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Abstract. The functioning of electromyogram (EMG) driven prosthesis to
control the performance of artificial prosthetic arms placed on people with
missing limbs depends on the cumulative effect of multiple dynamic factors,
some of which include electrode placement position, muscle contraction levels,
forearm orientations, etc. However, the study of the combined influence of these
dynamic factors has been limited and hence offered us scope to improve the
accuracy of the previous studies. We used the data to extract multiple features
through the Time Dependent Power Spectrum Descriptor (TD-PSD) algorithm,
which has proven to be one of the best methods of feature extraction. Samples
are classified using the Neural Pattern Recognition Toolbox with scaled con-
jugate gradient backpropagation as the training algorithm, which gives an
improved accuracy over Support Vector Machine (SVM) classifier. Neural
Network is trained using the EMG signals of 10 subjects performing multiple
hand movements to achieve classification accuracy up to 94.7%. The results
obtained are a testimony to the fact that the suggested method is competent to
improve the operation of pattern recognition myoelectric signals.
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1 Introduction

In a country like India, with more than half the population working in the agricultural
or labor sector where physical injuries are inevitable, a large number of people undergo
limb losses. Apart from the limb loss due to physical injuries, India is also the third
largest home to diabetes patients who eventually have to amputate their limbs to the
disease [1]. The discovery of an artificial limb or prosthesis provides the much needed
respite to the amputees in India and across the globe.

Prosthesis is defined as a man-made device attached to the subject body to replace a
part which could have been lost through trauma, disease or other congenital conditions.
The statistics of the National Limb Loss Information Centre reveal that the upper limb
amputations account for a much greater part of the overall trauma related amputations
[2] and hence in this entire paper, we focus on the arm amputations and the prosthetic
arms.
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Many different kinds of robotic arms have been developed since its inception [3],
ranging from grippers capable of performing basic industrial applications like lifting,
moving, etc., to extremely detailed ones capable of enacting every possible human
hand function.

The functioning of prosthetic arms is indeed a complex mechanism and involves
deciphering the intended movement with the help of the electrical activities of the
muscles, which are known as electromyogram (EMG) signals. The recording of the
EMG signals is done through non-invasive methods through the surface of the skin of
the amputee.

An overall process of controlling a prosthetic arm usually involves an electrode
placed directly on the surface of the amputee used to record the signals, which are
amplified, filtered and sampled to get a refined data set to be considered for deciphering
the movement to be performed. This data is used for EMG pattern classification which
includes processing of EMG signals, extraction of features and classification [4].

Continuous research in this field has brought advancements in this field with around
90% accuracy [5]. A number of factors that influence pattern recognition have been
studied, for example, strength exerted by muscle [6], limb orientation [7], and electrode
placement [8]. Other forms of noise may also cause problems [9]. The effect of these
factors has been studied individually but [10] recently studied the effects of a combi-
nation of muscle contraction levels and forearm orientation on classification of EMG
signals.

Feature extraction methods are used to get useful information out of almost
meaningless and random time series EMG signals. Feature extraction can be done
using methods like Time Domain based features [11], Discrete Fourier Transform [12],
or Time Domain-Power Spectral Descriptors (TD-PSD) [13], etc. TD-PSD method as it
has been established to be the best among all methods by previous literature [10].
TD-PSD method quantifies the angle of the EMG pattern rather than the amplitude
which gives more robust results in comparison to other feature extraction methods.
Feature extraction is then followed by a classifier which ultimately differentiates
between actions and force levels with which it needs to be performed by giving an
input to the digital controllers which controls the prosthetic arm. Support Vector
Machine classifier was used in [10]. It has been proven to be equally good if not better
to other classifiers such as Linear Discriminant Analysis (LDA), kNN, Random Forest
and Naive Bayes [10].

This paper has tried to study the combined influence of different orientations of the
forearm and varied muscular contraction levels on EMG pattern recognition. It has tried
to continue and improve on the work done in this domain previously [10] and used
their data set which was recorded live in Iraq as well as Australia. The data consists of
ten intact limbed amputee subjects on which multiple electrodes were placed. These
electrodes captured the EMG signals generated by 6 different movement classes at 3
varied contraction levels, with 3 trials given to each recording performed in 3 different
orientation of the forearm. This data was used to extract the features by using the
TD-PSD feature extraction method. Here, we have utilised the Neural Network Pattern
Recognition toolbox available on MATLAB 2014 and subsequently compared the
classification accuracy of this classification method with the previously used support
vector machine classification method.
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Section 2 discusses the data acquisition as well as the major methodologies and
concepts used in feature extraction as well as classification involved in the study.
Section 3 discusses the results obtained followed by the concluding remarks in Sect. 4.

2 Methods

2.1 Experimental Protocol

A normal computer display is placed in front of the subjects. The subjects were made to
perform six actions or movements, which are, closed fist, opened fist, extension of
wrist, flexion of wrist, wrist ulnar deviation, and wrist radial deviation. Three forearm
orientations were considered: wrist fully supinated, at rest, and fully pronated, marked
as 1st, 2nd, and 3rd orientations. Movements are performed at varied contraction
levels: low, average and high in each orientation of all the six movements. Overall,
each subject gave 162 trials: 6 classes of moves � 3 orientations of the arm � 3 levels
of muscular contraction � 3 trials per movement.

2.2 Feature Extraction Method: Time Domain Power Spectrum
Descriptors

Recent studies in Electromyogram (EMG) pattern recognition show the error when the
implementation of myoelectric control system is carried out [14]. When tests are carried
out on EMG patterns for the same movement at different position, the controller shows
limited performance. The feature extraction method is known as TD-PSD [13] is
utilized to minimize the effect of limb position on classification.

The feature vector is obtained in two steps. In the first step, using the sampled time
series EMG signal and transforming them through Fourier transform and Parseval’s
relations, a set of power spectrum features is extracted. Then the sampled time domain
EMG signal is logarithmically scaled and the power spectrum moments are obtained
from it. This is also called cepstral feature extraction method.

In the final step, the total six features are extracted which are nothing but the
orientation between the power spectrum moments for original electromyogram signal
and its cepstral version using a cosine similarity rule. The next section explains the
feature extraction method in detail.

In Fig. 1 x[j] with j = 1, 2,… N, of length N denotes the sampled set of EMG
signal. EMG trace within a certain epoch can be expressed as a function of frequency
by means of Discrete Fourier transform (DFT). The feature extraction process begins
by observing Parseval’s theorem which states that the sum of the square of the function
is equal to the sum of the square of its transform.

XN�1

j¼0
jx j½ �j2 ¼ 1

N

XN�1

k¼0
jX k½ �X * k½ �j ¼

XN�1

k¼0
jP½k�j ð1Þ
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Frequency index is denoted by k and P[k] is the power spectrum without phase [15].
This method will deal with the whole spectrum because the full frequency description is
symmetric in nature which we obtained from Fourier Transform and we cannot obtain
the power spectral density directly from the time-domain. So, all odd moments will be
considered as zero. So, m is denoted as moment and n as order of the moment of the
power spectrum P[k].

mn ¼
XN�1

k¼0
knP½k� ð2Þ

In the equation shown above, if the value of n is nonzero then the Fourier trans-
form’s time-differentiation property is used and when n = 0 then Parseval’s theorem is
used. This kind of property states that Dn is denoted as discrete time signals, which can
also be written as multiplying the X[K] by k to the nth power.

F Dnx½j�½ � ¼ knX k½ � ð3Þ

The moments which will help in extraction of feature sets as shown in Fig. 1 are:
Root squared zero order moment: This feature mainly denotes the strength of

muscle contraction, or the frequency-domain’s total power.

�m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1

j¼0
x½j�2

r
ð4Þ

Fig. 1. Block diagram of time domain power spectrum descriptors feature extraction method
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Root squared second order moments: Power spectrum is denoted as the second
order moments.

�m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN�1

j¼0
Dx½j�ð Þ2

r
ð5Þ

Root squared fourth order moments: For the fourth order moment we raise the
power of frequency index by 2 in second order moment.

�m4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN�1

j¼0
ðD2x½j�Þ2

r
ð6Þ

So, the second and the fourth moment derivatives of the signals are used to min-
imize the signal’s full energy; hence, we normalize (k = 0.1) to limit the influence of
noise on all moments.

m0 ¼ �m0

k
m2 ¼ �m2

k
m4 ¼ �m4

k
ð7Þ

Now, the first three features using the above moments are:

f1 ¼ logðm0Þ ð8Þ

f2 ¼ logðm0 � m0Þ ð9Þ

f3 ¼ logðm0 � m4Þ ð10Þ

The other three features are:
Sparseness: Sparseness measures the amount of energy is packed in only minor

components of a vector. This feature can be expressed as:

f4 ¼ log m0

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0 � m2ð Þ m0 � m4ð Þ

p� �
ð11Þ

Such a feature describes a vector with all elements equal with a sparseness measure
of zero that is m2 and m4 equal to zero because of differentiation and so f4 = 0. For all
other sparseness levels, value should be greater than 0 [14].

Irregularity Factor (IF): It denotes the measure of ratio of the count of upward zero
crossings to the number of peaks. This feature can be expressed as in terms of spectral
moments:

f5 ¼ logðm0=
ffiffiffiffiffiffiffiffiffiffiffi
m0m4

p Þ ð12Þ

Waveform Length Ratio (WL): The summation of absolute value of the first and
second derivative of EMG signal over its entire length is calculated to find the
waveform length (WL) feature using the formula:
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f6 ¼ log

PN�1
j¼0 jDxjPN�1
j¼0 jD2xj

 !
ð13Þ

Now on the basis of Fig. 1, we form a matrix a = [a1, a2, a3, a4, a5, a6] by using
the six extracted features. We also add another feature vector, expressed as b = [b1,

b2, b3, b4, b5, b6], which is extracted logarithmically scaled version log (x2
x2

). For each
EMG channel the final 6 features are extracted which are nothing but the orientation
between the vectors obtained earlier. A cosine similarity rule is used to find these
features given as

fi ¼ �2aibi
a2i þ b2i

ð14Þ

2.3 Artificial Neural Network

It makes a network of artificial neurons that map the input to the output, both of which
are known to us with certainty. A backpropagation network consists of at least three
layer which are one input layer, one output layer, and one or more hidden layers in
between the input and output layers. The hidden layer has a number of hidden neurons.
The network is trained, that is, the various connection weights and bias values are
adjusted so as to generate the desired outputs for the given inputs. The error generated
at the output is the difference in our desired output and the present output at the output
nodes. This error is backpropagated from the output layer to the input layer through the
hidden layer(s). This changes the connection weights to reduce the error. This process
is called backpropagation.

For the classification process, Neural Pattern Recognition toolbox has been used,
available in MATLAB 2014, where the extracted TD-PSD features from EMG signals
obtained from 10 subjects are treated as input, that is, the data to be classified. Net-
works of pattern recognition are feed-forward networks which can be used to train and
classify inputs according to their target classes.

To train the network, we use the scaled conjugate gradient backpropagation method
of classification. This training function comprises of three layers in total. There is just
one hidden layer. The number of neurons is selected according to our network size.

3 Experimental Results

To report our results, we combine all the data and classification results from our 10
subjects. There are a total of 1620 samples from 162 trials of our 10 subjects. We first
divided our samples randomly to feed into the pattern recognition tool using scaled
conjugate gradient backpropagation algorithm. We used 70% of those samples for
training, 15% of those samples for validation and 15% of those samples for testing.
Figure 2 shows the confusion matrix for training with TD-PSD features:
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We now conducted a systematic study where, at each forearm orientation, we
selected the data from one contraction level to train our classifier and then used the data
from all contraction levels for testing our model.

For the case when we use the data of low contraction level in orientation 1 for
training, Fig. 3 shows the confusion matrix and receiver operating characteristics
(ROC), and Fig. 4 shows the performance curve. These plots help in the gauging the
efficiency of a supervised learning algorithms (Table 1).

Fig. 2. Preliminary testing results with the entire dataset.

Fig. 3. (a) Confusion matrix and (b) ROC for training with low force level at orientation 1 and
testing with all forces of the same orientation.
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The classification accuracy was the highest when training data from medium
contraction level was used, at each forearm orientation.

Next, the classifier was trained and tested with data from different orientations.
Specifically, for training, each orientation was selected one by one and the TD-PSD
features extracted from data of all three muscle contraction levels was used. The
TD-PSD features exacted from all the contraction levels of the other two orientations
was the testing data.

There was a decline in classification performance from the earlier scenario, pre-
dictably so. For the case when the network was trained using data from orientation 1,
and tested using data from orientations 2 and 3, Fig. 5 shows the confusion matrix and
ROC. Figure 6 shows the performance curve.

Fig. 4. Performance curve for training with low force level at orientation 1 and testing with all
forces of the same orientation.

Table 1. Same orientation analysis. Testing was done using all forces within an orientation.

Orientation Training and testing parameters Accuracy %

Orientation 1 Train Low Force Hidden Neurons = 140 78.9%
Train Medium Force Hidden Neurons = 140 85.4%
Train High Force Hidden Neurons = 140 78.2%

Orientation 2 Train Low Force Hidden Neurons = 47 81.8%
Train Medium Force Hidden Neurons = 35 83.6%
Train High Force Hidden Neurons = 35 79.3%

Orientation 3 Train Low Force Hidden Neurons = 47 79.4%
Train Medium Force Hidden Neurons = 35 81.4%
Train High Force Hidden Neurons = 35 80.4%
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Training the classifier with data from orientation 2 (as opposed to orientations 1 or 3)
and testing the network with the other orientations resulted in the highest classification
accuracy, which is 69.1% on average.

These results can be compared to those obtained by using support vector machine
(SVM) classifier with SVM parameters as C = 32 and c = 0.0625 (Table 2).

Fig. 5. (a) Confusion matrix and (b) ROC for training the classifier using orientation 1 data.
Testing using data from orientation 2 and 3

Fig. 6. Performance curve for training the classifier using orientation 1 data. Testing using data
from orientation 2 and 3
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4 Concluding Remarks

Using TD-PSD as the feature extraction method, a comprehensive study of how
varying muscle contraction levels and different forearm orientations together affect the
EMG pattern recognition was conducted. It has been well established that the TD-PSD
is a superior feature extraction method in comparison to other feature extraction
methods. This paper has employed a new classifier, namely, Neural Network Classifier
with scaled conjugate gradient back propagation training algorithm on MATLAB to
improve the classification accuracy. Training this new classifier with data of six
movement classes, each carried out with multiple muscular contraction levels and at
various forearm orientations, by using TD-PSD features offers satisfactory classifica-
tion accuracy and an improvement over Support Vector Machine classifier.

Maximum classification accuracy is obtained when the training data includes all
forearm orientations. It is also observed that using training data from medium muscle
contraction level provides the best accuracy when testing in comparison to low or high
force levels.

Table 2. Different orientation analysis.

Training and testing data Movement class Neural network
classification accuracy

Support vector
machine accuracy

Train: Orientation 1
Test: Orientation 2 and 3

C1 69.7% 66%
C2 72.5% 50%
C3 74.3% 60%
C4 65.3% 55%
C5 60.4% 48%
C6 64.1% 63%

Train: Orientation 2
Test: Orientation 1 and 3

C1 66.9% 70%
C2 67.0% 37%
C3 86.5% 68%
C4 77.3% 57%
C5 63.7% 62%
C6 67.7% 62%

Train: Orientation 3
Test: Orientation 1 and 2

C1 68.8% 65%
C2 50.8% 38%
C3 71.2% 75%
C4 77.2% 35%
C5 60.0% 61%
C6 63.9% 57%

EMG Pattern Classification Using Neural Networks 241



References

1. Nazarpour, K., Sharafat, A.R., Firoozabadi, S.M.P.: Application of higher order statistics to
surface electromyogram signal classification. IEEE Trans. Biomed. Eng. 54(10), 1762–1769
(2007)

2. Owings, M.F., Kozak, L.J.: Ambulatory and inpatient procedures in the United States, 1996.
Vital Health Stat. 139, 1–119 (1998)

3. Belter, J.T.: Mechanical design and performance specifications of anthropomorphic
prosthetic hands: a review. J. Rehabil. Res. Dev. 50(5), 599 (2013)

4. Boostani, R., Moradi, M.H.: Evaluation of the forearm EMG signal features for the control
of a prosthetic hand. Physiol. Meas. 24(2), 309 (2003)

5. Rasool, G., et al.: Real-time task discrimination for myoelectric control employing
task-specific muscle synergies. IEEE Trans. Neural Syst. Rehabil. Eng. 24(1), 98–108
(2016)

6. Al-Timemy, A.H., et al.: A preliminary investigation of the effect of force variation for
myoelectric control of hand prosthesis. In: 2013 35th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2013)

7. Peng, L., et al.: Combined use of semg and accelerometer in hand motion classification
considering forearm rotation. In: 2013 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC). IEEE (2013)

8. Hargrove, L., Englehart, K., Hudgins, B.: A training strategy to reduce classification
degradation due to electrode displacements in pattern recognition based myoelectric control.
Biomed. Signal Process. Control 3(2), 175–180 (2008)

9. Spanias, J.A., Perreault, E.J., Hargrove, L.J.: Detection of and compensation for EMG
disturbances for powered lower limb prosthesis control. IEEE Trans. Neural Syst. Rehabil.
Eng. 24(2), 226–234 (2016)

10. Khushaba, R.N., et al.: Combined influence of forearm orientation and muscular contraction
on EMG pattern recognition. Expert Syst. Appl. 61, 154–161 (2016)

11. Hakonen, M., Piitulainen, H., Visala, A.: Current state of digital signal processing in
myoelectric interfaces and related applications. Biomed. Signal Process. Control 18, 334–
359 (2015)

12. He, J., et al.: Invariant surface EMG feature against varying contraction level for myoelectric
control based on muscle coordination. IEEE J. Biomed. Health Inf. 19(3), 874–882 (2015)

13. Al-Timemy, A.H., et al.: Improving the performance against force variation of EMG
controlled multifunctional upper-limb prostheses for transradial amputees. IEEE Trans.
Neural Syst. Rehabil. Eng. 24(6), 650–661 (2016)

14. Khushaba, R.N., et al.: Towards limb position invariant myoelectric pattern recognition
using time-dependent spectral features. Neural Netw. 55, 42–58 (2014)

15. Khushaba, N., et al.: A fusion of time-domain descriptors for improved myoelectric hand
control. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE
(2016)

16. Bhardwaj, N., et al.: Extraction of EMG signal in a software compatible format from an
online database using WFDB package. Persp Sci. 8, 767–769 (2016)

17. Agarwal, S., et al.: EEG signal enhancement using cascaded S-Golay filter. Biomed. Signal
Process. Cont. 36, 194–204 (2017)

242 T. Gupta et al.


	EMG Pattern Classification Using Neural Networks
	Abstract
	1 Introduction
	2 Methods
	2.1 Experimental Protocol
	2.2 Feature Extraction Method: Time Domain Power Spectrum Descriptors
	2.3 Artificial Neural Network

	3 Experimental Results
	4 Concluding Remarks
	References


