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Abstract This paper is a somewhat expanded companion to a talk (Available at
http://www.carma.newcastle.edu.au/jon/OEIStalk.pdf) with the same title presented
in December 2015 at a 2015workshop celebrating TonyGuttmann’s seventieth birth-
day. My main intention is to further advertise the wonderful resource that the Online
Encyclopedia of Integer Sequences (OEIS) has become.
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1 Introduction

What began in 1964 with a small set of personal file cards has grown over half
a century into the current wonderful online resource: the Online Encyclopedia of
Integer Sequences (OEIS).

1.1 Introduction to Sloane’s online and off-line encyclopedia

I shall describe five encounters over nearly 30 years with Neil Sloane’s (Online)
Encyclopedia of Integer Sequences. Its brief chronology is as follows:

• In 1973 a published book (Sloane) with 2, 372 entries appeared. This was based
on file cards kept since 1964.
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Fig. 1 The OIES in action.

• In 1995 a revised and expanded book (by Sloane & Simon Plouffe) with 5, 488
entries appeared.

—See the book review in SIAM Review by Rob Corless and me of the 1995 book
at https://carma.newcastle.edu.au/jon/sloane/sloane.htm.

• Soon after the World Wide Web went public, between 1994–1996, the OEIS went
online with approximately 16, 000 entries.

• As of Nov 15 21:28 EST 2015 OEIS had 263,957 entries

—all sequences used in this paper/talk were accessed between Nov 15–22, 2015.

1.2 The OEIS in action

As illustrated in Figure 1 taken fromhttps://oeis.org/, theOEIS is easy to use, entering
an integer sequence which it recognizes, one is rewarded with meanings, generating
functions, computer code, links and references, and other delights.

1.3 OEIS has some little known features

The OEIS also now usefully recognizes numbers: entering 1.4331274267223117
583... yields the following answer.

https://carma.newcastle.edu.au/jon/sloane/sloane.htm
https://oeis.org/
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Answer 1.1 (A060997). Decimal representation of continued fraction
1, 2, 3, 4, 5, 6, 7, …
(as a ratio of Bessel functions I0(2)/I1(2)).

The OEIS currently has excellent search facilities, by topic or author, and so
on. For instance, entering “Bell numbers” returned over 850 results while entering
“Alladi” yielded 23 sequences. The third sequence listed on the page is:

Answer 1.2 (A000700). Expansion of product (1 + x2k+1), k = 0..∞; number of
partitions of n into distinct odd parts; number of self-conjugate partitions; number
of symmetric Ferrers graphs with n nodes.

The sequence begins

1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 8, 9, 11, 12, 12, 14, 16, 17, 18, 20

In the page we are told Krishna Alladi showed this is also the number of partitions
of n into parts �= 2 and differing by � 6 with strict inequality if a part is even.

Alladi’s paper “A variation on a theme of Sylvester—a smoother road toGöllnitz’s
(Big) theorem”, Discrete Math., 196 (1999), 1–11, through a link to http://www.
sciencedirect.com/science/article/pii/S0012365X98001939 is also provided.

The OEIS also has an email-based “super-seeker” facility.

1.4 Stefan Banach (1892–1945) ... the OEIS notices
analogies

The MacTutor website, see www-history.mcs.st-andrews.ac.uk/Quotations/
Banach.html, quotes Banach (Fig. 2) as saying:

A mathematician is a person who can find analogies between theorems; a better mathemati-
cian is one who can see analogies between proofs and the best mathematician can notice
analogies between theories.

In a profound way the OEIS helps us—greater or lesser mathematicians—find
analogies between theories.

2 1988: James Gregory (1638–1675) (Fig. 3) & Leonard
Euler (1707–1783)

Sequence 2.1 (A000364 (1/2)).

2,−2, 10,−122, 2770 . . .

http://www.sciencedirect.com/science/article/pii/S0012365X98001939
http://www.sciencedirect.com/science/article/pii/S0012365X98001939
www-history.mcs.st-andrews.ac.uk/Quotations/Banach.html
www-history.mcs.st-andrews.ac.uk/Quotations/Banach.html
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Fig. 2 A fine biography of Banach. Roman Kaluza, Through a Reporter’s Eyes: The Life of Stefan
Banach, Birkhäuser 1995.

Fig. 3 James Gregory (1638–1675).

Answer 2.2 (A011248). Twice A0003641 Euler (or secant or “Zig”) numbers:
e.g.f. (even powers only) sech(x) = 1/ cosh(x).

1Two sequences are found which we flag via (1/2). It is interesting to see how many terms are
needed to uniquely define well-known sequences. We indicate the same information in the next two
examples.
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Story 2.3. In 1988 Roy North observed that Gregory’s series for π ,

π = 4
∞∑

k=1

(−1)k+1

2k − 1
= 4

(
1 − 1

3
+ 1

5
− 1

7
+ · · ·

)
, (1)

when truncated to 5,000,000 terms, gives a value differing strangely from the true
value of π . Here is the truncated Gregory value and the true value of π :

3.14159245358979323846464338327950278419716939938730582097494182230781640 . . .

3.14159265358979323846264338327950288419716939937510582097494459230781640 . . .

Errors: 2 − 2 10 − 122 2770

The series value differs, as one might expect from a series truncated to 5, 000, 000
terms, in the seventh decimal place—a “4” where there should be a “6”. But the next
13 digits are correct!

Then, following another erroneous digit, the sequence is once again correct for
an additional 12 digits. In fact, of the first 46 digits, only four differ from the corre-
sponding decimal digits of π .

Further, the “error” digits appear to occur in positions that have a period of 14,
as shown above.

We note that each integer is even; dividing by two, we obtain (1,−1, 5,−122,
1385). Sloane has told us we have the Euler numbers defined in terms of Taylor’s
series for sec x :

sec x =
∞∑

k=0

(−1)k E2k x2k

(2k)! . (2)

Indeed, we see the asymptotic expansion base 10 on the screen:

π

2
− 2

N/2∑

k=1

(−1)k+1

2k − 1
≈

∞∑

m=0

E2m

N 2m+1
(3)

This works in hex (!!), and log 2 instead of π yields the tangent numbers.
In 1988 we only had recourse to the original printed book and had to decide to

divide the sequence by two before finding it. Now this sort of preprocessing and other
such transformations are typically done for one by the OEIS. But it does not hurt
to look for variants of one’s sequence—such as considering the odd or square-free
parts—if the original is not found.
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Nico Temme’s 1995 Wiley book Special Functions: An Introduction to the Clas-
sical Functions of Mathematical Physics starts with this motivating example.

References 2.4. The key references are

1. J.M. Borwein, P.B. Borwein, and K. Dilcher, “Euler numbers, asymptotic expan-
sions and pi,” MAA Monthly, 96 (1989), 681–687.

2. See also Mathematics by Experiment [1, §2.10] and “I prefer Pi,” MAA Monthly,
March 2015.

3 1999: Siméon Poisson (1781–1840) & E.T. Bell (1883–1960)

Sequence 3.1 (A000110 (1/10)).

1, 1, 2, 5, 15, 52, 203, 877, 4140 . . .

Answer 3.2. Bell or exponential numbers: number of ways to partition a set of n
labeled elements.

Story 3.3 (MAA Unsolved Problem). For t > 0, let

mn(t) =
∞∑

k=0

kn exp(−t)
t k

k!

be the n-th moment of a Poisson distribution (Fig. 4) with parameter t . Let cn(t) =
mn(t)/n! . Show

(a) {mn(t)}∞n=0 is log-convex for all t > 0.

(b) {cn(t)}∞n=0 is not log-concave for t < 1.

(c*) {cn(t)}∞n=0 is log-concave for t � 1.

Proof. (b) As

mn+1(t) = t
∞∑

k=0

(k + 1)n exp(−t)
t k

k! ,

on applying the binomial theorem to (k + 1)n , we see that

mn+1(t) = t
n∑

k=0

(
n

k

)
mk(t), m0(t) = 1.
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Fig. 4 Siméon Poisson (1781–1840).

In particular for t = 1, we obtain the sequence

1, 1, 2, 5, 15, 52, 203, 877, 4140, . . .

These we have learned are the Bell numbers.
TheOEISA001861 also tells us that for t = 2,wehavegeneralized Bell numbers,

and gives us the exponential generating functions. [The Bell numbers—as with many
other discoveries—were known earlier to Ramanujan.]

Now an explicit computation shows that

t
1 + t

2
= c0(t) c2(t) � c1(t)

2 = t2

exactly if t � 1. Also, preparatory to the next part, a simple calculation shows that

∑

n�0

cn(t)u
n = exp

(
t (eu − 1)

)
. (4)

(c∗) (The * indicates this was unsolved.) We appeal to a then recent theorem
due to Canfield. A search in 2001 on MathSciNet for “Bell numbers” since 1995
turned up 18 items. Canfield showed up as paper #10. Later, Google found the paper
immediately!

Theorem 3.4 (Canfield). If a sequence 1, b1, b2, · · · is nonnegative and log-
concave, then so is 1, c1, c2, · · · determined by the generating function equation

∑

n�0

cnun = exp

⎛

⎝
∑

j�1

b j
u j

j

⎞

⎠ .
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Our desired application has b j ≡ 1 for j � 1. Can the theorem be adapted to deal
with eventually log-concave sequences?

References 3.5. The key references are

1. Experimentation in Mathematics [2, §1.11].
2. E. A. Bender and R. E. Canfield, “Log-concavity and related properties of the

cycle index polynomials,” J. Combin. Theory Ser. A 74 (1996), 57–70.
3. Solution to “Unsolved Problem 10738.” posed by Radu Theodorescu in the 1999

American Mathematical Monthly.

4 2000: Erwin Madelung (1881–1972) & Richard Crandall
(1947–2012)

Sequence 4.1 (A055745 (1/3)).

1, 2, 6, 10, 22, 30, 42, 58, 70, 78, 102, 130190, 210, 330, 462 . . .

Answer 4.2. Square-free numbers not of form ab + bc + ca for 1 � a � b � c
(probably the list is complete).

A034168 Disjoint discriminants (one form per genus) of type 2 (doubled).

Story 4.3. A lovely 1986 formula for θ3
4 (q) due to Andrews is

θ3
4 (q) = 1 + 4

∞∑

n=1

(−1)nqn

1 + qn
− 2

∞∑

n=1,| j |<n

(−1) j qn2− j2 1 − qn

1 + qn
. (5)

From (5) Crandall obtained

∞∑

n,m,p>0

(−1)n+m+p

(n2 + m2 + p2)s
= −4

∞∑

n,m,p>0

(−1)n+m+p

(nm + mp + pn)s
− 6α2(s). (6)

Here α(s) = (
1 − 21−s

)
ζ(s) is the alternating zeta function.

Crandall used Andrew’s formula (6) to find representations for Madelung’s con-
stant, M3(1), where

M3(2s) :=
∞∑

n,m,p>0

(−1)n+m+p

(n2 + m2 + p2)s
.

The nicest integral consequence of (6) is
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M3(1) = − 1

π

∫ 1

0

∫ 2π

0

1 + 3 r sin(2θ)−1

(
1 + r sin(2θ)−1

) (
1 + r cos2 θ

) (
1 + r sin

2 θ
) dθ dr.

A beautiful evaluation due to Tyagi also follows:

M3(1) = −1

8
− log 2

4π
− 4π

3
+ 1

2
√
2

+ �( 18 )�( 38 )

π3/2
√
2

(7)

− 2
∑′

m,n,p

(−1)m+n+p(m2 + n2 + p2)−1/2

exp
[
8π

√
m2 + n2 + p2

] − 1
, (8)

Here the “closed form” part (7)—absent the rapidly convergent series (8)—is already
correct to ten places of the total: −1.747564594633182190636212 . . .. No fully
closed form for M3(1) is known.

Although not needed for his work, the ever curious Crandall then asked me what
natural numbers were not of the form

ab + bc + ca.

Itwas bedtime inVancouver so I askedmy ex-postdoctoral fellowRolandGirgensohn
in Munich. When I woke up, Roland had used matlab to send all 18 solutions up
to 50, 000. Also 4, 18 are the only non-square-free solutions.

I recognized the square-free numbers as exactly the singular values of type II
(Dickson), discussed in [3, §9.2]. One more 19th solution s > 1011 might exist but
only without GRH.

4.0.1 Ignorance can be bliss

Luckily, we only looked at the OEIS after the paper was written. In this unusual
case, the entry was based only on a comment supplied by two correspondents. Had
we seen it originally, we should have told Crandall and left the subject alone. As it
is, two other independent proofs appeared around the time of our paper.

4.1 The Newcastle connection

…Born decided to investigate the simple ionic crystal-rock salt (sodium chloride)—using
a ring model. He asked Lande to collaborate with him in calculating the forces between
the lattice points that would determine the structure and stability of the crystal. Try as they
might, the mathematical expression that Born and Lande derived contained a summation
of terms that would not converge. Sitting across from Born and watching his frustration,
Madelung offered a solution. His interest in the problem stemmed from his own research
in Goettingen on lattice energies that, 6 years earlier, had been a catalyst for Born and von
Karman’s article on specific heat.
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The new mathematical method he provided for convergence allowed Born and Lande to
calculate the electrostatic energy between neighboring atoms (a value now known as the
Madelung constant). Their result for lattice constants of ionic solids made up of light metal
halides (such as sodium and potassium chloride), and the compressibility of these crystals
agreed with experimental results.

Actually, soon after, Born and Lande discovered that they had forgotten to divide
by two in the compressibility analysis. This ultimately led to the abandonment of the
Bohr–Sommerfeld planar model of the atom.

Max Born was singer-and-actress Olivia Newton John’s maternal grandfather.
Newton John’s father Brinley (1914–1992) was the first Provost of the University
of Newcastle. He was a fluent German speaker who interrogated Hess after his mad
flight to Scotland in 1941. So Olivia has a fine academic background.

References 4.4. The key references are

1. J. M. Borwein and K-K. S. Choi, “On the representations of xy + yz + zx ,”
Experimental Mathematics, 9 (2000), 153–158.

2. J. M. Borwein, L. Glasser, R. McPhedran, J. Wan, and J. Zucker, Lattice
Sums: Then and Now. Encyclopedia of Mathematics and its Applications, 150,
Cambridge University Press, 2013.

5 2015: Cyril Domb (1920–2012) & Karl Pearson (1857–1936)

Sequence 5.1 (A002895 & A253095).

1, 4, 28, 256, 2716, 31504, 387136, 4951552 . . .

and

1, 4, 22, 148, 1144, 9784, 90346, 885868, 9115276 . . .

Answer 5.2. Respectively:

(a) Domb numbers: number of 2n-step polygons on diamond lattice.
(b) Moments of 4-step random walk in two and four dimensions.

Story 5.3. We developed the following expression for the even moments. It is only
entirely integer for d = 2 and d = 4.

In two dimensions, it counts abelian squares. What does it count in four space?

Theorem 5.4 (Multinomial sum for themoments). The even moments of an n-step
random walk in dimension d = 2ν + 2 are given by
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Wn(ν; 2k) = (k + ν)!ν!n−1

(k + nν)!
∑

k1+···+kn=k

(
k

k1, . . . , kn

)(
k + nν

k1 + ν, . . . , kn + ν

)
.

Story 5.5 (Generating function for three steps in four dimensions). For d = 4,
so ν = 1, the moments are sequence A103370. The OEIS also records a hypergeo-
metric form of the generating function, as the linear combination of a hypergeometric
function and its derivative, added byMark vanHoeij. On using linear transformations
of hypergeometric functions, we have more simply that

∞∑

k=0

W3(1; 2k)xk = 1

2x2
− 1

x
− (1 − x)2

2x2(1 + 3x)
2F1

( 1
3 ,

2
3

2

∣∣∣∣
27x(1 − x)2

(1 + 3x)3

)
,

which we are able to generalize (the planar o.g.f has the same “form”)—note the
Laurent polynomial.

Theorem 5.6 (Generating function for even moments with three steps). For
integers ν � 0 and |x | < 1/9, we have

∞∑

k=0

W3(ν; 2k)xk = (−1)ν
(2ν

ν

)
(1 − 1/x)2ν

1 + 3x
2F1

( 1
3 ,

2
3

1 + ν

∣∣∣∣
27x(1 − x)2

(1 + 3x)3

)

− qν

(
1

x

)
, (9)

where qν(x) is a polynomial (that is, qν(1/x) is the principal part of the hypergeo-
metric term on the right-hand side). In particular,

∞∑

k=0

W3(0; 2k)xk = 1

1 + 3x
2F1

( 1
3 ,

2
3

1

∣∣∣∣
27x(1 − x)2

(1 + 3x)3

)
.

References 5.7 The key references are

1. J.M.Borwein,A. Straub andC.Vignat, “Densities of short uniform randomwalks
in higher dimensions,” JMAA, to appear 2016. See http://www.carma.newcastle.
edu.au/jon/dwalks.pdf.

2. J. Borwein, A. Straub, J. Wan and W. Zudilin, with an Appendix by Don Zagier,
“Densities of short uniform random walks,” Canadian. J. Math. 64 (5), (2012),
961–990.

We finish with another recent example that again illustrates Richard Crandall’s
nimble mind.

http://www.carma.newcastle.edu.au/jon/dwalks.pdf
http://www.carma.newcastle.edu.au/jon/dwalks.pdf
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6 2015: Poisson (1781–1840) & Crandall (1947–2012)

Sequence 6.1 (A218147).
2,2,4,4,12,8,18,8,30,16,36,24,32,32,64,36,90,32,96,60,132,64,100,72...

Notice that this is the first non-monotonic positive sequence we have studied.

Answer 6.2. We are told it is the:

(a) Conjectured degree of polynomial satisfied by

m(n) := exp(8πφ2(1/n, 1/n)

(as defined in (10) below).
(b) A079458: 4m(n) is the number of Gaussian integers in a reduced system mod-

ulo n.

Story 6.3. The lattice sums in question are defined by

φ2(x, y) := 1

π2

∑

m,n odd

cos(mπx) cos(nπy)

m2 + n2
. (10)

Crandall conjectured while developing a deblurring algorithm—and I then proved—
that when x, y are rational

φ2(x, y) = 1

π
log A, (11)

where A is algebraic. Again, this number-theoretic discovery plays no role in the
performance of the algorithm. Both computation and proof exploited the Jacobian
theta-function representation [3, §2.7]:

φ2(x, y) = 1

2π
log

∣∣∣∣
θ2(z, q)θ4(z, q)

θ1(z, q)θ3(z, q)

∣∣∣∣ , (12)

where q = e−π and z = π
2 (y + i x).

In Table 1 we display the recovered polynomial for x = y = 35. Note how much
structure the picture reveals and how far from “random” it is.

Story 6.4. Remarkably, in 2012, Jason Kimberley (University of Newcastle)
observed that the degree m(s) of the minimal polynomial for x = y = 1/s appears
to be as follows. Set m(2) = 1/2. For primes p congruent to 1 mod 4, set m(p) =
int2(p/2), where int denotes greatest integer, and for p congruent to 3 mod 4, set
m(p) = int (p/2)(int (p/2) + 1). Then with prime factorization s = pe1

1 pe2
2 · · · per

r ,
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Table 1 Visualizing big data: 192-degree minimal polynomial with up to 85-digit coefficients,
found by the multipair PSLQ algorithm for the case x = y = 1/35.
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m(s) = 4r−1
r∏

i=1

p2(ei −1)
i m(pi ). (13)

• 2015. By employing large-scale computations with precision levels as high as
64,000 digits, (13) was shown to hold numerically for all tested cases where s
ranges up to 50 (except s = 41, 43, 47, 49, which were too costly to test) and
also for s = 60 and 64.

• 2016. After aGoogle search for 387221579866, a coefficient of the polynomial P11

for s = 11, we learned that Gordan Savin and David Quarfoot (2010) had defined
a sequence of polynomials ψs(x, y) with ψ0 = ψ1 = 1, while ψ2 = 2y, ψ3 =
3x4 + 6x2 + 1, ψ4 = 2y(2x6 + 10x4 − 10x2 − 2), and

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 (n � 2) (14)

2yψ2n = ψn
(
ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1

)
(n � 3). (15)

This led Kimberly to the following:

Conjecture 6.5 (Kimberley).

(a) For each integer s � 1, Ps(−x2) is a prime factor of ψs(x). In fact, it is the
unique prime factor of degree 2 × A218147(s).

(b) The algebraic quantity is the largest real root of Ps .
(c) (Divisibility) For integer m, n > 1 when m | n, then ψm | ψn .
(d) (Irreducibility) For primes of form 4n + 3, ψs(x) is irreducible over Q(i).

• 2016. Conjecture (a) was confirmed for s = 52 and (b) was checked up to s = 40.
Parts (c) and (d) have been confirmed for n � 120.

• 2016. In March 2016, David H. Bailey presented a summary of these results in a
number theory seminar at the University of California, Berkeley. After listening to
the presentation, Watson Ladd, a Berkeley graduate student, contacted Bailey and
myself saying that he believed that he could prove Kimberley’s conjecture (13)
on the degree of the polynomials. Subsequently he sent a proof (involving theta
functions, ideals, and Galois theory) and also a proof of the empirically observed
fact that when s is even, the resulting polynomial is palindromic. These results
were added to the published paper—see reference 2 immediately below.

References 6.6 The key references are

1. D. H. Bailey, J. M. Borwein, R. E. Crandall and I. J. Zucker, “Lattice sums arising
from the Poisson equation,” Journal of Physics A, 46 (2013) #115201 (31pp).

2. D. H. Bailey, J.M. Borwein, J. Kimberley andW. Ladd, “Computer discovery and
analysis of large Poisson polynomials,” Experimental Mathematics, 27 August
2016, http://www.tandfonline.com/doi/abs/10.1080/10586458.2016.1180565.

3. G. Savin and D. Quarfoot, “On attaching coordinates of Gaussian prime torsion
points of y2 = x3 + x to Q(i),” March 2010. http://www.math.utah.edu/~savin/
EllipticCurvesPaper.pdf.

http://www.tandfonline.com/doi/abs/10.1080/10586458.2016.1180565
http://www.math.utah.edu/~savin/EllipticCurvesPaper.pdf
http://www.math.utah.edu/~savin/EllipticCurvesPaper.pdf
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7 Conclusion

When I started showing the OEIS in talks 20 years ago, only a few hands would go
up when asked who had heard of it. Now often half the audience will claim some
familiarity. So there has been much progress but there is still work to be done to
further advertise the OEIS.

• The OEIS is an amazing instrumental resource. I recommend everyone read
Sloane’s 2015 interview in Quanta

– https://www.quantamagazine.org/20150806-neil-sloane-oeis-interview/

It is now a fifty year old model both for curation and for moderation of a web
resource.

– Since Neil Sloane retired from ATT, the OEIS has moved to an edited and
wiki-based resource run by the OEIS foundation.

• As with all tools, the OEIS can help (very often) as in the examples of Section 2
and Section 3, and it can hinder (much less often) as in the Example of Section 4.

• If a useful sequence occurs in your work, please contribute to the OEID as we did
with the examples of Section 4 and Section 6.

– Many of the underlying issues of technology and mathematics are discussed in
[4] andmore fully in: J.Monaghan, L. Troché and JMB, Tools and Mathematics,
Springer (Mathematical Education), 2015.

We finish with another quotation.

Algebra is generous; she often gives more than is asked of her. (Jean d’Alembert, 1717–
1783).

As generous as algebra is, the OEIS usually has something more to add.

Acknowledgements The author wishes to thank all of his coauthors, living and dead, who worked
on one or more of these examples.
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