
Performance Assessment Framework for Computational
Models of Visual Attention

Bharathi Murugaraj(✉) and J. Amudha

Department of Computer Science and Engineering, Amrita University, Bengaluru, India
bharathi02.subra@gmail.com

Abstract. This paper presents performance framework for computational model
of visual attention, a software package, written using python scripting language,
developed for the real-time comparison of computational model with human
fixations. The performance framework was developed for real-time processing of
eye trackers recorded data, analyzing them to generate fixation map, and
comparing the fixation map to a saliency model got by running a configured
computational model either in bottom-up or top-down mode. The framework is
designed such that added modules can be extended for various experiment
processing as required by the researcher. The framework encompasses the main
connection to eye tracker to collect the raw data that will have observers eye
coordinates and duration, it has analysis model to analyze the model and providing
methods of visualization like fixation, heatmap and scanpath, it also has a compu‐
tational model that predicts the fixation on the given image stimulus, finally the
platform compares the fixation and saliency map to assess the accuracy of the
prediction. All the functions of the framework can be controlled by using the
graphical user interfaces.

Keywords: Eye tracker · Eye movement analysis · Fixation · Heatmap ·
Computational model · Saliency map · Python · Visual attention

1 Introduction

Visual attention mechanisms are developed that is derived from the study of human visual
systems. Its process enables machine vision systems to select the most relevant regions from
a scene Eye tracking is used for usability and psychology testing and used popularly in
researches in visual system, cognitive process, and human-computer interaction. In psycho‐
physiological research, eye-tracking methodology is used to get reaction parameters from
eye movement data that used to analyze cognitive processes underlying visual behavior.
Researcher’s use eye movement data to study cognitive influence in learning, memory and
attention. To perform eye tracking experiments many commercial eye-trackers e.g.
EyeTribe [6], SMI [9], and open-source solutions e.g. Gaze Tracker [10] are available in
market. They provide strong algorithms for gaze tracking, analysis and visualizations. Such
tools provide valuable insights into the recorded gaze behavior. On the other hand some
researchers have focused on the model-based analysis tools e.g. GazeAlyze [2], The

© Springer International Publishing AG 2018
S.M. Thampi et al. (eds.), Intelligent Systems Technologies and Applications,
Advances in Intelligent Systems and Computing 683,
https://doi.org/10.1007/978-3-319-68385-0_29

Psychtoolbox for Matlab [11], PychoPy [12], for gaze reading in experimental studies in
vision research. These tools come up with various detecting events in the gaze data, such
as algorithms for blink detection, fixation detection etc.

Modeling visual saliency has attracted much interest recently and there are now
several frameworks and computational approaches available. Some are inspired by
cognitive findings, some are purely computational, and others are in between. Using
wide variety of approaches many computational models of visual attention have been
developed to see in a free-viewing condition how to predict where people look in images.
The objective of these models is to improve artificial vision systems by computing, a
numerical value of the likelihood of attending to, or the saliency of every location in an
image. The performance of a model is measured by how will it predicts where people
look in images in a free-viewing condition. So far, researchers validate prediction of
attention models by direct comparison between eye movements recorded from humans
watching the stimuli and model output. The fixations from the humans and the saliency
map from the models is compared to assess the performance of the models.

To combine the eye tracking device, analysis of gaze data, saliency model and
assessment of the model for its performance we developed a performance assessment
framework. The framework provides 4 module: experimental module that helps to
control experiment with the eye tracking device and record the eye movement data called
gaze data of the observer, analysis module which generates a fixation map by analyzing
the gaze data, saliency module generates a saliency map from a computational model
(bottom-up/top-down), and performance comparator that compares the fixation map and
saliency map using 3 popular metrics Normalized Scanpath Saliency (NSS), Pearson’s
Correlation Coefficient (CC) and Similarity.

2 Motivation

Eye tracking is process of finding out where the user is looking at for the given stimulus,
by usage of eye tracking device. All eye tracking system function with a common prin‐
ciple, identifying the same eye features across the multiple images. And the results are
correlated to a particular eye. Salient objects generally appear visually different from
the other displayed objects in the scene. Eye tracking devices records eye coordinates
and duration about a position of an eye within an eye’s image as registered by a camera.
This raw data is translated into a gaze point. For the computational tasks of recorded
data analysis: fixation detection, heatmap and scanpath are considered. The most funda‐
mental translation from raw data is the fixation detection, which is true for one eye
tracker and for a specific dataset.

Generally a computational model handles several features and then computes them
in parallel. The resulting value is fused in a representation called saliency map. The
saliency map is visualized as a grey-scale image. In this map more the brightness of a
pixel, it is the most salient region. Where human look in an image is based on two factors;
a bottom-up and top-down approach. Bottom-up models are task-free and is stimulus-
driven. Thus they do not require to learn, train or tune to open-ended task. They can be
used for prediction on any image dataset, the output of it can be verified against

346 B. Murugaraj and J. Amudha

experimental data collected from humans. Top-down models are descriptive, task-
specific and can be implemented computationally. But with lot of work going on this
area the difference between bottom-up and top-down models is diminishing and there
are algorithms of computational models that uses both the approaches for prediction.
The paper [5] explores if existing object information can be used to for the next object
recognition, it attempts to combine top-down and bottom-up model. Saliency maps
produced by different algorithms are often evaluated by comparing output fixated image
locations appearing in human tracking data. The inherent ambiguity in how saliency and
ground truth are represented leads to different choices of metrics for reporting perform‐
ance. Here, the performance comparator uses saliency metrics, that is, functions that
take two inputs representing eye fixations and predictions and then output a number
assessing the similarity or dissimilarity between them.

We presents a software performance assessment framework which is developed
using python tool for comparing human fixations and the saliency map from the compu‐
tational model for a given image stimulus. This will help in choosing appropriate models
for the given application in hand. It can use various computational algorithm according
to choice of the researcher and is an open-source software. Our intent was to developing
an open-source, in-line python application that allows the complete management of
entire processes of collecting data from eye tracker, post analyzing the collected data,
predicting the salient region using either bottom-up or top-down models and finally
compare them, that is, the fixation map and the saliency map.

3 Literature Survey

Even though, there are some well performing commercial eye trackers available, they
have two disadvantages compared to the open-source solutions: they are either avail‐
able at very high costs and thus becomes unaffordable for many academic research
or clinical studies. They also provide a tightly-coupled environment that it is diffi‐
cult to customize the way they need it for their application. Mostly all the solutions
provide are black-box ensuring that there no access to image processing routines or
modules. Many researchers explore different computational model to measure the
accuracy of their prediction. The experiments conducted on 39 observers free-
viewing 300 images and compare 10 popular recent modules [3]. It explores which
models perform poorly and which ones are better. The performance of saliency
models is measured using three different metrics ROC, similarity and EMD. Lot of
paper explore on different evaluation metrics. Properties of the inputs affect metrics
differently: how the ground truth is represented; whether the prediction includes
dataset bias; whether the inputs are probabilistic; whether spatial deviation exist
between the prediction and ground truth. Knowing how these properties affect
metrics, and which properties are most important for a given application can help
with metric selection for saliency model evaluation [4]. In this paper we use Normal‐
ized Scanpath Saliency (NSS), Pearson’s Correlation Coefficient (CC) and simi‐
larity for fairest comparison of fixation map and saliency map. An open-source inte‐
grated framework like Visual Search Examination Tool (Vishnoo) [1] combines

Performance Assessment Framework for Computational Models 347

configurable search tasks with gaze tracking capabilities, thus enabling the analysis
of both, visual field and visual attention. This offers easily adaptable stimulus
presentation, eye-tracking and evaluation of the visual scan path combined in a
single platform.

4 System Architecture of the Framework

The frameworks block diagram is shown in Fig. 1.

Fig. 1. Flow chart of performance framework

Researchers can use this framework tool with no specific programming skill, as it is
graphically driven and all system parameters and all functionalities are controllable from
graphical user interface (GUI). All system parameters of specific experiments are saved
in a configuration script. This allows comfortable handling of the analysis of different
experiments. The performance framework is entirely developed using python scripting
language as it is open-source and can be easily portable. It runs on pretty much every‐
thing. All functions are written in python and are separate from the GUI components.
The GUI is developed using Java programming language and is used explicitly for
adding, updating and deleting configuration parameters. The performance framework
consists of Experimental module, Analysis module, Saliency module and Comparator
module.

348 B. Murugaraj and J. Amudha

Experimental Module
Eye tribe [11], an eye tracking device is used in the framework. By using the person’s
face and eyes the device can calculate the exact location as to where the observers is
looking at. The gaze coordinates are represented by a pair of (x, y) coordinates that is
taken from the screen coordinate system, and it is calculated with respect to the screen
the person is observing. Before using the eye tracker device the user need to do cali‐
bration process. Because the eye characteristics of individual is different, and this need
to be modeled by the eye tracking software in order to estimate gaze accurately. Pygaze
[8] an open-source python package is used in the framework. Pygaze acts as a wrapper
around several existing eye tracking packages. It is used to create complicated experi‐
ments. Pygaze module connects to the eye tribe and records eye movement information
like the eye coordination and duration into a tab separated file.

Analysis Module
Further the gaze data is analyzed by the Analyzer module which provides valuable
insights into the recorded gaze behavior. In eye tracking data analysis fixation detection
is considered. The velocity at each gaze point is calculated when the eye gaze travels
from the previous gaze point to the current one. If calculated velocity is smaller than the
threshold velocity then that gaze point is tagged as fixation. After completing tagging
all the gaze points, consecutive fixation points are segregated into fixation groups
<x,y,t,d> where x, y are center coordinates of the fixation group, t is the timestamp of
the initial fixation point, and d is the duration. A fixation group is ignored for which the
duration threshold is greater than the duration of a group.

Saliency Module
The first computational model of visual attention using the bottom-up approach was
given by Koch and Ullman [13]. Here the visual features used were color, intensity or
orientation. These feature maps are weighed and summed up to a saliency map.

Performance Module
If fixation map (FMap) and saliency map (SMap) are passed two inputs to a metric
function, then the following metric are applied on them for comparison.

Normalized Scanpath Saliency (NSS): Measuring the normalized saliency at the
region of fixations

NSS(SMap, FMap) =
1
N

∑

i

SMapi × FMapi

where N =
∑

i
FMap and SMap =

SMap − 𝜇(SMap)

𝜎(SMap)

Here 𝔦 is the ith pixel, and N is the total fixated pixels in fixation map. A positive NSS
score indicates a good correspondence for a fixation located on the model predicted
saliency map and the scanpath of the observer’s.

Performance Assessment Framework for Computational Models 349

Similarity (SIM): Measuring the intersection between distributions

SIM(SMap, FMap) =
∑

i

min(SMapi, FMapi)

where
∑

i

SMap =
∑

i

FMap = 1
SIM measures the amount of similarity that exists between two distributions. A SIM

of 1 means the FMap distribution and SMap distributions are same and SIM of 0 means
there is no overlap.

Pearson’s Correlation Coefficient (CC): Evaluating the linear relationship between
distributions.

CC(SMap, FMap) =
𝜎(SMap, FMap)

𝜎(SMap) × 𝜎(FMap)

where 𝜎(SMap, FMap) is the covariance of saliency map and fixation map. CC can range
between −1 to 1. CC is 1 means a perfect correlation, whereas −1 also means perfect
correlation but in opposite directions.

5 Implementation

The GUI panel looks like in Fig. 2. All the system parameters are loaded from the
configuration script. This can be changed or updated and rewritten to the same script or
to a new configuration file.

To conduct the experiment, eye tracking system Eye tribe is used. Pygaze connects
to the eye tribe server. It is prerequisite that the eye tribe need to be calibrated separately.
Currently it is outside the scope the performance framework. Pygaze starts loading the
dataset, that is, the collection of images in the gap of 30 s each. There are 48 images in
the traffic sign dataset. They are in PNG format of size 360 × 270, each of the image
representing a traffic scene. In the dataset the image is categorized into 3 classes of
different traffic sign template, pedestrian crossing, intersection and compulsory for
bikes. The traffic sign dataset of 48 images was used to conduct the experiment to collect
the eye movements from the participants who were allowed to free view each image for
2 s. Once this data is collected, the ground truth eye fixations from different participants
is formatted as a column data and written to a tab separated file. The “rawx” and “rawy”
data which represents the gaze coordinates. The Gaze coordinates are the point on screen
that the user is currently looking. Gaze coordinates are defined as pixels in a top-left
oriented 2D coordinate system and are available in both raw and smoothed forms. There
are other information also in the tab separated file like “Tracking state”, “Fixation” and
“pupil coordinates”. But for generating fixation Gaze coordinates values are used. The
file content of tab separated file from the pygaze is show below in Fig. 3.

350 B. Murugaraj and J. Amudha

Fig. 3. Tab separated file generated from the pygze module.

Using the gaze coordinate and the duration value from the file is read and processed
to generate fixation location and fixation map as shown in Fig. 4.

Fig. 2. The GUI of the performance framework

Performance Assessment Framework for Computational Models 351

(a) (b) (c)

Fig. 4. (a) Traffic sign sample image from the dataset with its (b) fixation location and (c) fixation
map

In implementation, free viewing task is considered since this makes it easier to use
saliency models with fewest assumptions of the parameters. Two computational models
of visual attention was used. Firstly basic Itti and Koch model based was used. The
fixation location and fixation map as predicted by the model is displayed in Fig. 5.

(a) (b) (c)

Fig. 5. (a) Traffic sign sample image from the dataset with its (b) binary image of salient regions
and (c) its model saliency map using Itti-Koch

Graph Based Visual Saliency (GBVS) [16] was the second model used against the
same image dataset. The saliency map is shown in Fig. 6.

(a) (b)

Fig. 6. The GBVS model output (a) original image (b) saliency map

352 B. Murugaraj and J. Amudha

By overlaying the resulting salient regions from Itti-koch and GBVS, the original
image is as shown in Fig. 7.

(a) (b) (c)

Fig. 7. Salient region overlayed on the original image (a) original image (b) Itti-koch (c) GBVS

The saliency model is assessed for validation using three different metric by the
perfComparator: Similarity, Normalized Scanpath Saliency (NSS) and Correlation
Coefficient (CC) as displayed in Fig. 8 above. After running the pygaze for the eye
tracker experiment, and pygaze analyzer to generate fixation map, a comparison report
is generated. This will compare between the fixation map and saliency map as show in
the performance framework UI. The metric result is also displayed in the “Performance
Metrics” UI table in Fig. 9. This gives a direct picture to the researcher as to how well
the model is able to predict in compare to the ground truth.

Fig. 8. Performance measure of Itti-koch and GBVS model

Performance Assessment Framework for Computational Models 353

Fig. 9. The performance metric display comparing the fixation map and saliency map

6 Experiments

From the conducted experimental analysis we see that GBVS model performs better
than the Itti-kotch. The Linear Correlation Coefficient (CC) values for the images are
closer to 1, that is to say, there is a linear relationship exists between fixation map and
saliency map. The similarity score is also approximating to 1, which tells us that the two
maps distributions are same. This might be due to the factor that GBVS model also
considers is center surround along with color, intensity and orientation in computing
saliency map.

7 Conclusion

The performance framework provides a new platform for the researchers to experiment
with wide range of performance assessment of computational models, and as well by
collecting the human fixations from the eye tracking system module available in the
framework. In Vishnoo top-down model used for specific task programming is assessed
against scanpath i.e., focus of study is more on gaze data analysis, while the performance
framework allows to compare the saliency map and fixation map using 3 popular metrics.
Since all components required to test the performance of computational models is avail‐
able as a combined solution in a single framework, which makes it fastest and flexible
solution for researchers. Since the framework can be easily configurable, it becomes an
attractive tool to many scientific research.

354 B. Murugaraj and J. Amudha

References

1. Tafaj, E., Kubler, T.C., Peter, J., Rosenstiel, W., Bogdan, M.: Vishnoo-an open-source
software for vision research. In: 2011 24th International Symposium on Computer-Based
Medical Systems (CBMS) (2011)

2. Berger, C., Winkeles, M., Lischke, A., Hoppner, J.: GazeAlyze: a MATLAB toolbox for the
analysis of eye movement data. Behav. Res. Methods 44, 404–419 (2012)

3. Judd, T., Durand, F., Torralba, A.: A benchmark of computational models of saliency to
predict human fixations. MIT Technical report (2012)

4. Riche, N., Duvinage, M., Mancas, M., Gosseling, B., Dutoit, T.: Saliency and human
fixations: state-of-the-art and study of comparison metrics. In: 2013 IEEE International
Conference on Computer Vision (2013)

5. Amudha, J.: Performance evaluation of bottom-up and top-down approaches in computational
visual attention system, Coimbatore (2012)

6. THEEYETRIBE: http://www.theeyetribe.com
7. Radha, D., Amudha, J., Jyotsna, C.: Study of measuring dissimilarity between nodes to

optimize the saliency map. Int. J. Comput. Technol. Appl. 5(3), 993–1000 (2014)
8. Dalmaijer, E.S., Mathot, S., Van der Stigchel, S.: PyGaze: an open-source, cross-platform

toolbox for minimal-effort programming of eyetracking experiments. Behav. Res. Methods
46, 913–921 (2014)

9. SensoMotoric Instrument GmbH (2011). http://www.smivision.com
10. http://gazegroup.org/downloads/23-gazetracker/
11. Brainard, D.H.: The psychophysics toolbox. Spat. Vis. 10(4), 433–436 (1997)
12. Peirce, J.W.: PsychoPy-psychophysics software in Python. J. Neurosci. Methods 162(1–2),

8–13 (2007)
13. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural

circuitry. Hum. Neurobiol. 4, 219–227 (1985)
14. Bylinskii, Z., Judd, T., Borji, A., Itti, L., Durand, F., Oliva, A., Torralba, A. MIT saliency

benchmark. http://saliency.mit.edu/
15. Amudha, J., Radha, D., Deepa, A.S.: Comparative study of visual attention models with

human eye gaze in remote sensing images. In: Proceedings of the Third International
Symposium on Women in Computing and Informatics (2015)

16. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Proceedings of Advances in
Neural Information Processing Systems (NIPS), vol. 19, pp. 545–552 (2007)

Performance Assessment Framework for Computational Models 355

http://www.theeyetribe.com
http://www.smivision.com
http://gazegroup.org/downloads/23-gazetracker/
http://saliency.mit.edu/

	Performance Assessment Framework for Computational Models of Visual Attention
	Abstract
	1 Introduction
	2 Motivation
	3 Literature Survey
	4 System Architecture of the Framework
	5 Implementation
	6 Experiments
	7 Conclusion
	References

