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Abstract. Recently, risk based prediction models in medical diagnostic
systems gain wider significance in deciding most appropriate diagnos-
tic treatments and for clinical usage. Prostate cancer is a disease which
is difficult to diagnose and there are number of failure cases reported.
Therefore, an effective and aggressive selection of multiple factors influ-
ence on the disease is required. In this paper, an adaptive soft set based
diagnostic risk prediction system is presented with the implementation
on prostate cancer. The system receives input parameters related to the
disease and gives out the risk percentage of the patient. Soft sets are
generated with the input parameters by fuzzification followed by rule
generation. The risk percentage of the rules are individually calculated
for Precision, Recall and F-Measure, that conclude on the best risk per-
centage based on the maximum area under the curve (AUC) in each case.
This ensures to select the most influential risk parameters in treating the
disease. Specificity and sensitivity of the test system yield 75.00% and
45.45% respectively.
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1 Introduction

The presence of intelligent systems in the field of medical sciences have been
undergoing phenomenal growth for the last two decades. Earlier, expert systems
have significantly influenced the way a doctor deals with and diagnose a patient.
Some notable examples are MYCIN [33], INTERNIST [25], etc. Further more,
the advances in information technology embraces the digitization of the medical
records and the development of other technology related medical applications in
an accelerated pace.
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The use of applications involving artificial intelligence and machine learning
can successfully assist physicians with distinctive diagnosis of diseases, treatment
opinions and recommendations, radio diagnosis on images etc. Data mining in
health care also provide “real time” diagnostic as well as effective medicine rec-
ommendations on the basis of a training data set. But, driven by the issues in
existing risk prediction systems, an adaptive method to improve the scope and
accuracy of the prediction system is presented.

The organization of this paper is as follows. Section 2 discusses the related
works. Section 3 gives an overview of the adaptive soft set based risk prediction
system along with the preliminaries in Subsect. 3.1. The proposed algorithm is
given in Subsect. 3.2. The implementation details of the proposed algorithm for
prostate cancer detection is given in Sect. 4 along with the detailed description
of each step. Section 5 discusses the results and implementation details of the
algorithm. We conclude in Sect. 6.

2 Related Work

Fuzzy sets and fuzzy logic were introduced by Zadeh [38] to handle problems
with uncertainty, and since then, they have contributed to a paradigm shift
in the way we deal with imprecise problems and their solutions. Fuzzy sets
are highly successful in many areas and give improved results than what the
classical approach does. However, fuzzy set depends on membership function to
represent impreciseness and are subjective to the user-level intervention. This
often degrades the overall performance. Hence, to solve these problems, many
researchers put forward solutions, like Atanassov [5] put forward the concept
of intuitionistic fuzzy sets; Pawlak [29] introduced rough sets; Torra [35] put
forward the hesitant fuzzy sets; which are applicable in real-world situations as
in Alcantud et al. [1], etc. Nevertheless, these theories are limited due to the lack
of parameterization concept associated with them for describing the problem.

In 1999, Molodtsov [26] introduced soft sets and established the fundamental
results of this theory. A soft set is a collection of approximate descriptions of an
object and is used as a general mathematical tool for dealing with objects which
have been defined using a very loose and hence very general set of characteristics.
Molodstov further showed that soft set theory is free from parameterization
inadequacy syndrome. Ali et al. [4] and Feng and Li [18] also contributed to settle
the fundamental laws that govern this notion. Extensions and hybrid models that
combine the soft set model with others have been defined and used for decision
making e.g., in Ali [3], Das [11], Feng [16], Feng et al. [17,19], Ma et al. [22],
Peng and Yang [30] Zhan et al. [39] and [15].

Recently the use of soft set based intelligent systems have gained interest in
computational intelligence by giving better solutions for compound problems.
Soft set theory and fuzzy set theory have been successfully used in some medical
systems, for example [9,27,28,36]. The intelligent systems in medicine based on
soft sets, generally depend on finding the risk percentage as a single value and
then use it to grade the severity of the condition. This unilateral approach will
not give a comprehensive picture of the real risk percentage of the patient.
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We take up receiver operator characteristic (ROC) curve as a preferred per-
formance evaluation tool to validate classifier performance over a range of deci-
sion thresholds [10,13]. The area under the curve (AUC), has been traditionally
used in medical diagnosis since the 1970’s [20]. The AUC maps the entire ROC
curve into single number, that reflects the overall performance of the classifier
over all thresholds.

Prostate cancer is the common cause of cancer death among men and it
depends on various elements such as hereditary factors, age, ethnic background,
the level of prostate specific antigen (PSA) in the blood etc. The level of PSA in
the blood is a very important indicator for an initial diagnosis in patients [7]. But,
as multiple factors cause the level of PSA to fluctuate, there exists uncertainty in
the diagnosis. A biopsy of the prostate can give a distinctive diagnosis of cancer.
But all patients will not be cancer positive after the biopsy. Also, it is always
better to avoid an unnecessary biopsy as doctors and researchers have noted that
biopsy of a tumour can cause spread of cancer cells leading to multiple sites of
tumour at the biopsy site [14]. To help the doctor detect the patients with low
risk of prostate cancer, a decisive intelligent system with more significant risk
percentage prediction is needed.

2.1 Existing Methods and the Scope for a New Proposal

Soft computing is a host of methodologies which work in unison for providing
flexible information processing capability for handling real life uncertain situa-
tions. It exploits the tolerance for imprecision, uncertainty, approximate reason-
ing and partial truth to build low-cost solutions. Apart from fuzzy logic, neural
networks, and genetic algorithm methodologies, emergence of soft set based med-
ical prediction systems are also on the rise. We take a few for evaluation.

Sanchez [31] initiated the use of fuzzy techniques to possibility distributions
in natural languages and medical diagnosis. This notion was later extended with
intuitionistic fuzzy sets by De et al. [12]. Slowiński [34] experimented with 122
patients treated for duodenal ulcer by applying rough sets to create a decision
algorithm which could be used in the treatment of new ulcer patients. A pio-
neering prediction system for calculating the patient’s prostate cancer risk given
in [36]. Yuksel et al. [37] combined covering soft set and rough sets to produce soft
covering based rough set and applied it for prostate cancer diagnosis. In another
method given by Feng in [16], soft covering based rough sets are applied to a
medical problem of calculating the risk of prostate cancer. Some other papers
which deal with prostate cancer risk prediction are [6,21]. A recent contribution
for glaucoma detection is given in [2]. In all the above mentioned papers, the risk
percentage is calculated by a single metric based on their respective methods.

The main purpose of this paper is to provide a specific approach to improve
the soft set based prediction system. Our adaptive prediction system model is
tested with the data of 120 patients with prostate complaint from Selcuk Univer-
sity Meram Medicine Faculty [32]. We are interested in improving the accuracy
of the predicted risk percentage by including the prudent use of metrics like Pre-
cision, Recall and F-measure. The Precision results depend only on the retrieved
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result subsets of the actual data. It does not consider the total positives in the
whole of the data. If we consider Recall for analysing the risk percentage, then
the total patients are considered for risk calculation. But, the issue with Recall
is that false positives cannot be discerned. To compensate for the drawbacks of
Precision and Recall, we depend on F-measure. The traditional F-measure is the
harmonic mean of Precision and Recall.

We propose to include the tradeoff between these metrics into the risk pre-
diction process. In [36], the risk is calculated as follows. For example, if there are
13 patients satisfying say Rule 1, of which 4 are found to be prostate cancer pos-
itive, then the risk percentage for Rule 1 is calculated as (4 ÷ 13) × 100 = 30.76.
The patients are compared with compatible rules and the highest risk percent-
age is accorded as the risk percentage of the patients. Here, the drawback of
using Precision can be explained by this assumption. Assume that out of the
compatible rules generated for a patient; say Rule 1 has only 1 patient and this
patient is also tested positive in biopsy, then the patient will be awarded with
100% risk percentage. This may not be always true.

As there is no qualitative and quantitative analysis on the result output,
these single handed general methods of deriving the risk percentage from soft
set based and other prediction techniques are not a legitimate way of calculation.
Therefore, we propose to include Precision, Recall and F-measure in finding the
significant associated risk. Also, rather than taking the highest observed risk
percentage of a specific rule as the risk of the patient, an average of the most
relevant risks are calculated. This averaging of the selected rules make our model
more effective.

3 Adaptive Soft Set Based Risk Prediction System

In this section, we present the basic definitions of soft set theory [26] and fuzzy
set theory [23] followed by the proposed system. These definitions and further
details on soft sets and fuzzy sets can be found in [8,24,38]. As usual, we follow
the common terminology for describing soft set and its extensions. Here U refers
to an initial universe and E is the set of parameters.

3.1 Definitions: Soft Set and Fuzzy Set

Definition 1 (Molodtsov [26]). A pair (F,A) is a soft set over U when A ⊆ E
and F : A −→ P(U), where P(U) denotes the set of all subsets of U .

Example 1. A soft set over U is regarded as a parameterized family of subsets of
the universe U, the set A being the parameters. For each parameter e ∈ A,F (e)
is the subset of U approximated by e or the set of e-approximate elements of the
soft set.

Let U be the set of five patients given by U = {p1, p2, p3, p4, p5} and E be
the set of symptoms given by E = {s1, s2, s3, s4, s5}.
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Let A = {s1, s2, s3} be the set of symptoms, the doctor intends to use
for diagnosis. Now consider that (F,A) is a mapping given by, (F,A)(s1) =
{p1, p2}, (F,A)(s2) = {p1, p3} and (F,A)(s3) = {p2, p4}.

Then the soft set (F,E) = {(s1, {p1, p2}), (s2, {p1, p3}), (s3, {p2, p4}),
(s4, {∅}), (s5, {∅})}. A soft set can also be represented in the form of a two
dimensional table. Table 1 is the tabular representation of the soft set (F,E)
shown in Example 1.

Table 1. Tabular representation of the fuzzy set (F,A) associated with Example 1.

U/E s1 s2 s3 s4 s5

p1 1 1 0 0 0

p2 1 0 1 0 0

p3 0 1 0 0 0

p4 0 0 1 0 0

p5 0 0 0 0 0

Definition 2 (Maji et al. [24]). Let (F,A) and (G,B) be two soft sets. Then
the AND operation of (F,A) AND (G,B), denoted by (F,A)∧ (G,B), is defined
as (H,A × B) where H(α, β) = F (α) ∩ G(β) for each (α, β) ∈ A × B.

Definition 3 (Zadeh [38]). A fuzzy set X over U is a set defined by a function
μX representing a mapping μX : U → [0, 1].
where, μX is called the membership function of X, and the value μX(U) is the
grade of membership of u ∈ U . The value of μX(U) represents the degree with
which u belongs to the fuzzy set X. Thus, a fuzzy set X over U can be represented
as follows:

X = {(μX(u)/u) : u ∈ U, μX(x) ∈ [0, 1]}.

For a fuzzy set X in U and any real number α ∈ [0, 1], then the α-cut or cut
worthy set of A, denoted by X[α] is the crisp set defined as {x ∈ U : μX(x) � α}.

3.2 Proposed Intelligent System for Prostate Cancer Diagnosis

The available data set is attributed with a set of three variables, namely prostate
specific antigen (PSA), prostate volume (PV) and age of the patient. The mem-
bership function of these variables are shown in Eqs. (1) and (2). All 120 selected
patients underwent biopsy and their diagnostic results are known. In the follow-
ing part, we proceed to explain the step by step procedures, which make up the
proposed algorithm.

In order to facilitate the representation of soft sets, we initially convert the
input data into fuzzy sets. Afterwards, going by the principle of including fuzzy
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sets as soft sets (cf., Molodtsov [26]), the fuzzy sets are redeployed correspond-
ingly as relevant soft sets. Unlike the conventional soft set prediction methods,
we avoided parameter reduction in view of the nature and type of data set. The
decisive phase is generation of rules, which are analysed later for determining the
prostate cancer risk. Each rule is awarded a risk percentage which determines
the verdict of the intelligent system. The algorithm for prostate cancer detection
with stepwise descriptions is given below.

AdaptiVe Algorithm for Softset based predicTion (AVAST).

Step 1. Fuzzyfication of data set with the selected variables namely PSA, PV
and age.

Step 2. Transforming the fuzzy sets corresponding to input data into soft sets.
Step 3. Obtaining the rules relevant for the system by the application of AND

operator on to the soft sets generated in the previous step.
Step 4. Analysis of rules based on Precision, Recall and F-measure.
Step 5. Plot the ROC curve with the calculated risk percentage for the above

three sets.
Step 6. Select the metric i.e. (either Precision, Recall or F-measure), which

offers the maximum AUC and proceed for actual risk prediction over the
testing set.

4 Implementation of Algorithm - AVAST to Calculate
Prostate Cancer Risk

The various stages of algorithm - AVAST is explained in detail below.

Explanation of Step 1. We fuzzificate the patient data with appropriate mem-
bership functions on the basis of inputs from medical literature [36]. The fol-
lowing linguistic variables are modelled for the attributes PSA, PV and age.
The PSA variables VL, L, M, H and VH represent very low, low, middle, high
and very high respectively. The PV variables S, M, B and VB represent small,
medium, big and very big respectively. The age factor attributed by VY, Y, M
and O represents very young, young, middle and old respectively. Trapezoidal or
triangular membership functions can be selected for each variable on the basis of
their interval size. The corresponding membership values are determined from
Eqs. 1 and 2.

PSA(x) =

{
μx if 0 < x < 100
1 if x ≥ 100

PV (y) =

{
μy if 30 < y < 120
1 if y ≥ 120

(1)

Age(z) =

⎧⎪⎨
⎪⎩

0 if z ≤ 20
μz if 20 < z < 65
1 if z ≥ 65

(2)
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Table 2. A sample input data of patients

U Age PSA PV

U7 54 5.62 28

U9 54 17.3 45

U20 59 8.36 55

U34 61 18.3 62

U40 62 51.74 29

U70 68 140 117

U99 73 47.4 87

A sample of the input data is shown in Table 2 and the parameter member-
ships are shown in Fig. 1.

Fig. 1. The membership functions of Age, PSA and PV

Explanation of Step 2. We directly depend on Molodtsov’s method for the
transformation of fuzzy sets into soft sets. The Molodtsov’s method maps soft
sets on to the universe [0, 1], thus making the selection of a subset of this
range inevitable to conduct a practical setting of this experiment. Depending
on the distribution of patient data into different levels of membership, we have
different elements in different subsets for each variables. Table 3 shows the fuzzy
membership values of the input factors. In this approach, for a soft set (F,A)
over U,A is denoted by a set of parameters represented by {e1, e2, e3, e4, ...en},
then F (ej) is a subset of U , where, F (ej) = {Ui | μ(Ui) � ej ;∀ j = 1 to n and
i = 1 to m}.

Hence, the newly formed soft sets will have subsets of elements from the
universal set U . As an example from the data set, the soft set,
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Table 3. The fuzzy membership values of factors shown in Table 2

U Age PSA PV

U7 0.73 M, 0.26 O 0.77 VL, 0.22 L 1 S

U9 0.73 M, 0.26 O 0.30 VL, 0.69 L 0.5 S,0.5 M

U20 0.4 M, 0.6 O 0.66 VL, 0.33 L 0.16 S, 0.83 M

U34 0.26 M, 0.73 O 0.26 VL, 0.73 L 0.93 M, 0.06 B

U40 0.2 M, 0.8 O 0.93 M, 0.06 H 1 S

U70 1 O 1 VH 0.1 B, 0.9 VB

U99 1 O 0.10 L, 0.89 M 0.1 M, 0.9 B

F : AAge(M) −→ P(U) is associated with a parameter set,
AAge(M) = {0.06, 0.28, 0.5, 0.71, 0.93}, and the corresponding soft sets

obtained are as:

F (.06) = {U42, U43, U44, U45, U46, U41, U35, U37, U40, U30, U31, U32, U33,

U34, U25, U27, U28, U29, U19, U20, U21, U22, U23, U24, U15,

U16, U17, U18, U1, U13, U10, U8, U9, U4, U5, U2, U3}

F (.28) = {U25, U27, U28, U29, U19, U20, U21, U22, U23, U24, U15, U16, U17,

U18, U1, U13, U10, U8, U9, U4, U5, U2, U3}

F (.5) = {U1, U13, U10, U8, U9, U4, U5, U2, U3},

F (.71) = {U8, U9, U4, U5, U2, U3}, and
F (.93) = {U2, U3}

Explanation of Step 3. The combination of soft sets obtained in Step 2 by
AND’ing operation gives all possible rules. By this means, a total of 1760 rules
are generated, which are checked for compatibility with the patients. An obtained
sample rule is given below.

For example: AGE(M)(.5) ∧ PSA(V L)(.05) ∧ PV (M)(.5) = {u10, u14}.

Explanation of Step 4. The output obtained from Step 3 is processed further
to associate each rule with a risk of prostate cancer as follows.

The rules obtained above will have patients from the training data and the
Precision, Recall and F-measure based risk percentage is calculated for each
rule. The calculated risk percentage of patients are then separately considered
and averaged individually. Thus, corresponding to each test data, we now have
separate risk percentage for Precision, Recall and F-measure.
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For a sample training data, the rules obtained are as:

R1 = {U10, U14}
R2 = {U13, U17, U81}
R3 = {U21, U22, U54, U67, U98, U107}
R4 = {U3, U8, U21, U22, U54, U67, U98, U99, U107} and
R5 = {U40, U92, U116}

The biopsy results for the patients are known from the labelled data set and
the calculated values of Precision, Recall and F-measure (F1) for the above rules
are calculated as per Eq. 3 and are shown in the Table 4. Here TP indicates true
positive, FN is false negative and FP is false positive.

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F1 =
2 · precision · recall

precision + recall
(3)

Some of the validation results of rules’ risk percentage based on Precision,
Recall and F-measure are shown in Table 5, where test samples with “∗” indicate
the outliers.

Table 4. The risk percentage of rules on the basis of Precision, Recall and F-Measure

Rules Precision Recall F-Measure

R1 0 0 0

R2 0 0 0

R3 0.5 0.06 0.11

R4 0.56 0.1 0.18

R5 1 0.06 0.12

Table 5. The risk percentage of a set of patients by Precision, Recall and F-measure

Test data Risk percentage while considering Ground truth

Precision Recall F-Measure

U1 38.29 10.69 7.92 0

U10 38.36 13.35 8.81 0

U31 43.27 17.68 11.37 0

U43 47.91 28.5 16.83 0

U60 54.08 30.17 18.66 1

U77∗ 41.52 5.68 4.4 1

U83 55.35 22.35 14.49 1

U86 54.35 28.57 17.84 1

U95∗ 54.51 25.08 16.31 0

U113∗ 55.09 21.55 14.47 0
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The next step will determine, whether we will consider Precision, Recall or
F-measure, for calculating the actual risk percentage for each patient.

Explanation of Step 5. Plot the ROC curve for the risk percentage based
on Precision, Recall and F-measure and select the risk percentage for the test
patients corresponding to the maximum AUC. The AUC maps the entire ROC
curve into single value that portrays the overall performance of the classifier
over all thresholds. The false positive rate (FPR) and true positive rate (TPR)
evaluate performance for a specific threshold. The FPR and TPR can also be
combined to form an overall mis-classification rate, which is known as true error.
By getting the ROC, AUC, FPR and TPR of this system, we obtain the com-
plete knowledge about the performance of the system. Table 6 shows the AUC
generated for some test groups.

Table 6. The AUC of some samples used in generating the ROC curve

Test data sets Area Under the Curve (AUC)

Precision Recall F-Measure

Dataset 1 40.15 56.43 56.43

Dataset 2 60.07 58.68 59.72

Dataset 3 50.69 68.75 53.13

Dataset 4 45.49 49.31 48.96

Dataset 5 63.54 46.53 44.44

By employing a five-fold cross validation, the patient data is randomly
divided into training and testing sets. By this approach [13], the original data is
randomly partitioned into five equal sized sub-samples. Of the five sub-samples,
a single sub-sample is retained as the validation data for testing the model, and
the remaining four sub-samples are used as training data. The cross-validation
process is then repeated five times (the folds). The five results from the folds
can then be averaged to produce a single estimation.

Explanation of Step 6. Finally, the choice of the appropriate metric is done
from Precision, Recall and F-measure on the basis of the maximum AUC gen-
erated over the validation data.

5 Results and Discussion

After five fold cross validation, the ROC plots corresponding to Precision, Recall
and F-Measure for validation data are shown in Fig. 2. The selected metric can
be either Precision, Recall or F-Measure based on the AUC obtained for each
case. In this investigated case, as seen in Fig. 2, Precision based ROC curve has
the highest AUC than Recall and F-Measure. Hence Precision will be selected
for calculating the rule risk percentage.
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Fig. 2. The ROC curve for Precision, Recall and F-measure

The proposed algorithm model was implemented by means of scientific com-
putation platform R2013a Matlab. In this investigation, we have divided the
total data into testing data, training data and validation data. One set is for
training, one for testing and the other two for validation. By the application
of AVAST algorithm on the validation data, we could select the best from the
Precision based, Recall based and F-Measure based methods on the basis of
maximum AUC.

As sensitivity is significant for this specific case of prostate cancer prediction,
we have to select a threshold value which gives high sensitivity over the valida-
tion process. Concurrently the false positive rate (FPR) should be minimal. So
a particular risk percentage value is selected as the threshold when the corre-
sponding TPR is at least 80% and with minimum FPR. This threshold is then
applied for the final test data. Figure 3 shows the ROC curve for the test system.
It should be noted that we can change the threshold selection parameters for
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the system on the basis of data set and other requirements. The sensitivity and
specificity of the test system stood at 75.00% and 45.45 % respectively.

6 Conclusions

In this work, it is shown that the soft set approach for finding the risk percent-
age of prostate cancer patients can be significantly improved with the inclusion
of Precision, Recall and F-measure based rule analysis. The proposed method
exhibits an adaptive nature as the best performing metric is chosen on the basis
of the validation data set performance. We depend on these statistical measures
to optimize the risk percentage calculation. This general notion can be applied
to all methods which follow a unidirectional approach in defining the output risk
percentage. The results confirm that the inclusion of this adaptive approach to
existing methodologies show better results as shown in Sect. 4.

As future enhancements, we propose to extend our approach with other exist-
ing algorithms with more relevant parameters for reducing ambiguity. Also a
weighted approach for rules and parameters can be employed to see if it leads to
further improvements. The medical applications using the concepts of soft sets
opens up lot of room for exploration and innovation. A quick and automated
method of prostate cancer diagnosis based on soft sets is addressed in this con-
tribution. The proposed model helps the doctor to discern the patients for the
biopsy procedure to detect prostate cancer.
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