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Chapter 13
Nanobiotechnology Applications in Special 
Reference to Fungi

Safiye Elif Korcan and Muhsin Konuk

Abstract  Nanobiotechnology is placed in the intersection point of nanobiology, 
biotechnology, nanotechnology, and biology. This technique approach provides an 
angle to scientists to imagine new systematic gates to study on. From the point of 
biological sciences, it is an inspiring area for the studies which has not been created. 
The fungi can synthesize nanoparticles both inside and outside of their cells. In 
extracellular synthesis, after growing and obtaining the biomass these cells are incu-
bated in the presence of metal salt solutions. The synthesis of nanobioparticles can 
be observed easily by looking at the color changes in the cultures. After completing 
the synthesis, nanoparticles were then subjected to centrifuge in high speed 
and density gradient. Then they were collected by washing with water or organic 
solvents like EtOH/MeOH. The main focus of this review is to introduce the appli-
cation of fungi in the synthesis of nanoparticles biologically.

13.1  �Introduction

The word “nano” is used to indicate the dimension of less than 100 nm. A nanopar-
ticle (NP) (nanopowder, nanocluster, or nanocrystal) is an ultramicroscopic particle. 
Nanoparticles (NPs) have different physical, chemical, electronic, electrical, 
mechanical, magnetic, thermal, dielectric, optical, and biological characters. 
Developments of this area present great potential of various sectors like energy, 
environment, agriculture, and healthcare. Hence, it has been building great expecta-
tions not only in the academia but also among the investors, governments, and 
industries (Jain et al. 2011).
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There are diverse techniques to synthesize different kinds of NPs (Xiangqian 
et al. 2011). Physical and chemical ones are popular but the use of toxic chemicals 
greatly limits their biomedical applications. For this reason, improving of reliable, 
nontoxic, and environmentally friendly methods for synthesis of NPs is very impor-
tant (Prasad 2014; Prasad et al. 2016, 2017). Research in biotechnology has revealed 
that there are reliable, eco-friendly processes for synthesis of novel nanomaterials. 
Biological synthesis of nanoparticles using various biological systems such as yeast, 
bacteria, fungi, algae, and plant extract has also been in our knowledge (Yen and 
Mashitah 2012; Prasad et al. 2016).

13.2  �Nanoparticle Synthesis Using Microorganisms

In the last decade, the application of green nanotechnology has been investigated as 
an alternative way to chemical and physical techniques. Green synthesis of nanopar-
ticles can be done by polysaccharide method, tollens method, irradiation method, 
biological methods, and polyoxometalates method (Sharma et al. 2009). As shown 
in Table 13.1, biological syntheses of NPs in different biological systems have been 
reported (Yen and Mashitah 2012). As it is well known, many biological systems 
accumulate inorganic material inside or outside of the cell to form NPs. Many 
microbial species can produce metal NPs (gold, silver, goldsilver alloy, selenium, 
tellurium, platinum, palladium, silica, titania, zirconia, etc.). This kind of syntheses 
of NPs brings together the nanotechnology and biotechnology.

Table 13.1  Mechanism of nanoparticle biosynthesis using different sources

Biological 
systems Possible mechanism

Plant Secondary metabolites (alkaloids, flavonoids, saponins, steroids, tannins, and 
other nutritional compounds) act as reducing and stabilizing agents

Algae Polysaccharides have hydroxyl groups and other functionalities that can play 
important roles in both the reduction and the stabilization of nanoparticles

Fungi Reducing enzyme intracellularly or extracellularly and the procedure of 
biomimetic mineralization

Yeast Membrane bound (as well as cytosolic) oxidoreductases and quinones
Bacteria The microbial cell reduces metal ions by the use of specific reducing enzymes 

like NADH-dependent reductase or nitrate-dependent reductase
Virus Tobacco mosaic virus (TMV) was used as template for the synthesis of iron 

oxides by oxidative hydrolysis, co-crystallization of CdS and PbS, and the 
synthesis of SiO2 by sol-gel condensation. It happened with the help of external 
groups of glutamate and aspartate on the external surface of the virus. Self-
assembled viral capsids of genetically engineered viruses were exploited as 
biological templates for the assembly of quantum dot nanowires

Moghaddam et al. (2015); Yen and Mashitah (2012)
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13.2.1  �Advantages of Biological Synthesis of Nanoparticles

	 (i)	 Routine methods for synthesing of the metal nanomaterials often need to use 
of organic solvents and/or high-energy input. In opposition, microbes have 
evolved to possess molecular machineries to detoxify heavy metals, mainly by 
operating metal-binding peptides (Park et al. 2016).

	(ii)	 Biological methods for nanoparticle synthesis would help avoiding many of 
the detrimental features by enabling synthesis at mild pH, pressure and tem-
perature, and at a substantially lower cost (Jain et al. 2011).

	(iii)	 Biological process is also an environmentally friendly way, because, both pro-
duction and remediation of NPs can be achieved at the same time.

	(iv)	 Diverse NPs, including those that have never been chemically synthesized, can 
be synthesized biologically (Park et al. 2016).

13.2.2  �Advances of Fungal Synthesis of Nanoparticles

The fungi such as Fusarium oxysporum, Colletotrichum sp. (Shankar et al. 2003), 
Trichothecium sp., Trichoderma asperellum, T. viride, (Ahmad et al. 2005; Fayaz 
et al. 2010), Phanerochaete chrysosporium (Fayaz et al. 2006), F. solani (Ingle et al. 
2009), F. semitectum (Basavaraja et al. 2008), A. fumigatus (Bhainsa and D’Souza 
2006), Coriolus versicolor (Bhainsa et  al. 2009), Aspergillus niger (Gade et  al. 
2008), Phoma glomerata (Birla et al. 2009), Penicillium brevicompactum (Shaligram 
et al. 2009), Cladosporium cladosporioides (Balaji et al. 2009), Penicillium felluta-
num (Kathiresan et al. 2009), and Volvariella volvaceae (Philip 2009) have been 
investigated for NPs synthesis. Potential fungal isolates used for the biosynthesis of 
nanoparticles were given in Table 13.2.

13.2.3  �Fungi Are More Advantageous Compared to Other 
Microorganisms

	(a)	 Mycelial mesh of fungi can flow pressure. Aggregation and other conditions in 
bioreactors/chambers might be also compared to plant and bacteria.

	(b)	 These are critical to grow and easy to both handle and manufacture. The extra-
cellular reductive protein secretions are high and can be easily managed.

	(c)	 Since the nanoparticles precipitated outside the cell are devoid of unnecessary 
cellular components, they might be directly used in various applications 
(Narayanan and Sakthivel 2010).

	(d)	 Since fungi have the advantage of producing very high secreted proteins, this 
feature might increase nanoparticle synthesis grade.

13  Nanobiotechnology Applications in Special Reference to Fungi
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Table 13.2  Potential fungal isolates used for the biosynthesis of nanoparticles

Fungi NPs Shape and location

Min and max 
particle size 
(nm) References

Fusarium 
oxysporum

Pt Rectangular, triangular, 
hexagonal,square,spherical, 
and aggregates

70–180 Govender et al. 
(2009); 
Moghaddam et al. 
(2015)

Cd Spherical, extracellular 9–15 Kumar et al. 
(2007a, b); 
Moghaddam et al. 
(2015)

Ag Aggregates, spherical, 
extracellular

5–50 Ahmad et al. 
(2003); Kumar 
et al. (2007a, b); 
Moghaddam et al. 
(2015)

Au Triangular, spherical, 
extracellular, or intracellular

2–50 Mandal et al. 
(2006); Zhang 
et al. (2011); 
Moghaddam et al. 
(2015); Khandel 
and Kumar 
(2016)

PbCO3, 
CdCO3

Spherical, extracellular 120–200 Sanyal et al. 
(2005); Li et al. 
(2011)

SrCO3 Needlelike, extracellular 10–50 Rautaray et al. 
(2004); Li et al. 
(2011)

CdSe Spherical, extracellular 9–15 Kumar et al. 
(2007a, b); 
Narayanan and 
Sakthivel (2010)

CdS Spherical, extracellular 5–20 Ahmad et al. 
(2002); 
Salahuddin and 
Azamal (2016)

TiO2 Spherical, extracellular 6–13 Bansal et al. 
(2005); 
Salahuddin and 
Azamal (2016)

BaTiO3 Spherical, extracellular 4–5 Bansal et al. 
(2006); 
Narayanan and 
Sakthivel (2010)

(continued)
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Table 13.2  (continued)

Fungi NPs Shape and location

Min and max 
particle size 
(nm) References

ZrO2 Spherical, 3–11 Bansal et al. 
(2004); 
Salahuddin and 
Azamal (2016)

Si Quasi-spherical 5–15 Bansal et al. 
(2005); 
Narayanan and 
Sakthivel (2010)

Bi2O3 Quasi 5–8 Uddin et al. 
(2008); 
Narayanan and 
Sakthivel (2010)

BT Extracellular 4–5 Bansal et al. 
(2006); Khandel 
and Kumar 
(2016)

Fe3O4 Irregular, quasi-spherical 20–50 Bharde et al. 
(2006); Khandel 
and Kumar 
(2016)

Fusarium 
oxysporum f. sp. 
lycopersici

Pt Hexagonal, pentagonal, 
circular, squares, rectangles 
Extra- and intracellular

10–100 Riddin et al. 
(2006); Govender 
et al. (2009); 
Moghaddam et al. 
(2015); 
Narayanan and 
Sakthivel (2010)

Fusarium spp. Zn Alteration intracellular 100–200 Velmurugan et al. 
(2010); 
Moghaddam et al. 
(2015)

Fusarium solani Ag Spherical, extracellular 5–35 Maliszewska 
et al. (2009a, b); 
Khandel and 
Kumar (2016)

Fusarium 
culmorum

Ag, Au, 
Pb, Cu

Spherical, extracellular 5–10 Bharde et al. 
(2006); Khandel 
and Kumar 
(2016)

Aspergillus 
clavitus

Ag Extracellular 550–650 Saravanan and 
Nanda (2010);  
Moghaddam et al. 
(2015)

Au Triangular, spherical and 
hexagonal, extracellular

24.4 Verma et al. 
(2011)

(continued)
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Table 13.2  (continued)

Fungi NPs Shape and location

Min and max 
particle size 
(nm) References

Aspergillus 
fumigatus

ZnO Spherical and hexagonal, 
extracellular

1.2–6.8 Raliya (2013); 
Moghaddam et al. 
(2015)

Ag, 
Ag-Au

Mostly spherical. 
Extracellular

5–25/15- 
>120

Bhainsa and 
D’Souza  (2006)

Aspergillus 
oryzae TFR9

FeCl3 Spherical 10–24.6 Binupriya et al. 
(2010a, b); Raliya 
(2013); 
Moghaddam et al. 
(2015); Siddiqi 
and Azamal 
(2016)

Aspergillus 
oryzae

Ag, Zn, 
Au

Spherical, extracellular 2.78–5.76 Khandel and 
Kumar (2016)

Aspergillus 
oryzae var. 
viridis

Au Various shapes Mycelial 
surface

10–60 Binupriya et al. 
(2010a, b); 
Siddiqi and 
Azamal (2016)

Aspergillus 
tubingensis

Ca3P2O8 Spherical, extracellular 28.2 Tarafdar et al. 
(2012); Siddiqi 
and Azamal 
(2016)

Aspergillus 
niger

Au Nanowalls, spiral plates, 
polydispersed or spherical,

12.8–20 Xie et al. (2007); 
Bhambure et al. 
(2009)

Ag Spherical, extracellular 3–30 Alani et al. 
(2012); 
Moghaddam et al. 
(2015)

Aspergillus 
flavus

Ag Spherical, cell wall surface 8.92–17 Vigneshwaran 
et al. (2007a, b); 
Moghaddam et al. 
(2015)

TiO2 Extracellular 12–74 Vigneshwaran 
et al. (2007a, b); 
Rajakumar et al. 
(2012); Raliya 
et al. (2015); 
Moghaddam et al. 
(2015)

Aspergillus 
clavitus

Ag Extracellular 100–200 Saravanan and 
Nanda (2010)

Aspergillus 
terreus

Ag, 
Au-Ag

Spherical, extracellular 1–20 Khandel and 
Kumar (2016)

(continued)
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Table 13.2  (continued)

Fungi NPs Shape and location

Min and max 
particle size 
(nm) References

A. sydowii Au Spherical, extracellular 8.7–15.6 Vala (2015); 
Siddiqi and 
Azamal (2016)

A. terreus Ag Spherical, extracellular 1–20 Li et al. (2012); 
Siddiqi and 
Azamal (2016)

Aspergillus 
versicolor 
mycelia

Hg Alteration. Surface of 
mycelia

20.5 ± 1.82 Das et al. (2008); 
Moghaddam et al. 
(2015)

Alternaria 
alternata

Ag, Cd Spherical, extracellular 20–60 Gajbhiye et al. 
(2009); Khandel 
and Kumar 
(2016)

Rhizopus oryzae Au Nanocrystalline or 
triangular, hexagonal, 
pentagonal, spheroidal, sea 
urchin-like, 2D nanowires, 
nanorods. Cell surface

Various 10 Gericke and 
Pinches (2006); 
Das et al. (2009); 
Maliszewska 
et al. (2009a, b); 
Das et al. (2010); 
Moghaddam et al. 
(2015)

Rhizopus 
stolonifer

Au Irregularly (uniform) 1–5 Binupriya et al. 
(2010a, b); Sarkar 
et al. (2012); 
Moghaddam et al. 
(2015)

Ag Quasi-spherical 25–30

Rhizopus 
nigricans

Ag Spherical, extracellular 7–20 Mohammadian 
et al. (2007); 
Khandel and 
Kumar (2016)

Phanerochaete 
chysosporium

Ag Spherical, pyramidal, 
extracellular

50–200 Sanghi and Verma 
(2009); Khandel 
and Kumar 
(2016)

Au Spherical, extracellular 10–100 Philip (2009); 
Moghaddam et al. 
(2015)

Phyllanthus 
amarus

Ag Spherical, extracellular 30

(continued)
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Table 13.2  (continued)

Fungi NPs Shape and location

Min and max 
particle size 
(nm) References

Pleurotus 
sajor-caju

Au, Ag Spherical, extracellular 20–40 Husseiny et al. 
(2007); Khandel 
and Kumar 
(2016)
Vigneshwaran 
and Kathe (2007)

Penicillium 
fellutanum

Ag Mostly spherical, 
extracellular

5–25 Kathiresan et al. 
(2009); Khandel 
and Kumar 
(2016)

Penicillium 
strain J3

Ag Mostly spherical 10–100 Maliszewska 
et al. (2009a, b); 
Moghaddam et al. 
(2015)

Penicillium 
brevicompactum 
WA2315 (139)

Ag Spherical, extracellular 58.35 ± 17.88 Shaligram et al. 
(2009); Khandel 
and Kumar 
(2016)

Penicillium 
brevicompactum

Au Spherical, triangular and 
hexagonal Extracellular

10–60 Selvakannan et al. 
(2004); Khandel 
and Kumar 
(2016)

Penicillium 
citrinum

Ag Spherical. Extracellular 5–25 Kathiresan et al. 
(2009); Khandel 
and Kumar 
(2016)

P. fellutanum Ag Spherical 5–25 Kathiresan et al. 
(2009); Siddiqi 
and Azamal 
(2016)

P. nagiovense 
AJ12

Ag Spherical cell-free filtrate 25 ± 2.8 Maliszewska 
et al. (2014); 
Siddiqi and 
Azamal (2016)

P. rugulosum Au Spherical, triangular, 
hexagonal

20–80 Mishra et al. 
(2012); Siddiqi 
and Azamal 
(2016)

Penicillium sp. Au Spherical cell filtrate 30–50 Du et al. (2011); 
Siddiqi and 
Azamal (2016)

(continued)
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Table 13.2  (continued)

Fungi NPs Shape and location

Min and max 
particle size 
(nm) References

Trichoderma 
viride

Ag Spherical, rod-like. 
Extracellular

2–100 Mukherjee et al. 
(2008); Fayaz 
et al. (2009a, b); 
Fayaz et al. 
(2010a, b); 
Moghaddam et al. 
(2015)

Trichoderma 
asperellum

Ag Nanocrystalline or spherical. 
Extracellular

13–18 Mukherjee et al. 
(2008); 
Moghaddam et al. 
(2015)

Trichoderma 
reesei

Ag Extracellular 5–50 Vahabi et al. 
(2011)

Trichoderma 
Koningii

Au Small spheres to polygons. 
Cell-free filtrate

10–40 Maliszewska 
et al. (2009a, b); 
Maliszewska 
(2013); Siddiqi 
and Azamal 
(2016)

Trichoderma 
harzianum

Cu, Ag Spherical. Extracellular 20–35 Gajbhiye et al. 
(2009); Khandel 
and Kumar 
(2016)

Tricholoma 
crassum

Au Spherical. Extracellular 8.62–9.12 Sawle et al. 
(2008); Khandel 
and Kumar 
(2016)

Pleurotus 
sajor-caju

Ag Spherical extracellular 30.5 Vigneshwaran 
and Kathe (2007)

Volvariella 
volvaceae

Au-Ag Triangular,spherical, 
hexagonal extracellular,

20–150 Philip (2009); 
Thakkar et al. 
(2010); 
Moghaddam et al. 
(2015)

Cladosporium 
cladosporioides

Ag Mostly spherical or 
hexagonal. Extracellular

10–100 Balaji et al. 
(2009); Khandel 
and Kumar 
(2016)

Cylindrocladium 
floridanum

Au Spherical. Extracellular 19.5 Zhang et al. 
(2012); Khandel 
and Kumar 
(2016)

Cochliobolus 
lunatus

Ag Spherical. Extracellular 5–10 Khandel and 
Kumar (2016)

(continued)
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	(e)	 Fungal mycelia provide higher surface area than bacteria and this advantage 
could be used to support the interaction of metal ions and fungal agents. This is 
enhancing the conversion of ions to metallic nanoparticles.

	(f)	 Fungi also have the advantage to ease the downstream processing when extra-
cellular nanoparticles are produced.

	(g)	 Scalability is another factor for consideration of commercial production of 
nanoparticles. This gives fungi the edge as the chassis of choice for long-term 
development as they might be easily used in large-scale reactors (Pantidos and 
Horsfall 2014).

Table 13.2  (continued)

Fungi NPs Shape and location

Min and max 
particle size 
(nm) References

Cochlibolus 
lunatus

Cu, Al Quasi- spherical. 
Extracellular

3–21 Salunkhe et al. 
(2011);  
Raheman et al. 
(2011)

Hypocrea lixii Cu Spherical. Extracellular 24.5 Deplanche et al. 
(2010); Khandel 
and Kumar 
(2016)

Phoma sorghina Ag Rod shaped. Extracellular 120–
160 × 30–40

Raheman et al. 
(2011)

Pestalotia sp. Ag Spherical extracellular or 
intracellular

10–40 Raheman et al. 
(2011)

Coriolus 
versicolor

Ag Extra- and intracellular. 
Spherical

25–491 Sanghi and Verma 
(2009); 
Moghaddam et al. 
(2015)

Verticillium sp. Fe3O4 Extracellular. Cubo-
octahedral, quasi-spherical

20–400 Bharde et al. 
(2006); 
Moghaddam et al. 
(2015)

Au Spherical. Cell wall, 
cytoplasmic membrane amd 
ıntracellular

20 Mukherjee et al. 
(2001); 
Ramanathan et al. 
(2013)

Verticillium 
luteoalbum

Ag Spherical. Extracellular 12–22 Bawaskar et al. 
(2010); Fayaz 
et al. (2009a, b); 
Khandel and 
Kumar (2016)

Au Spherical. Extracellular 12–15
Yarrowia 
lipolytica

Au Hexagonal, triangular, 
extracellular

15 Agnihotri et al. 
(2009);  
Pimprikar et al. 
(2009)
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13.3  �Biosynthesis of Nanoparticles by Fungi

Researchers paid attention in recent years that the novel field of nano-biosynthesis 
of metal nanoparticles called “myconanotechnology.” This new field is at the inter-
ference of nanotechnology and mycology combination which is interesting as a new 
applied science with a substantial potential due to the wide range of diversity of 
fungi. The fungal systems have already been used for the biosynthesis of metal 
nanoparticles of silver, gold, zirconium, silica, titanium, iron (magnetite), and plati-
num as well as ultrafine oxide nanoparticles, such as Sb2O3 and TiO2. A generalized 
flow chart for the biosynthesis of metallic nanoparticles is shown in Fig. 13.1.

As happens in all cells, microbial cells also need metal ions primerly as cofac-
tors. Metal/metal ions can interact with fungi in various ways and rely on the type 
of metal, organism, and environment. They accomplish toxic effects in some ways, 
like inhibiting the enzymes. Microorganisms have the ability to survive at high con-
centrations of toxic metals. The adaptation of fungi exposed to heavy metal ions has 

Fig. 13.1  Generalized flow chart for the biosynthesis of metallic nanoparticles (Rath et al. 2014; 
Punjabi et al. 2015)

13  Nanobiotechnology Applications in Special Reference to Fungi
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been examined to increase the tolerance of fungi. Therefore, microbial cells have 
evolved the ability to manage proper metal-protein interactions (Tottey et al. 2005; 
Kang et al. 2008; Anahid et al. 2011; Park et al. 2016). Microorganisms have diverse 
mechanisms of developing nanoparticles. Silver nanoparticle synthesis was sug-
gested as a defensive mechanism of cells for silver. Ahmad et al. (2003) reported 
that NADH-dependent enzymes are responsible for the biosynthesis of nanoparti-
cles. The reduction mechanism seems to be initiated by electron transfer from the 
NADH by NADH-dependent reductase as electron carrier.

Two mechanisms have been suggested for heavy metal tolerance/detoxication in 
fungi:

	1.	 Extracellular (chelation and cell wall binding) separation
	2.	 Intracellular physical separation of metal by binding to ligands (peptides or oth-

ers) to prevent them from metal sensitive cellular targets.

During the intracellular synthesis of gold nanoparticles (A), the gold metal ions 
firstly bind on the fungal cell surface, through electrostatic interaction force which 
is generated due to opposite charges present on the metal ion surface and fungal cell 
surface. After that, absorbed metal ions are reduced by enzymes of the fungal cell 
wall. This is the result of the positively charged groups of these enzymes and this 
leads to the aggregation and formation of metal nanoparticles. In case of extracel-
lular synthesis of silver nanoparticles (B) due to the nitrate reductase presents in the 
cell of fungi. This enzyme reduces the silver metal ions into silver nanoparticles. 
This finally results to the formation of highly stable silver nanoparticles (Fig. 13.2) 
(Khandel and Kumar 2016).

Biogenic synthesis of metal nanoparticles engages bioreduction of metal salts to 
elemental metals. This might be stabilizing the organic molecules present in the 
microorganisms such as fungi and bacteria. The other way of producing metal 
nanoparticles is biosorption. In this way, metal ions in the aqueous medium are 
stuck to the organisms’ cell wall surface (Siddiqi and Azamal 2016).

Extracellular mechanisms are mainly intimated in the avoidance of metal entry. 
In this mechanism, different organic molecules, which do not belong to the cell wall 
matrix, are excreted by the fungal cell to chelate metal ions. This binding is called 
biosorption. In general, surface of the cell surface is negatively charged due to the 
presence of several anionic structures, such as glucan and chitin. This feature gives 
microorganisms the ability to bind metal cations (Anahid et al. 2011). Chelating 
agents can be organic or inorganic compounds and capable to bind to metal ions to 
forming complex ringlike structure called “chelates.” Chelating agents have 
“ligand”-binding atoms which form either two or one and one coordinate or two 
coordinate covalent linkages in the case of bidentate chelates. Mainly, S, N, and O 
atoms function as ligand atoms in the form of chemical groups like –SH, −S-S, −
NH2, =NH, −OH, −OPO3H, or >C=O. Bidentate or multidentate ligands form ring 
structures that include the metal ion and the two ligand atoms attached to the metal 
(Andersen 1999).

Siderophores are small, high-affinity iron-chelating compounds secreted by 
microorganisms such as bacteria and fungi. It was reported that most fungi produce 

S.E. Korcan and M. Konuk
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hydroxamate-type siderophores, but there is only little information regarding the 
production of catecholate-type compounds by fungi (Gadd 1999; Renshaw et al. 
2002; Haselwandter and Winkelmann 2002). However, the output of catecholate-
type chelating compounds has recently been depicted in wood-rotting fungi (Arantes 
and Milagres 2006). Whether these compounds are true or not is unknown, since 
siderophores are debatable due to their role in iron transport (Renshaw et al. 2002).

The presence of unspecific metal-chelating compounds such as organic acids 
was also examined in the fungal cultures as the low pH of the culture filtrates pro-
poses the production of these acids. Oxalic, citric, and succinic acids are common 
metabolites produced by several mycorrhizal fungi. Their production is associated 
with the solubilization of insoluble metal-containing compounds (Fomina et  al. 
2005). It is known that depending on the concentration of these organic acids, they 
can react with CAS reagent in the same form as true siderophores and cause color 
changes in the mixtures.

The biosynthesis of metal nanoparticles by the fungi has also been reported. In 
the colorimetric examinations, the filtrate color changes from almost yellow to 
brown. This is a clear indication of the silver nanoparticles production in the reac-
tion mixture (Juraifani and Ghazwani 2015). This result has also indicated that 

Fig. 13.2  Mechanism of intracellular and extracellular synthesis of gold (Au) and silver (Ag) 
nanoparticles through fungi (Khandel and Kumar 2016)

13  Nanobiotechnology Applications in Special Reference to Fungi
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organic acids can play an important role in the transport and metabolism of metals 
in some microorganisms (Carson et al. 1992; Machuca et al. 2007).

Chelating compounds was determined by the Schwyn and Neilands (1987) spec-
trophotometrically using the Chrome Azurol S (CAS) reagent containing Fe(III) 
Absorbance at 630 nm after 1 h of incubation at room temperature. Percentages of 
compounds were calculated by subtracting the sample absorbance from the refer-
ence; and values >10% were considered as positive. They also investigated and 
developed the measurement in solid medium using the CAS agar-plate assay. This 
also depended on the color during the incubation period.

Biosynthesis of metal nanoparticles involves in bioreduction of metal salts to 
elemental metal. This might stabilize the organic compounds already present in the 
microorganisms. Sneha et al. (2010) exhibited the gold or silver ions were first cap-
tured on the surface of the fungal cells via electrostatic interaction between the ions 
and negatively charged cell wall from the carboxylate groups in the enzymes. This 
condition clearly indicates that metal ions are first sticks on the surface or inside of 
the microbial cells then reduced to nanoparticles in the presence of the related 
enzymes (Benzerara et al. 2010; Li et al. 2011). The reduction process takes place 
on the surface by the enzymes found in the cell wall (Mukherjee et  al. 2001). 
Microorganisms affect the NP formation in two distinctive ways. First way, they 
could modify the composition of the solution in order that the solution becomes 
more supersaturated than its previous phase. Second way, microbes could impact 
the mineral formation through the organic polymers production (Benzerara et al. 
2010; Li et al. 2011).

Some phenolic compounds such as naphthoquinone and anthraquinones show 
excellent redox properties and can act as electron shuttle in silver reduction. Specific 
extracellular enzymes act on a specific metal (Medentsev and Alimenko 1998; Bell 
et al. 2003; Siddiqi and Azamal 2016). For instance, nitrate reductase is essential for 
ferric ion reduction. Nitrate reductase system might be responsible for the bioreduc-
tion and formation of silver nanoparticles (Kumar et al. 2003). Similarly, a number 
of studies with Fusarium oxysporum demonstrated that the reduction of silver ions 
happens in the presence of a nitrate-dependent reductase and a shuttle quinone for 
extracellular process (Durán et al. 2005). These findings suggested that metal ion 
reduction needs not only the enzyme but also an electron shuttle (Durán et al. 2005).

NADH and NADH-dependent nitrate reductases are important factors in the bio-
synthesis of metal NPs. This enzymes catalyze NAD(P)H reduction of nitrate to 
nitrite. Eukaryotic assimilatory nitrate reductase (NR) catalyzes the following 
reaction:

	

NO NADH NO NAD OH

kcal mol kJ mol

− − ++ −+ → +
= − −( ) =

3 2

34 2 143 0 7∆ ∆G E. / / ; . 44V
	

Two forms of the enzyme, NAD(P)H-bispecific forms (EC 1.6.6.2) and NADPH-
specific forms (EC 1.6.6.3), are found in fungi. Campbell (1999) suggested that NR 
could also contribute to iron reduction in vivo since it catalyzes NADH ferric citrate 
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reduction. Fusarium oxysporum MT 811 is able to reduce nitrates and nitrites to N2. 
Fungal NR is similar to the bacterial enzyme that contains copper in their active site. 
The reduction of NO to N2 is catalyzed by cytosolic and mitochondrial NORases 
(cytochrome P450). Its synthesis is specifically induced by nitrate and nitrite but 
repressed under aeration (Takaya et al. 1999).

Morozkina et al. (2005) reported that NRases from F. oxysporum mycelia grown 
aerobically and anaerobically differ in molecular weight, activity in several mineral 
sources of nitrogen, and optimum temperature. This shows that NRase probably 
exists in two different forms which function under both aerobic and anaerobic con-
ditions. NRase of F. oxysporum grown is inhibited by ammonium ions under aero-
bic conditions. NRase from the anaerobically grown mycelium had low sensitivity 
to ammonium ions. F. oxysporum has also been shown to produce cadmium sulfide 
(CdS), lead sulfide (PbS), zinc sulfide (ZnS), and molybdenum sulfide (MoS) 
nanoparticles, when the appropriate salt is added to the growth medium (Ahmad 
et al. 2002).

When NR assay was carried out by the reaction of nitrite with 
2,3-diaminonaphthalene, it could initiate NP formation by many fungi including 
Penicillium species. However, the exact mechanism of the formation of nanoparti-
cles is yet to be elucidated. Some Aspergillus flavus proteins are responsible for 
synthesis of silver nanoparticles. It was reported that the synthesis procedure takes 
place in two steps. In the first one, reduction process of bulk silver ions into silver 
nanoparticles occurs, and in the next step, synthesized nanoparticles are capped. 
The protein-nanoparticle interactions could play very meaningful role such as pro-
viding stability to nanoparticles (Fig. 13.3) (Jain et al. 2011). However, this interac-
tion between protein and nanoparticles is still not completely understood. 
Understanding the protein-nanoparticle interactions would lead us to form future 
“nano-factories.”

Intracellular metal trafficking systems (IMTS) work to reduce the metal loading 
in the cytosol. In the IMTS, metal transport proteins might involve in metal toler-
ance. This could be either by expelling toxic metal ions from the cytosol out or let-
ting the metals into vacuolar systems (Anahid et al. 2011). Some microorganisms 
could accumulate and detoxify heavy metals owing to various reductase enzymes. 
These enzymes are able to reduce metal salts to metal nanoparticles with a narrow 
size and less polydispersity. The size of the NPs is related to their nucleating activi-
ties. In accordance to the location where nanoparticles are formed, they can be clas-
sified into intracellular and extracellular NPs (Mann 2001). Trichothecium sp., 
Verticillium luteoalbum, and Phoma sp. have been explored for intracellular gold 
and silver nanoparticle synthesis. Vigneshwaran et al. (2007a, b) reported the accu-
mulation of silver nanoparticles on the surface of its cell wall in Aspergillus flavus. 
The intracellular formation and accumulation of NPs are composed of transporting 
metal ions into the microbial cell in the presence of enzymes (Zhang et al. 2011). An 
intracellular synthesis of NPs needs additional steps such as ultrasound treatment or 
usage of suitable detergents to release the synthesized nanoparticles (Babu and 
Gunasekaran 2009; Das et al. 2014).
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Extracellular biosynthesis is cheap and it requires simpler processes. This favors 
large-scale production of NPs to examine its potential applications. Because of this 
possible advantage, many studies have been focussed on synthesis of metal nanopar-
ticles outside of the cells (Durán et al. 2005; Das et al. 2014).

13.4  �Factors Affecting Biosynthesis of Metal Nanoparticles

Major parameters (include temperature, pH, the presence of specific enzymes, type 
of biomass, exposure time to substrate, and the substrate concentration) affect the 
physical and chemical characters of nanoparticles.

Fig. 13.3  Mechanism showing the role of extracellular proteins in the synthesis of silver nanopar-
ticles (Jain et al. 2011)
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pH is an important factor for shape of nanoparticles. Gericke and Pinches (2006) 
demonstrated the change in the shape of NPs with the variation of pH. Similarly, 
Davis and Ogden (1997) discovered that reduction of metal ions were highly 
sensitive to pH. Dhillon et al. (2012) reported that the movement of ions and activity 
of microbial biomass were controlled by variation in temperature. It could be also 
suggested that temperature plays an important role on the growth of organism as 
well as on metal uptake by the surrounding environment. In addition to temperature 
and pH, concentration of metal ions and type of enzyme also influence the synthesis 
of metal nanoparticles. The concentration of reactants decides the rate of reaction 
and also affects the size and shape of the synthesized particles. According to the 
study carried out by Gericke and Pinches (2006), synthesis of nanoparticles at dif-
ferent time intervals and their influence on synthesis process were also studied. It 
was found that incubation time increases the shape and size of nanoparticles. It has 
been also reported that with increase in the incubation time, the synthesis of 
nanoparticles also increases (Khandel and Kumar 2016).

13.5  �Characterization of Metal Nanoparticles

After the biosynthesis of metal nanoparticles, characterizations of the nanoparticles 
are also an important step for the identification (size, shape, chemical composition, 
surface area, and dispersity). For the characterization of nanomaterials, different 
techniques are employed. These techniques are divided into two categories.

13.5.1  �Determination of the Size, Shape, and Conformity 
of the Nanoparticles Synthesized

This includes mainly X-ray Diffraction (XRD), both Scanning electron microscopy 
(SEM), and Transmission electron microscopy (TEM), Dynamic light scattering 
(DLS), and Atomic force microscopy (AFM) analysis.

13.5.2  �Functional Group Identification of Synthesized 
Nanoparticles

Involves in UV-visible spectroscopic analysis, energy dispersive spectroscopy 
(EDS), and Fourier transforms infrared spectroscopy (FTIR) analysis techniques 
(Khandel and Kumar 2016).
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Table 13.3  Application of fungus-mediated synthesis of metal nanoparticles

NPs Fungi Application

Ag Alternaria alternata Enhancement in antifungal activity of fluconazole 
against Phoma glomerata and water quality 
monitoring

Aspergillus clavatus Antimicrobial activity
A. niger Antibacterial activity. Wound healing activity
Aspergillus sp. Antimicrobial activity
Aspergillus tubingensis 44% inhibition of Syncitial virus infection
Colletotrichum 
gloeosporioides

Antifungal activity

Fusarium acuminatum Antibacterial activity
F. oxysporum Textile fabrics
F. solani Textile fabrics
Lecanicillium lecanii Textile fabrics
Macrophomina 
phaseolina

Antimicrobial properties against multidrug-
resistant bacteria

Neurospora oryzae Only 1–10 nm nanoparticles attached to virus 
restraining virus from attaching to host cells. HIV

Penicillium oxalicum Catalytic activity
Penicillium sp. Antibacterial activity against MDR E. coli and 

S. Aureus

Phytophthora infestans Antimicrobial activity
Pleurotus ostreatus Antimicrobial activity
Raffaelea sp. Antifungal activity
Trichoderma crassum Antimicrobial activity
T. viride Vegetable and fruit preservation

Au Aspergillus japonicus 
AJP01

Catalytic activity

A. niger Toxic to mosquito larvae
Rhizopus oryzae Water hygiene management

Cds Saccharomyces pombe Electric diode
F. oxysporum Live cell imaging and diagnostics

Carbon 
nanotubes 
sensors

F. oxysporum Developed for glucose, ethanol, sulfides, and 
sequence-specific DNA analysis

Carbon 
nanotubes with 
enzymes

Phoma glomerata Establish a fast electron transfer from the active 
site of the enzyme through the CNT to an 
electrode, in many cases enhancing the 
electrochemical activity of the biomolecules

Siddiqi and Husen (2016)
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13.6  �Applications of Nanobioparticles in Fungi

Owing to their great properties, nanoparticles have significant application in many 
fields such as cosmetics, catalysts, lubricants, fuel additives, paints, agrochemicals, 
food packaging, textile engineering, electronics, optics, environmental sensing, 
nanomedicine, drug and gene delivery agents, biodetection of pathogens, tumor 
destruction via heating (hyperthermia), magnetic resonance imaging, and phagoki-
netic studies (Prasad et al. 2014, 2016, 2017; Aziz et al. 2016; Siddiqi and Azamal 
2016). Fungus-mediated synthesis of metal nanoparticles is getting much attention 
due to their extensive application in various sectors (Table 13.3).

13.7  �Conclusion

The synthesis of functional nanoparticles by using microorganisms has taken a big 
concern in recent years. Microorganisms could alter the oxidation state of the met-
als. These microbial processes provide us new opportunities to synthesize metal 
nanomaterials biologically. On the contrary to chemical and physical methods, 
microbic synthesis of nanomaterials can be achieved under optimal environmental 
conditions in aquatic media. This approach became one of the sustainable develop-
ment tools for the green bionanotechnological researches.

The mechanism of the biosynthesis has not been clear yet, but we can easily say 
that it is an enzyme-dependent occurrence for microorganisms. For this reason, we 
need to determine and characterize the specific enzymes and enlighten the pathways 
involved in these processes. It is strongly believed in that this area of science is very 
promising for the future of medicine and other health sciences.
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