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Abstract We study Andrews and Berndt’s organization of Ramanujan’s transfor-
mation formulas in Chapter 1 of their book Ramanujan’s Lost Notebook, Part II. In
the process, we rediscover a bibasic Heine’s transformation, which follows from a
Fundamental Lemma given by Andrews in 1966, and obtain identities proximal to
Ramanujan’s entries. We also provide a multibasic generalization of Andrews’ 1972
theorem concerning a q-analog of the Lauricella function. Our results only require
the q-binomial theorem, and are an application of what Andrews and Berndt call
‘Heine’s Method’.
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1 Introduction

In Chapter 1, Part II of their edited version of Ramanujan’s [15] Lost Notebook,
Andrews and Berndt [5] have organized Ramanujan’s transformation formulas
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related to Heine’s 2φ1 transformations. While studying their work, we discovered
a large number of formulas that are proximal to Ramanujan’s own entries.

For example, one of Ramanujan’s formulas is [5, Entry 1.6.6]: for |q| < 1,

1

1 − q
+

∞∑

j=1

(−1) j q j2+ j

(
1 − q2 j+1

) [
(1 − q2)(1 − q4)(1 − q6) · · · (1 − q2 j )

]

=
∞∑

k=0

q
k(k+1)

2

= 1 + q1 + q3 + q6 + q10 + q15 + · · · .

The right-hand side is the well-known theta function which Ramanujan denoted as
ψ(q). It has the product representation (see Berndt [7, p. 11])

ψ(q) :=
∞∑

k=0

q
k(k+1)

2 =
∞∏

k=0

(1 − q2k+2)

(1 − q2k+1)
.

We recover Ramanujan’s Entry 1.6.6 and, in the same breath, obtain the formula

1

1 + q
+

∞∑

j=i

(−1) j q( j+1
2 )

(
1 + q j+1

) [
(1 − q)(1 − q2)(1 − q3) · · · (1 − q j )

]

=
∞∑

k=−∞
(−1)kqk2

= 1 − 2q + 2q4 − 2q9 + · · · .

Now the right-hand side is (in Ramanujan’s notation) φ(−q), with product repre-
sentation given by [5, Eq. (1.4.10)]

φ(−q) :=
∞∑

k=−∞
(−1)kqk2 =

∞∏

k=1

(1 − qk)

(1 + qk)
.

For our next example, we require some notation. The q-rising factorial is defined
as (A; q)0 := 1, and when k is a positive integer,

(A; q)k := (1 − A)(1 − Aq) · · · (1 − Aqk−1).

Notice that it is a product of k terms. The parameter q is called the ‘base’. The infinite
q-rising factorial is defined, for |q| < 1, as
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(A; q)∞ :=
∞∏

r=0

(1 − Aqr ).

Observe that, for |q| < 1 [10, Eq. (I.5)],

(A; q)k = (A; q)∞(
Aqk; q)

∞
. (1.1)

This is used to define q-rising factorials when k is a complex number.
With this notation, consider Ramanujan’s formula [5, Entry 1.4.17]

(−aq; q)∞
∞∑

j=0

b jq( j+1
2 )

(q; q) j (−aq; q)t j

=(−bq; q)∞
∞∑

k=0

akq(k+1
2 )

(q; q)k(−bq; q)tk

and compare with the identity

(−aqh; qh
)
∞

∞∑

j=0

b jqt( j+1
2 )

(qt ; qt ) j
(−aqh; qh

)
t j

=(−bqt ; qt
)
∞

∞∑

k=0

akqh(k+1
2 )

(
qh; qh

)
k(−bqt ; qt )hk

,

obtained in our study. Here |q| < 1 and |qt | < 1 in the first formula, and |qh | < 1,
|qt | < 1 and |qht | < 1 in the second. The reader may enjoy recovering Entry 1.4.17
from this formula.

The objective of this paper is to report on our study of [5, Ch. 1]. We are able to
obtain 14 of Ramanujan’s entries as immediate special cases of a particular transfor-
mation formula, and a large number of identities that are proximal to Ramanujan’s
own entries. In addition, we give a multibasic generalization of Andrews’ 1972 for-
mula for a q-Lauricella function and obtain a few interesting special cases, which
again extend formulas of Ramanujan.

During the course of our study, we stumbled upon the transformation formula

∞∑

k=0

(
a; qh

)
k(

qh; qh
)
k

(
b; qt

)
hk

(c; qt )hk
zk =

(
b; qt

)
∞

(c; qt )∞

(
az; qh

)
∞(

z; qh
)
∞

∞∑

j=0

(
c/b; qt

)
j

(qt ; qt ) j

(
z; qh

)
t j(

az; qh
)
t j

b j ,

(1.2)

where |z| < 1, |b| < 1, and h and t are complex numbers such that |qh | < 1, |qt | < 1
and |qht | < 1. Andrews and Berndt [5] use the t = 1 case of this result (a formula
due to Andrews [2, Lemma 1]) often combined with the h = 1 and t = 1 case (a
famous transformation of Heine, see Gasper and Rahman [10, Eq. 1.4.1]). But these
authors seem to have missed writing down (1.2) explicitly, even though it can be
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proved in the same manner as Heine’s result, and indeed follows from a very general
approach to Heine’s ideas, which Andrews [1] calls his ‘Fundamental Lemma’. This
useful and simple identity may be a special case of a 50-year-old identity, but it has
not shown up in the standard textbook by Gasper and Rahman [10], and perhaps
deserves to be highlighted. And so, in §2, we attempt a brief introduction.

The plan for the rest of the paper is as follows. In §3 and §4, we report on our study
of Ramanujan’s transformation formulas. This part of our work can be considered to
be an addendum to Chapter 1 of Andrews and Berndt [5]. In §5, we closely follow
ideas from Andrews [3] to extend our work to multiple series that extend q-analogs
of the Lauricella functions.We give a multibasic generalization of Andrews’ formula
[3, Eq. (4.1)], and give several generalizations of two of Ramanujan’s identities.

Before proceeding to Ramanujan’s 2φ1 transformations, we consider (1.2) again
from the perspective of Heine’s original ideas, an approach that Andrews and Berndt
[5] have dubbed ‘Heine’s method’.

2 Heine’s method: Transformations of Heine, Ramanujan,
and Andrews

This section is an introduction to Identity (1.2). We begin with a famous transfor-
mation formula of Heine that he found in 1847. Heine’s transformation formula [13,
Eq. 78] is

(cx; q)∞
(bx; q)∞

∞∑

k=0

(a; q)k(bx; q)k

(q; q)k(cx; q)k
zk = (az; q)∞

(z; q)∞

∞∑

j=0

(c/b; q) j (z; q) j

(q; q) j (az; q) j
(bx) j . (2.1)

This is almost as Heine himself wrote it, except that he wrote qα , qβ and qγ in place
of a, b and c. Usually, this formula is stated with x = 1, see Gasper and Rahman
[10, eq. (1.4.1)].

Heine’s formula was rediscovered by Ramanujan. It appears as Entry 6 in Chapter
16 of his second notebook, see Berndt [6, p. 15]. In addition, there is another transfor-
mation formula of Ramanujan resembling (2.1). It appeared on Page 3 of the famous
Lost Notebook [15] (see [5, Entry 1.4.1]), and is dated circa 1919, going by Andrews
and Berndt’s [4, p. 4] remarks on the likely timing of work presented in the Lost
Notebook.

(aq; q)∞
(
cq; q2

)
∞

(−bq; q)∞
(
dq2; q2

)
∞

∞∑

j=0

(−bq/a; q) j

(q; q) j

(
dq2; q2

)
j(

cq; q2
)
j+1

(aq) j

=
∞∑

k=0

(
cq/d; q2

)
k(

q2; q2
)
k

(aq; q)2k

(−bq; q)2k+1
(dq2)k . (2.2)

This is Ramanujan’s Entry 1.4.1 and it resembles Heine’s transformation (coinciden-
tally, eq. (1.4.1) of [10]). Both the series have two products each in the numerator and
denominator, and there are four infinite products outside the sums. However, some

http://dx.doi.org/10.1007/978-3-319-68376-8_1
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of the factors in the sums have base q2 rather than q, and the number of terms in
some of the factors of the summands are different. For example, notice the product
(aq; q)2k , a product of 2k factors in the summand on the right-hand side of (2.2).

Andrews and Berndt [5] study many of Ramanujan’s transformation formulas (in
particular (2.2)) in Chapter 1, Part II of their series of books on Ramanujan’s Lost
Notebook. A key component of their study is Andrews’ 1966 transformation formula
[2, Lemma 1]:

∞∑

k=0

(
a; qh

)
k(

qh; qh
)
k

(b; q)hk

(c; q)hk
zk = (b; q)∞

(c; q)∞

(
az; qh

)
∞(

z; qh
)
∞

∞∑

j=0

(c/b; q) j

(q; q) j

(
z; qh

)
j(

az; qh
)
j

b j , (2.3)

where h = 1, 2, 3, . . . . Andrews’ formula contains both (2.1) and (2.2). This can be
seen by taking h = 1 and h = 2, respectively. Andrews’ transformation can also be
found in [5, Th. 1.2.1, p. 6] and [10, Ex. 3.35, p. 111].

Now, inspired by Heine’s formulation (2.1), we write Andrews’ transformation
more symmetrically as follows.

(bw; q)∞
(w; q)∞

∞∑

k=0

(
a; qh

)
k(

qh; qh
)
k

(w; q)hk

(bw; q)hk
zk =

(
az; qh

)
∞(

z; qh
)
∞

∞∑

j=0

(b; q) j

(q; q) j

(
z; qh

)
j(

az; qh
)
j

w j .

This form suggests a further generalization of (2.3), where now we have terms
involving two bases qh and qt (and hence the adjective bibasic).

Theorem 2.1 (A bibasicHeine transformation) Let q, a, b, h, and t be complex num-
bers such that |qh | < 1, |qt | < 1, and |qht | < 1, and suppose that the denominators
in (2.4) are not zero. Then for |w| < 1 and |z| < 1,

(
bw; qt

)
∞

(w; qt )∞

∞∑

k=0

(
a; qh

)
k(

qh; qh
)
k

(
w; qt

)
hk

(bw; qt )hk
zk =

(
az; qh

)
∞(

z; qh
)
∞

∞∑

j=0

(
b; qt

)
j

(qt ; qt ) j

(
z; qh

)
t j(

az; qh
)
t j

w j .

(2.4)

Remark Replace w by b and b by c/b in (2.4) to obtain the form (1.2) of the identity.

Before heading into the proof of Theorem 2.1, we make a few comments on the
convergence of the series and products appearing in this identity.

Observe that we require the conditions |qt | < 1 and |qh | < 1 for the convergence
of the infinite products

(
w; qt

)
∞ and

(
z; qh

)
∞. In view of (1.1), we require these

conditions for the definition of products such as
(
w; qt

)
hk too.

Next, note that the function f (w) := (w; q)∞ is a continuous function of w in a
neighborhood of w = 0, and f (0) = 1. This follows from the fact that for fixed q,
with 0 < |q| < 1, the sequence of partial products

fk(w) =
k−1∏

r=0

(
1 − wqr

)

http://dx.doi.org/10.1007/978-3-319-68376-8_1
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converges absolutely to f (w), and the convergence is uniform in a closed disk around
w = 0 contained in the unit disk {w ∈ C : |w| < 1}.

Now we consider a factor such as
(
w; qt

)
hk , and show that if |qht | < 1, then for

large enough k, |(w; qt
)
hk | is approximately equal to |(w; qt

)
∞|.

By definition, we have

(
w; qt

)
hk =

(
w; qt

)
∞(

wqthk; qt
)
∞

.

Now since |qht | < 1, we must have |qhtk | → 0 as k → ∞, and thus, by the continu-
ity of f (w),

(
wqthk; qt

)
∞ → (

0; qt
)
∞ = 1. Thus for large enough k, |(w; qt

)
hk | is

approximately |(w; qt
)
∞|.

Using the above remarks, we can consider the absolute convergence of the series
appearing on either side of (2.4). Consider first the left-hand side of (2.4).We replace
all the q-rising factorials in the summand by ratios of infinite products, using (1.1).
Then we find that for large enough k, the absolute value of the summand is bounded
by a constant times the factor |z|k . Since the geometric series

∞∑

k=0

zk

converges absolutely for |z| < 1, the sum on the left-hand side of (2.4) converges
absolutely for |z| < 1. Similarly, the sum on the right-hand side converges absolutely
for |w| < 1.

To summarize, we have the conditions |qh | < 1, |qt | < 1, |qht | < 1, |z| < 1 and
|w| < 1 for the convergence of the products and series.

We now proceed with the proof of the theorem. Theorem 2.1 can be obtained as
a very special case of Andrews’ [1] Fundamental Lemma (see our remark below).
But we prove it on the lines of the proof of Heine’s own proof of his transformation
formula, which Andrews and Berndt [5] call Heine’s method. We only require the
identity (1.1) and the q-binomial theorem [10, eq. (1.3.2)]: For |z| < 1, |q| < 1

(az; q)∞
(z; q)∞

=
∞∑

k=0

(a; q)k

(q; q)k
zk . (2.5)

Proof (Proof of Theorem 2.1) We begin with the left-hand side of (2.4).

(
bw; qt

)
∞

(w; qt )∞

∞∑

k=0

(
a; qh

)
k(

qh; qh
)
k

(
w; qt

)
hk

(bw; qt )hk
zk

=
∞∑

k=0

(
a; qh

)
k(

qh; qh
)
k

zk
(
bwqhtk; qt

)
∞(

wqhtk; qt
)
∞

(using (1.1))
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=
∞∑

k=0

(
a; qh

)
k(

qh; qh
)
k

zk
∞∑

j=0

(
b; qt

)
j

(qt ; qt ) j
(wqhtk) j (using (2.5))

=
∞∑

j=0

(
b; qt

)
j

(qt ; qt ) j
w j

∞∑

k=0

(
a; qh

)
k(

qh; qh
)
k

(zqht j )k

=
∞∑

j=0

(
b; qt

)
j

(qt ; qt ) j
w j

(
azqht j ; qh

)
∞(

zqht j ; qh
)
∞

(using (2.5) again)

=
(
az; qh

)
∞(

z; qh
)
∞

∞∑

j=0

(
b; qt

)
j

(qt ; qt ) j

(
z; qh

)
t j(

az; qh
)
t j

w j .

Observe that |w| < 1 and |qht | < 1 implies |wqhtk | < 1. Similarly, we must have
|zqht j | < 1. These conditions are required for the absolute convergence of the
q-binomial series used here, and to justify the interchange of summation. �

Remark Andrews [2, Lemma 1] (see also [10, Ex. 3.35]) mentions that the formula
(2.3) is valid when h = 1, 2, 3, . . . . However, as we have seen, with sufficient con-
ditions, we can take h to be a complex number in (2.3).

Observe that the b = c case of Heine’s transformation is (2.5), the q-binomial
theorem.When b = c, the summand contains the factor (1; q) j that is 1 when j = 0,
and 0 when j > 0. Thus the sum on the right-hand side of (2.1) reduces to 1, and we
obtain (2.5).

A key property of Heine’s transformation is that it can be iterated, and the process
of iteration leads to symmetries of the sum which are useful in many contexts. See
Gasper and Rahman [10, eqs. (1.4.2) and (1.4.5)]. Unfortunately, equation (2.4)
cannot be iterated, making it less useful than Heine’s transformation. However, there
is a bibasic version of a special case of Heine’s second iterate due to Guo and Zeng
[11, Th. 2.2].

There are also bibasic transformation formulas due toGasper [9, eq. (1.12)] (repro-
duced in [10, Ex. 3.20]). These consist of four sums that are equal to each other.
By equating the second and fourth sum, we get a formula equivalent to Andrews’
transformation formula. Replace p by qh in Gasper’s transformation to obtain an
equivalent form of (2.3).

Remark Andrews stated and used (2.3) in [2], and derived it using Theorem A of
[1], which in turn is derived from his ‘Fundamental Lemma’. This lemma is really
a most general approach to Heine’s method, and should be better known. Andrews’
[1] Fundamental Lemma can be stated as:
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∞∑

k=0

(a; q)rk+s

(q; q)rk+s

(b; p)uk+v

(c; p)uk+v
zk = 1

r

(b; p)∞
(c; p)∞

r−1∑

t=0

ω−st
r z−s/r

×
∞∑

j=0

(c/b; p) j
(p; p) j

(
aωt

r z
1/r pu j/r ; q)

∞(
ωt
r z

1/r pu j/r ; q)
∞

(
bpv−us/r

) j
,

(2.6)

where ωr = e2π i/r or some other primitive r th root of unity, and we assume the
parameters satisfy suitable conditions to guarantee convergence of the two series.

Equation (1.2) can be obtained as a special case of (2.6). Take r = 1, u = h,
s = 0 = v, q �→ qh , and p �→ qt to obtain the second last step (suitably re-labeled)
in our proof of Theorem 2.1. Professor Krattenthaler has remarked that, in fact,
(2.6) follows from (1.2) by ‘sectioning’ the series on the left (a process described in
our remark in §4). In other words, Andrews Fundamental Lemma is equivalent to
(1.2). This involves recognizing that we can write the factors in the sums with two
independent bases q and p, since h and t are complex numbers. Indeed, with these
considerations, we can rewrite (1.2) as the r = 1 case of (2.6).

The reader may enjoy proving (2.6) directly using Heine’s method and sectioning.

This completes our introduction to (1.2). We now consider special cases related
to Ramanujan’s transformations. In the rest of the paper, when stating special cases
of (2.4), we do not always explicitly state all the applicable convergence conditions
mentioned in Theorem 2.1.

3 Special cases inspired by Ramanujan’s 2φ1
transformations

While studyingAndrews andBerndt [5, ch. 1], we realized thatmany of Ramanujan’s
transformations in [5, §1.4] are immediate special cases of Ramanujan’s transforma-
tion (2.2), where one takes limits or special cases such as a → 0, b = 0, c = 0, and
d → 0 and combinations of these. So we first rewrite the bibasic Heine transforma-
tion in the form of Ramanujan’s Entry 1.4.1, with a view to study its special cases.We
will find that several of Ramanujan’s entries in Chapter 1 of [5] are immediate special
cases. In addition, we note new identities that resemble Ramanujan’s formulas.

Entry 1.4.1

First, we write (1.2) in the form of Ramanujan’s formula, by taking a �→ cq/d,
b �→ aqt , c �→ −bqt+1, and z �→ dqh . Nowdivide both sides by 1 + bq andmultiply
and divide the RHS by 1 − cq and interchange the sides to obtain

http://dx.doi.org/10.1007/978-3-319-68376-8_1
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(
aqt ; qt

)
∞

(
cq; qh

)
∞

(−bq; qt )∞
(
dqh; qh

)
∞

∞∑

j=0

(−bq/a; qt
)
j

(qt ; qt ) j

(
dqh; qh

)
t j(

cq; qh
)
t j+1

(aqt ) j

=
∞∑

k=0

(
cq/d; qh

)
k(

qh; qh
)
k

(
aqt ; qt

)
hk

(−bq; qt )hk+1
(dqh)k . (3.1)

Again, h and t are complex numbers, and we have the conditions |qh | < 1, |qt | < 1
and |qht | < 1. Further, for the series to converge, we require |aqt | < 1 and |dqh | < 1.

Note that when h = 2 and t = 1, this reduces to (2.2), Ramanujan’s Entry 1.4.1.
The rest of Ramanujan’s entries presented below are also special cases of (3.1).

Entry 1.4.2

In equation (3.1) take a = d = 1, replace c by a, and bring the product
(−bq; qt

)
∞

to the other side. In this manner, we obtain a generalization of Entry 1.4.2:

(
qt ; qt

)
∞

(
aq; qh

)
∞(

qh; qh
)
∞

∞∑

j=0

(−bq; qt
)
j

(qt ; qt ) j

(
qh; qh

)
t j(

aq; qh
)
t j+1

qt j

=(−bq; qt
)
∞

∞∑

k=0

(
aq; qh

)
k(

qh; qh
)
k

(
qt ; qt

)
hk

(−bq; qt )hk+1
qhk . (3.2)

To take special cases, we use the following elementary identities fromGasper and
Rahman [10, eq. (I.27)]:

(a; q)rk = (
a, aq, aq2, . . . , aqr−1; qr )k, (3.3)

and [10, eq. (I.30)]

(
ar ; qr )k = (

a, aωr , aω2
r , . . . , aωr−1

r ; q)
k, (3.4)

where ωr = e2π i/r or some other primitive r th root of unity; here, we use the short-
hand notation

(a1, a2, . . . , an; q)k = (a1; q)k(a2; q)k · · · (an; q)k .

When t = 1, and h is a natural number bigger than 1, then (3.2) reduces to

(
q, q2, . . . , qh−1; qh

)
∞

(
aq; qh

)
∞

∞∑

j=0

(−bq; q) j(
aq; qh

)
j+1

(qωh, qω2
h, . . . , qωh−1

h ; q) j q
j

= (−bq; q)∞
∞∑

k=0

(
aq; qh

)
k

(−bq; q)hk+1
(q, q2, . . . , qh−1; qh)kq

hk,

(3.5)
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where ωh = e2π i/h or some other primitive hth root of unity. We have used (3.3) and
(3.4) to write this expression.

When h = 2, the primitive hth root of unity reduces to−1, andwe obtainRamanu-
jan’s transformation [5, Entry 1.4.2]:

(
q; q2

)
∞

(
aq; q2

)
∞

∞∑

j=0

(−bq; q) j (−q; q) j(
aq; q2

)
j+1

q j

= (−bq; q)∞
∞∑

k=0

(
aq; q2

)
k(q; q2)k

(−bq; q)2k+1
q2k . (3.6)

Observe that the denominator of the sum on the left does not contain the (usually)
mandatory term (q; q) j . This term is required to terminate the series naturally from
below, because

1

(q; q) j
= 0 whenever j < 0.

The same is true for the right-hand side. This seems to be the motive for considering
this special case. See also (3.14), (3.16), and Entry 1.6.5 (and related identities)
below.

Entry 1.4.5

If we set a = 0 in (3.2), replace b by a, and bring all the infinite products to the right,
we obtain a generalization of Entry 1.4.5:

∞∑

j=0

(−aq; qt
)
j

(
qh; qh

)
t j

(qt ; qt ) j
qt j

=
(−aq; qt

)
∞

(
qh; qh

)
∞

(qt ; qt )∞

∞∑

k=0

(
qt ; qt

)
hk(

qh; qh
)
k(−aq; qt )hk+1

qhk . (3.7)

When t = 1, and h > 1 is a positive integer, this reduces to

∞∑

j=0

(−aq; q) j (qωh, qω2
h , . . . , qωh−1

h ; q) j q
j = (qωh, qω2

h , . . . , qωh−1
h ; q)∞(−aq; q)∞

×
∞∑

k=0

1

(−aq; q)hk+1
(q, q2, . . . , qh−1; qh)kq

hk , (3.8)

where ωh = e2π i/h or some other primitive hth root of unity. Further take h = 2 to
obtain Ramanujan’s formula [5, Entry 1.4.5]:
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∞∑

j=0

(−aq; q) j (−q; q) j q
j = (−q; q)∞ (−aq; q)∞

∞∑

k=0

(
q; q2

)
k

(−aq; q)2k+1
q2k . (3.9)

Instead, when t = 2 and h = 1 in (3.7), we obtain the formula

∞∑

j=0

(−aq; q2
)
j

(
q; q2

)
j q

2 j = (
q; q2

)
∞

(−aq; q2
)
∞

∞∑

k=0

(−q; q)k(−aq; q2
)
k+1

qk .

(3.10)
Entry 1.4.3 and Entry 1.4.4

There is a common generalization of Entry 1.4.3 and Entry 1.4.4. Take b = 0, d → 0
in (3.1), replace c by b/qh and cancel 1 − b/qh−1 on the LHS. Bring the products
to the RHS to obtain, for |aqt | < 1,

∞∑

j=0

(
aqt

) j

(qt ; qt ) j
(
bq; qh

)
t j

= 1

(aqt ; qt )∞
(
bq; qh

)
∞

∞∑

k=0

(
aqt ; qt

)
hk(

qh; qh
)
k

(−bq)kqh(k2).

(3.11)
When h = 2 and t = 1, (3.11) reduces to [5, Entry 1.4.3]:

∞∑

j=0

a jq j

(q; q) j
(
bq; q2

)
j

= 1

(aq; q)∞
(
bq; q2

)
∞

∞∑

k=0

(aq; q)2k(
q2; q2

)
k

(−b)kqk2 . (3.12)

When h = 1 and t = 2, (3.11) reduces to [5, Entry 1.4.4]:

∞∑

j=0

a jq2 j

(
q2; q2

)
j (bq; q)2 j

= 1(
aq2; q2

)
∞(bq; q)∞

∞∑

k=0

(
aq2; q2

)
k

(q; q)k
(−b)kq(k+1

2 ).

(3.13)
The case a → 0 and c = 0 case of (3.1) is equivalent to (3.11), up to re-labeling

of parameters.

Entry 1.4.10 and Entry 1.4.11

Both these entries immediately follow from h = 1 = t case of (3.11). In this case,
when a = 1 = b in (3.11), we obtain [5, Entry 1.4.10]

∞∑

j=0

q j

(q; q)2j
= 1

(q; q)2∞

∞∑

k=0

(−1)kq(k+1
2 ). (3.14)

Next, take a = qt and b = qh−1 in (3.11) to obtain

∞∑

j=0

q2t j

(qt ; qt ) j
(
qh; qh

)
t j

= 1

(qt ; qt )∞
(
qh; qh

)
∞

∞∑

k=0

(
qt ; qt

)
hk+1(

qh; qh
)
k

(−1)kqh(k+1
2 ).

(3.15)
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Now take h = 1 = t and simplify as follows.

∞∑

j=0

q2 j

(q; q)2j
= 1

(q; q)2∞

∞∑

k=0

(−1)kq(k+1
2 )

(
1 − qk+1

)

= 1

(q; q)2∞

[ ∞∑

k=0

(−1)kq(k+1
2 ) +

∞∑

k=0

(−1)k+1q(k+2
2 )

]

= 1

(q; q)2∞

[
1 + 2

∞∑

k=1

(−1)kq(k+1
2 )

]
.

Ramanujan’s Entry 1.4.11 is the first sum equated with the last in this chain of
equalities [5, Entry 1.4.11]:

∞∑

j=0

q2 j

(q; q)2j
= 1

(q; q)2∞

[
1 + 2

∞∑

k=1

(−1)kq(k+1
2 )

]
. (3.16)

Entry 1.4.12, Entry 1.4.17, Entry 1.4.9, and a part of Entry 1.5.1

Consider the case a → 0, d → 0 of (3.1). In the resulting identity, bring the infinite
product

(−bq; qt
)
∞ to the other side, and cancel (1 − cq) on the LHS and (1 + bq)

on the RHS. Then replace c by −a/q and b by b/q to obtain the appealing identity

(−aqh; qh
)
∞

∞∑

j=0

b jqt( j+1
2 )

(qt ; qt ) j
(−aqh; qh

)
t j

=(−bqt ; qt
)
∞

∞∑

k=0

akqh(k+1
2 )

(
qh; qh

)
k(−bqt ; qt )hk

. (3.17)

Many special cases of this symmetric identity have been found useful, some noted
below, and one considered in §4.

When h = 1, (3.17) reduces to [5, Entry 1.4.12]

(−aq; q)∞
∞∑

j=0

b jqt( j+1
2 )

(qt ; qt ) j (−aq; q)t j

=(−bqt ; qt
)
∞

∞∑

k=0

akq(k+1
2 )

(q; q)k(−bqt ; qt )k
. (3.18)

Take h = t in (3.17), and then replace q by q1/t to obtain [5, Entry 1.4.17]
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(−aq; q)∞
∞∑

j=0

b jq( j+1
2 )

(q; q) j (−aq; q)t j

=(−bq; q)∞
∞∑

k=0

akq(k+1
2 )

(q; q)k(−bq; q)tk
, (3.19)

one ofRamanujan’s formulas highlighted in the introduction. Takea = −1 and b = 1
in Ramanujan’s Entry 1.4.17 (eq. (3.19)) to obtain

∞∑

j=0

q( j+1
2 )

(q; q) j (q; q)t j
= (−q; q)∞

(q; q)∞

∞∑

k=0

(−1)kq(k+1
2 )

(q; q)k(−q; q)tk
. (3.20)

This further reduces to [5, Entry 1.4.9] when t = 1:

∞∑

j=0

q( j+1
2 )

(q; q)2j
= (−q; q)∞

(q; q)∞

∞∑

k=0

(−1)kq(k+1
2 )

(
q2; q2

)
k

, (3.21)

where we use [10, eq. (I.28)]

(a; q)k(−a; q)k = (
a2; q2

)
k

in the denominator of the RHS.
In Entry 1.4.17 (eq. (3.19)) replace q by q2 and take t = 1 to obtain an assertion

equivalent to an observation of M. Soros (see [5, eq. (1.5.1)]):

(−aq2; q2
)
∞

∞∑

j=0

b jq j2+ j

(
q2; q2

)
j

(−aq2; q2
)
j

=(−bq2; q2
)
∞

∞∑

k=0

akqk2+k

(
q2; q2

)
k

(−bq2; q2
)
k

. (3.22)

When we take a �→ a/q and b �→ b/q in (3.22), we obtain [5, eq. (1.5.1)]. Instead,
if we take the special case b �→ a/q in (3.22), we obtain the second equality of [5,
Entry 1.5.1]:

(−aq2; q2
)
∞

∞∑

j=0

a jq j2

(
q2; q2

)
j

(−aq2; q2
)
j

=(−aq; q2
)
∞

∞∑

k=0

akqk2+k

(
q2; q2

)
k

(−aq; q2
)
k

. (3.23)
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Entry 1.4.18

Entry 1.4.18 is due to Andrews, Berndt, and Ramanujan [5], and follows from the
a → 0 case of Ramanujan’s transformation (2.2).

Take a → 0 in (3.1), cancel the factor (1 − cq) from the LHS, and (1 + bq) from
both sides. In the resulting identity take b �→ b/q, c �→ a/q, and d �→ −c/qh , and
bring the infinite products to the other side, we obtain: for |c| < 1,

∞∑

j=0

(−c; qh
)
t j

(qt ; qt ) j
(
aqh; qh

)
t j

b jqt( j+1
2 )

=
(−bqt ; qt

)
∞

(−c; qh
)
∞(

aqh; qh
)
∞

∞∑

k=0

(−aqh/c; qh
)
k(

qh; qh
)
k(−bqt ; qt )hk

(−c)k . (3.24)

When c = a/b, h = 2 and t = 1, this reduces to [5, Entry 1.4.18]:

∞∑

j=0

(−a/b; q2
)
j

(q; q) j
(
aq2; q2

)
j

b jq( j+1
2 )

= (−bq; q)∞
(−a/b; q2

)
∞(

aq2; q2
)
∞

∞∑

k=0

(−bq2; q2
)
k(

q2; q2
)
k(−bq; q)2k

(
−a

b

)k
. (3.25)

Perhaps the c = a/b, h = 1 and t = 2 case of (3.24) is equally pretty.

∞∑

j=0

(−a/b; q)2 j(
q2; q2

)
j (aq; q)2 j

b jq j2+ j

=
(−bq2; q2

)
∞(−a/b; q)∞

(aq; q)∞

∞∑

k=0

(−bq; q)k

(q; q)k
(−bq2; q2

)
k

(
−a

b

)k
. (3.26)

To get other transformations of a similar nature, consider the b = 0 case of (3.1).
Take b = 0 in (3.1), cancel the factor (1 − cq) from the LHS. In the resulting

identity take a �→ −b, c �→ a/q, and d �→ −c/qh , and bring the infinite products to
the other side. We obtain: for |bqt | < 1, |c| < 1,

∞∑

j=0

(−c; qh
)
t j

(qt ; qt ) j
(
aqh; qh

)
t j

(−bqt ) j

=
(−c; qh

)
∞(

aqh; qh
)
∞(−bqt ; qt )∞

∞∑

k=0

(−aqh/c; qh
)
k

(−bqt ; qt
)
hk(

qh; qh
)
k

(−c)k . (3.27)

Take the c = a/b, h = 2, t = 1 case of (3.27) to obtain
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∞∑

j=0

(−a/b; q2
)
j

(q; q) j
(
aq2; q2

)
j

(−bq) j

=
(−a/b; q2

)
∞(

aq2; q2
)
∞(−bq; q)∞

∞∑

k=0

(−bq2; q2
)
k(−bq; q)2k(

q2; q2
)
k

(
−a

b

)k
. (3.28)

An equivalent form of Entry 1.6.5

Consider the case a → 0 of (3.1). Replace c by dqh−1, and then take b �→ b/q and
d �→ −a to obtain, for |aqh | < 1,

∞∑

j=0

b jqt( j+1
2 )

(qt ; qt ) j
(
1 + aqh(t j+1)

) = (−bqt ; qt
)
∞

∞∑

k=0

(−1)k
(
aqh

)k

(−bqt ; qt )hk
. (3.29)

In the case that h = 1, t = 2, and b = a this reduces to an equivalent form of Entry
1.6.5, the second last equation in the proof of [5, Entry 1.6.5]:

∞∑

j=0

a jq j2+ j

(
q2; q2

)
j

(
1 + aq2 j+1

) = (−aq2; q2
)
∞

∞∑

k=0

(−aq)k(−aq2; q2
)
k

. (3.30)

This identity has a combinatorial proof, given by Berndt, Kim and Yee [8, Th. 5.7]. A
very similar identity is obtained when h = 2, t = 1, a �→ a/q, and b = a in (3.29):

∞∑

j=0

a jq( j+1
2 )

(q; q) j
(
1 + aq2 j+1

) = (−aq; q)∞
∞∑

k=0

(−aq)k

(−aq; q)2k
. (3.31)

Similar identities are obtained when b = 0 in (3.1). Set d = c/qh−1 and in the
resulting identity, relabel parameters by replacing c by −aqh−1 and a by −b, to
obtain, for |aqh | < 1, |bqt | < 1,

∞∑

j=0

(−bqt
) j

(qt ; qt ) j
(
1 + aqh(t j+1)

) = 1

(−bqt ; qt )∞

∞∑

k=0

(−bqt ; qt
)
hk

(−aqh
)k

. (3.32)

Now take b = a, h = 1 and t = 2 to find that

∞∑

j=0

(−aq2) j(
q2; q2

)
j

(
1 + aq2 j+1

) = 1(−aq2; q2
)
∞

∞∑

k=0

(−aq2; q2)
k (−aq)k . (3.33)

The b = 0 = c case of (3.1)

Take b = 0 = c in (3.1), replace d by b and take
(
aqt ; qt

)
∞ on the other side to obtain

an extremely symmetric transformation formula; for |aqt | < 1 and |bqh | < 1,
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1(
bqh; qh

)
∞

∞∑

j=0

(
bqh; qh

)
t j

(qt ; qt ) j
(aqt ) j = 1

(aqt ; qt )∞

∞∑

k=0

(
aqt ; qt

)
hk(

qh; qh
)
k

(bqh)k . (3.34)

There is no corresponding formula in Ramanujan’s list appearing in Chapter 1 of
[5], but it is related to [5, Cor. 1.2.2], a result originally due to Andrews [2]. When
h = 2 and t = 1, then (3.34) reduces to

1(
bq2; q2

)
∞

∞∑

j=0

(
bq2; q2

)
j

(q; q) j
(aq) j = 1

(aq; q)∞

∞∑

k=0

(aq; q)2k(
q2; q2

)
k

(bq2)k . (3.35)

Compare the sumon the left-hand sidewith that of [5,Cor. 1.2.2]. ToobtainCor. 1.2.2,
Andrews and Berndt apply Heine’s transformation once again on the right-hand side
of (3.35).

Summary of special cases

So far, we have listed 13 entries that are immediate special or limiting cases of (3.1).
One more will appear in §4. The main special case is Entry 1.4.1 (eq. (2.2)) which
is the h = 2 and t = 1 case of (3.1). The others are:

1. The case a = 1 = d. This leads to Entry 1.4.2 and Entry 1.4.5.
2. The case b = 0 and d → 0 of (3.1). This leads to Entry 1.4.3 and Entry 1.4.4.

Note that the case a → 0 and c = 0 leads to the same identities. Other special
cases include Entry 1.4.10 and Entry 1.4.11.

3. Taking a → 0 (without changing c) leads to Entry 1.4.18, and an equivalent form
of Entry 1.6.5. See also Entry 1.6.6 in §4 below. We have also taken b = 0 for
the sake of completeness. (The d → 0 and c = 0 cases are equivalent due to the
symmetry of (3.1).)

4. The case a → 0 and d → 0. This leads to Entry 1.4.12, Entry 1.4.17, Entry 1.4.9,
and a part of Entry 1.5.1.

5. The case b = 0 = c. This leads to a new transformation formula. A special case
is closely related to a useful transformation formula of Andrews in [5, Cor. 1.2.2].

By examining the above summary carefully, one can ask about the cases when b = 0
followed by a = 0, or c = 0 followed by d = 0 in (3.1). However, in both these
cases, the resulting identity reduces to the q-binomial theorem.

It is apparent that most of Ramanujan’s identities considered here are simple
limiting cases of (3.1) where one or more parameters go to 0. However, there are a
few that are motivated by getting a q-series (such as Entry 1.4.10 and Entry 1.4.11),
or in getting an ‘unnatural’ identity, where the factor that naturally terminates the
series from below is missing. See Entry 1.4.2 (eq. (3.6)), Entry 1.4.5 (eq. (3.9)) and
(3.30).

http://dx.doi.org/10.1007/978-3-319-68376-8_1
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4 Entry 1.6.6 and related summations

Entry 1.6.6 is also a special case of (3.29), our generalization of Entry 1.6.5 above,
and so of (3.1). What is different here is that one can employ a special case of the
q-binomial theorem to sum one of the series. The special case we need is [10, eq.
(II.1)]: for |z| < 1,

1

(z; q)∞
=

∞∑

k=0

zk

(q; q)k
. (4.1)

Observe that when b = −1 and h = 1 in (3.29), then using (4.1), we obtain

∞∑

j=0

(−1) j qt( j+1
2 )

(qt ; qt ) j
(
1 + aqt j+1

) = (
qt ; qt

)
∞

∞∑

k=0

(−1)k (aq)k

(qt ; qt )k

=
(
qt ; qt

)
∞

(−aq; qt )∞
.

Replace a by aqs−1 to rewrite this identity in the form

∞∑

j=0

(−1) j qt( j+1
2 )

(qt ; qt ) j
(
1 + aqt j+s

) =
(
qt ; qt

)
∞

(−aqs; qt )∞
. (4.2)

In the case where a = −1, s = 1 and t = 2, this reduces to Ramanujan’s [5, Entry
1.6.6], an identity we highlighted in the introduction:

∞∑

j=0

(−1) j q j2+ j

(
q2; q2

)
j

(
1 − q2 j+1

) =
(
q2; q2

)
∞(

q; q2
)
∞

, (4.3)

where the ratio of infinite products on the right-hand side is equal to Ramanujan’s
theta function ψ(q), defined as

ψ(q) :=
∞∑

k=0

q
k(k+1)

2 .

However, if we take a = 1, t = 1 and s = 1 in (4.2), we obtain

∞∑

j=0

(−1) j q( j+1
2 )

(q; q) j
(
1 + q j+1

) = (q; q)∞
(−q; q)∞

, (4.4)

where now the products on the right-hand side are (in Ramanujan’s notation) φ(−q),
defined by
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φ(−q) :=
∞∑

k=−∞
(−1)kqk2 .

So in (4.2) we have a common generalization of (4.3) and (4.4).
More generally, when b = −1, a �→ −ah , then (3.29) reduces to

∞∑

j=0

(−1) j qt( j+1
2 )

(qt ; qt ) j
(
1 − ahqh(t j+1)

) = (
qt ; qt

)
∞

∞∑

k=0

(aq)hk

(qt ; qt )hk
.

When h is a positive integer, the sum on the right consists of every hth term of the
summand in (4.1). There is a simple trick to compute such a sum. It uses the fact that

1

h

h−1∑

r=0

ωrk
h =

{
1 if h|k
0 otherwise

,

for ωh = e2π i/h or some other primitive hth root of unity. Using this trick, we find
that

∞∑

k=0

(aq)hk

(qt ; qt )hk
=

∞∑

k=0

(aq)k

(qt ; qt )k

1

h

h−1∑

r=0

ωrk
h

= 1

h

h−1∑

r=0

∞∑

k=0

(
aqωr

h

)k

(qt ; qt )k

= 1

h

h−1∑

r=0

1(
aqωr

h; qt
)
∞

.

So we obtain

∞∑

j=0

(−1) j qt( j+1
2 )

(qt ; qt ) j
(
1 − ahqh(t j+1)

) = 1

h

h−1∑

r=0

(
qt ; qt

)
∞(

aqωr
h; qt

)
∞

. (4.5)

In particular when h = 2, then ωh = −1, and

∞∑

j=0

(−1) j qt( j+1
2 )

(qt ; qt ) j
(
1 − a2q2(t j+1)

) = 1

2

( (
qt ; qt

)
∞

(aq; qt )∞
+

(
qt ; qt

)
∞

(−aq; qt )∞

)
. (4.6)

When a = 1 and t = 2, this reduces to
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∞∑

j=0

(−1) j q j2+ j

(
q2; q2

)
j

(
1 − q2(2 j+1)

) = 1

2

((
q2; q2

)
∞(

q; q2
)
∞

+
(
q2; q2

)
∞(−q; q2
)
∞

)

= 1

2
(ψ(q) + ψ(−q)) . (4.7)

The right-hand side is the even part of ψ(q).

Remark Letωr = e2π i/r or some other primitive r th root of unity. Then we can show
that, formally,

1

r

r−1∑

ν=0

ω−νs
r

∞∑

n=0

f (n)ωνn
r =

∞∑

k=0

f (rk + s)
1

r

r−1∑

ν=0

ωνrk
r =

∞∑

k=0

f (rk + s).

This ‘sectioning’ process allows us to compute the sum
∑∞

k=0 f (rk + s)zrk+s, if we
know the sum

∑∞
k=0 f (k)zk .

This trick is used in the proof ofAndrews’ Fundamental Lemma, given in equation
(2.6).

We have seen an example where we can sum a series after applying Heine’s method.
Next, we obtain a result for multiple series by iterating Heine’s method.

5 Multibasic Andrews q-Lauricella transformation

We now apply Heine’s method to obtain a multibasic generalization of Andrews’ [3,
(eq. (4.1)] transformation formula for the q-Lauricella function. As special cases,
we obtain some generalizations of Entry 1.4.10 and of equation (3.17). These results
transform a multiple series to a multiple of a single series.

For h and k vectors, we use the following notations. The notation |k| is used
to denote the sum of the components of the vector k1 + k2 + · · · + km . We use the
symbol for the dot product

h · k = h1k1 + h2k2 + · · · + hmkm .

We also use the vector δ to denote the vector (1, 2, . . . ,m). Thus,

δ · k =
m∑

r=1

rkr .

Theorem 5.1 Suppose m = 1, 2, . . . is a nonnegative integer. Let a1, a2, . . . , am
and b be complex numbers, and suppose that the denominators in (5.1) are not
zero. Further, let q, t , h1, h2, . . . hm be complex numbers, satisfying |qt | < 1,
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|qhr | < 1 and |qthr | < 1, for r = 1, 2, . . . ,m. Then, for |w| < 1, and |zr | < 1 (for
r = 1, 2, . . . ,m),

∑

kr≥0
r=1,2,...,m

m∏

r=1

(
ar ; qhr

)
kr(

qhr ; qhr
)
kr

(
w; qt

)
h·k

(bw; qt )h·k

m∏

r=1

zkrr (5.1)

=
(
w; qt

)
∞

(bw; qt )∞

m∏

r=1

(
ar zr ; qhr

)
∞(

zr ; qhr
)
∞

∞∑

j=0

(
b; qt

)
j

(qt ; qt ) j

m∏

r=1

(
zr ; qhr

)
t j(

ar zr ; qhr
)
t j

w j .

Remark Whenm = 1, then (5.1) reduces to (2.4).When ar �→ br , b �→ c/a,w �→ a,
and h1 = h2 = · · · hm = 1 = t , then (5.1) reduces to a transformation of Andrews
for q-Lauricella functions [3, (eq. (4.1)].

Proof The proof of (5.1) is a direct extension of the proof of (2.4). For m = 1, it
reduces to Theorem (2.1). When m > 1, we apply Heine’s method m times. Expand
the relevant products using the q-binomial theorem and interchange the sums one at
a time. The first few steps of the proof are as follows.

∑

kr≥0
r=1,2,...,m

m∏

r=1

(
ar ; qhr

)
kr(

qhr ; qhr
)
kr

(
w; qt

)
h·k

(bw; qt )h·k

m∏

r=1

zkrr

=
(
w; qt

)
∞

(bw; qt )∞

∑

kr≥0
r=1,2,...,m

m∏

r=1

(
ar ; qhr

)
kr(

qhr ; qhr
)
kr

(
bwqt(h1k1+···+hmkm ); qt

)
∞(

wqt(h1k1+···+hmkm ); qt
)
∞

m∏

r=1

zkrr

=
(
w; qt

)
∞

(bw; qt )∞

∑

kr≥0
r=1,2,...,m

m∏

r=1

(
ar ; qhr

)
kr(

qhr ; qhr
)
kr

m∏

r=1

zkrr

∞∑

j=0

(
b; qt

)
j

(qt ; qt ) j
w jqt j(h1k1+···+hmkm )

=
(
w; qt

)
∞

(bw; qt )∞

∑

kr≥0
r=1,2,...,m−1

m−1∏

r=1

(
ar ; qhr

)
kr(

qhr ; qhr
)
kr

m−1∏

r=1

zkrr

×
∞∑

j=0

(
b; qt

)
j

(qt ; qt ) j
w jqt j(h1k1+···+hm−1km−1)

∑

km≥0

(
am; qhm

)
km(

qhm ; qhm
)
km

(
zmq

t jhm
)km

=
(
w; qt

)
∞

(bw; qt )∞

∑

kr≥0
r=1,2,...,m−1

m−1∏

r=1

(
ar ; qhr

)
kr(

qhr ; qhr
)
kr

m−1∏

r=1

zkrr

×
∞∑

j=0

(
b; qt

)
j

(qt ; qt ) j
w jqt j(h1k1+···+hm−1km−1)

(
amzmqt jhm ; qhm

)
∞(

zmqt jhm ; qhm
)
∞
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=
(
w; qt

)
∞

(bw; qt )∞

(
amzm; qhm

)
∞(

zm; qhm
)
∞

∑

kr≥0
r=1,2,...,m−1

m−1∏

r=1

(
ar ; qhr

)
kr(

qhr ; qhr
)
kr

m−1∏

r=1

zkrr

×
∞∑

j=0

(
b; qt

)
j

(qt ; qt ) j

(
zm; qhm

)
t j(

amzm; qhm
)
t j

w jqt j(h1k1+···+hm−1km−1).

So far, the steps are identical to the proof of Theorem 2.1, with the sum indexed by
km replacing the sum indexed by k in the earlier proof. Repeating these steps m − 1
times, we obtain the required single sum indexed by j on the right-hand side of (5.1).

The convergence considerations in §2 extend to both the series in this theorem,
and to the interchange of summations required in the proof. �

Next, we indicate generalizations of a few special cases of results from §3, to hint
at the many possibilities available.

First take ar �→ crq/dr , b �→ −bq/a,w �→ aqt and zr �→ drqhr in (5.1) to obtain
a generalization of (3.1):

(
aqt ; qt )∞(−bqt+1; qt )∞

m∏

r=1

(
cr qhr+1; qhr

)

∞(
drqhr ; qhr

)
∞

∞∑

j=0

(−bq/a; qt ) j(
qt ; qt ) j

m∏

r=1

(
drqhr ; qhr

)

t j(
cr qhr+1; qhr )t j

(
aqt

) j

=
∑

kr≥0
r=1,2,...,m

m∏

r=1

(
cr q/dr ; qhr

)

kr(
qhr ; qhr )kr

(
aqt ; qt )h·k(−bqt+1; qt )h·k

qh·k
m∏

r=1

dkrr . (5.2)

Next, we obtain four generalizations of Ramanujan’s Entry 1.4.10, equation
(3.14).

First take b = 0 and dr → 0, for r = 1, 2, . . . ,m in (5.2). Further, replace cr by
1/q for each r , and take a = 1. In the resulting identity, take t = 1, and hr = r for
r = 1, 2, . . . ,m to obtain

∞∑

j=0

q j

(q; q) j

m∏

r=1

1

(qr ; qr ) j
= 1

(q; q)∞

m∏

r=1

1

(qr ; qr )∞

×
∑

kr≥0
r=1,2,...,m

m∏

r=1

1

(qr ; qr )kr
(q; q)δ·k(−1)|k|q

m∑
r=1

r(kr+1
2 )

. (5.3)

Next, again take b = 0 and dr → 0, for r = 1, 2, . . . ,m in (5.2). But now take
m = n, and replace hr by n for all r . Further, set cr = cqr−2 for r = 1, 2, . . . , n, and
invoke (3.3) to simplify some of the products. Finally, take a = c = 1 to obtain the
following generalization of Entry 1.4.10:
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∞∑

j=0

qt j

(qt ; qt ) j (qn; q)nt j
= 1

(qt ; qt )∞(qn; q)∞

×
∑

kr≥0
r=1,2,...,n

n∏

r=1

1

(qn; qn)kr

(
qt ; qt

)
n|k|(−1)|k|q

n∑
r=1

(r−1)kr+n
n∑

r=1
(kr+1

2 )
. (5.4)

The third generalization of Entry 1.4.10 is obtained as follows. In equation (5.2),
take a → 0 and cr = 0 for r = 1, 2, . . . ,m. Now take b �→ −1/q, dr = 1, for r =
1, 2, . . . ,m. In the resulting transformation, once again take t = 1, and hr = r , for
r = 1, 2, . . . ,m, and obtain

∑

kr≥0
r=1,2,...,m

1

(q; q)δ·k

m∏

r=1

1

(qr ; qr )kr
qδ·k

= 1

(q; q)∞

m∏

r=1

1

(qr ; qr )∞
∞∑

j=0

(−1) j q( j+1
2 )

m∏

r=2

(
qr ; qr ) j . (5.5)

The fourth generalization of Entry 1.4.10 is as follows. Again, take a → 0 and
cr = 0 for r = 1, 2, . . . ,m. But now take m = n, and replace hr by n for all r .
Further, replace b by −b/q, and set dr = dqr−1 for r = 1, 2, . . . , n. Again, we
invoke (3.3) to simplify some of the products, and take b = d = 1 to obtain the
following generalization of Entry 1.4.10.

∑

kr≥0
r=1,2,...,n

1

(qt ; qt )n|k|

n∏

r=1

1

(qn; qn)kr
q
n|k|+

n∑
r=1

(r−1)kr

= 1

(qt ; qt )∞(qn; q)∞

∞∑

j=0

(qn; q)nt j

(qt ; qt ) j
(−1) j qt( j+1

2 ). (5.6)

Next, we give a generalization of the generalization of Entry 1.4.12 given in
equation (3.17). To this end take the limit as a → 0 and dr → 0, for r = 1, 2, . . . ,m
in (5.2). Now replace cr by −ar/q and b by b/q to obtain

m∏

r=1

(−arq
hr ; qhr

)
∞

∞∑

j=0

1

(qt ; qt ) j

m∏

r=1

1(−arqhr ; qhr
)
t j

b jqt( j+1
2 )

= (−bqt ; qt
)
∞

∑

kr≥0
r=1,2,...,m

m∏

r=1

akrr(
qhr ; qhr

)
kr

1

(−bqt ; qt )h·k
q

m∑
r=1

hr(kr+1
2 )

. (5.7)
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Finally, we present a special case of (5.7) with m = n and where hr = n, for all r .
Take ar = aqr−1 for all r and simplify some of the products using (3.3) to obtain the
following generalization of Entry 1.4.12:

(−aqn; q)
∞

∞∑

j=0

b j

(qt ; qt ) j (−aqn; q)nt j
qt( j+1

2 ) = (−bqt ; qt
)
∞

×
∑

kr≥0
r=1,2,...,n

n∏

r=1

1

(qn; qn)kr

a|k|

(−bqt ; qt )n|k|
q

n∑
r=1

(r−1)kr+n
n∑

r=1
(kr+1

2 )
. (5.8)

Perhaps this is a suitable place to close our study, at equation number 60 of this
paper.

6 Closing remarks

We have seen that a minor modification of Andrews’ earlier identity led to so many
identities similar to Ramanujan’s entries. Clearly, it is a good idea to study Ramanu-
jan’s Notebooks, edited by Berndt, and the Lost Notebook, edited by Andrews and
Berndt. We conclude with a few remarks regarding Ramanujan’s transformations
and possible directions of further study.

Entry 1.4.1 is a key identity of Ramanujan, and deserves more importance than
given in [5]. Recall that Entry 1.4.1 is the h = 2 and t = 1 case of (3.1). Many
of Ramanujan’s transformations considered here are immediate corollaries of Entry
1.4.1. These include Entries 1.4.2, 1.4.3, 1.4.4, 1.4.5, and 1.4.18. The special cases
considered are the obvious ones, by letting one or more parameters equal to 0, or if
necessary, taking limits to 0. Even the equivalent case of Entry 1.6.5 can be derived
from Entry 1.4.1, by taking d → 0.

Entries 1.4.9, 1.4.10, 1.4.11, and 1.5.1 follow from the h = 1 = t case of (1.2)
or in other words, from Heine’s transformation (2.1). Since Heine’s transformation
formula appears in earlier notebooks of Ramanujan, why do these formulas show up
here, in his later work? An explanation is that Ramanujan was searching for identities
for series that look like or involve theta functions. So these entries, and Entry 1.6.6
fit in well here.

Next note that Entry 1.4.12 is obtained from the h = 1 case of (1.2), while Entry
1.4.17 requires the the h = t case of (1.2). Of the entries studied here, these two are
the only ones that require something more than (2.1) and (2.2) (the two identities
noted by Ramanujan in his notebooks).

Many of Ramanujan’s identities have been studied from a partition theoretic
perspective by Berndt, Kim and Yee [8], including (3.18), (3.19), (3.21), (3.23)
and (3.30). We expect that many of the identities considered here have a similar
interpretation.
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Finally, we note that Heine’s method generalizes to multiple series related to root
systems. We can combine the multidimensional q-binomial theorems (given by, for
example, Milne [14] and Gustafson and Krattenthaler [12]) to obtain extensions of
(1.2) and (5.1). We hope to present these elsewhere.

Acknowledgements We thank Professor George Andrews and Professor Christian Krattenthaler
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