horizontal: Then

F.X;Y/ D dA.X;Y/
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and

1

2
ŒA;A�.X;Y/ D ŒA.X/;A.Y/� D Œ0; 0� D 0:

This implies the claim.
3. X is vertical and Y is horizontal: Then X D QVp for some V 2 g. We have

F.X;Y/ D dA.�H.X/; �H.Y// D dA.0;Y/ D 0

and

1

2
ŒA;A�.X;Y/ D ŒA.X/;A.Y/� D ŒV; 0� D 0:

Furthermore,

dA.X;Y/ D L QV .A.Y//� LY.V/� A.Œ QV;Y�/
D �A.Œ QV ;Y�/
D 0

since Œ QV;Y� is horizontal by Lemma 5.5.5. This implies the claim.
ut

The structure equation is very useful when we want to calculate the curvature of a
given connection.

5.5.3 The Bianchi Identity

Let F be the curvature 2-form of a connection A. Then dF is a 3-form on P with
values in the Lie algebra g. We want to consider the situation where we insert in all
three arguments of dF a vector in the horizontal subbundle H defined by A.

Theorem 5.5.6 (Bianchi Identity (First Form)) The differential dF of the curva-
ture 2-form vanishes on H � H � H.

Proof We use the following formula for the differential of a 2-form � on P, see
Proposition A.2.22:

d�.X;Y;Z/ D LX.�.Y;Z//C LY.�.Z;X//C LZ.�.X;Y//

� �.ŒX;Y�;Z/ � �.ŒY;Z�;X/ � �.ŒZ;X�;Y/



278 5 Connections and Curvature

for all vector fields X;Y;Z on P. By the structure equation we have F D dAC 1
2
ŒA;A�

so that

dF D 1

2
dŒA;A�:

We set � D 1
2
ŒA;A�. Then

dF.X;Y;Z/ D d�.X;Y;Z/

for all X;Y;Z 2 TpP. We have Vy� � 0 if V is a horizontal vector field, since

�.V;W/ D ŒA.V/;A.W/� D Œ0;A.W/� D 0

for an arbitrary vector field W on P. This implies the claim, because we can assume
that X;Y;Z are horizontal in the neighbourhood of p 2 P. ut

5.6 Local Curvature 2-Forms

Let A be a connection 1-form on the principal bundle P and sW U ! P a local
section (local gauge), defined on an open subset U � M. We then defined the local
connection 1-form (or local gauge field) As 2 ˝1.U; g/ by

As D A ı Ds D s�A:

Similarly we define:

Definition 5.6.1 The local curvature 2-form (or local field strength) Fs 2
˝2.U; g/, determined by s, is defined by

Fs D F ı .Ds;Ds/ D s�F:

If we have a manifold chart on U and f@
g are local coordinate basis vector
fields on U, we set

F
� D Fs.@
; @�/:

(continued)
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Definition 5.6.1 (continued)
If we choose in addition a basis feag of the Lie algebra g, we can expand the
local field strength as

F
� D
dimgX

aD1
Fa

�ea:

Proposition 5.6.2 (Local Structure Equation) The local field strength can be
calculated as

Fs D dAs C 1

2
ŒAs;As�

and

F
� D @
A� � @�A
 C ŒA
;A��:

If the structure group G is abelian, then Fs D dAs and

F
� D @
A� � @�A
:

Proof We calculate

s�F D s�dA C 1

2
s�ŒA;A�

D ds�A C 1

2
Œs�A; s�A�

D dAs C 1

2
ŒAs;As�:

Here we used that

.s�ŒA;A�/.X;Y/ D Œs�A; s�A�.X;Y/;

which is easy to verify. This implies the first formula. The second formula follows
from

F
� D dAs.@
; @�/C 1

2
ŒAs;As�.@
; @�/

D @
.As.@�//� @�.As.@
//� As.Œ@
; @� �/C ŒAs.@
/;As.@�/�

D @
A� � @�A
 C ŒA
;A��:
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Here we used that Œ@
; @�� D 0, because the basis vector fields f@
g come from a
chart on U. ut

In physics, the quadratic term ŒA
;A�� in the expression for F
� (leading to
cubic and quartic terms in the Yang–Mills Lagrangian, see Definition 7.3.1
and the corresponding local formula in Eq. (7.1)) is interpreted as a direct
interaction between gauge bosons described by the gauge field A
. The
quadratic term in the curvature is only present if the gauge group G is non-
abelian, like G D SU.3/ in quantum chromodynamics (QCD), but not if G is
abelian, like G D U.1/ in quantum electrodynamics (QED).

This explains why gluons, the gauge bosons of QCD, interact directly with
each other, while photons, the gauge bosons of QED, do not. It is also the
reason for phenomena in QCD such as colour confinement (at low energies)
and asymptotic freedom (at high energies).

We would like to determine how the local field strength transforms under local gauge
transformations. Let siW Ui ! P and sjW Uj ! P be local gauges with Ui \ Uj ¤ ;
and associated local curvature 2-forms Fi;Fj. The local gauge transformation

gijW Ui \ Uj �! G

is defined by

si.x/ D sj.x/ � gji.x/ 8x 2 Ui \ Uj:

We then have:

Theorem 5.6.3 The local curvature 2-forms transform as

Fi D Adg�1
ji

ı Fj

on Ui \ Uj. If G is a matrix Lie group, then

Fi D g�1
ji � Fj � gji:

Proof Recall from the proof of Theorem 5.4.2 that

Dxsi.V/ D Dsj.x/rgji.x/ ı Dxsj.V/C A
ji.V/si.x/
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for a vector V 2 TxM. Hence we get for V;W 2 TxM, since F vanishes if a vertical
vector is inserted:

Fi.V;W/ D F.Dsj.x/rgji.x/ ı Dxsj.V/;Dsj.x/rgji.x/ ı Dxsj.W//

D
�

r�
gji.x/

F
�
.Dxsj.V/;Dxsj.W//

D Adg�1
ji .x/ ı Fj.V;W/:

ut
Corollary 5.6.4 If G is abelian, then Fs is independent of the choice of local gauge
and hence determines a well-defined, global, closed 2-form FM 2 ˝2.M; g/.

Proof In the abelian case the curvature defines a global form on M by Theo-
rem 5.6.3. It remains to check that FM is closed. In a local gauge s we have according
to the local structure equation

Fs D dAs C 1

2
ŒAs;As�:

Since G is abelian, we have ŒAs;As� D 0. We conclude that

dFM D dFs D ddAs D 0:

ut
Remark 5.6.5 Note one important point about this corollary: Locally we have Fs D
dAs if G is abelian, hence Fs is locally exact. However, the 2-form FM in general
is not globally exact, because As does not define a global 1-form on M (there is a
change of As under changes of local gauge even if the structure group is abelian, see
Theorem 5.4.2).

5.6.1 �The Curvature 2-Form of the Connection on the Hopf
Bundle S3 ! S2

We consider the connection 1-form A on the Hopf bundle from Sect. 5.2.2 and
continue to use the same notation (we follow [14, Example 3.10]).

Proposition 5.6.6 The curvature of the connection 1-form A on the Hopf bundle is
given by

FA D dA D �.˛0 ^ N̨0 C ˛1 ^ N̨1/:
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Proof Since S1 is abelian, we have ŒA;A� D 0, hence FA D dA. The claim follows
once we have shown that

dzi D ˛i;

dNzi D N̨ i;

since then also d˛i D 0 D d N̨ i. This is clear from the definition of ˛i and N̨ i: for
example, if

.X0;X1/ D . P�0.0/; P�1.0//

with curves �0; �1, then

dzj.X0;X1/ D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

zj.�0.t/; �1.t// D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

�j.t/ D Xj:

ut
According to Corollary 5.6.4 the curvature FA determines a well-defined, global,
closed 2-form FS2 on S2, where

FS2 jU D s�FA

for any local gauge sW U ! S3 on an open subset U � S2. We want to determine the
2-form FS2 . Consider the open subset

U1 D fŒz� D Œz0 W z1� 2 CP
1 j z1 ¤ 0g

together with the chart map

 1W U1 �! C

Œz0 W z1� 7�! z0
z1
:

We consider a 2-form QF on C, defined by

QFw D � 1

.1C jwj2/2 dw ^ d Nw:

Proposition 5.6.7 The 2-form FS2 is given on U1 � S2 by

FS2 jU1 D  �
1

QF:
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Proof It suffices to show that

�� �
1

QF D FA;

because then

s�FA D .� ı s/� �
1

QF D  �
1

QF

for all local gauges sW U1 ! S3. To prove the formula note that

 1 ı �.z0; z1/ D  1.Œz0 W z1�/ D z0
z1
:

This implies for .z0; z1/ 2 S3

�� �
1

QF D . 1 ı �/� QF

D � 1

.1C j z0
z1

j2/2 d

�
z0
z1

�

^ d

� Nz0
Nz1
�

D �z21

�
1

z1
dz0 � z0

z21
dz1

�

^ Nz21
�
1

Nz1 dNz0 � Nz0
Nz21

dNz1
�

D �.z1dz0 � z0dz1/ ^ .Nz1dNz0 � Nz0dNz1/
D �jz1j2˛0 ^ N̨0 � jz0j2˛1 ^ N̨1

C z1Nz0˛0 ^ N̨1 C z0Nz1˛1 ^ N̨0:
We have Nz0z0 C Nz1z1 D 1, hence

Nz0˛0 C z0 N̨0 C Nz1˛1 C z1 N̨1 D 0:

This implies

z1Nz0˛0 ^ N̨1 C z0Nz1˛1 ^ N̨0 D �z1.z0 N̨0 C Nz1˛1 C z1 N̨1/ ^ N̨1
� z0.Nz0˛0 C z0 N̨0 C z1 N̨1/ ^ N̨0

D �jz1j2˛1 ^ N̨1 � jz0j2˛0 ^ N̨0:
Therefore

�� �
1

QF D � �jz1j2 C jz0j2
�
.˛0 ^ N̨0 C ˛1 ^ N̨1/

D �.˛0 ^ N̨0 C ˛1 ^ N̨1/
D FA:

ut
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Proposition 5.6.8 For the connection on the Hopf bundle the following equation
holds:

1

2�i

Z

S2
FS2 D 1:

Proof Since

CP
1 D U1 [ fŒ1 W 0�g

(i.e. S2 D CP
1 is the one-point compactification of C) we can calculate

Z

S2
FS2 D

Z

U1

FS2 jU1 D
Z

U1

 �
1

QF D
Z

C

QF

D �
Z

C

1

.1C jwj2/2 dw ^ d Nw

D 2i
Z

R2

1

.1C x2 C y2/2
dx ^ dy

D 2i
Z 2�

0

Z 1

0

1

.1C r2/2
rdrd�

D �i
Z 2�

0


1

1C r2

�1

0

d�

D i
Z 2�

0

d�

D 2�i:

ut
The form  �

1
QF extends to a well-defined 2-form on all of CP1, which is equal to

FS2 . The 2-form

!FS D 1

2i
FS2

is known as the Fubini–Study form of CP1. It is related to the standard volume
form !std on S2 of area 4� by

!FS D 1

4
!std:
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Remark 5.6.9 We can define for any principal S1-bundle P ! M over a manifold
M the first Chern class or Euler class as

c1.P/ D e.P/ D


� 1

2�i
FM

�

:

This is a real cohomology class in H2
dR.M/. It turns out that this class does not

depend on the choice of connection 1-form on P (even though the 2-form FM does).
In the case of the Hopf bundle we have

c1.Hopf/ D � 1

4�
Œ!std�:

5.7 �Generalized Electric and Magnetic Fields on Minkowski
Spacetime of Dimension 4

For the following notion from physics see, for example, [100]. Suppose �W P !
M is a principal G-bundle and M is R

4 with Minkowski metric � of signature
.C;�;�;�/ (a similar construction works locally on any four-dimensional Lorentz
manifold). Let x0; x1; x2; x3 be global coordinates in an inertial frame with coordinate
vector fields satisfying

�.@0; @0/ D C1;
�.@i; @i/ D �1 i D 1; 2; 3;

�.@
; @�/ D 0 
 ¤ �:

We also write for the coordinates

x0 D t; x1 D x; x2 D y; x3 D z:

Suppose A is a connection 1-form on P with curvature F. Let sW M ! P be a global
gauge and

As D s�A; Fs D s�F

as above. We write

A
 D As.@
/;

F
� D Fs.@
; @�/
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and we have the local structure equation

F
� D @
A� � @�A
 C ŒA
;A��:

The 4 � 4-matrix .F
�/ comes from a 2-form on M and is skew-symmetric.

Definition 5.7.1 The generalized electric and magnetic field, determined by the
connection, the choice of gauge and the inertial frame, are the g-valued functions

Ei;Bi 2 C1.M; g/; i D x; y; z

defined by

.F
�/ D

0

B
B
@

0 Ex Ey Ez

�Ex 0 �Bz By

�Ey Bz 0 �Bx

�Ez �By Bx 0

1

C
C
A :

Equivalently,

Ei D F0i;

�ijkBk D �Fij;

where �ijk is totally antisymmetric with �123 D 1. We could expand the generalized
electric and magnetic fields further in a basis for the Lie algebra g.
For quantum electrodynamics (QED) with G D U.1/ these are the standard real-
valued electric and magnetic fields (after choosing a basis for u.1/ Š R). In this
situation the electric and magnetic fields do not depend on the choice of gauge
according to Corollary 5.6.4, because G is abelian (the gauge field As does depend
on the choice of gauge).

For G D SU.n/, in particular G D SU.3/ corresponding to quantum chromody-
namics (QCD), these g-valued fields are also called chromo-electric and chromo-
magnetic fields (or colour-electric and colour-magnetic fields). They describe the
field strength of the gluon field corresponding to the connection 1-form A
.

5.8 Parallel Transport

Connections define an important concept: parallel transport in principal and
associated vector bundles. The notion of parallel transport also leads to the concept
of covariant derivative on associated vector bundles.

Let �W P ! M be a principal G-bundle with a connection A. We want to lift
curves in M to horizontal curves in P, which are defined in the following way (by a
curve we always mean in this and the following sections a smooth curve).
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Definition 5.8.1 A curve ��W I ! P is called a horizontal lift of a curve � W I ! M,
defined on an interval I, if:

1. � ı �� D �

2. the velocity vectors P��.t/ are horizontal, i.e. elements of H��.t/, for all t 2 I.

The following theorem says that a horizontal lift of a curve in the base manifold
always exists and is unique once the starting point has been given.

Theorem 5.8.2 (Existence and Uniqueness of Horizontal Lifts of Curves) Let
� W Œa; b� ! M be a curve with �.a/ D x. Let p be a point in the fibre Px. Then there
exists a unique horizontal lift ��

p of � with ��
p .a/ D p.

Proof Since P is locally trivial, there exists some lift ı of � with ı.a/ D p (one could
also argue that the pullback of the bundle P under the map � is trivial, because Œa; b�
is contractible). We want to find a map gW Œa; b� ! G such that

��.t/ D ı.t/ � g.t/

is horizontal. We will determine g.t/ as the solution of a differential equation.
The curve ��.t/ will be horizontal if

A
� P��.t/

� D 0 8t 2 Œa; b�:

We can calculate P��.t/ with Proposition 3.5.4:

P��.t/ D rg.t/� Pı.t/CC
G.Pg.t//��.t/:

Hence

A. P��.t// D Ad.g.t/�1/ ı A. Pı.t//C 
G.Pg.t//
D Lg.t/�1�

�
Rg.t/�A. Pı.t//C Pg.t/

�
:

We conclude that g.t/ has to be the solution of the differential equation

Pg.t/ D �Rg.t/�A. Pı.t//

with g.0/ D e. This is the integral curve in the Lie group G through e of the
time-dependent right-invariant vector field on G, corresponding to the Lie algebra
element �A. Pı.t// 2 g. Such an integral curve on the interval Œa; b� exists by
Theorem 1.7.18. An explicit solution for g.t/ in the case of a linear Lie group G
can also be found in Proposition 5.10.4. ut
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Fig. 5.1 Parallel transport

Definition 5.8.3 Let � W Œa; b� ! M be a curve in M. The map

˘A
� W P�.a/ �! P�.b/

p 7�! ��
p .b/

is called parallel transport in the principal bundle P along � with respect to the
connection A. See Fig. 5.1.

Theorem 5.8.4 (Properties of Parallel Transport) Let P be a principal bundle
with connection A.

1. Parallel transport ˘A
� is a smooth map between the fibres P�.a/ and P�.b/ and

does not depend on the parametrization of the curve � .
2. Let � be a curve in M from x to y and � 0 a curve from y to z. Denote the

concatenation by � 
 � 0, where � comes first. Then

˘A
��� 0

D ˘A
� 0

ı˘A
� :

3. If �� denotes the curve � traversed backwards, then

˘A
��

D
�
˘A
�

��1
:

In particular, parallel transport is a diffeomorphism between the fibres.
4. Parallel transport is G-equivariant: The following identity holds:

˘A
� ı rg D rg ı˘A

� 8g 2 G:

Proof Properties 1–3 follow from the theory of ordinary differential equations. We
only prove 4: let � be a curve from x to y in M and p 2 Px. Let ��

p be the horizontal
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lift of � to p. For g 2 G consider the curve rg ı ��
p . This curve starts at p � g and

projects to � . Furthermore, it is horizontal, because rg� maps horizontal vectors to
horizontal vectors by the definition of connections. It follows that rg ı ��

p is equal to
��

p�g. We get

˘A
� ı rg. p/ D ˘A

� . p � g/

D ��
p�g.b/

D rg ı ��
p .b/

D rg ı˘A
� . p/:

ut
Since parallel transport does not depend on the parametrization of the curve � , we
will often assume that � is defined on the interval Œ0; 1�.

5.9 The Covariant Derivative on Associated Vector Bundles

So far we have considered connections on principal bundles. Associated vector
bundles play an important role in gauge theory, because matter fields are sections
of such bundles. It turns out that connections on principal bundles define so-called
covariant derivatives on all associated vector bundles (this will explain the third row
in the diagram at the beginning of Sect. 4.7). These covariant derivatives appear in
physics, in particular, in the Lagrangians and field equations defining gauge theories.

We first want to define the notion of parallel transport in associated vector
bundles. Let P ! M be a principal G-bundle with a connection A, �W G ! GL.V/
a representation on a K-vector space V (K D R;C) and E D P �� V the associated
vector bundle.

Theorem 5.9.1 For a curve � W Œ0; 1� ! M the map

˘E;A
� W E�.0/ �! E�.1/

Œ p; v� 7�! Œ˘A
� . p/; v�

is well-defined and a linear isomorphism. This map is called parallel transport in
the associated vector bundle E along the curve � with respect to the connection A.

Proof We first show that ˘E;A
� is well-defined, independent of the choice of

representative Œ p; v�. Suppose that

Œ p; v� D �
p0; v0� 2 E�.0/:
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Then there exists an element g 2 G such that

�
p0; v0� D �

p � g; �.g/�1v
�
:

Part 4 of Theorem 5.8.4 then implies

h
˘A
� . p0/; v0

i
D
h
˘A
� . p � g/; �.g/�1v

i

D
h
˘A
� . p/ � g; �.g/�1.v/

i

D
h
˘A
� . p/; v

i
:

Hence the map ˘E;A
� is well-defined. It is then also clear that ˘E;A

� is a linear
isomorphism. ut
Let ˚ be a section of E, x 2 M a point and X 2 TxM a tangent vector. We want to
define a covariant derivative as follows: choose an arbitrary curve � W .��; �/ ! M
with

�.0/ D x;

P�.0/ D X:

For each t 2 .��; �/ parallel transport the vector ˚.�.t// 2 E�.t/ back to Ex along
� . Then take the derivative in t D 0 of the resulting curve in the fibre Ex, giving an
element in Ex. More formally, we set

D.˚; �; x;A/ D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

�
˘E;A
�t

��1
.˚.�.t// 2 Ex:

Here �t denotes the restriction of the curve � starting at time 0 and ending at time t,
for t 2 .��; �/.

We want to prove the following formula.

Theorem 5.9.2 Let sW U ! P be a local gauge, As D s�A and �W U ! V the map
with ˚ D Œs; ��. Then the vector D.˚; �; x;A/ 2 Ex is given by

D.˚; �; x;A/ D Œs.x/; d�.X/C ��.As.X//�.x/�:

Proof We have

�
˘E;A
�t

��1
.˚.�.t// D

�
˘A
�t

��1
.s.�.t//; �.�.t//

�

:
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Let q.t/ be the uniquely determined smooth curve in the fibre Px such that

˘A
�t
.q.t// D s.�.t//:

Write

q.t/ D s.x/ � g.t/

with a uniquely determined smooth curve g.t/ in G. Then

�
˘E;A
�t

��1
.˚.�.t// D Œq.t/; �.�.t//�

D Œs.x/; �.g.t//�.�.t//�:

For t D 0 we have

s.x/ D s.�.0// D ˘A
�0
.q.0// D q.0/;

hence

g.0/ D e 2 G:

This implies

Pg.0/ 2 g:

It follows that

D.˚; �; x;A/ D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

Œs.x/; �.g.t//�.�.t//�

D Œs.x/; ��.Pg.0//�.x/C d�.X/�:

It remains to calculate ��.Pg.0//. We have

d

dt

ˇ
ˇ
ˇ
ˇ
tD0

s.�.t// D ds.X/

and

d

dt

ˇ
ˇ
ˇ
ˇ
tD0

˘A
�t
.q.t// D Pq.0/C d

dt

ˇ
ˇ
ˇ
ˇ
tD0

˘A
�t
.s.x//:
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Since the curve˘A
�t
.s.x// is horizontal with respect to A, we get

As.x/ D A.ds.X// D A.Pq.0//:

However,

Pq.0/ D ePg.0/s.x/;

hence

A.Pq.0// D Pg.0/

by the definition of connection 1-form. It follows that

��.Pg.0// D ��.As.X//

and thus the claim. ut
The theorem implies that D.˚; �; x;A/ depends only on the tangent vector X and not
on the curve � itself. We can therefore set:

Definition 5.9.3 Let ˚ be a section of an associated vector bundle E and
X 2 X.M/ a vector field on M. Then the covariant derivative rA

X˚ is the
section of E defined by

.rA
X˚/.x/ D D.˚; �; x;A/;

where � is any curve through x and tangent to Xx. The covariant derivative is
a map

rAW	 .E/ �! ˝1.M;E/:

The fact that rA˚ is a smooth 1-form in ˝1.M;E/ for every ˚ 2 	 .E/ is
clear from the local formula.

We often write in a local gauge sW U ! P, with ˚ D Œs; ��, the covariant
derivative as

rA
X˚ D �

s;rA
X�
�
;

(continued)
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Definition 5.9.3 (continued)
where

rA
X� D d�.X/C ��.As.X//�;

i.e.

.rA
X�/.x/ D d�.Xx/C ��.As.Xx//�.x/ 2 V:

Here are some properties of the covariant derivative.

Proposition 5.9.4 (Properties of Covariant Derivative) The map rA is K-linear
in both entries and satisfies

rA
fX˚ D f rA

X˚

for all smooth functions f 2 C1.M;R/ and the Leibniz rule

rA
X .˚/ D .LX/˚ C rA

X˚

for all smooth functions  2 C1.M;K/.

Proof K-linearity of rA and function linearity in X is clear. Let W U ! K be a
smooth function. Then

rA
X .˚/.x/ D Œs.x/; d.�/.Xx/C ��.As.Xx//.�/.x/�

D Œs.x/; d.Xx/�.x/C .x/d�.Xx/C .x/��.As.Xx//�.x/�

D d.Xx/ Œs.x/; �.x/�C .x/.rA
X˚/.x/

D .LXx/˚.x/C .x/.rA
X˚/.x/:

Here we used the product rule for functions to the vector space V multiplied by
functions to the scalars K. ut

Remark 5.9.5 If f@
g are local basis vector fields on U, we get

rA

� D rA

@

� D @
� C A
�;

(continued)
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Remark 5.9.5 (continued)
where

A
� D ��.A
/�:

In physics the covariant derivative is typically written in this form and acts on
functions � on U with values in the vector space V , determined by sections
˚ in E and the local gauge s. In mathematics the covariant derivative acts
directly on the sections of the vector bundle. We denote both operators by rA

(it will be clear from the context which operator is meant).
From a physics point of view it is important that the second summand

A
� in the covariant derivative is non-linear (quadratic) in the fields A
 and
�. This non-linearity, called minimal coupling, leads to non-quadratic terms
in the Lagrangian (see Definition 7.5.5 and Definition 7.6.2 as well as the
local formulas in Eqs. (7.3) and (7.4)), which are interpreted as an interaction
between gauge bosons described by A
 and the particles described by the
field �.

Notice the crucial role played by the representation �: It is not only needed
to define the associated vector bundle E, but also to define the covariant
derivative rA. The gauge field A can act on maps with values in V (or
sections of E) only if V carries a representation � of the gauge group G. If
the representation

��W g �! End.V/

is non-trivial and hence the coupling between the gauge field A
 and the
field � is (potentially) non-trivial, then the particles corresponding to � are
called charged (charged particles are affected by the gauge field). In Chaps. 8
and 9 we will discuss in some detail the representations that appear in the
description of matter particles in the Standard Model and in Grand Unified
Theories.

Figure 5.2 shows the Feynman diagrams for the cubic and quartic terms
which appear in the Klein–Gordon Lagrangian in Eq. (7.3), representing the
interaction between a gauge field A and a charged scalar field described locally
by a map � with values in V .

Remark 5.9.6 In physics the covariant derivative is often defined (without referring
to parallel transport) by the local formula

rA
X˚ D �

s;rA
X�
�
;
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Fig. 5.2 Feynman diagrams
for interaction between gauge
field and charged scalar

Am

Am

Am

Am

where

rA
X� D d�.X/C ��.As.X//�:

One then has to show that this definition is independent of the choice of local gauge:
Suppose s0W U ! P is another local gauge. Then there exists a smooth physical
gauge transformation gW U ! G such that

s0 D s � g:

We have

˚ jU D Œs; �� D Œs0; �0�;

with

�0 D �.g/�1�:

Furthermore,

As0 D Adg�1 ı As C 
;

where


 D g�
G:

It follows that

d�0.Xx/ D �.g.x//�1d�.Xx/C .Dx�.g/
�1.Xx//�:

A lengthy calculation (if done in this abstract setting) then shows that

�
s0.x/; d�0.Xx/C ��.As0.Xx//�

0.x/
�
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is equal to

Œs.x/; d�.Xx/C ��.As.Xx//�.x/� :

It is often important to consider covariant derivatives compatible with a bundle
metric on E. The natural bundle metrics constructed in Proposition 4.7.12 are
compatible with covariant derivatives.

Proposition 5.9.7 (Natural Bundle Metrics Are Compatible with Covariant
Derivatives) Let h� ; �iV be a G-invariant scalar product on the vector space V
and h� ; �iE the induced bundle metric on the associated vector bundle E D P �� V.
Then the covariant derivative associated to a connection A is compatible with the
bundle metric in the sense that

LX
˝
˚;˚ 0˛

E D ˝rA
X˚;˚

0˛
E C ˝

˚;rA
X˚

0˛
E

for all sections ˚;˚ 0 of E and all vector fields X on M.

Proof Since the scalar product on V is G-invariant, the map �� induced by the
representation satisfies

˝
��.˛/�; �0˛

V
C ˝
�; ��.˛/�0˛

V
D 0

for all ˛ 2 g and �; �0 2 V; see Proposition 2.1.37. This implies:

˝rA
X˚;˚

0˛
E

C ˝
˚;rA

X˚
0˛

E
D ˝rA

X�; �
0˛

V
C ˝
�;rA

X�
0˛

V

D ˝
d�.X/C ��.As.X//�; �

0˛
V

C ˝
�; d�0.X/C ��.As.X//�

0˛
V

D ˝
d�.X/; �0˛

V
C ˝
�; d�0.X/

˛
V

D LX
˝
˚;˚ 0˛

E
:

ut

5.10 �Parallel Transport and Path-Ordered Exponentials

We derive in this section a formula that is used in physics to calculate the parallel
transport on principal bundles. The following arguments are outlined in [103].
Recall that for the proof of Theorem 5.8.2 concerning the existence of a horizontal
lift �� of a curve � W Œ0; 1� ! M, where

��.0/ D p 2 P�.0/;
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we had to solve the differential equation

Pg.t/ D �Rg.t/�A. Pı.t//;

with g.0/ D e, where ı is some lift of � and gW Œ0; 1� ! G is a map with

��.t/ D ı.t/ � g.t/:

There is a nice way to write the solution g.t/ explicitly, at least if G is a matrix Lie
group and � is contained in an open set over which the principal bundle is trivial.

Suppose that the curve � is contained in an open set U � M, so that PU is trivial
over U. Let sW U ! P be a local gauge with s.�.0// D p. We can choose

ı D s ı �:

We then have to solve

Pg.t/ D �Rg.t/�A. Pı.t//
D �Rg.t/�A.s� P�.t//
D �Rg.t/�As. P�.t//:

Suppose that G � GL.n;K/ is a linear group, i.e. a closed Lie subgroup. Then the
differential equation can be written as

dg.t/

dt
D �As. P�.t// � g.t/:

We write this as

dg.t/

dt
D f .t/ � g.t/;

where f W Œ0; 1� ! g is a smooth map determined by �.t/, independent of g.

5.10.1 Path-Ordered Exponentials

Let G be a linear group with Lie algebra g.
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Definition 5.10.1 For a smooth map f W Œ0; 1� ! g we define for all t 2 Œ0; 1� the
following matrices in Mat.n � n;K/:

P0. f ; t/ D In;

P1. f ; t/ D
Z t

0

f .s0/ ds0;

Pn. f ; t/ D
Z t

0

Z s0

0

Z s1

0

: : :

Z sn�2

0

f .s0/f .s1/ : : : f .sn�1/ dsn�1 : : : ds1ds0 8n � 2;

where in the definition of Pn. f ; t/

1 � t � s0 � s1 � : : : � sn�2 � 0:

The following is easy to show:

Lemma 5.10.2 For all n � 2 the integral

Qn.t/ D
Z t

0

Z s0

0

Z s1

0

: : :

Z sn�2

0

dsn�1 : : : ds1ds0;

where

1 � t � s0 � s1 � : : : � sn�2 � 0;

evaluates to

Qn.t/ D 1

nŠ
tn:

Considering

jjf jj D max
s2Œ0;1� jjf .s/jj

with respect to a matrix norm on Mat.n � n;K/ it follows that:

Proposition 5.10.3 The series

P. f ; t/ D
1X

nD0
Pn. f ; t/

converges for every t 2 Œ0; 1� and defines a smooth map

P. f ; �/W Œ0; 1� �! Mat.n � n;K/:
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We write

P exp

�Z t

0

f .s/ ds

�

D P. f ; t/

and call this the path-ordered exponential of the function f .
Path-ordered exponentials are useful, because they define solutions to the ordinary
differential equation we are interested in.

Proposition 5.10.4 (Path-Ordered Exponential Defines Solution of ODE) Con-
sider a smooth map f W Œ0; 1� ! g and define a smooth map

gW Œ0; 1� �! Mat.n � n;K/

by

g.t/ D P exp

�Z t

0

f .s/ ds

�

:

Then

g.0/ D In;

dg.t/

dt
D f .t/ � g.t/ 8t 2 Œ0; 1�:

In particular, g is a map

gW Œ0; 1� �! G:

Proof It is clear that g.0/ D In. Calculating the derivative with respect to t we get

d

dt
P exp

�Z t

0

f .s/ ds

�

D f .t/C f .t/
Z t

0

f .s1/ ds1 C f .t/
Z t

0

Z s1

0

f .s1/f .s2/ ds2ds1 : : :

D f .t/ � P exp
�Z t

0

f .s/ ds

�

:

This implies the first claim.
To prove the claim that g takes values in G, note that

XA.t/ D f .t/ � A 8A 2 Mat.n � n;K/; t 2 Œ0; 1�

defines a time-dependent vector field X on Mat.n � n;K/, which is right-invariant
in the sense that

XA�B.t/ D XA.t/ � B 8B 2 Mat.n � n;K/:
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The smooth map

gW Œ0; 1� �! Mat.n � n;K/

is an integral curve of the vector field X through the unit matrix In. Let

hW Œ0; 1� �! G

be the integral curve through In of the restriction of the right-invariant vector field
X to G, given by Theorem 1.7.18 (the vector field X is tangent to G, because f takes
values in the Lie algebra g). Then uniqueness of the solution to ordinary differential
equations shows that g � h, hence g takes values in G. ut

5.10.2 Explicit Formula for Parallel Transport

Returning to the situation before Sect. 5.10.1, we can write the curve �.t/ in a chart
on U with coordinates x
 as �.t/ D x
.t/. Then

dg.t/

dt
D �

nX


D1
As
.�.t//

dx


dt
� g.t/:

The solution to this differential equation is

g.t/ D P exp

0

@�
Z t

0

nX


D1
As
.�.s//

dx


ds
ds

1

A

D P exp

0

@�
Z �.t/

�.0/

nX


D1
As
.x


/dx


1

A

D P exp

�

�
Z

�t

As

�

;

where �t denotes the restriction of the curve � to Œ0; t�. In particular,

g.1/ D P exp

�

�
Z

�

As

�

:

We therefore get:

Theorem 5.10.5 (Parallel Transport Expressed with Path-Ordered Exponen-
tial) Let P ! M be a principal bundle with matrix structure group G. Suppose
that � W Œ0; 1� ! M is a curve inside an open set U � M over which PU is trivial. Let
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p 2 P�.0/ be a point and sW U ! P a local gauge, such that s.�.0// D p. Suppose
s.�.1// D q. Then the parallel transport of p can be written as

˘A
� . p/ D q � P exp

�

�
Z

�

As

�

:

5.11 �Holonomy and Wilson Loops

We saw that the induced parallel transport on associated vector bundles can be used
to define covariant derivatives. We want to explain another concept where parallel
transport on associated vector bundles appears in physics (we follow the definition
in [47]).

Suppose � W Œ0; 1� ! M is a closed curve in M (a loop) with �.0/ D �.1/ D x.
Then parallel transport˘E;A

� is a linear isomorphism of the fibre Ex to itself.

Definition 5.11.1 We call the isomorphism ˘E;A
� of Ex the holonomy HolE�;x.A/ of

the loop � in the basepoint x with respect to the connection A.
We can express the holonomy using path-ordered exponentials.

Proposition 5.11.2 (Holonomy Expressed with Path-Ordered Exponential)
Suppose that G is a matrix Lie group and the loop � is contained in an open
set U � M over which P is trivial and sW U ! P is a local gauge. Then s determines
an isomorphism

V �! Ex

v 7�! Œs.x/; v�

and with respect to this isomorphism

HolE�;x.A/ D �

�

P exp

�

�
I

�

As

��

D P exp

�

�
I

�

��As

�

:

Proof This is Exercise 5.15.8. ut
We want to understand how the holonomy changes if we choose a different base
point on the curve � .

Lemma 5.11.3 Let y be another point on the closed curve � and � the part of �
from x to y. Then

HolE�;y.A/ D ˘� ı HolE�;x.A/ ı .˘�/
�1 ;

where we abbreviate˘� D ˘E;A
� .
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Proof Let � 0 be the remaining part of � from y to x. Then � D � 
 � 0 and

HolE�;x.A/ D ˘� 0 ı˘�;

HolE�;y.A/ D ˘� ı˘� 0 :

This implies the claim. ut
Therefore the following map is well-defined.

Definition 5.11.4 The Wilson operator or Wilson loop is the map WE
� that

associates to a connection A and a loop � the number

WE
� .A/ D tr

�
HolE�;x.A/

�

D tr

�

P exp

�

�
I

�

��As

��

;

where tr denotes trace, x is any point on � , and the second formula holds if G is a
matrix Lie group and � is inside a trivializing open set U for P.

Proposition 5.11.5 (Wilson Loops Are Gauge Invariant) The Wilson loop is
invariant under all bundle automorphisms of P:

WE
� . f �A/ D WE

� .A/ 8f 2 G .P/:

Proof This is Exercise 5.15.9. ut

In quantum field theory, the gauge field A
 is a function on spacetime with
values in the operators on the Hilbert state space V (if we ignore for the
moment questions of whether this operator is well-defined and issues of
regularization). The formula

WE
� .A/ D tr

�

P exp

�

�
I

�

��As

��

shows that the Wilson loop WE
� .A/ is a gauge invariant operator on this Hilbert

space.

5.12 The Exterior Covariant Derivative

In Sect. 5.9 we defined a covariant derivative

rAW	 .E/ �! ˝1.M;E/:
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We can think of this map as a generalization of the differential

dWC 1.M/ �! ˝1.M/:

In fact, the differential d can be identified with the covariant derivative on the trivial
line bundle over M induced from the trivial connection. The differential d can be
uniquely extended in the standard way to an exterior derivative

dW˝k.M/ �! ˝kC1.M/

by demanding that ddf D 0 for all functions f 2 C1.M/ and

d.˛ ^ ˇ/ D d˛ ^ ˇ C .�1/k˛ ^ dˇ

for all ˛ 2 ˝k.M/ and ˇ 2 ˝ l.M/. This differential satisfies d ı d D 0 on all forms,
see Exercise 5.15.11. Because of this property, the de Rham cohomology

Hk
dR.M/ D ker

�
dW˝k.M/ ! ˝kC1.M/

�

im .dW˝k�1.M/ ! ˝k.M//

is well-defined for all k.
We want to show that we can extend the covariant derivative in a similar way to

an exterior covariant derivative

dAW˝k.M;E/ �! ˝kC1.M;E/:

This exterior covariant derivative, however, in general does not satisfy dA ı dA D
0. The non-vanishing of dA ı dA is precisely measured by the curvature of A, see
Exercise 5.15.12.

The constructions in this section work for general covariant derivatives on vector
bundles, which are defined as follows.

Definition 5.12.1 Let E ! M be a K-vector bundle. Then a covariant derivative
r on E is a K-linear map

rW	 .E/ �! ˝1.M;E/

such that

rfXe D f rXe

for all smooth functions f 2 C1.M;R/ and the Leibniz rule

rX.e/ D .LX/e C rXe
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holds for all smooth functions  2 C1.M;K/ and sections e 2 	 .E/.
We need the following wedge product.

Definition 5.12.2 There is a well-defined wedge product

^W˝k.M/ �˝ l.M;E/ �! ˝kCl.M;E/

between standard differential forms (with values in K) and differential forms with
values in E.
To explain this definition, we only have to see that the standard definition of the
wedge product works in this case. The standard definition involves the sum over
products of the two differential forms after we inserted a permutation of the vectors
(cf. Definition A.2.5). In the standard case we get the product between two scalars
in K, while here we get the product between a scalar in K and a vector in E, which
is still well defined.

To define the exterior covariant derivative, let ! be an element of ˝k.M;E/. We
choose a local basis e1; : : : er of E over an open set U � M. Then ! can be written
as

! D
rX

iD1
!i ˝ ei

with uniquely defined k-forms !i 2 ˝k.U/ (with values in K).

Definition 5.12.3 Let r be a covariant derivative on a vector bundle E. Then we
define the exterior covariant derivative or covariant differential

dr W˝k.M;E/ �! ˝kC1.M;E/

by

dr! D
rX

iD1

�
d!i ˝ ei C .�1/k!i ^ rei

�
:

If r D rA is the covariant derivative on an associated vector bundle determined by
a connection A on a principal bundle, we write dA D dr .

Lemma 5.12.4 The definition of dr is independent of the choice of local basis feig
for E.

Proof Let fe0
ig be another local basis of E over U. Then there exist unique functions

Cji 2 C1.U;K/ with

e0
j D

rX

iD1
Cjiei:
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The matrix C with entries Cji is invertible. Let C�1 be the inverse matrix with entries
C�1

lj and define

!0
j D

rX

lD1
C�1

lj !l:

Then

! D
rX

iD1
!i ˝ ei D

rX

jD1
!0

j ˝ e0
j:

We calculate

rX

jD1

�
d!0

j ˝ e0

j C .�1/k!0

j ^ re0

j

� D
rX

i;j;lD1

�
d
�
C�1

lj

� ^ Cji!l ˝ ei C C�1
lj Cjid!l ˝ ei

C .�1/kC�1
lj !l ^ dCji ˝ ei C .�1/kC�1

lj Cji!l ^ rei
�

D
rX

iD1

.d!i ˝ ei C .�1/k!i ^ rei/

C
rX

i;j;lD1

�
d
�
C�1

lj

�
Cji C C�1

lj dCji
� ^ !l ˝ ei:

But

0 D dıli D d

0

@
rX

jD1
C�1

lj Cji

1

A D
rX

jD1

�
d
�
C�1

lj

�
Cji C C�1

lj dCji
�
:

This implies the claim. ut
The first part of the next proposition follows immediately from the definition by
considering a local basis feig for E. The second part is clear.

Proposition 5.12.5 The exterior covariant derivative dr satisfies

dr.! C !0/ D dr! C dr!0;

dr.� ˝ e/ D d� ˝ e C .�1/k� ^ re;

for all !;!0 2 ˝k.M;E/, � 2 ˝k.M/ and e 2 	 .E/. Furthermore, we have on
	 .E/ D ˝0.M;E/

dr j	 .E/ D r;
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so that the exterior covariant derivative dr is an extension of the covariant
derivative r.
We want to show the following formula:

Proposition 5.12.6 (Leibniz Formula for Exterior Covariant Derivative) The
exterior covariant derivative dr satisfies

dr.� ^ !/ D d� ^ ! C .�1/k� ^ dr!

for all � 2 ˝k.M/ and ! 2 ˝ l.M;E/.
Note that this reduces in the case of a 0-form ! with values in E to the second
formula in Proposition 5.12.5, because dr on ˝0.M;E/ D 	 .E/ is equal to r.

Proof We write

! D
rX

iD1
!i ˝ ei

with a local basis feig of E over U and !i 2 ˝ l.U/. Then

� ^ ! D
rX

iD1
.� ^ !i/˝ ei

and

dr.� ^ !/ D
rX

iD1

�
d� ^ !i ˝ ei C .�1/k� ^ d!i ˝ ei C .�1/kCl� ^ !i ^ rei

�

D d� ^ ! C .�1/k� ^
rX

iD1

�
d!i ˝ ei C .�1/l!i ^ rei

�

D d� ^ ! C .�1/k� ^ dA!:

ut
Remark 5.12.7 Contrary to the case of the standard exterior derivative d, it can be
shown that dr in general has square

dr ı dr ¤ 0:

The non-vanishing of d2r is related to the curvature Fr of the covariant derivative r
(see Exercise 5.15.12).
We finally want to derive a local formula for the exterior covariant derivative dA

in the case of an associated vector bundle. Let P ! M be a principal G-bundle,
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�W G ! GL.V/ a representation and E D P �� V the associated vector bundle. Let
A be a connection 1-form on P.

Definition 5.12.8 We define the wedge product

^W˝k.M; g/ �˝ l.M;V/ �! ˝kCl.M;V/

.˛; !/ 7�! ˛ ^ !

by expanding ! D Pn
iD1 !i ˝ vi in an arbitrary basis fvig for V and setting

˛ ^ ! D
nX

iD1
.��.˛/vi/ ^ !i:

This is independent of the choice of basis fvig for V .
Let sW U ! P be a local gauge. With respect to the local gauge a form � 2 ˝ l.M;E/
defines a form �s 2 ˝ l.M;V/. We get:

Theorem 5.12.9 With respect to a local gauge sW U ! P we can write

.dA!/s D d!s C As ^ !s

for all ! 2 ˝k.M;E/.

Proof Choose a basis v1; : : : ; vn for V . This determines a local frame e1; : : : ; en for
E by setting ei D Œs; vi�. If we expand a form � 2 ˝ l.M;E/ as

� D
nX

iD1
�i ˝ ei;

then

�s D
nX

iD1
�i ˝ vi:

We write

! D
nX

iD1
!i ˝ ei

and calculate

dA! D
nX

iD1

�
d!i ˝ ei C .�1/k!i ^ rAei

�
;
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which implies

.dA!/s D
nX

iD1

�
d!i ˝ vi C .�1/k!i ^ .��.As/vi/

�

D d!s C As ^ !s:

ut

5.13 Forms with Values in Ad.P/

Recall that connections are 1-forms on the total space of a principal bundle P with
values in the Lie algebra g. We now want to show that the difference between two
connections can be understood as a field on the base manifold M with values in the
vector bundle Ad.P/. We then get a better understanding of why gauge bosons in
physics are said to transform under the adjoint representation.

Let �PW P ! M be a principal G-bundle. We then have the vector space˝k.P; g/
of k-forms on P with values in the Lie algebra g. We want to consider a certain
vector subspace of this vector space (we follow [14, Chap. 3]).

Definition 5.13.1 Let ! 2 ˝k.P; g/ be a k-form on P with values in the Lie algebra
g. We call !

1. horizontal if for all p 2 P

!p.X1; : : : ;Xk/ D 0

whenever at least one of the vectors Xi 2 TpP is vertical.
2. of type Ad if

r�
g! D Adg�1 ı !

for all g 2 G.

We denote the set of horizontal k-forms of type Ad on P with values in g by

˝k
hor.P; g/

Ad;

which is clearly a real vector space (usually infinite-dimensional).
This notion is useful for the following reason.

Proposition 5.13.2 Let P ! M be a principal G-bundle.

1. Suppose A;A0 2 ˝1.P; g/ are connection 1-forms on P. Then

A0 � A 2 ˝1
hor.P; g/

Ad.P/:
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Moreover, if ! is an arbitrary element in ˝1
hor.P; g/

Ad.P/, then A C ! is a
connection on P.

2. The curvature F of a connection A on P is an element of˝2
hor.P; g/

Ad.

Proof This follows immediately from the defining properties of connections and the
curvature. ut
Corollary 5.13.3 The set of connection 1-forms on P is an affine space over the
vector space ˝1

hor.P; g/
Ad.P/. A base point is given by any connection 1-form on P.

It is sometimes useful to have a different description of the vector space of horizontal
k-forms of type Ad on P. Recall that we defined in Example 4.7.17 the adjoint
bundle

Ad.P/ D P �Ad g;

which is the real vector bundle associated to the principal bundle P via the adjoint
representation AdW G ! GL.g/.

Theorem 5.13.4 The vector space ˝k
hor.P; g/

Ad is canonically isomorphic to the
vector space ˝k.M;Ad.P//.

Proof We define a map

�W˝k
hor.P; g/

Ad �! ˝k.M;Ad.P//

as follows: Let N! be an element of ˝k
hor.P; g/

Ad. Then we define ! D �. N!/ by

!x.X1; : : : ;Xk/ D Œ p; N!p.Y1; : : : ;Yk/� 2 Ad.P/x D .Px � g/=G;

where

• x 2 M and p 2 P are arbitrary with �P. p/ D x.
• Xi 2 TxM and Yi 2 TpP are arbitrary with �P�.Yi/ D Xi.

We first show that ! is well-defined. For fixed p 2 P the definition is independent of
the choice of vectors Yi: If Y 0

i are a different set of vectors with �P�.Y 0
i / D Xi, then

�P�
�
Y 0

i � Yi
� D 0;

hence Y 0
i � Yi is vertical. Since N! is horizontal, we get

N!p
�
Y 0
1; : : : ;Y

0
k

� D N!p
�
Y1 C �

Y 0
1 � Y1

�
; : : : ;Yk C �

Y 0
k � Yk

��

D N!p .Y1; : : : ;Yk/ :

We now show independence of the choice of p in the fibre Px: Let p0 be another
point in P with �P. p0/ D x. Then p0 D p � g�1 for some g 2 G. Let Y1; : : : ;Yk be
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vectors in Tp0 P. We calculate

Œ p0; N!p0.Y1; : : : ;Yk/� D Œ p � g�1; N!p�g�1 .Y1; : : : ;Yk/�

D Œ p;Adg�1 N!p�g�1 .Y1; : : : ;Yk/�

D Œ p; .r�
g N!/p�g�1 .Y1; : : : ;Yk/�

D Œ p; N!p.rg�Y1; : : : ; rg�Yk/�

D Œ p; N!p.Z1; : : : ;Zk/�;

where we set Zi D rg�Yi. We have

�P�.Zi/ D .�P ı rg/�.Yi/ D �P�.Yi/:

This proves independence of the choice of p.
We prove that the form ! is smooth: Let sW U ! P be a local gauge and

X1; : : : ;Xk smooth vector fields on U. Then

!.X1; : : : ;Xk/jU D Œs; N!.s�X1; : : : ; s�Xk/� 2 	 .U;Ad.P//:

Hence ! 2 ˝k.M;Ad.P//.
This shows that the map � is well-defined and it is clearly linear. It remains to

show that � is bijective: Let ! 2 ˝k.M;Ad.P// and define N! 2 ˝k.P; g/ by

Œ p; N!p.Y1; : : : ;Yk/� D !x.�P�Y1; : : : ; �P�Yk/:

Then N! 2 ˝k
hor.P; g/

Ad and�. N!/ D !. ut
As a consequence, we get the following statement about connection 1-forms and
curvature 2-forms.

Corollary 5.13.5 (Connections, Curvature and Forms with Values in Ad.P/)
Let P ! M be a principal G-bundle.

1. The difference of two connection 1-forms on P can be identified with an element
of ˝1.M;Ad.P//. The set of all connections on P is an affine space over
˝1.M;Ad.P//.

2. The curvature FA of a connection A on P can be identified with an element FA
M of

˝2.M;Ad.P//.

The notation FA
M generalizes the notation in Corollary 5.6.4, because for an abelian

structure group G the adjoint bundle Ad.P/ is trivial and FA
M has values in g.
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In quantum field theory, particles in general are described as excitations of a
given vacuum field. In the case of a gauge field the vacuum field is a certain
specific connection 1-form A0 on the principal bundle (the form A0 � 0

is not a connection). Strictly speaking, gauge bosons, the excitations of the
gauge field, should then be described classically by the difference A � A0,
where A is some other connection 1-form, and not by the field A itself. By
Corollary 5.13.5 this difference can be identified with a 1-form on spacetime
M with values in Ad.P/. In physics this fact is expressed by saying that gauge
bosons, the differences A
 � A0
, are fields on spacetime that transform in the
adjoint representation of G under gauge transformations.

5.14 �A Second and Third Version of the Bianchi Identity

Let P ! M be a principal G-bundle and A a connection 1-form with curvature FA.
According to Exercise 5.15.14 we can state the Bianchi identity in the following
equivalent form:

Theorem 5.14.1 (Bianchi Identity (Second Form)) The curvature FA2˝2 .P; g/
satisfies

dFA C �
A;FA

� D 0

for any connection A on P.
In Sect. 5.13 we saw that the curvature FA can be identified with an element FA

M in
˝2.M;Ad.P//. On the other hand the connection A defines an exterior covariant
derivative dA on the associated bundle Ad.P/:

dAW˝k.M;Ad.P// �! ˝kC1.M;Ad.P//:

We can then write the Bianchi identity in a third equivalent form:

Theorem 5.14.2 (Bianchi Identity (Third Form)) The curvature FA
M 2 ˝2

.M;Ad.P// satisfies

dAFA
M D 0

for any connection A on P.

Proof This is an immediate consequence of Theorem 5.12.9 and Theorem 5.14.1.
ut
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5.15 Exercises for Chap. 5

5.15.1 Let G be a compact Lie group.

1. Suppose P � G ! P is a right-action of G on a manifold P. Prove that P has a
G-invariant Riemannian metric.

2. Prove that every principal G-bundle �W P ! M has a connection.

5.15.2 Suppose that �W P ! M is a principal G-bundle where the Lie group G is
abelian. Show that the following map is a group isomorphism

C1.M;G/ �! C1.P;G/G

� 7�! �� ;

where C1.M;G/ denotes the set of smooth maps from M to G (a group under
pointwise multiplication) and �� is defined by

�� D � ı �:

5.15.3 Let P ! M be a principal bundle and A 2 ˝1.P; g/ a connection 1-form
on P. Suppose that f 2 G .P/ is a global bundle automorphism. Prove that f �A is a
connection 1-form on P and

f �A D Ad��1
f

ı A C ��
f 
G:

5.15.4 Let P ! M be a principal G-bundle with a connection 1-form A 2 ˝1.P; g/
and curvature 2-form F 2 ˝2.P; g/. Let X and Y be horizontal vector fields on P
with respect to the Ehresmann connection H defined by A.

1. Show that F.X;Y/ D �A.ŒX;Y�/.
2. Prove that the curvature F vanishes identically if and only if the distribution H

is integrable, i.e. ŒX;Y� is a horizontal vector field for all horizontal vector fields
X;Y on P.

3. Suppose that M is connected and simply connected (�1.M/ D 1) and the
curvature F vanishes identically. Prove that P is trivial and there exists a global
gauge sW M ! P such that As D s�A � 0.

5.15.5 Let G be a Lie group. Then G acts by right-multiplication on the right of G:

G � G �! G

. p; g/ 7�! pg:
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Since the action is simply transitive, it follows that this defines a principal G-bundle
over the manifold consisting of one point:

G G

1. Show that the Maurer–Cartan form 
G 2 ˝1.G; g/ is a connection on this
principal bundle and that it is the only one.

2. Determine the curvature of the connection 
G. What is the interpretation of the
structure equation?

5.15.6 Let G be a Lie group and H � G a closed subgroup. By Theorem 4.2.15

is an H-principal bundle. We assume that there exists a vector subspace m � g such
that

g D h ˚ m; Ad.H/m � m;

i.e. the homogeneous space is reductive.

1. Consider A D prh ı 
G 2 ˝1.G; h/. Prove that A is a connection 1-form on
G ! G=H.

2. Show that the vertical and horizontal subspaces (defined by the connection A) at
a point g 2 G are given by Lg�h and Lg�m.

3. Prove that the curvature of the connection A is given by

F D �1
2

prh ı Œprm ı 
G; prm ı 
G� 2 ˝2.G; h/

(the commutator on the right is taken in g).

5.15.7 Recall from Exercise 4.8.7 that the Hopf right action of S1 on S3 induces a
right action of S1=Zp Š S1 on S3=Zp D L. p; 1/ and the lens space L. p; 1/ thus has
the structure of a principal circle bundle over S2:
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Prove that the connection A on the Hopf bundle defined in Sect. 5.2.2 induces a
connection A0 on L. p; 1/ ! S2. Determine the relation between the global curvature
2-form F0

S2
of this connection and the curvature 2-form FS2 of the Hopf connection,

as well as the integral

1

2�i

Z

S2
F0

S2 :

5.15.8 Suppose that P ! M is a principal G-bundle with a matrix Lie group G, E
an associated vector bundle, A a connection on P and � a loop in M. Suppose that
the loop � is inside an open set U � M over which P is trivial and sW U ! P is a
local gauge. Then s determines an isomorphism

V �! Ex

v 7�! Œs.x/; v�:

Prove that with respect to this isomorphism

HolE�;x.A/ D �

�

P exp

�

�
I

�

As

��

D P exp

�

�
I

�

��As

�

:

5.15.9 Let P ! M be a principal G-bundle with a connection A and f 2 G a bundle
automorphism. Suppose � W Œ0; 1� ! M is a curve in M.

1. Show that parallel transport with respect to the connection f �A is given by

˘ f �A
� D f �1 ı˘A

� ı f :

2. Let E ! M be a vector bundle associated to P and suppose that � is a closed
curve in M. Show that the Wilson loop is invariant under bundle automorphisms
of P:

WE
� . f �A/ D WE

� .A/ 8f 2 G .P/:

5.15.10 Let

be the Hopf bundle with the connection A defined in Sect. 5.2.2. Let � denote the
equator in S2 Š CP

1, starting and ending at the point Œ1 W 1� 2 CP
1.
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1. Show that � can be parametrized as

� W Œ0; 2�� �! CP
1

t 7�! �
1 W eit

�

for a suitable identification of S2 with CP
1.

2. Determine the horizontal lift ��W Œ0; 2�� ! S3 of � with respect to the connection
A, starting at 1p

2
.1; 1/.

3. Let � k ! S2 be the complex line bundle associated to the Hopf bundle via the
representation

�kW S1 �! U.1/

z 7�! zk

as in Example 4.7.16. Determine the Wilson loop W�k

� .A/.

5.15.11 Define the differential

dW˝k.M/ �! ˝kC1.M/

by demanding that

• dWC 1.M/ ! ˝1.M/ is the standard differential of functions
• ddf D 0 for all f 2 C 1.M/
• d.˛ ^ ˇ/ D d˛ ^ ˇ C .�1/k˛ ^ dˇ for all ˛ 2 ˝k.M/ and ˇ 2 ˝ l.M/.

Prove that dd! D 0 for all ! 2 ˝k.M/ and all k.

5.15.12 Let E ! M be a vector bundle with a covariant derivative r. We define
the curvature of r by

Fr.X;Y/˚ D rXrY˚ � rY rX˚ � rŒX;Y�˚;

where X;Y 2 X.M/ and ˚ 2 	 .E/.
1. Show that Fr.X;Y/˚ is function linear in each argument X;Y; ˚ . The curvature

thus defines an element

Fr 2 ˝2.M;End.E//;

where End.E/ denotes the endomorphism bundle of E over M, whose fibre
End.E/x over x 2 M is given by End.Ex/.

2. Show that, as 2-forms with value in E,

drdr˚ D Fr˚

for all sections ˚ 2 	 .E/.
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3. Define a wedge product

^W˝k.M;End.E// �˝ l.M;E/ �! ˝kCl.M;E/

by writing ! 2 ˝ l.M;E/with a local frame feig for E over U as !DPn
iD1 !i˝ei

with !i 2 ˝ l.U/ and setting for ˛ 2 ˝k.M;End.E//

˛ ^ ! D
nX

iD1
˛.ei/ ^ !i

(this definition is independent of choices). Prove that

drdr! D Fr ^ !

for all ! 2 ˝ l.M;E/.

5.15.13 Let P ! M be a principal G-bundle and E D P �� V ! M an associated
vector bundle. We fix a connection A on P with induced covariant derivative rA on
E. Let Fr be the curvature of rA defined in Exercise 5.15.12. Suppose that sW U ! P
is a local gauge and write a section ˚ of E locally as ˚ D Œs; �� with vW U ! V .
Show that

Fr.X;Y/˚ D Œs; ��.Fs.X;Y//��;

where Fs D s�F and F is the curvature of A on P.

5.15.14 Suppose that P is a manifold and g a Lie algebra. Consider forms � 2
˝1.P; g/, ! 2 ˝k.P; g/ and � 2 ˝ l.P; g/. Prove the following identities:

Œ!; �� D �.�1/klŒ�; !�;

Œ�; Œ�; ��� D 0;

dŒ!; �� D Œd!; ��C .�1/kŒ!; d��:

Derive as an application the following second form of the Bianchi identity

dFA C �
A;FA

� D 0;

where FA is the curvature of a connection 1-form A on a principal bundle P ! M.
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5.15.15 This exercise is a preparation for Exercise 5.15.16. Suppose that P is a
manifold and g a Lie algebra with a scalar product h� ; �i which is skew-symmetric
with respect to the adjoint representation ad. Let ! 2 ˝k.P; g/ and � 2 ˝ l.P; g/.
We define a real-valued form h!; �i 2 ˝kCl.P/ by

h!; �i.X1; : : : ;XkCl/ D 1

kŠlŠ

X

�2SkCl

sgn.�/h�.X�.1/; : : : ;X�.k//; �.X�.kC1/; : : : ;X�.n/i:

Consider also a 1-form � 2 ˝1.P; g/. Prove the following identities:

dh!; �i D hd!; �i C .�1/kh!; d�i
hŒ�; !�; �i D �.�1/kh!; Œ�; ��i:

5.15.16 (From [52]) We use the notation from Exercise 5.15.15. Suppose that
P ! M is a principal G-bundle over a manifold M and h� ; �i an Ad-invariant scalar
product on the Lie algebra g. Let A be a connection 1-form on P with curvature F.
We define the Chern–Simons form ˛.A/ 2 ˝3.P/ by

˛.A/ D ˛ D hA;Fi � 1

6
hA; ŒA;A�i:

1. Prove that d˛ D hF;Fi.
2. Let f 2 G .P/ be a bundle automorphism with induced map �f W P ! G and

set � D ��
f 
G. Prove that the Chern–Simons form changes under bundle

automorphisms as

f �˛ D ˛ C dhAd��1
f

A; �i � 1

6
h�; Œ�; ��i:

3. Show that the form

�G D �1
6

h
G; Œ
G; 
G�i 2 ˝3.G/

is closed.
4. Suppose that M is a closed oriented 3-manifold, P ! M a trivial G-bundle and
�G represents an integral class in H3.GIR/. If sW M ! P is a global gauge, define
the Chern–Simons action by

SM.s;A/ D
Z

M
s�˛.A/:

Prove that modulo Z the number SM.A/D SM.s;A/2R=Z is independent of the
choice of global gauge s.
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Remark Notice that the Chern–Simons action is purely topological, i.e. does not
depend on the choice of a metric on M. This leads to the concept of topological
quantum field theories (TQFT). Similar Chern–Simons terms appear in many places
in physics, for example, in the actions of supergravity and in the actions for D-branes
in string theory.



Chapter 6
Spinors

In Chap. 5 we studied gauge fields that mediate interactions between particles in
gauge theories. Gauge fields correspond to gauge bosons (spin 1 particles) and
are described by 1-forms or, dually, vector fields. In physics, of course, there
also exist matter particles, like electrons, quarks and neutrinos. These particles
are fermions (spin 1

2
particles) and are described byspinor fields (spinors). Like

vector fields or tensor fields, spinors have a specific transformation behaviour under
rotations. However, spinors do not transform directly under the orthogonal group,
but under a certain double covering, called the(orthochronous) spin group. In the
case of Minkowski spacetime, rotations correspond to Lorentz transformations. The
corresponding spin group is the Lorentz spin group.

In many mathematical expositions the discussion of spinors is restricted to
the Riemannian case, because in most situations, manifolds in differential geom-
etry carry a Riemannian metric. The pseudo-Riemannian case, like the case of
Minkowski spacetime, is discussed less often, even though it is very important for
physics (a notable exception is the thorough discussion in Helga Baum’s book [13]).
Since we are ultimately interested in applications of differential geometry and gauge
theory to physics, it seems worthwhile to study orthogonal groups, Clifford algebras,
spin groups and spinors from a mathematical point of view also in the Lorentzian
and general pseudo-Riemannian case.

The discussion in the present chapter is far more extensive than strictly nec-
essary to understand particle physics and the Standard Model in 4-dimensional
flat spacetime, but may be useful for further studies leading to theories such as
supersymmetry, supergravity and superstrings in higher dimensions. We sometimes
only sketch the arguments that are more or less standard and can be found in other
references, and focus instead on topics which are perhaps less well-known in the
mathematics literature, like Majorana spinors and scalar products. Even though
spinors are elementary objects, some of their properties (like the periodicity modulo
8, real and quaternionic structures, or bilinear and Hermitian scalar products) are
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not at all obvious, already on the level of linear algebra, and do not have a direct
analogue in the bosonic world of vectors and tensors.

General references for this chapter are [13, 15, 20, 28, 35, 55, 88] and [93].

6.1 The Pseudo-Orthogonal Group O.s; t/ of Indefinite
Scalar Products

We begin by describing the structure of the pseudo-orthogonal group for a general
indefinite scalar product. This includes the particular case of the Lorentz group of
Minkowski spacetime. In Sect. 6.5 we will then introduce the spin group, which is a
certain double covering of a (pseudo-)orthogonal group.

In this chapter K denotes the field R or C. Let V be a finite-dimensionalK-vector
space.

Definition 6.1.1 A symmetric bilinear form is a map

QW V � V �! K

which is symmetric andK-bilinear. The form Q is called non-degenerate if for each
v ¤ 0 2 V there exists a vector w 2 V with Q.v;w/ ¤ 0.
Notice that in the complex case we also considercomplex bilinear and not Hermitian
forms.

Example 6.1.2 We denote by R
s;t the vector space R

sCt with standard basis
e1; : : : ; esCt and the standard symmetric bilinear form � defined by

�.ei; ei/ D C1 81 � i � s;

�.ei; ei/ D �1 8s C 1 � i � s C t;

�.ei; ej/ D 0 8i ¤ j:

The bilinear form � has signature .s; t/, also written as

.C; : : : ;C
„ ƒ‚ …

s

;�; : : : ;�
„ ƒ‚ …

t

/;

and is non-degenerate. We set n D s C t.
The space

• R
s D R

s;0 is Euclidean space, and
• R

s;1 and R
1;t are the two versions of Minkowski spacetime (both versions are

used in physics).

In general, if both s and t are non-zero, we call � a pseudo- or semi-Euclidean
scalar product.
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A set of vectors v1; : : : ; vs;w1; : : : ;wt in R
s;t with

�.vi:vj/ D ıij;

�.wi;wj/ D �ıij;

�.vi;wj/ D 0

is called an orthonormal basis. Occasionally we write for v 2 R
s;t

jjvjj2� D �.v; v/;

called the (�)-norm squared. We usually try to avoid this notation, because it
suggests that this norm is non-negative, which may not be the case.

Example 6.1.3 On the vector space C
d we consider the non-degenerate standard

symmetric complex bilinear form q, given in the standard basis e1; : : : ; ed by

q.ei; ei/ D C1 81 � i � d;

q.ei; ej/ D 0 8i ¤ j:

The following is a well-known result from linear algebra.

Proposition 6.1.4 Every non-degenerate symmetric bilinear form Q on an R- or C-
vector space V is isomorphic to precisely one of these examples. In particular, every
non-degenerate symmetric bilinear form on an R-vector space V has a well-defined
signature .s; t/.

Remark 6.1.5 Since we can multiply a vector in a C-vector space by i and the form
Q is complex bilinear, we can change Q.v; v/ D C1 to Q.iv; iv/ D �1. This
explains why there is no signature for symmetric bilinear forms on complex vector
spaces.

Definition 6.1.6 Let V be a K-vector space with a non-degenerate symmetric
bilinear form Q. Then the (pseudo-)orthogonal group of .V;Q/ is defined as the
automorphism group of Q:

O.V;Q/ D f f 2 GL.V/ j Q. fv; fw/ D Q.v;w/ 8v;w 2 Vg :

In the following we will only consider the case of the standard symmetric bilinear
form � on R

sCt of signature .s; t/, where we write

O.s; t/ D ˚
A 2 GL.s C t;R/ j �.Av;Aw/ D �.v;w/ 8v;w 2 R

sCt
�
:

The groups O.1; t/ and O.s; 1/ are called Lorentz groups.
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If we write a matrix A 2 Mat..s C t/ � .s C t/;R/ in the block form

A D
�

A11 A12
A21 A22

�

(6.1)

with

A11 2 Mat.s � s;R/;

A12 2 Mat.s � t;R/;

A21 2 Mat.t � s;R/;

A22 2 Mat.t � t;R/;

then A 2 O.s; t/ if and only if

AT

�
Is 0

0 �It

�

A D
�

Is 0

0 �It

�

:

Taking the determinant on both sides of this equation shows that:

Lemma 6.1.7 Matrices A 2 O.s; t/ satisfy det A D ˙1.
If we write a matrix A 2 Mat..s C t/ � .s C t/;R/ in the form

A D .v1; : : : ; vs;w1; : : : ;wt/

with vi;wj 2 R
sCt, then A 2 O.s; t/ if and only if

�.vi; vj/ D ıij;

�.wi;wj/ D �ıij;

�.vi;wj/ D 0;

i.e. the vectors v1; : : : ; vs;w1; : : : ;wt form an orthonormal basis for Rs;t, generaliz-
ing a well-known property of orthogonal matrices.

Lemma 6.1.8 There exists a canonical isomorphism O.s; t/ Š O.t; s/.

Proof This is Exercise 6.13.1. ut
We note the following facts:

Proposition 6.1.9 (Properties of Pseudo-Orthogonal Groups)

1. The group O.s; t/ is a linear Lie group.
2. If both s; t ¤ 0, then O.s; t/ is not compact.
3. Let o.s; t/ denote the Lie algebra of O.s; t/. Then as complex Lie algebras

o.s; t/˝R C Š o.s C t/˝R C:
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In particular,

dim O.s; t/ D dim O.s C t/

D 1

2
.s C t/.s C t � 1/:

Proof

1. A similar argument to the one in Theorem 1.2.17 shows that the group O.s; t/
is a closed subgroup of GL.s C t;R/, hence a linear Lie group by Cartan’s
Theorem 1.1.44.

2. This is Exercise 6.13.2.
3. This follows for a reason similar to the one explained in Remark 6.1.5.

ut
It is also clear that O.0; n/ Š O.n; 0/ D O.n/, the standard orthogonal group. This
group has two connected components and the connected component of the identity
is SO.n/, the group of orthogonal matrices of determinant C1.

We would like to determine the number of connected components of the pseudo-
orthogonal group O.s; t/ for general values of s and t. Let VC and V� be the vector
subspaces of V D R

s;t defined by

VC D spanfe1; : : : ; esg;
V� D spanfesC1; : : : ; esCtg:

Then � is positive definite on VC and negative definite on V�. Let �W V ! VC
denote the projection along V�.

Suppose that W � V is any maximally �-positive definite vector subspace of
dimension s. Then

�jW W W �! VC

is an isomorphism, because any non-zero element in the kernel must have negative
�-norm squared and hence cannot be an element of W.

Definition 6.1.10 Fix an orientation on the vector subspace VC. Then there exists
for every maximally positive definite vector subspace W � V a unique orientation
so that the isomorphism �jW is orientation preserving.
Suppose A 2 O.s; t/. Since A preserves �, it maps (maximally) positive definite
subspaces of V to (maximally) positive definite subspaces.

Definition 6.1.11 We define the time-orientability of A 2 O.s; t/ to be C1 or �1
depending on whether

AjV
C

W VC �! A.VC/

preserves or does not preserve orientation, where the orientation on A.VC/ is chosen
via the projection � as above.
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Remark 6.1.12 It might seem more natural to call this notion space-orientability,
because often a positive definite subspace of V is called spacelike. We could
then define time-orientability as the corresponding notion with VC replaced by
V�. However, as mentioned above, depending on the convention, 4-dimensional
Minkowski spacetime in quantum field theory can have signature .C;�;�;�/,
so that time caries the plus sign. Furthermore, it follows from Lemma 6.1.18
that if det A D 1 (the only situation in which we are going to consider time-
orientability) time-orientability and space-orientability are equivalent. Since the
term time-orientability is much more common in physics, we will continue to use it.

Lemma 6.1.13 Let A 2 O.s; t/ and W � V an arbitrary maximally positive definite
subspace. Then A has time-orientability C1 if and only if

AjW W W �! A.W/

preserves orientation, with orientation on W and A.W/ chosen via the projection �
as above.

Proof The proof is a deformation argument. Suppose that A 2 O.s; t/ and W � V
is a maximally positive definite subspace. Since �jW W W ! VC is an isomorphism,
we can find a unique basis w1; : : : ;ws for W of the form

wi D ei C v�
i ;

where v�
i are elements of V�. The fact that W is positive definite means that

sX

iD1
a2i C h˛; ˛i > 0 8.a1; : : : ; as/ 2 R

s n f0g;

where

˛ D
sX

iD1
aiv

�
i :

By construction, h˛; ˛i < 0.
For � 2 Œ0; 1� consider the following subspace of V:

W� D spanfe1 C �v�
1 ; : : : ; es C �v�

s g:

It is easy to see that W� is maximally positive definite for all � 2 Œ0; 1� and W0 D
VC, W1 D W. Let

A� D AjW�
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and consider the following commutative diagram:

We know that � restricted to W� and A.W� / is an orientation preserving isomor-
phism to VC for all � 2 Œ0; 1�, because these subspaces are maximally positive
definite. Since A� is an isomorphism, it follows that B� is an isomorphism for all
� 2 Œ0; 1�, i.e. an element of GL.VC/. Moreover, A has time-orientability C1 if and
only if B0 has positive determinant. Since the determinant is continuous and B� is a
continuous curve in GL.VC/, it follows that B0 has positive determinant if and only
if B1 has positive determinant. This proves the claim. ut
The construction of the family W� in the proof shows the following:

Lemma 6.1.14 The set of all maximally positive definite subspaces W � V forms
a contractible subset of the Grassmannian Grs.V/.
Lemma 6.1.13 implies:

Proposition 6.1.15 If A;B 2 O.s; t/ both have time-orientability C1, then the same
holds for AB and A�1.

Definition 6.1.16 We call

SO.s; t/ D fA 2 O.s; t/ j det A D 1g;
OC.s; t/ D fA 2 O.s; t/ j A has time-orientability C1g;

SOC.s; t/ D SO.s; t/ \ OC.s; t/;

respectively,

• the proper or special pseudo-orthogonal group,
• the orthochronous pseudo-orthogonal group, and
• the proper orthochronous pseudo-orthogonal group.

These subsets are indeed subgroups of O.s; t/: this is clear for SO.s; t/ and
follows for OC.s; t/ from Proposition 6.1.15.

In particular, for s D 1 or t D 1 these groups are called

• the proper Lorentz group,
• the orthochronous Lorentz group, and
• the proper orthochronous Lorentz group.
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If we write a matrix A 2 O.s; t/ as in Eq. (6.1) in the block form

A D
�

A11 A12
A21 A22

�

;

then

OC.s; t/ D fA 2 O.s; t/ j det A11 > 0g;
SOC.s; t/ D fA 2 O.s; t/ j det A D 1; det A11 > 0g:

The definition of time-orientability also works for O.n/, in which case the time-
orientability of A is equal to the determinant of A and

OC.n/ D SO.n/ D SOC.n/:

If � is indefinite, then the three corresponding groups are not identical.
A similar argument to the proof of Theorem 1.2.22 in Sect. 3.8.3 shows (see

Exercise 6.13.3):

Proposition 6.1.17 (Connected Component of the Identity of Pseudo-
Orthogonal Groups) The subgroup SOC.s; t/ is the connected component of
the identity in O.s; t/.
If both s and t are non-zero, this implies that O.s; t/ has precisely four connected
components.

Replacing in Definition 6.1.11 VC by V� we can define a new time-orientability
using an orientation on V�. Since the connected component of the identity has to be
the same whether we define the time-orientability via orientations on VC or V�, we
conclude that:

Lemma 6.1.18 The subgroup SOC.s; t/ can also be characterized by

SOC.s; t/ D fA 2 O.s; t/ j det A D 1; det A22 > 0g:

This also follows from the isomorphism in Lemma 6.1.8.

Remark 6.1.19 It can be shown that as a smooth manifold SOC.s; t/ is diffeomor-
phic to SO.s/ � SO.t/ � R

st (if s; t � 1), because SO.s/ � SO.t/ is the maximal
compact subgroup of SOC.s; t/ (cf. [13, 83]). This also determines the fundamental
group of SOC.s; t/.

Example 6.1.20 For applications concerning the Standard Model, the most impor-
tant of these Lie groups is the proper orthochronous Lorentz group SOC.1; 3/ Š
SOC.3; 1/ of 4-dimensional Minkowski spacetime. This is a connected, non-
compact Lie group of dimension 6. As a smooth manifold it is diffeomorphic to
SO.3/ � R

3 and has fundamental group Z2.
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6.2 Clifford Algebras

We saw in Sect. 6.1 that a vector space .V;Q/ with a (non-degenerate) symmetric
bilinear form defines a canonical Lie group O.V;Q/ and there is an associated Lie
algebra o.V;Q/. It is less obvious that the vector space .V;Q/ also defines another
canonical algebraic object, an associative algebra Cl.V;Q/, called the Clifford
algebra of .V;Q/.

Definition 6.2.1 Let K D R;C. An associative K-algebra with unit element 1 is
a K-vector space A of finite dimension together with a bilinear, associative product

�W A � A �! A

and an element 1 2 A such that 1 � a D a D a � 1 for all a 2 A. In particular, the
product on A is distributive and associative, but in general not commutative. The
direct sum of associative algebras A;B with unit element is defined as the vector
space A ˚ B with the product

.a; b/ � �a0; b0� D �
a � a0; b � b0� 8a; a0 2 A; b; b0 2 B:

The tensor product of associative algebras A;B with unit element is defined as the
vector space A ˝K B with the product

.a ˝ b/ � �a0 ˝ b0� D �
a � a0�˝ �

b � b0� 8a; a0 2 A; b; b0 2 B:

Definition 6.2.2 A homomorphism between K-algebras A;B with unit elements is
a K-linear map �W A ! B such that �.1/ D 1 and

�
�
a � a0� D �.a/ � � �a0� 8a; a0 2 A:

An isomorphism is a bijective homomorphism. An automorphism is an isomor-
phism �W A ! A. A representation of A on a vector space V is a homomorphism
�W A ! End.V/ into the endomorphism algebra of V . A representation is called
faithful if the homomorphism �W A ! End.V/ is injective.

Definition 6.2.3 If C is an associative algebra and a; b 2 C, we define the
commutator and anticommutator by

Œa; b� D a � b � b � a;

fa; bg D a � b C b � a:
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Definition 6.2.4 Let V be a K-vector space with a symmetric bilinear form
Q. A Clifford algebra of .V;Q/ is a pair .Cl.V;Q/; �/, where

1. Cl.V;Q/ is an associative K-algebra with unit element 1.
2. Clifford relation: � W V ! Cl.V;Q/ is a linear map with

f�.v/; �.w/g D �2Q.v;w/ � 1 8v;w 2 V:

3. Universal property: If A is some other associative K-algebra with unit
element 1 and ıW V ! A a K-linear map with

fı.v/; ı.w/g D �2Q.v;w/ � 1 8v;w 2 V;

then there exists a unique algebra homomorphism �W Cl.V;Q/ ! A such
that the following diagram commutes:

Remark 6.2.5 We can think of the linear map � as a linear square root of the
symmetric bilinear form �Q: in the definition of Clifford algebras, it suffices to
demand that

�.v/2 D �Q.v; v/ � 1 8v 2 V;

because, considering this equation for vectors v;w; v C w, the equation

f�.v/; �.w/g D �2Q.v;w/ � 1 8v;w 2 V

follows. The element �.v/ in the Clifford algebra associated to a vector v 2 V is
thus a “square root” of �Q.v; v/ � 1, depending linearly on v.

Remark 6.2.6 Clifford algebras arose in physics in the work of P.A.M. Dirac, who
tried to find a “square root” of the Laplacian �, i.e. a differential operator D on a
pseudo-Euclidean vector space .Rs;t; �/ of dimension n D s C t such that

D2 D D ı D D � D �
nX

iD1
�i
@2

@x2i
;

where �i D �.ei; ei/ in an orthonormal basis e1; : : : ; esCt.
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If we expand formally

D D
nX

iD1
�.ei/

@

@xi
;

it follows that

D2 D
nX

i;jD1
�.ei/�.ej/

@2

@xi@xj

D 1

2

nX

i;jD1

�
�.ei/�.ej/C �.ej/�.ei/

� @2

@xi@xj
:

This implies that the symbols �.ei/ have to satisfy

�.ei/�.ej/C �.ej/�.ei/ D �2�.ei; ej/;

i.e. the relation of the Clifford algebra. We conclude that if we have a representation
of the Clifford algebra of .Rs;t; �/ on a vector space �, then we can define a Dirac
operator D, a square root of the Laplacian, for maps on R

s;t with values in �.

Remark 6.2.7 The Clifford relation has another important consequence, that
we will discuss in detail in Sect. 6.5: if v 2 V is a vector with Q.v; v/ D ˙1,
then for all x 2 V

˙�.v/ � �.x/ � �.v/ D
	 ��.x/ if x k v;

�.x/ if x ? v:

We will see in Corollary 6.2.18 that the linear map � is always injective and
we can identify V with its image �.V/. This implies that the vectors v 2 V
with Q.v; v/ D ˙1 act on V as reflections in the hyperplane v? and thus
arbitrary products of such vectors act as pseudo-orthogonal transformations.
Conversely, demanding that ˙�.v/ � �.x/ � �.v/ is the reflection in v? almost
inevitably leads to the Clifford relation.

Note that v and �v define the same reflection in v?. Since the expression
˙�.v/ � �.x/ � �.v/ depends quadratically on v, we can think of �.v/ as a
“square root” of the reflection in v?. This construction, together with the
Cartan–Dieudonné Theorem on reflections, will enable us to define the spin
groups, certain double coverings of the pseudo-orthogonal groups, essentially
using square roots of pseudo-orthogonal transformations.
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6.2.1 Existence and Uniqueness of Clifford Algebras

Our first aim is to prove the existence and uniqueness of Clifford algebras.

Theorem 6.2.8 (Existence of Clifford Algebras) For every finite-dimensional K-
vector space V with a symmetric bilinear form Q there exists a Clifford algebra
.Cl.V;Q/; �/.

Proof We denote by T.V/ the tensor algebra of V:

T.V/ D
M

n�0
V˝n D K ˚ V ˚ .V ˝ V/˚ .V ˝ V ˝ V/˚ : : :

Let I.Q/ denote the two-sided ideal in T.V/ generated by the set

fv ˝ v C Q.v; v/ � 1 j v 2 Vg:

The tensor algebra T.V/ is determined by V alone (and infinite-dimensional),
whereas the ideal I.Q/ depends also on the symmetric bilinear form Q.

We set

Cl.V;Q/ D T.V/=I.Q/:

Then Cl.V;Q/ is an associative algebra with product

Œa� � Œb� D Œa ˝ b� 8a; b 2 T.V/:

If Q � 0, it follows that the Clifford algebra is the exterior algebra��V . In general,
let

iW V �! T.V/

and

�W T.V/ �! Cl.V;Q/

denote the canonical embedding and projection. Then

� D � ı iW V �! Cl.V;Q/

is linear and satisfies the identity

�.v/2 D Œv ˝ v�

D �Q.v; v/ � 1 8v 2 V:
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This implies by polarization

f�.v/; �.w/g D �2Q.v;w/ � 1 8v;w 2 V:

Since the vector space V generates T.V/ by taking tensor products, it follows that
the image �.V/ generates Cl.V;Q/ multiplicatively.

By definition of the tensor algebra, every linear map

ıW V �! A

to an associative algebra A extends to an algebra homomorphism

�W T.V/ �! A:

If ı satisfies the identity

fı.v/; ı.w/g D �2Q.v;w/ � 1 8v;w 2 V;

then I.Q/ is a subset of ker� and the map � descends to a homomorphism

�W Cl.V;Q/ �! A

with � ı � D ı. Given A and ı, the homomorphism � with � ı � D ı is uniquely
determined, because �.V/ generates Cl.V;Q/ multiplicatively and � is fixed on the
image �.V/. ut
Corollary 6.2.9 (Uniqueness of Clifford Algebras) If the associative algebras
.Cl.V;Q/; �/ and

�
Cl0.V;Q/; � 0� are both Clifford algebras for the same vector

space .V;Q/, then there exists a unique algebra isomorphism

f W Cl.V;Q/ �! Cl0.V;Q/

so that f ı � D � 0.

Proof This follows from the universal property of Clifford algebras. ut
From the proof of Theorem 6.2.8 we see:

Corollary 6.2.10 The image of the vector space V under � generates Cl.V;Q/
multiplicatively.

Corollary 6.2.11 If Q � 0, then there exists an algebra isomorphism

.Cl.V; 0/; �/ Š .��V;^/;

where � is given by the standard embedding of V into ��V.
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Corollary 6.2.12 Suppose that dimK V D n and e1; : : : ; en is an orthonormal basis
for .V;Q/. Then the set of elements of the form

�.ei1 / � �.ei2/ � � ��.eik/;

where 1 � i1 < i2 < : : : < ik � n, 0 � k � n, and the empty product for k D 0 is
equal to 1, span Cl.V;Q/ as a vector space. This implies that

dimK Cl.V;Q/ � 2n:

Proof The elements of �.V/ generate Cl.V;Q/ multiplicatively, hence the collec-
tion of all products of the basis vectors f�.ei/g span Cl.V;Q/ as a vector space. If
in such a product the same vector �.ei/ appears twice, then we can cancel it (after
possibly permuting the vectors) because of the Clifford relation. ut
Example 6.2.13 The simplest non-trivial example of a Clifford algebra is the
Clifford algebra over a 1-dimensional vector space .K;Q/. Let e be a non-zero
element of K. Then Cl.K;Q/ is 2-dimensional and is spanned as a K-vector space
by f1; �.e/g with

�.e/ � �.e/ D �Q.v; v/ � 1:

Definition 6.2.14 Let T0.V/ and T1.V/ denote the vector subspaces of elements of
the tensor algebra of even and odd degree. We set

Cl0.V;Q/ D T0.V/=
�
T0.V/\ I.Q/

�
;

Cl1.V;Q/ D T1.V/=
�
T1.V/\ I.Q/

�

and call these vector subspaces the even and odd part of the Clifford algebra. Since

I.Q/ D �
T0.V/ \ I.Q/

�˚ �
T1.V/ \ I.Q/

�
;

it follows that

Cl.V;Q/ D Cl0.V;Q/˚ Cl1.V;Q/

and Cl.V;Q/ has the structure of a Z2-graded associative algebra or superalge-
bra:

Cli.V;Q/ � Clj.V;Q/ � CliCj mod 2.V;Q/:

In particular, Cl0.V;Q/ is a subalgebra of Cl.V;Q/ and is spanned by products
v1 � � �v2k of an even number of vectors vi 2 V .
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6.2.2 Clifford Algebras and Exterior Algebras

We saw in Corollary 6.2.11 that for Q � 0 the Clifford algebra Cl.V;Q/ is
isomorphic to the exterior algebra ��V with the wedge product. In this section
we will show that for an arbitrary symmetric bilinear form Q the Clifford algebra
Cl.V;Q/ is still (canonically) isomorphic to the exterior algebra as a vector space.
The multiplication in Cl.V;Q/ can thus be thought of as a deformation (depending
on Q) of the wedge product on ��V (we follow the exposition in [20]).

Let V be a finite-dimensional K-vector space with a symmetric bilinear form Q.

Definition 6.2.15 For v 2 V and � 2 �kV there is a unique .k � 1/-form vy� 2
�k�1V , called the contraction of v and � , with the following properties:

1. if � 2 V , then vy� D Q.v; �/;
2. for all � 2 �kV; ! 2 �lV we have

vy.� ^ !/ D .vy�/ ^ ! C .�1/k� ^ .vy!/:

The proof is left as an exercise.

Theorem 6.2.16 (The Clifford Algebra Is Isomorphic to the Exterior Algebra
as a Vector Space) There exists a canonical isomorphism of vector spaces

��V �! Cl.V;Q/:

In any orthonormal basis e1; : : : ; en of .V;Q/ this isomorphism is given by

ei1 ^ ei2 ^ : : : ^ eik 7�! �.ei1/ � �.ei2 / � � ��.eik/:

In particular, the dimension of the Clifford algebra is

dimK Cl.V;Q/ D 2n;

where n D dimK V.

Proof We define a linear map

ıW V �! End.��V/

by

ı.v/W��V �! ��V

˛ 7�! v ^ ˛ � vy˛:



334 6 Spinors

We have

fı.v/; ı.w/g˛ D v ^ .w ^ ˛ � wy˛/ � vy.w ^ ˛ � wy˛/
C w ^ .v ^ ˛ � vy˛/ � wy.v ^ ˛ � vy˛/

D �2Q.v;w/˛:

By the universal property of Clifford algebras, the linear map ı extends to an algebra
homomorphism

�W Cl.V;Q/ �! End.��V/:

Consider the linear map

f W Cl.V;Q/ �! ��V

x 7�! .�.x//.1��V /:

If e1; : : : ; en is an orthonormal basis for .V;Q/, then

f .�.ei1 / � �.ei2 / � � ��.eik// D ei1 ^ ei2 ^ : : : eik :

In particular, f is surjective. Corollary 6.2.12 then implies that f is an isomorphism
of vector spaces. ut
Remark 6.2.17 The linear map

f W Cl.V;Q/ �! ��V

is called the symbol map in [15], its inverse f �1 the quantization map.

Corollary 6.2.18 (Linear Map � Is an Embedding) Let .Cl.V;Q/; �/ be a
Clifford algebra. Then the linear map

� W V �! Cl.V;Q/

is injective and we can therefore identify V with its image under � .

Remark 6.2.19 Since we now know the dimension of Clifford algebras, the univer-
sal property can be used to find isomorphisms of the Clifford algebra Cl.V;Q/ to
other associative algebras A as follows:

• Find a linear map ıW V ! A that satisfies

ı.v/2 D �Q.v; v/ � 1 8v 2 V:

It then induces an algebra homomorphism �W Cl.V;Q/ ! A.
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• Let e1; : : : ; en be an orthonormal basis of V . Show that the products of the images
ı.ei/ span A. Then � is surjective.

• Suppose that the algebras Cl.V;Q/ and A have the same dimensions. Then � is
an algebra isomorphism.

We will use this strategy several times in the following sections, for instance, in
Lemma 6.3.2, Lemma 6.3.3 and Lemma 6.3.20.
Here is an application of Remark 6.2.19.

Lemma 6.2.20 The linear map

�IdW V �! V

induces an algebra automorphism

˛W Cl.V;Q/ �! Cl.V;Q/

with ˛2 D 1. The subspace Clj.V;Q/ is equal to the .�1/j-eigenspace of ˛. In
particular,

dimK Cl0.V;Q/ D dimK Cl1.V;Q/ D 1

2
dimK Cl.V;Q/:

6.3 The Clifford Algebras for the Standard Symmetric
Bilinear Forms

Definition 6.3.1
1. For the standard vector space .V;Q/ D .Rs;t; �/ we denote the Clifford algebra

by Cl.s; t/. This is a real associative algebra. For .s; t/ D .n; 0/ we also denote
the Clifford algebra by Cl.n/.

2. For the standard vector space .V;Q/ D �
C

d; q
�

we denote the Clifford algebra
by Cl.d/ (note that q is the standard non-degenerate complex bilinear form and
not a Hermitian form). This is a complex associative algebra.

Lemma 6.3.2 (Complexified Clifford Algebra) There exists an isomorphism of
complex associative algebras

Cl.s C t/ Š Cl.s; t/˝R C:

Complex representations of Cl.s; t/ are equivalent to complex representations of
Cl.s C t/.
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Proof The complex linear map

ıWCsCt Š R
s;t ˝R C �! Cl.s; t/˝R C

.v ˝ z/ 7�! �.v/˝ z

satisfies

ı.v ˝ z/2 D ��.v; v/z2
D �q.v ˝ z; v ˝ z/:

The claim follows from Remark 6.2.19. ut
Lemma 6.3.3 (Even Complex Clifford Algebra) For any n � 1

Cl0.n/ Š Cl.n � 1/:

Proof Let en be the n-th standard basis vector of Cn and define

ıWCn�1 �! Cl0.n/

x 7�! x � en:

Then ı satisfies

ı.x/2 D x � en � x � en

D x � x

D �q.x; x/:

The claim follows from Remark 6.2.19 and the dimension formula in Lemma 6.2.20.
ut

6.3.1 Gamma Matrices

The Clifford algebra Cl.V;Q/ is generated multiplicatively by the subspace �.V/. It
is therefore important to know the elements �.ei/ for a basis e1; : : : ; en of V .
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Definition 6.3.4 Let .V;Q/ D .Rs;t; �/ with standard basis e1; : : : ; en.
Suppose

�W Cl.V;Q/ �! End.˙/

is a representation of Cl.V;Q/ on a K-vector space˙ D K
N . Then we define

for a D 1; : : : ; n the mathematical gamma matrices by

�a D � ı �.ea/

and the physical gamma matrices by

	a D .�i/�a:

The anticommutators are given by

f�a; �bg D �2�abIN ;

f	a; 	bg D 2�abIN ;

where IN denotes the N � N-unit matrix. We also set

�ab D 1

2
Œ�a; �b� D 1

2
.�a�b � �b�a/;

	ab D 1

2
Œ	a; 	b� D 1

2
.	a	b � 	b	a/:

6.3.2 The Chirality Operator in Even Dimensions

For an even-dimensional real vector space, a choice of orientation defines an
important element in the Clifford algebra.

Suppose that n D sCt D 2k is even. A chirality element for Cl.s; t/ is a Clifford
element of the form

! D e1 � � � en 2 Cl.s; t/˝ C;

where e1; : : : ; en is an oriented orthonormal basis of Rs;t and  is a complex constant,
determined below.
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Lemma 6.3.5 A chirality element ! does not depend on the choice of oriented
orthonormal basis e1; : : : ; en.

Proof Suppose that

e0
i D

nX

jD1
Aijej

with a matrix A 2 SO.s; t/. Under the vector space isomorphism

 W��
R

s;t �! Cl.s; t/

from Theorem 6.2.16 we have

e1 � � � en D  .e1 ^ e2 : : : ^ en/;

e0
1 � � � e0

n D  
�
e0
1 ^ e0

2 : : : ^ e0
n

�
:

However

e0
1 ^ e0

2 ^ : : : ^ e0
n D det.A/e1 ^ e2 ^ : : : ^ en

D e1 ^ e2 : : : ^ en:

Hence e0
1 � � � e0

n D e1 � � � en. ut
Lemma 6.3.6 Every chirality element ! satisfies

f!; eag D 0;

Œ!; ea � eb� D 0

for all 1 � a; b � n.

Proof The first equation follows from

ea � ! D ea � e1 � � � en

D .�1/a�1e1 � � � ea � ea � � � en;

! � ea D e1 � � � en � ea

D .�1/n�ae1 � � � ea � ea � � � en

D �ea � !;

since n is even. The second equation is a consequence of the first. ut
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Lemma 6.3.7 If 2 D .�1/kCt, then the chirality element satisfies

!2 D 1:

Proof

!2 D 2e1 � � � en � e1 � � � en

D 2.�1/n.n�1/=2.e1/2 � � � .en/
2

D 2.�1/kCt1

D 1;

where we used that

1

2
n.n � 1/ D k.2k � 1/ � k mod 2:

ut
Different choices for  with 2 D .�1/kCt are possible and several different choices
appear in the literature. The simplest choice is probably

 D ikCt:

We will use in the following this choice up to a sign (because of certain conventions
for Weyl spinors, described later) and set:

Definition 6.3.8 The chirality element in even dimension n D s C t D 2k for
Cl.s; t/ is defined by

! D �ikCte1 � � � en 2 Cl.s; t/˝ C:

If k C t is even, then ! is an element of the real Clifford algebra Cl.s; t/.
If �a are mathematical gamma matrices in a complex representation of Cl.s; t/,

then the mathematical chirality operator is defined by

�nC1 D �ikCt�1 � � ��n:

If 	a are physical gamma matrices, then the physical chirality operator is defined
by

	nC1 D �ikCt	1 � � �	n:
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We have �nC1 D .�1/k	nC1. The chirality operators do not depend on the choice of
oriented orthonormal basis for Rs;t.

Remark 6.3.9 By analogy, we can define a chirality element for the complex
Clifford algebra Cl.2k/ by

! D �ike1 � � � e2k 2 Cl.2k/;

where e1; : : : ; e2k is an orthonormal basis of .C2k; q/. Taking an orthonormal basis

e1; : : : ; es; esC1; : : : ; esCt

of Rs;t and the corresponding orthonormal basis

e1; : : : ; es; iesC1; : : : ; iesCt

of C2k, we see that the chirality elements for the real and complex Clifford algebra
coincide under the isomorphism Cl.s; t/˝ C Š Cl.2k/.

6.3.3 Raising Indices of Gamma Matrices

Let 	1; : : : ; 	n be physical gamma matrices. We set

	 a D �ac	c;

	 bc D 1

2

�
	 b; 	 c

�

D 1

2

�
	 b	 c � 	 c	 b

�
;

	 nC1 D �ikCt	 1 � � �	 n

and similarly for the mathematical � -matrices (in the first equation there is an
implicit sum over c; this is an instance of the Einstein summation convention). These
matrices satisfy by Lemma 6.3.6

˚
	 nC1; 	 a

� D 0;
�
	 nC1; 	 bc

� D 0;

�bc D �	 bc:
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6.3.4 Examples of Clifford Algebras in Low Dimensions

In the following examples we use the Pauli matrices

�1 D
�
0 1

1 0

�

; �2 D
�
0 �i
i 0

�

; �3 D
�
1 0

0 �1
�

:

It is easy to check that they satisfy the identities

�2j D I2 j D 1; 2; 3;

�j�jC1 D ��jC1�j D i�jC2 j D 1; 2; 3;

where in the second equation j C 1 and j C 2 are taken mod3.

Example 6.3.10 The Clifford algebra Cl.1; 0/ is spanned as a real vector space by
elements 1; �.e1/ with

�.e1/
2 D �1:

It follows that Cl.1; 0/ is isomorphic as a real algebra to the 2-dimensional algebra
C with �.e1/ D i.

Example 6.3.11 The Clifford algebra Cl.0; 1/ is spanned as a real vector space by
elements 1; �.e1/ with

�.e1/
2 D 1:

It follows that Cl.0; 1/ is isomorphic as a real algebra to the 2-dimensional algebra
R ˚ R with multiplication .a; b/ � .a0; b0/ D .aa0; bb0/, unit element 1 D .1; 1/ and
�.e1/ D .1;�1/.
Example 6.3.12 The algebra C ˚ C is spanned as a vector space by 1 D .1; 1/ and
�.e1/ D .i;�i/. It follows that

Cl.1/ Š C ˚ C:

Example 6.3.13 The matrices

�1 D i�1;

�2 D i�2

satisfy

�21 D �22 D �I2;

�1�2 C �2�1 D 0:
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Therefore �1; �2 are mathematical gamma matrices for Cl.2; 0/ and generate a
faithful representation of this Clifford algebra on C

2. We can identify �.ei/ with
�i. The Clifford algebra is 4-dimensional and is spanned as a real vector space by
f1; �1; �2; �1�2g.

Example 6.3.14 The matrices

�1 D i�1;

�2 D �2

satisfy

�21 D �I2;

�22 D I2;

�1�2 C �2�1 D 0:

Therefore �1; �2 are mathematical gamma matrices for Cl.1; 1/ and generate a
faithful representation of this Clifford algebra on C

2. Again, the Clifford algebra
is spanned as a real vector space by f1; �1; �2; �1�2g.

Example 6.3.15 Note that the matrices

I2; �1; �2; �3 D �i�1�2

span Mat.2 � 2;C/ D End
�
C
2
�

as a complex vector space. It follows that

Cl.2/ Š End
�
C
2
�
:

Example 6.3.16 The matrices

�0 D
�
0 iI2

iI2 0

�

;

�k D
�
0 �k

��k 0

�

8k D 1; 2; 3

satisfy

.�0/
2 D �I4;

.�k/
2 D �I4 8k D 1; 2; 3;

�a�b C �b�a D 0 8a ¤ b:



6.3 The Clifford Algebras for the Standard Symmetric Bilinear Forms 343

They are mathematical gamma matrices for Cl.4; 0/, i.e. for the Clifford algebra of
Euclidean space of dimension 4. Another choice for the same Clifford algebra is

�0 D
�
0 I2

�I2 0

�

;

�k D
�
0 i�k

i�k 0

�

8k D 1; 2; 3:

The �a generate a faithful representation of Cl.4; 0/ on C
4. We identify �.ei/ with

�i. As a real vector space Cl.4; 0/ has dimension 16 and is spanned by

1 (1 element),

�a (4 elements),

�a�b .a < b; 6 elements),

�a�b�c .a < b < c; 4 elements),

�0�1�2�3 (1 element):

Example 6.3.17 The matrices

	0 D
�
0 I2
I2 0

�

;

	k D
�
0 �k

��k 0

�

8k D 1; 2; 3

satisfy

.	0/
2 D I4;

.	k/
2 D �I4 8k D 1; 2; 3;

	a	b C 	b	a D 0 8a ¤ b:

They are physical gamma matrices for Cl.1; 3/, i.e. for the Clifford algebra of
Minkowski spacetime with signature .C;�;�;�/, in the so-called Weyl repre-
sentation or chiral representation. The associated mathematical gamma matrices
�a D i	a satisfy

.�0/
2 D �I4;

.�k/
2 D I4 k D 1; 2; 3;

�a�b C �b�a D 0 8a ¤ b:
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The �a generate a faithful representation of Cl.1; 3/ on C
4. As a real vector space

Cl.1; 3/ has dimension 16 and is spanned by the matrices corresponding to the ones
above.

Example 6.3.18 Let 	a and �a D i	a be the physical and mathematical gamma
matrices for Cl.1; 3/ considered in Example 6.3.17. If we set

	 0
a D �a;

� 0
a D i	 0

a D �	a;

then these are physical and mathematical gamma matrices for the Clifford algebra
Cl.3; 1/ of Minkowski spacetime with signature .�;C;C;C/.
Example 6.3.19 A similar argument to the one in Example 6.3.15 shows that

Cl.4/ Š End
�
C
4
�
:

6.3.5 The Structure of the Standard Clifford Algebras

Lemma 6.3.20 (Complex Clifford Algebras Are Periodic) The complex Clifford
algebras satisfy the periodicity

Cl.n C 2/ Š Cl.n/˝C Cl.2/

Š Cl.n/˝C End
�
C
2
�
:

Here ˝C denotes the standard tensor product of associative algebras.

Proof We follow [20]. Write CnC2 as Cn ˚ C
2 and decompose an element of CnC2

accordingly as .x; y/. Let e1; e2 be the standard basis of C2 and ! D �ie1e2 the
corresponding chirality element. Define the linear map

ıWCnC2 �! Cl.n/˝C Cl.2/

.x; y/ 7�! x ˝ ! C 1˝ y:

Then

ı.x; y/2 D x2 ˝ !2 C x ˝ !y C x ˝ y! C 1˝ y2

D �.q.x; x/C q.y; y// � 1;

because !2 D 1 and f!; yg D 0. The first isomorphism then follows by
Remark 6.2.19. The second isomorphism follows from Example 6.3.15. ut
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Together with Example 6.3.12, Example 6.3.15 and Lemma 6.3.3 this implies the
following structure theorem.

Theorem 6.3.21 (Structure Theorem for Complex Clifford Algebras) As com-
plex algebras the complex Clifford algebra and its even part are given by Table 6.1.

Example 6.3.22 In dimension n D 4 we have

Cl.4/ Š End
�
C
4
�
;

Cl0.4/ Š End
�
C
2
�˚ End

�
C
2
�
:

Without proof we mention the following theorem (see [28, 40, 49]).

Theorem 6.3.23 (Structure Theorem of Real Clifford Algebras) The structure
of the real Clifford algebras Cl.s; t/ and Cl0.s; t/ is given by Tables 6.2 and 6.3,
where we set � D s�t and n D sCt and all endomorphism algebras are understood
as real algebras.

Example 6.3.24 For Minkowski spacetime in dimension 4 we have

Table 6.1 Complex Clifford algebras

n Cl.n/ Cl0.n/ N

Even End
�
C

N
�

End
�
C

N=2
�˚ End

�
C

N=2
�

2n=2

Odd End
�
C

N
�˚ End

�
C

N
�

End
�
C

N
�

2.n�1/=2

Table 6.2 Real Clifford
algebras

� mod 8 Cl.s; t/ N

0 End
�
R

N
�

2n=2

1 End
�
C

N
�

2.n�1/=2

2 End
�
H

N
�

2.n�2/=2

3 End
�
H

N
�˚ End

�
H

N
�

2.n�3/=2

4 End
�
H

N
�

2.n�2/=2

5 End
�
C

N
�

2.n�1/=2

6 End
�
R

N
�

2n=2

7 End
�
R

N
�˚ End

�
R

N
�

2.n�1/=2

Table 6.3 Even part of real
Clifford algebras

� mod 8 Cl0.s; t/ N

0 End
�
R

N
�˚ End

�
R

N
�

2.n�2/=2

1 End
�
R

N
�

2.n�1/=2

2 End
�
C

N
�

2.n�2/=2

3 End
�
H

N
�

2.n�3/=2

4 End
�
H

N
�˚ End

�
H

N
�

2.n�4/=2

5 End
�
H

N
�

2.n�3/=2

6 End
�
C

N
�

2.n�2/=2

7 End
�
R

N
�

2.n�1/=2
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Cl.1; 3/ Š End
�
R
4
�
;

Cl.3; 1/ Š End
�
H
2
�
;

Cl0.1; 3/ Š Cl0.3; 1/ Š End
�
C
2
�
:

6.4 The Spinor Representation

Definition 6.4.1 The vector space of (Dirac) spinors is �n D C
N , where N is

given by the values in Table 6.1. The (Dirac) spinor representation of the complex
Clifford algebra

�WCl.n/ �! End .�n/ ;

defined by the structure theorem of the complex Clifford algebras Cl.n/, is given by
Table 6.4. There are induced complex spinor representations of Cl.s; t/.

Notice that the space �n of Dirac spinors is a complex vector space, whose
dimension is always even and grows exponentially with n.

Definition 6.4.2 The bilinear map

R
s;t ��n �! �n

.X;  / 7�! X �  D �.�.X// 

is called mathematical Clifford multiplication of a spinor with a vector. Similarly,
physical Clifford multiplication is given by .�i/ times mathematical Clifford
multiplication. More generally, via the isomorphism of vector spaces

��
R

s;t �! Cl.s; t/

from Theorem 6.2.16, followed by the complex spinor representation, we can define
a (mathematical) Clifford multiplication of spinors with forms.

Example 6.4.3 Suppose that the restriction of the Dirac spinor representation to
� .Rs;t/ � Cl.s; t/ is given by physical gamma matrices 	a and mathematical

Table 6.4 Complex spinor
representation

n Representation

Even Cl.n/
Š�! End .�n/

Odd Cl.n/
Š�! End .�n/˚ End .�n/

pr1�! End .�n/
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gamma matrices �a D i	a in Mat.N � N;C/. Then physical Clifford multiplication
of a basis vector ea 2 R

s;t with a spinor  2 C
N is equal to

ea �  D 	a ;

whereas mathematical Clifford multiplication is equal to

ea �  D �a D i	a :

For the following result, recall that according to Lemma 6.3.3 there is an isomor-
phism

Cl0.n/ Š Cl.n � 1/:

Corollary 6.4.4 (Induced Spinor Representation on the Even Clifford
Algebra) Consider the restriction of the Dirac spinor representation to the
even subalgebra Cl0.n/.

• If n is odd, then the induced representation is irreducible:

Cl0.n/
Š�! End .�n/ :

• If n is even, then the induced representation splits into left-handed
(positive) and right-handed (negative) Weyl spinors:

Cl0.n/
Š�! End

�
�C

n

�˚ End
�
��

n

�
:

See Table 6.5.

If n is odd we identify here Cl0.n/ with the first summand in

Cl.n/ Š End .�n/˚ End .�n/ ;

so that the restriction of the spinor representation is non-trivial.
The result in the even-dimensional case can be clarified as follows.

Table 6.5 Weyl spinor representations

n Induced representation Spinor space N

Even Cl0.n/
Š�! End

�
�C

n

�˚ End
�
��

n

�
�C

n Š ��

n Š C
N=2 2n=2

Odd Cl0.n/
Š�! End .�n/ �n Š C

N 2.n�1/=2
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Proposition 6.4.5 (Weyl Spinors and Chirality in Even Dimensions) Let n D 2k
be even,�n the Dirac spinor representation and 	nC1 the chirality operator.

1. �ṅ can be identified with the .˙1/-eigenspaces of 	nC1 on �n.
2. The induced representation of Cl0.n/maps�ṅ to itself, while elements in Cl1.n/

(such as vectors in R
s;t) map �ṅ to ��

n . It follows that

Cl0.n/ Š Hom
�
�C

n ; �
C
n

�˚ Hom
�
��

n ; �
�
n

�
;

Cl1.n/ Š Hom
�
�C

n ; �
�
n

�˚ Hom
�
��

n ; �
C
n

�
:

Proof We can split the space�n D C
N into the .˙1/-eigenspaces of 	nC1, because

	 2
nC1 D 1. We call these spaces �ṅ . We have

Œ	nC1; 	a	b� D 0 and f	nC1; 	ag D 0 81 � a; b � n

by Lemma 6.3.6. This shows that �ṅ are invariant under the representation of
Cl0.n/ and also implies the second claim in 2. The final claim then follows from
Cl.n/ Š End.�n/. ut
Remark 6.4.6 Note that the definition of positive and negative Weyl spinors
depends on the sign of the chirality operator, which can be chosen arbitrarily.
Moreover, in the literature sometimes positive Weyl spinors are called right-handed
and negative Weyl spinors left-handed. We continue to use our conventions.

6.5 The Spin Groups

In this section we want to discuss the spin groups, which are certain subgroups
embedded in the Clifford algebra. Recall how we defined linear Lie groups in
Chap. 1: for K D R;C;H we started with the associative endomorphism algebra

End .Kn/ D K
n�n

and considered the group of invertible elements

GL.n;K/ � End .Kn/ ;

which is an open subset of End .Kn/. The linear Lie groups were then defined as
closed subgroups of the Lie groups GL.n;K/.

To define spin groups we will follow a similar approach, where we replace
the endomorphism algebra End .Kn/ by the Clifford algebra Cl.s; t/. It turns
out that spin groups are certain double coverings of (pseudo-)orthogonal groups.
In particular, the Lie algebra given by the Clifford algebra with the canonical
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commutator of associative algebras

Œa; b� D a � b � b � a 8a; b 2 Cl.s; t/

contains as a Lie subalgebra the Lie algebra of the pseudo-orthogonal group
SOC.s; t/. We follow in this section [13] and [55].

6.5.1 The Pin and Spin Groups

Definition 6.5.1 The group of invertible elements in the Clifford algebra Cl.s; t/
is defined by

Cl�.s; t/ D fx 2 Cl.s; t/ j 9y 2 Cl.s; t/ W xy D yx D 1g:

There is an analogous definition for Cl.n/.

Lemma 6.5.2 The group Cl�.s; t/ is an open subset of Cl.s; t/ and therefore a Lie
group.

Proof Let n D s C t. According to Lemma 6.3.2

Cl.n/ Š Cl.s; t/˝R C:

Decomposing y 2 Cl.n/ into y D u C iv with u; v 2 Cl.s; t/ it follows that

Cl�.s; t/ D Cl�.n/\ Cl.s; t/:

However, Theorem 6.3.21 on the structure of complex Clifford algebras implies
that Cl�.n/ is an open subset of Cl.n/ for all n, because the general linear group
GL.N;C/ is open in End

�
C

N
�
. This implies that the intersection Cl�.n/ \ Cl.s; t/

is open in Cl.s; t/. ut
Definition 6.5.3 We define the following subsets of Rs;t:

Ss;t
C D fv 2 R

s;t j �.v; v/ D C1g;
Ss;t� D fv 2 R

s;t j �.v; v/ D �1g;
Ss;t

˙ D Ss;t
C [ Ss;t� :

Here � is the standard symmetric bilinear form of signature .s; t/.
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Proposition 6.5.4 The following subsets of Cl.s; t/ form subgroups of the group
Cl�.s; t/:

Pin.s; t/ D ˚
v1v2 � � � vr j vi 2 Ss;t

˙ ; r � 0
�
;

Spin.s; t/ D Pin.s; t/ \ Cl0.s; t/

D ˚
v1v2 � � � v2r j vi 2 Ss;t

˙ ; r � 0
�
;

SpinC.s; t/ D ˚
v1 � � �v2pw1 � � � w2q j vi 2 Ss;t

C ;wj 2 Ss;t� ; p; q � 0
�
:

We endow these subsets with the subset topology from the vector space Cl.s; t/. We
also set

Pin.n/ D Pin.n; 0/;

Spin.n/ D Spin.n; 0/:

We call the group Pin.s; t/ the pin group, the group Spin.s; t/ the spin group and
the group SpinC.s; t/ the orthochronous spin group.

Proof The proof is not difficult and left as an exercise. Note that in the definition of
SpinC.s; t/ both numbers 2p and 2q are even. ut
Remark 6.5.5 In the literature the group SpinC.s; t/ is also often simply called the
spin group. We added the adjective orthochronous to distinguish it from the spin
group Spin.s; t/.

Definition 6.5.6 For an element u D v1v2 � � �vr 2 Pin.s; t/ we set

deg.u/ D
(
0 if u 2 Cl0.s; t/;

1 if u 2 Cl1.s; t/:

degt.u/ D
(
0 if an even number of vi 2 Ss;t

C ;
1 if an odd number of vi 2 Ss;t

C :

Hence

u 2 Spin.s; t/ , deg.u/ D 0;

u 2 SpinC.s; t/ , deg.u/ D 0 D degt.u/:
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Definition 6.5.7 We identify the vector space R
s;t in the canonical way via

the embedding � with a vector subspace of Cl.s; t/ and consider the following
map:

RW Pin.s; t/ � R
s;t �! R

s;t

.u; x/ 7�! .�1/deg.u/u � x � u�1:

We prove in Lemma 6.5.10 below that this map is well-defined and yields a
continuous homomorphism

W Pin.s; t/ �! O.s; t/

u 7�! Ru D R.u; �/:

Remark 6.5.8 Notice that the definition of the map R is very similar to the definition
of the maps

SU.2/ � R
3 �! R

3

.A;X/ 7�! AXA�1;

and

SU.2/ � SU.2/ � R
4 �! R

4

.A�;AC;X/ 7�! A� � X � A�1C ;

from Exercise 1.9.20 and Exercise 1.9.21.

Remark 6.5.9 It will follow from Theorem 6.5.13 that

u 2 Spin.s; t/ , .u/ 2 SO.s; t/;

u 2 SpinC.s; t/ , .u/ 2 SOC.s; t/:

Hence the degrees deg and degt of an element u 2 Pin.s; t/ measure whether .u/
preserves orientation or time-orientation.

Lemma 6.5.10
1. The map R is well-defined, i.e. it has image in the subspace R

s;t of the Clifford
algebra.

2. For any vector v 2 Ss;t
˙ the map

Rv D R.v; �/WRs;t �! R
s;t

is the reflection in the hyperplane v? � R
s;t.
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3. The map R yields a continuous homomorphism

W Pin.s; t/ �! O.s; t/:

Proof Fix a vector v 2 Rs;t with �.v; v/ D ˙1. Then v�1 D �v and

Rv.x/ D �v � x � v�1

D ˙v � x � v:

We get

Rv.x/ D
	 �x if x k v;

x if x ? v;

hence Rv.x/ 2 R
s;t and Rv is reflection in v?. Since

Rv1v2���vr .x/ D Rv1 ı Rv2 ı : : : ı Rvr .x/;

we conclude that R.u; x/ is indeed an element of Rs;t for all u 2 Pin.s; t/ and x 2
R

s;t. Since reflections are elements of the orthogonal group, it follows that  is a
continuous homomorphism to the orthogonal group. ut

We see that vectors v 2 R
s;t with �.v; v/ D ˙1 act as reflections on R

s;t

and a general element a of the pin group acts as a composition of such
reflections, hence as an element of the pseudo-orthogonal group. Note that
the vectors ˙v define the same reflections, hence elements ˙a of the pin
group define the same element of the pseudo-orthogonal group. As we will
see in Theorem 6.5.13, this implies that the pin group is a double covering of
the pseudo-orthogonal group.

We need the following algebraic theorem.

Theorem 6.5.11 (Cartan–Dieudonné Theorem) Every element of O.s; t/ can be
written as a composition of at most 2.s C t/ reflections in hyperplanes v?

i with
vectors vi 2 Ss;t

˙ .

Proof The idea is to set for an element A 2 O.s; t/

ai D A�1ei 8i D 1; : : : ; s C t

with the standard basis e1; : : : ; esCt. We can then find a composition R of reflections
which map the orthonormal basis a1; : : : ; asCt to e1; : : : ; esCt, implying that A D R:
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we first find a composition R1 of reflections that maps

a1 7�! e1

as follows:

1. If a1 D e1, then R1 is the identity.
2. If the norm of a1 � e1 is non-zero, then R1 is the reflection in the hyperplane
.a1 � e1/?.

3. If the norm of a1 � e1 is zero, then R1 is the composition of the reflection in the
hyperplane .a1 C e1/? followed by the reflection in the hyperplane e?

1 .
4. In the second and third case we normalize the vectors a1�e1 and a1Ce1 to norm

˙1.

Since R1.a1/ D e1, it follows that R1 maps

aj 7�! e?
1 D span.e2; : : : ; esCt/ 8j D 2; : : : ; s C t:

To prove the claim we then proceed by induction on s C t. ut
Theorem 6.5.12 (Special Orthogonal Groups and Reflections) Let R 2 O.s; t/
be a composition of reflections in hyperplanes v?

i with vectors vi 2 Ss;t
˙ .

1. R is an element of SO.s; t/ if and only if the number of vectors vi is even.
2. R is an element of SOC.s; t/ if and only if both the number of vectors vi 2 Ss;t

C
and the number of vectors vi 2 Ss;t� are even.

Proof Notice that for any vector v 2 Ss;t
˙ we can split Rs;t into maximally positive

and negative definite subspaces WC ˚ W� so that, with respect to a suitable basis,

Rv D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�1
1

: : :

1

1

1

: : :

1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

if �.v; v/ D C1;
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Rv D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

1

: : :

1

�1
1

: : :

1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

if �.v; v/ D �1:

This implies that an even number of reflections in hyperplanes v? with �.v; v/ D
˙1 is in SO.s; t/, i.e. has determinant 1. If in addition the number of reflections in
hyperplanes v? with �.v; v/ D C1 is even, then the map is in SOC.s; t/. See [13,
Theorem 1.5] for more details. ut
Theorem 6.5.13 (Relation Between the Pin and Spin Groups and the Orthogo-
nal Groups) Consider the homomorphism

W Pin.s; t/ �! O.s; t/

u 7�! Ru:

1. The homomorphism  is open and surjective with kernel equal to f˙1g.
2. The preimages under  of the subgroups SO.s; t/ and SOC.s; t/ are equal to

Spin.s; t/ and SpinC.s; t/, which are therefore open subgroups of Pin.s; t/.
3. The homomorphism  restricts to surjective homomorphisms

W Spin.s; t/ �! SO.s; t/;

W SpinC.s; t/ �! SOC.s; t/;

with kernel equal to f˙1g.
4. As a topological space the orthochronous spin group SpinC.s; t/ is connected if

s � 2 or t � 2.

Proof The statement that  is surjective and open follows from Theorem 6.5.11 and
its proof. We show that the kernel of  is equal to f˙1g: Suppose that

.u/ D I 2 O.s; t/:

Then deg.u/ D 0, since Ru has to be composed of an even number of reflections. It
follows that

u � ei � u�1 D ei
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and therefore

ei � u � ei D ��.ei; ei/u 8i D 1; : : : ; s C t: (6.2)

Expanding u in the standard basis for the Clifford algebra, suppose that

u D aei1 � � � ei2k

with k � 1 and a 2 R. Applying Eq. (6.2) with i D i2k, it follows that a D
0. This implies that u 2 R � 1. Since u 2 Pin.s; t/, we conclude that u D ˙1.
Statements 2. and 3. then follow from Proposition 6.5.12.

We finally show that SpinC.s; t/ is connected if s � 2 or t � 2. Since SOC.s; t/ is
connected and the kernel of  is f˙1g, it suffices to show that every u 2 SpinC.s; t/
can be connected to �u by a continuous curve in SpinC.s; t/. Suppose that s � 2

and consider the curve

�.�/ D �u � .e1 cos.�/C e2 sin.�// � .e1 cos.�/� e2 sin.�//;

where � 2 R. It is easy to check that this is indeed a curve in SpinC.s; t/ with

�.0/ D u;

�
��

2

�
D �u:

There is a similar argument in the case t � 2. ut
Since the homomorphism  is continuous, open and surjective and has kernel equal
to f˙1g, it follows that:

Corollary 6.5.14 We can define a unique Lie group structure on the groups

Pin.s; t/; Spin.s; t/; SpinC.s; t/

so that  becomes a smooth double covering of Lie groups.

Remark 6.5.15 There is a more natural way to define a smooth structure on the
pin and spin groups: Using a different definition of the pin group, which can
be found in the classic paper [7] of Atiyah, Bott and Shapiro, it is possible
to show that Pin.s; t/ is a closed subset of Cl�.s; t/ and therefore by Cartan’s
Theorem 1.1.44 an embedded Lie subgroup. Theorem 6.5.13 then implies that
Spin.s; t/ and SpinC.s; t/ are also embedded Lie subgroups of Cl�.s; t/. The Lie
group structure on these groups as closed subgroups of Cl�.s; t/ coincides with the
one from Corollary 6.5.14.
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Corollary 6.5.16 For all n � 3 the homomorphisms

W Spin.n/ �! SO.n/;

W SpinC.n; 1/ �! SOC.n; 1/;

W SpinC.1; n/ �! SOC.1; n/

are the universal coverings.

Proof This follows, because according to Proposition 2.6.3 and Remark 6.1.19 for
n � 3 the Lie groups SO.n/, SOC.n; 1/ and SOC.1; n/ have fundamental group
Z2. ut

Example 6.5.17 Exercises 1.9.20 and 1.9.21 imply that there exist isomor-
phisms

Spin.3/ Š SU.2/;

Spin.4/ Š SU.2/� SU.2/:

Similarly, it can be shown that

SpinC.1; 3/ Š SL.2;C/:

See Sect. 6.8.2 and Exercise 6.13.17.

6.5.2 The Spinor Representation of the Orthochronous Spin
Group

Definition 6.5.18 We denote by

�W SpinC.s; t/ �! GL.�n/

the spinor representation induced by restriction of the spinor representation of the
even Clifford algebra Cl0.s; t/.

Proposition 6.5.19 The spinor representation is compatible with Clifford multipli-
cation in the following way:

�.g/.x �  / D ..g/x/ � .�.g/ /;

for all g 2 SpinC.s; t/, x 2 R
s;t and  2 �n.
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Proof Let

�W Cl.s; t/ �! End.�n/

denote the spinor representation. Then

�.g/.x �  / D �.g/�.x/. /

D �
�
gxg�1� �.g/. /

D �..g/x/�.g/. /

D ..g/x/ � .�.g/ /:

ut
6.5.3 The Lie Algebra of the Spin Group

In this subsection we determine the Lie algebra of SpinC.s; t/ and calculate the
differential of the covering homomorphism  from the orthochronous spin group to
the proper orthochronous orthogonal group.

The Lie group Cl�.s; t/ is an open subset of Cl.s; t/, hence its Lie algebra cl�.s; t/
is canonically isomorphic as a vector space to Cl.s; t/ with commutator

Œx; y� D x � y � y � x; 8x; y 2 Cl.s; t/:

Since Pin.s; t/ and SpinC.s; t/ are Lie subgroups of Cl�.s; t/, it follows that the Lie
algebras pin.s; t/ and spinC.s; t/ are Lie subalgebras of cl�.s; t/.

Definition 6.5.20 Let e1; : : : ; esCt be an orthonormal basis of Rs;t. We define

M.s; t/ D spanfeiej 2 Cl.s; t/ j 1 � i < j � s C tg:

Lemma 6.5.21 The vector space M.s; t/ is a Lie subalgebra of cl�.s; t/ of dimen-
sion

dim M.s; t/ D 1

2
.s C t/.s C t � 1/:

Proof This is Exercise 6.13.9. ut

Proposition 6.5.22 (Description of the Lie Algebra of the Spin Group)
For all s; t � 0 the following identity holds:

spinC.s; t/ D M.s; t/:
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Proof We follow an idea in [99]. To show that eiej for i < j is an element of the Lie
algebra of the spin group, it suffices to find a curve in SpinC.s; t/ through the unit
element 1 with velocity vector eiej. We set �i D �.ei; ei/ D jjeijj2�.
1. Suppose that i ¤ j and �i D �j. Then the curve

�.�/ D cos.�/1C sin.�/eiej; � 2 R

through 1 is contained in SpinC.s; t/, because we can write

cos.�/1C sin.�/eiej D ei.��i cos.�/ei C sin.�/ej/

and

jj � �i cos.�/ei C sin.�/ejjj2� D �i cos2.�/C �j sin2.�/

D �i

D jjeijj2�:

2. In the case i ¤ j and �i D ��j a similar argument shows that the curve

�.�/ D cosh.�/1C sinh.�/eiej; � 2 R

through 1 is contained in SpinC.s; t/.

Taking the derivative in � D 0 of both curves, it follows that

eiej 2 spinC.s; t/ 8i ¤ j:

This implies that

M.s; t/ � spinC.s; t/:

However, the dimensions of both vector spaces agree and we conclude that
M.s; t/ D spinC.s; t/. ut
Let Eij be the elementary .s C t/ � .s C t/-matrix with a 1 at the intersection of the
i-th row and the j-th column and zeros elsewhere. We define the matrix

�ij D �iEji � �jEij:

Corollary 6.5.23 (Differential of the Covering Homomorphism ) The differen-
tial of the homomorphism

W SpinC.s; t/ �! SOC.s; t/
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is given by

�W spinC.s; t/ �! soC.s; t/

with

�.z/x D Œz; x�

D z � x � x � z

for all x 2 R
s;t . This implies the following explicit formula:

�.eiej/ D 2�ij 8i < j:

We can recover any z 2 spinC.s; t/ from its image �.z/ via

z D 1

2

X

k<l

�.�.z/ek; el/�k�lekel:

Proof The formula �.z/x D Œz; x� follows from

.u/x D u � x � u�1 8u 2 SpinC.s; t/:

The remaining formulas follow by direct calculation. ut

The isomorphism � between spinC.s; t/ and soC.s; t/ will appear in the
formula for the spin covariant derivative in Sect. 6.10.2 and also, in a rather
unexpected way, in the discussion of the Grand Unified Theory with gauge
group Spin.10/ in Sect. 9.5.5.

6.6 �Majorana Spinors

In Sect. 6.6 and Sect. 6.7 we discuss two concepts – Majorana spinors and spin
invariant scalar products – that are less well-known in the mathematical literature,
but play quite an important role in physics. Majorana spinors are related to so-called
real or quaternionic structures for the spinor representation. It turns out that in every
dimension the spinor representation admits a real or quaternionic structure, which in
even dimensions may or may not be compatible with the decomposition into Weyl
spinors.
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Definition 6.6.1 Let V be a complex vector space with a representation of a Lie
group G.

1. A real structure on V is a complex antilinear G-equivariant map � W V ! V with
�2 D Id.

2. A quaternionic structure on V is a complex antilinear G-equivariant map
JW V ! V with J2 D �Id.

Proposition 6.6.2 Let � be a real structure on the complex G-representation space
V and V� the real subspace

V� D fv 2 V j �.v/ D vg:

Then

V D V� ˚ iV� ;

hence we can decompose elements in V into a “real” and “imaginary” part. The
complex representation on V induces real representations of G on V� and iV� , which
are both isomorphic (as real representations).

Proof We set

V� D fv 2 V j �.v/ D vg;
V 0� D fv 2 V j �.v/ D �vg:

It is clear that V� and V 0� are real subspaces of V and

v D 1

2
.v C �.v//C 1

2
.v � �.v//

is a decomposition of a vector v 2 V into vectors in V� and V 0� . Hence we can
decompose V D V� ˚ V 0� . Since � is complex antilinear, we have

v 2 V� , iv 2 V 0� :

This proves V 0� D iV� . If g 2 G and v 2 V� , then

�.g � v/ D g � �.v/ D g � v;

because � is G-equivariant. This shows that g � v 2 V� , hence G preserves V� , and
similarly V 0� . It follows that the representation of G restricts to representations on
these real vector spaces. The map

f W V� �! V 0�

v 7�! iv
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is G-equivariant, because the G-representation on V is complex, and thus defines a
real isomorphism between the G-representations on V� and V 0� . ut
Proposition 6.6.3 Let J be a quaternionic structure on the complex G-
representation space V and

IW V �! V

v 7�! iv:

Then I, J and K D IJ define the structure of a G-equivariant quaternionic vector
space on V.

Proof It is clear that I is G-equivariant, because the G-representation on V is
complex, and J is G-equivariant by definition. Hence K is also G-equivariant.
Moreover, I2 D �1 and J2 D �1. Since J is complex antilinear, we have JI D �IJ.
This implies that I; J;K satisfy the quaternionic identities. ut
Definition 6.6.4 Let �W SpinC.r; s/ ! GL.�/ with� D �n be the complex spinor
representation.

1. The spinor representation� is called Majorana if it admits a real structure � . In
this case there exists in � a real subspace

�� D fs 2 � j �.s/ D sg

of half dimension

dimR�
� D 1

2
dimR� D dimC�

and the complex spinor representation on � induces a real representation
of SpinC.s; t/ on �� . Elements of �� are called Majorana spinors. We can
decompose any  2 � uniquely as

 D �1 C i�2

with Majorana spinors �1; �2. Spinors ˛1; : : : ; ˛k which form a real basis for ��

satisfy

�.˛i/ D ˛i 8i:

2. The spinor representation � is called symplectic Majorana if it admits a
quaternionic structure J. In this case � has a SpinC.r; s/-equivariant structure
I; J;K D IJ of a quaternionic vector space. Elements of � are called symplectic
Majorana spinors. We can find a complex basis �1; 1; : : : ; �k; k of � so that
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the spinors �1; : : : ; �k form a quaternionic basis of � and J is given by

J.�i/ D i;

J.i/ D ��i 8i;

hence they are related by the standard symplectic matrix
�
0 1

�1 0
�

:

This explains the name symplectic Majorana spinors.

Remark 6.6.5 In the physics literature (see, for instance, [54]) one writes for a
spinor  2 �

 C D �. /

if � is a real structure and

 C D J. /

if J is a quaternionic structure for the spinor representation �. The spinor  C is
called the charge conjugate. Choosing a complex basis for the spinor space �, we
can identify � D C

N . Real and quaternionic structures then correspond to a matrix
B with

 C D B�1 �; (6.3)

where � denotes the complex conjugate, B satisfies B�B D IN for a real and
B�B D �IN for a quaternionic structure (with the unit matrix IN), and SpinC.s; t/-
equivariance corresponds to

�.g/� D B�.g/B�1 8g 2 SpinC.s; t/;

where �W SpinC.s; t/ ! GL.�/ denotes the spinor representation.
Recall that in even dimensions the complex spinor representation � splits into the
complex Weyl spinors� D �C ˚��. We denote by �CW� ! �C the projection
along��.

Definition 6.6.6 Let �W SpinC.r; s/ ! GL.�/ with� D �n be the complex spinor
representation over an even-dimensional vector space.

1. The spinor representation� is called Majorana–Weyl if it admits a real structure
� that commutes with �C. In this case � induces on both Weyl spinor spaces�˙
a real structure. The elements of

��˙ D fs 2 �˙ j �.s/ D sg

are called left-handed and right-handed Majorana–Weyl spinors.
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Table 6.6 Majorana spinors

� mod 8 Type of spinors Minimal real spinor representation

0 Majorana–Weyl ��
˙

of dimension 2.n�2/=2

1 Majorana, not Weyl �� of dimension 2.n�1/=2

2 Majorana and Weyl, but not Majorana–Weyl �� and �
˙

of dimension 2n=2

3 Symplectic Majorana, not Weyl � of dimension 2.nC1/=2

4 Symplectic Majorana–Weyl �
˙

of dimension 2n=2

5 Symplectic Majorana, not Weyl � of dimension 2.nC1/=2

6 Majorana and Weyl, but not Majorana–Weyl �� and �
˙

of dimension 2n=2

7 Majorana, not Weyl �� of dimension 2.n�1/=2

2. The spinor representation� is called symplectic Majorana–Weyl if it admits a
quaternionic structure J that commutes with �C. In this case I; J;K D IJ induce
on both Weyl spinor spaces �˙ the structure of a quaternionic vector space.
Elements of �˙ are called left-handed and right-handed symplectic Majorana–
Weyl spinors.

It is known precisely in which dimensions and signatures these types of spinors
exist: For the standard scalar product � on R

s;t of signature .s; t/ we set again � D
s � t and n D s C t. We then have, without proof, Table 6.6 (see [40] and compare
with Theorem 6.3.23).

Example 6.6.7 For Minkowski spacetime R
n�1;1 of dimension n we have

n D � C 2. We see that in Minkowski spacetime of dimension 4 there exist
both Majorana and Weyl spinors of real dimension 4, but not Majorana–Weyl
spinors. Note that this implies that Majorana spinors in this dimension always
have components both in �C and ��.

In Minkowski spacetime of dimension 2 and 10 (relevant in superstring
theory) there exist Majorana–Weyl spinors of real dimension 1 and 16,
respectively, and in Minkowski spacetime of dimension 11 (relevant in M-
theory) there exist Majorana spinors of real dimension 32.

6.7 �Spin Invariant Scalar Products

In this section we will study complex bilinear and Hermitian scalar products on
the spinor space �, which are invariant under the action of the spin group. It turns
out that the combination of both types of scalar products is related to the existence
of real and quaternionic structures and thus to Majorana spinors. Hermitian scalar
products are particularly important, because we need them in Chap. 7 to define
Lorentz invariant Lagrangians involving spinors.
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6.7.1 Majorana Forms

Definition 6.7.1 Let � D �n be the complex spinor representation of Cl.s; t/. We
fix constants 
; � D ˙1 and consider complex bilinear, non-degenerate forms

.� ; �/W� �� �! C

with the following properties:

1. .X �  ; �/ D 
. ;X � �/ for all X 2 R
s;t and all  ; � 2 �.

2. . ; �/ D �.�;  / for all  ; � 2 �.

We call such a form a Majorana form.

Lemma 6.7.2 For a Majorana form let f�˛g be a complex basis of � and C the
matrix with entries

C˛ˇ D .�˛; �ˇ/:

If we expand

 D
X

˛

 ˛�˛; � D
X

˛

�˛�˛

and identify  ; � with the column vectors with entries  ˛; �˛, then

. ; �/ D  TC�:

Furthermore, property 1. and 2. in Definition 6.7.1 are equivalent to

1. �T
a D 
C�aC�1 for all a D 1; : : : ; s C t.

2. CT D �C.

The first equation also holds with the physical Clifford matrices 	a instead of the
mathematical gamma matrices �a.

Proof This is left as an exercise. ut
Definition 6.7.3 The matrix C is called the charge conjugation matrix (this
convention is a bit confusing, because the matrix C rather than B from Sect. 6.6
is called the charge conjugation matrix).

Lemma 6.7.4 Every Majorana form is invariant under the action of SpinC.s; t/.

Proof Property 1. in Definition 6.7.1 implies

.X �  ;X � �/ D 
. ; .X � X/ � �/
D �
�.X;X/. ; �/ 8X 2 R

s;t:
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Since every element g 2 SpinC.s; t/ is of the form

g D X1 � � � X2pY1 � � � Y2q

with �.Xi;Xi/ D 1; �.Yj;Yj/ D �1 it follows that

.g �  ; g � �/ D 
2pC2q�.X1;X1/ � � ��.X2p;X2p/�.Y1;Y1/ � � ��.Y2q;Y2q/. ; �/

D . ; �/:

ut
Not all combinations of 
 and � are possible. Table 6.7 lists without proof the
combinations that are allowed, depending on the dimension n D s C t (see
[40, 54, 140]). In even dimensions n there are always two possibilities.

Example 6.7.5 In dimension 4 a charge conjugation matrix is necessarily antisym-
metric

CT D �C

and can satisfy either

�T
a D C�aC�1

or

�T
a D �C�aC�1

for all a D 1; 2; 3; 4.

Table 6.7 Signs in Majorana
forms

n mod 8 
 �

0 �1 C1
0 C1 C1
1 C1 C1
2 C1 C1
2 �1 �1
3 �1 �1
4 �1 �1
4 C1 �1
5 C1 �1
6 C1 �1
6 �1 C1
7 �1 C1
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Definition 6.7.6 The Majorana conjugate Q of a spinor  2 � with respect to a
Majorana form is defined by

Q D . ; �/ 2 ��:

In a basis f�˛g for � where  D P
˛  ˛�˛ we have with respect to the dual basis

of ��

Q D  T C:

In the literature (for example, [54]) the Majorana conjugate is often denoted by a
bar.

Majorana forms have very interesting applications in neutrino physics,
because they can be used to define a Majorana mass term for neutrinos;
see Sect. 7.8 and Sect. 9.2.4.

Remark 6.7.7 In our discussion so far we assumed that the components of spinors
in expressions like

. ; �/ D  T C�

are commuting complex numbers. In quantum field theory, spinors become fields of
operators on spacetime acting on a Hilbert space. In the classical limit „ ! 0 these
operators are anticommuting. If we treat spinors as anticommuting, then we have
to introduce another minus sign in property 2. in Definition 6.7.1:

. ; �/ D ��.�;  / 8 ; � 2 �

with � still given by Table 6.7 (property 1. stays the same). This has the paradoxical
consequence that symmetric (antisymmetric) Majorana forms become antisymmet-
ric (symmetric). For instance, in the situation of Example 6.7.5, a Majorana form
in dimension 4 with anticommuting spinors is symmetric. We will always use
commuting spinors except where stated otherwise.

6.7.2 Dirac Forms

Definition 6.7.8 Let � D �n be the complex spinor representation of Cl.s; t/. We
fix a constant ı D ˙1 and consider non-degenerate R-bilinear forms

h� ; �iW��� �! C
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with the following properties, where � denotes complex conjugation:

1. hX �  ; �i D ıh ;X � �i for all X 2 R
s;t and all  ; � 2 �.

2. h ; �i D h�; i� for all  ; � 2 �.
3. h ; c�i D ch ; �i D hc� ; �i for all  ; � 2 � and all c 2 C.

We call such a form a Dirac form (we do not assume that the form is positive
definite).

Lemma 6.7.9 For a Dirac form let f�˛g be a complex basis of � and A the matrix
with entries

A˛ˇ D h�˛; �ˇi:

If we expand

 D
X

˛

 ˛�˛; � D
X

˛

�˛�˛

and also denote by  ; � the column vectors with entries  ˛; �˛, then

h ; �i D  �A�:

Furthermore, property 1. and 2. in Definition 6.7.8 are equivalent to

1. ��a D ıA�aA�1 for all a D 1; : : : ; s C t.
2. A� D A.

There is an equivalent equation to the first one with physical Clifford matrices 	a:

1. 	 �
a D �ıA	aA�1 for all a D 1; : : : ; s C t.

Proof This is left as an exercise. ut
Lemma 6.7.10 Every Dirac form is invariant under the action of SpinC.s; t/.

Proof This is left as an exercise. ut
Definition 6.7.11 We call a complex representation of the Clifford algebra Cl.s; t/
basis unitary if all gamma matrices �a are unitary, or equivalently if all 	a are
unitary.
It can be shown that the spinor representations of Clifford algebras can be chosen
basis unitary, see Exercise 6.13.5. We will choose in all examples that we discuss a
Hermitian scalar product on the spinor space such that the spinor representation is
basis unitary. Then the identity

	 �1
a D �.ea; ea/	a
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Table 6.8 Two options for
matrix A defining Dirac forms

ı A �

.�1/tC1 �	sC1 � � �	sCt �
� D .�1/t.tC1/=2�

.�1/s �	1 � � �	s �� D .�1/s.s�1/=2�

implies

	 �
a D 	a 8a D 1; : : : ; s;

	 �
a D �	a 8a D s C 1; : : : ; s C t:

Remark 6.7.12 If a representation of the Clifford algebra is basis unitary, then all
matrices

nX

aD1
va	a with va 2 R;

nX

aD1
v2a D 1

are unitary. Hence for t D 0 the induced representations of the Lie groups Pin.n/
and Spin.n/ are unitary. This is not the case if t � 1.
The following result can be found in [49].

Proposition 6.7.13 (Standard Expressions for Dirac Forms) For a basis unitary
spinor representation of Cl.s; t/ consider one of the two options for the matrix A
in Table 6.8, where � 2 C (we always choose � D 1 or � D i). In each case
A satisfies the properties of Lemma 6.7.9 and defines a Dirac form for the spinor
representation. The matrix A is unitary for both options.

Proof We only prove the first case, the second one follows similarly. We calculate
for a D 1; : : : ; s

A	a D .�1/t	aA D �ı	 �
a A

and for a D s C 1; : : : ; s C t

A	a D .�1/a�s�t�	sC1 � � �	a	a � � �	sCt

D .�1/tC1	aA

D �ı	 �
a A:

This verifies property 1. in Definition 6.7.8. To check that A is Hermitian we
calculate

A� D ��	 �
sCt � � �	 �

sC1
D ��.�1/t	sCt � � �	sC1
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D ��.�1/t.�1/t.t�1/=2	sC1 � � �	sCt

D A:

It is also easy to check that A is unitary. ut
Remark 6.7.14 If t D 0, the first choice yields A D I with ı D �1; � D 1. In this
case all physical gamma matrices are Hermitian (and unitary by assumption), while
the mathematical gamma matrices are skew-Hermitian.

Definition 6.7.15 The Dirac conjugate  of a spinor  2 � with respect to a
Dirac form is defined by

 D h ; �i 2 ��:

In a basis f�˛g for � where  D P
˛  ˛�˛ we have with respect to the dual basis

of ��

 D  �A:

We write the Dirac scalar product of spinors  ; � as

h ; �i D  �:

Dirac forms are used in the Standard Model to define a Dirac mass term in
the Lagrangian for all fermions (except possibly the neutrinos) and, together
with the Dirac operator, the kinetic term and the interaction term; see
Sect. 7.6.

Remark 6.7.16 If we treat spinors as anticommuting, then contrary to the situation
in Remark 6.7.7, we still have

h ; �i D h�; i� 8 ; � 2 �:

The explanation is that h ; i has to be real for all  2 �. More generally, complex
anticommuting Grassmann numbers ˛; ˇ satisfy .˛ˇ/� D ˇ�˛�.

6.7.3 Relation Between Invariant Forms and Majorana
Spinors

We follow in this subsection [140]. Let � D �n be the complex spinor representa-
tion of Cl.s; t/. We fix a Majorana form .� ; �/ and a Dirac form h� ; �i, described in a
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basis f�˛g for� by matrices C;A with

	 T
a D 
C	aC�1 8a D 1; : : : ; s C t;

CT D �C

and

	 �
a D �ıA	aA�1 8a D 1; : : : ; s C t;

A� D A:

Lemma 6.7.17 There exists a unique complex antilinear map

� W� �! �

such that

. ; �/ D h�. /; �i:

In the basis f�˛g the map � is given by

� W� �! �

 7�! B�1 �

with matrix B equal to

B D .C�/�1A:

Proof The existence of a unique map � follows, because the Majorana form is non-
degenerate. The map � is complex antilinear, because the Dirac form is complex
antilinear in the first entry. A simple calculation shows that B is the correct matrix.
Note that

.B�1/� D CA�1:

ut
Remark 6.7.18 In the literature (see [140]) one sometimes finds the definition BT D
CA�1. We continue to use our definition.

Lemma 6.7.19 The map � satisfies

�.X �  / D 
ıX � �. / 8 2 �;X 2 R
s;t:
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Equivalently, the matrix B satisfies

	 �
a D �
ıB	aB�1 8a D 1; : : : ; s C t:

Proof We calculate:

h�.X �  /; �i D .X �  ; �/
D 
. ;X � �/
D 
h�. /;X � �i
D 
ıhX � �. /; �i:

This implies the claim, because the Dirac form is non-degenerate. The formula for
B follows from this or by direct calculation. ut
Theorem 6.7.20 (Scalar Products and Real and Quaternionic Structures) Sup-
pose that the spinor representation � is basis unitary, the matrix C is unitary and
.A; ı/ is one of the two choices in Proposition 6.7.13. Then B D CA is unitary.

1. In the first case, if A D �	sC1 � � �	sCt, then the matrix B satisfies

B�B D �
t.�1/t.t�1/=2I:

2. In the second case, if A D �	1 � � �	s, then the matrix B satisfies

B�B D �
s.�1/s.s�1/=2I:

3. In both choices for A the matrix B�B is CI if and only if

� � 0; 1; 7 mod 8 and all 
; � for both choices for A;

� � 2 mod 8 and

(

.�1/n=2 D �1 if A D �	sC1 � � �	sCt;


.�1/n=2 D C1 if A D �	1 � � �	s;

� � 6 mod 8 and

(

.�1/n=2 D C1 if A D �	sC1 � � �	sCt;


.�1/n=2 D �1 if A D �	1 � � �	s;

where � D s � t. In these situations B defines a real structure for the spinor
representation of the orthochronous spin group.
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4. The matrix B�B is �I if and only if

� � 3; 4; 5 mod 8 and all 
; � for both choices for A;

� � 2 mod 8 and

(

.�1/n=2 D C1 if A D �	sC1 � � �	sCt;


.�1/n=2 D �1 if A D �	1 � � �	s;

� � 6 mod 8 and

(

.�1/n=2 D �1 if A D �	sC1 � � �	sCt;


.�1/n=2 D C1 if A D �	1 � � �	s:

In these situations B defines a quaternionic structure for the spinor representa-
tion of the orthochronous spin group.

Proof

1. We calculate

B�B D C�A�CA

D �C�1A�CA

D �.�1/tC�1	 T
sC1 � � �	 T

sCtC	sC1 � � �	sCt

D �.�1/t
t	sC1 � � �	sCt	sC1 � � �	sCt

D �
t.�1/t.t�1/=2I:

2. This follows similarly.
3. and 4. The remaining claims follow by considering Table 6.7. Note that the value

of .�1/t.t�1/=2 depends only on the value of t mod 4, and similarly for s.
ut

Remark 6.7.21 This theorem explains why Majorana spinors exist if � D
0; 1; 7 mod 8 and for the right choice of 
 also if � D 2; 6 mod 8 (see Sect. 6.6).

Corollary 6.7.22 For a spinor 2 � the Majorana conjugate is equal to the Dirac
conjugate, Q D  , i.e.

. ; �/ D h ; �i

if and only if �. / D  or, equivalently, B D  �. This happens for a non-zero
spinor  if and only if B defines a real structure and  is a Majorana spinor.
This corollary finally explains the relation between Majorana spinors and invariant
forms for the spinor representations.
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6.8 Explicit Formulas for Minkowski Spacetime
of Dimension 4

We collect some explicit formulas concerning Clifford algebras and spinors for the
case of 4-dimensional Minkowski spacetime.

6.8.1 The Lorentz Clifford Algebra

In Minkowski spacetime of dimension 4 and signature .C;�;�;�/ (usually used
in quantum field theory) there exist both Weyl and Majorana spinors, but not
Majorana–Weyl spinors.

Recall from Example 6.3.17 that the matrices

	0 D
�
0 I2
I2 0

�

	k D
�
0 �k

��k 0

�

8k D 1; 2; 3

are physical gamma matrices for Cl.1; 3/. This is the so-called Weyl representation
of the Clifford algebra. It is a basis unitary representation. The physical chirality
operator is given by

	5 D �i	0	1	2	3 D i	 0	 1	 2	 3 D
�

I2 0

0 �I2

�

:

Hence in our convention the first two components of a Dirac 4-spinor correspond
to a left-handed Weyl spinor and the last two components to a right-handed Weyl
spinor (this is the standard convention in quantum field theory and the Standard
Model).

For the matrix A defining the Dirac form we use the second choice in Proposi-
tion 6.7.13. Then

A D 	0

with ı D �1; � D 1. This implies

	 �
a D 	0	a	0 8a D 0; 1; 2; 3

and the Dirac conjugate of a spinor  is given by

 D  �	0
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with Hermitian scalar product

h ; �i D  � D  �	0�;

satisfying

hX �  ; �i D �h ;X � �i 8X 2 R
1;3:

If we write a Dirac spinor as

 D
�
�

�

�

;

then

  D ��� C ���:

Note that this Hermitian scalar product is not positive definite. In fact the subspaces
of left-handed and right-handed Weyl spinors are each null.

For the matrix C defining the Majorana form we choose

C D i	0	2 D i	 2	 0 D
��i�2 0

0 i�2

�

D

0

B
B
@

0 �1
1 0

0 1

�1 0

1

C
C
A :

Then

	 T
a D �C	aC�1 8a D 0; 1; 2; 3;

CT D �C;

hence 
 D � D �1. The matrix C is unitary and

B D CA D �i	2:

The matrix C corresponds to the matrix � in Sect. 2.1.3. We have

B�1 D B D B� D �i	2 D i	 2

and the charge conjugate of a Dirac spinor is given by

 C D B�1 � D i	 2 �:

This implies (as expected from Theorem 6.7.20)

B�B D I
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and B defines a real structure on the spinor space �. Majorana spinors  are
characterized by

 � D B :

If we write

 D
�
�

�

�

;

then Majorana spinors are precisely those of the form

 D
�

�

i�2��
�

:

6.8.2 The Orthochronous Lorentz Spin Group

Our aim in this subsection is to prove that the orthochronous spin group SpinC.1; 3/
of 4-dimensional Minkowski spacetime is isomorphic to the 6-dimensional real Lie
group SL.2;C/. We identify R

1;3 with the Hermitian 2�2-complex matrices via the
real vector space isomorphism

R
1;3 �! Herm.2;C/

x D .x0; x1; x2; x3/ 7�! x
�
 D X D
�

x0 C x3 x1 � ix2

x1 C ix2 x0 � x3

�

:

Here �1; �2; �3 are the Pauli matrices and �0 D I2. The following is easy to verify:

Lemma 6.8.1 Under this identification, �.x; x/ D det X for all x 2 R
1;3.

We can then prove the following (see [146, Appendix A]).

Theorem 6.8.2 (Explicit Description of the Orthochronous Lorentz Spin
Group) Under the identification above, the following map is well-defined

SL.2;C/ � R
1;3 �! R

1;3

.M;X/ 7�! MXM�:

This maps yields a Lie group homomorphism

 W SL.2;C/ �! SOC.1; 3/
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which is surjective and has kernel fI;�Ig. Since SL.2;C/ is simply connected, it
follows that SL.2;C/ Š SpinC.1; 3/.

Proof This is Exercise 6.13.17. Compare with Exercises 1.9.20 and 1.9.21. ut

6.9 Spin Structures and Spinor Bundles

In this section we discuss the notion of spin structure that is needed to define spinors
globally on manifolds. If the tangent bundle TM of a manifold M is a trivial vector
bundle, then spin structures always exist. If TM is non-trivial, then there may exist a
topological obstruction to the existence of a spin structure, measured by the second
Stiefel–Whitney class w2.M/. If a spin structure for a pseudo-Riemannian manifold
.M; g/ exists, then we can define an associated complex vector bundle, called the
spinor bundle. The sections of this bundle are called spinor fields or spinors on the
manifold M.

6.9.1 Spin Structures

Definition 6.9.1 Let M be a smooth manifold. A pseudo-Riemannian metric g of
signature .s; t/, where

.C; : : : ;C
„ ƒ‚ …

s

;�; : : : ;�
„ ƒ‚ …

t

/;

is a section g 2 	 .T�M ˝ T�M/ that defines at each point x 2 M a non-degenerate,
symmetric bilinear form

gxW TxM � TxM �! R

of signature .s; t/.
Let M be a smooth manifold with a pseudo-Riemannian metric g of signature
.s; t/. The frame bundle then has the structure of a principal O.s; t/-bundle. For the
following definitions recall the notion of a G-reduction of a principal bundle from
Definition 4.2.17.

Definition 6.9.2
1. The pseudo-Riemannian manifold .M; g/ is called orientable if the frame bundle

can be reduced to a principal SO.s; t/-bundle under the embedding SO.s; t/ �
O.s; t/.

2. The pseudo-Riemannian manifold .M; g/ is called time-orientable if the frame
bundle can be reduced to a principal OC.s; t/-bundle under the embedding
OC.s; t/ � O.s; t/.
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3. The pseudo-Riemannian manifold .M; g/ is called orientable and time-
orientable if the frame bundle can be reduced to a principal SOC.s; t/-bundle
under the embedding SOC.s; t/ � O.s; t/.
If such reductions are chosen, we call the pseudo-Riemannian manifold .M; g/

oriented, time-oriented or oriented and time-oriented.
An orientation of M is just an orientation of the tangent bundle TM. A time-
orientation has the following interpretation: using some homotopy theory and
Lemma 6.1.14 it is not difficult to see that the tangent bundle TM admits maximally
g-positive definite vector subbundles W ! M and that any two such subbundles are
homotopic. A time-orientation of .M; g/ then corresponds to a choice of orientation
of such a maximally g-positive definite vector subbundle W. On an orientable
pseudo-Riemannian manifold there are precisely two different orientations and
similarly for time-orientations on time-orientable pseudo-Riemannian manifolds.

Suppose that .M; g/ is oriented and time-oriented. We denote the SOC.s; t/-frame
bundle by

�SOW SOC.M/ �! M:

Recall the double covering

W SpinC.s; t/ �! SOC.s; t/

from Sect. 6.5.1.

Definition 6.9.3 A spin structure on M is a SpinC.s; t/-principal bundle

�SpinW SpinC.M/ �! M

with a double covering

�W SpinC.M/ �! SOC.M/

such that the following diagram commutes:

Here the horizontal arrow in the top and bottom line are the right actions of the
structure groups on the principal bundles.
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According to Definition 4.2.17, a spin structure is thus a -equivariant
bundle morphism�W SpinC.M/ ! SOC.M/, i.e. a -reduction of SOC.M/.

Definition 6.9.4 Two spin structures

�W SpinC.M/ �! SOC.M/

�0W SpinC.M/0 �! SOC.M/

are called isomorphic if there exists a SpinC.s; t/-equivariant bundle isomorphism

FW SpinC.M/ �! SpinC.M/0

such that the following diagram commutes:

Remark 6.9.5 Note that a spin structure is more than just a double covering of the
frame bundle which fibrewise looks like the covering . We demand in addition that
the actions of the structure groups on both principal bundles are compatible. This
additional structure is needed, for example, in the proof of Proposition 6.9.13 to
define Clifford multiplication on the level of bundles and in Proposition 6.10.7 to
define a connection 1-form on SpinC.M/ associated to the Levi-Civita connection
on TM.

Remark 6.9.6 We can define in the same way spin structures for any principal
SOC.s; t/-bundle, not only for the tangent bundle of a pseudo-Riemannian manifold.
If the tangent bundle TM of the manifold M is trivial, then SOC.M/ is trivial
and a spin structure is easy to define. In general, if TM is non-trivial, there may
be a topological obstruction to defining a spin structure. If the topology of M is
non-trivial there may also be several non-isomorphic spin structures. The precise
statement is the following.

Theorem 6.9.7 (Existence and Uniqueness of Spin Structures)

1. The frame bundle SOC.M/ admits a spin structure if and only if the second
Stiefel–Whitney class of M vanishes, w2.M/ D 0.

2. If SOC.M/ admits a spin structure, then there is a bijection between the set
of isomorphism classes of spin structures on M and the cohomology group
H1.MIZ2/.
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Proof The details of the proof would take us too far afield, because we have not
discussed characteristic classes like the Stiefel–Whitney classes. A proof can be
found in [55] and [88] in the Riemannian case and in [13] in the general pseudo-
Riemannian case. Note that a manifold M is orientable if and only if w1.M/ D
0 and the number of different orientations is given by the number of elements of
H0.MIZ2/, hence the existence of a spin structure can be understood as the existence
of a “higher orientation” for M. ut
We call a manifold M spin if w2.M/ D 0. The following manifolds can be shown to
be spin:

• All manifolds M with trivial tangent bundle TM, in particular, all Euclidean
spaces Rn and tori Tn.

• All spheres Sn.
• All orientable 2-dimensional manifolds.
• Complex projective spaces CPn are spin if and only if n is odd.
• If M and N are spin manifolds, then so is M � N.

The cohomology group H1.MIZ2/ vanishes, for example, if �1.M/ is trivial. In
particular we get:

Corollary 6.9.8 The manifold R
s;t admits for all s; t � 0 a unique spin structure.

Note that if the tangent bundle of M is trivial, then there always exists (after a choice
of trivialization of TM) a canonical (trivial) spin structure, but there exist additional
(non-trivial) ones if H1.MIZ2/ ¤ 0. This happens, for instance, in the case of the
torus Tn, where

H1.TnIZ2/ Š .Z2/
n

has 2n elements.

Remark 6.9.9 If we think of the structure group of a principal bundle as a symmetry
group, then the existence of a reduction of the structure group means that the bundle
admits a more fundamental or hidden symmetry group. In particular, the frame
bundle SOC.M/ of a pseudo-Riemannian manifold M admits a spin structure if and
only if it has a more fundamental underlying symmetry, given by the orthochronous
spin group SpinC.s; t/.

We can recover all tensor bundles and the tangent bundle itself from the principal
bundle SpinC.M/ as associated vector bundles. However, we also get additional
vector bundles that cannot be associated to the SOC.M/-frame bundle. In general,
the spin structure �W SpinC.M/ ! SOC.M/ is not unique: several non-isomorphic
spin structures may induce the same frame bundle SOC.M/.
We briefly want to discuss how a section of the bundle SOC.M/ determines sections
of SpinC.M/.

Definition 6.9.10 We call a local section e D .e1; : : : ; en/ of SOC.M/ an n-bein or
vielbein (and tetrad in dimension n D 4).
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Fig. 6.1 Local frames for
SpinC.M/

Lemma 6.9.11 Suppose we have chosen a spin structure on M. Then for every
vielbein e on a contractible open set U � M there exist precisely two local sections
�˙ of SpinC.M/ over U such that � ı �˙ D e.

Proof The image of e is a contractible open subset U0 of SOC.M/ diffeomorphic to
U and thus

�j��1.U0/W��1 �U0� �! U0

is a trivial two-sheeted covering, admitting precisely two sections

s˙W U0 �! ��1 �U0� � SpinC.M/:

Then �˙ D s˙ ı e have the claimed properties. See Fig. 6.1. ut

6.9.2 Spinor Bundles

Definition 6.9.12 Let SpinC.M/ ! M be a spin structure on M and

�W SpinC.s; t/ �! GL.�/

the spinor representation. Then the (Dirac) spinor bundle is the associated
complex vector bundle

S D SpinC.M/ �� �

over M. Sections of S are called spinor fields or spinors. Note that the spinor
bundle may depend on the choice of spin structure.
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Proposition 6.9.13 Let S ! M be the spinor bundle associated to a spin
structure.

1. There exists a well-defined bilinear Clifford multiplication

TM � S �! S

.X; �/ 7�! X � �

on the level of bundles, restricting to a map TpM � Sp ! Sp in every point
p 2 M. This map also induces a well-defined Clifford multiplication of forms
with spinors.

2. If the dimension n of M is even, then S splits as a direct sum of complex Weyl
spinor bundles S D SC ˚ S�, defined by

S˙ D SpinC.M/ �� �
˙:

In this case, Clifford multiplication with a vector maps S˙ to S�.

Proof

1. Let �SO be the standard representation of SOC.s; t/ on R
s;t. Then the tangent

bundle TM is isomorphic to the associated vector bundle

SOC.M/ ��SO R
s;t:

Suppose � is an element of SpinC.M/. Then �.�/ is an element of SOC.M/ and
we can define Clifford multiplication TM � S ! S as follows:

�
SOC.M/ ��SO R

s;t
� � �SpinC.M/ �� �

� �! �
SpinC.M/ �� �

�

.Œ�.�/; x�; Œ�;  �/ 7�! Œ�; x �  �:

Here x �  is the standard Clifford multiplication between elements x 2 R
s;t

and  2 �. A direct argument using Definition 6.9.3 of spin structures,
Definition 4.7.3 of associated vector bundles and Proposition 6.5.19 on the
compatibility of the spinor representation with Clifford multiplication shows that
the map TM � S ! S is well-defined.

2. This follows, because by Lemma 6.3.5 the chirality element

! D ikCte1 � � � en

is well-defined, independent of the choice of vielbein, and Clifford multiplication
of the chirality element with a spinor is well-defined by part 1. of the proposition.

ut
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It is sometimes convenient to describe spinors locally: Let e be a local vielbein
and �˙ the associated local sections of the spin structure principal bundle on a
contractible, open subset U in M. If � W U ! S is a local section of the spinor
bundle, then there exist two maps

 ˙W U �! �

such that � can be written as

� D Œ�˙;  ˙�:

We have  ˙ D � �. We choose one of the two local sections � and the
associated map  , so that

� D Œ�;  �:

If we define a formula locally using � and  , we always have to check that
the result is independent of this choice. Generally speaking, this will always
be the case if the expression is linear in  . For example, physical Clifford
multiplication with a basis vector can be expressed as

ea � � D Œ�; 	a �:

The right-hand side is indeed independent of the choice of �, since 	a is
linear in  .

6.9.3 Structures on Spinor Bundles

In Sect. 6.6 and Sect. 6.7 we considered several structures on the spinor representa-
tion space �:

1. Real structures � and quaternionic structures J.
2. Majorana forms .� ; �/ and Dirac forms h� ; �i.

It is clear that these structures extend fibrewise to globally well-defined, smooth
structures on the spinor bundle S ! M: this follows, because by definition
real and quaternionic structures commute with the spinor representation of the
orthochronous spin group and Majorana and Dirac forms are invariant under the
orthochronous spin group, cf. Lemma 6.7.4 and Lemma 6.7.10. We can therefore
define the following structures:

1. Real bundle automorphisms �S and quaternionic bundle automorphisms JS of
the spinor bundle S (depending on the dimension and signature of the manifold)
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together with (symplectic) Majorana or (symplectic) Majorana–Weyl sections
of S.

2. Majorana bundle metrics .� ; �/S and Dirac bundle metrics h� ; �iS on S.

6.10 The Spin Covariant Derivative

Given a spin structure on a pseudo-Riemannian manifold and the spinor bundle
S, we would like to have a covariant derivative on S so that we can define field
equations involving derivatives of spinors. It turns out that the standard Levi-Civita
connection on the tangent bundle, determined by the pseudo-Riemannian metric,
defines a unique compatible covariant derivative on S, called the spin covariant
derivative.

Let .M; g/ be an oriented and time-oriented pseudo-Riemannian manifold of
signature .s; t/. We assume that M is spin and a spin structure has been chosen.
Let r denote the Levi-Civita connection on TM associated to the metric g.

6.10.1 Spin Connection

Definition 6.10.1 In a local vielbein e D .e1; : : : ; en/ on an open set U � M we
can write

rea D !ab�
bc ˝ ec;

with certain uniquely determined real-valued 1-forms !ab on U (and the Einstein
convention is understood here and in the following formulas). We also set

!cab D !ab.ec/:

Remark 6.10.2 In the physics literature the forms !ab are often defined with the
opposite sign. We continue to use our definition.

Lemma 6.10.3 The 1-forms !ab are antisymmetric in the indices a; b:

!ab D �!ba 8a; b D 1; : : : ; n:

Proof This is Exercise 6.13.19. ut
Definition 6.10.4 The anholonomy coefficients ˝ c

ab of a local vielbein e are
defined by

Œea; eb� D ˝ c
ab ec:
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With respect to local coordinates x
 in a local chart on U � M one also defines in
the physics literature real functions E
a on U by

ea D E
a @
:

Lemma 6.10.5 The 1-forms !ab are determined by the anholonomy coefficients as
follows:

!cab D !ab.ec/ D 1

2
.˝cab �˝abc C˝bca/;

where ˝abc D ˝ d
ab �dc.

Proof This is Exercise 6.13.20. ut
The Levi-Civita connection r induces a connection 1-form

ASO 2 ˝1
�
SOC.M/; soC.s; t/

�

on the frame bundle SOC.M/. The Levi-Civita connection is the associated
covariant derivative on the tangent bundle

TM D SOC.M/ ��SO R
s;t:

This means that if Y D P
a yaea is the local expansion of a vector field Y on M, then

rXY D �
LXyc C Ae

SO.X/
c
aya
�

ec;

where Ae
SO D e�ASO is the local connection 1-form. This implies:

Lemma 6.10.6 The local connection 1-form Ae
SO is given by

Ae
SO.X/

c
a D !ab.X/�

bc 8X 2 TpM; p 2 U:

Consider the Lie group homomorphism

W SpinC.s; t/ �! SOC.s; t/:

Since this map is a covering, it induces an isomorphism

�W spinC.s; t/ Š�! soC.s; t/:

Proposition 6.10.7 Let

�W SpinC.M/ �! SOC.M/
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be the covering map given by the spin structure. Then

ASpin D .�/�1 ı ���ASO
� 2 ˝1

�
SpinC.M/; spinC.s; t/

�

is a connection 1-form on the principal bundle SpinC.M/ ! M, called the spin
connection.

Proof We have to verify the properties of connection 1-forms.

1. Let g 2 SpinC.s; t/ and Y 2 TSpinC.M/. Then by the defining properties of a
spin structure

r�
g ASpin.Y/ D .�/�1 ı ASO.��rg�Y/

D .�/�1 ı ASO.r.g/���Y/

D .�/�1 ı Ad.g/�1 ı � ı ASpin.Y/

D Adg�1 ı ASpin.Y/:

2. Let X 2 spinC.s; t/ and � 2 SpinC.M/. Then

ASpin. QX�/ D .�/�1 ı ASO

�
d

dt

ˇ
ˇ
ˇ
ˇ
tD0

�.� � exp.tX//

�

D .�/�1 ı ASO

�
e�X�.�/

�

D X:
ut

Note that the proof of this proposition crucially needs the compatibility of the
structure group actions in Definition 6.9.3 of spin structures.

6.10.2 Spin Covariant Derivative

Definition 6.10.8 We call the associated covariant derivative on the spinor bundle
S defined by the spin connection ASpin the spin covariant derivative, again denoted
by r.
The spin covariant derivative is completely determined by the Levi-Civita connec-
tion, once a spin structure has been chosen. We want to derive a local formula for
the spin covariant derivative. Suppose that U is contractible and �˙ the associated
local trivializations of the principal bundle SpinC.M/ on U. We choose one of those
trivializations, called �. Then we get associated local connection 1-forms

A�Spin D ��ASpin 2 ˝1.U; spinC.s; t//:
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We write a section � of the spinor bundle S as

� D Œ�;  �

with  W U ! �. Then the spin covariant derivative on the spinor bundle can be
written locally as

rX� D Œ�;rX �

where

rX D d .X/C A�Spin.X/ �  

and A�Spin.X/ acts through the representation �� of spinC.s; t/ on � induced from
the spinor representation �.

Proposition 6.10.9 (Explicit Formula for the Spin Covariant Derivative) The
spin covariant derivative can be calculated by the explicit formula

rX D d .X/C 1

4
!ab.X/�

ab 

D d .X/� 1

4
!ab.X/	

ab :

We need the following lemma:

Lemma 6.10.10 Write the components of a matrix A 2 soC.s; t/ as

Ac
a D wab�

bc:

Then the map

�� ı .�/�1W soC.s; t/ Š�! spinC.s; t/ �! End.�/;

where � is the spinor representation, is given by

��.�/�1.A/ D 1

4
wab�

ab:

Proof This follows from the last formula in Corollary 6.5.23. ut
We can now prove Proposition 6.10.9.

Proof We want to prove that

��
�

A�Spin.X/
�

D 1

4
!ab.X/�

ab;
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where �� is the homomorphism induced by the spinor representation. We have

A�Spin D ��ASpin

D .�/�1 ı Ae
SO:

The claim then follows immediately from Lemma 6.10.6 and Lemma 6.10.10. ut
Remark 6.10.11 As mentioned above, in physics the 1-forms !ab are sometimes
defined with the opposite sign,

rea D �!ab�
bc ˝ ec:

Then rX has to be defined by

rX D d .X/C 1

4
!bc.X/	

bc :

Lemma 6.10.12 If the dimension n of the manifold M is even, then the spin
covariant derivative preserves the splitting of the spinor bundle S into the Weyl
spinor bundles SC and S�. This means that

rX� 2 	 .S˙/ 8� 2 	 .S˙/;X 2 X.M/:

Proof This follows from
�
	 nC1; 	 ab

� D 0. ut
The spin covariant derivative has the following property:

Theorem 6.10.13 The spin covariant derivative is compatible with the Levi-Civita
connection in the following way: for all vector fields X;Y 2 X.M/ and spinors
� 2 	 .S/ the identity

rX.Y � �/ D .rXY/ � � C Y � rX�

holds.

Proof This is Exercise 6.13.21. ut
The following result is often useful:

Theorem 6.10.14 Let .� ; �/S be a Majorana bundle metric and h� ; �iS a Dirac bundle
metric on the spinor bundle S, defined by Majorana and Dirac forms for the spinor
representation. Then these metrics are compatible with the spin covariant derivative
in the following way:

LX.�;˚/S D .rX�;˚/S C .�;rX˚/S;

LXh�;˚iS D hrX�;˚iS C h�;rX˚iS

for all vector fields X 2 X.M/ and spinors �;˚ 2 	 .S/.
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Proof This follows from Proposition 5.9.7, because both types of forms on the
spinor space � are invariant under SpinC.s; t/. ut

6.10.3 Dirac Operator

We can now define the Dirac operator.

Definition 6.10.15 The Dirac operator DW	 .S/ ! 	 .S/ on the spinor bundle S is
defined by

D� D �abea � reb�

(with mathematical Clifford multiplication and the Einstein summation convention).
In a given vielbein e where � D Œ�;  � we can write

D� D Œ�;D �

where

D D �area 

D i	 area 

D i	 a

�

d .ea/ � 1

4
!abc	

bc 

�

:

In the physics literature the Dirac operator is often denoted by =D.
It is easy to check that the definition of the Dirac operator is independent of the local
vielbein e: This can be checked directly or by noticing that the Dirac operator D is
the composition of the maps

	 .S/
r�! 	 .T�M ˝ S/

��! 	 .TM ˝ S/
��! 	 .S/;

where �W T�M ! TM is the isomorphism induced by the pseudo-Riemannian metric
on M and � is Clifford multiplication. The Dirac operator is obviously a first-order
differential operator on the spinor bundle S.

In even dimensions n, r preserves the splitting S D SC ˚ S�, while Clifford
multiplication with a vector interchanges SC and S�. This implies:

Corollary 6.10.16 If the dimension n of the manifold M is even, then the Dirac
operator D maps

DW	 .S˙/ �! 	 .S�/;

i.e. it takes sections of SC to sections of S� and vice versa.
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In any dimension n, suppose that h� ; �iS a Dirac bundle metric with ı D �1, i.e.

hX �˚;� iS D �h˚;X � � iS 8X 2 TM;8˚;� 2 S:

On the complex vector space 	0.S/ of sections of S with compact support in M we
define an L2-scalar product of spinors

h� ; �iS;L2 W	0.S/� 	0.S/ �! C1.M/

by

h˚;� iS;L2 D
Z

M
h˚;� iSdvolg:

Here dvolg is the volume element associated to the pseudo-Riemannian metric g and
the orientation of M (cf. Sect. 7.2.1). We need to restrict to sections with compact
support, because otherwise the integral may not be finite.

We can then prove the following:

Theorem 6.10.17 (Dirac Operator Is Formally Self-Adjoint) Let M be a mani-
fold without boundary. If the Dirac form satisfies ı D �1, then the Dirac operator
DW	0.S/ ! 	0.S/ is formally self-adjoint, i.e.

hD˚;� iS;L2 D h˚;D� iS;L2

for all spinors ˚;� 2 	0.S/.
A proof (of a more general theorem) can be found in Exercise 7.9.12.

6.11 Twisted Spinor Bundles

Let P ! M be a principal G-bundle and �W G ! GL.V/ a complex representation
with associated vector bundle E D P �� V . Let S ! M be the spinor bundle
associated to a spin structure on M.

Definition 6.11.1 We call the bundle S ˝ E a twisted spinor bundle or gauge
multiplet spinor bundle.
Let sW U ! P be a local gauge. Then we can write a local section � of the associated
vector bundle E as

� D Œs; v�

with a map vW U ! V . We identify V with C
r using a basis v1; : : : ; vr for V . This

defines a local frame �1; : : : ; �r for E, given by �i D Œs; vi�.
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Let e be a local vielbein for TM and �W U ! SpinC.M/ a corresponding local
trivialization.

Lemma 6.11.2 Any section � of the twisted spinor bundle can be written locally
as

� D
rX

iD1
�i ˝ �i;

with sections �i of S. Equivalently,

� D Œ� � s;  �;

where  is a multiplet of the form

 D

0

B
B
B
@

 1

 2
:::

 r

1

C
C
C
A

W U �! �˝ C
r;

and  i are maps from U to �. This decomposition is unique, once local sections of
P and SpinC.M/ as well as a basis for V have been chosen.
We want to consider covariant derivatives on twisted spinor bundles. Let A be a
connection 1-form on the principal G-bundle P.

Definition 6.11.3 The twisted spin covariant derivative rA on the twisted spinor
bundle S ˝ E is defined by

rA
X� D �

� � s;rA
X 
�

where

rA
X D d .X/ � 1

4
!bc.X/	

bc C .��As.X// :

Here  is a map on U to �˝ V and the matrices 	 bc act on the�-part of  , i.e. on
each of the spinor components  i separately, while ��As.X/ acts on the V-part of
 , i.e. mixes the components of the multiplet  .
It is easy to check that the definition of rA does not depend on the choice of � and
s. We also get a Dirac operator on twisted spinor bundles.

Definition 6.11.4 The Dirac operator

DAW	 .S ˝ E/ �! 	 .S ˝ E/
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on a twisted spinor bundle S ˝ E is defined by

DA� D �abea � rA
eb
�:

Equivalently, DA is the composition of the maps

	 .S ˝ E/
rA

�! 	 .T�M ˝ S ˝ E/
��! 	 .TM ˝ S ˝ E/

��! 	 .S ˝ E/:

Locally we have

DA� D Œ� � s;DA �

with

DA D i	 a

�

d .ea/ � 1

4
!abc	

bc C .��Aa/ 

�

:

In the physics literature the Dirac operator is sometimes denoted by =DA.
Suppose again that h� ; �iS is a Dirac bundle metric with ı D �1, h� ; �iE is a Hermitian
bundle metric on E and h� ; �iS˝E the induced bundle metric on S˝E. On the complex
vector space 	0.S ˝ E/ of sections of S ˝ E with compact support in M we define
an L2-scalar product of twisted spinors

h� ; �iS˝E;L2 W	0.S ˝ E/ � 	0.S ˝ E/ �! C1.M/

by

h˚;� iS˝E;L2 D
Z

M
h˚;� iS˝Edvolg:

We then get the following analogue of Theorem 6.10.17.

Theorem 6.11.5 (Twisted Dirac Operator Is Formally Self-Adjoint) Let M be
a manifold without boundary. If the Dirac form satisfies ı D �1, then the twisted
Dirac operator DW	0.S ˝ E/ ! 	0.S ˝ E/ is formally self-adjoint, i.e.

hDA˚;� iS˝E;L2 D h˚;DA� iS˝E;L2 :

This is proved in Exercise 7.9.12.
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6.12 Twisted Chiral Spinors

Suppose the dimension n of the manifold M is even. Then the spinor bundle splits
into Weyl spinor bundles S D SC ˚ S�. Let P ! M be a principal G-bundle and

�˙W G �! GL.V˙/

two (possibly distinct) representations of G on complex vector spaces V˙. Let E˙ D
P ��

˙

V˙ be the associated vector bundles.

Definition 6.12.1 We call

.S ˝ E/C D .SC ˝ EC/˚ .S� ˝ E�/

a twisted chiral spinor bundle. We also consider the twisted bundle

.S ˝ E/� D .S� ˝ EC/˚ .SC ˝ E�/:

We can write a section of the twisted chiral spinor bundle as

 D  C C  �;

where

 ˙W M �! .S˙ ˝ E˙/:

Suppose A is a connection 1-form on P.

Definition 6.12.2 The twisted chiral spin covariant derivative rA on the twisted
chiral spinor bundle .S ˝ E/C is defined by

rA
X� D �

� � s;rA
X 
�
;

where

rA
X D d .X/ � 1

4
!bc.X/	

bc C .�C�As.X// C C .���As.X// �:

We can again define a Dirac operator.

Definition 6.12.3 The Dirac operator

DAW	 ..S ˝ E/C/ �! 	 ..S ˝ E/�/

is locally given by

DA D i	 a

�

d .ea/ � 1

4
!abc	

bc C .�C�Aa/ C C .���Aa/ �
�

:
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We can decompose the Dirac operator DA into

DA˙W	 .S˙ ˝ E˙/ �! 	 .S� ˝ E˙/:

We again denote the Dirac operator also by =DA.

Remark 6.12.4 Similar to Remark 6.2.6 for the classical Dirac operator it is possible
to calculate the square of (twisted) Dirac operators over general manifolds. This
square is again given by the Laplacian plus certain correction terms that depend on
the curvature of the vector bundles. The formula for the square of the Dirac operator
is known as the Lichnerowicz–Weitzenböck formula (see [15, 88] and [115] for
more details).

Remark 6.12.5 It can be proved that on a closed (compact without boundary)
Riemannian manifold the twisted chiral Dirac operator

DAW	 ..S ˝ E/C/ �! 	 ..S ˝ E/�/;

as a linear map between infinite-dimensional vector spaces, has finite-
dimensional kernel and cokernel. This includes as a special case a twisted
Dirac operator of the form

DAW	 .SC ˝ E/ �! 	 .S� ˝ E/:

The index of a twisted chiral Dirac operator is the integer

ind.DA/ D dim ker.DA/ � dim coker.DA/:

The famous Atiyah–Singer Index Theorem gives a formula for this index
in terms of characteristic classes of the vector bundles TM and E˙. See [15,
88] and [115] for detailed expositions of the index theorem ([15] considers
specifically the case of a twisted chiral spinor bundle and calls the vector
bundle E D EC ˚ E� a superbundle).

Remark 6.12.6 The notion of twisted chiral spinor bundles seems like an
unnecessary complication from a physics point of view. However, as we shall
see in Chap. 8, they are crucial when describing the weak interactions in the
Standard Model. In fact, in the Standard Model where

G D SU.3/ � SU.2/ � U.1/

(continued)
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Remark 6.12.6 (continued)
the vector spaces VC and V� even have different dimensions: VC has
dimension 24 and V� has dimension 21. As G-representations these spaces
decompose into irreducible representations of dimensions

dim VC D 24 D .6C 2/C .6C 2/C .6C 2/;

dim V� D 21 D .3C 3C 1/C .3C 3C 1/C .3C 3C 1/:

This is related to the fact that the weak interaction in the Standard Model is not
invariant under parity inversion that exchanges left-handed with right-handed
fermions. See Sect. 8.5 for more details.

Remark 6.12.7 It is sometimes useful to form the fibre product of the principal
SpinC.s; t/-bundle

�SW SpinC.M/ �! M

and the principal G-bundle

�PW P �! M;

defined by

SpinC.M/ �M P D f.s; p/ 2 SpinC.M/ � P j �P. p/ D �S.s/g:

This is a principal bundle for the group SpinC.s; t/ � G. Twisted spinor bundles
S˝E are then vector bundles associated to this principal bundle via a representation
of the group SpinC.s; t/ � G (the same is true for vector bundles of the form T ˝ E
where T is associated to any SpinC.s; t/-representation, for example, the scalar or
vector representation). The group SpinC.s; t/ � G can thus be considered as the full
symmetry group of the gauge theory.

6.13 Exercises for Chap. 6

6.13.1 Find a canonical isomorphism between O.s; t/ and O.t; s/ for all s; t.

6.13.2 Show that if both s; t ¤ 0, then O.s; t/ is not compact.

6.13.3 Prove that the subgroup SOC.s; t/ is the connected component of the identity
in O.s; t/.



6.13 Exercises for Chap. 6 395

6.13.4
1. The general form of a matrix A 2 O.1; 1/ depends on one real parameter a � 1

and three signs ı; �; � . Determine this general form of A.
2. Determine the general form of a matrix A 2 SOC.1; 1/.

6.13.5 Consider the Clifford algebra Cl.s; t/ with s C t D n. The set of all products
of the basis vectors e1; : : : ; esCt 2 R

s;t forms a subgroup of the multiplicative group
of Cl.s; t/ of order 2n. Prove that every complex (real) representation of Cl.s; t/
admits a Hermitian (Euclidean) scalar product such that all gamma matrices are
unitary (orthogonal).

6.13.6 Use Table 6.2 to show that for all n 2 N0

Cl.n C 8/ Š End
�
R
16
�˝R Cl.n/:

This result is called Bott periodicity.

6.13.7 Consider the Clifford algebras Cl.n/ for n 2 N0.

1. For m 2 N0 define an integer �0.m/ inductively by

�0.0/ D 0; �0.1/ D 1; �0.2/ D 3; �0.3/ D 7

and

�0.4C m/ D 8C �0.m/ 8m 2 N0:

Use Table 6.2 and Bott periodicity to prove that R2
m

admits a representation of
Cl.�0.m// for all m 2 N0.

2. Write an integer n 2 N0 as n D .2a C 1/2m with a;m 2 N0, i.e. 2m is the largest
power of 2 dividing n. Define an integer �.n/ by

�.n/ D �0.m/C 1:

Prove that Rn admits a representation of Cl.�.n/� 1/ for all n 2 N0.

6.13.8 Let n � 1 be an integer and consider the integer �.n/ from Exercise 6.13.7.
Prove that the unit sphere Sn�1 � R

n admits a set of �.n/ � 1 orthonormal tangent
vector fields. Determine those n for which this construction gives an orthonormal
trivialization of the tangent bundle TSn�1.

Remark According to a theorem of Adams [3] the sphere Sn�1 admits no more than
�.n/� 1 linearly independent tangent vector fields.

6.13.9 Let e1; : : : ; esCt be an orthonormal basis of Rs;t and define

M.s; t/ D spanfeiej 2 Cl.s; t/ j 1 � i < j � s C tg:
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Prove that the vector space M.s; t/ is a Lie subalgebra of cl�.s; t/ Š Cl.s; t/ with
the commutator

Œx; y� D x � y � y � x:

Show that M.s; t/ has dimension 1
2
.s C t/.s C t � 1/.

6.13.10
1. Let n � 3. Show that to every connected and simply connected Lie subgroup

H � SO.n/ we can associate a canonical Lie subgroup in Spin.n/ isomorphic
to H.

2. Find embeddings of the Lie groups SU.m/ (for m � 2), Sp.k/ (for k � 1) and G2

into suitable spin groups Spin.n/.

Remark According to Exercise 3.12.6 these embeddings define simply connected
homogeneous spaces.

6.13.11 Consider the spinor representation of Cl.1; 1/ on � D C
2, defined using

the mathematical gamma matrices from Example 6.3.14. Find an explicit map

� W� �! �

which is complex antilinear, commutes with �k for k D 1; 2, preserves both Weyl
spinor spaces �C and �� and satisfies �2 D Id�. This proves that the spinor
representation of Cl.1; 1/ is Majorana–Weyl. Determine the subspaces of left-
handed and right-handed Majorana–Weyl spinors.

6.13.12 Consider the spinor representation of Cl.4; 0/ on � D C
4, defined using

the mathematical gamma matrices

�0 D
�
0 I2

�I2 0

�

�k D
�
0 i�k

i�k 0

�

8k D 1; 2; 3

from Example 6.3.16.

1. Find an explicit map

JW� �! �

which is complex antilinear, commutes with �k for all k D 0; 1; 2; 3, preserves
both Weyl spinor spaces�C and�� and satisfies J2 D �Id�.

2. Show that I D i, J and K D IJ turn the Weyl spinor spaces�˙ into quaternionic
vector spaces. The spinor representation of Cl.4; 0/ is therefore symplectic
Majorana–Weyl.
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6.13.13 Find mathematical gamma matrices for the spinor representation of
Cl.3; 0/ and show by an explicit calculation that it is symplectic Majorana.

6.13.14 Consider the spinor representation of Cl.1; 1/ on C
2, defined using the

mathematical gamma matrices from Example 6.3.14.

1. Find explicit unitary charge conjugation matrices C for both cases in the table in
Sect. 6.7.1.

2. Show that the representation is basis unitary and determine the matrices A for
both choices in Proposition 6.7.13.

3. Calculate all four combinations for the matrix B D CA and show that in each
case B�B D I2, hence B defines a real structure. Determine the Majorana spinors
for each choice of B.

6.13.15 Consider the spinor representation of Cl.4; 0/ on C
4, defined using the

mathematical gamma matrices

�0 D
�
0 I2

�I2 0

�

�k D
�
0 i�k

i�k 0

�

8k D 1; 2; 3

from Example 6.3.16.

1. Find explicit unitary charge conjugation matrices C for both cases in the table in
Sect. 6.7.1.

2. Show that the representation is basis unitary and determine the two choices for
the matrix A from Proposition 6.7.13.

3. Calculate all four combinations for the matrix B D CA and show that in each
case B�B D �I2, hence B defines a quaternionic structure.

6.13.16 Consider the spinor representation of Cl.1; 3/ as in Sect. 6.8.

1. Determine a charge conjugation matrix C0 such that

	 T
a D C0	aC0�1 8a D 0; 1; 2; 3

C0T D �C0:

2. Calculate the matrix B D C0A with A D 	0 and show that B�B D �I, hence B
defines a quaternionic structure.

3. Determine the matrix A0 corresponding to the first choice in Proposition 6.7.13.
4. Calculate the matrices B D CA0 (with C as in Sect. 6.8) and B D C0A0 and

determine whether they define a real or quaternionic structure.



398 6 Spinors

6.13.17 Consider the identification R
1;3 Š Herm.2;C/ from Sect. 6.8.2 and set

SL.2;C/ � R
1;3 �! R

1;3

.M;X/ 7�! MXM�:

1. Prove that this map is well-defined and yields a homomorphism

 W SL.2;C/ �! SOC.1; 3/

of Lie groups.
2. Show that  is surjective and has kernel fI;�Ig.

6.13.18 Do a similar construction to the one in Exercise 6.13.17 to show that there
exists a surjective Lie group homomorphism

�W SL.2;R/ �! SOC.1; 2/

with kernel fI;�Ig.

Remark The 3-dimensional Lie group SL.2;R/ is isomorphic to SpinC.1; 2/ (note
that SOC.1; 2/ has fundamental group Z).

6.13.19 Show that the 1-forms !ab defined by the Levi-Civita connection with
respect to a vielbein are antisymmetric in the indices a; b:

!ab D �!ba 8a; b D 1; : : : ; n:

6.13.20 Prove that the 1-forms !ab are determined by the anholonomy coefficients
˝ c

ab as follows:

!cab D !ab.ec/ D 1

2
.˝cab �˝abc C˝bca/;

where˝abc D ˝ d
ab �dc.

6.13.21 Show that the spin covariant derivative is compatible with the Levi-Civita
connection in the following way: For all vector fields X;Y 2 X.M/ and spinors
� 2 	 .S/ the identity

rX.Y � �/ D .rXY/ � � C Y � rX�

holds.
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Chapter 7
The Classical Lagrangians of Gauge Theories

If we consider, from an abstract point of view, a field theory involving several types
of fields on spacetime (scalar fields, gauge fields, spinors, etc.), then the Lagrangian
of the field theory is the formula that contains the dynamics and all interactions
between these fields. In classical field theory, the equations of motion, i.e. the
field equations, that govern the evolution of the fields over time, are derived from
the Lagrangian. In quantum field theory, the Lagrangian (through the action, the
integral of the Lagrangian over spacetime) enters the formula for path integrals that
are used to calculate correlators and scattering amplitudes for elementary particles.

Given that the structure of the common Lagrangians is quite simple, it is truly
remarkable that the enormous complexity and intricacy of quantum field theories
are already contained in the Lagrangians. The Lagrangians can be considered the
fundamental cornerstones of field theories.

Lagrangians can be categorized depending on which types of fields and interac-
tions they involve: there are Lagrangians for free fields, Lagrangians for a single
interacting field and Lagrangians for several interacting fields. As a general rule,
Lagrangians which are harmonic, i.e. quadratic in the fields, correspond to free
theories, while Lagrangians which contain anharmonic terms of order three or
higher in the fields lead in the quantum field theory to the creation and annihilation
of particles and thus to interactions. Interactions between fields (in particular, in
the case of weakly interacting, perturbative quantum field theories) are depicted
using Feynman diagrams. Interacting quantum field theories are usually very
complicated and in many cases (including the Standard Model) not fully understood.

There are a priori countless Lagrangians that one could consider for a given set
of fields. The Lagrangians that are important in physics are mainly restricted by
three principles:

1. Existence of symmetries.
2. The quantum field theory should be renormalizable.
3. The quantum field theory should be free of gauge anomalies.

© Springer International Publishing AG 2017
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We will briefly discuss how these principles restrict the possible Lagrangians
and then study the Lagrangians that appear in the Standard Model of elementary
particles. These Lagrangians are called:

• the Yang–Mills Lagrangian
• the Klein–Gordon and Higgs Lagrangian
• the Dirac Lagrangian
• Yukawa coupling (itself not a complete dynamic Lagrangian)

The Lagrangians in the Standard Model are all Lorentz invariant and gauge invari-
ant. Lorentz invariance here means invariance under local Lorentz transformations
of the spacetime manifold, acting on each tangent space. This implies that for
fixed values of the fields the Lagrangian is a scalar function on spacetime. Lorentz
invariance for a field theory involving spinors always means invariance under the
orthochronous Lorentz spin group.

There are numerous books and articles on field theory and the Standard Model.
In the present and the following chapter on the Standard Model we mainly rely on
the following references:

• The book [16] by David Bleecker is one of the best mathematical treatments
of symmetry breaking. Our discussion of symmetry breaking and the Higgs
mechanism in Chap. 8 draws heavily from it.

• The article [9] by John C. Baez and John Huerta is an excellent mathematical
exposition of the representations of the Standard Model and Grand Unified
Theories. Our notation for the representations of the Standard Model in Chap. 8
mainly follows this reference.

• The book [100] by Ulrich Mosel is a concise summary of the Standard Model
with a very good exposition of the Lagrangians and symmetry breaking. The
explicit Lagrangians for the Standard Model that we derive in Chap. 8 mainly
follow the notation in Mosel’s book.

• The book [137] by Mark Thomson is an excellent modern and readable treatment
of particle physics with many interesting details and explanations concerning
experimental and theoretical aspects.

• The topic of the book [22] by Gustavo Castelo Branco, Luís Lavoura and João
Paulo Silva is CP violation, but it also has a very clear description of the Standard
Model and its Lagrangians.

• The book [62] by Carlo Giunti and Chung W. Kim focuses mainly on neutrino
physics, but also contains in the first chapters a concise and modern description of
the Standard Model, including details about the Lagrangians and quark mixing.

• Our main references for results from quantum field theory are the book [125] by
Matthew Schwartz and the books [143–145] by Steven Weinberg.

• The website [105] of the Particle Data Group contains many up-to-date exper-
imental values for elementary particles as well as some succinct theoretical
discussions.
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• A great source for the history and development of the Standard Model is the book
[79] by Lillian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden
(editors).1 Historical remarks can also be found on the official website [117]
for the Nobel Prize in Physics. In particular, [118–120] and [121] contain very
readable background material for the Nobel Prizes in Physics 2004, 2008, 2013
and 2015. A short history of gauge theory in physics and mathematics can be
found in the book review [92] for Bleecker’s book.

Further references are the books [33, 71] and [113] (on the complete Standard
Model), [112] (on the electroweak theory), [42] (on QCD), [124, 132] (on QFT in
general) and [39, 41, 101, 102, 114, 122, 123] (on the mathematics of the Standard
Model) as well as the lecture notes [141].

7.1 Restrictions on the Set of Lagrangians

The Lagrangians that occur in physics are restricted from the infinite set of possible
Lagrangians by certain principles that we want to discuss in this section.

7.1.1 Existence of Symmetries

The Lagrangian (or the action) of a field theory should be invariant under certain
transformations of the fields, i.e. under certain symmetry groups. Particular exam-
ples are:

• Lorentz symmetry
• gauge symmetry
• conformal symmetry
• supersymmetry

We have to distinguish two meanings of symmetries in field theories. Here we think
of the primary meaning: the Lagrangian for the fields and thus the laws of physics,
not the field configurations or their initial values themselves, are invariant under
symmetry transformations.

The secondary meaning of symmetry (invariance of the actual field configura-
tion) is also sometimes of significance in physics. For example, the action of general
relativity for the spacetime metric is invariant under the full orientation preserving
diffeomorphism group of the spacetime manifold. A specific metric, however, is
invariant only under a much smaller symmetry group, the isometry group of this
metric (which could just consist of a single element, the identity map).

1I thank Anthony Britto for pointing out this reference.
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Similarly the actions of supergravity theories are invariant under all local
supersymmetries, but a specific supersymmetric configuration is invariant under
a much smaller group of supersymmetries (a generic field configuration is not
supersymmetric at all).

A third example is spontaneously broken gauge theories, which we consider in
detail in Chap. 8. In this case the Lagrangian is invariant under gauge transforma-
tions with values in a Lie group G, but due to the existence of the Higgs condensate,
the vacuum configuration is invariant only under gauge transformations with values
in a subgroup H � G.

The existence of gauge symmetries is particularly important: it can be shown
that a quantum field theory involving massless spin 1 bosons can be consistent
(i.e. unitary, see Sect. 7.1.3) only if it is gauge invariant [125, 143]. This is the reason
why we demand Lagrangians involving vector fields (or 1-forms) to be invariant
under gauge transformations.

7.1.2 The Quantum Field Theory Should Be Renormalizable

The quantum field theory associated to the Lagrangian should be renormalizable to
yield in the end (after renormalization of the parameters, such as coupling constants
and masses, cf. Sect. B.2.8) finite results that can be compared with experiments and
used to adjust the free parameters of the theory. A simple calculation of the mass
dimension of summands in the Lagrangian determines which terms have a chance
to yield renormalizable theories.

For example, let

L D L .�1; : : : ; �n/

be a renormalizable Lagrangian, where �1; : : : ; �n denote certain fields on spacetime
(not necessarily scalars). Suppose that L is Lorentz invariant and, say, gauge
invariant (for instance, L could be the Yang–Mills Lagrangian or the Klein–
Gordon Lagrangian). Then for all natural numbers k the k-th power L k will also
be Lorentz invariant and gauge invariant. However, in almost all cases, for k � 2,
the Lagrangian L k will be non-renormalizable, because it has the wrong mass
dimension.

Demanding that the quantum field theory is renormalizable thus greatly restricts
the possible terms that can appear in Lagrangians. Calculating mass dimensions
(power counting), it can be shown that in 4-dimensional spacetime the only
renormalizable and gauge invariant Lagrangians are sums of the Lagrangians that
we discuss in this chapter2 (where in the case of the Higgs Lagrangian for a scalar

2An exception, that we do not discuss in this book, is the topological theta term
˝
FA

M;�FA
M

˛
Ad.P/,

that appears in some modifications of QCD and in supersymmetric gauge theories.
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field � the potential has to be a polynomial in � of degree less than or equal to 4).
See [143, Sect. 12.3] for details.

This is very satisfying, because it means, from the point of view of quantum
field theory in 4-dimensional spacetime, that there will be no additional types of
interactions. It also turns out that all of the allowed Lagrangians actually appear in
the Standard Model (in a certain specific form, i.e. with a specific gauge group G,
specific charged fermions, etc.). The restriction of renormalizability does not hold
for effective Lagrangians, i.e. Lagrangians that are only used for calculations at low
energies.

7.1.3 The Quantum Field Theory Should Be Free of Gauge
Anomalies

Symmetries of the classical field theory, like gauge symmetries, do not necessarily
hold in the quantum field theory. The reason is that the measure involved in the
definition of path integrals may not be invariant under the symmetry. If this happens,
the symmetry is called anomalous.

In quantum theory, we demand that the Hilbert space of the system does not
contain both vectors of positive norm and negative norm (states of negative norm
are called ghost states). This property is sometimes called unitarity (a vector
space with a positive definite Hermitian scalar product is also known as a unitary
vector space).3 If unitarity does not hold, i.e. there exist both states of positive
and negative norm in the Hilbert space, then the scalar product does not have a
probability interpretation (see Exercise 7.9.1), violating a fundamental axiom of
quantum theory.

It is possible to show that in 4-dimensional Minkowski spacetime, anomalies of
gauge symmetries imply that the quantum theory violates unitarity (this is related to
the fact that the Lorentz metric is indefinite and that the scalar product on the Hilbert
space of the quantum field theory must be Poincaré invariant; see [125, Chap. 8] for
details). It follows that the quantum theory has to be free of gauge anomalies. In
practice, this restricts the possible representations and charges of the fermions: the
contributions of the fermions in the theory to the gauge anomaly depend on both
the gauge groups and fermion representations and have to cancel each other. The
Standard Model is anomaly free, see Sect. 8.5.8. For more details on anomalies, see
[125, Chap. 30].

3There is another concept of unitarity (unitarity of the S-matrix, i.e. of time evolution) that we do
not consider here.
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One therefore has to be careful: even if a gauge theory is well-defined on
the classical level, this may not be true for the associated quantum theory. In
particular, vanishing of gauge anomalies has to be checked for every theory
beyond the Standard Model, like Grand Unified Theories or supersymmetric
extensions.

7.1.4 The Lagrangian of the Standard Model

Our aim in this chapter is to understand each term in the following
Lagrangian, which is essentially the Lagrangian of the Standard Model and
could be called the Yang–Mills–Dirac–Higgs–Yukawa Lagrangian:

L D LDŒ�;A�C LHŒ˚;A�C LY Œ�L; ˚; �R�C LYMŒA�

D Re
�
�DA�

�C hdA˚; dA˚iE � V.˚/ � 2gY Re
�
�L˚�R

� � 1

2

˝
FA

M ;F
A
M

˛
Ad.P/ :

7.2 The Hodge Star and the Codifferential

Throughout this chapter, .M; g/ is an n-dimensional oriented pseudo-Riemannian
manifold. In physics, M is spacetime and g usually has Lorentzian signature. In
mathematics, M is an arbitrary manifold and g is often taken to be Riemannian.

We first want to understand the Yang–Mills Lagrangian LYMŒA� for a connection
A on a principal bundle P ! M and derive the associated equation of motion, called
the Yang–Mills equation. This equation is most easily stated using the codifferential,
whose definition involves the Hodge star operator. The metric g on the manifold M
enters the Yang–Mills equation precisely through the Hodge star. In this section we
discuss as a mathematical preparation the Hodge star operator, the codifferential and
some related concepts. We follow the exposition in [14].

7.2.1 Scalar Products on Forms and the Hodge Star Operator

The metric g together with the orientation of the manifold M define a canonical
volume form dvolg on M: If e1; : : : ; en is an oriented, orthonormal basis of TpM,
then dvolg is characterized by

dvolg.e1; : : : ; en/ D C1:
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Lemma 7.2.1 If .U; �/ is an oriented chart for M with local coordinates x
, then

dvolg D
p

jgjdx1 ^ : : : ^ dxn;

where

jgj D j det.g
�/j

is the absolute value of the determinant of the matrix with entries

g
� D g.@
; @�/:

Proof This is Exercise 7.9.2. ut
We denote by g
� the entries of the matrix inverse to the matrix with entries g
� .
We can raise indices of tensors in the standard way using g
� . For example,

T
� D g
�g��T�� ;

where the Einstein summation convention is understood.
The semi-Riemannian metric g on M defines bundle metrics on the vector

bundles of k-forms �kT�M for all k. This yields scalar products between sections
of these bundles that we can write explicitly as follows:

Definition 7.2.2 For K D R;C we define the scalar product of forms

h� ; �iW˝k.M;K/ �˝k.M;K/ �! C1.M;K/

as follows: for real-valued k-forms !; � 2 ˝k.M;R/ on M we set

h!; �i D
X


1<:::<
k

!
1:::
k�

1:::
k

D 1

kŠ

X


1:::
k

!
1:::
k�

1:::
k

D 1

kŠ
!
1:::
k�


1:::
k ;

where

!
1:::
k D !.@
1 ; : : : ; @
k /

in a local chart .U; �/ of M and the second and third sum extend over all k-tuples

1 : : : 
k.
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For complex-valued k-forms !; � 2 ˝k.M;C/ Š ˝k.M;R/˝ C on M we set

h!; �i D
X


1<:::<
k

N!
1:::
k�

1:::
k :

These scalar products are well-defined, independent of the choice of local chart. The
associated norm is given in both cases by

j!j2 D h!;!i:

Remark 7.2.3 On a pseudo-Riemannian manifold the norm is in general not positive
definite. In particular, j!j2 D 0 does not imply ! D 0. For this reason we usually
try to avoid the notation j!j2.
Definition 7.2.4 The Hodge star operator


W˝k.M;K/ �! ˝n�k.M;K/

is the linear map defined for real-valued forms by

h!; �idvolg D ! ^ 
� 8!; � 2 ˝k.M;R/

and for complex-valued forms by

h!; �idvolg D N! ^ 
� 8!; � 2 ˝k.M;C/:

Choosing a local frame, it can be shown that this uniquely defines 
.

Remark 7.2.5 This definition of the Hodge star operator for pseudo-Riemannian
manifolds does not necessarily coincide with the definition sometimes found in the
literature. Baum [14], for instance, uses the definition


0 D .�1/t 
 :

We continue to use our definition.
Suppose e1; : : : ; en is an oriented, orthonormal basis of tangent vectors with

g.ei; ei/ D gii D gii D ˙1:

Let ˛1; : : : ; ˛n be the dual basis of 1-forms with ˛i.ej/ D ıi
j . Then

dvolg D ˛1 ^ : : : ^ ˛n
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and we have:

Lemma 7.2.6 The Hodge star operator is given by


.˛m1 ^ : : : ^ ˛mk / D gm1m1 � � � gmkmk�m1:::mkmkC1:::mn˛
mkC1 ^ : : : ^ ˛mn :

In this formula there is on the right-hand side no summation over indices,
fmkC1; : : : ;mng is a complementary set to fm1; : : : ;mkg and � is totally antisym-
metric with

�123:::n D 1:

In particular,


dvolg D .�1/t � 1;

1 D dvolg:

Definition 7.2.7 Let ˝k
0.M;K/ denote the differential forms with compact support

on M. Then we define the L2-scalar product of forms

h� ; �iL2 W˝k
0.M;K/ �˝k

0.M;K/ �! K

by

h!; �iL2 D
Z

M
h!; �idvolg:

We have to restrict the L2-scalar product to forms with compact support, because
otherwise the integral may not be finite.

We can generalize these constructions to twisted differential forms. Suppose that
E ! M is a K-vector bundle with bundle metric h� ; �iE. Together with the semi-
Riemannian metric g we then get induced bundle metrics on the vector bundle
�kT�M ˝ E of twisted k-forms for all k. More explicitly we can write:

Definition 7.2.8 We define the scalar product of twisted forms

h� ; �iEW˝k.M;E/ �˝k.M;E/ �! C1.M/

as follows: choose a local frame e1; : : : ; er for E over U � M and expand k-forms
F;G twisted with E as

F D
rX

iD1
Fi ˝ ei;

G D
rX

jD1
Gj ˝ ej;
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with Fi;Gj 2 ˝k.U;K/. Then we set

hF;GiE D
rX

i;jD1
hFi;Gjihei; ejiE:

This scalar product is independent of the choice of local frame feig.
We can also define a Hodge star operator on twisted forms


W˝k.M;E/ �! ˝n�k.M;E/

by


F D
rX

iD1
.
Fi/˝ ei

and an L2-scalar product of twisted forms

h� ; �iE;L2 W˝k
0.M;E/ �˝k

0.M;E/ �! K

by

h!; �iE;L2 D
Z

M
h!; �iEdvolg:

7.2.2 The Codifferential

Let .M; g/ be an oriented semi-Riemannian manifold of dimension n and signature
.s; t/. We have the usual exterior differential

dW˝k.M/ �! ˝kC1.M/

on forms.

Definition 7.2.9 We define the codifferential

d�W˝kC1.M/ �! ˝k.M/

by

d� D .�1/tCnkC1 
 d 
 :
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The codifferential has the following interesting property:

Theorem 7.2.10 (Codifferential on Forms Is Formal Adjoint of Differential)
Let M be a manifold without boundary. Then the codifferential d� is the formal
adjoint of the differential d with respect to the L2-scalar product on forms with
compact support, i.e.

hd!; �iL2 D h!; d��iL2

for all ! 2 ˝k
0.M/; � 2 ˝kC1

0 .M/.

Proof We calculate the difference

hd!; �i � h!; d��i

with respect to the (pointwise) scalar product of forms. According to Exercise 7.9.3



W˝n�k.M/ �! ˝n�k.M/

is given by



 D .�1/tC.n�k/k:

We have

�hd!; �i � h!; d��i� dvolg D .d!/ ^ 
�� ! ^ 
 �d��
�

D .d!/ ^ 
�C .�1/k! ^ .d 
 �/
D d.! ^ 
�/:

This implies the claim by Stokes’ Theorem A.2.24. ut
We want to generalize the definition of the codifferential to twisted forms. Let E !
M be a K-vector bundle with a scalar product h� ; �iE and a compatible covariant
derivative r. In Sect. 5.12 we defined the associated exterior covariant derivative
(or covariant differential)

dr W˝k.M;E/ �! ˝kC1.M;E/:

Definition 7.2.11 We define the covariant codifferential

d�
r W˝kC1.M;E/ �! ˝k.M;E/
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by

d�
r D .�1/tCnkC1 
 dr 
 :

We then get the following analogue of Theorem 7.2.10.

Theorem 7.2.12 (Covariant Codifferential on Twisted Forms Is Formal Adjoint
of Covariant Differential) Let M be a manifold without boundary. Then the
covariant codifferential d�r is the formal adjoint of the exterior covariant differential
dr with respect to the L2-scalar product on forms with compact support, i.e.

hdr!; �iE;L2 D ˝
!; d�

r�
˛
E;L2

for all ! 2 ˝k
0.M;E/; � 2 ˝kC1

0 .M;E/.

Proof We follow the proof in [14]. Since dr and d�r are linear, it suffices to prove
the statement for forms !; � of the form

! D � ˝ e; � 2 ˝k
0.M/; e 2 	 .E/;

� D 
˝ f ; 
 2 ˝kC1
0 .M/; f 2 	 .E/:

Then

dr! D .d�/˝ e C .�1/k� ^ re

and

d�r� D .�1/tCnkC1 
 dr 
 .
˝ f /

D .�1/tCnkC1 
 �.d 
 
/˝ f C .�1/n�k�1.

/ ^ rf
�

D .d�
/˝ f C .�1/tCnkCn�k 
 ..

/ ^ rf / :

In particular, with Exercise 7.9.3,


d�r� D �.�1/k.d 
 
/˝ f � .�1/n�1.

/ ^ rf :

We introduce a scalar product

h� ; �iEW˝1.M;E/˝ 	 .E/ �! ˝1.M/



7.3 The Yang–Mills Lagrangian 413

by setting

h! ˝ a; biE D !ha; biE 8! 2 ˝1.M/; a; b 2 	 .E/

and extending linearly.
For the difference of the pointwise scalar products we then get

�hdr!; �iE � ˝
!; d�r�

˛
E

�
dvolg D h.d�/˝ e; 
˝ f iE C .�1/kh� ^ re; 
˝ f iE

� h� ˝ e; .d�
/˝ f iE

C .�1/n�1.� ^ 

/ ^ hrf ; eiE

D d.� ^ 

/he; f iE

C .�1/n�1.� ^ 

/ ^ .hre; f iE C hrf ; eiE/

D d ..� ^ 

/he; f iE/ :

In the final step we used that r is compatible with the scalar product on E. The
claim now follows by Stokes’ Theorem A.2.24. ut

7.3 The Yang–Mills Lagrangian

In this section we define the Yang–Mills Lagrangian and derive the associated Yang–
Mills equation. We fix the following data:

• an n-dimensional oriented pseudo-Riemannian manifold .M; g/
• a principal G-bundle P ! M with compact structure group G of dimension r
• an Ad-invariant positive definite scalar product h� ; �ig on g, determined by certain

coupling constants, as in Sect. 2.5
• a h� ; �ig-orthonormal vector space basis T1; : : : ;Tr for g.

The Ad-invariant scalar product h� ; �ig on g determines a bundle metric on the
associated real vector bundle Ad.P/ D P �Ad g that we denote by h� ; �iAd.P/.

7.3.1 The Yang–Mills Lagrangian

Let A be a connection 1-form on the principal bundle P with curvature 2-form FA 2
˝2.P; g/. According to Corollary 5.13.5 the curvature defines a twisted 2-form

FA
M 2 ˝2.M;Ad.P//:
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Definition 7.3.1 The Yang–Mills Lagrangian is defined by

LYMŒA� D �1
2

˝
FA

M;F
A
M

˛
Ad.P/ :

For a fixed connection A, the Yang–Mills Lagrangian is a global smooth
function

LYMŒA�W M �! R:

Theorem 7.3.2 The Yang–Mills Lagrangian is gauge invariant, i.e.

LYMŒ f
�A� D LYMŒA�

for all bundle automorphisms f 2 G .P/ and all connections A on P.

Proof Theorem 5.4.4 implies that the curvature form FA 2 ˝2.P; g/ transforms as

Ff �A D Ad��1
f

ı FA:

Let f � denote the action of f on the adjoint bundle, given by Theorem 5.3.8. Then

Ff �A
M D f �1 � FA

M:

Since the scalar product h� ; �ig is Ad-invariant, it follows that h� ; �iAd.P/ is invariant
under the action of f �1. This implies the claim. ut
We want to find a formula for the Yang–Mills Lagrangian in local coordinates and
in a local gauge. Let sW U ! P be a local gauge. Then the local field strength is
given by

FA
s D s�FA 2 ˝2.U; g/:

The scalar product on the Lie algebra g defines a scalar product

h� ; �igW˝2.U; g/ �˝2.U; g/ �! C1.U; g/:

As before we set in a chart with coordinates x


FA

� D FA

s .@
; @�/:

We can expand

FA
s D FAa

s ˝ Ta
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and

FA

� D FAa


�Ta;

where FAa
s 2 ˝2.U/ are real-valued differential forms, FAa


� 2 C1.U/ are real-
valued smooth functions on U and we sum over the indices a.

We can then write the Yang–Mills Lagrangian locally as

LYMŒA� D �1
2

˝
FA

s ;F
A
s

˛
g

D �1
4

D
FA

�;F

A
�
E

g

D �1
4

FAa

�F

A
�
a ;

where we sum over all 
; �. The local field strength is given by

FA

� D @
A� � @�A
 C ŒA
;A��

and

FAa

� D @
Aa

� � @�A
a

 C fbcaAb


Ac
�

with the structure constants defined by

ŒTa;Tb� D
rX

cD1
fabcTc:

Lemma 7.3.3 The structure constants of the Lie algebra g with respect to a h� ; �ig-
orthonormal basis fTag satisfy

fabc C fbac D 0

and

fbca C fbac D 0

for all indices a; b; c. In particular,

fbca D fabc:

Proof The first claim is clear, because the Lie bracket is antisymmetric. The second
claim follows, because the Ta are an orthonormal basis and the scalar product h� ; �ig
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on g is Ad-invariant: we have

hŒTb;Tc�;Taig C hTc; ŒTb;Ta�ig D 0;

which implies the claim. ut

We can therefore also write the structure equation for the curvature as

FAa

� D @
Aa

� � @�A
a

 C fabcAb


Ac
�:

This implies the following explicit formula for the Yang–Mills Lagrangian:

LYMŒA� D �1
4

FAa

�F

A
�
a

D �1
4
.@
Aa

� � @�A
a

/.@


A�a � @�A
a /

� 1

2
fabc.@
Aa

� � @�Aa

/A

b
Ac�

� 1

4
fabcfadeAb


Ac
�A

d
Ae�:

(7.1)

The term in the second line is quadratic in the gauge field. It describes free
(non-interacting) gauge bosons and is the only term if the group G is abelian.
The terms in the third and fourth line are cubic and quartic in the gauge field
and describe a direct interaction between the gauge bosons in non-abelian
gauge theories. In the case of QCD these terms are called 3-gluon vertex and
4-gluon vertex. Figure 7.1 shows the Feynman diagrams for these vertices.

Aa

Ab

Ac Aa

Ab

Ac

Ad

Fig. 7.1 Interaction vertices for non-abelian gauge bosons
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Remark 7.3.4 In physics, the quantum field theory for a gauge field A determined by
the Yang–Mills Lagrangian, without any additional matter fields, is known as pure
Yang–Mills theory or gluodynamics. For non-abelian Lie groups, the quantum
version of pure Yang–Mills theory predicts particles, known as glueballs, which
only consist of gauge bosons (gluons in QCD). The Clay Millennium Prize Problem
[37] on the mass gap is to prove that the masses of glueballs in a quantum pure
Yang–Mills theory on R

4 with compact simple gauge group G are bounded from
below by a positive (non-zero) number.

Remark 7.3.5 The term “gauge invariance” was invented by Hermann Weyl in
1929 for the U.1/ gauge theory of electromagnetism. Gauge theory for non-abelian
structure groups G was first developed by Chen Ning Yang (Nobel Prize in Physics
1957) and Robert L. Mills (for G D SU.2/) in the 1950s.

7.3.2 The Yang–Mills Equation

We assume now that

• the semi-Riemannian manifold .M; g/ is closed, i.e. compact and without
boundary.

Definition 7.3.6 Let A .P/ denote the space of all connection 1-forms A on the
principal bundle P. This is by the discussion in Sect. 5.13 a (usually infinite-
dimensional) affine space over the vector space

˝1
hor.P; g/

Ad Š�! ˝1.M;Ad.P//;

with isomorphism given by the map �. For ˛ 2 ˝1
hor.P; g/

Ad we set

˛M D �.˛/ 2 ˝1.M;Ad.P//:

Definition 7.3.7 The Yang–Mills action for a principal G-bundle P ! M is the
smooth map

SYMWA .P/ �! R;

defined by

SYMŒA� D �1
2

˝
FA

M;F
A
M

˛
Ad.P/;L2

D �1
2

Z

M

˝
FA

M;F
A
M

˛
Ad.P/ dvolg:

The integral is well-defined, because M is compact.
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Definition 7.3.8 We call a connection A on the principal bundle P a critical point
of the Yang–Mills action if

d

dt

ˇ
ˇ
ˇ
ˇ
tD0

SYMŒA C t˛� D 0

for all variations

˛ 2 ˝1
hor.P; g/

Ad Š ˝1.M;Ad.P//:

For a connection A on P we denote by dA the associated covariant differential and
by d�

A the covariant codifferential. We want to prove:

Theorem 7.3.9 A connection A on a principal bundle P ! M is a critical
point of the Yang–Mills action if and only if A satisfies the Yang–Mills
equation

d�
AFA

M D 0;

i.e.

dA 
 FA
M D 0:

Proof We follow the proof in [14]. According to the structure equation in Theo-
rem 5.5.4 we can calculate

FACt˛ D d.A C t˛/C 1

2
ŒA C t˛;A C t˛�

D FA C t.d˛ C ŒA; ˛�/C 1

2
t2Œ˛; ˛�:

This implies

FACt˛
M D FA

M C t .dA˛M/C 1

2
t2Œ˛M ; ˛M�:

We get with Theorem 7.2.12

d

dt

ˇ
ˇ
ˇ
ˇ
tD0

˝
FACt˛

M ;FACt˛
M

˛
Ad.P/;L2 D 2

˝
dA˛M;F

A
M

˛
Ad.P/;L2

D 2
˝
˛M; d

�
AFA

M

˛
Ad.P/;L2 :
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Since the scalar product on the Lie algebra g is non-degenerate, the L2-scalar product
on˝1.M;Ad.P// is non-degenerate. It follows that A is a critical point of the Yang–
Mills Lagrangian if and only if d�

AFA
M D 0. ut

In a local gauge sW U ! P the Yang–Mills equation can be written as

d 
 FA
s C �

As;
FA
s

� D 0:

Remark 7.3.10 Recall that any connection A on the principal bundle P has to satisfy
the Bianchi identity, which can be written according to Theorem 5.14.2 as

dAFA
M D 0:

Atiyah and Bott [6] have noted that the curvature FA
M of a connection A that satisfies

in addition to the Bianchi identity the Yang–Mills equation dA 
 FA
M D 0 can thus

be considered as a harmonic form (in a non-linear sense if G is non-abelian)
in ˝2.M;Ad.P// (compare with Exercise 7.9.5). The Yang–Mills equation is a
second-order partial differential equation for the connection A.

Remark 7.3.11 Note that the Yang–Mills equation depends through the Hodge star
operator on the pseudo-Riemannian metric g on M. If the equation holds for one
metric, it does not necessarily hold for another metric.

Example 7.3.12 (Maxwell’s Equations) In the case when G D U.1/, the local
curvature forms Fs are independent of the choice of local gauge s and define
a global 2-form FM 2 ˝2.M; u.1//, see Corollary 5.6.4. The Bianchi identity
and Yang–Mills equation are then given by

dFM D 0;

d 
 FM D 0:

These are Maxwell’s equations for a source-free electromagnetic field
(on a general n-dimensional oriented pseudo-Riemannian manifold). On
Minkowski spacetime of dimension 4 we can use the construction in Sect. 5.7
to write Maxwell’s equations in terms of the electric and magnetic field.

Maxwell’s equations generalize to any abelian Lie group G. Note that in
this case both the Bianchi identity and the Yang–Mills equation are linear. For
a non-abelian structure group these equations are non-linear (and therefore
much harder to solve).

We could study the Yang–Mills equation on any of the examples of principal
bundles that we defined in Chap. 4, in particular, on the Hopf fibrations over
projective spaces or on the canonical principal bundles over homogeneous spaces,
once (pseudo-)Riemannian metrics on the base manifolds have been defined.
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Definition 7.3.13 We call a connection A on a principal bundle a Yang–Mills
connection if it satisfies the Yang–Mills equation.
Since the Yang–Mills equations do not depend on the choice of local gauge, the
gauge group G .P/ of the principal bundle P ! M acts on the space of Yang–Mills
connections. We can therefore set:

Definition 7.3.14 The Yang–Mills moduli space of a principal bundle P ! M
over a pseudo-Riemannian manifold .M; g/ is the space of Yang–Mills connections
A modulo the gauge group G .P/.
The moduli space is usually the quotient of an infinite-dimensional space by the
action of an infinite-dimensional group. It is therefore non-trivial to define, for
example, a smooth structure on the moduli space.

Example 7.3.15 (Instantons) Let P ! M be a principal G-bundle over an
oriented Riemannian 4-manifold .M; g/. In this case the Hodge star operator
satisfies 

 D 1 on 2-forms on M. We consider connections A on P with
curvature FA

M 2 ˝2.M;Ad.P// such that either


FA
M D FA

M

or


FA
M D �FA

M:

Connections that satisfy these identities are called self-dual and anti-self-
dual instantons, respectively (see Exercise 7.9.3 for the notion of self-
duality).

Since any connection A satisfies the Bianchi identity, instantons automat-
ically satisfy the Yang–Mills equation. The instanton equations are examples
of BPS equations, i.e. special first order equations (here for the gauge field A)
whose solutions are (often) automatically solutions of the second order field
equations (here the Yang–Mills equations). BPS equations appear in many
other parts of physics, for example, in the theory of magnetic monopoles
(Bogomolny equations) or in supergravity (Killing spinor equations).

The instanton equations are preserved under the action of the gauge group
G .P/ and we can define instanton moduli spaces. These moduli spaces,
especially for structure groups G D SU.2/ and G D SO.3/, are the
cornerstone of Donaldson theory, which revolutionized the understanding
of smooth 4-manifolds in the 1980s.
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7.3.3 Massive Gauge Bosons

The Yang–Mills Lagrangian

LYM D �1
2

˝
FA

M;F
A
M

˛
Ad.P/

D �1
4

FAa

�F

A
�
a

describes massless gauge bosons. Arguments from physics show that gauge bosons
of mass m are described by adding (in a local gauge) a term of the form

1

2
m2A�aAa

� (7.2)

to the Yang–Mills Lagrangian. We could try to write this Lagrangian in an invariant
form as above, such as

1

2
m2 hAM;AMiAd.P/ ;

however the gauge field A does not define an element AM 2 ˝1.M;Ad.P// (only
the difference of two gauge fields is such a twisted form). This indicates that the
Lagrangian in Eq. (7.2) is not well-defined, independent of local gauge. It is also
easy to see directly that local gauge transformations gW U ! G, which are not
constant, in general do not leave the Lagrangian in Eq. (7.2) invariant.

Remark 7.3.16 One of the main features of the Higgs mechanism, discussed in
Chap. 8, is that it allows us to introduce a non-zero mass for gauge bosons with
a gauge invariant Lagrangian. Introducing a mass for gauge bosons is necessary to
describe the weak interaction as a gauge theory, because experiments show that the
W- and Z-gauge bosons of the weak interaction have a non-zero mass.

7.4 Mathematical and Physical Conventions
for Gauge Theories

In mathematics and physics slightly different conventions are used for scalar
products, coupling constants and covariant derivatives. We want to compare these
conventions in this section. We fix the following data:

• a compact Lie group G which is either simple or U.1/ (the conventions below
can be generalized to any compact Lie group)

• an AdG-invariant positive definite scalar product h� ; �ig on the Lie algebra g (if g
is simple we can take the negative of the Killing form and for u.1/ Š R we can
take any positive definite scalar product)
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• a h� ; �ig-orthonormal basis S1; : : : ; Sr of the Lie algebra g
• a real coupling constant g > 0.

1. In mathematics we choose the scalar product

h� ; �i0
g D 1

g2
h� ; �ig

with orthonormal basis

Ta D gSa; a D 1; : : : ; r:

We expand the gauge field A 2 ˝1.P; g/ and curvature F 2 ˝2.P; g/ as

A D
rX

aD1
Aa ˝ Ta;

F D
rX

aD1
Fa ˝ Ta:

The covariant derivative (after a choice of local gauge) is

rA

 D @
 C A
:

The local curvature is

F
� D @
A� � @�A
 C ŒA
;A��:

The Yang–Mills Lagrangian is

LYM D �1
4

˝
F
�;F
�

˛0
g

D �1
4

Fa

�F


�
a :

2. In physics we choose the Hermitian scalar product h� ; �iig on ig associated to
h� ; �ig and the orthonormal basis

1

i
Sa; a D 1; : : : ; r

of ig. We expand the gauge field B 2 ˝1.P; ig/ and curvature G 2 ˝2.P; ig/ as

B D 1

i

rX

aD1
Ba ˝ Sa;

G D 1

i

rX

aD1
Ga ˝ Sa:
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There are two different sign conventions for the covariant derivative:

rB

 D @
 ˙ igB
:

The local curvature is

G
� D @
B� � @�B
 ˙ igŒB
;B��:

The Yang–Mills Lagrangian is

LYM D �1
4

˝
G
�;G
�

˛
ig D �1

4
Ga

�G


�
a :

3. The correspondence between the mathematical and physical conventions is given
by setting

A D ˙igB;

F D ˙igG:

If the representation of the Lie group G on a vector space V is unitary, then the
field A
 will act as a skew-Hermitian operator and B
 will act as a Hermitian
operator. We have rA


 D rB

 and

Aa D ˙Ba;

Fa D ˙Ga

D �Ga

D Fa:

Most of the time we shall use the mathematical convention and indicate when we
use the physical convention.

Remark 7.4.1 Note one interesting point that can be seen most clearly in the
physical convention: The coupling constant g appearing in the covariant derivative
(describing the coupling of the gauge field to other fields, as we will see below)
is the same as the coupling constant appearing in front of the term ŒB
;B�� in the
curvature G
� , describing the coupling between the gauge bosons in non-abelian
gauge theories.
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7.5 The Klein–Gordon and Higgs Lagrangians

So far we have considered pure gauge theories that involve only a gauge field
(connection) A. In physics, however, we are also interested in matter fields that
couple to the gauge field. We first consider the case of scalar fields, like the Higgs
field. We again fix an oriented pseudo-Riemannian manifold .M; g/.

7.5.1 The Pure Scalar Field

Definition 7.5.1 A complex scalar field is a smooth map

�W M �! C:

A multiplet of complex scalar fields is a smooth map

�W M �! C
r

for some r > 1.
We consider the standard Hermitian scalar product

hv;wi D v�w

on C
r. If � is a multiplet of scalar field with values in C

r, then the differential d� is
an element

d� 2 ˝1 .M;Cr/ :

There is an induced Hermitian scalar product on the vector space-valued 1-forms
˝1 .M;Cr/.

Definition 7.5.2 The free Klein–Gordon Lagrangian for a multiplet of complex
scalar fields �W M ! C

r of mass m is defined by

LKGŒ�� D hd�; d�i � m2h�; �i:

For a given field � the free Klein–Gordon Lagrangian defines a smooth map

LKGŒ��W M �! R:

The expression hd�; d�i is called the kinetic term and the expression �m2h�; �i is
called the Klein–Gordon mass term.
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In local coordinates on M the kinetic term is given by

hd�; d�i D ˝
@
�; @
�

˛
:

It is also useful to consider a more general situation.

Definition 7.5.3 Let VWR ! R be a smooth function, called a potential. Then the
Higgs Lagrangian for a multiplet of complex scalar fields � with potential V is
defined by

LHŒ�� D hd�; d�i � V.�/;

where V.�/ denotes V.h�; �i/ (of course it suffices to define the potential on R�0).
The Higgs field in the Standard Model, which we study in Chap. 8, is a multiplet of
complex scalars described by a similar Lagrangian.
The potential V , if it contains terms of order higher than two in the field �, describes
a direct interaction between particles of the field �. In the Standard Model, for
instance, the potential V of the Higgs field is a quadratic polynomial in ���, hence
of order four in �.

7.5.2 The Scalar Field Coupled to a Gauge Field

We now consider the case of a scalar field � coupled to a gauge field A. We fix the
following data:

• an n-dimensional oriented pseudo-Riemannian manifold .M; g/
• a principal G-bundle P ! M with compact structure group G of dimension r
• a complex representation �W G ! GL.W/ with associated complex vector bundle

E D P �� W ! M
• a G-invariant Hermitian scalar product h� ; �iW on W with associated bundle metric

h� ; �iE on the vector bundle E.

We then define:

Definition 7.5.4 If the dimension of W is one, then a smooth section of E is called
a complex scalar field and if the dimension of W is greater than one, then a smooth
section of E is called a multiplet of complex scalar fields (or simply a scalar field)
and the vector space W is called a multiplet space.
With the exterior covariant derivative

dAW	 .E/ �! ˝1.M;E/
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and the scalar product h� ; �iE on ˝1.M;E/ we set:

Definition 7.5.5 The Klein–GordonLagrangian for a multiplet of complex scalar
fields ˚ 2 	 .E/ of mass m coupled to a gauge field A is defined by

LKGŒ˚;A� D hdA˚; dA˚iE � m2h˚;˚iE:

For given fields ˚ and A the Klein–Gordon Lagrangian is a smooth function

LKGŒ˚;A�W M �! R:

The associated action SKGŒ˚;A� is the integral over the Klein–Gordon Lagrangian
(on a closed manifold M).
In local coordinates on M we can write the kinetic term as

hdA˚; dA˚iE D
D
rA
˚;rA


˚
E

E
:

It is sometimes useful to have an even more explicit local formula for the Klein–
Gordon Lagrangian: Choosing a local gauge sW U ! P, we can write

˚ jU D Œs; ��;

where �W U ! W is a smooth function. The covariant derivative is given by

rA

˚ D Œs;rA


��; rA

� D @
� C A
�:

The term A
� is called the minimal coupling (we suppress in the notation the
induced representation �� of the Lie algebra g on W). We identify W with C

r and
the scalar product on W with the standard Hermitian product

hv;wi D v�w

on C
r. Since the representation of G on W is unitary and the gauge field A
 has

values in g, this implies that A
 acts through skew-Hermitian matrices on C
r:

A�
 D �A
:

In a local gauge s for the principal bundle, the Klein–Gordon Lagrangian can then
be written as

LKGŒ˚;A� D .@
�/�.@
�/� m2���

C .@
�/�.A
�/� .��A
/.@

�/

� ��A
A
�:

(7.3)
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The two terms in the first line, which are quadratic in the field � with values in
W Š C

r, are the Klein–Gordon Lagrangian for a free multiplet of complex scalar
fields of mass m, consisting of the kinetic term and the mass term.

The terms in the second and third line are cubic and quartic in the fields �
and A
. These interaction terms describe an interaction (or coupling) between
the gauge field and the multiplet of scalar fields and thus an indirect interaction
between particles of the scalar field, mediated by the gauge bosons (see the Feynman
diagrams after Remark 5.9.5 for a depiction of the interaction between a scalar field
and a gauge field).

We see here (and later in the case of the Dirac Lagrangian for fermions) that in
gauge theories where G does not act diagonally on the multiplet vector space
W D C

s, the action of the gauge group leads to two related kinds of mixing:

• The representation of the gauge group G on W, defining the associated
bundle E, mixes different components of the multiplet, i.e. different
components are gauge equivalent. In other words, the identification of a
section of E with a map to V and the splitting into components depends on
the choice of gauge.

• Via the induced representation of the Lie algebra g on W, the gauge field A
pairs different components of the multiplet in the interaction vertices.

This has important consequences for the Standard Model, where different
particles like the up and down quark or the electron and electron neutrino
form SU.2/ � U.1/-doublets.

Definition 7.5.6 Sections ˚ of an associated vector bundle E D P �� V with

��W g �! End.V/

non-trivial are called charged scalars. It follows that charged scalars have a non-
trivial coupling to the gauge field A.

Theorem 7.5.7 The Klein–Gordon Lagrangian of a multiplet of complex scalar
fields, coupled to a gauge field, is gauge invariant:

LKG
�
f �1˚; f �A

� D LKGŒ˚;A�

for all bundle automorphisms f 2 G .P/.
We need the following lemma.
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Lemma 7.5.8 Let f 2 G .P/ be a bundle automorphism. Then

df �A
�

f �1˚
� D f �1dA˚:

Proof This follows from a calculation in local coordinates for dA˚.X/ D rA
X˚

with a vector field X. For a more invariant argument, note that by the definition of
covariant derivatives using parallel transport in Sect. 5.9 it suffices to show that

D
�

f �1˚; �; x; f �A
� D D.˚; �; x;A/:

This follows from Exercise 5.15.9. ut
We can now prove Theorem 7.5.7.

Proof The kinetic term hdA˚; dA˚iE and the mass term �m2h˚;˚iE are both
separately invariant under gauge transformations, because the scalar product h� ; �iW

on the vector space W is G-invariant, hence h� ; �iE is invariant under the action of
f �1. ut
In the Klein–Gordon Lagrangian for a scalar field the gauge field A is non-dynamic,
i.e. does not appear with derivatives, and is just a fixed background field. The total
Lagrangian that describes the dynamics of the scalar field, the gauge field and their
interactions is the Yang–Mills–Klein–Gordon Lagrangian

LKGŒ˚;A�C LYMŒA� D hdA˚; dA˚iE � m2h˚;˚iE � 1

2

˝
FA

M;F
A
M

˛
Ad.P/ :

We can also consider the case of a scalar field with a potential coupled to a gauge
field.

Definition 7.5.9 The Higgs Lagrangian for a multiplet of complex scalar
fields coupled to a gauge field is defined by

LHŒ˚;A� D hdA˚; dA˚iE � V.˚/;

where V.˚/ is a gauge invariant potential. We only consider the case where

V.˚/ D V.h˚;˚iE/;

with a function VWR ! R.
This Lagrangian describes an interaction between particles of the scalar field
and particles of the gauge field and in addition a direct interaction between
the particles of the scalar field (if the potential V contains terms of order three
or higher in ˚).
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A similar argument to the one in Theorem 7.5.7 shows:

Theorem 7.5.10 The Higgs Lagrangian of a multiplet of complex scalar fields with
potential V and coupled to a gauge field is gauge invariant:

LH
�
f �1˚; f �A

� D LHŒ˚;A�

for all bundle automorphisms f 2 G .P/.

The sum of the Higgs and Yang–Mills Lagrangians is called the Yang–Mills–
Higgs Lagrangian

LHŒ˚;A�C LYMŒA� D hdA˚; dA˚iE � V.˚/ � 1

2

˝
FA

M;F
A
M

˛
Ad.P/ :

Remark 7.5.11 It is sometimes useful to consider real scalar fields ˚ , which are
sections in vector bundles E associated to real orthogonal representations of the Lie
group G. The Klein–Gordon Lagrangian for a real scalar field of mass m coupled to
a gauge field is

LKGŒ˚;A� D 1

2
hdA˚; dA˚iE � 1

2
m2h˚;˚iE:

There is an analogous generalization to real scalar fields with a potential V .

7.6 The Dirac Lagrangian

Fermions are described classically by spinor fields on spacetime. In this section we
define a Lagrangian for fermions. We fix the following data:

• an n-dimensional oriented and time-oriented pseudo-Riemannian spin manifold
.M; g/ of signature .s; t/

• a spin structure SpinC.M/ together with complex spinor bundle S ! M
• a Dirac form h� ; �i (not necessarily positive definite) on the Dirac spinor space
� D �n with associated Dirac bundle metric h� ; �iS. We abbreviate h�;˚iS by
�˚ .

We can then define the Dirac Lagrangian for a free spinor field.
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Definition 7.6.1 The Dirac Lagrangian for a free spinor field � 2 	 .S/ of mass
m is defined by

LDŒ� � D Reh�;D� iS � mh�;� iS

D Re
�
�D�

�� m��;

where DW	 .S/ ! 	 .S/ denotes the Dirac operator. The expression Re
�
�D�

�
is

called the kinetic term and �m�� is called the Dirac mass term.
Taking the real part in the kinetic term is necessary, because the Lagrangian has to
be real. If the Dirac form h� ; �iS has ı D �1, then the calculation in Exercise 7.9.12
implies that

.h�;D� iS � hD�;� iS/dvolg D d˛

for some .n�1/-form ˛ on M depending on the spinor� 2 	 .S/. As a consequence
the kinetic term of the Dirac Lagrangian satisfies

Re .h�;D� iS/ dvolg D 1

2

�h�;D� iS C h�;D� i�
S

�
dvolg

D 1

2
.h�;D� iS C hD�;� iS/ dvolg

D h�;D� iSdvolg � 1

2
d˛:

This implies by Stokes’ Theorem A.2.24 that the action defined by h�;D� iS and
its real part are the same if the manifold M has no boundary and � has compact
support.

7.6.1 The Fermion Field Coupled to a Gauge Field

Similar to a scalar field, a spinor can be coupled to a gauge field. This construction
is very important, because it defines the interaction between matter particles
(fermions) and gauge bosons in gauge theories (for example, the interaction between
electrons and photons in QED or the interaction between quarks and gluons in
QCD). We fix in addition to the data above the following data:

• a principal G-bundle P ! M with compact structure group G of dimension r
• a complex representation �W G ! GL.V/ with associated complex vector bundle

E D P �� V ! M
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• a G-invariant Hermitian scalar product h� ; �iV on V with associated bundle metric
h� ; �iE on the vector bundle E. Together with the Dirac form on the spinor bundle
S we get a Hermitian scalar product h� ; �iS˝E on the twisted spinor bundle S ˝ E.
We again abbreviate h�;˚iS˝E by �˚ .

Choosing a local gauge sW U ! P and an orthonormal basis v1; : : : ; vs for V , the
twisted spinors �;˚ correspond to multiplets

� D

0

B
@

�1
:::

�s

1

C
A ; ˚ D

0

B
@

�1
:::

�s

1

C
A ;

where �i and ˚j are sections of the spinor bundle S over U. The scalar product on
S ˝ E can then be written as

�˚ D
sX

jD1
� j˚j:

Definition 7.6.2 The Dirac Lagrangian for a twisted spinor field � 2
	 .S ˝ E/ of mass m coupled to a gauge field A on the principal bundle P
is defined by

LDŒ�;A� D Reh�;DA� iS˝E � mh�;� iS˝E

D Re
�
�DA�

� � m��;

where DAW	 .S ˝ E/ ! 	 .S ˝ E/ denotes the twisted Dirac operator. The
associated action SDŒ�;A� is the integral over the Dirac Lagrangian (on a
closed manifold M).
Choosing in addition to the local gauge for P and the orthonormal basis for V
a local vielbein e for the tangent bundle TM with associated local trivialization
� of SpinC.M/, we can write the Dirac Lagrangian as

LDŒ�;A� DRe
sX

jD1
i j	

p

�

@p � 1

4
!pqr	

qr

�

 j �
sX

jD1
m j j

C Re
sX

jD1
i j	

p.Ap /j;

(7.4)

(continued)
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Definition 7.6.2 (continued)
where  is a map with values in�˝ V ,  j are maps with value in �, and 	 p

are physical gamma matrices. Here the two terms in the first line are the Dirac
Lagrangian for a free multiplet of fermions, consisting of the kinetic term

Re
sX

jD1
i j	

p@p j;

a coupling between the spinor field and the metric g via !pqr, and the Dirac
mass term. The term in the second line, which is cubic in the fields, is the
interaction term that describes an interaction between the fermions and the
gauge field and thus an indirect interaction between the fermions (see the
Feynman diagram in Fig. 7.2 for the interaction between a fermion  and a
gauge field Ap).

The gauge field Ap with values in the Lie algebra g acts on the V part
of  through the induced representation (suppressed in the notation). Since
the gauge field A acts by skew-Hermitian matrices, the interaction term is
automatically real and we can drop the symbol Re.

Definition 7.6.3 Sections� of a twisted spinor bundle S˝E, where E is associated
to a representation � of the gauge group G on a vector space V with

��W g �! End.V/

non-trivial, are called charged fermions. It follows that charged fermions have a
non-trivial coupling to the gauge field A.

Fig. 7.2 Interaction vertex
for fermion and gauge field

Ap
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Theorem 7.6.4 The Dirac Lagrangian for a twisted spinor field is gauge invariant:

LD
�

f �1�; f �A
� D LDŒ�;A�

for all bundle automorphisms f 2 G .P/.

Proof This is Exercise 7.9.11. ut
Example 7.6.5 For the strong interaction (QCD) we have G D SU.3/, V Š C

3

and there are six multiplets �f , called quarks, for the flavours f D u; d; c; s; t; b.
The three components of every multiplet are called colours. The interaction term
involving the gauge field A
 with values in su.3/ (corresponding to the eight gluons)
mixes different colours of a quark of a given flavour, but does not mix different
flavours (different flavours of quarks are only mixed by the weak interaction). The
Lagrangian for QCD can thus be written as

LDŒ�;A� D
X

f

�
Re
�
� f DA�f

� � mf� f�f
�
;

where the sum runs over the six different flavours f .

Remark 7.6.6 Considering the mass term �m�� in the Dirac Lagrangian, it is clear
that all components of the multiplet � have the same mass m. We could try to
generalize this and introduce different mass terms for different components of the
multiplet. However, if the components with different masses are related by the action
of a group element g 2 G, then gauge invariance of the Lagrangian will be lost.

This could be a problem for the Standard Model, because we want to combine
particles with very different masses, like the electron and electron neutrino, into
SU.2/�U.1/-doublets and at the same time keep the Lagrangian gauge invariant. It
turns out that the situation in the Standard Model is even more difficult, because left-
handed and right-handed fermions transform in different representations of SU.2/�
U.1/, so that a gauge invariant Dirac mass term is not defined, even if all components
of the multiplet had the same mass. See Sect. 7.6.2 for more details. As we will
discuss in Chap. 8, these problems can be solved by introducing a Higgs field.

We can again make both the spinor multiplet � and the connection 1-form A
dynamic by considering the Yang–Mills–Dirac Lagrangian

LDŒ�;A�C LYMŒA� D Re
�
�DA�

� � m�� � 1

2

˝
FA

M;F
A
M

˛
Ad.P/ :
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7.6.2 Lagrangians for Chiral Fermions

In this subsection we consider the case of an oriented and time-oriented Lorentzian
spin manifold M of even dimension n with metric of signature .1; n � 1/ or .n �
1; 1/ (the most interesting case for the Standard Model is Minkowski spacetime of
dimension n D 4). The Dirac bundle metric h� ; �iS on the spinor bundle S ! M
has a special property: both choices of the matrix A in Proposition 6.7.13 consist of
a product of an odd number of gamma matrices. Hence if we decompose spinors
�;˚ 2 	 .S/ into left-handed (positive) and right-handed (negative) components
we get

�˚ D h�;˚iS

D h�L; ˚RiS C h�R; ˚LiS

D � L˚R C �R˚L:

(7.5)

In particular, we observe the following:

Proposition 7.6.7 (Dirac Bundle Metrics for Spinors on Lorentz Man-
ifolds) On even-dimensional oriented and time-oriented Lorentzian spin
manifolds, for both choices of the matrix A in Proposition 6.7.13, the Dirac
bundle metric is null on the subbundles SL and SR and pairs left-handed
with right-handed spinors. In particular, the decomposition S D SL ˚ SR

of the spinor bundle into left-handed and right-handed Weyl spinors is not
orthogonal with respect to the Dirac bundle metric.

Remark 7.6.8 This is different from the situation on even-dimensional Rie-
mannian spin manifolds, where we can take A D I (the identity matrix) so
that left-handed and right-handed Weyl spinors are orthogonal.

Formula (7.5) also holds if the spinors are sections of a twisted spinor bundle

S ˝ E D .SL ˝ E/˚ .SR ˝ E/:

We get:

Proposition 7.6.9 On even-dimensional oriented and time-oriented Lorentzian
manifolds, for both choices of the matrix A in Proposition 6.7.13, the (gauge
invariant) Dirac Lagrangian for twisted spinors can be written as

LDŒ�;A� D Re
�
�DA�

� � m��

D Re
�
� LDA�L C �RDA�R

� � 2mRe
�
� L�R

�
:

In the second line all three Hermitian scalar products are taken in S ˝ E.
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We want to generalize this discussion to the case of a twisted chiral spinor bundle.
We consider a twisted chiral spinor bundle over a Lorentzian spin manifold of even
dimension:

.S ˝ E/C D .SL ˝ EL/˚ .SR ˝ ER/:

Here EL and ER are complex vector bundles associated to representations

�LW G �! GL.VL/;

�RW G �! GL.VR/:

We fix G-invariant Hermitian scalar products on VL and VR which define Hermitian
bundle metrics h� ; �iEL and h� ; �iER.

We can then define a massless Dirac Lagrangian as before:

LDŒ�;A� D Re
�
�DA�

�

D Re
�
� LDA�L C �RDA�R

�
:

In the second line the first scalar product is taken in S ˝ EL and the second scalar
product in S ˝ ER (the Dirac operator only acts on the S-component and does not
change the E-component). It is not difficult to check that this Lagrangian is gauge
invariant.

However, if we now also want to define a Dirac mass term as before, we run into
a problem that can ultimately be traced back to Proposition 7.6.7: the natural mass
term

�m�� D �2mRe
�
� L�R

�

is so far not defined: it pairs a spinor with an EL-component and a spinor with an
ER-component, but the Hermitian bundle metrics are only defined if both spinors
have the same type of E-component.

We could try to introduce a Dirac mass term in this situation as follows:

Definition 7.6.10 Let VR and VL be unitary representations of a Lie group G. Then
a mass pairing is a G-invariant form

�W VL � VR �! C
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which is complex antilinear in the first argument and complex linear in the second.
A mass pairing � defines a form on the level of bundles

�W EL � ER �! C

that can then be used to define a gauge invariant Dirac mass term for chiral twisted
spinors. However, the following theorem shows that in many cases a mass pairing
vanishes identically:

Theorem 7.6.11 (Triviality of Mass Pairings) Suppose that VL and VR are irre-
ducible, unitary, non-isomorphic representations of G. Then every mass pairing � is
identically zero.

Proof We can identify V
�
L , the dual of the complex conjugate of VL, with

V
�
L D f˛W VL ! C j ˛ is C-antilinearg:

The induced G-representation on this space is defined by

.g � ˛/.vL/ D ˛
�
g�1 � vL

�

for g 2 G, vL 2 VL. The map

VL �! V
�
L

vL 7�! h� ; vLiVL ;

where h� ; �iVL is the G-invariant Hermitian form on VL, defines a complex linear
G-equivariant isomorphism.

Suppose a mass pairing � ¤ 0 exists. Then

VR �! V
�
L

vR 7�! �.�; vR/

is a complex linear G-equivariant map. Combining both maps we get a complex
linear G-equivariant map

VR �! VL

which is non-zero, because � ¤ 0. By Schur’s Lemma this map has to be an
isomorphism of the representations VR and VL (because the kernel and image of
the map are G-invariant), contradicting our assumption. ut
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It is known from experiments that a realistic theory of particle physics has
to involve twisted chiral fermions with a non-zero mass, because the weak
interaction is not invariant under parity inversion (see Sect. 8.5). Together with
Remark 7.3.16 and Remark 7.6.6 it follows that there are three situations in
which it is not clear how to define mass terms and at the same time keep the
Lagrangian gauge invariant:

• non-zero masses for gauge bosons
• different masses for fermions in the same gauge multiplet
• non-zero masses for twisted chiral fermions.

We shall see in Chap. 8 that the introduction of the Higgs field allows a very
elegant solution of these problems: using the Higgs field we can define a fully
gauge invariant Lagrangian that contains certain interaction terms between the
gauge bosons and the Higgs field and the fermions and the Higgs field. In a
specific type of gauge, called a unitary gauge, these interaction terms take the
form of mass terms for the gauge bosons and fermions.

7.7 Yukawa Couplings

In this section we discuss Yukawa couplings which are used in the Standard Model
to define a mass for twisted chiral fermions. Yukawa couplings are certain trilinear
forms involving two twisted chiral spinors and one scalar field. The idea is that
the G-representation on the scalar field precisely cancels the difference between the
representations on the twisted chiral spinors so that the whole trilinear expression is
gauge invariant. We consider the case of an oriented and time-oriented Lorentzian
spin manifold .M; g/ of dimension n with signature .1; n � 1/ or .n � 1; 1/ together
with a principal G-bundle P ! M.

Definition 7.7.1 Suppose that VL;VR;W are unitary representation spaces of the
compact Lie group G. Then we define a Yukawa form as a map

� W VL � W � VR �! C

which is invariant under the action of G, complex antilinear in VL, real linear in W
and complex linear in VR.
Suppose � is a Yukawa form. We then define:

Definition 7.7.2 For a real constant gY the G-invariant scalar

.�L ˝ VL/ � W � .�R ˝ VR/ �! R

.L ˝ vL; �; R ˝ vR/ 7�! �2gYRe
�
LR�.vL; �; vR/

�



438 7 The Classical Lagrangians of Gauge Theories

is called a Yukawa coupling (the constant gY is also called a Yukawa coupling
and sometimes already appears in the definition of the Yukawa form �). It defines a
gauge invariant Lagrangian for which we use the shorthand notation

LY Œ�L; ˚; �R� D �2gYRe
�
� L˚�R

�

D �gY
�
� L˚�R

�� gY
�
� L˚�R

��
;

where the Yukawa form � is implicit,

�L 2 	 .SL ˝ EL/;

˚ 2 	 .F/;
�R 2 	 .SR ˝ ER/;

and EL;F;ER are the complex vector bundles associated to the principal bundle P
via the G-representations VL;W;VR.

We will discuss in Chap. 8 how Yukawa coupling between two twisted chiral
fermions and the Higgs field leads to masses for the fermions. The Lagrangian
of the Standard Model is then essentially the sum of all the Lagrangians that
we discussed in this chapter, i.e. the following Yang–Mills–Dirac–Higgs–
Yukawa Lagrangian:

L D LDŒ�;A�C LHŒ˚;A�C LY Œ�L; ˚; �R�C LYMŒA�

D Re
�
�DA�

�C hdA˚; dA˚iE � V.˚/ � 2gY Re
�
�L˚�R

� � 1

2

˝
FA

M ;F
A
M

˛
Ad.P/ :

Remark 7.7.3 In the discussions in this chapter, the pseudo-Riemannian metric g on
the manifold M has been considered as a fixed background. Classically we can add a
Lagrangian for the metric (like the Einstein–Hilbert Lagrangian) to make g dynamic.
However, this approach does not yield a well-defined quantum field theory. Since
we are mainly interested in the Standard Model, which is defined on flat Minkowski
spacetime of dimension 4, we will not discuss aspects of quantum gravity.

7.8 Dirac and Majorana Mass Terms

So far we have considered Dirac mass terms for spinor fields. For a spinor� 2 	 .S/
such a mass term is given by

�mh�;� iS D �m��;
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where h� ; �i is a Dirac form on the spinor space. We want to discuss a second type
of mass term that is important in neutrino physics.

Definition 7.8.1 Let .� ; �/ denote a Majorana form on the spinor space � as in
Sect. 6.7.1. Then

�mRe.�; �/S

is called a Majorana mass term.
It is clear that both Dirac and Majorana mass terms are invariant under the action of
the spin group. We want to compare these forms in the case of Minkowski spacetime
of dimension 4. Recall from Sect. 6.8 that the Dirac form is defined by the matrix

A D 	0 D
�
0 I2
I2 0

�

and the Majorana form is defined by the matrix

C D i	0	2 D
��i�2 0

0 i�2

�

:

If we decompose a Dirac spinor � into left-handed and right-handed Weyl spinors

 D
�
 L

 R

�

;

then the Dirac mass term is given by

�mh ; i D �m �A 

D �m
�
 
�
L R C  

�
R L

�

and the Majorana mass term is given by

�mRe. ; / D mRe
� Q  �

D �mRe
�
 T C 

�

D mRe
�
i T

L �2 L � i T
R �2 R

�
:

Here we used the notation Q D  T C for the Majorana conjugate from Defini-
tion 6.7.6. The important consequence is that the Dirac mass term is zero for spinors
which have only one Weyl component L or R, while the Majorana mass term may
be non-zero in this case.

We briefly want to discuss the extension of these Lorentz invariant mass terms
to Lorentz and gauge invariant mass terms for charged fermions, i.e. sections of



440 7 The Classical Lagrangians of Gauge Theories

twisted spinor bundles S˝E. In the case of the Dirac mass term we saw in Sect. 7.6.2
that such an extension is always possible if both left-handed and right-handed Weyl
spinor bundles are twisted with the same associated vector bundle E, using the
Hermitian scalar product on S˝E, coming from the Dirac form on S and a Hermitian
scalar product on E.

In the case of the Majorana mass term there is now a problem, because the
complex bilinear Majorana form on S usually does not combine with the Hermitian
scalar product on E. If E is the associated bundle P�� V , then we need a G-invariant
complex bilinear form on the vector space V . However, even in simple situations
such an invariant bilinear form does not exist:

Lemma 7.8.2 Let

�kW U.1/ �! U.1/

˛ 7�! ˛k

be the complex representation of U.1/ on C of winding number k. Suppose that B is
a U.1/-invariant complex bilinear form on C. Then B � 0.

Proof We have

B.z; z/ D B
�
˛kz; ˛kz

�

D ˛2kB.z; z/ 8˛ 2 U.1/; z 2 C:

It follows that B.z; z/ D 0 for all z 2 C, hence B � 0. ut
This indicates that there is no straightforward extension of the Majorana mass term
to charged fermions.

7.9 Exercises for Chap. 7

7.9.1 (From [125]) Let H be a Hilbert space with a bilinear form

h� ; �iW H � H �! H;

satisfying

h ; �i D h�; i�;

where � denotes complex conjugation. We say that the bilinear form has a
probability interpretation if the following holds: for all vectors �; 2 H with

jh�; �ij2 D jh ; ij2 D 1
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the following inequality holds:

jh�; ij2 � 1:

1. Suppose that the bilinear form is positive definite. Prove that the bilinear form
has a probability interpretation.

2. Suppose that there exist vectors �; in H such that

h�; �i > 0;
h ; i < 0:

Prove that the bilinear form does not have a probability interpretation.

7.9.2 Let .M; g/ be an oriented pseudo-Riemannian manifold and .U; �/ an
oriented chart for M with local coordinates x
. Prove that the volume form dvolg
is given by

dvolg D
p

jgjdx1 ^ : : : ^ dxn;

where

jgj D j det.g
�/j

is the absolute value of the determinant of the matrix with entries

g
� D g.@
; @�/:

7.9.3 Let .M; g/ be an n-dimensional oriented pseudo-Riemannian manifold of
signature .s; t/ and 
 the Hodge star operator.

1. Prove that



W˝k.M/ �! ˝k.M/

is given by



 D .�1/tCk.n�k/:

2. Determine the even dimensions n D 2k where 

 D 1 on ˝k.M/ if .M; g/
is Riemannian or Lorentzian. In these dimensions we can define self-dual and
anti-self-dual k-forms !, satisfying 
! D ! and 
! D �!, respectively.

7.9.4 Let .M; g/ be an n-dimensional oriented pseudo-Riemannian manifold of
signature .s; t/ and 
 the Hodge star operator.
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1. Let r denote the Levi-Civita connection of g and suppose that ˛ 2 ˝1.M/ is a
1-form. Prove that if ˛ is parallel (r˛ D 0), then ˛ is closed (d˛ D 0).

2. Let � 2 ˝1.M/ be a 1-form, p 2 M a point and e1; : : : ; en a local oriented g-
orthonormal frame of the tangent bundle in an open neighbourhood of p with
.rei/. p/ D 0 for all i. Let �i D �.ei/ and �i D gii�i (no summation). Prove that
at the point p

.
d 
 �/.p/ D .�1/t
 

nX

iD1
Lei�

i

!

.p/:

7.9.5 Let .M; g/ be a closed (compact without boundary) n-dimensional oriented
pseudo-Riemannian manifold of signature .s; t/. The Laplace operator on k-forms
is defined by

� D dd� C d�dW˝k.M/ �! ˝k.M/

where d� is the codifferential from Definition 7.2.9. A form ! is called harmonic
if �! D 0. Suppose that .M; g/ is Riemannian.

1. Prove that

! is harmonic , d! D 0 and d�! D 0:

2. Prove that

! is harmonic , 
! is harmonic:

7.9.6 Let .M4; g/ be a pseudo-Riemannian 4-manifold with a principal bundle P !
M. Prove that the Yang–Mills action SYMŒA� is invariant under a conformal change
of the metric g:

g0 D e2g;

where  2 C1.M/ is an arbitrary smooth function on M.

7.9.7

1. Prove that the connection A from Sect. 5.2.2 on the Hopf bundle S3 ! S2 with
structure group U.1/ satisfies the Yang–Mills equation (i.e. Maxwell’s equations)
if S2 has the standard round Riemannian metric.

2. Prove that the Yang–Mills moduli space for the Hopf bundle S3 ! S2 over the
round sphere S2 consists of a single point.

7.9.8 Let M D R
1;3 be Minkowski spacetime with the flat Minkowski metric �.

Let P ! M be a trivial principal G-bundle with a global gauge sW M ! P. For
a connection A decompose the curvature F D FA as in Sect. 5.7 into generalized
electric and magnetic fields E and B with values in the Lie algebra g.
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1. Express the Bianchi identity and the Yang–Mills equation in terms of E, B and A.
2. Express the instanton equations 
F D F and 
F D �F in terms of E and B.

7.9.9

1. On the Hopf bundle S7 ! S4 with structure group SU.2/ define in analogy to
the construction in Sect. 5.2.2 an explicit connection 1-form A 2 ˝1

�
S7; su.2/

�

using quaternions.
2. Prove that A is an anti-self-dual instanton for the standard round Riemannian

metric on S4.

7.9.10 Let .M; g/ be a closed oriented pseudo-Riemannian manifold, P ! M a
principal G-bundle with compact structure group G and E ! M an associated vector
bundle with Hermitian bundle metric h� ; �iE. We fix an Ad-invariant positive definite
scalar product on the Lie algebra g and consider the Yang–Mills–Higgs Lagrangian

LYMHŒ˚;A� D LHŒ˚;A�C LYMŒA�

D hdA˚; dA˚iE � V.˚/ � 1

2

˝
FA

M;F
A
M

˛
Ad.P/ :

We are looking for critical points of the associated action SYMH under variations of
˚ and A.

1. Prove that variation of the field ˚ leads to the field equation

d�
AdA˚ D V 0.˚/˚; (7.6)

where V 0 is the derivative of VWR ! R and V 0.˚/ D V 0.h˚;˚iE/.
2. Show that elements ˛M 2 ˝1.M;Ad.P//; ˚ 2 	 .E/ define a canonical twisted
1-form ˛M � ˚ 2 ˝1.M;E/.

3. Prove that there exists a unique twisted 1-form

JH.A; ˚/ 2 ˝1.M;Ad.P//

such that

h˛M; JH.A; ˚/iAd.P/ D 2Re .hdA˚; ˛M � ˚iE/

for all ˛M 2 ˝1.M;Ad.P//.
4. Show that variation of the connection A leads to the field equation

d�
AFA

M D JH.A; ˚/: (7.7)

Equations (7.6) and (7.7) are called Yang–Mills–Higgs equations.

7.9.11 Prove the statement in Theorem 7.6.4 concerning the gauge invariance of
the Dirac Lagrangian.



444 7 The Classical Lagrangians of Gauge Theories

7.9.12

1. Under the assumptions of Theorem 6.11.5, define a 1-form � 2 ˝1.M;C/ by

�.X/ D hX � ˚;� iS˝E 8X 2 X.M/

and prove that

hDA˚;� iS˝E � h˚;DA� iS˝E D .�1/t 
 d 
 �

(Exercise 7.9.4 could be helpful).
2. Prove Theorem 6.11.5.
3. Discuss what can be said in the case ı D C1 and the implications for the Dirac

Lagrangian.

7.9.13 Let .M; g/ be an n-dimensional closed oriented and time-oriented pseudo-
Riemannian spin manifold, S ! M a spinor bundle with Dirac bundle metric h� ; �iS

with ı D �1, P ! M a principal G-bundle with compact structure group G and
E ! M an associated vector bundle with Hermitian bundle metric h� ; �iE. We fix an
Ad-invariant positive definite scalar product on the Lie algebra g and consider the
Yang–Mills–Dirac Lagrangian

LYMDŒ�;A� D LDŒ�;A�C LYMŒA�

D Re
�
�DA�

�� m�� � 1

2

˝
FA

M;F
A
M

˛
Ad.P/ :

We are looking for critical points of the associated action SYMD under variations of
� and A.

1. Prove that variation of the spinor � leads to the Dirac equation

DA� D m�:

2. Show that ˛M 2 ˝1.M;Ad.P// and � 2 	 .S ˝ E/ define via Clifford
multiplication a canonical section ˛M � � 2 	 .S ˝ E/.

3. Prove that there exists a unique twisted 1-form

JD.�/ 2 ˝1.M;Ad.P//

such that

h˛M; JD.�/iAd.P/ D Re .h�; ˛M � � iS˝E/

for all ˛M 2 ˝1.M;Ad.P//.
4. Show that variation of the connection A leads to the field equation

d�
AFA

M D JD.�/:



Chapter 8
The Higgs Mechanism and the Standard Model

In this chapter we finally apply the formalism of mathematical gauge theory
to physics. We first discuss gauge theories in which the gauge symmetry is
spontaneously broken, leading to the existence of one or several Higgs bosons. We
also study the Standard Model of elementary particles in some detail, including the
particle content and the representations of the gauge group, the Higgs mechanism
of mass generation and the explicit Lagrangians containing the interactions between
all known elementary particles. For the Higgs mechanism we first consider the case
of a general Lie group and Higgs vector space (with possibly several Higgs bosons)
as well as the specific case of the Standard Model (with a single Higgs boson).

The predictions of the Standard Model, which was developed in the 1960s and
1970s, have been tested and verified with enormous accuracy, especially using
different types of particle colliders. Typical colliders involve two accelerated and
collimated beams of particles brought to collision, for example, of protons-protons,
protons-antiprotons, electrons-positrons, protons-electrons or protons-positrons.
The final particles in the Standard Model, which were postulated by the theory
and then observed in experiments, were the top quark (1995 at Fermilab), the tau
neutrino (2000 at Fermilab) and the Higgs boson (2012 at CERN).

It is known that the Standard Model is not a complete theory of particle physics.
For example, the neutrinos in the Standard Model are massless, but experiments
show that they have a small non-zero mass. Furthermore, observations of galaxies
indicate that there is another form of matter in the universe, called dark matter, that
only interacts with Standard Model particles through gravity and perhaps the weak
force. This type of matter cannot be explained with the Standard Model. Finally,
the gravitational interaction is not included in the Standard Model. The reason is
that on the fundamental level the Standard Model is a quantum field theory and this
kind of quantum theory most probably cannot be used to describe gravity. To find a
quantum theory of gravity, and a unification with the other forces described by the
Standard Model, is the primary aim of Theories of Everything, like string theory.

© Springer International Publishing AG 2017
M.J.D. Hamilton, Mathematical Gauge Theory, Universitext,
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Even though the Standard Model is not complete, it is extremely well verified
and will be a touchstone for any theory that tries to go beyond it. Beyond its
significance for particle physics, the Standard Model has a remarkable mathematical
structure that develops from basic principles (specific gauge groups, representations
and Lagrangians) through a sequence of mathematical steps into a complex theory
with rich and often unexpected properties. Our aim in this chapter is to understand
to some degree the fundamental principles of the theory and how they generate the
complexity of particle physics.

The references for this chapter are the same as those given at the beginning of
Chap. 7.

8.1 The Higgs Field and Symmetry Breaking

8.1.1 The Yang–Mills–Higgs Lagrangian

We fix the following data:

• an n-dimensional oriented pseudo-Riemannian manifold .M; g/
• a principal G-bundle P ! M with compact structure group G of dimension r
• a complex representation �W G ! GL.W/ with associated complex vector bundle

E D P �� W ! M (sometimes the vector space W and the representation �
are real)

• a G-invariant Hermitian scalar product h� ; �iW on W with associated bundle metric
h� ; �iE on the vector bundle E. We denote by hh� ; �iiW D Reh� ; �iW the associated
positive definite Euclidean scalar product on the real vector space underlying W.

Definition 8.1.1 We call the vector space W the Higgs vector space, the associated
vector bundle E D P �� W the Higgs bundle and a section ˚ of E the Higgs field.
If the induced representation �� of the Lie algebra g is non-trivial, then the Higgs
field is a charged scalar.
We can assume that W D C

n and the G-invariant scalar product on W is given by
the standard Hermitian product

hv;wiW D v�w:

We consider a potential, also called the Higgs potential,

VWR �! R:

The potential appears in the Higgs Lagrangian for the Higgs field ˚ :

LHŒA; ˚� D hdA˚; dA˚iE � V.˚/;
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where

V.˚/ D V.h˚;˚iE/:

The combined Lagrangian for the Higgs field and the gauge field is then the Yang–
Mills–Higgs Lagrangian

LHŒ˚;A�C LYMŒA� D hdA˚; dA˚iE � V.˚/ � 1

2

˝
FA

M;F
A
M

˛
Ad.P/ :

8.1.2 Spontaneously Broken Gauge Theories

Definition 8.1.2 A vacuum configuration or vacuum for the Yang–Mills–Higgs
Lagrangian is a pair .˚0;A0/ comprising a Higgs field and a connection such that:

1. A0 is a flat connection, FA0 � 0.
2. ˚0 is covariantly constant, dA0˚ D rA0˚0 � 0.
3. The value of ˚0 is at every point of M a minimum of the potential V .

Remark 8.1.3 It can be shown that vacuum configurations in this sense correspond
to the minima of the energy determined by the Yang–Mills–Higgs Lagrangian
and can thus be considered “stable”. It follows from Exercise 7.9.10 that vacuum
configurations are solutions of the classical equations of motion.
The structure of vacua of the Yang–Mills–Higgs Lagrangian for bundles E over
general manifolds M can be quite complicated, due to the existence of non-trivial
flat connections on the principal bundle P. For our purposes of understanding the
Standard Model it suffices to restrict from now on to the following case:

• the manifold M is connected and simply connected.

Then Exercise 5.15.4 implies that a flat connection A0 can only exist on trivial
principal bundles P. Hence we also assume that

• the principal G-bundle P is trivial.

This also implies that the Higgs bundle E is trivial. We define:

Definition 8.1.4 A vacuum vector is an element w0 2 W which is a minimum of
the real-valued function

V.w/ D V.hw;wiW/

on W. The set of vacuum vectors in the Higgs vector space W is called the space of
vacua or the vacuum manifold for V .
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We then get:

Proposition 8.1.5 Suppose that the manifold M is connected and simply connected
and the principal bundle P is trivial. Let .˚0;A0/ be a vacuum configuration. Then
there exists a global gauge s0W M ! P, called the vacuum gauge, such that

A0s0 D s�
0A0 � 0 (8.1)

and

˚0 D Œs0;w0�; (8.2)

where w0 2 W is a constant vacuum vector. Conversely, for an arbitrary fixed global
gauge s0 of the principal bundle P, every vacuum vector w0 determines a unique
vacuum configuration .˚0;A0/ of the form in Eqs. (8.1) and (8.2).

Proof The first statement follows from Exercise 5.15.4. The second statement then
follows, because with respect to the global gauge s, the covariant derivative on E is
just the standard derivative on vector-valued functions from M to W. Hence ˚0 is
covariantly constant if and only if it is constant as a map to W. ut
We collect certain assumptions that hold throughout Sect. 8.1 and Sect. 8.2. We fix
from now on:

• a global vacuum gauge s0W M ! P
• a vacuum vector w0 2 W
• the associated vacuum configuration .˚0;A0/.

Recall that we have a unitary representation of the Lie group G on W.

Definition 8.1.6 The unbroken subgroup of the vacuum configuration is the
isotropy group of the vacuum vector w0 2 W:

H D Gw0 � G:

The group H is a closed Lie subgroup of G according to Proposition 3.2.9.
Since G was assumed compact, H is compact as well. We call the gauge theory
spontaneously broken if H is a proper subgroup of G, i.e. H ¨ G.

• We will assume from now on that the gauge theory is spontaneously broken.

Note that the unbroken subgroup H is only well-defined for a constant vacuum
vector w0 and that its explicit embedding in G depends on the choice of w0.

• We will assume from now on that the Higgs potential V.w/ has a minimum, but
not at w D 0, so that w0 ¤ 0. We call the spontaneous process (usually assumed
to have happened moments after the Big Bang) where the Higgs field acquires
from the unstable value w D 0 the value w0 ¤ 0 (spontaneous) symmetry
breaking.
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Mathematically the basic idea of symmetry breaking is that the isotropy group
H D Gw0 of the vector w0 ¤ 0 is smaller than the isotropy group G D G0 of the
vector 0, hence some of the original symmetry has disappeared, is hidden or broken.

Definition 8.1.7 We call the nowhere vanishing field ˚0 the Higgs condensate.
The Higgs condensate is a non-zero background field in which all other fields
and the corresponding elementary particles propagate. The Higgs field is the only
classical field in the Standard Model with a non-zero value in vacuum.

Remark 8.1.8 In quantum field theory, fields become fields of operators on the
Hilbert space of the system and do not have classical values. In particular, the Higgs
condensate is thought of as the vacuum expectation value (vev)

h˚0i D h˝j˚0j˝i
of an operator field ˚0, where j˝i is the vacuum state. For our purposes it suffices
to treat the Higgs condensate as a classical section ˚0 of the vector bundle E.

In gauge theories we demand that the Lagrangian and hence the laws of
physics are invariant under all gauge transformations for the structure group
G. This is still true in a spontaneously broken gauge theory. However, in this
case the Higgs condensate is only invariant under gauge transformations with
values in the smaller subgroup H (compared to a gauge theory where the
vacuum value is zero and hence invariant under all gauge transformations).

As we will see later, the non-zero value of the Higgs condensate after
symmetry breaking and the coupling of the fields (gauge fields and matter
fields) to the Higgs field are precisely the reasons why some elementary
particles (gauge bosons and fermions) have a non-vanishing mass.

Example 8.1.9 We consider the case of the electroweak interaction in the Standard
Model. The manifold M is 4-dimensional flat Minkowski spacetime with Minkowski
metric �. We set

G D SU.2/ � U.1/ D SU.2/L � U.1/Y ;

where the indices L and Y denote weak and hypercharge, and consider the Higgs
vector space

W D C
2

with the standard Hermitian scalar product and the unitary representation

.SU.2/ � U.1//� W �! W

.A; ei˛/ �
�

w1
w2

�

D A

�
einY˛ 0

0 einY˛

��
w1
w2

�

:
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Here nY is a certain non-zero natural number that will be fixed to nY D 3 in
Remark 8.3.1.

The potential of the Higgs field is

V.w/ D �
w�w C 
�
w�w

�2

D �
jjwjj2 C jjwjj4
(8.3)

with certain constants 
;  > 0. It is clear that the Higgs potential is invariant
under the action of G. The choice of Higgs potential is restricted by the
conditions that

• it is G-invariant
• it is a polynomial of order at most four in w, so that the interaction defined

by it is renormalizable
• it has a minimum, but not in w D 0.

Exercise 8.11.1 shows that the Higgs potential then must have the form V.w/
in Eq. (8.3).

A vector w0 2 W is a vacuum vector for the Higgs potential V if and only if

jjw0jj D
r



2
:

We sometimes set

v D p
2jjw0jj D

r




:

It follows that the vacuum manifold is a 3-sphere in C
2 around the origin of radius

jjw0jj. All vacua are gauge equivalent under constant gauge transformations, i.e. the
group G acts transitively on the vacuum manifold .

The unbroken subgroup H is isomorphic to U.1/, but its embedding into G
depends on the precise choice of w0. We choose

w0 D
 

0q



2

!

:

Then H is the diagonal subgroup

H D U.1/Q D
(��

eiı=2 0

0 e�iı=2

�

; eiı=.2nY /

� ˇˇ
ˇ
ˇ
ˇ
ı 2 R

)

� G: (8.4)
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Fig. 8.1 The Higgs potential V.w/ D �
jwj2 C jwj4 on C
2 reduced to C

Note that H is not the second factor of G. The index Q stands for electromagnetic
(we will explain this later in Sect. 8.3).

If we reduce C
2 to C and S3 to S1, then the Higgs potential V has the form of a

Mexican hat; see Fig. 8.1. The values of the parameters 
 and  realized in nature
have to be determined from experiments. It follows from the experimental values
collected in Sect. 8.3.4 that


  7:82 � 103 GeV2;

  0:129:

8.1.3 The Hessian of the Higgs Potential

Let w0 be a vacuum vector and s0 a global vacuum gauge of the principal bundle P.
We write the Higgs field as

˚ D Œs0; ��

with a globally defined map

�W M �! W;
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also called Higgs field. The Higgs condensate is the constant field with value w0. We
consider Higgs fields � whose values are in the vicinity of the Higgs condensate:

� D w0 C��;

where �� is called the shifted Higgs field. We want to derive an approximation to
V.�/ for small values of �� using the Taylor expansion of the potential V up to
terms of second order in ��.

Remark 8.1.10 Note that if V is a polynomial in �, like in the electroweak theory,
then the full Taylor expansion of V around w0 is a polynomial in ��, i.e. has only
finitely many terms. In the Standard Model this will allow us to determine the cubic
and quartic self-interactions of the Higgs boson in Theorem 8.7.2.

The Higgs vector space W (more precisely, the tangent space to W at the point
w0) can be split orthogonally as

W D Tw0W D Tw0Ow0 ˚ .Tw0Ow0 /
? ;

where Ow0 is the orbit of the gauge group G through the vacuum vector w0,

Ow0 D G � w0;

and .Tw0Ow0 /
? is the orthogonal complement with respect to the positive definite

scalar product

hh� ; �iiW D Reh� ; �iW:

It follows from Corollary 3.8.10, since the Lie group G is compact, that the orbit
Ow0 is an embedded submanifold of W, diffeomorphic to the quotient space G=H,
where H is the unbroken subgroup.

Definition 8.1.11 We set d for the dimension of Ow0 D G � w0. This is equal to the
codimension of the Lie subgroup H in G.
Let Hess.V/ denote the Hessian of the potential V . The Hessian is a symmetric
linear map

Hess.V/wW TwW �! TwW

on the tangent space to W at a point w and can be defined on any Riemannian
manifold as

Hess.V/.X/ D rXgrad V;

where in our situation X is a vector tangent to W and r denotes the (flat) Levi-Civita
connection induced by the positive definite inner product hh� ; �iiW on W. This linear
map is symmetric in the sense that

hhHess.V/.X/;YiiW D hhX;Hess.V/YiiW :
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As a matrix the Hessian is given by the symmetric matrix of second derivatives

Hess.V/w D
�
@2V.w/

@xi@xj

�

in standard coordinates x1; : : : ; x2n on the real vector space underlying W.
We want to diagonalize this symmetric linear map in the vacuum point w0. Since

V has a minimum along the whole orbit of G through w0 (because the potential is
invariant under the unitary action of G), it follows that grad V vanishes along the
orbit and hence

Hess.V/w0 .X/ D 0

for vectors X 2 Tw0Ow0 tangent to the orbit. This implies:

Lemma 8.1.12 The Hessian Hess.V/ preserves the orthogonal splitting of Tw0W
into the vector space tangent to the orbit and its orthogonal complement.

Proof We have just argued that

Hess.V/jTw0Ow0
� 0:

The symmetry of the Hessian then implies for every X 2 .Tw0Ow0 /
? and Y 2

Tw0Ow0 that

hhHess.V/.X/;YiiW D hhX;Hess.V/.Y/iiW D 0

and thus

Hess.V/ .Tw0Ow0 /
? � .Tw0Ow0 /

? :

ut
We can therefore find a diagonalization of the Hessian adapted to the splitting of
the tangent space Tw0W into the vector space tangent to the orbit and its orthogonal
complement.

Proposition 8.1.13 (Orthonormal Eigenbasis for Hessian of theHiggs Potential)
There exist real orthonormal bases

• e1; : : : ; ed of Tw0Ow0

• f1; : : : ; f2n�d of .Tw0Ow0 /
?

consisting of eigenvectors of the Hessian Hess.V/ in w0, where

• the ei have eigenvalue 0 and
• the fj have non-negative eigenvalues (because w0 is a local minimum). We set
2m2

fj
for the eigenvalue of fj (with mfj � 0).
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8.1.4 The Nambu–Goldstone and Higgs Bosons

Definition 8.1.14 We expand the shifted Higgs field�� 2 Tw0W Š W in the
orthonormal eigenbasis of the Hessian from Proposition 8.1.13:

�� D 1p
2

dX

iD1
�iei C 1p

2

2n�dX

jD1
�j fj;

where �i and �j are real scalar fields on the spacetime manifold M. The �i are
called Nambu–Goldstone bosons, the �j are called Higgs bosons.
It follows that

• the number d of Nambu–Goldstone bosons is equal to the dimension of
G=H

• the number 2n � d of Higgs bosons is equal to the real dimension of the
Higgs vector space W minus the dimension of G=H.

It is important to distinguish between the Higgs field and the Higgs bosons: the
Nambu–Goldstone bosons correspond to perturbations of the Higgs field � along
the orbit of G through the vacuum vector w0, while the Higgs bosons correspond to
perturbations orthogonal to the orbit. As particles in the associated quantum field
theory the Nambu–Goldstone and Higgs bosons are thus minimal excitations of the
Higgs condensate.

Theorem 8.1.15 (Taylor Expansion of Higgs Potential) Up to second order in the
shifted Higgs field, we have by the Taylor expansion around the vacuum vector w0

V.�/  V.w0/C 1

2

2n�dX

jD1
m2

fj�
2
j :

Proof The Taylor formula up to second order in �� is

V.�/ D V.w0/C hhgrad V.w0/;��iiW C 1

2
hh��;Hess.V/w0��iiW :

The claim now follows, because w0 is a minimum of V , hence grad V.w0/ D 0, and
ei and fj are an orthonormal basis of eigenvectors of the Hessian with eigenvalues 0
and 2m2

fj
. ut

We conclude that the potential V is up to second order (and up to the irrelevant
constant V.w0/) the sum over the standard Klein–Gordon mass terms for real scalar
fields �j of mass m2

fj
. We shall see in Sect. 8.2.3 that the Lagrangian LH for the

Higgs field � expressed in terms of the shifted Higgs field contains Klein–Gordon
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summands of the form

1

2
.@
�j/.@
�j/� 1

2
m2

fj�
2
j

and

1

2
.@
�i/.@
�i/;

plus other terms, some of which we shall determine later. This discussion implies:

Corollary 8.1.16 The Nambu–Goldstone bosons are real scalar fields of mass zero
and the Higgs bosons are real scalar fields of mass mfj � 0.
The terms of higher than quadratic order in the Taylor expansion of the potential
V around w0 can be interpreted as interactions between Higgs bosons (see
Theorem 8.7.2 for the case of the Standard Model).

Example 8.1.17 We continue with Example 8.1.9. In the case of the electroweak
theory we have G D SU.2/L � U.1/Y and H D U.1/Q, embedded in G as a diagonal
subgroup, not as the second factor. Therefore we have three Nambu–Goldstone
bosons �1; �2; �3 and one Higgs boson � (also denoted by H, not to be confused
with the unbroken gauge group), because W has complex dimension 2.

The Higgs potential is of the form

V.w/ D �
w�w C 
�
w�w

�2
:

We can check that the mass of the Higgs boson is mH D p
2
: We choose as before

the vacuum vector

w0 D
 

0q



2

!

D 1p
2

�
0

v

�

:

Then Tw0Ow0 is the real span of the vectors

�
1

0

�

;

�
i
0

�

;

�
0

i

�

and .Tw0Ow0 /
? is the real span of the vector

�
0

1

�

:
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The Higgs field can be decomposed as

� D
�
�1

�2

�

D 1p
2

�
�1 C i�2

i�3

�

C 1p
2

�
0

v C H

�

with real scalar fields �j and H. In the standard coordinates x1 C ix2; x3 C ix4 for C2

we have

V.x/ D �
jjxjj2 C jjxjj4:

Then

@V

@xi
D 2

��
xi C 2jjxjj2xi
�

and

@2V

@xi@xj
D 2

��
ıij C 2.2xixj C jjxjj2ıij/
�
:

In the basis for Tw0W

e1 D
�
1

0

�

; e2 D
�

i
0

�

; e3 D
�
0

i

�

; f D
�
0

1

�

we get for the Hessian

Hess.V/w0 D

0

B
B
@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 4


1

C
C
A :

This implies 2m2
H D 4
, hence the mass of the Higgs boson is mH D p

2
.
Note that the Hessian in the given basis is diagonal and the eigenvalues vanish in
the direction Tw0Ow0 along the orbit, while the eigenvalue along the direction of the
vector f orthogonal to the orbit is positive, as expected.

The mass mH D p
2
 of the Higgs boson is thus determined by the quadratic

self-coupling of the Higgs field or, if we write

p
2
 D v

p
2;

by the absolute value of the Higgs condensate and the quartic self-coupling.
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8.1.5 Unitary Gauge and the Nambu–Goldstone Bosons

Recall that the principal bundle P ! M is trivial and we fixed a global gauge
s0W M ! P, called the vacuum gauge. The Higgs field ˚ is given by

˚ D Œs0; ��

with a smooth map �W M ! W.
We now consider gauge transformations on P. With respect to the global gauge

s0 they are given by physical gauge transformations

� W M �! G

that act on � by

�.x/ 7�! �.x/ � �.x/ 8x 2 M;

where the G-representation on W is implicit. Note that, if we think of the manifold
M as spacetime, physical gauge transformations � in general are time-dependent.

Definition 8.1.18 For a given Higgs field �, we call a smooth, physical gauge
transformation � W M ! G a unitary gauge with respect to a vacuum vector w0
if all Nambu–Goldstone bosons of the transformed field � � � with respect to the
vacuum vector w0 vanish identically on M. We then say that the transformed Higgs
field �0 D � � � is in unitary gauge (with respect to the vacuum vector w0).
An equivalent condition is:

Lemma 8.1.19 A Higgs field � is in unitary gauge with respect to the vacuum
vector w0 if the shifted Higgs field

��.x/ D �.x/� w0 2 Tw0W

is at every point x 2 M orthogonal to the tangent space Tw0Ow0 to the orbit Ow0 D
G � w0.
The physical intuition behind unitary gauges is that Nambu–Goldstone bosons are
not physical particles, but can be gauged away, in contrast to the Higgs bosons.
Some details about the general existence of unitary gauges can be found in [16]. We
only need the following statement.

Theorem 8.1.20 (Existence of Unitary Gauges in the Electroweak Theory)
Consider the electroweak gauge theory as in Example 8.1.9 with gauge group
G D SU.2/L � U.1/Y and Higgs field of the form

� D
�
�1
�2

�

;
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where �1; �2W M ! C. Assume that �2.x/ ¤ 0 for all x 2 M D R
4. Then there exists

a physical gauge transformation � W M ! G such that

� � � D
�
0

 

�

;

where  W M ! R is a real-valued function. The transformed Higgs field � �� is then
in unitary gauge with respect to the vacuum vector

w0 D
 

0q



2

!

:

Proof We just sketch the proof and leave the details to Exercise 8.11.2. We write

�.x/ D
�

r.x/ei�.x/

s.x/ei
.x/

�

;

where all functions r; �; s; 
 are real-valued and s.x/ ¤ 0 for all x 2 M by
assumption. Since H1.MIZ/ D 0, the functions � and 
 exist as globally well-
defined single-valued functions (otherwise we would have to work directly with
S1-valued functions instead of ei� and ei
).

We can first find an explicit smooth SU.2/ gauge transformation to get � into
the form

�
0

s0.x/ei
0.x/

�

:

A suitable U.1/ smooth gauge transformation then yields � in the form

�
0

s0.x/

�

:

Setting  D s0, the claim follows. ut

8.2 Mass Generation for Gauge Bosons

The purpose of this section is to describe how masses of gauge bosons are generated
through the Higgs field.
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8.2.1 Broken and Unbroken Gauge Bosons

We fix in addition to the data above the following data:

• an Ad-invariant positive definite scalar product h� ; �ig on the Lie algebra g,
determined by certain coupling constants with respect to an arbitrary fixed scalar
product.

Let H � G denote the stabilizer subgroup of the vacuum vector w0 2 W. We denote
by h � g the Lie algebra of H and by h? its orthogonal complement with respect to
the scalar product h� ; �ig. We denote the dimension of h? Š g=h as before by d.

Definition 8.2.1 We define the positive semi-definite, bilinear symmetric mass
form m on g by

mW g � g �! R

.A;B/ 7�! hhA � w0;B � w0iiW :

Here A � w0 denotes the induced representation �� of the Lie algebra g on the Higgs
vector space W.
According to Proposition 3.2.10 the kernel of the map

g �! Tw0W

A 7�! A � w0

is equal to the Lie algebra h of the isotropy group. Hence A � w0 D 0 for all A 2 h,
while the map A 7! A�w0 is injective on the orthogonal complement h?. This implies
that m.A; �/ � 0 if A 2 h and the restriction of m onto the orthogonal complement
h? is positive definite. Since m is a symmetric form, we can diagonalize it and get:

Proposition 8.2.2 We can find h� ; �ig-orthonormal bases

• ˛1; : : : ; ˛d of the subspace h?, called broken generators, and
• ˛dC1; : : : ; ˛r of the subspace h, called unbroken generators

such that the symmetric mass form m is diagonal in this basis. We can write

m.˛a; ˛a/ D 1

2
M2

a � 0;

with Ma > 0 for the broken generators and Ma D 0 for the unbroken generators.
If A
W M ! g is a gauge field, then we can decompose

A
 D
rX

aD1
Aa

˛a;
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where Aa

 are the broken and unbroken gauge bosons, respectively. The numbers

Ma are called the masses of the gauge bosons.

Remark 8.2.3 Note two interesting facts: the masses Ma are proportional to the
norm jjw0jj of the value of the Higgs condensate and they also depend on the
choice of the scalar product h� ; �ig on g (and thus on the coupling constants) via
the choice of orthonormal basis f˛ag.

8.2.2 The Combined Lagrangian

For a gauge field A
 we consider as before (in the mathematical convention) the
covariant derivative

rA

 D @
 C A


and the curvature (or field strength)

F
� D @
A� � @�A
 C ŒA
;A��:

We can also express the field strength in our chosen orthonormal basis of broken
and unbroken generators for the Lie algebra g:

F
� D
rX

aD1
Fa

�˛a:

The total Lagrangian for the Higgs field � and the gauge field A
 is:

LYMH D �rA
�
�� �rA


�
�

� V.�/ � 1

4
F
�a Fa


�:

There is a summation over Lie algebra indices a in the last term.
We write � D w0 C �� with the shifted Higgs field �� as before. We would

like to determine the terms up to second order in the fields �� and A
 in the
Lagrangian LYMH, i.e. the terms corresponding to “free” fields. Higher-order terms
contain interactions between these fields.

Proposition 8.2.4 Up to terms of second order the Lagrangian LYMH is given by

LYMH  .@
��/�
�
@
��

�C 2Re .@
��/�
�
A
 � w0

�C .A
 � w0/
�
�
A
 � w0

�

� V.�/ � 1

4

�
@
Aa

� � @�Aa



� �
@
A�a � @�A
a

�
:
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Proof We have

rA
� D @
�� C A
 ��� C A
 � w0:

However, A
 ��� is already quadratic in the fields and can be ignored. This implies
the terms in the first line of the equation. The second line is clear (where V.�/
should be taken up to second order in ��). We have also ignored terms of order 3
and 4 in the gauge field A
, appearing in the Yang–Mills Lagrangian for non-abelian
gauge theories. ut

8.2.3 Simplifying the Lagrangian

We want to simplify each of the summands in the Lagrangian in Proposition 8.2.4.
Recall that according to Proposition 4.7.6 we can identify sections of associated
vector bundles with vector space-valued maps once we have chosen a gauge for the
principal bundle. So far we have not specified this choice of gauge in the formula in
Proposition 8.2.4. We now make the following assumption:

• The Higgs field � is in unitary gauge with respect to the vacuum vector w0.

By this we mean that all Nambu–Goldstone bosons of � vanish on all of the
manifold M identically.

Remark 8.2.5 We have not discussed the existence of unitary gauges in general.
However, according to Theorem 8.1.20 such gauges exist in the electroweak theory
if the second component�2 of the Higgs field � is everywhere on spacetime M D R

4

non-zero. This is the case, in particular, if the value �.x/ of the Higgs field is
everywhere on spacetime in an appropriate neighbourhood of the vacuum vector
in the vector space W. It follows that after symmetry breaking we can assume in the
electroweak theory that the Higgs field is in unitary gauge, at least if its fluctuations
around the vacuum value are not too large.

Lemma 8.2.6 If � is in unitary gauge, then

Re .@
��/�
�
A
 � w0

� D 0:

Proof Note that A
 � w0 is tangential to the orbit of w0 under G, while the shifted
Higgs field �� and therefore its derivative is everywhere on M orthogonal to the
orbit, by the assumption of unitary gauge. This implies the claim. ut
Lemma 8.2.7 If � is in unitary gauge, then

.@
��/�
�
@
��

� D 1

2

2n�dX

jD1

�
@
�j

� �
@
�j

�
;

where �j are the Higgs bosons.
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Proof Follows immediately, because under our assumption that the Nambu–
Goldstone bosons vanish we have

�� D 1p
2

2n�dX

jD1
�jfj:

ut
Lemma 8.2.8 Up to second order in the Higgs bosons we have

V.�/  V.w0/C 1

2

2n�dX

jD1
m2

fj�
2
j ;

where mfj is the mass of the j-th Higgs boson.

Proof This formula can be found in Theorem 8.1.15. ut
Lemma 8.2.9 We have

.A
 � w0/
�
�
A
 � w0

� D 1

2

dX

aD1
M2

aA
a Aa

;

where Ma are the masses of the broken gauge bosons defined above.

Proof We have

.A
 � w0/
�
�
A
 � w0

� D m.A
;A
/

for the bilinear mass form m on g. This implies the claim by our choice of basis
˛a. ut
We now collect all terms and get:

Theorem 8.2.10 (Mass Generation for Gauge Bosons) If the Higgs field � is in
unitary gauge after symmetry breaking, then the Lagrangian LYMH, up to terms of
second order in the shifted Higgs field and the gauge field, is given by

LYMH  1

2

2n�dX

jD1

�
@
�j

� �
@
�j

� � 1

2

2n�dX

jD1
m2

fj�
2
j

� 1

4

dX

aD1

�
@
Aa

� � @�A
a



� �
@
A�a � @�A
a

�C 1

2

dX

aD1
M2

aA
a Aa



� 1

4

rX

bDdC1

�
@
Ab

� � @�A
b



� �
@
A�b � @�A
b

�
:
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Here we removed the irrelevant constant V.w0/. This Lagrangian has the following
interpretation:

• The two terms in the first line are the Klein–Gordon Lagrangian for 2n � d real
scalar Higgs bosons �j of mass mfj .

• The two terms in the second line are the Lagrangian for d broken, massive gauge
bosons A1
; : : : ;A

d

 of mass Ma.

• The term in the third line is the Lagrangian for r � d unbroken, massless gauge
bosons AdC1


 ; : : : ;Ar

.

This is the celebrated Brout–Englert–Higgs mechanism of creating in a gauge
invariant way masses for gauge bosons. The exact Lagrangian LYMH contains
terms of order higher than two that describe interactions between Higgs bosons,
between gauge bosons (in the non-abelian case) and between Higgs bosons and
gauge bosons. For the Standard Model these terms can be found in Theorem 8.7.2,
Corollary 8.7.5 and Theorem 8.7.6.

Remark 8.2.11 Notice why we get the mass term

1

2

dX

aD1
M2

aA
a Aa



for the broken gauge bosons: in the Yang–Mills–Higgs Lagrangian we have
the term

�rA
�
�� �rA


�
�

involving the covariant derivative of the Higgs field, which describes the
coupling between the Higgs field and the gauge field. We have then written

� D w0 C��

which results in the term

.A
 � w0/
�
�
A
 � w0

�
:

This term is non-zero in general, because the value w0 of the Higgs condensate
is non-zero, and leads to the mass term for the broken gauge bosons. We see
that the ultimate reason for the masses of the broken gauge bosons is the
coupling of the gauge field to the Higgs field via the covariant derivative
(the Higgs field is a charged scalar) and the non-zero value w0 of the Higgs
condensate after symmetry breaking. This also explains why the masses of the
gauge bosons depend on both the coupling constants and the vacuum value
jjw0jj.
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Remark 8.2.12 The mechanism of spontaneous symmetry breaking was developed
by Philip W. Anderson (Nobel Prize in Physics 1977), Yoichiro Nambu (Nobel
Prize in Physics 2008) and Jeffrey Goldstone in the early 1960s. It was extended to
Yang–Mills theory independently by Robert Brout and François Englert [48], Peter
W. Higgs [76], and Gerald S. Guralnik, Carl R. Hagen and Thomas W.B. Kibble
[67] in 1964 (Nobel Prize in Physics 2013 for Englert and Higgs). The three papers
on symmetry breaking from 1964 all appeared in vol. 13 of the Physical Review
Letters. The theory was confirmed in July 2012 by the discovery of the Higgs boson
at the Large Hadron Collider (LHC) at CERN in Geneva.

8.3 Massive Gauge Bosons in the SU.2/ � U.1/-Theory
of the Electroweak Interaction

The weak interaction, which describes particle decays such as the decay of a muon
into an electron, an electron antineutrino and a muon neutrino


 �! e� C �C
e C �
;

was originally described by the so-called 4-Fermi interaction with Lagrangian

LF D GF 
 �
 e �e

(GF is a coupling constant) and associated Feynman diagram Fig. 8.2. This
Lagrangian with a direct interaction between four fermions did not appear in
Chap. 7 and, in fact, it is non-renormalizable.

In the Standard Model, the weak interaction together with the electromagnetic
interaction are described by a gauge theory with gauge group SU.2/L � U.1/Y .
This theory is called the electroweak theory. The Feynman diagram of the 4-Fermi

Fig. 8.2 Muon decay with
4-Fermi interaction

e

C
e
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Fig. 8.3 Muon decay in
electroweak theory

C
e

e

W−

interaction is replaced by the Feynman diagram in Fig. 8.3, involving a virtual W�-
gauge boson. The interactions in this diagram are renormalizable.

In this section we want to study the Higgs mechanism of mass generation in the
special case of the electroweak interaction and discuss the associated massive gauge
bosons W˙ and Z0.

8.3.1 The Lie Algebra su.2/L ˚ u.1/Y

We continue with Example 8.1.9 and Example 8.1.17. Our gauge group is G D
SU.2/L �U.1/Y and the manifold M is 4-dimensional flat Minkowski spacetime. We
choose the Ad-invariant scalar product h� ; �ig on the Lie algebra g D su.2/L ˚u.1/Y
in such a way that the following vectors form an orthonormal basis:

ˇl D gw
i�l

2
2 su.2/L .l D 1; 2; 3/;

ˇ4 D g0 i

2nY
2 u.1/Y ;

where �l are the Pauli matrices

�1 D
�
0 1

1 0

�

; �2 D
�
0 �i
i 0

�

; �3 D
�
1 0

0 �1
�

and the positive real numbers gw and g0 are the coupling constants corresponding to
SU.2/L and U.1/Y . The non-zero natural number nY is a normalization constant.

Remark 8.3.1 We will fix from now on nY D 3 (this is the convention used, for
example, by [9] and [137]). Other references (such as [125]) use the convention
nY D 6. We continue to use the traditional convention nY D 3.
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Lemma 8.3.2 The restriction of the scalar product h� ; �ig to su.2/L is given by

h� ; �isu.2/L D � 1

2g2w
Bsu.2/.X;Y/ D � 2

g2w
tr.X � Y/

where Bsu.2/ is the Killing form of su.2/. In particular, the scalar product is Ad-
invariant.

Proof This is Exercise 8.11.3. Compare with Exercises 2.7.13 and 2.7.16. ut
The Higgs vector space is W D C

2. Recall the unitary representation of the gauge
group G on W from Example 8.1.9. The basis elements ˇa 2 g act on a vector

w D
�

w1
w2

�

2 C
2

as

ˇl � w D gw
i�l

2

�
w1
w2

�

.l D 1; 2; 3/;

ˇ4 � w D g0 i

2

�
w1
w2

�

:

The vacuum vector is given by

w0 D
 

0q



2

!

D
�

0

jjw0jj
�

2 C
2;

where 
 and  are the parameters of the Higgs field potential that can be found in
Example 8.1.9.

8.3.2 The Gauge Bosons

A direct calculation shows that the mass form

mW g � g �! R

is given in the basis ˇa by

m.ˇa; ˇb/ D jjw0jj2
4

0

B
B
@

g2w 0 0 0

0 g2w 0 0

0 0 g2w �gwg0
0 0 �gwg0 g02

1

C
C
A :
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If we define a new orthonormal basis

˛1 D ˇ1;

˛2 D ˇ2;

˛3 D 1
p

g2w C g02 .gwˇ3 � g0ˇ4/;

˛4 D 1
p

g2w C g02 .g
0ˇ3 C gwˇ4/;

then the bilinear form m becomes diagonal:

m.˛a; ˛b/ D jjw0jj2
4

0

B
B
@

g2w 0 0 0

0 g2w 0 0

0 0 g2w C g02 0
0 0 0 0

1

C
C
A :

We see that the subalgebra of the stabilizer group is given by

h D span.˛4/:

Indeed, ˛4 acts on the vacuum vector as

˛4 � w0 D 1
p

g2w C g02

�

g0gw
i�3
2

C gwg0 i

2

�

w0

D gwg0
p

g2w C g02

�
i 0
0 0

��
0

jjw0jj
�

D 0:

Note that with respect to the standard unnormalized basis

ˇ0
3 D i�3

2
2 su.2/L;

ˇ0
4 D i

6
2 u.1/Y

the vector ˛4 is just given by

˛4 D gwg0
p

g2w C g02 .ˇ
0
3 C ˇ0

4/;



468 8 The Higgs Mechanism and the Standard Model

hence proportional to ˇ0
3 C ˇ0

4 as we expect from Example 8.1.9. We shall see in
Sect. 8.3.5 that the factor

gwg0
p

g2w C g02

can be identified with the elementary electric charge.
The subspace of broken generators is given by

h? D span.˛1; ˛2; ˛3/:

From the diagonal mass form we can read off the masses of the gauge bosons:

• There are three massive gauge bosons: two gauge bosons, corresponding to
˛1; ˛2, of mass

1p
2

jjw0jjgw

and one gauge boson, corresponding to ˛3, of mass

1p
2

jjw0jj
q

g2w C g02:

As mentioned in Remark 8.2.3 we see precisely how the masses of the gauge
bosons depend on the vacuum value jjw0jj of the Higgs field and the coupling
constants.

• We also have one massless gauge boson, corresponding to ˛4.

8.3.3 The Physics Notation

In physics the following notation is used: We set

tan �W D g0

gw
;

where �W 2 �0; �
2

�
is the Weinberg angle or weak mixing angle. Then

˛3 D cos �Wˇ3 � sin �Wˇ4;

˛4 D sin �Wˇ3 C cos �Wˇ4:
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Hence the basis .˛3; ˛4/ is rotated by an angle �W with respect to .ˇ3; ˇ4/ (clockwise
in our situation). The Weinberg angle describes the direction of the unbroken
generator ˛4 of U.1/Q with respect to the generators ˇ3 and ˇ4 of SU.2/L � U.1/Y .

We can then decompose our gauge field

A
 D
4X

aD1
Aa

ˇa

as

A
 D WC



1p
2
.˛1 C i˛2/C W�




1p
2
.˛1 � i˛2/C Z0
˛3 C �
˛4;

where

• W
̇ D 1p
2
.A1
 � iA2
/ are the WWW-bosons of mass

mW D 1p
2

jjw0jjgw

• Z0
 D cos �WA3
 � sin �WA4
 is the ZZZ-boson of mass

mZ D 1p
2

jjw0jj
q

g2w C g02

• �
 D sin �WA3
 C cos �WA4
 is the massless photon (not to be confused with a
mathematical gamma matrix).

The masses of the W- and Z-bosons are related to the Weinberg angle via

cos �W D mW

mZ
:

We shall see in Sect. 8.5.5 that W˙ have electric charge ˙1 whereas Z0 and �
have electric charge 0. In general, gauge bosons are also called vector bosons, in
particular, the W- and Z-bosons. The gauge field A3
 is sometimes denoted by W0




and the gauge field A4
 by B
.

8.3.4 Experimental Values

We discuss some experimental values (our reference is [106, 108]). The Fermi
constant

G0
F D GF

.„c/3
D 1

4
p
2

g2w
m2

W

;
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which describes the effective strength of the weak interaction, can be determined
from muon decay. Its value is

GF

.„c/3
D 1:1663787˙ 0:0000006� 10�5 GeV�2:

This gives for

v D p
2jjw0jj D 2

mW

gw
D
�p

2G0
F

��1=2

the value

v  246:2197GeV:

The weak mixing angle and the masses of the W˙ and Z bosons are

sin2 �W D 0:23129˙ 0:00005;

mW D 80:385˙ 0:015GeV;

mZ D 91:1876˙ 0:0021GeV:

This implies

�W  28:75ı

and with the Fermi constant

gw  0:6530:

We will see in Sect. 8.3.5 that the electric coupling constant is given by

e D gw sin �W D gwg0
p

g2w C g02 :

In particular,

e  0:48gw;

so the weakness of the weak interaction compared to electromagnetism comes
mainly from the large mass of the W- and Z-bosons. We write e D p

4�˛ with
fine-structure constant ˛ given by

˛ D 7:2973525664˙ 0:0000000017� 10�3

D 1= .137:035999139˙ 0:000000031/ :
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The final value that was determined experimentally is the mass mH D p
2
 of the

Higgs boson:

mH D 125:09˙ 0:21˙ 0:11GeV:

The various constants are not all independent, i.e. if we know some of the values,
then we can predict others with the theory. Note that the values are not fully
consistent with the formulas above, because there are higher-order corrections to
these formulas coming from the associated quantum field theory. To be precise we
have to indicate, for instance, the energy scale at which the coupling constants have
been measured; see Sect. 9.4.

Remark 8.3.3 The theory of the electroweak interaction, the unification of electro-
magnetism and the weak nuclear force as an SU.2/ � U.1/ gauge theory together
with spontaneous symmetry breaking, was developed during the 1960s by Sheldon
Glashow, Abdus Salam and Steven Weinberg (Nobel Prize in Physics 1979). The
discovery of the W- and Z-bosons at the Super Proton Synchrotron (SPS) at CERN
was announced in 1983 (Nobel Prize in Physics 1984 for Carlo Rubbia and Simon
Van der Meer). The quantum field theory of the electroweak interaction was shown
to be renormalizable by Gerardus ’t Hooft and Martinus J.G. Veltman (Nobel Prize
in Physics 1999).

8.3.5 Charges

We continue to consider the case of the electroweak interaction with gauge group
G D SU.2/L � U.1/Y . Suppose V is a complex vector space of dimension m with a
unitary representation of G. The generators ˇl of su.2/L act as

ˇl ! igwTl .l D 1; 2; 3/

and the generator ˇ4 of u.1/Y acts as

ˇ4 ! ig0Y
2
;

where Tl and Y are certain Hermitian operators on V .

Definition 8.3.4 The eigenvalues of T3 are called weak isospin and of Y weak
hypercharge.
Since T3 and Y commute in every representation of G, we can find an orthonormal
basis of V of common eigenvectors for both operators. If we identify V with C

m

via this basis, then both T3 and Y act as diagonal matrices, whose entries are the
charges of the multiplet component fields corresponding to the basis vectors for V .
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Remark 8.3.5 The eigenvalues of the weak isospin operator T3 and thus the weak
isospin charges are determined by the weights of the representation. The weights
are elements in the dual space of the Cartan subalgebra in su.2/ ˝ C, which is
spanned by i�3. See, for example, [153] for more details.
If we set

TC D .T1 C iT2/;

T� D .T1 � iT2/;

Q D T3 C Y

2
;

(the third equation is known as the Gell-Mann–Nishijima formula), then a general
gauge field A
W M ! g acts on the multiplets with values in V as

A
 D igwp
2
.WC


 TC C W�

T�/

C Z0

1

p
g2w C g02

�

ig2wT3 � ig02Y
2

�

C �

igwg0

p
g2w C g02Q:

(8.5)

It follows that the elementary electric charge is given by

e D gwg0
p

g2w C g02 D gw sin �W :

For example, on the Higgs field

� D
�
�1

�2

�

with values in W D C
2 the charge operators act as

T3 D
�
1
2
0

0 � 1
2

�

;

Y D
�
1 0

0 1

�

;

Q D
�
1 0

0 0

�

:
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We can then directly read off the charges of the components of �. In order to indicate
the electric charge of the Higgs field, it is often written as

� D 1p
2

�
�C
�0

�

(the factor 1p
2

is a convention).

Remark 8.3.6 If the convention nY D 6 instead of our nY D 3 is used, then the
Gell-Mann–Nishijima formula becomes

Q D T3 C Y:

8.4 The SU.3/-Theory of the Strong Interaction (QCD)

Quantum chromodynamics (QCD), the theory of the strong interaction, is a gauge
theory with gauge group SU.3/C, where C stands for colour (chroma is the Ancient
Greek word for colour). There are eight gauge bosons for this gauge group, called
gluons.

The matter particles (fermions) in QCD are called quarks. We will see later that
there are six different types of quarks, called quark flavours. In nature, quarks are
only observed in bound states called hadrons: baryons (like nucleons, i.e. the
proton and neutron), that consist of three quarks (or antiquarks) and have half-
integer spin, and mesons, that consist of a quark-antiquark pair and have integer
spin. The lifetime of the heaviest quark, the top quark, is too short to form hadrons.
All other quarks can form hadrons. There is evidence that exotic hadrons such
as tetraquarks, consisting of two quarks and two antiquarks, and pentaquarks,
consisting of four quarks (antiquarks) and one antiquark (quark), exist. New hadrons
and hadron resonances (excited states) are still being discovered.

The gluons virtually “glue” the quarks together into hadrons. The exact reason
why quarks appear only in colour neutral hadrons and not as isolated particles,
known as colour confinement, is not fully understood. Basic properties of these
bound states, like their masses, so far cannot be derived theoretically, but only
through experiments or numerical simulations (lattice QCD). Hadrons like the
proton and neutron are therefore surprisingly complex objects.

Even though protons and neutrons are colour neutral, there is a residual strong
interaction between them (and other hadrons). For the nucleons this interaction is
known as the strong nuclear force and leads to the formation of atomic nuclei. As
a residual interaction it is comparable to the electromagnetic-chemical interaction
between neutral atoms (atoms can be thought of as electromagnetic bound states),
leading to the formation of molecules.
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The quarks (valence quarks) that constitute a hadron, together with virtual
gluons and sea quarks, which are virtual quark-antiquark pairs produced by virtual
gluons, are collectively known as partons.

The decomposition of a hadron into partons (more precisely, the fraction of the
hadron momentum carried by each type of parton) is complicated and is described
by the parton distribution function (PDF) (or parton density function) of the
hadron: the PDF at a given energy scale Q for a given type a of parton (quark flavour
or gluon) is a probability density function fa.x;Q/. The probability for finding a
parton of type a carrying a fraction xa 2 Œx; x C dx� of the longitudinal momentum
of the hadron is fa.x;Q/dx (see [42]). The PDF of the proton is very important for
the correct interpretation of scattering experiments at colliders like the LHC. At
present PDFs have to be determined experimentally and cannot be calculated from
first principles, because they involve non-perturbative QCD [137].

The full gauge group of the Standard Model is therefore

G D SU.3/C � SU.2/L � U.1/Y :

The group SU.3/C acts trivially on the Higgs vector space W D C
2 and thus leaves

the vacuum vector w0 invariant. It follows that the gluons are unbroken, massless
gauge bosons. The full unbroken gauge group of the Standard Model, the isotropy
group of w0, is

H D SU.3/C � U.1/Q:

The full symmetry group of the Standard Model in the sense of Remark 6.12.7 is
therefore the group

SpinC.1; 3/� SU.3/C � SU.2/L � U.1/Y

or, equivalently,

SpinC.3; 1/ � SU.3/C � SU.2/L � U.1/Y ;

depending on the signature chosen for Minkowski spacetime.
A very detailed discussion of QCD including theoretical and experimental

aspects, especially concerning perturbative QCD, can be found in the book [42].

8.4.1 Basis for su.3/C

Recall from Example 2.1.49 that su.3/ can be described as the vector space of skew-
Hermitian tracefree matrices X, with adjoint representation given by

AdQX D Q � X � Q�1; Q 2 SU.3/;X 2 su.3/:
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We can identify complex 3 � 3-matrices X with elements of

End
�
C
3
� D C

3 ˝ C
3�:

The standard Hermitian scalar product on C
3 is invariant under the fundamental

representation of SU.3/. This implies that

C
3� Š NC3

as SU.3/-representations, hence

End
�
C
3
� Š C

3 ˝ NC3:
For the fundamental representation C

3 of SU.3/C we choose the basis

r D
0

@
1

0

0

1

A “red”;

g D
0

@
0

1

0

1

A “green”;

b D
0

@
0

0

1

1

A “blue”;

(8.6)

and write a general element of C3 as

0

@
zr

zg

zb

1

A :

We call C3 with this basis colour space. A basis of NC3 is given by the corresponding
vectors

Nr D
0

@
1

0

0

1

A “antired”;

Ng D
0

@
0

1

0

1

A “antigreen”;

Nb D
0

@
0

0

1

1

A “antiblue”:

(8.7)



476 8 The Higgs Mechanism and the Standard Model

Hence under the canonical antilinear isomorphism C
3 ! NC3, every colour gets

mapped to its anticolour.
It follows that a complex basis of End

�
C
3
�

is given by the following nine
matrices

rNr; r Ng; r Nb; gNr; gNg; gNb; bNr; bNg; bNb;

where

rNr D r ˝ Nr D
0

@
1 0 0

0 0 0

0 0 0

1

A ;

gNb D g ˝ Nb D
0

@
0 0 0

0 0 1

0 0 0

1

A ;

:::

Since su.3/ is equal to the vector space of skew-Hermitian, tracefree elements of
End

�
C
3
�
, we get with the Gell-Mann matrices a from Example 1.5.33:

Proposition 8.4.1 A real basis of su.3/ is given by the matrices �a D i
2
a, which

can be written as

�1 D i

2
.r Ng C gNr/;

�2 D 1

2
.r Ng � gNr/;

�3 D i

2
.rNr � gNg/;

�4 D i

2
.r Nb C bNr/;

�5 D 1

2
.r Nb � bNr/;

�6 D i

2
.gNb C bNg/;

�7 D 1

2
.gNb � bNg/;

�8 D i

2
p
3
.rNr C gNg � 2bNb/:



8.4 The SU.3/-Theory of the Strong Interaction (QCD) 477

Lemma 8.4.2 The basis vectors �a are orthonormal with respect to the positive
definite scalar product

h� ; �isu.3/ D �1
3

Bsu.3/.X;Y/ D �2tr.X � Y/;

where Bsu.3/ is the Killing form of su.3/.

Proof This is Exercise 8.4.2. Compare with Exercises 2.7.16 and 2.7.17. ut
It is sometimes convenient to consider the complexification of the Lie algebra su.3/:

Proposition 8.4.3 A complex basis of su.3/˝ C is given by the tracefree matrices


1 D 1p
2

r Ng D 1p
2
.�2 � i�1/;


2 D 1p
2

r Nb D 1p
2
.�5 � i�4/;


3 D 1p
2

gNr D 1p
2
.��2 � i�1/;


4 D 1p
2

gNb D 1p
2
.�7 � i�6/;


5 D 1p
2

bNr D 1p
2
.��5 � i�4/;


6 D 1p
2

bNg D 1p
2
.��7 � i�6/;


7 D 1

2
.rNr � gNg/ D �i�3;


8 D 1

2
p
3
.rNr C gNg � 2bNb/ D �i�8:

These matrices are orthonormal with respect to the Hermitian scalar product
defined by the complexification of � 1

3
Bsu.3/.

Definition 8.4.4 The scalar product on su.3/C is defined by

h� ; �isu.3/C D � 1

3g2s
Bsu.3/.X;Y/ D � 2

g2s
tr.X � Y/;

where gs is the strong coupling constant. In particular, the scalar product is Ad-
invariant. Orthonormal bases for su.3/ and su.3/˝C (with the complexification of
the scalar product) are given by the vectors

gs�a
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and

gs
a:

The choices of basis and scalar product are for QCD less standardized than for the
electroweak interaction. We can expand the gluon gauge field G
 with values in
su.3/C in either of the bases f�ag; f
ag:

G
 D
8X

aD1
Ga

gs�a D

8X

aD1
Ga



i

2
gsa

D
8X

aD1
G0a

gs
a

D 1p
2

gs

�
G0rNg

 r Ng C G0rNb


 r Nb C G0gNr

 gNr C G0gNb


 gNb C G0bNr

 bNr C G0bNg


 bNg

CG0rNr�gNg



1p
2
.rNr � gNg/C G0rNrCgNg�2bNb




1p
3
.rNr C gNg � 2bNb/

�

:

(8.8)

8.5 The Particle Content of the Standard Model

8.5.1 Fermions

We want to add fermions, i.e. matter particles, to the Standard Model. In general,
charged fermions, which couple to the gauge fields, are described by twisted chiral
spinors, i.e. sections of twisted chiral spinor bundles

.S ˝ E/C D .SL ˝ FL/˚ .SR ˝ FR/; (8.9)

where SL is the left-handed and SR the right-handed Weyl spinor bundle over 4-
dimensional flat Minkowski spacetime M. The bundles FL and FR are associated
vector bundles defined by complex unitary representations VL and VR of the gauge
group G. We now want to describe the representations of G in the Standard Model,
where

G D SU.3/C � SU.2/L � U.1/Y :

The complex vector spaces VL and VR have dimensions

dim VL D 24;

dim VR D 21:
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As representations of G they decompose into orthogonal sums

VL D V1
L ˚ V2

L ˚ V3
L;

VL D V1
R ˚ V2

R ˚ V3
R

of G-subrepresentations Vi
L;V

i
R, i D 1; 2; 3, called the three generations or

families. The generations have dimensions

dim Vi
L D 8;

dim Vi
R D 7:

The left-handed generations Vi
L for i D 1; 2; 3 are all isomorphic as G-

representations and the same is true for the right-handed generations Vi
R. Each

generation again decomposes into orthogonal sums

Vi
L D Qi

L ˚ Li
L;

Vi
R D Qi

R ˚ Li
R

of G-subrepresentations Qi
L;Q

i
R and Li

L;L
i
R, called quark sectors and lepton

sectors. They have dimensions

dim Qi
L D 6;

dim Qi
R D 6;

dim Li
L D 2;

dim Li
R D 1:

Again the left-handed (right-handed) quark sectors are all isomorphic and the same
is true for the left-handed (right-handed) lepton sectors across generations.

We denote by C
3 the fundamental representation of SU.3/C and by C

2 the
fundamental representation of SU.2/L, both with the standard invariant Hermitian
scalar product. For both Lie groups we denote by C the trivial 1-dimensional
representation. We also denote by Cy the representation of U.1/Y where the
generator ˇ4 2 u.1/Y acts as

ˇ4WC �! C

z 7�! ig0 y

2
z:
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Table 8.1 Fermion sectors

Sector Representation Physics notation
Complex
dimension

Qi
L C

3 ˝ C
2 ˝ C1=3 .3; 2/1=3 6

Qi
R

�
C
3 ˝ C ˝ C4=3

�˚ �
C
3 ˝ C ˝ C

�2=3

�
.3; 1/4=3 ˚ .3; 1/

�2=3 6

Li
L C ˝ C

2 ˝ C
�1 .1; 2/

�1 2

Li
R C ˝ C ˝ C

�2 .1; 1/
�2 1

The bold integers denote representations of certain dimensions. The usage of bold face seems to
be standard in the physics literature; see also Definition 2.1.18

We note the following:

Lemma 8.5.1 An element ˛ 2 U.1/Y acts on Cy by

Cy �! Cy

z 7�! ˛3yz:

This representation is well-defined for all weak hypercharges y which are integer
multiples of 1

3
. The representation Cy has winding number 3y.

For instance, the representation C4=3 has winding number 4. Table 8.1 describes the
G-representations of the quark and lepton sectors. As G-representations the vector
spaces VL and VR thus decompose into irreducible representations of dimensions

dim VL D 24 D .6C 2/C .6C 2/C .6C 2/;

dim VR D 21 D .3C 3C 1/C .3C 3C 1/C .3C 3C 1/:

Interestingly, we see that the four simplest representations of the Lie group
SU.3/ � SU.2/

.3; 2/; .3; 1/; .1; 2/ and .1; 1/

all appear in the Standard Model.

We now define bases for these representations, see Table 8.2. The basis for the
quark sectors Qi

L and Qi
R are obtained as the tensor product of the basis vectors

r; g; b from Eq. (8.6) and the basis vectors for the SU.2/L � U.1/Y -representations.
For both quarks and leptons the bases for the SU.2/L � U.1/Y-representations are
defined so that they consist of simultaneous eigenvectors for both charge operators
T3 and Y. We list these basis elements for the first generation together with their
weak isospin, weak hypercharge and electric charge (recall that Q D T3 C Y

2
).



8.5 The Particle Content of the Standard Model 481

Table 8.2 Fermion representations

Sector SU.2/L � U.1/Y representation Basis vectors Particle Charges

T3 Y Q

Q1
L C

2 ˝ C1=3

 
1

0

!

uL
1

2

1

3

2

3

 
0

1

!

d0

L �1
2

1

3
�1
3

Q1
R C ˝ C4=3 1 uR 0

4

3

2

3

C ˝ C
�2=3 1 d0

R 0 �2
3

�1
3

L1L C
2 ˝ C

�1

 
1

0

!

�eL
1

2
�1 0

 
0

1

!

eL �1
2

�1 �1

L1R C ˝ C
�2 1 eR 0 �2 �1

Remark 8.5.2 In references that use the convention nY D 6 instead of our nY D 3,
the value of the hypercharge is one half of the value of our hypercharge Y.
It follows that the left-handed quarks and leptons of each generation form isospin
doublets (isodoublets), while the right-handed quarks and leptons are isospin
singlets (isosinglets). The quarks are at the same time colour triplets, while the
leptons are colour singlets.

In the fourth column in Table 8.2 we state the corresponding names for the
particles of specific weak isospin. We write

uL; d
0
L D  L ˝

0

@
zr

zg

zb

1

A W M �! �L ˝ C
3;

uR; d
0
R D  R ˝

0

@
zr

zg

zb

1

A W M �! �R ˝ C
3;

where  L;  R are arbitrary maps to the Weyl spinor spaces�L; �R and

0

@
zr

zg

zb

1

A 2 C
3
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is a general element of the colour space. Here

d0
L D  L ˝ r

is read as a “red left-handed down quark” and

uR D  R ˝ g

is read as a “green right-handed up quark”. Similarly

eL; �eL D  LW M �! �L ˝ C;

eR D  RW M �! �R ˝ C

are the leptons. A general map to

�L ˝ V1
L D �

�L ˝ Q1
L

�˚ �
�L ˝ L1L

�

can then be written as
�

uL

d0
L

�

˚
�
�eL

eL

�

and a general map to

�R ˝ V1
R D �

�R ˝ Q1
R

�˚ �
�R ˝ L1R

�

as

�
uR ˚ d0

R

�˚ eR:

For the second generation we make the following replacements:

u ! c

d0 ! s0

�e ! �


e ! 
:

(8.10)

For the third generation we make the following replacements:

u ! t

d0 ! b0

�e ! ��

e ! �:

(8.11)
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Table 8.3 Names of the fermions

Type First generation Second generation Third generation

Quark u Up c Charm t Top (Truth)

d0 Down s0 Strange b0 Bottom (Beauty)

Lepton e Electron 
 Muon � Tau

�e Electron neutrino �
 Muon neutrino �� Tau neutrino

The representations and charges stay the same. Table 8.3 lists the names of these
particles. The different types u; d; c; s; t; b of quarks are called quark flavours and
the different types e; �e; 
; �
; �; �� are called lepton flavours. The prime 0 on the
down-type quarks will be explained in Sect. 8.8.2. The electron, muon and tau are
collectively known as the charged leptons. Note that in the Standard Model there
are no right-handed neutrinos.

The remarkable exact repetition (except for the masses) of the first generation
in two more generations cannot be explained in the Standard Model. In some
theories beyond the Standard Model a right-handed neutrino singlet is added
to each generation, making the leptons very similar to the quarks concerning
the structure of SU.2/ representations (the weak hypercharges and thus the
electric charges are different); see Sect. 9.2.1.

Remark 8.5.3 The quark model was developed by Murray Gell-Mann (Nobel Prize
in Physics 1969) and independently by George Zweig in 1964, originally containing
only the up, down and strange flavour.

The Yang–Mills SU.3/ gauge theory of the strong interaction, containing
coloured quarks and a colour octet of gluons, was proposed in 1973 by Harald
Fritzsch, Murray Gell-Mann and Heinrich Leutwyler. The bottom and top quark
were postulated by Makoto Kobayashi and Toshihide Maskawa in 1972 (Nobel
Prize in Physics 2008). The last quark in the three generations, the top quark,
was experimentally observed for the first time in 1995 at the Collider Detector at
Fermilab (CDF).

Remark 8.5.4 The fact that the SU.2/L � U.1/Y-representations for left-handed and
right-handed fermions are different implies that they interact differently with the
W- and Z-bosons and thus the weak interaction is not invariant under inversion of
parity (handedness). This was first predicted theoretically in 1956 by Tsung-Dao
Lee and Chen Ning Yang (Nobel Prize in Physics 1957) and verified experimentally
by Chien-Shiung Wu in 1957.
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8.5.2 Antiparticles

Every fermion has an antiparticle. Antiparticles are sections of the complex
conjugate bundle

.S ˝ E/C D .SL ˝ FL/˚ .SR ˝ FR/:

We note the following useful fact:

Lemma 8.5.5 There are complex linear isomorphisms of Lorentz spin representa-
tions

�L Š ��
L Š �R;

�R Š ��
R Š �L;

where the first isomorphism is given by the Majorana form .� ; �/ and the second
isomorphism by the Dirac form h� ; �i.
In fact, these isomorphisms are given by the map � from Lemma 6.7.17

� W� �! �

 7�!  C D B�1 �

where

B D CA

for the unitary matrices C and A from Sect. 6.8 and we used the notation for the
charge conjugate from Eq. (6.3).

We can compare this with the constructions in Sect. 2.1.3, where we essentially
defined�R as�

�
L . We now understand that this isomorphism comes from the Dirac

form h� ; �i. The second isomorphisms in Lemma 8.5.5 are given by the matrix �,
corresponding to the matrix C defining the Majorana form .� ; �/.

If we set

VC
L D VR;

VC
R D VL

and extend this notation to the representations QL;QR;LL;LR and the bundles
FL;FR, we get from Lemma 8.5.5 that

.S ˝ E/C Š .SL ˝ FC
L /˚ .SR ˝ FC

R /: (8.12)
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Table 8.4 Antifermion sectors

Sector Representation Physics notation Complex dimension

QiC
R

NC3 ˝ NC2 ˝ C
�1=3 .N3; N2/

�1=3 6

QiC
L

� NC3 ˝ C ˝ C
�4=3

�˚ � NC3 ˝ C ˝ C2=3

�
.N3; 1/

�4=3 ˚ .N3; 1/2=3 6

LiC
R C ˝ NC2 ˝ C1 .1; N2/1 2

LiC
L C ˝ C ˝ C2 .1; 1/2 1

The bold integers denote representations of certain dimensions. The usage of bold face seems to
be standard in the physics literature; see also Definition 2.1.18

Then each generation of antiparticles is described by the representations in
Table 8.4. Under the complex antilinear isomorphisms

�L ˝ VL �! �L ˝ VL Š �R ˝ VC
R ;

�R ˝ VR �! �R ˝ VR Š �L ˝ VC
L

we map

uL 7�! uC
R

uR 7�! uC
L

d0
L 7�! d0C

R

d0
R 7�! d0C

L

�eL 7�! �C
eR

eL 7�! eC
R

eR 7�! eC
L ;

and similarly for the second and third generation. It is clear that charge conjugation
 7!  C D B�1 � is an involution,

�
 C
�C D  ;

since the matrix B defines a real structure on the spinor space.
We then get the SU.2/L � U.1/Y-representations in Table 8.5. There are corre-

sponding representations for the second and third generation. The antiquark

tC
L D  L ˝ Nb;

for example, is read as “antiblue left-handed top antiquark”. The antiparticle of the
electron is called a positron. All other antiparticles are named with the prefix “anti”.
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Table 8.5 Antifermion representations

Sector SU.2/L � U.1/Y representation Basis vectors Particle Charges

T3 Y Q

Q1C
R

NC2 ˝ C
�1=3

 
1

0

!

uC
R �1

2
�1
3

�2
3

 
0

1

!

d0C
R

1

2
�1
3

1

3

Q1C
L C ˝ C

�4=3 1 uC
L 0 �4

3
�2
3

C ˝ C2=3 1 d0C
L 0

2

3

1

3

L1C
R

NC2 ˝ C1

 
1

0

!

�C
eR �1

2
1 0

 
0

1

!

eC
R

1

2
1 1

L1C
L C ˝ C2 1 eC

L 0 2 1

Table 8.6 Left-handed and right-handed particles and antiparticles

Left-handed fermions and antifermions

 
uL

d0

L

!

uC
L d0C

L

 
�eL

eL

!

eC
L

Right-handed fermions and antifermions

 
uC

R

d0C
R

!

uR d0

R

 
�C

eR

eC
R

!

eR

8.5.3 Chirality of the Standard Model

It is sometimes useful to separate fermions not into particles and antiparticles,
but into left-handed and right-handed particles and antiparticles as in Table 8.6.
Each generation of left-handed particles and antiparticles is described by the
representation

Vi
L ˚ ViC

L D Qi
L ˚ Li

L ˚ QiC
L ˚ LiC

L

D �
C
3 ˝ C

2 ˝ C1=3

�˚ �
C ˝ C

2 ˝ C�1
�

˚ � NC3 ˝ C ˝ C�4=3
�˚ � NC3 ˝ C ˝ C2=3

�˚ .C ˝ C ˝ C2/
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and each generation of right-handed particles and antiparticles is described by the
representation

Vi
R ˚ ViC

R D Qi
R ˚ Li

R ˚ QiC
R ˚ LiC

R

D �
C
3 ˝ C ˝ C4=3

�˚ �
C
3 ˝ C ˝ C�2=3

�˚ .C ˝ C ˝ C�2/

˚ � NC3 ˝ NC2 ˝ C�1=3
�˚ �

C ˝ NC2 ˝ C1

�
:

These representations of G D SU.3/C � SU.2/L � U.1/Y both have dimension 15,
but are not isomorphic as complex representations. This follows from

NC3 © C
3;

C�y © Cy;

even though

NC2 Š C
2

(see Exercise 2.7.3 and the remark following it). Hence we can say that the Standard
Model is a chiral gauge theory in the following sense:

Definition 8.5.6 A gauge theory with fermions and gauge group G is called
chiral if the G-representation for the right-handed particles and antiparticles is not
complex linearly isomorphic to the G-representation for the left-handed particles
and antiparticles.
Note that in any case

Vi
R ˚ ViC

R Š Vi
L ˚ ViC

L :

This implies that a gauge theory is chiral if the representation Vi
L ˚ ViC

L for the
left-handed particles and antiparticles is not isomorphic to its complex conjugate
representation. It follows that every gauge theory that aims at describing realistic
physics has to have a gauge group that admits a complex representation not
isomorphic to its complex conjugate. Such representations are sometimes called
complex (in a different sense!). This is an important restriction on the possible gauge
groups of Grand Unified Theories (GUTs).

The complete left-handed representations for fermions and antifermions of
one generation is (in the physics notation)

Vi
L ˚ViC

L D .3; 2/1=3 ˚ .N3; 1/�4=3 ˚ .N3; 1/2=3 ˚ .1; 2/�1 ˚ .1; 1/2: (8.13)

Every realistic theory beyond the Standard Model should recover this repre-
sentation. The complete right-handed representation is the complex conjugate
of the left-handed representation.
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Table 8.7 Higgs sector

Higgs vector space Representation Physics notation Complex dimension

W C ˝ C
2 ˝ C1 .1; 2/1 2

The bold integers denote representations of certain dimensions. The usage of bold face seems to be
standard in the physics literature; see also Definition 2.1.18

Table 8.8 Higgs field representation

Sector SU.2/L � U.1/Y representation Basis vectors Particle Charges

T3 Y Q

W C
2 ˝ C1

 
1

0

!

�C

1

2
1 1

 
0

1

!

�0 �1
2

1 0

8.5.4 Higgs Field

We saw above that the Higgs bundle is the vector bundle

E D C ˝ E (8.14)

associated to the principal bundle P via a unitary representation on W. Here C

denotes the trivial complex line bundle associated to the trivial (scalar) representa-
tion of the Lorentz spin group. The representation W is given by Table 8.7. A basis
with corresponding charges can be found in Table 8.8. The vector f corresponding
to the Higgs boson is an element of Tw0W given by

f D
�
0

1

�

:

The Higgs boson therefore also has

T3 D �1
2
; Y D 1; Q D 0:

8.5.5 Gauge Fields

We finally want to summarize the representations of the gauge fields in the Standard
Model. The gauge theory of the Standard Model is defined by a (trivial) principal
G-bundle P over 4-dimensional Minkowski spacetime for the Lie group

G D SU.3/C � SU.2/L � U.1/Y :
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A connection A on the principal bundle P is a 1-form with values in the Lie algebra

g D su.3/C ˚ su.2/L ˚ u.1/Y :

We decompose A accordingly into gauge fields

A D .G;W;B/ D G C W C B;

which we call the gluon gauge field, the weak gauge field and the hypercharge
gauge field (G is the standard notation for the gluon gauge field, not to be confused
with the Lie group G).

We know from Sect. 5.13 that the difference �A of an arbitrary gauge field
A minus a fixed reference gauge field A0 can be thought of as a 1-form on
spacetime M with values in the vector bundle Adg.P/ associated to P via the adjoint
representation of G on the Lie algebra g. Hence�A is a section of the twisted vector
bundle

T�M ˝ Adg.P/:

We write

�A D �G C�W C�B:

The adjoint representation of the Standard Model gauge group G on the Lie algebra
g splits into three orthogonal subrepresentations

g D su.3/C ˚ su.2/L ˚ u.1/Y ;

called the gluon sector, the weak sector and the hypercharge sector. Hence the
bundle T�M ˝ Adg.P/ decomposes into a direct sum of twisted bundles

�
T�M ˝ Adsu.3/C.P/

�˚ �
T�M ˝ Adsu.2/L.P/

�˚ �
T�M ˝ Adu.1/Y .P/

�
: (8.15)

Let R8 denote the adjoint representation of SU.3/C, R3 the adjoint representation of
SU.2/L and R the trivial representation. Then the corresponding G-representations
defining the adjoint bundles are given by Table 8.9. In the electroweak sector
su.2/L ˚ u.1/Y , it can be shown that the orthonormal basis

1p
2
.˛1 ˙ i˛2/; ˛3; ˛4

that we have chosen in Sect. 8.3.3 consists of simultaneous eigenvectors for the
charge operators T3 and Y (here we use the complexified adjoint representation).
The charges are summarized in Table 8.10 (see Exercise 8.11.6). Note that the W-
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Table 8.9 Gauge sectors

Gauge sector Representation Physics notation Real dimension

su.3/C R
8 ˝ R ˝ R .8; 1/0 8

su.2/L R ˝ R
3 ˝ R .1; 3/0 3

u.1/Y R ˝ R ˝ R .1; 1/0 1

The bold integers denote representations of certain dimensions. The usage of bold face seems to
be standard in the physics literature; see also Definition 2.1.18

Table 8.10 Representation of electroweak gauge bosons

Gauge sector SU.2/L � U.1/Y representation Basis vectors Boson Charges

T3 Y Q

su.2/L ˚ u.1/Y
�
C
3 ˝ C

�˚ .C ˝ C/
.˛1 C i˛2/p

2
WC 1 0 1

.˛1 � i˛2/p
2

W� �1 0 �1
˛3 Z0 0 0 0

˛4 � 0 0 0

bosons have both a non-zero weak isospin and electric charge. The basis vectors

1p
2
.˛1 ˙ i˛2/; ˛3; ˛4

are orthonormal with respect to the Hermitian scalar product on

.su.2/L ˚ u.1/Y/˝ C

defined by the complexification of the positive definite real scalar product on
su.2/L ˚ u.1/Y , for which ˛1; ˛2; ˛3; ˛4 form an orthonormal basis.

8.5.6 The Total Particle Content of the Standard Model

If we like, we could now define the total particle content of the Standard Model as
sections of the direct sum of the bundles in Eqs. (8.9), (8.12), (8.14) and (8.15) (with
complexified adjoint representation).

8.5.7 Hypercharges: Constraints from Group Theory

The specific assignments of the values of the weak hypercharge Y, which determine
the representations of the group U.1/Y in the Standard Model, are not arbitrary, but
have a certain pattern that we explain in this subsection and the following. These
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assignments have important consequences. For example, it is well-known that the
sum of the electric charge of the proton and the electron is zero: the proton consists
of two up valence quarks and one down valence quark and has electric charge

2

3
C 2

3
� 1

3
D C1;

while the electron has electric charge �1. This equality, fundamental to the existence
of neutral atoms, holds even though in the Standard Model the electric charges for
the quarks are a priori independent of the electric charges for the leptons.

We begin by describing purely group theoretic constraints on the hypercharges in
this section and quantum constraints in the following. Remarkably, it turns out that
the Standard Model can only define a consistent quantum theory if, in particular, the
sum of the electric charge of the proton and the electron is zero.

A Z6-Subgroup of the Standard Model Group

We first note the following (see [9]):

Theorem 8.5.7 (Z6-Subgroup of the Standard Model Group) The subgroup

K Š Z6 � G D SU.3/C � SU.2/L � U.1/Y

of elements of the form

�
˛2I3; ˛

�3I2; ˛
�
; with ˛ 2 U.1/; ˛6 D 1;

acts trivially on the representations VL;VR and VC
L ;V

C
R . Here I2 and I3 denote the

unit matrices.
Conversely, suppose the subgroup K Š Z6 of the Standard Model group is given

and each of the representations

.3; 2/y; .3; 1/y; .1; 2/y and .1; 1/y

is invariant under K. Then in each case the hypercharge y is related to the
hypercharge ySM in the Standard Model by

3y � 3ySM mod 6:

Proof This is Exercise 8.11.7. ut
The first part of this theorem implies:

Corollary 8.5.8 The representations VL;VR and VC
L ;V

C
R of the Standard Model

group G descend to representations of

.SU.3/C � SU.2/L � U.1/Y/ =Z6:
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As we saw in Exercise 1.9.12, there is a natural embedding

.SU.3/C � SU.2/L � U.1/Y/ =Z6 � SU.5/:

Corollary 8.5.8 is one of the reasons why a SU.5/ theory of Grand Unification
(GUT) is possible (for more details, see Sect. 9.5).

Charge Quantization

The Lie algebra of the Standard Model is

g D su.3/C ˚ su.2/L ˚ u.1/Y :

Concerning charges in general, we need to distinguish between semisimple Lie
algebras and abelian Lie algebras. For example, using representation theory it is
possible to show that in any representation of the Lie algebra su.2/L the weak
isospin must have values which are integer multiples of 1

2
. The possible charges

are thus quantized. To make this plausible, note that the commutation relation

Œ�a; �b� D �abc�c

implies that a non-trivial representation

�W su.2/L �! End.V/

does not yield a representation after a rescaling  � �, with  ¤ 0; 1 2 C. Similarly
the charges for any semisimple Lie algebra are quantized (the charges are related to
the discrete weight lattice).

On the other hand, if we consider the abelian Lie algebra u.1/Y , then representa-
tions

�W u.1/Y �! End.V/

yield representations after arbitrary rescalings  � � with  2 C. Hence all values
of weak hypercharge (even irrational ones) are possible and the charges are not
quantized. They are only quantized if the representations of u.1/Y come from
representations of the compact circle U.1/Y (for a suitable, fixed circumference).

This shows that on the level of Lie algebras, there is no reason why the values
of the weak hypercharge and electric charge for all particles in the Standard Model
should be quantized and, in particular, be multiples of 1

3
. The quantization, however,

would follow naturally for algebraic reasons if the Lie algebra of the Standard Model
is a Lie subalgebra of some larger (Grand Unified) compact simple (or semisimple)
Lie algebra.
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8.5.8 Hypercharges: Constraints from Vanishing of Anomalies

If we take into account the quantum field theory defined by the Standard Model,
there are additional constraints that restrict the assignments of weak hypercharges.
These constraints result from demanding that the Standard Model is free of gauge
anomalies, i.e. that all gauge symmetries of the classical theory still persist in the
quantum theory. This means that the derivative (4-divergence) of certain Green’s
functions (correlators) has to vanish.

It can be shown that in 4-dimensional spacetime the only possible non-zero
contribution to the 4-divergence of these Green’s functions comes from triangle
Feynman diagrams of the form in Fig. 8.4, with three external gauge bosons and
one fermion loop (Feynman diagrams involving fermions and gauge bosons will be
explained in more detail in Sect. 8.6. The appearance of loop diagrams indicates that
the anomalies are indeed a quantum effect.) We denote the various hypercharges in
the Standard Model (for one generation) as follows:

YQW hypercharge of left-handed quark isodoublet

YuW hypercharge of right-handed up-type quark isosinglet

YdW hypercharge of right-handed down-type quark isosinglet

YLW hypercharge of left-handed lepton isodoublet

YeW hypercharge of right-handed electron-type isosinglet

Y� W hypercharge of (hypothetical) right-handed neutrino isosinglet:

For the Standard Model with gauge group

G D SU.3/C � SU.2/L � U.1/Y

the anomalies depend on which of the factors of G the three gauge bosons in
the triangle diagram belong to. We denote the anomalies accordingly by U.1/3Y ,
SU.3/2CU.1/Y , etc.

Fig. 8.4 Chiral anomaly

Aa

Ab

Ac
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Table 8.11 Constraints on hypercharges from anomaly cancellations

Anomaly Constraint

U.1/3Y .2Y3L � Y3e � Y3� /C 3.2Y3Q � Y3u � Y3d / D 0

SU.3/2CU.1/Y 2YQ � Yu � Yd D 0

SU.2/2LU.1/Y YL C 3YQ D 0

grav2U.1/Y .2YL � Ye � Y�/C 3.2YQ � Yu � Yd/ D 0

Setting the gauge anomaly, also called the chiral anomaly, calculated from
each of the triangle diagrams to zero, leads to constraints on the hypercharges that
are summarized in Table 8.11 (the table is from [125, Sect. 30.4]; grav denotes a
graviton).1 All other anomalies, like the ones associated to SU.3/3C or SU.3/CU.1/2Y ,
vanish automatically.

Without trying to explain the calculation of these constraints in detail, the
following is apparent from the table:

1. The assignments of hypercharges in the Standard Model

YQ D 1

3

Yu D 4

3

Yd D �2
3

YL D �1
Ye D �2
Y� D 0

satisfy all constraints. Hence the Standard Model is free of gauge anomalies.
2. The first and third constraint are only satisfied if contributions from both quarks

and leptons are taken together, i.e. these contributions to the triangle diagrams
have to cancel each other.

3. Up to an overall factor the equations on the hypercharges strongly constrain their
possible values. In particular, according to an argument in [125, Sect. 30.4], if
Y� D 0, then up to an overall factor the hypercharges must have precisely the
values in the Standard Model (or satisfy YQ D YL D Ye D 0, which does not
occur in nature).

1This is one of the few places in this book where we cite a result from quantum field theory. The
equations hold independent of the choice of normalization of hypercharge.
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It follows that in a realistic situation, the assignments of hypercharges in the
Standard Model are completely fixed (up to an overall factor) by the vanishing
of gauge anomalies. In particular, vanishing of gauge anomalies implies that
the hypercharge (and thus the electric charge) are quantized and that the
proton charge plus the electron charge is zero. As mentioned above, in Grand
Unified Theories, electric charge can be quantized automatically for purely
group theoretic reasons, without invoking vanishing of gauge anomalies.

8.6 Interactions Between Fermions and Gauge Bosons

The interaction between fermions and gauge bosons comes from the following
(massless) Dirac Lagrangian2

LD D Re
�
 DA 

� D Re
�
 LDA L C  RDA R

�
;

with Dirac operator given by

DA D i	 

�
@
 C A


�

in a global Lorentz frame for flat 4-dimensional Minkowski spacetime M. The cubic
term responsible for the interaction is the interaction vertex

Lint D i L	

A
 L C i R	


A
 R

D ih L; 	

A
 Li C ih R; 	


A
 Ri;

where we have chosen a global trivialization � of SpinC.M/ corresponding to the
Lorentz frame. The scalar products are taken in �˝ VL and�˝ VR. Recall that the
interaction vertex is automatically real.

As in Sect. 8.5 we can decompose the gauge field

A D G C W C B

corresponding to the summands and the orthonormal bases for the Lie algebra

g D su.3/C ˚ su.2/L ˚ u.1/Y

2Masses for fermions will be introduced in Sect. 8.8.
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and we can decompose the maps

 LW M �! �L ˝ VL;

 RW M �! �R ˝ VR

in the bases for the quark and lepton sectors.
The interaction vertex decomposes into the electroweak and strong interaction

vertex:

Lint D Lint;ew C Lint;s;

where Lint;ew involves only the gauge field W C B and Lint;s only the gauge field G.

8.6.1 The Electroweak Interaction Vertex

We first discuss the electroweak weak interaction vertex.

Lemma 8.6.1 In the representation C
2 ˝ Cy of SU.2/L � U.1/Y the gauge field

W C B acts as

W
 C B
 D igwp
2

 
0 WC




W�

 0

!

C igw

2
cos �W

�
1 � y tan2 �W 0

0 �1 � y tan2 �W

�

Z0


C ie

2

�
1C y 0

0 �1C y

�

�
:

In the representation C ˝ Cy of SU.2/L � U.1/Y the gauge field W C B acts as

W
 C B
 D � igwy

2
cos �W tan2 �WZ0
 C iey

2
�
:

Here we have set e D gw sin �W for the elementary electric charge.

Proof This is Exercise 8.11.8. ut
Using this lemma we get the following explicit formula (with Dirac conjugate  D
 �	0 according to Sect. 6.8):

Theorem 8.6.2 (Electroweak Interaction Vertex) The electroweak interaction
vertex for the leptons and quarks is given by

Lint;ew D Lint;ew;l C Lint;ew;q; (8.16)
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where for the leptons we have

Lint;ew;l D � gwp
2

�
�eL	


WC

 eL C eL	


W�

 �eL

�

� gw

2 cos �W
�eL	


Z0
�eL � gw
��1C 2 sin2 �W

�

2 cos �W
eL	


Z0
eL

C eeL	

�
eL

� gw
sin2 �W

cos �W
eR	


Z0
eR

C eeR	

�
eR

C same terms for second generation

C same terms for third generation

(8.17)

and for the quarks we have (with the standard Hermitian scalar product over the
components in colour space C3 implicit)

Lint;ew;q D � gwp
2

�
uL	


WC

 d0

L C d
0
L	


W�

 uL

�

� gw

2 cos �W

�

1 � 4

3
sin2 �W

�

uL	

Z0
uL

� gw

2 cos �W

�

�1C 2

3
sin2 �W

�

d
0
L	


Z0
d0
L

� 2e

3
uL	


�
uL C e

3
d

0
L	


�
d0
L

C 2gw

3

sin2 �W

cos �W
uR	


Z0
uR � gw

3

sin2 �W

cos �W
d

0
R	


Z0
d0
R

� 2e

3
uR	


�
uR C e

3
d

0
R	


�
d0
R

C same terms for second generation

C same terms for third generation:

(8.18)

For the second and third generation we make the replacements in Eqs. (8.10) and
(8.11). We have set e D gW sin �W for the elementary electric charge.

Proof This is Exercise 8.11.9. ut
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These Lagrangians are sometimes written as (e.g. [62])

Lint;ew;l D � gwp
2

j
W;lW
C

 � gwp

2
j
�W;lW

�

 � gw

2 cos �W
j
Z;lZ

0

 � ej
�;l�
;

Lint;ew;q D � gwp
2

j
W;qWC

 � gwp

2
j
�W;qW�


 � gw

2 cos �W
j
Z;qZ0
 � ej
�;q�


with the currents (for the first generation)

j
W;l D �eL	

eL;

j
Z;l D �eL	

�eL C ��1C 2 sin2 �W

�
eL	


eL C 2 sin2 �WeR	

eR;

j
�;l D �eL	

eL � eR	


eR

and

j
W;q D uL	

d0

L;

j
Z;q D
�

1 � 4

3
sin2 �W

�

uL	

uL C

�

�1C 2

3
sin2 �W

�

d
0
L	


d0
L

� 4

3
sin2 �WuR	


uR C 2

3
sin2 �Wd

0
R	


d0
R;

j
�;q D 2

3
uL	


uL � 1

3
d

0
L	


d0
L C 2

3
uR	


uR � 1

3
d

0
R	


d0
R:

The expressions for j
W;l and j
W;q hold for both commuting and anticommuting
spinors. For anticommuting spinors we calculate

j
�W;l D � �eT
L	


T	 0��
eL

��

D e�L	

�	 0�eL

D eL	

�eL;

where we used 	 
� D 	 0	 
	 0. Similarly for j
W;q.

Definition 8.6.3 The interactions between fermions involving W-bosons are called
charged current interactions and interactions involving Z-bosons neutral current
interactions.
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Remark 8.6.4 Note that the W-bosons pair different flavours of particles
(neutrinos with electrons, up quarks with down quarks) with different electric
charges and different weak isospin, because they act off-diagonally on C

2.
The sum of charges (weak isospin, weak hypercharge, electric charge) at each
vertex is conserved. Interactions involving W-bosons are the only vertices in
the Standard Model that change flavour.

The Z-boson and the photon � on the other hand act diagonally and
only pair particles of the same flavour (hence with the same charges). The
charged W-bosons also couple only to left-handed fermions, while the Z-
boson and the photon � couple to both left-handed and right-handed fermions.
Contrary to the Z-boson, the photon � pairs both left-handed and right-handed
fermions in exactly the same way, i.e. electromagnetism is invariant under
parity inversion. The photon does not couple to the neutrino, because its
electric charge is zero.

We summarize the electroweak interaction vertices in the corresponding Feyn-
man diagrams in Figs. 8.5, 8.6, 8.7, 8.8 (note that, for instance, in the left diagram in
Fig. 8.6, �eL only pairs with �eL, eL with eL, and eR with eR, etc.). In the associated
quantum field theory these diagrams also describe the interactions involving
antifermions. Each diagram can be interpreted as the following interactions between
(possibly virtual) particles:

• A fermion or antifermion radiates off (or emits) a gauge boson (possibly
changing flavour).

• A fermion or antifermion absorbs a gauge boson (possibly changing flavour).
• A fermion and antifermion annihilate in a gauge boson.
• A gauge boson decays into a fermion and antifermion.

eL

eL

W+

eL

eL

W−

Fig. 8.5 Interaction vertex: leptons and W˙
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eL,eL,eR

eL,eL,eR

Z0

eL,eR

eL,eR

Fig. 8.6 Interaction vertex: leptons and Z0; �

uL

d′
L

W+

d′
L

uL

W−

Fig. 8.7 Interaction vertex: quarks and W˙

uL,d′
L,uR,d′

R

uL,d′
L,uR,d′

R

Z0
uL,d′

L,uR,d′
R

uL,d′
L,uR,d′

R

Fig. 8.8 Interaction vertex: quarks and Z0; �

The full Feynman diagram of a process is a combination of such diagrams. An
example is the Feynman diagram in Fig. 8.9 that explains ˇ-decay of a neutron
(consisting of two down and one up quark) into a proton (consisting of two up and
one down quark), an electron and an electron antineutrino, via a virtual W�-boson:

n �! p C e C �C
eL:
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Fig. 8.9 ˇ-decay of neutron

d′
L

C
eLuL

W−

eL

Neutrinos are produced by similar reactions in enormous amounts in the process
of nucleosynthesis inside stars like the sun (solar neutrinos).

Remark 8.6.5 The interaction vertices in Theorem 8.6.2 are exactly the same for all
three generations of leptons and quarks. For example, on a fundamental level the
only difference in the Standard Model between the electron, muon and tau are their
different masses (which lead to different lifetimes, etc.). This is known as lepton
flavour universality. For quarks, the corresponding statement is true for the weak
eigenstates considered above, but not for the so-called mass eigenstates because of
quark mixing, to be discussed in Sect. 8.8.2.

8.6.2 The Strong Interaction Vertex

We briefly want to state a formula for the strong interaction vertex Lint;s. Fermions
appear in two representations of SU.3/C: the trivial representation C and the
fundamental representation C

3.
If we expand the gluon field as in Eq. (8.8),

G
 D
8X

aD1
Ga

gs�a D igs

2

8X

aD1
Ga

a;

we get:

Lemma 8.6.6 In the representation C
3 of SU.3/C the gluon field G acts as

G
 D igs

2

8X

aD1
Ga

a;
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where the matrices a act in the standard way as endomorphisms of C
3 by

multiplication from the left. In the representation C of SU.3/C the gluon field G
acts as

G
 D 0:

It follows that the strong interaction is restricted to quarks and antiquarks and does
not affect leptons. Let qf

L denote the left-handed quarks and qf
R the right-handed

quarks for flavours f D u; d0; c; s0; t; b0. We can think of qf
L as a map on spacetime

with values in �L ˝ C
3 and similarly qf

R as a map with values in �R ˝ C
3, where

C
3 is the colour space spanned by the colour vectors r; g; b. We write

qf
L D

0

B
@

qfr
L

qfg
L

qfb
L

1

C
A ;

where qfr
L ; q

fg
L ; q

fb
L are ordinary left-handed Weyl spinors, i.e. maps with values in

�L, corresponding to the three different colours (analogously for the right-handed
quarks). We then have:

Theorem 8.6.7 (Strong Interaction Vertex) The strong interaction vertex for the
quarks is given by

Lint;s D �gs

2

8X

aD1

X

f

�
qf

L	

Ga


aqf
L C qf

R	

Ga


aqf
R

�

D �gs

2

8X

aD1

�
uL	


Ga

auL C uR	


Ga

auR

C d
0
L	


Ga

ad0

L C d
0
R	


Ga

ad0

R

�

C same terms for second generation

C same terms for third generation:

(8.19)

There are implicit standard Hermitian scalar products in the colour space C
3.
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Note that the strong interaction does not pair quarks of different flavours like
the weak interaction. If we expand the gluon field alternatively in the basis
f
ag,

G
 D gs

8X

aD1
G0a


a;

we see that the gluons

G0rNg

 ; G0rNb


 ; G0gNr

 ; G0gNb


 ; G0bNr

 ; G0bNg




pair quarks of different colours, because they act off-diagonally on the colour
space, while

G0rNr�gNg

 ; G0rNrCgNg�2bNb




act diagonally and pair quarks of the same colour. The first type of gluons can
thus be roughly compared to the W-bosons in the electroweak theory, while
the second type of gluons corresponds to the Z-boson and photon � .

See the Feynman diagrams in Figs. 8.10 and 8.11 for a generic strong interaction
vertex and two examples of more specific ones. These diagrams can be interpreted
as in Remark 8.6.4 (radiation/emission, absorption, annihilation, decay). The sum of
colour charges at each vertex is conserved if the colour charge of gluons is defined
suitably. Gluons can mediate interactions between quarks of different flavours like
in the Feynman diagram in Fig. 8.12.

Fig. 8.10 Generic
quark-gluon interaction
vertex

q f
L,q

f
R

q f
L,q

f
R

Ga
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q f r
L ,q f r

R

q f g
L ,q f g

R

G′rḡ
q f r

L ,q f r
R

q f r
L ,q f r

R

G′rr̄−gḡ

Fig. 8.11 Specific quark-gluon interaction vertices

ur sg

ug

G′rḡ

sr

Fig. 8.12 Strong interaction between quarks of different flavours

8.6.3 The Dirac Lagrangian for Fermions

The complete Dirac Lagrangian for the fermions can now be written as

LD D LD;@ C LD;int (8.20)

where the kinetic term is

LD;@ D Re

�

i
�
eL	


@
eL C eR	

@
eR C �eL	


@
�eL
�

Ci
�

uL	

@
uL C uR	


@
uR C d
0
L	


@
d0
L C d

0
R	


@
d0
R

��

C same terms for second generation

C same terms for third generation

(8.21)
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and

LD;int D Lint;ew C Lint;s

with the electroweak interaction vertex Lint;ew from Eq. (8.16) and the strong
interaction vertex Lint;s from Eq. (8.19).

8.7 Interactions Between Higgs Bosons and Gauge Bosons

We want to determine the Yang–Mills–Higgs Lagrangian

LHŒ�;A�C LYMŒA� D
D
rA
�;rA


�
E

� V.�/ � 1

2

˝
FA

M;F
A
M

˛
Ad.P/

for the electroweak interaction.

8.7.1 The Higgs Lagrangian

We first calculate the Higgs Lagrangian (the first two summands in the Yang–Mills–
Higgs Lagrangian). We assume that we have chosen a unitary gauge so that the
Higgs field is of the form

� D 1p
2

�
0

v C H

�

;

where HW M D R
4 ! R is the Higgs boson and v D

q




. The Higgs potential is

given by

V.�/ D �
��� C 
�
���

�2

and the mass of the Higgs boson is mH D p
2
. Let A D W C B be the electroweak

gauge field. The mass of the W-bosons is equal to

mW D 1

2
gwv

and the mass of the Z-boson is equal to

mZ D 1

2 cos�W
gwv:
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Lemma 8.7.1 The covariant derivative rA

� is given by

rA

� D 1p

2

�
0

@
H

�

C imWWC



�
1C H

v

0

�

� imZp
2

Z0


�
0

1C H
v

�

:

The potential V.�/ is (up to an irrelevant constant)

V.�/ D 1

2
m2

HH2

�

1C 1

v
H C 1

4v2
H2

�

:

Proof This is Exercise 8.11.11. ut
We get:

Theorem 8.7.2 (Electroweak Higgs Lagrangian) After symmetry breaking the
Higgs Lagrangian is given in unitary gauge by

LH
�
H;W˙;Z0

� D 1

2
.@
H/

�
@
H

�� 1

2
m2

HH2

� 1

2
m2

HH2

�
1

v
H C 1

4v2
H2

�

C m2
WW�


 WC


C m2
WW�


 WC

�
2

v
H C 1

v2
H2

�

C 1

2
m2

ZZ0
Z0


C 1

2
m2

ZZ0
Z0

�
2

v
H C 1

v2
H2

�

:

(8.22)

Proof This is Exercise 8.11.12. ut
These terms have the following interpretation:

• The term in the first line is the Lagrangian for a free real scalar Higgs boson of
mass mH .

• The term in the second line describes the interaction between Higgs bosons.
• The term in the third line is the mass term for the W˙-bosons.
• The term in the fourth line describes the residual interaction between the W˙-

bosons and the Higgs boson.
• The term in the fifth line is the mass term for the Z0-boson.
• The term in the sixth line describes the residual interaction between the Z0-boson

and the Higgs boson.
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The free terms in this Lagrangian have already been determined in Theorem 8.2.10.
We can also write

W�

 WC
 D

�
WC



��
WC
 D 1

2

�
A1
A1
 C A2
A2


�

using the definition

W
̇ D 1p
2

�
A1
 � iA2


�

from Sect. 8.3.3. The couplings of the W- and Z-bosons to the Higgs boson are
proportional to their masses squared, hence quite strong. Note that the photon does
not couple to the Higgs boson. Figures 8.13 and 8.14 show Feynman diagrams for
the interactions in Theorem 8.7.2. The diagram on the left in Fig. 8.14, for example,
can be interpreted in one of the following ways:

• Higgs–Strahlung (vector bosons radiate off or emit a Higgs boson): W˙ !
W˙H and Z0 ! Z0H

• Absorption of a Higgs boson: W˙H ! W˙ and Z0H ! Z0

H

H

H
H

H

H

H

Fig. 8.13 Interaction vertices: Higgs boson

W±,Z 0

W±,Z 0

H
W±,Z 0

W±,Z 0

H

H

Fig. 8.14 Interaction vertices: electroweak gauge bosons and Higgs boson
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• Vector boson fusion: W˙W� ! H and Z0Z0 ! H
• Vector boson decay: H ! W˙W� and H ! Z0Z0.

The electric charge at each vertex is conserved.

8.7.2 The Yang–Mills Lagrangian

We now calculate the Yang–Mills Lagrangian. We first determine the commutators
of the basis vectors ˛1; ˛2; ˛3; ˛4 for su.2/L ˚ u.1/Y in Sect. 8.3.2.

Lemma 8.7.3 In the complexification of the Lie algebra su.2/L ˚ u.1/Y we have

Œˇa; ˇb� D ��abcgwˇc 8a; b; c 2 f1; 2; 3g

1p
2
.˛1 C i˛2/;

1p
2
.˛1 � i˛2/

�

D igw.cos �W˛3 C sin �W˛4/


1p
2
.˛1 C i˛2/; ˛3

�

D �igw cos �W
1p
2
.˛1 C i˛2/


1p
2
.˛1 C i˛2/; ˛4

�

D �igw sin �W
1p
2
.˛1 C i˛2/


1p
2
.˛1 � i˛2/; ˛3

�

D igw cos �W
1p
2
.˛1 � i˛2/


1p
2
.˛1 � i˛2/; ˛4

�

D igw sin �W
1p
2
.˛1 � i˛2/

Œ˛3; ˛4� D 0:

Proof This is the first part of Exercise 8.11.13. ut
This implies for the curvature of the electroweak gauge field W C B:

Theorem 8.7.4 The curvature of the electroweak gauge field

WC



1p
2
.˛1 C i˛2/C W�




1p
2
.˛1 � i˛2/C Z0
˛3 C �
˛4

is given by

FWCB

� D

h
@
WC

� � @�W
C

 � igw

�
WC

 Z0� � WC

� Z0

�

cos �W

�igw

�
WC

 �� � WC

� �


�
sin �W

i 1p
2
.˛1 C i˛2/
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C
h
@
W�

� � @�W
�

 C igw

�
W�

 Z0� � W�

� Z0

�

cos �W

Cigw

�
W�

 �� � W�

� �


�
sin �W

i 1p
2
.˛1 � i˛2/

C
h
@
Z0� � @�Z

0

 C igw

�
WC

 W�

� � WC
� W�




�
cos �W

i
˛3

C
h
@
�� � @��
 C igw

�
WC

 W�

� � WC
� W�




�
sin �W

i
˛4:

Proof This is the second part of Exercise 8.11.13. ut
Let H be a 2-form on Minkowski spacetime M with values in the complex numbers.
We write

jjH
� jj2 D 1

2
H
�H


�:

Then we get:

Corollary 8.7.5 (Electroweak Yang–Mills Lagrangian) The Yang–Mills
Lagrangian for the electroweak gauge field W C B is given by

L WCB
YM D �1

4

D
FWCB

� ;F
�WCB

E

su.2/L˚u.1/Y

D �1
2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ@
WC

� � @�WC

 � igw

�
WC

 Z0� � WC

� Z0

�

cos �W

�igw

�
WC

 �� � WC

� �


�
sin �W

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2

� 1

2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ@
W�

� � @�W�

 C igw

�
W�

 Z0� � W�

� Z0

�

cos �W

Cigw

�
W�

 �� � W�

� �


�
sin �W

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2

� 1

2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ@
Z0� � @�Z

0

 C igw

�
WC

 W�

� � WC
� W�




�
cos �W

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2

� 1

2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ@
�� � @��
 C igw

�
WC

 W�

� � WC
� W�




�
sin �W

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2

:

(8.23)

More explicitly we can write

L WCB
YM D L WCB

YM;2 C L WCB
YM;3 C L WCB

YM;4 ;
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where (compare with [112])

L WCB
YM;2 D �1

2

�
@
W�

� � @�W
�



� �
@
WC� � @�WC
�

� 1

4

�
@
Z0� � @�Z0


� �
@
Z0� � @�Z0


�

� 1

4

�
@
�� � @��


�
.@
�� � @��
/ ;

L WCB
YM;3 D igw cos �W

h�
@
W�

� � @�W
�



�
WC
Z0� �

�
@
WC

� � @�W
C



�
W�
Z0�

�
�
@
Z0� � @�Z

0



�
WC
W��

i

C igw sin �W

h�
@
W�

� � @�W
�



�
WC
�� �

�
@
WC

� � @�WC



�
W�
��

� �@
�� � @��

�

WC
W��� ;

L WCB
YM;4 D �1

2
g2w

�
WC

 W�
�2 � WC


 WC
W�
� W��

�

� g2w cos2 �W

h
WC

 W�
Z0�Z0� � WC


 Z0
W�
� Z0�

i

� g2w sin2 �W

h
WC

 W�
���� � WC


 �

W�

� �
�
i

� g2w sin �W cos �W

h
2WC


 W�
��Z0� � WC

 Z0
W�

� �
� � WC


 �

W�

� Z0�
i
:

The Yang–Mills Lagrangian contains in addition to the quadratic kinetic terms
various cubic and quartic couplings between the gauge bosons. The corresponding
Feynman diagrams are depicted in Figs. 8.15 and 8.16 (electric charge is conserved
at each vertex). We can do a similar calculation for the gluon gauge field G. We
expand

G
 D
8X

aD1
Ga



igsa

2

and define structure constants for the Lie algebra su.3/ in the Gell-Mann basis by


ia

2
;

ib

2

�

D fabc
ic

2
:
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W±

W±

,Z0

Fig. 8.15 Electroweak gauge bosons: 3-boson interaction vertex

W±

W±

W±

W±

W±

W±

,Z0

,Z0

W±

W± Z0

Fig. 8.16 Electroweak gauge bosons: 4-boson interaction vertices

Then the curvature of the gauge field G is

FG

� D

8X

aD1

 

@
Ga
� � @�G

a

 C gs

8X

b;cD1
Gb

Gc

� fbca

!
igsa

2
:

Theorem 8.7.6 (Gluon Yang–Mills Lagrangian) The Yang–Mills Lagrangian for
the gluon gauge field G is given by

L G
YM D �1

4

D
FG

�;F


�
G

E

su.3/C

D �1
2

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

8X

aD1

 

@
Ga
� � @�Ga


 C gs

8X

b;cD1
Gb

Gc

� fbca

!ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

2

:

(8.24)
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Ga

Gb

Gc Gb

Gc

Gd

Ge

Fig. 8.17 3- and 4-gluon interaction vertices

More explicitly we get (as in Eq. (7.1)):

L G
YM D �1

4
.@
Ga

� � @�G
a

/.@


G�
a � @�G


a /

� 1

2
gsfabc.@
Ga

� � @�Ga

/G

b
Gc�

� 1

4
g2s fabcfadeGb


Gc
�G

d
Ge�;

where a sum over Lie algebra indices is implicit. The Feynman diagrams are in
Fig. 8.17. The total Yang–Mills Lagrangian for both the electroweak and the gluon
field is then

LYM D L WCB
YM C L G

YM: (8.25)

8.8 Mass Generation for Fermions in the Standard Model

So far the fermions (leptons and quarks) in the Standard Model were assumed
massless. In this section we define Yukawa couplings between the fermions and
the Higgs field which lead to Dirac mass terms for the fermions (except for the
neutrinos) after symmetry breaking. The masses of the fermions are proportional to
the Yukawa coupling constants and the absolute value v of the Higgs condensate.

The Yukawa couplings also lead to a residual interaction vertex between two
fermions of the same flavour and the Higgs boson. This means that fermions can
interact by emitting and absorbing virtual Higgs bosons, hence the Higgs boson can
be interpreted as the mediating particle of a new type of interaction, different from
gauge interactions (in Sect. 8.7.1 we saw that the Higgs boson can also mediate an
interaction between the weak gauge bosons).
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8.8.1 Yukawa Couplings for Leptons

We begin with the leptons. Recall that as complex vector spaces the lepton and
Higgs sector are equal to

Li
L Š C

2;

Li
R Š C;

W Š C
2

for each generation. We set i D e; 
; � to denote the lepton generations and fix
Yukawa couplings gi.

Lemma 8.8.1 For each generation i D e; 
; � the map

� i
l W Li

L � W � Li
R �! C

.lL; �; lR/ 7�! gil
�
L�lR

is an SU.2/L � U.1/Y-invariant Yukawa form.

Proof This is the first part of Exercise 8.11.14. ut
In physics the following notation is used: We write for the first generation

L1L D
�
�eL

eL

�

;

L1L D .�eL; eL/;

e1R D eR

and similarly for generation 2 and 3 with .�e; e/ replaced by .�
; 
/ and .�� ; �/,
respectively. Then

� i
L.vL; �; vR/ D giLiL�eiR:

Suppose that the Higgs field � is in unitary gauge,

� D 1p
2

�
0

v C H

�

:

We define the lepton masses

mi D 1p
2

giv

for i D e; 
; � . Then we get:
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Theorem 8.8.2 (Yukawa Coupling for Leptons) After symmetry breaking the
Yukawa Lagrangian for the three lepton generations associated to the Yukawa form
in Lemma 8.8.1 is given in unitary gauge by

LY;l D L e
Y;l C L



Y;l C L �

Y;l

D �2meRe.eLeR/� 2m
Re.
L
R/� 2m�Re.�L�R/

� 2

v
meRe.eLeR/H � 2

v
m
Re.
L
R/H � 2

v
m�Re.�L�R/H:

(8.26)

Proof This is the second part of Exercise 8.11.14. ut
The three terms in the second line are the Dirac mass terms for the electron, muon
and tau. The terms in the third line are residual interactions between these leptons
and the Higgs boson (see the Feynman diagram in Fig. 8.18). The coupling of the
leptons to the Higgs boson is proportional to their mass. Note that the neutrinos
do not appear in this Lagrangian. In particular, their mass is zero in the Standard
Model.

8.8.2 Yukawa Couplings for Quarks and Quark Mixing Across
Generations

We consider the following SU.2/L � U.1/Y representation spaces:

3M

iD1

�
C
2 ˝ C1=3

�
(left-handed) (8.27)

and

3M

iD1

��
C ˝ C4=3

�˚ �
C ˝ C�2=3

��
(right-handed): (8.28)

Fig. 8.18 Lepton-Higgs
interaction vertex

eR, R, R

eL, L, L

H



8.8 Mass Generation for Fermions in the Standard Model 515

The quark representation sectors QL and QR are obtained from these representations
by tensoring with the fundamental representation C

3 of SU.3/C.
It turns out that the Yukawa couplings for the quarks are only diagonal in flavour

space in another basis than the one we used so far. We write

uI
1 D uI; uI

2 D cI; uI
3 D tI ;

dI
1 D dI; dI

2 D sI ; dI
3 D bI

for the quarks that correspond to the standard basis elements for the irreducible
summands in Eqs. (8.27) and (8.28) and indicate the left-handed basis by an index
L and the right-handed basis by an index R. We also write for the left-handed
isodoublets

QI
iL D

�
uI

iL

dI
iL

�

;

Q
I
iL D .uI

iL; d
I
iL/:

Let

� D 1p
2

�
�C
�0

�

be the Higgs field. We set

�c D i�2�
� D 1p

2

�
�0�

��C�
�

:

In the physics literature, �c is often denoted by Q�.

Lemma 8.8.3 The field �c satisfies

.A�/c D A�c 8A 2 SU.2/; � 2 C
2:

Hence �c has the same weak isospin as � and weak hypercharge Y D �1.

Proof This is Exercise 8.11.15. ut
Lemma 8.8.4 For arbitrary complex matrices Yu and Yd the expression

�Q D Yd
ij Q

I
iL�dI

jR C Yu
ijQ

I
iL�cuI

jR

D Q
I
LYd�dI

R C Q
I
LYu�cuI

R



516 8 The Higgs Mechanism and the Standard Model

is an SU.3/C � SU.2/L � U.1/Y-invariant Yukawa form (the second line is an
abbreviation). The Hermitian scalar product over the components in colour space
C
3 in the terms on the right is implicit.

Proof This is the first part of Exercise 8.11.16. ut
We can find pairs of unitary matrices Vu

L;V
u
R and Vd

L ;V
d
R that diagonalize the matrices

Yu and Yd:

Vu
LYuVu�

R D Du D
0

@
gu

gc

gt

1

A ;

Vd
LYdVd�

R D Dd D
0

@
gd

gs

gb

1

A ;

where all entries of the diagonal matrices are real and positive. We define new quarks

0

@
uL;R

cL;R

tL;R

1

A D Vu
L;R

0

@
uI

L;R

cI
L;R

tI
L;R

1

A ;

0

@
d0

L;R

s0
L;R

b0
L;R

1

A D Vu
L;R

0

@
dI

L;R

sI
L;R

bI
L;R

1

A :

Since we transformed up-type and down-type quarks with the same matrices Vu
L

and Vu
R, these quarks define a new splitting of the representation spaces into direct

summands as in Eqs. (8.27) and (8.28). The quarks u; d0; c; s0; t; b0 can be identified
with the quarks we considered before in Sect. 8.5.

We also define new quarks

0

@
dL;R

sL;R

bL;R

1

A D Vd
L;R

0

@
dI

L;R

sI
L;R

bI
L;R

1

A

D Vd
L;RVu�

L;R

0

@
d0

L;R

s0
L;R

b0
L;R

1

A :

Definition 8.8.5 We call the basis vectors corresponding to the quarks u; d; c; s; t; b
mass eigenstates and the basis corresponding to u; d0; c; s0; t; b0 weak eigenstates
or current eigenstates (for reasons that become apparent below). We also define
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the quark masses

mi D 1p
2

giv

for each flavour i D u; d; c; s; t; b.
We then get:

Theorem 8.8.6 (Yukawa Coupling for Quarks) After symmetry breaking the
Yukawa Lagrangian for the three quark generations associated to the Yukawa
form in Lemma 8.8.4 is given in unitary gauge and in the mass eigenstate basis
.u; d; c; s; t; b/ by

LY;q D �2muRe.uLuR/� 2mcRe.cLcR/ � 2mtRe.tLtR/

� 2mdRe.dLdR/ � 2msRe.sLsR/ � 2mbRe.bLbR/

� 2

v
muRe.uLuR/H � 2

v
mcRe.cLcR/H � 2

v
mtRe.tLtR/H

� 2

v
mdRe.dLdR/H � 2

v
msRe.sLsR/H � 2

v
mbRe.bLbR/H:

(8.29)

Here the Hermitian scalar products over the colour space C
3 are implicit.

Proof This is the second part of Exercise 8.11.16. ut
The six terms in the first and second line are the Dirac mass terms for the quarks.
The terms in the third and fourth line are residual interactions between the quarks
and the Higgs boson (see the Feynman diagram in Fig. 8.19). The couplings of the
quarks to the Higgs boson is again proportional to their mass. The top quark is the
heaviest fermion and thus has the strongest coupling to the Higgs boson.

Remark 8.8.7 The process that leads to the strongest production of Higgs bosons
at the hadron collider LHC is the so-called gluon fusion process [60, 147] with a

Fig. 8.19 Quark-Higgs
interaction vertex

uR,cR, tR,dR,sR,bR

uL,cL, tL,dL,sL,bL

H
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Fig. 8.20 Gluon-fusion
production of Higgs boson

Ga

Gb

t

t

t

H

virtual top quark loop depicted in Fig. 8.20. There are corresponding processes with
other quark flavours, which are, however, much weaker, because the Higgs boson
couples most strongly to the top quark.

Definition 8.8.8 The matrix

VCKM D Vu
LVd�

L 2 U.3/

is called the Cabibbo–Kobayashi–Maskawa (CKM) matrix. The CKM
matrix describes the physical effects of left-handed quark mixing across
generations from the mass eigenstate basis to the weak eigenstate basis.

Since the matrices Vd
L;RVu�

L;R are unitary, we can write the Dirac Lagrangian for the
strong interaction of quarks

Re
X

f

i

 

qf
L	


@
qf
L C qf

R	

@
qf

R C igs

2

8X

aD1

�
qf

L	

Ga


aqf
L C qf

R	

Ga


aqf
R

�
!

either with the weak eigenstates basis u; d0; c; s0; t; b0 or the mass eigenstate basis
u; d; c; s; t; b (the sums in both cases are identical). The terms in the weak interaction
vertex Lint;ew;q, however, only have the form in Theorem 8.6.2 if they are written in
the weak eigenstate basis, otherwise up-type and down-type quarks from different
generations are paired with the W-bosons.
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To see this explicitly consider the following charged current term in
Eq. (8.18):

� gwp
2

3X

˛D1

�
j
W;q˛WC


 C j
�W;q˛
W�



�
(8.30)

with the quark current for the ˛-th generation

j
W;q˛ D u˛L	

d0̨

L:

Using the mass eigenstate basis we can write the current equivalently as

j
W;q˛ D
3X

kD1
u˛L	


 .VCKM/˛k dkL: (8.31)

It follows that the interactions with the W-bosons can connect quarks from
different generations if the CKM matrix is not diagonal.

The Feynman diagram in Fig. 8.21 depicts a typical experimentally observed
process where W-bosons pair quarks of different generations: the decay of a neutral
kaon (consisting of a down quark and a strange antiquark) into a muon and
antimuon:

K0
�
dsC

� �! 
C 
C:

The WC-boson pairs the up quark from the first generation and the strange quark
from the second generation. This process was observed before the existence of a

Fig. 8.21 Kaon decay via up
quark

d

C
sC W +

u

W−
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Fig. 8.22 Kaon decay via
charm quark

d

sC W+

c

W−

C

fourth quark (the charm quark) was known. The decay rate of K0 into 
 and 
C

could not be explained with this process alone. This led S.L. Glashow, J. Iliopoulos
and L. Maiani in 1970 to the postulation [64] of the charm quark with the process
in Fig. 8.22: here the W�-boson pairs the down quark from the first generation with
the charm quark from the second generation. These diagrams and much more details
can be found in Thomson’s book [137].

Summarizing we see that the charged current vertices with W-bosons are the
only vertices in the Standard Model that

• connect different flavours of quarks and leptons (flavour changing vertex)
• can connect different generations of quarks (generation changing vertex).

Remark 8.8.9 Similarly in general gauge theories the most interesting gauge
bosons are those that act off-diagonally in the fermion representations,
because they can connect different types of particles (in Grand Unified
Theories this leads, for example, to the prediction of proton decay; see
Sect. 9.5).

8.8.3 Experimental Values for the CKM Matrix and Fermion
Masses

We discuss the experimental values for the CKM matrix (following [100] and [110]).
The CKM quark-mixing matrix VCKM 2 U.3/ has a priori nine real parameters,

because this is the dimension of the Lie group U.3/. We can multiply all quark
flavours d; s; b and d0; s0; b0 by an arbitrary phase in U.1/ without changing the
physics. Any collection of five out of these six real parameters change the matrix
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VCKM by multiplying rows and columns with a phase, so that 4 real parameters
remain. These parameters are three mixing angles �12; �13; �23 2 �

0; �
2

�
and the

KM phase ı 2 Œ0; 2�/. The KM phase is also called the CP violating phase for
reasons that will become clear in Sect. 9.3.

It is possible to show that up to rephasings we can always write

VCKM D
0

@
1 0 0

0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�iı

0 1 0

�s13eiı 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A ;

where

sij D sin �ij; cij D cos �ij:

The matrix VCKM is also often written in the following form:

VCKM D
0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A :

Here the entry Vud, for instance, connects in Eq. (8.31) the down quark to the up
quark. The absolute values of the entries of this matrix determined by experiments
are approximately [110]

0

@
jVudj jVusj jVubj
jVcdj jVcsj jVcbj
jVtdj jVtsj jVtbj

1

A 
0

@
0:97434 0:22506 0:00357

0:22492 0:97351 0:0411

0:00875 0:0403 0:99915

1

A : (8.32)

The current experimental values for the masses of the quarks and leptons
(excluding neutrinos) in absolute value and relative to the mass of the lightest
fermion (the electron) can be found in Table 8.12 (see [106]).

Table 8.12 Fermion masses

First generation Second generation Third generation

mu D 2:15˙ 0:15 MeV
	 4:2me

mc D 1:28˙ 0:025 GeV
	 2500me

mt 	 173 GeV
	 340000me

md D 4:70˙ 0:20 MeV
	 9:2me

ms D 93:5˙ 2 MeV
	 180me

mb D 4:18˙ 0:03 GeV
	 8200me

me D 0:5109989461 ˙
0:0000000031 MeV

m
 D
105:6583745 ˙ 0:0000024

MeV 	 210me

m� D 1:77686 ˙ 0:00012

GeV 	 3500me
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8.8.4 The Yukawa Lagrangian for Fermions

The complete Yukawa Lagrangian for the fermions is the sum

LY D LY;l C LY;q (8.33)

with the Yukawa Lagrangian LY;l for the leptons from Eq. (8.26) and LY;q for the
quarks from Eq. (8.29).

8.9 The Complete Lagrangian of the Standard Model

After symmetry breaking the complete Lagrangian of the Standard Model in unitary
gauge is the sum of all the boxed Lagrangians above, i.e. the sum of the Lagrangians
in Eqs. (8.20), (8.22), (8.33) and (8.25):

L D LD C LH C LY C LYM:

The Standard Model discussed so far has the following 18 parameters that
have to be determined by experiments:

• The coupling constants gs; gw; g0 for the gauge group SU.3/C � SU.2/L �
U.1/Y (equivalently, the strong and electric coupling constants gs and e,
and the Weinberg angle �W ).

• The parameters
;  of the Higgs potential (equivalently, the absolute value
v of the Higgs condensate and the mass mH of the Higgs boson).

• Three Yukawa couplings for the leptons and six Yukawa couplings for the
quarks (equivalently, the masses of the leptons and the quarks).

• Three quark mixing angles �12; �13; �23 and the KM phase ı that determine
the CKM matrix.

8.10 Lepton and Baryon Numbers

We briefly discuss lepton numbers and baryon numbers.

Definition 8.10.1 We make the following definitions:

• the electron lepton number Le is the number of electrons and electron neutrinos
minus the number of their antiparticles.
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• the muon lepton number L
 and the tau lepton number L� are defined
similarly.

• the total lepton number is L D Le C L
 C L� .

Inspecting all interaction vertices in the Feynman diagrams above it follows that:

Corollary 8.10.2 (Lepton Number Conservation) The interactions in the Stan-
dard Model conserve all lepton numbers Le;L
;L� ;L separately.
For example, an electron can change into an electron neutrino by emitting a W�-
boson or an electron and an electron antineutrino can annihilate in a W�-boson. In
each process the electron lepton number is conserved.

In contrast to the Standard Model, it turns out that the neutrinos in nature have
small non-zero masses. This experimental observation is related to the phenomenon
of neutrino oscillations (see Sect. 9.2.2), which implies that the lepton numbers
Le;L
;L� are in fact not conserved separately, but only the total lepton number L is
conserved. This leads to the question of whether charged lepton flavour violation
(CLFV) might also occur in nature, i.e. processes such as


 �! e C �

or

� �! e C 
C C 
;

which are not possible in the Standard Model and where some or all of the lepton
numbers Le;L
;L� are not conserved for the charged leptons e; 
; � . CLFV is
predicted by certain theories beyond the Standard Model. In addition, there may be
processes involving lepton number violation (LNV) where the total lepton number
L is not conserved. For more details, see [75].

Definition 8.10.3 We define the baryon number B to be one third of the number
of quarks minus the number of antiquarks:

B D 1

3

�
q � qC

�
:

Again, inspecting all interaction vertices in the Feynman diagrams above it follows
that:

Corollary 8.10.4 (Baryon Number Conservation) The interactions in the Stan-
dard Model conserve the baryon number B.
Because of quark mixing we do not split the baryon number into different genera-
tions. Baryons consisting of three quarks, like the proton and neutron, have baryon
number C1. Mesons consisting of quark-antiquark pairs have baryon number 0.

Some theories beyond the Standard Model, for instance, GUTs with proton
decay (see Sect. 9.5.8), predict that the baryon number B is not conserved (baryon
number violation).
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Remark 8.10.5 Most matter particles observed in nature, leptons and hadrons, are
unstable and decay, usually with very short lifetimes. Decays are due to the weak,
electromagnetic and strong interaction, with decays via the weak interaction having
the longest lifetime and decays via the strong interaction having the shortest lifetime.
Decays are related to the creation and annihilation of particles and can be described
by the Feynman diagrams discussed above.

In the Standard Model the only stable leptons are

• the electron e and
• the neutrinos �e; �
; �� (as mentioned above there exist, however, oscillations

between neutrinos)

and the only stable hadron is

• the proton p,

together with the corresponding antiparticles (isolated neutrons n are unstable with a
lifetime of 880 seconds [106], but they can become stable when bound in a nucleus).

Particles that are created in particle colliders and that decay via the weak
interaction with lifetimes of 10�8 seconds or longer can travel many meters before
they decay, due to the relativistic effect of time dilation, and can thus be found in
particle collectors. Particles that decay via the strong or electromagnetic interaction
are usually too short-lived to be detected themselves [42].

8.11 Exercises for Chap. 8

8.11.1 Consider

W D C
2

with the representation

.SU.2/ � U.1//� W �! W

.A; ei˛/ �
�

w1
w2

�

D A

�
einY˛ 0

0 einY˛

��
w1
w2

�

:

Let VW W ! R be a function which is invariant under the action of SU.2/�U.1/.

1. Prove that there exists a function f W Œ0;1/ ! R such that V.w/ D f .jjwjj/,
where jjwjj2 D w�w.
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2. Suppose that V is a polynomial of order at most 4 in the components of w and
that V has a minimum, but not in w D 0. Prove that V.w/ is of the form

V.w/ D �
w�w C 
�
w�w

�2

with certain constants 
;  > 0.

8.11.2 Work out the details in the proof of Theorem 8.1.20 on the existence of
unitary gauges in the electroweak theory.

8.11.3 Prove Lemma 8.3.2 on the scalar product on su.2/L.

8.11.4 Prove Lemma 8.4.2 on the scalar product on su.3/C.

8.11.5 (From [141]) Suppose that the value of the Fermi constant G0
F and the

electric charge e are known, but the value of the coupling constants gw; g0 and the
Weinberg angle �W are unknown. Determine lower bounds on the masses of the W-
and Z-bosons assuming the electroweak gauge theory.

8.11.6 Derive the weak isospin, weak hypercharge and electric charge of the gauge
bosons W˙, Z0 and � in Table 8.10.

8.11.7 Prove Theorem 8.5.7 on the subgroup Z6 in the Standard Model group
SU.3/C � SU.2/L � U.1/Y .

8.11.8 Derive the formulas in Lemma 8.6.1 concerning the action of the elec-
troweak gauge field W C B in the representations C

2 ˝ Cy and C ˝ Cy of
SU.2/L � U.1/Y .

8.11.9 Prove the formulas for the electroweak interaction vertices of leptons and
quarks in Theorem 8.6.2.

8.11.10 Can an electron-positron collider produce hadrons? Which particles can a
proton-proton collider produce?

8.11.11 Prove the formulas for the covariant derivative of the Higgs field and for
the Higgs potential in Lemma 8.7.1.

8.11.12 Prove the formula for the electroweak Higgs Lagrangian in Theorem 8.7.2.

8.11.13 Prove Lemma 8.7.3 and Proposition 8.7.4 on the curvature of the elec-
troweak gauge field.

8.11.14 Prove Lemma 8.8.1 and Theorem 8.8.2 on the Yukawa Lagrangian for
leptons.

8.11.15 Prove Lemma 8.8.3 on the action of su.2/ on �c.

8.11.16 Prove Lemma 8.8.4 and Theorem 8.8.6 on the Yukawa Lagrangian for
quarks.

8.11.17 The Georgi–Glashow SO.3/ model is described by a Yang–Mills–Higgs
Lagrangian over 4-dimensional Minkowski spacetime M with gauge group G D
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SO.3/, Higgs vector space W D R
3 with the fundamental representation of SO.3/

and standard scalar product, and Higgs potential

V.�/ D �
�T� C 
�
�T�

�2

for positive constants 
; . Discuss the Higgs mechanism for this theory, determine
the masses of the gauge bosons and the explicit form of the Yang–Mills–Higgs
Lagrangian in unitary gauge.



Chapter 9
Modern Developments and Topics Beyond
the Standard Model

This chapter contains some advanced concepts in particle physics as well as modern
developments that aim at going beyond the Standard Model. The topics range from
well-established phenomena to more hypothetical theories that predict, for example,
the existence of new particles and interactions that so far have not been observed.
Most sections in this chapter can be read independently of one another and are only
loosely interconnected.

Rather than trying to give a detailed account of these subjects, the intention is
to enable the reader to study the extensive research literature him- or herself. Each
section is accompanied by some suggestions for further reading. Again, these small
guides to the literature do not try to be complete.

9.1 Flavour and Chiral Symmetry

In this section we discuss flavour symmetry and chiral symmetry breaking in QCD
(see [36] for more details).

We fix the following data:

• an oriented and time-oriented Lorentzian spin manifold M of even dimension n
with metric g of signature .1; n � 1/ or .n � 1; 1/

• a spin structure SpinC.M/ together with complex spinor bundle S D SL ˚ SR !
M

• a Dirac form h� ; �i on the spinor space� D �L ˚�R defined by a matrix A as in
Proposition 6.7.13 together with associated Dirac bundle metric h� ; �iS

• a principal G-bundle P ! M with compact structure group G of dimension r
• an Ad-invariant positive definite scalar product h� ; �ig on the Lie algebra g,

together with the induced bundle metric h� ; �iAd.P/ on the associated vector bundle
Ad.P/

© Springer International Publishing AG 2017
M.J.D. Hamilton, Mathematical Gauge Theory, Universitext,
https://doi.org/10.1007/978-3-319-68439-0_9
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• a complex representation �W G ! GL.V/ with associated complex vector bundle
E D P �� V ! M

• a G-invariant Hermitian scalar product h� ; �iV on V with associated bundle metric
h� ; �iE on the vector bundle E. Together with the Dirac form on the spinor bundle
S we get a Hermitian scalar product h� ; �iS˝E on the twisted spinor bundle S ˝ E.
We abbreviate h�;˚iS˝E by �˚ .

We consider Nf copies Ef , with f D 1; : : : ;Nf , of the associated vector bundle E
and form the direct sum

F D E ˚ : : :˚ E
„ ƒ‚ …

Nf

:

The different copies of E are called flavours. The Hermitian scalar product on F is
the direct sum of the scalar products on each copy Ef . The associated Yang–Mills–
Dirac Lagrangian is given by

LYMD D
NfX

f D1

�
Re
�
�f DA�f

� � mf�f�f
� � 1

2

˝
FA

M;F
A
M

˛
Ad.P/ ;

where �f is a twisted spinor with values in S ˝ Ef and mf is the mass of the flavour
with index f .

Example 9.1.1 For M D R
1;3, G D SU.3/ with the fundamental representation on

V D C
3 and six flavours f D u; d; c; s; t; b the Lagrangian LYMD is the Lagrangian

of QCD for quarks of masses mf . We can consider the Lagrangian LYMD as a
generalization of QCD to an arbitrary compact gauge group G and an arbitrary
number of quark flavours. For example, one sometimes considers versions of QCD
with gauge group G D SU.Nc/, corresponding to Nc colours.
The Lagrangian LYMD is gauge invariant under gauge transformations with values
in G. However, depending on the quark masses mf there are additional global
symmetries, i.e. symmetries which are constant over spacetime. We only consider
the Dirac part

LD D
NfX

f D1

�
Re
�
�f DA�f

� � mf�f�f
�

of the LagrangianLYMD, because the global symmetries we consider leave the gauge
field A and hence the Yang–Mills Lagrangian invariant.

Lemma 9.1.2 Suppose that all flavours have the same mass mf D m, for f D
1; : : : ;Nf . Let

B 2 U.Nf / D U.Nf /V
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be a (constant, independent of the point in spacetime M) unitary matrix. Then the
Dirac Lagrangian LD is invariant under the flavour symmetry

�f 0.x/ D
NfX

f D1
Bf 0f�f .x/ 8x 2 M:

The flavour symmetry acts through bundle automorphisms of S ˝ F, mixing the
flavour components.
Recall that the Dirac mass term is equal to

�mf�f�f D �mf Re
�
�Lf�Rf

�
:

The first term in the Dirac Lagrangian is the real part of

�f DA�f D �Lf DA�Lf C �Rf DA�Rf :

Lemma 9.1.3 Suppose that all flavours have vanishing mass mf D 0, for f D
1; : : : ;Nf . Let

.BL;BR/ 2 U.Nf / � U.Nf / D U.Nf /L � U.Nf /R

be a pair of (constant) unitary matrices. Then the Dirac LagrangianLD is invariant
under the chiral symmetry

�Lf 0.x/ D
NfX

f D1
BLf 0 f�Lf .x/ 8x 2 M;

�Rf 0.x/ D
NfX

f D1
BRf 0f�Rf .x/ 8x 2 M:

The chiral symmetry acts through bundle automorphisms of SL ˝ F and SR ˝ F,
mixing the flavours of right-handed and left-handed components separately.

Example 9.1.4 The chiral symmetry is already interesting for a single massless
fermion, Nf D 1. In this case the chiral symmetry group is

U.1/L � U.1/R:

It is sometimes useful to consider the following subgroups of the chiral symmetry
group

U.1/V D ˚�
ei˛; ei˛

� j ˛ 2 R
�
;

U.1/A D ˚�
ei˛; e�i˛

� j ˛ 2 R
�
;
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which are called the subgroups of vector and axial symmetries. The action of the
axial symmetry on a spinor � D �L C �R is often written in the physics literature
as

� 7�! ei˛	nC1�;

where 	nC1 is the physical chirality operator which is C1 on �L and �1 on �R. As
we saw in Lemma 9.1.2 the vector symmetry still exists in the case when the mass
m is non-zero.

Example 9.1.5 In QCD the quarks with flavours u; d; s are much lighter than the
quarks with flavours c; t; b. If we set mu D md D ms D 0 (this is called the chiral
limit of QCD), then QCD should have the chiral symmetry U.3/L � U.3/R.
The chiral symmetry group U.Nf /L � U.Nf /R has the following subgroups:

�
�
U.Nf /L � U.Nf /R

� D ˚
.BL;BR/ j BL;BR 2 U.Nf /; det BL D det BR

�
;

U.Nf /V D ˚
.B;B/ j B 2 U.Nf /

�
;

SU.Nf /V D ˚
.B;B/ j B 2 U.Nf /; det B D 1

�
;

U.1/V D ˚�
ei˛I; ei˛I

� j ei˛ 2 U.1/
�
;

U.1/A D ˚�
ei˛I; e�i˛I

� j ei˛ 2 U.1/
�
:

For the quantum field theory associated to QCD in the chiral limit it is known that
the full chiral symmetry group U.3/L � U.3/R of the classical field theory breaks in
two steps to the flavour symmetry group U.3/V :

U.3/L � U.3/R �! �.U.3/L � U.3/R/ �! U.3/V :

The reason for the first breaking is that the axial symmetry U.1/A does not hold in
the quantum theory (because of the axial anomaly); note that the discrete subgroup
Z2Nf D Z6 � U.1/A is still contained in �.U.3/L � U.3/R/. The second breaking
is called chiral symmetry breaking, which happens because the vacuum state of
QCD is not invariant under the full symmetry group �.U.3/L � U.3/R/ (this is an
example of spontaneous symmetry breaking of a global symmetry).

Chiral symmetry breaking is not fully understood theoretically, because it
happens at low energies (similar to quark confinement), where the strong coupling
constant is large and perturbation theory is not valid; see Sect. 9.4. However,
it can be studied in numerical simulations using lattice QCD and analytically
in supersymmetric generalizations of QCD, which are better understood non-
perturbatively (see [127, 128]).

The unbroken symmetries of the quantum version of QCD, in addition to gauge
symmetry, are therefore

• the abelian symmetry U.1/V (related to baryon number conservation)
• the (special) flavour symmetry SU.3/V .
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Baryon number conservation is an exact symmetry of QCD, independent of quark
masses. Flavour symmetry, however, in real world QCD, where the quark masses
mu;md;ms are not precisely the same, is only an approximate symmetry, which can
nevertheless still be observed in the spectrum of hadrons (mesons and baryons) that
are composed of quarks with flavours u; d; s. Historically, flavour symmetry SU.3/V
preceded the development of QCD with gauge symmetry SU.3/C (the dimension
8 of the flavour symmetry group is related to the concept of the eightfold way,
developed by Murray Gell-Mann in the 1960s).

To summarize, in QCD the Lie group SU.3/ appears in two completely
different places:

• as the colour gauge group SU.3/C. Gauge symmetry in QCD is a local and
exact symmetry.

• as the flavour symmetry group SU.3/V . Flavour symmetry in QCD is a
global and with non-identical quark masses only approximate symmetry.

Remark 9.1.6 Non-perturbative QCD is an active and difficult area of research
with many open questions. Understanding non-perturbative QCD in particular
would mean to understand the structure of hadrons theoretically.

It is not known at present, to mention only one example, how to calculate
the mass of the proton and neutron (which are well-known from experiments)
analytically from first principles using a “formula” (there are numerical calculations
from first principles using lattice QCDwhich are accurate to within a few percents).
The proton consists of two up and one down valence quark and the neutron of two
down and one up valence quarks. The masses of the proton and neutron are [106]

mp D 938:272MeV;

mn D 939:565MeV:

However, the sum of the quark rest masses for the proton and neutron are
approximately 9 MeV and 11:6 MeV, i.e. they only amount to roughly 1% of the
proton and neutron mass. This leads to the remarkable conclusion that 99% of the
mass of the visible matter in the universe comes from the binding energy of the
gluon field inside the proton and neutron (and hence does not have its origin in the
Higgs mechanism) [11, 137].

9.1.1 Further Reading

Reference [21] is an extensive review of strongly coupled QCD. The notes [36]
contain a discussion of chiral symmetry breaking. References [44] and [18] are
examples of precise calculations of hadron masses using lattice gauge theory.
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9.2 Massive Neutrinos

In the Standard Model, neutrinos are assumed massless. According to experiments,
however, neutrinos show oscillations between different flavours, for example, a free
electron neutrino can change in-flight into a muon neutrino or tau neutrino and back
(first observed at the Super-Kamiokande detector in 1998; Nobel Prize in Physics
2015 for Takaaki Kajita and Arthur B. McDonald). This can only be explained if
neutrinos have different and hence (at least two of them) non-zero masses.

In this section we discuss how mass terms for neutrinos can be added to
the Standard Model as well as the phenomenon of neutrino oscillations. The
neutrino masses are extremely small compared to the other fermions in the Standard
Model and an obvious question is why neutrinos are so light. The famous seesaw
mechanism, that we discuss in Sect. 9.2.5, is one natural explanation (we follow
references [62] and [137] throughout this section).

9.2.1 Dirac Mass Terms

To define Dirac mass terms for neutrinos we have to postulate the existence of
new particles, right-handed neutrinos �iR for each generation i D e; 
; � . Like
right-handed electrons, muons and taus, right-handed neutrinos are singlets in the
trivial representation of SU.3/C �SU.2/L. However, because they have zero electric
charge, this implies that their weak hypercharge Y is also zero. Hence right-handed
neutrinos, if they exist, are sterile, i.e. live in the trivial singlet representation of the
full Standard Model gauge group

G D SU.3/C � SU.2/L � U.1/Y

and do not interact with other particles via gauge bosons. They can only interact
with other particles via the Higgs boson (if their mass is generated by the Higgs
mechanism) and gravity. For this reason, sterile neutrinos are one of the candidates
to explain dark matter in the universe.

If we add right-handed neutrinos to the Standard Model, the particle content of
the lepton sector becomes formally very similar to the quark sector, see Table 9.1:
there are one left-handed isodoublet and two right-handed isosinglets for each
generation. The Dirac mass generation for neutrinos using Yukawa couplings is
a straightforward generalization of the mass generation for quarks in Sect. 8.8.2:
we would like to determine the most general gauge invariant Yukawa form that
generates masses for both electron-type particles and neutrinos. We consider the
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Table 9.1 Lepton representations including right-handed neutrinos

Sector SU.2/L � U.1/Y representation Basis vectors Particle Charges

T3 Y Q

L1L C
2 ˝ C

�1

 
1

0

!

�eL
1

2
�1 0

 
0

1

!

eL �1
2

�1 �1
L1R C ˝ C0 1 �eR 0 0 0

C ˝ C
�2 1 eR 0 �2 �1

following SU.2/L � U.1/Y representation spaces:

3M

iD1

�
C
2 ˝ C�1

�
(left-handed) (9.1)

and

3M

iD1
..C ˝ C0/˚ .C ˝ C�2// (right-handed): (9.2)

We write

�I
1 D �I

e; �
I
2 D �I


; �
I
3 D �I

� ;

eI
1 D eI; eI

2 D 
I ; eI
3 D � I

for the irreducible summands in Eqs. (9.1) and (9.2) and indicate the left-handed
basis by an index L and the right-handed basis by an index R. We also write for the
left-handed isodoublets

LI
iL D

�
�I

iL

eI
iL

�

;

L
I
iL D .�I

iL; e
I
iL/:

In complete analogy to Lemma 8.8.4 we have:
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Lemma 9.2.1 For arbitrary complex matrices Ye and Y� the expression

�L D Ye
ijL

I
iL�eI

jR C Y�ij L
I
iL�c�

I
jR

D L
I
LYe�eI

R C L
I
LY��c�

I
R

is an SU.2/L � U.1/Y-invariant Yukawa form (the second line is an abbreviation).
We can find pairs of unitary matrices Ue

L;U
e
R and U�

L ;U
�
R that diagonalize the

matrices Ye and Y� :

Ue
LYeUe�

R D De D
0

@
ge

g

g�

1

A ;

U�
LY�U��

R D D� D
0

@
g�e

g�

g��

1

A ;

where all entries of the diagonal matrices are real and positive. We define new
leptons

0

@
�eL;R

�
L;R

��L;R

1

A D Ue
L;R

0

B
@

�I
eL;R

�I

L;R

�I
�L;R

1

C
A ;

0

@
eL;R


L;R

�L;R

1

A D Ue
L;R

0

@
eI

L;R


I
L;R

� I
L;R

1

A :

These leptons define a new splitting of the representation spaces into direct
summands as in Eqs. (9.1) and (9.2).

We also define new neutrinos

0

@
�1L;R

�2L;R

�3L;R

1

A D U�
L;R

0

B
@

�I
eL;R

�I

L;R

�I
�L;R

1

C
A

D U�
L;RUe�

L;R

0

@
�eL;R

�
L;R

��L;R

1

A :

Definition 9.2.2 We call the basis vectors corresponding to the leptons
e; �1; 
; �2; �; �3 mass eigenstates and the basis corresponding to e; �e; 
; �
; �; ��
weak eigenstates.
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Suppose that the Higgs field � is in unitary gauge,

� D 1p
2

�
0

v C H

�

and define the lepton masses

mi D 1p
2

giv

for each flavour i D e; �1; 
; �2; �; �3.
We then get:

Theorem 9.2.3 (Yukawa Coupling Including Dirac Mass Terms for Neutrinos)
After symmetry breaking the Yukawa Lagrangian for the three lepton generations
associated to the Yukawa form in Lemma 9.2.1, including right-handed neutrinos,
is given in unitary gauge and in the mass eigenstate basis .e; �1; 
; �2; �; �3/ by

L D
L D �2meRe.eLeR/ � 2m
Re.
L
R/ � 2m�Re.�L�R/

� 2m�1Re.�1L�1R/� 2m�2Re.�2L�2R/� 2m�3Re.�3L�3R/

� 2

v
meRe.eLeR/H � 2

v
m
Re.
L
R/H � 2

v
m�Re.�L�R/H

� 2

v
m�1Re.�1L�1R/H � 2

v
m�2Re.�2L�2R/H � 2

v
m�3Re.�3L�3R/H:

(9.3)

The only difference to the Yukawa Lagrangian in Theorem 8.8.2 is that the
Yukawa Lagrangian in Theorem 9.2.3 contains (potentially non-zero) masses for
the neutrinos and interactions between the neutrinos and the Higgs boson, depicted
in the Feynman diagram in Fig. 9.1. We also see that there is in general a non-trivial
neutrino mixing from the mass eigenstate basis to the weak eigenstate basis.

Fig. 9.1 Neutrino-Higgs
interaction vertex

1R, 2R, 3R

1L, 2L, 3L

H
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Definition 9.2.4 The unitary matrix

UPMNS D Ue
LU��

L 2 U.3/

is called the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix. The
PMNS matrix plays the same role for the mixing of left-handed neutrinos
across generations as the CKM matrix for the left-handed down quarks.

The PMNS matrix is often written in the following form:

UPMNS D
0

@
Ue1 Ue2 Ue3

U
1 U
2 U
3

U�1 U�2 U�3

1

A :

This matrix appears in the flavour changing electroweak interaction vertices involv-
ing W˙-bosons if we want to write them in the mass eigenstate basis instead of the
weak eigenstate basis: consider the following charged current term in Eq. (8.17):

� gwp
2

�
j
W;lW

C

 C j
�W;lW

�



�

with the Hermitian conjugate of the lepton current

j
�W;l D eL	

�eL C 
L	


�
L C �L	

��L:

Using the mass eigenstate basis we can write the current equivalently as

j
�W;l D
3X

jD1

�
eL	


 .UPMNS/ej �jL C 
L	

 .UPMNS/
j �jL C �L	


 .UPMNS/� j �jL
�
:

(9.4)
The interaction terms involving Z-bosons and photons � are the same in both the
mass eigenstate basis and the weak eigenstate basis. Similarly to our discussion in
the case of quarks it follows that if neutrinos have a Dirac mass, then interaction
vertices involving W-bosons can connect leptons from different generations. As a
result the lepton numbers Le;L
;L� are not conserved separately, only the total
lepton number L is invariant.

If only a Dirac mass term is present for neutrinos, it is unclear why the
neutrino masses (or the corresponding Yukawa couplings) are so much

(continued)
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smaller than for the other fermions. If we add to the Lagrangian a Majorana
mass term for the right-handed neutrinos, the seesaw mechanism described
in Sect. 9.2.5 allows both: a Dirac mass of similar size to the masses of the
other fermions and a neutrino of very small mass. In addition, the theory
then predicts another neutrino of very large mass (that so far has not been
observed).

9.2.2 Neutrino Oscillations

In this section we discuss how different masses of neutrinos lead to the phenomenon
of neutrino oscillations. We just describe the basic idea. Consider the following
elementary lemma.

Lemma 9.2.5 Let Ej and pj denote the energies and 3-momenta of relativistic
particles with rest mass mj, where j D 1; 2. Suppose that

E1 D E2 and p1 D p2:

Then m1 D m2.

Proof Energy and 3-momentum determine the rest mass according to the formula
m2 D E2 � p2 (where c D 1). This implies the claim. ut
To simplify the discussion we only consider two neutrino generations, say the
electron neutrino and the muon neutrino (we could similarly analyse the case of
three generations). Let j�ji for j D 1; 2 denote the mass eigenstates of neutrinos with
mass mj. For a freely moving neutrino in one of the mass eigenstates, the spacetime
dependence of the state is given by

j�j.x; t/i D ei.pj�x�Ejt/j�ji:

Clearly, the probability of finding the j-th neutrino at the spacetime point .x; t/ in
the state j�ji is 1:

jh�jj�j.x; t/ij2 D jei.pj�x�Ejt/j2 D 1:

On the other hand consider, for example, the electron neutrino �e. As a state it
decomposes as

j�ei D
2X

jD1
Uejj�ji;
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where U is the neutrino mixing matrix corresponding to the PMNS matrix for three
generations. We have

h�ej D
2X

jD1
U�

ejh�jj

and

jh�ej�eij2 D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2X

jD1
jUejj2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

D 1

since the matrix U is unitary.
The spacetime dependence of the electron neutrino state is given by

j�e.x; t/i D
2X

jD1
Uejj�j.x; t/i

D
2X

jD1
Ueje

i.pj�x�Ejt/j�ji:

The probability of finding the state at the spacetime point .x; t/ in the state j�ei is

jh�ej�e.x; t/ij2 D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2X

jD1
jUejj2ei.pj�x�Ejt/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

:

Proposition 9.2.6 Suppose that Uej ¤ 0 for j D 1; 2. If

jh�ej�e.x; t/ij2 D 1 8.x; t/ 2 R
4;

then m1 D m2.

Proof Since the matrix U is unitary we have

jh�ej�e.x; t/ij2 D jUe1j4 C jUe2j4 C 2jUe1j2jUe2j2Re
�

ei..p1�p2/�x�.E1�E2/t//
�

D 1 � 2jUe1j2jUe2j2
�
1 � Re

�
ei..p1�p2/�x�.E1�E2/t//

��
;

which is equal to 1 for all .x; t/ 2 R
4 only if E1 D E2 and p1 D p2. The claim then

follows by Lemma 9.2.5. ut
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This means that if the masses m1 and m2 are not the same and Uej ¤ 0 for j D 1; 2,
then there will be spacetime points .x; t/ where

jh�ej�e.x; t/ij2 < 1:

But this implies that there is a non-zero probability of finding j�e.x; t/i in the state
j�
i:

jh�
j�e.x; t/ij2 ¤ 0:

These spacetime points are related to the values of the phases ei.pj�x�Ejt/ and occur
periodically. This is the mechanism of neutrino oscillations: there is a non-zero
probability of finding a neutrino, which is in a weak eigenstate at one spacetime
point .0; 0/, in another weak eigenstate at another spacetime point .x; t/.

For more details, see the excellent discussion in Thomson’s book [137]. It is
possible to show that under certain assumptions the converse to Proposition 9.2.6
holds: if neutrino oscillations occur, then the masses of the neutrinos cannot be the
same. These neutrino oscillations are indeed observed in experiments. A detailed
calculation shows that using neutrino oscillations only the differences

�m2
ij D m2

i � m2
j

can be determined experimentally, but not the absolute values of mi for i D 1; 2; 3.

9.2.3 Experimental Values for the PMNS Matrix and Neutrino
Masses

We briefly discuss experimental values for neutrino masses and the PMNS matrix
(following [107] and [137, Sect. 13.9]). Since there exists a large number of neu-
trinos in the universe, neutrino masses potentially have cosmological implications.
Recent cosmological measurements set a rough upper limit of

3X

iD1
mi . 1eV:

Direct measurements of the averaged electron (anti)neutrino mass m�e , defined by
the square root of

m2
�e

D
3X

jD1
jUejj2m2

j ;
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(in particular, for neutrinos from the supernova SN 1987A and ˇ-decay of Tritium
3H) give similar upper bounds [43]. From neutrino oscillation experiments the
following is known:

�m221 D m22 � m21 D 7:53˙ 0:18 � 10�5eV2;

j�m232j D
8
<

:

m23 � m22 D 2:44˙ 0:06 � 10�3eV2 (assuming normal mass hierarchy),

m22 � m23 D 2:51˙ 0:06 � 10�3eV2 (assuming inverted mass hierarchy).

The sign of �m2
32 is not known, hence it is not clear whether m3 > m2 > m1

(normal mass hierarchy) or m3 < m1 < m2 (inverted mass hierarchy).
We can write the PMNS matrix in a similar way to the CKM matrix using

neutrino mixing angles:

UPMNS D
0

@
1 0 0

0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�iı

0 1 0

�s13eiı 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A ;

where

sij D sin �ij; cij D cos �ij:

The following values are known:

sin2.�12/ D 0:304C0:014
�0:013 ;

sin2.�23/ D
(
0:51˙ 0:05 (assuming normal mass hierarchy),

0:50˙ 0:05 (assuming inverted mass hierarchy),

sin2.�13/ D 0:0219˙ 0:0012:

The phase ı is unknown. This leads to the following approximate absolute values
for the entries of the PMNS matrix:

0

@
jUe1j jUe2j jUe3j
jU
1j jU
2j jU
3j
jU�1j jU�2j jU�3j

1

A 
0

@
0:83 0:54 0:15

0:40 0:60 0:70

0:40 0:60 0:70

1

A :

We conclude that the PMNS matrix is clearly much less diagonal than the CKM
matrix in Eq. (8.32).
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9.2.4 Majorana Mass Terms

Majorana mass terms allow us to introduce a non-zero mass for neutrinos without
postulating the existence of right-handed neutrinos. We begin by considering only
the first generation. We want to define a Majorana mass term

�m�eRe .Q�eL�eL/ ;

where

Q�eL D �T
eLC

denotes the Majorana conjugate. This expression is not gauge invariant, because the
left-handed electron neutrino comes in an isodoublet with the left-handed electron:

LeL D
�
�eL

eL

�

with Majorana conjugate

QLeL D . Q�eL; QeL/ :

We need a generalization of the Higgs mechanism: consider the Higgs doublet

� D 1p
2

�
�C
�0

�

:

Lemma 9.2.7 For all matrices A 2 SU.2/ the following identity holds:

AT�2A D �2:

Hence the expression

�T�2LeL

is a left-handed Weyl spinor, invariant under SU.2/L � U.1/Y. Its Majorana
conjugate is �QLeL�2�.

Proof This follows from Lemma 8.8.3, because AT D .A�/�1 for A 2 SU.2/. ut
Using the pure uncharged section �T�2LeL of the left-handed spinor bundle SL, we
can now form a Majorana mass term:

Proposition 9.2.8 For constants g�e and M the expression

L M
Le

D �2g�e

M
Re
�� QLeL�2�

� �
�T�2LeL

��

is Lorentz and SU.2/L � U.1/Y invariant.
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Suppose that the Higgs field � is in unitary gauge,

� D 1p
2

�
0

v C H

�

and define the neutrino mass

m�e D g�ev
2

M
:

Corollary 9.2.9 (MajoranaMass Terms for Neutrinos) After symmetry breaking
the Lagrangian L M

Le
is given in unitary gauge by

L M
Le

D �m�eRe . Q�eL�eL/

� 2m�e

v
Re . Q�eL�eL/H � m�e

v2
Re . Q�eL�eL/H2:

The term in the first line is the Majorana mass term for the electron neutrino, the
terms in the second line are hypothetical interactions between the electron neutrino
and the Higgs boson.

The coupling between two scalars and two spinors in the Lagrangian L M
Le

(or between two spinors and the square of the Higgs boson after symmetry
breaking) does not appear in Chap. 7 and is non-renormalizable. We conclude
that a gauge invariant Majorana mass term for left-handed neutrinos can
only be added to the Lagrangian using non-renormalizable interactions. The
Lagrangian L M

Le
is understood as an effective Lagrangian that hides new

interactions beyond the Standard Model. This can be compared to the non-
renormalizable 4-Fermi Lagrangian for the weak force that was hiding gauge
interactions (see the beginning of Sect. 8.3).

If g�e is dimensionless, then M must have dimension of mass so that L M
Le

has the
dimension of a Lagrangian. The constant M is interpreted as a new (large) energy
scale. If we assume that g�e � 0:01 and v � 102 GeV, as in the Standard Model, as
well as M � 1011 GeV (below a typical Grand Unification scale), then m�e D 0:01

eV. This is in agreement with experiments.

Remark 9.2.10 Note that for right-handed sterile neutrinos �eR, the Majorana mass
term

�m�eRe . Q�eR�eR/
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is already gauge invariant and thus well-defined without the need to introduce the
Higgs field. We will combine this term with the Dirac mass term in Sect. 9.2.5.

9.2.5 Dirac–Majorana Mass Terms and the Seesaw Mechanism

We again make the assumption from Sect. 9.2.1 that there exist right-handed sterile
neutrinos in each of the three lepton generations. We saw that a Dirac mass term can
then be generated in a gauge invariant way via the Higgs mechanism. Furthermore,
in Remark 9.2.10 we saw that a gauge invariant Majorana mass term for the right-
handed neutrinos can be added to the Lagrangian (we ignore the Majorana mass
term for the left-handed neutrinos that can only be added in a gauge invariant and
renormalizable way by introducing new interactions).

Let mD be the Dirac mass and M the Majorana mass of the right-handed neutrino
(we only consider one generation). Then the Dirac mass term is

L D D �2mDRe.�L�R/

and the Majorana mass term is

L M D �MRe. Q�R�R/:

Recall from Sect. 6.7 and Sect. 6.8 the definitions

Q D  T C;

 D  �A;

 C D B�1 �;

where for 4-dimensional Minkowski spacetime with signature .C;�;�;�/

C D �CT D �C�1 D i	 2	 0;

A D 	 0;

B D B�1 D CA D i	 2:

It follows that

 C D Q :

Remark 9.2.11 We assume from now for the rest of this section that components
of spinors anticommute.
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Lemma 9.2.12 The Majorana mass term can be written as

L M D �MRe
�
�CT

R C�C
R / :

Proof We calculate

Re
�
�CT

R C�C
R

� D Re
�
�
�
R.B

�1/TC�C
R

�

D Re
�
�
�
RA�C

R

�

D Re
�
�
�
RAB�1��

R

�

D �Re
�
�
�
RC��

R

�

D Re. Q�R�R/:

In the last step we used that .˛ˇ/� D �˛�ˇ� for Grassmann numbers ˛; ˇ. ut
Lemma 9.2.13 The Dirac mass term can be written as

L D D �2mDRe
�
�CT

R C�L
�

D �mDRe
�
�T

L C�C
R C �CT

R C�L/ :

The second line follows from the first, because spinor components anticommute.

Proof We calculate as in Lemma 9.2.12

2mDRe
�
�CT

R C�L
� D 2mDRe .�R�L/ D 2mDRe .�L�R/ :

ut
Proposition 9.2.14 The sum of the Dirac and Majorana mass term can be written
as

L DCM D L D C L M

D �Re

�

.�T
L ; �

CT
R /C

�
0 mD

mD M

��
�L

�C
R

��

:

The basis �L; �
C
R is not a mass eigenbasis for mD ¤ 0, because the matrix is not

diagonal. The following is easy to verify:

Lemma 9.2.15 The matrix

�
0 mD

mD M

�
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has real eigenvalues

M ˙
q

M2 C 4m2
D

2
:

If M � mD > 0, then one eigenvalue mC is positive and the other eigenvalue �m�
is negative, where

mC  M;

m�  m2
D

M
:

Proposition 9.2.16 (Diagonalization of Dirac–Majorana Mass Terms) Let R be
an orthogonal matrix such that

�
0 mD

mD M

�

D R

�
mC 0

0 �m�

�

RT :

Define the unitary matrix

U D R

�
1 0

0 i

�

and set

�
�CL

��L

�

D UT

�
�L

�C
R

�

:

Then the Dirac–Majorana mass term can be written as

L DCM D �Re .mC Q�CL�CL C m� Q��L��L/ :

We introduce the spinors

�˙ D 1p
2

�
�˙L C �C

˙L

�
:

Then

�C
˙ D �˙;
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hence �˙ are Majorana spinors. Moreover,

�˙�˙ D 1

2

�
�˙L�

C
˙L C �C

˙L�˙L

�

D Re . Q�˙L�˙L/ :

We get:

Corollary 9.2.17 With the Majorana spinors �˙ the Dirac–Majorana mass term
can be written as the Dirac mass term

L DCM D �mC�C�C � m�����:

The relation between mC and m� for fixed mD is called a seesaw mechanism:
if mC is large, then m� is small and if m� is small, then mC is large.
The seesaw mechanism allows a Dirac mass mD (generated by the Higgs
mechanism) to be of the same size as for the other fermions of the Standard
Model (around 1GeV) and to have at the same time a small neutrino mass m�
(around 0:01 eV). The theory then predicts another neutrino which has a very
large mass mC (around 1011 GeV).

Considering Dirac–Majorana mass terms for all three generations there is again
a phenomenon of neutrino mixing; see [62] for details.

9.2.6 Further Reading

The book [137] by M. Thomson contains many details on neutrino experiments as
well as theoretical discussions of neutrino mixing and neutrino oscillations. The
book [62] by C. Giunti and C.W. Kim is a comprehensive exposition of neutrino
physics, including astrophysical and cosmological implications.

9.3 C, P and CP Violation

In addition to Lorentz symmetries, gauge symmetries and global continuous
symmetries (like flavour symmetry), Lagrangians (or actions) can also have discrete
symmetries. Charge conjugation C and parity inversion P, together with time
reversal T, are examples of such symmetries. If the action is not invariant under
the composition CP of P followed by C, the theory is said to violate CP. It is
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an important observation that the action of the Standard Model, because of quark
mixing and the weak interaction of quarks, indeed violates CP.

Violation of CP in general is linked to the asymmetry between the amount of
matter and antimatter in the universe. However, the CP violation coming from the
weak interaction of quarks alone does not suffice to explain the observed degree
of this asymmetry. There are two other instances in the Standard Model where
CP violation can possibly occur: in the interaction of neutrinos, related to neutrino
mixing, and perhaps in the strong interaction of quarks if an additional CP violating
term is added to the Lagrangian (although this is almost certainly ruled out by
experiments, leading to the so-called strong CP problem, i.e. to explain why the
strong interaction preserves CP).

We only discuss CP violation coming from quark mixing and the weak interac-
tion. Throughout this section we follow the excellent exposition in the book [22],
where more details can be found.

9.3.1 The CKMMatrix and the Jarlskog Invariant

We consider the following form of the CKM matrix from Sect. 8.8.3:

VCKM D
0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A :

To understand CP violation in the Standard Model, it will be important to know
in which sense the CKM matrix is real or complex. We can change the entries of
the CKM matrix without changing the physical content by multiplying any row or
column by a phase in U.1/. This corresponds to changing the entries by

V 0
ij D ei.˛j�˛i/Vij; (9.5)

where ˛i; ˛j 2 Œ0; 2�/ are arbitrary angles. Only expressions which are invariant
under these rephasings are physically relevant. For example, the term

jVijj2 D VijV
�
ij

is invariant (the experimental values of these norms can be found in Eq. (8.32)).
Another invariant term is

Qijkl D VijVklV
�
il V�

kj;

which changes under the rephasings in Eq. (9.5) by the factor

ei.˛j�˛i/ei.˛l�˛k/ei.˛i�˛l/ei.˛k�˛j/ D 1:
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Definition 9.3.1 The Jarlskog invariant is

J D Im Quscb D Im.VusVcbV�
ubV�

cs/:

Proposition 9.3.2 Suppose that all entries of the CKM matrix VCKM are non-zero.
Then the Jarlskog invariant vanishes, J D 0, if and only if VCKM can be brought by
the rephasings in Eq. (9.5) into real form (i.e. all entries of the matrix become real).

Proof It is possible to show that we can always bring the CKM matrix with
rephasings into the form

VCKM D
0

@
1 0 0

0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�iı

0 1 0

�s13eiı 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A

D
0

@
c12c13 s12c13 s13e�iı

�s12c23 � c12s23s13eiı c12c23 � s12s23s13eiı s23c13
s12s23 � c12c23s13eiı �c12s23 � s12c23s13eiı c23c13

1

A ;

where

sij D sin �ij; cij D cos �ij:

We get

J D ImQuscb

D Im
�
s12s23c

2
13s13e

iı
�
c12c23 � s12s23s13e

�iı
��

D s12s23c
2
13s13c12c23 sin ı:

Since all entries of the CKM matrix are non-zero, the factor in front of sin ı is non-
zero. Hence J D 0 if and only if eiı D ˙1, which happens if and only if the CKM
matrix can be brought into real form. ut
According to [110] the experimental value for the Jarlskog invariant is

J D 3:04C0:21
�0:20 � 10�5:

This is a small but non-zero number, and implies:

Corollary 9.3.3 The CKM matrix for quark mixing realized in nature cannot be
brought into real form by the rephasings in Eq. (9.5).

Remark 9.3.4 A similar discussion applies to the PMNS matrix describing neutrino
mixing. However, as mentioned in Sect. 9.2.3, the analogue of the Jarlskog invariant
(or the phase ı) is currently not known for the PMNS matrix. It is likely that ı ¤
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0; � so that the PMNS matrix cannot be brought into real form by rephasings, but
so far this cannot be excluded completely [1].

Remark 9.3.5 Exercise 9.7.1 shows that any unitary 2�2-matrix can be brought into
real form by rephasings. This is the reason that led Makoto Kobayashi and Toshihide
Maskawa in 1972 (Nobel Prize in Physics 2008) to postulate the existence of a third
quark generation.

9.3.2 C and P Transformations

There is some freedom how to define charge conjugation C and parity inversion P
in field theories. For the following notation it is useful to think in this section of
fields as quantum fields, i.e. fields on spacetime with values in the operators on a
Hilbert space. Then C and P are unitary operators on this Hilbert space and a field
� transforms as

� �! C�C�

� �! P�P�:

We consider 4-dimensional Minkowski spacetime of signature .C;�;�;�/ with
the conventions for spinors from Sect. 6.8. Note that according to these conventions

	 0	 
	 0 D 	 
� D 	
:

We first define parity inversion P. On spacetime, P acts by

x D x
 D .t; x/
P7�! xp D .t;�x/ D x
:

This implies for partial derivatives

@

P7�! @
:

On a complex scalar field �.x/ we define

P�.x/P� D ei˛p�.xp/;

which implies

P��.x/P� D e�i˛p��.xp/:

Here ˛p is an arbitrary real constant. On a spinor field  .x/ we define

P .x/P� D eiˇp	 0 .xP/;
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which implies for  D  �	 0

P .x/P� D e�iˇp .xp/	
0:

Here ˇp is an arbitrary real constant.

Proposition 9.3.6 (Parity Inversion and Invariance of Actions) Define parity
inversion P on a gauge field A
 by

PA
.x/P
� D A
.xp/:

Then the Klein–Gordon Lagrangian

LKG D �
@
�� C ��A
�

� �
@
� C A
�

� � m2���;

the Higgs Lagrangian

LH D �
@
�� C ��A
�

� �
@
� C A
�

�� V
�
���

�
;

the Dirac Lagrangian

LD D Re
�
 i	 
.@
 C A
/ 

� � m  

and the Yang–Mills Lagrangian

LYM D �1
4

FAa

�F

A
�
a

D �1
4
.@
Aa

� � @�A
a

/.@


A�a � @�A
a /

� 1

2
fabc.@
Aa

� � @�Aa

/A

b
Ac�

� 1

4
fabcfadeAb


Ac
�A

d
Ae�

transform as

PLKG.x/P
� D LKG.xp/;

PLH.x/P
� D LH.xp/;

PLD.x/P
� D LD.xp/;

PLYM.x/P
� D LYM.xp/:

In particular, the Klein–Gordon, Higgs, Dirac and Yang–Mills actions (the space-
time integrals over the Lagrangians) are invariant under parity inversion.
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Proof This is Exercise 9.7.2. ut
We now define charge conjugation C. On a complex scalar field �.x/ we define

C�.x/C� D ei˛c��.x/;

which implies

C��.x/C� D e�i˛c�T.x/:

Here ˛c is an arbitrary real constant. Let  be a spinor field. Recall from Sect. 6.8
that

 C D B�1 � D i	 2 �:

We set

C .x/C� D eiˇc C.x/

D eiˇc i	 2 �;

which implies

C .x/C� D e�iˇc C.x/

D e�iˇc i T .x/	 2	 0:

Here ˇc is an arbitrary real constant.

Proposition 9.3.7 (Charge Conjugation and Invariance of Actions) Define
charge conjugation C on a gauge field A
 by

CA
.x/C
� D A�


.x/;

where A
 D �A�
 is the matrix-valued gauge field in a given unitary representation
of the compact gauge group G. Then the Klein–Gordon Lagrangian LKG, the Higgs
Lagrangian LH, the Dirac Lagrangian LD and the Yang–Mills Lagrangian LYM

transform as

CLKG.x/C
� D LKG.x/;

CLH.x/C
� D LH.x/;

CLD.x/C
� D LD.x/C total derivative;

CLYM.x/C
� D LYM.x/:
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This implies that the Klein–Gordon, Higgs, Dirac and Yang–Mills actions are
invariant under charge conjugation.

Remark 9.3.8 In the case of the Dirac Lagrangian we assume in this proposition
that the field operators  and  � anticommute.

Proof We do the calculation for the Dirac Lagrangian and leave the remaining cases
to Exercise 9.7.3. The Dirac mass term transforms as

Cm  C D �m T	 2	 0	 2 �

D m T	 2	 2	 0 �

D �m T	 0 �

D m
�
 �	 0T 

�T

D m  :

In the step from the third to the fourth line we used that  T and  � anticommute.
The term involving the Dirac operator transforms as

C i	 
.@
 C A
/ C D � T	 2	 0i	 
.@
 C A�

/	

2 �

D  T	 0	 2i	 
	 2.@
 C A�

/ 

�

D  T	 0i	 
�.@
 C A�

/ 

�

D � �.@
 �/i	 
�	 0T 
�T �

�
 �A�
i	 
�	 0T 

�T

D �i@

�
 	 
 

�C  i	 
.@
 C A
/ :

From the second to the third line we used that 	 2	 
	 2 D 	 
�, from the third to
the fourth line that  T and  � anticommute and from the fourth to the fifth line that
	 
�	 0 D 	 0	 
 and A�
 D �A
. ut

Definition 9.3.9 The transformation CP is defined by first applying P and
then applying C.
From the formulas above we see that the transformation CP is given on
complex scalar fields � by

.CP/�.x/.CP/� D ei˛cp��.xp/;

.CP/��.x/.CP/� D e�i˛cp�T.xp/

(continued)
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Definition 9.3.9 (continued)
and on spinors  by

.CP/ .x/.CP/� D eiˇcp i	 2	 0 �.xp/;

.CP/ .x/.CP/� D �e�iˇcp i T .xp/	
2;

where ˛cp; ˇcp are arbitrary real numbers.

Corollary 9.3.10 Define the CP transformation on a gauge field A
 by

.CP/A
.x/.CP/� D A
�.xp/:

Then the Klein–Gordon, Higgs, Dirac and Yang–Mills actions are CP invariant.
We shall see in the following section that if we introduce in addition to these
Lagrangians a Yukawa Lagrangian, then the complete action may no longer be CP
invariant.

9.3.3 CP Violation in the Standard Model

We want to prove the following theorem.

Theorem 9.3.11 (CP Invariance and the Jarlskog Invariant) The action of the
Standard Model (with vanishing neutrino masses) is CP invariant if and only if the
Jarlskog invariant J of the CKM quark mixing matrix vanishes.

Proof We follow the argument in [22] and use anticommuting spinors throughout
the proof. We first assume that the action of the Standard Model is CP invariant and
consider the Lagrangian of the Standard Model without fixing a particular gauge
like the unitary gauge. We write the Higgs field as

� D 1p
2

�
�C
�0

�

and set �� D �C�. We only need to consider the following parts of the complete
Lagrangian:

• From the term
�rA
�

��
�
rA

�
�

in the Higgs Lagrangian the part

L1 D 1

2

�

@
�0� � igwp
2

WC
�� C igw

2 cos �W
Z0
�0�

�

�
�

@
�
0 C igwp

2
W�

 �

C � igw

2 cos �W
Z0
�

0

�
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• From the Dirac Lagrangian the following charged current part of the electroweak
interaction vertex with quarks in the mass eigenstate basis:

L2 D � gwp
2

3X

˛D1

�
j
W;q˛WC


 C j
�W;q˛
W�



�

with

j
W;q˛ D
3X

kD1
u˛L	


V˛kdkL

and

j
�W;q˛
D

3X

kD1
dkL	


V �̨
ku˛L

as in Eqs. (8.31) and (8.30). Here we use the index ˛ to denote up-type quarks
and k to denote down-type quarks. The matrix V is the CKM matrix.

• The Yukawa form for the quarks in Lemma 8.8.4 before symmetry breaking is in
the mass eigenstate basis

�Q D �
uLV; dL

�
Dd�dR C �

uL; dLV�
�

Du�cuR;

where V is the CKM matrix. The Yukawa Lagrangian for the quarks before
symmetry breaking can then be written as

L3 D � 1p
2

Re

 
X

k

gkdkL�
0dkR C

X

˛

g˛u˛L�
0�u˛R

C
X

˛;k

gku˛LV˛k�
CdkR �

X

˛;k

g˛dkLV �̨
k�

�u˛R

!

:

This is equal to

L3 D 1

2
p
2
�0

 

�
X

k

gkdkLdkR �
X

˛

g˛u˛Ru˛L

!

C 1

2
p
2
�0�

 

�
X

k

gkdkRdkL �
X

˛

g˛u˛Lu˛R

!

C 1

2
p
2
�C

 

�
X

k

gku˛LV˛kdkR C
X

˛

g˛u˛RV˛kdkL

!

C 1

2
p
2
��

 

�
X

k

gkdkRV �̨
ku˛L C

X

˛

g˛dkLV �̨
ku˛R

!

:

(9.6)
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We now argue as follows (without using L2): under the CP transformation the field
�C transforms as

.CP/�C.CP/� D ei�W��

for some real number �W (we do not write the change of argument x 7! xp). This
implies

.CP/��.CP/� D e�i�W�C:

The Lagrangian L1 is then CP invariant only if we transform

.CP/WC

 .CP/� D �ei�W W�
;

.CP/W�

 .CP/� D �e�i�W WC
;

.CP/�0.CP/� D �0�;

.CP/Z0
.CP/� D �Z0
:

The first line of the LagrangianL3 in Eq. (9.6) is invariant under the transformations

.CP/u˛.CP/� D ei�˛ i	 2	 0u�̨;

.CP/u˛.CP/� D �e�i�˛ iuT
˛	

2;

.CP/dk.CP/� D ei�k i	 2	 0d�
k ;

.CP/dk.CP/� D �e�i�k idT
k 	

2;

where �˛; �k are arbitrary real numbers (and spinor components are anticommuting).
Consider the term

�C
 
X

˛

g˛u˛RV˛kdkL

!

in L3. Its CP transform is

.CP/�C
 
X

˛

g˛u˛RV˛kdkL

!

.CP/� D �ei.�W ��˛C�k/��
 
X

˛

g˛uT
˛R	

0V˛kd�
kL

!

D ei.�W ��˛C�k/��
 
X

˛

g˛dkLV˛ku˛R

!

:
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Comparing with the last term in L3 we see that CP invariance of the Lagrangian
implies that

V �̨
k D ei.�W ��˛C�k/V˛k:

This implies

Q�
uscb D V�

usV
�
cbVubVcs

D VusVcbV�
ubV�

cs

D Quscb:

Hence Quscb is real and the Jarlskog invariant J D 0.
We can argue similarly with the Lagrangian L2: consider the term

X

˛;k

u˛L	

V˛kdkLWC


 :

Its CP transform is

.CP/

 
X

˛;k

u˛L	

V˛kdkLWC




!

.CP/� D �ei.�W ��˛C�k/
X

˛;k

uT
˛L	

2	 
	 2	 0V˛kd�

kLW�


D �ei.�W ��˛C�k/
X

˛;k

uT
˛L	


�	 0V˛kd�

kLW�


D ei.�W��˛C�k/
X

˛;k

dkL	
V˛ku˛LW�
:

Comparing this with the second term in L2 we conclude again that

V �̨
k D ei.�W ��˛C�k/V˛k;

hence J D 0.
Conversely, it can be shown that if J D 0, then all terms in the Standard Model

Lagrangian are CP invariant. ut

Corollary 9.3.12 Since in nature J  3:04 � 10�5 ¤ 0, the action of the
Standard Model is not CP invariant.
A similar discussion can be done with the PMNS matrix describing neutrino
mixing. If the corresponding Jarlskog invariant is non-zero, then neutrino
mixing also leads to CP violation.
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9.3.4 Further Reading

The book [22] by G.C. Branco, L. Lavoura and J.P. Silva is a very good source for
numerous details on CP violation. The paper [66] by W. Grimus and M.N. Rebelo
is a mathematical reference for CP violation in general gauge theories.

9.4 Vacuum Polarization and Running Coupling Constants

So far we have treated the parameters of the Standard Model, in particular, the
coupling constants of the gauge interactions and the masses of the particles, as
constants. This is only true at the classical or tree level, i.e. to zeroth order in
the Planck constant „. If quantum corrections in higher order of „ are taken into
account, which can be calculated using loop diagrams and renormalization, it turns
out that the masses and the coupling constants depend on an energy scale 
 with
respect to a fixed renormalization scheme. In particular, the coupling constants g
become functions g.
/. These functions are known as running coupling constants.
In this section we depart from the usual course and discuss (without proofs) this
quantum effect, as a preparation for Sect. 9.5 on Grand Unification.

The quantum corrections to the coupling constants are interpreted as vacuum
polarization. Corresponding loop diagrams are shown in Fig. 9.2, involving a
fermion loop, a gauge loop with two 3-boson vertices and a gauge loop with a 4-
boson vertex (these diagrams and more details can be found in [125, 137]). For an
abelian gauge theory with no direct interaction between gauge bosons, there is only
the diagram on the left with a fermion loop.

The dependence on the energy scale is given by the following differential
equation



@g

@

D ˇ.g/;

Fig. 9.2 Vacuum polarization diagrams
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where ˇ is the so-called beta function. It can be proved that to lowest order (one-
loop) approximation the beta function is of the form

ˇ.g/ D 1

4�
bg3

for a certain constant b. We get

dg

g3
D 1

4�
b

d




;

which can be integrated with respect to an arbitrary reference energy 
0 D M. This
yields:

Proposition 9.4.1 (Running Coupling Constants) The energy dependence of the
coupling constant g is given in one-loop approximation by

1

g.
/2
D 1

g.M/2
� 1

2�
b ln




M

where b is a constant and M an arbitrary reference energy. If ln 


M is small, then

g.
/  g.M/

�

1C 1

4�
g.M/2b ln




M

�

:

We see that the sign of b determines whether g.
/ increases or decreases as the
energy scale 
 increases:

• if the constant b is positive, then g.
/ increases as the energy scale 
 increases
• if b is negative, then g.
/ decreases as the energy scale 
 increases.

Our aim is to give a formula for b depending on the gauge group G and the fermion
representations.

It will turn out that the vacuum polarization diagram involving the fermion
loop gives a positive contribution to b: at long distances (low energies) the
vacuum polarization due to the fermion loop shields the charges and reduces
the effective coupling.

On the other hand, the vacuum polarization diagrams involving gauge
boson loops in non-abelian gauge theories give a negative contribution to
b: at long distances the interactions between the gauge bosons increase the
effective coupling. As a consequence, if the gauge group is non-abelian and
there are not too many fermions in the theory, the constant b will be negative,
hence the coupling g.
/ will be strong at low energies and weak at high
energies.
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9.4.1 Casimir Operators

In this subsection we follow [125, Sect. 25.1]. Suppose that G is a semisimple Lie
group with Lie algebra g of dimension n. According to Cartan’s Criterion 2.4.9 the
Killing form Bg is non-degenerate. Let fTagn

aD1 be an arbitrary basis of g and

Bab D Bg.Ta;Tb/:

The n � n-matrix B is invertible and we denote the entries of the inverse matrix by
Bab.

Definition 9.4.2 Let RW G ! GL.V/ be a representation of G. Then we define the
Casimir operator on V by

OC2.R/ D
nX

a;bD1
BabR�.Ta/ ı R�.Tb/ 2 End.V/:

If R D AdG is the adjoint representation, then we write OC2.R/ D OC2.G/.
It can be shown that the Casimir operator is independent of the choice of basis fTag.

Lemma 9.4.3 The Casimir operator OC2.R/ commutes with all generators R�.Ta/

for a D 1; : : : ; n.

Definition 9.4.4 Suppose that R is an irreducible complex representation. Since the
Casimir operator commutes with all generators, it follows by Schur’s Lemma that

OC2.R/ D C2.R/IdV

for some complex number C2.R/, called the Casimir invariant of the represen-
tation. If G is simple and R the complexified adjoint representation (which is
irreducible), we write C2.R/ D C2.G/.

Lemma 9.4.5 Let G D SU.N/ and RW SU.N/ ! GL.N;C/ be the fundamental
(defining) representation. Then

C2.G/ D N;

C2.R/ D N2 � 1

2N
:

For more mathematical details on the Casimir operator see, for example, [83,
Sect. V.4].
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9.4.2 Running Coupling for Gauge Theories with Fermions

Suppose we have an abelian gauge theory with Lie group G D U.1/. We fix the
scalar product on u.1/ such that the vector i 2 u.1/ has length 1=g2, where g is the
coupling constant. We consider Nf massless Weyl fermions  f in representations

�qf W U.1/ �! U.1/

z 7�! zqf

of U.1/, where f D 1; : : : ;Nf and qf are integers (winding numbers). We cite the
following theorem from quantum field theory:

Theorem 9.4.6 (Vacuum Polarization in Abelian Gauge Theories) Consider the
gauge group G D U.1/. Taking into account the massless fermion one-loop
contribution to the vacuum polarization, the constant b is given by

b D 1

6�

NfX

f D1
q2f :

References for this formula are [125, Sect. 16.3.3] (for one Dirac fermion of charge
q D 1) and [80, equation (4.21)] (for arbitrary Weyl fermions).

Example 9.4.7 For QED with gauge group U.1/Q and one Dirac electron we get

bQ D 1

3�
:

In general, we see that every fermion in abelian gauge theories gives a positive
contribution to b.

Since bQ is positive in QED, the electric coupling constant e.
/ increases
with increasing energy scale 
.

We can also calculate the vacuum polarization in the case of non-abelian gauge
theories: suppose we have a gauge theory with simple Lie group G D SU.Nc/ of
dimension n D N2

c � 1. We fix the Ad-invariant scalar product on su.Nc/ by

� 1

Ncg2
Bsu.Nc/.X;Y/ D 2tr.X � Y/ 8X;Y 2 su.Nc/;
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where g is the coupling constant. We consider Nf massless Weyl fermions  j in
representations Rf of G, where f D 1; : : : ;Nf . We again cite without proof a theorem
from quantum field theory:

Theorem 9.4.8 (Vacuum Polarization in Non-abelian Gauge Theories) Con-
sider the gauge group G D SU.Nc/. Taking into account the gauge boson and
massless fermion one-loop contributions to the vacuum polarization, the constant b
is given by

b D � 1

4�

0

@11

3
� C2.G/�

NfX

f D1

2

3
� T.Rf /

1

A

where

T.R/ D 1

n
d.R/ � C2.R/

and d.R/ is the dimension of the representation R. For G D SU.Nc/ with n D N2
c �1

we have

C2.SU.Nc// D Nc

and

T.R/ D 1

2

for the fundamental representation R and

T.R/ D 0

for the trivial representation R.
References for this formula (which holds for an arbitrary simple gauge group G
with a suitably normalized Ad-invariant scalar product on the Lie algebra) are [125,
equation (26.93)], [144, equation (17.5.41)], [85, Part I, equation (2.2)] (with Dirac
fermions) and [80, equation (4.29)] (for Weyl fermions). The formula shows that
the non-abelian group G itself (the vacuum polarization due to gauge boson loops)
gives a negative contribution to b, while the vacuum polarization due to the fermion
loops give a positive contribution.

The formulas in the following examples for the Standard Model can also be found
in [85, Part I, equation (2.4)].
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Example 9.4.9 In QCD we have G D SU.3/C and 6 flavours of quarks, i.e. 12Weyl
fermions in the fundamental representation. We get in the limit of massless quarks

bC D � 1

4�

�
11

3
� 3 � 2

3
� 12 � 1

2

�

D � 7

4�
:

Since bC is negative in QCD, the strong coupling constant gs.
/ gets smaller
as the energy scale 
 increases. This is known as asymptotic freedom and
was discovered by David J. Gross, H. David Politzer and Frank Wilczek
(Nobel Prize in Physics 2004).

Asymptotic freedom is not only theoretically interesting, but also practi-
cally very useful, because it shows that QCD at high energies is amenable to
perturbation theory. For low energies the strong coupling constant gs.
/ is
large, hence QCD becomes non-perturbative.

Example 9.4.10 In the weak interaction described by the group G D SU.2/L we
have in each generation three quark doublets of colours red, green and blue and
one lepton doublet, giving in total 12 doublets of left-handed Weyl fermions in the
fundamental representation. We also have right-handed quarks and fermions in the
trivial representation that have T.R/ D 0. In the limit of massless fermions,

bL D � 1

4�

�
11

3
� 2� 2

3
� 12 � 1

2

�

D � 5

6�
:

Example 9.4.11 In the hypercharge interaction described by the group G D U.1/Y
and coupling constant g0 we get with correctly normalized coupling constant

g D g0

6

and charges

q D 3y

in the limit of massless fermions in three generations of the representations

.3; 2/1=3 ˚ .3; 1/4=3 ˚ .3; 1/�2=3 ˚ .1; 2/�1 ˚ .1; 1/�2

the coefficient

bY D 1

6�
� 1
36

� 3 � .6 � 1C 3 � 16C 3 � 4C 2 � 9C 1 � 36/ D 5

3�
:
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9.4.3 Experimental Values for Coupling Constants

We discuss some experimental values of coupling constants (following [108, 109]).
At the energy scale


 D mZ D 91:1876˙ 0:0021GeV;

where mZ is the mass of the Z0-boson, the electric fine-structure constant, the strong
fine-structure constant and the Weinberg angle are given by (with respect to the
minimal subtraction renormalization scheme MS)

˛e.mZ/
�1 D 127:950˙ 0:017;

˛s.mZ/ D 0:1182˙ 0:0016;

sin2 �W.mZ/ D 0:23129˙ 0:00005:

The coupling constants g are related to the fine-structure constants by g D p
4�˛.

Together with

gw D 1

sin �W
e;

g0 D 1

cos �W
e;

the coupling constants corresponding to the factors of the Standard Model gauge
group SU.3/C � SU.2/L � U.1/Y are seen to be:

gs.mZ/  1:22;

gw.mZ/  0:652;

g0.mZ/  0:357:

Since

bC < bL < 0 < bY

it is conceivable that there is some high energy 
 � mZ where the coupling
constants gs; gw; g0 become equal (to make this argument precise one has to rescale
g0 suitably; see Sect. 9.5.3). This leads to the idea of Grand Unification that we
discuss in Sect. 9.5.
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9.4.4 Further Reading

The books [80] by T.J. Hollowood, [125] by M.D. Schwartz and [144] by S. Wein-
berg discuss vacuum polarization. The section by A. Masiero in the book [85] and
Sect. 5.5 in the book [96] by R.N. Mohapatra also have short accounts of running
coupling constants in connection with Grand Unification.

9.5 Grand Unified Theories

The gauge group of the Standard Model is the compact Lie group

GSM D SU.3/C � SU.2/L � U.1/Y :

The idea of Grand Unification is to unify all forces described by the Standard
Model into a simple Lie group with only a single coupling constant. Even though the
coupling constants of the strong, weak and electromagnetic interaction are different
at energies around 100 GeV, the existence of such a unified theory is not impossible
from the outset, because of the quantum effect of running coupling discussed in
Sect. 9.4 (this was first realized by H. Georgi, H.R. Quinn and S. Weinberg in 1974
[61]). Strictly speaking, the electroweak interaction, described by the gauge group
SU.2/L � U.1/Y , is not a unification of the weak and electromagnetic interaction in
this sense, because it still involves two coupling constants.

After some general remarks, we want to study in this section the Grand Unified
Theories described by the simple Lie groups SU.5/ and Spin.10/. We follow the
mathematical reference [9] and the physics references [85] and [96] throughout this
section.

9.5.1 Group Theoretic Preliminaries

Definition 9.5.1 We call a Lie group G a possible Grand Unification group if it
has the following properties:

• G is simple, so that it has only one coupling constant, or G is a product of several
copies of the same simple group, where the coupling constant for each factor is
set the same (by a discrete symmetry).

• The Lie group G contains (a finite quotient of) the Standard Model group SU.3/�
SU.2/ � U.1/.

• G admits complex representations not isomorphic to their complex conjugates;
see Sect. 8.5.3.
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We would like to find all possible Grand Unification groups. It is more suitable to
classify these groups according to rank (the maximal dimension of an embedded
torus subgroup) than according to dimension. The Standard Model group SU.3/ �
SU.2/ � U.1/ has rank 4. A possible Grand Unification group therefore must have
rank at least 4. We restrict to the three simplest cases where G has rank 4, 5 or 6.

Using the Killing–Cartan Theorem 2.4.23 on the classification of compact simple
Lie algebras we can list all simple (and simply connected) compact Lie groups of
rank less than or equal to 6:

• rank 1: SU.2/
• rank 2: SU.3/, Spin.5/, G2

• rank 3: SU.4/, Spin.7/, Sp.3/
• rank 4: SU.5/, Spin.8/, Spin.9/, Sp.4/, F4
• rank 5: SU.6/, Spin.10/, Spin.11/, Sp.5/
• rank 6: SU.7/, Spin.12/, Spin.13/, Sp.6/, E6.

The semisimple Lie groups of rank 4 with a single coupling constant are therefore
(see the first part of Exercise 2.7.18)

SU.2/4;

SU.3/2;Spin.5/2; .G2/
2;

SU.5/;Spin.8/;Spin.9/;Sp.4/;F4

(an exponent k denotes the product of k copies of the group). The semisimple Lie
groups of rank 5 with a single coupling constant are

SU.2/5;

SU.6/;Spin.10/;Spin.11/;Sp.5/:

The semisimple Lie groups of rank 6 with a single coupling constant are

SU.2/6:

SU.3/3;Spin.5/3; .G2/
3:

SU.4/2;Spin.7/2;Sp.3/2:

SU.7/;Spin.12/;Spin.13/;Sp.6/;E6:

According to [104, Sect. 5.4] the only compact, simply connected, simple Lie
groups which have representations not isomorphic to their complex conjugates are

SU.n/ for n � 3;

Spin.4n C 2/ for n � 1;

E6:
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This implies:

Proposition 9.5.2 The only possible Grand Unification groups of rank less than or
equal to 6 are:

• rank 4: SU.3/2 and SU.5/
• rank 5: SU.6/ and Spin.10/
• rank 6: SU.3/3, SU.4/2, SU.7/ and E6.

Here are some references where actual Grand Unified Theories using these groups
(except SU.3/2 and SU.4/2) have been constructed:

• rank 4:

– SU.5/: the Georgi–Glashow theory [59] with gauge group SU.5/ from 1974
was the first Grand Unified Theory based on a simple Lie group. In the same
paper the Lie group SU.3/2 is ruled out for physical reasons, leaving SU.5/
as the only GUT group of rank 4.

• rank 5:

– Spin.10/: the SO.10/ theory, as it is called in physics, was first developed by
H. Georgi [58] and H. Fritzsch and P. Minkowski [56] in 1975.

– SU.6/: there is a theory of A. Hartanto and L.T. Handoko [72] from 2005.

• rank 6:

– E6: a Grand Unified Theory with this gauge group arises naturally in heterotic
string theory and was first developed by F. Gürsey, P. Ramond and P. Sikivie
[68] in 1976.

– SU.3/3: there is a theory called Trinification with this gauge group proposed
by A. de Rújula, H. Georgi and S.L. Glashow [63] in 1984.

– SU.7/: a Grand Unified Theory based on this Lie group was studied by
K. Yamamoto [151] in 1981.

Our aim is to discuss in some detail the Grand Unified Theories corresponding to the
simple Lie groups SU.5/ and Spin.10/ (we only consider Grand Unified Theories
defined on 4-dimensional Minkowski spacetime).

9.5.2 Embeddings of the Standard Model Gauge Group
GSM=Z6 into the Simple Lie Groups SU.5/ and Spin.10/

We describe how the gauge group of the Standard Model (actually a Z6 quotient of
it) can be embedded into the simple Lie groups SU.5/ and Spin.10/ (we follow [9]).

Definition 9.5.3 For integers m; n � 1 we set

S.U.m/ � U.n// D f.A;B/ 2 U.m/ � U.n/ j det A � det B D 1g:
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The Lie group S.U.m/ � U.n// is naturally a subgroup of SU.m C n/ under the
embedding

S.U.m/ � U.n// �! SU.m C n/

.A;B/ 7�!
�

A 0

0 B

�

:

We set

GSM D SU.3/C � SU.2/L � U.1/Y :

Proposition 9.5.4 (Embedding of GSM=Z6 into SU.5/) The Lie group homomor-
phism

f W GSM �! SU.5/

.g; h; ˛/ 7�!
�

g˛�2 0

0 h˛3

�

induces an injective Lie group embedding

Nf W GSM=K ,! SU.5/

with image

S.U.3/ � U.2// � SU.5/:

Here K Š Z6 is the subgroup

K D ˚�
˛2I3; ˛

�3I2; ˛
� 2 GSM j ˛ 2 U.1/; ˛6 D 1

�
:

Proof It is clear that f is a Lie group homomorphism to U.5/. The image is
contained in SU.5/, since

det

�
g˛�2 0

0 h˛3

�

D .det g/˛�6.det h/˛6

D 1:

We show that f is surjective onto S.U.3/ � U.2//: let

�
A 0

0 B

�

2 S.U.3/ � U.2// � SU.5/:
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There exists a complex number ˛ 2 U.1/ such that A˛2 2 SU.3/. Consider the
matrix B˛�3. Then

1 D .det A/.det B/

D .det A/˛6.det B/˛�6

D det
�
A˛2

�
det
�
B˛�3�

D det
�
B˛�3� :

Hence B˛�3 2 SU.2/ and

�
A 0

0 B

�

D f
�
A˛2;B˛�3; ˛

�
:

We show that the kernel of f is K: suppose

f .g; h; ˛/ D
�

I3 0
0 I2

�

:

Then

g D ˛2I3;

h D ˛�3I2:

Since g 2 SU.3/ and h 2 SU.2/ we have

1 D det g D ˛6;

1 D det h D ˛�6:

This proves the claim. ut
Proposition 9.5.5 For all n � 2 there exists a canonical Lie group embedding

hW SU.n/ ,! Spin.2n/:

Proof According to Exercise 1.9.10 there exists an embedding

U.n/ ,! SO.2n/

and thus

SU.n/ ,! SO.2n/:
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Since SU.n/ is simply connected and Spin.2n/ ! SO.2n/ is a covering map, this
embedding can be lifted to an embedding

SU.n/ ,! Spin.2n/:

ut
Together with Proposition 9.5.4 we get:

Corollary 9.5.6 (Cascade of Grand Unification Groups) There exists a
sequence of Lie group embeddings

GSM=Z6 ,! SU.5/ ,! Spin.10/:

Under the first embedding GSM=Z6 gets identified with S.U.3/ � U.2//.
Together with an embedding of Spin.10/ into the exceptional simple Lie
group E6 (see [8, 46]), these groups form the famous cascade of simple Grand
Unification groups down to the Z6 quotient of the Standard Model group:

GSM=Z6 � SU.5/ � Spin.10/ � E6:

In the physics literature (e.g. [126]) the Lie group Spin.10/ is sometimes
called E5 and the Lie group SU.5/ is called E4.

Remark 9.5.7 The Lie group Spin.10/ actually contains the larger compact embed-
ded Lie group

SU.5/ � U.5/=Z3 � Spin.10/:

In the physics literature on Grand Unification the group U.5/=Z3 is often denoted
by SU.5/ � U.1/. See Exercise 9.7.4 for more details.

9.5.3 Normalized Hypercharge and Unification of Coupling
Constants

We saw in Sect. 9.4 that, due to the quantum effect of running couplings, there is
a possibility that the coupling constants of the strong and electroweak interactions
become the same at some high energy. We discuss this in more detail (we follow
[85] and [96]).

In this subsection we consider a simple Grand Unification group G. Under the
embedding of GSM=Z6 into G, all basis vectors of GSM must be normalized, because
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they belong to an orthonormal basis of the Lie algebra g. This means that with
respect to the Killing form of g, the basis vectors

ˇ0
3 D i�3

2
2 su.2/L;

ˇ0
4 D 

i

6
2 u.1/Y

should have the same length, where  > 0 is a normalization constant to be
determined. We first consider the case G D SU.5/ with the embedding given by
Proposition 9.5.4. Under this embedding

ˇ0
3 7�!

�
0 0

0 i�3
2

�

;

ˇ0
4 7�! 

0

B
B
B
B
B
@

� 1
3

� 1
3

� 1
3
1
2
1
2

1

C
C
C
C
C
A

:

According to Exercise 2.7.16 the Killing form of su.5/ is given by

Bsu.5/.X;Y/ D 10tr.X � Y/;

hence

�Bsu.5/.ˇ
0
3; ˇ

0
3/ D 5;

�Bsu.5/.ˇ
0
4; ˇ

0
4/ D 25

3
2:

A similar argument shows that the basis of su.3/C already has the correct normal-
ization. This implies:

Proposition 9.5.8 The correctly normalized coupling constants of GSM under the
embedding of GSM=Z6 into SU.5/ are given by

gs; gw and g00 D
r
5

3
g0:

For a general simple Grand Unification gauge group G we can argue as follows: let
� denote the representation of GSM on one generation of left-handed fermions and
antifermions (see Eq. (8.13)):

Vi
L ˚ ViC

L D .3; 2/1=3 ˚ .N3; 1/�4=3 ˚ .N3; 1/2=3 ˚ .1; 2/�1 ˚ .1; 1/2:
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The vectors ˇ0
3; ˇ

0
4 act under �� as

��ˇ0
3 D iT3;

��ˇ0
4 D i

Y

2
:

The symmetric bilinear form

g � g �! R

.X;Y/ 7�! tr.��X ı ��Y/

is AdG-invariant, hence by Theorem 2.5.1 it must be a multiple of the Killing form.
We have

�tr
�
��ˇ0

3 ı ��ˇ0
3

� D tr
�
T
2
3

�

D 3 � 2 � 1
4

C 2 � 1
4

D 2;

�tr
�
��ˇ0

4 ı ��ˇ0
4

� D 1

4
2tr

�
Y
2
�

D 1

4
2
�

3 � 2 � 1
9

C 3 � 16
9

C 3 � 4
9

C 2 � 1C 1 � 4
�

D 2
10

3
:

Setting

tr
�
��ˇ0

3 ı ��ˇ0
3

� D tr
�
��ˇ0

4 ı ��ˇ0
4

�

we conclude again that

 D
r
3

5
:

From Sect. 9.4 the correctly normalized running coupling constants are given by

1

gs.
/2
D 1

gs.M/2
C 7

8�2
ln



M
;

1

gw.
/2
D 1

gw.M/2
C 5

12�2
ln



M
;

1

g00.
/2
D 1

g00.M/2
� 1

2�2
ln



M
:
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With the approximate values

gs.mZ/  1:22;

gw.mZ/  0:652;

g00.mZ/  0:461

at mZ  91GeV we get (see also Fig. 9.3)

gs.
/ D gw.
/  0:508 at 
  1017:68 GeV;

gs.
/ D g00.
/  0:556 at 
  1014:53 GeV;

gw.
/ D g00.
/  0:541 at 
  1012:96 GeV:

We see that the running coupling constants do not exactly match at the same energy,
but as a first approximation this is roughly true. In supersymmetric Grand Unified
Theories (where more particles take part in loop diagrams) the running coupling
constants become equal to a much better approximation.

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

log
10

(μ/GeV)

α
s
−1(μ)

α
w
−1(μ)

α’’−1(μ)

Fig. 9.3 Approximate unification of running fine-structure constants ˛ D g2=.4�/
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At an energy where gw D g00, we get for the Weinberg angle �W the prediction

tan2 �W D g02

g2w
D 3

5
;

hence

sin2 �W D 3

8
D 0:375:

The experimental value for the Weinberg angle at the much lower energy mZ is

sin2 �W D 0:23129˙ 0:00005:

The difference could be explained with a running coupling effect, i.e. quantum
corrections.

9.5.4 The Fermions in the SU.5/ Grand Unified Theory

We discuss two specific representations of SU.5/ and understand how they decom-
pose under restriction to the subgroup GSM=Z6 (we follow [9] and [96]).

Lemma 9.5.9 Consider the complex conjugate NC5 of the fundamental representa-
tion of SU.5/. Under the restriction to the subgroup GSM=Z6 this representation has
the branching rule

N5 D
�
.N3; 1/2=3
.1; N2/�1

�

:

Proof Consider the Lie group homomorphism

f W GSM �! SU.5/

.g; h; ˛/ 7�!
�

g˛�2 0

0 h˛3

�

and decompose the column vectors in C
5 into the first three components C

3 and
the last two components C

2. On the complex conjugate NC5 of the fundamental
representation an element .g; h; ˛/ 2 GSM acts on the first three components
x 2 NC3 as

.g; h; ˛/ � x D Ng˛2x
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and on the last two components y 2 NC2 as

.g; h; ˛/ � y D Nh˛�3y:

According to Lemma 8.5.1 the representation

˛ � x D ˛2x

has y D 2=3 and the representation

˛ � y D ˛�3y

has y D �1. Therefore the representation NC5 splits as

N5 D .N3; 1/2=3 ˚ .1; N2/�1:

ut
Note that for the fundamental SU.2/ representation N2 Š 2 by Exercise 2.7.3.

Lemma 9.5.10 Consider the representation �2
C
5 Š C

10 of SU.5/. Under the
restriction to the subgroup GSM=Z6 this representation has the branching rule

10 D
0

@
.N3; 1/�4=3 .3; 2/1=3

.1; 1/2

1

A (antisymmetric):

Proof We identify �2
C
5 with the complex 5 � 5 antisymmetric matrices X. Then

M 2 SU.5/ acts on X by

M � X D MXMT :

We write X as

X D

0

B
B
B
B
B
@

0 a3 �a2 b11 b12
0 a1 b21 b22

0 b31 b32
0 c

0

1

C
C
C
C
C
A

(antisymmetric)

D
�

A B
�BT C

�
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with

A D
0

@
0 a3 �a2

�a3 0 a1
a2 �a1 0

1

A ; B D
0

@
b11 b12
b21 b22
b31 b32

1

A ; C D
�
0 c

�c 0

�

:

We consider the Lie group homomorphism

f W GSM �! SU.5/

.g; h; ˛/ 7�!
�

g˛�2 0

0 h˛3

�

:

Then .g; h; ˛/ acts on X by

.g; h; ˛/ � X D
�

g˛�2 0

0 h˛3

��
A B

�BT C

��
gT˛�2 0

0 hT˛3

�

D
�

gAgT˛�4 gBhT˛

�hBTgT˛ hChT˛6

�

:

We can directly read off the hypercharges:

yA D �4=3;
yB D 1=3;

yC D 2:

It is clear that the SU.3/ � SU.2/ representation on B is .3; 2/ and on the
1-dimensional space C it can only be .1; 1/. Exercise 9.7.5 shows that the repre-
sentation on A is .N3; 1/. ut
Comparing with Eq. (8.13) we have:

Theorem 9.5.11 (Fermions in SU.5/ Grand Unification) The representa-
tion N5 ˚ 10 of SU.5/ under restriction to the subgroup GSM=Z6 has the
branching rule

N5 ˚ 10 D .N3; 1/2=3 ˚ .1; N2/�1 ˚ .N3; 1/�4=3 ˚ .3; 2/1=3 ˚ .1; 1/2:

The representation on the right is isomorphic to the representation Vi
L ˚ ViC

L
of one full generation of left-handed fermions and antifermions. The explicit

(continued)
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Theorem 9.5.11 (continued)
identification is given by

N5 D

0

B
B
B
B
B
@

dC
r

dC
g

dC
b

e
�e

1

C
C
C
C
C
A

L

10 D

0

B
B
B
B
B
@

0 uC
b �uC

g ur dr

0 uC
r ug dg

0 ub db

0 eC

0

1

C
C
C
C
C
A

L

(antisymmetric):

The particle fields which appear in these formulas are the current eigenstates
that correspond to the weak eigenstates in the Standard Model.

Remark 9.5.12 We can add a left-handed sterile antineutrino in the trivial singlet
representation C of SU.5/. Then the left-handed fermions and antifermions form a
16-dimensional representation

1 ˚ N5 ˚ 10 D C ˚ NC5 ˚�2
C
5:

All fermions and antifermions (left-handed and right-handed) together then form
the 32-dimensional representation

1 ˚ N5 ˚ 10 ˚ N10 ˚ 5 ˚ 1 D ��
C
5:

It is very remarkable that the very simple, decomposable SU.5/-representation
��

C
5 thus suffices to describe all fermions. This discussion and more details can

be found in [9].

9.5.5 The Fermions in the Spin.10/ Grand Unified Theory

The idea of the Grand Unified Theory with Lie group Spin.10/ is to look for a
representation of Spin.10/ that under restriction to the subgroup SU.5/ decomposes
into the representation N5 ˚ 10. As we saw in Sect. 9.5.4 this representation then
decomposes under restriction to GSM=Z6 into the Standard Model representation.
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The most natural representation of the Lie group Spin.10/ is the spinor rep-
resentation. The Weyl spinor representations of Spin.10/ have dimension 16. We
want to show that these representations can accommodate the 16-dimensional
representations of one full generation of fermions and antifermions, including a
sterile neutrino, mentioned in Remark 9.5.12 (we follow in this subsection [9]).

We consider more generally for an arbitrary integer n � 2 the Lie group
Spin.2n/. Recall from Sect. 6.4 and Sect. 6.5 that this spin group has a Dirac spinor
representation on� Š C

2n
which is reducible and decomposes into the Weyl spinor

representations

� D �C ˚��;

where�˙ each have half dimension. Note that

� Š ��
C

n

as complex vector spaces. In fact, we can realize the spinor representation on �
explicitly on ��

C
n:

Lemma 9.5.13 (Dirac Spinor Representation of Spin.2n/ on ��
C

n) For u 2 C
n

let

˛.u/W��
C

n �! ��
C

n

! 7�! ˛.u/! D u ^ !

and

ˇ.u/W��
C

n �! ��
C

n

! 7�! ˇ.u/! D uy!:

Then the complex Dirac spinor representation of Cl.2n/ on � Š ��
C

n is induced
by the following Clifford multiplication of vectors

.u; v/ 2 C
n ˚ C

n D C
2n

on the exterior algebra��
C

n:

ı.u; v/W��
C

n �! ��
C

n

! 7�! ı.u; v/! D .˛.u/ � ˇ.u//! � i.˛.v/C ˇ.v//!:

Proof The original proof is due to [7]. It is easy to check that ı satisfies

fı.x/; ı.y/g D �2q.x; y/ � 1 8x; y 2 C
2n:
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By the universal property of Clifford algebras there is an induced non-trivial algebra
homomorphism

�WCl.2n/ �! End
�
��

C
n
�
:

Both algebras are isomorphic to End
�
C
2n�

. The kernel of � is a two-sided ideal in
Cl.2n/ Š End

�
C
2n�

and hence, by a general property of endomorphism algebras,
either 0 or Cl.2n/. Since � is non-trivial, it follows that � is injective and hence an
isomorphism. ut
Remark 9.5.14 It can be shown that the subspaces of Weyl spinors correspond to
the forms of even and odd degree, where the precise association depends on the
integer n; see Exercise 9.7.6.
There is also a natural representation of SU.n/ on��

C
n induced by the fundamental

representation on C
n. Consider the Lie group embedding

hW SU.n/ ,! Spin.2n/

from Proposition 9.5.5.

Theorem 9.5.15 The Dirac spinor representation� of Spin.2n/ has under restric-
tion to the subgroup SU.n/ the following branching rule:

� D �0
C

n ˚�1
C

n ˚ : : :˚�n
C

n:

In particular, if the Dirac spinor representation of Spin.2n/ on ��
C

n (which
preserves only the parity of the degree) is restricted to SU.n/, it preserves the
integral degree of all forms.

Proof We need to find an explicit embedding of SU.n/ into Spin.2n/. It suffices to
do this on the level of Lie algebras. According to Exercise 1.9.10 the embedding

� W su.n/ �! so.2n/

can be realized by

A1 C iA2 7�!
�

A1 A2
�A2 A1

�

;

where A1;A2 are real n � n matrices with

AT
1 D �A1;

AT
2 D A2; trA2 D 0:
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Let e1; : : : ; e2n be the standard basis of R2n and let Ers denote the elementary 2n �
2n-matrix with a 1 at the intersection of the r-th row and s-th column and zeros
elsewhere. We set

�rs D Esr � Ers:

Applied to a standard basis vector ej we get

�rsej D ıjres � ıjser:

Then we can expand

�.A1 C iA2/ D �
X

1�r<s�n

�
Ars
1 .�rs C �rCn;sCn/C Ars

2 .�r;sCn C �s;rCn/
�

�
X

1�r�n

Arr
2 �r;rCn:

This follows because the sums of the �-matrices in this equation look like (indices
on 1 and �1 are matrix indices of the entry)

�rs C �rCn;sCn D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�1rs

1sr

�1rCn;sCn

1sCn;rCn

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

�r;sCn C �s;rCn D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�1r;sCn

�1s;rCn

1rCn;s

1sCn;r

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A
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�r;rCn D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�1r;rCn

1rCn;r

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Recall from Sect. 6.5.3 that the Lie algebra of Spin.2n/ is given by

spin.2n/ D spanferes 2 Cl.2n/ j 1 � r < s � 2ng

and the isomorphism

�W spin.2n/ �! so.2n/

maps

�.eres/ D 2�rs:

It follows that

�1� �.A1 C iA2/ D �1
2

X

1�r<s�n

�
Ars
1 .eres C erCnesCn/C Ars

2 .eresCn C eserCn/
�

� 1

2

X

1�r�n

Arr
2 ererCn:

To apply Lemma 9.5.13 we take for r � n the basis vector er in the first Cn-summand
and erCn in the second summand. Then a calculation shows that for a 1-form ! 2
�1

C
n and 1 � r < s � n

1

2
.eres C erCnesCn/ � ! D �q.es; !/er C q.er; !/es;

hence

�1
2

X

1�r<s�n

Ars
1 .eres C erCnesCn/ � ! D

X

r;s

Ars
1 q.es; !/er;

where we used that A1 is skew-symmetric.
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Similarly

1

2
.eresCn C eserCn/ � ! D �i.q.es; !/er C q.er; !/es/;

1

2
ererCn � ! D �i

�

q.er; !/er � 1

2
!

�

:

This implies

�1
2

X

1�r<s�n

Ars
2 .eresCn C eserCn/ � ! � 1

2

X

1�r�n

Arr
2 ererCn � ! D

X

r;s

iArs
2 q.es; !/er

since A2 is symmetric and trA2 D 0. We conclude that

�
�1� �.A1 C iA2/

� � ! D .A1 C iA2/! 8! 2 �1
C

n:

On the left we have the restriction of the spinor representation to SU.n/ and on the
right the fundamental representation of SU.n/. So far we have proved the claim on
�1

C
n, but it is possible to conclude from that the full claim on forms of arbitrary

degree. The details are left as Exercise 9.7.7. ut
Theorem 9.5.15 and Remark 9.5.14 imply:

Corollary 9.5.16 (Fermions in Spin.10/ Grand Unification) The Dirac
spinor representation 32 of Spin.10/ has under restriction to the subgroup
SU.5/ the branching rule

32 D 1 ˚ 5 ˚ 10 ˚ N10 ˚ N5 ˚ 1:

The Weyl spinor representations 16 and N16 of Spin.10/ have under restriction
to SU.5/ the branching rules

16 D 1 ˚ N5 ˚ 10;

N16 D 1 ˚ 5 ˚ N10:

From Remark 9.5.12 it follows that the Weyl spinor representation 16 of
Spin.10/ can accommodate one full left-handed generation of the Standard
Model and the Weyl spinor representation N16 one full right-handed generation,
including sterile neutrinos. We get for the first left-handed generation a

(continued)



582 9 Modern Developments and Topics Beyond the Standard Model

Corollary 9.5.16 (continued)
decomposition of the form

16 D �
�C

e

�
L

˚

0

B
B
B
B
B
@

dC
r

dC
g

dC
b

e
�e

1

C
C
C
C
C
A

L

˚

0

B
B
B
B
B
@

0 uC
b �uC

g ur dr

0 uC
r ug dg

0 ub db

0 eC

0

1

C
C
C
C
C
A

L

:

Note that the spinor representations of Spin.10/ force us to include a sterile
fermion, which can be interpreted as a sterile neutrino. In the case of SU.5/
we still had the choice whether we want to add a trivial 1-dimensional
representation 1. In some sense [111] the unification provided by the Spin.10/
theory is more complete than for the SU.5/ theory, because all (left-handed)
fermions of one generation belong to the single, irreducible representation 16.

Remark 9.5.17 See the remark after Exercise 9.7.9 for the U.1/ charges under
restriction of the spinor representation of Spin.10/ to the subgroup U.5/=Z3.

9.5.6 The Fermions in the E6 Grand Unified Theory

We briefly discuss (without proofs) the Grand Unification group E6 (see [87] for
more details). The Lie group E6 does not have a non-trivial 15- or 16-dimensional
representation, but it has a 27-dimensional representation 27. Under restriction to the
subgroup Spin.10/ this representation and its complex conjugate have the branching
rules

27 D 16 ˚ 10 ˚ 1;

N27 D N16 ˚ N10 ˚ 1:

Here 16 is the spinor representation and 10 the vector representation of Spin.10/.
As we saw in Sect. 9.5.5, the 16 can accommodate one left-handed generation of
the Standard Model, including a sterile neutrino. Similarly the N16 can accommodate
one right-handed generation. The representations 10, N10 and 1 correspond to new
fermions that so far have not been detected.
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9.5.7 Gauge Anomalies

It can be proved that the GUTs constructed above with gauge groups SU.5/ and
Spin.10/ (and E6) are anomaly free. See [85] for details.

9.5.8 The Gauge Bosons in the SU.5/ Grand Unified Theory

We want to study the gauge bosons in the SU.5/ Grand Unified Theory (we follow
[85]). We first discuss the embedding of the Lie algebra gSM into su.5/. According
to the calculation in Sect. 9.5.3 a correctly normalized basis for gSM is given by

ia

2
2 su.3/C;

i�b

2
2 su.2/L;

r
3

5

i

6
D i

r
1

60
2 u.1/Y :

Here a are the Gell-Mann matrices and �b the Pauli matrices. This implies:

Lemma 9.5.18 The embedding

f�W gSM �! su.5/

is given by mapping

 
8X

aD1
Ga

ia

2
;

3X

bD1
Wb

i�b

2
;Bi

r
1

60

!

to

ip
2

0

B
B
B
B
B
B
B
@

P8
aD1 Ga

ap
2

�
q

2
15

BI3 0

0
P3

bD1 Wb
�bp
2

C
q

3
10

BI2

1

C
C
C
C
C
C
C
A



584 9 Modern Developments and Topics Beyond the Standard Model

We conclude the following:

Theorem 9.5.19 (The SU.5/ Gauge Field) The SU.5/ gauge field A
 with values
in su.5/ is given by

A
 D igSU.5/p
2

0

B
B
B
B
B
B
B
B
B
@

X



1 Y



1
P8

aD1 G

a
ap
2

�
q

2
15

B
I3 X



2 Y



2

X



3 Y



3

X
1 X
2 X
3
P3

bD1 W

b
�bp
2

C
q

3
10

B
I2

Y
1 Y
2 Y
3

1

C
C
C
C
C
C
C
C
C
A

:

Here gSU.5/ is the coupling constant of SU.5/ and X
j ;Y


j are new gauge bosons,

corresponding to new forces not present in the Standard Model. We thus get 6
complex (12 real) additional gauge bosons. This is clear, because dim SU.5/ D 24

and dim GSM D 12.
From Remark 8.8.9 we expect that the off-diagonal X- and Y-bosons could lead

to interesting effects. To understand this in more detail we calculate the relevant part
of the Dirac Lagrangian (the same calculation, up to a different choice of signs, can
be found in [85]).

Theorem 9.5.20 (X- and Y-Boson Interaction Vertex) Consider the left-handed
interaction term in the Dirac Lagrangian, given by

ih L; 	

A
 Li:

The part of this term involving X- and Y-bosons can be calculated for the first
fermion generation as

LL;XY D �gSU.5/p
2

j
LXi
Xi
 � gSU.5/p

2
j
�LXi

Xi
 � gSU.5/p
2

j
LYi
Yi
 � gSU.5/p

2
j
�LYi

Yi


with the currents

j
LXi
D ��ijkujL	


uC
kL C eC

L	

diL C dC

iL	

eL;

j
LYi
D ��ijkdjL	


uC
kL � eC

L	

uiL C dC

iL	

�eL:

In each current the first two terms come from the representation 10 and the third
term from the representation N5. In the first summand there is a sum over indices j; k.
Quark indices 1; 2; 3 correspond to r; g; b. There are corresponding terms for the
second and third generation.
Feynman diagrams for these interactions are depicted in Figs. 9.4, 9.5, 9.6, 9.7.

In the interaction vertices in Figs. 9.4 and 9.6, an X- or Y-boson pairs a lepton and
a quark, hence the X- and Y-bosons are examples of so-called (vector) leptoquarks
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eC,dC

d,e

X
d,e

eC,dC

X

Fig. 9.4 X-boson: quark-lepton vertices

u

uC

X
uC

u

X

Fig. 9.5 X-boson: quark vertices

eC,dC

u, e

Y
u, e

eC,dC

Y

Fig. 9.6 Y-boson: quark-lepton vertices
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d

uC

Y
uC

d

Y

Fig. 9.7 Y-boson: quark vertices

u

u

dC

eC

X

Fig. 9.8 X-boson mediated proton decay

(there are theories beyond the Standard Model that also predict scalar leptoquarks).
The corresponding processes can convert a quark into a lepton or vice versa, hence
baryon and lepton numbers are not conserved (if the X- and Y-bosons are not
assigned both a baryon and lepton number).

In particular, the following process is possible (see Fig. 9.8): two up quarks
annihilate in an X-boson, that then decays into a positron and a down antiquark.
This leads to one of the most famous predictions of Grand Unified Theories: proton
decay:1

p.uud/ �! �0
�
ddC

�C eC: (9.7)

1This is a decay of isolated protons, not to be confused with the weak ˇC-decay that can only
occur for protons bound in certain nuclei.
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The GUT scale of � 1015 GeV is not directly accessible in experiments and
totally out of the reach of present day colliders. However, proton decay as a signature
of Grand Unification may in principle be observable, it is just extremely rare. This
is related to the extremely heavy mass of the X-boson, making the production of a
virtual X-boson via uu ! X very unlikely.

The predicted lifetime of the proton in the SU.5/ GUT is 1030 � 1031 years.
Experiments show that the lifetime of the proton for the decay into a pion and
positron in Eq. (9.7) is longer than 8:2 � 1033 years [106], hence the minimal version
of the SU.5/ GUT is already ruled out. In supersymmetric Grand Unified Theories
the lifetime of the proton becomes longer and can reach, depending on the model,
1034 � 1036 years or more (see [29] for a nice overview).

A similar discussion applies to the gauge bosons in the Spin.10/ theory. Since
dim Spin.10/ D 45, we get 33 additional gauge bosons compared to the Standard
Model; see [85] for more details.

9.5.9 Symmetry Breaking and the Higgs Mechanism
in the SU.5/ Grand Unified Theory

We briefly discuss symmetry breaking in the SU.5/ Grand Unified Theory (follow-
ing [85] and [96]). In the Standard Model, the gauge group

GSM D SU.3/C � SU.2/L � U.1/Y

is broken to

GCQ D SU.3/C � U.1/Q;

where according to Eq. (8.4) the unbroken electromagnetic group U.1/Q is the
subgroup

U.1/Q D
(��

eit=2 0

0 e�it=2

�

; eit=6

� ˇˇ
ˇ
ˇ
ˇ
t 2 R

)

� SU.2/L � U.1/Y :

The discrete subgroup K Š Z6 � GSM of elements of the form

�
˛2I3; ˛

�3I2; ˛
�
; ˛ 2 U.1/; ˛6 D 1;

is actually a subgroup of GCQ (since ˛�3 D ˛3) and we get an embedding

GCQ=Z6 � GSM=Z6:
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The embedding of GCQ=Z6 into SU.5/ is induced by the homomorphism

SU.3/C � U.1/Q �! SU.5/

.g; ˇ/ 7�!

0

B
B
B
@

gˇ�2 0

ˇ6 0

0
0 1

1

C
C
C
A

(9.8)

which is the restriction of f W GSM ! SU.5/ from Proposition 9.5.4 if we identify
ˇ 2 U.1/Q with

��
ˇ3 0

0 ˇ�3
�

; ˇ

�

2 SU.2/L � U.1/Y :

Symmetry breaking in the SU.5/ GUT occurs in two steps:

SU.5/ �! GSM=Z6 �! GCQ=Z6:

The first step

SU.5/ �! GSM=Z6

can be realized by a Higgs field � with values in

24 D su.5/

carrying the adjoint representation of SU.5/. To understand this, consider a Higgs
condensate �0 2 su.5/ of the form

�0 D iV 0

0

B
B
B
B
B
@

a
a

a
b

b

1

C
C
C
C
C
A

;

where a; b;V 0 are real numbers. Since �0 2 su.5/, we must have

0 D tr�0 D iV 0.3a C 2b/:
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Setting V D aV 0 this implies that

�0 D iV

0

B
B
B
B
B
@

1

1

1

� 3
2

� 3
2

1

C
C
C
C
C
A

(9.9)

with a real constant V .

Proposition 9.5.21 (Symmetry Breaking from SU.5/ to GSM=Z6) The isotropy
group SU.5/�0 of the vector �0 2 su.5/ in Eq. (9.9) (with V ¤ 0) under the adjoint
representation is the subgroup

S.U.3/ � U.2// Š GSM=Z6 � SU.5/:

Proof This is Exercise 9.7.10. ut
The second step

GSM=Z6 �! GCQ=Z6

can be realized by a Higgs field H with values in

5 D C
5

carrying the fundamental representation of SU.5/. Consider a Higgs condensate
H0 2 C

5 of the form

H0 D �

0

B
B
B
B
B
@

0

0

0

0
1p
2

1

C
C
C
C
C
A

(9.10)

where � is a real number. We then have:

Proposition 9.5.22 (Symmetry Breaking from GSM=Z6 to GCQ=Z6) The isotropy
group S.U.3/� U.2//H0 of the vector H0 2 C

5 in Eq. (9.10) (with � ¤ 0) under the
fundamental representation is the subgroup

GCQ=Z6 � GSM=Z6:

Proof This is immediate from Eq. (9.8). ut
In the model discussed so far, the potential for the Higgs fields is the sum V.�/ C
V.H/ of potentials for both fields. For phenomenological reasons it turns out that
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crossterms of the form V.�;H/ have to be included. The minimum �0 then takes
the form

�0 D iV

0

B
B
B
B
B
@

1

1

1

� 3
2

� �
2

� 3
2

C �
2

1

C
C
C
C
C
A

and thus also breaks SU.2/L.
With the correct Higgs fields determined, it is then possible to calculate the

masses of all broken gauge bosons. Finally, suitable Yukawa couplings can be
introduced to give masses to the fermions and there is a generalized version of
fermion mixing. A similar discussion applies to symmetry breaking in the Spin.10/
GUT. Details for these constructions and their physical consequences can be found
in [85] and [96].

9.5.10 Further Reading

The article [9] of J. Baez and J. Huerta from 2010 is a mathematical introduction to
the representations of the Standard Model and Grand Unified Theories. The review
articles [87] by P. Langacker and [131] by R. Slansky summarize the state of the
art in Grand Unification in 1981. The book [85] by C. Kounnas et al. from 1984
has a very readable account of the Standard Model and Grand Unification and the
book [96] by R.N. Mohapatra from 2003 contains details on Grand Unification and
supersymmetry. Shorter expositions of GUTs can be found in the paper [148] by
E. Witten from 2002 and the gauge theory books [10] by D. Bailin and A. Love
(1993) and [32] by M. Chaichian and N.F. Nelipa (1984).

9.6 A Short Introduction to the Minimal Supersymmetric
Standard Model (MSSM)

In this section we give a very brief introduction to supersymmetry. In addition
to Lorentz invariance and gauge symmetry, Lagrangians (or actions) of field
theories can be supersymmetric. The Standard Model itself is not supersymmetric,
but can be extended to a (Minimal) Supersymmetric Standard Model by adding
superpartners to the known particles. Some of these superpartners are potential dark
matter candidates. Supersymmetry also offers a solution to the so-called hierarchy
problem concerning the unnatural smallness of the Higgs boson mass. Furthermore,
Grand Unification becomes more realistic (for example, the predicted decay rate
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of the proton and the unification of coupling constants) under the assumption of
supersymmetry.

These are some of the reasons to believe that supersymmetry is realized (as a
broken symmetry) in nature. In addition to yielding extensions of the Standard
Model, supersymmetric field theories are also theoretically interesting, because
they are often better understood non-perturbatively (at strong coupling) than non-
supersymmetric field theories.

9.6.1 Graded Lie Algebras and the Supersymmetry Algebra

In this subsection we define graded Lie algebras and the supersymmetry algebra (we
follow [53]).

Definition 9.6.1 A graded Lie algebra is an algebra, i.e. a vector space L D L0 ˚
L1 with a bilinear product

�W L � L �! L;

that has the following properties for all xi 2 Li; xj 2 Lj:

1. Grading:

xi � xj 2 LiCj mod 2

2. Supersymmetry:

xi � xj D �.�1/ijxj � xi

3. Super Jacobi identity:

xk � .xl � xm/.�1/km C xl � .xm � xk/.�1/lk C xm � .xk � xl/.�1/ml D 0:

The vector subspace L0 is called the even part and L1 the odd part.
It follows that the product � is

• antisymmetric on L0 � L0 and maps to L0 (written as Œ� ; ��)
• symmetric on L1 � L1 and maps to L0 (written as f� ; �g)
• antisymmetric on L1 � L0 and L0 � L1 and maps to L1 (written as Œ� ; ��).
The notation Œ� ; �� and f� ; �g is just a different notation for the product � on the algebra
L. On two general elements in L, which have components in both L0 and L1, the
product is neither symmetric nor antisymmetric and sometimes written as fŒ� ; ��g.
The following is easy to show:
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Proposition 9.6.2 (Characterization of Graded Lie Algebras) Let .L; fŒ� ; ��g/ be
a graded Lie algebra.

1. The vector subspace L0 with the product Œ� ; �� is a Lie algebra.
2. The map

�W L0 �! End.L1/

with

�.x/v D Œx; v� 8x 2 L0; v 2 L1

is a representation of the Lie algebra .L0; Œ� ; ��/ on the vector space L1.
3. The map

f� ; �gW L1 � L1 �! L0

is a vector space-valued symmetric bilinear form.

Conversely, a Lie algebra .L0; Œ� ; ��/ together with a representation � of L0 on a
vector space L1 and a symmetric bilinear form f� ; �g on L1 with values in L0 define
a graded Lie algebra if the following identities are satisfied:

�.fu; vg/w C �.fv;wg/u C �.fw; ug/v D 0 8u; v;w 2 L1 (9.11)

and

Œx; fv;wg� D f�.x/v;wg C fv; �.x/wg 8x 2 L0; v;w 2 L1: (9.12)

Proof This is Exercise 9.7.11. ut
The supersymmetry algebra that we now discuss is a special graded Lie algebra. We
first define the Poincaré algebra: let .V; �/ be Minkowski spacetime V D R

1;n of
dimension n C 1 with Minkowski metric �. Let so.1; n/ D so.V/ D soC.V/ denote
the Lie algebra of the proper orthochronous Lorentz group SOC.V/. Elements of
so.V/ are denoted in physics by M. They correspond to infinitesimal spacetime
rotations.

Definition 9.6.3 The Poincaré algebra is a real Lie algebra with underlying vector
space

iso.V/ D so.V/˚ V;
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also denoted by iso.1; n/. Elements of the subspace V are denoted in physics by P.
The commutator on iso.V/ is a semi-direct product:

1. The commutator on the subspace so.V/ is the standard one.
2. The commutator on the subspace V vanishes:

ŒP;P0� D 0 8P;P0 2 V:

3. Consider the vector representation

vW so.V/ �! End.V/:

The commutator between elements of so.V/ and V maps to V and is defined by

ŒM;P� D v.M/P 8M 2 so.V/;P 2 V:

It is easy to check that iso.V/ is indeed a Lie algebra (in the standard sense). In
physics the commutators are often written with respect to a basis for the Lie algebra.
The elements of the Poincaré algebra correspond to infinitesimal spacetime rotations
and translations.

The Poincaré algebra can be extended to the super-Poincaré algebra by adding a
spinor representation.

Definition 9.6.4 The N D 1 super-Poincaré algebra or supersymmetry
algebra is a graded real Lie algebra with underlying vector space

susy.V/ D iso.V/˚ S� D so.V/˚ V ˚ S�;

also denoted by susy.1; n/. Here S� is the dual of a real spinor representation
space of minimal dimension of so.V/ Š spin.V/. Elements of S� are denoted
in physics by Q. The multiplication fŒ� ; ��g on susy.V/ is in some sense a
graded semi-direct product defined as follows:

1. The multiplication on the even subspace iso.V/ is the standard commutator
in the Poincaré algebra.

2. Consider the dual spinor representation

sW so.V/ �! End.S�/:

The multiplication between so.V/ and the odd subspace S� is defined by

ŒM;Q� D s.M/Q 8M 2 so.V/;Q 2 S�:

(continued)



594 9 Modern Developments and Topics Beyond the Standard Model

Definition 9.6.4 (continued)
3. The multiplication between V and S� vanishes:

ŒP;Q� D 0 8P 2 V;Q 2 S�:

4. It can be shown that there exists a symmetric bilinear form

	 W S� � S� �! V

that is Lorentz equivariant, i.e. satisfies the identity

ŒM; 	 .Q;Q0/� D 	 .ŒM;Q�;Q0/C 	 .Q; ŒM;Q0�/ (9.13)

for all M 2 so.V/;Q;Q0 2 S�. The multiplication on S� maps to V �
iso.V/ and is defined by

fQ;Q0g D 2	 .Q;Q0/ 8Q;Q0 2 S�:

It is easy to check using Proposition 9.6.2 that susy.V/ is a graded Lie
algebra. Equation (9.11) is satisfied, because V acts trivially on S�, and Eq. (9.12)
corresponds to Eq. 9.13. Note that in the super-Poincaré algebra the product

f� ; �gW S� � S� ! iso.V/

only maps to the subspace V of iso.V/. Again, in the physics literature the multi-
plication on susy.V/ is usually written with respect to a basis. The elements Q 2
S� � susy.V/ are called (infinitesimal) supersymmetries. The supersymmetry
algebra susy.V/ thus consists of infinitesimal spacetime rotations, translations and
supersymmetries.

The super-Poincaré algebra for N � 2 supersymmetries is obtained similarly
from the Poincaré algebra by adding N copies of S�. In this situation there is more
flexibility in the definition of the symmetric bilinear form 	 leading to the concept
of central charges. We will restrict to the case N D 1.

9.6.2 Supersymmetric Field Theories

Field theories on Minkowski spacetime R
1;n are usually assumed to be Poincaré

invariant. This means that there is a representation of the Poincaré algebra iso.1; n/
on the fields and the action of the theory is invariant under this algebra.
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Supersymmetric field theories on Minkowski spacetime are field theories
where the fields have a representation of the super-Poincaré algebra susy.1; n/
leaving the action invariant. We only consider the case of rigid supersymmetries
where the spinors Q 2 S� generating the supersymmetries are constant (parallel
with respect to the canonical spin covariant derivative) on Minkowski spacetime
(the infinitesimal rotations and translations in susy.1; n/ are constant as well). Just
as the infinitesimal isometries in the Poincaré algebra are defined by certain vector
fields on spacetime, infinitesimal supersymmetries are defined by (constant) spinors.

Theories with an action invariant under arbitrary supersymmetries (that are local,
i.e. not necessarily constant) are called supergravities. Since the anticommutator of
two supersymmetries is basically a vector (translation), theories which are invariant
under spacetime-dependent supersymmetries are invariant under the action of all
vector fields and hence under all infinitesimal diffeomorphisms. Supergravities are
therefore automatically diffeomorphism invariant (at least under diffeomorphisms
that can be connected to the identity), i.e. theories of gravity.

This means that spinors can appear in field theories in two different ways:

• (twisted) spinors describe matter particles, i.e. (charged) fermions
• pure (untwisted) spinors can be infinitesimal generators of supersymmetries.

This can be compared to vector fields (or 1-forms) in field theories:

• vector fields with values in the adjoint bundle describe gauge bosons
• pure vector fields (sections of the tangent bundle) describe infinitesimal diffeo-

morphisms or isometries of the manifold.

Since field theories like the Standard Model involve charged fermions, it seems from
this point of view natural to extend the bosonic symmetries of spacetime (isometries
or diffeomorphisms) by fermionic symmetries (rigid or local supersymmetries).
According to the Haag–Łopuszański–Sohnius Theorem the only consistent way to
do so is by using the super-Poincaré algebra.

One of the interesting things about supersymmetric field theories is that the parti-
cle content and the interactions that can occur in the Lagrangian are very restricted.
Representations of the Poincaré algebra are given by fields of a certain spin. The
elements of the Poincaré algebra map fields of one spin to fields of the same spin.
Supersymmetries, on the other hand, map a field of one spin to a field of another
spin. This means that fields of different spin are combined in supersymmetry
multiplets and the elements of the super-Poincaré algebra map a multiplet of one
type to a multiplet of the same type. Supersymmetries do not preserve the spin of a
field, but they do preserve the type of the supersymmetry multiplet. Only complete
supersymmetry multiplets, not just some of their components, can be added to
supersymmetric field theories.
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For N D 1 supersymmetry in D D 4 Minkowski spacetime R
1;3 there are only

two types of supersymmetry multiplets with fields of spin at most 1 (i.e. that do not
contain a graviton):

• vector multiplet (or gauge multiplet) consisting of a vector (spin 1) and a
Majorana spinor (spin 1

2
)

• chiral multiplet consisting of a Weyl spinor (spin 1
2
) and a complex scalar (spin

0).

Recall that the particles in the Standard Model are of three types:

• vectors (gauge bosons)
• fermions (quarks and leptons)
• scalars (Higgs field and Higgs boson).

It turns out that the particles in the Standard Model (vectors–fermions and fermions–
scalars) do not themselves combine to form supersymmetry multiplets. For example,
both fields in a vector multiplet have to be associated to the same representation of
the gauge group (i.e. to the adjoint representation). Similarly, both fields in a chiral
multiplet have to be associated to the same gauge representation.

If we want to extend the Standard Model to a Minimal N D 1 Supersymmet-
ric StandardModel (MSSM), it follows that we have to add for each particle
in the Standard Model a superpartner to form either a vector multiplet or a
chiral multiplet (see Table 9.2):

• for the gauge bosons (W-bosons, B-boson, Z-boson, photon, gluons)
we add Majorana fermions called gauginos (winos, bino, zino, photino,
gluinos) to form vector multiplets;

• for the left-handed and right-handed fermions (quarks and leptons) we add
complex scalars (squarks, sleptons) to form chiral multiplets;

• for the scalars (Higgs field) we add Weyl fermions (Higgsinos) to form
chiral multiplets. In addition to the Higgs isodoublet from the Standard
Model with Y D 1, now denoted by �u, we need another Higgs isodoublet
with Y D �1, denoted by �d, to ensure cancellation of gauge anomalies in
the MSSM.

Using these multiplets it is possible to write down Lagrangians such that the
actions are Poincaré invariant and invariant under supersymmetries generated by
spinors Q 2 S�. The symmetries together satisfy the relations of the super-Poincaré
algebra (sometimes only on-shell, i.e. if the fields satisfy the equations of motion).

Supersymmetry predicts that all particles in a supersymmetry multiplet have the
same mass. Since the superpartners of the particles in the Standard Model so far
have not been observed, supersymmetry (if it exists) must be broken in nature
and the superpartners must be heavier than the known particles.
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Table 9.2 Particle content of
MSSM (fermions and
sfermions repeat in 3
generations)

Standard Model particles Superpartners

Name Field Spin Name Field Spin

Quarks

 
uL

dL

!

1
2

Squarks

 
QuL

QdL

!

0

uR, dR
1
2

QuR, QdR 0

Leptons

 
�L

eL

!

1
2

Sleptons

 
Q�L

QeL

!

0

eR
1
2

QeR 0

Higgs

 
�C

u

�0u

!

0 Higgsinos

 Q�C

uQ�0u

!

1
2

 
�0d

��

d

!

0

 Q�0d
Q��

d

!

1
2

Gluons G 1 Gluinos QG 1
2

W-bosons W˙ 1 Winos QW˙
1
2

W0 1 QW0 1
2

B-boson B 1 Bino QB 1
2

Z-boson Z0 1 Zino QZ0 1
2

Photon � 1 Photino Q� 1
2

The Lagrangian of the MSSM itself is very restricted by demanding supersym-
metry. If we want to introduce supersymmetry breaking, however, the Lagrangian
becomes much more complicated and involves many additional terms. The precise
mechanism of supersymmetry breaking is still under discussion.

Supersymmetry can be combined with Grand Unification and yields, for instance,
N D 1 supersymmetric extensions of the SU.5/ and Spin.10/ Grand Unified
Theories. Supersymmetric GUTs can also be derived naturally from superstring and
M-theory.

9.6.3 Further Reading

The book [53] by D.S. Freed contains a mathematical discussion of supersymmetry.
The classical and quantum theory of supersymmetric field theories are covered in
the lecture notes [4] by P.C. Argyres. The paper [91] by S.P. Martin is an extensive
and readable introduction to supersymmetry and the MSSM. The book [96] by
R.N. Mohapatra discusses, among other things, the MSSM and supersymmetric
Grand Unification.
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9.7 Exercises for Chap. 9

9.7.1 Prove that any unitary 2 � 2-matrix V can be brought into real form by the
rephasings in Eq. (9.5).

9.7.2 Prove Proposition 9.3.6 on the invariance of Lagrangians under parity
inversion.

9.7.3 Prove the remaining cases of Proposition 9.3.7 on the invariance of
Lagrangians under charge conjugation.

9.7.4 (from [55]) We consider the Lie group U.n/ and the homomorphism

� W U.n/ �! U.n/

A 7�! det A � A:

On the subgroup SU.2n/ the homomorphism � is the identity. Let �W U.n/ ,!
SO.2n/ be the standard embedding. Suppose that n is odd.

1. Use covering theory to prove that the composition � ı � lifts to a homomorphism

�W U.n/ �! Spin.2n/:

2. Determine the kernel of � and the kernel of �. Prove that there is a sequence of
Lie group embeddings

SU.n/ ,! U.n/=Z.nC1/=2
�
,! Spin.2n/:

9.7.5 Prove the following statement in Lemma 9.5.10: the representation of SU.3/
on 3 � 3-antisymmetric matrices A, given by

M � A D MAMT 8M 2 SU.3/;

is isomorphic to N3.

9.7.6 Recall the identification of the spinor representation � of Spin.2n/ with a
representation on ��

C
n from Lemma 9.5.13. Determine in which dimensions n the

left-handed (positive) Weyl spinor space �C corresponds under this identification
to the subspace �even

C
n or �odd

C
n of forms of even and odd degree.

9.7.7 Prove the statement in Theorem 9.5.15 in the remaining case for forms of
arbitrary degree in ��

C
n (compare with [9]).

9.7.8 Suppose that n is odd. Consider the embedding

�W U.n/=Z.nC1/=2 ,! Spin.2n/
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from Exercise 9.7.4 and the Dirac spinor representation � Š ��
C

n of Spin.2n/.
Let X be the element

X D diag

�
2i

n C 1
; : : : ;

2i

n C 1

�

2 u.n/:

Under the homomorphism �� this element maps to

iA2 D diag .2i; : : : ; 2i/ 2 u.n/

which is then embedded into so.2n/ as in the proof of Theorem 9.5.15. We want to
determine how this element acts on some of the summands of ��

C
n. Prove that X

acts

• on �0
C

n by multiplication with �ni
• on �1

C
n by multiplication with �.n � 2/i and

• on �2
C

n by multiplication with �.n � 4/i.

9.7.9 Let n � 2 be an arbitrary integer and consider the homomorphism

� ı � W U.n/=Z.nC1/=2 ! U.n/ ,! SO.2n/

from Exercise 9.7.4. Recall from Exercise 2.7.6 that the complex fundamental
representation V D C

2n decomposes under restriction to U.n/ into W ˚ NW, where
W is the complex fundamental representation of U.n/.

Let X be the element in u.n/ from Exercise 9.7.8 and

iA2 D diag .2i; : : : ; 2i/ 2 u.n/:

Show that X acts on W by multiplication with 2i and on NW by multiplication with
�2i.

Remark In the case n D 5, taking U.1/-charges with respect to the basis vector X,
it follows that the left-handed Weyl spinor and the vector representation of Spin.10/
decompose under restriction to U.5/=Z3 as

16 D 1�5 ˚ N53 ˚ 10�1;

10 D 52 ˚ N5�2:

Compare with [131, Table 43].

9.7.10 Prove Proposition 9.5.21 on the isotropy group of �0 2 su.5/ under the
adjoint representation.

9.7.11 Prove Proposition 9.6.2 on graded Lie algebras.
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Appendix A
Background on Differentiable Manifolds

From a mathematical point of view, gauge theories are described by a spacetime M
together with certain fibre bundles (principal bundles, associated vector bundles,
spinor bundles) over M. Spacetime and fibre bundles are assumed to have the
structure of differentiable manifolds. Differentiable manifolds in turn are certain
topological spaces that essentially have the property of being locally Euclidean,
i.e. locally look like an open set in some Rn, and that have a differentiable structure,
so that we can define differentiable maps (and their derivatives), vector fields,
differential forms, etc. on them.

We briefly sketch the definitions of these concepts. More details can be found
in any textbook on differentiable manifolds or differential geometry, like [84] and
[142].

A.1 Manifolds

A.1.1 Topological Manifolds

Topological manifolds are topological spaces with certain additional structures.
They are a first step towards differentiable manifolds, which are the main spaces
that we will consider in this book.

Definition A.1.1 An n-dimensional topological manifold, also called a topologi-
cal n-manifold, is a topological space M such that:

1. M is locally Euclidean, i.e. locally homeomorphic to R
n. This means that around

every point p 2 M there exists an open neighbourhood U � M that is
homeomorphic to some open set V � R

n (both open sets with the subspace
topology).
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2. M is Hausdorff.
3. M has a countable basis for its topology.

The local homeomorphisms �W M 	 U ! V � R
n (and sometimes the subsets U)

are called charts or local coordinate systems for M. Axiom (a) says that we can
cover the whole manifold M by charts. Note that the dimension n is assumed to be
the same over the whole manifold. Axiom (c) is of a technical nature and usually
can be neglected for our purposes. We often denote an n-manifold by Mn.

Example A.1.2 The simplest topological n-manifold is M D R
n itself. We can cover

M by one chart �WRn ! R
n, given by the identity.

Example A.1.3 Another example of a topological n-manifold is the n-sphere M D
Sn for n � 0. We define

Sn D fx 2 R
nC1 j jjxjj D 1g:

Here jjxjj denotes the Euclidean norm. We endow Sn with the subspace topology
of RnC1. It follows that Sn is Hausdorff, compact and has a countable basis for its
topology.

We thus only have to cover Sn by charts that define local homeomorphisms to
R

n. A very useful choice are two charts given by stereographic projection. We
think of Rn as the hyperplane fxnC1 D 0g in R

nC1. We then project a point x in
UN D Sn n fNg, where N is the north pole

N D .0; : : : ; 0;C1/ 2 Sn � R
nC1;

along the line through N and x onto the hyperplane Rn. It is easy to check that this
defines a map

�N W UN �! R
n

x 7�! 1

1 � xnC1
.x1; : : : ; xn/:

Similarly projection through the south pole

S D .0; : : : ; 0;�1/ 2 Sn � R
nC1

defines a map on US D Sn n fSg, given by

�SW US �! R
n

x 7�! 1

1C xnC1
.x1; : : : ; xn/:
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We can check that �N and �S are bijective, continuous and have continuous inverses.
Therefore they are homeomorphisms. They define two charts that cover Sn and
hence the n-sphere is shown to be a topological manifold.

A.1.2 Differentiable Structures and Atlases

Suppose we have two topological manifolds M and N and a continuous map f W M !
N between them. We want to define what it means that f is differentiable. To do so
we first have to define a differentiable (or smooth) structure on both manifolds.

Definition A.1.4 Let M be a topological n-manifold. Suppose .U; �/ and .V;  /
are two charts of M. We call these charts compatible if the change of coordinates
(or coordinate transformation), given by the map

 ı ��1WRn 	 �.U \ V/ �!  .U \ V/ � R
n;

is a smooth diffeomorphism between open subsets of Rn, i.e. the homeomorphism
 ı ��1 and its inverse are infinitely differentiable.

Definition A.1.5 Let A be a set of charts that cover M. We call A an atlas if any
two charts in A are compatible. We call A a maximal atlas (or differentiable
structure) if the following holds: Any chart of M that is compatible with all charts
in A belongs to A . It can be checked that any given atlas for M is contained in a
unique maximal atlas.

Definition A.1.6 A topological manifold M together with a maximal atlas is called
a differentiable (or smooth) manifold.

Example A.1.7 The topological manifold R
n is a differentiable manifold: We have

one chart .Rn; Id/, where IdWRn ! R
n is the identity. Since we only have a single

chart, there are no non-trivial changes of coordinates. Therefore A D f.Rn; Id/g
forms an atlas that induces a unique differentiable structure on R

n (the standard
differentiable structure).

Example A.1.8 Recall that we defined on the n-sphere Sn two charts .UN ; �N/ and
.US; �S/. We want to show that these two charts are compatible and hence form an
atlas. This atlas is contained in a unique maximal atlas that defines a differentiable
structure on the n-sphere (the standard structure).

We first have to calculate the inverse of the chart mappings: We have

��1
N WRn �! UN

y 7�!
�

2y

1C jjyjj2 ;
jjyjj2 � 1
1C jjyjj2

�



606 A Background on Differentiable Manifolds

and

��1
S WRn �! US

y 7�!
�

2y

1C jjyjj2 ;
1 � jjyjj2
1C jjyjj2

�

:

Since

�N.UN \ US/ D �S.UN \ US/ D R
n n f0g

we get

�S ı ��1
N WRn n f0g ! R

n n f0g

with

�S ı ��1
N .y/ D �S

�
2y

1C jjyjj2 ;
jjyjj2 � 1

1C jjyjj2
�

D y

jjyjj2 :

A similar calculation shows that

�N ı ��1
S .y/ D y

jjyjj2 :

Since these maps are infinitely differentiable, it follows that the charts .UN ; �N/ and
.US; �S/ are compatible and define a smooth structure on the n-sphere Sn.

Remark A.1.9 In certain dimensions n there exist exotic spheres, which are differ-
entiable structures on the topological manifold Sn not diffeomorphic to the standard
structure. The first examples have been described by Milnor and Kervaire.

Remark A.1.10 From now we consider only smooth manifolds.

Example A.1.11 It is possible to extend the definition of smooth manifolds to
include manifolds M with boundary @M. We usually consider only manifolds
without boundary, even though most concepts in this book also make sense for
manifolds with boundary.

Definition A.1.12 A manifold M is called closed if it is compact and without
boundary.

Definition A.1.13 A manifold M is called oriented if it has an atlas A of charts
f.Ui; �i/g such that the differential D�i. p/.�j ı ��1

i / (represented by the Jacobi
matrix) of any change of coordinates has positive determinant at each point.
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A.1.3 Differentiable Mappings

We can now define the notion of a differentiable map between differentiable
manifolds.

Definition A.1.14 Let Mm and Nn be differentiable manifolds and f W M ! N a
continuous map. Let p 2 M be a point and .V;  / a chart of N around f . p/. Since
f is continuous, there exists a chart .U; �/ around p such that f .U/ � V . We call f
differentiable at p if the map

 ı f ı ��1WRm 	 �.U/ �!  .V/ � R
n

is infinitely differentiable (in the usual sense) at �. p/ as a map between open subsets
of Rn.

Remark A.1.15 The property of a map f being differentiable at a point p does not
depend on the choice of charts, precisely because all changes of coordinates are
diffeomorphisms: if f is differentiable at p for one pair of charts, then it is also
differentiable for all other pairs.

Definition A.1.16 We call a continuous map f W M ! N differentiable if it is
differentiable at every p 2 M. We call f a diffeomorphism if it is a homeomorphism
such that f and f �1 are differentiable.

Remark A.1.17 All differentiable maps between manifolds in the following will be
infinitely differentiable (smooth), also called C1.

Example A.1.18 It is a nice exercise to show that the involution

iW Sn �! Sn

x 7�! �x

is a diffeomorphism.

A.1.4 Products of Manifolds

Let Mm and Nn be differentiable manifolds. Then the Cartesian product XmCn D
Mm � Nn canonically has the structure of a differentiable manifold of dimension
m C n. We have to define charts for X: Let .U; �/ and .V;  / be local charts for M
and N. Then .U � V; � �  / is a local chart for X, where

� �  W U � V �! R
m � R

n

.x; y/ 7�! .�.x/;  .y//:

It can easily be checked that with this definition the changes of coordinates are
smooth.
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A.1.5 Tangent Space

Suppose Mn is a differentiable manifold and p 2 M is a point. An important notion
is that of the tangent space TpM of the manifold at the point p. This is something
that only exists on smooth manifolds and not on topological manifolds.

How can we define such a tangent space? To get some intuition, we can first
consider the case of a submanifold M � R

d of some Euclidean space. The standard
definition is that the tangent space in p 2 M is the subspace of Rd consisting of all
tangent vectors to differentiable curves through p:

TpM D f P�.0/ 2 R
d j � W .��; �/ ! M differentiable; �.0/ D pg:

The problem with general manifolds is that they are a priori not embedded in any
surrounding space, so this notion of tangent vector does not work. However, what
we can do, is that instead of taking the tangent vectors in the surrounding space,
we take the full set of curves through p in the manifold M and define on this set an
equivalence relation that identifies two of them, ˛ and ˇ, if in a chart �W M 	 U !
R

n they have the same tangent vector in p:

˛ � ˇ , P.� ı ˛/.0/ D P.� ı ˇ/.0/:
To be equivalent in this sense does not depend on the choice of charts: If we choose
another chart  W M 	 V ! R

n around p, then the tangent vectors in the charts �
and  are related by a linear map, the differential D�. p/. ı ��1/ of the change of
coordinates. Since the tangent vectors of ˛ and ˇ in chart � are identical, they will
thus still be identical in chart  . With this equivalence relation we can therefore set:

Definition A.1.19 The tangent space of a smooth manifold Mn at a point p 2 M is
defined by

TpM D f� j � W .��; �/ ! M differentiable; �.0/ D pg=
:

For the equivalence class of the curve � in M we write

Œ�� D P�.0/ D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

�.t/

and call this a tangent vector.

Proposition A.1.20 At any point p 2 Mn the tangent space TpM has the structure
of a real n-dimensional vector space.

Proof Let �W U ! R
n be a chart around p. We set

Dp�W TpM �! R
n

Œ�� 7�! P.� ı �/.0/:
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It can be shown that this is a bijection. We define the vector space structure on
TpM so that this map becomes a vector space isomorphism. This structure does
not depend on the choice of chart: If  W V ! R

n is another chart around p, then
the following diagram is commutative, where D�.p/. ı ��1/ is a vector space
isomorphism:

Hence the identity between TpM and TpM defined with the respective vector space
structures is a vector space isomorphism. ut
Definition A.1.21 The set

TM D
[

p2M

f pg � TpM

is called the tangent bundle of M.
In Sect. 4.5 it is shown that the tangent bundle is an example of a vector bundle over
M with fibres TpM.

A.1.6 Differential of a Smooth Map

Let f W M ! N be a smooth map between differentiable manifolds. With the tangent
space at hand, we can now define the differential of f .

Definition A.1.22 The differential Dpf of the map f at a point p 2 M is defined by

Dpf W TpM �! Tf . p/N

Œ�� 7�! Œ f ı ��:

Equivalently,

Dpf W TpM �! Tf . p/N

P�.0/ 7�! P.f ı �/.0/:

The differential is a well-defined (independent of choice of representatives for Œ��)
linear map between the tangent spaces.
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For a vector X 2 TpM we sometimes write

f�X D .Dpf /.X/:

The differential satisfies the so-called chain rule.

Proposition A.1.23 The following chain rule holds for the differential: If f W X ! Y
and gW Y ! Z are differentiable maps, then g ı f is differentiable and at any point
p 2 X

Dp.g ı f / D Df . p/g ı Dpf :

Corollary A.1.24 The differential Dpf of a diffeomorphism f W M ! N is at every
point p 2 M a linear isomorphism of tangent spaces.

Definition A.1.25 Let f W M ! N be a differentiable map between manifolds.

• A point p 2 M is called a regular point of f if the differential Dpf is surjective
onto Tf . p/N.

• A point q 2 N is called a regular value of f if each point p in the preimage
f �1.q/ � M is a regular point.

• The map f is called a submersion if every point p 2 M is regular.
• The map f is called an immersion if the differential Dpf is injective at every

point p 2 M.

Remark A.1.26 Every point of N that is not in the image f .M/ is automatically a
regular value, because the condition is empty.

Theorem A.1.27 (Sard’s Theorem) For any differentiable map f W M ! N
between smooth manifolds M and N the set of regular values is dense in N.
The following theorem shows that a map f has a certain normal form in a
neighbourhood of a regular point.

Theorem A.1.28 (Regular Point Theorem) Let p be a regular point of the map f .
Then there exist charts .U; �/ of M around p and .V;  / of N around f . p/ with

• �. p/ D 0

•  .f . p// D 0

• f .U/ � V

such that the map  ı f ı ��1 has the form

 ı f ı ��1.x1; : : : ; xnCk/ D .x1; : : : ; xn/;

where dim M D n C k and dim N D n.

Remark A.1.29 The theorem says that in suitable charts the map f is given by the
standard projection of Rm D R

n � R
k onto R

n.
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A.1.7 Immersed and Embedded Submanifolds

There are two notions of submanifolds which need to be distinguished.

Definition A.1.30 Let M be a smooth manifold.

1. An immersed submanifold of M is the image of an injective immersion f W N !
M from a manifold N to M.

2. An embedded submanifold of M is the image of an injective immersion f W N !
M from a manifold N to M which is a homeomorphism onto its image.

In both cases, the set f .N/ is endowed with the topology and manifold structure
making f W N ! f .N/ a diffeomorphism. The difference between embedded and
immersed submanifolds f .N/ � M is whether the topology on f .N/ coincides with
the subspace topology on f .N/ inherited from M or not.
An embedded submanifold can be characterized equivalently as follows:

Proposition A.1.31 A subset K of an m-dimensional manifold M is an embedded
submanifold of dimension k if and only if around each point p 2 K there exists a
chart .U; �/ of M such that

�jU\K W U \ K �! �.U/\ �
R

k � f0g� � R
m:

Such a chart is also called a submanifold chart or flattener for K.
The regular point theorem implies:

Theorem A.1.32 (Regular Value Theorem) Let q 2 N be a regular value of a
smooth map f W M ! N and L D f �1.q/ the preimage of q. Then L is an embedded
submanifold of M of dimension

dim L D dim M � dim N:

A.1.8 Vector Fields

Let Mn be a smooth manifold. A vector field on M is a map X that assigns to each
point p 2 M a tangent vector Xp 2 TpM in a smooth way. To make this precise let
�W M 	 U ! �.U/ � R

n be a chart. We set

TU D
[

p2U

f pg � TpM

for the tangent bundle of U and define the map

D�W TU �! �.U/ � R
n

. p; v/ 7�! .�. p/;Dp�.v//:

The map D� is on each fibre f pg � TpM of TU an isomorphism onto f�. p/g � R
n.
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Definition A.1.33 A vector field X on M is a map XW M ! TM such that:

1. Xp D X. p/ 2 TpM for all p 2 M.
2. The map X is differentiable in the following sense: For any chart .U; �/ the lower

horizontal map in the following diagram

is differentiable (this is just a standard vector field on �.U/ � R
n).

A particularly important set of vector fields is defined by a chart.

Definition A.1.34 Let .U; �/ be a chart for M. Then we define at every point p 2 U
the following vectors:

@

@x

. p/ D .Dp�/

�1.e
/; 8
 D 1; : : : ; n;

where e1; : : : ; en is the standard basis of Rn. We also write

@
 D @

@x

:

For a fixed index 
, as p varies, the vectors @
. p/ form a smooth vector field @
 on
U. We call the vector fields @
 basis vector fields or coordinate vector fields on U.

Lemma A.1.35 At each point p 2 U the vectors @1. p/; : : : @n. p/ form a basis for
the tangent space TpM.

Proof This is clear, because Dp�W TpM ! R
n is an isomorphism of vector spaces.

ut
Proposition A.1.36 Every smooth vector field X on M can be written on U as

XjU D
nX


D1
X
@
 � X
@


where X1; : : : ;XnW U ! R are smooth real-valued functions on U, called the
components of X with respect to the basis f@
g.

Remark A.1.37 The second equality in this proposition is an example of the so-
called Einstein summation convention.
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A.1.9 Integral Curves

Let M be a smooth manifold and X a smooth vector field on M.

Definition A.1.38 A curve � W I ! M, where I � R is an open interval around 0, is
called an integral curve for X through p 2 M if

�.0/ D p and P�.t/ D X�.t/ 8t 2 I:

The theory of ordinary differential equations (ODEs) applied in a chart for M shows
that:

Theorem A.1.39 For every point q 2 M there exists an interval Iq around 0 and a
unique curve �qW Iq ! M which is an integral curve for X.
Using a theorem on the behaviour of solutions to ODEs under variation of the initial
condition we get:

Theorem A.1.40 For all p 2 M there exists an open neighbourhood U of p in M
and an open interval I around 0 such that the integral curves �q are defined on I for
all q 2 U. The map

�U W U � I �! M

.q; t/ 7�! �q.t/

is differentiable and is called the local flow of X.

Theorem A.1.41 Let M be a closed manifold (compact and without boundary).
Then there exists a global flow of X which is a smooth map

�W M � R �! M

.q; t/ 7�! �q.t/:

The map

�t D �.�; t/W M �! M

is a diffeomorphism for all t 2 R.

A.1.10 The Commutator of Vector Fields

Let X be a smooth vector field on the manifold M.

Definition A.1.42 The Lie derivative LX is the map

LX WC1.M/ �! C1.M/;
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defined by

.LXf /. p/ D .Dpf /.Xp/

for all f 2 C1.M/ and p 2 M.
The Lie derivative LX is the directional derivative of a smooth function along the
vector field X: If � is a curve through p such that P�.0/ D Xp, then

.LXf /. p/ D P.f ı �/.0/:

Proposition A.1.43 The Lie derivative is a derivation, i.e.

1. LX is R-linear
2. LX satisfies the Leibniz rule:

LX.f � g/ D .LXf / � g C f � .LXg/ 8f ; g 2 C1.M/:

Using the Lie derivative we can define the so-called commutator of vector fields.

Theorem A.1.44 Let X and Y be smooth vector fields on M. Then there exists a
unique vector field ŒX;Y� on M, called the commutator of X and Y, such that

LŒX;Y� D LX ı LY � LY ı LX : (A.1)

If in a local chart .U; �/ the vector fields are given by

X D X
@
 and Y D Y
@
;

then ŒX;Y� is given by

ŒX;Y� D
�

X�
@Y


@x�
� Y�

@X


@x�

�

@
: (A.2)

Theorem A.1.45 The set of vector field X.M/ together with the commutator is an
(infinite-dimensional) Lie algebra, i.e. for all X;Y;Z 2 X.M/ we have:

• antisymmetry:

ŒY;X� D �ŒX;Y�

• R-bilinearity:

ŒaX C bY;Z� D aŒX;Z�C bŒY;Z� 8a; b 2 R
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• Jacobi identity:

ŒX; ŒY;Z�� C ŒY; ŒZ;X�� C ŒZ; ŒX;Y�� D 0:

We can calculate the commutator ŒX;Y� using the flow of X:

Theorem A.1.46 Let X and Y be smooth vector fields on M, �t the flow of X and
p 2 M a point. Then

ŒX;Y�p D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

.��t/�Y�t. p/:

Note that .��t/�Y�t. p/ is a smooth curve in TpM.

A.1.11 Vector Fields Related by a Smooth Map

Definition A.1.47 Let M and N be smooth manifolds and �W M ! N a smooth
map. Suppose that X is a vector field on M and Y a vector field on N. Then Y is said
to be �-related to X if

Y�. p/ D .Dp�/.Xp/ 8p 2 M:

Lemma A.1.48 Let M and N be smooth manifolds, �W M ! N a smooth map.
Suppose that X and Y are vector fields on M and N and that Y is �-related to X.
Then

.LYf / ı � D LX.f ı �/ 8f 2 C1.N/:

Proposition A.1.49 Let M and N be smooth manifolds and �W M ! N a smooth
map. Suppose that X0 is �-related to X and Y 0 is �-related to Y. Then ŒX0;Y 0� is
�-related to ŒX;Y�.

Definition A.1.50 If �W M ! N is a diffeomorphism and X is a smooth vector field
on M, then we define a smooth vector field ��X on N, called the pushforward of X
under �, by

.��X/�.p/ D .Dp�/.Xp/:

Note that ��X is the unique vector field on N that is �-related to X.

Corollary A.1.51 If �W M ! N is a diffeomorphism, then

Œ��X; ��Y� D ��ŒX;Y�

for all vector fields X and Y on M.
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A.1.12 Distributions and Foliations

We consider some concepts related to distributions and foliations on manifolds (we
follow [142] where proofs and more details can be found). Let M be a smooth
manifold of dimension n.

Definition A.1.52 A distribution D of rank k on M is a collection of vector
subspaces Dp � TpM of dimension k for all p 2 M which vary smoothly over
M, i.e. each p 2 M has an open neighbourhood U � M so that DjU is spanned by k
smooth vector fields X1; : : : ;Xk on U.
An equivalent definition is that D is a subbundle of rank k of the tangent bundle TM.

Definition A.1.53 A distribution is called involutive or integrable if for all vector
fields X;Y on M with Xp;Yp 2 Dp for all p 2 M, the vector field ŒX;Y� on M again
satisfies ŒX;Y�p 2 Dp for all p 2 M.

Definition A.1.54 A foliation F of rank k on M is a decomposition of M into
k-dimensional immersed submanifolds, called leaves, which locally have the fol-
lowing structure: around each point p 2 M there exists a coordinate neighbourhood
diffeomorphic to R

n such that the leaves of the foliation decompose R
n into

R
k � R

n�k, with the leaves given by the affine subspaces Rk � fxg for all x 2 R
n�k.

It is clear that the tangent spaces to the leaves of a foliation define a distribution. In
fact, we have:

Theorem A.1.55 (Frobenius Theorem) A distribution D defines a foliation F if
and only if D is integrable.
The following statement is Theorem 1.62 in [142].

Theorem A.1.56 Let f W N ! M be a smooth map between manifolds, H a
foliation on M and H � M a leaf of H . Suppose that f has image in H. Then
f W N ! H is smooth.
This theorem is clear if H is an embedded submanifold of M and only non-trivial if
H is an immersed submanifold.

A.2 Tensors and Forms

A.2.1 Tensors and Exterior Algebra of Vector Spaces

We recall some notions from linear algebra. Let V denote an n-dimensional real
vector space.

Definition A.2.1 We set

V� D f j W V ! R is linearg
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for the dual space of V . The dual space V� is itself an n-dimensional real vector
space. We call the elements  2 V� 1-forms on V .
If fe
g is a basis for V we get a dual basis f!�g for V� defined by

!�.e
/ D ı�
; 8
; � D 1; : : : ; n;

where ı�
 is the standard Kronecker delta. Just as we decompose any vector X 2 V
in the basis fe
g as

X D X
e


we can decompose any 1-form  2 V� as

 D �!
�:

(Note the Einstein summation convention in both cases.)

Definition A.2.2 A tensor of type .l; k/ is a multilinear map

TW V� � � � � � V�
„ ƒ‚ …

l

� V � � � � � V„ ƒ‚ …
k

�! R:

In particular, a .0; 1/-tensor is a 1-form and a .1; 0/-tensor is a vector. The set of all
.l; k/-tensors forms a vector space.
We are interested in a particular class of tensors on a vector space V .

Definition A.2.3 We call a .0; k/-tensor

W V � � � � � V„ ƒ‚ …
k

�! R

a k-form on V if  is alternating, i.e. totally antisymmetric:

.: : : ; v; : : : ;w; : : :/ D �.: : : ;w; : : : ; v; : : :/

for all insertions of vectors into , where only the vectors v and w are interchanged.
The set of k-forms on V forms a vector space denoted by �kV�.

Remark A.2.4 It follows that for k-forms 

.: : : ; v; : : : ; v; : : :/ D 0 8v 2 V

and

.v1; v2; : : : ; vk/ D 0
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whenever the vectors v1; v2; : : : ; vk are linearly dependent. In particular, every k-
form on V vanishes identically if k is larger than the dimension of V .

Definition A.2.5 Let  be a k-form and 
 an l-form. Then the wedge product of
 ^ 
 is the .k C l/-form defined by

. ^ 
/.X1; : : : ;XkCl/

D 1

kŠlŠ

X

�2SkCl

sgn.�/
�
X�.1/; : : : ;X�.k/

� � 
 �X�.kC1/; : : : ;X�.kCl/
�
:

Here SkCl denotes the set of permutations of f1; 2; : : : ; k C lg. It can be checked that
 ^ 
 is indeed a k C l-form.

Example A.2.6 Let ˛; ˇ be 1-forms on V . Then

.˛ ^ ˇ/.X;Y/ D ˛.X/ˇ.Y/ � ˛.Y/ˇ.X/

for all vectors X;Y 2 V .

Lemma A.2.7 Let V be a vector space of dimension n and f!�g a basis for V�.
Then the set of k-forms

!�1 ^ � � � ^ !�k ; with 1 � �1 < �2 < : : : < �k � n;

is a basis for the vector space of k-forms.

A.2.2 Tensors and Differential Forms on Manifolds

Let M be an n-dimensional smooth manifold. We want to extend the notion of
tensors and forms on vector spaces to tensors and forms on M. One possibility is
to first define certain vector bundles and then tensors and forms as smooth sections
of these bundles. However, since we define vector bundles in Sect. 4.5, we use here
another, equivalent definition for tensors.

Remark A.2.8 In the following all functions and vector fields on M are smooth.

Definition A.2.9 We denote by C1.M/ the ring of all smooth functions f W M ! R.
We also denote by X.M/ the set of all smooth vector fields on M. The set X.M/ is a
real vector space and module over C 1.M/ by point-wise multiplication.
We can now define:

Definition A.2.10 A 1-form  on the manifold M is a map

WX.M/ �! C 1.M/



A.2 Tensors and Forms 619

that is linear over C1.M/, i.e.

.X C Y/ D .X/C .Y/;

.f � X/ D f � .X/

for all vector fields X;Y 2 X.M/ and functions f 2 C1.M/. We denote the set of
all 1-forms on M by˝1.M/, which is a real vector space and module over C1.M/.
The following can be proved:

Proposition A.2.11 The value of .X/. p/ for a 1-form  and vector field X at a
point p 2 M depends only on Xp. Hence if Y is another vector field on M with
Yp D Xp, then .X/. p/ D .Y/. p/.
A proof of this proposition can be found in [142, p. 64]. Similarly we set:

Definition A.2.12 A tensor T of type .l; k/ on M is a map

TW˝1.M/ � � � � �˝1.M/
„ ƒ‚ …

l

�X.M/ � � � � � X.M/
„ ƒ‚ …

k

�! C 1.M/

that is C 1.M/-linear in each entry. A k-form or differential form ! on M is a
.0; k/-tensor

!WX.M/ � � � � � X.M/
„ ƒ‚ …

k

�! C1.M/

that is in addition alternating (totally antisymmetric). We denote the set of k-forms
on M by ˝k.M/.

Remark A.2.13 An argument similar to the proof of Proposition A.2.11 shows that
tensors and k-forms on manifolds have well-defined values at every point p 2 M.
We can therefore insert, for example, in a k-form ! 2 ˝k.M/ vectors X1; : : : ;Xk in
the tangent space TpM at any point p 2 M and get a real number. We can also speak
unambiguously of the value of a tensor or form at a point.

Remark A.2.14 We can define the wedge product ^ of forms as before by replacing
in the definition vectors by vector fields on the manifold. The wedge product is then
a map

^W˝k.M/ �˝ l.M/ �! ˝kCl.M/:

A.2.3 Scalar Products and Metrics on Manifolds

We consider the following definition from linear algebra.
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Definition A.2.15 A scalar product on the vector space V is a symmetric non-
degenerate .0; 2/-tensor g on V:

g.v;w/ D g.w; v/ 8v;w 2 V (symmetric)

g.v; �/ ¤ 0 2 V� 8v ¤ 0 2 V (non-degenerate):

The scalar product g is called Euclidean if it is positive definite

g.v; v/ � 0 8v 2 V

g.v; v/ > 0 8v ¤ 0

and pseudo-Euclidean otherwise.
We can do the same construction on manifolds.

Definition A.2.16 A metric on a smooth manifold M is a .0; 2/-tensor g which is
a scalar product at each point p 2 M. The metric is called Riemannian if the scalar
products gp are Euclidean and pseudo-Riemannian if the scalar products gp are
pseudo-Euclidean, for all p 2 M.
It can be shown using partitions of unity that every smooth manifold admits a
Riemannian metric (but not necessarily a pseudo-Riemannian metric).

A.2.4 The Levi-Civita Connection

Let .M; g/ be a pseudo-Riemannian manifold. The Levi-Civita connection is a
metric and torsion-free, covariant derivative on the tangent bundle of the manifold,
i.e. a map

rWX.M/ � X.M/ �! X.M/

.X;Y/ 7�! rXY

with the following properties:

1. r is R-linear in both X and Y.
2. r is C 1.M/-linear in X and satisfies

rX.fY/ D .LXf /Y C f rXY 8f 2 C1.M/;X;Y 2 X.M/:

3. r is metric, i.e.

LXg.Y;Z/ D g.rXY;Z/C g.Y;rXZ/ 8X;Y;Z 2 X.M/:

4. r is torsion-free, i.e.

rXY � rYX D ŒX;Y� 8X;Y 2 X.M/:
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The Levi-Civita connection can be calculated with the following Koszul formula:

2g.rXY;Z/ D LXg.Y;Z/C LYg.X;Z/� LZg.X;Y/

� g.ŒX;Z�;Y/ � g.ŒY;Z�;X/C g.ŒX;Y�;Z/:

A.2.5 Coordinate Representations

We saw above that we can represent every vector field X on a chart neighbourhood U
by XjU D X
@
, where X
 are certain functions on U, called components. We want
to decompose in a similar way tensors and forms on U. In the physics literature
tensors and forms are often given in terms of their components in coordinate
systems.

Definition A.2.17 Let U be a chart neighbourhood. We define the set of dual 1-
forms dx
, for 
 D 1; : : : ; n, by dx
.@�/ D ı



� at each point p 2 U.

Proposition A.2.18 Let  be a 1-form on M. Then we can decompose  on U as
jU D 
dx
 for certain smooth functions 
 on M. Similarly, we can decompose
a k-form ! as

!jU D
X

1��1<���<�k�n

!�1:::�k dx�1 ^ � � � ^ dx�k ;

with smooth functions !�1:::�k .
Note that these functions, corresponding to the components, depend on the choice
of the chart .U; �/, while the objects themselves (vectors fields, k-forms) are
independent of charts.

A.2.6 The Pullback of Forms on Manifolds

Let ! 2 ˝k.N/ be a k-form on a manifold N and f W M ! N a smooth map.

Definition A.2.19 The pullback of ! under f is the k-form f �! 2 ˝k.M/ on M
defined by

.f �!/.X1; : : : ;Xk/ D !.f�X1; : : : ; f�Xk/

for all tangent vectors X1; : : : ;Xk 2 TpM and all p 2 M.

Proposition A.2.20 The pullback defines a map f �W˝k.N/ �! ˝k.M/. We have

f �.! ^ �/ D .f �!/ ^ .f ��/
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for all ! 2 ˝k.N/; � 2 ˝ l.N/ and

.g ı f /� D f � ı g�

for all smooth maps f W M ! N; gW N ! Q.
The second property follows from the chain rule for the differential of the map g ı f .

A.2.7 The Differential of Forms on Manifolds

The differential is a very important map on forms on a manifold that raises the
degree by one.

Theorem A.2.21 Let M be a smooth manifold. Then there is a unique map

dW˝k.M/ �! ˝kC1.M/

for every k � 0, called the differential or exterior derivative, that satisfies the
following properties:

1. d is R-linear.
2. For a function f 2 ˝0.M/ D C1.M/ and a vector field X 2 X.M/ we have

df .X/ D LXf .
3. d2 D d ı d D 0W˝k.M/ ! ˝kC2.M/.
4. d satisfies the following Leibniz rule:

d.˛ ^ ˇ/ D d˛ ^ ˇ C .�1/k˛ ^ dˇ

for all ˛ 2 ˝k.M/; ˇ 2 ˝ l.M/.

The proof of this fundamental theorem can be found in any book on differential
geometry. Let .U; �/ be a local chart. If we assume that the differential d has these
properties, then it follows that the differential is given on functions f by

df D @f

@x�
dx�

and on ˝k.M/ by

d! D d
X

1�
1<:::<
k�n

!
1:::
k dx
1 ^ � � � dx
k

D
X

1�
1<:::<
k�n

nX

�D1

@!
1:::
k

@x�
dx� ^ dx
1 ^ � � � dx
k :
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The defining properties of the differential d imply for 1-forms and 2-forms:

Proposition A.2.22 1. Let ˛ 2 ˝1.M/ be a 1-form. Then

d˛.X;Y/ D LX.˛.Y// � LY.˛.X// � ˛.ŒX;Y�/ 8X;Y 2 X.M/:

2. Let ˇ 2 ˝2.M/ be a 2-form. Then

dˇ.X;Y;Z/ D LX.ˇ.Y;Z//C LY .ˇ.Z;X//C LZ.ˇ.X;Y//

� ˇ.ŒX;Y�;Z/ � ˇ.ŒY;Z�;X/ � ˇ.ŒZ;X�;Y/ 8X;Y;Z 2 X.M/:

The differential is natural under pullback:

Proposition A.2.23 If f W M ! N is a smooth map and ! 2 ˝k.N/, then d.f �!/ D
f �d!.
Let M be a compact oriented n-dimensional manifold and � 2 ˝n.M/ a form of top
degree. Then there is a well-defined integral

Z

M
� 2 R:

The integral can also be defined if M is non-compact and � has compact support.

Theorem A.2.24 (Stokes’ Theorem)

1. Let M be a compact n-dimensional oriented manifold with boundary @M and
! 2 ˝n�1.M/. Then (with a suitable orientation of the boundary)

Z

M
d! D

Z

@M
!:

2. Let M be an n-dimensional oriented manifold (not necessarily compact) without
boundary and ! 2 ˝n�1.M/ an .n � 1/-form with compact support. Then

Z

M
d! D 0:



Appendix B
Background on Special Relativity and Quantum
Field Theory

B.1 Basics of Special Relativity

We very briefly recall some basic concepts from special relativity. A very good
introduction to the physics and mathematics of special relativity can be found in
[95], covering much more than we need.

Special relativity is formulated on Minkowski spacetime M D R
4 with a

pseudo-Riemannian metric known as Minkowski metric � given by (we use units
where the speed of light c D 1)

�
� D �.@
; @�/ D

0

B
B
@

1

�1
�1

�1

1

C
C
A :

This choice of signs .C;�;�;�/ is called the West Coast metric. Sometimes the
East Coast metric with signature .�;C;C;C/ is used instead. The x
 are the
standard coordinates on R

4, also written as

x0 D t; x1 D x; x2 D y; x3 D z

or x
 D .t; x/. Coordinate systems (charts) on Minkowski spacetime correspond
to reference frames of moving observers. All inertial systems (unaccelerated
orthonormal reference frames, also called Lorentz frames) with the same origin
.0; 0/ are related by Lorentz transformations

x0� D ��

x
:
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Here the Einstein summation convention is understood and� is a matrix preserving
the metric �

�.�v;�w/ D �.v;w/ 8v;w 2 R
4;

also written as

�T�� D �

or

����
�

�

�
� D �
�:

If the origins are different, then the coordinate transformations between inertial
systems are given by Poincaré transformations

x0� D ��

x
 C a�;

where a� 2 R
4 is a constant vector. Poincaré transformations are affine transforma-

tions.
Since the Minkowski distance between two points is independent of the chosen

inertial frame, two points with distance zero (lightlike) in one frame have the same
distance zero in any other Lorentz frame, meaning that the speed of light c D 1 is
the same in any inertial frame.

The basis vectors of Lorentz frames transform as

e0
� D �

��1�

�
e
;

so that the vector�x
e
 is invariant:

�x0�e0
� D �x
��




�
��1��

�
e�

D �x
e
:

The same vector a on spacetime can be expressed in the frame e
 or the frame e0
�:

a
e
 D a D a0�e0
�:

This implies that

a0� D ��

a
:

Similarly, a 1-form ! can be expressed in the frame dx
 or the frame dx0�:

!
dx
 D ! D !0
�dx0�:
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This implies that

!0
� D �

��1�

�
!
:

If a is a vector with components a
 in the frame e
 and we set

a� D ��
a
;

then a� transforms as the components of a 1-form. Similarly, if we define the matrix
�
� as the inverse of the matrix �
� (in the Minkowski case this is the same matrix)
and if !
 are the components of a 1-form in the frame dx
, then

!� D ��
!


transforms as the components of a vector. This is the idea behind lowering and
raising indices, which can be extended to arbitrary tensors.

Let u 2 R
4 be the velocity vector of a particle of mass m > 0. Going to the rest

frame of the particle, the vector u has components u D .1; 0/ D .1; 0; 0; 0/, which
implies that �.u; u/ D 1 independent of the chosen frame. In any frame we define
the 4-momentum

mu D .E;p/;

where E is the energy and p the 3-momentum of the particle in that frame. Then
�.u; u/ D 1 implies

m2 D E2 � p2:

If we introduce again the speed of light c, then �.u; u/ D c2,

mu D
�

E

c
;p
�

;

and

m2c4 D E2 � p2c2:

Relativistic theories of physics are theories formulated in Minkowski spacetime
whose laws are invariant under Poincaré transformations. This means that the
laws of physics are independent of where and when experiments are performed
(invariance under space and time translations), how the experiments are oriented
in space (invariance under rotations) and whether they are performed in different
inertial systems moving with constant velocity (invariance under Lorentz boosts).
For example, the principle of relativity claims that the laws of physics are the same
here and in the Andromeda galaxy, they are the same now and in 1 million years and
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they are the same on board two spacecrafts flying with arbitrary, constant velocities
in different directions.

B.2 A Short Introduction to Quantum Field Theory

From classical gravity and electromagnetism we are used to thinking of matter
as particles and interactions as carried by fields. However, according to quantum
field theory, matter and interactions can both be described by particles and fields.
Quantum field theory can be thought of as a unification of the concepts of classical
fields and point particles and thus as a unification (in some sense) of interactions and
matter (supersymmetric quantum field theories are a unification of both concepts in
an even stronger sense). The remarkable consequences of this approach are that
forces between matter particles can be reduced to couplings between different types
of fields and that symmetry groups, such as gauge symmetries, can act through
representations on both interaction and matter fields.

In the following sections we briefly want to discuss the basics of quantum field
theory and the relation between particles and fields. Our intention is to give a short
overview and interpretation, without any calculations or trying to be mathematically
rigorous. We also assume a basic familiarity with quantum mechanics.

B.2.1 Quantum Field Theory and Quantum Mechanics

Quantum field theory (QFT) is a quantum theory, in some sense similar to quantum
mechanics (QM):

• A quantum system has a Hilbert space V with a Hermitian scalar product h�j�i.
Elements of the vector space V are state vectors (states) jvi (we normalize these
vectors to unit norm). We think of the state of the system as being time-dependent
jv; ti (Schrödinger picture). However, we can equivalently think of the states
as being time-independent and instead the operators as being time-dependent
(Heisenberg picture, usually preferred in QFT).

• We cannot measure the state of a system directly, we can only measure the value
of observables, described by Hermitian operators A on V . If jvi is an eigenvector
of A with eigenvalue a,

Ajvi D ajvi;

and we measure the observable A if the system is in the state jvi, then the
value is the eigenvalue a. For an arbitrary state jwi, the expectation value of
the observable A is related to hwjAjwi.
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• We are also interested in transition amplitudes between states, given by
scalar products hwjvi. The amplitudes determine transition probabilities (the
probability that the system in the state jvi is found after a measurement in the
state jwi) by taking the absolute value squared of this complex number.

• There is a Hermitian Hamiltonian operator H which determines the evolution
of states between times t0 and t (by convention t0 D 0): we define the unitary
operator

U.t; 0/ D e� i
„

Ht;

where „ is the Planck constant (note that the exponential of a skew-Hermitian
operator is unitary). Then time evolution of states is given by

jv; ti D U.t; 0/jv; 0i:

One of our aims is to determine the time evolution operator U.t; 0/. Ideally we
would like to diagonalize H, i.e. find an eigenbasis for H of states jni of energy
En,

Hjni D Enjni;

because such states have a very simple time evolution:

jn; ti D e�iEntjn; 0i;

where e�iEnt 2 U.1/ is just a complex number of absolute value 1. In general, in
an interacting theory, this will be practically impossible.

• We can change from the Heisenberg picture to the Schrödinger picture and vice
versa as follows: the Schrödinger-type operator is the Heisenberg-type operator
taken at t0 D 0:

AS D AH.0/:

The time evolution of the Heisenberg-type operator is then given by the
Hamiltonian:

AH.t/ D e
i
„

HtASe� i
„

Ht:

So far everything should be familiar from QM. We now discuss what is peculiar
about QFT.
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B.2.2 Free Quantum Field Theory on 0-Dimensional Space

Suppose that space is 0-dimensional and consists only of a single point. A real-
valued field at this point is just a time dependent real number �.t/. The simplest
type of quadratic Lagrangian for this field is

L D 1

2
. P�/2 � 1

2
m2�2:

This Lagrangian is known as the harmonic oscillator. The Euler–Lagrange equa-
tion for this Lagrangian is the ordinary differential equation

R� C m2� D 0:

The Hilbert space of the associated quantum theory can be described as follows: let

H D
1M

nD0
C:

The basis states corresponding to this direct sum decomposition are denoted by

jni; n D 0; 1; 2; 3; : : :

The vector space H is the Hilbert space of the harmonic oscillator.

• The states jni are eigenvectors for the Hamiltonian H with energy En growing
linearly with n. These states are interpreted as the discrete set of different
vibrational modes of the field at the point.

• There is a Hermitian number operator N (an observable) whose eigenvectors
are jni with eigenvalue n:

Njni D njni:

B.2.3 Free Quantum Field Theory on d-Dimensional Space

Free quantum field theories (and to a certain degree, weakly interacting, perturbative
quantum field theories) have an interpretation in terms of particles.

Canonical Quantization

We consider the case of field theories on d-dimensional Euclidean space (for
simplicity we assume d D 3). A real-valued field is now a real function �.t; x/
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depending on time t and the space coordinate x. The simplest type of quadratic
Lagrangian for this field is the Klein–Gordon Lagrangian.

L D 1

2
.@
�/.@
�/� 1

2
m2�2: (B.1)

The Euler–Lagrange equation for this Lagrangian is the linear wave equation

@
@
� C m2� D 0;

called the Klein–Gordon equation.
The Hilbert space of the associated quantum field theory can be described as

follows: let V1 be the Hilbert space of a single free bosonic particle. It is spanned by
the basis states jpi D j1pi, where p 2 R

3 is the momentum of the particle, related
to its energy by m2 D E2 � p2. In these states the particle is totally delocalized in
position space. States where the particle is localized both in momentum and position
space with a certain minimal width (given by Heisenberg’s uncertainty principle)
can be obtained as linear combinations of the states jpi, called wave packets.

A general construction in quantum theory implies that the Hilbert space of n
indistinguishable particles of the same type is given by

Vn D SymnV1:

n-particle states are thus (linear combinations of) symmetrized tensor products of
1-particle states. We then form the (bosonic) Fock space

F D Sym�V1 D
1M

nD0
SymnV1

that contains states with an arbitrary number of particles. It turns out that the Fock
space F is a suitable Hilbert space for the quantum field theory described by the
Klein–Gordon Lagrangian (B.1).

• A basis for the Fock space is given by states

jnp1 ; : : : ; npr i; npi D 0; 1; 2; 3; : : : ;

where pi 2 R
3 are vectors and npi is the number of particles of momentum pi.

The total number of particles in this state is

n D
rX

iD0
npi :
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• These states are eigenvectors of the Hamiltonian H with energy growing linearly
with the numbers npi and they again correspond to different vibrational modes of
the field.

• The basis state j0i of the 1-dimensional space V0 Š C, where all npi are zero, is
called the vacuum. The vacuum is the unique eigenstate of the Hamiltonian of
eigenvalue 0.

• For every vector p there is a Hermitian number operator Np with eigenvectors

Npjnp; np1 ; : : : ; npr i D npjnp; np1 ; : : : ; npr i; where pi ¤ p 8i D 1; : : : ; r:

The number operator is an observable which returns the number of particles of a
given momentum in a given quantum state.

• The classical field �.x/ becomes in the QFT a field of Schrödinger-type operators
O�.x/, depending on the space point x (more precisely, an operator-valued
distribution), that all act on the same Hilbert space V . This field O� of operators is
called the quantum field. Together with the adjoint quantum field O�� it creates
and annihilates particles in the point x, i.e. adds or removes these particles from
the state in the Hilbert space. In the Heisenberg picture the field depends on the
point .t; x/ in spacetime.

Similarly, the Fock space V for a free fermionic field can be generated using
antisymmetrized tensor products:

F D ��V1 D
1M

nD0
�nV1:

In this case the numbers np can only take the values 0 or 1.

These descriptions of the Fock spaces make it clear that the Hilbert space
in quantum field theory is infinite-dimensional in two ways: the one-particle
space V1 is infinite-dimensional because the vector space R

3 of momenta p
has infinitely many elements (this is related to the fact that space is continuous
and infinitely extended). In addition there is the infinite direct sum over the
number of particles N 2 N0 that we already encountered in the case of
quantum mechanics of the harmonic oscillator (for the harmonic oscillator
the vector space corresponding to V1 is 1-dimensional).

B.2.4 Unitary Representation of the Poincaré Group

As one of the general axioms of QFT on 4-dimensional Minkowski spacetime we
assume that the Hilbert space of the quantum theory carries a unitary representa-
tion of the universal covering group SL.2;C/ Ë R

1;3 of the Poincaré group. Note
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that the non-compact simple Lie group SL.2;C/ does not admit non-trivial finite-
dimensional unitary representations according to Theorem 2.1.44.

B.2.5 Interacting Quantum Field Theories

A typical question in QFT is to calculate scattering amplitudes: Suppose we send
in an (idealized) collider a total number of n particles with certain momenta pi and
want to determine the probability that we find after collision n0 particles with certain
momenta p0

j. This process is governed by the laws of quantum theory: in general we
can only calculate a probability for the process or transition to happen, we cannot
predict the outcome completely, even if we know the initial state exactly. Since the
numbers n and n0 as well as the types of particles and their momenta can be different,
certain particles get created and others annihilated in the scattering process.1

To describe interacting QFTs, like the �4-theory with Lagrangian

L D 1

2
.@
�/.@
�/� 1

2
m2�2 � 1

4Š
�4;

we make the following assumptions, known as the interaction picture:

• The Hilbert space V of the interacting theory is the same Hilbert space as in
the free theory (the Fock space). The Schrödinger-type field operators (operator-
valued distributions) are also the same as in the free theory.

• The Hamiltonian H can be calculated from the Lagrangian L of the field theory,
expressed through the fields, that we collectively denote by �. The Hamiltonian
of the interacting theory is of the form

H D H0 C HI;

where H0 is the Hamiltonian of the free theory and HI is the interaction
part. Since the Hamiltonian H of the interacting theory is different from the
Hamiltonian H0 of the free theory, we expect the vacuum state j˝i of the
interacting theory to be different from the vacuum state j0i of the free theory,
even though both states (under our assumption) are elements of the same Fock
space V .

• The time-dependence of the Heisenberg-type field operators will be different
in the free and interacting theories, because the Hamiltonians are different.
One considers two types of time-dependent quantum fields: the Heisenberg
picture field is given the time evolution according to the full Hamiltonian H
and the interaction picture field is given the time evolution according to the free
Hamiltonian H0.

1Bound states, like atoms and hadrons, are described in QFTs using other methods.
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Scattering of particles in a collider can now be described as follows. We assume that
for time t ! �1 in the distant past and for time t0 ! C1 in the distant future
the particles are far apart and can be considered as free. We can then think of the
collections of particles that we send into and get out of the collider as states in the
Hilbert space V:

jv; ti D jnp1 ; : : : ; npr ; ti;
jv0; t0i D jnp0

1
; : : : ; np0

s
; t0i:

We want to calculate the scalar product

hv0; t0jU.t0; t/jv; ti:

If we know these scalar products, we can calculate the transition amplitudes between
any two states, because the momentum states form a basis for the Hilbert space.
Since the time evolution operator U is defined via the Hamiltonian H, it follows that
the scalar product for different ingoing and outgoing states will be non-zero only if
the action of H on particle states creates and annihilates certain particles.

More precisely, in a free field theory the Hamiltonian is quadratic in the fields
� and can be diagonalized. The eigenbasis is just given by the particle momentum
states

jnp1 ; : : : ; npr i

which are fixed by the action of H up to multiplication by the eigenvalue (the total
energy E of the collection of particles). It follows that in a free field theory particles
do not get created or annihilated. The transition amplitude between different particle
momentum states is zero and all scattering processes are trivial: we get the same
particles with the same momenta out that we sent into the collider. The vibrational
modes of the field described by these states are constant, independent of time.

In an interacting theory the Hamiltonian contains anharmonic terms, i.e. terms
of order three or higher in the fields �. Such Hamiltonians lead to non-trivial
creation and annihilation of particles and thus to non-trivial scattering processes.
Heuristically, the vibrational modes of the fields change with time and, since the
fields are coupled and the corresponding equations of motion are non-linear wave
equations, the vibrations of one field can start vibrations of another field.

The description so far assumed that the Hilbert space and the action of the
Schrödinger-type field operators are the same for the interacting theory as for
the free theory, only the vacuum state and the Hamiltonian have changed. This
assumption is merely a first approximation and actually not consistent, according
to Haag’s Theorem: Schrödinger-type quantum fields for a free and an interacting
theory cannot be the same; see, for example, [116, p. 391]. To define quantum field
theories in a mathematically rigorous way is the aim of constructive quantum field
theory (CQFT) and algebraic quantum field theory (AQFT).
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B.2.6 Path Integrals

Transition amplitudes can also be calculated using path integrals. Path integrals
for interacting theories, in particular, gauge theories, are more convenient than
canonical quantization. The path integral approach to quantum theory was originally
developed by P.A.M. Dirac and R.P. Feynman.

To understand the idea of path integrals, recall that standard integrals are integrals
of functions over finite-dimensional vector spaces (or finite-dimensional manifolds).
Path integrals are integrals of functions (also called functionals) over infinite-
dimensional vector spaces (or infinite-dimensional manifolds). These vector spaces
arise naturally as the spaces of all fields of a certain type on spacetime, i.e. the
space C1.M;W/, where M is spacetime and W is the vector space in which the
field � takes values (more generally, we could consider the space of all sections of
a vector bundle over M). Path integrals over the infinite-dimensional vector space
C1.M;W/ can be approximated by standard integrals over a finite-dimensional
vector space if spacetime is replaced by a lattice with finite lattice spacing a > 0

(and finite extension).
The path integrals that appear in QFT are of the form

G.x1; : : : ; xn/ D 1

N

Z

D� �.x1/ : : : �.xn/ exp

�
i

„
Z

M
L .�/ dvol

�

;

called Green’s functions or correlators. Here x1; : : : ; xn 2 M are points in
spacetime, � is the field, D� is the path integral measure on the space C 1.M;W/
and L is the Lagrangian of the field theory. The number N is a normalization
constant. It is clear that (say for a complex scalar field �, taking value in the complex
numbers W D C) for fixed points x1; : : : ; xn the map

FWC 1.M;C/ �! C

� 7�! �.x1/ : : : �.xn/ exp

�
i

„
Z

M
L .�/ dvol

�

is a function (functional) on the vector space C1.M;C/. The path integral

G.x1; : : : ; xn/ D 1

N

Z

D� F.�/

is the integral of this function over the infinite-dimensional space C1.M;C/.
Notice that the field � here is the classical field, not the quantum field of

operators. The approach to QFT using path integrals is independent of the approach
using Hilbert spaces and quantum fields. However, it can be shown that if one knows
all the Green’s functions, then the Hilbert space together with the quantum fields can
be reconstructed (this is known as the Wightman Reconstruction Theorem).



636 B Background on Special Relativity and Quantum Field Theory

In general, it is very difficult to calculate or even define these path integrals
precisely. Usually, this can only be done in the case of the free field with a quadratic
Lagrangian L . Scattering amplitudes can be calculated from Green’s functions
using the LSZ reduction formula, named after H. Lehmann, K. Symanzik and
W. Zimmermann.

B.2.7 Series Expansions

The actual calculation of scattering amplitudes is a formidable task and often can
only be done approximately, using power series expansions. In general, the Green’s
functions are functions of the coupling constant(s) g and the Planck constant „:

G D G.x1; : : : ; xn; g;„/:

There are mainly two types of series expansions:

Perturbation Theory

Perturbation theory works if the coupling constant g is small so that the full
Lagrangian L is a small perturbation

L D L0 C gLint

of the free Lagrangian L0. The Green’s functions for L0 are known and the Green’s
functions for L can be calculated in a series expansion in orders of g, by expanding
the exponential

exp

�
ig

„
Z

M
Lint.�/ dvol

�

in a power series in orders of g and then interchanging the path integral and
the infinite sum (this step is mathematically not justified [50]). The terms in the
power series expansion are described by Feynman diagrams. With the order of g
increasing in each step by 1, the terms in the series expansion for a process with
fixed external lines (in-coming and out-going particles) are called leading order
(LO), next-to-leading order (NLO), next-to-next-to-leading order (NNLO), and
so on.
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In perturbation theory, the full interacting Lagrangian is treated as a small
perturbation of the free Lagrangian. Since the states of a free quantum
field have an interpretation in terms of particles, it makes sense to think of
perturbation theory as describing (weakly) interacting particles. Feynman
diagrams, that depict these interactions, are the hallmark of perturbative
quantum field theory.

Internal lines in Feynman diagrams represent intermediate virtual particles
which are off-shell, i.e. do not satisfy the mass energy relation m2 D E2 � p2 (even
though momentum and energy are conserved at each vertex). In contrast to the in-
and out-state particles, virtual particles are therefore not “real” particles and cannot
be detected (the photons that mediate interactions between electrons are different
from the photons that we can see or detect with cameras).

A problem of perturbation theory is that the perturbation expansion in orders
of the coupling constant g actually converges only for g D 0, i.e. the radius of
convergence of the power series is zero (there is an argument due to Freeman Dyson
that a QFT cannot be well-defined for negative values of the coupling constant g,
hence the expansion around g D 0 must have radius of convergence equal to zero).
This implies that the perturbation expansion only makes sense as an asymptotic
expansion: up to a certain optimal order of g the series expansion approximates the
Green’s function better and better, but then, adding terms of higher order, the series
expansion starts getting worse and eventually diverges.

Semi-Classical Approximation

Semi-classical approximation can be used if the Planck constant „ is a (relatively)
small number. The power series for the Green’s functions is then an expansion
in orders of „. The lowest term of order zero is the classical contribution and
terms in higher order of „ are quantum corrections. In Feynman diagrams the
classical contribution corresponds to tree diagrams, whereas quantum corrections
correspond to loop diagrams. With respect to path integrals the semi-classical
approximation is an expansion around the critical points of the Lagrangian, i.e. the
classical solutions of the field equations (for „ ! 0 the path integral localizes at
these classical solutions).

Non-Perturbative Quantum Field Theories

Note that we do not claim that the Green’s functions are analytic in g or „.
Most smooth functions are, of course, not analytic, because analytic functions are
determined everywhere in their domain of definition by their values in an arbitrarily
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small neighbourhood of the center of expansion. The series expansions in QFT will
therefore only be approximately accurate for small values of g and „ and unusable
if these parameters are large. In particular, if g is large, the QFT is called non-
perturbative.

The term non-perturbative is essentially a synonym for non-analytic. Non-
perturbative effects in QFT will typically become dominant if the coupling
constant g is large. The particle interpretation breaks down (at least for the
fundamental fields) for strongly interacting, non-perturbative QFTs.

B.2.8 Renormalization

The calculation of the contribution of Feynman diagrams with loops2 involves
certain integrals that can diverge and lead to infinite Green’s functions. The idea
of renormalization is to absorb the infinities that occur in the Green’s functions
into the parameters (in particular, the masses and coupling constants), which then
become infinite themselves, while the Green’s functions become finite. For this to
work the parameters have to go in “the right way” to infinity, so that the Green’s
functions stay finite. More precisely, the parameters are no longer constants, but
certain functions of a cutoff, and go to infinity when the cutoff is removed, whereas
the Green’s functions remain finite.

Alternatively, renormalization can be understood as adding to the original
Lagrangian of the field theory a counterterm Lagrangian that cancels the divergences
of the Green’s functions. If we include terms (interactions) of the same form as
the counterterms in the original Lagrangian, then adding counterterms is equivalent
to a renormalization of parameters. A QFT is called renormalizable if finitely
many counterterms are needed to cancel the divergences and non-renormalizable
if infinitely many counterterms are needed. Non-renormalizable theories contain
infinitely many different types of interactions and infinitely many parameters, but
can still be useful (cf. [125, Sect. 21.2.2]).

The process of renormalization can be explained with a classical analogy, first
observed by M. Abraham and H. Lorentz: the electric field of a charged point
particle is of the form

E.r/ D ˛r
r3

2Only loop diagrams require renormalization.
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where ˛ ¤ 0 is some constant and r is the radial vector. The energy density u of the
electric field is proportional to jEj2, hence of the form

u.r/ D ˇ

r4

with a constant ˇ ¤ 0. It follows that the total energy of the field is

Z

R3

ˇ

r4
dvol D 4�ˇ

Z 1

0

1

r2
dr:

This integral, when extended all the way to 0, is infinite. It follows that a charged
point particle, like an electron, has an infinite energy in its electric field. If this
energy is added to the bare rest mass of the electron via E D mc2, corresponding
to an electromagnetic mass, the total mass becomes infinite, which seems like a
contradiction.

The idea is to set the bare (unobservable) rest mass mB of the electron equal
to �1, so that when we add the infinite energy due to the electric field the total
(observable) mass m becomes finite. We define a cutoff � > 0 and set

I.�/ D 4�ˇ

Z 1

�

1

r2
dr;

which is finite for all � > 0. This is called regularization of the divergent integral.
We also define

mB.�/ D m � I.�/

c2
;

where m is the observed mass of the electron, known from experiments. This is
called renormalization of the mass. The bare mass is thus a function of the cutoff
� and goes to �1 if we let � ! 0. However, the total mass is now

mB.�/C I.�/

c2

which is constant and equal to the finite mass m for all � > 0. We see that we have
hidden the infinity from the divergent integral I.0/ in the renormalization of the
mass mB.

In general, the divergences encountered in QFTs can be traced to two aspects
of space: space is continuous (leading to UV divergences) and space is infinitely
extended (leading to IR divergences). Both aspects imply that QFTs, which describe
time-dependent fields defined on space, have to deal with systems with infinitely
many degrees of freedom, the crucial difference to QM. A QFT can be regularized
by introducing cutoffs: a UV cutoff essentially means to reduce space to a lattice
with finite lattice spacing a > 0 (corresponding to an upper cutoff on the norm jpj
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of the momentum) and an IR cutoff means to consider the theory in a finite volume
V < 1 of space (corresponding to a discrete set of momenta). Both regularizations
together reduce the QFT to a system with finitely many degrees of freedom (in
continuous time), essentially a version of QM.

B.2.9 Further Reading

Introductory accounts of quantum field theory are [51] and [86]. Extensive discus-
sions from a physics point of view can be found, for example, in [124, 125, 132]
and [143–145]. Mathematically rigorous discussions can be found in the classic
references [17, 69, 134] and in [38, 45, 82]. Perturbation theory, semi-classical
approximation and renormalization are very well and comprehensibly explained
from a mathematical point of view in the lecture notes [50].
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vector bundle, 226

Chern class, 285
Chern–Simons

action, 317
theory, 258

chiral
limit, 530
symmetry, 529

breaking, 527, 530
chirality

element, 337
operator

mathematical, 339
physical, 339

classical contribution, 557, 637
Clay Millennium Prize Problem, 193, 417
codifferential, 410

covariant, 411
colour, 433, 473, 483, 531

confinement, 280, 473, 530
space, 475, 502

conjugate, xii
complex number, 10
quaternion, 11

conjugation, 40, 101
connection, 260, 261
1-form, 261

local, 270
canonical flat, 261
Ehresmann, 260

constant
Fermi, 469
fine-structure, 470

coordinate
change of coordinates, 605
system, 604

transformation, 605
correlator, 270, 401, 493, 635
coupling constant, 4, 120, 421, 460, 463, 465,

522, 560, 564
effective, 558
electric, 470, 560
running, 557, 564, 569
strong, 477, 562

covariant differential, 304
CP

problem
strong, 547

transformation, 546, 552, 555
violation, 547, 556

current, 498
charged current interaction, 498
neutral current interaction, 498

curvature, 274
2-form, 274
local 2-form, 278

cutoff, 638

dark matter, 532, 590
decay, 499, 503, 524
derivative

covariant, 423, 463
and interaction between particles,

294
compatible with bundle metrics, 296
exterior, 303

directional, 614
exterior, 622
Lie, 613

diffeomorphism, 607
differentiable

map, 607
structure, 605

differential
of smooth map, xiii, 609
on forms, 622

differential form, 619
twisted with a vector space, 147
with values in a vector space, 147

differential topology, 237
Dirac operator, 329, 388, 390, 392

index, 393
distribution, 52, 259, 616

integrable, 53, 312, 616
Donaldson theory, 237, 258, 420
dual

basis, 617
space, 617
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eigenstate
current, 516
mass, 100, 501, 516–518, 534, 537
weak, 501, 516, 518, 534, 539

eightfold way, 531
Einstein summation convention, xi, 612
electron, 430, 483, 514, 521, 524, 560
electroweak

interaction, 471
theory, 455, 457, 461, 464

emission, 499, 503
energy, 627, 629

electric field, 639
equivalence relation, 151
Euclidean space, 320
Euler class, 285
exotic 7-spheres, 237
expansion

asymptotic, 637
series, 636

exponential map, 57
embedded Lie subgroup, 60
linear group, 63

determinant, 65
torus, 61

exterior covariant derivative, 304

family, 479
Fermilab, 445, 483
fermion, 100, 319, 632
Feynman diagram, xiii, 401, 636
ˇ-decay, 500
electroweak interaction vertices, 499
gauge bosons, 416
gauge field and scalar field, 294
interaction between electroweak gauge

bosons, 510
interaction between gluons, 512
interaction between Higgs bosons and

gauge bosons, 507
interaction between leptons and Higgs

boson, 514
interaction between quarks and Higgs

boson, 517
interactions between X, Y-bosons and

fermions, 584
loop, 557, 637, 638
neutral Kaon decay, 519
strong interaction vertex, 503
tree, 637
vacuum polarization, 557

fibre, 195

field
chromo-electric, 286
chromo-magnetic, 286
complex scalar, 424, 425
electric, 286, 419
generalized electric, 286
generalized magnetic, 286
magnetic, 286, 419
real scalar, 429
strength, 257

local, 278
fixed point, 132

set, 132
flattener, 67, 611
flavour, 433, 499, 503, 528

changing vertex, 499, 520, 536
lepton, 483
neutrino, 532
quark, 100, 473, 483, 562
symmetry, 527, 529–531

foliation, 53, 616
form, 617

alternating, 617
bilinear, 95
conjugate symmetric, 95
contraction, 333
positive definite, 95
sesquilinear, 95
symmetric, 95
with values in a vector space, 147

gauge
boson, 280, 311

B, 469, 596
W, 421, 469, 470, 483, 490, 498, 519,

520, 596
W0, 469
X, 584
Y, 584
Z, 421, 469, 470, 483, 498, 499, 596
broken, 460
gluon, 4, 193, 257, 280, 416, 430, 473,

531, 596
mass, 460
massive, 421, 463, 468
massless, 421, 463, 468, 474
off-diagonal action, 427, 499, 503, 520,

584
photon, 4, 280, 430, 469, 499, 596
unbroken, 460, 474
vector, 469
weak, 4
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boson field, 104, 271, 488
gluon, 104, 478, 489, 501
hypercharge, 104, 489
weak, 104, 489

field, 261, 311
local, 270

global, 219, 242, 448
group, 266

Standard Model, 31, 91, 100, 120, 474,
564, 565, 567

local, 219, 242
sector

gluon, 489
hypercharge, 489
weak, 489

theory
chiral, 487

transformation, 220, 457
global, 265
local, 266, 272, 280
physical, 268
rigid physical, 268

unitary, 457, 461, 462, 506, 514, 517, 522,
535

gaugino, 596
bino, 596
gluino, 596
photino, 596
wino, 596
zino, 596

Gell-Mann–Nishijima formula, 472
generation, 479, 483, 497

changing vertex, 520
generator

broken, 459, 468
unbroken, 459

geodesic, 108
ghost state, 405
glueballs, 193, 417
gluodynamics, 193, 417
gluon fusion process, 517
Grand Unification

possible group, 564
Grand Unified Theory (GUT), 4, 21, 31, 100,

122, 359, 487, 492, 520, 564, 597
E6, 566, 582
SU.3/3, 566
SU.5/, 31, 100, 120, 566, 573, 583, 587
SU.6/, 566
SU.7/, 566
Spin.10/, 31, 120, 566, 576

Grassmann manifold, 169
Grassmannian, 169
Green’s function, 270, 493, 635, 638

group
action, 32, 128

continuous, 130
effective, 136
equivariant map, 136
faithful, 136
free, 135
infinitesimal, 141
isomorphism, 136
isotropy group, 32, 132, 137, 448
isotropy subalgebra, 134
left, 130
linear, 137, 139
on spheres, 139, 166
orbit, 132, 452, 457
principal, 159, 213
right, 130
simply transitive, 135
smooth, 130
stabilizer, 132
transitive, 135

diffeomorphism, 270
Lie, 6

G2, 21, 170
abelian, 8, 257, 280, 281, 416, 560
classical, 24, 167
closed subgroup, 19, 20, 26, 67
compact, 20, 22, 27, 97, 107, 117
connected component of the identity,

32, 167, 323
dimension, 26, 27
embedded subgroup, 18, 44
exceptional, 20
general linear, 21
Heisenberg, 8
homotopy groups, 120, 177
immersed subgroup, 18, 19, 44, 53, 61
linear, 9, 20, 26
matrix, 9, 20, 25
maximal torus, 116
non-abelian, 20, 22, 257, 280, 416, 417,

560
non-compact, 22, 26
orthogonal, 24
pin, 350
product, 18
pseudo-orthogonal, 321
pseudo-orthogonal, orthochronous, 325
pseudo-orthogonal, proper, 325
pseudo-orthogonal, proper

orthochronous, 325
rank, 116, 565
semisimple, 117
simple, 117, 421, 564
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special linear, 24
special orthogonal, 24
special unitary, 24
spin, 20, 350, 568
spin, orthochronous, 350
symplectic, 24
uniqueness of smooth structure, 75
unitary, 24

little, 132
topological, 5
transformation, 130

hadron, 473, 524, 531
Hamiltonian operator, 629
handedness, 483
harmonic form, 419
harmonic oscillator, 630
Hausdorff space, 152, 604
Hessian, 452
Higgs

boson, 454, 455, 488, 505, 532
absorption, 507
and vector boson decay, 508
and vector boson fusion, 508
mass, 456, 522

bundle, 446, 488
condensate, 449, 460, 463, 522, 588, 589
field, 88, 425, 433, 437, 446, 454, 513, 588,

589
electric charge, 473
self-coupling, 456
shifted, 452, 462
Taylor expansion, 454

mechanism, 421, 531, 541, 546
Brout–Englert–Higgs, 463

potential, 446, 450, 505, 522
Strahlung, 507
vector space, 446, 466

Higgsino, 596
Hilbert space, 549, 628
Hodge star operator on forms, 408
holonomy, 243, 301
homogeneous space, 135, 162, 216, 396

reductive, 263
homomorphism

Lie algebra, 38, 144
induced, 43
trivial, 38

Lie group, 33
SL.2;C/ to SOC.1; 3/, 375
SU.2/ to SO.3/, 34
SU.2/ � SU.2/ to SO.4/, 80

continuous, 33, 74
differential, 43
image, 74
kernel, 74
trivial, 33

Hopf
action, 129, 138, 142, 196, 207
fibration, 196, 215, 238, 247, 264, 281

horizontal lift, 287

immersion, 610
inertial system, 220, 625
instanton, 420
interaction

and covariant derivative, 294
between fermions and gauge bosons, 432,

495
between gauge bosons, 280, 416
between Higgs bosons, 455
between scalar field and gauge bosons, 427
electromagnetic, 4
electroweak, 449
strong, 4, 473
vertex, 495

electroweak, 496, 554
strong, 496, 501, 502

weak, 4, 394, 433, 483, 503, 562

Jacobi identity, 36, 615
super, 591

Jarlskog invariant, 548, 553, 556

Killing form, 108, 114, 466, 477
Klein–Gordon equation, 631
Koszul formula, 621

Lagrangian, 294, 401, 633
anharmonic term, 401, 634
Dirac, 430, 431, 434, 495, 504, 550, 584
effective, 542
Einstein–Hilbert, 438
gauge invariance, 414, 427, 449
harmonic term, 401
Higgs, 404, 425, 428, 506, 550, 553
kinetic term, 424, 427, 430, 432, 504
Klein–Gordon, 463, 550, 631

coupled to gauge field, 426
free, 424

Standard Model, 438, 522
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Yang–Mills, 107, 257, 280, 414, 508, 550
electroweak gauge bosons, 509
gluons, 511

Yang–Mills–Dirac, 433
Yang–Mills–Dirac–Higgs–Yukawa, 438
Yang–Mills–Higgs, 429, 447, 505
Yang–Mills–Klein–Gordon, 428
Yukawa, 438, 514, 517, 522, 553

Large Hadron Collider (LHC), 464, 474, 517
Leibniz rule, 293, 303, 614, 622
lens space, 161
lepton, 100, 483, 497, 502, 513, 524

charged, 483
flavour universality, 501
mass, 513
mass (experimental), 521
number

conservation, 523, 536
electron, 536
electron , 522
muon, 523, 536
tau, 523, 536
total, 523, 536
violation (LNV), 523

sector, 479
leptoquark, 584
Levi-Civita connection, 383, 620
Lichnerowicz–Weitzenböck formula, 393
lifetime, 524
locally Euclidean, 603
Lorentz

frame, 625
group, 52

orthochronous, 325
proper, 325
proper orthochronous, 325, 592

manifold, 285
spin, 434, 437

orthochronous spin group, 93, 375, 402
transformation, 220, 402, 625

LSZ reduction formula, 636

M-theory, 21, 170, 363, 597
manifold, xiii, 6

closed, 606
differentiable, 605
oriented, 606
product, 607
smooth, 605
topological, 603

mapping torus, 199

mass
bare, 639
form, 459, 466
gap, 193, 417
generation

for fermions, 512
for gauge boson, 463, 465

pairing, 435
term

Dirac, 430, 435, 438, 514, 517, 532,
536, 543

Klein–Gordon, 424, 427, 454
Majorana, 439, 541–543

mass hierarchy
inverted, 540
normal, 540

matrices
gamma

mathematical, 337
physical, 337
raising index, 340

Gell-Mann, 50, 103, 104, 476, 583
Pauli, 50, 104, 341, 465, 583

matrix
antisymmetric, xii
determinant, xii
Hermitian, xii
skew-Hermitian, xii
skew-symmetric, xii
symmetric, xii
trace, xii
transpose, xii

Maurer–Cartan form, 148, 271
Maxwell’s equations, 419
meson, 473, 531
metric, 620

Lie group
bi-invariant, 106, 108
left-invariant, 106
right-invariant, 106

pseudo-Riemannian, 376, 406, 620
Riemannian, 620

Mexican hat, 451
minimal coupling, 294, 426
Minimal Supersymmetric Standard Model

(MSSM), 596
Minkowski

metric, 220, 285, 625
East Coast, 625
West Coast, 625

spacetime, 220, 285, 320, 343, 592,
625
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moduli space
instanton, 420
Yang–Mills, 420

momentum, 627
monodromy, 199
multiplet

chiral, 596
complex scalar, 424, 425
gauge, 596
spinor, 390
vector, 596

muon, 470, 483, 514, 521

Nambu–Goldstone boson, 454, 455, 457
neutrino, 499, 514, 524

electron, 483, 532, 537
mass, 532, 539
mixing, 535, 547, 556
muon, 483, 532, 537
oscillation, 532, 537, 539
right-handed, 483, 532
solar, 501
sterile, 532, 576, 581
tau, 445, 483, 532

neutron, 473, 524, 531
Nobel Prize in Physics

1957, 417, 483
1969, 483
1977, 464
1979, 471
1984, 471
1999, 471
2004, 562
2008, 464, 483, 549
2013, 464
2015, 532

non-perturbative, 474, 530, 531, 562, 591, 638
norm

complex number, 10
of differential forms, 408
of pseudo-Euclidean scalar product, 321
quaternion, 11

nucleon, 473
number operator

field, 632
harmonic oscillator, 630

observable, 628
octonions, 10, 190, 229
on-shell, 596

operator
lowering, 51
raising, 51

order
leading (LO), 636
next-to-leading (NLO), 636
next-to-next-to-leading (NNLO), 636

orientation, 377
time-, 377

parallel transport
in associated vector bundle, 289
in principal bundle, 288

parallelizable
manifold, 228
sphere, 229

parameters of the Standard Model, 522
parity, 483

inversion, 394, 483, 499, 546, 549
particle, 294, 311, 630

annihilation, 401, 634
collider, 633
creation, 401, 634
elementary, 401
matter, 88
point, 270
virtual, 499, 637

parton, 474
distribution function (PDF), 474

path integral, 401, 635
measure, 405, 635

path-ordered exponential, 299
pentaquark, 473
perturbation theory, 562, 636
perturbative, 474, 637
picture

Heisenberg, 628
Schrödinger, 628

Planck constant, 557, 629
Poincaré transformation, 626
Pontecorvo–Maki–Nakagawa–Sakata (PMNS)

matrix, 536, 538, 540, 548
positron, 485
probability, 629, 633
projection

canonical, 134, 151
stereographic, 604, 605

projective space
complex, 139, 161, 215
quaternionic, 139, 161, 216
real, 139, 161, 216
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proton, 473, 524, 531
decay, 520, 523, 586
lifetime, 587

pullback, 621
push forward, xiii

quantum chromodynamics (QCD), 193, 257,
280, 286, 416, 430, 433, 473, 527

lattice, 473, 530, 531
quantum correction, 557, 637
quantum electrodynamics (QED), 257, 280,

286, 430, 560
quantum field, 632
quantum field theory (QFT), 257, 270, 404,

454, 494, 499, 628
algebraic, 634
constructive, 634

quantum gravity, 270, 438
quantum mechanics (QM), 628
quark, 100, 193, 430, 433, 483, 497, 502, 562

antiquark, 485, 502
bottom, 483, 521
charm, 483, 520, 521
down, 483, 521, 530, 531
mass, 517, 530
mass (experimental), 521
mixing, 100, 501, 518, 520
sea, 474
sector, 479
strange, 483, 521, 530
top, 445, 473, 483, 517, 521
up, 483, 521, 530, 531
valence, 474, 531

quaternionic matrix, 12
adjoint, 13
determinant, 15
inverse, 14

quaternions, 10
imaginary, 11
real, 11

quotient space, 133, 151
fundamental group, 160
smooth structure and submersion, 155

radiation, 499, 503
regular

point, 610
value, 610

regularization, 639
relativity

general theory, 266, 270, 403
special theory, 220, 625

renormalizable, 450, 465, 638
non-, 404, 464, 542, 638

renormalization, 404, 557, 638
representation

adjoint, 559
direct product, 103
Lie algebra, 105, 110
Lie group, 101, 141, 474
linear group, 102

branching rule, 100, 573, 574, 581, 582
decomposition, 99, 110
doublet, 87
fermions in the Standard Model, 83, 88, 91,

394, 478
induced, 86, 96
irreducible, 87, 99
isodoublet, 481, 532
isosinglet, 481, 532
isotropy, 140
Lie algebra, 85

equivariant map, 85
faithful, 85
integrability, 86
intertwining map, 85
isomorphism, 85
linear algebra constructions, 92
morphism, 85
restricted, 86
skew-Hermitian, 96
skew-symmetric, 96

Lie group, 32, 84
SL.2;C/ Weyl spinor, 94, 484
equivariant map, 84
faithful, 84
intertwining map, 85
isomorphism, 85
linear algebra constructions, 89
morphism, 84
orthogonal, 95, 97
quaternionic structure, 360
real structure, 360, 485
restricted, 85, 100
unitary, 95, 97

linear group
defining, 87
fundamental, 87, 479, 501, 561
standard, 87

Poincaré algebra, 595
reducible, 87
singlet, 87, 532
super-Poincaré algebra, 595
triplet, 87

colour, 481
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trivial, 88, 479, 489, 501, 561
unitary, 100
weight lattice, 492

scalar product, 620
G-invariant, 97, 99, 479
L2-scalar product of forms, 409
L2-scalar product of spinors, 389
L2-scalar product of twisted forms, 410
L2-scalar product of twisted spinors, 391
Ad-invariant, 107, 118, 119, 413, 421, 459,

466, 477
Euclidean, 95, 620
Hermitian, 95, 479
of forms, 407
of twisted forms, 409
pseudo-Euclidean, 320
semi-Euclidean, 320
standard, 23

scattering experiment, 633
section, 195
sector

lepton, 496, 532
quark, 496, 532

seesaw mechanism, 532, 537, 546
Seiberg–Witten theory, 237, 258
self-duality

anti-self-dual, 420
self-dual, 420

semi-classical approximation, 637
skew field, 10
slepton, 596
speed of light, 625
sphere, 604
spin

connection, 385
covariant derivative, 385

compatible with bundle metrics, 387
compatible with Levi-Civita connection,

387
twisted, 390
twisted chiral, 392

manifold, 379
structure, 377

spinor
anticommuting, 366, 369, 498, 543, 552
bundle

Dirac, 380
Dirac metric, 383, 434
Majorana metric, 383
twisted, 389, 431, 434
twisted chiral, 392, 435, 478
Weyl, 381, 392, 478

charge conjugate, 362, 374, 484
charge conjugation matrix, 364
Clifford multiplication, 381

form, 346
mathematical, 346
physical, 346

Dirac, 346
form

Dirac, 367, 373, 439, 484
Majorana, 364, 374, 439, 484

Majorana, 361, 375
Majorana conjugate, 366, 439, 541
Majorana–Weyl, 362
on manifold, 380
representation

Dirac, 346
real, 363, 593
Weyl, 347, 577

symplectic Majorana, 361
symplectic Majorana–Weyl, 363
twisted, 595
Weyl, 359

left-handed (positive), 347, 373, 434,
439

right-handed (negative), 347, 373, 434,
439

squark, 596
Standard Model, 3, 31, 87, 88, 104,

553
state, 628

bound, 473, 633
Stiefel manifold, 168
Stiefel–Whitney class, 378
structure equation, 275

local, 279
structure group, 208, 240
submanifold

embedded, 611
immersed, 611

submersion, 610
and local sections, 152

superalgebra, 332
supergravity, 404, 595
superpartner, 596
superstring theory, 21, 170, 270, 363, 597
supersymmetry, 403, 530, 591, 628

breaking, 596
field theory, 595
generator, 595
Grand Unification, 572, 587
local, 595
rigid, 595

symmetric bilinear form, 320
signature, 320
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standard, 320
orthonormal basis, 321

symmetry, 403
approximate, 531
bosonic, 595
breaking, 137, 404, 448, 461, 462, 464,

506, 514, 517, 530, 535, 542, 587
conformal, 403
discrete, 546
fermionic, 595
full group, 394, 474
gauge, 266, 403, 531
global, 528
Lorentz, 403

tangent
space, 608

horizontal, 260
vertical, 258

vector, 608
tau, 483, 514, 521
tensor, 617
tetrad, 225, 379
tetraquarks, 473
Theorem

Adams, 230
Ado, 47, 85, 111
Atiyah–Singer Index Theorem, 393
Cartan’s Criterion for Semisimplicity, 112,

559
Cartan’s Theorem on Closed Subgroups,

19, 67
Cartan–Dieudonné, 329, 352
Cayley, 23
Frobenius, 616
Godement, 155, 178
Haag’s, 634
Haag–Łopuszański–Sohnius, 595
Killing–Cartan Classification, 116, 565
Lie’s Third, 43
Peter–Weyl, 22, 84
Regular Point, 610
Regular Value, 611
Schur’s Lemma, 118, 436, 559
Wightman Reconstruction, 635

time-orientability, 323
translation

group action
left, 131
right, 131

Lie group
left, 40
right, 40

tree level, 557
Trinification, 566

unitarity, 405

vacuum, 447
configuration, 447
expectation value (vev), 449
gauge, 448
manifold, 447, 450
polarization, 557, 558, 560, 561
space of vacua, 447
vector, 447, 450, 466

vector field, xiii, 612
basis, 612
commutator, 614
components, 612
coordinate, 612
flow

global, 613
local, 613

fundamental, 143
integral curve, 613
left-invariant, 41

flow, 58
integral curve, 55

vector space
complex conjugate, 89

vielbein, 225, 379
volume form

canonical, 406
right-invariant, 97
standard, 24

wave packet, 631
wedge product, 618
Wilson loop, 302
winding number, 87, 238, 247, 480

Yang–Mills
connection, 420
equation, 418
theory, 193, 257, 417

Yang–Mills–Higgs equations, 443
Yukawa

coupling, 437, 438, 512, 522, 532, 535
form, 437, 534, 554

leptons, 513
quarks, 516
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