
Automated Code Generation for Maximizing
Performance of Detailed Chemistry Calculations
in OpenFOAM

Thorsten Zirwes, Feichi Zhang, Jordan A. Denev, Peter Habisreuther,
and Henning Bockhorn

Abstract In direct numerical simulation of turbulent combustion, the majority of
the total simulation time is often spent on evaluating chemical reaction rates from
detailed reaction mechanisms. In this work, an optimization method is presented
for speeding up the calculation of chemical reaction rates significantly, which has
been implemented into the open-source CFD code OpenFOAM. A converter tool
has been developed, which translates any input file containing chemical reaction
mechanisms into C++ source code. The automatically generated code allows to
restructure the reaction mechanisms for efficient computation and enables more
compiler optimizations. Additional performance improvements are achieved by
generating densely packed data and linear access patterns that can be vectorized
in order to exploit the maximum performance on HPC systems. The generated
source code compiles to an OpenFOAM library, which can directly be used in
simulations through OpenFOAM’s runtime selection mechanism. The optimization
concept has been applied to a realistic combustion case simulated on two peta-
scale supercomputers, among them the fastest HPC cluster Hazel Hen (Cray XC40)
in Germany. The optimized code leads to a decrease of total simulation time of
up to 40% and this improvement increases with the complexity of the involved
chemical reactions. Moreover, the optimized code yields good parallel performance
on up to 28,800 CPU cores.

1 Introduction

Turbulent combustion remains the key technology for energy conversion. In 2035
fossil fuels will still provide 80% of the total energy for the world’s economy [1].
Therefore, increasing the efficiency of combustion processes and reducing global
pollutant emissions continues to be a major task. But because the interaction of

T. Zirwes • F. Zhang (�) • J.A. Denev • P. Habisreuther • H. Bockhorn
Engler-Bunte-Institute/Combustion Technology, Karlsruhe Institute of Technology,
Engler-Bunte-Ring. 7, 76131 Karlsruhe, Germany
e-mail: thorsten.zirwes@kit.edu; feichi.zhang@kit.edu

© Springer International Publishing AG 2018
W.E. Nagel et al. (eds.), High Performance Computing in Science
and Engineering ’17, https://doi.org/10.1007/978-3-319-68394-2_11

189

mailto:thorsten.zirwes@kit.edu
mailto:feichi.zhang@kit.edu
https://doi.org/10.1007/978-3-319-68394-2_11


190 T. Zirwes et al.

flames and turbulent flows is still not fully understood [2, 3], an important research
goal is to gain a deeper understanding of the underlying physics and chemistry as
well as their mutual interaction in combustion systems.

Numerical simulation is a well-established tool to study combustion
processes [2]. With the increasing power in High Performance Computing (HPC) it
became feasible to conduct direct numerical simulation (DNS) of flames in turbulent
flows. In DNS, the turbulent flow and the combustion chemistry are resolved
down to the smallest time and length scales, requiring enormous computational
resources. Although simulation tools for turbulent combustion become more
and more efficient, DNS of turbulent flames is still limited to small simulation
domains. The DNS results however deliver valuable details of the complex
combustion phenomena and complement experimental data, which are limited
by extreme conditions in technical combustion applications like high pressures and
temperatures [4].

The predominant computing time in DNS of turbulent flames is needed to
evaluate chemical reaction rates if detailed chemical mechanisms are used [5, 6].
Even for the combustion of simple fuels like methane more than 50 intermediate
species and over 300 reactions are typically used to give a detailed description of the
chemistry [7]. For technically relevant fuels like kerosene or gasoline consisting of
higher hydrocarbons, large reaction mechanisms are being developed which contain
thousands of chemical species and tens of thousands of reactions [8, 9]. In addition
to solving the Navier-Stokes equations, an additional conservation equation for
each chemical species has to be solved, so that the total simulation time strongly
depends on the number of chemical species and therefore the complexity of the
combustion chemistry. The most time consuming part of the simulation is usually
the computation of chemical reaction rates, which are the source terms in the
additional conservation equations for the species.

Because of this, the present work introduces on an approach for speeding up the
computation of chemical reaction rates. The basis for describing the combustion
chemistry are “reaction mechanisms”. They specify which species play a role
during combustion and define all chemical reactions as well as their parameters. An
example of a reaction mechanism for methane/air combustion is given in Sect. 3.2.
In this work, a converter tool has been developed which reads general reaction
mechanism files as input, restructures them, translates them into C++ source code
and applies optimizations for faster evaluation of chemical reaction rates. The idea
is that, instead of having a general program that can solve the chemical system
for arbitrary reaction mechanisms, each mechanism is represented by specialized
subroutines in the generated source code [10, 11].

In order to simulate combustion in turbulent flows and evaluate the performance
gain achieved with the presented optimization method, the generated chemistry code
is coupled with OpenFOAM [12], which is an open-source tool for computational
fluid dynamics (CFD) and can be used for DNS of turbulent combustion [13].



Automated Code Generation for Maximizing Performance of Chemistry Calculations 191

2 Reference DNS Code

In previous works [14] a DNS solver for turbulent combustion phenomena was
developed by coupling the general CFD tool OpenFOAM [12] with the thermo-
chemical library Cantera [15]. OpenFOAM is an open-source toolbox written
in C++. It has found widespread use in computational fluid dynamics during
the last years, both in scientific and engineering applications, including DNS of
flames. Cantera is a widely used, open-source chemistry library written in C++
which implements highly optimized routines for computing chemical reaction rates
and also provides information about detailed molecular diffusion which plays an
important role in combustion processes.

Figure 1 presents the structure of the developed coupling interface between
OpenFOAM and Cantera. The OpenFOAM code has the task of solving the conser-
vation equations for total mass, momentum, energy and the mass of each chemical
species. The state parameters in terms of pressure p, temperature T and gas compo-
sition Yk are used as input for Cantera’s routines, which are called by the interface
in order to calculate the reaction rates and other thermo-physical properties.

After coupling OpenFOAM with Cantera, additional performance gains were
achieved by extracting relevant classes from Cantera and implementing them
directly into an OpenFOAM library, so that Cantera is not an external dependency
anymore and its methods are called by the OpenFOAM solver directly. This led to
further performance improvements [16]. This coupling of OpenFOAM with Cantera
represents the reference case for quantifying the performance gains when using the
generated source code.

Profiling of the reference DNS code has been conducted in order to identify
the performance bottlenecks. With the reaction mechanism by Kee et al. [17] for
the combustion of methane, which contains only a small number of reactions and
chemical species (see Table 1), chemistry computations take about 60% of the total
simulation time with the setup described in Sect. 4.1. For the more detailed GRI 3.0
mechanism [7], almost 90% of simulation time are spent on the chemistry with the
reference DNS code. These two reaction mechanisms will be used in the following

Fig. 1 Simplified chart demonstrating the coupling of OpenFOAM with Cantera in the refer-
ence case



192 T. Zirwes et al.

Table 1 Reaction mechanisms for methane/air combustion used in this work

Reaction mechanism Number of species Number of reactions

Kee et al. [17] 17 53

GRI 3.0 [7] 58 325

sections to demonstrate the performance improvements achieved with the presented
optimization method.

In order to compute the chemical reaction rates P!k for each species k, a number
of intermediate quantities have to be calculated. First, the rates of progress Prr for
each reaction r has to be computed for the forward (0) and reverse (00) reaction with

Pr0
r D k0

rCm

Y

k

C
�0k;r
k ; Pr00

r D k00
r Cm

Y

k

C
�00k;r
k ; (1)

where Cm is an effective mixture concentration in case the reaction is a three-body
reaction, Ck is the concentration of the species involved in the reaction and �k;r is
the stoichiometric coefficient of the species for this reaction. The rate constant k0

r
for the forward reaction is either computed via Arrhenius’ law, which is explained
in more detail in the next section, or a more complex falloff type formulation [17].
The rate constants k00

r of the reverse reactions are usually obtained from equilibrium
constants which are computed from thermodynamic considerations. In order to
obtain the species reaction rates, all rates of progress have to be added up in the
following way:

P!k D Mk

X

r

�
�00

k;r � �0
k;r

�
. Prr

0 � Pr00
r / : (2)

Mk is the molar mass of species k. These reaction rates are not used directly in the
conservation equation for the species masses. Instead, they are averaged over the
simulation time step �t:

NP!k � 1

�t

Z tC�t

t
P!k dt; k D 1 : : : N (3)

This system of N ordinary differential equations (ODE) together with the change
of temperature is solved at every time step for each cell in the computational
domain. Because N can be very large depending on the complexity of the reaction
mechanism, this ODE integration is the reason why the majority of computing time
is spent on computing chemical reaction rates P!k. The advantage of this method is
that a higher simulation time step �t can be used because it is not limited by the
shortest chemical reaction time scales.

Using the detailed GRI 3.0 mechanism in DNS showed that typically 20% of
total simulation time is spent on evaluating the exponential function exp (measured
with perf from the Linux tools). Most of the calls to exp stem from the Arrhenius



Automated Code Generation for Maximizing Performance of Chemistry Calculations 193

law in (4). Therefore, Arrhenius’ law is used in the next section to demonstrate
the principles of specific optimizations that are performed during conversion from
reaction mechanism input file to C++ source code.

3 Optimized Code Generation

3.1 Basic Concept of the Code Generation Approach

The basic idea in this work is to automatically generate C++ source code for each
specific reaction mechanism in order to maximize performance. Two optimization
steps are performed to improve the computation of chemical reaction rates:

• In the first step the structure of the chemical reaction mechanism is optimized.
Redundant operations are eliminated and species and reactions are reordered
and regrouped. This allows to minimize code branching and maximize reuse of
cached results (see Sect. 3.2).

• The second step targets the C++ source code. The code is generated in a way that
makes it easy for the compiler to optimize. For example, loops with trivial access
patterns are generated to enable auto-vectorization and data is stored densely
packed in memory to maximize CPU cache usage. Since all parameters from the
reaction mechanisms like the number of species are compile-time constants, the
compiler can make better optimization decisions with respect to inlining and loop
unrolling.

In order to achieve both optimization goals, a converter tool has been developed
which reads general reaction mechanism files in Cantera’s ctml or xml format as
input, performs the two optimization steps and automatically generates C++ source
code containing all necessary routines (see Fig. 2). In contrast to Cantera’s imple-
mentation which provides efficient but more general routines for computing reaction
rates from arbitrary reaction mechanisms, the code generated in this way contains
only routines that are specialized for one specific reaction mechanism. Instead of
being scattered across different translation units, all chemistry code is visible to the
compiler at once, giving it the maximum amount of information for optimizations.

Because the chemical reaction rates depend only on local mixture properties,
no neighboring cell values are needed so that the generated source code does not
contain any parallel communication routines. It is therefore an optimization on
the node level. Compiling the generated code results in an OpenFOAM library

Fig. 2 Simplified overview over how the converter tool works



194 T. Zirwes et al.

that can directly be used in the previously developed coupling interface described
in Sect. 2 due to OpenFOAM’s runtime selection mechanism. By doing this, no
routines that originally came from Cantera are involved anymore in the computation
of the reaction rates. But in other parts of the OpenFOAM solver, i.e. computation
of thermodynamic and diffusive properties, Cantera’s routines are still used. These
parts are however not a performance bottleneck.

The automatically generated source code contains all necessary routines to
compute the chemical reaction rates and all intermediate properties from (1) and (2).
In the next section, only the part of the code regarding Arrhenius’ law is shown as
an example to explain the work done by the converter.

3.2 Optimized Computation of Rate Constants

As mentioned in the previous section, a considerable amount of time during
the simulation is spent on evaluating the exponential function exp used in the
computation of the rate constants kr of each reaction via Arrhenius’ law

kr D Ar exp

�
br log.T/ � Er

RT

�
; (4)

where R is the universal gas constant and T the temperature, which is the only
variable quantity in Arrhenius’ law. The parameters Ar, br and Er are constants
and defined for every reaction in a reaction mechanism file. Figure 3 shows
a small example of the reactions defined in the GRI 3.0 reaction mechanism
for methane/air combustion in standard CHEMKIN format [18], where the three
Arrhenius parameters Ar, br and Er are defined. In the OpenFOAM solver of the
reference case, a mechanism file like this is read once at the start of each simulation.

In Cantera’s original implementation, the rate constants for every reaction are
computed using (4). It is however possible to compute some rate constants in a more
efficient way. There are three cases, where the evaluation of the exponential function
can be avoided completely. Figure 4 shows the automatically generated C++ source

Fig. 3 Example of three out of 325 reactions from the GRI 3.0 reaction mechanism in standard
CHEMKIN format, defining the Arrhenius parameters Ar , br and Er for each reaction



Automated Code Generation for Maximizing Performance of Chemistry Calculations 195

Fig. 4 Automatically generated C++ source code for the GRI 3.0 mechanism. This example shows
only the part of the generated code that computes the rate constants from (4)

code for the computation of the rate constants from the GRI 3.0 mechanism, where
the following cases are considered:

• If br and Er for a reaction are zero, the rate constant from (4) reduces to the
constant value kr D Ar and no exponential function has to be computed (lines
30–31 in Fig. 4). In total, 100 out of 354 rate constants in the GRI 3.0 reaction
mechanism have br D 0 and Er D 0, see e.g. the first reaction in Fig. 3.

• If different rate constants have the same values of br and Er, the exponential
function is evaluated once for one of them and reused for each additional



196 T. Zirwes et al.

occurrence. This applies to 40 out of all 354 rate constants from the GRI 3.0
reaction mechanism (lines 35–36 in Fig. 4).

• If Er is zero and br is a small integer, Arrhenius’ law reduces to kr D ArTbr

(lines 22–27 in Fig. 4). Because br is an integer, Tbr can be replaced with a
small number of multiplications. This occurs for 6 rate constants in the GRI 3.0
mechanism.

After eliminating these special cases, only 228 out of 354 rate constants have
to be computed using the full Arrhenius law involving the expensive exponential
function in (4) (see lines 14–18 in Fig. 4).

In the generated source code, the Arrhenius parameters are stored in con-
tiguous arrays for maximizing data cache usage. Note that A[r] in line 18 is
automatically stored as log.Ar/ and A[r+334] to A[r+354] are stored as
log.Ar/= log.Ar;duplicate/. They are also explicitly aligned to allow auto-vectorization
by the compiler. Because the number of loop iterations is a compile-time constant
in the generated source code, the compiler can make better decisions about loop
unrolling. During code generation all reactions are reordered so that reactions with
similar properties are grouped together in the same loops over contiguous data.

In total for the GRI 3.0 mechanism, more than a third of all exponential function
evaluations are omitted in the generated code. Together with the vectorization,
evaluating the exponential function with the optimized chemistry source code
takes only about 5% of the total computing time instead of 20% in the reference
DNS code.

Computation of the rate constants kr is only a small subset of the code needed
to compute the final chemical reaction rates. For the rest of the chemistry code
indicated by (1) and (2), the basic optimization principles described so far are the
same: restructure and simplify the reaction mechanism and generate code that is
easy to optimize. In total, the automatically generated C++ code can speed up the
chemistry computation by more than 50% (see Sect. 4.3). It should also be noted
that all changes done by the converter tool to the reaction mechanism, like for
the evaluation of rate constants shown in this section, are equivalent in a strict
mathematical sense, so that the simulation results are almost the same as in the
reference case.

3.3 Choice of Compiler

The choice of compiler has an impact on the performance of the generated chemistry
code too. This is illustrated for the first loop (line 14) in Fig. 4 which contains the
most expensive operations and has the highest iteration count among the depicted
loops. Figure 5 shows the machine code generated by the GNU compiler (g++ 6.2.0)
on the left and the Intel compiler (icpc 17.0.1) on the right on the Cray XC40
Hazel Hen cluster (see Sect. 4.2 for a description of the architecture). Both machine
codes are created with the flags -std=c++14 -Ofast -march=native
-mtune=native.



Automated Code Generation for Maximizing Performance of Chemistry Calculations 197

Fig. 5 Comparison of shortened machine code output on Cray XC40 Hazel Hen of the GNU
g++ 6.2.0 (left) and Intel icpc 17.0.1 (right) compiler for the loop body in lines 14–18 of Fig. 4.
Comments (//) show the respective C++ code

Although both machine codes look similar, the GNU compiler does not auto-
vectorize the loop. This can be seen from the instructions ending in sd (“scalar
double”) instead of pd (“packed double”). Therefore, each instruction in the loop
of the GNU compiler only operates on one double precision value whereas each
iteration of the loop generated by the Intel compiler operates on four double
precision values at the same time. The reason is that the Intel compiler automatically
replaces the call to the exponential function std::expwith a call to svml_exp4
which is a version of the exponential function defined in Intel’s short vector math
library (SVML) acting on four double precision values at the same time. In our
tests, the Intel compiler creates machine code that performs 15–20% faster in terms
of total simulation time compared to the GNU compiler for the two investigated
reaction mechanisms. An additional 2% performance gain has been achieved by
using the restrict keyword wherever possible, which is a C language feature that
gives the compiler additional information about memory access. The performance
and scalability tests shown in Sect. 4.3 are all measured using Intel’s compiler.

4 Performance Validation

4.1 Numerical Setup

In order to assess the performance benefit of using the generated and optimized
chemistry code in the context of HPC simulation of turbulent combustion, the
simulation of a turbulent flame has been conducted which was experimentally
studied [19]. This section gives a short description of the numerical setup and the
HPC clusters.

Figure 6 on the left shows the simulation setup. It consists of the burner nozzle
with a diameter of 3.5 cm through which the methane/air mixture flows, and a
cylindrical region with a diameter of 0.6 m and a height of 0.6 m, representing



198 T. Zirwes et al.

Fig. 6 Schematic drawing of the simulation setup and iso-surface of T D 800 K, indicating the
flame surface (left), and a cut of the instantaneous temperature field (right)

the environment of the burner where the flame stabilizes. The computational grid
used for the performance test is composed of 176 million cells on Hazel Hen and
76.5 million finite volumes on ForHLR II, which are refined locally where the
flame burns. The governing equations are solved in OpenFOAM with the finite
volume method (FVM) along with high-accuracy numerical schemes [20]. Two
chemical reaction mechanisms with different complexities, as shown in Table 1,
are used in order to show the general validity of the presented concept for chemistry
calculations.

Figure 6 on the left illustrates the shape of the flame identified by the iso-surface
of T D 800 K, which becomes wrinkled due to the interaction between the com-
bustion reaction and the turbulent flow. A meridian cut though the computational
domain on the right of Fig. 6 shows the temperature field. The gray line indicates
the 800 K isotherm, corresponding to the contour of the flame surface depicted on
the left of Fig. 6. Although not presented here, the simulation results have shown
good agreement with the corresponding experimental data [19].

4.2 HPC Clusters and Software Versions

The performance gains when using the generated source code for the chemistry
computations compared to the reference case are evaluated on two supercomputers.



Automated Code Generation for Maximizing Performance of Chemistry Calculations 199

The Hazel Hen cluster at the Höchstleistungsrechenzentrum Stuttgart (HLRS)
is a CRAY XC40 system based on the twelve-core Intel Xeon E5-2680 v3
processor and Cray Aries network with Dragonfly network topology [21]. With its
15,424 CPUs (185,088 cores) it is currently one of the fastest supercomputers in
Europe. It has 7712 dual socket nodes, each node containing a total of 24 cores
and having 128 GB DDR4 memory, achieving a theoretical peak performance of
7.42 PFlops. OpenFOAM is used in version 1612+, compiled with gcc version 6.2,
together with cray-mpich version 7.0.3. The OpenFOAM solver is coupled to the
modified Cantera library based on Cantera 2.3.0a3. The generated chemistry source
code and Cantera’s implementation in the reference DNS Code are compiled with
the Intel compiler version 17.0.1.

ForHLR II at the Karlsruhe Institute of Technology (KIT) has 1152 computing
nodes with 64 GB RAM each [22]. Each node has 20 cores (two deca-core
Intel Xeon E5-2660 v3 processors) with a total theoretical peak performance of
1 PFlops. All nodes are connected through an InfiniBand 4X EDR Interconnect.
OpenFOAM is used in version 2.3.0, compiled with gcc version 4.8, together
with OpenMPI version 1.10. The OpenFOAM solver is coupled to the modified
Cantera library based on Cantera 2.3.0a3. The generated chemistry source code and
Cantera’s implementation in the reference DNS Code are compiled with the Intel
compiler version 16.0.

4.3 Performance Improvement

The performance improvement by using the chemistry code generated by the
converter tool instead of Cantera’s implementation has first been evaluated on
a single node. An interesting example of how the new chemistry code affects
the performance of the simulation is shown in the table on the left of Fig. 7.
Using the performance monitoring tool LIKWID, the number of cache and branch
prediction misses have been recorded on ForHLR II for the detailed GRI 3.0

Fig. 7 Left: Relative reduction in cache and branch prediction misses for the GRI 3.0 mechanism
for a serial case. Right: Performance improvement Pchem for only the chemistry computations



200 T. Zirwes et al.

mechanism. Branch prediction misses happen when the control flow of the program
is not predictable for the CPU. Cache misses happen when either data or program
instructions are not in the local CPU caches when they are needed. Because in the
generated chemistry code most of the functions are inlined and all loop counters and
other parameters affecting the control flow are compile time constants, the number
of instruction cache misses is reduced by a factor of 30. Similarly, the number of
branch prediction misses is reduced by a factor of 8. Because all data is stored and
accessed linearly in memory in the optimized code, L1 cache misses are reduced by
a factor of 5 and L2 cache misses by a factor of 8.

Figure 7 on the right shows the time savings of only the chemistry computations
for the setup described in Sect. 4.1 on ForHLR II and Hazel Hen. On ForHLR II,
the simulation was run on 32 nodes (640 cores) up to 510 nodes (10,200 cores). On
Hazel Hen, it was run on 75 nodes (1800 cores) to 1200 nodes (28,800 cores). The
time needed for just the chemistry tchem is compared between the reference case and
the generated optimized chemistry code with

Pchem D tchem.reference case/ � tchem.optimized/

tchem.reference case/
: (5)

With the detailed GRI 3.0 reaction mechanism, the time for the chemistry computa-
tions is reduced by approximately 45% on Hazel Hen and 35–40% on ForHLR II.
Using the mechanism by Kee reduces the time for the chemistry computations on
ForHLR II by 42% and on Hazel Hen by 53%, thereby saving more than half of
the computing time needed for the chemical reaction rates. The improvement stays
nearly constant with the number of CPU cores because the optimizations performed
in the chemistry routines are not affected by communication. Large portions of
the generated code are not as easily vectorizable as shown for Arrhenius’ law
in Sect. 3.2. For example the summation in (2) cannot be vectorized so that the
total speedup stays below the optimal speedup expected from perfect vectorization.
Otherwise, all loops that were expected to be vectorized have been auto-vectorized
by the Intel compiler.

Because the Kee mechanism is much less complex than the GRI 3.0 mechanism,
total simulation time ttot is on average ten times shorter with the Kee mechanism
compared to the more detailed GRI 3.0 mechanism. The chemistry part of the
simulation is more than 15 times faster with the smaller Kee mechanism. There
is also a difference in how much of total simulation time is spent on chemistry
computations for the two investigated reaction mechanisms: chemistry calculations
take 60–70% of the total simulation time with the Kee mechanism in the reference
DNS code and 40–50% with the optimized code. For the GRI 3.0 mechanism,
about 90% of the total simulation time is spent on computing chemical reaction
rates in the reference DNS code and 85% in the optimized solver. Because much
more of the total simulation time is used for the chemistry calculations with the
GRI 3.0 mechanism, the overall performance gain Ptot is greater with the GRI 3.0
mechanism compared to the Kee mechanism, although the relative improvement



Automated Code Generation for Maximizing Performance of Chemistry Calculations 201

of only the chemistry computations Pchem in Fig. 7 is slightly better with the Kee
mechanism.

Ptot D ttot.reference case/ � ttot.optimized/

ttot.reference case/
: (6)

Using the generated chemistry routines, the total simulation time is reduced
by Ptot D 40% with the GRI 3.0 mechanism on Hazel Hen and 35% on ForHLR II.
For example, on Hazel Hen with 28,800 CPU cores, the average time of a time
step is about 8 s with the optimized chemistry but more than 13 s with the reference
case implementation. The simulation with the reaction mechanism by Kee is 25–
35% faster. In order to obtain statistically converged data from DNS of turbulent
combustion, typically at least 105 simulation time steps have to be calculated.
For the present case, this would require about 6.5 million CPU core hours with
the GRI 3.0 mechanism on Hazel Hen with the reference DNS code. Using the
optimized chemistry routines reduces the overall simulation time by almost 40%,
saving over 2.5 million core hours. For future simulations, even more detailed
reaction mechanisms will be employed so that higher percentages of total simulation
time are used to compute the chemical reaction rates, making the performance gains
from the presented optimization technique even more important.

4.4 Parallel Performance

Figure 8 shows the incremental speedup of the DNS solver using the optimized
chemistry routines for strong scaling of the setup described in Sect. 4.1. The
incremental speedup is defined as Sn D ttot.n/=ttot.n0/, where n is the number
of CPU cores and n0 is 640 CPU cores on ForHLR II and 1800 CPU cores on
Hazel Hen and ttot is the total simulation time for a fixed number of time steps. The

Fig. 8 Incremental speedup Sn (strong scaling): Comparison of Kee mechanism and more
detailed GRI 3.0 mechanism on ForHLR II (left) with 76.5�106 cells and Hazel Hen (right) with
176�106 cells for DNS of turbulent methane/air combustion with the optimized chemistry code



202 T. Zirwes et al.

simulations with the GRI 3.0 mechanism scale almost ideally. The scaling efficiency
is still above 90% for 28,800 CPU cores on Hazel Hen. As mentioned before,
there is no communication during the chemistry computations. Therefore, the more
complex the chemistry is, the larger is the share of total simulation time without
communication overhead. The simulations with the Kee mechanism scale well up to
5000 CPU cores but scaling efficiency decreases beyond that. In this case, the share
of actual computation time in comparison to communication overhead decreases,
leading to reduced parallel efficiency. The DNS with detailed chemistry, for example
with the GRI 3.0 mechanism, is much more computationally expensive than with the
Kee mechanism (see Table 1), so that a better parallel performance is achieved with
the GRI 3.0 mechanism. The presented optimizations are therefore most beneficial
for larger reaction mechanisms, both in terms of parallel performance and overall
simulation time reduction.

It noteworthy that the scaling efficiency becomes slightly better if Cantera’s
chemistry implementation in the reference case is used instead of the optimized
chemistry code. Because the chemistry computations take much longer with Can-
tera’s implementation, the ratio of communication to computation becomes smaller.

5 Conclusion

This work presents an optimization technique where specialized source code is
automatically generated to speed up chemistry computations in DNS of chemically
reacting flows. It shows that large performance improvements are possible compared
to even highly optimized libraries when source code is optimized for special cases. A
converter tool has been developed which reads reaction mechanism files containing
all information about the chemical reactions occurring during combustion and con-
verts them into C++ routines. The reaction mechanism is analyzed and restructured
by the converter tool to enable more efficient evaluation of the chemical reaction
rates. The source code for the chemistry routines is generated in a way that is easy
for the compiler to optimize and maximizes the usage of data caches and auto-
vectorization. These optimizations are achieved by following the design principles
of cache friendly data structures and linear data access patterns, which will become
more important in the future due to increasing vector register sizes. The number
of cache and branch prediction misses have been shown to be drastically reduced.
The generated chemistry routines for the combustion of methane and air have been
coupled with the open-source library OpenFOAM in order to perform the simulation
of a realistic turbulent flame. The simulations were run on two supercomputers
(Cray XC40 Hazel Hen and ForHLR II) with up to 28,800 CPU cores showing very
good scalability. A decrease of up to 40% in total simulation time has been achieved
compared to the reference DNS code without affecting the accuracy of the results.
The method is of particular interest when applying complex chemical reaction
systems instead of simplified or reduced chemistry, which is important for studying
the mechanisms of flame/turbulence interaction and the generation of pollutant



Automated Code Generation for Maximizing Performance of Chemistry Calculations 203

emissions. The performance tuning with the presented optimization technique,
together with the good scalability of the widely used OpenFOAM package, will help
to investigate combustion phenomena in more detail. Consequently, the time and
cost required for the development of modern combustion devices may be reduced in
the future.

Acknowledgements This work was supported by the German Research Council (DFG)
through Research Units DFG-BO693/27 “Combustion Noise”. This work was performed on
the national supercomputer Cray XC40 Hazel Hen at the High Performance Computing Center
Stuttgart (HLRS) under the grant with acronym ‘Cnoise’ and on the computational resource
ForHLR II funded by the Ministry of Science, Research and the Arts Baden-Württemberg and
DFG (“Deutsche Forschungsgemeinschaft”).

References

1. BP Energy Outlook, British Petroleum (2016), www.bp.com/energyoutlook
2. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion (RT Edwards, Toulouse

Cedex, 2005)
3. A. Lipatnikov, Fundamentals of Premixed Turbulent Combustion (CRC, Boca Raton, 2012)
4. C.K. Law, Combustion Physics (Cambridge University Press, Cambridge, 2010)
5. J.H. Chen, Petascale direct numerical simulation of turbulent combustion—fundamental

insights towards predictive models. Proc. Combust. Inst. 33, 99–123 (2011)
6. F. Zhang, T. Zirwes, P. Habisreuther, H. Bockhorn, Numerical simulation of turbulent

combustion with a multi-regional approach, in High Performance Computing in Science and
Engineering ’15, ed. by W.E. Nagel, D.B. Kröner, M.M. Resch (Springer, Berlin, Heidelberg,
2015), pp. 267–280

7. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T.
Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qi, GRI 3.0 reaction
mechanism (1999), http://www.me.berkeley.edu/gri_mech

8. LLNL Heptane Reaction Mechanism (2012), https://combustion.llnl.gov/mechanisms/alkanes/
n-heptane-detailed-mechanism-version-3

9. T. Lu, C.K. Law, Toward accommodating realistic fuel chemistry in large-scale computations.
Prog. Energy Combust. Sci. 35(2), 192–215 (2009)

10. V. Damian, A. Sandu, M. Damian, F. Potra, G.R. Carmichael, The kinetic preprocessor KPP—
a software environment for solving chemical kinetics. Comput. Chem. Eng. 26, 1567–1579
(2002)

11. K.E. Niemeyer, N.J. Curtis, pyJac, Version 1.0.1 (2016), https://github.com/kyleniemeyer/
pyJac

12. H.G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum
mechanics using object-oriented techniques. Comput. Phys. 12, 620–631 (1998)

13. S. Vo, A. Kronenburg, O.T. Stein, E.R. Hawkes, Direct numerical simulation of non-premixed
syngas combustion using OpenFOAM, in High Performance Computing in Science and
Engineering ’16, ed. by W.E. Nagel, D.B. Kröner, M.M. Resch (Springer, Heidelberg, 2016)

14. F. Zhang, H. Bonart, T. Zirwes, P. Habisreuther, H. Bockhorn, N. Zarzalis, Direct numerical
simulation of chemically reacting flows with the public domain code OpenFOAM, in High
Performance Computing in Science and Engineering ’14, ed. by W.E. Nagel, D.H. Kröner,
M.M. Resch (Springer, Berlin, Heidelberg, 2015), pp. 221–236

15. D.G. Goodwin, H.K. Moffat, R.L. Speth, Cantera: an object-oriented software toolkit for
chemical kinetics, thermodynamics, and transport processes. Version 2.3.0b (2016), http://
www.cantera.org

www.bp.com/energyoutlook
http://www.me.berkeley.edu/gri_mech
https://combustion.llnl.gov/mechanisms/alkanes/n-heptane-detailed-mechanism-version-3
https://combustion.llnl.gov/mechanisms/alkanes/n-heptane-detailed-mechanism-version-3
https://github.com/kyleniemeyer/pyJac
https://github.com/kyleniemeyer/pyJac
http://www.cantera.org
http://www.cantera.org


204 T. Zirwes et al.

16. T. Zirwes, Weiterentwicklung und Optimierung eines auf OpenFOAM basierten DNS Lösers
zur Verbesserung der Effizienz und Handhabung. Bachelor’s thesis, Karlsruhe Institute of
Technology, Germany, 2013

17. R.J. Kee, M.E. Coltrin, P. Glarborg, Chemically Reacting Flow: Theory and Practice (Wiley,
Hoboken, 2005)

18. CHEMKIN 10131, Reaction Design: San Diego (2013)
19. F. Zhang, T. Zirwes, H. Nawroth, H. Bockhorn, C.O. Paschereit, Combustion generated noise:

an environment related issue for future combustion systems. Energy Technol. 5(7), 1045–1054
(2017)

20. OpenFOAM. The Open Source CFD Toolbox. User Guide (2014)
21. Cray Inc., Cray XC40 (2016), http://www.hlrs.de/systems/cray-xc40-hazel-hen
22. ForHLR II (2016), https://www.scc.kit.edu/dienste/forhlr2.php

http://www.hlrs.de/systems/cray-xc40-hazel-hen
https://www.scc.kit.edu/dienste/forhlr2.php

	Automated Code Generation for Maximizing Performance of Detailed Chemistry Calculations in OpenFOAM
	1 Introduction
	2 Reference DNS Code
	3 Optimized Code Generation
	3.1 Basic Concept of the Code Generation Approach
	3.2 Optimized Computation of Rate Constants
	3.3 Choice of Compiler

	4 Performance Validation
	4.1 Numerical Setup
	4.2 HPC Clusters and Software Versions
	4.3 Performance Improvement
	4.4 Parallel Performance

	5 Conclusion
	References


